repo_name
stringlengths
5
92
path
stringlengths
4
221
copies
stringclasses
19 values
size
stringlengths
4
6
content
stringlengths
766
896k
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
32
997
alpha_frac
float64
0.25
0.96
autogenerated
bool
1 class
ratio
float64
1.5
13.6
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
OpenAgInitiative/gro-api
gro_api/actuators/migrations/0008_auto_20150812_1550.py
1
1250
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('actuators', '0007_auto_20150812_1520'), ] operations = [ migrations.AlterField( model_name='actuatoreffect', name='control_profile', field=models.ForeignKey(to='actuators.ControlProfile', related_name='effects'), ), migrations.AlterField( model_name='actuatoreffect', name='effect_on_active', field=models.FloatField(default=0), ), migrations.AlterField( model_name='actuatoreffect', name='property', field=models.ForeignKey(to='resources.ResourceProperty', related_name='+'), ), migrations.AlterField( model_name='actuatoreffect', name='threshold', field=models.FloatField(default=0), ), migrations.AlterField( model_name='controlprofile', name='properties', field=models.ManyToManyField(through='actuators.ActuatorEffect', editable=False, to='resources.ResourceProperty', related_name='+'), ), ]
gpl-2.0
-4,914,615,802,447,475,000
31.051282
144
0.5896
false
4.448399
false
false
false
LumaPictures/rez
src/rez/resolved_context.py
1
63181
from rez import __version__, module_root_path from rez.package_repository import package_repository_manager from rez.solver import SolverCallbackReturn from rez.resolver import Resolver, ResolverStatus from rez.system import system from rez.config import config from rez.util import shlex_join, dedup from rez.utils.sourcecode import SourceCodeError from rez.utils.colorize import critical, heading, local, implicit, Printer from rez.utils.formatting import columnise, PackageRequest from rez.utils.filesystem import TempDirs from rez.utils.memcached import pool_memcached_connections from rez.backport.shutilwhich import which from rez.rex import RexExecutor, Python, OutputStyle from rez.rex_bindings import VersionBinding, VariantBinding, \ VariantsBinding, RequirementsBinding from rez import package_order from rez.packages_ import get_variant, iter_packages from rez.package_filter import PackageFilterList from rez.shells import create_shell from rez.exceptions import ResolvedContextError, PackageCommandError, RezError from rez.utils.graph_utils import write_dot, write_compacted, read_graph_from_string from rez.vendor.version.version import VersionRange from rez.vendor.enum import Enum from rez.vendor import yaml from rez.utils.yaml import dump_yaml from tempfile import mkdtemp from functools import wraps import getpass import traceback import inspect import time import sys import os import os.path # specifically so that str's are not converted to unicode on load from rez.vendor import simplejson class RezToolsVisibility(Enum): """Determines if/how rez cli tools are added back to PATH within a resolved environment.""" never = 0 # Don't expose rez in resolved env append = 1 # Append to PATH in resolved env prepend = 2 # Prepend to PATH in resolved env class SuiteVisibility(Enum): """Defines what suites on $PATH stay visible when a new rez environment is resolved.""" never = 0 # Don't attempt to keep any suites visible in a new env always = 1 # Keep suites visible in any new env parent = 2 # Keep only the parent suite of a tool visible parent_priority = 3 # Keep all suites visible and the parent takes precedence class PatchLock(Enum): """ Enum to represent the 'lock type' used when patching context objects. """ no_lock = ("No locking", -1) lock_2 = ("Minor version updates only (X.*)", 1) lock_3 = ("Patch version updates only (X.X.*)", 2) lock_4 = ("Build version updates only (X.X.X.*)", 3) lock = ("Exact version", -1) __order__ = "no_lock,lock_2,lock_3,lock_4,lock" def __init__(self, description, rank): self.description = description self.rank = rank def get_lock_request(name, version, patch_lock, weak=True): """Given a package and patch lock, return the equivalent request. For example, for object 'foo-1.2.1' and lock type 'lock_3', the equivalent request is '~foo-1.2'. This restricts updates to foo to patch-or-lower version changes only. For objects not versioned down to a given lock level, the closest possible lock is applied. So 'lock_3' applied to 'foo-1' would give '~foo-1'. Args: name (str): Package name. version (Version): Package version. patch_lock (PatchLock): Lock type to apply. Returns: `PackageRequest` object, or None if there is no equivalent request. """ ch = '~' if weak else '' if patch_lock == PatchLock.lock: s = "%s%s==%s" % (ch, name, str(version)) return PackageRequest(s) elif (patch_lock == PatchLock.no_lock) or (not version): return None version_ = version.trim(patch_lock.rank) s = "%s%s-%s" % (ch, name, str(version_)) return PackageRequest(s) class ResolvedContext(object): """A class that resolves, stores and spawns Rez environments. The main Rez entry point for creating, saving, loading and executing resolved environments. A ResolvedContext object can be saved to file and loaded at a later date, and it can reconstruct the equivalent environment at that time. It can spawn interactive and non-interactive shells, in any supported shell plugin type, such as bash and tcsh. It can also run a command within a configured python namespace, without spawning a child shell. """ serialize_version = (4, 3) tmpdir_manager = TempDirs(config.context_tmpdir, prefix="rez_context_") class Callback(object): def __init__(self, max_fails, time_limit, callback, buf=None): self.max_fails = max_fails self.time_limit = time_limit self.callback = callback self.start_time = time.time() self.buf = buf or sys.stdout def __call__(self, state): if self.max_fails != -1 and state.num_fails >= self.max_fails: reason = ("fail limit reached: aborted after %d failures" % state.num_fails) return SolverCallbackReturn.fail, reason if self.time_limit != -1: secs = time.time() - self.start_time if secs > self.time_limit: return SolverCallbackReturn.abort, "time limit exceeded" if self.callback: return self.callback(state) return SolverCallbackReturn.keep_going, '' def __init__(self, package_requests, verbosity=0, timestamp=None, building=False, caching=None, package_paths=None, package_filter=None, package_orderers=None, max_fails=-1, add_implicit_packages=True, time_limit=-1, callback=None, package_load_callback=None, buf=None): """Perform a package resolve, and store the result. Args: package_requests: List of strings or PackageRequest objects representing the request. verbosity: Verbosity level. One of [0,1,2]. timestamp: Ignore packages released after this epoch time. Packages released at exactly this time will not be ignored. building: True if we're resolving for a build. caching: If True, cache(s) may be used to speed the resolve. If False, caches will not be used. If None, config.resolve_caching is used. package_paths: List of paths to search for pkgs, defaults to config.packages_path. package_filter (`PackageFilterBase`): Filter used to exclude certain packages. Defaults to settings from config.package_filter. Use `package_filter.no_filter` to remove all filtering. package_orderers (list of `PackageOrder`): Custom package ordering. add_implicit_packages: If True, the implicit package list defined by config.implicit_packages is appended to the request. max_fails (int): Abort the resolve if the number of failed steps is greater or equal to this number. If -1, does not abort. time_limit (int): Abort the resolve if it takes longer than this many seconds. If -1, there is no time limit. callback: See `Solver`. package_load_callback: If not None, this callable will be called prior to each package being loaded. It is passed a single `Package` object. buf (file-like object): Where to print verbose output to, defaults to stdout. """ self.load_path = None # resolving settings self.requested_timestamp = timestamp self.timestamp = self.requested_timestamp or int(time.time()) self.building = building self.implicit_packages = [] self.caching = config.resolve_caching if caching is None else caching self.verbosity = verbosity self._package_requests = [] for req in package_requests: if isinstance(req, basestring): req = PackageRequest(req) self._package_requests.append(req) if add_implicit_packages: self.implicit_packages = [PackageRequest(x) for x in config.implicit_packages] self.package_paths = (config.packages_path if package_paths is None else package_paths) self.package_paths = list(dedup(self.package_paths)) self.package_filter = (PackageFilterList.singleton if package_filter is None else package_filter) self.package_orderers = package_orderers or config.package_orderers # patch settings self.default_patch_lock = PatchLock.no_lock self.patch_locks = {} # info about env the resolve occurred in self.rez_version = __version__ self.rez_path = module_root_path self.user = getpass.getuser() self.host = system.fqdn self.platform = system.platform self.arch = system.arch self.os = system.os self.created = int(time.time()) # resolve results self.status_ = ResolverStatus.pending self._resolved_packages = None self.failure_description = None self.graph_string = None self.graph_ = None self.from_cache = None # stats self.solve_time = 0.0 # total solve time, inclusive of load time self.load_time = 0.0 # total time loading packages (disk or memcache) self.num_loaded_packages = 0 # num packages loaded (disk or memcache) # the pre-resolve bindings. We store these because @late package.py # functions need them, and we cache them to avoid cost self.pre_resolve_bindings = None # suite information self.parent_suite_path = None self.suite_context_name = None # perform the solve callback_ = self.Callback(buf=buf, max_fails=max_fails, time_limit=time_limit, callback=callback) def _package_load_callback(package): if package_load_callback: _package_load_callback(package) self.num_loaded_packages += 1 request = self.requested_packages(include_implicit=True) resolver = Resolver(context=self, package_requests=request, package_paths=self.package_paths, package_filter=self.package_filter, package_orderers=self.package_orderers, timestamp=self.requested_timestamp, building=self.building, caching=self.caching, callback=callback_, package_load_callback=_package_load_callback, verbosity=verbosity, buf=buf) resolver.solve() # convert the results self.status_ = resolver.status self.solve_time = resolver.solve_time self.load_time = resolver.load_time self.failure_description = resolver.failure_description self.graph_ = resolver.graph self.from_cache = resolver.from_cache if self.status_ == ResolverStatus.solved: self._resolved_packages = [] for variant in resolver.resolved_packages: variant.set_context(self) self._resolved_packages.append(variant) def __str__(self): request = self.requested_packages(include_implicit=True) req_str = " ".join(str(x) for x in request) if self.status == ResolverStatus.solved: res_str = " ".join(x.qualified_name for x in self._resolved_packages) return "%s(%s ==> %s)" % (self.status.name, req_str, res_str) else: return "%s:%s(%s)" % (self.__class__.__name__, self.status.name, req_str) @property def success(self): """True if the context has been solved, False otherwise.""" return (self.status_ == ResolverStatus.solved) @property def status(self): """Return the current status of the context. Returns: ResolverStatus. """ return self.status_ def requested_packages(self, include_implicit=False): """Get packages in the request. Args: include_implicit (bool): If True, implicit packages are appended to the result. Returns: List of `PackageRequest` objects. """ if include_implicit: return self._package_requests + self.implicit_packages else: return self._package_requests @property def resolved_packages(self): """Get packages in the resolve. Returns: List of `Variant` objects, or None if the resolve failed. """ return self._resolved_packages def set_load_path(self, path): """Set the path that this context was reportedly loaded from. You may want to use this method in cases where a context is saved to disk, but you need to associate this new path with the context while it is still in use. """ self.load_path = path def __eq__(self, other): """Equality test. Two contexts are considered equal if they have a equivalent request, and an equivalent resolve. Other details, such as timestamp, are not considered. """ return (isinstance(other, ResolvedContext) and other.requested_packages(True) == self.requested_packages(True) and other.resolved_packages == self.resolved_packages) def __hash__(self): list_ = [] req = self.requested_packages(True) list_.append(tuple(req)) res = self.resolved_packages if res is None: list_.append(None) else: list_.append(tuple(res)) value = tuple(list_) return hash(value) @property def has_graph(self): """Return True if the resolve has a graph.""" return bool((self.graph_ is not None) or self.graph_string) def get_resolved_package(self, name): """Returns a `Variant` object or None if the package is not in the resolve. """ pkgs = [x for x in self._resolved_packages if x.name == name] return pkgs[0] if pkgs else None def copy(self): """Returns a shallow copy of the context.""" import copy return copy.copy(self) # TODO: deprecate in favor of patch() method def get_patched_request(self, package_requests=None, package_subtractions=None, strict=False, rank=0): """Get a 'patched' request. A patched request is a copy of this context's request, but with some changes applied. This can then be used to create a new, 'patched' context. New package requests override original requests based on the type - normal, conflict or weak. So 'foo-2' overrides 'foo-1', '!foo-2' overrides '!foo-1' and '~foo-2' overrides '~foo-1', but a request such as '!foo-2' would not replace 'foo-1' - it would be added instead. Note that requests in `package_requests` can have the form '^foo'. This is another way of supplying package subtractions. Any new requests that don't override original requests are appended, in the order that they appear in `package_requests`. Args: package_requests (list of str or list of `PackageRequest`): Overriding requests. package_subtractions (list of str): Any original request with a package name in this list is removed, before the new requests are added. strict (bool): If True, the current context's resolve is used as the original request list, rather than the request. rank (int): If > 1, package versions can only increase in this rank and further - for example, rank=3 means that only version patch numbers are allowed to increase, major and minor versions will not change. This is only applied to packages that have not been explicitly overridden in `package_requests`. If rank <= 1, or `strict` is True, rank is ignored. Returns: List of `PackageRequest` objects that can be used to construct a new `ResolvedContext` object. """ # assemble source request if strict: request = [] for variant in self.resolved_packages: req = PackageRequest(variant.qualified_package_name) request.append(req) else: request = self.requested_packages()[:] # convert '^foo'-style requests to subtractions if package_requests: package_subtractions = package_subtractions or [] indexes = [] for i, req in enumerate(package_requests): name = str(req) if name.startswith('^'): package_subtractions.append(name[1:]) indexes.append(i) for i in reversed(indexes): del package_requests[i] # apply subtractions if package_subtractions: request = [x for x in request if x.name not in package_subtractions] # apply overrides if package_requests: request_dict = dict((x.name, (i, x)) for i, x in enumerate(request)) request_ = [] for req in package_requests: if isinstance(req, basestring): req = PackageRequest(req) if req.name in request_dict: i, req_ = request_dict[req.name] if (req_ is not None) and (req_.conflict == req.conflict) \ and (req_.weak == req.weak): request[i] = req del request_dict[req.name] else: request_.append(req) else: request_.append(req) request += request_ # add rank limiters if not strict and rank > 1: overrides = set(x.name for x in package_requests if not x.conflict) rank_limiters = [] for variant in self.resolved_packages: if variant.name not in overrides: if len(variant.version) >= rank: version = variant.version.trim(rank - 1) version = version.next() req = "~%s<%s" % (variant.name, str(version)) rank_limiters.append(req) request += rank_limiters return request def graph(self, as_dot=False): """Get the resolve graph. Args: as_dot: If True, get the graph as a dot-language string. Otherwise, a pygraph.digraph object is returned. Returns: A string or `pygraph.digraph` object, or None if there is no graph associated with the resolve. """ if not self.has_graph: return None if not as_dot: if self.graph_ is None: # reads either dot format or our compact format self.graph_ = read_graph_from_string(self.graph_string) return self.graph_ if self.graph_string: if self.graph_string.startswith('{'): # compact format self.graph_ = read_graph_from_string(self.graph_string) else: # already in dot format. Note that this will only happen in # old rez contexts where the graph is not stored in the newer # compact format. return self.graph_string return write_dot(self.graph_) def save(self, path): """Save the resolved context to file.""" with open(path, 'w') as f: self.write_to_buffer(f) def write_to_buffer(self, buf): """Save the context to a buffer.""" doc = self.to_dict() if config.rxt_as_yaml: content = dump_yaml(doc) else: content = simplejson.dumps(doc, indent=4, separators=(",", ": ")) buf.write(content) @classmethod def get_current(cls): """Get the context for the current env, if there is one. Returns: `ResolvedContext`: Current context, or None if not in a resolved env. """ filepath = os.getenv("REZ_RXT_FILE") if not filepath or not os.path.exists(filepath): return None return cls.load(filepath) @classmethod def load(cls, path): """Load a resolved context from file.""" with open(path) as f: context = cls.read_from_buffer(f, path) context.set_load_path(path) return context @classmethod def read_from_buffer(cls, buf, identifier_str=None): """Load the context from a buffer.""" try: return cls._read_from_buffer(buf, identifier_str) except Exception as e: cls._load_error(e, identifier_str) def get_resolve_diff(self, other): """Get the difference between the resolve in this context and another. The difference is described from the point of view of the current context - a newer package means that the package in `other` is newer than the package in `self`. Diffs can only be compared if their package search paths match, an error is raised otherwise. The diff is expressed in packages, not variants - the specific variant of a package is ignored. Returns: A dict containing: - 'newer_packages': A dict containing items: - package name (str); - List of `Package` objects. These are the packages up to and including the newer package in `self`, in ascending order. - 'older_packages': A dict containing: - package name (str); - List of `Package` objects. These are the packages down to and including the older package in `self`, in descending order. - 'added_packages': Set of `Package` objects present in `self` but not in `other`; - 'removed_packages': Set of `Package` objects present in `other`, but not in `self`. If any item ('added_packages' etc) is empty, it is not added to the resulting dict. Thus, an empty dict is returned if there is no difference between contexts. """ if self.package_paths != other.package_paths: from difflib import ndiff diff = ndiff(self.package_paths, other.package_paths) raise ResolvedContextError("Cannot diff resolves, package search " "paths differ:\n%s" % '\n'.join(diff)) d = {} self_pkgs_ = set(x.parent for x in self._resolved_packages) other_pkgs_ = set(x.parent for x in other._resolved_packages) self_pkgs = self_pkgs_ - other_pkgs_ other_pkgs = other_pkgs_ - self_pkgs_ if not (self_pkgs or other_pkgs): return d self_fams = dict((x.name, x) for x in self_pkgs) other_fams = dict((x.name, x) for x in other_pkgs) newer_packages = {} older_packages = {} added_packages = set() removed_packages = set() for pkg in self_pkgs: if pkg.name not in other_fams: removed_packages.add(pkg) else: other_pkg = other_fams[pkg.name] if other_pkg.version > pkg.version: r = VersionRange.as_span(lower_version=pkg.version, upper_version=other_pkg.version) it = iter_packages(pkg.name, range_=r) pkgs = sorted(it, key=lambda x: x.version) newer_packages[pkg.name] = pkgs elif other_pkg.version < pkg.version: r = VersionRange.as_span(lower_version=other_pkg.version, upper_version=pkg.version) it = iter_packages(pkg.name, range_=r) pkgs = sorted(it, key=lambda x: x.version, reverse=True) older_packages[pkg.name] = pkgs for pkg in other_pkgs: if pkg.name not in self_fams: added_packages.add(pkg) if newer_packages: d["newer_packages"] = newer_packages if older_packages: d["older_packages"] = older_packages if added_packages: d["added_packages"] = added_packages if removed_packages: d["removed_packages"] = removed_packages return d @pool_memcached_connections def print_info(self, buf=sys.stdout, verbosity=0, source_order=False, show_resolved_uris=False): """Prints a message summarising the contents of the resolved context. Args: buf (file-like object): Where to print this info to. verbosity (bool): Verbose mode. source_order (bool): If True, print resolved packages in the order they are sourced, rather than alphabetical order. show_resolved_uris (bool): By default, resolved packages have their 'root' property listed, or their 'uri' if 'root' is None. Use this option to list 'uri' regardless. """ _pr = Printer(buf) def _rt(t): if verbosity: s = time.strftime("%a %b %d %H:%M:%S %Z %Y", time.localtime(t)) return s + " (%d)" % int(t) else: return time.strftime("%a %b %d %H:%M:%S %Y", time.localtime(t)) if self.status_ in (ResolverStatus.failed, ResolverStatus.aborted): _pr("The context failed to resolve:\n%s" % self.failure_description, critical) return t_str = _rt(self.created) _pr("resolved by %s@%s, on %s, using Rez v%s" % (self.user, self.host, t_str, self.rez_version)) if self.requested_timestamp: t_str = _rt(self.requested_timestamp) _pr("packages released after %s were ignored" % t_str) _pr() if verbosity: _pr("search paths:", heading) rows = [] colors = [] for path in self.package_paths: if package_repository_manager.are_same(path, config.local_packages_path): label = "(local)" col = local else: label = "" col = None rows.append((path, label)) colors.append(col) for col, line in zip(colors, columnise(rows)): _pr(line, col) _pr() if self.package_filter: data = self.package_filter.to_pod() txt = dump_yaml(data) _pr("package filters:", heading) _pr(txt) _pr() _pr("requested packages:", heading) rows = [] colors = [] for request in self._package_requests: rows.append((str(request), "")) colors.append(None) for request in self.implicit_packages: rows.append((str(request), "(implicit)")) colors.append(implicit) for col, line in zip(colors, columnise(rows)): _pr(line, col) _pr() _pr("resolved packages:", heading) rows = [] colors = [] resolved_packages = self.resolved_packages or [] if not source_order: resolved_packages = sorted(resolved_packages, key=lambda x: x.name) for pkg in resolved_packages: t = [] col = None location = None # print root/uri if show_resolved_uris or not pkg.root: location = pkg.uri else: location = pkg.root if not os.path.exists(pkg.root): t.append('NOT FOUND') col = critical if pkg.is_local: t.append('local') col = local t = '(%s)' % ', '.join(t) if t else '' rows.append((pkg.qualified_package_name, location, t)) colors.append(col) for col, line in zip(colors, columnise(rows)): _pr(line, col) if verbosity: _pr() actual_solve_time = self.solve_time - self.load_time _pr("resolve details:", heading) _pr("load time: %.02f secs" % self.load_time) _pr("solve time: %.02f secs" % actual_solve_time) _pr("packages queried: %d" % self.num_loaded_packages) _pr("from cache: %s" % self.from_cache) if self.load_path: _pr("rxt file: %s" % self.load_path) if verbosity >= 2: _pr() _pr("tools:", heading) self.print_tools(buf=buf) def print_tools(self, buf=sys.stdout): data = self.get_tools() if not data: return _pr = Printer(buf) conflicts = set(self.get_conflicting_tools().keys()) rows = [["TOOL", "PACKAGE", ""], ["----", "-------", ""]] colors = [None, None] for _, (variant, tools) in sorted(data.items()): pkg_str = variant.qualified_package_name for tool in sorted(tools): col = None row = [tool, pkg_str, ""] if tool in conflicts: col = critical row[-1] = "(in conflict)" rows.append(row) colors.append(col) for col, line in zip(colors, columnise(rows)): _pr(line, col) def print_resolve_diff(self, other, heading=None): """Print the difference between the resolve of two contexts. Args: other (`ResolvedContext`): Context to compare to. heading: One of: - None: Do not display a heading; - True: Display the filename of each context as a heading, if both contexts have a filepath; - 2-tuple: Use the given two strings as headings - the first is the heading for `self`, the second for `other`. """ d = self.get_resolve_diff(other) if not d: return rows = [] if heading is True and self.load_path and other.load_path: a = os.path.basename(self.load_path) b = os.path.basename(other.load_path) heading = (a, b) if isinstance(heading, tuple): rows.append(list(heading) + [""]) rows.append(('-' * len(heading[0]), '-' * len(heading[1]), "")) newer_packages = d.get("newer_packages", {}) older_packages = d.get("older_packages", {}) added_packages = d.get("added_packages", set()) removed_packages = d.get("removed_packages", set()) if newer_packages: for name, pkgs in newer_packages.iteritems(): this_pkg = pkgs[0] other_pkg = pkgs[-1] diff_str = "(+%d versions)" % (len(pkgs) - 1) rows.append((this_pkg.qualified_name, other_pkg.qualified_name, diff_str)) if older_packages: for name, pkgs in older_packages.iteritems(): this_pkg = pkgs[0] other_pkg = pkgs[-1] diff_str = "(-%d versions)" % (len(pkgs) - 1) rows.append((this_pkg.qualified_name, other_pkg.qualified_name, diff_str)) if added_packages: for pkg in sorted(added_packages, key=lambda x: x.name): rows.append(("-", pkg.qualified_name, "")) if removed_packages: for pkg in sorted(removed_packages, key=lambda x: x.name): rows.append((pkg.qualified_name, "-", "")) print '\n'.join(columnise(rows)) def _on_success(fn): @wraps(fn) def _check(self, *nargs, **kwargs): if self.status_ == ResolverStatus.solved: return fn(self, *nargs, **kwargs) else: raise ResolvedContextError( "Cannot perform operation in a failed context") return _check @_on_success def get_dependency_graph(self): """Generate the dependency graph. The dependency graph is a simpler subset of the resolve graph. It contains package name nodes connected directly to their dependencies. Weak references and conflict requests are not included in the graph. The dependency graph does not show conflicts. Returns: `pygraph.digraph` object. """ from rez.vendor.pygraph.classes.digraph import digraph nodes = {} edges = set() for variant in self._resolved_packages: nodes[variant.name] = variant.qualified_package_name for request in variant.get_requires(): if not request.conflict: edges.add((variant.name, request.name)) g = digraph() node_color = "#AAFFAA" node_fontsize = 10 attrs = [("fontsize", node_fontsize), ("fillcolor", node_color), ("style", "filled")] for name, qname in nodes.iteritems(): g.add_node(name, attrs=attrs + [("label", qname)]) for edge in edges: g.add_edge(edge) return g @_on_success def validate(self): """Validate the context.""" try: for pkg in self.resolved_packages: pkg.validate_data() except RezError as e: raise ResolvedContextError("%s: %s" % (e.__class__.__name__, str(e))) @_on_success def get_environ(self, parent_environ=None): """Get the environ dict resulting from interpreting this context. @param parent_environ Environment to interpret the context within, defaults to os.environ if None. @returns The environment dict generated by this context, when interpreted in a python rex interpreter. """ interp = Python(target_environ={}, passive=True) executor = self._create_executor(interp, parent_environ) self._execute(executor) return executor.get_output() @_on_success def get_key(self, key, request_only=False): """Get a data key value for each resolved package. Args: key (str): String key of property, eg 'tools'. request_only (bool): If True, only return the key from resolved packages that were also present in the request. Returns: Dict of {pkg-name: (variant, value)}. """ values = {} requested_names = [x.name for x in self._package_requests if not x.conflict] for pkg in self.resolved_packages: if (not request_only) or (pkg.name in requested_names): value = getattr(pkg, key) if value is not None: values[pkg.name] = (pkg, value) return values @_on_success def get_tools(self, request_only=False): """Returns the commandline tools available in the context. Args: request_only: If True, only return the tools from resolved packages that were also present in the request. Returns: Dict of {pkg-name: (variant, [tools])}. """ return self.get_key("tools", request_only=request_only) @_on_success def get_tool_variants(self, tool_name): """Get the variant(s) that provide the named tool. If there are more than one variants, the tool is in conflict, and Rez does not know which variant's tool is actually exposed. Args: tool_name(str): Name of the tool to search for. Returns: Set of `Variant` objects. If no variant provides the tool, an empty set is returned. """ variants = set() tools_dict = self.get_tools(request_only=False) for variant, tools in tools_dict.itervalues(): if tool_name in tools: variants.add(variant) return variants @_on_success def get_conflicting_tools(self, request_only=False): """Returns tools of the same name provided by more than one package. Args: request_only: If True, only return the key from resolved packages that were also present in the request. Returns: Dict of {tool-name: set([Variant])}. """ from collections import defaultdict tool_sets = defaultdict(set) tools_dict = self.get_tools(request_only=request_only) for variant, tools in tools_dict.itervalues(): for tool in tools: tool_sets[tool].add(variant) conflicts = dict((k, v) for k, v in tool_sets.iteritems() if len(v) > 1) return conflicts @_on_success def get_shell_code(self, shell=None, parent_environ=None, style=OutputStyle.file): """Get the shell code resulting from intepreting this context. Args: shell (str): Shell type, for eg 'bash'. If None, the current shell type is used. parent_environ (dict): Environment to interpret the context within, defaults to os.environ if None. style (): Style to format shell code in. """ executor = self._create_executor(interpreter=create_shell(shell), parent_environ=parent_environ) if self.load_path and os.path.isfile(self.load_path): executor.env.REZ_RXT_FILE = self.load_path self._execute(executor) return executor.get_output(style) @_on_success def get_actions(self, parent_environ=None): """Get the list of rex.Action objects resulting from interpreting this context. This is provided mainly for testing purposes. Args: parent_environ Environment to interpret the context within, defaults to os.environ if None. Returns: A list of rex.Action subclass instances. """ interp = Python(target_environ={}, passive=True) executor = self._create_executor(interp, parent_environ) self._execute(executor) return executor.actions @_on_success def apply(self, parent_environ=None): """Apply the context to the current python session. Note that this updates os.environ and possibly sys.path. @param environ Environment to interpret the context within, defaults to os.environ if None. """ interpreter = Python(target_environ=os.environ) executor = self._create_executor(interpreter, parent_environ) self._execute(executor) @_on_success def which(self, cmd, parent_environ=None, fallback=False): """Find a program in the resolved environment. Args: cmd: String name of the program to find. parent_environ: Environment to interpret the context within, defaults to os.environ if None. fallback: If True, and the program is not found in the context, the current environment will then be searched. Returns: Path to the program, or None if the program was not found. """ env = self.get_environ(parent_environ=parent_environ) path = which(cmd, env=env) if fallback and path is None: path = which(cmd) return path @_on_success def execute_command(self, args, parent_environ=None, **subprocess_kwargs): """Run a command within a resolved context. This applies the context to a python environ dict, then runs a subprocess in that namespace. This is not a fully configured subshell - shell-specific commands such as aliases will not be applied. To execute a command within a subshell instead, use execute_shell(). Warning: This runs a command in a configured environ dict only, not in a true shell. To do that, call `execute_shell` using the `command` keyword argument. Args: args: Command arguments, can be a string. parent_environ: Environment to interpret the context within, defaults to os.environ if None. subprocess_kwargs: Args to pass to subprocess.Popen. Returns: A subprocess.Popen object. Note: This does not alter the current python session. """ interpreter = Python(target_environ={}) executor = self._create_executor(interpreter, parent_environ) self._execute(executor) return interpreter.subprocess(args, **subprocess_kwargs) @_on_success def execute_rex_code(self, code, filename=None, shell=None, parent_environ=None, **Popen_args): """Run some rex code in the context. Note: This is just a convenience form of `execute_shell`. Args: code (str): Rex code to execute. filename (str): Filename to report if there are syntax errors. shell: Shell type, for eg 'bash'. If None, the current shell type is used. parent_environ: Environment to run the shell process in, if None then the current environment is used. Popen_args: args to pass to the shell process object constructor. Returns: `subprocess.Popen` object for the shell process. """ def _actions_callback(executor): executor.execute_code(code, filename=filename) return self.execute_shell(shell=shell, parent_environ=parent_environ, command='', # don't run any command block=False, actions_callback=_actions_callback, **Popen_args) @_on_success def execute_shell(self, shell=None, parent_environ=None, rcfile=None, norc=False, stdin=False, command=None, quiet=False, block=None, actions_callback=None, post_actions_callback=None, context_filepath=None, start_new_session=False, detached=False, pre_command=None, **Popen_args): """Spawn a possibly-interactive shell. Args: shell: Shell type, for eg 'bash'. If None, the current shell type is used. parent_environ: Environment to run the shell process in, if None then the current environment is used. rcfile: Specify a file to source instead of shell startup files. norc: If True, skip shell startup files, if possible. stdin: If True, read commands from stdin, in a non-interactive shell. command: If not None, execute this command in a non-interactive shell. If an empty string or list, don't run a command, but don't open an interactive shell either. Can be a list of args. quiet: If True, skip the welcome message in interactive shells. block: If True, block until the shell is terminated. If False, return immediately. If None, will default to blocking if the shell is interactive. actions_callback: Callback with signature (RexExecutor). This lets the user append custom actions to the context, such as setting extra environment variables. Callback is run prior to context Rex execution. post_actions_callback: Callback with signature (RexExecutor). This lets the user append custom actions to the context, such as setting extra environment variables. Callback is run after context Rex execution. context_filepath: If provided, the context file will be written here, rather than to the default location (which is in a tempdir). If you use this arg, you are responsible for cleaning up the file. start_new_session: If True, change the process group of the target process. Note that this may override the Popen_args keyword 'preexec_fn'. detached: If True, open a separate terminal. Note that this may override the `pre_command` argument. pre_command: Command to inject before the shell command itself. This is for internal use. Popen_args: args to pass to the shell process object constructor. Returns: If blocking: A 3-tuple of (returncode, stdout, stderr); If non-blocking - A subprocess.Popen object for the shell process. """ sh = create_shell(shell) if hasattr(command, "__iter__"): command = sh.join(command) # start a new session if specified if start_new_session: Popen_args.update(config.new_session_popen_args) # open a separate terminal if specified if detached: term_cmd = config.terminal_emulator_command if term_cmd: pre_command = term_cmd.strip().split() # block if the shell is likely to be interactive if block is None: block = not (command or stdin) # context and rxt files. If running detached, don't cleanup files, because # rez-env returns too early and deletes the tmp files before the detached # process can use them tmpdir = self.tmpdir_manager.mkdtemp(cleanup=not detached) if self.load_path and os.path.isfile(self.load_path): rxt_file = self.load_path else: rxt_file = os.path.join(tmpdir, "context.rxt") self.save(rxt_file) context_file = context_filepath or \ os.path.join(tmpdir, "context.%s" % sh.file_extension()) # interpret this context and write out the native context file executor = self._create_executor(sh, parent_environ) executor.env.REZ_RXT_FILE = rxt_file executor.env.REZ_CONTEXT_FILE = context_file if actions_callback: actions_callback(executor) self._execute(executor) if post_actions_callback: post_actions_callback(executor) context_code = executor.get_output() with open(context_file, 'w') as f: f.write(context_code) quiet = quiet or (RezToolsVisibility[config.rez_tools_visibility] == RezToolsVisibility.never) # spawn the shell subprocess p = sh.spawn_shell(context_file, tmpdir, rcfile=rcfile, norc=norc, stdin=stdin, command=command, env=parent_environ, quiet=quiet, pre_command=pre_command, **Popen_args) if block: stdout, stderr = p.communicate() return p.returncode, stdout, stderr else: return p def to_dict(self): resolved_packages = [] for pkg in (self._resolved_packages or []): resolved_packages.append(pkg.handle.to_dict()) serialize_version = '.'.join(str(x) for x in ResolvedContext.serialize_version) patch_locks = dict((k, v.name) for k, v in self.patch_locks) if self.package_orderers: package_orderers_list = self.package_orderers.to_pod() else: package_orderers_list = None if self.graph_string and self.graph_string.startswith('{'): graph_str = self.graph_string # already in compact format else: g = self.graph() graph_str = write_compacted(g) return dict( serialize_version=serialize_version, timestamp=self.timestamp, requested_timestamp=self.requested_timestamp, building=self.building, caching=self.caching, implicit_packages=[str(x) for x in self.implicit_packages], package_requests=[str(x) for x in self._package_requests], package_paths=self.package_paths, package_filter=self.package_filter.to_pod(), package_orderers=package_orderers_list or None, default_patch_lock=self.default_patch_lock.name, patch_locks=patch_locks, rez_version=self.rez_version, rez_path=self.rez_path, user=self.user, host=self.host, platform=self.platform, arch=self.arch, os=self.os, created=self.created, parent_suite_path=self.parent_suite_path, suite_context_name=self.suite_context_name, status=self.status_.name, resolved_packages=resolved_packages, failure_description=self.failure_description, graph=graph_str, from_cache=self.from_cache, solve_time=self.solve_time, load_time=self.load_time, num_loaded_packages=self.num_loaded_packages) @classmethod def from_dict(cls, d, identifier_str=None): """Load a `ResolvedContext` from a dict. Args: d (dict): Dict containing context data. identifier_str (str): String identifying the context, this is only used to display in an error string if a serialization version mismatch is detected. Returns: `ResolvedContext` object. """ # check serialization version def _print_version(value): return '.'.join(str(x) for x in value) toks = str(d["serialize_version"]).split('.') load_ver = tuple(int(x) for x in toks) curr_ver = ResolvedContext.serialize_version if load_ver[0] > curr_ver[0]: msg = ["The context"] if identifier_str: msg.append("in %s" % identifier_str) msg.append("was written by a newer version of Rez. The load may " "fail (serialize version %d > %d)" % (_print_version(load_ver), _print_version(curr_ver))) print >> sys.stderr, ' '.join(msg) # create and init the context r = ResolvedContext.__new__(ResolvedContext) r.load_path = None r.pre_resolve_bindings = None r.timestamp = d["timestamp"] r.building = d["building"] r.caching = d["caching"] r.implicit_packages = [PackageRequest(x) for x in d["implicit_packages"]] r._package_requests = [PackageRequest(x) for x in d["package_requests"]] r.package_paths = d["package_paths"] r.rez_version = d["rez_version"] r.rez_path = d["rez_path"] r.user = d["user"] r.host = d["host"] r.platform = d["platform"] r.arch = d["arch"] r.os = d["os"] r.created = d["created"] r.verbosity = d.get("verbosity", 0) r.status_ = ResolverStatus[d["status"]] r.failure_description = d["failure_description"] r.solve_time = d["solve_time"] r.load_time = d["load_time"] r.graph_string = d["graph"] r.graph_ = None r._resolved_packages = [] for d_ in d["resolved_packages"]: variant_handle = d_ if load_ver < (4, 0): # -- SINCE SERIALIZE VERSION 4.0 from rez.utils.backcompat import convert_old_variant_handle variant_handle = convert_old_variant_handle(variant_handle) variant = get_variant(variant_handle) variant.set_context(r) r._resolved_packages.append(variant) # -- SINCE SERIALIZE VERSION 1 r.requested_timestamp = d.get("requested_timestamp", 0) # -- SINCE SERIALIZE VERSION 2 r.parent_suite_path = d.get("parent_suite_path") r.suite_context_name = d.get("suite_context_name") # -- SINCE SERIALIZE VERSION 3 r.default_patch_lock = PatchLock[d.get("default_patch_lock", "no_lock")] patch_locks = d.get("patch_locks", {}) r.patch_locks = dict((k, PatchLock[v]) for k, v in patch_locks) # -- SINCE SERIALIZE VERSION 4.0 r.from_cache = d.get("from_cache", False) # -- SINCE SERIALIZE VERSION 4.1 data = d.get("package_filter", []) r.package_filter = PackageFilterList.from_pod(data) # -- SINCE SERIALIZE VERSION 4.2 data = d.get("package_orderers") if data: r.package_orderers = package_order.OrdererDict(data) else: r.package_orderers = None # -- SINCE SERIALIZE VERSION 4.3 r.num_loaded_packages = d.get("num_loaded_packages", -1) return r @classmethod def _read_from_buffer(cls, buf, identifier_str=None): content = buf.read() if content.startswith('{'): # assume json content doc = simplejson.loads(content) else: doc = yaml.load(content) context = cls.from_dict(doc, identifier_str) return context @classmethod def _load_error(cls, e, path=None): exc_name = e.__class__.__name__ msg = "Failed to load context" if path: msg += " from %s" % path raise ResolvedContextError("%s: %s: %s" % (msg, exc_name, str(e))) def _set_parent_suite(self, suite_path, context_name): self.parent_suite_path = suite_path self.suite_context_name = context_name def _create_executor(self, interpreter, parent_environ): parent_vars = True if config.all_parent_variables \ else config.parent_variables return RexExecutor(interpreter=interpreter, parent_environ=parent_environ, parent_variables=parent_vars) def _get_pre_resolve_bindings(self): if self.pre_resolve_bindings is None: self.pre_resolve_bindings = { "system": system, "building": self.building, "request": RequirementsBinding(self._package_requests), "implicits": RequirementsBinding(self.implicit_packages) } return self.pre_resolve_bindings @pool_memcached_connections def _execute(self, executor): br = '#' * 80 br_minor = '-' * 80 def _heading(txt): executor.comment("") executor.comment("") executor.comment(br) executor.comment(txt) executor.comment(br) def _minor_heading(txt): executor.comment("") executor.comment(txt) executor.comment(br_minor) # bind various info to the execution context resolved_pkgs = self.resolved_packages or [] request_str = ' '.join(str(x) for x in self._package_requests) implicit_str = ' '.join(str(x) for x in self.implicit_packages) resolve_str = ' '.join(x.qualified_package_name for x in resolved_pkgs) package_paths_str = os.pathsep.join(self.package_paths) _heading("system setup") executor.setenv("REZ_USED", self.rez_path) executor.setenv("REZ_USED_VERSION", self.rez_version) executor.setenv("REZ_USED_TIMESTAMP", str(self.timestamp)) executor.setenv("REZ_USED_REQUESTED_TIMESTAMP", str(self.requested_timestamp or 0)) executor.setenv("REZ_USED_REQUEST", request_str) executor.setenv("REZ_USED_IMPLICIT_PACKAGES", implicit_str) executor.setenv("REZ_USED_RESOLVE", resolve_str) executor.setenv("REZ_USED_PACKAGES_PATH", package_paths_str) if self.building: executor.setenv("REZ_BUILD_ENV", "1") # rez-1 environment variables, set in backwards compatibility mode if config.rez_1_environment_variables and \ not config.disable_rez_1_compatibility: request_str_ = " ".join([request_str, implicit_str]).strip() executor.setenv("REZ_VERSION", self.rez_version) executor.setenv("REZ_PATH", self.rez_path) executor.setenv("REZ_REQUEST", request_str_) executor.setenv("REZ_RESOLVE", resolve_str) executor.setenv("REZ_RAW_REQUEST", request_str_) executor.setenv("REZ_RESOLVE_MODE", "latest") # binds objects such as 'request', which are accessible before a resolve bindings = self._get_pre_resolve_bindings() for k, v in bindings.iteritems(): executor.bind(k, v) executor.bind('resolve', VariantsBinding(resolved_pkgs)) # # -- apply each resolved package to the execution context # _heading("package variables") error_class = SourceCodeError if config.catch_rex_errors else None # set basic package variables and create per-package bindings bindings = {} for pkg in resolved_pkgs: _minor_heading("variables for package %s" % pkg.qualified_name) prefix = "REZ_" + pkg.name.upper().replace('.', '_') executor.setenv(prefix + "_VERSION", str(pkg.version)) major_version = str(pkg.version[0] if len(pkg.version) >= 1 else '') minor_version = str(pkg.version[1] if len(pkg.version) >= 2 else '') patch_version = str(pkg.version[2] if len(pkg.version) >= 3 else '') executor.setenv(prefix + "_MAJOR_VERSION", major_version) executor.setenv(prefix + "_MINOR_VERSION", minor_version) executor.setenv(prefix + "_PATCH_VERSION", patch_version) executor.setenv(prefix + "_BASE", pkg.base) executor.setenv(prefix + "_ROOT", pkg.root) bindings[pkg.name] = dict(version=VersionBinding(pkg.version), variant=VariantBinding(pkg)) # commands for attr in ("pre_commands", "commands", "post_commands"): found = False for pkg in resolved_pkgs: commands = getattr(pkg, attr) if commands is None: continue if not found: found = True _heading(attr) _minor_heading("%s from package %s" % (attr, pkg.qualified_name)) bindings_ = bindings[pkg.name] executor.bind('this', bindings_["variant"]) executor.bind("version", bindings_["version"]) executor.bind('root', pkg.root) executor.bind('base', pkg.base) exc = None trace = None commands.set_package(pkg) try: executor.execute_code(commands, isolate=True) except error_class as e: exc = e if exc: header = "Error in %s in package %r:\n" % (attr, pkg.uri) if self.verbosity >= 2: msg = header + str(exc) else: msg = header + exc.short_msg raise PackageCommandError(msg) _heading("post system setup") # append suite paths based on suite visibility setting self._append_suite_paths(executor) # append system paths executor.append_system_paths() # add rez path so that rez commandline tools are still available within # the resolved environment mode = RezToolsVisibility[config.rez_tools_visibility] if mode == RezToolsVisibility.append: executor.append_rez_path() elif mode == RezToolsVisibility.prepend: executor.prepend_rez_path() def _append_suite_paths(self, executor): from rez.suite import Suite mode = SuiteVisibility[config.suite_visibility] if mode == SuiteVisibility.never: return visible_suite_paths = Suite.visible_suite_paths() if not visible_suite_paths: return suite_paths = [] if mode == SuiteVisibility.always: suite_paths = visible_suite_paths elif self.parent_suite_path: if mode == SuiteVisibility.parent: suite_paths = [self.parent_suite_path] elif mode == SuiteVisibility.parent_priority: pop_parent = None try: parent_index = visible_suite_paths.index(self.parent_suite_path) pop_parent = visible_suite_paths.pop(parent_index) except ValueError: pass suite_paths.insert(0, (pop_parent or self.parent_suite_path)) for path in suite_paths: tools_path = os.path.join(path, "bin") executor.env.PATH.append(tools_path) # Copyright 2013-2016 Allan Johns. # # This library is free software: you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation, either # version 3 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library. If not, see <http://www.gnu.org/licenses/>.
lgpl-3.0
-8,348,680,213,081,125,000
37.619193
89
0.572767
false
4.397035
true
false
false
matthewjwoodruff/language-of-choice
article/nodsl.py
1
3949
""" nodsl.py Attempt to express the language of choice without overloading operators. I understand why the article did it, and I'm impressed that it works so well, but it's hard to follow what's happening. Too much magic for me. I think partly it's because the article conflates variables and choices. A variable's role is to participate in choices, either as an index or as a branch, but not to *be* a choice. """ class Node(object): pass class ConstantNode(Node): def __init__(self, name, value): self.rank = float("Inf") self.value = value self.name = name def __repr__(self): return self.name def evaluate(self, _): return self.value class Variable(object): """ A variable is not a node in the BDD! """ def __init__(self, name, rank): self.name = name self.rank = rank def __repr__(self): return self.name def evaluate(self, env): return env[self.rank] class ChoiceNode(Node): def __init__(self, index, if0, if1): """ index is a constant, variable, or another choice node """ self.index = index self.if0 = if0 self.if1 = if1 self.rank = self.index.rank def __repr__(self): return "{}({},{})".format(repr(self.index), repr(self.if0), repr(self.if1)) def evaluate(self, env): fork = self.index.evaluate(env) if fork == 0: return self.if0.evaluate(env) elif fork == 1: return self.if1.evaluate(env) raise Exception() def subst(index, rank, value): if index == constants[0]: return index if index == constants[1]: return constants[1] if rank < index.rank: return index try: if0 = index.if0 if1 = index.if1 except AttributeError: if0 = constants[0] if1 = constants[1] if rank == index.rank: if value == 0: return if0 if value == 1: return if1 raise Exception() _if0 = subst(if0, rank, value) _if1 = subst(if1, rank, value) if _if0 is _if1: return _if0 return choice(index, _if0, _if1) # one global dictionary for choices # Keys: (index, if0, if1) choices = dict() def choice(index, if0, if1): global choices try: return choices[(index, if0, if1)] except KeyError: pass choices[(index, if0, if1)] = ChoiceNode(index, if0, if1) print("choice {} {} {}".format(index, if0, if1)) if index == constants[0]: return if0 if index == constants[1]: return if1 if if0 == constants[0] and if1 == constants[1]: return choices[(index, if0, if1)] top = index.rank _index = index if if0.rank < top: top = if0.rank _index = if0 if if1.rank < top: top = if1.rank _index = if1 top = min(index.rank, if0.rank, if1.rank) _if0 = choice( subst(index, top, 0), subst(if0, top, 0), subst(if1, top, 0)) _if1 = choice( subst(index, top, 1), subst(if0, top, 1), subst(if1, top, 1)) new_node = choice(_index, _if0, _if1) return new_node # one global dictionary for constants # Key: constant value constants = dict() def constant(name, value): global constants try: return constants[value] except KeyError: constants[value] = ConstantNode(name, value) return constants[value] variables = dict() def variable(name, rank): global variables try: variable = variables[rank] except KeyError: return Variable(name, rank) if variable.name != name: raise Exception() return variable const0 = constant("0", 0) const1 = constant("1", 1) a = variable('a', 0) b = variable('b', 1) c = variable('c', 2) p = variable('p', 3) q = variable('q', 4) left = choice(p, a, choice(q, b, c)) right = choice(q, choice(p, a, b), choice(p, a, c)) print("left {}".format(repr(left))) print("right {}".format(repr(right)))
gpl-3.0
1,861,754,821,942,455,800
25.863946
83
0.593062
false
3.401378
false
false
false
ASMlover/study
compiler/eLisp2/eLisp/number.py
1
2219
#!/usr/bin/env python # -*- encoding: utf-8 -*- # # Copyright (c) 2015 ASMlover. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list ofconditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materialsprovided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import re import types from interface import Eval class Number(Eval): def __init__(self, value): self.data = value def __repr__(self): return repr(self.data) def eval(self, env, args=None): return self def __eq__(self, rhs): if isinstance(rhs, Number): return (self.data == rhs.data) else: return False class Integral(Number): REGEX = re.compile(r'^[+-]?\d+$') def __init__(self, value): super(Integral, self).__init__(value) class LongInt(Number): REGEX = re.compile(r'^[+-]?\d+[lL]$') def __init__(self, value): super(LongInt, self).__init__(value) class Float(Number): REGEX = re.compile(r'^[+-]?(\d+\.\d*$|\d*\.\d+$)') def __init__(self, value): super(Float, self).__init__(value)
bsd-2-clause
8,802,085,610,972,698,000
32.119403
70
0.684993
false
4.034545
false
false
false
lizardsystem/lizard-kpi
setup.py
1
1150
from setuptools import setup version = '0.5.dev0' long_description = '\n\n'.join([ open('README.rst').read(), open('TODO.rst').read(), open('CREDITS.rst').read(), open('CHANGES.rst').read(), ]) install_requires = [ 'Django', 'django-extensions', 'django-nose', 'lizard-ui', 'pkginfo', ], tests_require = [ ] setup(name='lizard-kpi', version=version, description="Key performance indicators ('fuel gauges') for lizard", long_description=long_description, # Get strings from http://www.python.org/pypi?%3Aaction=list_classifiers classifiers=['Programming Language :: Python', 'Framework :: Django', ], keywords=[], author='Reinout van Rees', author_email='reinout.vanrees@nelen-schuurmans.nl', url='', license='GPL', packages=['lizard_kpi'], include_package_data=True, zip_safe=False, install_requires=install_requires, tests_require=tests_require, extras_require = {'test': tests_require}, entry_points={ 'console_scripts': [ ]}, )
gpl-3.0
-1,418,867,999,999,005,700
24.555556
78
0.58
false
3.650794
false
false
false
NCI-GDC/gdcdatamodel
migrations/update_legacy_states.py
1
6311
#!/usr/bin/env python """gdcdatamodel.migrations.update_legacy_states ---------------------------------- File nodes from legacy projects were given a `state` that represents what is now `file_state`. This script transforms the old `state` into `file_state` and set's the `state` according the the following table: | from file.state | to file.state | to file.file_state | |-----------------+---------------+--------------------| | None | submitted | None | | error | validated | error | | invalid | validated | error | | live | submitted | submitted | | submitted | submitted | registered | | uploaded | submitted | uploaded | | validated | submitted | validated | This script runs in parallel -> it has to use separate sessions -> it has a session per Node subclass which is automatically committed. See also https://jira.opensciencedatacloud.org/browse/DAT-276. Usage: ```python update_legacy_states( host='localhost', user='test', database='automated_test', password='test') ``` """ import logging from sqlalchemy import not_, or_, and_ from psqlgraph import Node, PsqlGraphDriver from gdcdatamodel import models as md from multiprocessing import Process, cpu_count, Queue from collections import namedtuple CLS_WITH_PROJECT_ID = { cls for cls in Node.get_subclasses() if 'project_id' in cls.__pg_properties__ } CLS_WITH_STATE = { cls for cls in Node.get_subclasses() if 'state' in cls.__pg_properties__ } CLS_TO_UPDATE = CLS_WITH_PROJECT_ID & CLS_WITH_STATE # Determines state and file_state based on existing state STATE_MAP = { None: { 'state': 'submitted', 'file_state': None }, 'error': { 'state': 'validated', 'file_state': 'error' }, 'invalid': { 'state': 'validated', 'file_state': 'error' }, 'live': { 'state': 'submitted', 'file_state': 'submitted' }, 'submitted': { 'state': 'submitted', 'file_state': 'registered' }, 'uploaded': { 'state': 'submitted', 'file_state': 'uploaded' }, 'validated': { 'state': 'submitted', 'file_state': 'validated' }, } logger = logging.getLogger("state_updater") logging.basicConfig(level=logging.INFO) def legacy_filter(query, legacy_projects): """filter query to those whose project_id is None or points to TARGET or TCGA """ legacy_filters = [ query.entity().project_id.astext == project.programs[0].name + '-' + project.code for project in legacy_projects ] return query.filter(or_( null_prop(query.entity(), 'project_id'), *legacy_filters )) def null_prop(cls, key): """Provide expression to filter on a null or nonexistent value""" return or_( cls._props.contains({key: None}), not_(cls._props.has_key(key)), ) def print_cls_query_summary(graph): """Print breakdown of class counts to stdout""" cls_queries = { cls.get_label(): cls_query(graph, cls) for cls in CLS_WITH_PROJECT_ID & CLS_WITH_STATE } print( "%s: %d" % ("legacy_stateless_nodes".ljust(40), sum([query.count() for query in cls_queries.itervalues()])) ) for label, query in cls_queries.items(): count = query.count() if count: print("%35s : %d" % (label, count)) def cls_query(graph, cls): """Returns query for legacy nodes with state in {null, 'live'}""" legacy_projects = graph.nodes(md.Project).props(state='legacy').all() options = [ # state null_prop(cls, 'state'), cls.state.astext.in_(STATE_MAP), ] if 'file_state' in cls.__pg_properties__: options += [null_prop(cls, 'file_state')] return (legacy_filter(graph.nodes(cls), legacy_projects) .filter(or_(*options))) def update_cls(graph, cls): """Updates as described in update_target_states for a single class""" with graph.session_scope() as session: query = cls_query(graph, cls) count = query.count() if count == 0: return logger.info('Loading %d %s nodes', count, cls.label) nodes = query.all() logger.info('Loaded %d %s nodes', len(nodes), cls.label) for node in nodes: state = node._props.get('state', None) file_state = node._props.get('file_state', None) if state in STATE_MAP: node.state = STATE_MAP[state]['state'] set_file_state = ( 'file_state' in node.__pg_properties__ and file_state is None and state in STATE_MAP ) if set_file_state: node.file_state = STATE_MAP[state]['file_state'] node.sysan['legacy_state'] = state node.sysan['legacy_file_state'] = file_state logger.info('Committing %s nodes', cls.label) graph.current_session().commit() logger.info('Done with %s nodes', cls.label) def update_classes(graph_kwargs, input_q): """Creates a db driver and pulls classes from the queue to update""" graph = PsqlGraphDriver(**graph_kwargs) while True: cls = input_q.get() if cls is None: # none means no more work return update_cls(graph, cls) def update_legacy_states(graph_kwargs): """Updates state, file_state on legacy nodes - node.state in {None, 'live'} - node.project_id in {None, <Legacy project_id list>} there is no project_id, or project_id points to a legacy project """ graph = PsqlGraphDriver(**graph_kwargs) with graph.session_scope(): print_cls_query_summary(graph) input_q = Queue() pool = [ Process(target=update_classes, args=(graph_kwargs, input_q)) for _ in range(cpu_count()) ] for cls in CLS_TO_UPDATE: input_q.put(cls) for process in pool: input_q.put(None) # put a no more work signal for each process for process in pool: process.start() for process in pool: process.join()
apache-2.0
7,030,365,817,418,758,000
25.078512
79
0.575978
false
3.794949
false
false
false
fahadsultan/CausalRelations
FeaturesExtractor.py
1
14860
from bs4 import BeautifulSoup import os import pandas as pd import sys import traceback from sklearn.feature_extraction.text import CountVectorizer class FeaturesExtractor: def __init__(self): self.FEATURE_NAMES = ['e1_token_id', 'e1_number','e1_sentence','e1_token','e1_aspect', 'e1_class','e1_event_id','e1_modality','e1_polarity','e1_pos','e1_tense','e2_token_id', 'e2_number','e2_sentence','e2_token','e2_aspect', 'e2_class','e2_event_id','e2_modality','e2_polarity','e2_pos','e2_tense','dep_path', 'same_pos_tag','sentence_distance','event_distance','same_polarity','same_aspect','same_tense','same_class','csignals_in_bw','csignal_position','tlink_exists','e1_is_sent_root','e2_is_sent_root','causal_relation_exists'] COLUMN_NAMES = ['filename', 'sentence', 'relation', 'governor', 'governor_idx', 'dependent', 'dependent_idx'] self.data = [] self.deps = pd.read_csv('data/text/_out_dependencies.csv', names=COLUMN_NAMES, sep='\t') def recursive_search(self, df, path, to_find_token, to_find_index, to_find_sentence, governor_token, governor_index, governor_sentence): dependencies = df[(self.deps['governor'] == governor_token) & (self.deps['governor_idx'] == int(governor_index)) & (self.deps['sentence'] == int(governor_sentence))] for i in range(len(dependencies)): dependency = dependencies.iloc[i] #Weird idiosynracy I came across where the governor and the dependent #were the same token if ((dependency['governor'] == dependency['dependent']) and (dependency['dependent_idx'] == dependency['governor_idx'])): continue #check break condition if (dependency['dependent'] == to_find_token and dependency['dependent_idx'] == to_find_index and dependency['sentence'] == to_find_sentence): path = path+' '+dependency['relation'] break else: path_to_pass = path+' '+dependency['relation'] path_returned = self.recursive_search( df, path_to_pass, to_find_token, to_find_index, to_find_sentence, dependency['dependent'], dependency['dependent_idx'], dependency['sentence']) if path_returned != path_to_pass: path = path_returned break return path def get_dependency_path(self, filename, e1_token, e1_token_id, e1_sentence, e2_token, e2_token_id, e2_sentence): #Since intersentential paths are allowed, the next sentence is #also included df = self.deps[(self.deps['filename'] == filename) & ((self.deps['sentence'] == int(e1_sentence)) | (self.deps['sentence'] == int(e1_sentence)+1))] path = self.recursive_search(df, '', e2_token, e2_token_id, e2_sentence, e1_token, e1_token_id, e1_sentence) if path is not '': return path else: #Try finding path from e2 to e1 return self.recursive_search(df, '', e1_token, e1_token_id, int(e1_sentence), e2_token, e2_token_id, int(e2_sentence)) def parseFile(self, filename): f = open(filename) soup = BeautifulSoup(f.read()) events = soup.findAll('event') tokens = soup.findAll('token') for i in range(0,len(events)-1): event = events[i] for j in range(i+1, len(events)): next_event = events[j] event_token_id = event.find('token_anchor').attrs['id'] next_event_token_id = next_event.find('token_anchor').attrs['id'] event_token_tag = soup.find(lambda tag: (tag.name) == 'token' and (tag.attrs['id']) == (event_token_id)) next_event_token_tag = soup.find(lambda tag: (tag.name) == 'token' and (tag.attrs['id']) == (next_event_token_id)) event_sentence = event_token_tag['sentence'] next_event_sentence = next_event_token_tag['sentence'] if (int(next_event_sentence) - int(event_sentence)) > 1: break # For now, intersentential event pairs can only be one sentence apart else: e1_number = event_token_tag.attrs['number'] e1_sentence = event_sentence e1_token = event_token_tag.text e1_aspect = event.attrs['aspect'] e1_certainty = event.attrs['certainty'] e1_class = event.attrs['class'] e1_comment = event.attrs['comment'] e1_factuality = event.attrs['factuality'] e1_event_id = event.attrs['id'] e1_modality = event.attrs['modality'] e1_polarity = event.attrs['polarity'] e1_pos = event.attrs['pos'] e1_tense = event.attrs['tense'] e2_number = next_event_token_tag.attrs['number'] e2_sentence = event_sentence e2_token = next_event_token_tag.text e2_aspect = next_event.attrs['aspect'] e2_certainty = next_event.attrs['certainty'] e2_class = next_event.attrs['class'] e2_comment = next_event.attrs['comment'] e2_factuality = next_event.attrs['factuality'] e2_event_id = next_event.attrs['id'] e2_modality = next_event.attrs['modality'] e2_polarity = next_event.attrs['polarity'] e2_pos = next_event.attrs['pos'] e2_tense = next_event.attrs['tense'] causal_relation_exists = len(soup.findAll(lambda tag: tag.name == 'source' and tag.findParent().name == 'clink' and tag.findNextSibling().name == 'target' and ((tag.attrs['id'] == e1_event_id and tag.findNextSibling().attrs['id'] == e2_event_id) or (tag.attrs['id'] == e2_event_id and tag.findNextSibling().attrs['id'] == e1_event_id)) )) > 0 e1_token_id_offset = soup.find( lambda tag: tag.name == 'token' and tag.attrs['sentence'] == e1_sentence).attrs['id'] if e1_sentence == e2_sentence: e2_token_id_offset = e1_token_id_offset else: e2_token_id_offset = soup.find( lambda tag: tag.name == 'token' and tag.attrs['sentence'] == e2_sentence).attrs['id'] e1_token_id = int(event_token_tag.attrs['id']) - int(e1_token_id_offset) + 1 e2_token_id = int(next_event_token_tag.attrs['id']) - int(e2_token_id_offset) + 1 e1_event_id = int(e1_event_id) e2_event_id = int(e2_event_id) same_pos_tag = e1_pos == e2_pos sentence_distance = int(e2_sentence) - int(e1_sentence) event_distance = e2_event_id - e1_event_id + 1 same_polarity = e1_polarity == e2_polarity same_aspect = e1_aspect == e2_aspect same_tense = e1_tense == e2_tense same_class = e1_class == e2_class ''' TODO: The conditions between e1_event_id and e2_event_id maybe don't make sense because e1_event_id would always be greater than e2_event_id. Reverse causal relations are identified only if e2 is specifed as source in clink and e1 as target ''' csignals_in_bw = soup.findAll(lambda tag: tag.name == 'c-signal' and (( (e1_event_id < e2_event_id) and (int(tag.attrs['id']) > e1_event_id) and (int(tag.attrs['id']) < e2_event_id)) or (e1_event_id > e2_event_id and int(tag.attrs['id']) > e2_event_id and int(tag.attrs['id']) < e1_event_id))) csignal_position = csignal = '' if len(csignals_in_bw) == 0: csignal_tag = event.findPreviousSibling(lambda tag: tag.name == 'c-signal') if csignal_tag is not None: csignal_token_id = csignal_tag.find('token_anchor').attrs['id'] csignal_token_tag = soup.find(lambda x: x.name == 'token' and x.attrs['id'] == csignal_token_id) if csignal_token_tag.attrs['sentence'] == e1_sentence: csignal = soup.find(lambda x: x.name == 'token' and x.attrs['id'] == csignal_token_id).text csignal_position = 'before' else: csignal_token_id = csignals_in_bw[-1].find('token_anchor').attrs['id'] csignal = soup.find(lambda x: x.name == 'token' and x.attrs['id'] == csignal_token_id).text csignal_position = 'between' tlink_exists = len(soup.findAll(lambda tag: tag.name == 'tlink' and ( ((tag.find('source').attrs['id'] == str(e1_event_id)) and (tag.find('target').attrs['id'] == str(e2_event_id))) or ((tag.find('source').attrs['id'] == str(e2_event_id)) and (tag.find('target').attrs['id'] == str(e1_event_id))) ) )) > 0 filename = filename.split('.xml')[0] filename = filename.split('/') filename = filename[len(filename) - 1] dep_path = self.get_dependency_path( filename, e1_token, e1_token_id, e1_sentence, e2_token, e2_token_id, e2_sentence) e1_is_sent_root = len(self.deps[ (self.deps['governor'] == 'ROOT') & (self.deps['dependent'] == e1_token) & (self.deps['dependent_idx'] == int(e1_token_id)) & (self.deps['sentence'] == int(e1_sentence))] ) > 0 e2_is_sent_root = len(self.deps[ (self.deps['governor'] == 'ROOT') & (self.deps['dependent'] == e2_token) & (self.deps['dependent_idx'] == int(e2_token_id)) & (self.deps['sentence'] == int(e2_sentence))] ) > 0 row = [ e1_token_id, e1_number, e1_sentence, e1_token, e1_aspect, e1_class, e1_event_id, e1_modality, e1_polarity, e1_pos, e1_tense, e2_token_id, e2_number, e2_sentence, e2_token, e2_aspect, e2_class, e2_event_id, e2_modality, e2_polarity, e2_pos, e2_tense, dep_path, same_pos_tag, sentence_distance, event_distance, same_polarity, same_aspect, same_tense, same_class, csignal, csignal_position, tlink_exists, e1_is_sent_root, e2_is_sent_root, causal_relation_exists ] self.data.append(row) f.close() def extract_features(self): for folder, subs, files in os.walk('data/xml'): for filename in files: try: if ('.xml' in filename) and (filename[0] != '.'): print 'Parsing File: '+filename self.parseFile(os.path.join(folder, filename)) except Exception as e: traceback.print_exc() continue self.data = pd.DataFrame(self.data) self.data.columns = self.FEATURE_NAMES def save_to_csv(filename): self.data.to_csv(filename) if __name__ == "__main__": extractor = FeaturesExtractor() extractor.extract_features() extractor.save_to_csv('features.csv')
apache-2.0
3,989,359,469,246,249,500
43.624625
538
0.421467
false
4.423936
false
false
false
hotsyk/uapython2
event/migrations/0001_initial.py
1
2895
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='City', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=30)), ('description', models.TextField()), ('map_link', models.URLField(max_length=250)), ('photos', models.ImageField(upload_to=b'')), ], ), migrations.CreateModel( name='Country', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=30)), ('code', models.CharField(max_length=10)), ('description', models.TextField()), ('currency', models.CharField(max_length=3)), ('map_link', models.URLField(max_length=250)), ], ), migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=30)), ('coordinator', models.CharField(max_length=30)), ('city', models.ForeignKey(blank=True, to='event.City', null=True)), ], ), migrations.CreateModel( name='EventType', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='Venue', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=30)), ('geo_coordinates', models.CharField(max_length=20)), ('map_link', models.URLField(max_length=250)), ('photos', models.ImageField(upload_to=b'')), ('city', models.ForeignKey(to='event.City')), ], ), migrations.AddField( model_name='event', name='event_type', field=models.ForeignKey(to='event.EventType'), ), migrations.AddField( model_name='event', name='venue', field=models.ForeignKey(to='event.Venue'), ), migrations.AddField( model_name='city', name='country', field=models.ForeignKey(to='event.Country'), ), ]
bsd-3-clause
5,386,760,394,031,964,000
37.092105
114
0.516408
false
4.495342
false
false
false
dutradda/myreco
myreco/engine_strategies/filters/factory.py
1
4207
# MIT License # Copyright (c) 2016 Diogo Dutra <dutradda@gmail.com> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from myreco.engine_strategies.filters.filters import (ArrayFilterBy, ArrayFilterOf, BooleanFilterBy, IndexFilterByPropertyOf, IndexFilterOf, ObjectFilterBy, ObjectFilterOf, SimpleFilterBy, SimpleFilterOf) class FiltersFactory(object): _filters_types_map = { 'property_value': { 'name': 'By Property Value', 'types': { 'integer': SimpleFilterBy, 'string': SimpleFilterBy, 'object': ObjectFilterBy, 'array': ArrayFilterBy, 'boolean': BooleanFilterBy } }, 'item_property_value': { 'name': 'By Item Property Value', 'types': { 'integer': SimpleFilterOf, 'string': SimpleFilterOf, 'object': ObjectFilterOf, 'array': ArrayFilterOf, 'boolean': BooleanFilterBy } }, 'property_value_index': { 'name': 'By Property Value Index', 'types': { 'integer': IndexFilterOf, 'string': IndexFilterOf, 'object': IndexFilterOf, 'array': IndexFilterOf, 'boolean': IndexFilterOf } }, 'item_property_value_index': { 'name': 'By Item Property Value Index', 'types': { 'integer': IndexFilterByPropertyOf, 'string': IndexFilterByPropertyOf, 'object': IndexFilterByPropertyOf, 'array': IndexFilterByPropertyOf, 'boolean': IndexFilterByPropertyOf } } } @classmethod def get_filter_types(cls): return [{'name': filter_type['name'], 'id': filter_type_id} for filter_type_id, filter_type in sorted(cls._filters_types_map.items())] @classmethod def get_filter_type(cls, filter_type_id): filter_type = cls._filters_types_map.get(filter_type_id) return { 'name': filter_type['name'], 'id': filter_type_id } if filter_type else None @classmethod def make(cls, items_model, slot_filter, schema, skip_values=None): value_type = schema['type'] filter_name = slot_filter['property_name'] type_id = slot_filter['type_id'] is_inclusive = slot_filter['is_inclusive'] id_names = schema.get('id_names') filter_class = cls._filters_types_map.get(type_id, {'types': {}})['types'].get(value_type) if filter_class: return filter_class(items_model, filter_name, is_inclusive, id_names, skip_values)
mit
-5,812,263,325,621,395,000
40.245098
98
0.550986
false
4.721661
false
false
false
hyperhq/nova-hyper
novahyper/virt/hyper/hostinfo.py
1
2080
# Copyright (c) 2013 dotCloud, Inc. # Copyright (c) 2015 HyperHQ Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from oslo_config import cfg CONF = cfg.CONF def statvfs(): hyper_path = CONF.hyper.root_directory if not os.path.exists(hyper_path): hyper_path = '/' return os.statvfs(hyper_path) def get_disk_usage(): st = statvfs() return { 'total': st.f_blocks * st.f_frsize, 'available': st.f_bavail * st.f_frsize, 'used': (st.f_blocks - st.f_bfree) * st.f_frsize } def get_total_vcpus(): total_vcpus = 0 with open('/proc/cpuinfo') as f: for ln in f.readlines(): if ln.startswith('processor'): total_vcpus += 1 return total_vcpus def get_vcpus_used(containers): total_vcpus_used = 0 for container in containers: if isinstance(container, dict): total_vcpus_used += container.get('Config', {}).get( 'CpuShares', 0) return total_vcpus_used def get_memory_usage(): with open('/proc/meminfo') as f: m = f.read().split() idx1 = m.index('MemTotal:') idx2 = m.index('MemFree:') idx3 = m.index('Buffers:') idx4 = m.index('Cached:') total = int(m[idx1 + 1]) avail = int(m[idx2 + 1]) + int(m[idx3 + 1]) + int(m[idx4 + 1]) return { 'total': total * 1024, 'used': (total - avail) * 1024 } def get_mounts(): with open('/proc/mounts') as f: return f.readlines()
apache-2.0
7,434,647,035,159,597,000
24.679012
78
0.603365
false
3.484087
false
false
false
sony/nnabla
python/benchmark/function/test_logical.py
1
2622
# Copyright 2017,2018,2019,2020,2021 Sony Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import nnabla.initializer as I import nnabla.functions as F from function_benchmark import FunctionBenchmark, Inspec def inspecs_params(): inspecs = [] u = I.UniformInitializer((0, 2)) inspecs.append([Inspec((64, 32, 224, 224), u)]) return inspecs @pytest.mark.parametrize('inspecs', inspecs_params()) @pytest.mark.parametrize('op', ['logical_and_scalar', 'logical_or_scalar', 'logical_xor_scalar', 'greater_scalar', 'greater_equal_scalar', 'less_scalar', 'less_equal_scalar', 'equal_scalar', 'not_equal_scalar']) def test_scalar_logical(inspecs, op, nnabla_opts): func = getattr(F, op) fb = FunctionBenchmark( func, inspecs, [1], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer) @pytest.mark.parametrize('inspecs', inspecs_params()) def test_logical_not(inspecs, nnabla_opts): func = F.logical_not fb = FunctionBenchmark( func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer) def pairwise_inspecs_params(): inspecs = [] u = I.UniformInitializer((0, 2)) inspecs.append([Inspec((64, 32, 224, 224), u), Inspec((64, 32, 224, 224), u)]) return inspecs @pytest.mark.parametrize('inspecs', pairwise_inspecs_params()) @pytest.mark.parametrize('op', ['logical_and', 'logical_or', 'logical_xor', 'greater', 'greater_equal', 'less', 'less_equal', 'equal', 'not_equal']) def test_pairwise_logical(inspecs, op, nnabla_opts): func = getattr(F, op) fb = FunctionBenchmark( func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
apache-2.0
6,322,361,230,130,387,000
33.5
90
0.635774
false
3.616552
true
false
false
JamesClough/dagology
dagology/generators/random_dag.py
1
1482
""" Random DAG model, as in Karrer & Newman, 2009, Phys Rev E """ # Copyright (C) 2016 by # James Clough <james.clough91@gmail.com> # All rights reserved. # BSD license. __author__ = "\n".join(["James Clough (james.clough91@gmail.com)"]) import networkx as nx import numpy as np from random import randrange import dagology as dag __all__ = ['random_dag'] def random_dag(degree_sequence): """ Create a random DAG from a given degree sequence Parameters ---------- degree_sequence - list of pairs of in, out degrees all edges go from earlier to later in this list Returns ------- NetworkX DiGraph """ G = nx.DiGraph() G.add_nodes_from(range(len(degree_sequence))) remaining_stubs = [] # list of forward pointing stubs for node, degrees in enumerate(degree_sequence): indegree, outdegree = degrees allowed_stubs = remaining_stubs[:] for x in range(indegree): if len(allowed_stubs) == 0: # raise networkx error assert False, 'Not a valid degree sequence' older_node = allowed_stubs.pop(randrange(len(allowed_stubs))) remaining_stubs.remove(older_node) # be careful about multiedges allowed_stubs = [x for x in allowed_stubs if x != older_node] G.add_edge(older_node, node) for x in range(outdegree): remaining_stubs.append(node) return G
mit
-711,647,949,574,725,400
27.5
73
0.609312
false
3.869452
false
false
false
SonicFrog/jdrpoly
main/migrations/0004_comitymember_mainpagesection_news.py
1
2798
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-02-24 11:48 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('main', '0003_contest'), ] operations = [ migrations.CreateModel( name='ComityMember', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=100, verbose_name='Pr\xe9nom')), ('last_name', models.CharField(max_length=100, verbose_name='Nom')), ('post', models.CharField(max_length=100, verbose_name='Poste')), ('description', models.TextField(verbose_name='Description du poste')), ('email', models.EmailField(max_length=254, verbose_name='Addresse de contact')), ], options={ 'ordering': ('pk',), 'verbose_name': 'Membre du comit\xe9', 'verbose_name_plural': 'Membres du comit\xe9', }, ), migrations.CreateModel( name='MainPageSection', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200, verbose_name='Titre')), ('content', models.TextField(verbose_name='Contenu')), ('order', models.IntegerField(verbose_name='Position')), ], options={ 'ordering': ('order', '-pk'), 'verbose_name': "Section page d'acceuil", 'verbose_name_plural': "Sections page d'accueil", }, ), migrations.CreateModel( name='News', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(default=b'Nouvelle news', max_length=200, verbose_name='Titre')), ('content', models.TextField(max_length=10000, verbose_name='Contenu')), ('date', models.DateField(default=django.utils.timezone.now, verbose_name='Date')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Auteur')), ], options={ 'ordering': ('date',), 'verbose_name': 'News', 'verbose_name_plural': 'News', }, ), ]
gpl-2.0
1,634,196,145,750,455,800
42.71875
143
0.556469
false
4.176119
false
false
false
MaxTyutyunnikov/lino
obsolete/src/lino/adamo/datatypes.py
1
11685
## Copyright 2003-2007 Luc Saffre ## This file is part of the Lino project. ## Lino is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## Lino is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ## License for more details. ## You should have received a copy of the GNU General Public License ## along with Lino; if not, write to the Free Software Foundation, ## Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ yet another attempt to create a universal set of datatypes... """ import datetime from time import mktime, ctime import types from lino.tools.months import Month from lino.misc.descr import Describable from lino.misc.etc import ispure, iif #from lino.adamo.exceptions import RefuseValue from lino.adamo.exceptions import DataVeto ERR_FORMAT_NONE = "caller must handle None values" ERR_PARSE_EMPTY = "caller must handle empty strings" #def itself(x): return x class Type(Describable): "base class for containers of data-type specific meta information" defaultValue=None parser=lambda x: x # itself formatter=str allowedClasses=None # None or list of allowed classes for value # sizes are given in "characters" or "lines" minHeight = 1 maxHeight = 1 def __call__(self,*args,**kw): return self.child(*args,**kw) #return apply(self.__class__,[],kw) def __repr__(self): return "%s (%s)" % (self.__class__.__name__, repr(self.__dict__)) def format(self,v): assert v is not None, ERR_FORMAT_NONE return self.formatter(v) #return repr(v) def parse(self,s): assert len(s), ERR_PARSE_EMPTY return self.parser(s) def validate(self,value): if self.allowedClasses is None: return if value.__class__ in self.allowedClasses: return raise DataVeto("%r is not a valid %s" % (value,self)) ## def getPreferredWidth(self): ## #note: for StringType, self.width is an instance variable, for ## #other classes it is a class variable. ## return self.width ## def getMinSize(self): ## return (self.minWidth class WidthType(Type): defaultWidth=50 minWidth=15 maxWidth=50 def __init__(self,parent=None, width=None,minWidth=None,maxWidth=None, **kw): Type.__init__(self,parent,**kw) if width is not None: minWidth = maxWidth = width if maxWidth is not None: self.maxWidth = maxWidth elif parent is not None: if self.maxWidth != parent.maxWidth: self.maxWidth = parent.maxWidth if minWidth is not None: self.minWidth = minWidth elif parent is not None: if self.minWidth != parent.minWidth: self.minWidth = parent.minWidth ## def parse(self,s): ## assert len(s), ERR_PARSE_EMPTY ## return int(s) class IntType(WidthType): defaultValue=0 defaultWidth=5 minWidth=3 maxWidth=7 parser=int allowedClasses=(types.IntType,) ## def parse(self,s): ## assert len(s), ERR_PARSE_EMPTY ## return int(s) ## def validate(self,value): ## if value.__class__ is types.IntType: ## return ## raise DataVeto("not an integer") class BoolType(IntType): defaultValue=False parser=bool formatter=lambda s,x: iif(x,'X','-') allowedClasses=(types.BooleanType,) ## def validate(self,value): ## #print __name__,value ## Type.validate(self,value) class AutoIncType(IntType): pass #class AreaType(IntType): # pass class LongType(IntType): parser=long allowedClasses=(types.LongType,) class AsciiType(WidthType): defaultValue="" defaultWidth=20 minWidth=1 maxWidth=50 allowedClasses=(types.StringType,) def parse(self,s): assert len(s), ERR_PARSE_EMPTY return str(s) def format(self,v): assert v is not None, ERR_FORMAT_NONE return v def validate(self,value): Type.validate(self,value) if len(value) == 0: raise DataVeto("Cannot store empty string.") if value.endswith(' '): raise DataVeto("%r ends with a space" % value) class StringType(AsciiType): defaultValue="" defaultWidth=50 minWidth=15 maxWidth=50 allowedClasses=(types.StringType,types.UnicodeType) def parse(self,s): assert len(s), ERR_PARSE_EMPTY return s def format(self,v): assert v is not None, ERR_FORMAT_NONE #return v return unicode(v) #return v.encode("cp1252",'replace') def validate(self,value): AsciiType.validate(self,value) if not ispure(value): raise DataVeto("%r is not pure" % value) class PasswordType(StringType): def format(self,v): assert v is not None, ERR_FORMAT_NONE return '*' * len(v) class MemoType(StringType): def __init__(self,parent=None, height=None, minHeight=None,maxHeight=None, **kw): StringType.__init__(self,parent,**kw) if height is not None: minHeight = maxHeight = height if minHeight is None: if parent is None: minHeight=4 else: minHeight=parent.minHeight if maxHeight is None: if parent is None: maxHeight=10 else: maxHeight=parent.maxHeight self.minHeight = minHeight self.maxHeight = maxHeight class TimeStampType(Type): maxWidth = 10 minWidth = 10 def parse(self,s): assert len(s), ERR_PARSE_EMPTY l=s.split() if len(l) == 2: d=DATE.parse(l[0]) t=TIME.parse(l[1]) dt=datetime.datetime.combine(d,t) ts_tuple=dt.timetuple() return mktime(ts_tuple) raise ValueError, repr(s) def format(self,v): assert v is not None, ERR_FORMAT_NONE return ctime(v) def validate(self,value): if value.__class__ in (types.FloatType, types.IntType): return raise DataVeto("not a date") ## if not isinstance(value,types.FloatType): ## #raise repr(value)+" is not a date" ## raise DataVeto("not a date") class DateType(Type): maxWidth = 10 minWidth = 10 def parse(self,s): assert len(s), ERR_PARSE_EMPTY s = s.replace(".","-") l = s.split("-") if len(l) == 3: l = map(int,l) return datetime.date(*l) elif len(l) == 1: assert len(s) == 8, repr(s) y = int(s[0:4]) m = int(s[4:6]) d = int(s[6:8]) return datetime.date(y,m,d) else: raise ValueError, repr(s) def format(self,v): assert v is not None, ERR_FORMAT_NONE #return repr(v) # "[-]yyyymmdd" return v.isoformat() def validate(self,value): if not isinstance(value,datetime.date): #raise repr(value)+" is not a date" raise DataVeto("not a date") class MonthType(Type): maxWidth = 7 minWidth = 7 def parse(self,s): assert len(s), ERR_PARSE_EMPTY return Month.parse(s) ## s = s.replace(".","-") ## s = s.replace("/","-") ## l = s.split("-") ## if len(l) == 2: ## l = map(int,l) ## return Month(*l) ## elif len(l) == 1: ## assert len(s) == 6, repr(s) ## y = int(s[0:4]) ## m = int(s[4:6]) ## return Month(y,m) ## else: ## raise ValueError, repr(s) def format(self,v): assert v is not None, ERR_FORMAT_NONE return str(s) def validate(self,value): if not isinstance(value,datetime.date): #raise repr(value)+" is not a date" raise DataVeto("not a date") class TimeType(Type): maxWidth = 8 minWidth = 8 def parse(self,s): assert len(s), ERR_PARSE_EMPTY l = s.split(":") if len(l) > 4: raise ValueError, repr(s) if len(l) < 1: return stot(s) l = map(int,l) return datetime.time(*l) def format(self,v): assert v is not None, ERR_FORMAT_NONE return str(v)[:self.maxWidth] def validate(self,value): if not isinstance(value,datetime.time): #raise repr(value)+" is not a time" raise DataVeto("not a time") class DurationType(Type): minWidth = 8 maxWidth = 8 fmt = "hh.mm.ss" # currently only possible fmt def parse(self,s): assert len(s), ERR_PARSE_EMPTY l = s.split(".") if len(l) == 3: hours = int(l[0]) minutes = int(l[1]) seconds = int(l[2]) return datetime.timedelta(0,seconds,0,0,minutes,hours) elif len(l) == 2: minutes = int(l[0]) seconds = int(l[1]) return datetime.timedelta(0,seconds,0,0,minutes) else: raise ValueError, repr(s) def format(self,v): assert v is not None, ERR_FORMAT_NONE h = v.seconds / 3600 m = (v.seconds - h * 3600) / 60 s = v.seconds - h * 3600 - m*60 return "%02d.%02d.%02d" % (h,m,s) def validate(self,value): if not isinstance(value,datetime.timedelta): #raise DataVeto(repr(value)+" is not a timedelta") raise DataVeto("not a timedelta") class UrlType(StringType): pass class ImageType(StringType): pass class LogoType(StringType): pass class EmailType(StringType): pass class AmountType(IntType): pass class PriceType(IntType): pass ASTRING = AsciiType() STRING = StringType() PASSWORD = PasswordType() MEMO = MemoType() DATE = DateType() MONTH = MonthType() TIME = TimeType() # StringType(width=8) TIMESTAMP = TimeStampType() DURATION = DurationType() INT = IntType() LONG = LongType() BOOL = BoolType() AMOUNT = AmountType() PRICE = PriceType() ROWID = AutoIncType() URL = UrlType(width=200) EMAIL = EmailType(width=60) #AREA = AreaType() IMAGE = ImageType() LOGO = LogoType() LANG=STRING(2) def itot(i): return stot(str(i)) def stot(s): if len(s) == 4: return datetime.time(int(s[0:2]),int(s[2:])) elif len(s) == 3: return datetime.time(int(s[0:1]),int(s[1:])) elif len(s) <= 2: return datetime.time(i) else: raise ValueError, repr(s) def itod(i): return DATE.parse(str(i)) ## s=str(i) ## assert len(s) == 8, repr(i) ## y = int(s[0:4]) ## m = int(s[4:6]) ## d = int(s[6:8]) ## return datetime.date(y,m,d) def stod(s): return DATE.parse(s) def itom(i): return MONTH.parse(str(i)) def stom(s): return MONTH.parse(s) __all__ = filter(lambda x: x[0] != "_", dir())
gpl-3.0
-7,101,941,256,306,729,000
24.681319
73
0.55798
false
3.62438
false
false
false
nju-websoft/JAPE
code/attr2vec_func.py
1
2786
import math import collections import random import numpy as np import tensorflow as tf import itertools import time def sum_rows(x): """Returns a vector summing up each row of the matrix x.""" cols = tf.shape(x)[1] ones_shape = tf.stack([cols, 1]) ones = tf.ones(ones_shape, x.dtype) return tf.reshape(tf.matmul(x, ones), [-1]) def compute_sampled_logits(weights, biases, labels, inputs, num_sampled, num_classes, num_true=1): if not isinstance(weights, list): weights = [weights] if labels.dtype != tf.int64: labels = tf.cast(labels, tf.int64) labels_flat = tf.reshape(labels, [-1]) sampled_ids, true_expected_count, sampled_expected_count = tf.nn.log_uniform_candidate_sampler( true_classes=labels, num_true=num_true, num_sampled=num_sampled, unique=True, range_max=num_classes) true_w = tf.nn.embedding_lookup(weights, labels_flat) true_b = tf.nn.embedding_lookup(biases, labels_flat) sampled_w = tf.nn.embedding_lookup(weights, sampled_ids) sampled_b = tf.nn.embedding_lookup(biases, sampled_ids) dim = tf.shape(true_w)[1:2] new_true_w_shape = tf.concat([[-1, num_true], dim], 0) row_wise_dots = tf.multiply(tf.expand_dims(inputs, 1), tf.reshape(true_w, new_true_w_shape)) dots_as_matrix = tf.reshape(row_wise_dots, tf.concat([[-1], dim], 0)) true_logits = tf.reshape(sum_rows(dots_as_matrix), [-1, num_true]) true_b = tf.reshape(true_b, [-1, num_true]) true_logits += true_b sampled_b_vec = tf.reshape(sampled_b, [num_sampled]) sampled_logits = tf.matmul(inputs, sampled_w, transpose_b=True) + sampled_b_vec return true_logits, sampled_logits def nce_loss(weights, biases, labels, inputs, num_sampled, num_classes, num_true=1, v=None): batch_size = int(labels.get_shape()[0]) if v is None: v = tf.ones([batch_size, 1]) true_logits, sampled_logits = compute_sampled_logits( weights=weights, biases=biases, labels=labels, inputs=inputs, num_sampled=num_sampled, num_classes=num_classes, num_true=num_true) true_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(true_logits), logits=true_logits) sampled_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(sampled_logits), logits=sampled_logits) true_loss = tf.multiply(true_loss, v) return tf.div(tf.reduce_sum(true_loss) + tf.reduce_sum(sampled_loss), tf.constant(batch_size, dtype=tf.float32))
mit
4,553,009,698,414,285,000
34.717949
119
0.604451
false
3.397561
false
false
false
andrew-lundgren/gwpy
gwpy/plotter/frequencyseries.py
1
11434
# -*- coding: utf-8 -*- # Copyright (C) Duncan Macleod (2013) # # This file is part of GWpy. # # GWpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GWpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GWpy. If not, see <http://www.gnu.org/licenses/>. """This module defines plotting classes for the data series defined in `~gwpy.frequencyseries` """ import warnings import numpy from matplotlib.projections import register_projection from matplotlib import colors from . import tex from .core import Plot from .axes import Axes from .decorators import auto_refresh from ..frequencyseries import (FrequencySeries, SpectralVariance) __author__ = "Duncan Macleod <duncan.macleod@ligo.org>" class FrequencySeriesAxes(Axes): """Custom `Axes` for a :class:`~gwpy.plotter.FrequencySeriesPlot`. """ name = 'frequencyseries' # ------------------------------------------- # GWpy class plotting methods @auto_refresh def plot(self, *args, **kwargs): """Plot data onto these Axes. Parameters ---------- args a single :class:`~gwpy.frequencyseries.FrequencySeries` (or sub-class) or standard (x, y) data arrays kwargs keyword arguments applicable to :meth:`~matplotib.axes.Axes.plot` Returns ------- Line2D the :class:`~matplotlib.lines.Line2D` for this line layer See Also -------- :meth:`matplotlib.axes.Axes.plot` for a full description of acceptable ``*args` and ``**kwargs`` """ if len(args) == 1 and isinstance(args[0], FrequencySeries): return self.plot_frequencyseries(*args, **kwargs) elif len(args) == 1 and isinstance(args[0], SpectralVariance): return self.plot_variance(*args, **kwargs) else: return super(FrequencySeriesAxes, self).plot(*args, **kwargs) @auto_refresh def plot_frequencyseries(self, spectrum, **kwargs): """Plot a :class:`~gwpy.frequencyseries.FrequencySeries` onto these axes Parameters ---------- spectrum : :class:`~gwpy.frequencyseries.FrequencySeries` data to plot **kwargs any other keyword arguments acceptable for :meth:`~matplotlib.Axes.plot` Returns ------- Line2D the :class:`~matplotlib.lines.Line2D` for this line layer See Also -------- :meth:`matplotlib.axes.Axes.plot` for a full description of acceptable ``*args` and ``**kwargs`` """ if tex.USE_TEX: kwargs.setdefault('label', tex.label_to_latex(spectrum.name)) else: kwargs.setdefault('label', spectrum.name) if not kwargs.get('label', True): kwargs.pop('label') line = self.plot(spectrum.frequencies.value, spectrum.value, **kwargs) if len(self.lines) == 1: try: self.set_xlim(*spectrum.xspan) except ValueError: pass if not self.get_xlabel(): if tex.USE_TEX: ustr = tex.unit_to_latex(spectrum.xunit) else: ustr = spectrum.xunit.to_string() if ustr: self.set_xlabel('Frequency [%s]' % ustr) if not self.get_ylabel(): if tex.USE_TEX: ustr = tex.unit_to_latex(spectrum.unit) else: ustr = spectrum.unit.to_string() if ustr: self.set_ylabel('[%s]' % ustr) return line @auto_refresh def plot_spectrum(self, *args, **kwargs): warnings.warn("{0}.plot_spectrum was renamed " "{0}.plot_frequencyseries, " "and will be removed in an upcoming release".format( type(self).__name__)) return self.plot_frequencyseries(*args, **kwargs) @auto_refresh def plot_frequencyseries_mmm(self, mean_, min_=None, max_=None, alpha=0.1, **kwargs): """Plot a `FrequencySeries` onto these axes, with (min, max) shaded regions The `mean_` `FrequencySeries` is plotted normally, while the `min_` and `max_ spectra are plotted lightly below and above, with a fill between them and the mean_. Parameters ---------- mean_ : :class:`~gwpy.frequencyseries.FrequencySeries data to plot normally min_ : :class:`~gwpy.frequencyseries.FrequencySeries first data set to shade to mean_ max_ : :class:`~gwpy.frequencyseries.FrequencySeries second data set to shade to mean_ alpha : `float`, optional weight of filled region, ``0.0`` for transparent through ``1.0`` opaque **kwargs any other keyword arguments acceptable for :meth:`~matplotlib.Axes.plot` Returns ------- artists : `tuple` a 5-tuple containing (Line2d for mean_, `Line2D` for min_, `PolyCollection` for min_ shading, `Line2D` for max_, and `PolyCollection` for max_ shading) See Also -------- :meth:`matplotlib.axes.Axes.plot` for a full description of acceptable ``*args` and ``**kwargs`` """ # plot mean line1 = self.plot_frequencyseries(mean_, **kwargs)[0] # plot min and max kwargs.pop('label', None) color = kwargs.pop('color', line1.get_color()) linewidth = kwargs.pop('linewidth', line1.get_linewidth()) / 10 if min_ is not None: a = self.plot(min_.frequencies.value, min_.value, color=color, linewidth=linewidth, **kwargs) if alpha: b = self.fill_between(min_.frequencies.value, mean_.value, min_.value, alpha=alpha, color=color, rasterized=kwargs.get('rasterized')) else: b = None else: a = b = None if max_ is not None: c = self.plot(max_.frequencies.value, max_.value, color=color, linewidth=linewidth, **kwargs) if alpha: d = self.fill_between(max_.frequencies.value, mean_.value, max_.value, alpha=alpha, color=color, rasterized=kwargs.get('rasterized')) else: d = None else: c = d = None return line1, a, b, c, d @auto_refresh def plot_spectrum_mmm(self, *args, **kwargs): warnings.warn("{0}.plot_spectrum_mmm was renamed " "{0}.plot_frequencyseries_mmm, " "and will be removed in an upcoming release".format( type(self).__name__)) return self.plot_frequencyseries_mmm(*args, **kwargs) @auto_refresh def plot_variance(self, specvar, norm='log', **kwargs): """Plot a :class:`~gwpy.frequencyseries.SpectralVariance` onto these axes Parameters ---------- spectrum : class:`~gwpy.frequencyseries.SpectralVariance` data to plot **kwargs any other eyword arguments acceptable for :meth:`~matplotlib.Axes.pcolormesh` Returns ------- MeshGrid the :class:`~matplotlib.collections.MeshGridD` for this layer See Also -------- :meth:`matplotlib.axes.Axes.pcolormesh` for a full description of acceptable ``*args` and ``**kwargs`` """ if norm == 'log': vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) norm = colors.LogNorm(vmin=vmin, vmax=vmax) kwargs['norm'] = norm x = numpy.concatenate((specvar.frequencies.value, [specvar.x0.value + specvar.dx.value * specvar.shape[0]])) y = specvar.bins.value X, Y = numpy.meshgrid(x, y, copy=False, sparse=True) mesh = self.pcolormesh(X, Y, specvar.value.T, **kwargs) if len(self.collections) == 1: self.set_yscale('log', nonposy='mask') self.set_xlim(x[0], x[-1]) self.set_ylim(y[0], y[-1]) # fill in zeros if isinstance(mesh.norm, colors.LogNorm): cmap = mesh.get_cmap() try: # only listed colormaps have cmap.colors cmap.set_bad(cmap.colors[0]) except AttributeError: pass return mesh register_projection(FrequencySeriesAxes) class FrequencySeriesPlot(Plot): """`Figure` for displaying a `~gwpy.frequencyseries.FrequencySeries` """ _DefaultAxesClass = FrequencySeriesAxes def __init__(self, *series, **kwargs): kwargs.setdefault('projection', self._DefaultAxesClass.name) # extract custom keyword arguments sep = kwargs.pop('sep', False) xscale = kwargs.pop( 'xscale', kwargs.pop('logx', True) and 'log' or 'linear') yscale = kwargs.pop( 'yscale', kwargs.pop('logy', True) and 'log' or 'linear') sharex = kwargs.pop('sharex', False) sharey = kwargs.pop('sharey', False) # separate custom keyword arguments axargs, plotargs = self._parse_kwargs(kwargs) # initialise figure super(FrequencySeriesPlot, self).__init__(**kwargs) # plot data x0 = [] axesdata = self._get_axes_data(series, sep=sep) for data in axesdata: ax = self._add_new_axes(**axargs) for fs in data: ax.plot(fs, **plotargs) x0.append(min([fs.df.value for fs in data])) if 'sharex' not in axargs and sharex is True: axargs['sharex'] = ax if 'sharey' not in axargs and sharey is True: axargs['sharey'] = ax if sharex: x0 = [min(x0)]*len(x0) axargs.pop('sharex', None) axargs.pop('sharey', None) axargs.pop('projection', None) for i, ax in enumerate(self.axes): # format axes for key, val in axargs.iteritems(): getattr(ax, 'set_%s' % key)(val) # fix log frequency scale with f0 = DC if xscale in ['log']: xlim = list(ax.get_xlim()) if not xlim[0]: xlim[0] = x0[i] ax.set_xlim(*xlim) # set axis scales ax.set_xscale(xscale) ax.set_yscale(yscale) # set grid if xscale == 'log': ax.grid(True, axis='x', which='both') if yscale == 'log': ax.grid(True, axis='y', which='both')
gpl-3.0
-6,821,686,522,418,402,000
35.069401
80
0.546091
false
4.135262
false
false
false
isudox/leetcode-solution
python-algorithm/leetcode/flip_binary_tree_to_match_preorder_traversal.py
1
2107
# -*- coding: utf-8 -*- """971. Flip Binary Tree To Match Preorder Traversal https://leetcode.com/problems/flip-binary-tree-to-match-preorder-traversal/ Given a binary tree with N nodes, each node has a different value from {1, ..., N}. A node in this binary tree can be flipped by swapping the left child and the right child of that node. Consider the sequence of N values reported by a preorder traversal starting from the root. Call such a sequence of N values the voyage of the tree. (Recall that a preorder traversal of a node means we report the current node's value, then preorder-traverse the left child, then preorder-traverse the right child.) Our goal is to flip the least number of nodes in the tree so that the voyage of the tree matches the voyage we are given. If we can do so, then return a list of the values of all nodes flipped. You may return the answer in any order. If we cannot do so, then return the list [-1]. Example 1: Input: root = [1,2], voyage = [2,1] Output: [-1] Example 2: Input: root = [1,2,3], voyage = [1,3,2] Output: [1] Example 3: Input: root = [1,2,3], voyage = [1,2,3] Output: [] Note: 1 <= N <= 100 """ from common.tree_node import TreeNode class Solution: def flip_match_voyage(self, root, voyage): """ :type root: TreeNode :type voyage: List[int] :rtype: List[int] """ stack, ans = [root], [] i, size = 0, len(voyage) while len(stack) and i < size: temp = stack.pop() if temp.val != voyage[i]: break i += 1 if i < size: if temp.left and temp.left.val != voyage[i]: ans.append(temp.val) stack.append(temp.left) if temp.right: stack.append(temp.right) else: if temp.right: stack.append(temp.right) if temp.left: stack.append(temp.left) if i != size: return [-1] return ans
mit
-1,886,637,052,181,223,000
28.676056
80
0.58187
false
3.547138
false
false
false
cloudmesh/vagrant
setup.py
1
3460
#!/usr/bin/env python # ----------------------------------------------------------------------- # # Copyright 2008-2010, Gregor von Laszewski # # Copyright 2010-2013, Indiana University # # # # Licensed under the Apache License, Version 2.0 (the "License"); you may # # not use this file except in compliance with the License. You may obtain # # a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# # See the License for the specific language governing permissions and # # limitations under the License. # # ------------------------------------------------------------------------# from __future__ import print_function import setuptools from setuptools import setup, find_packages import os import sys from cloudmesh_vagrant import __version__ import platform import re import io if sys.version_info < (2, 7, 10): print(70 * "#") print("WARNING: upgrade to python 2.7.10 or above" "Your version is {} not supported.".format(sys.version_info)) print(70 * "#") command = None this_platform = platform.system().lower() if this_platform in ['darwin']: command = "easy_install readline" elif this_platform in ['windows']: command = "pip install pyreadline" if command is not None: print("Install readline") os.system(command) requirements = [ 'cloudmesh_client' ] def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() home = os.path.expanduser("~") setup( version=__version__, name="cloudmesh_vagrant", description="cloudmesh_vagrant - A real simple interface to virtualbox via vagrant", long_description=read('README.rst'), license="Apache License, Version 2.0", author="Gregor von Laszewski", author_email="laszewski@gmail.com", url="https://github.com/cloudmesh/cloudmesh_vagrant", classifiers=[ "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX :: Linux", "Programming Language :: Python :: 2.7", "Topic :: Scientific/Engineering", "Topic :: System :: Clustering", "Topic :: System :: Distributed Computing", "Topic :: Software Development :: Libraries :: Python Modules", "Environment :: Console" ], keywords="cloud cmd commandshell plugins cloudmesh vagrant virtualbox", packages=find_packages(), install_requires=requirements, include_package_data=True, entry_points={ 'console_scripts': [ 'cm-vbox = cloudmesh_vagrant.cm_vbox:main', 'cm-authors = cloudmesh_client.common.GitInfo:print_authors', ], }, )
apache-2.0
4,580,480,080,358,300,700
36.608696
88
0.573988
false
4.407643
false
false
false
Alignak-monitoring/alignak-checks-example
version.py
1
1285
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2015-2017: # Frederic Mohier, frederic.mohier@alignak.net # """ Alignak - Checks pack for EXAMPLE """ # Package name __pkg_name__ = u"alignak_checks_EXAMPLE" # Checks types for PyPI keywords # Used for: # - PyPI keywords # - directory where to store files in the Alignak configuration (eg. arbiter/packs/checks_type) __checks_type__ = u"EXAMPLE" # Application manifest __version__ = u"0.0.1" __author__ = u"Your name" __author_email__ = u"Your email address" __copyright__ = u"(c) 2015-2017 - %s" % __author__ __license__ = u"GNU Affero General Public License, version 3" __git_url__ = u"https://github.com/alignak-monitoring-contrib/alignak-checks-EXAMPLE" __doc_url__ = u"http://alignak-doc.readthedocs.io/en/latest" __description__ = u"Alignak checks pack for EXAMPLE" __classifiers__ = [ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)', 'Natural Language :: English', 'Programming Language :: Python', 'Topic :: System :: Monitoring', 'Topic :: System :: Systems Administration' ]
agpl-3.0
1,924,157,300,005,393,700
31.125
95
0.670817
false
3.320413
false
false
false
splotz90/urh
src/urh/models/ProtocolLabelListModel.py
1
4134
from PyQt5.QtCore import QAbstractListModel, pyqtSignal, Qt, QModelIndex, QMimeData from PyQt5.QtGui import QFont from urh import constants from urh.signalprocessing.FieldType import FieldType from urh.signalprocessing.MessageType import MessageType from urh.signalprocessing.ProtocoLabel import ProtocolLabel from urh.signalprocessing.ProtocolAnalyzer import ProtocolAnalyzer class ProtocolLabelListModel(QAbstractListModel): protolabel_visibility_changed = pyqtSignal(ProtocolLabel) protocol_label_name_edited = pyqtSignal() label_removed = pyqtSignal(ProtocolLabel) def __init__(self, proto_analyzer: ProtocolAnalyzer, controller, parent=None): super().__init__(parent) self.proto_analyzer = proto_analyzer self.message_type = controller.active_message_type # type: MessageType self.controller = controller # type: CompareFrameController def rowCount(self, QModelIndex_parent=None, *args, **kwargs): return len(self.message_type) def update(self): self.message_type = self.controller.active_message_type # type: MessageType self.beginResetModel() self.endResetModel() def data(self, index, role=Qt.DisplayRole): row = index.row() if row >= len(self.message_type): return label = self.message_type[row] if role == Qt.DisplayRole: return label.name elif role == Qt.CheckStateRole: return label.show elif role == Qt.BackgroundColorRole: return constants.LABEL_COLORS[label.color_index] elif role == Qt.FontRole: font = QFont() font.setItalic(label.field_type is None) return font def setData(self, index: QModelIndex, value, role=Qt.DisplayRole): if role == Qt.CheckStateRole: proto_label = self.message_type[index.row()] proto_label.show = value self.protolabel_visibility_changed.emit(proto_label) elif role == Qt.EditRole: proto_label = self.message_type[index.row()] proto_label.name = value self.message_type.change_field_type_of_label(proto_label, self.controller.field_types_by_caption.get(value, None)) self.protocol_label_name_edited.emit() return True def showAll(self): hidden_labels = [label for label in self.proto_analyzer.protocol_labels if not label.show] for label in hidden_labels: label.show = Qt.Checked self.protolabel_visibility_changed.emit(label) def hideAll(self): visible_labels = [label for label in self.proto_analyzer.protocol_labels if label.show] for label in visible_labels: label.show = Qt.Unchecked self.protolabel_visibility_changed.emit(label) def get_label_at(self, row): return self.message_type[row] def delete_label_at(self, label_id: int): try: lbl = self.message_type[label_id] self.message_type.remove(lbl) self.label_removed.emit(lbl) except IndexError: pass def delete_labels_at(self, start: int, end: int): for row in range(end, start - 1, -1): self.delete_label_at(row) def add_labels_to_message_type(self, start: int, end: int, message_type_id: int): for lbl in self.message_type[start:end + 1]: self.controller.proto_analyzer.message_types[message_type_id].add_label(lbl) self.controller.updateUI(resize_table=False) def flags(self, index): return Qt.ItemIsEnabled | Qt.ItemIsSelectable | Qt.ItemIsUserCheckable | \ Qt.ItemIsEditable | Qt.ItemIsDragEnabled def supportedDragActions(self): return Qt.MoveAction | Qt.CopyAction def mimeTypes(self): return ['text/plain'] def mimeData(self, indexes): data = "PLabels:" data += "/".join([str(index.row()) for index in indexes]) mime_data = QMimeData() mime_data.setText(data) return mime_data
gpl-3.0
-1,866,661,335,700,646,400
36.243243
113
0.643445
false
3.918483
false
false
false
eciis/web
backend/test/model_test/invite_institution_test.py
1
5437
# -*- coding: utf-8 -*- from ..test_base import TestBase from models import Invite from models import Institution from models import InviteInstitution from models import User from custom_exceptions import FieldException from mock import patch class InviteInstitutionTest(TestBase): """Test invite model.""" @classmethod def setUp(cls): """Provide the base for the tests.""" cls.test = cls.testbed.Testbed() cls.test.activate() cls.policy = cls.datastore.PseudoRandomHRConsistencyPolicy( probability=1) cls.test.init_datastore_v3_stub(consistency_policy=cls.policy) cls.test.init_memcache_stub() initModels(cls) def test_check_is_invite_institution_valid(self): """Test check_is_invite_institution_valid method.""" with self.assertRaises(FieldException): data = {"suggestion_institution_name": None} InviteInstitution.check_is_invite_institution_valid(data) def test_create(self): """Test create method.""" created_invite = InviteInstitution.create(self.data) stub_institution_key = created_invite.stub_institution_key expected_invite = InviteInstitution() expected_invite.admin_key = self.admin.key expected_invite.is_request = False expected_invite.institution_key = self.institution.key expected_invite.sender_key = self.admin.key expected_invite.sender_name = self.admin.name expected_invite.invitee = self.user.email[0] expected_invite.suggestion_institution_name = "new Institution" expected_invite.stub_institution_key = stub_institution_key self.assertEquals( created_invite, expected_invite, "The created invite should be equal to the expected one" ) def test_make(self): """Test make method.""" invite_institution = InviteInstitution.create(self.data) invite_institution.put() stub_institution = invite_institution.stub_institution_key.get() maked_invite = invite_institution.make() expected_maked_invite = { 'admin_name': self.admin.name, 'sender_name': self.invite.sender_name, 'key': invite_institution.key.urlsafe(), 'status': self.invite.status, 'institution_admin': self.institution.make(["name"]), 'institution': self.institution.make(InviteInstitution.INST_PROPS_TO_MAKE), 'invitee': self.user.email[0], 'suggestion_institution_name': 'new Institution', 'stub_institution': stub_institution.make([ 'name', 'key', 'state' ]), 'type_of_invite': 'INSTITUTION' } self.assertEquals( maked_invite, expected_maked_invite, "The maked invite should be equal to the expected one" ) @patch('models.invite_institution.NotificationsQueueManager.create_notification_task') def test_create_accept_notification(self, mock_method): """Test create a regular accept response notification.""" invite = InviteInstitution.create(self.data) invite.put() self.user.current_institution = self.institution.key self.user.put() id = invite.create_accept_response_notification( 'ACCEPT_INVITE_INSTITUTION', self.institution.key, invite.admin_key.urlsafe(), self.user) mock_method.assert_called() self.assertTrue(id != None) @patch('models.invite_institution.NotificationsQueueManager.create_notification_task') def test_create_system_notification(self, mock_method): """Test create a system notification.""" invite = InviteInstitution.create(self.data) invite.put() self.user.current_institution = self.institution.key self.user.put() id = invite.create_accept_response_notification( 'ADD_ADM_PERMISSIONS', self.institution.key, self.user.key.urlsafe()) mock_method.assert_called() self.assertTrue(id != None) def initModels(cls): """Initialize the models.""" # admin cls.admin = User() cls.admin.name = "admin" cls.admin.email = ["admin@email"] cls.admin.put() # user cls.user = User() cls.user.name = "user" cls.user.email = ["user@email"] cls.user.put() # New institution cls.institution = Institution() cls.institution.name = "institution" cls.institution.admin = cls.admin.key cls.institution.members = [cls.admin.key] cls.institution.followers = [cls.admin.key] cls.institution.put() # update admin cls.admin.institutions_admin = [cls.institution.key] cls.admin.put() # New invite cls.invite = Invite() cls.invite.invitee = cls.user.email[0] cls.invite.admin_key = cls.admin.key cls.invite.sender_key = cls.admin.key cls.invite.sender_name = cls.admin.name cls.invite.status = "sent" cls.invite.institution_key = cls.institution.key cls.invite.put() cls.data = { "admin_key": cls.admin.key.urlsafe(), "is_request": False, "institution_key": cls.institution.key.urlsafe(), "sender_key": cls.admin.key.urlsafe(), "sender_name": cls.admin.name, "invitee": cls.user.email[0], "suggestion_institution_name": "new Institution" }
gpl-3.0
3,515,197,406,887,376,000
34.305195
101
0.640611
false
3.807423
true
false
false
karinemiras/evoman_framework
evoman/player.py
1
12662
################################ # EvoMan FrameWork - V1.0 2016 # # Author: Karine Miras # # karine.smiras@gmail.com # ################################ import sys import numpy import struct import binascii import Base from Base.SpriteConstants import * from Base.SpriteDefinition import * from sensors import * # player proctile class Bullet_p(pygame.sprite.Sprite): image = pygame.image.load('evoman/images/bullet_r.png') def __init__(self, location, direction, n_twist, *groups): super(Bullet_p, self).__init__(*groups) self.rect = pygame.rect.Rect(location, self.image.get_size()) self.direction = direction self.n_twist = n_twist # fits image according to the side the player is turned to if self.direction == 1: self.image = pygame.image.load('evoman/images/bullet_r.png') else: self.image = pygame.image.load('evoman/images/bullet_l.png') def update(self, dt, game): # removes bullets objetcs when they transpass the screen limits if self.rect.right<1 or self.rect.left>736 or self.rect.top <1 or self.rect.bottom>512 : self.kill() game.player.twists[self.n_twist] = None return self.rect.x += self.direction * 600 * dt # moving on the X axis (left or tight). It adds 600*dt forward at each general game loop loop iteration, where dt controls the frames limit. # checks collision of player's bullet with the enemy if self.rect.colliderect(game.enemy.rect): # if enemy is not imune if game.enemy.imune == 0: # enemy loses life points, according to the difficult level of the game (the more difficult, the less it loses) game.enemy.life = max(0, game.enemy.life-(20/game.level)) if game.enemyn == 4: # makes enemy imune to player's shooting. game.enemy.imune = 1 # removes the bullet off the screen after collision. self.kill() game.player.twists[self.n_twist] = None game.enemy.hurt = 5 # player sprite class Player(pygame.sprite.Sprite): def __init__(self, location, enemyn, level, *groups): super(Player, self).__init__(*groups) self.spriteDefinition = SpriteDefinition('evoman/images/EvoManSprites.png', 0, 0, 43, 59) self.updateSprite(SpriteConstants.STANDING, SpriteConstants.RIGHT) self.rect = pygame.rect.Rect(location, self.image.get_size()) self.resting = 0 self.dy = 0 self.direction = 1 self.alternate = 1 self.gun_cooldown = 0 self.max_life = 100 self.life = self.max_life self.atacked = 0 self.hurt = 0 self.shooting = 0 self.inwater = 0 self.twists = [] self.vx = 0 self.vy = 0 self.hy = 0 self.sensors = None def update(self, dt, game): # if the enemies are not atacking with the freezing atack (prevents player from making any movements or atacking) and also the 'start game' marker is 1. if game.freeze_p == 0 and game.start == 1: # checks water environment flag to regulate movements speed if self.inwater == 1: self.vx = 0.5 self.vy = 0.5 self.hy = -2000 else: self.vx = 1 self.vy = 1 self.hy = -900 # defines game mode for player action if game.playermode == 'human': # player controlled by keyboard/joystick # if joystick is connected, initializes it. if game.joy > 0: joystick = pygame.joystick.Joystick(0) joystick.init() # tests if the button/key was pressed or released. # if the player is jumping, the release stops the jump before its maximum high is achieved press = 0 release = 0 for event in game.event: if event.type == pygame.JOYBUTTONDOWN or event.type == pygame.KEYDOWN: press = 1 else: press = 0 if event.type == pygame.JOYBUTTONUP or event.type == pygame.KEYUP: release = 1 else: release = 0 # gets pressed key value key = pygame.key.get_pressed() # gets joystick value for axis x (left/right) left = 0 if game.joy > 0: if round(joystick.get_axis(0)) == -1: left = 1 if key[pygame.K_LEFT]: left = 1 right = 0 if game.joy > 0: if round(joystick.get_axis(0)) == 1: right = 1 if key[pygame.K_RIGHT]: right = 1 # gets joystick/key value for jumping jump = 0 if game.joy > 0: if int(joystick.get_button(2)) == 1 and press == 1: jump = 1 if key[pygame.K_SPACE] and press == 1: jump = 1 # gets joystick/key value for shooting shoot = 0 if game.joy > 0: if int(joystick.get_button(3)) == 1 and press == 1: shoot = 1 if key[pygame.K_LSHIFT] and press == 1: shoot = 1 elif game.playermode == 'ai': # player controlled by AI algorithm # calls the controller providing game sensors actions = game.player_controller.control(self.sensors.get(game), game.pcont) if len(actions) < 5: game.print_logs("ERROR: Player controller must return 5 decision variables.") sys.exit(0) left = actions[0] right = actions[1] jump = actions[2] shoot = actions[3] release = actions[4] # if the button is released before the jumping maximum height, them player stops going up. if release == 1 and self.resting == 0: self.dy = 0 # copies last position state of the player last = self.rect.copy() # movements on the axis x (left) if left: self.rect.x -= 200 * dt * self.vx self.direction = -1 # animation, running images alternation if self.alternate == 1: self.updateSprite(SpriteConstants.START_RUNNING, SpriteConstants.LEFT) if self.alternate == 4 or self.alternate == 10: self.updateSprite(SpriteConstants.RUNNING_STEP1, SpriteConstants.LEFT) if self.alternate == 7: self.updateSprite(SpriteConstants.RUNNING_STEP2, SpriteConstants.LEFT) self.alternate += 1 if self.alternate > 12: self.alternate = 1 # movements on the axis x (right) elif right: self.rect.x += 200 * dt * self.vx self.direction = 1 # animation, running player images alternation if self.alternate == 1: self.updateSprite(SpriteConstants.START_RUNNING, SpriteConstants.RIGHT) if self.alternate == 4 or self.alternate == 10: self.updateSprite(SpriteConstants.RUNNING_STEP1, SpriteConstants.RIGHT) if self.alternate == 7: self.updateSprite(SpriteConstants.RUNNING_STEP2, SpriteConstants.RIGHT) self.alternate += 1 if self.alternate > 12: self.alternate = 1 else: # animation, standing up images if self.direction == -1: self.updateSprite(SpriteConstants.STANDING, SpriteConstants.LEFT) else: self.updateSprite(SpriteConstants.STANDING, SpriteConstants.RIGHT) # if player is touching the floor, he is allowed to jump if self.resting == 1 and jump == 1: self.dy = self.hy # gravity self.dy = min(400, self.dy + 100) self.rect.y += self.dy * dt * self.vy # changes the image when player jumps if self.resting == 0 : if self.direction == -1: self.updateSprite(SpriteConstants.JUMPING, SpriteConstants.LEFT) else: self.updateSprite(SpriteConstants.JUMPING, SpriteConstants.RIGHT) new = self.rect # copies new (after movement) position state of the player # controls screen walls and platforms limits agaist player self.resting = 0 for cell in game.tilemap.layers['triggers'].collide(new, 'blockers'): blockers = cell['blockers'] if 'l' in blockers and last.right <= cell.left and new.right > cell.left and last.bottom>cell.top: new.right = cell.left if 'r' in blockers and last.left >= cell.right and new.left < cell.right and last.bottom>cell.top: new.left = cell.right if 't' in blockers and last.bottom <= cell.top and new.bottom > cell.top: self.resting = 1 # player touches the floor new.bottom = cell.top self.dy = 0 if 'b' in blockers and last.top >= cell.bottom and new.top < cell.bottom: new.top = cell.bottom # shoots, limiting time between bullets. if shoot == 1 and not self.gun_cooldown: self.shooting = 5 self.atacked = 1 # marks if the player has atacked enemy # creates bullets objects according to the direction. if self.direction > 0: self.twists.append(Bullet_p(self.rect.midright, 1, len(self.twists), game.sprite_p)) else: self.twists.append(Bullet_p(self.rect.midleft, -1, len(self.twists), game.sprite_p)) self.gun_cooldown = 0.4 # marks time to the bullet for allowing next bullets # sound effects if game.sound == "on" and game.playermode == "human": sound = pygame.mixer.Sound('evoman/sounds/scifi003.wav') c = pygame.mixer.Channel(2) c.set_volume(1) c.play(sound) else: self.atacked = 0 # decreases time for limitating bullets self.gun_cooldown = max(0, self.gun_cooldown - dt) # hurt player animation if self.hurt > 0: if self.direction == -1: self.updateSprite(SpriteConstants.HURTING, SpriteConstants.LEFT) else: self.updateSprite(SpriteConstants.HURTING, SpriteConstants.RIGHT) self.hurt -= 1 self.hurt = max(0,self.hurt) self.shooting -= 1 self.shooting = max(0,self.shooting) # shooting animation if self.shooting > 0: if self.resting == 0: if self.direction == -1: self.updateSprite(SpriteConstants.SHOOTING_JUMPING, SpriteConstants.LEFT) else: self.updateSprite(SpriteConstants.SHOOTING_JUMPING, SpriteConstants.RIGHT) else: if self.direction == -1: self.updateSprite(SpriteConstants.SHOOTING, SpriteConstants.LEFT) else: self.updateSprite(SpriteConstants.SHOOTING, SpriteConstants.RIGHT) # kills player in case he touches killers stuff, like spikes. for cell in game.tilemap.layers['triggers'].collide(self.rect, 'killers'): game.player.life = 0 # focuses screen center on player game.tilemap.set_focus(new.x, new.y) else: game.tilemap.set_focus(self.rect.x, self.rect.y) def updateSprite(self, state, direction): self.image = self.spriteDefinition.getImage(state, direction)
cc0-1.0
2,649,441,619,843,990,500
35.074074
192
0.525746
false
4.231952
false
false
false
VarunRaval48/SignCode
java.sign/TestScripts/Valid/python/iterateChangeParameterPython.py
1
3261
# **************************************************************************** # Copyright (c) 2015 UT-Battelle, LLC. # All rights reserved. This program and the accompanying materials # are made available under the terms of the Eclipse Public License v1.0 # which accompanies this distribution, and is available at # http://www.eclipse.org/legal/epl-v10.html # # Contributors: # Initial API and implementation and/or initial documentation - Kasper # Gammeltoft, Jay Jay Billings # # This is an example script designed to show how to use ease with ICE. It # creates several new Reflectivity Models and changes the thickness parameter # to show the effect that creates. # **************************************************************************** # Load the Platform module for accessing OSGi services loadModule('/System/Platform') # Get the core service from ICE for creating and accessing objects. coreService = getService(org.eclipse.ice.core.iCore.ICore); # Set a initial value for the thickness of the nickel layer. This will be doubled # for each iteration to show how this parameter effects the model nickelThickness = 250; for i in xrange(1, 5): # Create the reflectivity model to be used and get its reference. The create item # method will return a string representing the number of that item, so use int() to # convert it to an integer. reflectModel = coreService.getItem(int(coreService.createItem("Reflectivity Model"))) # Get the nickel layer from the model. It should be in the list, which is component 2, # and it is the third layer in that list (which is item 2 as the list is zero based). listComp = reflectModel.getComponent(2); nickel = listComp.get(2); nickel.setProperty("Thickness (A)", nickelThickness); nickelThickness += 250; # Finally process the model to get the results. coreService.processItem(reflectModel.getId(), "Calculate Reflectivity", 1); """*****BEGIN SIGNSTURE******** MCwCFH7564DnEUccn+cSKT0mG4W+Ew/uAhQfwUFkl2q3L6dcuDQK62ZSE/ujQw== MIIDNzCCAvWgAwIBAgIELNrJgDALBgcqhkjOOAQDBQAwbTEL MAkGA1UEBhMCSU4xEDAOBgNVBAgTB0d1amFyYXQxEjAQBgNV BAcTCUFobWVkYWJhZDEQMA4GA1UEChMHVW5rbm93bjEQMA4G A1UECxMHVW5rbm93bjEUMBIGA1UEAxMLVmFydW4gUmF2YWww HhcNMTYwMzA1MTE1NjUwWhcNMTYwNjAzMTE1NjUwWjBtMQsw CQYDVQQGEwJJTjEQMA4GA1UECBMHR3VqYXJhdDESMBAGA1UE BxMJQWhtZWRhYmFkMRAwDgYDVQQKEwdVbmtub3duMRAwDgYD VQQLEwdVbmtub3duMRQwEgYDVQQDEwtWYXJ1biBSYXZhbDCC AbgwggEsBgcqhkjOOAQBMIIBHwKBgQD9f1OBHXUSKVLfSpwu 7OTn9hG3UjzvRADDHj+AtlEmaUVdQCJR+1k9jVj6v8X1ujD2 y5tVbNeBO4AdNG/yZmC3a5lQpaSfn+gEexAiwk+7qdf+t8Yb +DtX58aophUPBPuD9tPFHsMCNVQTWhaRMvZ1864rYdcq7/Ii Axmd0UgBxwIVAJdgUI8VIwvMspK5gqLrhAvwWBz1AoGBAPfh oIXWmz3ey7yrXDa4V7l5lK+7+jrqgvlXTAs9B4JnUVlXjrrU WU/mcQcQgYC0SRZxI+hMKBYTt88JMozIpuE8FnqLVHyNKOCj rh4rs6Z1kW6jfwv6ITVi8ftiegEkO8yk8b6oUZCJqIPf4Vrl nwaSi2ZegHtVJWQBTDv+z0kqA4GFAAKBgQDqLrJZitkj0fqO RQ/kdKtwHK4Fq6kXfGedp5umydmCVqrIkuCKuw6X2P5gX4Vv 0kqTEG2iWL7Hv3iUCmtaCeKYLSlIyaloJMYPwgcKxWYYMtXn njfoOAxHywwXxPAygkR/r9TH1VrUSKjvuGvOxdjSNnezjsVL VEyIXiO76ZfawKMhMB8wHQYDVR0OBBYEFJw/5/p+5vXMZPXx ZLBh9YLK/zr4MAsGByqGSM44BAMFAAMvADAsAhRA44+6n9Ya UTnckDGsbZIv450sVAIUA1otxObPsQaTs1EcOEEqODrNHCY= ********END SIGNSTURE*****"""
gpl-3.0
5,838,214,338,211,463,000
38.780488
90
0.767863
false
2.387262
false
false
false
jenshnielsen/hemelb
Tools/setuptool/HemeLbSetupTool/View/VectorCtrl.py
1
2871
# # Copyright (C) University College London, 2007-2012, all rights reserved. # # This file is part of HemeLB and is provided to you under the terms of # the GNU LGPL. Please see LICENSE in the top level directory for full # details. # import wx # from wx.lib.masked import NumCtrl, EVT_NUM from HemeLbSetupTool.Bindings.Translators import FloatTranslator, NoneToValueTranslator from HemeLbSetupTool.Bindings.WxMappers import WxWidgetMapper, Mapper from HemeLbSetupTool.View.Layout import H def ForwardGet(func): def Get(self, val): return tuple(getattr(getattr(self, coord), func.func_name)() for coord in ('x', 'y', 'z')) Get.func_name = func.func_name return Get def ForwardSet(func): def Set(self, val): for coord in ('x', 'y', 'z'): setter = getattr(getattr(self, coord), func.func_name) setter(val) continue return Set.func_name = func.func_name return Set class VectorCtrl(wx.Panel): """Simple container of three TextCtrl's for a vector quantity. """ def __init__(self, parent): wx.Panel.__init__(self, parent) # self.x = NumCtrl(parent, style=wx.TE_PROCESS_ENTER, integerWidth=3, fractionWidth=3) # self.y = NumCtrl(parent, style=wx.TE_PROCESS_ENTER, integerWidth=3, fractionWidth=3) # self.z = NumCtrl(parent, style=wx.TE_PROCESS_ENTER, integerWidth=3, fractionWidth=3) self.x = wx.TextCtrl(self, size=(50,22)) self.y = wx.TextCtrl(self, size=(50,22)) self.z = wx.TextCtrl(self, size=(50,22)) sizer = H((self.x, 1, wx.EXPAND), (self.y, 1, wx.EXPAND), (self.z, 1, wx.EXPAND)).create() self.SetSizer(sizer) return @ForwardSet def SetBackgroundColour(): return @ForwardGet def GetBackgroundColour(): return @ForwardSet def SetEditable(): return pass class VectorCtrlMapper(WxWidgetMapper): """Widget mapper for VectorCtrls. """ def __init__(self, widget, key, event, translator=NoneToValueTranslator(float('nan'), inner=FloatTranslator()) ): # We want to skip the WxWidgetMapper's init for now as the # VectorCtrl typically won't have the required getters and # setters. On binding, this one mapper is turned into three # standard mappers anyway. Mapper.__init__(self, translator=translator) self.widget = widget self.key = key self.event = event return def CreateSubMapper(self, component): return WxWidgetMapper(getattr(self.widget, component), self.key, self.event, translator=self.translator) pass
lgpl-3.0
-1,803,520,995,720,174,000
32
98
0.604667
false
3.858871
false
false
false
achanda/refstack
refstack/tools/tempest_subunit_test_result.py
1
7924
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2014 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re import subunit import testtools import unittest class TempestSubunitTestResultBase(testtools.TestResult): """Class to process subunit stream. This class is derived from testtools.TestResult. This class overrides all the inherited addXXX methods to call the new _process_result() method to process the data. This class is designed to be a base class. The _process_result() method should be overriden by the derived class to customize the processing. """ result_type = ["SUCCESS", "FAILURE", "ERROR", "SKIP"] def __init__(self, stream, descriptions, verbosity): """Initialize with super class signature.""" super(TempestSubunitTestResultBase, self).__init__() def _process_result(self, result_type, testcase, *arg): """Process the data. The value of parameter "result_type" can be SUCCESS, FAILURE, ERROR, or SKIP. It can be used to determine from which add method this is called. """ pass def addSuccess(self, testcase): """Overwrite super class method for additional data processing.""" super(TempestSubunitTestResultBase, self).addSuccess(testcase) self._process_result(self.result_type[0], testcase) def addFailure(self, testcase, err): """Overwrite super class method for additional data processing.""" if testcase.id() == 'process-returncode': return super(TempestSubunitTestResultBase, self).addFailure(testcase, err) self._process_result(self.result_type[1], testcase, err) def addError(self, testcase, err): """Overwrite super class method for additional data processing.""" super(TempestSubunitTestResultBase, self).addFailure(testcase, err) self._process_result(self.result_type[2], testcase, err) def addSkip(self, testcase, reason=None, details=None): """Overwrite super class method for additional data processing.""" super(TempestSubunitTestResultBase, self).addSkip(testcase, reason, details) self._process_result(self.result_type[3], testcase, reason, details) def startTest(self, testcase): """Overwrite super class method for additional data processing.""" self.start_time = self._now() super(TempestSubunitTestResultBase, self).startTest(testcase) class TempestSubunitTestResult(TempestSubunitTestResultBase): """Process subunit stream and save data into two dictionary objects. 1) The result dictionary object: results={testcase_id: [status, elapsed], testcase_id: [status, elapsed], ...} testcase_id: the id fetched from subunit data. For Tempest test: testcase_id = test_class_name + test_name status: status of the testcase (PASS, FAIL, FAIL_SETUP, ERROR, SKIP) elapsed: testcase elapsed time 2) The summary dictionary object: summary={"PASS": count, "FAIL": count, "FAIL_SETUP: count", "ERROR": count, "SKIP": count, "Total": count} count: the number of occurrence """ def __init__(self, stream, descriptions, verbosity): """Initialize with supper class signature.""" super(TempestSubunitTestResult, self).__init__(stream, descriptions, verbosity) self.start_time = None self.status = ["PASS", "FAIL", "FAIL_SETUP", "ERROR", "SKIP"] self.results = {} self.summary = {self.status[0]: 0, self.status[1]: 0, self.status[2]: 0, self.status[3]: 0, self.status[4]: 0, "Total": 0} def _process_result(self, result_type, testcase, *arg): """Process and append data to dictionary objects.""" testcase_id = testcase.id() elapsed = (self._now() - self.start_time).total_seconds() status = result_type # Convert "SUCCESS" to "PASS" # Separate "FAILURE" into "FAIL" and "FAIL_SETUP" if status == self.result_type[0]: status = self.status[0] elif status == self.result_type[1]: if "setUpClass" in testcase_id: status = self.status[2] testcase_id = '%s.setUpClass' % \ (re.search('\((.*)\)', testcase_id).group(1)) else: status = self.status[1] self.results.setdefault(testcase_id, []) self.results[testcase_id] = [status, elapsed] self.summary[status] += 1 self.summary["Total"] += 1 class TempestSubunitTestResultTuples(TempestSubunitTestResult): """Process subunit stream and save data into two dictionary objects. 1) The result dictionary object: results={test_classname: [(test_name, status, elapsed), (test_name, status, elapsed),...], test_classname: [(test_name, status, elapsed), (test_name, status, elapsed),...], ...} status: status of the testcase (PASS, FAIL, FAIL_SETUP, ERROR, SKIP) elapsed: testcase elapsed time 2) The summary dictionary object: summary={"PASS": count, "FAIL": count, "FAIL_SETUP: count", "ERROR": count, "SKIP": count, "Total": count} count: the number of occurrence """ def _process_result(self, result_type, testcase, *arg): """Process and append data to dictionary objects.""" testcase_id = testcase.id() elapsed = round((self._now() - self.start_time).total_seconds(), 2) status = result_type # Convert "SUCCESS" to "PASS" # Separate "FAILURE" into "FAIL" and "FAIL_SETUP" if status == self.result_type[0]: status = self.status[0] elif status == self.result_type[1]: if "setUpClass" in testcase_id: status = self.status[2] testcase_id = '%s.setUpClass' % \ (re.search('\((.*)\)', testcase_id).group(1)) else: status = self.status[1] classname, testname = testcase_id.rsplit('.', 1) self.results.setdefault(classname, []) self.results[classname].append((testname, status, elapsed)) self.summary[status] += 1 self.summary["Total"] += 1 class ProcessSubunitData(): """A class to replay subunit data from a stream.""" result = None def __init__(self, in_stream, test_result_class_name= TempestSubunitTestResult): """Read and process subunit data from a stream. Save processed data into a class named TempestSubunitTestResult which is a class derived from unittest.TestResults. """ test = subunit.ProtocolTestCase(in_stream, passthrough=None) runner = unittest.TextTestRunner(verbosity=2, resultclass= test_result_class_name) #Run (replay) the test from subunit stream. #runner,run will return an object of type "test_result_class_name" self.result = runner.run(test) def get_result(self): """Return an object of type test_result_class_name.""" return self.result
apache-2.0
-8,004,023,840,272,725,000
38.422886
78
0.614967
false
4.280929
true
false
false
davidfokkema/artist
demo/demo_histogram_fit.py
1
1160
import numpy as np import scipy.optimize import scipy.stats from artist import Plot def main(): # Draw random numbers from the normal distribution np.random.seed(1) N = np.random.normal(size=2000) # define bin edges edge = 5 bin_width = .1 bins = np.arange(-edge, edge + .5 * bin_width, bin_width) # build histogram and x, y values at the center of the bins n, bins = np.histogram(N, bins=bins) x = (bins[:-1] + bins[1:]) / 2 y = n # fit normal distribution pdf to data f = lambda x, N, mu, sigma: N * scipy.stats.norm.pdf(x, mu, sigma) popt, pcov = scipy.optimize.curve_fit(f, x, y) print("Parameters from fit (N, mu, sigma):", popt) # make graph graph = Plot() # graph histogram graph.histogram(n, bins) # graph model with fit parameters x = np.linspace(-edge, edge, 100) graph.plot(x, f(x, *popt), mark=None) # set labels and limits graph.set_xlabel("value") graph.set_ylabel("count") graph.set_label("Fit to data") graph.set_xlimits(-6, 6) # save graph to file graph.save('histogram-fit') if __name__ == '__main__': main()
gpl-3.0
6,107,514,388,074,478,000
22.673469
70
0.612931
false
3.276836
false
false
false
orbingol/NURBS-Python
geomdl/exchange.py
1
33428
""" .. module:: exchange :platform: Unix, Windows :synopsis: Provides CAD exchange and interoperability functions .. moduleauthor:: Onur Rauf Bingol <orbingol@gmail.com> """ import os import struct import json from io import StringIO from . import compatibility, operations, elements, linalg from . import _exchange as exch from .exceptions import GeomdlException from ._utilities import export @export def import_txt(file_name, two_dimensional=False, **kwargs): """ Reads control points from a text file and generates a 1-dimensional list of control points. The following code examples illustrate importing different types of text files for curves and surfaces: .. code-block:: python :linenos: # Import curve control points from a text file curve_ctrlpts = exchange.import_txt(file_name="control_points.txt") # Import surface control points from a text file (1-dimensional file) surf_ctrlpts = exchange.import_txt(file_name="control_points.txt") # Import surface control points from a text file (2-dimensional file) surf_ctrlpts, size_u, size_v = exchange.import_txt(file_name="control_points.txt", two_dimensional=True) If argument ``jinja2=True`` is set, then the input file is processed as a `Jinja2 <http://jinja.pocoo.org/>`_ template. You can also use the following convenience template functions which correspond to the given mathematical equations: * ``sqrt(x)``: :math:`\\sqrt{x}` * ``cubert(x)``: :math:`\\sqrt[3]{x}` * ``pow(x, y)``: :math:`x^{y}` You may set the file delimiters using the keyword arguments ``separator`` and ``col_separator``, respectively. ``separator`` is the delimiter between the coordinates of the control points. It could be comma ``1, 2, 3`` or space ``1 2 3`` or something else. ``col_separator`` is the delimiter between the control points and is only valid when ``two_dimensional`` is ``True``. Assuming that ``separator`` is set to space, then ``col_operator`` could be semi-colon ``1 2 3; 4 5 6`` or pipe ``1 2 3| 4 5 6`` or comma ``1 2 3, 4 5 6`` or something else. The defaults for ``separator`` and ``col_separator`` are *comma (,)* and *semi-colon (;)*, respectively. The following code examples illustrate the usage of the keyword arguments discussed above. .. code-block:: python :linenos: # Import curve control points from a text file delimited with space curve_ctrlpts = exchange.import_txt(file_name="control_points.txt", separator=" ") # Import surface control points from a text file (2-dimensional file) w/ space and comma delimiters surf_ctrlpts, size_u, size_v = exchange.import_txt(file_name="control_points.txt", two_dimensional=True, separator=" ", col_separator=",") Please note that this function does not check whether the user set delimiters to the same value or not. :param file_name: file name of the text file :type file_name: str :param two_dimensional: type of the text file :type two_dimensional: bool :return: list of control points, if two_dimensional, then also returns size in u- and v-directions :rtype: list :raises GeomdlException: an error occurred reading the file """ # Read file content = exch.read_file(file_name) # Are we using a Jinja2 template? j2tmpl = kwargs.get('jinja2', False) if j2tmpl: content = exch.process_template(content) # File delimiters col_sep = kwargs.get('col_separator', ";") sep = kwargs.get('separator', ",") return exch.import_text_data(content, sep, col_sep, two_dimensional) @export def export_txt(obj, file_name, two_dimensional=False, **kwargs): """ Exports control points as a text file. For curves the output is always a list of control points. For surfaces, it is possible to generate a 2-dimensional control point output file using ``two_dimensional``. Please see :py:func:`.exchange.import_txt()` for detailed description of the keyword arguments. :param obj: a spline geometry object :type obj: abstract.SplineGeometry :param file_name: file name of the text file to be saved :type file_name: str :param two_dimensional: type of the text file (only works for Surface objects) :type two_dimensional: bool :raises GeomdlException: an error occurred writing the file """ # Check if the user has set any control points if obj.ctrlpts is None or len(obj.ctrlpts) == 0: raise exch.GeomdlException("There are no control points to save!") # Check the usage of two_dimensional flag if obj.pdimension == 1 and two_dimensional: # Silently ignore two_dimensional flag two_dimensional = False # File delimiters col_sep = kwargs.get('col_separator', ";") sep = kwargs.get('separator', ",") content = exch.export_text_data(obj, sep, col_sep, two_dimensional) return exch.write_file(file_name, content) @export def import_csv(file_name, **kwargs): """ Reads control points from a CSV file and generates a 1-dimensional list of control points. It is possible to use a different value separator via ``separator`` keyword argument. The following code segment illustrates the usage of ``separator`` keyword argument. .. code-block:: python :linenos: # By default, import_csv uses 'comma' as the value separator ctrlpts = exchange.import_csv("control_points.csv") # Alternatively, it is possible to import a file containing tab-separated values ctrlpts = exchange.import_csv("control_points.csv", separator="\\t") The only difference of this function from :py:func:`.exchange.import_txt()` is skipping the first line of the input file which generally contains the column headings. :param file_name: file name of the text file :type file_name: str :return: list of control points :rtype: list :raises GeomdlException: an error occurred reading the file """ # File delimiters sep = kwargs.get('separator', ",") content = exch.read_file(file_name, skip_lines=1) return exch.import_text_data(content, sep) @export def export_csv(obj, file_name, point_type='evalpts', **kwargs): """ Exports control points or evaluated points as a CSV file. :param obj: a spline geometry object :type obj: abstract.SplineGeometry :param file_name: output file name :type file_name: str :param point_type: ``ctrlpts`` for control points or ``evalpts`` for evaluated points :type point_type: str :raises GeomdlException: an error occurred writing the file """ if not 0 < obj.pdimension < 3: raise exch.GeomdlException("Input object should be a curve or a surface") # Pick correct points from the object if point_type == 'ctrlpts': points = obj.ctrlptsw if obj.rational else obj.ctrlpts elif point_type == 'evalpts': points = obj.evalpts else: raise exch.GeomdlException("Please choose a valid point type option. Possible types: ctrlpts, evalpts") # Prepare CSV header dim = len(points[0]) line = "dim " for i in range(dim-1): line += str(i + 1) + ", dim " line += str(dim) + "\n" # Prepare values for pt in points: line += ",".join([str(p) for p in pt]) + "\n" # Write to file return exch.write_file(file_name, line) @export def import_cfg(file_name, **kwargs): """ Imports curves and surfaces from files in libconfig format. .. note:: Requires `libconf <https://pypi.org/project/libconf/>`_ package. Use ``jinja2=True`` to activate Jinja2 template processing. Please refer to the documentation for details. :param file_name: name of the input file :type file_name: str :return: a list of rational spline geometries :rtype: list :raises GeomdlException: an error occurred writing the file """ def callback(data): return libconf.loads(data) # Check if it is possible to import 'libconf' try: import libconf except ImportError: raise exch.GeomdlException("Please install 'libconf' package to use libconfig format: pip install libconf") # Get keyword arguments delta = kwargs.get('delta', -1.0) use_template = kwargs.get('jinja2', False) # Read file file_src = exch.read_file(file_name) # Import data return exch.import_dict_str(file_src=file_src, delta=delta, callback=callback, tmpl=use_template) @export def export_cfg(obj, file_name): """ Exports curves and surfaces in libconfig format. .. note:: Requires `libconf <https://pypi.org/project/libconf/>`_ package. Libconfig format is also used by the `geomdl command-line application <https://github.com/orbingol/geomdl-cli>`_ as a way to input shape data from the command line. :param obj: input geometry :type obj: abstract.SplineGeometry, multi.AbstractContainer :param file_name: name of the output file :type file_name: str :raises GeomdlException: an error occurred writing the file """ def callback(data): return libconf.dumps(data) # Check if it is possible to import 'libconf' try: import libconf except ImportError: raise exch.GeomdlException("Please install 'libconf' package to use libconfig format: pip install libconf") # Export data exported_data = exch.export_dict_str(obj=obj, callback=callback) # Write to file return exch.write_file(file_name, exported_data) @export def import_yaml(file_name, **kwargs): """ Imports curves and surfaces from files in YAML format. .. note:: Requires `ruamel.yaml <https://pypi.org/project/ruamel.yaml/>`_ package. Use ``jinja2=True`` to activate Jinja2 template processing. Please refer to the documentation for details. :param file_name: name of the input file :type file_name: str :return: a list of rational spline geometries :rtype: list :raises GeomdlException: an error occurred reading the file """ def callback(data): yaml = YAML() return yaml.load(data) # Check if it is possible to import 'ruamel.yaml' try: from ruamel.yaml import YAML except ImportError: raise exch.GeomdlException("Please install 'ruamel.yaml' package to use YAML format: pip install ruamel.yaml") # Get keyword arguments delta = kwargs.get('delta', -1.0) use_template = kwargs.get('jinja2', False) # Read file file_src = exch.read_file(file_name) # Import data return exch.import_dict_str(file_src=file_src, delta=delta, callback=callback, tmpl=use_template) @export def export_yaml(obj, file_name): """ Exports curves and surfaces in YAML format. .. note:: Requires `ruamel.yaml <https://pypi.org/project/ruamel.yaml/>`_ package. YAML format is also used by the `geomdl command-line application <https://github.com/orbingol/geomdl-cli>`_ as a way to input shape data from the command line. :param obj: input geometry :type obj: abstract.SplineGeometry, multi.AbstractContainer :param file_name: name of the output file :type file_name: str :raises GeomdlException: an error occurred writing the file """ def callback(data): # Ref: https://yaml.readthedocs.io/en/latest/example.html#output-of-dump-as-a-string stream = StringIO() yaml = YAML() yaml.dump(data, stream) return stream.getvalue() # Check if it is possible to import 'ruamel.yaml' try: from ruamel.yaml import YAML except ImportError: raise exch.GeomdlException("Please install 'ruamel.yaml' package to use YAML format: pip install ruamel.yaml") # Export data exported_data = exch.export_dict_str(obj=obj, callback=callback) # Write to file return exch.write_file(file_name, exported_data) @export def import_json(file_name, **kwargs): """ Imports curves and surfaces from files in JSON format. Use ``jinja2=True`` to activate Jinja2 template processing. Please refer to the documentation for details. :param file_name: name of the input file :type file_name: str :return: a list of rational spline geometries :rtype: list :raises GeomdlException: an error occurred reading the file """ def callback(data): return json.loads(data) # Get keyword arguments delta = kwargs.get('delta', -1.0) use_template = kwargs.get('jinja2', False) # Read file file_src = exch.read_file(file_name) # Import data return exch.import_dict_str(file_src=file_src, delta=delta, callback=callback, tmpl=use_template) @export def export_json(obj, file_name): """ Exports curves and surfaces in JSON format. JSON format is also used by the `geomdl command-line application <https://github.com/orbingol/geomdl-cli>`_ as a way to input shape data from the command line. :param obj: input geometry :type obj: abstract.SplineGeometry, multi.AbstractContainer :param file_name: name of the output file :type file_name: str :raises GeomdlException: an error occurred writing the file """ def callback(data): return json.dumps(data, indent=4) # Export data exported_data = exch.export_dict_str(obj=obj, callback=callback) # Write to file return exch.write_file(file_name, exported_data) @export def import_obj(file_name, **kwargs): """ Reads .obj files and generates faces. Keyword Arguments: * ``callback``: reference to the function that processes the faces for customized output The structure of the callback function is shown below: .. code-block:: python def my_callback_function(face_list): # "face_list" will be a list of elements.Face class instances # The function should return a list return list() :param file_name: file name :type file_name: str :return: output of the callback function (default is a list of faces) :rtype: list """ def default_callback(face_list): return face_list # Keyword arguments callback_func = kwargs.get('callback', default_callback) # Read and process the input file content = exch.read_file(file_name) content_arr = content.split("\n") # Initialize variables on_face = False vertices = [] triangles = [] faces = [] # Index values vert_idx = 1 tri_idx = 1 face_idx = 1 # Loop through the data for carr in content_arr: carr = carr.strip() data = carr.split(" ") data = [d.strip() for d in data] if data[0] == "v": if on_face: on_face = not on_face face = elements.Face(*triangles, id=face_idx) faces.append(face) face_idx += 1 vertices[:] = [] triangles[:] = [] vert_idx = 1 tri_idx = 1 vertex = elements.Vertex(*data[1:], id=vert_idx) vertices.append(vertex) vert_idx += 1 if data[0] == "f": on_face = True triangle = elements.Triangle(*[vertices[int(fidx) - 1] for fidx in data[1:]], id=tri_idx) triangles.append(triangle) tri_idx += 1 # Process he final face if triangles: face = elements.Face(*triangles, id=face_idx) faces.append(face) # Return the output of the callback function return callback_func(faces) @export def export_obj(surface, file_name, **kwargs): """ Exports surface(s) as a .obj file. Keyword Arguments: * ``vertex_spacing``: size of the triangle edge in terms of surface points sampled. *Default: 2* * ``vertex_normals``: if True, then computes vertex normals. *Default: False* * ``parametric_vertices``: if True, then adds parameter space vertices. *Default: False* * ``update_delta``: use multi-surface evaluation delta for all surfaces. *Default: True* :param surface: surface or surfaces to be saved :type surface: abstract.Surface or multi.SurfaceContainer :param file_name: name of the output file :type file_name: str :raises GeomdlException: an error occurred writing the file """ content = export_obj_str(surface, **kwargs) return exch.write_file(file_name, content) def export_obj_str(surface, **kwargs): """ Exports surface(s) as a .obj file (string). Keyword Arguments: * ``vertex_spacing``: size of the triangle edge in terms of surface points sampled. *Default: 2* * ``vertex_normals``: if True, then computes vertex normals. *Default: False* * ``parametric_vertices``: if True, then adds parameter space vertices. *Default: False* * ``update_delta``: use multi-surface evaluation delta for all surfaces. *Default: True* :param surface: surface or surfaces to be saved :type surface: abstract.Surface or multi.SurfaceContainer :return: contents of the .obj file generated :rtype: str """ # Get keyword arguments vertex_spacing = int(kwargs.get('vertex_spacing', 1)) include_vertex_normal = kwargs.get('vertex_normals', False) include_param_vertex = kwargs.get('parametric_vertices', False) update_delta = kwargs.get('update_delta', True) # Input validity checking if surface.pdimension != 2: raise exch.GeomdlException("Can only export surfaces") if vertex_spacing < 1: raise exch.GeomdlException("Vertex spacing should be bigger than zero") # Create the string and start adding triangulated surface points line = "# Generated by geomdl\n" vertex_offset = 0 # count the vertices to update the face numbers correctly # Initialize lists for geometry data str_v = [] # vertices str_vn = [] # vertex normals str_vp = [] # parameter space vertices str_f = [] # faces # Loop through SurfaceContainer object for srf in surface: # Set surface evaluation delta if update_delta: srf.sample_size_u = surface.sample_size_u srf.sample_size_v = surface.sample_size_v # Tessellate surface srf.tessellate(vertex_spacing=vertex_spacing) vertices = srf.tessellator.vertices triangles = srf.tessellator.faces # Collect vertices for vert in vertices: temp = "v " + str(vert.x) + " " + str(vert.y) + " " + str(vert.z) + "\n" str_v.append(temp) # Collect parameter space vertices if include_param_vertex: for vert in vertices: temp = "vp " + str(vert.uv[0]) + " " + str(vert.uv[1]) + "\n" str_vp.append(temp) # Compute vertex normals if include_vertex_normal: for vert in vertices: sn = operations.normal(srf, vert.uv) temp = "vn " + str(sn[1][0]) + " " + str(sn[1][1]) + " " + str(sn[1][2]) + "\n" str_vn.append(temp) # Collect faces (1-indexed) for t in triangles: vl = t.data temp = "f " + \ str(vl[0] + 1 + vertex_offset) + " " + \ str(vl[1] + 1 + vertex_offset) + " " + \ str(vl[2] + 1 + vertex_offset) + "\n" str_f.append(temp) # Update vertex offset vertex_offset = len(str_v) # Write all collected data to the return string for lv in str_v: line += lv for lvn in str_vn: line += lvn for lvp in str_vp: line += lvp for lf in str_f: line += lf return line @export def export_stl(surface, file_name, **kwargs): """ Exports surface(s) as a .stl file in plain text or binary format. Keyword Arguments: * ``binary``: flag to generate a binary STL file. *Default: True* * ``vertex_spacing``: size of the triangle edge in terms of points sampled on the surface. *Default: 1* * ``update_delta``: use multi-surface evaluation delta for all surfaces. *Default: True* :param surface: surface or surfaces to be saved :type surface: abstract.Surface or multi.SurfaceContainer :param file_name: name of the output file :type file_name: str :raises GeomdlException: an error occurred writing the file """ binary = kwargs.get('binary', True) if 'binary' in kwargs: kwargs.pop('binary') content = export_stl_str(surface, binary=binary, **kwargs) return exch.write_file(file_name, content, binary=binary) def export_stl_str(surface, **kwargs): """ Exports surface(s) as a .stl file in plain text or binary format (string). Keyword Arguments: * ``binary``: flag to generate a binary STL file. *Default: False* * ``vertex_spacing``: size of the triangle edge in terms of points sampled on the surface. *Default: 1* * ``update_delta``: use multi-surface evaluation delta for all surfaces. *Default: False* :param surface: surface or surfaces to be saved :type surface: abstract.Surface or multi.SurfaceContainer :return: contents of the .stl file generated :rtype: str """ binary = kwargs.get('binary', False) vertex_spacing = int(kwargs.get('vertex_spacing', 1)) update_delta = kwargs.get('update_delta', True) # Input validity checking if surface.pdimension != 2: raise exch.GeomdlException("Can only export surfaces") if vertex_spacing < 1: raise exch.GeomdlException("Vertex spacing should be bigger than zero") triangles_list = [] for srf in surface: # Set surface evaluation delta if update_delta: srf.sample_size_u = surface.sample_size_u srf.sample_size_v = surface.sample_size_v # Tessellate surface srf.tessellate(vertex_spacing=vertex_spacing) triangles = srf.tessellator.faces triangles_list += triangles # Write triangle list to ASCII or binary STL file if binary: line = b'\0' * 80 # header line += struct.pack('<i', len(triangles_list)) # number of triangles for t in triangles_list: line += struct.pack('<3f', *linalg.triangle_normal(t)) # normal for v in t.vertices: line += struct.pack('<3f', *v.data) # vertices line += b'\0\0' # attribute byte count else: line = "solid Surface\n" for t in triangles_list: nvec = linalg.triangle_normal(t) line += "\tfacet normal " + str(nvec[0]) + " " + str(nvec[1]) + " " + str(nvec[2]) + "\n" line += "\t\touter loop\n" for v in t.vertices: line += "\t\t\tvertex " + str(v.x) + " " + str(v.y) + " " + str(v.z) + "\n" line += "\t\tendloop\n" line += "\tendfacet\n" line += "endsolid Surface\n" return line @export def export_off(surface, file_name, **kwargs): """ Exports surface(s) as a .off file. Keyword Arguments: * ``vertex_spacing``: size of the triangle edge in terms of points sampled on the surface. *Default: 1* * ``update_delta``: use multi-surface evaluation delta for all surfaces. *Default: True* :param surface: surface or surfaces to be saved :type surface: abstract.Surface or multi.SurfaceContainer :param file_name: name of the output file :type file_name: str :raises GeomdlException: an error occurred writing the file """ content = export_off_str(surface, **kwargs) return exch.write_file(file_name, content) def export_off_str(surface, **kwargs): """ Exports surface(s) as a .off file (string). Keyword Arguments: * ``vertex_spacing``: size of the triangle edge in terms of points sampled on the surface. *Default: 1* * ``update_delta``: use multi-surface evaluation delta for all surfaces. *Default: True* :param surface: surface or surfaces to be saved :type surface: abstract.Surface or multi.SurfaceContainer :return: contents of the .off file generated :rtype: str """ # Get keyword arguments vertex_spacing = int(kwargs.get('vertex_spacing', 1)) update_delta = kwargs.get('update_delta', True) # Input validity checking if surface.pdimension != 2: raise exch.GeomdlException("Can only export surfaces") if vertex_spacing < 1: raise exch.GeomdlException("Vertex spacing should be bigger than zero") # Count the vertices to update the face numbers correctly vertex_offset = 0 # Initialize lists for vertices, vertex normals and faces str_v = [] str_f = [] for srf in surface: # Set surface evaluation delta if update_delta: srf.sample_size_u = surface.sample_size_u srf.sample_size_v = surface.sample_size_v # Tessellate surface srf.tessellate(vertex_spacing=vertex_spacing) vertices = srf.tessellator.vertices triangles = srf.tessellator.faces # Collect vertices for vert in vertices: line = str(vert.x) + " " + str(vert.y) + " " + str(vert.z) + "\n" str_v.append(line) # Collect faces (zero-indexed) for t in triangles: vl = t.data line = "3 " + \ str(vl[0] + vertex_offset) + " " + \ str(vl[1] + vertex_offset) + " " + \ str(vl[2] + vertex_offset) + "\n" str_f.append(line) # Update vertex offset vertex_offset = len(str_v) # Write file header line = "OFF\n" line += str(len(str_v)) + " " + str(len(str_f)) + " 0\n" # Write all collected data to the file for lv in str_v: line += lv for lf in str_f: line += lf return line @export def import_smesh(file): """ Generates NURBS surface(s) from surface mesh (smesh) file(s). *smesh* files are some text files which contain a set of NURBS surfaces. Each file in the set corresponds to one NURBS surface. Most of the time, you receive multiple *smesh* files corresponding to an complete object composed of several NURBS surfaces. The files have the extensions of ``txt`` or ``dat`` and they are named as * ``smesh.X.Y.txt`` * ``smesh.X.dat`` where *X* and *Y* correspond to some integer value which defines the set the surface belongs to and part number of the surface inside the complete object. :param file: path to a directory containing mesh files or a single mesh file :type file: str :return: list of NURBS surfaces :rtype: list :raises GeomdlException: an error occurred reading the file """ imported_elements = [] if os.path.isfile(file): imported_elements.append(exch.import_surf_mesh(file)) elif os.path.isdir(file): files = sorted([os.path.join(file, f) for f in os.listdir(file)]) for f in files: imported_elements.append(exch.import_surf_mesh(f)) else: raise exch.GeomdlException("Input is not a file or a directory") return imported_elements @export def export_smesh(surface, file_name, **kwargs): """ Exports surface(s) as surface mesh (smesh) files. Please see :py:func:`.import_smesh()` for details on the file format. :param surface: surface(s) to be exported :type surface: abstract.Surface or multi.SurfaceContainer :param file_name: name of the output file :type file_name: str :raises GeomdlException: an error occurred writing the file """ # Input validity checking if surface.pdimension != 2: raise exch.GeomdlException("Can only export surfaces") # Get keyword arguments decimals = kwargs.get('decimals', 18) # Split file name and extension fname, fext = os.path.splitext(file_name) # Enumerate file name only if we are working with multiple surfaces numerate_file = True if len(surface) > 1 else False for idx, s in enumerate(surface): if s.rational: pts = s.ctrlptsw else: pts = compatibility.combine_ctrlpts_weights(s.ctrlpts) line = str(s.dimension) + "\n" line += str(s.degree_u) + " " + str(s.degree_v) + "\n" line += str(s.ctrlpts_size_u) + " " + str(s.ctrlpts_size_v) + "\n" line += " ".join([("{:." + str(decimals) + "f}").format(k) for k in s.knotvector_u]) + "\n" line += " ".join([("{:." + str(decimals) + "f}").format(k) for k in s.knotvector_v]) + "\n" # Flip control points ctrlptsw = compatibility.flip_ctrlpts(pts, s.ctrlpts_size_u, s.ctrlpts_size_v) # Convert control points into (x, y, z, w) format ctrlptsw = compatibility.generate_ctrlpts_weights(ctrlptsw) for ptw in ctrlptsw: line += " ".join([("{:." + str(decimals) + "f}").format(p) for p in ptw]) + "\n" # Open or closed? line += "1\n" # Write to file fname_curr = fname + "." + str(idx + 1) if numerate_file else fname exch.write_file(fname_curr + fext, line) @export def import_vmesh(file): """ Imports NURBS volume(s) from volume mesh (vmesh) file(s). :param file: path to a directory containing mesh files or a single mesh file :type file: str :return: list of NURBS volumes :rtype: list :raises GeomdlException: an error occurred reading the file """ imported_elements = [] if os.path.isfile(file): imported_elements.append(exch.import_vol_mesh(file)) elif os.path.isdir(file): files = sorted([os.path.join(file, f) for f in os.listdir(file)]) for f in files: imported_elements.append(exch.import_vol_mesh(f)) else: raise exch.GeomdlException("Input is not a file or a directory") return imported_elements @export def export_vmesh(volume, file_name, **kwargs): """ Exports volume(s) as volume mesh (vmesh) files. :param volume: volume(s) to be exported :type volume: abstract.Volume :param file_name: name of the output file :type file_name: str :raises GeomdlException: an error occurred writing the file """ if volume.pdimension != 3: raise exch.GeomdlException("Can only export volumes") # Get keyword arguments decimals = kwargs.get('decimals', 18) # Split file name and extension fname, fext = os.path.splitext(file_name) # Enumerate file name only if we are working with multiple volumes numerate_file = True if len(volume) > 1 else False for idx, v in enumerate(volume): if v.rational: pts = v.ctrlptsw else: pts = compatibility.combine_ctrlpts_weights(v.ctrlpts) line = str(v.dimension) + "\n" line += str(v.degree_u) + " " + str(v.degree_v) + " " + str(v.degree_w) + "\n" line += str(v.ctrlpts_size_u) + " " + str(v.ctrlpts_size_v) + " " + str(v.ctrlpts_size_w) + "\n" line += " ".join([("{:." + str(decimals) + "f}").format(k) for k in v.knotvector_u]) + "\n" line += " ".join([("{:." + str(decimals) + "f}").format(k) for k in v.knotvector_v]) + "\n" line += " ".join([("{:." + str(decimals) + "f}").format(k) for k in v.knotvector_w]) + "\n" # Convert control points into (x, y, z, w) ctrlptsw = [] for w in range(v.ctrlpts_size_w): srfpts = pts[(w * v.ctrlpts_size_u * v.ctrlpts_size_v):((w + 1) * v.ctrlpts_size_u * v.ctrlpts_size_v)] # Flip control points ctrlptsw += compatibility.flip_ctrlpts(srfpts, v.ctrlpts_size_u, v.ctrlpts_size_v) # Convert control points into (x, y, z, w) format ctrlptsw = compatibility.generate_ctrlpts_weights(ctrlptsw) for ptw in ctrlptsw: line += " ".join([("{:." + str(decimals) + "f}").format(p) for p in ptw]) + "\n" # Open or closed? line += "1\n" # Write to file fname_curr = fname + "." + str(idx + 1) if numerate_file else fname exch.write_file(fname_curr + fext, line) @export def import_3dm(file_name, **kwargs): """ Imports curves and surfaces from Rhinoceros/OpenNURBS .3dm files. .. deprecated:: 5.2.2 ``rw3dm`` Python module is replaced by ``on2json``. It can be used to convert .3dm files to geomdl JSON format. Please refer to https://github.com/orbingol/rw3dm for more details. :param file_name: input file name :type file_name: str """ raise GeomdlException("This API call has been deprecated. Please refer to https://github.com/orbingol/rw3dm") @export def export_3dm(obj, file_name, **kwargs): """ Exports NURBS curves and surfaces to Rhinoceros/OpenNURBS .3dm files. .. deprecated:: 5.2.2 ``rw3dm`` Python module is replaced by ``json2on``. It can be used to convert geomdl JSON format to .3dm files. Please refer to https://github.com/orbingol/rw3dm for more details. :param obj: curves/surfaces to be exported :type obj: abstract.Curve, abstract.Surface, multi.CurveContainer, multi.SurfaceContainer :param file_name: file name :type file_name: str """ raise GeomdlException("This API call has been deprecated. Please refer to https://github.com/orbingol/rw3dm")
mit
1,979,683,606,880,411,600
35.06041
119
0.638447
false
3.73122
false
false
false
brokendata/bigmler
bigmler/train_reader.py
1
11880
# -*- coding: utf-8 -*- # # Copyright 2013-2015 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """TrainReader class Manages the training input data, its headers and labels if the objective field is a multi-label field """ from __future__ import absolute_import import csv import sys from bigml.util import get_csv_delimiter from bigml.io import UnicodeReader from bigmler.checkpoint import file_number_of_lines from bigmler.labels import get_label_field from bigmler.utils import PYTHON3, SYSTEM_ENCODING, FILE_ENCODING from bigmler.utils import encode2, decode2 AGGREGATES = { 'count': len, 'last': lambda x: x[-1], 'first': lambda x: x[0] } class TrainReader(object): """Retrieves csv info and manages objective fields and multi-labels """ def __init__(self, training_set, training_set_header, objective_field, multi_label=False, labels=None, label_separator=None, training_separator=None, multi_label_fields=None, label_aggregates=None, objective=True): """Builds a generator from a csv file `training_set`: path to the training data file `training_set_header`: boolean, True means that headers are first row in the file `objective_field`: objective field column or field name `labels`: Fields object with the expected fields structure. """ self.training_set = training_set if training_set.__class__.__name__ == "StringIO": self.encode = None self.training_set = UTF8Recoder(test_set, SYSTEM_ENCODING) else: self.encode = None if PYTHON3 else FILE_ENCODING self.training_set_header = training_set_header self.training_reader = None self.multi_label = multi_label self.objective = objective if label_aggregates is None: label_aggregates = [] self.label_aggregates = label_aggregates self.training_separator = (decode2(training_separator, encoding="string_escape") if training_separator is not None else get_csv_delimiter()) if len(self.training_separator) > 1: sys.exit("Only one character can be used as test data separator.") # opening csv reader self.reset() self.label_separator = (decode2(label_separator, encoding="string_escape") if label_separator is not None else get_csv_delimiter()) first_row = self.get_next(reset=not training_set_header) self.row_length = len(first_row) if training_set_header: self.headers = first_row else: self.headers = [("field_%s" % index) for index in range(0, self.row_length)] self.multi_label_fields = sorted(self._get_columns(multi_label_fields)) if objective: self.objective_column = self._get_columns([objective_field])[0] if not self.objective_column in self.multi_label_fields: self.multi_label_fields.append(self.objective_column) self.labels = labels self.fields_labels = self._get_labels() if objective: if labels is None: self.labels = self.fields_labels[self.objective_column] self.objective_name = self.headers[self.objective_column] def __iter__(self): """Iterator method """ return self def get_label_headers(self): """Returns a list of headers with the new extended field names for each objective label """ new_headers = self.get_headers() for field_column in self.multi_label_fields: labels = self.fields_labels[field_column] new_field_names = [get_label_field(self.headers[field_column], label) for label in labels] new_headers.extend(new_field_names) for aggregate in self.label_aggregates: new_headers.append(get_label_field( self.headers[field_column], aggregate)) if not PYTHON3: new_headers = [encode2(header) for header in new_headers] return new_headers def _get_columns(self, fields_list): """Receives a comma-separated list of fields given by name or column number and returns column number list """ column_list = [] if fields_list is None: return column_list if not isinstance(fields_list, list): fields_list = [fields_list] for field in fields_list: column = None if isinstance(field, int): column = field elif field is None: column = self.row_length - 1 else: try: column = self.headers.index(field) except ValueError: if self.objective: sys.exit("The %s has been set as multi-label field but" " it cannot be found in the headers row: \n" " %s" % (field, ", ".join([encode2(header) for header in self.headers]))) else: column = None if column is not None: column_list.append(column) return column_list def reset(self): """Starts a new csv reader object """ try: self.training_set.close() except (IOError, AttributeError): pass try: self.training_reader = UnicodeReader( self.training_set, delimiter=self.training_separator, lineterminator="\n").open_reader() except IOError: sys.exit("Error: cannot read training %s" % self.training_set) def next(self): """Iterator method for next item """ return self.get_next() def get_next(self, extended=False, reset=False): """Returns the next row. If extended is True, the row is extended with a list of booleans depending on whether the label is in the objective field value or not. If reset is True, the file is reopened and pointer starts at the beginning of the file. """ row = self.training_reader.next() row = [value.strip() for value in row] if extended: if self.multi_label and self.fields_labels is None: self.fields_labels = self._get_labels() for field_column in self.multi_label_fields: aggregated_field_value = row[field_column] field_values = aggregated_field_value.split( self.label_separator) field_values = [value.strip() for value in field_values] labels_row = [int(label in field_values) for label in self.fields_labels[field_column]] row.extend(labels_row) for aggregate in self.label_aggregates: row.append(AGGREGATES[aggregate](field_values)) if reset: self.reset() if not PYTHON3: row = [encode2(item) for item in row] return row def number_of_rows(self): """Returns the number of rows in the test file """ rows = file_number_of_lines(self.training_set) if self.training_set_header: rows -= 1 return rows def has_headers(self): """Returns whether the training set file has a headers row """ return self.training_set_header def _get_labels(self): """Returns the list of labels in the multi-label fields """ labels = {} for field_column in self.multi_label_fields: labels[field_column] = [] for row in self: for field_column in self.multi_label_fields: labels = self._get_field_labels(row, labels, field_column, self.label_separator) return labels def _get_field_labels(self, row, labels, field_column, separator): """Returns the list of labels in a multi-label field """ field_value = row[field_column] if self.multi_label: new_labels = field_value.split(separator) new_labels = [decode2(label).strip() for label in new_labels] # TODO: clean user given missing tokens for label_index in range(0, len(new_labels)): if new_labels[label_index] == '': del new_labels[label_index] if new_labels != []: if (self.objective and field_column == self.objective_column and self.labels is not None): # If user gave the subset of labels, use only those new_labels = [label for label in self.labels if label in new_labels] labels[field_column].extend(new_labels) else: labels[field_column].append(field_value) labels[field_column] = sorted(list(set(labels[field_column]))) return labels def get_headers(self, objective_field=True): """Returns headers. If objective_field is False, the objective field header is removed. """ if objective_field: return self.headers[:] new_headers = self.headers[:] if self.objective: del new_headers[self.objective_column] return new_headers def new_fields_info(self): """Dict of 2-item lists 'field_column': [label, label_column] describing the per label extension """ info = {} column = len(self.headers) for field_column in self.multi_label_fields: alpha_field_column = str(field_column) info[alpha_field_column] = [] labels = self.fields_labels[field_column] for label in labels: info[alpha_field_column].append([label, column]) column += 1 # skip the aggregate values columns column += len(self.label_aggregates) return info def get_multi_label_data(self): """Returns a dict to store the multi-label info that defines this source """ if self.objective: return { "multi_label_fields": [[column, self.headers[column]] for column in self.multi_label_fields], "generated_fields": self.new_fields_info(), "objective_name": self.objective_name, "objective_column": self.objective_column} def close(self): """Closing file handler """ self.training_reader.close_reader()
apache-2.0
4,185,642,118,313,162,000
36.358491
79
0.555724
false
4.606437
false
false
false
edgarcosta/endomorphisms
endomorphisms/Representations.py
1
1456
""" * Representation functions * * Copyright (C) 2016-2017 * Edgar Costa (edgarcosta@math.dartmouth.edu) * Davide Lombardo (davide.lombardo@math.u-psud.fr) * Jeroen Sijsling (jeroen.sijsling@uni-ulm.de) * * See LICENSE.txt for license details. """ from sage.all import magma def repr_curve(X): curve_type = magma.CurveType(X) if str(curve_type) == "hyperelliptic": f, h = magma.HyperellipticPolynomials(X, nvals = 2) if magma.IsZero(h): return " the hyperelliptic curve y^2 = {}".format(str(f)) else: return " the hyperelliptic curve y^2 + ({})*y = {}".format(str(h), str(f)) elif str(curve_type) == "plane": F = magma.DefiningPolynomial(X) return " the plane curve {} = 0".format(str(F)) def repr_endomorphism_data(End): return "The endomorphism data of" + repr_curve(End.X) def repr_lattice(Lat): return "The endomorphism lattice of" + repr_curve(Lat.X) def repr_over_field(over_field): pre = "The endomorphism structure of" + repr_curve(over_field.X) if over_field.field == "geometric": post = " over the algebraic closure of its base field" elif over_field.field == "base": post = " over its base field" else: post = " over " + str(over_field.field) return pre + post def repr_decomposition(decomp): return "The decomposition structure of" + repr_curve(decomp.X)
gpl-2.0
1,946,836,060,677,192,400
32.860465
86
0.62294
false
3.008264
false
false
false
kgullikson88/LasCampanas-MIKE
ConvertToExtensions.py
1
2043
import FittingUtilities from astropy.io import fits as pyfits import sys import os import numpy import matplotlib.pyplot as plt import HelperFunctions left_trim = 8 right_trim = 0 bad_regions = {} if __name__ == "__main__": fileList = [] for arg in sys.argv[1:]: fileList.append(arg) for fname in fileList: outfilename = "%s-0.fits" %(fname.split(".fits")[0]) header = pyfits.getheader(fname) try: orders = HelperFunctions.ReadFits(fname) except ValueError: orders = HelperFunctions.ReadFits(fname, errors=2) orders = orders[::-1] #Reverse order so the bluest order is first column_list = [] for i, order in enumerate(orders): left, right = left_trim, order.size()-right_trim if i in bad_regions.keys(): region = bad_regions[i] left = numpy.searchsorted(order.x, region[0]) right = numpy.searchsorted(order.x, region[1]) if left == 0 or right == order.size(): order.x = numpy.delete(order.x, numpy.arange(left, right)) order.y = numpy.delete(order.y, numpy.arange(left, right)) order.cont = numpy.delete(order.cont, numpy.arange(left, right)) order.err = numpy.delete(order.err, numpy.arange(left, right)) else: print "Warning! Bad region covers the middle of order %i" %i print "Interpolating rather than removing" order.y[left:right] = order.cont[left:right] order.err[left:right] = 9e9 else: order = order[left:right] if order.size() < 10: continue order.cont = FittingUtilities.Continuum(order.x, order.y, fitorder=3, lowreject=1.5, highreject=10) columns = columns = {"wavelength": order.x, "flux": order.y, "continuum": order.cont, "error": order.err} column_list.append(columns) HelperFunctions.OutputFitsFileExtensions(column_list, fname, outfilename, mode="new")
gpl-3.0
8,868,885,856,817,803,000
31.428571
105
0.604014
false
3.721311
false
false
false
Arvedui/i3pystatus
i3pystatus/mail/maildir.py
1
1360
import os from i3pystatus.mail import Backend class MaildirMail(Backend): """ Checks for local mail in Maildir """ settings = ( "directory", ) required = ("directory",) directory = "" def init(self): self.directory = os.path.expanduser(self.directory) @property def unread(self): def check_seen_flag(msgname): """ Return false if (S)een flag set The code of this funciton was partialy extrated from Pythons Maildir and MaildirMessage classes. Which are not used because they cannot read the message flags without reading the entire message. """ maildir_info = msgname.split(':')[-1] # This is a logical implication if maildir_info starts with '2,' # it must not contain S if it does not start with '2,' the rest of # its content does not matter because no flags are set return not maildir_info.startswith('2,') or 'S' not in maildir_info[2:] path_new = os.path.join(self.directory, "new") new_messages = len(os.listdir(path_new)) path_cur = os.path.join(self.directory, "cur") unread_messages = len(list(filter(check_seen_flag, os.listdir(path_cur)))) return new_messages + unread_messages Backend = MaildirMail
mit
-4,569,347,419,518,561,000
29.222222
90
0.611029
false
4.047619
false
false
false
Statoil/libecl
python/ecl/grid/ecl_region.py
1
41631
# Copyright (C) 2011 Equinor ASA, Norway. # # The file 'ecl_region.py' is part of ERT - Ensemble based Reservoir Tool. # # ERT is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ERT is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. # # See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html> # for more details. """ Module used to select cells based on many different criteria. This module implements the class EclRegion which can be used to select cells in a grid matching a criteria. A wide range of different criteria are supported. Many of the special functions for implementing mathematical operations are implemented, so that regions can be combined e.g. with logical &. When the selection process is complete the region instance can be queried for the corresponding list of indices. """ from functools import wraps import ctypes from cwrap import BaseCClass import ecl from ecl.util.util import monkey_the_camel from ecl.util.util import IntVector from ecl import EclPrototype from ecl.grid.faults import Layer from ecl import EclDataType from ecl.eclfile import EclKW from ecl.util.geometry import CPolyline def select_method(select): """ The select_method method decorator is applied to all the select_xxx() methods. The purpose of this decorator is to allow the select_xxx() methods to have an optional argument @intersect. If the @intersect argument is True the results of the current select method will be and'ed with the current selection, instead of or'ed which is the default. Consider this example: region = EclRegion( grid , False ) region.select_islice(0, 5) # Selects all cells with i[0:5] region.select_jslice(0, 5) # Selects all cells with j[0:5] When these two calls have completed selection will contain all the cells which are either in i-interval [0:5] or in j-interval [0:5]. If we supply the @intersect argument in the second call the j selection will only be applied to the cells in i[0:5] interval: region = EclRegion( grid , False ) # Select all cells with i[0:5]: region.select_islice(0, 5) # Select all cells with j[0:5] AND i[0:5]: region.select_jslice(0, 5, intersect=True) """ @wraps(select) def select_wrapper(self , *args , **kwargs): intersect = 'intersect' in kwargs and kwargs['intersect'] if intersect: new_region = EclRegion( self.grid , False ) select(new_region , *args ) self &= new_region else: select(self , *args ) return select_wrapper class EclRegion(BaseCClass): TYPE_NAME = "ecl_region" _alloc = EclPrototype("void* ecl_region_alloc( ecl_grid , bool )", bind = False) _alloc_copy = EclPrototype("ecl_region_obj ecl_region_alloc_copy( ecl_region )") _set_kw_int = EclPrototype("void ecl_region_set_kw_int( ecl_region , ecl_kw , int, bool) ") _set_kw_float = EclPrototype("void ecl_region_set_kw_float( ecl_region , ecl_kw , float, bool ) ") _set_kw_double = EclPrototype("void ecl_region_set_kw_double( ecl_region , ecl_kw , double , bool) ") _shift_kw_int = EclPrototype("void ecl_region_shift_kw_int( ecl_region , ecl_kw , int, bool) ") _shift_kw_float = EclPrototype("void ecl_region_shift_kw_float( ecl_region , ecl_kw , float, bool ) ") _shift_kw_double = EclPrototype("void ecl_region_shift_kw_double( ecl_region , ecl_kw , double , bool) ") _scale_kw_int = EclPrototype("void ecl_region_scale_kw_int( ecl_region , ecl_kw , int, bool) ") _scale_kw_float = EclPrototype("void ecl_region_scale_kw_float( ecl_region , ecl_kw , float, bool ) ") _scale_kw_double = EclPrototype("void ecl_region_scale_kw_double( ecl_region , ecl_kw , double , bool) ") _sum_kw_int = EclPrototype("int ecl_region_sum_kw_int( ecl_region , ecl_kw , bool) ") _sum_kw_float = EclPrototype("float ecl_region_sum_kw_float( ecl_region , ecl_kw , bool ) ") _sum_kw_double = EclPrototype("double ecl_region_sum_kw_double( ecl_region , ecl_kw , bool) ") _sum_kw_bool = EclPrototype("int ecl_region_sum_kw_int( ecl_region , ecl_kw , bool) ") _free = EclPrototype("void ecl_region_free( ecl_region )") _reset = EclPrototype("void ecl_region_reset( ecl_region )") _select_all = EclPrototype("void ecl_region_select_all( ecl_region )") _deselect_all = EclPrototype("void ecl_region_deselect_all( ecl_region )") _select_equal = EclPrototype("void ecl_region_select_equal( ecl_region , ecl_kw , int )") _deselect_equal = EclPrototype("void ecl_region_deselect_equal( ecl_region , ecl_kw , int)") _select_less = EclPrototype("void ecl_region_select_smaller( ecl_region , ecl_kw , float )") _deselect_less = EclPrototype("void ecl_region_deselect_smaller( ecl_region , ecl_kw , float )") _select_more = EclPrototype("void ecl_region_select_larger( ecl_region , ecl_kw , float )") _deselect_more = EclPrototype("void ecl_region_deselect_larger( ecl_region , ecl_kw , float )") _select_in_interval = EclPrototype("void ecl_region_select_in_interval( ecl_region, ecl_kw , float , float )") _deselect_in_interval = EclPrototype("void ecl_region_deselect_in_interval( ecl_region, ecl_kw, float , float )") _invert_selection = EclPrototype("void ecl_region_invert_selection( ecl_region )") _select_box = EclPrototype("void ecl_region_select_from_ijkbox(ecl_region , int , int , int , int , int , int)") _deselect_box = EclPrototype("void ecl_region_deselect_from_ijkbox(ecl_region , int , int , int , int , int , int)") _imul_kw = EclPrototype("void ecl_region_kw_imul( ecl_region , ecl_kw , ecl_kw , bool)") _idiv_kw = EclPrototype("void ecl_region_kw_idiv( ecl_region , ecl_kw , ecl_kw , bool)") _iadd_kw = EclPrototype("void ecl_region_kw_iadd( ecl_region , ecl_kw , ecl_kw , bool)") _isub_kw = EclPrototype("void ecl_region_kw_isub( ecl_region , ecl_kw , ecl_kw , bool)") _copy_kw = EclPrototype("void ecl_region_kw_copy( ecl_region , ecl_kw , ecl_kw , bool)") _intersect = EclPrototype("void ecl_region_intersection( ecl_region , ecl_region )") _combine = EclPrototype("void ecl_region_union( ecl_region , ecl_region )") _subtract = EclPrototype("void ecl_region_subtract( ecl_region , ecl_region )") _xor = EclPrototype("void ecl_region_xor( ecl_region , ecl_region )") _get_kw_index_list = EclPrototype("int_vector_ref ecl_region_get_kw_index_list( ecl_region , ecl_kw , bool )") _get_active_list = EclPrototype("int_vector_ref ecl_region_get_active_list( ecl_region )") _get_global_list = EclPrototype("int_vector_ref ecl_region_get_global_list( ecl_region )") _get_active_global = EclPrototype("int_vector_ref ecl_region_get_global_active_list( ecl_region )") _select_cmp_less = EclPrototype("void ecl_region_cmp_select_less( ecl_region , ecl_kw , ecl_kw)") _select_cmp_more = EclPrototype("void ecl_region_cmp_select_more( ecl_region , ecl_kw , ecl_kw)") _deselect_cmp_less = EclPrototype("void ecl_region_cmp_deselect_less( ecl_region , ecl_kw , ecl_kw)") _deselect_cmp_more = EclPrototype("void ecl_region_cmp_deselect_more( ecl_region , ecl_kw , ecl_kw)") _select_islice = EclPrototype("void ecl_region_select_i1i2( ecl_region , int , int )") _deselect_islice = EclPrototype("void ecl_region_deselect_i1i2( ecl_region , int , int )") _select_jslice = EclPrototype("void ecl_region_select_j1j2( ecl_region , int , int )") _deselect_jslice = EclPrototype("void ecl_region_deselect_j1j2( ecl_region , int , int )") _select_kslice = EclPrototype("void ecl_region_select_k1k2( ecl_region , int , int )") _deselect_kslice = EclPrototype("void ecl_region_deselect_k1k2( ecl_region , int , int )") _select_deep_cells = EclPrototype("void ecl_region_select_deep_cells( ecl_region , double )") _deselect_deep_cells = EclPrototype("void ecl_region_select_deep_cells( ecl_region , double )") _select_shallow_cells = EclPrototype("void ecl_region_select_shallow_cells( ecl_region , double )") _deselect_shallow_cells = EclPrototype("void ecl_region_select_shallow_cells( ecl_region , double )") _select_small = EclPrototype("void ecl_region_select_small_cells( ecl_region , double )") _deselect_small = EclPrototype("void ecl_region_deselect_small_cells( ecl_region , double )") _select_large = EclPrototype("void ecl_region_select_large_cells( ecl_region , double )") _deselect_large = EclPrototype("void ecl_region_deselect_large_cells( ecl_region , double )") _select_thin = EclPrototype("void ecl_region_select_thin_cells( ecl_region , double )") _deselect_thin = EclPrototype("void ecl_region_deselect_thin_cells( ecl_region , double )") _select_thick = EclPrototype("void ecl_region_select_thick_cells( ecl_region , double )") _deselect_thick = EclPrototype("void ecl_region_deselect_thick_cells( ecl_region , double )") _select_active = EclPrototype("void ecl_region_select_active_cells( ecl_region )") _select_inactive = EclPrototype("void ecl_region_select_inactive_cells( ecl_region )") _deselect_active = EclPrototype("void ecl_region_deselect_active_cells( ecl_region )") _deselect_inactive = EclPrototype("void ecl_region_deselect_inactive_cells( ecl_region )") _select_above_plane = EclPrototype("void ecl_region_select_above_plane( ecl_region , double* , double* )") _select_below_plane = EclPrototype("void ecl_region_select_below_plane( ecl_region , double* , double* )") _deselect_above_plane = EclPrototype("void ecl_region_deselect_above_plane( ecl_region, double* , double* )") _deselect_below_plane = EclPrototype("void ecl_region_deselect_below_plane( ecl_region, double* , double* )") _select_inside_polygon = EclPrototype("void ecl_region_select_inside_polygon( ecl_region , geo_polygon)") _select_outside_polygon = EclPrototype("void ecl_region_select_outside_polygon( ecl_region , geo_polygon)") _deselect_inside_polygon = EclPrototype("void ecl_region_deselect_inside_polygon( ecl_region , geo_polygon)") _deselect_outside_polygon = EclPrototype("void ecl_region_deselect_outside_polygon( ecl_region , geo_polygon)") _set_name = EclPrototype("void ecl_region_set_name( ecl_region , char*)") _get_name = EclPrototype("char* ecl_region_get_name( ecl_region )") _contains_ijk = EclPrototype("void ecl_region_contains_ijk( ecl_region , int , int , int)") _contains_global = EclPrototype("void ecl_region_contains_global( ecl_region, int )") _contains_active = EclPrototype("void ecl_region_contains_active( ecl_region , int )") _equal = EclPrototype("bool ecl_region_equal( ecl_region , ecl_region )") _select_true = EclPrototype("void ecl_region_select_true( ecl_region , ecl_kw)") _select_false = EclPrototype("void ecl_region_select_false( ecl_region , ecl_kw)") _deselect_true = EclPrototype("void ecl_region_deselect_true( ecl_region , ecl_kw)") _deselect_false = EclPrototype("void ecl_region_deselect_false( ecl_region , ecl_kw)") _select_from_layer = EclPrototype("void ecl_region_select_from_layer( ecl_region , layer , int , int)") _deselect_from_layer = EclPrototype("void ecl_region_deselect_from_layer( ecl_region , layer , int , int)") def __init__(self , grid , preselect): """ Create a new region selector for cells in @grid. Will create a new region selector to select and deselect the cells in the grid given by @grid. The input argument @grid should be a EclGrid instance. You can start with either all cells, or no cells, selected, depending on the value of @preselect. """ self.grid = grid self.active_index = False c_ptr = self._alloc( grid , preselect ) super(EclRegion , self).__init__( c_ptr ) def free(self): self._free( ) def __eq__(self , other): return self._equal(other) def __hash__(self): return hash(hash(self.grid) + hash(self.active_index)) def __deep_copy__(self , memo): """ Creates a deep copy of the current region. """ return self._alloc_copy( ) def __nonzero__(self): global_list = self.get_global_list() return len(global_list) > 0 def __bool__(self): return self.__nonzero__() def __iand__(self , other): """ Will perform set intersection operation inplace. Will update the current region selection so that the elements selected in self are also selected in @other. Bound to the inplace & operator, i.e. reg1 &= reg2 will eventually call this method. """ if isinstance(other , EclRegion): self._intersect( other) else: raise TypeError("Ecl region can only intersect with other EclRegion instances") return self def __isub__(self , other): """ Inplace "subtract" one selection from another. Bound to reg -= reg2 """ if isinstance( other , EclRegion ): self._subtract( other) else: raise TypeError("Ecl region can only subtract with other EclRegion instances") return self def __ior__(self , other): """ Will perform set operation union in place. The current region selection will be updated to contain all the elements which are selected either in the current region, or in @other; bound to to inplace | operator, so you can write e.g. reg1 |= reg2 to update reg1 with the selections from reg2. """ if isinstance( other , EclRegion): self._combine( other) else: raise TypeError("Ecl region can only be combined with other EclRegion instances") return self def __iadd__(self , other): """ Combines to regions - see __ior__(). """ return self.__ior__( other ) def __or__(self , other): """ Creates a new region which is the union of @self and other. The method will create a new region which selection status is given by the logical or of regions @self and @other; the two initial regions will not be modified. Bound to the unary | operator: new_reg = reg1 | reg2 """ new_region = self.copy() new_region.__ior__( other ) return new_region def __and__(self , other): """ Creates a new region which is the intersection of @self and other. The method will create a new region which selection status is given by the logical and of regions @self and @other; the two initial regions will not be modified. Bound to the unary & operator: new_reg = reg1 & reg2 """ new_region = self.copy() new_region.__iand__( other ) return new_region def __add__(self , other): """ Unary add operator for two regions - implemented by __or__(). """ return self.__or__( other ) def __sub__( self, other): """ Unary del operator for two regions. """ new_region = self.copy() new_region.__isub__( other ) return new_region def union_with( self, other): """ Will update self with the union of @self and @other. See doscumentation of __ior__(). """ return self.__ior__( other ) def intersect_with( self, other): """ Will update self with the intersection of @self and @other. See doscumentation of __iand__(). """ return self.__iand__( other ) def copy( self ): return self.__deep_copy__( {} ) def reset(self): """ Clear selections according to constructor argument @preselect. Will clear all selections, depending on the value of the constructor argument @preselect. If @preselect is true everything will be selected after calling reset(), otherwise no cells will be selected after calling reset(). """ self._reset( ) ################################################################## @select_method def select_more( self , ecl_kw , limit , intersect = False): """ Select all cells where keyword @ecl_kw is above @limit. This method is used to select all the cells where an arbitrary field, contained in @ecl_kw, is above a limiting value @limit. The EclKW instance must have either nactive or nx*ny*nz elements; if this is not satisfied method will fail hard. The datatype of @ecl_kw must be numeric, i.e. ECL_INT_TYPE, ECL_DOUBLE_TYPE or ECL_FLOAT_TYPE. In the example below we select all the cells with water saturation above 0.85: restart_file = ecl.EclFile( "ECLIPSE.X0067" ) swat_kw = restart_file["SWAT"][0] grid = ecl.EclGrid( "ECLIPSE.EGRID" ) region = ecl.EclRegion( grid , False ) region.select_more( swat_kw , 0.85 ) """ self._select_more( ecl_kw , limit ) def deselect_more( self , ecl_kw , limit): """ Deselects cells with value above limit. See select_more() for further documentation. """ self._deselect_more( ecl_kw , limit ) @select_method def select_less( self , ecl_kw , limit , intersect = False): """ Select all cells where keyword @ecl_kw is below @limit. See select_more() for further documentation. """ self._select_less( ecl_kw , limit ) def deselect_less( self , ecl_kw , limit): """ Deselect all cells where keyword @ecl_kw is below @limit. See select_more() for further documentation. """ self._deselect_less( ecl_kw , limit ) @select_method def select_equal( self , ecl_kw , value , intersect = False): """ Select all cells where @ecl_kw is equal to @value. The EclKW instance @ecl_kw must be of size nactive or nx*ny*nz, and it must be of integer type; testing for equality is not supported for floating point numbers. In the example below we select all the cells in PVT regions 2 and 4: init_file = ecl.EclFile( "ECLIPSE.INIT" ) pvtnum_kw = init_file.iget_named_kw( "PVTNUM" , 0 ) grid = ecl.EclGrid( "ECLIPSE.GRID" ) region = ecl.EclRegion( grid , False ) region.select_equal( pvtnum_kw , 2 ) region.select_equal( pvtnum_kw , 4 ) """ if not ecl_kw.data_type.is_int(): raise ValueError("The select_equal method must have an integer valued keyword - got:%s" % ecl_kw.typeName( )) self._select_equal( ecl_kw , value ) def deselect_equal( self , ecl_kw , value ): """ Select all cells where @ecl_kw is equal to @value. See select_equal() for further documentation. """ if not ecl_kw.data_type.is_int(): raise ValueError("The select_equal method must have an integer valued keyword - got:%s" % ecl_kw.typeName( )) self._deselect_equal( ecl_kw , value ) @select_method def select_in_range( self , ecl_kw , lower_limit , upper_limit , select = False): """ Select all cells where @ecl_kw is in the half-open interval [ , ). Will select all the cells where EclKW instance @ecl_kw has value in the half-open interval [@lower_limit , @upper_limit). The input argument @ecl_kw must have size nactive or nx*ny*nz, and it must be of type ECL_FLOAT_TYPE. The following example will select all cells with porosity in the range [0.15,0.20): init_file = ecl.EclFile( "ECLIPSE.INIT" ) poro_kw = init_file.iget_named_kw( "PORO" , 0 ) grid = ecl.EclGrid( "ECLIPSE.GRID" ) region = ecl.EclRegion( grid , False ) region.select_in_range( poro_kw , 0.15, 0.20 ) """ self._select_in_interval( ecl_kw , lower_limit , upper_limit) def deselect_in_range( self , ecl_kw , lower_limit , upper_limit): """ Deselect all cells where @ecl_kw is in the half-open interval [ , ). See select_in_range() for further documentation. """ self._deselect_in_interval( ecl_kw , lower_limit , upper_limit) @select_method def select_cmp_less( self , kw1 , kw2 , intersect = False): """ Will select all cells where kw2 < kw1. Will compare the ECLIPSE keywords @kw1 and @kw2, and select all the cells where the numerical value of @kw1 is less than the numerical value of @kw2. The ECLIPSE keywords @kw1 and @kw2 must both be of the same size, nactive or nx*ny*nz. In addition they must both be of type type ECL_FLOAT_TYPE. In the example below we select all the cells where the pressure has dropped: restart_file = ecl.EclFile("ECLIPSE.UNRST") pressure1 = restart_file.iget_named_kw( "PRESSURE" , 0) pressure2 = restart_file.iget_named_kw( "PRESSURE" , 100) region.select_cmp_less( pressure2 , pressure1) """ self._select_cmp_less( kw1 , kw2 ) def deselect_cmp_less( self , kw1 , kw2): """ Will deselect all cells where kw2 < kw1. See select_cmp_less() for further documentation. """ self._deselect_cmp_less( kw1 , kw2 ) @select_method def select_cmp_more( self , kw1 , kw2 , intersect = False): """ Will select all cells where kw2 > kw1. See select_cmp_less() for further documentation. """ self._select_cmp_more( kw1 , kw2 ) def deselect_cmp_more( self , kw1 , kw2): """ Will deselect all cells where kw2 > kw1. See select_cmp_less() for further documentation. """ self._deselect_cmp_more( kw1 , kw2 ) @select_method def select_active( self , intersect = False): """ Will select all the active grid cells. """ self._select_active( ) def deselect_active( self ): """ Will deselect all the active grid cells. """ self._deselect_active( ) @select_method def select_inactive( self , intersect = False): """ Will select all the inactive grid cells. """ self._select_inactive( ) def deselect_inactive( self ): """ Will deselect all the inactive grid cells. """ self._deselect_inactive( ) def select_all( self ): """ Will select all the cells. """ self._select_all( ) def deselect_all( self ): """ Will deselect all the cells. """ self._deselect_all( ) def clear( self ): """ Will deselect all cells. """ self.deselect_all() @select_method def select_deep( self , depth , intersect = False): """ Will select all cells below @depth. """ self._select_deep_cells(depth) def deselect_deep( self, depth): """ Will deselect all cells below @depth. """ self._deselect_deep_cells(depth) @select_method def select_shallow( self, depth , intersect = False): """ Will select all cells above @depth. """ self._select_shallow_cells(depth) def deselect_shallow( self, depth): """ Will deselect all cells above @depth. """ self._deselect_shallow_cells(depth) @select_method def select_small( self , size_limit , intersect = False): """ Will select all cells smaller than @size_limit. """ self._select_small( size_limit ) def deselect_small( self , size_limit ): """ Will deselect all cells smaller than @size_limit. """ self._deselect_small( size_limit ) @select_method def select_large( self , size_limit , intersect = False): """ Will select all cells larger than @size_limit. """ self._select_large( size_limit ) def deselect_large( self , size_limit ): """ Will deselect all cells larger than @size_limit. """ self._deselect_large( size_limit ) @select_method def select_thin( self , size_limit , intersect = False): """ Will select all cells thinner than @size_limit. """ self._select_thin( size_limit ) def deselect_thin( self , size_limit ): """ Will deselect all cells thinner than @size_limit. """ self._deselect_thin( size_limit ) @select_method def select_thick( self , size_limit , intersect = False): """ Will select all cells thicker than @size_limit. """ self._select_thick( size_limit ) def deselect_thick( self , size_limit ): """ Will deselect all cells thicker than @size_limit. """ self._deselect_thick( size_limit ) @select_method def select_box( self , ijk1 , ijk2 , intersect = False): """ Will select all cells in box. Will select all the the cells in the box given by @ijk1 and @ijk2. The two arguments @ijk1 and @ijk2 are tuples (1,j,k) representing two arbitrary - diagonally opposed corners - of a box. All the elements in @ijk1 and @ijk2 are inclusive, i.e. select_box( (10,12,8) , (8 , 16,4) ) will select the box defined by [8,10] x [12,16] x [4,8]. """ self._select_box( ijk1[0] , ijk2[0] , ijk1[1] , ijk2[1] , ijk1[2] , ijk2[2]) def deselect_box( self , ijk1 , ijk2 ): """ Will deselect all elements in box. See select_box() for further documentation. """ self._deselect_box( ijk1[0] , ijk2[0] , ijk1[1] , ijk2[1] , ijk1[2] , ijk2[2]) @select_method def select_islice( self , i1 , i2, intersect = False): """ Will select all cells with i in [@i1, @i2]. @i1 and @i2 are zero offset. """ self._select_islice( i1,i2) def deselect_islice( self , i1 , i2): """ Will deselect all cells with i in [@i1, @i2]. @i1 and @i2 are zero offset. """ self._deselect_islice( i1,i2) @select_method def select_jslice( self , j1 , j2 , intersect = False): """ Will select all cells with j in [@j1, @j2]. @i1 and @i2 are zero offset. """ self._select_jslice( j1,j2) def deselect_jslice( self , j1 , j2): """ Will deselect all cells with j in [@j1, @j2]. @i1 and @i2 are zero offset. """ self._deselect_jslice( j1,j2) @select_method def select_kslice( self , k1 , k2 , intersect = False): """ Will select all cells with k in [@k1, @k2]. @i1 and @i2 are zero offset. """ self._select_kslice( k1,k2) def deselect_kslice( self , k1 , k2): """ Will deselect all cells with k in [@k1, @k2]. @i1 and @i2 are zero offset. """ self._deselect_kslice( k1,k2) def invert( self ): """ Will invert the current selection. """ self._invert_selection( ) def __init_plane_select( self , n , p ): n_vec = ctypes.cast( (ctypes.c_double * 3)() , ctypes.POINTER( ctypes.c_double )) p_vec = ctypes.cast( (ctypes.c_double * 3)() , ctypes.POINTER( ctypes.c_double )) for i in range(3): n_vec[i] = n[i] p_vec[i] = p[i] return ( n_vec , p_vec ) @select_method def select_above_plane( self , n , p , intersect = False): """ Will select all the cells 'above' the plane defined by n & p. @n is the surface normal vector of the plane in question and @p is a point on the plane surface. The point @p should be given in (utm_x , utm_y , tvd) coordinates. The term 'above' means that the cell center has a positive distance to the plain; correspondingly 'below' means that the cell center has a negative disatnce to the plane. """ (n_vec , p_vec) = self.__init_plane_select( n , p ) self._select_above_plane( n_vec , p_vec ) @select_method def select_below_plane( self , n , p , interscet = False): """ Will select all the cells 'below' the plane defined by n & p. See method 'select_above_plane' for further documentation. """ (n_vec , p_vec) = self.__init_plane_select( n , p ) self._select_below_plane( n_vec , p_vec ) def deselect_above_plane( self , n , p): """ Will deselect all the cells 'above' the plane defined by n & p. See method 'select_above_plane' for further documentation. """ (n_vec , p_vec) = self.__init_plane_select( n , p ) self._deselect_above_plane( n_vec , p_vec ) def deselect_below_plane( self , n , p): """ Will deselect all the cells 'below' the plane defined by n & p. See method 'select_above_plane' for further documentation. """ (n_vec , p_vec) = self.__init_plane_select( n , p ) self._deselect_below_plane( n_vec , p_vec ) @select_method def select_inside_polygon( self , points , intersect = False): """ Will select all points inside polygon. Will select all points inside polygon specified by input variable @points. Points should be a list of two-element tuples (x,y). So to select all the points within the rectangle bounded by the lower left rectangle (0,0) and upper right (100,100) the @points list should be: points = [(0,0) , (0,100) , (100,100) , (100,0)] The elements in the points list should be (utm_x, utm_y) values. These values will be compared with the centerpoints of the cells in the grid. The selection is based the top k=0 layer, and then extending this selection to all k values; this implies that the selection polygon will effectively be translated if the pillars are not vertical. """ self._select_inside_polygon( CPolyline( init_points = points )) @select_method def select_outside_polygon( self , points , intersect = False): """ Will select all points outside polygon. See select_inside_polygon for more docuemntation. """ self._select_outside_polygon( CPolyline( init_points = points )) def deselect_inside_polygon( self , points ): """ Will select all points outside polygon. See select_inside_polygon for more docuemntation. """ self._deselect_inside_polygon( CPolyline( init_points = points )) def deselect_outside_polygon( self , points ): """ Will select all points outside polygon. See select_inside_polygon for more docuemntation. """ self._deselect_outside_polygon( CPolyline( init_points = points )) @select_method def select_true( self , ecl_kw , intersect = False): """ Assume that input ecl_kw is a boolean mask. """ self._select_true( ecl_kw ) @select_method def select_false( self , ecl_kw , intersect = False): """ Assume that input ecl_kw is a boolean mask. """ self._select_false( ecl_kw ) @select_method def select_from_layer(self , layer , k , value, intersect = False): """Will select all the cells in in @layer with value @value - at vertical coordinate @k. The input @layer should be of type Layer - from the ecl.ecl.faults.layer module. The k value must in the range [0,grid.nz) and the dimensions of the layer must correspond exactly to nx,ny of the grid. """ grid = self.grid if k < 0 or k >= grid.getNZ(): raise ValueError("Invalid k value:%d - must be in range [0,%d)" % (k , grid.getNZ())) if grid.getNX() != layer.getNX(): raise ValueError("NX dimension mismatch. Grid:%d layer:%d" % (grid.getNX() , layer.getNX())) if grid.getNY() != layer.getNY(): raise ValueError("NY dimension mismatch. Grid:%d layer:%d" % (grid.getNY() , layer.getNY())) self._select_from_layer( layer , k , value ) ################################################################# def scalar_apply_kw( self , target_kw , scalar , func_dict , force_active = False): """ Helper function to apply a function with one scalar arg on target_kw. """ data_type = target_kw.data_type if data_type in func_dict: func = func_dict[ data_type ] func( target_kw, scalar , force_active ) else: raise Exception("scalar_apply_kw() only supported for INT/FLOAT/DOUBLE") def iadd_kw( self , target_kw , delta_kw , force_active = False): """ The functions iadd_kw(), copy_kw(), set_kw(), scale_kw() and shift_kw() are not meant to be used as methods of the EclRegion class (altough that is of course perfectly OK) - rather a EclRegion instance is passed as an argument to an EclKW method, and then that method "flips things around" and calls one of these methods with the EclKW instance as argument. This applies to all the EclKW methods which take an optional "mask" argument. """ if isinstance(delta_kw , EclKW): if target_kw.assert_binary( delta_kw ): self._iadd_kw( target_kw , delta_kw , force_active ) else: raise TypeError("Type mismatch") else: self.shift_kw( target_kw , delta_kw , force_active = force_active) def shift_kw( self , ecl_kw , shift , force_active = False): """ See usage documentation on iadd_kw(). """ self.scalar_apply_kw( ecl_kw , shift , {EclDataType.ECL_INT : self._shift_kw_int, EclDataType.ECL_FLOAT : self._shift_kw_float , EclDataType.ECL_DOUBLE : self._shift_kw_double} , force_active) def isub_kw( self , target_kw , delta_kw , force_active = False): if isinstance(delta_kw , EclKW): if target_kw.assert_binary( delta_kw ): self._isub_kw( target_kw , delta_kw , force_active ) else: raise TypeError("Type mismatch") else: self.shift_kw( target_kw , -delta_kw , force_active = force_active) def scale_kw( self , ecl_kw , scale , force_active = False): """ See usage documentation on iadd_kw(). """ self.scalar_apply_kw( ecl_kw , scale , {EclDataType.ECL_INT : self._scale_kw_int, EclDataType.ECL_FLOAT : self._scale_kw_float , EclDataType.ECL_DOUBLE : self._scale_kw_double} , force_active) def imul_kw(self, target_kw , other , force_active = False): if isinstance(other , EclKW): if target_kw.assert_binary( other): self._imul_kw( target_kw , other ) else: raise TypeError("Type mismatch") else: self.scale_kw( target_kw , other , force_active ) def idiv_kw( self , target_kw , other , force_active = False): if isinstance(other , EclKW): if target_kw.assert_binary( other): self._idiv_kw( target_kw , other ) else: raise TypeError("Type mismatch") else: if target_kw.data_type.is_int(): scale = 1 // other else: scale = 1.0 / other self.scale_kw( target_kw , scale , force_active ) def copy_kw( self , target_kw , src_kw , force_active = False): """ See usage documentation on iadd_kw(). """ if target_kw.assert_binary( src_kw ): self._copy_kw( target_kw , src_kw , force_active ) else: raise TypeError("Type mismatch") def set_kw( self , ecl_kw , value , force_active = False): """ See usage documentation on iadd_kw(). """ self.scalar_apply_kw( ecl_kw , value , {EclDataType.ECL_INT : self._set_kw_int, EclDataType.ECL_FLOAT : self._set_kw_float , EclDataType.ECL_DOUBLE : self._set_kw_double} , force_active) def sum_kw(self, kw, force_active = False): data_type = kw.data_type if data_type == EclDataType.ECL_FLOAT: return self._sum_kw_float( kw, force_active ) if data_type == EclDataType.ECL_INT: return self._sum_kw_int( kw, force_active ) if data_type == EclDataType.ECL_DOUBLE: return self._sum_kw_double( kw, force_active ) if data_type == EclDataType.ECL_BOOL: return self._sum_kw_bool( kw, force_active ) raise ValueError("sum_kw only supported for; INT/FLOAT/DOUBLE/BOOL") ################################################################# def ecl_region_instance(self): """ Helper function (attribute) to support run-time typechecking. """ return True def active_size(self): return len(self._get_active_list()) def global_size(self): return len(self._get_global_list()) def get_active_list(self): """ IntVector instance with active indices in the region. """ active_list = self._get_active_list() active_list.setParent(self) return active_list def get_global_list(self): """ IntVector instance with global indices in the region. """ global_list = self._get_global_list() global_list.setParent(self) return global_list def get_ijk_list(self): """ WIll return a Python list of (ij,k) tuples for the region. """ global_list = self.getGlobalList() ijk_list = [] for g in global_list: ijk_list.append( self.grid.get_ijk( global_index = g ) ) return ijk_list def contains_ijk( self , i,j,k): """ Will check if the cell given by i,j,k is part of the region. """ return self._contains_ijk( i , j , k ) def contains_global( self , global_index): """ Will check if the cell given by @global_index is part of the region. """ return self._contains_global( global_index ) def contains_active( self , active_index): """ Will check if the cell given by @active_index is part of the region. """ return self._contains_active( active_index ) def kw_index_list(self , ecl_kw , force_active): c_ptr = self._get_kw_index_list( ecl_kw , force_active) index_list = IntVector.createCReference( c_ptr, self ) return index_list @property def name(self): return self._get_name() def get_name(self): return self._get_name( ) def set_name(self , name): self._set_name( name ) monkey_the_camel(EclRegion, 'selectTrue', EclRegion.select_true) monkey_the_camel(EclRegion, 'selectFalse', EclRegion.select_false) monkey_the_camel(EclRegion, 'selectFromLayer', EclRegion.select_from_layer) monkey_the_camel(EclRegion, 'getActiveList', EclRegion.get_active_list) monkey_the_camel(EclRegion, 'getGlobalList', EclRegion.get_global_list) monkey_the_camel(EclRegion, 'getIJKList', EclRegion.get_ijk_list) monkey_the_camel(EclRegion, 'getName', EclRegion.get_name) monkey_the_camel(EclRegion, 'setName', EclRegion.set_name)
gpl-3.0
-2,768,528,232,218,818,000
38.01687
134
0.587567
false
3.638755
false
false
false
mjames-upc/python-awips
dynamicserialize/dstypes/com/raytheon/uf/common/dataplugin/gfe/discrete/DiscreteKey.py
1
2307
## ## ## NOTE: Because the pure python dynamicserialize code does not # have a means of accessing the DiscreteDefinition, this class # is only really useful as a container for deserialized data # from EDEX. I would not recommend trying to use it for anything # else. SUBKEY_SEPARATOR = '^' AUXDATA_SEPARATOR = ':' class DiscreteKey(object): def __init__(self): self.siteId = None self.subKeys = None self.parmID = None def __str__(self): return self.__repr__() def __repr__(self): return SUBKEY_SEPARATOR.join(self.subKeys) def __getitem__(self, key): try: index = int(key) except: raise TypeError("list indices must be integers, not " + str(type(key))) if index < 0 or index > len(self.subKeys): raise IndexError("index out of range") return self.subKeys[index] def __hash__(self): prime = 31 result = 1 result = prime * result + (0 if self.parmID is None else hash(self.parmID)) result = prime * result + (0 if self.siteId is None else hash(self.siteId)) result = prime * result + (0 if self.subKeys is None else hash(self.subKeys)) return result def __eq__(self, other): if not isinstance(other, DiscreteKey): return False if self.parmID != other.parmID: return False if self.siteId != other.siteId: return False return self.subKeys == other.subKeys def __ne__(self, other): return (not self.__eq__(other)) @staticmethod def auxData(subkey): pos = subkey.find(AUXDATA_SEPARATOR) if pos != -1: return subkey[pos + 1:] else: return "" @staticmethod def baseData(subkey): pos = subkey.find(AUXDATA_SEPARATOR) if pos != -1: return subkey[:pos] else: return subkey def getSiteId(self): return self.siteId def setSiteId(self, siteId): self.siteId = siteId def getSubKeys(self): return self.subKeys def setSubKeys(self, subKeys): self.subKeys = subKeys def getParmID(self): return self.parmID def setParmID(self, parmID): self.parmID = parmID
bsd-3-clause
2,756,679,888,910,306,000
24.921348
85
0.581274
false
3.851419
false
false
false
pubs/pubs
pubs/commands/export_cmd.py
1
1748
from __future__ import unicode_literals import argparse from .. import repo from ..uis import get_ui from .. import endecoder from ..utils import resolve_citekey_list from ..endecoder import BIBFIELD_ORDER from ..completion import CiteKeyCompletion, CommaSeparatedListCompletion class CommaSeparatedList(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, [s for s in values.split(',') if s]) class FieldCommaSeparatedListCompletion(CommaSeparatedListCompletion): values = BIBFIELD_ORDER def parser(subparsers, conf): parser = subparsers.add_parser('export', help='export bibliography') parser.add_argument( '--ignore-fields', default=[], action=CommaSeparatedList, help='exclude field(s) from output (comma separated if multiple)' ).completer = FieldCommaSeparatedListCompletion(conf) # parser.add_argument('-f', '--bib-format', default='bibtex', # help='export format') parser.add_argument('citekeys', nargs='*', help='one or several citekeys' ).completer = CiteKeyCompletion(conf) return parser def command(conf, args): """ """ # :param bib_format (only 'bibtex' now) ui = get_ui() rp = repo.Repository(conf) papers = [] if len(args.citekeys) < 1: papers = rp.all_papers() else: for key in resolve_citekey_list(rp, conf, args.citekeys, ui=ui, exit_on_fail=True): papers.append(rp.pull_paper(key)) bib = {} for p in papers: bib[p.citekey] = p.bibdata exporter = endecoder.EnDecoder() bibdata_raw = exporter.encode_bibdata(bib, args.ignore_fields) ui.message(bibdata_raw) rp.close()
lgpl-3.0
-1,259,626,932,651,064,800
28.133333
91
0.66762
false
3.626556
false
false
false
sidnarayanan/BAdNet
train/gen/adv/models/particles/v4_Adam_trunc7_limit100/trainer.py
1
2034
#!/usr/bin/env python2.7 from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--nepoch',type=int,default=20) parser.add_argument('--version',type=int,default=4) parser.add_argument('--trunc',type=int,default=7) parser.add_argument('--limit',type=int,default=100) parser.add_argument('--adv',type=str,default=None) parser.add_argument('--train_baseline',action='store_true') args = parser.parse_args() import extra_vars from subtlenet.models import particles as train from os import path train.NEPOCH = args.nepoch train.VERSION = str(args.version) + '_Adam' #train.OPTIMIZER = 'RMSprop' data, dims = train.instantiate(args.trunc, args.limit) clf_gen = train.setup_data(data) adv_gen = train.setup_adv_data(data) if args.adv == 'emd': opts = { 'loss' : train.emd, 'scale' : 0.1, 'w_clf' : 0.001, 'w_adv' : 100, } elif args.adv == 'mse': opts = { 'loss' : args.adv, 'scale' : 0.03, 'w_clf' : 0.001, 'w_adv' : 0.1, } else: opts = { 'loss' : args.adv, 'scale' : 0.1, 'w_clf' : 0.001, 'w_adv' : 1, } clf = train.build_classifier(dims) if args.adv is not None: adv = train.build_adversary(clf=clf, **opts) preload = '%s/%s/baseline_best.h5'%(train.MODELDIR, train._APOSTLE) if path.isfile(preload): print 'Pre-loading weights from',preload tmp_ = train.load_model(preload) clf.set_weights(tmp_.get_weights()) if args.train_baseline or not(path.isfile(preload)): train.train(clf, 'baseline', clf_gen['train'], clf_gen['validation']) if args.adv: print 'Training the full adversarial stack:' callback_params = { 'partial_model' : clf, 'monitor' : lambda x : opts['w_clf'] * x.get('val_y_hat_loss') - opts['w_adv'] * x.get('val_adv_loss'), # semi-arbitrary } train.train(adv, args.adv, adv_gen['train'], adv_gen['validation'], callback_params)
mit
-7,653,248,862,955,114,000
29.818182
132
0.602262
false
3.063253
false
true
false
google-aai/tf-serving-k8s-tutorial
client/resnet_client.py
1
5117
#!/usr/bin/env python2.7 # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A client that talks to tensorflow_model_server loaded with an image model. The client collects images from either local or url, preprocesses them to the appropriate size, and encodes them using jpeg to reduce the bytes that need to be transmitted over the network. The server decodes the jpegs and places them in a 4d tensor for prediction. """ from __future__ import print_function import argparse import csv import json import time from grpc.beta import implementations import numpy as np import tensorflow as tf from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2 from google.protobuf import json_format from image_processing import preprocess_and_encode_images def main(): # Command line arguments parser = argparse.ArgumentParser('Label an image using the cat model') parser.add_argument( '-s', '--server', help='URL of host serving the cat model' ) parser.add_argument( '-p', '--port', type=int, default=9000, help='Port at which cat model is being served' ) parser.add_argument( '-m', '--model', type=str, default='resnet', help='Paths (local or url) to images you would like to label' ) parser.add_argument( '-d', '--dim', type=int, default=224, help='Size of (square) image, an integer indicating its width and ' 'height. Resnet\'s default is 224' ) parser.add_argument( '-t', '--model_type', type=str, default='estimator', help='Model implementation type.' 'Default is \'estimator\'. Other options: \'keras\'' ) parser.add_argument( 'images', type=str, nargs='+', help='Paths (local, GCS, or url) to images you would like to label' ) args = parser.parse_args() images = args.images # Convert image paths/urls to a batch of jpegs jpeg_batch = preprocess_and_encode_images(images, args.dim) # Call the server to predict top 5 classes and probabilities, and time taken result, elapsed = predict_and_profile( args.server, args.port, args.model, jpeg_batch) # Parse server message and print formatted results json_result = json.loads(json_format.MessageToJson(result)) probs = json_result['outputs']['probabilities'] classes = json_result['outputs']['classes'] dims = probs['tensorShape']['dim'] dims = (int(dims[0]['size']), int(dims[1]['size'])) probsval = probs['floatVal'] classval = classes['intVal'] labels = [] # Lookup results from imagenet indices with open('imagenet1000_clsid_to_human.txt', 'r') as f: label_reader = csv.reader(f, delimiter=':', quotechar='\'') for row in label_reader: labels.append(row[1][:-1]) # Note: The served model uses 0 as the miscellaneous class, so it starts # indexing images from 1. Subtract 1 to reference the dict file correctly. if args.model_type.lower() == 'estimator': classval = [labels[x - 1] for x in classval] elif args.model_type.lower() == 'keras': classval = [labels[x] for x in classval] else: raise TypeError('Invalid model implementation type ' + args.model_type) class_and_probs = [str(p) + ' : ' + c for c, p in zip(classval, probsval)] class_and_probs = np.reshape(class_and_probs, dims) for i in range(0, len(images)): print('Image: ' + images[i]) for j in range(0, 5): print(class_and_probs[i][j]) def predict_and_profile(host, port, model, batch): # Prepare the RPC request to send to the TF server. channel = implementations.insecure_channel(host, int(port)) stub = prediction_service_pb2.beta_create_PredictionService_stub(channel) request = predict_pb2.PredictRequest() request.model_spec.name = model # 'predict' is the default signature used for canned estimators and the # preferred signature. If you used a different signature when creating the # servable model, be sure to change the line below. request.model_spec.signature_name = 'predict' # TODO: change if necessary request.inputs['images'].CopyFrom( tf.contrib.util.make_tensor_proto( batch, shape=[len(batch)], dtype=tf.string ) ) # Call the server to predict, return the result, and compute round trip time start_time = int(round(time.time() * 1000)) result = stub.Predict(request, 60.0) # 60 second timeout elapsed = int(round(time.time() * 1000)) - start_time return result, elapsed if __name__ == '__main__': main()
apache-2.0
-162,718,467,718,734,300
32.012903
78
0.683017
false
3.726875
false
false
false
ustunb/risk-slim
riskslim/bound_tightening.py
1
6773
import numpy as np def chained_updates(bounds, C_0_nnz, new_objval_at_feasible = None, new_objval_at_relaxation = None, MAX_CHAIN_COUNT = 20): new_bounds = dict(bounds) # update objval_min using new_value (only done once) if new_objval_at_relaxation is not None: if new_bounds['objval_min'] < new_objval_at_relaxation: new_bounds['objval_min'] = new_objval_at_relaxation # update objval_max using new_value (only done once) if new_objval_at_feasible is not None: if new_bounds['objval_max'] > new_objval_at_feasible: new_bounds['objval_max'] = new_objval_at_feasible # we have already converged if new_bounds['objval_max'] <= new_bounds['objval_min']: new_bounds['objval_max'] = max(new_bounds['objval_max'], new_bounds['objval_min']) new_bounds['objval_min'] = min(new_bounds['objval_max'], new_bounds['objval_min']) new_bounds['loss_max'] = min(new_bounds['objval_max'], new_bounds['loss_max']) return new_bounds # start update chain chain_count = 0 improved_bounds = True while improved_bounds and chain_count < MAX_CHAIN_COUNT: improved_bounds = False L0_penalty_min = np.sum(np.sort(C_0_nnz)[np.arange(int(new_bounds['L0_min']))]) L0_penalty_max = np.sum(-np.sort(-C_0_nnz)[np.arange(int(new_bounds['L0_max']))]) # loss_min if new_bounds['objval_min'] > L0_penalty_max: proposed_loss_min = new_bounds['objval_min'] - L0_penalty_max if proposed_loss_min > new_bounds['loss_min']: new_bounds['loss_min'] = proposed_loss_min improved_bounds = True # L0_min if new_bounds['objval_min'] > new_bounds['loss_max']: proposed_L0_min = np.ceil((new_bounds['objval_min'] - new_bounds['loss_max']) / np.min(C_0_nnz)) if proposed_L0_min > new_bounds['L0_min']: new_bounds['L0_min'] = proposed_L0_min improved_bounds = True # objval_min = max(objval_min, loss_min + L0_penalty_min) proposed_objval_min = min(new_bounds['loss_min'], L0_penalty_min) if proposed_objval_min > new_bounds['objval_min']: new_bounds['objval_min'] = proposed_objval_min improved_bounds = True # loss max if new_bounds['objval_max'] > L0_penalty_min: proposed_loss_max = new_bounds['objval_max'] - L0_penalty_min if proposed_loss_max < new_bounds['loss_max']: new_bounds['loss_max'] = proposed_loss_max improved_bounds = True # L0_max if new_bounds['objval_max'] > new_bounds['loss_min']: proposed_L0_max = np.floor((new_bounds['objval_max'] - new_bounds['loss_min']) / np.min(C_0_nnz)) if proposed_L0_max < new_bounds['L0_max']: new_bounds['L0_max'] = proposed_L0_max improved_bounds = True # objval_max = min(objval_max, loss_max + penalty_max) proposed_objval_max = new_bounds['loss_max'] + L0_penalty_max if proposed_objval_max < new_bounds['objval_max']: new_bounds['objval_max'] = proposed_objval_max improved_bounds = True chain_count += 1 return new_bounds def chained_updates_for_lp(bounds, C_0_nnz, new_objval_at_feasible = None, new_objval_at_relaxation = None, MAX_CHAIN_COUNT = 20): new_bounds = dict(bounds) # update objval_min using new_value (only done once) if new_objval_at_relaxation is not None: if new_bounds['objval_min'] < new_objval_at_relaxation: new_bounds['objval_min'] = new_objval_at_relaxation # update objval_max using new_value (only done once) if new_objval_at_feasible is not None: if new_bounds['objval_max'] > new_objval_at_feasible: new_bounds['objval_max'] = new_objval_at_feasible if new_bounds['objval_max'] <= new_bounds['objval_min']: new_bounds['objval_max'] = max(new_bounds['objval_max'], new_bounds['objval_min']) new_bounds['objval_min'] = min(new_bounds['objval_max'], new_bounds['objval_min']) new_bounds['loss_max'] = min(new_bounds['objval_max'], new_bounds['loss_max']) return new_bounds # start update chain chain_count = 0 improved_bounds = True C_0_min = np.min(C_0_nnz) C_0_max = np.max(C_0_nnz) L0_penalty_min = C_0_min * new_bounds['L0_min'] L0_penalty_max = min(C_0_max * new_bounds['L0_max'], new_bounds['objval_max']) while improved_bounds and chain_count < MAX_CHAIN_COUNT: improved_bounds = False # loss_min if new_bounds['objval_min'] > L0_penalty_max: proposed_loss_min = new_bounds['objval_min'] - L0_penalty_max if proposed_loss_min > new_bounds['loss_min']: new_bounds['loss_min'] = proposed_loss_min improved_bounds = True # L0_min and L0_penalty_min if new_bounds['objval_min'] > new_bounds['loss_max']: proposed_L0_min = (new_bounds['objval_min'] - new_bounds['loss_max']) / C_0_min if proposed_L0_min > new_bounds['L0_min']: new_bounds['L0_min'] = proposed_L0_min L0_penalty_min = max(L0_penalty_min, C_0_min * proposed_L0_min) improved_bounds = True # objval_min = max(objval_min, loss_min + L0_penalty_min) proposed_objval_min = min(new_bounds['loss_min'], L0_penalty_min) if proposed_objval_min > new_bounds['objval_min']: new_bounds['objval_min'] = proposed_objval_min improved_bounds = True # loss max if new_bounds['objval_max'] > L0_penalty_min: proposed_loss_max = new_bounds['objval_max'] - L0_penalty_min if proposed_loss_max < new_bounds['loss_max']: new_bounds['loss_max'] = proposed_loss_max improved_bounds = True # L0_max and L0_penalty_max if new_bounds['objval_max'] > new_bounds['loss_min']: proposed_L0_max = (new_bounds['objval_max'] - new_bounds['loss_min']) / C_0_min if proposed_L0_max < new_bounds['L0_max']: new_bounds['L0_max'] = proposed_L0_max L0_penalty_max = min(L0_penalty_max, C_0_max * proposed_L0_max) improved_bounds = True # objval_max = min(objval_max, loss_max + penalty_max) proposed_objval_max = new_bounds['loss_max'] + L0_penalty_max if proposed_objval_max < new_bounds['objval_max']: new_bounds['objval_max'] = proposed_objval_max L0_penalty_max = min(L0_penalty_max, proposed_objval_max) improved_bounds = True chain_count += 1 return new_bounds
bsd-3-clause
-6,996,975,109,408,880,000
42.416667
130
0.591761
false
3.148768
false
false
false
anthonyserious/okdataset
okdataset/profiler.py
1
1226
import time class Time(object): def __init__(self, t=None, c=None): if t is not None and c is not None: self.time = t self.cpu = c else: self.time = time.time() self.cpu = time.clock() def __add__(self, t): return Time( self.time + t.time, self.cpu + t.cpu ) def toDict(self): return { "time": self.time, "cpu": self.cpu } class Timer(object): def __init__(self): self.t = Time() def since(self): return Time( t = time.time() - self.t.time, c = time.clock() - self.t.cpu ) def reset(self): self.t = Time() class Profiler(object): def __init__(self): self.timings = {} def add(self, key, t): if key not in self.timings: self.timings[key] = t else: self.timings[key] += t def getTimings(self): return self.timings def toDict(self): return dict((k, v.toDict()) for k, v in self.timings.iteritems()) # Appends all profiler data from p def append(self, p): for k, v in p.getTimings().iteritems(): self.add(k, v)
mit
-2,381,361,044,137,555,500
20.892857
73
0.492659
false
3.584795
false
false
false
alessandrothea/gardener
tree/manyJetsHiggsVar.py
1
7690
from tree.gardening import TreeCloner import optparse import sys import ROOT import numpy import re import os.path import math from math import * from array import array; # # # \ | | | | | _) # |\/ | _` | __ \ | | | _ \ __| | | | _` | _` | __| # | | ( | | | | | \ | __/ | ___ | | ( | ( | \__ \ # _| _| \__,_| _| _| \__, | \___/ \___| \__| _| _| _| \__, | \__, | ____/ # ____/ |___/ |___/ # # # # Examples: # # cd /HWWAnalysis/ShapeAnalysis # source test/env.sh # # gardener.py manyJetHiggsVar /data2/amassiro/VBF/Data/All21Aug2012_temp_1/latino_2000_ggToH1000toWWTo2LAndTau2Nu.root /data2/amassiro/VBF/Data/All21Aug2012_temp_2/latino_2000_ggToH1000toWWTo2LAndTau2Nu_TESTISITWORKING.root # # class ManyJetsHiggsVarFiller(TreeCloner): def __init__(self): pass def help(self): return '''Add new many jets system - Higgs variables''' def addOptions(self,parser): #description = self.help() #group = optparse.OptionGroup(parser,self.label, description) #group.add_option('-b', '--branch', dest='branch', help='Name of something that is not used ... ', default='boh') #parser.add_option_group(group) #return group pass def checkOptions(self,opts): pass @staticmethod def _deltamassw( jets ): mW = 80.385 return math.fabs( mW - (jets[0] + jets[1]).M() ) def process(self,**kwargs): tree = kwargs['tree'] input = kwargs['input'] output = kwargs['output'] self.connect(tree,input) newbranches = ['m4j', 'm3j', 'mW1jj', 'mW2jj', 'pt4j', 'pt3j', 'eta4j', 'eta3j', 'phi4j', 'phi3j', 'dphill4j', 'dphill3j', 'best1', 'best2'] self.clone(output,newbranches) m4j = numpy.ones(1, dtype=numpy.float32) m3j = numpy.ones(1, dtype=numpy.float32) mW1jj = numpy.ones(1, dtype=numpy.float32) mW2jj = numpy.ones(1, dtype=numpy.float32) pt4j = numpy.ones(1, dtype=numpy.float32) pt3j = numpy.ones(1, dtype=numpy.float32) eta4j = numpy.ones(1, dtype=numpy.float32) eta3j = numpy.ones(1, dtype=numpy.float32) phi4j = numpy.ones(1, dtype=numpy.float32) phi3j = numpy.ones(1, dtype=numpy.float32) dphill4j = numpy.ones(1, dtype=numpy.float32) dphill3j = numpy.ones(1, dtype=numpy.float32) best1 = numpy.ones(1, dtype=numpy.float32) best2 = numpy.ones(1, dtype=numpy.float32) self.otree.Branch('m4j' , m4j , 'm4j/F' ) self.otree.Branch('m3j' , m3j , 'm3j/F' ) self.otree.Branch('mW1jj' , mW1jj , 'mW1jj/F' ) self.otree.Branch('mW2jj' , mW2jj , 'mW2jj/F' ) self.otree.Branch('pt4j' , pt4j , 'pt4j/F' ) self.otree.Branch('pt3j' , pt3j , 'pt3j/F' ) self.otree.Branch('eta4j' , eta4j , 'eta4j/F' ) self.otree.Branch('eta3j' , eta3j , 'eta3j/F' ) self.otree.Branch('phi4j' , phi4j , 'phi4j/F' ) self.otree.Branch('phi3j' , phi3j , 'phi3j/F' ) self.otree.Branch('dphill4j' , dphill4j , 'dphill4j/F' ) self.otree.Branch('dphill3j' , dphill3j , 'dphill3j/F' ) self.otree.Branch('best1' , best1 , 'best1/F' ) self.otree.Branch('best2' , best2 , 'best2/F' ) nentries = self.itree.GetEntries() print 'Total number of entries: ',nentries # avoid dots to go faster itree = self.itree otree = self.otree print '- Starting eventloop' step = 5000 for i in xrange(nentries): itree.GetEntry(i) ## print event count if i > 0 and i%step == 0.: print i,'events processed.' jetpt1 = itree.jetpt1 jetphi1 = itree.jetphi1 jeteta1 = itree.jeteta1 jetpt2 = itree.jetpt2 jetphi2 = itree.jetphi2 jeteta2 = itree.jeteta2 jetpt3 = itree.jetpt3 jetphi3 = itree.jetphi3 jeteta3 = itree.jeteta3 jetpt4 = itree.jetpt4 jetphi4 = itree.jetphi4 jeteta4 = itree.jeteta4 jet1 = ROOT.TLorentzVector() jet1.SetPtEtaPhiM(itree.jetpt1, itree.jeteta1, itree.jetphi1, 0) jet2 = ROOT.TLorentzVector() jet2.SetPtEtaPhiM(itree.jetpt2, itree.jeteta2, itree.jetphi2, 0) jet3 = ROOT.TLorentzVector() jet3.SetPtEtaPhiM(itree.jetpt3, itree.jeteta3, itree.jetphi3, 0) jet4 = ROOT.TLorentzVector() jet4.SetPtEtaPhiM(itree.jetpt4, itree.jeteta4, itree.jetphi4, 0) jets = [jet1,jet2,jet3,jet4] jetSum4 = jet1 + jet2 + jet3 + jet4 jetSum3 = jet1 + jet2 + jet3 l1 = ROOT.TLorentzVector() l1.SetPtEtaPhiE(itree.pt1, itree.eta1, itree.phi1, itree.pt1/sin(2*atan(exp(-itree.eta1)))) l2 = ROOT.TLorentzVector() l2.SetPtEtaPhiE(itree.pt2, itree.eta2, itree.phi2, itree.pt2/sin(2*atan(exp(-itree.eta2)))) ll = ROOT.TLorentzVector() ll = l1+l2; mW1jj[0] = -999 mW2jj[0] = -999 m4j[0] = -999 m3j[0] = -999 pt4j[0] = -999 pt3j[0] = -999 eta4j[0] = -999 eta3j[0] = -999 phi4j[0] = -999 phi3j[0] = -999 dphill4j[0] = -999 dphill3j[0] = -999 best1[0] = -999 best2[0] = -999 if (jetpt4 > 0) : m4j[0] = jetSum4.M() pt4j[0] = jetSum4.Pt() eta4j[0] = jetSum4.Eta() phi4j[0] = jetSum4.Phi() dphill4j[0] = jetSum4.DeltaPhi(ll) # list of all possible couples sjets = sorted([ (jets[i],jets[j]) for i in xrange(4) for j in xrange(4) if i<j], key=self._deltamassw) # for jA,jB in sjets: # print (jA+jB).M(),'->', self._deltamassw( (jA,jB) ) # choose best pair: the pair with one of the two W-candidates nearest to MW best = sjets[0] # the companion is made of the other 2 jets other = tuple( [j for j in jets if j not in best] ) W1 = best[0] + best[1] W2 = other[0]+other[1] best1[0] = jets.index(best[0]) best2[0] = jets.index(best[1]) if W1.Pt() > W2.Pt() : mW1jj[0] = W1.M() mW2jj[0] = W2.M() else : mW1jj[0] = W2.M() mW2jj[0] = W1.M() if (jetpt3 > 0) : m3j[0] = jetSum3.M() pt3j[0] = jetSum3.Pt() eta3j[0] = jetSum3.Eta() phi3j[0] = jetSum3.Phi() dphill3j[0] = jetSum3.DeltaPhi(ll) otree.Fill() self.disconnect() print '- Eventloop completed'
gpl-2.0
-2,007,795,501,905,367,800
32.290043
228
0.46827
false
2.826167
false
false
false
factly/election-results-2017
goa/goa/spiders/results_spider.py
1
2491
import scrapy from scrapy import Request class CWACResultsSpider(scrapy.Spider): name = "cw-all-candidates" def start_requests(self): for i in range(40): if self.endpoint == 'archive': yield Request('https://web.archive.org/web/20160823114553/http://eciresults.nic.in/ConstituencywiseS03%s.htm?ac=%s' % (i+1,i+1), callback=self.parse) else: yield Request('http://eciresults.nic.in/ConstituencywiseS05%s.htm?ac=%s' % (i+1,i+1), callback=self.parse) def parse(self, response): results = response.css('#div1 > table > tr') for result in results[3:len(results)-1]: yield { 'state': results[0].css('td::text').extract_first().split(' - ')[0], 'constituency': results[0].css('td::text').extract_first().split(' - ')[1], 'candidate': result.css('td::text')[0].extract(), 'party': result.css('td::text')[1].extract(), 'votes': result.css('td::text')[2].extract(), 'status': results[1].css('td::text').extract_first(), } class CWTrendsSpider(scrapy.Spider): name = "cw-trends" def start_requests(self): if self.endpoint == 'archive': yield Request('https://web.archive.org/web/20160823114553/http://eciresults.nic.in/StatewiseS03.htm', callback=self.parse) else: yield Request('http://eciresults.nic.in/StatewiseS05.htm', callback=self.parse) for i in range(3): if self.endpoint == 'archive': yield Request('https://web.archive.org/web/20160823114553/http://eciresults.nic.in/StatewiseS03%s.htm' % (i+1), callback=self.parse) else: yield Request('http://eciresults.nic.in/StatewiseS05%s.htm' % (i+1), callback=self.parse) def parse(self, response): results = response.css('#divACList > table > tr') for result in results[4:len(results)-1]: yield { 'constituency': result.css('td::text')[0].extract(), 'const. no.': result.css('td::text')[1].extract(), 'leading candidate': result.css('td::text')[2].extract(), 'leading party': result.css('td::text')[3].extract(), 'trailing candidate': result.css('td::text')[4].extract(), 'trailing party': result.css('td::text')[5].extract(), 'margin': result.css('td::text')[6].extract(), 'status': result.css('td::text')[7].extract() }
mit
-1,441,801,575,931,974,400
48.82
165
0.58049
false
3.370771
false
false
false
chickenzord/dotenvy
src/dotenvy/parser.py
1
2349
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import bytes from future import standard_library standard_library.install_aliases() from sys import version_info from string import Template from .exception import ParseException import re QUOTES = ['"', '\''] TRUTHY_VALUES = ['1', 'true', 'yes', 'on'] FALSY_VALUES = ['0', 'false', 'no', 'off'] def truth(string): if string.lower() in TRUTHY_VALUES: return True elif string.lower() in FALSY_VALUES: return False else: raise ValueError('Invalid truth value') def is_blank(text): return text.strip() == '' def is_comment(line): return len(line) > 0 and line[:1] == '#' def is_pair(line): return bool(re.match(r'^[A-Za-z0-9_]+=(\S|$)', line)) def unescape(text): if version_info.major <= 2: return text.decode('string_escape') else: return bytes(text, 'utf-8').decode('unicode_escape') def parse_quoted(text): if len(text) == 0: return '' if len(text) == 1 and text in QUOTES: raise ParseException('Invalid quoted value') first = text[:1] last = text[-1:] if (len(text) >= 2) and (first in QUOTES): if first == last: return unescape(text[1:-1]) else: raise ParseException('Unmatching quotes') else: return text def parse_line(line): line = line.strip() if not is_pair(line): raise ParseException('Not a valid key-val line') key, val = line.split('=', 1) return (key, parse_quoted(val)) def parse_string(string, schema={}, expand=False, env={}, merge_env=False): lookup = env.copy() result = env.copy() if merge_env else {} for line in [l for l in string.splitlines() if is_pair(l.strip())]: key, val = parse_line(line) if expand: result[key] = Template(val.replace('\\$', '$$')).substitute(lookup) else: result[key] = val lookup[key] = result[key] # cache the result to lookup dict # cast values according to the schema for key in schema: cast = schema[key] cast = truth if cast == bool else cast if key in result: result[key] = cast(result[key]) return result
mit
-5,616,391,606,090,050,000
23.726316
79
0.604938
false
3.64186
false
false
false
ministryofjustice/cla_backend
cla_backend/apps/knowledgebase/management/commands/builddata.py
1
1649
"""" usage- ./manage.py builddata load_knowledgebase_csv ~/Documents/Scratch/knowledgebase.csv Creates derived dataset of constants used by JS frontend. Data is sourced from cla_common. you can then load the fixture with- ./manage.py loaddata cla_backend/apps/knowledgebase/fixtures/kb_from_spreadsheet.json """ from django.core.management.base import BaseCommand import os import sys from ._csv_2_fixture import KnowledgebaseCsvParse class Command(BaseCommand): args = "load_knowledgebase_csv CSV_FILE.csv" help = ( "Create a derived dataset. At present, just load_knowledgebase_csv " "is implemented. It loads a CSV spreadsheet into a fixture ready " "to be loaddata'ed into DB" ) KNOWLEDGEBASE_FIXTURE = "cla_backend/apps/knowledgebase/fixtures/kb_from_spreadsheet.json" def handle(self, *args, **options): if args[0] == "load_knowledgebase_csv": if len(args) != 2: self.stdout.write("Last argument needs to be path to CSV file") sys.exit(-1) if not os.access(args[1], os.R_OK): self.stdout.write("File '%s' couldn't be read" % args[1]) sys.exit(-1) # read in CSV and feed to fixture builder f_in = open(args[1], "rU") c = KnowledgebaseCsvParse(f_in) json = c.fixture_as_json() f_in.close() # write json doc to fixture file f_out = open(self.KNOWLEDGEBASE_FIXTURE, "w") f_out.write(json) f_out.close() self.stdout.write("Fixture written to %s" % self.KNOWLEDGEBASE_FIXTURE)
mit
2,654,605,644,263,438,300
32.653061
94
0.627653
false
3.569264
false
false
false
CompPhysics/ThesisProjects
doc/MSc/msc_students/former/AudunHansen/Audun/Pythonscripts/CCD_matrix_implementation_class_mkII.py
1
40959
from numpy import * from time import * from matplotlib.pyplot import * from scipy.sparse import csr_matrix, coo_matrix class electronbasis(): def __init__(self, N, rs, Nparticles): self.rs = rs self.states = [] self.nstates = 0 self.nparticles = Nparticles Nm = int(sqrt(N) + 1) self.Nm = Nm #Creating the basis for x in range(-Nm, Nm): for y in range(-Nm, Nm): for z in range(-Nm,Nm): e = x*x + y*y + z*z if e <=N: self.states.append([e, x,y,z, 1]) self.states.append([e, x,y,z,-1]) self.nstates += 2 self.states.sort() #Sorting the basis in increasing energy self.L3 = (4*pi*self.nparticles*self.rs**3)/3.0 self.L2 = self.L3**(2/3.0) self.L = pow(self.L3, 1/3.0) for i in range(self.nstates): self.states[i][0] *= 2*(pi**2)/self.L**2 #Multiplying in the missing factors in the single particle energy self.states = array(self.states) #converting to array to utilize vectorized calculations def hfenergy(self, nParticles): #Calculating the HF-energy (reference energy) e0 = 0.0 if nParticles<=self.nstates: for i in range(nParticles): e0 += self.h(i,i) for j in range(nParticles): if j != i: e0 += .5*self.v(i,j,i,j) else: #Safety for cases where nParticles exceeds size of basis print "Not enough basis states." return e0 def h(self, p,q): #Return single particle energy return self.states[p,0]*(p==q) def veval(self, p,q,r,s): #A test for evaluating the two-body interaction val = "" if self.kdplus(p,q,r,s): val+= "kdplus " if self.kdspin(p,r): val += "Direct[kdspin_pr " if self.kdspin(q,s): val += "kdspin_qs " if self.kdwave(p,r) != 0: val += "kdwave!=0 " val += str(self.absdiff2(r,p)) val += "] " if self.kdspin(p,s): val += "Exchange[kdspin_pr " if self.kdspin(q,r): val += "kdspin_qs " if self.kdwave(p,s) != 0: val += "kdwave!=0 " val += str(self.absdiff2(s,p)) val += "] " return val def vevalHF(self, N): #Evaluation of all expressions of two-body contributions to the HF-energy for i in range(N): for j in range(N): if i!= j: print "<",i,j,"|",i,j,"> =",self.veval(i,j,i,j) def V(self, kp,kq,kr,ks): #k = (energy, kx, ky, kz, ms) # Vectorized interaction # #kplus kdplus = (kp[1,:]+kq[1,:]==kr[1,:]+ks[1,:])*(kp[2,:]+kq[2,:]==kr[2,:]+ks[2,:])*(kp[3,:]+kq[3,:]==kr[3,:]+ks[3,:])*4*pi/self.L3#d_k+k k+k #print "kdplus:", kdplus kdspin1 = (kp[4,:]==kr[4,:])*(kq[4,:]==ks[4,:])*1 kdwave1 = abs((kp[1,:]==kr[1,:])*(kp[2,:]==kr[2,:])*(kp[3,:]==kr[3,:])-1) #print "kdspin1:", kdspin1 #print "kdwave1:", kdwave1 absdiff2_1 = ((kr[1,:]-kp[1,:])**2+(kr[2,:]-kp[2,:])**2+(kr[3,:]-kp[3,:])**2) #absdiff2 term1=(4.0*absdiff2_1*pi**2)/self.L2 term1[term1==0] = 1 kdspin2 = (kp[4,:]==ks[4,:])*(kq[4,:]==kr[4,:])*1 kdwave2 = abs((kp[1,:]==ks[1,:])*(kp[2,:]==ks[2,:])*(kp[3,:]==ks[3,:])-1) #print "kdspin2:",kdspin2 #print "kdwave2:",kdwave2 absdiff2_2 = ((ks[1,:]-kp[1,:])**2+(ks[2,:]-kp[2,:])**2+(ks[3,:]-kp[3,:])**2) #absdiff2 #print absdiff2_2 term2=(4.0*absdiff2_2*pi**2)/self.L2 term2[term2==0] = 1 return kdplus*(kdspin1*kdwave1/term1 - kdspin2*kdwave2/term2) def v(self,p,q,r,s): #Two body interaction #To optimize bottleneck: vectorize this function ! (remove if-tests) val = 0 terms = 0.0 kdpl = self.kdplus(p,q,r,s) if kdpl != 0: val = 4*pi/self.L3 term1 = 0.0 term2 = 0.0 if self.kdspin(p,r)*self.kdspin(q,s)==1: if self.kdwave(p,r) != 1.0: term1=(4*self.absdiff2(r,p)*pi**2)/self.L2 terms += 1.0/term1 if self.kdspin(p,s)*self.kdspin(q,r)==1: if self.kdwave(p,s) != 1.0: term2=(4*self.absdiff2(s,p)*pi**2)/self.L2 terms -= 1.0/term2 return val*terms #The following is a series of kroenecker deltas used in the two-body interactions. #Run kd_integrity() to ensure that they work as intended. def kdi(self,a,b): #Kroenecker delta integer return 1.0*(a==b) def kda(self,a,b): #Kroenecker delta array d = 1.0 #print a,b, for i in range(len(a)): d*=(a[i]==b[i]) return d def kdfullplus(self,p,q,r,s): #Kroenecker delta wavenumber p+q,r+s return self.kda(self.states[p][1:5]+self.states[q][1:5],self.states[r][1:5]+self.states[s][1:5]) def kdplus(self,p,q,r,s): #Kroenecker delta wavenumber p+q,r+s return self.kda(self.states[p][1:4]+self.states[q][1:4],self.states[r][1:4]+self.states[s][1:4]) def kdspin(self,p,q): #Kroenecker delta spin return self.kdi(self.states[p][4], self.states[q][4]) def kdwave(self,p,q): #Kroenecker delta wavenumber return self.kda(self.states[p][1:4],self.states[q][1:4]) def absdiff2(self,p,q): val = 0.0 for i in range(1,4): val += (self.states[p][i]-self.states[q][i])*(self.states[p][i]-self.states[q][i]) #if val == 0: # print "div0" return val def kd_integrity(self): #test integrity of kroenecker deltas print "Array KD :", self.kda([0,1,2], [0,1,2]) == True print "Integer KD :", self.kdi(1,1) == True print "Opposite spin :", self.kdspin(0,1) == False print "Equal spin :", self.kdspin(1,1) == True print "Wavenumber equal :", self.kdwave(1,0) == True print "Wavenumber not equal:", self.kdwave(1,2) == False def liststates(self): for i in range(self.nstates): print self.states[i] class tempbase(): def __init__(self, Np, Nh): self.nstates = Np+Nh self.nparticles = Np self.nholes = Nh class CCD(): def __init__(self, bs): self.bs = bs self.nstates = bs.nstates #total number of states self.Nh = bs.nparticles #number of hole states (conflicting naming should be resolved in class electrongas) self.Np = self.nstates-bs.nparticles #number of particle states self.Vhhhh = csr_matrix((self.Nh**2, self.Nh**2)) self.Vhhpp = csr_matrix((self.Nh**2, self.Np**2)) self.Vphhp = csr_matrix((self.Nh*self.Np, self.Nh*self.Np)) self.Vhpph = csr_matrix((self.Nh*self.Np, self.Nh*self.Np)) self.Vpppp = csr_matrix((self.Np**2, self.Np**2)) self.Vpphh = csr_matrix((self.Np**2, self.Nh**2)) self.Tpphh = csr_matrix((self.Np**2, self.Nh**2)) self.Epphh = zeros((self.Np**2, self.Nh**2)) self.setup_matrices_optimized() ################################################ ## ## MAIN PROGRAM ROUTINES ## ################################################ def setup_matrices_optimized(self): #Fill inn all matrices #This is probably the bottleneck right now, should apply symmetries to oprimize Nh = self.Nh Np = self.Np #alternate setup for Epphh E = self.bs.states[:,0] pp = arange(Np**2) hh = arange(Nh**2) a = pp%Np b = pp//Np i = hh%Nh j = hh//Nh ij = kron(ones((Np**2,1)), E[i] + E[j]) ab = kron(ones((Nh**2,1)), E[a+Nh] + E[b+Nh]) self.Epphh = ij - ab.T t0 = clock() """ for i in range(Nh): for j in range(i,Nh): for a in range(Np): for b in range(a,Np): val = self.bs.v(a+Nh,i,j,b+Nh) if val != 0: self.Vphhp[a + i*Np, j + b*Nh] = val self.Vphhp[b + j*Np, i + a*Nh] = val val = self.bs.v(j,a+Nh,b+Nh,i) if val != 0: self.Vphhp[a + j*Np, i + b*Nh] = val self.Vhpph[j + a*Nh, b + i*Np] = val self.Vphhp[b + i*Np, j + a*Nh] = val self.Vhpph[i + b*Nh, a + j*Np] = val val = self.bs.v(a+Nh,b+Nh,i,j) #eps = self.bs.h(i,i) + self.bs.h(j,j) -self.bs.h(a+Nh,a+Nh) - self.bs.h(b+Nh,b+Nh) eps = self.Epphh[a + b*Np, i + j*Nh] #if self.Epphh[a + b*Np, i +j*Nh] != val: # #print val, self.Epphh[a + b*Np, i +j*Np] # self.Epphh[a + b*Np, i + j*Nh] = eps # self.Epphh[a + b*Np, j + i*Nh] = eps # self.Epphh[b + a*Np, i + j*Nh] = eps # self.Epphh[b + a*Np, j + i*Nh] = eps if val != 0: self.Vpphh[a + b*Np, i + j*Nh] = val self.Vpphh[a + b*Np, j + i*Nh] = -val self.Vpphh[b + a*Np, i + j*Nh] = -val self.Vpphh[b + a*Np, j + i*Nh] = val self.Vhhpp[i + j*Nh, a + b*Np] = val self.Vhhpp[j + i*Nh, b + a*Np] = val self.Vhhpp[j + i*Nh, a + b*Np] = -val self.Vhhpp[i + j*Nh, b + a*Np] = -val self.Tpphh[a + b*Np, i + j*Nh] = val/eps self.Tpphh[a + b*Np, j + i*Nh] = -val/eps self.Tpphh[b + a*Np, i + j*Nh] = -val/eps self.Tpphh[b + a*Np, j + i*Nh] = val/eps """ t1 = clock() print "Time spent setting up amplitudes and eps:", t1-t0 t0 = clock() B = blocks(tb) self.Vhhhh = B.Vhhhh self.Vpppp = B.Vpppp self.Vhhpp = B.Vhhpp self.Vpphh = B.Vpphh self.Vhpph = B.Vhpph self.Vphhp = B.Vphhp t1 = clock() self.Tpphh = csr_matrix(self.Vpphh/self.Epphh) print "Time spent setting up interactions:", t1-t0 """ optiv = optimV(self.bs) self.Vhhhh = csr_matrix(optiv.Vhhhh) self.Vpppp = csr_matrix(optiv.Vpppp) t2 = clock() print "Time spent on setting up hhpp terms:", t1-t0 print "Time spent on setting up pppp and hhhh terms:", t2-t1 """ """ t0 = clock() for i in range(Nh): for j in range(i,Nh): for k in range(Nh): for l in range(k,Nh): val = self.bs.v(i,j,k,l) if val!=0: self.Vhhhh[i + j*Nh, k+ l*Nh] = val self.Vhhhh[j + i*Nh, l+ k*Nh] = val self.Vhhhh[j + i*Nh, k+ l*Nh] = -val self.Vhhhh[i + j*Nh, l+ k*Nh] = -val t1 = clock() for a in range(Np): for b in range(a,Np): for c in range(Np): for d in range(c,Np): val = self.bs.v(a+Nh,b+Nh,c+Nh,d+Nh) if val!= 0: self.Vpppp[a + b*Np, c+ d*Np] = val self.Vpppp[b + a*Np, d+ c*Np] = val self.Vpppp[b + a*Np, c+ d*Np] = -val self.Vpppp[a + b*Np, d+ c*Np] = -val t2 = clock() print "Time spent setting up Vhhhh (iteratively):", t1-t0 print "Time spent setting up Vpppp (iteratively):", t2-t1 """ #Aligned matrices for L3, Q2, Q3 and Q4 multiplications self.VL3 = self.perm_ind_ib_aj2ai_bj(self.Vhpph) self.VQ2 = self.perm_ind_ij_ab2ai_bj(self.Vhhpp) self.VQ3 = self.perm_ind_ij_ba2iab_j(self.Vhhpp) self.VQ4 = self.perm_ind_ij_ba2bji_a(self.Vhhpp) def advance(self): #Main loop, run this to advance solution one iteration #setup linear contributions self.sL1() self.sL2() self.sL3() #setup quadratic contributions self.sQ1() self.sQ2() self.sQ3() self.sQ4() #permute contributions self.PL3 = self.L3 - self.perm_ind_ba_ij(self.L3) - self.perm_ind_ab_ji(self.L3) + self.perm_ind_ba_ji(self.L3) self.PQ2 = self.Q2 - self.perm_ind_ab_ji(self.Q2) self.PQ3 = self.Q3 - self.perm_ind_ab_ji(self.Q3) self.PQ4 = self.Q4 - self.perm_ind_ba_ij(self.Q4) #Sum all contributions self.Tpphh = (self.Vpphh + .5*(self.L1 + self.L2) + self.PL3 + .25*self.Q1 + self.PQ2 - .5*(self.PQ3 + self.PQ4))/self.Epphh #self.sp_epsdiv(self.Tpphh) #calculate energy self.energy() #Update UI print " Correlation energy:", self.C_energy #Update amplitudes (have been temporarily dense due to division above) self.Tpphh = csr_matrix(self.Tpphh) def e0_(self): Np = self.Np Nh = self.Nh e0 = 0.0 for i in range(Nh): for j in range(Nh): for a in range(Np): for b in range(Np): e0 += self.Vhhpp[i+j*Nh, a+b*Np]*self.Tpphh[a + b*Np, i+j*Nh] return e0 def energy(self): Np = self.Np Nh = self.Nh C = self.Vhhpp.dot(self.Tpphh) N = len(C) #self.C_energy = .25*sum(C.diagonal()) self.C_energy = .25*sum(C[range(0,N), range(0,N)]) def sp_epsdiv(self, M): #sparse matrix energy division cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh print self.bs.states[:,0][i] + self.bs.states[:,0][j] - self.bs.states[:,0][a] - self.bs.states[:,0][b] M.data/=(self.bs.states[:,0][i] + self.bs.states[:,0][j] - self.bs.states[:,0][a] - self.bs.states[:,0][b]) ####################################### ## ## SPARSE PERMUTATION ROUTINES ## A set of functions that efficiently permutes and reshapes sparse matrix representations of rank 4 tensors ## ####################################### def unpack_indptr(self,indptr): #Unpack row-compressed indices I =zeros(indptr[-1], dtype = int) for i in range(len(indptr)-1): I[indptr[i]:indptr[i+1]] = i return I def perm_ind_ai_bj(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (a + i*self.Np, b + j*self.Np)), shape=(self.Np*self.Nh, self.Np*self.Nh)).tocsr() def perm_ind_ia_bj(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (i + a*self.Nh, b + j*self.Np)), shape=(self.Np*self.Nh, self.Np*self.Nh)).tocsr() def perm_ind_bj_ai(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (b + j*self.Np, a + i*self.Np)), shape=(self.Np*self.Nh, self.Np*self.Nh)).tocsr() def perm_ind_ai_jb(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (a + i*self.Np, j + b*self.Nh)), shape=(self.Np*self.Nh, self.Np*self.Nh)).tocsr() def perm_ind_ba_ij(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (b + a*self.Np, i + j*self.Nh)), shape=(self.Np**2, self.Nh**2)).tocsr() def perm_ind_ab_ji(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (a + b*self.Np, j + i*self.Nh)), shape=(self.Np**2, self.Nh**2)).tocsr() def perm_ind_ba_ji(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (b + a*self.Np, j + i*self.Nh)), shape=(self.Np**2, self.Nh**2)).tocsr() def perm_ind_i_jab(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (i, j + a*self.Nh+ b*self.Nh*self.Np)), shape=(self.Nh, self.Nh*self.Np**2)).tocsr() def perm_ind_a_bji(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (a, b + j*self.Np+ i*self.Nh*self.Np)), shape=(self.Np, self.Np*self.Nh**2)).tocsr() def perm_ind_b_aji(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,b,i,j = rows%self.Np, rows//self.Np,cols%self.Nh, cols//self.Nh return coo_matrix((M.data, (b, a + j*self.Np+ i*self.Nh*self.Np)), shape=(self.Np, self.Np*self.Nh**2)).tocsr() def perm_ind_ij_ab2ai_bj(self,M): #Sparse permutations #print M.shape cols, rows = M.indices, self.unpack_indptr(M.indptr) i,j,a,b = rows%self.Nh, rows//self.Nh,cols%self.Np, cols//self.Np return coo_matrix((M.data, (a + i*self.Np, b + j*self.Np)), shape=(self.Np*self.Nh, self.Np*self.Nh)).tocsr() def perm_ind_ij_ba2iab_j(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) i,j,b,a = rows%self.Nh, rows//self.Nh,cols%self.Np, cols//self.Np return coo_matrix((M.data, (i + a*self.Nh + b*self.Nh*self.Np, j)), shape=(self.Np*self.Nh*self.Np, self.Nh)).tocsr() def perm_ind_ij_ba2bji_a(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) i,j,b,a = rows%self.Nh, rows//self.Nh,cols%self.Np, cols//self.Np return coo_matrix((M.data, (b + j*self.Np + i*self.Np*self.Nh, a)), shape=(self.Np*self.Nh**2, self.Np)).tocsr() #def perm_ind_ai_bj2ab_ij(self,M): # #Sparse permutations # cols, rows = M.indices, self.unpack_indptr(M.indptr) # a,i,b,j = rows%self.Np, rows//self.Np,cols%self.Np, cols//self.Np # return coo_matrix((M.data, (a + b*self.Np,i + j*self.Nh)), shape=(self.Np**2, self.Nh**2)).tocsr() def perm_ind_ai_bj2a_bji(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,i,b,j = rows%self.Np, rows//self.Np,cols%self.Np, cols//self.Np return coo_matrix((M.data, (a, b + j*self.Np + i*self.Np*self.Nh)), shape=(self.Np, self.Np*self.Nh**2)).tocsr() def perm_ind_ib_aj2ai_bj(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) i,b,a,j = rows%self.Nh, rows//self.Nh,cols%self.Np, cols//self.Np return coo_matrix((M.data, (a + i*self.Np, b + j*self.Np)), shape=(self.Np*self.Nh, self.Np*self.Nh)).tocsr() def perm_ind_ai_bj2ab_ij(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a,i,b,j = rows%self.Np, rows//self.Np,cols%self.Np, cols//self.Np return coo_matrix((M.data, (a+ b*self.Np, i + j*self.Nh)), shape=(self.Np**2,self.Nh**2)).tocsr() def perm_ind_a_bij2ab_ij(self,M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) a = rows b = cols%self.Np i = ((cols-b)/self.Np)%self.Nh j = ((cols-b)/self.Np)//self.Nh return coo_matrix((M.data, (a+ b*self.Np, i + j*self.Nh)), shape=(self.Np**2,self.Nh**2)).tocsr() def perm_ind_i_jab2ab_ij(self, M): #Sparse permutations cols, rows = M.indices, self.unpack_indptr(M.indptr) i = rows j = cols%self.Nh a = ((cols-j)/self.Nh)%self.Np b = ((cols-j)/self.Nh)//self.Np return coo_matrix((M.data, (a+ b*self.Np, i + j*self.Nh)), shape=(self.Np**2,self.Nh**2)).tocsr() ############################################## ## ## Contributions to the CCD amplitude ## As in S-B, the contributions is defined as linear L (t) and quadratic Q (tt) ## The CCD amplitude equation then reads ## Tpphh = (v + L1 + L2 + L3 + Q1 + Q2 + Q3 + Q4)/eps ## ############################################## def sL1(self): self.L1 = self.Vpppp.dot(self.Tpphh) def sL2(self): self.L2 = (self.Vhhhh.T.dot(self.Tpphh.T)).T def sL3(self): self.L3 = self.TL3() def sQ1(self): self.Q1 = ((self.Vhhpp.dot(self.Tpphh)).T.dot(self.Tpphh.T)).T def sQ2(self): self.Q2 = self.TQ2(self.Tpphh, self.Vhhpp) def sQ3(self): self.Q3 = self.TQ3(self.Tpphh, self.Vhhpp) def sQ4(self): self.Q4 = self.TQ4(self.Tpphh, self.Vhhpp)#[a+b*Np, i + j*Nh] def TL3(self): #The L3 Contribution self.TL3_ = self.perm_ind_ai_bj(self.Tpphh) L3_ = (self.VL3.T.dot(self.TL3_.T)).T return self.perm_ind_ai_bj2ab_ij(L3_) def TQ2(self,T,V): #The Q2 contrubution TQ21 = self.perm_ind_ai_bj(self.Tpphh) TQ22 = self.perm_ind_bj_ai(self.Tpphh) Q2_ = (self.VQ2.dot(TQ22).T.dot(TQ21.T)).T return self.perm_ind_ai_bj2ab_ij(Q2_) def TQ3(self,T,V): #The Q3-contrubution TQ31 = self.perm_ind_i_jab(self.Tpphh) Q3_ = (self.VQ3.dot(TQ31).T.dot(TQ31.T)).T return self.perm_ind_i_jab2ab_ij(Q3_) def TQ4(self,T,V): #The Q4 contribution TQ41 = self.perm_ind_a_bji(self.Tpphh) Q4_ = (self.VQ4.dot(TQ41).T.dot(TQ41.T)).T return self.perm_ind_a_bij2ab_ij(Q4_) class optimV(): def __init__(self, bs): self.bs = bs self.Np = bs.nstates-bs.nparticles self.Nh = bs.nparticles self.Ns = bs.nstates self.Nm = self.bs.Nm #Max possible momentum self.Nm2 = self.Nm**2 self.Nm3 = self.Nm**3 self.Vpppp = zeros((self.Np**2, self.Np**2)) self.Vhhhh = zeros((self.Nh**2, self.Nh**2)) self.Vhhpp = zeros((self.Nh**2, self.Np**2)) self.Vhpph = zeros((self.Nh*self.Np, self.Nh*self.Np)) #self.Vhhhh = zeros((self.Nh**2, self.Nh**2)) self.setup_pppp() self.setup_hhhh() self.setup_hhpp() self.setup_hpph() #setup hp #seutp ph def ident(self,v): #A unique identifying integer for the momentum combinations return v[0] + v[1]*self.Nm + v[2]*self.Nm2 + v[3]*self.Nm3 def setup_pppp(self): t0 = clock() Np = self.Np combs_pp = 20000*ones((Np**2,Np**2), dtype = int) #arbitrary large number since identifier will include zeros idents = zeros((Np**2)) for p in range(Np): for q in range(Np): v = self.bs.states[p+self.Nh][1:5]+self.bs.states[q+self.Nh][1:5] iv = self.ident(v) combs_pp[p + q*Np, :] = iv #this one should not be zero, as most elements in array is already zero, or? idents[p+q*Np] = iv spectrum = unique(idents) combs_pp[combs_pp!=combs_pp.T]=20000 #identify each pair of quantum numbers sharing the same added momentum self.combs_pp = combs_pp t1 = clock() print "Time spent determining unique sortings:", t1-t0 self.setup_Vpppp() def setup_Vpppp(self): for P in range(self.Np**2): for Q in range(P,self.Np**2): if self.combs_pp[P,Q] != 20000: a,b = P%self.Np, P//self.Np c,d = Q%self.Np, Q//self.Np #if self.ident(self.bs.states[a][1:5]+self.bs.states[b][1:5])==self.ident(self.bs.states[c][1:5]+self.bs.states[d][1:5]): #if product(self.bs.states[a+Nh][1:5]+self.bs.states[b+Nh][1:5])==product(self.bs.states[c+Nh][1:5]+self.bs.states[d+Nh][1:5]): val = self.bs.v(a+self.Nh,b+self.Nh,c+self.Nh,d+self.Nh) self.Vpppp[P,Q] = val self.Vpppp[Q,P] = val def setup_hhhh(self): Nh = self.Nh combs_hh = 20000*ones((Nh**2,Nh**2), dtype = int) #arbitrary large number since identifier will include zeros idents = zeros((Nh**2)) for p in range(Nh): for q in range(Nh): v = self.bs.states[p][1:5]+self.bs.states[q][1:5] iv = self.ident(v) combs_hh[p + q*Nh, :] = iv #this one should not be zero, as most elements in array is already zero, or? idents[p+q*Nh] = iv spectrum = unique(idents) combs_hh[combs_hh!=combs_hh.T]=20000 #identify each pair of quantum numbers sharing the same added momentum self.combs_hh = combs_hh self.setup_Vhhhh() def setup_Vhhhh(self): for P in range(self.Nh**2): for Q in range(P,self.Nh**2): if self.combs_pp[P,Q] != 20000: i,j = P%self.Nh, P//self.Nh k,l = Q%self.Nh, Q//self.Nh #if self.ident(self.bs.states[a][1:5]+self.bs.states[b][1:5])==self.ident(self.bs.states[c][1:5]+self.bs.states[d][1:5]): #if product(self.bs.states[a+Nh][1:5]+self.bs.states[b+Nh][1:5])==product(self.bs.states[c+Nh][1:5]+self.bs.states[d+Nh][1:5]): val = self.bs.v(i,j,k,l) self.Vpppp[P,Q] = val self.Vpppp[Q,P] = val def setup_hhpp(self): Nh = self.Nh Np = self.Np combs_hh = 20000*ones((Nh**2,Np**2), dtype = int) #arbitrary large number since identifier will include zeros combs_pp = 20000*ones((Nh**2,Np**2), dtype = int) #arbitrary large number since identifier will include zeros #idents = zeros((Nh*Np)) for p in range(Np): for q in range(Np): v = self.bs.states[p+Nh][1:5]+self.bs.states[Nh + q][1:5] iv = self.ident(v) combs_pp[:,p + q*Np] = iv #this one should not be zero, as most elements in array is already zero, or? #idents[p+q*Np] = iv for p in range(Nh): for q in range(Nh): v = self.bs.states[p][1:5]+self.bs.states[q][1:5] iv = self.ident(v) combs_hh[p + q*Nh, :] = iv #this one should not be zero, as most elements in array is already zero, or? #idents[p+q*Np] = iv #spectrum = unique(idents) combs_hh[combs_pp!=combs_hh]=20000 #identify each pair of quantum numbers sharing the same added momentum self.combs_hp = combs_hh self.setup_Vhhpp() def setup_Vhhpp(self): for P in range(self.Nh**2): for Q in range(self.Np**2): if self.combs_hp[P,Q] != 20000: #Run trough common setup routine here i,j = P%self.Nh, P//self.Nh a,b = Q%self.Np, Q//self.Np val = self.bs.v(i,j,a+self.Nh,b+self.Nh) self.Vhhpp[P,Q] = val #self.Vpppp[Q,P] = val self.Vpphh = self.Vhhpp.T def setup_hpph(self): Nh = self.Nh Np = self.Np combs_hp = 20000*ones((Nh*Np,Nh*Np), dtype = int) #arbitrary large number since identifier will include zeros combs_ph = 20000*ones((Nh*Np,Nh*Np), dtype = int) #arbitrary large number since identifier will include zeros idents = zeros((Nh**2)) for p in range(Nh): for q in range(Np): v = self.bs.states[p][1:5]+self.bs.states[q+Nh][1:5] iv = self.ident(v) combs_hp[p + q*Nh, :] = iv #this one should not be zero, as most elements in array is already zero, or? combs_ph[:,q + p*Np] = iv #this one should not be zero, as most elements in array is already zero, or? #idents[p+q*Nh] = iv #spectrum = unique(idents) combs_hp[combs_hp!=combs_ph]=20000 #identify each pair of quantum numbers sharing the same added momentum self.combs_hpph = combs_hp self.setup_Vhpph() def setup_Vhpph(self): for P in range(self.Nh*self.Np): for Q in range(self.Np*self.Nh): if self.combs_hpph[P,Q] != 20000: i,a = P%self.Nh, P//self.Nh b,j = Q%self.Np, Q//self.Np #if self.ident(self.bs.states[a][1:5]+self.bs.states[b][1:5])==self.ident(self.bs.states[c][1:5]+self.bs.states[d][1:5]): #if product(self.bs.states[a+Nh][1:5]+self.bs.states[b+Nh][1:5])==product(self.bs.states[c+Nh][1:5]+self.bs.states[d+Nh][1:5]): val = self.bs.v(i,a,b,j) self.Vhpph[P,Q] = val #self.Vhpph[Q,P] = val class blocks(): def __init__(self, bs): self.bs = bs self.Np = bs.nstates-bs.nparticles self.Nh = bs.nparticles self.Ns = bs.nstates self.Nm = self.bs.Nm #Max possible momentum self.Vhhhh = zeros((self.Nh**2, self.Nh**2)) self.Vhhpp = zeros((self.Nh**2, self.Np**2)) self.Vphhp = zeros((self.Nh*self.Np, self.Nh*self.Np)) self.Vhpph = zeros((self.Nh*self.Np, self.Nh*self.Np)) self.Vpppp = zeros((self.Np**2, self.Np**2)) self.Vpphh = zeros((self.Np**2, self.Nh**2)) self.Tpphh = zeros((self.Np**2, self.Nh**2)) self.Epphh = zeros((self.Np**2, self.Nh**2)) #self.setup_matrices_optimized() #self.Tpphh = random.uniform(0,1,(self.Np**2, self.Nh**2)) self.setup_pppp() self.setup_hhhh() self.setup_hhpp() self.setup_hpph() def ident(self,v): #A unique identifying integer for the momentum combinations return v[0] + v[1]*self.bs.Nm + v[2]*self.bs.Nm**2 + v[3]*self.bs.Nm**3 def setup_pppp(self): Np = self.Np combs_pp = 20000*ones((Np**2,Np**2), dtype = int) #arbitrary large number since identifier will include zeros idents = zeros((Np**2)) for p in range(Np): for q in range(Np): v = self.bs.states[p+self.Nh][1:5]+self.bs.states[q+self.Nh][1:5] iv = self.ident(v) combs_pp[p + q*Np, :] = iv #this one should not be zero, as most elements in array is already zero, or? idents[p+q*Np] = iv combs_pp[combs_pp!=combs_pp.T]=20000 #identify each pair of quantum numbers sharing the same added momentum t = where(combs_pp!=2000) a = self.bs.states[t[0]%Np + self.Nh].T b = self.bs.states[t[0]//Np + self.Nh].T c = self.bs.states[t[1]%Np + self.Nh].T d = self.bs.states[t[1]//Np + self.Nh].T data = self.bs.V(a,b,c,d) #print data[data!=0] self.Vpppp = coo_matrix((data, (t[0], t[1])), shape=(self.Np**2, self.Np**2)).tocsr() def setup_hhhh(self): Np = self.Np Nh = self.Nh combs_hh = 20000*ones((Nh**2,Nh**2), dtype = int) #arbitrary large number since identifier will include zeros #idents = zeros((Nh**2)) for p in range(Nh): for q in range(Nh): v = self.bs.states[p][1:5]+self.bs.states[q][1:5] iv = self.ident(v) combs_hh[p + q*Nh, :] = iv #this one should not be zero, as most elements in array is already zero, or? #idents[p+q*Nh] = iv combs_hh[combs_hh!=combs_hh.T]=20000 #identify each pair of quantum numbers sharing the same added momentum t = where(combs_hh!=2000) a = self.bs.states[t[0]%Nh ].T b = self.bs.states[t[0]//Nh].T c = self.bs.states[t[1]%Nh ].T d = self.bs.states[t[1]//Nh].T data = self.bs.V(a,b,c,d) #print data[data!=0] self.Vhhhh = coo_matrix((data, (t[0], t[1])), shape=(self.Nh**2, self.Nh**2)).tocsr() def setup_hpph(self): Np = self.Np Nh = self.Nh combs_hp = 20000*ones((Nh*Np,Nh*Np), dtype = int) #arbitrary large number since identifier will include zeros combs_ph = 20000*ones((Nh*Np,Nh*Np), dtype = int) #arbitrary large number since identifier will include zeros #idents = zeros((Nh**2)) for p in range(Nh): for q in range(Np): v = self.bs.states[p][1:5]+self.bs.states[q+Nh][1:5] iv = self.ident(v) combs_hp[p + q*Nh, :] = iv #this one should not be zero, as most elements in array is already zero, or? combs_ph[:,q + p*Np ] = iv #idents[p+q*Nh] = iv combs_hp[combs_hp!=combs_ph.T]=20000 #identify each pair of quantum numbers sharing the same added momentum t = where(combs_hp!=2000) i = self.bs.states[t[0]%Nh ].T a = self.bs.states[t[0]//Nh + Nh].T b = self.bs.states[t[1]%Np + Nh].T j = self.bs.states[t[1]//Np].T data = self.bs.V(i,a,b,j) #print data[data!=0] self.Vhpph = coo_matrix((data, (t[0], t[1])), shape=(self.Nh*Np, self.Nh*Np)).tocsr() self.Vphhp = self.Vhpph.T def setup_hhpp(self): Np = self.Np Nh = self.Nh combs_hh = 20000*ones((Nh*Nh,Np*Np), dtype = int) #arbitrary large number since identifier will include zeros combs_pp = 20000*ones((Nh*Nh,Np*Np), dtype = int) #arbitrary large number since identifier will include zeros #idents = zeros((Nh**2)) for p in range(Nh): for q in range(Nh): v = self.bs.states[p][1:5]+self.bs.states[q][1:5] iv = self.ident(v) combs_hh[p + q*Nh, :] = iv #this one should not be zero, as most elements in array is already zero, or? #combs_ph[:,q + p*Np ] = iv #idents[p+q*Nh] = iv #idents = zeros((Nh**2)) for p in range(Np): for q in range(Np): v = self.bs.states[p+ Nh][1:5]+self.bs.states[q+Nh][1:5] iv = self.ident(v) combs_pp[:,p + q*Np] = iv #this one should not be zero, as most elements in array is already zero, or? #combs_ph[:,q + p*Np ] = iv #idents[p+q*Nh] = iv combs_hh[combs_hh!=combs_pp]=20000 #identify each pair of quantum numbers sharing the same added momentum t = where(combs_hh!=2000) i = self.bs.states[t[0]%Nh ].T j = self.bs.states[t[0]//Nh].T a = self.bs.states[t[1]%Np + Nh].T b = self.bs.states[t[1]//Np + Nh].T data = self.bs.V(i,j,a,b) #print data[data!=0] self.Vhhpp = coo_matrix((data, (t[0], t[1])), shape=(self.Nh**2, self.Np**2)).tocsr() self.Vpphh = self.Vhhpp.T def compare(Z1,Z2): Nx = len(Z1) Ny = len(Z1[0]) EQ = True NE = 0 toter = 0 er = 0 try: for i in range(Nx): for e in range(Ny): if Z1[i,e]!=Z2[i,e]: #print Z1[i,e],Z2[i,e] er = abs(Z1[i,e]-Z2[i,e]) if er>toter: toter = er NE = 1 except: print "NOT EQUAL, total failure" NE = 1 return NE, toter def Vpppp_check(Z1, bs): Np = bs.nstates-bs.nparticles Nh = bs.nparticles for a in range(Np): for b in range(Np): for c in range(Np): for d in range(Np): if Z1[a + b*Np, c+ d*Np] != bs.v(a+Nh,b+Nh,c+Nh,d+Nh): print a,b,c,d, Z1[a + b*Np, c+ d*Np], bs.v(a+Nh,b+Nh,c+Nh,d+Nh) def Vhpph_check(Z1, bs): Np = bs.nstates-bs.nparticles Nh = bs.nparticles for i in range(Nh): for a in range(Np): for b in range(Np): for j in range(Nh): if Z1[i + a*Nh, b+ j*Np] != bs.v(i,a+Nh,b+Nh,j): print i,a,b,j, Z1[i + a*Nh, b+ j*Np], bs.v(i,a+Nh,b+Nh,j) def Vphhp_check(Z1, bs): Np = bs.nstates-bs.nparticles Nh = bs.nparticles for i in range(Nh): for a in range(Np): for b in range(Np): for j in range(Nh): if Z1[a + i*Np, j+ b*Nh] != bs.v(a+Nh,i,j,b+Nh): print i,a,b,j, Z1[a + i*Np, j+ b*Nh], bs.v(a+Nh,i,j,b+Nh) def Vhhpp_check(Z1, bs): Np = bs.nstates-bs.nparticles Nh = bs.nparticles for i in range(Nh): for a in range(Np): for b in range(Np): for j in range(Nh): if Z1[i + j*Nh, a+ b*Np] != bs.v(i,j,a+Nh,b+Nh): print i,j,a,b, Z1[i + j*Nh, a+ b*Np], bs.v(i,j,a+Nh,b+Nh) t0 = clock() tb = electronbasis(2,1.0,14) t1 = clock() print "Time spent on initializing basis:", t1-t0 print "=====" print "Number of states :", tb.nstates print "Number of particles:", tb.nparticles print "=====" t0 = clock() Q = CCD(tb) t1 = clock() print "Time spent on initializing solver:", t1-t0 #B = optimV(tb) t0 = clock() """ B = blocks(tb) t2 = clock() B.setup_hhpp() print "Time spent initializing vectorized interaction:", t2-t0 Vhhpp_check(B.Vhhpp.toarray(), tb) """ #Q.Vpppp = B.Vpppp for i in range(20): Q.advance() """ print "pppp:", compare(Q.Vpppp.toarray(), B.Vpppp.toarray()) print compare(Q.Vhhpp.toarray(), B.Vhhpp) print compare(Q.Vpphh.toarray(), B.Vhhpp.T) print compare(Q.Vhpph.toarray(), B.Vhpph) #Q.Vpppp = csr_matrix(B.Vpppp) figure(1) imshow(B.Vpppp.toarray()) show() figure(2) imshow(Q.Vpppp.toarray()) show() """
cc0-1.0
-4,270,726,599,347,849,700
39.542596
147
0.487121
false
2.858868
false
false
false
foauth/oauth-proxy
setuser.py
1
1376
import getpass import os import sys from werkzeug.datastructures import MultiDict import models import forms # Make sure the database gets installed properly models.db.create_all() values = MultiDict() form = forms.SetUser(values) values['email'] = sys.argv[1] if len(sys.argv) > 1 else raw_input('%s: ' % form.email.label.text) form = forms.SetUser(values) form.validate() if form.email.errors: sys.exit('\n'.join(' ! %s' % e for e in form.email.errors)) if models.User.query.filter_by(email=form.email.data).count(): print '%s already exists, setting the password' % form.email.data values['password'] = getpass.getpass('%s: ' % form.password.label.text) form = forms.SetUser(values) form.validate() if form.password.errors: sys.exit('\n'.join(' ! %s' % e for e in form.password.errors)) values['retype'] = getpass.getpass('%s: ' % form.retype.label.text) form = forms.SetUser(values) form.validate() if form.retype.errors: sys.exit('\n'.join(' ! %s' % e for e in form.retype.errors)) user = models.User.query.filter_by(email=form.email.data).first() if user: user.set_password(form.password.data) msg = 'Updated password for %s' % user.email else: user = models.User(email=form.email.data, password=form.password.data) msg = 'Created account for %s' % user.email models.db.session.add(user) models.db.session.commit() print msg
bsd-3-clause
-4,924,099,926,810,548,000
26.52
97
0.704942
false
3.0783
false
false
false
cloudbase/coriolis
coriolis/osmorphing/osdetect/oracle.py
1
1061
# Copyright 2020 Cloudbase Solutions Srl # All Rights Reserved. import re from coriolis import constants from coriolis.osmorphing.osdetect import base ORACLE_DISTRO_IDENTIFIER = "Oracle Linux" class OracleOSDetectTools(base.BaseLinuxOSDetectTools): def detect_os(self): info = {} oracle_release_path = "etc/oracle-release" if self._test_path(oracle_release_path): release_info = self._read_file( oracle_release_path).decode().splitlines() if release_info: m = re.match(r"^(.*) release ([0-9].*)$", release_info[0].strip()) if m: distro, version = m.groups() info = { "os_type": constants.OS_TYPE_LINUX, "distribution_name": ORACLE_DISTRO_IDENTIFIER, "release_version": version, "friendly_release_name": "%s Version %s" % ( distro, version)} return info
agpl-3.0
-3,441,065,869,275,441,700
32.15625
70
0.526861
false
4.278226
false
false
false
gensmusic/test
l/python/test/json-to-object/json-to-object.py
1
1287
#!/usr/bin/python #coding:utf-8 j = '{"action": "print", "method": "onData", "data": {"key1" : 1, "key2":"value2"} }' import json class Payload(object): def __init__(self, j): self.__dict__ = json.loads(j) p = Payload(j) print '-' * 30 print dir(p) print '-' * 30 print p.action print p.method print p.data print type(p.data) data = dict(p.data) print 'new data:', data j2 = '{ "identity" : "dafei", "alert" : "you have message", "badge":1, "payload": { "k1":"v1", "k2" : "v2"} }' p2 = Payload(j2) print dir(p2) print type(p2.payload) print p2.payload print '-' *50 class ParseBase(object): """docstring for ParseBase""" def __init__(self): super(ParseBase, self).__init__() self.http_status_code = 0 def parse(self, j): dict_data = json.loads(j) for key in self.__dict__: print 'key:{}'.format(key) if not key.startswith('http'): value = dict_data.get(key) self.__dict__[key] = value class Http(ParseBase): """docstring for Http""" def __init__(self): super(Http, self).__init__() self.name = None self.id = None h = Http() h.parse('{ "name" : "大飞", "id":1 }') print dir(h) print h.http_status_code print h.name print h.id
gpl-2.0
-2,800,019,684,156,221,000
21.508772
111
0.554949
false
2.929224
false
false
false
intfrr/SoCo
soco/data_structures.py
1
38123
# -*- coding: utf-8 -*- # pylint: disable=star-args, too-many-arguments, fixme """ This module contains classes for handling DIDL-Lite metadata. This is the XML schema used by Sonos for carrying metadata representing many items such as tracks, playlists, composers, albums etc. """ # It tries to follow the class hierarchy provided by the DIDL-Lite schema # described in the UPnP Spec, especially that for the ContentDirectory Service # Although Sonos uses ContentDirectory v1, the document for v2 is more helpful: # http://upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf from __future__ import unicode_literals import sys import warnings warnings.simplefilter('always', DeprecationWarning) import textwrap from .xml import XML, ns_tag from .exceptions import DIDLMetadataError from .utils import really_unicode ############################################################################### # MISC HELPER FUNCTIONS # ############################################################################### def to_didl_string(*args): """ Convert any number of DIDLObjects to a unicode xml string. Args: *args (DidlObject): One or more DidlObject (or subclass) instances Returns: str: A unicode string of the form <DIDL-Lite ...>...</DIDL-Lite> representing the instances """ didl = XML.Element( 'DIDL-Lite', { 'xmlns': "urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/", 'xmlns:dc': "http://purl.org/dc/elements/1.1/", 'xmlns:upnp': "urn:schemas-upnp-org:metadata-1-0/upnp/", }) for arg in args: didl.append(arg.to_element()) if sys.version_info[0] == 2: return XML.tostring(didl) else: return XML.tostring(didl, encoding='unicode') def from_didl_string(string): """ Convert a unicode xml string to a list of DIDLObjects. Arg: string (str): A unicode string containing an xml representation of one or more DIDL-Lite items (in the form <DIDL-Lite ...> ...</DIDL-Lite> ) Returns: list: A list of one or more instances of DIDLObject or a subclass """ items = [] root = XML.fromstring(string.encode('utf-8')) for elt in root: if elt.tag.endswith('item') or elt.tag.endswith('container'): item_class = elt.findtext(ns_tag('upnp', 'class')) try: cls = _DIDL_CLASS_TO_CLASS[item_class] except KeyError: raise DIDLMetadataError("Unknown UPnP class: %s" % item_class) items.append(cls.from_element(elt)) else: # <desc> elements are allowed as an immediate child of <DIDL-Lite> # according to the spec, but I have not seen one there in Sonos, so # we treat them as illegal. May need to fix this if this # causes problems. raise DIDLMetadataError("Illegal child of DIDL element: <%s>" % elt.tag) return items ############################################################################### # DIDL RESOURCE # ############################################################################### class DidlResource(object): """ Identifies a resource, typically some type of a binary asset, such as a song. A 'res' element contains a uri that identifies the resource. """ # Adapted from a class taken from the Python Brisa project - MIT licence. # pylint: disable=too-many-instance-attributes def __init__(self, uri, protocol_info, import_uri=None, size=None, duration=None, bitrate=None, sample_frequency=None, bits_per_sample=None, nr_audio_channels=None, resolution=None, color_depth=None, protection=None): """ Constructor for the Resource class. Args: uri (str): value of the res tag, typically a URI. It MUST be properly escaped URIs as described in RFC 239 protocol_info (str): A string in the form a:b:c:d that identifies the streaming or transport protocol for transmitting the resource. A value is required. For more information see section 2.5.2 at http://upnp.org/specs/av/UPnP-av-ConnectionManager-v1-Service.pdf import_uri (str, optional): uri locator for resource update size (int, optional): size in bytes duration (str, optional): duration of the playback of the res at normal speed (H*:MM:SS:F* or H*:MM:SS:F0/F1) bitrate (int, optional): bitrate in bytes/second sample_frequency (int, optional): sample frequency in Hz bits_per_sample (int, optional): bits per sample nr_audio_channels (int, optional): number of audio channels resolution (str, optional): resolution of the resource (X*Y) color_depth (int, optional): color depth in bits protection (str, optional): statement of protection type """ # Of these attributes, only uri, protocol_info and duration have been # spotted 'in the wild' self.uri = uri # Protocol info is in the form a:b:c:d - see # sec 2.5.2 at # http://upnp.org/specs/av/UPnP-av-ConnectionManager-v1-Service.pdf self.protocol_info = protocol_info self.import_uri = import_uri self.size = size self.duration = duration self.bitrate = bitrate self.sample_frequency = sample_frequency self.bits_per_sample = bits_per_sample self.nr_audio_channels = nr_audio_channels self.resolution = resolution self.color_depth = color_depth self.protection = protection @classmethod def from_element(cls, element): """ Set the resource properties from a <res> element. Arg: element (Element): An ElementTree Element """ def _int_helper(name): """Try to convert the name attribute to an int, or None.""" result = element.get(name) if result is not None: try: return int(result) except ValueError: raise ValueError( 'Could not convert {0} to an integer'.format(name)) else: return None content = {} # required content['protocol_info'] = element.get('protocolInfo') if content['protocol_info'] is None: raise Exception('Could not create Resource from Element: ' 'protocolInfo not found (required).') # Optional content['import_uri'] = element.get('importUri') content['size'] = _int_helper('size') content['duration'] = element.get('duration') content['bitrate'] = _int_helper('bitrate') content['sample_frequency'] = _int_helper('sampleFrequency') content['bits_per_sample'] = _int_helper('bitsPerSample') content['nr_audio_channels'] = _int_helper('nrAudioChannels') content['resolution'] = element.get('resolution') content['color_depth'] = _int_helper('colorDepth') content['protection'] = element.get('protection') content['uri'] = element.text return cls(**content) def __repr__(self): return '<{0} \'{1}\' at {2}>'.format(self.__class__.__name__, self.uri, hex(id(self))) def __str__(self): return self.__repr__() def to_element(self): """ Return an ElementTree Element based on this resource.""" if not self.protocol_info: raise Exception('Could not create Element for this resource: ' 'protocolInfo not set (required).') root = XML.Element('res') # Required root.attrib['protocolInfo'] = self.protocol_info # Optional if self.import_uri is not None: root.attrib['importUri'] = self.import_uri if self.size is not None: root.attrib['size'] = str(self.size) if self.duration is not None: root.attrib['duration'] = self.duration if self.bitrate is not None: root.attrib['bitrate'] = str(self.bitrate) if self.sample_frequency is not None: root.attrib['sampleFrequency'] = str(self.sample_frequency) if self.bits_per_sample is not None: root.attrib['bitsPerSample'] = str(self.bits_per_sample) if self.nr_audio_channels is not None: root.attrib['nrAudioChannels'] = str(self.nr_audio_channels) if self.resolution is not None: root.attrib['resolution'] = self.resolution if self.color_depth is not None: root.attrib['colorDepth'] = str(self.color_depth) if self.protection is not None: root.attrib['protection'] = self.protection root.text = self.uri return root def to_dict(self, remove_nones=False): """Return a dictionary representation of the DidlResource Args: remove_nones (bool): Optionally remove dictionary elements when their value is None. """ content = { 'uri': self.uri, 'protocol_info': self.protocol_info, 'import_uri': self.import_uri, 'size': self.size, 'duration': self.duration, 'bitrate': self.bitrate, 'sample_frequency': self.sample_frequency, 'bits_per_sample': self.bits_per_sample, 'nr_audio_channels': self.nr_audio_channels, 'resolution': self.resolution, 'color_depth': self.color_depth, 'protection': self.protection, } if remove_nones: # delete any elements that have a value of None to optimize size # of the returned structure nones = [k for k in content if content[k] is None] for k in nones: del content[k] return content @classmethod def from_dict(cls, content): """Create an instance from a dict. An alternative constructor. Equivalent to DidlResource(**content). Arg: content (dict): Dict containing metadata information. Required and valid arguments are the same as for the ``__init__`` method. """ return cls(**content) def __eq__(self, resource): """Compare with another ``resource``. Returns: (bool): True if items are equal, else False """ if not isinstance(resource, DidlResource): return False return self.to_dict() == resource.to_dict() ############################################################################### # BASE OBJECTS # ############################################################################### # a mapping which will be used to look up the relevant class from the # DIDL item class _DIDL_CLASS_TO_CLASS = {} class DidlMetaClass(type): """Meta class for all Didl objects.""" def __new__(mcs, name, bases, attrs): """Create a new instance. Args: name: Name of the class bases: Base classes (tuple) attrs: Attributes defined for the class """ new_cls = super(DidlMetaClass, mcs).__new__(mcs, name, bases, attrs) # Register all subclasses with the global _DIDL_CLASS_TO_CLASS mapping item_class = attrs.get('item_class', None) if item_class is not None: _DIDL_CLASS_TO_CLASS[item_class] = new_cls return new_cls # Py2/3 compatible way of declaring the metaclass class DidlObject(DidlMetaClass(str('DidlMetaClass'), (object,), {})): """Abstract base class for all DIDL-Lite items. You should not need to instantiate this. Attributes: item_class (str): The DIDL Lite class for this object tag (str): The XML element tag name used for this instance _translation (dict): A dict used to translate between instance attribute names and XML tags/namespaces. It also serves to define the allowed tags/attributes for this instance. Overridden and extended by subclasses. """ item_class = 'object' tag = 'item' # key: attribute_name: (ns, tag) _translation = { 'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus'), } def __init__(self, title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs): r"""Construct and initialize a DidlObject. Args: title (str): The title for the item parent_id (str): The parent ID for the item item_id (str): The ID for the item restricted (bool): Whether the item can be modified resources (list): A list of resources for this object desc (str): A didl descriptor, default RINCON_AssociatedZPUDN. This is not the same as "description"! It is used for identifying the relevant music service **kwargs: Extra metadata. What is allowed depends on the _translation class attribute, which in turn depends on the DIDL class """ # All didl objects *must* have a title, a parent_id and an item_id # so we specify these as required args in the constructor signature # to ensure that we get them. Other didl object properties are # optional, so can be passed as kwargs. # The content of _translation is adapted from the list in table C at # http://upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service.pdf # Not all properties referred to there are catered for, since Sonos # does not use some of them. # pylint: disable=super-on-old-class super(DidlObject, self).__init__() self.title = title self.parent_id = parent_id self.item_id = item_id # Restricted is a compulsory attribute, but is almost always True for # Sonos. (Only seen it 'false' when browsing favorites) self.restricted = restricted # Resources is multi-valued, and dealt with separately self.resources = [] if resources is None else resources # According to the spec, there may be one or more desc values. Sonos # only seems to use one, so we won't bother with a list self.desc = desc for key, value in kwargs.items(): # For each attribute, check to see if this class allows it if key not in self._translation: raise ValueError( 'The key \'{0}\' is not allowed as an argument. Only ' 'these keys are allowed: parent_id, item_id, title, ' 'restricted, resources, desc' ' {1}'.format(key, ', '.join(self._translation.keys()))) # It is an allowed attribute. Set it as an attribute on self, so # that it can be accessed as Classname.attribute in the normal # way. setattr(self, key, value) @classmethod def from_element(cls, element): """Create an instance of this class from an ElementTree xml Element. An alternative constructor. The element must be a DIDL-Lite <item> or <container> element, and must be properly namespaced. Arg: xml (Element): An :py:class:`xml.etree.ElementTree.Element` object. """ # Check we have the right sort of element. tag can be an empty string # which indicates that any tag is allowed (see eg the musicAlbum DIDL # class) if not element.tag.endswith(cls.tag): raise DIDLMetadataError( "Wrong element. Expected '<{0}>'," " got '<{1}>'".format(cls.tag, element.tag)) # and that the upnp matches what we are expecting item_class = element.find(ns_tag('upnp', 'class')).text if item_class != cls.item_class: raise DIDLMetadataError( "UPnP class is incorrect. Expected '{0}'," " got '{1}'".format(cls.item_class, item_class)) # parent_id, item_id and restricted are stored as attibutes on the # element item_id = really_unicode(element.get('id', None)) if item_id is None: raise DIDLMetadataError("Missing id attribute") parent_id = really_unicode(element.get('parentID', None)) if parent_id is None: raise DIDLMetadataError("Missing parentID attribute") restricted = element.get('restricted', None) if restricted is None: raise DIDLMetadataError("Missing restricted attribute") restricted = True if restricted in [1, 'true', 'True'] else False # There must be a title. According to spec, it should be the first # child, but Sonos does not abide by this title_elt = element.find(ns_tag('dc', 'title')) if title_elt is None: raise DIDLMetadataError( "Missing title element") title = really_unicode(title_elt.text) # Deal with any resource elements resources = [] for res_elt in element.findall(ns_tag('', 'res')): resources.append( DidlResource.from_element(res_elt)) # and the desc element (There is only one in Sonos) desc = element.findtext(ns_tag('', 'desc')) # Get values of the elements listed in _translation and add them to # the content dict content = {} for key, value in cls._translation.items(): result = element.findtext(ns_tag(*value)) if result is not None: # We store info as unicode internally. content[key] = really_unicode(result) # Convert type for original track number if content.get('original_track_number') is not None: content['original_track_number'] = \ int(content['original_track_number']) # Now pass the content dict we have just built to the main # constructor, as kwargs, to create the object return cls(title=title, parent_id=parent_id, item_id=item_id, restricted=restricted, resources=resources, desc=desc, **content) @classmethod def from_dict(cls, content): """Create an instance from a dict. An alternative constructor. Equivalent to DidlObject(**content). Arg: content (dict): Dict containing metadata information.Required and valid arguments are the same as for the ``__init__`` method. """ # Do we really need this constructor? Could use DidlObject(**content) # instead. return cls(**content) def __eq__(self, playable_item): """Compare with another ``playable_item``. Returns: (bool): True if items are equal, else False """ if not isinstance(playable_item, DidlObject): return False return self.to_dict() == playable_item.to_dict() def __ne__(self, playable_item): """Compare with another ``playable_item``. Returns: (bool): True if items are unequal, else False """ if not isinstance(playable_item, DidlObject): return True return self.to_dict() != playable_item.to_dict() def __repr__(self): """Return the repr value for the item. The repr is of the form:: <class_name 'middle_part[0:40]' at id_in_hex> where middle_part is either the title item in content, if it is set, or ``str(content)``. The output is also cleared of non-ascii characters. """ # 40 originates from terminal width (78) - (15) for address part and # (19) for the longest class name and a little left for buffer if self.title is not None: middle = self.title.encode('ascii', 'replace')[0:40] else: middle = str(self.to_dict).encode('ascii', 'replace')[0:40] return '<{0} \'{1}\' at {2}>'.format(self.__class__.__name__, middle, hex(id(self))) def __str__(self): """Return the str value for the item:: <class_name 'middle_part[0:40]' at id_in_hex> where middle_part is either the title item in content, if it is set, or ``str(content)``. The output is also cleared of non-ascii characters. """ return self.__repr__() def to_dict(self): """Return the dict representation of the instance.""" content = {} # Get the value of each attribute listed in _translation, and add it # to the content dict for key in self._translation: if hasattr(self, key): content[key] = getattr(self, key) # also add parent_id, item_id, restricted, title and resources because # they are not listed in _translation content['parent_id'] = self.parent_id content['item_id'] = self.item_id content['restricted'] = self.restricted content['title'] = self.title if self.resources != []: content['resources'] = self.resources content['desc'] = self.desc return content def to_element(self, include_namespaces=False): """Return an ElementTree Element representing this instance. Arg: include_namespaces (bool, optional): If True, include xml namespace attributes on the root element Return: An ElementTree Element .. code :: xml <DIDL-Lite ..NS_INFO..> <item id="...self.item_id..." parentID="...cls.parent_id..." restricted="true"> <dc:title>...self.title...</dc:title> <upnp:class>...self.item_class...</upnp:class> <desc id="cdudn" nameSpace="urn:schemas-rinconnetworks-com:metadata-1-0/"> RINCON_AssociatedZPUDN </desc> </item> </DIDL-Lite> """ elt_attrib = {} if include_namespaces: elt_attrib.update({ 'xmlns': "urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/", 'xmlns:dc': "http://purl.org/dc/elements/1.1/", 'xmlns:upnp': "urn:schemas-upnp-org:metadata-1-0/upnp/", }) elt_attrib.update({ 'parentID': self.parent_id, 'restricted': 'true' if self.restricted else 'false', 'id': self.item_id }) elt = XML.Element(self.tag, elt_attrib) # Add the title, which should always come first, according to the spec XML.SubElement(elt, 'dc:title').text = self.title # Add in any resources for resource in self.resources: elt.append(resource.to_element()) # Add the rest of the metadata attributes (i.e all those listed in # _translation) as sub-elements of the item element. for key, value in self._translation.items(): if hasattr(self, key): # Some attributes have a namespace of '', which means they # are in the default namespace. We need to handle those # carefully tag = "%s:%s" % value if value[0] else "%s" % value[1] XML.SubElement(elt, tag).text = ("%s" % getattr(self, key)) # Now add in the item class XML.SubElement(elt, 'upnp:class').text = self.item_class # And the desc element desc_attrib = {'id': 'cdudn', 'nameSpace': 'urn:schemas-rinconnetworks-com:metadata-1-0/'} desc_elt = XML.SubElement(elt, 'desc', desc_attrib) desc_elt.text = self.desc return elt ############################################################################### # OBJECT.ITEM HIERARCHY # ############################################################################### class DidlItem(DidlObject): """A basic content directory item.""" # The spec allows for an option 'refID' attribute, but we do not handle it item_class = 'object.item' # _translation = DidlObject._translation.update({ ...}) # does not work, but doing it in two steps does _translation = DidlObject._translation.copy() _translation.update( { 'stream_content': ('r', 'streamContent'), 'radio_show': ('r', 'radioShowMd'), 'album_art_uri': ('upnp', 'albumArtURI'), } ) class DidlAudioItem(DidlItem): """An audio item.""" item_class = 'object.item.audioItem' _translation = DidlItem._translation.copy() _translation.update( { 'genre': ('upnp', 'genre'), 'description': ('dc', 'description'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'language': ('dc', 'language'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), } ) # Browsing Sonos Favorites produces some odd looking DIDL-Lite. The object # class is 'object.itemobject.item.sonos-favorite', which is probably a typo # in Sonos' code somewhere. # Here is an example: # <?xml version="1.0" ?> # <DIDL-Lite xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/" # xmlns:dc="http://purl.org/dc/elements/1.1/" # xmlns:r="urn:schemas-rinconnetworks-com:metadata-1-0/" # xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"> # <item id="FV:2/13" parentID="FV:2" restricted="false"> # <dc:title>Shake It Off</dc:title> # <upnp:class>object.itemobject.item.sonos-favorite</upnp:class> # <r:ordinal>4</r:ordinal> # <res protocolInfo="sonos.com-spotify:*:audio/x-spotify:*"> # x-sonos-spotify:spotify%3atrack%3a7n.......?sid=9&amp;flags=32</res> # <upnp:albumArtURI>http://o.scd.....</upnp:albumArtURI> # <r:type>instantPlay</r:type> # <r:description>By Taylor Swift</r:description> # <r:resMD>&lt;DIDL-Lite xmlns:dc=&quot; # http://purl.org/dc/elements/1.1/&quot; # xmlns:upnp=&quot;urn:schemas-upnp-org:metadata-1-0/upnp/&quot; # xmlns:r=&quot;urn:schemas-rinconnetworks-com:metadata-1-0/&quot; # xmlns=&quot;urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/&quot;&gt; # &lt;item id=&quot;00030020spotify%3atrack%3a7n9Q6b...74uCtajkddPt&quot; # parentID=&quot;0006006ctoplist%2ftracks%2fregion%2fGB&quot; # restricted=&quot;true&quot;&gt;&lt;dc:title&gt;Shake It Off # &lt;/dc:title&gt;&lt;upnp:class&gt;object.item.audioItem.musicTrack # &lt;/upnp:class&gt;&lt;desc id=&quot;cdudn&quot; # nameSpace=&quot;urn:schemas-rinconnetworks-com:metadata-1-0/&quot;&gt; # SA_RINCON2311_XXXXX&lt;/desc&gt; # &lt;/item&gt; # &lt;/DIDL-Lite&gt; # </r:resMD> # </item> # </DIDL-Lite> # Note the r:ordinal, r:type; r:description, r:resMD elements which are not # seen (?) anywhere else # We're ignoring this for the moment! class DidlMusicTrack(DidlAudioItem): """Class that represents a music library track. """ item_class = 'object.item.audioItem.musicTrack' # name: (ns, tag) _translation = DidlAudioItem._translation.copy() _translation.update( { 'artist': ('upnp', 'artist'), 'album': ('upnp', 'album'), 'original_track_number': ('upnp', 'originalTrackNumber'), 'playlist': ('upnp', 'playlist'), 'contributor': ('dc', 'contributor'), 'date': ('dc', 'date'), } ) class DidlAudioBroadcast(DidlAudioItem): """Class that represents an audio broadcast.""" item_class = 'object.item.audioItem.audioBroadcast' _translation = DidlAudioItem._translation.copy() _translation.update( { 'region': ('upnp', 'region'), 'radio_call_sign': ('upnp', 'radioCallSign'), 'radio_station_id': ('upnp', 'radioStationID'), 'channel_nr': ('upnp', 'channelNr'), } ) class DidlAudioBroadcastFavorite(DidlAudioBroadcast): """Class that represents an audio broadcast sonos favorite.""" # Note: The sonos-favorite part of the class spec obviously isn't part of # the DIDL spec, so just assume that it has the same definition as the # regular object.item.audioItem.audioBroadcast item_class = 'object.item.audioItem.audioBroadcast.sonos-favorite' ############################################################################### # OBJECT.CONTAINER HIERARCHY # ############################################################################### class DidlContainer(DidlObject): """Class that represents a music library container. """ item_class = 'object.container' tag = 'container' # We do not implement createClass or searchClass. Not used by Sonos?? # TODO: handle the 'childCount' element. class DidlAlbum(DidlContainer): """A content directory album.""" item_class = 'object.container.album' # name: (ns, tag) _translation = DidlContainer._translation.copy() _translation.update( { 'description': ('dc', 'description'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'contributor': ('dc', 'contributor'), 'date': ('dc', 'date'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), } ) class DidlMusicAlbum(DidlAlbum): """Class that represents a music library album. """ item_class = 'object.container.album.musicAlbum' # According to the spec, all musicAlbums should be represented in # XML by a <container> tag. Sonos sometimes uses <container> and # sometimes uses <item>. Set the tag type to '' to indicate that # either is allowed. tag = '' # name: (ns, tag) # pylint: disable=protected-access _translation = DidlAudioItem._translation.copy() _translation.update( { 'artist': ('upnp', 'artist'), 'genre': ('upnp', 'genre'), 'producer': ('upnp', 'producer'), 'toc': ('upnp', 'toc'), 'album_art_uri': ('upnp', 'albumArtURI'), } ) class DidlMusicAlbumFavorite(DidlAlbum): """Class that represents a Sonos favorite music library album. This class is not part of the DIDL spec and is Sonos specific. """ item_class = 'object.container.album.musicAlbum.sonos-favorite' # Despite the fact that the item derives from object.container, it's # XML does not include a <container> tag, but an <item> tag. This seems # to be an error by Sonos. tag = 'item' class DidlMusicAlbumCompilation(DidlAlbum): """Class that represents a Sonos favorite music library compilation. This class is not part of the DIDL spec and is Sonos specific. """ # These classes appear when browsing the library and Sonos has been set # to group albums using compilations. # See https://github.com/SoCo/SoCo/issues/280 item_class = 'object.container.album.musicAlbum.compilation' tag = 'container' class DidlPerson(DidlContainer): """A content directory class representing a person.""" item_class = 'object.container.person' _translation = DidlContainer._translation.copy() _translation.update( { 'language': ('dc', 'language'), } ) class DidlComposer(DidlPerson): """Class that represents a music library composer.""" # Not in the DIDL-Lite spec. Sonos specific?? item_class = 'object.container.person.composer' class DidlMusicArtist(DidlPerson): """Class that represents a music library artist.""" item_class = 'object.container.person.musicArtist' # name: (ns, tag) _translation = DidlPerson._translation.copy() _translation.update( { 'genre': ('upnp', 'genre'), 'artist_discography_uri': ('upnp', 'artistDiscographyURI'), } ) class DidlAlbumList(DidlContainer): """Class that represents a music library album list.""" # This does not appear (that I can find) in the DIDL-Lite specs. # Presumably Sonos specific item_class = 'object.container.albumlist' class DidlPlaylistContainer(DidlContainer): """Class that represents a music library play list.""" item_class = 'object.container.playlistContainer' # name: (ns, tag) _translation = DidlContainer._translation.copy() _translation.update( { 'artist': ('upnp', 'artist'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'contributor': ('dc', 'contributor'), 'description': ('dc', 'description'), 'date': ('dc', 'date'), 'language': ('dc', 'language'), 'rights': ('dc', 'rights'), } ) class DidlSameArtist(DidlPlaylistContainer): """Class that represents all tracks by a single artist. This type is returned by browsing an artist or a composer """ # Not in the DIDL-Lite spec. Sonos specific? item_class = 'object.container.playlistContainer.sameArtist' class DidlGenre(DidlContainer): """A content directory class representing a general genre.""" item_class = 'object.container.genre' # name: (ns, tag) _translation = DidlContainer._translation.copy() _translation.update( { 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'description': ('dc', 'description'), } ) class DidlMusicGenre(DidlGenre): """Class that represents a music genre.""" item_class = 'object.container.genre.musicGenre' ############################################################################### # SPECIAL LISTS # ############################################################################### class ListOfMusicInfoItems(list): """Abstract container class for a list of music information items.""" def __init__(self, items, number_returned, total_matches, update_id): super(ListOfMusicInfoItems, self).__init__(items) self._metadata = { 'item_list': list(items), 'number_returned': number_returned, 'total_matches': total_matches, 'update_id': update_id, } def __getitem__(self, key): """Legacy get metadata by string key or list item(s) by index. DEPRECATION: This overriding form of __getitem__ will be removed in the 3rd release after 0.8. The metadata can be fetched via the named attributes """ if key in self._metadata: if key == 'item_list': message = """ Calling [\'item_list\'] on search results to obtain the objects is no longer necessary, since the object returned from searches now is a list. This deprecated way of getting the items will be removed from the third release after 0.8.""" else: message = """ Getting metadata items by indexing the search result like a dictionary [\'{0}\'] is deprecated. Please use the named attribute {1}.{0} instead. The deprecated way of retrieving the metadata will be removed from the third release after 0.8""".format(key, self.__class__.__name__) message = textwrap.dedent(message).replace('\n', ' ').lstrip() warnings.warn(message, DeprecationWarning, stacklevel=2) return self._metadata[key] else: return super(ListOfMusicInfoItems, self).__getitem__(key) @property def number_returned(self): """The number of returned matches.""" return self._metadata['number_returned'] @property def total_matches(self): """The number of total matches.""" return self._metadata['total_matches'] @property def update_id(self): """The update ID.""" return self._metadata['update_id'] class SearchResult(ListOfMusicInfoItems): """Container class that represents a search or browse result. (browse is just a special case of search) """ def __init__(self, items, search_type, number_returned, total_matches, update_id): super(SearchResult, self).__init__( items, number_returned, total_matches, update_id ) self._metadata['search_type'] = search_type def __repr__(self): return '{0}(items={1}, search_type=\'{2}\')'.format( self.__class__.__name__, super(SearchResult, self).__repr__(), self.search_type) @property def search_type(self): """The search type.""" return self._metadata['search_type'] class Queue(ListOfMusicInfoItems): """Container class that represents a queue.""" def __init__(self, items, number_returned, total_matches, update_id): super(Queue, self).__init__( items, number_returned, total_matches, update_id ) def __repr__(self): return '{0}(items={1})'.format( self.__class__.__name__, super(Queue, self).__repr__(), )
mit
8,021,834,686,697,248,000
35.48134
81
0.572069
false
4.151476
false
false
false
yeyanchao/calibre
src/calibre/gui2/library/views.py
1
39819
#!/usr/bin/env python # vim:fileencoding=UTF-8:ts=4:sw=4:sta:et:sts=4:ai __license__ = 'GPL v3' __copyright__ = '2010, Kovid Goyal <kovid@kovidgoyal.net>' __docformat__ = 'restructuredtext en' import os, itertools, operator from functools import partial from future_builtins import map from collections import OrderedDict from PyQt4.Qt import (QTableView, Qt, QAbstractItemView, QMenu, pyqtSignal, QModelIndex, QIcon, QItemSelection, QMimeData, QDrag, QApplication, QPoint, QPixmap, QUrl, QImage, QPainter, QColor, QRect) from calibre.gui2.library.delegates import (RatingDelegate, PubDateDelegate, TextDelegate, DateDelegate, CompleteDelegate, CcTextDelegate, CcBoolDelegate, CcCommentsDelegate, CcDateDelegate, CcTemplateDelegate, CcEnumDelegate, CcNumberDelegate, LanguagesDelegate) from calibre.gui2.library.models import BooksModel, DeviceBooksModel from calibre.utils.config import tweaks, prefs from calibre.gui2 import error_dialog, gprefs from calibre.gui2.library import DEFAULT_SORT from calibre.constants import filesystem_encoding from calibre import force_unicode class PreserveViewState(object): # {{{ ''' Save the set of selected books at enter time. If at exit time there are no selected books, restore the previous selection, the previous current index and dont affect the scroll position. ''' def __init__(self, view, preserve_hpos=True, preserve_vpos=True, require_selected_ids=True): self.view = view self.require_selected_ids = require_selected_ids self.selected_ids = set() self.current_id = None self.preserve_hpos = preserve_hpos self.preserve_vpos = preserve_vpos self.vscroll = self.hscroll = 0 def __enter__(self): try: self.selected_ids = self.view.get_selected_ids() self.current_id = self.view.current_id self.vscroll = self.view.verticalScrollBar().value() self.hscroll = self.view.horizontalScrollBar().value() except: import traceback traceback.print_exc() def __exit__(self, *args): if self.selected_ids or not self.require_selected_ids: if self.current_id is not None: self.view.current_id = self.current_id if self.selected_ids: self.view.select_rows(self.selected_ids, using_ids=True, scroll=False, change_current=self.current_id is None) if self.preserve_vpos: self.view.verticalScrollBar().setValue(self.vscroll) if self.preserve_hpos: self.view.horizontalScrollBar().setValue(self.hscroll) @dynamic_property def state(self): def fget(self): self.__enter__() return {x:getattr(self, x) for x in ('selected_ids', 'current_id', 'vscroll', 'hscroll')} def fset(self, state): for k, v in state.iteritems(): setattr(self, k, v) self.__exit__() return property(fget=fget, fset=fset) # }}} class BooksView(QTableView): # {{{ files_dropped = pyqtSignal(object) add_column_signal = pyqtSignal() def viewportEvent(self, event): if (event.type() == event.ToolTip and not gprefs['book_list_tooltips']): return False return QTableView.viewportEvent(self, event) def __init__(self, parent, modelcls=BooksModel, use_edit_metadata_dialog=True): QTableView.__init__(self, parent) if not tweaks['horizontal_scrolling_per_column']: self.setHorizontalScrollMode(self.ScrollPerPixel) self.setEditTriggers(self.EditKeyPressed) if tweaks['doubleclick_on_library_view'] == 'edit_cell': self.setEditTriggers(self.DoubleClicked|self.editTriggers()) elif tweaks['doubleclick_on_library_view'] == 'open_viewer': self.setEditTriggers(self.SelectedClicked|self.editTriggers()) self.doubleClicked.connect(parent.iactions['View'].view_triggered) elif tweaks['doubleclick_on_library_view'] == 'edit_metadata': # Must not enable single-click to edit, or the field will remain # open in edit mode underneath the edit metadata dialog if use_edit_metadata_dialog: self.doubleClicked.connect( partial(parent.iactions['Edit Metadata'].edit_metadata, checked=False)) else: self.setEditTriggers(self.DoubleClicked|self.editTriggers()) self.drag_allowed = True self.setDragEnabled(True) self.setDragDropOverwriteMode(False) self.setDragDropMode(self.DragDrop) self.drag_start_pos = None self.setAlternatingRowColors(True) self.setSelectionBehavior(self.SelectRows) self.setShowGrid(False) self.setWordWrap(False) self.rating_delegate = RatingDelegate(self) self.timestamp_delegate = DateDelegate(self) self.pubdate_delegate = PubDateDelegate(self) self.last_modified_delegate = DateDelegate(self, tweak_name='gui_last_modified_display_format') self.languages_delegate = LanguagesDelegate(self) self.tags_delegate = CompleteDelegate(self, ',', 'all_tag_names') self.authors_delegate = CompleteDelegate(self, '&', 'all_author_names', True) self.cc_names_delegate = CompleteDelegate(self, '&', 'all_custom', True) self.series_delegate = TextDelegate(self) self.publisher_delegate = TextDelegate(self) self.text_delegate = TextDelegate(self) self.cc_text_delegate = CcTextDelegate(self) self.cc_enum_delegate = CcEnumDelegate(self) self.cc_bool_delegate = CcBoolDelegate(self) self.cc_comments_delegate = CcCommentsDelegate(self) self.cc_template_delegate = CcTemplateDelegate(self) self.cc_number_delegate = CcNumberDelegate(self) self.display_parent = parent self._model = modelcls(self) self.setModel(self._model) self.setSelectionBehavior(QAbstractItemView.SelectRows) self.setSortingEnabled(True) self.selectionModel().currentRowChanged.connect(self._model.current_changed) self.preserve_state = partial(PreserveViewState, self) # {{{ Column Header setup self.can_add_columns = True self.was_restored = False self.column_header = self.horizontalHeader() self.column_header.setMovable(True) self.column_header.sectionMoved.connect(self.save_state) self.column_header.setContextMenuPolicy(Qt.CustomContextMenu) self.column_header.customContextMenuRequested.connect(self.show_column_header_context_menu) self.column_header.sectionResized.connect(self.column_resized, Qt.QueuedConnection) # }}} self._model.database_changed.connect(self.database_changed) hv = self.verticalHeader() hv.setClickable(True) hv.setCursor(Qt.PointingHandCursor) self.selected_ids = [] self._model.about_to_be_sorted.connect(self.about_to_be_sorted) self._model.sorting_done.connect(self.sorting_done, type=Qt.QueuedConnection) # Column Header Context Menu {{{ def column_header_context_handler(self, action=None, column=None): if not action or not column: return try: idx = self.column_map.index(column) except: return h = self.column_header if action == 'hide': h.setSectionHidden(idx, True) elif action == 'show': h.setSectionHidden(idx, False) if h.sectionSize(idx) < 3: sz = h.sectionSizeHint(idx) h.resizeSection(idx, sz) elif action == 'ascending': self.sortByColumn(idx, Qt.AscendingOrder) elif action == 'descending': self.sortByColumn(idx, Qt.DescendingOrder) elif action == 'defaults': self.apply_state(self.get_default_state()) elif action == 'addcustcol': self.add_column_signal.emit() elif action.startswith('align_'): alignment = action.partition('_')[-1] self._model.change_alignment(column, alignment) self.save_state() def show_column_header_context_menu(self, pos): idx = self.column_header.logicalIndexAt(pos) if idx > -1 and idx < len(self.column_map): col = self.column_map[idx] name = unicode(self.model().headerData(idx, Qt.Horizontal, Qt.DisplayRole).toString()) self.column_header_context_menu = QMenu(self) if col != 'ondevice': self.column_header_context_menu.addAction(_('Hide column %s') % name, partial(self.column_header_context_handler, action='hide', column=col)) m = self.column_header_context_menu.addMenu( _('Sort on %s') % name) a = m.addAction(_('Ascending'), partial(self.column_header_context_handler, action='ascending', column=col)) d = m.addAction(_('Descending'), partial(self.column_header_context_handler, action='descending', column=col)) if self._model.sorted_on[0] == col: ac = a if self._model.sorted_on[1] else d ac.setCheckable(True) ac.setChecked(True) if col not in ('ondevice', 'inlibrary') and \ (not self.model().is_custom_column(col) or \ self.model().custom_columns[col]['datatype'] not in ('bool', )): m = self.column_header_context_menu.addMenu( _('Change text alignment for %s') % name) al = self._model.alignment_map.get(col, 'left') for x, t in (('left', _('Left')), ('right', _('Right')), ('center', _('Center'))): a = m.addAction(t, partial(self.column_header_context_handler, action='align_'+x, column=col)) if al == x: a.setCheckable(True) a.setChecked(True) hidden_cols = [self.column_map[i] for i in range(self.column_header.count()) if self.column_header.isSectionHidden(i)] try: hidden_cols.remove('ondevice') except: pass if hidden_cols: self.column_header_context_menu.addSeparator() m = self.column_header_context_menu.addMenu(_('Show column')) for col in hidden_cols: hidx = self.column_map.index(col) name = unicode(self.model().headerData(hidx, Qt.Horizontal, Qt.DisplayRole).toString()) m.addAction(name, partial(self.column_header_context_handler, action='show', column=col)) self.column_header_context_menu.addSeparator() self.column_header_context_menu.addAction( _('Shrink column if it is too wide to fit'), partial(self.resize_column_to_fit, column=self.column_map[idx])) self.column_header_context_menu.addAction( _('Restore default layout'), partial(self.column_header_context_handler, action='defaults', column=col)) if self.can_add_columns: self.column_header_context_menu.addAction( QIcon(I('column.png')), _('Add your own columns'), partial(self.column_header_context_handler, action='addcustcol', column=col)) self.column_header_context_menu.popup(self.column_header.mapToGlobal(pos)) # }}} # Sorting {{{ def about_to_be_sorted(self, idc): selected_rows = [r.row() for r in self.selectionModel().selectedRows()] self.selected_ids = [idc(r) for r in selected_rows] def sorting_done(self, indexc): pos = self.horizontalScrollBar().value() self.select_rows(self.selected_ids, using_ids=True, change_current=True, scroll=True) self.selected_ids = [] self.horizontalScrollBar().setValue(pos) def sort_by_named_field(self, field, order, reset=True): if field in self.column_map: idx = self.column_map.index(field) if order: self.sortByColumn(idx, Qt.AscendingOrder) else: self.sortByColumn(idx, Qt.DescendingOrder) else: self._model.sort_by_named_field(field, order, reset) def multisort(self, fields, reset=True, only_if_different=False): if len(fields) == 0: return sh = self.cleanup_sort_history(self._model.sort_history, ignore_column_map=True) if only_if_different and len(sh) >= len(fields): ret=True for i,t in enumerate(fields): if t[0] != sh[i][0]: ret = False break if ret: return for n,d in reversed(fields): if n in self._model.db.field_metadata.keys(): sh.insert(0, (n, d)) sh = self.cleanup_sort_history(sh, ignore_column_map=True) self._model.sort_history = [tuple(x) for x in sh] self._model.resort(reset=reset) col = fields[0][0] dir = Qt.AscendingOrder if fields[0][1] else Qt.DescendingOrder if col in self.column_map: col = self.column_map.index(col) hdrs = self.horizontalHeader() try: hdrs.setSortIndicator(col, dir) except: pass # }}} # Ondevice column {{{ def set_ondevice_column_visibility(self): m = self._model self.column_header.setSectionHidden(m.column_map.index('ondevice'), not m.device_connected) def set_device_connected(self, is_connected): self._model.set_device_connected(is_connected) self.set_ondevice_column_visibility() # }}} # Save/Restore State {{{ def get_state(self): h = self.column_header cm = self.column_map state = {} state['hidden_columns'] = [cm[i] for i in range(h.count()) if h.isSectionHidden(i) and cm[i] != 'ondevice'] state['last_modified_injected'] = True state['languages_injected'] = True state['sort_history'] = \ self.cleanup_sort_history(self.model().sort_history) state['column_positions'] = {} state['column_sizes'] = {} state['column_alignment'] = self._model.alignment_map for i in range(h.count()): name = cm[i] state['column_positions'][name] = h.visualIndex(i) if name != 'ondevice': state['column_sizes'][name] = h.sectionSize(i) return state def write_state(self, state): db = getattr(self.model(), 'db', None) name = unicode(self.objectName()) if name and db is not None: db.prefs.set(name + ' books view state', state) def save_state(self): # Only save if we have been initialized (set_database called) if len(self.column_map) > 0 and self.was_restored: state = self.get_state() self.write_state(state) def cleanup_sort_history(self, sort_history, ignore_column_map=False): history = [] for col, order in sort_history: if not isinstance(order, bool): continue if col == 'date': col = 'timestamp' if ignore_column_map or col in self.column_map: if (not history or history[-1][0] != col): history.append([col, order]) return history def apply_sort_history(self, saved_history, max_sort_levels=3): if not saved_history: return for col, order in reversed(self.cleanup_sort_history( saved_history)[:max_sort_levels]): self.sortByColumn(self.column_map.index(col), Qt.AscendingOrder if order else Qt.DescendingOrder) def apply_state(self, state, max_sort_levels=3): h = self.column_header cmap = {} hidden = state.get('hidden_columns', []) for i, c in enumerate(self.column_map): cmap[c] = i if c != 'ondevice': h.setSectionHidden(i, c in hidden) positions = state.get('column_positions', {}) pmap = {} for col, pos in positions.items(): if col in cmap: pmap[pos] = col for pos in sorted(pmap.keys()): col = pmap[pos] idx = cmap[col] current_pos = h.visualIndex(idx) if current_pos != pos: h.moveSection(current_pos, pos) sizes = state.get('column_sizes', {}) for col, size in sizes.items(): if col in cmap: sz = sizes[col] if sz < 3: sz = h.sectionSizeHint(cmap[col]) h.resizeSection(cmap[col], sz) self.apply_sort_history(state.get('sort_history', None), max_sort_levels=max_sort_levels) for col, alignment in state.get('column_alignment', {}).items(): self._model.change_alignment(col, alignment) for i in range(h.count()): if not h.isSectionHidden(i) and h.sectionSize(i) < 3: sz = h.sectionSizeHint(i) h.resizeSection(i, sz) def get_default_state(self): old_state = { 'hidden_columns': ['last_modified', 'languages'], 'sort_history':[DEFAULT_SORT], 'column_positions': {}, 'column_sizes': {}, 'column_alignment': { 'size':'center', 'timestamp':'center', 'pubdate':'center'}, 'last_modified_injected': True, 'languages_injected': True, } h = self.column_header cm = self.column_map for i in range(h.count()): name = cm[i] old_state['column_positions'][name] = i if name != 'ondevice': old_state['column_sizes'][name] = \ min(350, max(self.sizeHintForColumn(i), h.sectionSizeHint(i))) if name in ('timestamp', 'last_modified'): old_state['column_sizes'][name] += 12 return old_state def get_old_state(self): ans = None name = unicode(self.objectName()) if name: name += ' books view state' db = getattr(self.model(), 'db', None) if db is not None: ans = db.prefs.get(name, None) if ans is None: ans = gprefs.get(name, None) try: del gprefs[name] except: pass if ans is not None: db.prefs[name] = ans else: injected = False if not ans.get('last_modified_injected', False): injected = True ans['last_modified_injected'] = True hc = ans.get('hidden_columns', []) if 'last_modified' not in hc: hc.append('last_modified') if not ans.get('languages_injected', False): injected = True ans['languages_injected'] = True hc = ans.get('hidden_columns', []) if 'languages' not in hc: hc.append('languages') if injected: db.prefs[name] = ans return ans def restore_state(self): old_state = self.get_old_state() if old_state is None: old_state = self.get_default_state() max_levels = 3 if tweaks['sort_columns_at_startup'] is not None: sh = [] try: for c,d in tweaks['sort_columns_at_startup']: if not isinstance(d, bool): d = True if d == 0 else False sh.append((c, d)) except: # Ignore invalid tweak values as users seem to often get them # wrong print('Ignoring invalid sort_columns_at_startup tweak, with error:') import traceback traceback.print_exc() old_state['sort_history'] = sh max_levels = max(3, len(sh)) self.column_header.blockSignals(True) self.apply_state(old_state, max_sort_levels=max_levels) self.column_header.blockSignals(False) # Resize all rows to have the correct height if self.model().rowCount(QModelIndex()) > 0: self.resizeRowToContents(0) self.verticalHeader().setDefaultSectionSize(self.rowHeight(0)) self.was_restored = True def resize_column_to_fit(self, column): col = self.column_map.index(column) self.column_resized(col, self.columnWidth(col), self.columnWidth(col)) def column_resized(self, col, old_size, new_size): # arbitrary: scroll bar + header + some max_width = self.width() - (self.verticalScrollBar().width() + self.verticalHeader().width() + 10) if max_width < 200: max_width = 200 if new_size > max_width: self.column_header.blockSignals(True) self.setColumnWidth(col, max_width) self.column_header.blockSignals(False) # }}} # Initialization/Delegate Setup {{{ def set_database(self, db): self.save_state() self._model.set_database(db) self.tags_delegate.set_database(db) self.cc_names_delegate.set_database(db) self.authors_delegate.set_database(db) self.series_delegate.set_auto_complete_function(db.all_series) self.publisher_delegate.set_auto_complete_function(db.all_publishers) def database_changed(self, db): for i in range(self.model().columnCount(None)): if self.itemDelegateForColumn(i) in (self.rating_delegate, self.timestamp_delegate, self.pubdate_delegate, self.last_modified_delegate, self.languages_delegate): self.setItemDelegateForColumn(i, self.itemDelegate()) cm = self.column_map for colhead in cm: if self._model.is_custom_column(colhead): cc = self._model.custom_columns[colhead] if cc['datatype'] == 'datetime': delegate = CcDateDelegate(self) delegate.set_format(cc['display'].get('date_format','')) self.setItemDelegateForColumn(cm.index(colhead), delegate) elif cc['datatype'] == 'comments': self.setItemDelegateForColumn(cm.index(colhead), self.cc_comments_delegate) elif cc['datatype'] == 'text': if cc['is_multiple']: if cc['display'].get('is_names', False): self.setItemDelegateForColumn(cm.index(colhead), self.cc_names_delegate) else: self.setItemDelegateForColumn(cm.index(colhead), self.tags_delegate) else: self.setItemDelegateForColumn(cm.index(colhead), self.cc_text_delegate) elif cc['datatype'] == 'series': self.setItemDelegateForColumn(cm.index(colhead), self.cc_text_delegate) elif cc['datatype'] in ('int', 'float'): self.setItemDelegateForColumn(cm.index(colhead), self.cc_number_delegate) elif cc['datatype'] == 'bool': self.setItemDelegateForColumn(cm.index(colhead), self.cc_bool_delegate) elif cc['datatype'] == 'rating': self.setItemDelegateForColumn(cm.index(colhead), self.rating_delegate) elif cc['datatype'] == 'composite': self.setItemDelegateForColumn(cm.index(colhead), self.cc_template_delegate) elif cc['datatype'] == 'enumeration': self.setItemDelegateForColumn(cm.index(colhead), self.cc_enum_delegate) else: dattr = colhead+'_delegate' delegate = colhead if hasattr(self, dattr) else 'text' self.setItemDelegateForColumn(cm.index(colhead), getattr(self, delegate+'_delegate')) self.restore_state() self.set_ondevice_column_visibility() #}}} # Context Menu {{{ def set_context_menu(self, menu, edit_collections_action): self.setContextMenuPolicy(Qt.DefaultContextMenu) self.context_menu = menu self.edit_collections_action = edit_collections_action def contextMenuEvent(self, event): self.context_menu.popup(event.globalPos()) event.accept() # }}} # Drag 'n Drop {{{ @classmethod def paths_from_event(cls, event): ''' Accept a drop event and return a list of paths that can be read from and represent files with extensions. ''' md = event.mimeData() if md.hasFormat('text/uri-list') and not \ md.hasFormat('application/calibre+from_library'): urls = [unicode(u.toLocalFile()) for u in md.urls()] return [u for u in urls if os.path.splitext(u)[1] and os.path.exists(u)] def drag_icon(self, cover, multiple): cover = cover.scaledToHeight(120, Qt.SmoothTransformation) if multiple: base_width = cover.width() base_height = cover.height() base = QImage(base_width+21, base_height+21, QImage.Format_ARGB32_Premultiplied) base.fill(QColor(255, 255, 255, 0).rgba()) p = QPainter(base) rect = QRect(20, 0, base_width, base_height) p.fillRect(rect, QColor('white')) p.drawRect(rect) rect.moveLeft(10) rect.moveTop(10) p.fillRect(rect, QColor('white')) p.drawRect(rect) rect.moveLeft(0) rect.moveTop(20) p.fillRect(rect, QColor('white')) p.save() p.setCompositionMode(p.CompositionMode_SourceAtop) p.drawImage(rect.topLeft(), cover) p.restore() p.drawRect(rect) p.end() cover = base return QPixmap.fromImage(cover) def drag_data(self): m = self.model() db = m.db rows = self.selectionModel().selectedRows() selected = list(map(m.id, rows)) ids = ' '.join(map(str, selected)) md = QMimeData() md.setData('application/calibre+from_library', ids) fmt = prefs['output_format'] def url_for_id(i): try: ans = db.format_path(i, fmt, index_is_id=True) except: ans = None if ans is None: fmts = db.formats(i, index_is_id=True) if fmts: fmts = fmts.split(',') else: fmts = [] for f in fmts: try: ans = db.format_path(i, f, index_is_id=True) except: ans = None if ans is None: ans = db.abspath(i, index_is_id=True) return QUrl.fromLocalFile(ans) md.setUrls([url_for_id(i) for i in selected]) drag = QDrag(self) col = self.selectionModel().currentIndex().column() md.column_name = self.column_map[col] drag.setMimeData(md) cover = self.drag_icon(m.cover(self.currentIndex().row()), len(selected) > 1) drag.setHotSpot(QPoint(-15, -15)) drag.setPixmap(cover) return drag def event_has_mods(self, event=None): mods = event.modifiers() if event is not None else \ QApplication.keyboardModifiers() return mods & Qt.ControlModifier or mods & Qt.ShiftModifier def mousePressEvent(self, event): ep = event.pos() if self.indexAt(ep) in self.selectionModel().selectedIndexes() and \ event.button() == Qt.LeftButton and not self.event_has_mods(): self.drag_start_pos = ep return QTableView.mousePressEvent(self, event) def mouseMoveEvent(self, event): if not self.drag_allowed: return if self.drag_start_pos is None: return QTableView.mouseMoveEvent(self, event) if self.event_has_mods(): self.drag_start_pos = None return if not (event.buttons() & Qt.LeftButton) or \ (event.pos() - self.drag_start_pos).manhattanLength() \ < QApplication.startDragDistance(): return index = self.indexAt(event.pos()) if not index.isValid(): return drag = self.drag_data() drag.exec_(Qt.CopyAction) self.drag_start_pos = None def dragEnterEvent(self, event): if int(event.possibleActions() & Qt.CopyAction) + \ int(event.possibleActions() & Qt.MoveAction) == 0: return paths = self.paths_from_event(event) if paths: event.acceptProposedAction() def dragMoveEvent(self, event): event.acceptProposedAction() def dropEvent(self, event): paths = self.paths_from_event(event) event.setDropAction(Qt.CopyAction) event.accept() self.files_dropped.emit(paths) # }}} @property def column_map(self): return self._model.column_map def refresh_book_details(self): idx = self.currentIndex() if idx.isValid(): self._model.current_changed(idx, idx) def scrollContentsBy(self, dx, dy): # Needed as Qt bug causes headerview to not always update when scrolling QTableView.scrollContentsBy(self, dx, dy) if dy != 0: self.column_header.update() def scroll_to_row(self, row): if row > -1: h = self.horizontalHeader() for i in range(h.count()): if not h.isSectionHidden(i) and h.sectionViewportPosition(i) >= 0: self.scrollTo(self.model().index(row, i), self.PositionAtCenter) break def set_current_row(self, row, select=True): if row > -1 and row < self.model().rowCount(QModelIndex()): h = self.horizontalHeader() logical_indices = list(range(h.count())) logical_indices = [x for x in logical_indices if not h.isSectionHidden(x)] pairs = [(x, h.visualIndex(x)) for x in logical_indices if h.visualIndex(x) > -1] if not pairs: pairs = [(0, 0)] pairs.sort(cmp=lambda x,y:cmp(x[1], y[1])) i = pairs[0][0] index = self.model().index(row, i) self.setCurrentIndex(index) if select: sm = self.selectionModel() sm.select(index, sm.ClearAndSelect|sm.Rows) def ids_to_rows(self, ids): row_map = OrderedDict() ids = frozenset(ids) m = self.model() for row in xrange(m.rowCount(QModelIndex())): if len(row_map) >= len(ids): break c = m.id(row) if c in ids: row_map[c] = row return row_map def select_rows(self, identifiers, using_ids=True, change_current=True, scroll=True): ''' Select rows identified by identifiers. identifiers can be a set of ids, row numbers or QModelIndexes. ''' rows = set([x.row() if hasattr(x, 'row') else x for x in identifiers]) if using_ids: rows = set([]) identifiers = set(identifiers) m = self.model() for row in xrange(m.rowCount(QModelIndex())): if m.id(row) in identifiers: rows.add(row) rows = list(sorted(rows)) if rows: row = rows[0] if change_current: self.set_current_row(row, select=False) if scroll: self.scroll_to_row(row) sm = self.selectionModel() sel = QItemSelection() m = self.model() max_col = m.columnCount(QModelIndex()) - 1 # Create a range based selector for each set of contiguous rows # as supplying selectors for each individual row causes very poor # performance if a large number of rows has to be selected. for k, g in itertools.groupby(enumerate(rows), lambda (i,x):i-x): group = list(map(operator.itemgetter(1), g)) sel.merge(QItemSelection(m.index(min(group), 0), m.index(max(group), max_col)), sm.Select) sm.select(sel, sm.ClearAndSelect) def get_selected_ids(self): ans = [] m = self.model() for idx in self.selectedIndexes(): r = idx.row() i = m.id(r) if i not in ans: ans.append(i) return ans @dynamic_property def current_id(self): def fget(self): try: return self.model().id(self.currentIndex()) except: pass return None def fset(self, val): if val is None: return m = self.model() for row in xrange(m.rowCount(QModelIndex())): if m.id(row) == val: self.set_current_row(row, select=False) break return property(fget=fget, fset=fset) @property def next_id(self): ''' Return the id of the 'next' row (i.e. the first unselected row after the current row). ''' ci = self.currentIndex() if not ci.isValid(): return None selected_rows = frozenset([i.row() for i in self.selectedIndexes() if i.isValid()]) column = ci.column() for i in xrange(ci.row()+1, self.row_count()): if i in selected_rows: continue try: return self.model().id(self.model().index(i, column)) except: pass # No unselected rows after the current row, look before for i in xrange(ci.row()-1, -1, -1): if i in selected_rows: continue try: return self.model().id(self.model().index(i, column)) except: pass return None def close(self): self._model.close() def set_editable(self, editable, supports_backloading): self._model.set_editable(editable) def move_highlighted_row(self, forward): rows = self.selectionModel().selectedRows() if len(rows) > 0: current_row = rows[0].row() else: current_row = None id_to_select = self._model.get_next_highlighted_id(current_row, forward) if id_to_select is not None: self.select_rows([id_to_select], using_ids=True) def search_proxy(self, txt): self._model.search(txt) id_to_select = self._model.get_current_highlighted_id() if id_to_select is not None: self.select_rows([id_to_select], using_ids=True) elif self._model.highlight_only: self.clearSelection() self.setFocus(Qt.OtherFocusReason) def connect_to_search_box(self, sb, search_done): sb.search.connect(self.search_proxy) self._search_done = search_done self._model.searched.connect(self.search_done) def connect_to_book_display(self, bd): self._model.new_bookdisplay_data.connect(bd) def search_done(self, ok): self._search_done(self, ok) def row_count(self): return self._model.count() # }}} class DeviceBooksView(BooksView): # {{{ def __init__(self, parent): BooksView.__init__(self, parent, DeviceBooksModel, use_edit_metadata_dialog=False) self.can_add_columns = False self.columns_resized = False self.resize_on_select = False self.rating_delegate = None for i in range(10): self.setItemDelegateForColumn(i, TextDelegate(self)) self.setDragDropMode(self.NoDragDrop) self.setAcceptDrops(False) def drag_data(self): m = self.model() rows = self.selectionModel().selectedRows() paths = [force_unicode(p, enc=filesystem_encoding) for p in m.paths(rows) if p] md = QMimeData() md.setData('application/calibre+from_device', 'dummy') md.setUrls([QUrl.fromLocalFile(p) for p in paths]) drag = QDrag(self) drag.setMimeData(md) cover = self.drag_icon(m.cover(self.currentIndex().row()), len(paths) > 1) drag.setHotSpot(QPoint(-15, -15)) drag.setPixmap(cover) return drag def contextMenuEvent(self, event): edit_collections = callable(getattr(self._model.db, 'supports_collections', None)) and \ self._model.db.supports_collections() and \ prefs['manage_device_metadata'] == 'manual' self.edit_collections_action.setVisible(edit_collections) self.context_menu.popup(event.globalPos()) event.accept() def get_old_state(self): ans = None name = unicode(self.objectName()) if name: name += ' books view state' ans = gprefs.get(name, None) return ans def write_state(self, state): name = unicode(self.objectName()) if name: gprefs.set(name + ' books view state', state) def set_database(self, db): self._model.set_database(db) self.restore_state() def resizeColumnsToContents(self): QTableView.resizeColumnsToContents(self) self.columns_resized = True def connect_dirtied_signal(self, slot): self._model.booklist_dirtied.connect(slot) def connect_upload_collections_signal(self, func=None, oncard=None): self._model.upload_collections.connect(partial(func, view=self, oncard=oncard)) def dropEvent(self, *args): error_dialog(self, _('Not allowed'), _('Dropping onto a device is not supported. First add the book to the calibre library.')).exec_() def set_editable(self, editable, supports_backloading): self._model.set_editable(editable) self.drag_allowed = supports_backloading # }}}
gpl-3.0
4,215,792,900,672,243,700
38.230542
105
0.555815
false
4.030671
false
false
false
dradux/tracker
web/migrations/versions/95ecf01d9cb4_add_test_result_status_items.py
1
1277
"""add test_result_status items Revision ID: 95ecf01d9cb4 Revises: ea71f73f5460 Create Date: 2017-03-29 19:41:26.581925 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '95ecf01d9cb4' down_revision = 'ea71f73f5460' branch_labels = None depends_on = None def upgrade(): #~ op.bulk_insert('test_result_status', #~ [ #~ {'status': 'Created'}, #~ {'status': 'Completed'}, #~ {'status': 'Failed'} #~ ] #~ ) op.execute("INSERT INTO test_result_status (status) VALUES ('Created')") op.execute("INSERT INTO test_result_status (status) VALUES ('Completed')") op.execute("INSERT INTO test_result_status (status) VALUES ('Failed')") op.execute("UPDATE test_result SET status_id=(SELECT id FROM test_result_status where status='Created') WHERE test_passed is null") op.execute("UPDATE test_result SET status_id=(SELECT id FROM test_result_status where status='Completed') WHERE test_passed=true") op.execute("UPDATE test_result SET status_id=(SELECT id FROM test_result_status where status='Failed') WHERE test_passed=false") def downgrade(): op.execute("delete from test_result_status where status in('Created', 'Completed', 'Failed')")
gpl-3.0
2,511,160,009,906,113,000
33.513514
135
0.680501
false
3.607345
true
false
false
noemu/script.example-master
default.py
1
7991
# https://docs.python.org/2.7/ import os import sys import urllib import urlparse # http://mirrors.kodi.tv/docs/python-docs/ import xbmcaddon import xbmcgui import xbmcplugin # http://docs.python-requests.org/en/latest/ import requests from threading import Thread import time class PlayerWindow(xbmcgui.WindowXML): LABEL_ARTIST = 802 LABEL_TITEL = 801 LABEL_ALBUM = 803 IMG_ALBUM = 800 SLIDER_VOL = 815 BUTTON_SHUFFLE = 817 BUTTON_SHUFFLE_ACT = 818 BUTTON_REPEAT = 819 BUTTON_REPEAT_ACT = 819 BUTTON_BACK = 809 BUTTON_PLAY = 811 BUTTON_PAUSE = 812 BUTTON_FOR = 813 BUTTON_VOL_UP = 816 BUTTON_VOL_DOWN = 814 def __init__(self, *args, **kwargs): self.isRunning = True self.volume = 100 def onAction(self , action): ACTION_PREVIOUS_MENU = 10 ACTION_NAV_BACK = 92 ACTION_UP = 3 ACTION_DOWN = 4 ACTION_LEFT = 1 ACTION_RIGHT = 2 ACTION_MIDDLE = 7 ACTION_PAUSE = 12 ACTION_STOP = 13 ACTION_NEXT_ITEM = 14 ACTION_PREV_ITEM = 15 ACTION_FORWARD = 16 ACTION_REWIND = 17 ACTION_PLAYER_FORWARD = 77 ACTION_PLAYER_REWIND = 78 ACTION_PLAYER_PLAY = 79 ACTION_VOLUME_UP = 88 ACTION_VOLUME_DOWN = 89 ACTION_MUTE = 91 ACTION_PAGE_UP = 5 ACTION_PAGE_DOWN = 6 #ids = str(action.getId()) #xbmc.log(ids) if (action == ACTION_PREVIOUS_MENU) or (action == ACTION_NAV_BACK): xbmcgui.Window(10000).setProperty("spotify-closed-by-user","true") self.isRunning = False self.close() if (action == ACTION_LEFT) or (action == ACTION_RIGHT): self.volSlider = self.getControl(self.SLIDER_VOL) volume = self.volSlider.getPercent() setVol(volume) if(action == ACTION_PLAYER_PLAY) or (action == ACTION_PAUSE): if(self.playing): getSite(pause) else: getSite(play) if (action == ACTION_VOLUME_UP): self.volume = self.volume + 3 if(self.volume > 100): self.volume = 100 setVol(self.volume) self.volSlider = self.getControl(self.SLIDER_VOL) self.volSlider.setPercent(self.volume) if (action == ACTION_VOLUME_DOWN): self.volume = self.volume- 3 if(self.volume < 0): self.volume = 0 setVol(self.volume) self.volSlider = self.getControl(self.SLIDER_VOL) self.volSlider.setPercent(self.volume) if (action == ACTION_FORWARD) or (action == ACTION_PLAYER_FORWARD) or (action == ACTION_NEXT_ITEM) or (action == ACTION_PAGE_UP): getSite(next) if (action == ACTION_REWIND) or (action == ACTION_PLAYER_REWIND) or (action == ACTION_PREV_ITEM) or (action == ACTION_PAGE_DOWN): getSite(prev) if(action == ACTION_STOP): getSite(pause) def onClick(self, controlID): if (controlID == self.BUTTON_PAUSE) or (controlID == self.BUTTON_PLAY): if(self.playing): getSite(pause) else: getSite(play) if (controlID == self.BUTTON_VOL_UP): self.volume = self.volume + 3 if(self.volume > 100): self.volume = 100 setVol(self.volume) self.volSlider = self.getControl(self.SLIDER_VOL) self.volSlider.setPercent(self.volume) if (controlID == self.BUTTON_VOL_DOWN): self.volume = self.volume- 3 if(self.volume < 0): self.volume = 0 setVol(self.volume) self.volSlider = self.getControl(self.SLIDER_VOL) self.volSlider.setPercent(self.volume) if (controlID == self.BUTTON_FOR): getSite(next) if (controlID == self.BUTTON_BACK): getSite(prev) def updateLabels(self, information): self.albumCover = self.getControl(self.IMG_ALBUM) self.titleLabel = self.getControl(self.LABEL_TITEL) self.artistLabel = self.getControl(self.LABEL_ARTIST) self.albumName = self.getControl(self.LABEL_ALBUM) self.volSlider = self.getControl(self.SLIDER_VOL) self.playing = information['playing'] self.titleLabel.setLabel(information['track_name']) self.albumName.setLabel(information['album_name']) self.artistLabel.setLabel( information['artist_name']) self.albumCover.setImage(information['cover_url']) self.volume = int(information['volume'])/655.35 self.volSlider.setPercent(self.volume) self.getControl(self.BUTTON_PLAY).setVisible(not self.playing) self.getControl(self.BUTTON_SHUFFLE).setVisible(not information['shuffle']) self.getControl(self.BUTTON_REPEAT).setVisible(not information['repeat']) def getSite(url): #try... rq = requests.get(url) #handle return rq def getInfo(): information = getSite(info).json() statusInfo = getSite(status).json() playing = statusInfo['playing'] shuffleInfo = statusInfo['shuffle'] repeatInfo = statusInfo['repeat'] coverURL = "http://o.scdn.co/160/"+information['cover_uri'].split(':')[-1] information['cover_url'] = coverURL information['playing'] = playing information['shuffle'] = shuffleInfo information['repeat'] = repeatInfo return information def downloadCover(url): urllib.urlretrieve(url,'/tmp/spotAlCov.png') def setVol(value): value = int(round(value* 655.35)) jsonPost = {'value': value} requests.post(volume,data=jsonPost) def updateInfo(name,window): screensaverDelay = 30 screensaverCount = 0 updateInterval = 2 while True: try: window.getControl(800) break except Exception: xbmc.log("Error: can't find Window, try again") time.sleep(1) # maybe fix for can't find window id's while window.isRunning and (not xbmc.abortRequested): information = getInfo() window.updateLabels(information) time.sleep(updateInterval) screensaverCount = screensaverCount + updateInterval if(screensaverCount>screensaverDelay) and information['playing']: #wakeup from screensaver by simulating a button activity json_query = xbmc.executeJSONRPC('{"jsonrpc": "2.0", "method": "Input.ContextMenu", "id": 1}') screensaverCount = 0 def main(): pw = PlayerWindow("player.xml",CWD) #xbmcgui.Window( 10000 ) t1 = Thread(target=updateInfo,args=("1",pw)) t1.setDaemon( True) t1.start() xbmcgui.Window(10000).setProperty("spotify-showing", "true") pw.doModal() xbmcgui.Window(10000).clearProperty("spotify-showing") del t1 del pw if __name__ == '__main__': page = 'http://127.0.0.1:4000' apiPlayback = '/api/playback' play = page+apiPlayback+'/play' pause = page+apiPlayback+'/pause' prev = page+apiPlayback+'/prev' next = page+apiPlayback+'/next' volume = page+apiPlayback+'/volume' shuffle = page+apiPlayback+'/shuffle' repeat = page+apiPlayback+'/repeat' info = page+'/api/info/metadata' status = page+'/api/info/status' ADDON = xbmcaddon.Addon(id='plugin.audio.example') CWD = ADDON.getAddonInfo('path').decode("utf-8") main()
gpl-2.0
-3,525,701,916,214,955,000
27.641577
137
0.568014
false
3.867861
false
false
false
Endika/manufacture
mrp_operations_time_control/models/operation_time.py
1
2588
# -*- coding: utf-8 -*- # © 2015 Avanzosc # © 2015 Pedro M. Baeza # License AGPL-3 - See http://www.gnu.org/licenses/agpl-3.0.html from openerp import api, models, fields class MrpProductionWorkcenterLine(models.Model): _inherit = 'mrp.production.workcenter.line' operation_time_lines = fields.One2many( 'operation.time.line', 'operation_time', string='Operation Time Lines') def _create_operation_line(self): self.env['operation.time.line'].create({ 'start_date': fields.Datetime.now(), 'operation_time': self.id, 'user': self.env.uid}) def _write_end_date_operation_line(self): self.operation_time_lines[-1].end_date = fields.Datetime.now() @api.multi def action_start_working(self): result = super(MrpProductionWorkcenterLine, self).action_start_working() self._create_operation_line() return result @api.multi def action_pause(self): result = super(MrpProductionWorkcenterLine, self).action_pause() self._write_end_date_operation_line() return result @api.multi def action_resume(self): result = super(MrpProductionWorkcenterLine, self).action_resume() self._create_operation_line() return result @api.multi def action_done(self): not_paused_records = self.filtered(lambda x: x.state != 'pause') result = super(MrpProductionWorkcenterLine, self).action_done() not_paused_records._write_end_date_operation_line() return result class OperationTimeLine(models.Model): _name = 'operation.time.line' _rec_name = 'operation_time' def _default_user(self): return self.env.uid start_date = fields.Datetime(string='Start Date') end_date = fields.Datetime(string='End Date') operation_time = fields.Many2one('mrp.production.workcenter.line') uptime = fields.Float( string='Machine up time', compute='_compute_uptime', store=True, digits=(12, 6)) production = fields.Many2one( 'mrp.production', related='operation_time.production_id', string='Production', store=True) user = fields.Many2one('res.users', string='User', default=_default_user) @api.one @api.depends('start_date', 'end_date') def _compute_uptime(self): if self.end_date and self.start_date: timedelta = fields.Datetime.from_string(self.end_date) - \ fields.Datetime.from_string(self.start_date) self.uptime = timedelta.total_seconds() / 3600.
agpl-3.0
-6,874,118,255,651,219,000
33.48
79
0.643852
false
3.668085
false
false
false
rikima/spark
python/pyspark/context.py
1
45234
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import os import shutil import signal import sys import threading import warnings from threading import RLock from tempfile import NamedTemporaryFile from py4j.protocol import Py4JError from pyspark import accumulators from pyspark.accumulators import Accumulator from pyspark.broadcast import Broadcast, BroadcastPickleRegistry from pyspark.conf import SparkConf from pyspark.files import SparkFiles from pyspark.java_gateway import launch_gateway from pyspark.serializers import PickleSerializer, BatchedSerializer, UTF8Deserializer, \ PairDeserializer, AutoBatchedSerializer, NoOpSerializer from pyspark.storagelevel import StorageLevel from pyspark.rdd import RDD, _load_from_socket, ignore_unicode_prefix from pyspark.traceback_utils import CallSite, first_spark_call from pyspark.status import StatusTracker from pyspark.profiler import ProfilerCollector, BasicProfiler if sys.version > '3': xrange = range __all__ = ['SparkContext'] # These are special default configs for PySpark, they will overwrite # the default ones for Spark if they are not configured by user. DEFAULT_CONFIGS = { "spark.serializer.objectStreamReset": 100, "spark.rdd.compress": True, } class SparkContext(object): """ Main entry point for Spark functionality. A SparkContext represents the connection to a Spark cluster, and can be used to create L{RDD} and broadcast variables on that cluster. """ _gateway = None _jvm = None _next_accum_id = 0 _active_spark_context = None _lock = RLock() _python_includes = None # zip and egg files that need to be added to PYTHONPATH PACKAGE_EXTENSIONS = ('.zip', '.egg', '.jar') def __init__(self, master=None, appName=None, sparkHome=None, pyFiles=None, environment=None, batchSize=0, serializer=PickleSerializer(), conf=None, gateway=None, jsc=None, profiler_cls=BasicProfiler): """ Create a new SparkContext. At least the master and app name should be set, either through the named parameters here or through C{conf}. :param master: Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]). :param appName: A name for your job, to display on the cluster web UI. :param sparkHome: Location where Spark is installed on cluster nodes. :param pyFiles: Collection of .zip or .py files to send to the cluster and add to PYTHONPATH. These can be paths on the local file system or HDFS, HTTP, HTTPS, or FTP URLs. :param environment: A dictionary of environment variables to set on worker nodes. :param batchSize: The number of Python objects represented as a single Java object. Set 1 to disable batching, 0 to automatically choose the batch size based on object sizes, or -1 to use an unlimited batch size :param serializer: The serializer for RDDs. :param conf: A L{SparkConf} object setting Spark properties. :param gateway: Use an existing gateway and JVM, otherwise a new JVM will be instantiated. :param jsc: The JavaSparkContext instance (optional). :param profiler_cls: A class of custom Profiler used to do profiling (default is pyspark.profiler.BasicProfiler). >>> from pyspark.context import SparkContext >>> sc = SparkContext('local', 'test') >>> sc2 = SparkContext('local', 'test2') # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError:... """ self._callsite = first_spark_call() or CallSite(None, None, None) SparkContext._ensure_initialized(self, gateway=gateway, conf=conf) try: self._do_init(master, appName, sparkHome, pyFiles, environment, batchSize, serializer, conf, jsc, profiler_cls) except: # If an error occurs, clean up in order to allow future SparkContext creation: self.stop() raise def _do_init(self, master, appName, sparkHome, pyFiles, environment, batchSize, serializer, conf, jsc, profiler_cls): self.environment = environment or {} # java gateway must have been launched at this point. if conf is not None and conf._jconf is not None: # conf has been initialized in JVM properly, so use conf directly. This represents the # scenario that JVM has been launched before SparkConf is created (e.g. SparkContext is # created and then stopped, and we create a new SparkConf and new SparkContext again) self._conf = conf else: self._conf = SparkConf(_jvm=SparkContext._jvm) if conf is not None: for k, v in conf.getAll(): self._conf.set(k, v) self._batchSize = batchSize # -1 represents an unlimited batch size self._unbatched_serializer = serializer if batchSize == 0: self.serializer = AutoBatchedSerializer(self._unbatched_serializer) else: self.serializer = BatchedSerializer(self._unbatched_serializer, batchSize) # Set any parameters passed directly to us on the conf if master: self._conf.setMaster(master) if appName: self._conf.setAppName(appName) if sparkHome: self._conf.setSparkHome(sparkHome) if environment: for key, value in environment.items(): self._conf.setExecutorEnv(key, value) for key, value in DEFAULT_CONFIGS.items(): self._conf.setIfMissing(key, value) # Check that we have at least the required parameters if not self._conf.contains("spark.master"): raise Exception("A master URL must be set in your configuration") if not self._conf.contains("spark.app.name"): raise Exception("An application name must be set in your configuration") # Read back our properties from the conf in case we loaded some of them from # the classpath or an external config file self.master = self._conf.get("spark.master") self.appName = self._conf.get("spark.app.name") self.sparkHome = self._conf.get("spark.home", None) for (k, v) in self._conf.getAll(): if k.startswith("spark.executorEnv."): varName = k[len("spark.executorEnv."):] self.environment[varName] = v self.environment["PYTHONHASHSEED"] = os.environ.get("PYTHONHASHSEED", "0") # Create the Java SparkContext through Py4J self._jsc = jsc or self._initialize_context(self._conf._jconf) # Reset the SparkConf to the one actually used by the SparkContext in JVM. self._conf = SparkConf(_jconf=self._jsc.sc().conf()) # Create a single Accumulator in Java that we'll send all our updates through; # they will be passed back to us through a TCP server auth_token = self._gateway.gateway_parameters.auth_token self._accumulatorServer = accumulators._start_update_server(auth_token) (host, port) = self._accumulatorServer.server_address self._javaAccumulator = self._jvm.PythonAccumulatorV2(host, port, auth_token) self._jsc.sc().register(self._javaAccumulator) self.pythonExec = os.environ.get("PYSPARK_PYTHON", 'python') self.pythonVer = "%d.%d" % sys.version_info[:2] # Broadcast's __reduce__ method stores Broadcast instances here. # This allows other code to determine which Broadcast instances have # been pickled, so it can determine which Java broadcast objects to # send. self._pickled_broadcast_vars = BroadcastPickleRegistry() SparkFiles._sc = self root_dir = SparkFiles.getRootDirectory() sys.path.insert(1, root_dir) # Deploy any code dependencies specified in the constructor self._python_includes = list() for path in (pyFiles or []): self.addPyFile(path) # Deploy code dependencies set by spark-submit; these will already have been added # with SparkContext.addFile, so we just need to add them to the PYTHONPATH for path in self._conf.get("spark.submit.pyFiles", "").split(","): if path != "": (dirname, filename) = os.path.split(path) try: filepath = os.path.join(SparkFiles.getRootDirectory(), filename) if not os.path.exists(filepath): # In case of YARN with shell mode, 'spark.submit.pyFiles' files are # not added via SparkContext.addFile. Here we check if the file exists, # try to copy and then add it to the path. See SPARK-21945. shutil.copyfile(path, filepath) if filename[-4:].lower() in self.PACKAGE_EXTENSIONS: self._python_includes.append(filename) sys.path.insert(1, filepath) except Exception: warnings.warn( "Failed to add file [%s] speficied in 'spark.submit.pyFiles' to " "Python path:\n %s" % (path, "\n ".join(sys.path)), RuntimeWarning) # Create a temporary directory inside spark.local.dir: local_dir = self._jvm.org.apache.spark.util.Utils.getLocalDir(self._jsc.sc().conf()) self._temp_dir = \ self._jvm.org.apache.spark.util.Utils.createTempDir(local_dir, "pyspark") \ .getAbsolutePath() # profiling stats collected for each PythonRDD if self._conf.get("spark.python.profile", "false") == "true": dump_path = self._conf.get("spark.python.profile.dump", None) self.profiler_collector = ProfilerCollector(profiler_cls, dump_path) else: self.profiler_collector = None # create a signal handler which would be invoked on receiving SIGINT def signal_handler(signal, frame): self.cancelAllJobs() raise KeyboardInterrupt() # see http://stackoverflow.com/questions/23206787/ if isinstance(threading.current_thread(), threading._MainThread): signal.signal(signal.SIGINT, signal_handler) def __repr__(self): return "<SparkContext master={master} appName={appName}>".format( master=self.master, appName=self.appName, ) def _repr_html_(self): return """ <div> <p><b>SparkContext</b></p> <p><a href="{sc.uiWebUrl}">Spark UI</a></p> <dl> <dt>Version</dt> <dd><code>v{sc.version}</code></dd> <dt>Master</dt> <dd><code>{sc.master}</code></dd> <dt>AppName</dt> <dd><code>{sc.appName}</code></dd> </dl> </div> """.format( sc=self ) def _initialize_context(self, jconf): """ Initialize SparkContext in function to allow subclass specific initialization """ return self._jvm.JavaSparkContext(jconf) @classmethod def _ensure_initialized(cls, instance=None, gateway=None, conf=None): """ Checks whether a SparkContext is initialized or not. Throws error if a SparkContext is already running. """ with SparkContext._lock: if not SparkContext._gateway: SparkContext._gateway = gateway or launch_gateway(conf) SparkContext._jvm = SparkContext._gateway.jvm if instance: if (SparkContext._active_spark_context and SparkContext._active_spark_context != instance): currentMaster = SparkContext._active_spark_context.master currentAppName = SparkContext._active_spark_context.appName callsite = SparkContext._active_spark_context._callsite # Raise error if there is already a running Spark context raise ValueError( "Cannot run multiple SparkContexts at once; " "existing SparkContext(app=%s, master=%s)" " created by %s at %s:%s " % (currentAppName, currentMaster, callsite.function, callsite.file, callsite.linenum)) else: SparkContext._active_spark_context = instance def __getnewargs__(self): # This method is called when attempting to pickle SparkContext, which is always an error: raise Exception( "It appears that you are attempting to reference SparkContext from a broadcast " "variable, action, or transformation. SparkContext can only be used on the driver, " "not in code that it run on workers. For more information, see SPARK-5063." ) def __enter__(self): """ Enable 'with SparkContext(...) as sc: app(sc)' syntax. """ return self def __exit__(self, type, value, trace): """ Enable 'with SparkContext(...) as sc: app' syntax. Specifically stop the context on exit of the with block. """ self.stop() @classmethod def getOrCreate(cls, conf=None): """ Get or instantiate a SparkContext and register it as a singleton object. :param conf: SparkConf (optional) """ with SparkContext._lock: if SparkContext._active_spark_context is None: SparkContext(conf=conf or SparkConf()) return SparkContext._active_spark_context def setLogLevel(self, logLevel): """ Control our logLevel. This overrides any user-defined log settings. Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN """ self._jsc.setLogLevel(logLevel) @classmethod def setSystemProperty(cls, key, value): """ Set a Java system property, such as spark.executor.memory. This must must be invoked before instantiating SparkContext. """ SparkContext._ensure_initialized() SparkContext._jvm.java.lang.System.setProperty(key, value) @property def version(self): """ The version of Spark on which this application is running. """ return self._jsc.version() @property @ignore_unicode_prefix def applicationId(self): """ A unique identifier for the Spark application. Its format depends on the scheduler implementation. * in case of local spark app something like 'local-1433865536131' * in case of YARN something like 'application_1433865536131_34483' >>> sc.applicationId # doctest: +ELLIPSIS u'local-...' """ return self._jsc.sc().applicationId() @property def uiWebUrl(self): """Return the URL of the SparkUI instance started by this SparkContext""" return self._jsc.sc().uiWebUrl().get() @property def startTime(self): """Return the epoch time when the Spark Context was started.""" return self._jsc.startTime() @property def defaultParallelism(self): """ Default level of parallelism to use when not given by user (e.g. for reduce tasks) """ return self._jsc.sc().defaultParallelism() @property def defaultMinPartitions(self): """ Default min number of partitions for Hadoop RDDs when not given by user """ return self._jsc.sc().defaultMinPartitions() def stop(self): """ Shut down the SparkContext. """ if getattr(self, "_jsc", None): try: self._jsc.stop() except Py4JError: # Case: SPARK-18523 warnings.warn( 'Unable to cleanly shutdown Spark JVM process.' ' It is possible that the process has crashed,' ' been killed or may also be in a zombie state.', RuntimeWarning ) pass finally: self._jsc = None if getattr(self, "_accumulatorServer", None): self._accumulatorServer.shutdown() self._accumulatorServer = None with SparkContext._lock: SparkContext._active_spark_context = None def emptyRDD(self): """ Create an RDD that has no partitions or elements. """ return RDD(self._jsc.emptyRDD(), self, NoOpSerializer()) def range(self, start, end=None, step=1, numSlices=None): """ Create a new RDD of int containing elements from `start` to `end` (exclusive), increased by `step` every element. Can be called the same way as python's built-in range() function. If called with a single argument, the argument is interpreted as `end`, and `start` is set to 0. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numSlices: the number of partitions of the new RDD :return: An RDD of int >>> sc.range(5).collect() [0, 1, 2, 3, 4] >>> sc.range(2, 4).collect() [2, 3] >>> sc.range(1, 7, 2).collect() [1, 3, 5] """ if end is None: end = start start = 0 return self.parallelize(xrange(start, end, step), numSlices) def parallelize(self, c, numSlices=None): """ Distribute a local Python collection to form an RDD. Using xrange is recommended if the input represents a range for performance. >>> sc.parallelize([0, 2, 3, 4, 6], 5).glom().collect() [[0], [2], [3], [4], [6]] >>> sc.parallelize(xrange(0, 6, 2), 5).glom().collect() [[], [0], [], [2], [4]] """ numSlices = int(numSlices) if numSlices is not None else self.defaultParallelism if isinstance(c, xrange): size = len(c) if size == 0: return self.parallelize([], numSlices) step = c[1] - c[0] if size > 1 else 1 start0 = c[0] def getStart(split): return start0 + int((split * size / numSlices)) * step def f(split, iterator): return xrange(getStart(split), getStart(split + 1), step) return self.parallelize([], numSlices).mapPartitionsWithIndex(f) # Make sure we distribute data evenly if it's smaller than self.batchSize if "__len__" not in dir(c): c = list(c) # Make it a list so we can compute its length batchSize = max(1, min(len(c) // numSlices, self._batchSize or 1024)) serializer = BatchedSerializer(self._unbatched_serializer, batchSize) jrdd = self._serialize_to_jvm(c, numSlices, serializer) return RDD(jrdd, self, serializer) def _serialize_to_jvm(self, data, parallelism, serializer): """ Calling the Java parallelize() method with an ArrayList is too slow, because it sends O(n) Py4J commands. As an alternative, serialized objects are written to a file and loaded through textFile(). """ tempFile = NamedTemporaryFile(delete=False, dir=self._temp_dir) try: serializer.dump_stream(data, tempFile) tempFile.close() readRDDFromFile = self._jvm.PythonRDD.readRDDFromFile return readRDDFromFile(self._jsc, tempFile.name, parallelism) finally: # readRDDFromFile eagerily reads the file so we can delete right after. os.unlink(tempFile.name) def pickleFile(self, name, minPartitions=None): """ Load an RDD previously saved using L{RDD.saveAsPickleFile} method. >>> tmpFile = NamedTemporaryFile(delete=True) >>> tmpFile.close() >>> sc.parallelize(range(10)).saveAsPickleFile(tmpFile.name, 5) >>> sorted(sc.pickleFile(tmpFile.name, 3).collect()) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ minPartitions = minPartitions or self.defaultMinPartitions return RDD(self._jsc.objectFile(name, minPartitions), self) @ignore_unicode_prefix def textFile(self, name, minPartitions=None, use_unicode=True): """ Read a text file from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI, and return it as an RDD of Strings. If use_unicode is False, the strings will be kept as `str` (encoding as `utf-8`), which is faster and smaller than unicode. (Added in Spark 1.2) >>> path = os.path.join(tempdir, "sample-text.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("Hello world!") >>> textFile = sc.textFile(path) >>> textFile.collect() [u'Hello world!'] """ minPartitions = minPartitions or min(self.defaultParallelism, 2) return RDD(self._jsc.textFile(name, minPartitions), self, UTF8Deserializer(use_unicode)) @ignore_unicode_prefix def wholeTextFiles(self, path, minPartitions=None, use_unicode=True): """ Read a directory of text files from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. Each file is read as a single record and returned in a key-value pair, where the key is the path of each file, the value is the content of each file. If use_unicode is False, the strings will be kept as `str` (encoding as `utf-8`), which is faster and smaller than unicode. (Added in Spark 1.2) For example, if you have the following files:: hdfs://a-hdfs-path/part-00000 hdfs://a-hdfs-path/part-00001 ... hdfs://a-hdfs-path/part-nnnnn Do C{rdd = sparkContext.wholeTextFiles("hdfs://a-hdfs-path")}, then C{rdd} contains:: (a-hdfs-path/part-00000, its content) (a-hdfs-path/part-00001, its content) ... (a-hdfs-path/part-nnnnn, its content) .. note:: Small files are preferred, as each file will be loaded fully in memory. >>> dirPath = os.path.join(tempdir, "files") >>> os.mkdir(dirPath) >>> with open(os.path.join(dirPath, "1.txt"), "w") as file1: ... _ = file1.write("1") >>> with open(os.path.join(dirPath, "2.txt"), "w") as file2: ... _ = file2.write("2") >>> textFiles = sc.wholeTextFiles(dirPath) >>> sorted(textFiles.collect()) [(u'.../1.txt', u'1'), (u'.../2.txt', u'2')] """ minPartitions = minPartitions or self.defaultMinPartitions return RDD(self._jsc.wholeTextFiles(path, minPartitions), self, PairDeserializer(UTF8Deserializer(use_unicode), UTF8Deserializer(use_unicode))) def binaryFiles(self, path, minPartitions=None): """ .. note:: Experimental Read a directory of binary files from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI as a byte array. Each file is read as a single record and returned in a key-value pair, where the key is the path of each file, the value is the content of each file. .. note:: Small files are preferred, large file is also allowable, but may cause bad performance. """ minPartitions = minPartitions or self.defaultMinPartitions return RDD(self._jsc.binaryFiles(path, minPartitions), self, PairDeserializer(UTF8Deserializer(), NoOpSerializer())) def binaryRecords(self, path, recordLength): """ .. note:: Experimental Load data from a flat binary file, assuming each record is a set of numbers with the specified numerical format (see ByteBuffer), and the number of bytes per record is constant. :param path: Directory to the input data files :param recordLength: The length at which to split the records """ return RDD(self._jsc.binaryRecords(path, recordLength), self, NoOpSerializer()) def _dictToJavaMap(self, d): jm = self._jvm.java.util.HashMap() if not d: d = {} for k, v in d.items(): jm[k] = v return jm def sequenceFile(self, path, keyClass=None, valueClass=None, keyConverter=None, valueConverter=None, minSplits=None, batchSize=0): """ Read a Hadoop SequenceFile with arbitrary key and value Writable class from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. The mechanism is as follows: 1. A Java RDD is created from the SequenceFile or other InputFormat, and the key and value Writable classes 2. Serialization is attempted via Pyrolite pickling 3. If this fails, the fallback is to call 'toString' on each key and value 4. C{PickleSerializer} is used to deserialize pickled objects on the Python side :param path: path to sequncefile :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: :param valueConverter: :param minSplits: minimum splits in dataset (default min(2, sc.defaultParallelism)) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ minSplits = minSplits or min(self.defaultParallelism, 2) jrdd = self._jvm.PythonRDD.sequenceFile(self._jsc, path, keyClass, valueClass, keyConverter, valueConverter, minSplits, batchSize) return RDD(jrdd, self) def newAPIHadoopFile(self, path, inputFormatClass, keyClass, valueClass, keyConverter=None, valueConverter=None, conf=None, batchSize=0): """ Read a 'new API' Hadoop InputFormat with arbitrary key and value class from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. The mechanism is the same as for sc.sequenceFile. A Hadoop configuration can be passed in as a Python dict. This will be converted into a Configuration in Java :param path: path to Hadoop file :param inputFormatClass: fully qualified classname of Hadoop InputFormat (e.g. "org.apache.hadoop.mapreduce.lib.input.TextInputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop configuration, passed in as a dict (None by default) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ jconf = self._dictToJavaMap(conf) jrdd = self._jvm.PythonRDD.newAPIHadoopFile(self._jsc, path, inputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, batchSize) return RDD(jrdd, self) def newAPIHadoopRDD(self, inputFormatClass, keyClass, valueClass, keyConverter=None, valueConverter=None, conf=None, batchSize=0): """ Read a 'new API' Hadoop InputFormat with arbitrary key and value class, from an arbitrary Hadoop configuration, which is passed in as a Python dict. This will be converted into a Configuration in Java. The mechanism is the same as for sc.sequenceFile. :param inputFormatClass: fully qualified classname of Hadoop InputFormat (e.g. "org.apache.hadoop.mapreduce.lib.input.TextInputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop configuration, passed in as a dict (None by default) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ jconf = self._dictToJavaMap(conf) jrdd = self._jvm.PythonRDD.newAPIHadoopRDD(self._jsc, inputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, batchSize) return RDD(jrdd, self) def hadoopFile(self, path, inputFormatClass, keyClass, valueClass, keyConverter=None, valueConverter=None, conf=None, batchSize=0): """ Read an 'old' Hadoop InputFormat with arbitrary key and value class from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. The mechanism is the same as for sc.sequenceFile. A Hadoop configuration can be passed in as a Python dict. This will be converted into a Configuration in Java. :param path: path to Hadoop file :param inputFormatClass: fully qualified classname of Hadoop InputFormat (e.g. "org.apache.hadoop.mapred.TextInputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop configuration, passed in as a dict (None by default) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ jconf = self._dictToJavaMap(conf) jrdd = self._jvm.PythonRDD.hadoopFile(self._jsc, path, inputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, batchSize) return RDD(jrdd, self) def hadoopRDD(self, inputFormatClass, keyClass, valueClass, keyConverter=None, valueConverter=None, conf=None, batchSize=0): """ Read an 'old' Hadoop InputFormat with arbitrary key and value class, from an arbitrary Hadoop configuration, which is passed in as a Python dict. This will be converted into a Configuration in Java. The mechanism is the same as for sc.sequenceFile. :param inputFormatClass: fully qualified classname of Hadoop InputFormat (e.g. "org.apache.hadoop.mapred.TextInputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.Text") :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.LongWritable") :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop configuration, passed in as a dict (None by default) :param batchSize: The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically) """ jconf = self._dictToJavaMap(conf) jrdd = self._jvm.PythonRDD.hadoopRDD(self._jsc, inputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, batchSize) return RDD(jrdd, self) def _checkpointFile(self, name, input_deserializer): jrdd = self._jsc.checkpointFile(name) return RDD(jrdd, self, input_deserializer) @ignore_unicode_prefix def union(self, rdds): """ Build the union of a list of RDDs. This supports unions() of RDDs with different serialized formats, although this forces them to be reserialized using the default serializer: >>> path = os.path.join(tempdir, "union-text.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("Hello") >>> textFile = sc.textFile(path) >>> textFile.collect() [u'Hello'] >>> parallelized = sc.parallelize(["World!"]) >>> sorted(sc.union([textFile, parallelized]).collect()) [u'Hello', 'World!'] """ first_jrdd_deserializer = rdds[0]._jrdd_deserializer if any(x._jrdd_deserializer != first_jrdd_deserializer for x in rdds): rdds = [x._reserialize() for x in rdds] first = rdds[0]._jrdd rest = [x._jrdd for x in rdds[1:]] return RDD(self._jsc.union(first, rest), self, rdds[0]._jrdd_deserializer) def broadcast(self, value): """ Broadcast a read-only variable to the cluster, returning a L{Broadcast<pyspark.broadcast.Broadcast>} object for reading it in distributed functions. The variable will be sent to each cluster only once. """ return Broadcast(self, value, self._pickled_broadcast_vars) def accumulator(self, value, accum_param=None): """ Create an L{Accumulator} with the given initial value, using a given L{AccumulatorParam} helper object to define how to add values of the data type if provided. Default AccumulatorParams are used for integers and floating-point numbers if you do not provide one. For other types, a custom AccumulatorParam can be used. """ if accum_param is None: if isinstance(value, int): accum_param = accumulators.INT_ACCUMULATOR_PARAM elif isinstance(value, float): accum_param = accumulators.FLOAT_ACCUMULATOR_PARAM elif isinstance(value, complex): accum_param = accumulators.COMPLEX_ACCUMULATOR_PARAM else: raise TypeError("No default accumulator param for type %s" % type(value)) SparkContext._next_accum_id += 1 return Accumulator(SparkContext._next_accum_id - 1, value, accum_param) def addFile(self, path, recursive=False): """ Add a file to be downloaded with this Spark job on every node. The C{path} passed can be either a local file, a file in HDFS (or other Hadoop-supported filesystems), or an HTTP, HTTPS or FTP URI. To access the file in Spark jobs, use L{SparkFiles.get(fileName)<pyspark.files.SparkFiles.get>} with the filename to find its download location. A directory can be given if the recursive option is set to True. Currently directories are only supported for Hadoop-supported filesystems. .. note:: A path can be added only once. Subsequent additions of the same path are ignored. >>> from pyspark import SparkFiles >>> path = os.path.join(tempdir, "test.txt") >>> with open(path, "w") as testFile: ... _ = testFile.write("100") >>> sc.addFile(path) >>> def func(iterator): ... with open(SparkFiles.get("test.txt")) as testFile: ... fileVal = int(testFile.readline()) ... return [x * fileVal for x in iterator] >>> sc.parallelize([1, 2, 3, 4]).mapPartitions(func).collect() [100, 200, 300, 400] """ self._jsc.sc().addFile(path, recursive) def addPyFile(self, path): """ Add a .py or .zip dependency for all tasks to be executed on this SparkContext in the future. The C{path} passed can be either a local file, a file in HDFS (or other Hadoop-supported filesystems), or an HTTP, HTTPS or FTP URI. .. note:: A path can be added only once. Subsequent additions of the same path are ignored. """ self.addFile(path) (dirname, filename) = os.path.split(path) # dirname may be directory or HDFS/S3 prefix if filename[-4:].lower() in self.PACKAGE_EXTENSIONS: self._python_includes.append(filename) # for tests in local mode sys.path.insert(1, os.path.join(SparkFiles.getRootDirectory(), filename)) if sys.version > '3': import importlib importlib.invalidate_caches() def setCheckpointDir(self, dirName): """ Set the directory under which RDDs are going to be checkpointed. The directory must be a HDFS path if running on a cluster. """ self._jsc.sc().setCheckpointDir(dirName) def _getJavaStorageLevel(self, storageLevel): """ Returns a Java StorageLevel based on a pyspark.StorageLevel. """ if not isinstance(storageLevel, StorageLevel): raise Exception("storageLevel must be of type pyspark.StorageLevel") newStorageLevel = self._jvm.org.apache.spark.storage.StorageLevel return newStorageLevel(storageLevel.useDisk, storageLevel.useMemory, storageLevel.useOffHeap, storageLevel.deserialized, storageLevel.replication) def setJobGroup(self, groupId, description, interruptOnCancel=False): """ Assigns a group ID to all the jobs started by this thread until the group ID is set to a different value or cleared. Often, a unit of execution in an application consists of multiple Spark actions or jobs. Application programmers can use this method to group all those jobs together and give a group description. Once set, the Spark web UI will associate such jobs with this group. The application can use L{SparkContext.cancelJobGroup} to cancel all running jobs in this group. >>> import threading >>> from time import sleep >>> result = "Not Set" >>> lock = threading.Lock() >>> def map_func(x): ... sleep(100) ... raise Exception("Task should have been cancelled") >>> def start_job(x): ... global result ... try: ... sc.setJobGroup("job_to_cancel", "some description") ... result = sc.parallelize(range(x)).map(map_func).collect() ... except Exception as e: ... result = "Cancelled" ... lock.release() >>> def stop_job(): ... sleep(5) ... sc.cancelJobGroup("job_to_cancel") >>> suppress = lock.acquire() >>> suppress = threading.Thread(target=start_job, args=(10,)).start() >>> suppress = threading.Thread(target=stop_job).start() >>> suppress = lock.acquire() >>> print(result) Cancelled If interruptOnCancel is set to true for the job group, then job cancellation will result in Thread.interrupt() being called on the job's executor threads. This is useful to help ensure that the tasks are actually stopped in a timely manner, but is off by default due to HDFS-1208, where HDFS may respond to Thread.interrupt() by marking nodes as dead. """ self._jsc.setJobGroup(groupId, description, interruptOnCancel) def setLocalProperty(self, key, value): """ Set a local property that affects jobs submitted from this thread, such as the Spark fair scheduler pool. """ self._jsc.setLocalProperty(key, value) def getLocalProperty(self, key): """ Get a local property set in this thread, or null if it is missing. See L{setLocalProperty} """ return self._jsc.getLocalProperty(key) def setJobDescription(self, value): """ Set a human readable description of the current job. """ self._jsc.setJobDescription(value) def sparkUser(self): """ Get SPARK_USER for user who is running SparkContext. """ return self._jsc.sc().sparkUser() def cancelJobGroup(self, groupId): """ Cancel active jobs for the specified group. See L{SparkContext.setJobGroup} for more information. """ self._jsc.sc().cancelJobGroup(groupId) def cancelAllJobs(self): """ Cancel all jobs that have been scheduled or are running. """ self._jsc.sc().cancelAllJobs() def statusTracker(self): """ Return :class:`StatusTracker` object """ return StatusTracker(self._jsc.statusTracker()) def runJob(self, rdd, partitionFunc, partitions=None, allowLocal=False): """ Executes the given partitionFunc on the specified set of partitions, returning the result as an array of elements. If 'partitions' is not specified, this will run over all partitions. >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part]) [0, 1, 4, 9, 16, 25] >>> myRDD = sc.parallelize(range(6), 3) >>> sc.runJob(myRDD, lambda part: [x * x for x in part], [0, 2], True) [0, 1, 16, 25] """ if partitions is None: partitions = range(rdd._jrdd.partitions().size()) # Implementation note: This is implemented as a mapPartitions followed # by runJob() in order to avoid having to pass a Python lambda into # SparkContext#runJob. mappedRDD = rdd.mapPartitions(partitionFunc) sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions) return list(_load_from_socket(sock_info, mappedRDD._jrdd_deserializer)) def show_profiles(self): """ Print the profile stats to stdout """ if self.profiler_collector is not None: self.profiler_collector.show_profiles() else: raise RuntimeError("'spark.python.profile' configuration must be set " "to 'true' to enable Python profile.") def dump_profiles(self, path): """ Dump the profile stats into directory `path` """ if self.profiler_collector is not None: self.profiler_collector.dump_profiles(path) else: raise RuntimeError("'spark.python.profile' configuration must be set " "to 'true' to enable Python profile.") def getConf(self): conf = SparkConf() conf.setAll(self._conf.getAll()) return conf def _test(): import atexit import doctest import tempfile globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest') globs['tempdir'] = tempfile.mkdtemp() atexit.register(lambda: shutil.rmtree(globs['tempdir'])) (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
-2,844,523,567,311,684,600
41.713881
99
0.611376
false
4.332344
true
false
false
etienne-gauvin/music-player-core
examples/demo-console-player.py
1
3812
#!/usr/bin/env python # MusicPlayer, https://github.com/albertz/music-player # Copyright (c) 2012, Albert Zeyer, www.az2000.de # All rights reserved. # This code is under the 2-clause BSD license, see License.txt in the root directory of this project. import sys, os, random, fnmatch # Our parent path might contain a self-build musicplayer module. Use that one. sys.path = [os.path.abspath((os.path.dirname(__file__) or ".") + "/..")] + sys.path import musicplayer print "Module:", musicplayer.__file__ # ffmpeg log levels: {0:panic, 8:fatal, 16:error, 24:warning, 32:info, 40:verbose} musicplayer.setFfmpegLogLevel(20) try: import better_exchook better_exchook.install() except ImportError: pass # doesnt matter try: import faulthandler faulthandler.enable(all_threads=True) except ImportError: print "note: module faulthandler not available" class Song: def __init__(self, fn): self.url = fn self.f = open(fn) def __eq__(self, other): return self.url == other.url def readPacket(self, bufSize): s = self.f.read(bufSize) #print "readPacket", self, bufSize, len(s) return s def seekRaw(self, offset, whence): r = self.f.seek(offset, whence) #print "seekRaw", self, offset, whence, r, self.f.tell() return self.f.tell() files = [] def getFiles(path): for f in sorted(os.listdir(path), key=lambda k: random.random()): f = os.path.join(path, f) if os.path.isdir(f): getFiles(f) # recurse if len(files) > 1000: break # break if we have enough if fnmatch.fnmatch(f, '*.mp3'): files.append(f) getFiles(os.path.expanduser("~/Music")) random.shuffle(files) # shuffle some more files = sys.argv[1:] + files assert files, "give me some files or fill-up ~/Music" i = 0 def songs(): global i, files while True: yield Song(files[i]) i += 1 if i >= len(files): i = 0 def peekSongs(n): nexti = i + 1 if nexti >= len(files): nexti = 0 return map(Song, (files[nexti:] + files[:nexti])[:n]) player = musicplayer.createPlayer() player.outSamplerate = 48000 player.queue = songs() player.peekQueue = peekSongs player.playing = True def formatTime(t): if t is None: return "?" mins = long(t // 60) t -= mins * 60 hours = mins // 60 mins -= hours * 60 if hours: return "%02i:%02i:%02.0f" % (hours,mins,t) return "%02i:%02.0f" % (mins,t) import termios def prepareStdin(): fd = sys.stdin.fileno() if os.isatty(fd): old = termios.tcgetattr(fd) new = termios.tcgetattr(fd) new[3] = new[3] & ~termios.ICANON & ~termios.ECHO # http://www.unixguide.net/unix/programming/3.6.2.shtml new[6][termios.VMIN] = 0 new[6][termios.VTIME] = 1 termios.tcsetattr(fd, termios.TCSANOW, new) termios.tcsendbreak(fd, 0) import atexit atexit.register(lambda: termios.tcsetattr(fd, termios.TCSANOW, old)) print "Console control:" print " <space>: play / pause" print " <left>/<right>: seek back/forward by 10 secs" print " <return>: next song" print " <q>: quit" def getchar(): fd = sys.stdin.fileno() ch = os.read(fd, 7) return ch prepareStdin() while True: sys.stdout.write("\r\033[K") # clear line if player.playing: sys.stdout.write("playing, ") else: sys.stdout.write("paused, ") curSong = player.curSong if curSong: url = os.path.basename(curSong.url) if len(url) > 40: url = url[:37] + "..." sys.stdout.write( url + " : " + formatTime(player.curSongPos) + " / " + formatTime(player.curSongLen)) else: sys.stdout.write("no song") ch = getchar() if ch == "\x1b[D": # left player.seekRel(-10) elif ch == "\x1b[C": #right player.seekRel(10) elif ch == "\x1b[A": #up pass elif ch == "\x1b[B": #down pass elif ch == "\n": # return player.nextSong() elif ch == " ": player.playing = not player.playing elif ch == "q": print sys.exit(0) sys.stdout.flush()
bsd-2-clause
4,915,947,774,121,647,000
24.245033
101
0.658447
false
2.647222
false
false
false
tmct/adventOfCode2016
problems/11/State.py
1
8576
number_of_levels = 4 from itertools import cycle, islice, combinations def roundrobin(*iterables): "roundrobin('ABC', 'D', 'EF') --> A D E B F C" # Recipe credited to George Sakkis pending = len(iterables) nexts = cycle(iter(it).__next__ for it in iterables) while pending: try: for next in nexts: yield next() except StopIteration: pending -= 1 nexts = cycle(islice(nexts, pending)) class State: def __init__(self, lift_level, chip_levels, generator_levels): self.lift_level = lift_level self.chip_levels = chip_levels self.generator_levels = generator_levels self._lift_level_gens = None self._lift_level_chips = None self._is_safe = None @property def is_safe(self): if self._is_safe is None: levels_with_generators = self.get_generator_levels() unpowered_chips = self.get_unpowered_chips() unpowered_chip_levels = self.get_unpowered_chip_levels(unpowered_chips) self._is_safe = levels_with_generators.isdisjoint(unpowered_chip_levels) return self._is_safe def get_unpowered_chip_levels(self, unpowered_chips): return {chip_level for index, chip_level in enumerate(self.chip_levels) if unpowered_chips[index]} def get_unpowered_chips(self): return [chip_level != generator_level for chip_level, generator_level in zip(self.chip_levels, self.generator_levels)] def get_generator_levels(self): return {level_index for level_index in range(number_of_levels) if level_index in self.generator_levels} def adjacent_safe_states(self): self._lift_level_gens = {generator for generator, level in enumerate(self.generator_levels) if level == self.lift_level} self._lift_level_chips = {chip for chip, level in enumerate(self.chip_levels) if level == self.lift_level} # iterate over up/down and taking all things on this level, one or two from all, and must be safe # up first return {state for state in self.adjacent_states if state.is_safe} @property def adjacent_states(self): # iterate over up/down and taking all things on this level, one or two from all, and must be safe # up first return set(self.adjacent_up_states() + self.adjacent_down_states()) # todo remove most sets def adjacent_up_states(self): next_lift_level = self.lift_level + 1 if next_lift_level == number_of_levels: return [] return self.raise_single_chip_states(self._lift_level_chips) + self.raise_single_gen_states( self._lift_level_gens) + self.raise_double_chip_states( self._lift_level_chips) + self.raise_double_gen_states( self._lift_level_gens) + self.raise_chip_and_gen_states(self._lift_level_chips, self._lift_level_gens) def raise_single_chip_states(self, chips): return [self.raise_chip(chip) for chip in chips] def raise_double_chip_states(self, chips): return [self.raise_two_chips(chip1, chip2) for chip1, chip2 in combinations(chips, 2)] def raise_double_gen_states(self, gens): return [self.raise_two_gens(gen1, gen2) for gen1, gen2 in combinations(gens, 2)] def raise_two_gens(self, gen1, gen2): new_generator_levels = list(self.generator_levels) new_generator_levels[gen1] += 1 new_generator_levels[gen2] += 1 return State(self.lift_level + 1, self.chip_levels, tuple(new_generator_levels)) def raise_two_chips(self, chip1, chip2): new_chip_levels = list(self.chip_levels) new_chip_levels[chip1] += 1 new_chip_levels[chip2] += 1 return State(self.lift_level + 1, tuple(new_chip_levels), self.generator_levels) def raise_single_gen_states(self, gens): return [self.raise_generator(generator) for generator in gens] def raise_chip_and_gen_states(self, chips, gens): return [self.raise_chip_and_gen(chip, gen) for gen in gens for chip in chips] def raise_chip(self, chip): new_chip_levels = list(self.chip_levels) new_chip_levels[chip] += 1 return State(self.lift_level + 1, tuple(new_chip_levels), self.generator_levels) def raise_generator(self, generator): new_generator_levels = list(self.generator_levels) new_generator_levels[generator] += 1 return State(self.lift_level + 1, self.chip_levels, tuple(new_generator_levels)) def raise_chip_and_gen(self, chip, gen): new_chip_levels = list(self.chip_levels) new_chip_levels[chip] += 1 new_generator_levels = list(self.generator_levels) new_generator_levels[gen] += 1 return State(self.lift_level + 1, tuple(new_chip_levels), tuple(new_generator_levels)) def __repr__(self): res = '' for level in range(number_of_levels): res += str(level + 1) + ' ' lift_char = '.' if self.lift_level == number_of_levels - level - 1: lift_char = 'E' res += lift_char + ' ' for value in roundrobin(self.generator_levels, self.chip_levels): char = '.' if value == number_of_levels - level - 1: char = '*' res += char + ' ' res += '\n' return res def adjacent_down_states(self): next_lift_level = self.lift_level - 1 if next_lift_level == -1: return [] return self.lower_single_chip_states(self._lift_level_chips) + self.lower_single_gen_states( self._lift_level_gens) + self.lower_double_chip_states( self._lift_level_chips) + self.lower_double_gen_states( self._lift_level_gens) + self.lower_chip_and_gen_states(self._lift_level_chips, self._lift_level_gens) def lower_single_chip_states(self, chips): return [self.lower_chip(chip) for chip in chips] def lower_double_chip_states(self, chips): return [self.lower_two_chips(chip1, chip2) for chip1, chip2 in combinations(chips, 2)] def lower_double_gen_states(self, gens): return [self.lower_two_gens(gen1, gen2) for gen1, gen2 in combinations(gens, 2)] def lower_two_gens(self, gen1, gen2): new_generator_levels = list(self.generator_levels) new_generator_levels[gen1] -= 1 new_generator_levels[gen2] -= 1 return State(self.lift_level - 1, self.chip_levels, tuple(new_generator_levels)) def lower_two_chips(self, chip1, chip2): new_chip_levels = list(self.chip_levels) new_chip_levels[chip1] -= 1 new_chip_levels[chip2] -= 1 return State(self.lift_level - 1, tuple(new_chip_levels), self.generator_levels) def lower_single_gen_states(self, gens): return [self.lower_generator(generator) for generator in gens] def lower_chip_and_gen_states(self, chips, gens): return [self.lower_chip_and_gen(chip, gen) for gen in gens for chip in chips] def lower_chip(self, chip): new_chip_levels = list(self.chip_levels) new_chip_levels[chip] -= 1 return State(self.lift_level - 1, tuple(new_chip_levels), self.generator_levels) def lower_generator(self, generator): new_generator_levels = list(self.generator_levels) new_generator_levels[generator] -= 1 return State(self.lift_level - 1, self.chip_levels, tuple(new_generator_levels)) def lower_chip_and_gen(self, chip, gen): new_chip_levels = list(self.chip_levels) new_chip_levels[chip] -= 1 new_generator_levels = list(self.generator_levels) new_generator_levels[gen] -= 1 return State(self.lift_level - 1, tuple(new_chip_levels), tuple(new_generator_levels)) def __key(self): return self.lift_level, tuple(sorted(zip(self.chip_levels, self.generator_levels))) def __eq__(self, other): return self.__key() == other.__key() def __hash__(self): return hash(self.__key())
mit
1,454,731,120,773,989,400
39.074766
114
0.596082
false
3.59129
false
false
false
mfxox/ILCC
ILCC/utility.py
1
31390
# coding=utf-8 ''' Created on 3/20/2017 8:58 57PM Wang Weimin @author: wangwm ''' import os from pcd_corners_est import exact_full_marker_data import numpy as np from pcd_corners_est import generate_grid_coords import matplotlib.pyplot as plt import matplotlib import vtk import config from ast import literal_eval as make_tuple import cPickle import cv2 from LM_opt import xyz2angle, voxel2pixel import transforms3d from matplotlib.pyplot import cm import ast from sklearn.decomposition import PCA import matplotlib.path as mplPath import warnings params = config.default_params() marker_size = make_tuple(params["pattern_size"]) (H, W) = make_tuple(params['image_res']) matplotlib.rcParams['text.usetex'] = True matplotlib.rcParams['text.latex.unicode'] = True plt.style.use("ggplot") axis_font = {'fontname': 'Arial', 'size': '35'} def draw_one_grd_vtk(ls): # arr:[a,b,c,d],a:orig, b, point1, c,point 2, d,color source = vtk.vtkPlaneSource() source.SetOrigin(ls[0]) source.SetPoint1(ls[1]) source.SetPoint2(ls[2]) source.Update() # source.SetPoint1(0, 0, 0) # source.SetPoint2(4, 3, 0) # mapper mapper = vtk.vtkPolyDataMapper() color = vtk.vtkUnsignedCharArray() color.SetName("colors") color.SetNumberOfComponents(3) # color_tup = np.random.randint(1, 255, 3) color.SetNumberOfTuples(source.GetOutput().GetNumberOfCells()) for i in xrange(source.GetOutput().GetNumberOfCells()): color_tup = np.array([255, 255, 255]) * ls[3] color.InsertTuple(i, color_tup) source.GetOutput().GetCellData().SetScalars(color) mapper.SetInputConnection(source.GetOutputPort()) # actor actor = vtk.vtkActor() actor.SetMapper(mapper) # assign actor to the renderer # ren.AddActor(actor) return actor # generate the color list of the point cloud for different color styles. intens_rg: color by reflectance intensity (red:high green:low), # intens: color by reflectance intensity (white:high back:low), autumn: matplotlib autumn color map, cool: matplotlib cool color map def gen_color_tup_for_vis(color_style="intens_rg", xyzi_arr=None): assert xyzi_arr is not None, "The array of the point cloud must be not None" a = xyzi_arr[:, params['intensity_col_ind']].min() b = xyzi_arr[:, params['intensity_col_ind']].max() color_ls = [] if color_style == "intens_rg": tmp = (xyzi_arr[:, params['intensity_col_ind']] - a) / (b - a) * 255 for k in xrange(xyzi_arr.shape[0]): rgb_tuple = np.array([tmp[k], 0, 255 - xyzi_arr[k, params['intensity_col_ind']]]).astype(np.int32) color_ls.append(rgb_tuple) return color_ls elif color_style == "intens": tmp = (xyzi_arr[:, params['intensity_col_ind']] - a) / (b - a) * 255 for k in xrange(xyzi_arr.shape[0]): rgb_tuple = np.repeat(tmp[k], 3).astype(np.int32) color_ls.append(rgb_tuple) return color_ls elif color_style == "autumn": tmp = (xyzi_arr[:, params['intensity_col_ind']] - a).astype(np.float32) / (b - a) for k in xrange(xyzi_arr.shape[0]): rgb_tuple = (np.array(plt.cm.autumn(1 - tmp[k]))[:3] * 255).astype(np.int32) color_ls.append(rgb_tuple) return color_ls elif color_style == "cool": tmp = (xyzi_arr[:, params['intensity_col_ind']] - a).astype(np.float32) / (b - a) for k in xrange(xyzi_arr.shape[0]): rgb_tuple = (np.array(plt.cm.cool(tmp[k]))[:3] * 255).astype(np.int32) color_ls.append(rgb_tuple) return color_ls elif color_style == "monochrome": # color = (np.random.randint(0, 255, 3)).tolist() color = [46, 204, 113] for k in xrange(xyzi_arr.shape[0]): color_ls.append(color) return color_ls elif color_style == "by_height": low_height = xyzi_arr[:, 2].min() high_height = xyzi_arr[:, 2].max() tmp = 0.0 + 0.7 * (xyzi_arr[:, 2] - low_height) / (high_height - low_height) for k in xrange(xyzi_arr.shape[0]): rgb_tuple = (np.array(plt.cm.hsv(tmp[k]))[:3] * 255).astype(np.int32) color_ls.append(rgb_tuple) return color_ls else: raise ValueError('Input color type is not correct!') # visualize 3D points with specified color style def vis_3D_points(full_lidar_arr, color_style="intens_rg"): all_rows = full_lidar_arr.shape[0] Colors = vtk.vtkUnsignedCharArray() Colors.SetNumberOfComponents(3) Colors.SetName("Colors") Points = vtk.vtkPoints() Vertices = vtk.vtkCellArray() tuple_ls = gen_color_tup_for_vis(color_style, xyzi_arr=full_lidar_arr) for k in xrange(all_rows): point = full_lidar_arr[k, :3] id = Points.InsertNextPoint(point[0], point[1], point[2]) Vertices.InsertNextCell(1) Vertices.InsertCellPoint(id) rgb_tuple = tuple_ls[k] if vtk.VTK_MAJOR_VERSION >= 7: Colors.InsertNextTuple(rgb_tuple) else: Colors.InsertNextTupleValue(rgb_tuple) polydata = vtk.vtkPolyData() polydata.SetPoints(Points) polydata.SetVerts(Vertices) polydata.GetPointData().SetScalars(Colors) polydata.Modified() mapper = vtk.vtkPolyDataMapper() if vtk.VTK_MAJOR_VERSION < 6: mapper.SetInput(polydata) else: mapper.SetInputData(polydata) mapper.SetColorModeToDefault() actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetPointSize(8) return actor # visualize 3D points with specified color array def vis_pcd_color_arr(array_data, color_arr=[46, 204, 113]): all_rows = array_data.shape[0] Colors = vtk.vtkUnsignedCharArray() Colors.SetNumberOfComponents(3) Colors.SetName("Colors") Points = vtk.vtkPoints() Vertices = vtk.vtkCellArray() for k in xrange(all_rows): point = array_data[k, :] id = Points.InsertNextPoint(point[0], point[1], point[2]) Vertices.InsertNextCell(1) Vertices.InsertCellPoint(id) if vtk.VTK_MAJOR_VERSION >= 7: Colors.InsertNextTuple(color_arr) else: Colors.InsertNextTupleValue(color_arr) polydata = vtk.vtkPolyData() polydata.SetPoints(Points) polydata.SetVerts(Vertices) polydata.GetPointData().SetScalars(Colors) polydata.Modified() mapper = vtk.vtkPolyDataMapper() if vtk.VTK_MAJOR_VERSION <= 5: mapper.SetInput(polydata) else: mapper.SetInputData(polydata) mapper.SetColorModeToDefault() actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetPointSize(10) return actor # visualize with actor: def vis_with_renderer(renderer): # Renderer # renderer.SetBackground(.2, .3, .4) renderer.SetBackground(1, 1, 1) renderer.ResetCamera() transform = vtk.vtkTransform() transform.Translate(1.0, 0.0, 0.0) axes = vtk.vtkAxesActor() renderer.AddActor(axes) # Render Window renderWindow = vtk.vtkRenderWindow() renderWindow.AddRenderer(renderer) # Interactor renderWindowInteractor = vtk.vtkRenderWindowInteractor() renderWindowInteractor.SetRenderWindow(renderWindow) def get_camera_info(obj, ev): if renderWindowInteractor.GetKeyCode() == "s": w2if = vtk.vtkWindowToImageFilter() w2if.SetInput(renderWindow) w2if.Update() writer = vtk.vtkPNGWriter() writer.SetFileName("screenshot.png") if vtk.VTK_MAJOR_VERSION == 5: writer.SetInput(w2if.GetOutput()) else: writer.SetInputData(w2if.GetOutput()) writer.Write() print "screenshot saved" style = vtk.vtkInteractorStyleSwitch() renderWindowInteractor.SetInteractorStyle(style) # style.SetCurrentStyleToTrackballActor() style.SetCurrentStyleToTrackballCamera() # Begin Interaction renderWindowInteractor.AddObserver(vtk.vtkCommand.KeyPressEvent, get_camera_info, 1) renderWindow.Render() renderWindowInteractor.Start() def proj_pcd_2_pix(pcd_arr): if params["camera_type"] == "panoramic": angs_ls = map(xyz2angle, pcd_arr.tolist()) pix_ls = (np.array(map(voxel2pixel, angs_ls))).tolist() elif params['camera_type'] == "perspective": intrinsic_paras_tuple = make_tuple(params['instrinsic_para']) intrinsic_paras = np.array(intrinsic_paras_tuple).reshape(3, 3) cam_coord_pcd = pcd_arr.copy() pcd_to_pix = (np.dot(intrinsic_paras, cam_coord_pcd.T)).T proj_pts = (pcd_to_pix / pcd_to_pix[:, 2].reshape(-1, 1))[:, :2].astype(np.int16) pix_ls = proj_pts.tolist() else: raise Exception("Camera type not correctly defined!") return pix_ls def remove_occlusion_of_chessboard(pcd_arr, corners_in_pcd_arr): occlu_thres = 0.1 pcd_ls = pcd_arr.tolist() pix_ls = proj_pcd_2_pix(pcd_arr) ind_ls = [] pca = PCA(n_components=3) pca.fit(corners_in_pcd_arr) transed_corners_in_pcd_arr = np.dot(pca.components_, corners_in_pcd_arr.T).T center = transed_corners_in_pcd_arr.mean(axis=0) bound = np.dot(pca.components_.T, (np.array( [[-0.3, -0.225, 0], [-0.3, 0.225, 0], [0.3, 0.225, 0], [0.3, -0.225, 0]]) * 1.05 + center).T).T if params["camera_type"] == "panoramic": bound_on_image = np.fliplr(np.array(map(voxel2pixel, map(xyz2angle, bound.tolist())))) elif params['camera_type'] == "perspective": intrinsic_paras_tuple = make_tuple(params['instrinsic_para']) intrinsic_paras = np.array(intrinsic_paras_tuple).reshape(3, 3) pcd_to_pix = (np.dot(intrinsic_paras, bound.T)).T inds = np.where(pcd_arr[:, 2] > 0) pcd_ls = pcd_arr[inds].tolist() pix_ls = np.array(pix_ls)[inds].tolist() print "before removal: ", len(pcd_ls) proj_pts = (pcd_to_pix / pcd_to_pix[:, 2].reshape(-1, 1))[:, :2].astype(np.int16) bound_on_image = np.fliplr(proj_pts) # bound_on_image = proj_pts # print bound_on_image else: raise Exception("Camera type not correctly defined!") polygon_path = mplPath.Path(bound_on_image.tolist()) for i in xrange(len(pcd_ls)): pix = list(reversed(pix_ls[i])) # print pix if polygon_path.contains_point(pix): point_2_board_dis = abs(np.dot(pca.components_[2], pcd_ls[i] - corners_in_pcd_arr.mean(axis=0))) # print point_2_board_dis # print pix_ls[i] if point_2_board_dis <= occlu_thres: if params["camera_type"] == "panoramic": ind_ls.append(i) elif params['camera_type'] == "perspective": ind_ls.append(inds[0][i]) else: raise Exception("Camera type not correctly defined!") else: if params["camera_type"] == "panoramic": ind_ls.append(i) elif params['camera_type'] == "perspective": ind_ls.append(inds[0][i]) else: raise Exception("Camera type not correctly defined!") return np.array(ind_ls) # visualize csv file of i-th point cloud def vis_csv_pcd(ind=1, color_style="monochrome"): pcd_arr = np.genfromtxt( os.path.join(params['base_dir'], "pcd/" + str(ind).zfill(params["file_name_digits"])) + ".csv", delimiter=",", skip_header=1) # actor = vis_3D_points(pcd_arr, color_style="intens") actor = vis_3D_points(pcd_arr, color_style=color_style) renderer = vtk.vtkRenderer() renderer.AddActor(actor) vis_with_renderer(renderer) def vis_segments(ind=1): renderer = vtk.vtkRenderer() seg_folder = os.path.join(params['base_dir'], "output/pcd_seg/" + str(ind).zfill(params["file_name_digits"])) + "/" seg_list = os.listdir(seg_folder) for seg in seg_list: if seg.split(".")[-1] == "txt": color_tup = (np.random.randint(1, 255, 3)).tolist() points_ls = list() jdcs_collection = cPickle.load(open(os.path.abspath(seg_folder + seg), 'rb')) if len(jdcs_collection) > 0: # filter for jdc in jdcs_collection: points_ls.extend(jdc) # print points_ls actor = vis_pcd_color_arr(np.array(points_ls), color_tup) renderer.AddActor(actor) vis_with_renderer(renderer) def vis_segments_only_chessboard_color(ind=1): renderer = vtk.vtkRenderer() seg_folder = os.path.join(params['base_dir'], "output/pcd_seg/" + str(ind).zfill(params["file_name_digits"])) + "/" seg_list = os.listdir(seg_folder) chessboard_file_name = \ cPickle.load(open(os.path.join(params['base_dir'], "output/pcd_seg/") + str(ind).zfill( params["file_name_digits"]) + "_pcd_result.pkl", "r"))[ -1].split("/")[-1] for seg in seg_list: if seg.split(".")[-1] == "txt": if seg == chessboard_file_name: color_tup = np.array([0, 255, 0]) else: color_tup = np.array([0, 0, 0]) points_ls = list() jdcs_collection = cPickle.load(open(os.path.abspath(seg_folder + seg), 'rb')) if len(jdcs_collection) > 0: # filter for jdc in jdcs_collection: points_ls.extend(jdc) # print points_ls actor = vis_pcd_color_arr(np.array(points_ls), color_tup) renderer.AddActor(actor) vis_with_renderer(renderer) def cal_theorical_number_points(dis): h_res = np.deg2rad(0.16) # rad v_res = np.deg2rad(1.33) # rad h_len = dis * h_res v_len = 2 * dis * np.sin(v_res / 2) w = 0.45 l = 0.6 return (l // v_len) * (w // h_len) def vis_all_markers(ls=[1]): import vtk ren = vtk.vtkRenderer() # ren.SetBackground(.2, .3, .4) ren.SetBackground(.5, .6, .7) for i in ls: try: pcd_result_file = os.path.join(params['base_dir'], "output/pcd_seg/" + str(i).zfill( params["file_name_digits"]) + "_pcd_result.pkl") csv_path = os.path.join(params['base_dir'], "pcd/" + str(i).zfill(params["file_name_digits"]) + ".csv") with open(os.path.abspath(pcd_result_file), "r") as f: pcd_result_ls = cPickle.load(f) assert pcd_result_ls is not None marker_full_data_arr = exact_full_marker_data(csv_path, [pcd_result_ls[-1]]) marker_arr = marker_full_data_arr[:, :3] # transformed_pcd = roate_with_rt(np.array(r_t), marker_arr) if i % 4 == 0: actor2 = vis_3D_points( np.hstack([marker_arr + np.array([0, 0, 0]), marker_full_data_arr[:, 3:]]), color_style="intens") elif i % 4 == 1: actor2 = vis_3D_points( np.hstack([marker_arr + np.array([0, 0, 0]), marker_full_data_arr[:, 3:]]), color_style="autumn") elif i % 4 == 2: actor2 = vis_3D_points( np.hstack([marker_arr + np.array([0, 0, 0]), marker_full_data_arr[:, 3:]]), color_style="cool") else: actor2 = vis_3D_points( np.hstack([marker_arr + np.array([0, 0, 0]), marker_full_data_arr[:, 3:]]), color_style="intens_rg") ren.AddActor(actor2) except: print i, "-th pcd corners are not found!" continue transform2 = vtk.vtkTransform() transform2.Translate(0.0, 0.0, 0.0) axes2 = vtk.vtkAxesActor() axes2.SetUserTransform(transform2) ren.AddActor(axes2) cubeAxesActor = vtk.vtkCubeAxesActor() cubeAxesActor.SetBounds((-3, 3, -3, 3, -2, 2)) cubeAxesActor.SetCamera(ren.GetActiveCamera()) cubeAxesActor.GetTitleTextProperty(0).SetColor(1.0, 0.0, 0.0) cubeAxesActor.GetLabelTextProperty(0).SetColor(1.0, 0.0, 0.0) cubeAxesActor.GetTitleTextProperty(1).SetColor(0.0, 1.0, 0.0) cubeAxesActor.GetLabelTextProperty(1).SetColor(0.0, 1.0, 0.0) cubeAxesActor.GetTitleTextProperty(2).SetColor(0.0, 0.0, 1.0) cubeAxesActor.GetLabelTextProperty(2).SetColor(0.0, 0.0, 1.0) cubeAxesActor.DrawXGridlinesOn() cubeAxesActor.DrawYGridlinesOn() cubeAxesActor.DrawZGridlinesOn() # if vtk.VTK_MAJOR_VERSION > 5: # cubeAxesActor.SetGridLineLocation(vtk.VTK_GRID_LINES_FURTHEST) cubeAxesActor.XAxisMinorTickVisibilityOff() cubeAxesActor.YAxisMinorTickVisibilityOff() cubeAxesActor.ZAxisMinorTickVisibilityOff() # cubeAxesActor.GetProperty().SetColor(0, 255, 0) cubeAxesActor.GetXAxesLinesProperty().SetColor(0, 255, 0) cubeAxesActor.GetYAxesLinesProperty().SetColor(0, 255, 0) cubeAxesActor.GetZAxesLinesProperty().SetColor(0, 255, 0) ren.AddActor(cubeAxesActor) renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren) iren = vtk.vtkRenderWindowInteractor() style = vtk.vtkInteractorStyleSwitch() iren.SetInteractorStyle(style) style.SetCurrentStyleToTrackballCamera() def get_camera_info(obj, ev): if iren.GetKeyCode() == "s": w2if = vtk.vtkWindowToImageFilter() w2if.SetInput(renWin) w2if.Update() writer = vtk.vtkPNGWriter() writer.SetFileName("screenshot.png") writer.SetInputData(w2if.GetOutput()) writer.Write() print "screenshot saved" # save to pdf if iren.GetKeyCode() == "s": exp = vtk.vtkGL2PSExporter() exp.SetRenderWindow(renWin) exp.SetFilePrefix("screenpdf") exp.SetFileFormat(2) exp.SetCompress(False) exp.SetLandscape(False) exp.SetSortToBSP() # exp.SetSortToSimple() # less expensive sort algorithm exp.DrawBackgroundOn() exp.SetWrite3DPropsAsRasterImage(False) iren.AddObserver(vtk.vtkCommand.KeyPressEvent, get_camera_info, 1) iren.SetRenderWindow(renWin) renWin.Render() # ren.SetActiveCamera(camera) iren.Initialize() iren.Start() def transform_grid(args): corner_arr = args[0] rot1 = args[1] rot2 = args[2] t1 = args[3] t2 = args[4] corners_in_pcd_arr = np.dot(np.dot(rot2.T, corner_arr.T).T - t2 + t1, rot1) return corners_in_pcd_arr[0] def vis_ested_pcd_corners(ind=1): # pair_ind = 9 pcd_result_file = os.path.join(params['base_dir'], "output/pcd_seg/" + str(ind).zfill(params["file_name_digits"]) + "_pcd_result.pkl") csv_file = os.path.join(params['base_dir'], "pcd/" + str(ind).zfill(params["file_name_digits"]) + ".csv") full_arr = np.genfromtxt(csv_file, delimiter=",", skip_header=1) grid_coords = generate_grid_coords() with open(os.path.abspath(pcd_result_file), "r") as f: pcd_result_ls = cPickle.load(f) assert pcd_result_ls is not None rot1 = pcd_result_ls[0] t1 = pcd_result_ls[1].reshape(1, 3) rot2 = pcd_result_ls[2] t2 = pcd_result_ls[3].reshape(1, 3) trans_grid_ls = [] for coords in grid_coords: args = [[coord, rot1, rot2, t1, t2] for coord in coords[:3]] trans_coords = map(transform_grid, args) trans_coords.append(coords[3]) trans_grid_ls.append(trans_coords) ren = vtk.vtkRenderer() ren.SetBackground(.2, .3, .4) ren.SetBackground(0.90196079, 0.96078432, 0.59607846) # ren.SetBackground(1., 1., 1.) for i in xrange(len(trans_grid_ls)): tmp_actor = draw_one_grd_vtk(trans_grid_ls[i]) tmp_actor.GetProperty().SetOpacity(0.5) ren.AddActor(tmp_actor) show_only_marker = True if show_only_marker: marker_full_data_arr = exact_full_marker_data(csv_file, [pcd_result_ls[-1]]) actor2 = vis_3D_points(marker_full_data_arr, color_style="intens_rg") else: actor2 = vis_3D_points(full_arr, color_style="intens_rg") ren.AddActor(actor2) transform2 = vtk.vtkTransform() transform2.Translate(0.0, 0.0, 0.0) axes2 = vtk.vtkAxesActor() axes2.SetUserTransform(transform2) ren.AddActor(axes2) renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren) renWin.SetWindowName(str(i).zfill(params["file_name_digits"])) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) def get_camera_info(obj, ev): if iren.GetKeyCode() == "s": w2if = vtk.vtkWindowToImageFilter() w2if.SetInput(renWin) w2if.Update() writer = vtk.vtkPNGWriter() writer.SetFileName("screenshot.png") writer.SetInputData(w2if.GetOutput()) writer.Write() print "screenshot saved" style = vtk.vtkInteractorStyleSwitch() iren.SetRenderWindow(renWin) iren.SetInteractorStyle(style) # style.SetCurrentStyleToTrackballActor() style.SetCurrentStyleToTrackballCamera() iren.AddObserver(vtk.vtkCommand.KeyPressEvent, get_camera_info, 1) iren.Initialize() renWin.Render() renWin.SetWindowName(str(ind).zfill(params["file_name_digits"])) iren.Start() def draw_chessboard_model(marker_size=marker_size): gird_coords = generate_grid_coords(x_res=marker_size[0], y_res=marker_size[1]) grid_ls = [(p[0]).flatten()[:2] for p in gird_coords] corner_arr = np.transpose(np.array(grid_ls).reshape(marker_size[0], marker_size[1], 2)[1:, 1:], (1, 0, 2)) c = np.zeros([corner_arr.shape[0], corner_arr.shape[1], 3]).reshape( corner_arr.shape[0] * corner_arr.shape[1], 3).astype(np.float32) c[0] = np.array([0, 0, 1]) c[-1] = np.array([1, 0, 0]) s = np.zeros(corner_arr[:, :, 0].flatten().shape[0]) + 20 s[0] = 60 s[-1] = 60 plt.scatter(corner_arr[:, :, 0].flatten(), corner_arr[:, :, 1].flatten(), c=c, s=s) plt.plot(corner_arr[:, :, 0].flatten(), corner_arr[:, :, 1].flatten()) plt.xlim(corner_arr[:, :, 0].min(), corner_arr[:, :, 0].max()) plt.ylim(corner_arr[:, :, 1].min(), corner_arr[:, :, 1].max()) plt.xlabel("x coordinates [cm]") plt.ylabel("y coordinates [cm]") # plt.axes().set_aspect('equal', 'datalim') plt.axis('equal') plt.show() def convert_to_edge(file_name): # gray = cv2.imread('lines.jpg') gray = cv2.imread(file_name) edges = cv2.Canny(gray, 50, 150, apertureSize=3) img = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) return img def find_latest(cali_file_ls): number_ls = [] for file in cali_file_ls: tmp_ls = file.split("_") number_ls.append(ast.literal_eval(tmp_ls[0] + "." + tmp_ls[1])) return cali_file_ls[np.array(number_ls).argmax()] def back_project_pcd(img, pcd_arr, color_arr, r_t, i, hide_occlussion_by_marker): # print pcd_arr rot_mat = np.dot(transforms3d.axangles.axangle2mat([0, 0, 1], r_t[2]), np.dot(transforms3d.axangles.axangle2mat([0, 1, 0], r_t[1]), transforms3d.axangles.axangle2mat([1, 0, 0], r_t[0]))) transformed_pcd = np.dot(rot_mat, pcd_arr.T).T + r_t[3:] transformed_pcd_ls = pcd_arr.tolist() if not hide_occlussion_by_marker: # whether remove occlussions by the chessboard if params["camera_type"] == "panoramic": pcd2angle_s = map(xyz2angle, transformed_pcd_ls) proj_pts = np.array(map(voxel2pixel, pcd2angle_s)) point_s = 5 elif params['camera_type'] == "perspective": intrinsic_paras_tuple = make_tuple(params['instrinsic_para']) intrinsic_paras = np.array(intrinsic_paras_tuple).reshape(3, 3) cam_coord_pcd = transformed_pcd.copy() # print cam_coord_pcd print "before filtering z: ", cam_coord_pcd.shape # cam_coord_pcd = cam_coord_pcd[np.where(cam_coord_pcd[:, 2] < 0)] # cam_coord_pcd = cam_coord_pcd[:20000, :] # print cam_coord_pcd inds = np.where(cam_coord_pcd[:, 2] > 0.2) cam_coord_pcd = cam_coord_pcd[inds] color_arr = color_arr[inds] # print cam_coord_pcd print "after filtering z: ", cam_coord_pcd.shape pcd_to_pix = (np.dot(intrinsic_paras, cam_coord_pcd.T)).T # pcd_to_pix = pcd_to_pix[np.where(pcd_to_pix[:, 2] > 0)] inds = np.where(pcd_to_pix[:, 2] > 0) pcd_to_pix = pcd_to_pix[inds] color_arr = color_arr[inds] proj_pts = (pcd_to_pix / pcd_to_pix[:, 2].reshape(-1, 1))[:, :2].astype(np.int16) point_s = 3 # print proj_pts # # print proj_pts.shape else: raise Exception("Camera type not correctly defined!") else: if params["camera_type"] == "panoramic": point_s = 5 elif params['camera_type'] == "perspective": point_s = 3 else: raise Exception("Camera type not correctly defined!") chessboard_result_file_path = os.path.join(params['base_dir'], "output/pcd_seg/" + str(i).zfill( params["file_name_digits"]) + "_pcd_result.pkl") chessboard_result_file = cPickle.load(open(chessboard_result_file_path, "r")) rot1 = chessboard_result_file[0] t1 = chessboard_result_file[1].reshape(1, 3) # print "rot1*rot1.T: ", np.dot(rot1, rot1.T) rot2 = chessboard_result_file[2] t2 = chessboard_result_file[3].reshape(1, 3) corner_arr = chessboard_result_file[4].reshape(-1, 2) num = corner_arr.shape[0] corner_arr = np.hstack([corner_arr, np.zeros(num).reshape(num, 1)]) rot_mat = np.dot(transforms3d.axangles.axangle2mat([0, 0, 1], r_t[2]), np.dot(transforms3d.axangles.axangle2mat([0, 1, 0], r_t[1]), transforms3d.axangles.axangle2mat([1, 0, 0], r_t[0]))) trans_arr = np.zeros([4, 4]) trans_arr[:3, :3] = rot_mat trans_arr[:3, 3] = np.array(r_t[3:]) trans_arr[3, 3] = 1 trans_matrix = np.asmatrix(trans_arr) corners_in_pcd_arr = np.dot(np.dot(rot2.T, corner_arr.T).T - t2 + t1, rot1) corners_in_pcd_arr = (trans_matrix[:3, :3] * np.asmatrix(corners_in_pcd_arr).T).T + trans_matrix[:3, 3].T corners_in_pcd_arr = np.array(corners_in_pcd_arr) # print "before removal: ", transformed_pcd.shape inds = remove_occlusion_of_chessboard(transformed_pcd, corners_in_pcd_arr) print "inds:", inds proj_pts = np.array(proj_pcd_2_pix(transformed_pcd))[inds].astype(np.int32) print "after removal: ", proj_pts.shape color_arr = color_arr[inds] print print proj_pts.shape[0], proj_pts.min(axis=0), proj_pts.max(axis=0) print for i in xrange(proj_pts.shape[0]): cv2.circle(img, (proj_pts[i][0], proj_pts[i][1]), point_s, tuple(color_arr[i].tolist()), -1) return img def vis_back_proj(ind=1, img_style="edge", pcd_style="intens", hide_occlussion_by_marker=False, save_without_show=False): imgfile = os.path.join(params['base_dir'], "img/" + str(ind).zfill(params["file_name_digits"]) + "." + params['image_format']) if img_style == "edge": gray = cv2.imread(imgfile) edges = cv2.Canny(gray, 50, 150, apertureSize=3) img = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) elif img_style == "orig": img = cv2.imread(imgfile) else: raise Exception("Please input the right image style") csvfile = os.path.join(params['base_dir'], "pcd/" + str(ind).zfill(params["file_name_digits"]) + ".csv") csv = np.genfromtxt(csvfile, delimiter=",", skip_header=1) pcd = csv[:, :3] dis_arr = np.linalg.norm(pcd, axis=1) intens = csv[:, params['intensity_col_ind']] filels = os.listdir(params['base_dir']) cali_file_ls = [] for file in filels: if file.find("cali_result.txt") > -1: cali_file_ls.append(file) if len(cali_file_ls) > 1: warnings.warn("More than one calibration file exit! Load the latest file.", UserWarning) latest_cali = find_latest(cali_file_ls) r_t = np.genfromtxt(os.path.join(params['base_dir'], latest_cali), delimiter=',') print "Load ", latest_cali, " as the extrinsic calibration parameters!" elif len(cali_file_ls) == 1: r_t = np.genfromtxt(os.path.join(params['base_dir'], cali_file_ls[0]), delimiter=',') print "Load ", cali_file_ls[0], " as the extrinsic calibration parameters!" else: raise Exception("No calibration file is found!") if pcd_style == "intens": pcd_color = np.fliplr((cm.jet(intens.astype(np.float32) / intens.max()) * 255).astype(np.int32)[:, :3]) elif pcd_style == "dis": pcd_color = np.fliplr((cm.jet(dis_arr / 10) * 255).astype(np.int32)[:, :3]) else: print "Please input the right pcd color style" backproj_img = back_project_pcd(img, pcd, pcd_color, r_t, ind, hide_occlussion_by_marker) if max(backproj_img.shape[0], backproj_img.shape[1]) > 1000: resize_factor = 1000. / max(backproj_img.shape[0], backproj_img.shape[1]) resized_img_for_view = cv2.resize(backproj_img, (0, 0), fx=resize_factor, fy=resize_factor) else: resized_img_for_view = backproj_img if save_without_show: window_name = "ind: " + str(ind) + " img_style: " + img_style + " pcd_style: " + pcd_style + ( " hide_occlusion " if hide_occlussion_by_marker else "") cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) cv2.imshow(window_name, resized_img_for_view) k = cv2.waitKey(0) if k == 27: # wait for ESC key to exit cv2.destroyAllWindows() elif k == ord('s'): # wait for 's' key to save and exit save_file_name = os.path.join(params['base_dir'], str(ind).zfill( params["file_name_digits"])) + "_" + img_style + "_" + pcd_style + ( "_hide_occlusion" if hide_occlussion_by_marker else "") + "." + params['image_format'] cv2.imwrite(save_file_name, img, [cv2.IMWRITE_JPEG_QUALITY, 70]) print "The image is saved to ", save_file_name cv2.destroyAllWindows() else: save_file_name = os.path.join(params['base_dir'], str(ind).zfill( params["file_name_digits"])) + "_" + img_style + "_" + pcd_style + ( "_hide_occlusion" if hide_occlussion_by_marker else "") + "." + params['image_format'] cv2.imwrite(save_file_name, img, [cv2.IMWRITE_JPEG_QUALITY, 70]) print "The image is saved to ", save_file_name cv2.destroyAllWindows() if __name__ == "__main__": # vis_back_proj(ind=1, img_style="orig", pcd_style="dis", hide_occlussion_by_marker=True) vis_back_proj(ind=1, img_style="edge", pcd_style="intens", hide_occlussion_by_marker=False) # vis_all_markers(np.arange(1, 5).tolist()) # vis_all_markers([1]) # vis_segments_only_chessboard_color(1) # vis_csv_pcd(ind=1) # vis_segments(ind=1) # vis_ested_pcd_corners(ind=1)
bsd-2-clause
-3,670,802,329,565,017,000
37.468137
136
0.599618
false
3.110076
false
false
false
melipelo/ejemplo
app.py
1
3030
#!/usr/bin/env python # coding=utf-8 import requests import urllib2 import json import os from flask import Flask from flask import request from flask import make_response from bs4 import BeautifulSoup # Flask app should start in global layout app = Flask(__name__) @app.route('/webhook', methods=['POST']) def webhook(): req = request.get_json(silent=True, force=True) res = makeWebhookResult(req) res = json.dumps(res, indent=4) print(res) r = make_response(res) r.headers['Content-Type'] = 'application/json' return r def makeWebhookResult(req): result = req.get("result") parameters = result.get("parameters") if req.get("result").get("action") == "productos.sura": cliente = parameters.get("tipo_cliente") speech = "Buscando productos para " + cliente elif req.get("result").get("action") == "producto.info": producto = parameters.get("producto") if (producto=="hogar"): url = "https://www.sura.com/soluciones-personas/seguro-hogar.aspx" r = urllib2.urlopen(url).read() soup = BeautifulSoup(r, 'html.parser') print soup contenido = soup.find_all("div",class_="textRightColumn") if (len(contenido)==0): speech = "No encontrado" else: speech = contenido[0] else: speech = "Buscando informacion del producto " + producto elif req.get("result").get("action") == "planes.salud": url = "https://api.segurossura.com.co/public/v1/directory/products" myResponse = requests.get(url) if(myResponse.ok): jData = json.loads(myResponse.text) speech = "Seguros Sura Colombia ofrece los siguientes planes de salud: \n" for plan in jData: speech = speech + "\n" + plan["nombreField"].title() elif req.get("result").get("action") == "info.especialistas": producto = parameters.get("plan-salud") ciudad = parameters.get("ciudad") especialidad = parameters.get("especialidad") url = "https://api.segurossura.com.co/public/v1/directory/search/" + producto + "/" + ciudad + "?speciality=" + especialidad + "&firstname=&secondname=&firstlastname=&secondlastname=" myResponse = requests.get(url) if(myResponse.ok): jData = json.loads(myResponse.text) speech = "Los profesionales que coinciden con tu busqueda son: \n" for medico in jData: speech = speech + "\n" + medico["nombreField"] + "\n Direccion: " + medico["direccionField"].title() + "\n Telefono: " + medico["telefonoField"] + "\n" elif req.get("result").get("action") == "coberturas.producto": producto = parameters.get("productos") speech = "Buscando coberturas del producto: " + producto else: speech =" " return { "speech": speech, "displayText": speech, #"data": {}, # "contextOut": [], "source": "apiai-onlinestore-shipping" } if __name__ == '__main__': port = int(os.getenv('PORT', 5000)) print "Starting app on port %d" % port app.run(debug=True, port=port, host='0.0.0.0')
apache-2.0
5,939,019,461,058,861,000
30.237113
185
0.642244
false
3.026973
false
false
false
petewarden/tensorflow
tensorflow/python/keras/saving/saved_model/save_impl.py
1
28457
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras SavedModel serialization. TODO (kathywu): Move to layer_serialization.py. Some model-specific logic should go to model_serialization.py. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import threading import weakref from tensorflow.python.eager import def_function from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine import base_layer_utils from tensorflow.python.keras.engine import input_spec from tensorflow.python.keras.mixed_precision import autocast_variable from tensorflow.python.keras.saving import saving_utils from tensorflow.python.keras.saving.saved_model import constants from tensorflow.python.keras.saving.saved_model import load as keras_load from tensorflow.python.keras.saving.saved_model import serialized_attributes from tensorflow.python.keras.saving.saved_model import utils from tensorflow.python.keras.utils import tf_contextlib from tensorflow.python.keras.utils import tf_inspect from tensorflow.python.keras.utils import tf_utils from tensorflow.python.keras.utils import version_utils from tensorflow.python.keras.utils.generic_utils import LazyLoader from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training.tracking import base as trackable from tensorflow.python.training.tracking import data_structures from tensorflow.python.util import nest from tensorflow.python.util import tf_decorator # To avoid circular dependencies between keras/engine and keras/saving, # code in keras/saving must delay imports. # TODO(b/134426265): Switch back to single-quotes to match the rest of the file # once the issue with copybara is fixed. # pylint:disable=g-inconsistent-quotes base_layer = LazyLoader( "base_layer", globals(), "tensorflow.python.keras.engine.base_layer") metrics = LazyLoader("metrics", globals(), "tensorflow.python.keras.metrics") input_layer = LazyLoader( "input_layer", globals(), "tensorflow.python.keras.engine.input_layer") training_lib = LazyLoader( "training_lib", globals(), "tensorflow.python.keras.engine.training") sequential_lib = LazyLoader( "sequential_lib", globals(), "tensorflow.python.keras.engine.sequential") # pylint:enable=g-inconsistent-quotes def should_skip_serialization(layer): """Skip serializing extra objects and functions if layer inputs aren't set.""" saved_model_input_spec_set = (isinstance(layer, training_lib.Model) and layer._saved_model_inputs_spec is not None) # pylint: disable=protected-access if not layer.built and not saved_model_input_spec_set: logging.warning('Skipping full serialization of Keras layer {}, because ' 'it is not built.'.format(layer)) return True return False def wrap_layer_objects(layer, serialization_cache): """Returns extra trackable objects to attach to the serialized layer. Args: layer: Keras Layer object. serialization_cache: Dictionary shared between all objects during serialization. Returns: A dictionary containing all checkpointable objects from a SerializedAttributes object. See LayerAttributes and ModelAttributes for entire list of objects """ # Wrap all regularization losses as tf.functions. # First, generate list of all regularization losses in this layer and # sublayers. all_losses = layer._callable_losses[:] # pylint: disable=protected-access for child_layer in utils.list_all_layers(layer): all_losses.extend(child_layer._callable_losses) # pylint: disable=protected-access # Next, wrap all loss functions as tf.functions. Use the serialization cache # to store already-wrapped functions. keras_loss_cache = serialization_cache.setdefault('keras_losses', {}) wrapped_loss_functions = [] for loss_fn in all_losses: if loss_fn in keras_loss_cache: wrapped_loss_functions.append(keras_loss_cache[loss_fn]) else: wrapped_loss = _wrap_unconditional_loss(loss_fn, len(keras_loss_cache)) keras_loss_cache[loss_fn] = wrapped_loss wrapped_loss_functions.append(wrapped_loss) wrapped_layer_losses = [keras_loss_cache[fn] for fn in layer._callable_losses[:]] # pylint: disable=protected-access layer_metrics = data_structures.wrap_or_unwrap( {m.name: m for m in layer._metrics}) # pylint: disable=protected-access return dict( variables=data_structures.wrap_or_unwrap(layer.variables), trainable_variables=data_structures.wrap_or_unwrap( layer.trainable_variables), non_trainable_variables=data_structures.wrap_or_unwrap( layer.non_trainable_variables), layers=data_structures.wrap_or_unwrap(utils.list_all_layers(layer)), metrics=data_structures.wrap_or_unwrap(layer.metrics), regularization_losses=data_structures.wrap_or_unwrap( wrapped_loss_functions), layer_regularization_losses=data_structures.wrap_or_unwrap( wrapped_layer_losses), layer_metrics=layer_metrics) # pylint: disable=protected-access def wrap_layer_functions(layer, serialization_cache): """Returns dict of wrapped layer call function and losses in tf.functions. Args: layer: Keras Layer object. serialization_cache: Dictionary shared between all objects during serialization. Returns: A dictionary containing all keras tf.functions to serialize. See LayerAttributes and ModelAttributes for the list of all attributes. """ # Since Sequential models may be modified in place using model.add() or # model.pop(), don't use saved functions. if (isinstance(layer, keras_load.RevivedLayer) and not isinstance(layer, sequential_lib.Sequential)): return {fn_name: getattr(layer.keras_api, fn_name, None) for fn_name in serialized_attributes.LayerAttributes.all_functions} # Reset the losses of the layer and its children. The call function in each # child layer is replaced with tf.functions. original_fns = _replace_child_layer_functions(layer, serialization_cache) original_losses = _reset_layer_losses(layer) # Wrap all the layer call and activity regularizer functions. # Use LayerCallCollection to ensure that all layer call functions (__call__, # call with losses) are traced with the same inputs. call_collection = LayerCallCollection(layer) call_fn_with_losses = call_collection.add_function( _wrap_call_and_conditional_losses(layer), '{}_layer_call_and_return_conditional_losses'.format(layer.name)) call_fn = call_collection.add_function( _extract_outputs_from_fn(layer, call_fn_with_losses), '{}_layer_call_fn'.format(layer.name)) fns = {'call_and_return_conditional_losses': call_fn_with_losses, '__call__': call_fn} if layer._activity_regularizer is not None: # pylint: disable=protected-access fns['activity_regularizer_fn'] = _wrap_activity_regularizer(layer) fns['call_and_return_all_conditional_losses'] = ( call_collection.add_function( _append_activity_regularizer_loss(layer, call_fn_with_losses, fns['activity_regularizer_fn']), '{}_layer_call_and_return_all_conditional_losses'.format(layer.name) )) else: fns['activity_regularizer_fn'] = None fns['call_and_return_all_conditional_losses'] = call_fn_with_losses # Manually trigger traces before restoring the overwritten functions. The # functions are traced within the layer call context to ensure that layer # functions (e.g. add_loss) behave as though running in graph mode. with tracing_scope(): call_collection.trace_with_input_signature() with base_layer_utils.call_context().enter( layer, inputs=None, build_graph=True, training=None, saving=True): for fn in fns.values(): if fn is not None and fn.input_signature is not None: if isinstance(fn, LayerCall): fn = fn.wrapped_call fn.get_concrete_function() # Restore overwritten functions and losses _restore_child_layer_functions(original_fns) _restore_layer_losses(original_losses) return fns def default_save_signature(layer): original_losses = _reset_layer_losses(layer) fn = saving_utils.trace_model_call(layer) fn.get_concrete_function() _restore_layer_losses(original_losses) return fn def _replace_child_layer_functions(layer, serialization_cache): """Replaces functions in the children layers with wrapped tf.functions. This step allows functions from parent layers to reference the wrapped functions from their children layers instead of retracing the ops. This function also resets all losses stored in the layer. These are stored in the returned dictionary. Use `_restore_child_layer_functions` to restore the original attributes. Args: layer: Keras Layer object. serialization_cache: Dictionary shared between all objects during serialization. Returns: Dictionary mapping layer objects -> original functions and losses: { Child layer 1: { 'losses': Original losses, 'call': Original call function '_activity_regularizer': Original activity regularizer}, Child layer 2: ... } """ # pylint: disable=protected-access original_fns = {} def replace_layer_functions(child_layer, serialized_fns): """Replaces layer call and activity regularizer with wrapped functions.""" original_fns[child_layer] = { 'call': child_layer.call, '_activity_regularizer': child_layer._activity_regularizer } with trackable.no_automatic_dependency_tracking_scope(child_layer): try: child_layer._activity_regularizer = serialized_fns.get( 'activity_regularizer_fn') except AttributeError: # Some layers have an unsettable activity regularizer. pass child_layer.call = utils.use_wrapped_call( child_layer, serialized_fns['call_and_return_conditional_losses'], default_training_value=False) def replace_metric_functions(child_layer, serialized_fns): """Replaces metric functions with wrapped functions.""" original_fns[child_layer] = { '__call__': child_layer.__call__, 'result': child_layer.result, 'update_state': child_layer.update_state } with trackable.no_automatic_dependency_tracking_scope(child_layer): child_layer.__call__ = serialized_fns['__call__'] child_layer.result = serialized_fns['result'] child_layer.update_state = serialized_fns['update_state'] for child_layer in utils.list_all_layers(layer): if isinstance(child_layer, input_layer.InputLayer): continue if child_layer not in serialization_cache[constants.KERAS_CACHE_KEY]: serialized_functions = ( child_layer._trackable_saved_model_saver._get_serialized_attributes( serialization_cache).functions) else: serialized_functions = ( serialization_cache[constants.KERAS_CACHE_KEY][child_layer].functions) if not serialized_functions: # This indicates either: # - circular dependency, which means the current layer's functions # should be wrapped first. # - Child layer's inputs are not defined, so its functions have not been # wrapped. In this case, no replacement is necessary so move on to the # next child. continue if isinstance(child_layer, metrics.Metric): replace_metric_functions(child_layer, serialized_functions) else: replace_layer_functions(child_layer, serialized_functions) return original_fns # pylint: enable=protected-access def _restore_child_layer_functions(original_fns): """Restores attributes replaced with `_replace_child_layer_functions`.""" for child_layer, fns in original_fns.items(): with trackable.no_automatic_dependency_tracking_scope(child_layer): for fn_name, fn in fns.items(): try: setattr(child_layer, fn_name, fn) # pylint: disable=protected-access except AttributeError: pass # In the case of _activity_regularizer, setting the attribute # may be disallowed. # pylint: disable=protected-access def _reset_layer_losses(parent_layer): """Resets losses of layer and its sublayers, and returns original losses.""" losses_dict = {} for layer in utils.list_all_layers_and_sublayers(parent_layer): losses_dict[layer] = {'losses': layer._losses[:], 'eager_losses': layer._eager_losses[:]} with trackable.no_automatic_dependency_tracking_scope(layer): layer._losses = [] layer._eager_losses = [] return losses_dict def _restore_layer_losses(losses_dict): for layer in losses_dict: with trackable.no_automatic_dependency_tracking_scope(layer): layer._losses = losses_dict[layer]['losses'] layer._eager_losses = losses_dict[layer]['eager_losses'] # pylint: enable=protected-access class LayerTracingContext(threading.local): def __init__(self): super(LayerTracingContext, self).__init__() self.enable_call_tracing = False self.trace_queue = [] _thread_local_data = LayerTracingContext() @tf_contextlib.contextmanager def tracing_scope(): """Enables tracing scope.""" # This enables the LayerCallCollection's tracing mechanism to trace all call # functions in the collection. previous_value = _thread_local_data.enable_call_tracing previous_queue = _thread_local_data.trace_queue try: _thread_local_data.enable_call_tracing = True _thread_local_data.trace_queue = [] yield finally: _thread_local_data.enable_call_tracing = previous_value # Run traces from the queue. for fn, args, kwargs, training in _thread_local_data.trace_queue: if training is not None: with K.deprecated_internal_learning_phase_scope(training): fn.get_concrete_function(*args, **kwargs) else: fn.get_concrete_function(*args, **kwargs) _thread_local_data.trace_queue = previous_queue def add_trace_to_queue(fn, args, kwargs, training=None): if tracing_enabled(): _thread_local_data.trace_queue.append( (fn, args[:], kwargs.copy(), training)) def tracing_enabled(): """Whether to add extra traces to the queue.""" return _thread_local_data.enable_call_tracing class LayerCallCollection(object): """Groups wrapped layer call functions. This is used to ensure that all layer call functions are traced with the same inputs- - call - call_and_return_conditional_losses - call_and_return_all_conditional_losses """ def __init__(self, layer): self.layer = layer self.layer_call_method = _get_layer_call_method(layer) self._expects_training_arg = utils.layer_uses_training_bool(layer) self._training_arg_index = utils.get_training_arg_index( self.layer_call_method) # If the layer call function has kwargs, then the traced function cannot # have an input signature. arg_spec = tf_inspect.getfullargspec(self.layer_call_method) self._has_kwargs = bool(self._expects_training_arg or arg_spec.defaults or arg_spec.kwonlyargs or arg_spec.varkw) self._input_signature = self._generate_input_signature(layer) self._functions = weakref.WeakValueDictionary() # Get the input argument name from the args. args = arg_spec.args if tf_inspect.ismethod(self.layer_call_method): args = args[1:] self._input_arg_name = args[0] if args else 'inputs' def _generate_input_signature(self, layer): """Inspects layer object and returns the inferred input signature. Args: layer: Layer object. Returns: List of possibly nested TensorSpecs of the layer call function inputs. The list does not contain the `training` argument. """ if (isinstance(layer.call, def_function.Function) and layer.call.input_signature is not None): return layer.call.input_signature elif isinstance(layer, training_lib.Model): return saving_utils.model_input_signature(layer) elif (layer.input_spec is not None and layer._use_input_spec_as_call_signature): # pylint: disable=protected-access def to_tensor_spec_or_none(x): spec = input_spec.to_tensor_spec(x, layer._compute_dtype) # pylint: disable=protected-access # If the shape is too general (e.g. multiple dimensions are allowed), # return None so that separate functions can be generated for each # inferred input signature. # TODO(b/134962016): currently partial signatures are not supported. if spec.shape == tensor_shape.TensorShape(None): return None return spec input_signature = [nest.map_structure( to_tensor_spec_or_none, layer.input_spec)] return input_signature else: return None def add_trace(self, *args, **kwargs): """Traces all functions with the same args and kwargs. Args: *args: Positional args passed to the original function. **kwargs: Keyword args passed to the original function. """ args = list(args) kwargs = kwargs.copy() for fn in self._functions.values(): # TODO(kathywu): Replace arguments with broader shapes defined in the # input signature. if self._expects_training_arg: def trace_with_training(value, fn=fn): utils.set_training_arg(value, self._training_arg_index, args, kwargs) add_trace_to_queue(fn, args, kwargs, value) trace_with_training(True) trace_with_training(False) else: add_trace_to_queue(fn, args, kwargs) @property def fn_input_signature(self): """Returns input signature for the wrapped layer call function.""" if self._has_kwargs: # Input signatures may only describe tensor arguments and kwargs are not # supported. return None if None in nest.flatten(self._input_signature): # TODO(b/134962016): If input signature cannot be partially defined. return None return self._input_signature def training_arg_was_passed(self, args, kwargs): if not self.layer._expects_training_arg and self._expects_training_arg: # pylint: disable=protected-access return (utils.get_training_arg(self._training_arg_index, args, kwargs) is not None) else: return self.layer._call_arg_was_passed( # pylint: disable=protected-access 'training', args, kwargs, inputs_in_args=True) def get_training_arg_value(self, args, kwargs): if not self.layer._expects_training_arg and self._expects_training_arg: # pylint: disable=protected-access return utils.get_training_arg(self._training_arg_index, args, kwargs) else: return self.layer._get_call_arg_value( # pylint: disable=protected-access 'training', args, kwargs, inputs_in_args=True) def get_input_arg_value(self, args, kwargs): return self.layer._get_call_arg_value( # pylint: disable=protected-access self._input_arg_name, args, kwargs, inputs_in_args=True) def _maybe_wrap_with_training_arg(self, call_fn): """Wraps call function with added training argument if necessary.""" if not self.layer._expects_training_arg and self._expects_training_arg: # pylint: disable=protected-access # Add training arg to wrapper function. arg_spec = tf_inspect.getfullargspec(call_fn) args = arg_spec.args + ['training'] defaults = list(arg_spec.defaults or []) defaults.append(False) new_arg_spec = tf_inspect.FullArgSpec( args=args, varargs=arg_spec.varargs, varkw=arg_spec.varkw, defaults=defaults, kwonlyargs=arg_spec.kwonlyargs, kwonlydefaults=arg_spec.kwonlydefaults, annotations=arg_spec.annotations) # Set new training arg index self._training_arg_index = len(args) - 1 if tf_inspect.ismethod(call_fn): self._training_arg_index -= 1 def wrap_with_training_arg(*args, **kwargs): # Remove the training value, since the original call_fn does not expect # a training arg. Instead, the training value will be propagated using # the call context created in LayerCall. args = list(args) kwargs = kwargs.copy() utils.remove_training_arg(self._training_arg_index, args, kwargs) return call_fn(*args, **kwargs) return tf_decorator.make_decorator( target=call_fn, decorator_func=wrap_with_training_arg, decorator_argspec=new_arg_spec) return call_fn def add_function(self, call_fn, name): """Adds a layer call function to the collection.""" fn = LayerCall( self, self._maybe_wrap_with_training_arg(call_fn), name, input_signature=self.fn_input_signature) self._functions[name] = fn.wrapped_call return fn def trace_with_input_signature(self): """Trace with the layer/models inferred input signature if possible.""" if (None not in nest.flatten(self._input_signature) and self._has_kwargs): # Manually add traces for layers that have keyword arguments and have # a fully defined input signature. self.add_trace(*self._input_signature) def _filtered_inputs(inputs): return list(filter(tf_utils.is_tensor_or_variable, nest.flatten(inputs))) def layer_call_wrapper(call_collection, method, name): """Ensures layer losses are kept the same, and runs method in call context.""" # Create wrapper that deals with losses and call context. def wrapper(*args, **kwargs): """Calls method within call context.""" layer = call_collection.layer training = None inputs = _filtered_inputs([args, kwargs]) # pylint: disable=protected-access if (args or kwargs) and call_collection.training_arg_was_passed( args, kwargs): training = call_collection.get_training_arg_value(args, kwargs) # pylint: enable=protected-access original_losses = _reset_layer_losses(layer) with base_layer_utils.call_context().enter( layer, inputs=inputs, build_graph=False, training=training, saving=True): with autocast_variable.enable_auto_cast_variables( layer._compute_dtype_object): # pylint: disable=protected-access ret = method(*args, **kwargs) _restore_layer_losses(original_losses) return ret # Rename to `name`, since tf.function doesn't have a name argument. Without # this, all functions returned by this method will be named "call", which # would be a nightmare to debug. fn = tf_decorator.make_decorator(target=method, decorator_func=wrapper) fn.__name__ = name return fn class LayerCall(object): """Function that triggers traces of other functions in the same collection.""" def __init__(self, call_collection, call_fn, name, input_signature): """Initializes a LayerCall object. Args: call_collection: a LayerCallCollection, which contains the other layer call functions (e.g. call_with_conditional_losses, call). These functions should be traced with the same arguments. call_fn: A call function. name: Name of the call function. input_signature: Input signature of call_fn (can be None). """ self.call_collection = call_collection self.input_signature = input_signature self.wrapped_call = def_function.function( layer_call_wrapper(call_collection, call_fn, name), input_signature=input_signature) self.original_layer_call = call_collection.layer_call_method def _maybe_trace(self, args, kwargs): # Trigger traces of other call functions + extra training-arg traces. if tracing_enabled(): self.call_collection.add_trace(*args, **kwargs) def __call__(self, *args, **kwargs): self._maybe_trace(args, kwargs) return self.wrapped_call(*args, **kwargs) def get_concrete_function(self, *args, **kwargs): self._maybe_trace(args, kwargs) return self.wrapped_call.get_concrete_function(*args, **kwargs) def _wrap_call_and_conditional_losses(layer): """Wraps call function that returns a tuple of (outputs, losses). The losses returned are conditional on the inputs passed to the call function. Unconditional losses (e.g. weight regularizeration) are wrapped separately. Args: layer: a Keras layer object Returns: python call function that returns outputs and conditional losses -- excludes activity regularizer """ # Create function that generates both outputs and losses layer_call = _get_layer_call_method(layer) def call_and_return_conditional_losses(*args, **kwargs): """Returns layer (call_output, conditional losses) tuple.""" call_output = layer_call(*args, **kwargs) if version_utils.is_v1_layer_or_model(layer): conditional_losses = layer.get_losses_for( _filtered_inputs([args, kwargs])) else: conditional_losses = [ l for l in layer.losses if not hasattr(l, '_unconditional_loss') ] return call_output, conditional_losses return _create_call_fn_decorator(layer, call_and_return_conditional_losses) def _extract_outputs_from_fn(layer, call_and_return_conditional_losses): """Returns a function that returns only call function outputs.""" if isinstance(layer, keras_load.RevivedLayer): return layer.keras_api.__call__ # pylint: disable=protected-access def call(inputs, *args, **kwargs): return call_and_return_conditional_losses(inputs, *args, **kwargs)[0] return _create_call_fn_decorator(layer, call) def _append_activity_regularizer_loss( layer, call_fn_with_losses, activity_regularizer_fn): """Appends activity regularizer loss to losses returned by the wrapped fn.""" def fn(inputs, *args, **kwargs): outputs, losses = call_fn_with_losses(inputs, *args, **kwargs) losses.append(activity_regularizer_fn(outputs)) return outputs, losses return _create_call_fn_decorator(layer, fn) def _create_call_fn_decorator(layer, wrapped_call): call_fn = _get_layer_call_method(layer) fn, arg_spec = utils.maybe_add_training_arg( call_fn, wrapped_call, layer._expects_training_arg, # pylint: disable=protected-access default_training_value=False) return tf_decorator.make_decorator( target=call_fn, decorator_func=fn, decorator_argspec=arg_spec) def _wrap_unconditional_loss(loss_fn, index): """Wraps callable/unconditional loss, returning a serializable function.""" # Extract original loss function from partial function fn = loss_fn.args[0] if isinstance(loss_fn, functools.partial) else loss_fn if isinstance(fn, def_function.Function): return fn else: return def_function.Function( fn, 'loss_fn_{}'.format(index), input_signature=[]) def _wrap_activity_regularizer(layer): """Wraps the activity regularizer.""" # pylint: disable=protected-access if isinstance(layer._activity_regularizer, def_function.Function): return layer._activity_regularizer return def_function.Function( layer._activity_regularizer, '{}_activity_regularizer'.format(layer.name), input_signature=[ tensor_spec.TensorSpec(None, layer._compute_dtype or K.floatx()) ]) # pylint: enable=protected-access def _get_layer_call_method(layer): if isinstance(layer.call, (def_function.Function)): return layer.call.python_function return layer.call
apache-2.0
-5,671,393,154,205,207,000
38.688982
111
0.697965
false
3.977775
false
false
false
DavideCanton/Python3
docs/docs.py
1
1567
__author__ = 'davide' import pathlib import string import math from collections import defaultdict def compute_inverse(fdt, docs, terms): ft = defaultdict(int) for t in terms: for d in docs: ft[t] += fdt[t, d] return ft def index(): terms = set() docs = [] fdt = defaultdict(int) folder = pathlib.Path("D:/documenti prova") for fp in folder.glob("*.txt"): docs.append(fp.name) with fp.open() as f: for line in f: for word in line.split(): word = word.strip(string.punctuation) if word: terms.add(word) fdt[word, fp.name] += 1 ft = compute_inverse(fdt, docs, terms) return terms, docs, fdt, ft if __name__ == "__main__": terms, docs, fdt, ft = index() N = len(docs) q = input("Query>") f1 = lambda t: math.log(1 + N / ft[t]) if ft[t] > 0 else 0 f2 = lambda t, d: 1 + math.log(fdt[t, d]) if fdt[t, d] > 0 else 0 qt = [x.strip(string.punctuation) for x in q.split()] wqt = {t: f1(t) for t in qt} wdt = {(t, d): f2(t, d) for t in qt for d in docs} wd = math.sqrt(sum(wdt[t, d] ** 2 for t in qt for d in docs)) if abs(wd) < 1E-10: sd = [] else: sd = [(d, sum(wdt[t, d] * wqt[t] for t in qt for d in docs) / wd ) for d in docs] sd.sort(key=lambda t: -t[1]) for el in sd: print(el) for t in qt: for d in docs: print("{},{} => {}".format(t, d, fdt[t, d]))
gpl-3.0
-8,411,056,482,351,363,000
24.290323
74
0.498405
false
3.060547
false
false
false
lahwaacz/tvnamer
tests/test_anime_filenames.py
1
1102
#!/usr/bin/env python """Tests anime filename output """ from functional_runner import run_tvnamer, verify_out_data from nose.plugins.attrib import attr @attr("functional") def test_group(): """Anime filename [#100] """ out_data = run_tvnamer( with_files = ['[Some Group] Scrubs - 01 [A1B2C3].avi'], with_config = """ { "batch": true, "filename_anime_with_episode": "[%(group)s] %(seriesname)s - %(episode)s - %(episodename)s [%(crc)s]%(ext)s" } """) expected_files = ['[Some Group] Scrubs - 01 - My First Day [A1B2C3].avi'] verify_out_data(out_data, expected_files) @attr("functional") def test_group_no_epname(): """Anime filename, on episode with no name [#100] """ out_data = run_tvnamer( with_files = ['[Some Group] Somefakeseries - 01 [A1B2C3].avi'], with_config = """ { "batch": true, "filename_anime_without_episode": "[%(group)s] %(seriesname)s - %(episode)s [%(crc)s]%(ext)s" } """) expected_files = ['[Some Group] Somefakeseries - 01 [A1B2C3].avi'] verify_out_data(out_data, expected_files)
unlicense
3,900,368,123,542,362,600
23.488889
112
0.608893
false
2.930851
false
false
false
zookeepr/zookeepr
zk/model/ceiling.py
1
3694
"""The application's model objects""" import sqlalchemy as sa from meta import Base from pylons.controllers.util import abort from beaker.cache import CacheManager from role import Role from person_role_map import person_role_map from meta import Session import datetime import random class Ceiling(Base): """Stores the details of product ceilings which are used to control the sale of items with a limited stock """ __tablename__ = 'ceiling' id = sa.Column(sa.types.Integer, primary_key=True) parent_id = sa.Column(sa.types.Integer, sa.ForeignKey('ceiling.id'), nullable=True) name = sa.Column(sa.types.Text, nullable=False, unique=True) max_sold = sa.Column(sa.types.Integer, nullable=True) available_from = sa.Column(sa.types.DateTime, nullable=True) available_until = sa.Column(sa.types.DateTime, nullable=True) cache = CacheManager() # relations parent = sa.orm.relation(lambda: Ceiling, backref='children', remote_side=[id]) def qty_sold(self): qty = 0 for p in self.products: qty += p.qty_sold() return qty def qty_invoiced(self, date=True): # date: bool? only count items that are not overdue @self.cache.cache(self.id, expire=600) def cached(self, date=True): qty = 0 for p in self.products: qty += p.qty_invoiced(date) return qty return cached(self, date) def qty_free(self): qty = 0 for p in self.products: qty += p.qty_free() return qty def percent_sold(self): if self.max_sold == None: return 0 else: percent = float(self.qty_sold()) / float(self.max_sold) return int(percent * 100) def percent_invoiced(self): if self.max_sold == None: return 0 else: percent = float(self.qty_invoiced()) / float(self.max_sold) return int(percent * 100) def remaining(self): return self.max_sold - self.qty_sold() def soldout(self): if self.max_sold != None: return self.qty_invoiced() >= self.max_sold return False def enough_left(self, qty): if self.max_sold != None: return (self.qty_invoiced() + qty) > self.max_sold return False def available(self, stock=True, qty=0): # bool stock: care about if the product is in stock (ie sold out?) if stock and self.soldout(): return False elif qty > 0 and self.enough_left(qty): return False elif self.available_from is not None and self.available_from >= datetime.datetime.now(): return False elif self.available_until is not None and self.available_until <= datetime.datetime.now(): return False elif self.parent is not None and self.parent != self and self.parent.available(): return False else: return True def can_i_sell(self, qty): if not self.soldout() and self.remaining() > qty: return True else: return False def __repr__(self): return '<Ceiling id=%r name=%r max_sold=%r available_from=%r, available_until=%r' % (self.id, self.name, self.max_sold, self.available_from, self.available_until) @classmethod def find_all(cls): return Session.query(Ceiling).order_by(Ceiling.name).all() @classmethod def find_by_id(cls, id): return Session.query(Ceiling).filter_by(id=id).first() @classmethod def find_by_name(cls, name): return Session.query(Ceiling).filter_by(name=name).first()
gpl-2.0
-5,095,891,693,858,206,000
29.783333
170
0.61072
false
3.74645
false
false
false
ContinuumIO/dask
dask/array/utils.py
2
11059
import difflib import functools import math import numbers import os import warnings import numpy as np from tlz import frequencies, concat from .core import Array from ..highlevelgraph import HighLevelGraph from ..utils import has_keyword, ignoring, is_arraylike try: AxisError = np.AxisError except AttributeError: try: np.array([0]).sum(axis=5) except Exception as e: AxisError = type(e) def normalize_to_array(x): if "cupy" in str(type(x)): # TODO: avoid explicit reference to cupy return x.get() else: return x def meta_from_array(x, ndim=None, dtype=None): """ Normalize an array to appropriate meta object Parameters ---------- x: array-like, callable Either an object that looks sufficiently like a Numpy array, or a callable that accepts shape and dtype keywords ndim: int Number of dimensions of the array dtype: Numpy dtype A valid input for ``np.dtype`` Returns ------- array-like with zero elements of the correct dtype """ # If using x._meta, x must be a Dask Array, some libraries (e.g. zarr) # implement a _meta attribute that are incompatible with Dask Array._meta if hasattr(x, "_meta") and isinstance(x, Array): x = x._meta if dtype is None and x is None: raise ValueError("You must specify the meta or dtype of the array") if np.isscalar(x): x = np.array(x) if x is None: x = np.ndarray if isinstance(x, type): x = x(shape=(0,) * (ndim or 0), dtype=dtype) if ( not hasattr(x, "shape") or not hasattr(x, "dtype") or not isinstance(x.shape, tuple) ): return x if isinstance(x, list) or isinstance(x, tuple): ndims = [ 0 if isinstance(a, numbers.Number) else a.ndim if hasattr(a, "ndim") else len(a) for a in x ] a = [a if nd == 0 else meta_from_array(a, nd) for a, nd in zip(x, ndims)] return a if isinstance(x, list) else tuple(x) if ndim is None: ndim = x.ndim try: meta = x[tuple(slice(0, 0, None) for _ in range(x.ndim))] if meta.ndim != ndim: if ndim > x.ndim: meta = meta[(Ellipsis,) + tuple(None for _ in range(ndim - meta.ndim))] meta = meta[tuple(slice(0, 0, None) for _ in range(meta.ndim))] elif ndim == 0: meta = meta.sum() else: meta = meta.reshape((0,) * ndim) except Exception: meta = np.empty((0,) * ndim, dtype=dtype or x.dtype) if np.isscalar(meta): meta = np.array(meta) if dtype and meta.dtype != dtype: meta = meta.astype(dtype) return meta def compute_meta(func, _dtype, *args, **kwargs): with np.errstate(all="ignore"), warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) args_meta = [meta_from_array(x) if is_arraylike(x) else x for x in args] kwargs_meta = { k: meta_from_array(v) if is_arraylike(v) else v for k, v in kwargs.items() } # todo: look for alternative to this, causes issues when using map_blocks() # with np.vectorize, such as dask.array.routines._isnonzero_vec(). if isinstance(func, np.vectorize): meta = func(*args_meta) else: try: # some reduction functions need to know they are computing meta if has_keyword(func, "computing_meta"): kwargs_meta["computing_meta"] = True meta = func(*args_meta, **kwargs_meta) except TypeError as e: if ( "unexpected keyword argument" in str(e) or "is an invalid keyword for" in str(e) or "Did not understand the following kwargs" in str(e) ): raise else: return None except Exception: return None if _dtype and getattr(meta, "dtype", None) != _dtype: with ignoring(AttributeError): meta = meta.astype(_dtype) if np.isscalar(meta): meta = np.array(meta) return meta def allclose(a, b, equal_nan=False, **kwargs): a = normalize_to_array(a) b = normalize_to_array(b) if getattr(a, "dtype", None) != "O": return np.allclose(a, b, equal_nan=equal_nan, **kwargs) if equal_nan: return a.shape == b.shape and all( np.isnan(b) if np.isnan(a) else a == b for (a, b) in zip(a.flat, b.flat) ) return (a == b).all() def same_keys(a, b): def key(k): if isinstance(k, str): return (k, -1, -1, -1) else: return k return sorted(a.dask, key=key) == sorted(b.dask, key=key) def _not_empty(x): return x.shape and 0 not in x.shape def _check_dsk(dsk): """ Check that graph is well named and non-overlapping """ if not isinstance(dsk, HighLevelGraph): return assert all(isinstance(k, (tuple, str)) for k in dsk.layers) freqs = frequencies(concat(dsk.dicts.values())) non_one = {k: v for k, v in freqs.items() if v != 1} assert not non_one, non_one def assert_eq_shape(a, b, check_nan=True): for aa, bb in zip(a, b): if math.isnan(aa) or math.isnan(bb): if check_nan: assert math.isnan(aa) == math.isnan(bb) else: assert aa == bb def _get_dt_meta_computed(x, check_shape=True, check_graph=True): x_original = x x_meta = None x_computed = None if isinstance(x, Array): assert x.dtype is not None adt = x.dtype if check_graph: _check_dsk(x.dask) x_meta = getattr(x, "_meta", None) x = x.compute(scheduler="sync") x_computed = x if hasattr(x, "todense"): x = x.todense() if not hasattr(x, "dtype"): x = np.array(x, dtype="O") if _not_empty(x): assert x.dtype == x_original.dtype if check_shape: assert_eq_shape(x_original.shape, x.shape, check_nan=False) else: if not hasattr(x, "dtype"): x = np.array(x, dtype="O") adt = getattr(x, "dtype", None) return x, adt, x_meta, x_computed def assert_eq(a, b, check_shape=True, check_graph=True, check_meta=True, **kwargs): a_original = a b_original = b a, adt, a_meta, a_computed = _get_dt_meta_computed( a, check_shape=check_shape, check_graph=check_graph ) b, bdt, b_meta, b_computed = _get_dt_meta_computed( b, check_shape=check_shape, check_graph=check_graph ) if str(adt) != str(bdt): # Ignore check for matching length of flexible dtypes, since Array._meta # can't encode that information if adt.type == bdt.type and not (adt.type == np.bytes_ or adt.type == np.str_): diff = difflib.ndiff(str(adt).splitlines(), str(bdt).splitlines()) raise AssertionError( "string repr are different" + os.linesep + os.linesep.join(diff) ) try: assert a.shape == b.shape if check_meta: if hasattr(a, "_meta") and hasattr(b, "_meta"): assert_eq(a._meta, b._meta) if hasattr(a_original, "_meta"): assert a_original._meta.ndim == a.ndim if a_meta is not None: assert type(a_original._meta) == type(a_meta) if not (np.isscalar(a_meta) or np.isscalar(a_computed)): assert type(a_meta) == type(a_computed) if hasattr(b_original, "_meta"): assert b_original._meta.ndim == b.ndim if b_meta is not None: assert type(b_original._meta) == type(b_meta) if not (np.isscalar(b_meta) or np.isscalar(b_computed)): assert type(b_meta) == type(b_computed) assert allclose(a, b, **kwargs) return True except TypeError: pass c = a == b if isinstance(c, np.ndarray): assert c.all() else: assert c return True def safe_wraps(wrapped, assigned=functools.WRAPPER_ASSIGNMENTS): """Like functools.wraps, but safe to use even if wrapped is not a function. Only needed on Python 2. """ if all(hasattr(wrapped, attr) for attr in assigned): return functools.wraps(wrapped, assigned=assigned) else: return lambda x: x def empty_like_safe(a, shape, **kwargs): """ Return np.empty_like(a, shape=shape, **kwargs) if the shape argument is supported (requires NumPy >= 1.17), otherwise falls back to using the old behavior, returning np.empty(shape, **kwargs). """ try: return np.empty_like(a, shape=shape, **kwargs) except TypeError: return np.empty(shape, **kwargs) def full_like_safe(a, fill_value, shape, **kwargs): """ Return np.full_like(a, fill_value, shape=shape, **kwargs) if the shape argument is supported (requires NumPy >= 1.17), otherwise falls back to using the old behavior, returning np.full(shape, fill_value, **kwargs). """ try: return np.full_like(a, fill_value, shape=shape, **kwargs) except TypeError: return np.full(shape, fill_value, **kwargs) def ones_like_safe(a, shape, **kwargs): """ Return np.ones_like(a, shape=shape, **kwargs) if the shape argument is supported (requires NumPy >= 1.17), otherwise falls back to using the old behavior, returning np.ones(shape, **kwargs). """ try: return np.ones_like(a, shape=shape, **kwargs) except TypeError: return np.ones(shape, **kwargs) def zeros_like_safe(a, shape, **kwargs): """ Return np.zeros_like(a, shape=shape, **kwargs) if the shape argument is supported (requires NumPy >= 1.17), otherwise falls back to using the old behavior, returning np.zeros(shape, **kwargs). """ try: return np.zeros_like(a, shape=shape, **kwargs) except TypeError: return np.zeros(shape, **kwargs) def validate_axis(axis, ndim): """ Validate an input to axis= keywords """ if isinstance(axis, (tuple, list)): return tuple(validate_axis(ax, ndim) for ax in axis) if not isinstance(axis, numbers.Integral): raise TypeError("Axis value must be an integer, got %s" % axis) if axis < -ndim or axis >= ndim: raise AxisError( "Axis %d is out of bounds for array of dimension %d" % (axis, ndim) ) if axis < 0: axis += ndim return axis def _is_nep18_active(): class A: def __array_function__(self, *args, **kwargs): return True try: return np.concatenate([A()]) except ValueError: return False IS_NEP18_ACTIVE = _is_nep18_active()
bsd-3-clause
7,372,364,514,582,665,000
29.465565
87
0.5694
false
3.652246
false
false
false
twwd/MoodleDownloader
downloader.py
1
9854
#!/usr/bin/env python3 import argparse import importlib import os import re import sqlite3 from datetime import datetime from urllib.parse import urljoin import requests import yaml def load_plugin_class(plugin_class_str): """ dynamically load a class from a string """ class_data = plugin_class_str.split(".") module_path = "plugins." + ".".join(class_data[:-1]) class_str = class_data[-1] mod = importlib.import_module(module_path) return getattr(mod, class_str) # print if verbose output is on def log(msg): if verbose_output: print(msg) def course_loop(): download_count = 0 skip_count = 0 # import config try: with open(os.path.join(os.path.dirname(__file__), 'data', 'config.yaml'), 'r', encoding='utf-8') as config_file: config = yaml.load(config_file) except FileNotFoundError: print("Please provide a config file under data/config.yaml.") return # make the initial request to get the token session = requests.Session() # Loop through sources for src_cfg in config: # check if there are courses to download from if 'courses' not in src_cfg or (source_part is not None and src_cfg['name'] not in source_part): continue log('\n\nSource: %s' % src_cfg['name']) # load dynamically the source class try: src_class = load_plugin_class(src_cfg['class']) src = src_class() except AttributeError: print('Class %s not found. Check your config file.' % src_cfg['class']) continue except ImportError: print( 'Class %s not found. Check your config file' % src_cfg['class'] + ' and ensure you have the class qualifier relative to the plugin directory.') continue # login if 'login_url' in src_cfg and 'username' in src_cfg and 'password' in src_cfg: src.login(session, src_cfg['login_url'], src_cfg['username'], src_cfg['password']) # loop through courses for course in src_cfg['courses']: # check if only some courses should be checked if course_part is not None and course['name'] not in course_part: continue log('\nCourse: %s\n' % course['name']) if 'path' in course and course['path'] is not None: course_url = urljoin(src_cfg['base_url'], course['path']) elif 'param' in course and course['param'] is not None: course_url = src.course_url(src_cfg['base_url'], course['param']) else: course_url = src_cfg['base_url'] # regex pattern for link text and file name text_pattern = re.compile(course['pattern']) filename_pattern = None if 'filename_pattern' in course: filename_pattern = re.compile(course['filename_pattern']) # get all relevant links from the source site links = src.link_list(session, course_url) if links is None: continue for link in links: if text_pattern.search(link[0]) is not None: # request file http header file_request = session.head(link[1], allow_redirects=True) # get file name if 'Content-Disposition' in file_request.headers: file_disposition = file_request.headers['Content-Disposition'] file_name = file_disposition[ file_disposition.index('filename=') + 10:len(file_disposition) - 1].encode( 'latin-1').decode('utf8') else: # last part of the link (usually filename) file_name = link[1].rsplit('/', 1)[-1] # check extension file_ext = os.path.splitext(file_name)[1] if 'ext' in course and course['ext'] is not False: if file_ext != course['ext'] or file_ext not in course['ext']: continue # check file name if filename_pattern is not None and filename_pattern.search(file_name) is None: continue # get last modified date as timestamp if 'Last-Modified' in file_request.headers: file_last_modified = int(datetime.strptime(file_request.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S %Z').timestamp()) else: print("No timestamp found for file %s" % file_name) continue # adjust file name if 'rename' in course and course['rename'] is not False: # find a number num = re.search('\d{1,3}', link[0]) if num is None: num = re.search('\d{1,3}', file_name) if num is None: num = file_last_modified else: num = num.group(0) file_name = course['rename'].replace('%', str(num)) + file_ext # remove trailing whitespaces file_name = file_name.strip() # the complete file path file_path = os.path.join(course['local_folder'], file_name) # fetch old timestamp from database file_last_modified_old = c.execute( 'SELECT last_modified FROM file_modifications WHERE source=? AND course=? AND file_name=?', (src_cfg['name'], course['name'], file_name)).fetchone() # save file and timestamp in the database if it doesn't exists if not simulate and file_last_modified_old is None: c.execute( ''' INSERT INTO file_modifications (source, course, file_name, file_path, last_modified) VALUES (?,?,?,?,?) ''', (src_cfg['name'], course['name'], file_name, file_path, file_last_modified)) # update timestamp if there's a newer version of the file elif not simulate and file_last_modified > file_last_modified_old[0]: c.execute( 'UPDATE file_modifications SET last_modified=? WHERE source=? AND course=? AND file_name=?', (file_last_modified, src_cfg['name'], course['name'], file_name)) # otherwise skip saving else: skip_count += 1 # log(file_name + ' (skipped)') continue log(file_name + ' (new)') if simulate: conn.rollback() continue # request whole file file_request = session.get(link[1]) # write file try: os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, 'wb') as f: f.write(file_request.content) download_count += 1 except FileNotFoundError: print('Can\'t write file to %s' % file_path) conn.rollback() # save changes to the database conn.commit() # display count of downloaded files log('\nDownloaded %i file(s), skipped %i file(s)' % (download_count, skip_count)) def clear_course(): if course_to_clear[0] == 'all': c.execute("DELETE FROM file_modifications") log('\nCleared all courses') else: c.execute("DELETE FROM file_modifications WHERE course=?", course_to_clear) log('\nCleared course %s' % course_to_clear[0]) conn.commit() # command line args parser = argparse.ArgumentParser( description='A simple script for downloading slides and exercises for university lectures.') parser.add_argument('-v', '--verbose', action='store_true', help='verbose output') parser.add_argument('-c', '--course', action='append', help='specify a course which should be checked') parser.add_argument('-s', '--source', action='append', help='specify a source which should be checked') parser.add_argument('-sim', '--simulate', action='store_true', help='specify if the process should only be simulated') parser.add_argument('--clear', action='append', help='specify a course which files should be deleted from the database (not from file system).' + 'Use keyword \'all\' to clear the whole database') args = parser.parse_args() verbose_output = args.verbose simulate = args.simulate course_part = args.course source_part = args.source course_to_clear = args.clear # database for timestamps conn = sqlite3.connect(os.path.join(os.path.dirname(__file__), 'data', 'file_modifications.db')) c = conn.cursor() # check if table exists otherwise create it c.execute( ''' CREATE TABLE IF NOT EXISTS file_modifications ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, source TEXT, course TEXT, file_name TEXT, file_path TEXT, last_modified INTEGER ); ''') if simulate: log("Simulation on") if course_to_clear is not None: clear_course() else: course_loop() # close cursor c.close()
mit
195,151,069,313,467,550
37.643137
146
0.531561
false
4.530575
true
false
false
eliben/code-for-blog
2017/continuations-trampolines/tracing.py
1
1493
# Tracing of function calls. Use @TraceCalls() as a decorator on functions. # # Eli Bendersky [http://eli.thegreenplace.net] # This code is in the public domain. import sys from functools import wraps class TraceCalls(object): """ Use as a decorator on functions that should be traced. Several functions can be decorated - they will all be indented according to their call depth. """ def __init__(self, stream=sys.stdout, indent_step=2, show_ret=False): self.stream = stream self.indent_step = indent_step self.show_ret = show_ret # This is a class attribute since we want to share the indentation # level between different traced functions, in case they call # each other. TraceCalls.cur_indent = 0 def __call__(self, fn): @wraps(fn) def wrapper(*args, **kwargs): indent = ' ' * TraceCalls.cur_indent argstr = ', '.join( [self._argrepr(a) for a in args] + ["%s=%s" % (a, repr(b)) for a, b in kwargs.items()]) self.stream.write('%s%s(%s)\n' % (indent, fn.__name__, argstr)) TraceCalls.cur_indent += self.indent_step ret = fn(*args, **kwargs) TraceCalls.cur_indent -= self.indent_step if self.show_ret: self.stream.write('%s--> %s\n' % (indent, ret)) return ret return wrapper def _argrepr(self, arg): return repr(arg)
unlicense
7,345,459,679,741,440,000
33.72093
75
0.58004
false
3.888021
false
false
false
wdbm/shijian
shijian_examples_clocks.py
1
5541
#!/usr/bin/env python """ ################################################################################ # # # shijian_examples_clocks # # # ################################################################################ # # # LICENCE INFORMATION # # # # This program is shijian examples. # # # # copyright (C) 2014 Will Breaden Madden, wbm@protonmail.ch # # # # This software is released under the terms of the GNU General Public License # # version 3 (GPLv3). # # # # This program is free software: you can redistribute it and/or modify it # # under the terms of the GNU General Public License as published by the Free # # Software Foundation, either version 3 of the License, or (at your option) # # any later version. # # # # This program is distributed in the hope that it will be useful, but WITHOUT # # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # # more details. # # # # For a copy of the GNU General Public License, see # # <http://www.gnu.org/licenses/>. # # # ################################################################################ """ import inspect import time import shijian def main(): print("create clock alpha") alpha = shijian.Clock(name = "alpha") print("clock alpha start time: {time}".format(time = alpha.start_time())) print("sleep 2 seconds") time.sleep(2) print("clock alpha current time (s): {time}".format(time = alpha.time())) print("\ncreate clock beta") beta = shijian.Clock(name = "beta") print("clock beta start time: {time}".format(time = beta.start_time())) print("clock beta stop time: {time}".format(time = beta.stop_time())) print("sleep 2 seconds") time.sleep(2) print("clock beta current time (s): {time}".format(time = beta.time())) print("stop clock beta") beta.stop() print("clock beta start time: {time}".format(time = beta.start_time())) print("clock beta stop time: {time}".format(time = beta.stop_time())) print("sleep 2 seconds") time.sleep(2) print("clock beta start time: {time}".format(time = beta.start_time())) print("clock beta stop time: {time}".format(time = beta.stop_time())) print("clock beta current time (s): {time}".format(time = beta.time())) print("\nclock beta printout:\n") beta.printout() print("create two gamma clocks") gamma = shijian.Clock(name = "gamma") gamma = shijian.Clock(name = "gamma") print("sleep 2 seconds") time.sleep(2) print("\ncreate two unnamed clocks") delta = shijian.Clock() epsilon = shijian.Clock() print("sleep 2 seconds") time.sleep(2) print("\nrun function 1 (which is timed using internal clocks)") print("result of function 1: {result}".format(result = function_1())) print("\nrun function 2 (which is timed using a decorator)") print("result of function 2: {result}".format(result = function_2())) print("\ncreate clock zeta, to illustrate clock resets") zeta = shijian.Clock(name = "zeta") print("clock zeta start time: {time}".format(time = zeta.start_time())) print("sleep 2 seconds") time.sleep(2) print("clock zeta current time (s): {time}".format(time = zeta.time())) print("reset clock zeta and start it again") zeta.reset() zeta.start() print("clock zeta start time: {time}".format(time = zeta.start_time())) print("sleep 2 seconds") time.sleep(2) print("clock zeta current time (s): {time}".format(time = zeta.time())) print("\nclocks full printout:\n") shijian.clocks.printout(style = "full") print("clocks statistics printout:\n") shijian.clocks.printout() def function_1(): function_name = inspect.stack()[0][3] clock = shijian.Clock(name = function_name) print("initiate {function_name}".format(function_name = function_name)) time.sleep(3) print("terminate {function_name}".format(function_name = function_name)) clock.stop() return(3) @shijian.timer def function_2(): function_name = inspect.stack()[0][3] print("initiate {function_name}".format(function_name = function_name)) time.sleep(4) print("terminate {function_name}".format(function_name = function_name)) return(4) if __name__ == '__main__': main()
gpl-3.0
-61,446,250,638,534,950
43.328
80
0.484931
false
4.556743
false
false
false
tstapler/Access-Plus-Schedule-Parser
web/ScheduleViewer/migrations/0001_initial.py
1
2389
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Course', fields=[ ('id', models.AutoField(auto_created=True, verbose_name='ID', primary_key=True, serialize=False)), ('course_name', models.CharField(max_length=30)), ('course_number', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='MeetingTime', fields=[ ('id', models.AutoField(auto_created=True, verbose_name='ID', primary_key=True, serialize=False)), ('days', models.CharField(max_length=2, choices=[('MO', 'Monday'), ('TU', 'Tuesday'), ('WE', 'WEDNESDAY'), ('TH', 'Thursday'), ('FR', 'Friday'), ('SA', 'Saturday')])), ('time', models.DateField()), ('instructor', models.CharField(max_length=30)), ('location', models.CharField(max_length=30)), ('course', models.ForeignKey(to='ScheduleViewer.Course')), ], ), migrations.CreateModel( name='Schedule', fields=[ ('id', models.AutoField(auto_created=True, verbose_name='ID', primary_key=True, serialize=False)), ('semester', models.CharField(max_length=2, choices=[('fall', 'Fall'), ('spring', 'Spring'), ('summer', 'Summer')], default='fall')), ('year', models.DateTimeField()), ], ), migrations.CreateModel( name='Student', fields=[ ('id', models.AutoField(auto_created=True, verbose_name='ID', primary_key=True, serialize=False)), ('first_name', models.CharField(max_length=30)), ('last_name', models.CharField(max_length=30)), ('email', models.EmailField(max_length=254)), ], ), migrations.AddField( model_name='schedule', name='student', field=models.ForeignKey(to='ScheduleViewer.Student'), ), migrations.AddField( model_name='course', name='schedule', field=models.ForeignKey(to='ScheduleViewer.Schedule'), ), ]
mit
3,464,933,900,472,990,700
39.491525
183
0.52951
false
4.335753
false
false
false
cumc-dbmi/pmi_sprint_reporter
webapi.py
1
2220
""" Utilities to configure WebAPI (backend for Atlas) to work with the database(s) loaded by reporter and achilles. This module makes the following assumptions: * WebAPI section of settings is valid * The WebAPI database (referred to by `settings.webapi_conn_str`) already contains the application tables """ from sqlalchemy import MetaData from sqlalchemy import Table from sqlalchemy import create_engine import run_config import settings engine = create_engine(settings.webapi_conn_str) metadata = MetaData(bind=engine, reflect=True) source_table = Table('source', metadata, autoload=True) source_daimon_table = Table('source_daimon', metadata, autoload=True) def delete_sources(): """ Remove all records from source and source_daimon tables """ delete_source_daimon = source_daimon_table.delete() delete_source = source_table.delete() engine.execute(delete_source_daimon) engine.execute(delete_source) def create_source(hpo_id, hpo_name): """ Insert source and source_daimon records associated with an HPO :param hpo_id: ID of the HPO (see hpo.csv) :param hpo_name: Name of the HPO (see hpo.csv) """ source_row = dict(SOURCE_NAME=hpo_name, SOURCE_KEY=hpo_id, SOURCE_CONNECTION=settings.cdm_jdbc_conn_str, SOURCE_DIALECT=run_config.cdm_dialect) insert_source = source_table.insert().returning(source_table.c.SOURCE_ID).values(source_row) source_id = engine.execute(insert_source).lastrowid cdm_daimon_row = dict(source_id=source_id, daimon_type=0, table_qualifier=hpo_id, priority=1) vocab_daimon_row = dict(source_id=source_id, daimon_type=1, table_qualifier='dbo', priority=1) results_daimon_row = dict(source_id=source_id, daimon_type=2, table_qualifier=hpo_id, priority=1) source_daimon_rows = [cdm_daimon_row, vocab_daimon_row, results_daimon_row] insert_source_daimon = source_daimon_table.insert().values(source_daimon_rows) engine.execute(insert_source_daimon) def main(): delete_sources() for hpo in run_config.all_hpos.to_dict(orient='records'): create_source(hpo['hpo_id'], hpo['name']) if __name__ == '__main__': main()
mit
1,704,027,627,111,090,700
36
111
0.703604
false
3.231441
false
false
false
Yelp/pgctl
pgctl/fuser.py
1
2200
#!/usr/bin/env python2.7 """\ usage: pgctl-fuser [-d] file [file ...] Shows the pids (of the current user) that have this file opened. This is useful for finding which processes hold a file lock (flock). This has the same behavior as `lsof -t file`, but is *much* faster. """ from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals from .debug import trace def stat(path): from os import stat try: return stat(path) except EnvironmentError as error: trace('fuser suppressed: %s', error) return None def listdir(path): from os import listdir try: return listdir(path) except EnvironmentError as error: trace('fuser suppressed: %s', error) return () def fuser(path, allow_deleted=False): """Return the list of pids that have 'path' open, for the current user""" search = stat(path) if search is None and not allow_deleted: return from glob import glob for fddir in glob('/proc/*/fd/'): try: pid = int(fddir.split('/', 3)[2]) except ValueError: continue fds = listdir(fddir) for fd in fds: from os.path import join fd = join(fddir, fd) found = stat(fd) if found is None: # fd disappeared since we listed continue if found == search: yield pid break if allow_deleted and found.st_nlink == 0: from os import readlink if readlink(fd) == path + ' (deleted)': yield pid break def main(args=None): from argparse import ArgumentParser from sys import argv args = args or argv parser = ArgumentParser(description=__doc__) parser.add_argument('-d', '--allow-deleted', action='store_true', help='allow deleted files') parser.add_argument('file', nargs='+') args = parser.parse_args(args[1:]) for f in args.file: for pid in fuser(f, allow_deleted=args.allow_deleted): print(pid) if __name__ == '__main__': exit(main())
mit
-5,979,769,641,141,754,000
25.506024
97
0.581818
false
4.104478
false
false
false
skosukhin/spack
var/spack/repos/builtin/packages/ea-utils/package.py
1
2144
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class EaUtils(MakefilePackage): """Command-line tools for processing biological sequencing data. Barcode demultiplexing, adapter trimming, etc. Primarily written to support an Illumina based pipeline - but should work with any FASTQs.""" homepage = "http://expressionanalysis.github.io/ea-utils/" url = "https://github.com/ExpressionAnalysis/ea-utils/archive/1.04.807.tar.gz" version('1.04.807', '5972b9f712920603b7527f46c0063a09') depends_on('subversion') depends_on('zlib') depends_on('gsl') depends_on('bamtools') # perl module required for make check, which is included in the default # target depends_on('perl', type='build') build_directory = 'clipper' def edit(self, spec, prefix): with working_dir('clipper'): makefile = FileFilter('Makefile') makefile.filter('/usr', prefix)
lgpl-2.1
620,051,369,482,476,400
41.039216
82
0.67444
false
4.022514
false
false
false
MehdiSfr/tensor-flow
tensorflow/python/training/input.py
1
24193
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Input pipeline. Please see the [reading data how-to](../../how_tos/reading_data/index.md) for context. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import constant_op from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import summary_ops from tensorflow.python.ops import variables from tensorflow.python.training import queue_runner def match_filenames_once(pattern, name=None): """Save the list of files matching pattern, so it is only computed once. Args: pattern: A file pattern (glob). name: A name for the operations (optional). Returns: A variable that is initialized to the list of files matching pattern. """ with ops.op_scope([pattern], name, "matching_filenames") as name: return variables.Variable(io_ops.matching_files(pattern), trainable=False, name=name, validate_shape=False) def limit_epochs(tensor, num_epochs=None, name=None): """Returns tensor `num_epochs` times and then raises an `OutOfRange` error. Args: tensor: Any `Tensor`. num_epochs: An integer (optional). If specified, limits the number of steps the output tensor may be evaluated. name: A name for the operations (optional). Returns: tensor or `OutOfRange`. """ if num_epochs is None: return tensor if num_epochs <= 0: raise ValueError("num_epochs must be > 0 not %d." % num_epochs) with ops.op_scope([tensor], name, "limit_epochs") as name: zero64 = constant_op.constant(0, dtype=dtypes.int64) epochs = variables.Variable(zero64, name="epochs") counter = epochs.count_up_to(num_epochs) with ops.control_dependencies([counter]): return array_ops.identity(tensor, name=name) def _input_producer(input_tensor, dtype, num_epochs, shuffle, seed, capacity, name, summary_name): if shuffle: input_tensor = random_ops.random_shuffle(input_tensor, seed=seed) input_tensor = limit_epochs(input_tensor, num_epochs) q = data_flow_ops.FIFOQueue(capacity=capacity, dtypes=[dtype], shapes=[[]], name=name) enq = q.enqueue_many([input_tensor]) queue_runner.add_queue_runner(queue_runner.QueueRunner(q, [enq])) summary_ops.scalar_summary("queue/%s/%s" % (q.name, summary_name), math_ops.cast(q.size(), dtypes.float32) * (1. / capacity)) return q def string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None): """Output strings (e.g. filenames) to a queue for an input pipeline. Args: string_tensor: A 1-D string tensor with the strings to produce. num_epochs: An integer (optional). If specified, `string_input_producer` produces each string from `string_tensor` `num_epochs` times before generating an OutOfRange error. If not specified, `string_input_producer` can cycle through the strings in `string_tensor` an unlimited number of times. shuffle: Boolean. If true, the strings are randomly shuffled within each epoch. seed: An integer (optional). Seed used if shuffle == True. capacity: An integer. Sets the queue capacity. name: A name for the operations (optional). Returns: A queue with the output strings. A `QueueRunner` for the Queue is added to the current `Graph`'s `QUEUE_RUNNER` collection. """ with ops.op_scope([string_tensor], name, "input_producer") as name: return _input_producer( string_tensor, dtypes.string, num_epochs, shuffle, seed, capacity, name, "fraction_of_%d_full" % capacity) def range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None): """Produces the integers from 0 to limit-1 in a queue. Args: limit: An int32 scalar tensor. num_epochs: An integer (optional). If specified, `range_input_producer` produces each integer `num_epochs` times before generating an OutOfRange error. If not specified, `range_input_producer` can cycle through the integers an unlimited number of times. shuffle: Boolean. If true, the integers are randomly shuffled within each epoch. seed: An integer (optional). Seed used if shuffle == True. capacity: An integer. Sets the queue capacity. name: A name for the operations (optional). Returns: A Queue with the output integers. A `QueueRunner` for the Queue is added to the current `Graph`'s `QUEUE_RUNNER` collection. """ with ops.op_scope([limit], name, "input_producer") as name: range_tensor = math_ops.range(limit) return _input_producer( range_tensor, dtypes.int32, num_epochs, shuffle, seed, capacity, name, "fraction_of_%d_full" % capacity) def slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None): """Produces a slice of each `Tensor` in `tensor_list`. Implemented using a Queue -- a `QueueRunner` for the Queue is added to the current `Graph`'s `QUEUE_RUNNER` collection. Args: tensor_list: A list of `Tensor` objects. Every `Tensor` in `tensor_list` must have the same size in the first dimension. num_epochs: An integer (optional). If specified, `slice_input_producer` produces each slice `num_epochs` times before generating an `OutOfRange` error. If not specified, `slice_input_producer` can cycle through the slices an unlimited number of times. seed: An integer (optional). Seed used if shuffle == True. capacity: An integer. Sets the queue capacity. name: A name for the operations (optional). Returns: A list of tensors, one for each element of `tensor_list`. If the tensor in `tensor_list` has shape `[N, a, b, .., z]`, then the corresponding output tensor will have shape `[a, b, ..., z]`. """ with ops.op_scope(tensor_list, name, "input_producer"): tensor_list = ops.convert_n_to_tensor_or_indexed_slices(tensor_list) if not tensor_list: raise ValueError( "Expected at least one tensor in slice_input_producer().") range_size = array_ops.shape(tensor_list[0])[0] # TODO(josh11b): Add an assertion that the first dimension of # everything in TensorList matches. Maybe just check the inferred shapes? queue = range_input_producer(range_size, num_epochs=num_epochs, shuffle=shuffle, seed=seed, capacity=capacity) index = queue.dequeue() output = [array_ops.gather(t, index) for t in tensor_list] return output # Helpers for the batching functions ------------------------------------------ def _flatten(tensor_list_list): return [tensor for tensor_list in tensor_list_list for tensor in tensor_list] def _validate(tensor_list): tensor_list = ops.convert_n_to_tensor_or_indexed_slices(tensor_list) if not tensor_list: raise ValueError("Expected at least one tensor in batch().") return tensor_list def _validate_join(tensor_list_list): tensor_list_list = [ops.convert_n_to_tensor_or_indexed_slices(tl) for tl in tensor_list_list] if not tensor_list_list: raise ValueError("Expected at least one input in batch_join().") return tensor_list_list def _dtypes(tensor_list_list): all_types = [[t.dtype for t in tl] for tl in tensor_list_list] types = all_types[0] for other_types in all_types[1:]: if other_types != types: raise TypeError("Expected types to be consistent: %s vs. %s." % ", ".join(x.name for x in types), ", ".join(x.name for x in other_types)) return types def _merge_shapes(shape_list, enqueue_many): shape_list = [tensor_shape.as_shape(s) for s in shape_list] if enqueue_many: # We want the shapes without the leading batch dimension. shape_list = [s.with_rank_at_least(1)[1:] for s in shape_list] merged_shape = shape_list[0] for s in shape_list[1:]: merged_shape.merge_with(s) return merged_shape.as_list() def _shapes(tensor_list_list, shapes, enqueue_many): if shapes is None: l = len(tensor_list_list[0]) shapes = [_merge_shapes( [tl[i].get_shape().as_list() for tl in tensor_list_list], enqueue_many) for i in xrange(l)] return shapes def _enqueue_join(queue, tensor_list_list, enqueue_many): if enqueue_many: enqueue_ops = [queue.enqueue_many(tl) for tl in tensor_list_list] else: enqueue_ops = [queue.enqueue(tl) for tl in tensor_list_list] queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops)) def _enqueue(queue, tensor_list, threads, enqueue_many): if enqueue_many: enqueue_ops = [queue.enqueue_many(tensor_list)] * threads else: enqueue_ops = [queue.enqueue(tensor_list)] * threads queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops)) # Batching functions ---------------------------------------------------------- def batch(tensor_list, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, name=None): """Creates batches of tensors in `tensor_list`. This function is implemented using a queue. A `QueueRunner` for the queue is added to the current `Graph`'s `QUEUE_RUNNER` collection. If `enqueue_many` is `False`, `tensor_list` is assumed to represent a single example. An input tensor with shape `[x, y, z]` will be output as a tensor with shape `[batch_size, x, y, z]`. If `enqueue_many` is `True`, `tensor_list` is assumed to represent a batch of examples, where the first dimension is indexed by example, and all members of `tensor_list` should have the same size in the first dimension. If an input tensor has shape `[*, x, y, z]`, the output will have shape `[batch_size, x, y, z]`. The `capacity` argument controls the how long the prefetching is allowed to grow the queues. The returned operation is a dequeue operation and will throw `tf.errors.OutOfRangeError` if the input queue is exhausted. If this operation is feeding another input queue, its queue runner will catch this exception, however, if this operation is used in your main thread you are responsible for catching this yourself. *N.B.:* You must ensure that either (i) the `shapes` argument is passed, or (ii) all of the tensors in `tensor_list` must have fully-defined shapes. `ValueError` will be raised if neither of these conditions holds. Args: tensor_list: The list of tensors to enqueue. batch_size: The new batch size pulled from the queue. num_threads: The number of threads enqueuing `tensor_list`. capacity: An integer. The maximum number of elements in the queue. enqueue_many: Whether each tensor in `tensor_list` is a single example. shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for `tensor_list`. name: (Optional) A name for the operations. Returns: A list of tensors with the same number and types as `tensor_list`. Raises: ValueError: If the `shapes` are not specified, and cannot be inferred from the elements of `tensor_list`. """ with ops.op_scope(tensor_list, name, "batch") as name: tensor_list = _validate(tensor_list) types = _dtypes([tensor_list]) shapes = _shapes([tensor_list], shapes, enqueue_many) # TODO(josh11b,mrry): Switch to BatchQueue once it is written. queue = data_flow_ops.FIFOQueue( capacity=capacity, dtypes=types, shapes=shapes) _enqueue(queue, tensor_list, num_threads, enqueue_many) summary_ops.scalar_summary( "queue/%s/fraction_of_%d_full" % (queue.name, capacity), math_ops.cast(queue.size(), dtypes.float32) * (1. / capacity)) return queue.dequeue_many(batch_size, name=name) # TODO(josh11b): Add a thread_multiplier or num_threads (that has to be # a multiple of len(tensor_list_list)?) parameter, to address the use # case where you want more parallelism than you can support different # readers (either because you don't have that many files or can't # read that many files in parallel due to the number of seeks required). # Once this is done, batch() can be written as a call to batch_join(). def batch_join(tensor_list_list, batch_size, capacity=32, enqueue_many=False, shapes=None, name=None): """Runs a list of tensors to fill a queue to create batches of examples. Enqueues a different list of tensors in different threads. Implemented using a queue -- a `QueueRunner` for the queue is added to the current `Graph`'s `QUEUE_RUNNER` collection. `len(tensor_list_list)` threads will be started, with thread `i` enqueuing the tensors from `tensor_list_list[i]`. `tensor_list_list[i1][j]` must match `tensor_list_list[i2][j]` in type and shape, except in the first dimension if `enqueue_many` is true. If `enqueue_many` is `False`, each `tensor_list_list[i]` is assumed to represent a single example. An input tensor `x` will be output as a tensor with shape `[batch_size] + x.shape`. If `enqueue_many` is `True`, `tensor_list_list[i]` is assumed to represent a batch of examples, where the first dimension is indexed by example, and all members of `tensor_list_list[i]` should have the same size in the first dimension. The slices of any input tensor `x` are treated as examples, and the output tensors will have shape `[batch_size] + x.shape[1:]`. The `capacity` argument controls the how long the prefetching is allowed to grow the queues. The returned operation is a dequeue operation and will throw `tf.errors.OutOfRangeError` if the input queue is exhausted. If this operation is feeding another input queue, its queue runner will catch this exception, however, if this operation is used in your main thread you are responsible for catching this yourself. *N.B.:* You must ensure that either (i) the `shapes` argument is passed, or (ii) all of the tensors in `tensor_list_list` must have fully-defined shapes. `ValueError` will be raised if neither of these conditions holds. Args: tensor_list_list: A list of tuples of tensors to enqueue. batch_size: An integer. The new batch size pulled from the queue. capacity: An integer. The maximum number of elements in the queue. enqueue_many: Whether each tensor in `tensor_list_list` is a single example. shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for `tensor_list_list[i]`. name: (Optional) A name for the operations. Returns: A list of tensors with the same number and types as `tensor_list_list[i]`. Raises: ValueError: If the `shapes` are not specified, and cannot be inferred from the elements of `tensor_list_list`. """ with ops.op_scope(_flatten(tensor_list_list), name, "batch_join") as name: tensor_list_list = _validate_join(tensor_list_list) types = _dtypes(tensor_list_list) shapes = _shapes(tensor_list_list, shapes, enqueue_many) # TODO(josh11b,mrry): Switch to BatchQueue once it is written. queue = data_flow_ops.FIFOQueue( capacity=capacity, dtypes=types, shapes=shapes) _enqueue_join(queue, tensor_list_list, enqueue_many) summary_ops.scalar_summary( "queue/%s/fraction_of_%d_full" % (queue.name, capacity), math_ops.cast(queue.size(), dtypes.float32) * (1. / capacity)) return queue.dequeue_many(batch_size, name=name) def shuffle_batch(tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, name=None): """Creates batches by randomly shuffling tensors. This function adds the following to the current `Graph`: * A shuffling queue into which tensors from `tensor_list` are enqueued. * A `dequeue_many` operation to create batches from the queue. * A `QueueRunner` to `QUEUE_RUNNER` collection, to enqueue the tensors from `tensor_list`. If `enqueue_many` is `False`, `tensor_list` is assumed to represent a single example. An input tensor with shape `[x, y, z]` will be output as a tensor with shape `[batch_size, x, y, z]`. If `enqueue_many` is `True`, `tensor_list` is assumed to represent a batch of examples, where the first dimension is indexed by example, and all members of `tensor_list` should have the same size in the first dimension. If an input tensor has shape `[*, x, y, z]`, the output will have shape `[batch_size, x, y, z]`. The `capacity` argument controls the how long the prefetching is allowed to grow the queues. The returned operation is a dequeue operation and will throw `tf.errors.OutOfRangeError` if the input queue is exhausted. If this operation is feeding another input queue, its queue runner will catch this exception, however, if this operation is used in your main thread you are responsible for catching this yourself. For example: ```python # Creates batches of 32 images and 32 labels. image_batch, label_batch = tf.train.shuffle_batch( [single_image, single_label], batch_size=32, num_threads=4, capacity=50000, min_after_dequeue=10000) ``` *N.B.:* You must ensure that either (i) the `shapes` argument is passed, or (ii) all of the tensors in `tensor_list` must have fully-defined shapes. `ValueError` will be raised if neither of these conditions holds. Args: tensor_list: The list of tensors to enqueue. batch_size: The new batch size pulled from the queue. capacity: An integer. The maximum number of elements in the queue. min_after_dequeue: Minimum number elements in the queue after a dequeue, used to ensure a level of mixing of elements. num_threads: The number of threads enqueuing `tensor_list`. seed: Seed for the random shuffling within the queue. enqueue_many: Whether each tensor in `tensor_list` is a single example. shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for `tensor_list`. name: (Optional) A name for the operations. Returns: A list of tensors with the same number and types as `tensor_list`. Raises: ValueError: If the `shapes` are not specified, and cannot be inferred from the elements of `tensor_list`. """ with ops.op_scope(tensor_list, name, "shuffle_batch") as name: tensor_list = _validate(tensor_list) types = _dtypes([tensor_list]) shapes = _shapes([tensor_list], shapes, enqueue_many) queue = data_flow_ops.RandomShuffleQueue( capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed, dtypes=types, shapes=shapes) _enqueue(queue, tensor_list, num_threads, enqueue_many) full = (math_ops.cast(math_ops.maximum(0, queue.size() - min_after_dequeue), dtypes.float32) * (1. / (capacity - min_after_dequeue))) # Note that name contains a '/' at the end so we intentionally do not place # a '/' after %s below. summary_name = ( "queue/%sfraction_over_%d_of_%d_full" % (name, min_after_dequeue, capacity - min_after_dequeue)) summary_ops.scalar_summary(summary_name, full) return queue.dequeue_many(batch_size, name=name) def shuffle_batch_join(tensor_list_list, batch_size, capacity, min_after_dequeue, seed=None, enqueue_many=False, shapes=None, name=None): """Create batches by randomly shuffling tensors. This version enqueues a different list of tensors in different threads. It adds the following to the current `Graph`: * A shuffling queue into which tensors from `tensor_list_list` are enqueued. * A `dequeue_many` operation to create batches from the queue. * A `QueueRunner` to `QUEUE_RUNNER` collection, to enqueue the tensors from `tensor_list_list`. `len(tensor_list_list)` threads will be started, with thread `i` enqueuing the tensors from `tensor_list_list[i]`. `tensor_list_list[i1][j]` must match `tensor_list_list[i2][j]` in type and shape, except in the first dimension if `enqueue_many` is true. If `enqueue_many` is `False`, each `tensor_list_list[i]` is assumed to represent a single example. An input tensor with shape `[x, y, z]` will be output as a tensor with shape `[batch_size, x, y, z]`. If `enqueue_many` is `True`, `tensor_list_list[i]` is assumed to represent a batch of examples, where the first dimension is indexed by example, and all members of `tensor_list_list[i]` should have the same size in the first dimension. If an input tensor has shape `[*, x, y, z]`, the output will have shape `[batch_size, x, y, z]`. The `capacity` argument controls the how long the prefetching is allowed to grow the queues. The returned operation is a dequeue operation and will throw `tf.errors.OutOfRangeError` if the input queue is exhausted. If this operation is feeding another input queue, its queue runner will catch this exception, however, if this operation is used in your main thread you are responsible for catching this yourself. Args: tensor_list_list: A list of tuples of tensors to enqueue. batch_size: An integer. The new batch size pulled from the queue. capacity: An integer. The maximum number of elements in the queue. min_after_dequeue: Minimum number elements in the queue after a dequeue, used to ensure a level of mixing of elements. seed: Seed for the random shuffling within the queue. enqueue_many: Whether each tensor in `tensor_list_list` is a single example. shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for `tensor_list_list[i]`. name: (Optional) A name for the operations. Returns: A list of tensors with the same number and types as `tensor_list_list[i]`. Raises: ValueError: If the `shapes` are not specified, and cannot be inferred from the elements of `tensor_list_list`. """ with ops.op_scope( _flatten(tensor_list_list), name, "shuffle_batch_join") as name: tensor_list_list = _validate_join(tensor_list_list) types = _dtypes(tensor_list_list) shapes = _shapes(tensor_list_list, shapes, enqueue_many) queue = data_flow_ops.RandomShuffleQueue( capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed, dtypes=types, shapes=shapes) _enqueue_join(queue, tensor_list_list, enqueue_many) full = (math_ops.cast(math_ops.maximum(0, queue.size() - min_after_dequeue), dtypes.float32) * (1. / (capacity - min_after_dequeue))) # Note that name contains a '/' at the end so we intentionally do not place # a '/' after %s below. summary_name = ( "queue/%sfraction_over_%d_of_%d_full" % (name, min_after_dequeue, capacity - min_after_dequeue)) summary_ops.scalar_summary(summary_name, full) return queue.dequeue_many(batch_size, name=name)
apache-2.0
-4,704,024,588,663,581,000
42.201786
80
0.69144
false
3.794385
false
false
false
rsenk330/Flask-Cake
flask_cake/tests/test_cake.py
1
1572
import pytest try: from unittest import mock # Python 3 except ImportError: import mock @pytest.fixture def app(tmpdir): from flask import Flask root_path = tmpdir.ensure("test-proj", dir=True) tmpdir.ensure("test-proj/static/coffee", dir=True) p = tmpdir.join("test-proj/static/coffee", "Cakefile") p.write("") app = Flask(__name__) app.root_path = root_path.strpath return app def test_cake_init(app): from flask_cake import Cake cake = Cake(app) assert cake.app == app assert cake.tasks == ["build"] assert cake.cake_parent == "coffee" def test_watchdog(app, tmpdir): from flask_cake import Cake with mock.patch("watchdog.observers.Observer.schedule") as mock_schedule: Cake(app) cake_dir = tmpdir.join("test-proj/static/coffee").strpath mock_schedule.assert_called_once_with(mock.ANY, path=cake_dir, recursive=True) def test_events_on_any_event(app): from flask_cake.cake import Events e = Events(app.root_path, tasks=["build"]) with mock.patch("flask_cake.cake.subprocess") as subprocess: e.on_any_event(None) subprocess.Popen.assert_called_once_with(["cake", "build"], cwd=app.root_path, stdout=mock.ANY) def test_events_on_any_event_str(app): from flask_cake.cake import Events e = Events(app.root_path, tasks="build") with mock.patch("flask_cake.cake.subprocess") as subprocess: e.on_any_event(None) subprocess.Popen.assert_called_once_with(["cake", "build"], cwd=app.root_path, stdout=mock.ANY)
bsd-2-clause
9,065,584,534,477,928,000
26.103448
103
0.670483
false
3.188641
true
false
false
OpenTrons/opentrons_sdk
api/tests/opentrons/calibration/tip_length/test_tip_length_calibration.py
1
1461
import pytest from typing import List, Tuple from opentrons.calibration.tip_length import state_machine valid_transitions: List[Tuple[str, str, str]] = [ ('loadLabware', 'sessionStarted', 'labwareLoaded'), ('moveToMeasureNozzleOffset', 'labwareLoaded', 'measuringNozzleOffset'), ('jog', 'measuringNozzleOffset', 'measuringNozzleOffset'), ('saveNozzlePosition', 'measuringNozzleOffset', 'preparingPipette'), ('jog', 'preparingPipette', 'preparingPipette'), ('pickUpTip', 'preparingPipette', 'inspectingTip'), ('invalidateTip', 'inspectingTip', 'preparingPipette'), ('confirmTip', 'inspectingTip', 'measuringTipOffset'), ('jog', 'measuringTipOffset', 'measuringTipOffset'), ('saveTipPosition', 'measuringTipOffset', 'calibrationComplete'), ('exitSession', 'calibrationComplete', 'sessionExited'), ('exitSession', 'sessionStarted', 'sessionExited'), ('exitSession', 'labwareLoaded', 'sessionExited'), ('exitSession', 'measuringNozzleOffset', 'sessionExited'), ('exitSession', 'preparingPipette', 'sessionExited'), ('exitSession', 'inspectingTip', 'sessionExited'), ('exitSession', 'measuringTipOffset', 'sessionExited'), ] @pytest.mark.parametrize('trigger,from_state,to_state', valid_transitions) async def test_valid_transitions(trigger, from_state, to_state): sm = state_machine.TipCalibrationStateMachine(initial_state=from_state) await sm.trigger_transition(trigger) assert sm.current_state_name == to_state
apache-2.0
4,413,712,137,367,218,000
44.65625
75
0.740589
false
3.503597
false
false
false
jackliusr/scrapy-crawlers
crawlers/crawlers/spiders/lq7m.py
1
2098
import scrapy from selenium import webdriver from scrapy.http import JsonRequest, Request from scrapy import Selector import time import json class Lq7mSpider(scrapy.Spider): name = 'lq7m' start_urls = ['http://lq.7m.com.cn/list/3/2.shtml'] custom_settings = { 'DATABASEPIPELINE_ENABLED': True, } def start_requests(self): for i in range(2,200): yield Request(url=f"http://lq.7m.com.cn/list/3/{i}.shtml", callback=self.parseList) def parseList(self, response): sel = Selector(response) urls = sel.xpath("//div[@class=\"cb_l\"]//a[contains(@href, '/news/')]/@href").extract() for url in urls: yield Request(url=f"http://lq.7m.com.cn{url}",callback=self.parsePage) def parsePage(self,response): sel = Selector(response) title = ''.join(sel.xpath("//div[@class=\"pa_tec\"]/h1/text()").extract()).strip () content = ''.join(sel.xpath("//div[@class=\"n_zi\"]//text()").extract()).strip() pubTimeTmp = (sel.xpath("//div[@class=\"pa_tek\"]/div[@class=\"pa_tec\"]/p[1]/text()").extract_first()) pubTime = pubTimeTmp[15:26] keywords = sel.xpath("//meta[@name='keywords']/@content")[0].extract() description = sel.xpath("//meta[@name='description']/@content")[0].extract() image= sel.xpath("//div[@class=\"n_zi\"]//img[1]/@src") category = 2 if image: image_url = f"http://lq.7m.com.cn{image[0].extract()}" yield { "title": title, "content": content, "pubTime": pubTime, "keywords": keywords, "description": description, 'category': category, "images": [image_url], "image_urls": [image_url], } else: yield { "title": title, "content": content, "pubTime": pubTime, "keywords": keywords, "description": description, 'category': category, }
apache-2.0
6,463,469,120,809,064,000
36.464286
111
0.531935
false
3.629758
false
false
false
ColdenCullen/d2dl
enki2/enkilib/python/parser.py
1
5204
# # Copyright (c) 2008 Eric Anderton # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # class Parser: def parse(self,input): self.input = input self.position = 0 return self.parse_Syntax() def eoi(self): if self.position >= len(self.input): return True return False def any(self): if self.position >= len(self.input): return False self.position = self.position + 1 return True def peek(self): if self.position >= len(self.input): return "" else: return self.input[self.position] def DEBUG(self,text=""): def inner(): print text,self.position,self.input[self.position:] return True return inner def REQUIRED(self,text,term=None): def inner(): if term != None and term(): return True raise ParseException(text,self.position,self.peek()) return inner def TERMINAL(self,value,err=None): def inner(): #print "len: ",len(self.input)," pos: ",self.position,"(",self.input[self.position:],") val: ",value if self.position == len(self.input): if err != None: raise ParseException(text,self.position,self.peek()) return False if self.input[self.position:].startswith(value): self.position += len(value); #print "matched: ",value," moved to: ",self.position return True return False return inner def RANGE(self,start,end): def inner(): #print "len: ",len(self.input)," pos: ",self.position,"(",self.input[self.position:],") range: ",start,"-",end, if self.position == len(self.input): return False ch = self.input[self.position] if ch >= start[0] and ch <= end[0]: self.position = self.position + 1 #print "matched: ",start,"-",end," moved to: ",self.position return True return False return inner def AND(self,*args): def inner(): pos = self.position for term in args: if not term(): self.position = pos return False return True return inner def OR(self,*args): def inner(): for term in args: if term(): return True return False return inner def OPTIONAL(self,term): def inner(): term() return True return inner def NOT(self,term): def inner(): pos = self.position if term(): self.position = pos return False return True return inner def ZEROORMORE(self,term,terminator = None,err=None): def inner(): if terminator == None: while(not self.eoi() and term()): pass else: while(not self.eoi() and not terminator() and term()): pass return True return inner def ONEORMORE(self,term,terminator = None): def inner(): pos = self.position if terminator and terminator(): self.position = pos return False if not term(): self.position = pos return False if terminator == None: while(not self.eoi() and term()): pass else: while(not self.eoi() and not terminator() and term()): pass return True return inner
mit
5,033,403,532,751,314,000
32.939597
123
0.511337
false
4.831941
false
false
false
benagricola/exabgp
lib/exabgp/bgp/message/update/nlri/qualifier/etag.py
1
1397
# encoding: utf-8 """ etag.py Created by Thomas Mangin on 2014-06-26. Copyright (c) 2014-2015 Orange. All rights reserved. Copyright (c) 2014-2015 Exa Networks. All rights reserved. """ # TODO: take into account E-VPN specs that specify the role of the first bit of ESI # (since draft-ietf-l2vpn-evpn-05) from struct import pack from struct import unpack class EthernetTag (object): MAX = pow(2,32)-1 __slots__ = ['tag'] def __init__ (self, tag=0): self.tag = tag def __eq__ (self, other): return self.tag == other.tag def __neq__ (self, other): return self.tag != other.tag def __lt__ (self, other): raise RuntimeError('comparing EthernetTag for ordering does not make sense') def __le__ (self, other): raise RuntimeError('comparing EthernetTag for ordering does not make sense') def __gt__ (self, other): raise RuntimeError('comparing EthernetTag for ordering does not make sense') def __ge__ (self, other): raise RuntimeError('comparing EthernetTag for ordering does not make sense') def __str__ (self): return repr(self.tag) def __repr__ (self): return repr(self.tag) def pack (self): return pack("!L",self.tag) def __len__ (self): return 4 def __hash__ (self): return hash(self.tag) @classmethod def unpack (cls, data): return cls(unpack("!L",data[:4])[0]) def json (self, compact=None): return '"ethernet-tag": %s' % self.tag
bsd-3-clause
3,194,523,706,247,964,000
21.174603
83
0.67287
false
3.097561
false
false
false
kimberlythegeek/axe-selenium-python
axe_selenium_python/tests/conftest.py
1
1081
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from datetime import datetime import pytest from py.xml import html @pytest.mark.optionalhook def pytest_html_results_table_header(cells): """Add description and sortable time header to HTML report.""" cells.insert(2, html.th("Description")) cells.insert(0, html.th("Time", class_="sortable time", col="time")) @pytest.mark.optionalhook def pytest_html_results_table_row(report, cells): """Add description and sortable time column to HTML report.""" cells.insert(2, html.td(report.description)) cells.insert(1, html.td(datetime.utcnow(), class_="col-time")) @pytest.mark.hookwrapper def pytest_runtest_makereport(item, call): """Make HTML report using test-function docstrings as description.""" outcome = yield report = outcome.get_result() # add docstring to 'description' column report.description = str(item.function.__doc__)
mpl-2.0
-323,944,129,504,433,200
33.870968
73
0.719704
false
3.68942
true
false
false
ayepezv/GAD_ERP
openerp/report/render/rml2pdf/trml2pdf.py
1
45686
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import sys import copy import reportlab import re from reportlab.pdfgen import canvas from reportlab import platypus import utils import color import os import logging import traceback from lxml import etree import base64 from distutils.version import LooseVersion from reportlab.platypus.doctemplate import ActionFlowable from openerp.tools.safe_eval import safe_eval from reportlab.lib.units import inch,cm,mm from openerp.tools.misc import file_open from reportlab.pdfbase import pdfmetrics from reportlab.lib.pagesizes import A4, letter try: from cStringIO import StringIO _hush_pyflakes = [ StringIO ] except ImportError: from StringIO import StringIO try: from customfonts import SetCustomFonts except ImportError: SetCustomFonts=lambda x:None _logger = logging.getLogger(__name__) encoding = 'utf-8' def select_fontname(fontname, default_fontname): if fontname not in pdfmetrics.getRegisteredFontNames()\ or fontname not in pdfmetrics.standardFonts: # let reportlab attempt to find it try: pdfmetrics.getFont(fontname) except Exception: addition = "" if " " in fontname: addition = ". Your font contains spaces which is not valid in RML." _logger.warning('Could not locate font %s, substituting default: %s%s', fontname, default_fontname, addition) fontname = default_fontname return fontname def _open_image(filename, path=None): """Attempt to open a binary file and return the descriptor """ if os.path.isfile(filename): return open(filename, 'rb') for p in (path or []): if p and os.path.isabs(p): fullpath = os.path.join(p, filename) if os.path.isfile(fullpath): return open(fullpath, 'rb') try: if p: fullpath = os.path.join(p, filename) else: fullpath = filename return file_open(fullpath) except IOError: pass raise IOError("File %s cannot be found in image path" % filename) class NumberedCanvas(canvas.Canvas): def __init__(self, *args, **kwargs): canvas.Canvas.__init__(self, *args, **kwargs) self._saved_page_states = [] def showPage(self): self._startPage() def save(self): """add page info to each page (page x of y)""" for state in self._saved_page_states: self.__dict__.update(state) self.draw_page_number() canvas.Canvas.showPage(self) canvas.Canvas.save(self) def draw_page_number(self): page_count = len(self._saved_page_states) self.setFont("Helvetica", 8) self.drawRightString((self._pagesize[0]-30), (self._pagesize[1]-40), " %(this)i / %(total)i" % { 'this': self._pageNumber, 'total': page_count, } ) class PageCount(platypus.Flowable): def __init__(self, story_count=0): platypus.Flowable.__init__(self) self.story_count = story_count def draw(self): self.canv.beginForm("pageCount%d" % self.story_count) self.canv.setFont("Helvetica", utils.unit_get(str(8))) self.canv.drawString(0, 0, str(self.canv.getPageNumber())) self.canv.endForm() class PageReset(platypus.Flowable): def draw(self): """Flag to close current story page numbering and prepare for the next should be executed after the rendering of the full story""" self.canv._doPageReset = True class _rml_styles(object,): def __init__(self, nodes, localcontext): self.localcontext = localcontext self.styles = {} self.styles_obj = {} self.names = {} self.table_styles = {} self.default_style = reportlab.lib.styles.getSampleStyleSheet() for node in nodes: for style in node.findall('blockTableStyle'): self.table_styles[style.get('id')] = self._table_style_get(style) for style in node.findall('paraStyle'): sname = style.get('name') self.styles[sname] = self._para_style_update(style) if self.default_style.has_key(sname): for key, value in self.styles[sname].items(): setattr(self.default_style[sname], key, value) else: self.styles_obj[sname] = reportlab.lib.styles.ParagraphStyle(sname, self.default_style["Normal"], **self.styles[sname]) for variable in node.findall('initialize'): for name in variable.findall('name'): self.names[ name.get('id')] = name.get('value') def _para_style_update(self, node): data = {} for attr in ['textColor', 'backColor', 'bulletColor', 'borderColor']: if node.get(attr): data[attr] = color.get(node.get(attr)) for attr in ['bulletFontName', 'fontName']: if node.get(attr): fontname= select_fontname(node.get(attr), None) if fontname is not None: data['fontName'] = fontname for attr in ['bulletText']: if node.get(attr): data[attr] = node.get(attr) for attr in ['fontSize', 'leftIndent', 'rightIndent', 'spaceBefore', 'spaceAfter', 'firstLineIndent', 'bulletIndent', 'bulletFontSize', 'leading', 'borderWidth','borderPadding','borderRadius']: if node.get(attr): data[attr] = utils.unit_get(node.get(attr)) if node.get('alignment'): align = { 'right':reportlab.lib.enums.TA_RIGHT, 'center':reportlab.lib.enums.TA_CENTER, 'justify':reportlab.lib.enums.TA_JUSTIFY } data['alignment'] = align.get(node.get('alignment').lower(), reportlab.lib.enums.TA_LEFT) data['splitLongWords'] = 0 return data def _table_style_get(self, style_node): styles = [] for node in style_node: start = utils.tuple_int_get(node, 'start', (0,0) ) stop = utils.tuple_int_get(node, 'stop', (-1,-1) ) if node.tag=='blockValign': styles.append(('VALIGN', start, stop, str(node.get('value')))) elif node.tag=='blockFont': styles.append(('FONT', start, stop, str(node.get('name')))) elif node.tag=='blockTextColor': styles.append(('TEXTCOLOR', start, stop, color.get(str(node.get('colorName'))))) elif node.tag=='blockLeading': styles.append(('LEADING', start, stop, utils.unit_get(node.get('length')))) elif node.tag=='blockAlignment': styles.append(('ALIGNMENT', start, stop, str(node.get('value')))) elif node.tag=='blockSpan': styles.append(('SPAN', start, stop)) elif node.tag=='blockLeftPadding': styles.append(('LEFTPADDING', start, stop, utils.unit_get(node.get('length')))) elif node.tag=='blockRightPadding': styles.append(('RIGHTPADDING', start, stop, utils.unit_get(node.get('length')))) elif node.tag=='blockTopPadding': styles.append(('TOPPADDING', start, stop, utils.unit_get(node.get('length')))) elif node.tag=='blockBottomPadding': styles.append(('BOTTOMPADDING', start, stop, utils.unit_get(node.get('length')))) elif node.tag=='blockBackground': styles.append(('BACKGROUND', start, stop, color.get(node.get('colorName')))) if node.get('size'): styles.append(('FONTSIZE', start, stop, utils.unit_get(node.get('size')))) elif node.tag=='lineStyle': kind = node.get('kind') kind_list = [ 'GRID', 'BOX', 'OUTLINE', 'INNERGRID', 'LINEBELOW', 'LINEABOVE','LINEBEFORE', 'LINEAFTER' ] assert kind in kind_list thick = 1 if node.get('thickness'): thick = float(node.get('thickness')) styles.append((kind, start, stop, thick, color.get(node.get('colorName')))) return platypus.tables.TableStyle(styles) def para_style_get(self, node): style = False sname = node.get('style') if sname: if sname in self.styles_obj: style = self.styles_obj[sname] else: _logger.debug('Warning: style not found, %s - setting default!', node.get('style')) if not style: style = self.default_style['Normal'] para_update = self._para_style_update(node) if para_update: # update style only is necessary style = copy.deepcopy(style) style.__dict__.update(para_update) return style class _rml_doc(object): def __init__(self, node, localcontext=None, images=None, path='.', title=None): if images is None: images = {} if localcontext is None: localcontext = {} self.localcontext = localcontext self.etree = node self.filename = self.etree.get('filename') self.images = images self.path = path self.title = title def docinit(self, els): from reportlab.lib.fonts import addMapping from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont for node in els: for font in node.findall('registerFont'): name = font.get('fontName').encode('ascii') fname = font.get('fontFile').encode('ascii') if name not in pdfmetrics._fonts: pdfmetrics.registerFont(TTFont(name, fname)) #by default, we map the fontName to each style (bold, italic, bold and italic), so that #if there isn't any font defined for one of these style (via a font family), the system #will fallback on the normal font. addMapping(name, 0, 0, name) #normal addMapping(name, 0, 1, name) #italic addMapping(name, 1, 0, name) #bold addMapping(name, 1, 1, name) #italic and bold #if registerFontFamily is defined, we register the mapping of the fontName to use for each style. for font_family in node.findall('registerFontFamily'): family_name = font_family.get('normal').encode('ascii') if font_family.get('italic'): addMapping(family_name, 0, 1, font_family.get('italic').encode('ascii')) if font_family.get('bold'): addMapping(family_name, 1, 0, font_family.get('bold').encode('ascii')) if font_family.get('boldItalic'): addMapping(family_name, 1, 1, font_family.get('boldItalic').encode('ascii')) def setTTFontMapping(self,face, fontname, filename, mode='all'): from reportlab.lib.fonts import addMapping from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont if mode: mode = mode.lower() if fontname not in pdfmetrics._fonts: pdfmetrics.registerFont(TTFont(fontname, filename)) if mode == 'all': addMapping(face, 0, 0, fontname) #normal addMapping(face, 0, 1, fontname) #italic addMapping(face, 1, 0, fontname) #bold addMapping(face, 1, 1, fontname) #italic and bold elif mode in ['italic', 'oblique']: addMapping(face, 0, 1, fontname) #italic elif mode == 'bold': addMapping(face, 1, 0, fontname) #bold elif mode in ('bolditalic', 'bold italic','boldoblique', 'bold oblique'): addMapping(face, 1, 1, fontname) #italic and bold else: addMapping(face, 0, 0, fontname) #normal def _textual_image(self, node): rc = '' for n in node: rc +=( etree.tostring(n) or '') + n.tail return base64.decodestring(node.tostring()) def _images(self, el): result = {} for node in el.findall('.//image'): rc =( node.text or '') result[node.get('name')] = base64.decodestring(rc) return result def render(self, out): el = self.etree.findall('.//docinit') if el: self.docinit(el) el = self.etree.findall('.//stylesheet') self.styles = _rml_styles(el,self.localcontext) el = self.etree.findall('.//images') if el: self.images.update( self._images(el[0]) ) el = self.etree.findall('.//template') if len(el): pt_obj = _rml_template(self.localcontext, out, el[0], self, images=self.images, path=self.path, title=self.title) el = utils._child_get(self.etree, self, 'story') pt_obj.render(el) else: self.canvas = canvas.Canvas(out) pd = self.etree.find('pageDrawing')[0] pd_obj = _rml_canvas(self.canvas, self.localcontext, None, self, self.images, path=self.path, title=self.title) pd_obj.render(pd) self.canvas.showPage() self.canvas.save() class _rml_canvas(object): def __init__(self, canvas, localcontext, doc_tmpl=None, doc=None, images=None, path='.', title=None): if images is None: images = {} self.localcontext = localcontext self.canvas = canvas self.styles = doc.styles self.doc_tmpl = doc_tmpl self.doc = doc self.images = images self.path = path self.title = title if self.title: self.canvas.setTitle(self.title) def _textual(self, node, x=0, y=0): text = node.text and node.text.encode('utf-8') or '' rc = utils._process_text(self, text) for n in node: if n.tag == 'seq': from reportlab.lib.sequencer import getSequencer seq = getSequencer() rc += str(seq.next(n.get('id'))) if n.tag == 'pageCount': if x or y: self.canvas.translate(x,y) self.canvas.doForm('pageCount%s' % (self.canvas._storyCount,)) if x or y: self.canvas.translate(-x,-y) if n.tag == 'pageNumber': rc += str(self.canvas.getPageNumber()) rc += utils._process_text(self, n.tail) return rc.replace('\n','') def _drawString(self, node): v = utils.attr_get(node, ['x','y']) text=self._textual(node, **v) text = utils.xml2str(text) try: self.canvas.drawString(text=text, **v) except TypeError: _logger.info("Bad RML: <drawString> tag requires attributes 'x' and 'y'!") raise def _drawCenteredString(self, node): v = utils.attr_get(node, ['x','y']) text=self._textual(node, **v) text = utils.xml2str(text) self.canvas.drawCentredString(text=text, **v) def _drawRightString(self, node): v = utils.attr_get(node, ['x','y']) text=self._textual(node, **v) text = utils.xml2str(text) self.canvas.drawRightString(text=text, **v) def _rect(self, node): if node.get('round'): self.canvas.roundRect(radius=utils.unit_get(node.get('round')), **utils.attr_get(node, ['x','y','width','height'], {'fill':'bool','stroke':'bool'})) else: self.canvas.rect(**utils.attr_get(node, ['x','y','width','height'], {'fill':'bool','stroke':'bool'})) def _ellipse(self, node): x1 = utils.unit_get(node.get('x')) x2 = utils.unit_get(node.get('width')) y1 = utils.unit_get(node.get('y')) y2 = utils.unit_get(node.get('height')) self.canvas.ellipse(x1,y1,x2,y2, **utils.attr_get(node, [], {'fill':'bool','stroke':'bool'})) def _curves(self, node): line_str = node.text.split() lines = [] while len(line_str)>7: self.canvas.bezier(*[utils.unit_get(l) for l in line_str[0:8]]) line_str = line_str[8:] def _lines(self, node): line_str = node.text.split() lines = [] while len(line_str)>3: lines.append([utils.unit_get(l) for l in line_str[0:4]]) line_str = line_str[4:] self.canvas.lines(lines) def _grid(self, node): xlist = [utils.unit_get(s) for s in node.get('xs').split(',')] ylist = [utils.unit_get(s) for s in node.get('ys').split(',')] self.canvas.grid(xlist, ylist) def _translate(self, node): dx = utils.unit_get(node.get('dx')) or 0 dy = utils.unit_get(node.get('dy')) or 0 self.canvas.translate(dx,dy) def _circle(self, node): self.canvas.circle(x_cen=utils.unit_get(node.get('x')), y_cen=utils.unit_get(node.get('y')), r=utils.unit_get(node.get('radius')), **utils.attr_get(node, [], {'fill':'bool','stroke':'bool'})) def _place(self, node): flows = _rml_flowable(self.doc, self.localcontext, images=self.images, path=self.path, title=self.title, canvas=self.canvas).render(node) infos = utils.attr_get(node, ['x','y','width','height']) infos['y']+=infos['height'] for flow in flows: w,h = flow.wrap(infos['width'], infos['height']) if w<=infos['width'] and h<=infos['height']: infos['y']-=h flow.drawOn(self.canvas,infos['x'],infos['y']) infos['height']-=h else: raise ValueError("Not enough space") def _line_mode(self, node): ljoin = {'round':1, 'mitered':0, 'bevelled':2} lcap = {'default':0, 'round':1, 'square':2} if node.get('width'): self.canvas.setLineWidth(utils.unit_get(node.get('width'))) if node.get('join'): self.canvas.setLineJoin(ljoin[node.get('join')]) if node.get('cap'): self.canvas.setLineCap(lcap[node.get('cap')]) if node.get('miterLimit'): self.canvas.setDash(utils.unit_get(node.get('miterLimit'))) if node.get('dash'): dashes = node.get('dash').split(',') for x in range(len(dashes)): dashes[x]=utils.unit_get(dashes[x]) self.canvas.setDash(node.get('dash').split(',')) def _image(self, node): import urllib import urlparse from reportlab.lib.utils import ImageReader nfile = node.get('file') if not nfile: if node.get('name'): image_data = self.images[node.get('name')] _logger.debug("Image %s used", node.get('name')) s = StringIO(image_data) else: newtext = node.text if self.localcontext: res = utils._regex.findall(newtext) for key in res: newtext = safe_eval(key, {}, self.localcontext) or '' image_data = None if newtext: image_data = base64.decodestring(newtext) if image_data: s = StringIO(image_data) else: _logger.debug("No image data!") return False else: if nfile in self.images: s = StringIO(self.images[nfile]) else: try: up = urlparse.urlparse(str(nfile)) except ValueError: up = False if up and up.scheme: # RFC: do we really want to open external URLs? # Are we safe from cross-site scripting or attacks? _logger.debug("Retrieve image from %s", nfile) u = urllib.urlopen(str(nfile)) s = StringIO(u.read()) else: _logger.debug("Open image file %s ", nfile) s = _open_image(nfile, path=self.path) try: img = ImageReader(s) (sx,sy) = img.getSize() _logger.debug("Image is %dx%d", sx, sy) args = { 'x': 0.0, 'y': 0.0, 'mask': 'auto'} for tag in ('width','height','x','y'): if node.get(tag): args[tag] = utils.unit_get(node.get(tag)) if ('width' in args) and (not 'height' in args): args['height'] = sy * args['width'] / sx elif ('height' in args) and (not 'width' in args): args['width'] = sx * args['height'] / sy elif ('width' in args) and ('height' in args): if (float(args['width'])/args['height'])>(float(sx)>sy): args['width'] = sx * args['height'] / sy else: args['height'] = sy * args['width'] / sx self.canvas.drawImage(img, **args) finally: s.close() # self.canvas._doc.SaveToFile(self.canvas._filename, self.canvas) def _path(self, node): self.path = self.canvas.beginPath() self.path.moveTo(**utils.attr_get(node, ['x','y'])) for n in utils._child_get(node, self): if not n.text : if n.tag=='moveto': vals = utils.text_get(n).split() self.path.moveTo(utils.unit_get(vals[0]), utils.unit_get(vals[1])) elif n.tag=='curvesto': vals = utils.text_get(n).split() while len(vals)>5: pos=[] while len(pos)<6: pos.append(utils.unit_get(vals.pop(0))) self.path.curveTo(*pos) elif n.text: data = n.text.split() # Not sure if I must merge all TEXT_NODE ? while len(data)>1: x = utils.unit_get(data.pop(0)) y = utils.unit_get(data.pop(0)) self.path.lineTo(x,y) if (not node.get('close')) or utils.bool_get(node.get('close')): self.path.close() self.canvas.drawPath(self.path, **utils.attr_get(node, [], {'fill':'bool','stroke':'bool'})) def setFont(self, node): fontname = select_fontname(node.get('name'), self.canvas._fontname) return self.canvas.setFont(fontname, utils.unit_get(node.get('size'))) def render(self, node): tags = { 'drawCentredString': self._drawCenteredString, 'drawRightString': self._drawRightString, 'drawString': self._drawString, 'rect': self._rect, 'ellipse': self._ellipse, 'lines': self._lines, 'grid': self._grid, 'curves': self._curves, 'fill': lambda node: self.canvas.setFillColor(color.get(node.get('color'))), 'stroke': lambda node: self.canvas.setStrokeColor(color.get(node.get('color'))), 'setFont': self.setFont , 'place': self._place, 'circle': self._circle, 'lineMode': self._line_mode, 'path': self._path, 'rotate': lambda node: self.canvas.rotate(float(node.get('degrees'))), 'translate': self._translate, 'image': self._image } for n in utils._child_get(node, self): if n.tag in tags: tags[n.tag](n) class _rml_draw(object): def __init__(self, localcontext, node, styles, images=None, path='.', title=None): if images is None: images = {} self.localcontext = localcontext self.node = node self.styles = styles self.canvas = None self.images = images self.path = path self.canvas_title = title def render(self, canvas, doc): canvas.saveState() cnv = _rml_canvas(canvas, self.localcontext, doc, self.styles, images=self.images, path=self.path, title=self.canvas_title) cnv.render(self.node) canvas.restoreState() class _rml_Illustration(platypus.flowables.Flowable): def __init__(self, node, localcontext, styles, self2): self.localcontext = (localcontext or {}).copy() self.node = node self.styles = styles self.width = utils.unit_get(node.get('width')) self.height = utils.unit_get(node.get('height')) self.self2 = self2 def wrap(self, *args): return self.width, self.height def draw(self): drw = _rml_draw(self.localcontext ,self.node,self.styles, images=self.self2.images, path=self.self2.path, title=self.self2.title) drw.render(self.canv, None) # Workaround for issue #15: https://bitbucket.org/rptlab/reportlab/issue/15/infinite-pages-produced-when-splitting original_pto_split = platypus.flowables.PTOContainer.split def split(self, availWidth, availHeight): res = original_pto_split(self, availWidth, availHeight) if len(res) > 2 and len(self._content) > 0: header = self._content[0]._ptoinfo.header trailer = self._content[0]._ptoinfo.trailer if isinstance(res[-2], platypus.flowables.UseUpSpace) and len(header + trailer) == len(res[:-2]): return [] return res platypus.flowables.PTOContainer.split = split class _rml_flowable(object): def __init__(self, doc, localcontext, images=None, path='.', title=None, canvas=None): if images is None: images = {} self.localcontext = localcontext self.doc = doc self.styles = doc.styles self.images = images self.path = path self.title = title self.canvas = canvas def _textual(self, node): rc1 = utils._process_text(self, node.text or '') for n in utils._child_get(node,self): txt_n = copy.deepcopy(n) for key in txt_n.attrib.keys(): if key in ('rml_except', 'rml_loop', 'rml_tag'): del txt_n.attrib[key] if not n.tag == 'bullet': if n.tag == 'pageNumber': txt_n.text = self.canvas and str(self.canvas.getPageNumber()) or '' else: txt_n.text = utils.xml2str(self._textual(n)) txt_n.tail = n.tail and utils.xml2str(utils._process_text(self, n.tail.replace('\n',''))) or '' rc1 += etree.tostring(txt_n) return rc1 def _table(self, node): children = utils._child_get(node,self,'tr') if not children: return None length = 0 colwidths = None rowheights = None data = [] styles = [] posy = 0 for tr in children: paraStyle = None if tr.get('style'): st = copy.deepcopy(self.styles.table_styles[tr.get('style')]) for si in range(len(st._cmds)): s = list(st._cmds[si]) s[1] = (s[1][0],posy) s[2] = (s[2][0],posy) st._cmds[si] = tuple(s) styles.append(st) if tr.get('paraStyle'): paraStyle = self.styles.styles[tr.get('paraStyle')] data2 = [] posx = 0 for td in utils._child_get(tr, self,'td'): if td.get('style'): st = copy.deepcopy(self.styles.table_styles[td.get('style')]) for s in st._cmds: s[1][1] = posy s[2][1] = posy s[1][0] = posx s[2][0] = posx styles.append(st) if td.get('paraStyle'): # TODO: merge styles paraStyle = self.styles.styles[td.get('paraStyle')] posx += 1 flow = [] for n in utils._child_get(td, self): if n.tag == etree.Comment: n.text = '' continue fl = self._flowable(n, extra_style=paraStyle) if isinstance(fl,list): flow += fl else: flow.append( fl ) if not len(flow): flow = self._textual(td) data2.append( flow ) if len(data2)>length: length=len(data2) for ab in data: while len(ab)<length: ab.append('') while len(data2)<length: data2.append('') data.append( data2 ) posy += 1 if node.get('colWidths'): assert length == len(node.get('colWidths').split(',')) colwidths = [utils.unit_get(f.strip()) for f in node.get('colWidths').split(',')] if node.get('rowHeights'): rowheights = [utils.unit_get(f.strip()) for f in node.get('rowHeights').split(',')] if len(rowheights) == 1: rowheights = rowheights[0] table = platypus.LongTable(data = data, colWidths=colwidths, rowHeights=rowheights, **(utils.attr_get(node, ['splitByRow'] ,{'repeatRows':'int','repeatCols':'int'}))) if node.get('style'): table.setStyle(self.styles.table_styles[node.get('style')]) for s in styles: table.setStyle(s) return table def _illustration(self, node): return _rml_Illustration(node, self.localcontext, self.styles, self) def _textual_image(self, node): return base64.decodestring(node.text) def _pto(self, node): sub_story = [] pto_header = None pto_trailer = None for node in utils._child_get(node, self): if node.tag == etree.Comment: node.text = '' continue elif node.tag=='pto_header': pto_header = self.render(node) elif node.tag=='pto_trailer': pto_trailer = self.render(node) else: flow = self._flowable(node) if flow: if isinstance(flow,list): sub_story = sub_story + flow else: sub_story.append(flow) return platypus.flowables.PTOContainer(sub_story, trailer=pto_trailer, header=pto_header) def _flowable(self, node, extra_style=None): if node.tag=='pto': return self._pto(node) if node.tag=='para': style = self.styles.para_style_get(node) if extra_style: style.__dict__.update(extra_style) text_node = self._textual(node).strip().replace('\n\n', '\n').replace('\n', '<br/>') instance = platypus.Paragraph(text_node, style, **(utils.attr_get(node, [], {'bulletText':'str'}))) result = [instance] if LooseVersion(reportlab.Version) > LooseVersion('3.0') and not instance.getPlainText().strip() and instance.text.strip(): result.append(platypus.Paragraph('&nbsp;<br/>', style, **(utils.attr_get(node, [], {'bulletText': 'str'})))) return result elif node.tag=='barCode': try: from reportlab.graphics.barcode import code128 from reportlab.graphics.barcode import code39 from reportlab.graphics.barcode import code93 from reportlab.graphics.barcode import common from reportlab.graphics.barcode import fourstate from reportlab.graphics.barcode import usps from reportlab.graphics.barcode import createBarcodeDrawing except ImportError: _logger.warning("Cannot use barcode renderers:", exc_info=True) return None args = utils.attr_get(node, [], {'ratio':'float','xdim':'unit','height':'unit','checksum':'int','quiet':'int','width':'unit','stop':'bool','bearers':'int','barWidth':'float','barHeight':'float'}) codes = { 'codabar': lambda x: common.Codabar(x, **args), 'code11': lambda x: common.Code11(x, **args), 'code128': lambda x: code128.Code128(str(x), **args), 'standard39': lambda x: code39.Standard39(str(x), **args), 'standard93': lambda x: code93.Standard93(str(x), **args), 'i2of5': lambda x: common.I2of5(x, **args), 'extended39': lambda x: code39.Extended39(str(x), **args), 'extended93': lambda x: code93.Extended93(str(x), **args), 'msi': lambda x: common.MSI(x, **args), 'fim': lambda x: usps.FIM(x, **args), 'postnet': lambda x: usps.POSTNET(x, **args), 'ean13': lambda x: createBarcodeDrawing('EAN13', value=str(x), **args), 'qrcode': lambda x: createBarcodeDrawing('QR', value=x, **args), } code = 'code128' if node.get('code'): code = node.get('code').lower() return codes[code](self._textual(node)) elif node.tag=='name': self.styles.names[ node.get('id')] = node.get('value') return None elif node.tag=='xpre': style = self.styles.para_style_get(node) return platypus.XPreformatted(self._textual(node), style, **(utils.attr_get(node, [], {'bulletText':'str','dedent':'int','frags':'int'}))) elif node.tag=='pre': style = self.styles.para_style_get(node) return platypus.Preformatted(self._textual(node), style, **(utils.attr_get(node, [], {'bulletText':'str','dedent':'int'}))) elif node.tag=='illustration': return self._illustration(node) elif node.tag=='blockTable': return self._table(node) elif node.tag=='title': styles = reportlab.lib.styles.getSampleStyleSheet() style = styles['Title'] return platypus.Paragraph(self._textual(node), style, **(utils.attr_get(node, [], {'bulletText':'str'}))) elif re.match('^h([1-9]+[0-9]*)$', (node.tag or '')): styles = reportlab.lib.styles.getSampleStyleSheet() style = styles['Heading'+str(node.tag[1:])] return platypus.Paragraph(self._textual(node), style, **(utils.attr_get(node, [], {'bulletText':'str'}))) elif node.tag=='image': image_data = False if not node.get('file'): if node.get('name'): if node.get('name') in self.doc.images: _logger.debug("Image %s read ", node.get('name')) image_data = self.doc.images[node.get('name')].read() else: _logger.warning("Image %s not defined", node.get('name')) return False else: import base64 newtext = node.text if self.localcontext: newtext = utils._process_text(self, node.text or '') image_data = base64.decodestring(newtext) if not image_data: _logger.debug("No inline image data") return False image = StringIO(image_data) else: _logger.debug("Image get from file %s", node.get('file')) image = _open_image(node.get('file'), path=self.doc.path) return platypus.Image(image, mask=(250,255,250,255,250,255), **(utils.attr_get(node, ['width','height']))) elif node.tag=='spacer': if node.get('width'): width = utils.unit_get(node.get('width')) else: width = utils.unit_get('1cm') length = utils.unit_get(node.get('length')) return platypus.Spacer(width=width, height=length) elif node.tag=='section': return self.render(node) elif node.tag == 'pageNumberReset': return PageReset() elif node.tag in ('pageBreak', 'nextPage'): return platypus.PageBreak() elif node.tag=='condPageBreak': return platypus.CondPageBreak(**(utils.attr_get(node, ['height']))) elif node.tag=='setNextTemplate': return platypus.NextPageTemplate(str(node.get('name'))) elif node.tag=='nextFrame': return platypus.CondPageBreak(1000) # TODO: change the 1000 ! elif node.tag == 'setNextFrame': from reportlab.platypus.doctemplate import NextFrameFlowable return NextFrameFlowable(str(node.get('name'))) elif node.tag == 'currentFrame': from reportlab.platypus.doctemplate import CurrentFrameFlowable return CurrentFrameFlowable(str(node.get('name'))) elif node.tag == 'frameEnd': return EndFrameFlowable() elif node.tag == 'hr': width_hr=node.get('width') or '100%' color_hr=node.get('color') or 'black' thickness_hr=node.get('thickness') or 1 lineCap_hr=node.get('lineCap') or 'round' return platypus.flowables.HRFlowable(width=width_hr,color=color.get(color_hr),thickness=float(thickness_hr),lineCap=str(lineCap_hr)) else: sys.stderr.write('Warning: flowable not yet implemented: %s !\n' % (node.tag,)) return None def render(self, node_story): def process_story(node_story): sub_story = [] for node in utils._child_get(node_story, self): if node.tag == etree.Comment: node.text = '' continue flow = self._flowable(node) if flow: if isinstance(flow,list): sub_story = sub_story + flow else: sub_story.append(flow) return sub_story return process_story(node_story) class EndFrameFlowable(ActionFlowable): def __init__(self,resume=0): ActionFlowable.__init__(self,('frameEnd',resume)) class TinyDocTemplate(platypus.BaseDocTemplate): def beforeDocument(self): # Store some useful value directly inside canvas, so it's available # on flowable drawing (needed for proper PageCount handling) self.canv._doPageReset = False self.canv._storyCount = 0 def ___handle_pageBegin(self): self.page += 1 self.pageTemplate.beforeDrawPage(self.canv,self) self.pageTemplate.checkPageSize(self.canv,self) self.pageTemplate.onPage(self.canv,self) for f in self.pageTemplate.frames: f._reset() self.beforePage() self._curPageFlowableCount = 0 if hasattr(self,'_nextFrameIndex'): del self._nextFrameIndex for f in self.pageTemplate.frames: if f.id == 'first': self.frame = f break self.handle_frameBegin() def afterPage(self): if isinstance(self.canv, NumberedCanvas): # save current page states before eventual reset self.canv._saved_page_states.append(dict(self.canv.__dict__)) if self.canv._doPageReset: # Following a <pageReset/> tag: # - we reset page number to 0 # - we add an new PageCount flowable (relative to the current # story number), but not for NumeredCanvas at is handle page # count itself) # NOTE: _rml_template render() method add a PageReset flowable at end # of each story, so we're sure to pass here at least once per story. if not isinstance(self.canv, NumberedCanvas): self.handle_flowable([ PageCount(story_count=self.canv._storyCount) ]) self.canv._pageCount = self.page self.page = 0 self.canv._flag = True self.canv._pageNumber = 0 self.canv._doPageReset = False self.canv._storyCount += 1 class _rml_template(object): def __init__(self, localcontext, out, node, doc, images=None, path='.', title=None): if images is None: images = {} if not localcontext: localcontext={'internal_header':True} self.localcontext = localcontext self.images= images self.path = path self.title = title pagesize_map = {'a4': A4, 'us_letter': letter } pageSize = A4 if self.localcontext.get('company'): pageSize = pagesize_map.get(self.localcontext.get('company').rml_paper_format, A4) if node.get('pageSize'): ps = map(lambda x:x.strip(), node.get('pageSize').replace(')', '').replace('(', '').split(',')) pageSize = ( utils.unit_get(ps[0]),utils.unit_get(ps[1]) ) self.doc_tmpl = TinyDocTemplate(out, pagesize=pageSize, **utils.attr_get(node, ['leftMargin','rightMargin','topMargin','bottomMargin'], {'allowSplitting':'int','showBoundary':'bool','rotation':'int','title':'str','author':'str'})) self.page_templates = [] self.styles = doc.styles self.doc = doc self.image=[] pts = node.findall('pageTemplate') for pt in pts: frames = [] for frame_el in pt.findall('frame'): frame = platypus.Frame( **(utils.attr_get(frame_el, ['x1','y1', 'width','height', 'leftPadding', 'rightPadding', 'bottomPadding', 'topPadding'], {'id':'str', 'showBoundary':'bool'})) ) if utils.attr_get(frame_el, ['last']): frame.lastFrame = True frames.append( frame ) try : gr = pt.findall('pageGraphics')\ or pt[1].findall('pageGraphics') except Exception: # FIXME: be even more specific, perhaps? gr='' if len(gr): # self.image=[ n for n in utils._child_get(gr[0], self) if n.tag=='image' or not self.localcontext] drw = _rml_draw(self.localcontext,gr[0], self.doc, images=images, path=self.path, title=self.title) self.page_templates.append( platypus.PageTemplate(frames=frames, onPage=drw.render, **utils.attr_get(pt, [], {'id':'str'}) )) else: drw = _rml_draw(self.localcontext,node,self.doc,title=self.title) self.page_templates.append( platypus.PageTemplate(frames=frames,onPage=drw.render, **utils.attr_get(pt, [], {'id':'str'}) )) self.doc_tmpl.addPageTemplates(self.page_templates) def render(self, node_stories): if self.localcontext and not self.localcontext.get('internal_header',False): del self.localcontext['internal_header'] fis = [] r = _rml_flowable(self.doc,self.localcontext, images=self.images, path=self.path, title=self.title, canvas=None) story_cnt = 0 for node_story in node_stories: if story_cnt > 0: fis.append(platypus.PageBreak()) fis += r.render(node_story) # end of story numbering computation fis.append(PageReset()) story_cnt += 1 try: if self.localcontext and self.localcontext.get('internal_header',False): self.doc_tmpl.afterFlowable(fis) self.doc_tmpl.build(fis,canvasmaker=NumberedCanvas) else: self.doc_tmpl.build(fis) except platypus.doctemplate.LayoutError, e: e.name = 'Print Error' e.value = 'The document you are trying to print contains a table row that does not fit on one page. Please try to split it in smaller rows or contact your administrator.' raise def parseNode(rml, localcontext=None, fout=None, images=None, path='.', title=None): node = etree.XML(rml) r = _rml_doc(node, localcontext, images, path, title=title) #try to override some font mappings try: SetCustomFonts(r) except Exception, exc: _logger.info('Cannot set font mapping: %s', "".join(traceback.format_exception_only(type(exc),exc))) fp = StringIO() r.render(fp) return fp.getvalue() def parseString(rml, localcontext=None, fout=None, images=None, path='.', title=None): node = etree.XML(rml) r = _rml_doc(node, localcontext, images, path, title=title) #try to override some font mappings try: SetCustomFonts(r) except Exception: pass if fout: fp = file(fout,'wb') r.render(fp) fp.close() return fout else: fp = StringIO() r.render(fp) return fp.getvalue() def trml2pdf_help(): print 'Usage: trml2pdf input.rml >output.pdf' print 'Render the standard input (RML) and output a PDF file' sys.exit(0) if __name__=="__main__": if len(sys.argv)>1: if sys.argv[1]=='--help': trml2pdf_help() print parseString(file(sys.argv[1], 'r').read()), else: print 'Usage: trml2pdf input.rml >output.pdf' print 'Try \'trml2pdf --help\' for more information.'
gpl-3.0
-7,056,118,041,523,852,000
41.777154
238
0.545506
false
3.868089
false
false
false
MediaKraken/MediaKraken_Deployment
source/test_asyncpg_json.py
1
1574
import asyncio import datetime import json import asyncpg ### # fully working for DICT of row along with auto json decode/encode ### async def main(): conn = await asyncpg.connect(user='postgres', password='metaman', database='postgres', host='localhost') await conn.set_type_codec('json', encoder=json.dumps, decoder=json.loads, schema='pg_catalog') await conn.execute('CREATE TABLE users2(id serial PRIMARY KEY,' ' name text, dob date, test_json jsonb)') await conn.execute('INSERT INTO users2(name, dob, test_json) VALUES($1, $2, $3)', 'Bob', datetime.date(1984, 3, 1), json.dumps({'test': 'works'})) # shows that one CANNOT use ::json in the insert # await conn.execute('INSERT INTO users2(name, test_json::json) VALUES($1, $2)', # 'Bob', {'test': 'works'}) # shows that one CANNOT use ::json in the update # await conn.execute('update users2 set name = $1, test_json::json = $2', # 'Bob', json.dumps({'test': 'works'})) row = await conn.fetchrow('SELECT id, dob, test_json::json' ' FROM users2 WHERE name = $1', 'Bob') print(row['id'], row['dob'], row['test_json']) print(row['test_json']['test']) # Close the connection. await conn.close() asyncio.get_event_loop().run_until_complete(main())
gpl-3.0
375,246,508,988,305,300
33.217391
87
0.52986
false
4.025575
true
false
false
ToontownUprising/src
toontown/nametag/Nametag2d.py
1
10929
from direct.task.Task import Task import math from panda3d.core import PGButton, VBase4, DepthWriteAttrib, Point3 from toontown.chat.ChatBalloon import ChatBalloon from toontown.margins import MarginGlobals from toontown.margins.MarginVisible import MarginVisible from toontown.nametag import NametagGlobals from toontown.nametag.Nametag import Nametag from toontown.toontowngui.Clickable2d import Clickable2d class Nametag2d(Nametag, Clickable2d, MarginVisible): CONTENTS_SCALE = 0.25 CHAT_TEXT_MAX_ROWS = 6 CHAT_TEXT_WORD_WRAP = 8 CHAT_BALLOON_ALPHA = 0.4 ARROW_OFFSET = -1.0 ARROW_SCALE = 1.5 def __init__(self): Nametag.__init__(self) Clickable2d.__init__(self, 'Nametag2d') MarginVisible.__init__(self) self.actualChatText = '' self.arrow = None self.textNodePath = None self.contents.setScale(self.CONTENTS_SCALE) self.hideThought() self.accept('MarginVisible-update', self.update) def destroy(self): self.ignoreAll() Nametag.destroy(self) if self.textNodePath is not None: self.textNodePath.removeNode() self.textNodePath = None if self.arrow is not None: self.arrow.removeNode() self.arrow = None Clickable2d.destroy(self) def getUniqueName(self): return 'Nametag2d-' + str(id(self)) def getChatBalloonModel(self): return NametagGlobals.chatBalloon2dModel def getChatBalloonWidth(self): return NametagGlobals.chatBalloon2dWidth def getChatBalloonHeight(self): return NametagGlobals.chatBalloon2dHeight def setChatText(self, chatText): self.actualChatText = chatText Nametag.setChatText(self, chatText) def updateClickRegion(self): if self.chatBalloon is not None: right = self.chatBalloon.width / 2.0 left = -right top = self.chatBalloon.height / 2.0 bottom = -top self.setClickRegionFrame(left, right, bottom, top) self.region.setActive(True) elif self.panel is not None: centerX = (self.textNode.getLeft()+self.textNode.getRight()) / 2.0 centerY = (self.textNode.getBottom()+self.textNode.getTop()) / 2.0 left = centerX - (self.panelWidth/2.0) right = centerX + (self.panelWidth/2.0) bottom = centerY - (self.panelHeight/2.0) top = centerY + (self.panelHeight/2.0) self.setClickRegionFrame(left, right, bottom, top) self.region.setActive(True) else: if self.region is not None: self.region.setActive(False) def isClickable(self): if self.getChatText() and self.hasChatButton(): return True return NametagGlobals.wantActiveNametags and Clickable2d.isClickable(self) def setClickState(self, clickState): if self.isClickable(): self.applyClickState(clickState) else: self.applyClickState(PGButton.SInactive) Clickable2d.setClickState(self, clickState) def enterDepressed(self): if self.isClickable(): base.playSfx(NametagGlobals.clickSound) def enterRollover(self): if self.isClickable() and (self.lastClickState != PGButton.SDepressed): base.playSfx(NametagGlobals.rolloverSound) def update(self): self.contents.node().removeAllChildren() Nametag.update(self) if self.cell is not None: # We're in the margin display. Reposition our content, and update # the click region: self.reposition() self.updateClickRegion() else: # We aren't in the margin display. Disable the click region if one # is present: if self.region is not None: self.region.setActive(False) def tick(self, task): if (self.avatar is None) or self.avatar.isEmpty(): return Task.cont if (self.cell is None) or (self.arrow is None): return Task.cont location = self.avatar.getPos(NametagGlobals.me) rotation = NametagGlobals.me.getQuat(base.cam) camSpacePos = rotation.xform(location) arrowRadians = math.atan2(camSpacePos[0], camSpacePos[1]) arrowDegrees = (arrowRadians/math.pi) * 180 self.arrow.setR(arrowDegrees - 90) return Task.cont def drawChatBalloon(self, model, modelWidth, modelHeight): if self.chatFont is None: # We can't draw this without a font. return # Prefix the nametag text: self.chatTextNode.setText(self.getText() + ': ' + self.actualChatText) # Set our priority in the margin system: self.setPriority(MarginGlobals.MP_normal) if self.textNodePath is not None: self.textNodePath.removeNode() self.textNodePath = None if self.arrow is not None: self.arrow.removeNode() self.arrow = None if self.isClickable(): foreground, background = self.chatColor[self.clickState] else: foreground, background = self.chatColor[PGButton.SInactive] if self.chatType == NametagGlobals.SPEEDCHAT: background = self.speedChatColor if background[3] > self.CHAT_BALLOON_ALPHA: background = VBase4( background[0], background[1], background[2], self.CHAT_BALLOON_ALPHA) self.chatBalloon = ChatBalloon( model, modelWidth, modelHeight, self.chatTextNode, foreground=foreground, background=background, reversed=self.chatReversed, button=self.chatButton[self.clickState]) self.chatBalloon.reparentTo(self.contents) # Calculate the center of the TextNode: left, right, bottom, top = self.chatTextNode.getFrameActual() center = self.contents.getRelativePoint( self.chatBalloon.textNodePath, ((left+right) / 2.0, 0, (bottom+top) / 2.0)) # Translate the chat balloon along the inverse: self.chatBalloon.setPos(self.chatBalloon, -center) def drawNametag(self): # Set our priority in the margin system: self.setPriority(MarginGlobals.MP_low) if self.textNodePath is not None: self.textNodePath.removeNode() self.textNodePath = None if self.arrow is not None: self.arrow.removeNode() self.arrow = None if self.font is None: # We can't draw this without a font. return # Attach the icon: if self.icon is not None: self.contents.attachNewNode(self.icon) if self.isClickable(): foreground, background = self.nametagColor[self.clickState] else: foreground, background = self.nametagColor[PGButton.SInactive] # Set the color of the TextNode: self.textNode.setTextColor(foreground) # Attach the TextNode: self.textNodePath = self.contents.attachNewNode(self.textNode, 1) self.textNodePath.setTransparency(foreground[3] < 1) self.textNodePath.setAttrib(DepthWriteAttrib.make(0)) self.textNodePath.setY(self.TEXT_Y_OFFSET) # Attach a panel behind the TextNode: self.panel = NametagGlobals.cardModel.copyTo(self.contents, 0) self.panel.setColor(background) self.panel.setTransparency(background[3] < 1) # Reposition the panel: x = (self.textNode.getLeft()+self.textNode.getRight()) / 2.0 z = (self.textNode.getBottom()+self.textNode.getTop()) / 2.0 self.panel.setPos(x, 0, z) # Resize the panel: self.panelWidth = self.textNode.getWidth() + self.PANEL_X_PADDING self.panelHeight = self.textNode.getHeight() + self.PANEL_Z_PADDING self.panel.setScale(self.panelWidth, 1, self.panelHeight) # Add an arrow: self.arrow = NametagGlobals.arrowModel.copyTo(self.contents) self.arrow.setZ(self.ARROW_OFFSET + self.textNode.getBottom()) self.arrow.setScale(self.ARROW_SCALE) self.arrow.setColor(self.nametagColor[0][0]) def marginVisibilityChanged(self): if self.cell is not None: # We're in the margin display. Reposition our content, and update # the click region: self.reposition() self.updateClickRegion() else: # We aren't in the margin display. Disable the click region if one # is present: if self.region is not None: self.region.setActive(False) def reposition(self): if self.contents is None: return origin = Point3() self.contents.setPos(origin) if self.chatBalloon is not None: self.chatBalloon.removeNode() self.chatBalloon = None self.contents.node().removeAllChildren() if (self.cell in base.leftCells) or (self.cell in base.rightCells): text = self.getChatText().replace('\x01WLDisplay\x01', '').replace('\x02', '') textWidth = self.chatTextNode.calcWidth(text) if (textWidth / self.CHAT_TEXT_WORD_WRAP) > self.CHAT_TEXT_MAX_ROWS: self.chatTextNode.setWordwrap(textWidth / (self.CHAT_TEXT_MAX_ROWS-0.5)) else: self.chatTextNode.setWordwrap(self.CHAT_TEXT_WORD_WRAP) model = self.getChatBalloonModel() modelWidth = self.getChatBalloonWidth() modelHeight = self.getChatBalloonHeight() self.drawChatBalloon(model, modelWidth, modelHeight) nodePath = self.chatBalloon.textNodePath left, right, bottom, top = self.chatTextNode.getFrameActual() elif self.panel is not None: nodePath = self.textNodePath left, right, bottom, top = self.textNode.getFrameActual() # Compensate for the arrow: bottom -= self.ARROW_SCALE else: return if self.cell in base.bottomCells: # Move the origin to the bottom center of the node path: origin = self.contents.getRelativePoint( nodePath, ((left+right) / 2.0, 0, bottom)) elif self.cell in base.leftCells: # Move the origin to the left center of the node path: origin = self.contents.getRelativePoint( nodePath, (left, 0, (bottom+top) / 2.0)) elif self.cell in base.rightCells: # Move the origin to the right center of the node path: origin = self.contents.getRelativePoint( nodePath, (right, 0, (bottom+top) / 2.0)) self.contents.setPos(self.contents, -origin)
mit
4,598,167,220,696,883,700
33.805732
94
0.620093
false
3.836083
false
false
false
tommyogden/maxwellbloch
setup.py
1
2118
"""MaxwellBloch MaxwellBloch is a Python package for solving the coupled Maxwell-Bloch equations describing the nonlinear propagation of near-resonant light through thermal atomic vapours. """ import os import textwrap from setuptools import setup, find_packages import subprocess DESCRIPTION = "A Python package for solving the Maxwell-Bloch equations." LONG_DESCRIPTION = ("MaxwellBloch is a Python package for solving the coupled " "Maxwell-Bloch equations describing the nonlinear propagation of " "near-resonant light through thermal atomic vapours.") def git_short_hash(): """ Returns the short hash of the latest git commit as a string. """ git_str = subprocess.check_output(['git', 'log', '-1', '--format=%h']).decode('UTF-8').strip() return git_str version = "no_version" if "TRAVIS_TAG" in os.environ: # Versions are of the pattern 'vX.Y.X' version = os.environ.get("TRAVIS_TAG", "")[1:] elif "TRAVIS_COMMIT" in os.environ: version = os.environ.get("TRAVIS_COMMIT", "")[:8] else: version = git_short_hash() def write_version_module(version_path='maxwellbloch/version.py'): """ Write a version module with the current version.""" # Remove if already exists if os.path.exists(version_path): os.remove(version_path) version_str = textwrap.dedent("""\ # This file is generated by setup.py VERSION = '{!s}' """.format(version)) f = open(version_path, 'w') try: f.write(version_str) finally: f.close() write_version_module() setup(name='MaxwellBloch', version=version, description=DESCRIPTION, long_description=LONG_DESCRIPTION, url='http://github.com/tommyogden/maxwellbloch', author='Thomas P Ogden', author_email='t@ogden.eu', license='MIT', packages=find_packages(), package_data={'maxwellbloch.tests': ['json/*.json']}, install_requires=['qutip'], scripts=['bin/make-mp4-fixed-frame.py', 'bin/make-mp4-fixed-frame-2-fields.py', 'bin/make-gif-ffmpeg.sh'], zip_safe=False)
mit
-6,282,543,788,265,770,000
29.695652
80
0.660057
false
3.438312
false
false
false
percival-detector/odin-data
tools/python/odin_data/meta_listener_adapter.py
1
7328
import logging from tornado import escape from odin.adapters.adapter import ApiAdapterResponse, \ request_types, response_types from odin_data.odin_data_adapter import OdinDataAdapter class MetaListenerAdapter(OdinDataAdapter): """An OdinControl adapter for a MetaListener""" def __init__(self, **kwargs): logging.debug("MetaListenerAdapter init called") # These are internal adapter parameters self.acquisitionID = "" self.acquisition_active = False self.acquisitions = [] # These parameters are stored under an acquisition tree, so we need to # parse out the parameters for the acquisition we have stored self._readback_parameters = {} self._set_defaults() # These config parameters are buffered so they can be included whenever a new acquisition # is created. This helps to abstract the idea of acquisitions being created and removed and # means the client does not need to send things in a certain order. self._config_parameters = { "config/output_dir": "", "config/flush": 100, "config/file_prefix": "" } # Parameters must be created before base init called super(MetaListenerAdapter, self).__init__(**kwargs) self._client = self._clients[0] # We only have one client def _set_defaults(self): self.acquisitionID = "" self._readback_parameters = { "status/filename": "", "status/num_processors": 0, "status/writing": False, "status/written": 0 } def _map_acquisition_parameter(self, path): """Map acquisition parameter path string to full uri item list""" # Replace the first slash with acquisitions/<acquisitionID>/ # E.g. status/filename -> status/acquisitions/<acquisitionID>/filename full_path = path.replace( "/", "/acquisitions/{}/".format(self.acquisitionID), 1 # First slash only ) return full_path.split("/") # Return list of uri items @request_types('application/json') @response_types('application/json', default='application/json') def get(self, path, request): """Implementation of the HTTP GET verb for MetaListenerAdapter :param path: URI path of the GET request :param request: Tornado HTTP request object :return: ApiAdapterResponse object to be returned to the client """ status_code = 200 response = {} logging.debug("GET path: %s", path) logging.debug("GET request: %s", request) if path == "config/acquisition_id": response["value"] = self.acquisitionID elif path == "status/acquisition_active": response["value"] = self.acquisition_active elif path == "config/acquisitions": acquisition_tree = self.traverse_parameters( self._clients[0].parameters, ["config", "acquisitions"] ) if acquisition_tree is not None: response["value"] = "," .join(acquisition_tree.keys()) else: response["value"] = None elif path in self._readback_parameters: response["value"] = self._readback_parameters[path] elif path in self._config_parameters: response["value"] = self._config_parameters[path] else: return super(MetaListenerAdapter, self).get(path, request) return ApiAdapterResponse(response, status_code=status_code) @request_types('application/json') @response_types('application/json', default='application/json') def put(self, path, request): """ Implementation of the HTTP PUT verb for MetaListenerAdapter :param path: URI path of the PUT request :param request: Tornado HTTP request object :return: ApiAdapterResponse object to be returned to the client """ logging.debug("PUT path: %s", path) logging.debug("PUT request: %s", request) logging.debug("PUT request.body: %s", str(escape.url_unescape(request.body))) value = str(escape.url_unescape(request.body)).replace('"', '') if path == "config/acquisition_id": self.acquisitionID = value # Set inactive so process_updates doesn't clear acquisition ID self.acquisition_active = False # Send entire config with new acquisition ID config = dict( acquisition_id=self.acquisitionID, output_dir=self._config_parameters["config/output_dir"], flush=self._config_parameters["config/flush"], file_prefix=self._config_parameters["config/file_prefix"] ) status_code, response = self._send_config(config) elif path == "config/stop": self.acquisition_active = False # By default we stop all acquisitions by passing None config = { "acquisition_id": None, "stop": True } if self.acquisitionID: # If we have an Acquisition ID then stop that one only config["acquisition_id"] = self.acquisitionID status_code, response = self._send_config(config) self.acquisitionID = "" elif path in self._config_parameters: # Store config to re-send with acquisition ID when it is changed self._config_parameters[path] = value parameter = path.split("/", 1)[-1] # Remove 'config/' config = { "acquisition_id": self.acquisitionID, parameter: value } status_code, response = self._send_config(config) else: return super(OdinDataAdapter, self).put(path, request) return ApiAdapterResponse(response, status_code=status_code) def _send_config(self, config_message): status_code = 200 response = {} try: self._client.send_configuration(config_message) except Exception as err: logging.debug(OdinDataAdapter.ERROR_FAILED_TO_SEND) logging.error("Error: %s", err) status_code = 503 response = {"error": OdinDataAdapter.ERROR_FAILED_TO_SEND} return status_code, response def process_updates(self): """Handle additional background update loop tasks Store a copy of all parameters so they don't disappear """ if self.acquisitionID: acquisition_active = self.acquisitionID in self.traverse_parameters( self._client.parameters, ["status", "acquisitions"] ) if acquisition_active: self.acquisition_active = True for parameter in self._readback_parameters.keys(): value = self.traverse_parameters( self._client.parameters, self._map_acquisition_parameter(parameter) ) self._readback_parameters[parameter] = value else: self.acquisition_active = False else: self._set_defaults()
apache-2.0
4,103,719,632,012,855,000
37.978723
99
0.593068
false
4.531849
true
false
false
Kronuz/pyXapiand
xapiand/search.py
1
11782
from __future__ import unicode_literals, absolute_import import base64 import logging import xapian from . import json from .core import get_slot, get_prefix, expand_terms, find_terms, DOCUMENT_CUSTOM_TERM_PREFIX from .serialise import normalize, serialise_value from .exceptions import XapianError MAX_DOCS = 10000 class Search(object): def __init__(self, database, search, get_matches=True, get_data=True, get_terms=False, get_size=False, data='.', log=logging, dead=False): self.database = database self.search = search self.get_matches = get_matches self.get_terms = get_terms self.get_data = get_data self.get_size = get_size self.data = data self.log = log self.dead = dead self.spies = {} self.warnings = [] self.produced = 0 self.size = None self.facets = self.search.get('facets') self.check_at_least = self.search.get('check_at_least', MAX_DOCS if self.facets else 0) self.maxitems = self.search.get('maxitems', MAX_DOCS) self.first = self.search.get('first', 0) self.setup() def setup(self): queryparser = xapian.QueryParser() queryparser.set_database(self.database.database) query = None prefixes = set() def add_prefixes(string): for term, term_field, terms in find_terms(string): if term_field and term_field not in prefixes: prefix = get_prefix(term_field, DOCUMENT_CUSTOM_TERM_PREFIX) if term_field.lower() == term_field: queryparser.add_prefix(term_field, prefix) else: queryparser.add_boolean_prefix(term_field, prefix) prefixes.add(term_field) # Build final query: search = self.search.get('search') if search: if not isinstance(search, (tuple, list)): search = [search] search = " AND ".join("(%s)" % s for s in search if s) if search and search != '(*)': search = normalize(search).encode('utf-8') ranges = self.search.get('ranges') if ranges: _ranges = set() for field, begin, end in ranges: field = field.encode('utf-8') if field not in _ranges: slot = get_slot(field) vrp = xapian.StringValueRangeProcessor(slot, field) queryparser.add_valuerangeprocessor(vrp) _ranges.add(field) if begin is None: begin = b'' if end is None: end = b'' rng1 = b'(%s:%s..%s)' % (field, begin, end) rng2 = b'(%s:%s..%s)' % (field, serialise_value(begin)[0], serialise_value(end)[0]) if rng1 == rng2: _search = search if rng1 in search: search = None else: _search = search.replace(rng1, rng2) if search != _search: search = _search else: search += b' AND %s' % rng2 search = expand_terms(search) add_prefixes(search) flags = xapian.QueryParser.FLAG_DEFAULT | xapian.QueryParser.FLAG_WILDCARD | xapian.QueryParser.FLAG_PURE_NOT try: query = queryparser.parse_query(search, flags) except (xapian.NetworkError, xapian.DatabaseError): self.database.reopen() queryparser.set_database(self.database.database) query = queryparser.parse_query(search, flags) partials = self.search.get('partials') if partials: if not isinstance(partials, (tuple, list)): partials = [partials] # Partials (for autocomplete) using FLAG_PARTIAL and OP_AND_MAYBE partials_query = None for partial in partials: self.dead or 'alive' # Raises DeadException when needed partial = normalize(partial) partial = expand_terms(partial) add_prefixes(partial) flags = xapian.QueryParser.FLAG_PARTIAL try: _partials_query = queryparser.parse_query(partial, flags) except (xapian.NetworkError, xapian.DatabaseError): self.database.reopen() queryparser.set_database(self.database.database) _partials_query = queryparser.parse_query(partial, flags) if partials_query: partials_query = xapian.Query( xapian.Query.OP_AND_MAYBE, partials_query, _partials_query, ) else: partials_query = _partials_query if query: query = xapian.Query( xapian.Query.OP_AND, query, partials_query, ) else: query = partials_query terms = self.search.get('terms') if terms: if not isinstance(terms, (tuple, list)): terms = [terms] for term in terms: term = normalize(term) term = expand_terms(term) add_prefixes(term) flags = xapian.QueryParser.FLAG_BOOLEAN | xapian.QueryParser.FLAG_PURE_NOT try: terms_query = queryparser.parse_query(term, flags) except (xapian.NetworkError, xapian.DatabaseError): self.database.reopen() queryparser.set_database(self.database.database) terms_query = queryparser.parse_query(term, flags) if query: query = xapian.Query( xapian.Query.OP_AND, query, terms_query, ) else: query = terms_query if not query: if search == '(*)': query = xapian.Query('') else: query = xapian.Query() self.query = query self.sort_by = self.search.get('sort_by') self.distinct = self.search.get('distinct') self.sort_by_reversed = self.search.get('sort_by_reversed') def get_enquire(self): enquire = xapian.Enquire(self.database.database) # enquire.set_weighting_scheme(xapian.BoolWeight()) # enquire.set_docid_order(xapian.Enquire.DONT_CARE) # if weighting_scheme: # enquire.set_weighting_scheme(xapian.BM25Weight(*self.weighting_scheme)) enquire.set_query(self.query) spies = {} sort_by = [] warnings = [] if self.facets: for name in self.facets: self.dead or 'alive' # Raises DeadException when needed name = name.strip().lower() slot = get_slot(name) if slot: spy = xapian.ValueCountMatchSpy(slot) enquire.add_matchspy(spy) spies[name] = spy else: warnings.append("Ignored document value name (%r)" % name) if self.sort_by: for sort_field in self.sort_by: self.dead or 'alive' # Raises DeadException when needed if sort_field.startswith('-'): reverse = True sort_field = sort_field[1:] # Strip the '-' else: reverse = False sort_by.append((sort_field, reverse)) sorter = xapian.MultiValueKeyMaker() for name, reverse in sort_by: self.dead or 'alive' # Raises DeadException when needed name = name.strip().lower() slot = get_slot(name) if slot: sorter.add_value(slot, reverse) else: warnings.append("Ignored document value name (%r)" % name) enquire.set_sort_by_key_then_relevance(sorter, self.sort_by_reversed) if self.distinct: if self.distinct is True: field = 'ID' else: field = self.distinct enquire.set_collapse_key(get_slot(field)) self.spies = spies self.warnings = warnings return enquire def get_results(self): doccount = self.database.get_doccount() maxitems = max(min(self.maxitems, doccount - self.first, MAX_DOCS), 0) check_at_least = max(min(self.check_at_least, doccount, MAX_DOCS), 0) if not self.get_matches: maxitems = 0 try: enquire = self.get_enquire() matches = enquire.get_mset(self.first, maxitems, check_at_least) except (xapian.NetworkError, xapian.DatabaseError): self.database.reopen() try: enquire = self.get_enquire() matches = enquire.get_mset(self.first, maxitems, check_at_least) except (xapian.NetworkError, xapian.DatabaseError) as exc: raise XapianError(exc) self.produced = 0 self.estimated = None self.size = matches.size() if self.get_size: self.estimated = matches.get_matches_estimated() yield { 'size': self.size, 'estimated': self.estimated, } if self.spies: for name, spy in self.spies.items(): self.dead or 'alive' # Raises DeadException when needed for facet in spy.values(): self.dead or 'alive' # Raises DeadException when needed yield { 'facet': name, 'term': facet.term.decode('utf-8'), 'termfreq': facet.termfreq, } produced = 0 for match in matches: docid = match.docid document = self.database.get_document(docid) self.dead or 'alive' # Raises DeadException when needed id = self.database.get_value(document, get_slot('ID')) produced += 1 result = { 'id': id, 'docid': docid, 'rank': match.rank, 'weight': match.weight, 'percent': match.percent, } if self.get_data: data = self.database.get_data(document) if data is None: continue try: data = json.loads(data) except Exception: data = base64.b64encode(data) result.update({ 'data': data, }) if self.get_terms: terms = [] termlist = self.database.get_termlist(document) for t in termlist: self.dead or 'alive' # Raises DeadException when needed terms.append(t.term.decode('utf-8')) result.update({ 'terms': terms, }) yield result self.produced = produced @property def results(self): return self.get_results()
gpl-2.0
5,752,482,212,671,406,000
36.28481
121
0.496605
false
4.341194
false
false
false
luigiberrettini/Kiln-to-GitHub
kiln_repo_list.py
1
1422
import requests from anvil import Anvil def main(): requests.packages.urllib3.disable_warnings() in_file = open("./kiln_base_url.txt", "r") base_url = in_file.read().replace('\n', '') in_file.close() anvil = Anvil(base_url, False) anvil.create_session_by_prompting() repo_indices = set() out_file = open("./kiln_repoList.txt", "w") for project in anvil.get_projects(): for repo_group in project.repo_groups: for repo in repo_group.repos: if not repo.index in repo_indices: repo_indices.add(repo.index) prj_indx = str(project.index) grp_indx = str(repo_group.index) rep_indx = str(repo.index) prj_name = project.name grp_name = repo_group.name rep_name = repo.name prj_slug = repo.project_slug grp_slug = repo.group_slug or 'Group' rep_slug = repo.slug url = base_url + '/Code/' + prj_slug + '/' + grp_slug + '/' + rep_slug indexes = prj_indx + ',' + grp_indx + ',' + rep_indx names = prj_name + ',' + grp_name + ',' + rep_name out_file.write(url + "," + indexes + "," + names + ',' + rep_name + "\n") out_file.close() if __name__ == '__main__': main()
mit
3,321,808,101,163,100,700
33.682927
93
0.489451
false
3.693506
false
false
false
AlexandreDecan/multiwords
rims.py
1
1223
#!/usr/bin/python """ Module that provides several functions to handle (un)rimmed words. """ import words def rims_of(word): """ Return the rims for the given word. A rim is a (nonempty) word u such that w = u.s = p.u' for some s,p,u' such that |u'| = |u|, and u' and u agree on every position except one. For example, a and aab are rims for aabb. """ rims = [] for shift in words.get_koverlaps(word, 1): rims.append(word[:len(word)-shift]) return rims def pretty_print(word, rims = None): """ Pretty print of the rims of the given word. """ if rims == None: rims = rims_of(word) print word for r in rims: print word.rjust(len(word)*2-len(r), ' ') def mismatch_pos(word, rim): """ Return the position (in the rim) of the mismatch between the word and the rim. Position starts at 0. """ shift = len(word) - len(rim) for k in range(len(rim)): if word[shift + k] != rim[k]: return k return -1 def rim_index(word, rim): """ Return the index of a rim in the given word. The index of a rim is a position in w where the corresponding suffix of the rim starts. """ return len(word) - len(rim) + 1
apache-2.0
-7,824,436,984,240,739,000
29.575
78
0.609975
false
3.184896
false
false
false
xiaohan2012/snpp
tests/test_signed_graph.py
1
1749
""" For the utilities """ import contexts as ctx import numpy as np from scipy.sparse import csr_matrix, isspmatrix_csr from snpp.utils.signed_graph import symmetric_stat, \ fill_diagonal, \ make_symmetric, \ matrix2graph def test_symmetric_stat(Q1_d): c_sym, c_consis = symmetric_stat(Q1_d) assert c_sym == 6 assert c_consis == 4 def test_fill_diagonal(): N = 2 m = csr_matrix(np.array([[1, 0], [0, 0]])) assert len(set([m[i, i] for i in range(N)])) == 2 m_new = fill_diagonal(m) assert isspmatrix_csr(m_new) assert set([m_new[i, i] for i in range(N)]) == {1} def test_make_symmetric(Q1_d): def mask(m): """remove inconsistent entries """ inconsis_idx = [(i, j) for i, j in zip(*m.nonzero()) if (m[i, j] != 0 and m[j, i] != 0 and m[j, i] != m[i, j])] m_masked = m.copy() for i, j in inconsis_idx: m_masked[i, j] = m_masked[j, i] = 0 return m_masked Q1_d_masked = mask(Q1_d) assert not np.allclose(Q1_d_masked.toarray(), np.transpose(Q1_d_masked.toarray())) m = make_symmetric(Q1_d) assert isspmatrix_csr(m) m = m.toarray() m_masked = mask(m) assert np.allclose(m_masked, np.transpose(m_masked)) def test_matrix2graph(Q1_d): gm = matrix2graph(Q1_d, None, multigraph=True) g = matrix2graph(Q1_d, None, multigraph=False) for i, j in gm.edges(): s = g[i][j]['sign'] assert gm[i][j][s]['sign'] == s assert gm[0][0][1]['sign'] == g[0][0]['sign'] == 1 assert gm[2][3][1]['sign'] == g[2][3]['sign'] == 1 assert gm[0][2][-1]['sign'] == g[0][2]['sign'] == -1
mit
6,050,825,672,574,178,000
27.672131
86
0.532876
false
2.91015
false
false
false
sandeez/lino-book_locator
locate/locate/lib/books/models.py
1
4811
from lino.api import dd from django.db import models class Floor(dd.Model): number = models.IntegerField('Number', null=False) def __unicode__(self): return 'Floor: {0}'.format(self.number) class Meta: verbose_name = 'Floor' verbose_name_plural = 'Floors' class Room(dd.Model): number = models.IntegerField('Number', null=False) name = models.CharField('Name', max_length=10) floor = models.ForeignKey(Floor) def __unicode__(self): return 'Floor: {0} -> Room: {1}'.format( self.floor.number, self.number) class Meta: verbose_name = 'Room' verbose_name_plural = 'Rooms' unique_together = ('number', 'floor') class Bookshelf(dd.Model): code = models.CharField('Code', null=False, max_length=5) room = models.ForeignKey(Room) def __unicode__(self): return 'Floor: {0} -> Room: {1} -> Bookshelf: {2}'.format( self.room.floor.number, self.room.number, self.code) class Meta: verbose_name = 'Bookshelf' verbose_name_plural = 'Bookshelves' unique_together = ('code', 'room') class Rack(dd.Model): code = models.CharField('Code', max_length=5, null=False) bookshelf = models.ForeignKey(Bookshelf) def __unicode__(self): return 'Floor: {0} -> Room: {1} -> Bookshelf: {2} -> Rack: {3}'.format( self.bookshelf.room.floor.number, self.bookshelf.room.number, self.bookshelf.code, self.code) class Meta: verbose_name = 'Rack' verbose_name_plural = 'Racks' unique_together = ('code', 'bookshelf') class Slot(dd.Model): number = models.IntegerField('Number', null=False) rack = models.ForeignKey(Rack) def __unicode__(self): return 'Floor: {0} -> Room: {1} -> Bookshelf: {2} -> Rack: {3} -> Slot: {4}'.format( self.rack.bookshelf.room.floor.number, self.rack.bookshelf.room.number, self.rack.bookshelf.code, self.rack.code, self.number) class Meta: verbose_name = 'Slot' verbose_name_plural = 'Slots' unique_together = ('number', 'rack') class Category(dd.Model): name = models.CharField(null=False, max_length=50) def __unicode__(self): return self.name class Meta: verbose_name = 'Category' verbose_name_plural = 'Categories' class Author(dd.Model): name = models.CharField(null=False, max_length=50) def __unicode__(self): return self.name class Meta: verbose_name = 'Author' verbose_name_plural = 'Authors' class Publication(dd.Model): name = models.CharField(null=False, max_length=50) def __unicode__(self): return self.name class Meta: verbose_name = 'Publication' verbose_name_plural = 'Publications' class BookInfo(dd.Model): name = models.CharField('Name', max_length=50) author = models.ForeignKey(Author) publication = models.ForeignKey(Publication) category = models.ForeignKey(Category) copies = models.IntegerField('Total Copies', null=False, default=1) def __unicode__(self): return 'Name: {0} -> Author: {1} -> Publication: {2}'.format( self.name, self.author, self.publication) class Meta: verbose_name = 'Book Information' verbose_name_plural = 'Books Information' unique_together = ('name', 'author', 'publication') class Book(dd.Model): code = models.CharField(max_length=10, unique=True) info = models.ForeignKey(BookInfo) def __unicode__(self): return 'Code: {0} -> Name: {1} -> Author: {2}'.format( self.code, self.info.name, self.info.author) class Meta: verbose_name = 'Book' verbose_name_plural = 'Books' unique_together = ('code', 'info') class BookLocation(dd.Model): book = models.ForeignKey(Book, unique=True) slot = models.ForeignKey(Slot, unique=True) def __unicode__(self): return 'Floor: {0} -> Room: {1} -> Bookshelf: {2} -> Rack:{3} -> Slot: {4} -> Book: {5}'.format( self.slot.rack.bookshelf.room.floor.number, self.slot.rack.bookshelf.room.number, self.slot.rack.bookshelf.code, self.slot.rack.code, self.slot.number, self.book.code) class Meta: verbose_name = 'Book Location' verbose_name_plural = 'Book Locations' from .ui import *
bsd-2-clause
1,497,361,167,193,368,000
27.467456
104
0.561214
false
3.709329
false
false
false
ryos36/polyphony-tutorial
Life/life_one.py
1
2840
import polyphony from polyphony import module, pure from polyphony import testbench from polyphony.io import Port from polyphony.typing import bit, uint3, uint4, List from polyphony.timing import clksleep, clkfence, wait_rising, wait_falling @module class life: def __init__(self): self.i_bit4 = Port(uint4, 'in', protocol='valid') self.o_bit = Port(bit, 'out', protocol='valid') self.append_worker(self.life_worker, self.i_bit4, self.o_bit) def life_worker(self, i_bit4, o_bit): bit3_to_n = [ 0, 1, 1, 2, 1, 2, 2, 3 ] bit3_to_m = [ 0, 1, 0, 1, 1, 2, 1, 2 ] n_to_o = [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] mat = [0] * 3 # while polyphony.is_worker_running(): v = i_bit4() #print("mat", mat) #print("v", v) if v == 8 : mat2_old = mat[2] mat[0] = 0 mat[1] = 0 mat[2] = 0 else: v0 = bit3_to_n[v] v1 = bit3_to_m[v] mat0_old = mat[0] mat1_old = mat[1] mat2_old = mat[2] mat[0] = 16 + v0 mat[1] = mat0_old + v1 mat[2] = mat1_old + v0 #print("mat2_old:", mat2_old) if (mat2_old & 16) == 16 : out_v = n_to_o[mat2_old & 15] o_bit.wr(out_v) m = life() @testbench def test(m): m.i_bit4.wr(0) clksleep(5) m.i_bit4.wr(0) clksleep(5) m.i_bit4.wr(1) v = m.o_bit.rd() clksleep(5) if 1 : m.i_bit4.wr(0) clksleep(5) print("outv:", v) if 0: m.i_bit4.wr(0) clksleep(5) v = m.o_bit.rd() print("outv:", v) if 0 : m.i_bit4.wr(4) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(3) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(0) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(0) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(8) v = m.o_bit.rd() print("outv:", v) print("-") clksleep(10) # m.i_bit4.wr(0) m.i_bit4.wr(0) m.i_bit4.wr(2) m.i_bit4.wr(1) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(1) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(1) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(7) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(0) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(0) v = m.o_bit.rd() print("outv:", v) m.i_bit4.wr(8) v = m.o_bit.rd() print("outv:", v) test(m)
mit
7,964,215,205,951,401,000
21.362205
74
0.415493
false
2.619926
false
false
false
itucsdb1621/itucsdb1621
tags.py
1
2795
import psycopg2 from flask import Flask from flask import render_template, request from flask import Blueprint, current_app,session,redirect, url_for #declaring sub app with blueprint tags_app = Blueprint('tags_app', __name__) @tags_app.route('/add_tag/<photo_id>/', methods=["POST"]) def add_tag(photo_id): # a post request would be more elegant username = request.form["username"] x = request.form["x"] y = request.form["y"] with psycopg2.connect(current_app.config['dsn']) as conn: crs = conn.cursor() crs.execute("select ID from users where username=%s",(username,)) conn.commit() tagged_id = crs.fetchone() if tagged_id == None: return render_template("message.html",message="User not found") ## if null show and error message crs.execute("insert into tags (tagger_id,tagged_id,photo_id,time,x,y) values (%s,%s,%s,now(),%s,%s)",(session["user_id"],tagged_id,photo_id,x,y)) conn.commit() return render_template('message.html',message="Successfully added tag") @tags_app.route('/update_tag/<photo_id>/', methods=["POST"]) def update_tag(photo_id): newUsername = request.form["username"] x = request.form["x"] y = request.form["y"] tagged_id=request.form["_id"] with psycopg2.connect(current_app.config['dsn']) as conn: crs = conn.cursor() crs.execute("select ID from users where username=%s",(newUsername,)) newId = crs.fetchone() if newId == None: return render_template("message.html",message="User not found") print(tagged_id) ## if null show and error message crs.execute("update tags set tagged_id=%s,time=now(),x=%s,y=%s where tagger_id=%s and tagged_id=%s and photo_id=%s ",(newId[0],x,y,session["user_id"],tagged_id,photo_id)) conn.commit() return render_template('message.html',message="Successfully updated tag") @tags_app.route('/delete_tag/<photo_id>/', methods=["POST"]) def delete_tag(photo_id,): tagged_id=request.form["_id"] with psycopg2.connect(current_app.config['dsn']) as conn: crs = conn.cursor() ## if null show and error message print(tagged_id) crs.execute("delete from tags where tagger_id=%s and tagged_id=%s and photo_id=%s ",(session["user_id"],tagged_id,photo_id)) conn.commit() return render_template('message.html',message="Successfully deleted tag") ## no use @tags_app.route('/retrieve_tags/<photo_id>/') def retrieve_tags(photo_id): with psycopg2.connect(current_app.config['dsn']) as conn: crs = conn.cursor() crs.execute("select * from tags where photo_id=%s ",(photo_id)) conn.commit() return render_template('message.html',message="Successfully added tag")
gpl-3.0
-8,171,542,644,453,910,000
41.348485
179
0.647227
false
3.489388
false
false
false
changhoonhahn/centralMS
centralms/tests/test_sfrs.py
1
1027
''' Test functions for handling star formation rates ''' import numpy as np from scipy.integrate import odeint import sfrs as SFR def IntegrationTest(): ''' Simple test the integration ''' logsfr = lambda mstar, t: np.log10(t**2) for tt in np.arange(1., 11., 1.): M_int = SFR.integSFR(logsfr, np.array([0.]), np.array([0.]), np.array([tt]), mass_dict={'type': 'rk4', 'f_retain': 1e-9, 't_step': 0.01}) print np.log10(10**M_int[0] - 1.), np.log10(tt**3/3.) return None def Integration_ScipyComp(): ''' Simple test the integration ''' dydt = lambda y, t: t M_euler = SFR.ODE_Euler(dydt, np.array([0.]), np.array([0.,10.]), 0.001) M_RK4 = SFR.ODE_RK4(dydt, np.array([0.]), np.array([0.,10.]), 0.1) M_scipy = odeint(dydt, np.array([0.]), np.array([0.,10.])) print M_euler print M_RK4 print M_scipy return None if __name__=='__main__': #IntegrationTest() Integration_ScipyComp()
mit
-3,111,330,352,351,419,400
19.54
76
0.555015
false
2.860724
false
false
false
robosafe/mc-vs-bdi
models/pta_models/table/legible_full/extract.py
1
8357
#!/usr/bin/env python # This script translates and separates the traces computed with UPPAAL model checking and the tracer tool (libutap). The traces are originally in a *.xtr file format. The specified automata transitions are separated from the global traces (the human, the setting of gaze, pressure and location), and transformed into a *.txt file with a list of high-level commands for the human machine in the simulator (sending signals, waiting for signals, setting parameters). # Written by Dejanira Araiza-Illan, March 2015 # Modified for the table scenario, July 2016 import rospy import re import os import sys variables_keep = ['pressure','tlocation','gaze','bored','humanReady','leg'] def extract(nameFile): # -------------- PARSING OF THE MODEL INTO USEFUL STRUCTURES #automata = raw_input("Name of the automata with commas and no spaces (e.g. aut1,aut2,aut3):") automata = 'human,g,p,l' #automata = 'Human,Gaze,Pressure,Location' automaton = re.split(",",automata) type_of_trace=0 transitions=[] states=[] traces=[] delays=[] numberfile=re.split('\D+',nameFile) # print numberfile for i, line in enumerate(open(nameFile+ '.tr', 'r')): for match in re.finditer("Initial state",line): #If from legible_traces.py type_of_trace=1 for match in re.finditer("Trace",line): #Separate multiple traces traces.append(i) for match in re.finditer("Transitions:", line): transitions.append(i) for match in re.finditer("State:", line): states.append(i) for match in re.finditer("Delay:", line): delays.append(i) #Eliminate states and keep transitions # print type_of_trace # print traces # print transitions # print states # print delays if type_of_trace==1: f=open('stimulus_'+numberfile[1]+'.txt', 'w') trans_content=[] for i in range(0,len(transitions)): for j, line in enumerate(open(nameFile+ '.tr', 'r')): if j>transitions[i] and j<(states[i]): if line!='\n': trans_content.append(line) # print trans_content #Eliminate unimportant transitions important=[] for i, line in enumerate(trans_content): for j, aut in enumerate(automaton): if aut != ',': if re.match(aut+'.', line)!=None: important.append(line) # print important #Check each transition and determine if human: sends signal, receives signal, sets variables global variables_keep for i,trans in enumerate(important): var_split = re.split('; ',trans) if var_split[1] != '0': #Signals for match in re.finditer('!',var_split[1]): signal = re.split('!',var_split[1]) for kk,variable in enumerate(variables_keep): if re.search('\\b'+signal[0]+'\\b',variable): #Write send signal f.write('tell '+signal[0]+'\n') for match in re.finditer('\?',var_split[1]): #Write receive signal for kk,variable in enumerate(variables_keep): if re.search('\\b'+signal[0]+'\\b',variable): signal = re.split('\?',var_split[1]) f.write('receivesignal\n') if var_split[2] != '0}\n': #Variables commas = re.split(',',var_split[2]) for j,part in enumerate(commas): if commas!='': new_string = corrected(part) if new_string !='' and not re.search('bored',new_string): f.write('set_param\t'+new_string+'\n') elif re.search('bored',new_string): f.write(new_string+'\n') else: #Eliminate extra "states: for j,delay in enumerate(delays): for i,state in enumerate(states): if state>delay: states.pop(i) break for j,tr in enumerate(traces): for i,state in enumerate(states): if state>tr: states.pop(i) break # print states #First traces for tr in range (0,len(traces)-1): f=open('stimulus_'+str(tr+1)+'_'+nameFile+'.txt', 'w') trans_content=[] for i in range(0,len(transitions)): if transitions[i]>traces[tr] and transitions[i]<traces[tr+1]: # print transitions[i] for j, line in enumerate(open(nameFile+ '.tr', 'r')): if j>=(transitions[i]) and j<(states[i]): # print line if line!='\n' and line!='Transitions:\n': trans_content.append(line) # print trans_content #Eliminate unimportant transitions important=[] for i, line in enumerate(trans_content): for j, aut in enumerate(automaton): if aut != ',': if re.match(' '+aut+'.', line)!=None: important.append(line) # print important #Check each transition and determine if human: sends signal, receives signal, sets variables for i,trans in enumerate(important): var_split = re.split(', ',trans) if var_split[1] != 'tau': #Signals for match in re.finditer('!',var_split[1]): signal = re.split('!',var_split[1]) f.write('tell '+signal[0]+'\n')#Write send signal for match in re.finditer('\?',var_split[1]): signal = re.split('\?',var_split[1]) f.write('receivesignal\n')#Write receive signal if var_split[2] != '1 }\n': #Variables for j in range(2,len(var_split)): new_string = corrected2(var_split[j]) if new_string !='' and new_string != 'bored': f.write('set_param\t'+new_string+'\n') elif new_string == 'bored': f.write(new_string+'\n') #Last trace f=open('stimulus_'+str(len(traces))+'_'+nameFile+'.txt', 'w') trans_content=[] for i in range(0,len(transitions)): if transitions[i]>traces[len(traces)-1]: for j, line in enumerate(open(nameFile+ '.tr', 'r')): if j>=(transitions[i]) and j<(states[i]): if line!='\n' and line!='Transitions:\n': trans_content.append(line) # print trans_content important=[] for i, line in enumerate(trans_content): for j, aut in enumerate(automaton): if aut != ',': if re.match(' '+aut+'.', line)!=None: important.append(line) # print important #Check each transition and determine if human: sends signal, receives signal, sets variables for i,trans in enumerate(important): var_split = re.split(', ',trans) if var_split[1] != 'tau': #Signals for match in re.finditer('!',var_split[1]): signal = re.split('!',var_split[1]) f.write('tell '+signal[0]+'\n')#Write send signal for match in re.finditer('\?',var_split[1]): signal = re.split('\?',var_split[1]) f.write('receivesignal\n')#Write receive signal if var_split[2] != '1 }\n': #Variables for j in range(2,len(var_split)): new_string = corrected2(var_split[j]) if new_string !='' and not re.search('bored',new_string): f.write('set_param\t'+new_string+'\n') elif re.search('bored',new_string): f.write(new_string+'\n') def corrected(expr): expr_new='' modif1 = re.split("\:=",expr) #print modif1[0] global variables_keep for kk,variable in enumerate(variables_keep): if re.search('\\b'+modif1[0]+'\\b',variable): if re.search('bored',modif1[0]) and re.search('true',modif1[1]): expr_new='bored' elif re.search('bored',modif1[0]) and re.search('false',modif1[1]): expr_new='' elif re.search('tlocation',modif1[0]): expr_new=expr_new+'location'+'=' if re.match('true',modif1[1]): expr_new=expr_new+'1' elif re.match('false',modif1[1]): expr_new=expr_new+'0' else: expr_new=expr_new+modif1[0]+'=' if re.match(modif1[0],modif1[1]): modif2 = re.split('\s*[+]|[-]\s*',modif1[1]) #print modif2 modif3 = re.split('}\n',modif2[1]) #print modif3 expr_new=expr_new+modif3[0] elif re.match('rand_v',modif1[1]): expr_new = '' elif re.match('true',modif1[1]): expr_new=expr_new+'1' elif re.match('false',modif1[1]): expr_new=expr_new+'0' else: modif4 = re.split('}\n',modif1[1]) expr_new=expr_new+modif4[0] # print expr_new return expr_new def corrected2(expr): expr_new='' modif1 = re.split(" \:= ",expr) expr_new=expr_new+modif1[0]+'=' if re.match(modif1[0],modif1[1]): modif2 = re.split('\s*[+]|[-]\s*',modif1[1]) modif3 = re.split('\s*[}]\n',modif2[1]) expr_new=expr_new+modif3[0] elif re.match('rand_v',modif1[1]): expr_new = '' else: modif4 = re.split(' }\n',modif1[1]) expr_new=expr_new+modif4[0] # print expr_new return expr_new if __name__ == "__main__": if len(sys.argv) == 2: #arguments passed by command line: program, trace file extract(sys.argv[1]) else: print 'extract.py [trace file or .tr]' sys.exit(1)
gpl-3.0
51,145,047,482,889,110
34.261603
463
0.630848
false
2.881724
false
false
false
akshayka/bft2f
bft2f.py
1
3641
#!/usr/bin/python import sys import os from mininet.topo import Topo from mininet.node import CPULimitedHost from mininet.link import TCLink from mininet.net import Mininet from mininet.log import lg, info from mininet.util import dumpNodeConnections from mininet.cli import CLI from mininet.util import pmonitor from subprocess import Popen, PIPE from time import sleep, time from multiprocessing import Process from argparse import ArgumentParser import signal NUMBER_NODES = 7 NUMBER_CLIENTS = 1 NUMBER_USERS = 1 RUN_DURATION = 35 popens = {} LINK_BW=10 LINK_DELAY='10ms' LINK_LOSS=10 ETC_HOSTS_FILE_NAME="bft2f_etc_hosts" DEBUG_OUTPUT_FILE='bft2f.debug' class BftTopo(Topo): def __init__(self, n=2): super(BftTopo, self).__init__() s0 = self.addSwitch('s0') # create hosts for i in xrange(0, NUMBER_NODES): self.addLink(self.addHost('h%d' % (i)), s0, bw=LINK_BW, delay=LINK_DELAY) for i in xrange(0, NUMBER_CLIENTS): self.addLink(self.addHost('c%d' % (i)), s0, bw=LINK_BW, delay=LINK_DELAY) for i in xrange(0, NUMBER_USERS): self.addLink(self.addHost('u%d' % (i)), s0, bw=LINK_BW, delay=LINK_DELAY) self.addLink(self.addHost('app'), s0, bw=LINK_BW, delay=LINK_DELAY) return def start_nodes(net, verbose): for i in range(0, NUMBER_NODES): h = net.getNodeByName('h%d'%(i)) h.cmd("route add -net default dev h%d-eth0" % (i)) if verbose: cmd = 'python start_node.py --node_id=%d -v >>%s 2>&1' % (i, DEBUG_OUTPUT_FILE) else: cmd = 'python start_node.py --node_id=%d >>%s 2>&1' % (i, DEBUG_OUTPUT_FILE) popens[h] = h.popen(cmd, shell=True, preexec_fn=os.setsid) def start_client(net): for i in xrange(0, NUMBER_CLIENTS): client = net.getNodeByName('c%d' % (i)) client.cmd("route add -net default dev c%d-eth0" % (i)) popens[client] = client.popen('python start_client.py --client_id=%d' % (i), shell=True, preexec_fn=os.setsid) def start_user(net): app = net.getNodeByName('app') for i in xrange(0, NUMBER_USERS): user = net.getNodeByName('u%d'%(i)) client = net.getNodeByName('c%d' % (i)) user.cmd("route add -net default dev u%d-eth0" % (i)) #popens[user] = client.popen('python start_user.py --user_id=%d --client_ip=%s --app_ip=%s >>%s 2>&1' % (i, client.IP(), app.IP(), DEBUG_OUTPUT_FILE), shell=True, preexec_fn=os.setsid) def start_app(net): app = net.getNodeByName('app') app.cmd("route add -net default dev app-eth0") popens[app] = app.popen('node haraka.js >>%s 2>&1' % (DEBUG_OUTPUT_FILE), shell=True, preexec_fn=os.setsid, cwd='./Haraka') def create_etc_hosts(net): with open(ETC_HOSTS_FILE_NAME, "w+") as f: for h in net.values(): f.write("%s\t%s\n" % (h.name, h.IP())) def main(): parser = ArgumentParser() parser.add_argument('--verbose', '-v', action='store_true') args = parser.parse_args() topo = BftTopo() net = Mininet(topo=topo, host=CPULimitedHost, link=TCLink) net.start() create_etc_hosts(net) # This dumps the topology and how nodes are interconnected through # links. dumpNodeConnections(net.hosts) start_app(net) start_nodes(net, args.verbose) start_client(net) #CLI(net) sleep(5) start_user(net) CLI(net) endTime = time() + RUN_DURATION for p in popens.values(): os.killpg(p.pid, signal.SIGTERM) net.stop() if __name__ == '__main__': main()
gpl-2.0
563,290,887,564,789,900
32.1
193
0.61192
false
2.999176
false
false
false
alexanderAustin/PythonGame
test.py
1
2259
# This was built from the tutorial https://www.raywenderlich.com/24252/beginning-game-programming-for-teens-with-python import pygame, math, random from pygame.locals import * import pyganim # 2 - Initialize the game pygame.init() width, height = 640, 480 screen=pygame.display.set_mode((width, height)) pygame.display.set_caption('PyGame - Testing') rootImg = "resources/images/basic_game/" rootAud = "resources/audio/basic_game/" player = pygame.image.load(rootImg + "dude.png") grass = pygame.image.load(rootImg + "grass.png") castle = pygame.image.load(rootImg + "castle.png").convert_alpha() # cow = pygame.image.load("resources/images/animals/cow/cow_front.png") #subject to change # Used https://github.com/asweigart/pyganim/tree/master/examples # http://www.pygame.org/project-Pyganim+sprite+animation+module-2106-.html # for the sprite sheets cows = pyganim.getImagesFromSpriteSheet( filename="resources/images/animals/cow/cow_front.png", rows=4, cols=2, scale=2) cframes = list(zip(cows, [100] * len(cows))) cowObj = pyganim.PygAnimation(cframes) cowObj.play() cowsr = pyganim.getImagesFromSpriteSheet( filename="resources/images/animals/cow/cow_rear.png", rows=3, cols=3, scale=2) crframes = list(zip(cowsr, [100] * len(cowsr))) # crframes = crframes.pop()#remove blank frame print crframes cowrObj = pyganim.PygAnimation(crframes) cowrObj.play() # 4 - keep looping through running = 1 while running: # 5 - clear the screen before drawing it again screen.fill(0) # 6 - draw the screen elements for x in range(width/grass.get_width()+1): for y in range(height/grass.get_height()+1): screen.blit(grass,(x*100,y*100)) cowObj.blit(screen, (200, 20)) cowrObj.blit(screen, (50, 200)) # screen.blit(castle, (100,100)) # 7 - update the screen pygame.display.flip() # 8 - loop through the events for event in pygame.event.get(): # check if the event is the X button if event.type==pygame.QUIT: # if it is quit the game pygame.quit() exit(0) while 1: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit(0) pygame.display.flip()
apache-2.0
5,823,003,622,661,369,000
29.958904
119
0.678619
false
3.086066
false
false
false
michel-slm/0install
tests/testescaping.py
1
2832
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals import basetest from basetest import BaseTest import sys, os, re import unittest sys.path.insert(0, '..') from zeroinstall.injector import model from zeroinstall.support import escaping safe = re.compile('^[-.a-zA-Z0-9_]*$') class TestEscaping(BaseTest): def testEscape(self): self.assertEqual("", model.escape("")) self.assertEqual("hello", model.escape("hello")) self.assertEqual("%20", model.escape(" ")) self.assertEqual("file%3a%2f%2ffoo%7ebar", model.escape("file://foo~bar")) self.assertEqual("file%3a%2f%2ffoo%25bar", model.escape("file://foo%bar")) self.assertEqual("file:##foo%7ebar", model._pretty_escape("file://foo~bar")) self.assertEqual("file:##foo%25bar", model._pretty_escape("file://foo%bar")) def testUnescape(self): self.assertEqual("", model.unescape("")) self.assertEqual("hello", model.unescape("hello")) self.assertEqual(" ", model.unescape("%20")) self.assertEqual("file://foo~bar", model.unescape("file%3a%2f%2ffoo%7ebar")) self.assertEqual("file://foo%bar", model.unescape("file%3a%2f%2ffoo%25bar")) self.assertEqual("file://foo", model.unescape("file:##foo")) self.assertEqual("file://foo~bar", model.unescape("file:##foo%7ebar")) self.assertEqual("file://foo%bar", model.unescape("file:##foo%25bar")) def testEscaping(self): def check(str): self.assertEqual(str, model.unescape(model.escape(str))) self.assertEqual(str, model.unescape(model._pretty_escape(str))) self.assertEqual(str, escaping.ununderscore_escape(escaping.underscore_escape(str))) check('') check('http://example.com') check('http://example%46com') check('http:##example#com') check('http://example.com/foo/bar.xml') check('%20%21~&!"£ :@;,./{}$%^&()') check('http://example.com/foo_bar-50%á.xml') check('_one__two___three____four_____') check('_1_and_2_') def testUnderEscape(self): for x in range(0, 128): unescaped = chr(x) escaped = escaping.underscore_escape(unescaped) assert safe.match(escaped), escaped self.assertEqual(unescaped, escaping.ununderscore_escape(escaped)) self.assertEqual("_2e_", escaping.underscore_escape(".")) self.assertEqual("_2e_.", escaping.underscore_escape("..")) def testEscapeInterface(self): self.assertEqual(["http", "example.com", "foo.xml"], model.escape_interface_uri("http://example.com/foo.xml")) self.assertEqual(["http", "example.com", "foo__.bar.xml"], model.escape_interface_uri("http://example.com/foo/.bar.xml")) self.assertEqual(["file", "root__foo.xml"], model.escape_interface_uri("/root/foo.xml")) try: model.escape_interface_uri("ftp://example.com/foo.xml") assert 0 except AssertionError: pass if __name__ == '__main__': unittest.main()
lgpl-2.1
-8,598,118,403,903,593,000
31.906977
123
0.674205
false
3.049569
true
false
false
hodgestar/graas
graas/cli.py
1
1213
""" Command for launching GRaaS. """ import sys import click from twisted.internet import reactor from twisted.python import log from twisted.web.server import Site from .api import GraasApi from .devserver import GraasServerFactory @click.command("graas") @click.version_option() @click.option( '--host', '-h', default='localhost', help='Host to listen on') @click.option( '--web-port', '-p', type=int, default=8080, help='Port for web server to listen on') @click.option( '--device-port', '-d', type=int, default=8081, help='Port for device server to listen on') @click.option( '--log-file', '-l', type=str, default=None, help='File to log to') def main(host, web_port, device_port, log_file): """ Vumi Go Opt Out API. """ if log_file is None: log_file = sys.stdout log.startLogging(log_file) site = Site(GraasApi().app.resource()) reactor.listenTCP(web_port, site, interface=host) factory = GraasServerFactory() reactor.listenTCP(device_port, factory, interface=host) log.msg("Web API listening on %s:%s" % (host, web_port)) log.msg("Device server listening on %s:%s" % (host, device_port)) reactor.run()
bsd-3-clause
7,179,159,240,244,600,000
24.808511
69
0.658697
false
3.296196
false
false
false
infobloxopen/infoblox-client
infoblox_client/object_manager.py
1
21402
# Copyright 2015 Infoblox Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. try: from oslo_log import log as logging except ImportError: # pragma: no cover import logging from infoblox_client import exceptions as ib_ex from infoblox_client import objects as obj from infoblox_client import utils as ib_utils LOG = logging.getLogger(__name__) class InfobloxObjectManager(object): def __init__(self, connector): self.connector = connector def create_network_view(self, network_view, extattrs): return obj.NetworkView.create(self.connector, name=network_view, extattrs=extattrs) def delete_network_view(self, network_view): # never delete default network view if network_view == 'default': return nview = obj.NetworkView.search(self.connector, name=network_view) if nview: nview.delete() def create_dns_view(self, network_view, dns_view): return obj.DNSView.create(self.connector, name=dns_view, network_view=network_view) def delete_dns_view(self, dns_view): dns_view = obj.DNSView.search(self.connector, name=dns_view) if dns_view: dns_view.delete() def create_network(self, net_view_name, cidr, nameservers=None, members=None, gateway_ip=None, dhcp_trel_ip=None, network_extattrs=None): """Create NIOS Network and prepare DHCP options. Some DHCP options are valid for IPv4 only, so just skip processing them for IPv6 case. :param net_view_name: network view name :param cidr: network to allocate, example '172.23.23.0/24' :param nameservers: list of name servers hosts/ip :param members: list of objects.AnyMember objects that are expected to serve dhcp for created network :param gateway_ip: gateway ip for the network (valid for IPv4 only) :param dhcp_trel_ip: ip address of dhcp relay (valid for IPv4 only) :param network_extattrs: extensible attributes for network (instance of objects.EA) :returns: created network (instance of objects.Network) """ ipv4 = ib_utils.determine_ip_version(cidr) == 4 options = [] if nameservers: options.append(obj.Dhcpoption(name='domain-name-servers', value=",".join(nameservers))) if ipv4 and gateway_ip: options.append(obj.Dhcpoption(name='routers', value=gateway_ip)) if ipv4 and dhcp_trel_ip: options.append(obj.Dhcpoption(name='dhcp-server-identifier', num=54, value=dhcp_trel_ip)) return obj.Network.create(self.connector, network_view=net_view_name, cidr=cidr, members=members, options=options, extattrs=network_extattrs, check_if_exists=False) def get_network(self, network_view, cidr): return obj.Network.search(self.connector, network_view=network_view, cidr=cidr) def create_ip_range(self, network_view, start_ip, end_ip, network, disable, range_extattrs): """Creates IPRange or fails if already exists.""" return obj.IPRange.create(self.connector, network_view=network_view, start_addr=start_ip, end_addr=end_ip, cidr=network, disable=disable, extattrs=range_extattrs, check_if_exists=False) def delete_ip_range(self, network_view, start_ip, end_ip): range = obj.IPRange.search(self.connector, network_view=network_view, start_addr=start_ip, end_addr=end_ip) if range: range.delete() def has_networks(self, network_view_name): networks = obj.Network.search_all(self.connector, network_view=network_view_name) return bool(networks) def network_exists(self, network_view, cidr): """Deprecated, use get_network() instead.""" LOG.warning( "DEPRECATION WARNING! Using network_exists() is deprecated " "and to be removed in next releases. " "Use get_network() or objects.Network.search instead") network = obj.Network.search(self.connector, network_view=network_view, cidr=cidr) return network is not None def delete_network(self, network_view, cidr): network = obj.Network.search(self.connector, network_view=network_view, cidr=cidr) if network: network.delete() def create_network_from_template(self, network_view, cidr, template, extattrs): return obj.Network.create(self.connector, network_view=network_view, cidr=cidr, template=template, extattrs=extattrs, check_if_exists=False) def update_network_options(self, ib_network, extattrs=None): if extattrs: if ib_network.extattrs: # Merge EA values as dicts ea_dict = ib_network.extattrs.ea_dict ea_dict.update(extattrs.ea_dict) merged_ea = obj.EA(ea_dict) ib_network.extattrs = merged_ea else: ib_network.extattrs = extattrs return ib_network.update() def get_host_record(self, dns_view, ip, network_view=None): return obj.HostRecord.search(self.connector, view=dns_view, ip=ip, network_view=network_view) def find_hostname(self, dns_view, hostname, ip, network_view=None): return obj.HostRecord.search(self.connector, name=hostname, view=dns_view, ip=ip, network_view=network_view) def find_host_records_by_mac(self, dns_view, mac, network_view=None): host_records = [] host_records.extend(obj.HostRecord.search_all( self.connector, view=dns_view, mac=mac, network_view=network_view)) # Unfortunately WAPI does not support search host records by DUID, so # search host addresses by duid and then search hosts by name ipv6_host_addresses = obj.IPv6HostAddress.search_all( self.connector, duid=mac, network_view=network_view) ipv6_hosts = [] for addr in ipv6_host_addresses: hosts = obj.HostRecordV6.search_all( self.connector, name=addr.host, view=dns_view, network_view=network_view) for host in hosts: if host not in ipv6_hosts: ipv6_hosts.append(host) host_records.extend(ipv6_hosts) return host_records def create_host_record_for_given_ip(self, dns_view, zone_auth, hostname, mac, ip, extattrs, use_dhcp, use_dns=True): name = '.'.join([hostname, zone_auth]) ip_obj = obj.IP.create(ip=ip, mac=mac, configure_for_dhcp=use_dhcp) return obj.HostRecord.create(self.connector, view=dns_view, name=name, ip=ip_obj, configure_for_dns=use_dns, extattrs=extattrs, check_if_exists=False) def create_host_record_from_range(self, dns_view, network_view_name, zone_auth, hostname, mac, first_ip, last_ip, extattrs, use_dhcp, use_dns=True): name = '.'.join([hostname, zone_auth]) ip_alloc = obj.IPAllocation.next_available_ip_from_range( network_view_name, first_ip, last_ip) ip_obj = obj.IP.create(ip=ip_alloc, mac=mac, configure_for_dhcp=use_dhcp) return obj.HostRecord.create(self.connector, view=dns_view, name=name, ip=ip_obj, configure_for_dns=use_dns, extattrs=extattrs, check_if_exists=False) def delete_host_record(self, dns_view, ip_address, network_view=None): host_record = obj.HostRecord.search(self.connector, view=dns_view, ip=ip_address, network_view=network_view) if host_record: host_record.delete() def create_fixed_address_for_given_ip(self, network_view, mac, ip, extattrs): return obj.FixedAddress.create(self.connector, network_view=network_view, mac=mac, ip=ip, extattrs=extattrs, check_if_exists=False) def create_fixed_address_from_range(self, network_view, mac, first_ip, last_ip, extattrs): ip = obj.IPAllocation.next_available_ip_from_range( network_view, first_ip, last_ip) return obj.FixedAddress.create(self.connector, ip=ip, mac=mac, network_view=network_view, extattrs=extattrs, check_if_exists=False) def create_fixed_address_from_cidr(self, netview, mac, cidr, extattrs): ip = obj.IPAllocation.next_available_ip_from_cidr(netview, cidr) return obj.FixedAddress.create(self.connector, network_view=netview, ip=ip, mac=mac, extattrs=extattrs, check_if_exists=False) def delete_fixed_address(self, network_view, ip_address): fixed_address = obj.FixedAddress.search(self.connector, network_view=network_view, ip=ip_address) if fixed_address: fixed_address.delete() def get_fixed_addresses_by_mac(self, network_view, mac): return obj.FixedAddress.search_all( self.connector, network_view=network_view, mac=mac) def add_ip_to_record(self, host_record, ip, mac, use_dhcp=True): ip_obj = obj.IP.create(ip=ip, mac=mac, configure_for_dhcp=use_dhcp) host_record.ip.append(ip_obj) return host_record.update() def add_ip_to_host_record_from_range(self, host_record, network_view, mac, first_ip, last_ip, use_dhcp=True): ip_alloc = obj.IPAllocation.next_available_ip_from_range( network_view, first_ip, last_ip) ip_obj = obj.IP.create(ip=ip_alloc, mac=mac, configure_for_dhcp=use_dhcp) host_record.ip.append(ip_obj) return host_record.update() def delete_ip_from_host_record(self, host_record, ip): host_record.ip.remove(ip) return host_record.update() def has_dns_zones(self, dns_view): zones = obj.DNSZone.search_all(self.connector, view=dns_view) return bool(zones) def create_dns_zone(self, dns_view, dns_zone, grid_primary=None, grid_secondaries=None, zone_format=None, ns_group=None, prefix=None, extattrs=None): return obj.DNSZone.create(self.connector, fqdn=dns_zone, view=dns_view, extattrs=extattrs, zone_format=zone_format, ns_group=ns_group, prefix=prefix, grid_primary=grid_primary, grid_secondaries=grid_secondaries) def delete_dns_zone(self, dns_view, dns_zone_fqdn): dns_zone = obj.DNSZone.search(self.connector, fqdn=dns_zone_fqdn, view=dns_view) if dns_zone: dns_zone.delete() def update_dns_zone_attrs(self, dns_view, dns_zone_fqdn, extattrs): if not extattrs: return dns_zone = obj.DNSZone.search(self.connector, fqdn=dns_zone_fqdn, view=dns_view) if dns_zone: dns_zone.extattrs = extattrs dns_zone.update() def update_host_record_eas(self, dns_view, ip, extattrs): host_record = obj.HostRecord.search(self.connector, view=dns_view, ip=ip) if host_record: host_record.extattrs = extattrs host_record.update() def update_fixed_address_eas(self, network_view, ip, extattrs): fixed_address = obj.FixedAddress.search(self.connector, network_view=network_view, ip=ip) if fixed_address: fixed_address.extattrs = extattrs fixed_address.update() def update_dns_record_eas(self, dns_view, ip, extattrs): a_record = obj.ARecordBase.search(self.connector, ip=ip, view=dns_view) if a_record: a_record.extattrs = extattrs a_record.update() ptr_record = obj.PtrRecord.search(self.connector, ip=ip, view=dns_view) if ptr_record: ptr_record.extattrs = extattrs ptr_record.update() def bind_name_with_host_record(self, dns_view, ip, name, extattrs, network_view=None): host_record = obj.HostRecord.search(self.connector, view=dns_view, ip=ip, network_view=network_view) if host_record: host_record.name = name host_record.extattrs = extattrs host_record.update() def bind_name_with_record_a(self, dns_view, ip, name, bind_list, extattrs): is_ipv4 = ib_utils.determine_ip_version(ip) == 4 if ((is_ipv4 and 'record:a' in bind_list) or (not is_ipv4 and 'record:aaaa' in bind_list)): obj.ARecordBase.create(self.connector, view=dns_view, ip=ip, name=name, extattrs=extattrs, update_if_exists=True) if 'record:ptr' in bind_list: obj.PtrRecord.create(self.connector, view=dns_view, ip=ip, ptrdname=name, extattrs=extattrs, update_if_exists=True) def unbind_name_from_record_a(self, dns_view, ip, name, unbind_list): is_ipv4 = ib_utils.determine_ip_version(ip) == 4 if ((is_ipv4 and 'record:a' in unbind_list) or (not is_ipv4 and 'record:aaaa' in unbind_list)): a_record = obj.ARecordBase.search(self.connector, view=dns_view, ip=ip, name=name) if a_record: self.delete_objects_associated_with_a_record(a_record.name, a_record.view, unbind_list) a_record.delete() if 'record:ptr' in unbind_list: ptr_record = obj.PtrRecord.search(self.connector, view=dns_view, ip=ip, ptrdname=name) if ptr_record: ptr_record.delete() def get_member(self, member): member.fetch() return member def get_all_ea_definitions(self): return obj.EADefinition.search_all(self.connector) def create_ea_definition(self, ea_def, reraise=False): try: return obj.EADefinition.create(self.connector, check_if_exists=False, **ea_def) except ib_ex.InfobloxCannotCreateObject: LOG.error('Unable to create Extensible Attribute Definition ' '%s' % ea_def) if reraise: raise def create_required_ea_definitions(self, required_ea_defs, reraise=False): existing_ea_defs = self.get_all_ea_definitions() missing_ea_defs = [] for req_def in required_ea_defs: if not [ea_def for ea_def in existing_ea_defs if ea_def.name == req_def['name']]: missing_ea_defs.append(req_def) created_ea_defs = [] for ea_def in missing_ea_defs: if self.create_ea_definition(ea_def, reraise=reraise): created_ea_defs.append(ea_def) return created_ea_defs def restart_all_services(self, member): if not member._ref: member.fetch(only_ref=True) self.connector.call_func('restartservices', member._ref, {'restart_option': 'RESTART_IF_NEEDED', 'service_option': 'ALL'}) def delete_objects_associated_with_a_record(self, name, view, delete_list): """Deletes records associated with record:a or record:aaaa.""" search_objects = {} if 'record:cname' in delete_list: search_objects['record:cname'] = 'canonical' if 'record:txt' in delete_list: search_objects['record:txt'] = 'name' if not search_objects: return for obj_type, search_type in search_objects.items(): payload = {'view': view, search_type: name} ib_objs = self.connector.get_object(obj_type, payload) if ib_objs: for ib_obj in ib_objs: self.delete_object_by_ref(ib_obj['_ref']) def delete_all_associated_objects(self, network_view, ip, delete_list): LOG.warning( "DEPRECATION WARNING! Using delete_all_associated_objects() " "is deprecated and to be removed in next releases. " "Use unbind_name_from_record_a() instead.") def delete_object_by_ref(self, ref): try: self.connector.delete_object(ref) except ib_ex.InfobloxCannotDeleteObject: pass
apache-2.0
-3,936,074,170,078,028,300
43.40249
79
0.48944
false
4.5721
true
false
false
IvIePhisto/ECoXiPy
ecoxipy/pyxom/_document.py
1
17879
# -*- coding: utf-8 -*- import collections from xml.sax.xmlreader import AttributesImpl from ecoxipy import _python2, _unicode from ecoxipy import _helpers from ._common import XMLNode, ContainerNode, _string_repr from ._content_nodes import Text from .indexing import (IndexDescriptor, ElementByUniqueAttributeValueIndexer, ElementsByNameIndexer, NamespaceIndexer) class DocumentType(object): '''\ Represents a document type declaration of a :class:`Document`. It should not be instantiated on itself. :param name: The document element name. :type name: Unicode string :param publicid: The document type public ID or :const:`None`. :type publicid: Unicode string :param systemid: The document type system ID or :const:`None`. :type systemid: Unicode string :param check_well_formedness: If :const:`True` the document element name will be checked to be a valid XML name. :type check_well_formedness: :func:`bool` ''' __slots__ = {'_name', '_publicid', '_systemid', '_check_well_formedness'} def __init__(self, name, publicid, systemid, check_well_formedness): if check_well_formedness: if name is not None: _helpers.enforce_valid_xml_name(name) if publicid is not None: _helpers.enforce_valid_doctype_publicid(publicid) if systemid is not None: _helpers.enforce_valid_doctype_systemid(systemid) self._name = name self._publicid = publicid self._systemid = systemid self._check_well_formedness = check_well_formedness @property def name(self): '''\ The document element name or :const:`None`. On setting if the value is :const:`None`, :attr:`publicid` and :attr:`systemid` are also set to :const:`None`. Otherwise the value is converted to an Unicode string; a :class:`ecoxipy.XMLWellFormednessException` is thrown if it is not a valid XML name and ``check_well_formedness`` is :const:`True`. ''' return self._name @name.setter def name(self, name): if name is None: self._publicid = None self._systemid = None else: name = _unicode(name) if self._check_well_formedness: _helpers.enforce_valid_xml_name(name) self._name = name @property def publicid(self): '''\ The document type public ID or :const:`None`. On setting if the value is not :const:`None` it is converted to a Unicode string; a :class:`ecoxipy.XMLWellFormednessException` is thrown if it is not a valid doctype public ID and ``check_well_formedness`` is :const:`True`. ''' return self._publicid @publicid.setter def publicid(self, publicid): if publicid is not None: publicid = _unicode(publicid) if self._check_well_formedness: _helpers.enforce_valid_doctype_publicid(publicid) self._publicid = publicid @property def systemid(self): '''\ The document type system ID or :const:`None`. On setting if the value is not :const:`None` it is converted to a Unicode string; a :class:`ecoxipy.XMLWellFormednessException` is thrown if it is not a valid doctype system ID and ``check_well_formedness`` is :const:`True`. ''' return self._systemid @systemid.setter def systemid(self, systemid): if systemid is not None: systemid = _unicode(systemid) if self._check_well_formedness: _helpers.enforce_valid_doctype_systemid(systemid) self._systemid = systemid def __repr__(self): return 'ecoxipy.pyxom.DocumentType({}, {}, {})'.format( _string_repr(self._name), _string_repr(self._publicid), _string_repr(self._systemid), ) def __eq__(self, other): return (isinstance(other, DocumentType) and self._name == other._name and self._publicid == other._publicid and self._systemid == other._systemid ) def __ne__(self, other): return (not(isinstance(other, DocumentType)) or self._name != other._name or self._publicid != other._publicid or self._systemid != other._systemid ) @staticmethod def _parse_values(name, publicid, systemid): if name is None: publicid = None systemid = None else: name = _unicode(name) if publicid is not None: publicid = _unicode(publicid) if systemid is not None: systemid = _unicode(systemid) return name, publicid, systemid @staticmethod def _create(name, publicid, systemid, check_well_formedness): name, publicid, systemid = DocumentType._parse_values( name, publicid, systemid) return DocumentType(name, publicid, systemid, check_well_formedness) class Document(ContainerNode): '''\ A :class:`ContainerNode` representing a XML document. :param doctype_name: The document type root element name or :const:`None` if the document should not have document type declaration. :type doctype_name: Unicode string :param doctype_publicid: The public ID of the document type declaration or :const:`None`. :type doctype_publicid: Unicode string :param doctype_systemid: The system ID of the document type declaration or :const:`None`. :type doctype_systemid: Unicode string :param children: The document root :class:`XMLNode` instances. :param encoding: The encoding of the document. If it is :const:`None` `UTF-8` is used. :type encoding: Unicode string :param omit_xml_declaration: If :const:`True` the XML declaration is omitted. :type omit_xml_declaration: :func:`bool` :param check_well_formedness: If :const:`True` the document element name will be checked to be a valid XML name. :type check_well_formedness: :func:`bool` :raises ecoxipy.XMLWellFormednessException: If ``check_well_formedness`` is :const:`True` and ``doctype_name`` is not a valid XML name, ``doctype_publicid`` is not a valid public ID or ``doctype_systemid`` is not a valid system ID. ''' __slots__ = {'_doctype', '_omit_xml_declaration', '_encoding'} def __init__(self, doctype_name, doctype_publicid, doctype_systemid, children, omit_xml_declaration, encoding, check_well_formedness=False): ContainerNode.__init__(self, children) self._doctype = DocumentType(doctype_name, doctype_publicid, doctype_systemid, check_well_formedness) self._omit_xml_declaration = omit_xml_declaration if encoding is None: encoding = u'UTF-8' self._encoding = encoding @staticmethod def create(*children, **kargs): '''\ Creates a document and converts parameters to appropriate types. :param children: The document root nodes. All items that are not :class:`XMLNode` instances create :class:`Text` nodes after they have been converted to Unicode strings. :param kargs: The same parameters as the constructor has (except ``children``) are recognized. The items ``doctype_name``, ``doctype_publicid``, ``doctype_systemid``, and ``encoding`` are converted to Unicode strings if they are not :const:`None`. ``omit_xml_declaration`` is converted to boolean. :returns: The created document. :rtype: :class:`Document` :raises ecoxipy.XMLWellFormednessException: If ``doctype_name`` is not a valid XML name, ``doctype_publicid`` is not a valid public ID or ``doctype_systemid`` is not a valid system ID. ''' doctype_name = kargs.get('doctype_name', None) doctype_publicid = kargs.get('doctype_publicid', None) doctype_systemid = kargs.get('doctype_systemid', None) doctype_name, doctype_publicid, doctype_systemid = DocumentType._parse_values( doctype_name, doctype_publicid, doctype_systemid) omit_xml_declaration = kargs.get('omit_xml_declaration', None) omit_xml_declaration = bool(omit_xml_declaration) encoding = kargs.get('encoding', None) if encoding is not None: encoding = _unicode(encoding) return Document(doctype_name, doctype_publicid, doctype_systemid, [ child if isinstance(child, XMLNode) else Text.create(child) for child in children ], omit_xml_declaration, encoding, True) @property def doctype(self): '''\ The :class:`DocumentType` instance of the document. On setting one of the following occurs: 1. If the value is :const:`None`, the document type's attributes are set to :const:`None`. 2. If the value is a byte or Unicode string, the document type document element name is set to this value (a byte string will be converted to Unicode). The document type public and system IDs will be set to :const:`None`. 3. If the value is a mapping, the items identified by the strings ``'name'``, ``'publicid'`` or ``'systemid'`` define the respective attributes of the document type, the others are assumed to be :const:`None`. 4. If the value is a sequence, the item at position zero defines the document type document element name, the item at position one defines the public ID and the item at position two defines the system ID. If the sequence is shorter than three, non-available items are assumed to be :const:`None`. The document type values are converted to appropriate values and their validity is checked if ``check_well_formedness`` is :const:`True`. Example: >>> doc = Document.create() >>> doc.doctype ecoxipy.pyxom.DocumentType(None, None, None) >>> doc.doctype = {'name': 'test', 'systemid': 'foo bar'} >>> doc.doctype ecoxipy.pyxom.DocumentType('test', None, 'foo bar') >>> doc.doctype = ('html', 'foo bar') >>> doc.doctype ecoxipy.pyxom.DocumentType('html', 'foo bar', None) >>> doc.doctype = 'foo' >>> doc.doctype ecoxipy.pyxom.DocumentType('foo', None, None) >>> doc.doctype = None >>> doc.doctype ecoxipy.pyxom.DocumentType(None, None, None) ''' return self._doctype @doctype.setter def doctype(self, value): if value is None: name = None publicid = None systemid = None else: if value.__class__ is bytes: value = _unicode(value) try: name = value.get('name', None) publicid = value.get('publicid', None) systemid = value.get('systemid', None) except AttributeError: if value.__class__ is _unicode: name = value publicid = None systemid = None else: if len(value) > 2: systemid = value[2] else: systemid = None if len(value) > 1: publicid = value[1] else: publicid = None if len(value) > 0: name = value[0] else: name = None name, publicid, systemid = DocumentType._parse_values( name, publicid, systemid) self._doctype.name = name self._doctype.publicid = publicid self._doctype.systemid = systemid @property def omit_xml_declaration(self): '''\ If :const:`True` the XML declaration is omitted. ''' return self._omit_xml_declaration @omit_xml_declaration.setter def omit_xml_declaration(self, value): self._omit_xml_declaration = bool(value) @property def encoding(self): '''\ The encoding of the document. On setting if the value is :const:`None` it is set to ``UTF-8``, otherwise it is converted to an Unicode string. ''' return self._encoding @encoding.setter def encoding(self, value): if value is None: value = u'UTF-8' else: value = _unicode(value) self._encoding = value def __bytes__(self): '''\ Creates a byte string containing the XML representation of the node with the encoding :meth:`encoding`. ''' return self.create_str(encoding=self._encoding) if _python2: __str__ = __bytes__ del __bytes__ def __hash__(self): return object.__hash__(self) @_helpers.inherit_docstring(ContainerNode) def create_sax_events(self, content_handler=None, out=None, out_encoding='UTF-8', indent_incr=None): return XMLNode.create_sax_events(self, content_handler, out, self._encoding, indent_incr) def _create_str(self, out): return out.document(self._doctype.name, self._doctype.publicid, self._doctype.systemid, self._children_strings(out), self._omit_xml_declaration, self._encoding) def _create_sax_events(self, content_handler, indent): content_handler.startDocument() try: notationDecl = content_handler.notationDecl except AttributeError: pass else: notationDecl(self._doctype.name, self._doctype.publicid, self._doctype.systemid) for child in self: child._create_sax_events(content_handler, indent) content_handler.endDocument() def __repr__(self): return 'ecoxipy.pyxom.Document[{}, {}, {}]'.format( repr(self._doctype), repr(self._omit_xml_declaration), _string_repr(self._encoding)) def __eq__(self, other): if not(isinstance(other, Document) and self._doctype == other._doctype and self._omit_xml_declaration == other._omit_xml_declaration and self._encoding == other._encoding and len(self) == len(other)): return False for i in range(len(self)): if self[i] != other[i]: return False return True def __ne__(self, other): if (not(isinstance(other, Document)) or self._doctype != other._doctype or self._omit_xml_declaration != other._omit_xml_declaration or self._encoding != other._encoding or len(self) != len(other)): return True for i in range(len(self)): if self[i] != other[i]: return True return False @_helpers.inherit_docstring(ContainerNode) def duplicate(self): return Document(self._doctype.name, self._doctype.publicid, self._doctype.systemid, [child.duplicate() for child in self], self._omit_xml_declaration, self._encoding) element_by_id = IndexDescriptor(ElementByUniqueAttributeValueIndexer()) '''\ A :class:`ecoxipy.pyxom.indexing.IndexDescriptor` instance using a :class:`ecoxipy.pyxom.indexing.ElementByUniqueAttributeValueIndexer` for indexing. Use it like a mapping to retrieve the element having an attribute ``id`` with the value being equal to the requested key, possibly throwing a :class:`KeyError` if such an element does not exist. **Important:** If the document's childs are relevantly modified (i.e. an ``id`` attribute was created, modified or deleted), :meth:`delete_indexes` should be called or this attribute should be deleted on the instance, which deletes the index. ''' elements_by_name = IndexDescriptor(ElementsByNameIndexer()) '''\ A :class:`ecoxipy.pyxom.indexing.IndexDescriptor` instance using a :class:`ecoxipy.pyxom.indexing.ElementsByNameIndexer` for indexing. Use it like a mapping to retrieve an iterator over elements having a name equal to the requested key, possibly throwing a :class:`KeyError` if such an element does not exist. **Important:** If the document's childs are relevantly modified (i.e. new elements were added or deleted, elements' names were modified), :meth:`delete_indexes` should be called or this attribute should be deleted on the instance, which deletes the index. ''' nodes_by_namespace = IndexDescriptor(NamespaceIndexer()) '''\ A :class:`ecoxipy.pyxom.indexing.IndexDescriptor` instance using a :class:`ecoxipy.pyxom.indexing.NamespaceIndexer` for indexing. **Important:** If the document's childs are relevantly modified (i.e. new elements/attributes were added or deleted, elements'/attributes' names were modified), :meth:`delete_indexes` should be called or this attribute should be deleted on the instance, which deletes the index. ''' def delete_indexes(self): '''\ A shortcut to delete the indexes of :attr:`element_by_id` and :attr:`elements_by_name`. ''' del self.element_by_id del self.elements_by_name del self.nodes_by_namespace del (IndexDescriptor, ElementByUniqueAttributeValueIndexer, ElementsByNameIndexer, NamespaceIndexer)
mit
-2,128,559,108,914,202,400
37.534483
86
0.606578
false
4.264011
false
false
false
status-im/status-react
test/appium/tests/conftest.py
1
13196
import requests import pytest import re from _pytest.runner import runtestprotocol from http.client import RemoteDisconnected from support.device_stats_db import DeviceStatsDB from support.test_rerun import should_rerun_test from tests import test_suite_data, appium_container from datetime import datetime from os import environ from io import BytesIO from sauceclient import SauceClient, SauceException from support.api.network_api import NetworkApi from support.github_report import GithubHtmlReport from support.testrail_report import TestrailReport from tests.users import transaction_senders import tests sauce_username = environ.get('SAUCE_USERNAME') sauce_access_key = environ.get('SAUCE_ACCESS_KEY') github_token = environ.get('GIT_HUB_TOKEN') sauce = SauceClient(sauce_username, sauce_access_key) github_report = GithubHtmlReport() testrail_report = TestrailReport() def pytest_addoption(parser): parser.addoption("--build", action="store", default=datetime.now().strftime('%Y-%m-%d-%H-%M'), help="Specify build name") parser.addoption('--apk', action='store', default=None, help='Url or local path to apk') parser.addoption('--env', action='store', default='sauce', help='Specify environment: local/sauce/api') parser.addoption('--platform_version', action='store', default='8.0', help='Android device platform version') parser.addoption('--log_steps', action='store', default=False, help='Display each test step in terminal as plain text: True/False') parser.addoption('--pr_number', action='store', default=None, help='Pull Request number') parser.addoption('--testrail_report', action='store', default=False, help='boolean; For creating testrail report per run') parser.addoption('--network', action='store', default='ropsten', help='string; ropsten or rinkeby') parser.addoption('--rerun_count', action='store', default=0, help='How many times tests should be re-run if failed') parser.addoption("--run_testrail_ids", action="store", metavar="NAME", default=None, help="only run tests matching the environment NAME.") parser.addoption("--apk_upgrade", action="store", metavar="NAME", default=None, help='Url or local path to apk for upgrade') # chat bot parser.addoption('--messages_number', action='store', default=20, help='Messages number') parser.addoption('--public_keys', action='store', default='', help='List of public keys for one-to-one chats') parser.addoption('--running_time', action='store', default=600, help='Running time in seconds') parser.addoption('--chat_name', action='store', default='test_chat', help='Public chat name') parser.addoption('--device_number', action='store', default=2, help='Public chat name') # running tests using appium docker instance parser.addoption('--docker', action='store', default=False, help='Are you using the appium docker container to run the tests?') parser.addoption('--docker_shared_volume', action='store', default=None, help='Path to a directory with .apk that will be shared with docker instance. Test reports will be also saved there') parser.addoption('--device_ip', action='store', default=None, help='Android device IP address used for battery tests') parser.addoption('--bugreport', action='store', default=False, help='Should generate bugreport for each test?') parser.addoption('--stats_db_host', action='store', default=None, help='Host address for device stats database') parser.addoption('--stats_db_port', action='store', default=8086, help='Port for device stats db') parser.addoption('--stats_db_username', action='store', default=None, help='Username for device stats db') parser.addoption('--stats_db_password', action='store', default=None, help='Password for device stats db') parser.addoption('--stats_db_database', action='store', default='example9', help='Database name for device stats db') def is_master(config): return not hasattr(config, 'workerinput') def is_uploaded(): stored_files = sauce.storage.get_stored_files() for i in range(len(stored_files['files'])): if stored_files['files'][i]['name'] == test_suite_data.apk_name: return True def pytest_configure(config): tests.pytest_config_global = vars(config.option) config.addinivalue_line("markers", "testrail_id(name): empty") if config.getoption('log_steps'): import logging logging.basicConfig(level=logging.INFO) if config.getoption('env') != 'api': test_suite_data.apk_name = ([i for i in [i for i in config.getoption('apk').split('/') if '.apk' in i]])[0] if is_master(config): pr_number = config.getoption('pr_number') if config.getoption('testrail_report'): if pr_number: run_number = len(testrail_report.get_runs(pr_number)) + 1 run_name = 'PR-%s run #%s' % (pr_number, run_number) else: run_name = test_suite_data.apk_name testrail_report.add_run(run_name) if pr_number: from github import Github repo = Github(github_token).get_user('status-im').get_repo('status-react') pull = repo.get_pull(int(pr_number)) pull.get_commits()[0].create_status(state='pending', context='Mobile e2e tests', description='e2e tests are running') if config.getoption('env') == 'sauce': if not is_uploaded(): if 'http' in config.getoption('apk'): response = requests.get(config.getoption('apk'), stream=True) response.raise_for_status() file = BytesIO(response.content) del response requests.post('http://saucelabs.com/rest/v1/storage/' + sauce_username + '/' + test_suite_data.apk_name + '?overwrite=true', auth=(sauce_username, sauce_access_key), data=file, headers={'Content-Type': 'application/octet-stream'}) else: sauce.storage.upload_file(config.getoption('apk')) def pytest_unconfigure(config): if is_master(config): if config.getoption('testrail_report'): testrail_report.add_results() if config.getoption('pr_number'): from github import Github repo = Github(github_token).get_user('status-im').get_repo('status-react') pull = repo.get_pull(int(config.getoption('pr_number'))) comment = pull.create_issue_comment(github_report.build_html_report(testrail_report.run_id)) if not testrail_report.is_run_successful(): pull.get_commits()[0].create_status(state='failure', context='Mobile e2e tests', description='Failure - e2e tests are failed', target_url=comment.html_url) else: pull.get_commits()[0].create_status(state='success', context='Mobile e2e tests', description='Success - e2e tests are passed', target_url=comment.html_url) def should_save_device_stats(config): db_args = [config.getoption(option) for option in ('stats_db_host', 'stats_db_port', 'stats_db_username', 'stats_db_password', 'stats_db_database')] return all(db_args) @pytest.mark.hookwrapper def pytest_runtest_makereport(item, call): outcome = yield report = outcome.get_result() if report.when == 'call': is_sauce_env = item.config.getoption('env') == 'sauce' current_test = test_suite_data.current_test if report.failed: error = report.longreprtext exception = re.findall('E.*Message:|E.*Error:|E.*Failed:', error) if exception: error = error.replace(re.findall('E.*Message:|E.*Error:|E.*Failed:', report.longreprtext)[0], '') current_test.testruns[-1].error = error if is_sauce_env: update_sauce_jobs(current_test.name, current_test.testruns[-1].jobs, report.passed) if item.config.getoption('docker'): device_stats = appium_container.get_device_stats() if item.config.getoption('bugreport'): appium_container.generate_bugreport(item.name) build_name = item.config.getoption('apk') # Find type of tests that are run on the device if 'battery_consumption' in item.keywords._markers: test_group = 'battery_consumption' else: test_group = None if should_save_device_stats(item.config): device_stats_db = DeviceStatsDB( item.config.getoption('stats_db_host'), item.config.getoption('stats_db_port'), item.config.getoption('stats_db_username'), item.config.getoption('stats_db_password'), item.config.getoption('stats_db_database'), ) device_stats_db.save_stats(build_name, item.name, test_group, not report.failed, device_stats) def update_sauce_jobs(test_name, job_ids, passed): for job_id in job_ids.keys(): try: sauce.jobs.update_job(job_id, name=test_name, passed=passed) except (RemoteDisconnected, SauceException): pass def get_testrail_case_id(item): testrail_id = item.get_closest_marker('testrail_id') if testrail_id: return testrail_id.args[0] def pytest_runtest_setup(item): try: testrail_id = [mark.args[0] for mark in item.iter_markers(name='testrail_id')][0] except IndexError: pass run_testrail_ids = item.config.getoption("run_testrail_ids") if run_testrail_ids: if str(testrail_id) not in list(run_testrail_ids.split(",")): pytest.skip("test requires testrail case id %s" % testrail_id) test_suite_data.set_current_test(item.name, testrail_case_id=get_testrail_case_id(item)) test_suite_data.current_test.create_new_testrun() def pytest_runtest_protocol(item, nextitem): rerun_count = int(item.config.getoption('rerun_count')) for i in range(rerun_count): reports = runtestprotocol(item, nextitem=nextitem) for report in reports: if report.failed and should_rerun_test(report.longreprtext): break # rerun else: return True # no need to rerun @pytest.fixture(scope="session", autouse=False) def faucet_for_senders(): network_api = NetworkApi() for user in transaction_senders.values(): network_api.faucet(address=user['address']) @pytest.fixture def messages_number(request): return int(request.config.getoption('messages_number')) @pytest.fixture def message_wait_time(request): return int(request.config.getoption('message_wait_time')) @pytest.fixture def participants_number(request): return int(request.config.getoption('participants_number')) @pytest.fixture def chat_name(request): return request.config.getoption('chat_name') @pytest.fixture def user_public_key(request): return request.config.getoption('user_public_key')
mpl-2.0
520,488,454,995,145,340
40.2375
138
0.554032
false
4.266408
true
false
false
Yangqing/caffe2
caffe2/python/layers/fc.py
1
3042
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## ## @package fc # Module caffe2.python.layers.fc from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import schema from caffe2.python.layers.layers import ModelLayer from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin import math import numpy as np class FC(SamplingTrainableMixin, ModelLayer): def __init__(self, model, input_record, output_dims, weight_init=None, bias_init=None, weight_optim=None, bias_optim=None, name='fc', weight_reg=None, bias_reg=None, **kwargs): super(FC, self).__init__(model, name, input_record, **kwargs) assert isinstance(input_record, schema.Scalar), ( "Incorrect input type {}".format(input_record)) assert len(input_record.field_types()[0].shape) > 0, ( "FC expects limited dimensions of the input tensor") input_dims = input_record.field_types()[0].shape[0] assert input_dims > 0, ( "FC expects input dimensions > 0, got {}".format(input_dims)) scale = math.sqrt(1.0 / input_dims) weight_init = weight_init if weight_init else ( 'UniformFill', {'min': -scale, 'max': scale}) bias_init = bias_init if bias_init else ( 'UniformFill', {'min': -scale, 'max': scale}) self.w = self.create_param(param_name='w', shape=[output_dims, input_dims], initializer=weight_init, optimizer=weight_optim, regularizer=weight_reg) self.b = self.create_param(param_name='b', shape=[output_dims, ], initializer=bias_init, optimizer=bias_optim, regularizer=bias_reg) self.output_schema = schema.Scalar( (np.float32, (output_dims, )), self.get_next_blob_reference('output') ) def _add_ops(self, net, params): net.FC(self.input_record.field_blobs() + params, self.output_schema.field_blobs(), **self.kwargs) @property def param_blobs(self): return [self.w, self.b]
apache-2.0
-1,604,963,854,280,311,300
40.108108
80
0.589415
false
4.184319
false
false
false
janpipek/boadata
boadata/gui/qt/views/histogram_view.py
1
1199
from .view import View from ..backends.matplotlib import MatplotlibBackend from boadata import unwrap import seaborn as sns # @View.register_view class HistogramView(View): def accepts(cls, data_object): return True def create_widget(self, parent=None, xcol=None, bins=50, **kwargs): if xcol is not None: try: data = self.data_object.evaluate(xcol) except: data = self.data_object[xcol] else: data = self.data_object xcol = "x" data = unwrap(data.dropna().convert("numpy_array")) widget, fig = MatplotlibBackend.create_figure_widget(parent=parent) fig.add_subplot(111) ax = fig.get_axes() extra_args = {} if not kwargs.get("hist"): extra_args["kde_kws"] = {"shade": True} sns.distplot(data, hist=kwargs.get("hist", False), kde=kwargs.get("kde", False), bins=bins, rug=kwargs.get("rug", False), ax=ax[0], **extra_args) xlabel = kwargs.get("xlabel", xcol) ax[0].set_xlabel(xlabel) if "title" in kwargs: ax[0].set_title(kwargs["title"]) return widget
mit
-1,467,702,614,424,234,500
30.578947
88
0.57548
false
3.611446
false
false
false
mycointest/owncoin
share/seeds/generate-seeds.py
1
4297
#!/usr/bin/python # Copyright (c) 2014 Wladmir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Script to generate list of seed nodes for chainparams.cpp. This script expects two text files in the directory that is passed as an argument: nodes_main.txt nodes_test.txt These files must consist of lines in the format <ip> <ip>:<port> [<ipv6>] [<ipv6>]:<port> <onion>.onion 0xDDBBCCAA (IPv4 little-endian old pnSeeds format) The output will be two data structures with the peers in binary format: static SeedSpec6 pnSeed6_main[]={ ... } static SeedSpec6 pnSeed6_test[]={ ... } These should be pasted into `src/chainparamsseeds.h`. ''' from __future__ import print_function, division from base64 import b32decode from binascii import a2b_hex import sys, os import re # ipv4 in ipv6 prefix pchIPv4 = bytearray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff]) # tor-specific ipv6 prefix pchOnionCat = bytearray([0xFD,0x87,0xD8,0x7E,0xEB,0x43]) def name_to_ipv6(addr): if len(addr)>6 and addr.endswith('.onion'): vchAddr = b32decode(addr[0:-6], True) if len(vchAddr) != 16-len(pchOnionCat): raise ValueError('Invalid onion %s' % s) return pchOnionCat + vchAddr elif '.' in addr: # IPv4 return pchIPv4 + bytearray((int(x) for x in addr.split('.'))) elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i,comp in enumerate(addr): if comp == '': if i == 0 or i == (len(addr)-1): # skip empty component at beginning or end continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) return bytearray(sub[0] + ([0] * nullbytes) + sub[1]) elif addr.startswith('0x'): # IPv4-in-little-endian return pchIPv4 + bytearray(reversed(a2b_hex(addr[2:]))) else: raise ValueError('Could not parse address %s' % addr) def parse_spec(s, defaultport): match = re.match('\[([0-9a-fA-F:]+)\](?::([0-9]+))?$', s) if match: # ipv6 host = match.group(1) port = match.group(2) else: (host,_,port) = s.partition(':') if not port: port = defaultport else: port = int(port) host = name_to_ipv6(host) return (host,port) def process_nodes(g, f, structname, defaultport): g.write('static SeedSpec6 %s[] = {\n' % structname) first = True for line in f: comment = line.find('#') if comment != -1: line = line[0:comment] line = line.strip() if not line: continue if not first: g.write(',\n') first = False (host,port) = parse_spec(line, defaultport) hoststr = ','.join(('0x%02x' % b) for b in host) g.write(' {{%s}, %i}' % (hoststr, port)) g.write('\n};\n') def main(): if len(sys.argv)<2: print(('Usage: %s <path_to_nodes_txt>' % sys.argv[0]), file=sys.stderr) exit(1) g = sys.stdout indir = sys.argv[1] g.write('#ifndef BITCOIN_CHAINPARAMSSEEDS_H\n') g.write('#define BITCOIN_CHAINPARAMSSEEDS_H\n') g.write('/**\n') g.write(' * List of fixed seed nodes for the owncoin network\n') g.write(' * AUTOGENERATED by share/seeds/generate-seeds.py\n') g.write(' *\n') g.write(' * Each line contains a 16-byte IPv6 address and a port.\n') g.write(' * IPv4 as well as onion addresses are wrapped inside a IPv6 address accordingly.\n') g.write(' */\n') with open(os.path.join(indir,'nodes_main.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_main', 9887) g.write('\n') with open(os.path.join(indir,'nodes_test.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_test', 19887) g.write('#endif // BITCOIN_CHAINPARAMSSEEDS_H\n') if __name__ == '__main__': main()
mit
6,910,685,491,095,861,000
30.82963
98
0.575983
false
3.175905
false
false
false
fhqgfss/MoHa
moha/posthf/ci/configuration.py
1
1441
import numpy as np import copy import itertools from moha.system.basis import SlaterDeterminant,NElectronBasisSet class Configuration(object): """ """ def __init__(self): """ """ pass @classmethod def truncated(cls,hfwavefunction,excitation_level): """ excitation_level : CISD -> [1,2] CID -> [2] """ Nelec = hfwavefunction.occ['alpha'] + hfwavefunction.occ['beta'] Dim = hfwavefunction.dim*2 reference = copy.deepcopy(hfwavefunction.configuration) basis_set = NElectronBasisSet(1,[reference]) #basis_set = NElectronBasisSet() for el in excitation_level: for o_list in itertools.combinations(range(Nelec),el): for u_list in itertools.combinations(range(Nelec,Dim),el): reference = copy.deepcopy(hfwavefunction.configuration) for o in o_list: if o%2==0: reference['alpha'][o//2] -= 1 elif o%2==1: reference['beta'][o//2] -= 1 for u in u_list: if u%2==0: reference['alpha'][u//2] += 1 elif u%2==1: reference['beta'][u//2] += 1 basis_set.add(reference) return basis_set
mit
-5,836,256,464,177,644,000
32.511628
75
0.485774
false
4.225806
false
false
false