repo_name
stringlengths
5
92
path
stringlengths
4
221
copies
stringclasses
19 values
size
stringlengths
4
6
content
stringlengths
766
896k
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
32
997
alpha_frac
float64
0.25
0.96
autogenerated
bool
1 class
ratio
float64
1.5
13.6
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
MSLNZ/msl-equipment
msl/equipment/resources/thorlabs/kinesis/filter_flipper.py
1
16157
""" This module provides all the functionality required to control a Filter Flipper (MFF101, MFF102). """ from ctypes import byref, c_int64 from msl.equipment.resources import register from msl.equipment.resources.utils import WORD, DWORD from msl.equipment.resources.thorlabs.kinesis.motion_control import MotionControl from msl.equipment.resources.thorlabs.kinesis.api_functions import FilterFlipper_FCNS from msl.equipment.resources.thorlabs.kinesis.structs import FF_IOSettings from msl.equipment.resources.thorlabs.kinesis.enums import FF_IOModes, FF_SignalModes @register(manufacturer=r'Thorlabs', model=r'MFF10[1|2]') class FilterFlipper(MotionControl): MIN_TRANSIT_TIME = 300 MAX_TRANSIT_TIME = 2800 MIN_PULSE_WIDTH = 10 MAX_PULSE_WIDTH = 200 def __init__(self, record): """A wrapper around ``Thorlabs.MotionControl.FilterFlipper.dll``. The :attr:`~msl.equipment.record_types.ConnectionRecord.properties` for a FilterFlipper connection supports the following key-value pairs in the :ref:`connections-database`:: 'device_name': str, the device name found in ThorlabsDefaultSettings.xml [default: None] Do not instantiate this class directly. Use the :meth:`~.EquipmentRecord.connect` method to connect to the equipment. Parameters ---------- record : :class:`~msl.equipment.record_types.EquipmentRecord` A record from an :ref:`equipment-database`. """ name = record.connection.properties.get('device_name') if name is None: record.connection.properties['device_name'] = 'MFF Filter Flipper' super(FilterFlipper, self).__init__(record, FilterFlipper_FCNS) def open(self): """Open the device for communication. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_Open(self._serial) def close(self): """Disconnect and close the device.""" self.sdk.FF_Close(self._serial) def check_connection(self): """Check connection. Returns ------- :class:`bool` Whether the USB is listed by the FTDI controller. """ return self.sdk.FF_CheckConnection(self._serial) def identify(self): """Sends a command to the device to make it identify itself.""" self.sdk.FF_Identify(self._serial) def get_hardware_info(self): """Gets the hardware information from the device. Returns ------- :class:`.structs.TLI_HardwareInformation` The hardware information. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ return self._get_hardware_info(self.sdk.FF_GetHardwareInfo) def get_firmware_version(self): """Gets version number of the device firmware. Returns ------- :class:`str` The firmware version. """ return self.to_version(self.sdk.FF_GetFirmwareVersion(self._serial)) def get_software_version(self): """Gets version number of the device software. Returns ------- :class:`str` The device software version. """ return self.to_version(self.sdk.FF_GetSoftwareVersion(self._serial)) def load_settings(self): """Update device with stored settings. The settings are read from ``ThorlabsDefaultSettings.xml``, which gets created when the Kinesis software is installed. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_LoadSettings(self._serial) def load_named_settings(self, settings_name): """Update device with named settings. Parameters ---------- settings_name : :class:`str` The name of the device to load the settings for. Examples for the value of `setting_name` can be found in `ThorlabsDefaultSettings.xml``, which gets created when the Kinesis software is installed. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_LoadNamedSettings(self._serial, settings_name.encode()) def persist_settings(self): """Persist the devices current settings. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_PersistSettings(self._serial) def get_number_positions(self): """Get number of positions available from the device. Returns ------- :class:`int` The number of positions. """ return self.sdk.FF_GetNumberPositions(self._serial) def home(self): """Home the device. Homing the device will set the device to a known state and determine the home position. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_Home(self._serial) def move_to_position(self, position): """Move the device to the specified position (index). Parameters ---------- position : :class:`int` The required position. Must be 1 or 2. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_MoveToPosition(self._serial, position) def get_position(self): """Get the current position. Returns ------- :class:`int` The position, 1 or 2 (can be 0 during a move). """ return self.sdk.FF_GetPosition(self._serial) def get_io_settings(self): """Gets the I/O settings from filter flipper. Returns ------- :class:`~.structs.FF_IOSettings` The Filter Flipper I/O settings. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ settings = FF_IOSettings() self.sdk.FF_GetIOSettings(self._serial, byref(settings)) return settings def request_io_settings(self): """Requests the I/O settings from the filter flipper. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_RequestIOSettings(self._serial) def set_io_settings(self, transit_time=500, oper1=FF_IOModes.FF_ToggleOnPositiveEdge, sig1=FF_SignalModes.FF_InputButton, pw1=200, oper2=FF_IOModes.FF_ToggleOnPositiveEdge, sig2=FF_SignalModes.FF_OutputLevel, pw2=200): """ Sets the settings on filter flipper. Parameters ---------- transit_time : :class:`int`, optional Time taken to get from one position to other in milliseconds. oper1 : :class:`~.enums.FF_IOModes`, optional I/O 1 Operating Mode. sig1 : :class:`~.enums.FF_SignalModes`, optional I/O 1 Signal Mode. pw1 : :class:`int`, optional Digital I/O 1 pulse width in milliseconds. oper2 : :class:`~.enums.FF_IOModes`, optional I/O 2 Operating Mode. sig2 : :class:`~.enums.FF_SignalModes`, optional I/O 2 Signal Mode. pw2 : :class:`int`, optional Digital I/O 2 pulse width in milliseconds. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ if transit_time > self.MAX_TRANSIT_TIME or transit_time < self.MIN_TRANSIT_TIME: msg = 'Invalid transit time value of {} ms; {} <= transit_time <= {}'.format( transit_time, self.MIN_TRANSIT_TIME, self.MAX_TRANSIT_TIME) self.raise_exception(msg) if pw1 > self.MAX_PULSE_WIDTH or pw1 < self.MIN_PULSE_WIDTH: msg = 'Invalid digital I/O 1 pulse width of {} ms; {} <= pw <= {}'.format( pw1, self.MIN_PULSE_WIDTH, self.MAX_PULSE_WIDTH) self.raise_exception(msg) if pw2 > self.MAX_PULSE_WIDTH or pw2 < self.MIN_PULSE_WIDTH: msg = 'Invalid digital I/O 2 pulse width of {} ms; {} <= pw <= {}'.format( pw2, self.MIN_PULSE_WIDTH, self.MAX_PULSE_WIDTH) self.raise_exception(msg) settings = FF_IOSettings() settings.transitTime = int(transit_time) settings.digIO1OperMode = self.convert_to_enum(oper1, FF_IOModes, prefix='FF_') settings.digIO1SignalMode = self.convert_to_enum(sig1, FF_SignalModes, prefix='FF_') settings.digIO1PulseWidth = int(pw1) settings.digIO2OperMode = self.convert_to_enum(oper2, FF_IOModes, prefix='FF_') settings.digIO2SignalMode = self.convert_to_enum(sig2, FF_SignalModes, prefix='FF_') settings.digIO2PulseWidth = int(pw2) self.sdk.FF_SetIOSettings(self._serial, byref(settings)) def get_transit_time(self): """Gets the transit time. Returns ------- :class:`int` The transit time in milliseconds. """ return self.sdk.FF_GetTransitTime(self._serial) def set_transit_time(self, transit_time): """Sets the transit time. Parameters ---------- transit_time : :class:`int` The transit time in milliseconds. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ if transit_time > self.MAX_TRANSIT_TIME or transit_time < self.MIN_TRANSIT_TIME: msg = 'Invalid transit time value of {} ms; {} <= transit_time <= {}'.format( transit_time, self.MIN_TRANSIT_TIME, self.MAX_TRANSIT_TIME) self.raise_exception(msg) self.sdk.FF_SetTransitTime(self._serial, int(transit_time)) def request_status(self): """Request status bits. This needs to be called to get the device to send it's current status. This is called automatically if Polling is enabled for the device using :meth:`.start_polling`. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_RequestStatus(self._serial) def get_status_bits(self): """Get the current status bits. This returns the latest status bits received from the device. To get new status bits, use :meth:`.request_status` or use the polling function, :meth:`.start_polling` Returns ------- :class:`int` The status bits from the device. """ return self.sdk.FF_GetStatusBits(self._serial) def start_polling(self, milliseconds): """Starts the internal polling loop. This function continuously requests position and status messages. Parameters ---------- milliseconds : :class:`int` The polling rate, in milliseconds. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_StartPolling(self._serial, int(milliseconds)) def polling_duration(self): """Gets the polling loop duration. Returns ------- :class:`int` The time between polls in milliseconds or 0 if polling is not active. """ return self.sdk.FF_PollingDuration(self._serial) def stop_polling(self): """Stops the internal polling loop.""" self.sdk.FF_StopPolling(self._serial) def time_since_last_msg_received(self): """Gets the time, in milliseconds, since tha last message was received. This can be used to determine whether communications with the device is still good. Returns ------- :class:`int` The time, in milliseconds, since the last message was received. """ ms = c_int64() self.sdk.FF_TimeSinceLastMsgReceived(self._serial, byref(ms)) return ms.value def enable_last_msg_timer(self, enable, msg_timeout=0): """Enables the last message monitoring timer. This can be used to determine whether communications with the device is still good. Parameters ---------- enable : :class:`bool` :data:`True` to enable monitoring otherwise :data:`False` to disable. msg_timeout : :class:`int`, optional The last message error timeout in ms. Set to 0 to disable. """ self.sdk.FF_EnableLastMsgTimer(self._serial, enable, msg_timeout) def has_last_msg_timer_overrun(self): """Queries if the time since the last message has exceeded the ``lastMsgTimeout`` set by :meth:`.enable_last_msg_timer`. This can be used to determine whether communications with the device is still good. Returns ------- :class:`bool` :data:`True` if last message timer has elapsed or :data:`False` if monitoring is not enabled or if time of last message received is less than ``msg_timeout``. """ return self.sdk.FF_HasLastMsgTimerOverrun(self._serial) def request_settings(self): """Requests that all settings are downloaded from the device. This function requests that the device upload all it's settings to the DLL. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ self.sdk.FF_RequestSettings(self._serial) def clear_message_queue(self): """Clears the device message queue.""" self.sdk.FF_ClearMessageQueue(self._serial) def register_message_callback(self, callback): """Registers a callback on the message queue. Parameters ---------- callback : :class:`~msl.equipment.resources.thorlabs.kinesis.callbacks.MotionControlCallback` A function to be called whenever messages are received. """ self.sdk.FF_RegisterMessageCallback(self._serial, callback) def message_queue_size(self): """Gets the size of the message queue. Returns ------- :class:`int` The number of messages in the queue. """ return self.sdk.FF_MessageQueueSize(self._serial) def get_next_message(self): """Get the next Message Queue item. See :mod:`.messages`. Returns ------- :class:`int` The message type. :class:`int` The message ID. :class:`int` The message data. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ message_type = WORD() message_id = WORD() message_data = DWORD() self.sdk.FF_GetNextMessage(self._serial, byref(message_type), byref(message_id), byref(message_data)) return message_type.value, message_id.value, message_data.value def wait_for_message(self): """Wait for next Message Queue item. See :mod:`.messages`. Returns ------- :class:`int` The message type. :class:`int` The message ID. :class:`int` The message data. Raises ------ ~msl.equipment.exceptions.ThorlabsError If not successful. """ message_type = WORD() message_id = WORD() message_data = DWORD() self.sdk.FF_WaitForMessage(self._serial, byref(message_type), byref(message_id), byref(message_data)) return message_type.value, message_id.value, message_data.value if __name__ == '__main__': from msl.equipment.resources.thorlabs.kinesis import _print _print(FilterFlipper, FilterFlipper_FCNS, 'Thorlabs.MotionControl.FilterFlipper.h')
mit
-1,277,002,313,023,637,200
31.574597
111
0.594355
false
4.123788
false
false
false
Tailszefox/scrabblesolve
binaire.py
1
6312
#!/usr/bin/python # -*- coding: utf-8 -*- import os.path import sys # Nœud de l'arbre contenant une lettre class Noeud(object): """ Constructeur lettre : lettre stockée dans le nœud mot : True si le chemin représente un mot du dictionnaire, False sinon fd : lettre située au même niveau et après dans l'ordre alphabétique fm : lettre située au niveau suivant """ def __init__(self, lettre = None, motComplet = None): self._lettre = None self._mot = False self._motComplet = None self._fd = None self._fm = None self.lettre = lettre self.motComplet = motComplet #Getters et setters def setLettre(self, lettre): self._lettre = lettre def getLettre(self): return self._lettre def setFd(self, fd): self._fd = fd def getFd(self): return self._fd def setFm(self, fm): self._fm = fm def getFm(self): return self._fm def setMot(self, mot): self._mot = mot def getMot(self): return self._mot def setMotComplet(self, motComplet): self._motComplet = motComplet def getMotComplet(self): return self._motComplet lettre = property(getLettre, setLettre) estMot = property(getMot, setMot) motComplet = property(getMotComplet, setMotComplet) fd = property(getFd, setFd) fm = property(getFm, setFm) #Arbre binaire class Arbre(object): """ Constructeur racine : nœud racine de l'arbre fichier : fichier du dictionnaire hash : tableau de hashage correspondant aux nœuds """ def __init__(self, fichier = None): self._racine = None self._fichier = None self._hash = None self.charger(fichier) #Getters et setters def getFichier(self): return self._fichier def setFichier(self, fichier): self._fichier = fichier def getRacine(self): return self._racine def setRacine(self, racine): self._racine = racine def setHash(self, h): self._hash = h def getHash(self): return self._hash fichier = property(getFichier, setFichier) racine = property(getRacine, setRacine) hash = property(getHash, setHash) """ Chargement d'un fichier de dictionnaire """ def charger(self, fichier): if not os.path.exists(fichier): sys.exit('Le dictionnaire ' + fichier + ' n\'existe pas.') self.hash = {} self.fichier = fichier self.racine = self.chargerMots() def chargerMots(self): racine = None #Pour chaque mot du dictionnaire for mot in open(self.fichier): #Suppression du \n mot = mot[:-1] noeud = None i = 1 #On cherche le préfixe du mot le plus grand existant déjà dans la table de hashage motDecoupe = mot[0:-i] while(motDecoupe and not noeud): try: noeud = self.hash[motDecoupe] except: #Le préfixe n'existe pas, on enlève une lettre au préfixe et on réessaye i += 1 motDecoupe = mot[0:-i] #Aucun préfixe n'existe, on ajoute le mot en entier if(not motDecoupe): racine = self.inserer(racine, mot, "") #On a trouvé un préfixe, on démarre l'ajout à partir du noeud du préfixe, en ajoutant la partie du mot qui n'existe pas encore else: noeud.fm = self.inserer(noeud.fm, mot[-i:], motDecoupe) return racine """ Insertion d'un nœud noeud : noeud à partir duquel démarrer l'ajout mot : mot à ajouter (si 'noeud' n'est pas la racine, il ne s'agit pas d'un mot entier) chemin : chaine représentant le chemin parcouru pour arriver à 'noeud' (vide si noeud est la racine) """ def inserer(self, noeud, mot, chemin): #Le noeud n'existe pas, on le crée et on l'ajoute dans la table de hashage if noeud is None: chemin += mot[0] noeud = Noeud(mot[0], chemin) self.hash[chemin] = noeud #On est sur le noeud correspondant à la lettre actuelle if (mot[0] == noeud.lettre): #On a ajouté le mot en entier, estMot devient vrai if (len(mot) == 1): noeud.estMot = True #On ajoute la suite du mot else: noeud.fm = self.inserer(noeud.fm, mot[1:], chemin) #On n'est pas sur le noeud correspondant à la lettre actuelle, on continue l'insertion à droite else: noeud.fd = self.inserer(noeud.fd, mot, chemin) return noeud """ Recherche d'un mot dans l'arbre """ def rechercher(self, mot, noeuds = None): estMot = False suivants = [] #Si aucun noeud de départ n'est précisé, on démarre de la racine if(not noeuds): noeuds = [self.racine] #Pour chacun des noeuds à partir desquels lancer la recherche for noeud in noeuds: estMotActuel, suivant = self.rechercherMot(noeud, mot) #Si on trouve au moins un mot, estMot devient le nœud actuel comportant le mot complet if(estMotActuel is not False): estMot = estMotActuel #On complète la liste des noeuds à partir desquels continuer la recherche (avec mot comme préfixe) suivants += suivant return estMot, suivants def rechercherMot(self, noeudA, mot): estMotM = False estMotD = False suivantM = [] suivantD = [] #Si le noeud existe if(noeudA): lettre = noeudA.lettre estMot = noeudA.estMot fmA = noeudA.fm fdA = noeudA.fd #Si le noeud correspond à la lettre actuelle (ou qu'il s'agit d'un joker) if (mot[0] == '.' or mot[0] == lettre): #On a trouvé le noeud correspond au mot if(len(mot) == 1): #Ce noeud à un fils, on le garde pour démarrer la recherche dessus plus tard if(fmA): suivantM.append(fmA) #Le chemin parcouru correspond à un mot du dictionnaire if(estMot): estMotM = noeudA #On continue la recherche du mot avec la lettre suivante si on n'est pas à la fin else: if(fmA): estMotM, suivantM = self.rechercherMot(fmA, mot[1:]) #Si le noeud ne correspond pas à la lettre actuelle (ou qu'il s'agit d'un joker), on continue la recherche à droite if (mot[0] == '.' or mot[0] > lettre): if(fdA): estMotD, suivantD = self.rechercherMot(fdA, mot) #On fusionne les deux listes de noeuds (utile uniquement quand mot[0] est un joker) suivant = suivantM + suivantD #Si on a trouvé un mot à droite ou au milieu (ou les deux), on récupère le noeud correspondant à ce mot if(estMotM): estMot = estMotM elif(estMotD): estMot = estMotD else: estMot = False return estMot, suivant
cc0-1.0
6,933,392,178,072,535,000
23.625984
129
0.667306
false
2.429126
false
false
false
llvm/llvm-zorg
zorg/buildbot/builders/annotated/util.py
1
3453
from __future__ import print_function import errno import os import re import shutil import subprocess import sys def clean_dir(path): """ Removes directory at path (and all its subdirectories) if it exists, and creates an empty directory in its place. """ try: rmtree(path) except OSError as e: if e.errno != errno.ENOENT: raise mkdirp(path) def cmake_pjoin(*args): """ Join paths like safe_pjoin, but replace backslashes with forward slashes on platforms where they are path separators. This prevents CMake from choking when trying to decode what it thinks are escape sequences in filenames. """ result = safe_pjoin(*args) if os.sep == '\\': return result.replace('\\', '/') else: return result def report(msg): sys.stderr.write(msg + '\n') sys.stderr.flush() def report_run_cmd(cmd, shell=False, *args, **kwargs): """ Print a command, then executes it using subprocess.check_call. """ report('Running: %s' % ((cmd if shell else shquote_cmd(cmd)),)) sys.stderr.flush() subprocess.check_call(cmd, shell=shell, *args, **kwargs) def mkdirp(path): """Create directory path if it does not already exist.""" try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def rmtree(path): """ Remove directory path and all its subdirectories. This differs from shutil.rmtree() in that it tries to adjust permissions so that deletion will succeed. """ # Some files will not be deletable, so we set permissions that allow # deletion before we try deleting files. for root, dirs, files in os.walk(path): os.chmod(root, 0o755) for f in files: p = os.path.join(root, f) os.chmod(p, 0o644) os.unlink(p) # At this point, we should have a tree of deletable directories. shutil.rmtree(path) def safe_pjoin(dirname, *args): """ Join path components with os.path.join, skipping the first component if it is None. """ if dirname is None: return os.path.join(*args) else: return os.path.join(dirname, *args) def _shquote_impl(txt, escaped_chars, quoted_chars): quoted = re.sub(escaped_chars, r'\\\1', txt) if len(quoted) == len(txt) and not quoted_chars.search(txt): return txt else: return '"' + quoted + '"' _SHQUOTE_POSIX_ESCAPEDCHARS = re.compile(r'(["`$\\])') _SHQUOTE_POSIX_QUOTEDCHARS = re.compile('[|&;<>()\' \t\n]') def shquote_posix(txt): """Return txt, appropriately quoted for POSIX shells.""" return _shquote_impl( txt, _SHQUOTE_POSIX_ESCAPEDCHARS, _SHQUOTE_POSIX_QUOTEDCHARS) _SHQUOTE_WINDOWS_ESCAPEDCHARS = re.compile(r'(["\\])') _SHQUOTE_WINDOWS_QUOTEDCHARS = re.compile('[ \t\n]') def shquote_windows(txt): """Return txt, appropriately quoted for Windows's cmd.exe.""" return _shquote_impl( txt.replace('%', '%%'), _SHQUOTE_WINDOWS_ESCAPEDCHARS, _SHQUOTE_WINDOWS_QUOTEDCHARS) def shquote(txt): """Return txt, appropriately quoted for use in a shell command.""" if os.name in set(('nt', 'os2', 'ce')): return shquote_windows(txt) else: return shquote_posix(txt) def shquote_cmd(cmd): """Convert a list of shell arguments to an appropriately quoted string.""" return ' '.join(map(shquote, cmd))
apache-2.0
-2,361,367,775,517,901,300
25.767442
78
0.631045
false
3.638567
false
false
false
manuvarkey/cmbautomiser
cmbautomiser/openpyxl/cell/read_only.py
1
3984
from __future__ import absolute_import # Copyright (c) 2010-2018 openpyxl import re from openpyxl.compat import unicode, long from openpyxl.cell import Cell from openpyxl.utils import get_column_letter from openpyxl.utils.datetime import from_excel from openpyxl.styles import is_date_format from openpyxl.styles.numbers import BUILTIN_FORMATS FLOAT_REGEX = re.compile(r"\.|[E-e]") def _cast_number(value): "Convert numbers as string to an int or float" m = FLOAT_REGEX.search(value) if m is not None: return float(value) return long(value) class ReadOnlyCell(object): __slots__ = ('parent', 'row', 'column', '_value', 'data_type', '_style_id') def __init__(self, sheet, row, column, value, data_type='n', style_id=0): self.parent = sheet self._value = None self.row = row self.column = column self.data_type = data_type self.value = value self._style_id = style_id def __eq__(self, other): for a in self.__slots__: if getattr(self, a) != getattr(other, a): return return True def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "<ReadOnlyCell {0!r}.{1}>".format(self.parent.title, self.coordinate) @property def shared_strings(self): return self.parent.shared_strings @property def base_date(self): return self.parent.base_date @property def coordinate(self): column = get_column_letter(self.column) return "{1}{0}".format(self.row, column) @property def style_array(self): return self.parent.parent._cell_styles[self._style_id] @property def number_format(self): _id = self.style_array.numFmtId if _id < 164: return BUILTIN_FORMATS.get(_id, "General") else: return self.parent.parent._number_formats[_id - 164] @property def font(self): _id = self.style_array.fontId return self.parent.parent._fonts[_id] @property def fill(self): _id = self.style_array.fillId return self.parent.parent._fills[_id] @property def border(self): _id = self.style_array.borderId return self.parent.parent._borders[_id] @property def alignment(self): _id = self.style_array.alignmentId return self.parent.parent._alignments[_id] @property def protection(self): _id = self.style_array.protectionId return self.parent.parent._protections[_id] @property def is_date(self): return self.data_type == 'n' and is_date_format(self.number_format) @property def internal_value(self): return self._value @property def value(self): if self._value is None: return if self.data_type == 'n': if self.style_array: if is_date_format(self.number_format): return from_excel(self._value, self.base_date) return self._value if self.data_type == 'b': return self._value == '1' elif self.data_type in(Cell.TYPE_INLINE, Cell.TYPE_FORMULA_CACHE_STRING): return unicode(self._value) elif self.data_type == 's': return unicode(self.shared_strings[int(self._value)]) return self._value @value.setter def value(self, value): if self._value is not None: raise AttributeError("Cell is read only") if value is None: self.data_type = 'n' elif self.data_type == 'n': value = _cast_number(value) self._value = value class EmptyCell(object): __slots__ = () value = None is_date = False font = None border = None fill = None number_format = None alignment = None data_type = 'n' def __repr__(self): return "<EmptyCell>" EMPTY_CELL = EmptyCell()
gpl-3.0
7,798,107,740,639,183,000
24.703226
84
0.591616
false
3.702602
false
false
false
enobayram/MHFlib
MHFPython/scripts/figures.py
1
3219
# -*- coding: utf-8 -*- """ Created on Wed Feb 1 11:30:49 2012 @author: eba """ from numpy import * from scipy import * from matplotlib.pyplot import * from MHFPython import * from plotGaussians import * def rotate(x,y,rot): return [x*rot[0,0]+y*rot[0,1],x*rot[1,0]+y*rot[1,1]] theta = arange(-pi,pi,0.01) r = 1; limit = 3.; [x,y] = [r*cos(theta), r*sin(theta)] rotOrig = array([[1.,0.],[1.,1.]]) [xorig,yorig] = rotate(x,y,rotOrig) variances = [0.025,1] stddevs = sqrt(variances) rotMax = array([[stddevs[0],0],[0,stddevs[1]]]) [xmax,ymax] = rotate(x,y,rotMax) figure(1) hold(False) Orig = plot(xorig,yorig) hold(True) Max = plot(xmax,ymax) ylim([-limit,limit]) xlim([-limit,limit]) grid(True) legend([Orig,Max],["Original Gaussian","Maximum Component Size"]) title("2D Gaussian to Split") rotOrigScaled = inv(rotMax).dot(rotOrig) [xorigs,yorigs] = rotate(x,y,rotOrigScaled) rotMaxScaled = inv(rotMax).dot(rotMax) [xmaxs,ymaxs] = rotate(x,y,rotMaxScaled) figure(2) hold(False) OrigS = plot(xorigs,yorigs) hold(True) MaxS = plot(xmaxs,ymaxs) ylim([-limit,limit]) xlim([-limit,limit]) grid(True) legend([OrigS,MaxS],["Original Gaussian","Maximum Component Size"]) title("Scaled Coordinates") POrigScaled = rotOrigScaled.dot(rotOrigScaled.transpose()); eigs,rotDecompose = eig(POrigScaled) rotIndependent = inv(rotDecompose).dot(rotOrigScaled) [xind,yind] = rotate(x,y,rotIndependent) figure(3) hold(False) OrigI = plot(xind,yind) hold(True) MaxI = plot(xmaxs,ymaxs) ylim([-limit,limit]) xlim([-limit,limit]) grid(True) legend([OrigI,MaxI],["Original Gaussian","Maximum Component Size"]) table = SplitTable1('tables/kl1e-1table'); plotvar = eigs[0]; #1D plot of the table entries lim1d = sqrt(plotvar)*4; x = arange(-lim1d,lim1d,lim1d/500) #y = 1/sqrt(2*pi*originalVar)*exp(-1/2*(x*x)/originalVar) y = 1/sqrt(2*pi*plotvar)*exp(-x*x/(2*plotvar)) fig=figure(4) hold(False) orig1d = plot(x, y) hold(True) y = zeros_like(x) entry = table.getUpperEntry(plotvar) entryvar = entry.variance; varRatio = plotvar/entryvar; hyp1d = entry.hypotheses for gh in hyp1d: var = gh.cov(0)*varRatio; mean = gh.mean(0)*sqrt(varRatio); y=1/sqrt(2*pi*var)*exp(-(x-mean)*(x-mean)/(2*var))*gh.weight components = plot(x, y, color = 'green') #savefig('figures/split') legend([OrigI,MaxI],["Original","Components"]) vO = rotOrig.dot(rotOrig.transpose()) original = GaussianHypothesis3(); assign(original.mean,[0,0,0]); assign(original.cov,[vO[0,0],vO[0,1],0, vO[1,0],vO[1,1],0, 0,0,1]); original.weight = 1; variancesMat = MeanMatrix(); assign(variancesMat, [variances[0],variances[1],2]); result = GH3list(); mhf = MultiHypDist3(); split(original, result, variancesMat, table); [x,y] = [r*cos(theta), r*sin(theta)] figure(5) hold(False) Orig = plot(xorig,yorig) hold(True) for gh in result: mean = pyArray(gh.mean) rotGh = cholesky(pyArray(gh.cov)) [xgh,ygh] = rotate(x,y,rotGh[0:2,0:2]) [xghm, yghm] = [xgh+mean[0], ygh+mean[1]] plot(xghm,yghm, color='green') ylim([-limit,limit]) xlim([-limit,limit]) legend([OrigI,MaxI],["Original","Components"]) grid(True) steps = 100 plotGaussian(original,[0,1],limit,steps,6) plotGaussians(result,[0,1], limit, steps, 7, 0.)
bsd-2-clause
-8,608,220,335,965,278,000
21.047945
67
0.680646
false
2.43679
false
false
false
mocnik-science/osm-python-tools
OSMPythonTools/internal/cacheObject.py
1
4281
import hashlib import os import time import ujson import urllib.request import OSMPythonTools class CacheObject: def __init__(self, prefix, endpoint, cacheDir='cache', waitBetweenQueries=None, jsonResult=True): self._prefix = prefix self._endpoint = endpoint self.__cacheDir = cacheDir self.__waitBetweenQueries = waitBetweenQueries self.__lastQuery = None self.__jsonResult = jsonResult def query(self, *args, onlyCached=False, shallow=False, **kwargs): queryString, hashString, params = self._queryString(*args, **kwargs) filename = self.__cacheDir + '/' + self._prefix + '-' + self.__hash(hashString + ('????' + urllib.parse.urlencode(sorted(params.items())) if params else '')) if not os.path.exists(self.__cacheDir): os.makedirs(self.__cacheDir) if os.path.exists(filename): with open(filename, 'r') as file: data = ujson.load(file) elif onlyCached: OSMPythonTools.logger.error('[' + self._prefix + '] data not cached: ' + queryString) return None elif shallow: data = shallow else: OSMPythonTools.logger.warning('[' + self._prefix + '] downloading data: ' + queryString) if self._waitForReady() == None: if self.__lastQuery and self.__waitBetweenQueries and time.time() - self.__lastQuery < self.__waitBetweenQueries: time.sleep(self.__waitBetweenQueries - time.time() + self.__lastQuery) self.__lastQuery = time.time() data = self.__query(queryString, params) with open(filename, 'w') as file: ujson.dump(data, file) result = self._rawToResult(data, queryString, params, shallow=shallow) if not self._isValid(result): msg = '[' + self._prefix + '] error in result (' + filename + '): ' + queryString OSMPythonTools.logger.exception(msg) raise(Exception(msg)) return result def deleteQueryFromCache(self, *args, **kwargs): queryString, hashString, params = self._queryString(*args, **kwargs) filename = self.__cacheDir + '/' + self._prefix + '-' + self.__hash(hashString + ('????' + urllib.parse.urlencode(sorted(params.items())) if params else '')) if os.path.exists(filename): OSMPythonTools.logger.info('[' + self._prefix + '] removing cached data: ' + queryString) os.remove(filename) def _queryString(self, *args, **kwargs): raise(NotImplementedError('Subclass should implement _queryString')) def _queryRequest(self, endpoint, queryString, params={}): raise(NotImplementedError('Subclass should implement _queryRequest')) def _rawToResult(self, data, queryString, params, shallow=False): raise(NotImplementedError('Subclass should implement _rawToResult')) def _isValid(self, result): return True def _waitForReady(self): return None def _userAgent(self): return '%s/%s (%s)' % (OSMPythonTools.pkgName, OSMPythonTools.pkgVersion, OSMPythonTools.pkgUrl) def __hash(self, x): h = hashlib.sha1() h.update(x.encode('utf-8')) return h.hexdigest() def __query(self, requestString, params): request = self._queryRequest(self._endpoint, requestString, params=params) if not isinstance(request, urllib.request.Request): request = urllib.request.Request(request) request.headers['User-Agent'] = self._userAgent() try: response = urllib.request.urlopen(request) except urllib.request.HTTPError as err: msg = 'The requested data could not be downloaded. ' + str(err) OSMPythonTools.logger.exception(msg) raise Exception(msg) except: msg = 'The requested data could not be downloaded. Please check whether your internet connection is working.' OSMPythonTools.logger.exception(msg) raise Exception(msg) encoding = response.info().get_content_charset('utf-8') r = response.read().decode(encoding) return ujson.loads(r) if self.__jsonResult else r
gpl-3.0
-6,900,467,216,144,160,000
44.542553
165
0.61551
false
4.176585
false
false
false
blechta/dolfin-tape
dolfintape/hat_function.py
1
4970
# Copyright (C) 2015 Jan Blechta # # This file is part of dolfin-tape. # # dolfin-tape is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # dolfin-tape is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with dolfin-tape. If not, see <http://www.gnu.org/licenses/>. from dolfin import Expression, cpp, FiniteElement, jit, \ vertices, facets, Vertex, not_working_in_parallel __all__ = ['hat_function_collection', 'hat_function', 'hat_function_grad'] def hat_function_collection(vertex_colors, color, element=None): """Return Expression on given element which takes values: 1 ... if vertex_colors[node] == color 0 ... at other nodes This is well defined just on Lagrange 1 element (default) and Dicontinuous Lagrange 1 element. NOTE: This expression provides a little hack as it lacks continuity across MPI partitions boundaries unless vertex_colors is compatible there. In fact, this behaviour is needed in FluxReconstructor.""" assert isinstance(vertex_colors, cpp.VertexFunctionSizet) mesh = vertex_colors.mesh() if not element: element = FiniteElement('Lagrange', mesh.ufl_cell(), 1) assert element.family() in ['Lagrange', 'Discontinuous Lagrange'] assert element.degree() == 1 ufc_element, ufc_dofmap = jit(element, mpi_comm=mesh.mpi_comm()) dolfin_element = cpp.FiniteElement(ufc_element) e = Expression(hats_cpp_code, element=element, domain=mesh) e.vertex_colors = vertex_colors e.color = color e.dolfin_element = dolfin_element return e hats_cpp_code=""" class HatFunctionCollection : public Expression { public: std::shared_ptr<VertexFunction<std::size_t> > vertex_colors; std::size_t color; std::shared_ptr<FiniteElement> dolfin_element; HatFunctionCollection() : Expression() { } void restrict(double* w, const FiniteElement& element, const Cell& cell, const double* vertex_coordinates, const ufc::cell& ufc_cell) const { if ( cell.mesh_id() == vertex_colors->mesh()->id() && element.hash() == dolfin_element->hash() ) for (VertexIterator v(cell); !v.end(); ++v) *(w++) = (*vertex_colors)[v->index()] == color ? 1.0 : 0.0; else restrict_as_ufc_function(w, element, cell, vertex_coordinates, ufc_cell); } }; """ def hat_function(vertex): """Return Expression on Lagrange degree 1 element which is 1 ... at given 'vertex' 0 ... at other vertices """ assert isinstance(vertex, Vertex) mesh = vertex.mesh() element = FiniteElement('Lagrange', mesh.ufl_cell(), 1) ufc_element, ufc_dofmap = jit(element, mpi_comm=mesh.mpi_comm()) ufc_element = make_ufc_finite_element(ufc_element) dolfin_element = cpp.FiniteElement(ufc_element) e = Expression(hat_cpp_code, element=element, domain=mesh) e.vertex = vertex e.dolfin_element = dolfin_element return e hat_cpp_code=""" #include <dolfin/mesh/Vertex.h> namespace dolfin { class HatFunction : public Expression { public: MeshEntity vertex; std::shared_ptr<FiniteElement> dolfin_element; HatFunction() : Expression() { } void restrict(double* w, const FiniteElement& element, const Cell& cell, const double* vertex_coordinates, const ufc::cell& ufc_cell) const { if ( cell.mesh_id() == vertex.mesh_id() && element.hash() == dolfin_element->hash() ) for (VertexIterator v(cell); !v.end(); ++v) *(w++) = *v == vertex ? 1.0 : 0.0; else restrict_as_ufc_function(w, element, cell, vertex_coordinates, ufc_cell); } }; } """ def hat_function_grad(vertex, cell): """Compute L^\infty-norm of gradient of hat function on 'cell' and value 1 in 'vertex'.""" # TODO: fix using ghosted mesh not_working_in_parallel("function 'hat_function_grad'") assert vertex in vertices(cell), "vertex not in cell!" # Find adjacent facet f = [f for f in facets(cell) if not vertex in vertices(f)] assert len(f) == 1, "Something strange with adjacent cell!" f = f[0] # Get unit normal n = f.normal() n /= n.norm() # Pick some vertex on facet # FIXME: Is it correct index in parallel? facet_vertex_0 = Vertex(cell.mesh(), f.entities(0)[0]) # Compute signed distance from vertex to facet plane d = (facet_vertex_0.point() - vertex.point()).dot(n) # Return norm of gradient assert d != 0.0, "Degenerate cell!" return 1.0/abs(d)
gpl-3.0
-4,066,114,395,403,508,000
30.858974
80
0.663179
false
3.495077
false
false
false
Acehaidrey/incubator-airflow
tests/cluster_policies/__init__.py
1
2187
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Callable, List from airflow.configuration import conf from airflow.exceptions import AirflowClusterPolicyViolation from airflow.models.baseoperator import BaseOperator # [START example_cluster_policy_rule] def task_must_have_owners(task: BaseOperator): if not task.owner or task.owner.lower() == conf.get('operators', 'default_owner'): raise AirflowClusterPolicyViolation( f'''Task must have non-None non-default owner. Current value: {task.owner}''' ) # [END example_cluster_policy_rule] # [START example_list_of_cluster_policy_rules] TASK_RULES: List[Callable[[BaseOperator], None]] = [ task_must_have_owners, ] def _check_task_rules(current_task: BaseOperator): """Check task rules for given task.""" notices = [] for rule in TASK_RULES: try: rule(current_task) except AirflowClusterPolicyViolation as ex: notices.append(str(ex)) if notices: notices_list = " * " + "\n * ".join(notices) raise AirflowClusterPolicyViolation( f"DAG policy violation (DAG ID: {current_task.dag_id}, Path: {current_task.dag.filepath}):\n" f"Notices:\n" f"{notices_list}" ) def cluster_policy(task: BaseOperator): """Ensure Tasks have non-default owners.""" _check_task_rules(task) # [END example_list_of_cluster_policy_rules]
apache-2.0
1,157,787,360,719,644,000
33.171875
105
0.703704
false
3.857143
false
false
false
vondrejc/FFTHomPy
tutorials/03_exact_integration_simple.py
1
4521
from __future__ import division, print_function print(""" Numerical homogenisation based on exact integration, which is described in J. Vondrejc, Improved guaranteed computable bounds on homogenized properties of periodic media by FourierGalerkin method with exact integration, Int. J. Numer. Methods Eng., 2016. This is a self-contained tutorial implementing scalar problem in dim=2 or dim=3 on a unit periodic cell Y=(-0.5,0.5)**dim with a square (2D) or cube (3D) inclusion of size 0.6 (side). The material is identity I in matrix phase and 11*I in inclusion phase. """) import numpy as np import itertools from scipy.sparse.linalg import cg, LinearOperator dim = 3 # number of spatial dimensions N = dim*(5,) # number of discretization points dN = tuple(2*np.array(N)-1) # double grid value vec_shape=(dim,)+dN # indicator function indicating the phase per grid point (square inclusion) P = dim*(5,) # material resolution in each spatial dimension phi = np.zeros(P, dtype='float') if dim==2: phi[1:4, 1:4] = 1 elif dim==3: phi[1:4, 1:4, 1:4] = 1 # material coefficients at grid points C = np.einsum('ij,...->ij...', 11*np.eye(dim), phi) C += np.einsum('ij,...->ij...', 1*np.eye(dim), 1-phi) # tensor products / (inverse) Fourier transform / frequencies dot = lambda A, B: np.einsum('ij...,j...->i...', A, B) fft = lambda x, N: np.fft.fftshift(np.fft.fftn(np.fft.ifftshift(x), N))/np.prod(np.array(N)) ifft = lambda x, N: np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(x), N))*np.prod(np.array(N)) freq_fun = lambda N: np.arange(np.fix(-N/2.), np.fix(N/2.+0.5)) freq = [freq_fun(n) for n in dN] def get_weights(h): # calculation of integral weights of rectangular function Wphi = np.zeros(dN) # integral weights for ind in itertools.product(*[range(n) for n in dN]): Wphi[ind] = np.prod(h) for ii in range(dim): Wphi[ind] *= np.sinc(h[ii]*freq[ii][ind[ii]]) return Wphi def decrease(val, dN): # auxiliary function to remove unnecesary Fourier freq. dN=np.array(dN) N=np.array(val.shape[-dN.size:]) ibeg = np.array(np.fix((N-dN+(dN % 2))/2), dtype=np.int) iend = np.array(np.fix((N+dN+(dN % 2))/2), dtype=np.int) if dN.size==2: return val[:,:,ibeg[0]:iend[0],ibeg[1]:iend[1]] elif dN.size==3: return val[:,:,ibeg[0]:iend[0],ibeg[1]:iend[1],ibeg[2]:iend[2]] ## GRID-BASED COMPOSITE ######### evaluate the matrix of Galerkin approximation hC0 = np.prod(np.array(P))*fft(C, P) if P == dN: hCex = hC0 elif P > dN: hCex = decrease(hC0, dN) elif P < dN: factor = np.max(np.ceil(np.array(dN) / np.array(P))) hCper = np.tile(hC0, int(2*factor-1)*np.ones(dim, dtype=np.int)) hCex = decrease(hCper, dN) Cex = ifft(np.einsum('ij...,...->ij...', hCex, get_weights(1./np.array(P))), dN).real ## INCLUSION-BASED COMPOSITE #### another expression of Cex Wraw = get_weights(0.6*np.ones(dim)) """HINT: the size 0.6 corresponds to the size of square inclusion; it is exactly the size of topology generated by phi, i.e. 3x3 pixels in 5x5 image of PUC with PUC size 1; then 0.6 = 3./5. """ char_square = ifft(Wraw, dN).real Cex2 = np.einsum('ij...,...->ij...', 11*np.eye(dim), char_square) Cex2 += np.einsum('ij...,...->ij...', 1*np.eye(dim), 1.-char_square) ## checking that the Cex2 is the same print('zero check:', np.linalg.norm(Cex-Cex2)) Gamma = np.zeros((dim,dim)+ tuple(dN)) # zero initialize for i,j in itertools.product(range(dim),repeat=2): for ind in itertools.product(*[range(int((dN[k]-N[k])/2), int((dN[k]-N[k])/2+N[k])) for k in range(dim)]): q = np.array([freq[ii][ind[ii]] for ii in range(dim)]) # frequency vector if not q.dot(q) == 0: # zero freq. -> mean Gamma[(i,j)+ind] = -(q[i]*q[j])/(q.dot(q)) # - convert to operators G = lambda X: np.real(ifft(dot(Gamma, fft(X, dN)), dN)).reshape(-1) A = lambda x: dot(Cex, x.reshape(vec_shape)) GA = lambda x: G(A(x)) # initiate strain/stress (2nd order tensor for each grid point) X = np.zeros(vec_shape, dtype=np.float) x = X.reshape(-1) # macroscopic value E = np.zeros_like(X); E[0] = 1. b = -GA(E.reshape(-1)) # iterative solution of the linear system Alinoper = LinearOperator(shape=(x.size, x.size), matvec=GA, dtype=np.float) x, info = cg(A=Alinoper, b=b, x0=X.reshape(-1)) # conjugate gradients state = x.reshape(vec_shape) + E flux = dot(Cex, state) AH_11 = np.sum(flux*state)/np.prod(np.array(dN)) # homogenised properties print('homogenised coefficient (component 11) =', AH_11) print('END')
mit
-5,727,445,794,444,432,000
38.657895
110
0.652068
false
2.673566
false
false
false
srio/shadow3-scripts
script1_ID26.py
1
12878
import numpy from orangecontrib.xoppy.util.xoppy_undulators import xoppy_calc_undulator_power_density, xoppy_calc_undulator_spectrum from orangecontrib.xoppy.util.xoppy_xraylib_util import xpower_calc from orangecontrib.xoppy.util.fit_gaussian2d import fit_gaussian2d, info_params, twoD_Gaussian from srxraylib.plot.gol import plot, plot_image import scipy.constants as codata def calculate_line(photon_energy,undulator_period,N,K,thickness_diamond_mm,distance,slit_h,slit_v,coating,incident_angle_mrad, do_plot=False): print("######################### INPUTS ###################################") print("photon_energy=",photon_energy) print("undulator_period=",undulator_period) print("N=",N) print("K=",K) print("thickness_diamond_mm=",thickness_diamond_mm) print("distance=",distance) print("slit_h=",slit_h) print("coating=",coating) print("incident_angle_mrad=",incident_angle_mrad) print("#######################################################################") out_dictionary = {} # # Spectrum simulation # #ULATTICEFILE S28D.mat #UEPSILONX 1.3166e-10 #UEPSILONY 5e-12 #BETAX = 6.89997 #BETAY = 2.6447 SIGMAX = 30.1836 * 1e-6 SIGMAY = 3.63641 * 1e-6 SIGMAXP = 4.36821 * 1e-6 SIGMAYP = 1.37498 * 1e-6 METHOD = 2 # US=0 URGENT=1 SRW=2 print("\n\n Computing spectrum \n\n") e, f, spectral_power, cumulated_power = \ xoppy_calc_undulator_spectrum(ELECTRONENERGY=6.0,ELECTRONENERGYSPREAD=0.001,ELECTRONCURRENT=0.2,\ ELECTRONBEAMSIZEH=SIGMAX,ELECTRONBEAMSIZEV=SIGMAY,\ ELECTRONBEAMDIVERGENCEH=SIGMAXP,ELECTRONBEAMDIVERGENCEV=SIGMAYP,\ PERIODID=undulator_period,NPERIODS=N,KV=K,DISTANCE=distance,GAPH=slit_h,GAPV=slit_v,\ PHOTONENERGYMIN=1000.0,PHOTONENERGYMAX=100000.0,PHOTONENERGYPOINTS=5000,METHOD=2, USEEMITTANCES=1) power_in_spectrum = f.sum()*1e3*codata.e*(e[1]-e[0]) out_dictionary["power_in_spectrum"] = power_in_spectrum if do_plot: plot(e,spectral_power,title="E = %d keV"%photon_energy) # # optical system # # """ # Apply reflectivities/transmittivities of optical elements on a source spectrum # # :param energies: the array with photon energies in eV # :param source: the spectral intensity or spectral power # :param substance: a list with descriptors of each optical element material # :param flags: a list with 0 (filter or attenuator) or 1 (mirror) for all optical elements # :param dens: a list with densities of o.e. materials. "?" is accepted for looking in the database # :param thick: a list with the thickness in mm for all o.e.'s. Only applicable for filters # :param angle: a list with the grazing angles in mrad for all o.e.'s. Only applicable for mirrors # :param roughness:a list with the roughness RMS in A for all o.e.'s. Only applicable for mirrors # :param output_file: name of the output file (default=None, no output file) # :return: a dictionary with the results # """ optical_system_dictionary = xpower_calc(energies=e,source=spectral_power, substance=["C",coating,coating],flags=[0,1,1],dens=[3.53,2.33,2.33], thick=[thickness_diamond_mm,1,1], angle=[0,incident_angle_mrad,incident_angle_mrad],roughness=[0,0,0], output_file=None) for key in optical_system_dictionary.keys(): print(key) print(optical_system_dictionary["info"]) for i,ilabel in enumerate(optical_system_dictionary["labels"]): print(i,ilabel) # 0 Photon Energy [eV] # 1 Source # 2 [oe 1] Total CS cm2/g # 3 [oe 1] Mu cm^-1 # 4 [oe 1] Transmitivity # 5 [oe 1] Absorption # 6 Intensity after oe #1 # 7 [oe 2] 1-Re[n]=delta # 8 [oe 2] Im[n]=beta # 9 [oe 2] delta/beta # 10 [oe 2] Reflectivity-s # 11 [oe 2] Transmitivity # 12 Intensity after oe #2 # 13 [oe 3] 1-Re[n]=delta # 14 [oe 3] Im[n]=beta # 15 [oe 3] delta/beta # 16 [oe 3] Reflectivity-s # 17 [oe 3] Transmitivity # 18 Intensity after oe #3 print(optical_system_dictionary["data"].shape) # I would be interested in: # # - Total Power [W] emitted in the slit aperture: power_in_spectrum # # - Absorbed Power [W] by Diamond Window: integral of col6-col1 # # - Absorbed Power [W] for 1rst and 2nd mirrors: : integral of col112-col6 and integral of col18-col12 # # - Fitted parameters from the power density distribution calculated in a 5*5 mm slit aperture: # # - Maximum value [W/mm2] # # - Gaussian Fit parameters for both axis: FWHM [mm] I0 = numpy.trapz( optical_system_dictionary["data"][1,:], x=e, axis=-1) I1 = numpy.trapz( optical_system_dictionary["data"][6,:], x=e, axis=-1) I2 = numpy.trapz( optical_system_dictionary["data"][12,:], x=e, axis=-1) I3 = numpy.trapz( optical_system_dictionary["data"][18,:], x=e, axis=-1) print("Source power: ",I0) print(" after diamond: ",I1) print(" after M1: ",I2) print(" after M2: ",I3) out_dictionary["diamond_absorbed"] = I0-I1 out_dictionary["m1_absorbed"] = I1-I2 out_dictionary["m2_absorbed"] = I2-I3 # # power density # h, v, p, code = xoppy_calc_undulator_power_density(ELECTRONENERGY=6.0,ELECTRONENERGYSPREAD=0.001,ELECTRONCURRENT=0.2,\ ELECTRONBEAMSIZEH=SIGMAX,ELECTRONBEAMSIZEV=SIGMAY,\ ELECTRONBEAMDIVERGENCEH=SIGMAXP,ELECTRONBEAMDIVERGENCEV=SIGMAYP,\ PERIODID=undulator_period,NPERIODS=N,KV=K,DISTANCE=distance,GAPH=5e-3,GAPV=5e-3,\ HSLITPOINTS=101,VSLITPOINTS=101,METHOD=2,USEEMITTANCES=1) if do_plot: plot_image(p,h,v,title="power density E = %d keV"%photon_energy) # # fit power density # print("============= Fitting power density to a 2D Gaussian. ==============\n") print("Please use these results with care: check if the original data looks like a Gaussian.") fit_parameters = fit_gaussian2d(p,h,v) print(info_params(fit_parameters)) H,V = numpy.meshgrid(h,v) data_fitted = twoD_Gaussian( (H,V), *fit_parameters) power_in_spectrum = p.sum()*(h[1]-h[0])*(v[1]-v[0]) print(" Total power in the calculated data [W]: ",power_in_spectrum) power_in_spectrum_fit = data_fitted.sum()*(h[1]-h[0])*(v[1]-v[0]) print(" Total power in the fitted data [W]: ",power_in_spectrum_fit) # plot_image(data_fitted.reshape((h.size,v.size)),h, v,title="FIT") print("====================================================\n") if do_plot: data_fitted.shape = (h.size,v.size) plot_image(data_fitted,h,v,title="FITTED power density E = %d keV"%photon_energy) out_dictionary["fit_parameters"] = fit_parameters out_dictionary["fit_percent_difference"] = 100 * (power_in_spectrum_fit - power_in_spectrum) / power_in_spectrum return out_dictionary if __name__ == "__main__": Energy_keV = [ 2.043 , 2.44 , 2.44 , 4 , 4 , 5.9 , 5.9 , 5.9 , 10 , 10 , 15 , 24 , 24 , 30 ] #Undulator = [ U35 , U35 , U35 , U35 , U35 , U35 ,U35 , U35, U35 , U35, U35, U35, U35, U35 ] lambda0_cm = [ 3.5 , 3.5 , 3.5 , 3.5 , 3.5 , 3.5 ,3.5 , 3.5, 3.5 , 3.5, 3.5, 3.5, 3.5, 3.5 ] N = [ 47 , 47 , 47 , 47 , 47 , 47 ,47 , 47, 47 , 47, 47, 47, 47, 47 ] K = [ 2.75 , 2.45 , 2.45 , 1.67 , 1.67 , 1.12 ,1.12 , 1.12 , 1.94 , 1.94 , 1.36 , 1.41 , 1.41 , 1.09 ] Diamond_window_thickness_mm = [ 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 0.0 ] Distance_from_source_m = [ 29.2 , 29.2 , 29.2 , 29.2 , 29.2 , 29.2 , 29.2 , 29.2, 29.2 , 29.2, 29.2, 29.2, 29.2, 29.2 ] H_mm = [ 2.8 , 2.8 , 2.2 , 2.2 , 1.4 , 2.00 , 1.4 , 1.00, 1.00 , 1.00, 1.00, 1.00, 1.00, 1.00 ] V_mm = [ 0.875 , 0.801 , 0.801 , 0.628 , 0.628 , 0.515 , 0.515 , 0.515, 0.403 , 0.403, 0.333, 0.268, 0.268, 0.243 ] Coating = [ "Si" , "Cr" , "Si" , "Cr" , "Si" , "Cr" , "Cr" , "Si" , "Si" , "Pd" , "Pd" , "Pt", "Pd" , "Pt"] Incident_angle_mrad = [ 7 , 7 , 5.5 , 5.5 , 3.5 , 5 , 3.5 , 2.5, 2.5 , 2.5, 2.5, 2.5, 2.5, 2.5 ] # # calculation loop # out_dictionaries = [] for i,photon_energy in enumerate(Energy_keV): out_dictionary = calculate_line(photon_energy,1e-2*lambda0_cm[i],N[i],K[i],Diamond_window_thickness_mm[i], Distance_from_source_m[i],1e-3*H_mm[i],1e-3*V_mm[i],Coating[i],Incident_angle_mrad[i], do_plot=False) out_dictionaries.append(out_dictionary) # # prepare text output # text_output = "" titles = ["energy_kev","power_in_spectrum","diamond_absorbed","m1_absorbed","m2_absorbed"] text_output += (" %20s %20s %20s %20s %20s \n")%(tuple(titles)) for i in range(len(out_dictionaries)): text_output += ("%20d %20.3f %20.3f %20.3f %20.3f \n")%( Energy_keV[i], out_dictionaries[i]["power_in_spectrum"], out_dictionaries[i]["diamond_absorbed"], out_dictionaries[i]["m1_absorbed"], out_dictionaries[i]["m2_absorbed"]) text_fit = "" titles_fit = ["energy_kev","Height A: ","center x0:","center y0","sigmax","sigmay","angle","offset","fit difference"] text_fit += ("%20s %20s %20s %20s %20s %20s %20s %20s %20s\n")%(tuple(titles_fit)) for i in range(len(out_dictionaries)): text_fit += ("%20.3f %20.3f %20.3f %20.3f %20.3f %20.3f %20.3f %20.3f %20.3f \n")%( Energy_keV[i], out_dictionaries[i]["fit_parameters"][0], out_dictionaries[i]["fit_parameters"][1], out_dictionaries[i]["fit_parameters"][2], out_dictionaries[i]["fit_parameters"][3], out_dictionaries[i]["fit_parameters"][4], out_dictionaries[i]["fit_parameters"][5], out_dictionaries[i]["fit_parameters"][6], out_dictionaries[i]["fit_percent_difference"]) text_full = "" titles = ["energy_kev","power_in_spectrum","diamond_absorbed","m1_absorbed","m2_absorbed","Height A: ","sigmax","sigmay","offset","fit difference"] text_full += (" %20s %20s %20s %20s %20s %20s %20s %20s %20s %20s \n")%(tuple(titles)) for i in range(len(out_dictionaries)): text_full += ("%20.3f %20.3f %20.3f %20.3f %20.3f %20.3f %20.3f %20.3f %20.3f %20.3f \n")%( Energy_keV[i], out_dictionaries[i]["power_in_spectrum"], out_dictionaries[i]["diamond_absorbed"], out_dictionaries[i]["m1_absorbed"], out_dictionaries[i]["m2_absorbed"], out_dictionaries[i]["fit_parameters"][0], out_dictionaries[i]["fit_parameters"][3], out_dictionaries[i]["fit_parameters"][4], out_dictionaries[i]["fit_parameters"][6], out_dictionaries[i]["fit_percent_difference"] ) print(text_output) print(text_fit) print(text_full) # # dump to file # f = open("script1_ID26_v1.txt",'w') #f.write(text_output) #f.write("\n\n\n") #f.write(text_fit) #f.write("\n\n\n") f.write(text_full) f.close() print("File written to disk: script1_ID26_v1.txt")
mit
-5,591,580,236,130,774,000
44.34507
178
0.516773
false
3.136386
false
false
false
LxiaoGirl/sqlmapTamper
unicodetobypasswaf.py
1
1384
#!/usr/bin/env python """ Copyright (c) 2015 @xiaoL (http://xlixli.net/) """ import os import string from lib.core.enums import PRIORITY from lib.core.common import singleTimeWarnMessage __priority__ = PRIORITY.LOWEST def dependencies(): singleTimeWarnMessage("tamper script '%s' is only meant to be run against WAF on IIS") def tamper(payload, **kwargs): """ IIS Unicode-url-encodes WideChar To MultiByte bypass weak web application firewalls Requirement: * IIS Tested against: * WAF Reference: * http://blog.sina.com.cn/s/blog_85e506df0102vo9s.html Notes: * Useful to bypass weak web application firewalls tamper('SELECT FIELD%20FROM TABLE') 'S%u00F0L%u00F0C%u00DE FI%u00F0L%u00D0%20FR%u00BAM %u00DE%u00AABL%u00F0' """ change_char = {'1': 'B9', '2': 'B2', '3': 'B3', 'D': 'D0', 'T': 'DE', 'Y': 'DD', 'a': 'AA', 'e': 'F0', 'o': 'BA', 't': 'FE', 'y': 'FD', '|': 'A6', 'd': 'D0', 'A': 'AA', 'E': 'F0', 'O': 'BA'} ret_val = payload if payload: ret_val = "" i = 0 while i < len(payload): if payload[i] in change_char.keys(): ret_val += "%%u00%s" % change_char.get(payload[i]) else: ret_val += payload[i] i += 1 return ret_val
gpl-2.0
6,264,521,854,367,625,000
23.280702
90
0.537572
false
2.995671
false
false
false
kebarr/Geist
geist/backends/windows.py
1
14357
from __future__ import division, absolute_import, print_function import numpy import subprocess import shlex import ctypes from ctypes import ( byref, WINFUNCTYPE, c_ubyte, sizeof, POINTER, Structure, ) from ctypes.wintypes import ( POINT, RECT, DWORD, LPARAM, HWND, BOOL, WCHAR, LONG, WORD ) from geist.finders import Location, LocationList from ._common import BackendActionBuilder from . import logger class _ActionsTransaction(object): def __init__(self, backend): self._actions_builder = BackendActionBuilder(backend) def __enter__(self): return self._actions_builder def __exit__(self, *args): self._actions_builder.execute() return False _USER32 = ctypes.windll.USER32 _GDI32 = ctypes.windll.GDI32 class _RGBQUAD(Structure): _fields_ = [ ('rgbBlue', c_ubyte), ('rgbGreen', c_ubyte), ('rgbRed', c_ubyte), ('rgbReserved', c_ubyte), ] class _BITMAPINFOHEADER(Structure): _fields_ = [ ('biSize', DWORD), ('biWidth', LONG), ('biHeight', LONG), ('biPlanes', WORD), ('biBitCount', WORD), ('biCompression', WORD), ('biSizeImage', DWORD), ('biXPelsPerMeter', LONG), ('biYPelsPerMeter', LONG), ('biClrUsed', DWORD), ('biClrImportant', DWORD) ] class _BITMAPINFO(Structure): _fields_ = [ ('bmiHeader', _BITMAPINFOHEADER), ('bmiColors', (_RGBQUAD * 1)) ] _DIB_RGB_COLORS = 0 class GeistWindowsBackend(object): SRCCOPY = 0xCC0020 SM_CXVIRTUALSCREEN, SM_CYVIRTUALSCREEN = 78, 79 BITSPIXEL = 12 def __init__(self, **kwargs): self._mouse = _Mouse() self._keyboard = _KeyBoard() logger.info("Created GeistWindowsBackend") def create_process(self, command): dev_null = open('NUL', 'w') process = subprocess.Popen( shlex.split(command), stdout=dev_null, stderr=subprocess.STDOUT ) return Process(process.pid) def actions_transaction(self): return _ActionsTransaction(self) def capture_locations(self): hwnd = _USER32.GetDesktopWindow() width, height = ( _USER32.GetSystemMetrics(GeistWindowsBackend.SM_CXVIRTUALSCREEN), _USER32.GetSystemMetrics(GeistWindowsBackend.SM_CYVIRTUALSCREEN) ) desktop_dc = _USER32.GetWindowDC(hwnd) capture_dc = _GDI32.CreateCompatibleDC(desktop_dc) # Check that the screen has bit depth of 32 bits = _GDI32.GetDeviceCaps(desktop_dc, GeistWindowsBackend.BITSPIXEL) if bits != 32: raise NotImplementedError( "Geist only supports displays with a bit depth of 32 (%d)" % bits) bmp = _GDI32.CreateCompatibleBitmap(desktop_dc, width, height) _GDI32.SelectObject(capture_dc, bmp) _GDI32.BitBlt( capture_dc, 0, 0, width, height, desktop_dc, 0, 0, GeistWindowsBackend.SRCCOPY ) bmp_info = _BITMAPINFO() bmp_info.bmiHeader.biSize = sizeof(bmp_info) bmp_info.bmiHeader.biPlanes = 1 bmp_info.bmiHeader.biBitCount = 32 bmp_info.bmiHeader.biWidth = width bmp_info.bmiHeader.biHeight = -height memarray = numpy.ndarray((height, width), dtype='4B') _GDI32.GetDIBits( capture_dc, bmp, 0, height, memarray.ctypes.data_as(POINTER(c_ubyte)), byref(bmp_info), _DIB_RGB_COLORS ) _GDI32.DeleteObject(bmp) _GDI32.DeleteDC(capture_dc) _GDI32.DeleteDC(desktop_dc) #strip alpha and reverse bgr to rgb image = memarray[:, :, 2::-1] return LocationList([Location(0, 0, width, height, image=image)]) def key_down(self, name): self._keyboard.key_down(name) def key_up(self, name): self._keyboard.key_up(name) def button_down(self, button_num): self._mouse.button_down(button_num) def button_up(self, button_num): self._mouse.button_up(button_num) def move(self, point): self._mouse.move(point) def cursor_position(self): return self._mouse.cursor_position() def close(self): pass def __del__(self): self.close() class _KeyBoard(object): KEYEVENTF_KEYUP = 0x0002 KEYEVENTF_KEYDOWN = 0x0000 NAME_TO_VK_MAP = { 'page down': 0x22, 'page up': 0x21, 'end': 0x23, 'home': 0x24, 'shift': 0x10, 'menu': 0x12, 'control': 0x11, 'down': 0x28, 'up': 0x26, 'left': 0x25, 'right': 0x27, 'lshift': 0xA0, 'rshift': 0xA1, 'escape': 0x1B, } NAME_TO_CHAR_MAP = { 'return': '\r', 'space': ' ', 'tab': '\t', 'period': '.', 'minus': '-', 'colon': ':', 'backslash': '\\', 'underscore': '_', 'exclam': '!', 'fslash': '/', 'greaterthan':'>', } def _convert_keyname_to_virtual_key(self, name): if name in _KeyBoard.NAME_TO_VK_MAP: return _KeyBoard.NAME_TO_VK_MAP[name] elif name in _KeyBoard.NAME_TO_CHAR_MAP: char = _KeyBoard.NAME_TO_CHAR_MAP[name] else: char = name assert len(char) == 1, "can not convert %r" % (char,) return _USER32.VkKeyScanW(WCHAR(char)) & 0xFF def _map_virtual_key(self, key): return _USER32.MapVirtualKeyA(key & 0xff, 0) def key_down(self, name): vkey = self._convert_keyname_to_virtual_key(name) scan = self._map_virtual_key(vkey) _USER32.keybd_event(vkey, scan, _KeyBoard.KEYEVENTF_KEYDOWN, None) def key_up(self, name): vkey = self._convert_keyname_to_virtual_key(name) scan = self._map_virtual_key(vkey) _USER32.keybd_event(vkey, scan, _KeyBoard.KEYEVENTF_KEYUP, None) class _Mouse(object): MOUSEEVENTF_MOVE = 0x0001 MOUSEEVENTF_LEFTDOWN = 0x0002 MOUSEEVENTF_LEFTUP = 0x0004 MOUSEEVENTF_RIGHTDOWN = 0x0008 MOUSEEVENTF_RIGHTUP = 0x0010 MOUSEEVENTF_MIDDLEDOWN = 0x0020 MOUSEEVENTF_MIDDLEUP = 0x0040 MOUSEEVENTF_WHEEL = 0x0800 MOUSEEVENTF_VIRTUALDESK = 0x4000 MOUSEEVENTF_ABSOLUTE = 0x8000 SPI_SETMOUSE = 0x0004 SPI_SETMOUSESPEED = 0x0071 SM_CXSCREEN = 0 SM_CYSCREEN = 1 LEFT_BUTTON, MIDDLE_BUTTON, RIGHT_BUTTON = [1, 2, 3] def _normalize_coords(self, point): norm = 65535 x, y = point w = _USER32.GetSystemMetrics(_Mouse.SM_CXSCREEN) h = _USER32.GetSystemMetrics(_Mouse.SM_CYSCREEN) return (int(x * (norm / w)), int(y * (norm/h))) def move(self, point): _USER32.SetCursorPos(*point) def cursor_position(self): point = POINT() _USER32.GetCursorPos(byref(point)) return point.x, point.y def scroll(lines): _USER32.mouse_event( _Mouse.MOUSEEVENTF_WHEEL, 0, 0, int(120 * lines), None ) def button_down(self, button): _USER32.mouse_event(self._map_button_down(button), 0, 0, 0, None) def button_up(self, button): _USER32.mouse_event(self._map_button_up(button), 0, 0, 0, None) def _map_button_down(self, button): assert button in [ _Mouse.LEFT_BUTTON, _Mouse.MIDDLE_BUTTON, _Mouse.RIGHT_BUTTON ] return [ _Mouse.MOUSEEVENTF_LEFTDOWN, _Mouse.MOUSEEVENTF_MIDDLEDOWN, _Mouse.MOUSEEVENTF_RIGHTDOWN ][button - 1] def _map_button_up(self, button): assert button in [ _Mouse.LEFT_BUTTON, _Mouse.MIDDLE_BUTTON, _Mouse.RIGHT_BUTTON ] return [ _Mouse.MOUSEEVENTF_LEFTUP, _Mouse.MOUSEEVENTF_MIDDLEUP, _Mouse.MOUSEEVENTF_RIGHTUP ][button - 1] _EnumWindowsProc = WINFUNCTYPE(BOOL, HWND, LPARAM) def hwnd_to_pid(hwnd): pid = DWORD() _USER32.GetWindowThreadProcessId(int(hwnd), byref(pid)) return pid.value class Process(object): def __init__(self, pid): self.__pid = int(pid) @property def pid(self): return self.__pid def destroy(self): subprocess.call( 'taskkill /F /T /PID %d' % (self.pid), shell=True ) def get_window(self): found_hwnd = [] def callback(hwnd, data): found_pid = hwnd_to_pid(hwnd) if found_pid == self.pid: found_hwnd.append(hwnd) return False return True _USER32.EnumWindows(_EnumWindowsProc(callback), 0) if found_hwnd: return Window(found_hwnd[0]).get_root() return None def get_all_windows(): windows = [] def callback(hwnd, data): windows.append(Window(hwnd)) return True _USER32.EnumDesktopWindows(None, _EnumWindowsProc(callback), 0) return windows def get_window_at(x, y): point = POINT() point.x, point.y = x, y hwnd = ctypes.windll.user32.WindowFromPoint(point) if not hwnd: return None else: return Window(hwnd) class Window(object): SWP_NOOWNERZORDER = 0x0200 SWP_NOSENDCHANGING = 0x0400 SW_SHOWMAXIMIZED = 3 SW_SHOWMINIMIZED = 2 BITSPIXEL = 12 def __init__(self, hwnd): self.__hwnd = int(hwnd) def _rect(self): rect = RECT() _USER32.GetWindowRect(self.__hwnd, byref(rect)) return ( rect.left, rect.top, (rect.right - rect.left), (rect.bottom - rect.top), ) def set_position(self, rect): x, y, w, h = rect _USER32.SetWindowPos( self.__hwnd, 0, x, y, w, h, Window.SWP_NOSENDCHANGING | Window.SWP_NOOWNERZORDER ) @property def title(self): max_len = 128 text = (WCHAR*max_len)() _USER32.GetWindowTextW(self.__hwnd, text, max_len) return text.value @property def classname(self): max_len = 128 text = (WCHAR*max_len)() _USER32.GetClassNameW(self.__hwnd, text, max_len) return text.value @property def visible(self): return bool(_USER32.IsWindowVisible(self.__hwnd)) def switch_to(self): _USER32.SwitchToThisWindow(self.__hwnd, False) def maximise(self): """Maximise the window and return True if previously visible""" return bool(_USER32.ShowWindow(self.__hwnd, Window.SW_SHOWMAXIMIZED)) def minimise(self): """Minimise the window and return True if previously visible""" return bool(_USER32.ShowWindow(self.__hwnd, Window.SW_SHOWMINIMIZED)) def get_process(self): return Process(hwnd_to_pid(self.__hwnd)) def get_root(self): hwnd = self.__hwnd while _USER32.GetParent(hwnd): hwnd = _USER32.GetParent(hwnd) if hwnd == self.__hwnd: return self else: return Window(hwnd) def __hash__(self): return self.__hwnd def __eq__(self, other): try: return self.__hwnd == other.__hwnd except: return False def capture_locations(self): x, y, width, height = self._rect() window_dc = _USER32.GetWindowDC(self.__hwnd) capture_dc = _GDI32.CreateCompatibleDC(window_dc) # Check that the screen has bit depth of 32 bits = _GDI32.GetDeviceCaps(window_dc, Window.BITSPIXEL) if bits != 32: raise NotImplementedError( "Geist only supports displays with a bit depth of 32 (%d)" % bits) bmp = _GDI32.CreateCompatibleBitmap(window_dc, width, height) _GDI32.SelectObject(capture_dc, bmp) _USER32.PrintWindow(self.__hwnd, capture_dc, 0) bmp_info = _BITMAPINFO() bmp_info.bmiHeader.biSize = sizeof(bmp_info) bmp_info.bmiHeader.biPlanes = 1 bmp_info.bmiHeader.biBitCount = 32 bmp_info.bmiHeader.biWidth = width bmp_info.bmiHeader.biHeight = -height memarray = numpy.ndarray((height, width), dtype='4B') _GDI32.GetDIBits( capture_dc, bmp, 0, height, memarray.ctypes.data_as(POINTER(c_ubyte)), byref(bmp_info), _DIB_RGB_COLORS ) _GDI32.DeleteObject(bmp) _GDI32.DeleteDC(capture_dc) _GDI32.DeleteDC(window_dc) #strip alpha and reverse bgr to rgb image = memarray[:, :, 2::-1] return LocationList([Location(x, y, width, height, image=image)]) def get_child_window_at(self, x, y): point = POINT() point.x, point.y = x, y child_hwnd = ctypes.windll.user32.RealChildWindowFromPoint( self.__hwnd, point ) if not child_hwnd: return None else: return Window(child_hwnd) def client_area_rect(self): client_rect = RECT() win_rect = RECT() offset = POINT() _USER32.GetClientRect(self.__hwnd, byref(client_rect)) _USER32.GetWindowRect(self.__hwnd, byref(win_rect)) _USER32.ClientToScreen(self.__hwnd, byref(offset)) x = offset.x - win_rect.left y = offset.y - win_rect.top w = client_rect.right h = client_rect.bottom return x, y, w, h def __repr__(self): return "Window(hwnd=%r, title=%r, classname=%r)" % ( self.__hwnd, self.title, self.classname )
mit
-8,654,186,419,630,648,000
25.451243
78
0.543498
false
3.578514
false
false
false
brentd-smith/smolkinsite
songs/migrations/0001_initial.py
1
4209
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-04-13 19:46 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='BookName', fields=[ ('name', models.CharField(max_length=64, primary_key=True, serialize=False)), ('display', models.CharField(max_length=64)), ('seq_number', models.PositiveSmallIntegerField()), ], ), migrations.CreateModel( name='HaftarahReading', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('extension', models.CharField(choices=[('mp3', 'mp3'), ('pdf', 'pdf'), ('jpg', 'jpg')], default='mp3', max_length=3)), ('s3_obj_key', models.CharField(max_length=2048)), ('seq_number', models.PositiveSmallIntegerField()), ('file_name', models.CharField(max_length=128)), ], ), migrations.CreateModel( name='ParshaName', fields=[ ('name', models.CharField(max_length=64, primary_key=True, serialize=False)), ('display', models.CharField(max_length=64)), ('seq_number', models.PositiveSmallIntegerField()), ('book_name', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='songs.BookName')), ], ), migrations.CreateModel( name='ServiceName', fields=[ ('name', models.CharField(max_length=64, primary_key=True, serialize=False)), ('display', models.CharField(max_length=64)), ('seq_number', models.PositiveSmallIntegerField()), ], ), migrations.CreateModel( name='Song', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ('display', models.CharField(max_length=128)), ('s3_obj_key', models.CharField(max_length=2048)), ('extension', models.CharField(choices=[('mp3', 'mp3'), ('pdf', 'pdf'), ('jpg', 'jpg')], default='mp3', max_length=3)), ('page_number', models.PositiveSmallIntegerField()), ('seq_number', models.PositiveSmallIntegerField()), ('file_name', models.CharField(max_length=128)), ('service_name', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='songs.ServiceName')), ], ), migrations.CreateModel( name='TorahReading', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('triennial', models.CharField(choices=[(None, None), ('1st', '1st Triennial'), ('2nd', '2nd Triennial'), ('3rd', '3rd Triennial')], default='1st', max_length=3)), ('aliyah', models.CharField(choices=[(None, None), ('1st', '1st Aliyah'), ('2nd', '2nd Aliyah'), ('3rd', '3rd Aliyah'), ('4th', '4th Aliyah'), ('5th', '5th Aliyah'), ('6th', '6th Aliyah'), ('7th', '7th Aliyah'), ('Maftir', 'Maftir')], default='1st', max_length=6)), ('extension', models.CharField(choices=[('mp3', 'mp3'), ('pdf', 'pdf'), ('jpg', 'jpg')], default='mp3', max_length=3)), ('s3_obj_key', models.CharField(max_length=2048)), ('seq_number', models.PositiveSmallIntegerField()), ('file_name', models.CharField(max_length=128)), ('parsha', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='songs.ParshaName')), ], ), migrations.AddField( model_name='haftarahreading', name='parsha', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='songs.ParshaName'), ), ]
gpl-3.0
6,483,843,645,224,168,000
49.107143
281
0.552388
false
4.000951
false
false
false
pkgw/pwkit
pwkit/bblocks.py
1
16546
# -*- mode: python; coding: utf-8 -*- # Copyright 2014 Peter Williams <peter@newton.cx> and collaborators. # Licensed under the MIT License. """pwkit.bblocks - Bayesian Blocks analysis, with a few extensions. Bayesian Blocks analysis for the "time tagged" case described by Scargle+ 2013. Inspired by the bayesian_blocks implementation by Jake Vanderplas in the AstroML package, but that turned out to have some limitations. We have iterative determination of the best number of blocks (using an ad-hoc routine described in Scargle+ 2013) and bootstrap-based determination of uncertainties on the block heights (ditto). Functions are: :func:`bin_bblock` Bayesian Blocks analysis with counts and bins. :func:`tt_bblock` BB analysis of time-tagged events. :func:`bs_tt_bblock` Like :func:`tt_bblock` with bootstrap-based uncertainty assessment. NOTE: the uncertainties are not very reliable! """ from __future__ import absolute_import, division, print_function, unicode_literals __all__ = str ('nlogn bin_bblock tt_bblock bs_tt_bblock').split () from six.moves import range import numpy as np from . import Holder def nlogn (n, dt): # I really feel like there must be a cleverer way to do this # scalar-or-vector possible-bad-value masking. if np.isscalar (n): if n == 0: return 0. return n * (np.log (n) - np.log (dt)) n = np.asarray (n) mask = (n == 0) r = n * (np.log (np.where (mask, 1, n)) - np.log (dt)) return np.where (mask, 0, r) def bin_bblock (widths, counts, p0=0.05): """Fundamental Bayesian Blocks algorithm. Arguments: widths - Array of consecutive cell widths. counts - Array of numbers of counts in each cell. p0=0.05 - Probability of preferring solutions with additional bins. Returns a Holder with: blockstarts - Start times of output blocks. counts - Number of events in each output block. finalp0 - Final value of p0, after iteration to minimize `nblocks`. nblocks - Number of output blocks. ncells - Number of input cells/bins. origp0 - Original value of p0. rates - Event rate associated with each block. widths - Width of each output block. """ widths = np.asarray (widths) counts = np.asarray (counts) ncells = widths.size origp0 = p0 if np.any (widths <= 0): raise ValueError ('bin widths must be positive') if widths.size != counts.size: raise ValueError ('widths and counts must have same size') if p0 < 0 or p0 >= 1.: raise ValueError ('p0 must lie within [0, 1)') vedges = np.cumsum (np.concatenate (([0], widths))) # size: ncells + 1 block_remainders = vedges[-1] - vedges # size: nedges = ncells + 1 ccounts = np.cumsum (np.concatenate (([0], counts))) count_remainders = ccounts[-1] - ccounts prev_blockstarts = None best = np.zeros (ncells, dtype=np.float) last = np.zeros (ncells, dtype=np.int) for _ in range (10): # Pluggable num-change-points prior-weight expression: ncp_prior = 4 - np.log (p0 / (0.0136 * ncells**0.478)) for r in range (ncells): tk = block_remainders[:r+1] - block_remainders[r+1] nk = count_remainders[:r+1] - count_remainders[r+1] # Pluggable fitness expression: fit_vec = nlogn (nk, tk) # This incrementally penalizes partitions with more blocks: tmp = fit_vec - ncp_prior tmp[1:] += best[:r] imax = np.argmax (tmp) last[r] = imax best[r] = tmp[imax] # different semantics than Scargle impl: our blockstarts is similar to # their changepoints, but we always finish with blockstarts[0] = 0. work = np.zeros (ncells, dtype=int) workidx = 0 ind = last[-1] while True: work[workidx] = ind workidx += 1 if ind == 0: break ind = last[ind - 1] blockstarts = work[:workidx][::-1] if prev_blockstarts is not None: if (blockstarts.size == prev_blockstarts.size and (blockstarts == prev_blockstarts).all ()): break # converged if blockstarts.size == 1: break # can't shrink any farther # Recommended ad-hoc iteration to favor fewer blocks above and beyond # the value of p0: p0 = 1. - (1. - p0)**(1. / (blockstarts.size - 1)) prev_blockstarts = blockstarts assert blockstarts[0] == 0 nblocks = blockstarts.size info = Holder () info.ncells = ncells info.nblocks = nblocks info.origp0 = origp0 info.finalp0 = p0 info.blockstarts = blockstarts info.counts = np.empty (nblocks, dtype=np.int) info.widths = np.empty (nblocks) for iblk in range (nblocks): cellstart = blockstarts[iblk] if iblk == nblocks - 1: cellend = ncells - 1 else: cellend = blockstarts[iblk+1] - 1 info.widths[iblk] = widths[cellstart:cellend+1].sum () info.counts[iblk] = counts[cellstart:cellend+1].sum () info.rates = info.counts / info.widths return info def tt_bblock (tstarts, tstops, times, p0=0.05, intersect_with_bins=False): """Bayesian Blocks for time-tagged events. Arguments: *tstarts* Array of input bin start times. *tstops* Array of input bin stop times. *times* Array of event arrival times. *p0* = 0.05 Probability of preferring solutions with additional bins. *intersect_with_bins* = False If true, intersect bblock bins with input bins; can result in more bins than bblocks wants; they will have the same rate values. Returns a Holder with: *counts* Number of events in each output block. *finalp0* Final value of p0, after iteration to minimize `nblocks`. *ledges* Times of left edges of output blocks. *midpoints* Times of midpoints of output blocks. *nblocks* Number of output blocks. *ncells* Number of input cells/bins. *origp0* Original value of p0. *rates* Event rate associated with each block. *redges* Times of right edges of output blocks. *widths* Width of each output block. Bin start/stop times are best derived from a 1D Voronoi tesselation of the event arrival times, with some kind of global observation start/stop time setting the extreme edges. Or they can be set from "good time intervals" if observations were toggled on or off as in an X-ray telescope. If *intersect_with_bins* is True, the true Bayesian Blocks bins (BBBs) are intersected with the "good time intervals" (GTIs) defined by the *tstarts* and *tstops* variables. One GTI may contain multiple BBBs if the event rate appears to change within the GTI, and one BBB may span multiple GTIs if the event date does *not* appear to change between the GTIs. The intersection will ensure that no BBB intervals cross the edge of a GTI. If this would happen, the BBB is split into multiple, partially redundant records. Each of these records will have the **same** value for the *counts*, *rates*, and *widths* values. However, the *ledges*, *redges*, and *midpoints* values will be recalculated. Note that in this mode, it is not necessarily true that ``widths = ledges - redges`` as is usually the case. When this flag is true, keep in mind that multiple bins are therefore *not* necessarily independent statistical samples. """ tstarts = np.asarray (tstarts) tstops = np.asarray (tstops) times = np.asarray (times) if tstarts.size != tstops.size: raise ValueError ('must have same number of starts and stops') ngti = tstarts.size if ngti < 1: raise ValueError ('must have at least one goodtime interval') if np.any ((tstarts[1:] - tstarts[:-1]) <= 0): raise ValueError ('tstarts must be ordered and distinct') if np.any ((tstops[1:] - tstops[:-1]) <= 0): raise ValueError ('tstops must be ordered and distinct') if np.any (tstarts >= tstops): raise ValueError ('tstarts must come before tstops') if np.any ((times[1:] - times[:-1]) < 0): raise ValueError ('times must be ordered') if times.min () < tstarts[0]: raise ValueError ('no times may be smaller than first tstart') if times.max () > tstops[-1]: raise ValueError ('no times may be larger than last tstop') for i in range (1, ngti): if np.where ((times > tstops[i-1]) & (times < tstarts[i]))[0].size: raise ValueError ('no times may fall in goodtime gap #%d' % i) if p0 < 0 or p0 >= 1.: raise ValueError ('p0 must lie within [0, 1)') utimes, uidxs = np.unique (times, return_index=True) nunique = utimes.size counts = np.empty (nunique) counts[:-1] = uidxs[1:] - uidxs[:-1] counts[-1] = times.size - uidxs[-1] assert counts.sum () == times.size # we grow these arrays with concats, which will perform badly with lots of # GTIs. Not expected to be a big deal. widths = np.empty (0) ledges = np.empty (0) redges = np.empty (0) for i in range (ngti): tstart, tstop = tstarts[i], tstops[i] w = np.where ((utimes >= tstart) & (utimes <= tstop))[0] if not w.size: # No events during this goodtime! We have to insert a zero-count # event block. This may break assumptions within bin_bblock()? # j = idx of first event after this GTI wafter = np.where (utimes > tstop)[0] if wafter.size: j = wafter[0] else: j = utimes.size assert j == 0 or np.where (utimes < tstart)[0][-1] == j - 1 counts = np.concatenate ((counts[:j], [0], counts[j:])) widths = np.concatenate ((widths, [tstop - tstart])) ledges = np.concatenate ((ledges, [tstart])) redges = np.concatenate ((redges, [tstop])) else: gtutimes = utimes[w] midpoints = 0.5 * (gtutimes[1:] + gtutimes[:-1]) # size: n - 1 gtedges = np.concatenate (([tstart], midpoints, [tstop])) # size: n + 1 gtwidths = gtedges[1:] - gtedges[:-1] # size: n assert gtwidths.sum () == tstop - tstart widths = np.concatenate ((widths, gtwidths)) ledges = np.concatenate ((ledges, gtedges[:-1])) redges = np.concatenate ((redges, gtedges[1:])) assert counts.size == widths.size info = bin_bblock (widths, counts, p0=p0) info.ledges = ledges[info.blockstarts] # The right edge of the i'th block is the right edge of its rightmost # bin, which is the bin before the leftmost bin of the (i+1)'th block: info.redges = np.concatenate ((redges[info.blockstarts[1:] - 1], [redges[-1]])) info.midpoints = 0.5 * (info.ledges + info.redges) del info.blockstarts if intersect_with_bins: # OK, we now need to intersect the bblock bins with the input bins. # This can fracture one bblock bin into multiple ones but shouldn't # make any of them disappear, since they're definitionally constrained # to contain events. # # First: sorted list of all timestamps at which *something* changes: # either a bblock edge, or a input bin edge. We drop the last entry, # giving is a list of left edges of bins in which everything is the # same. all_times = set(tstarts) all_times.update(tstops) all_times.update(info.ledges) all_times.update(info.redges) all_times = np.array(sorted(all_times))[:-1] # Now, construct a lookup table of which bblock number each of these # bins corresponds to. More than one bin may have the same bblock # number, if a GTI change slices a single bblock into more than one # piece. We do this in a somewhat non-obvious way since we know that # the bblocks completely cover the overall GTI span in order. bblock_ids = np.zeros(all_times.size) for i in range(1, info.nblocks): bblock_ids[all_times >= info.ledges[i]] = i # Now, a lookup table of which bins are within a good GTI span. Again, # we know that all bins are either entirely in a good GTI or entirely # outside, so the logic is simplified but not necessarily obvious. good_timeslot = np.zeros(all_times.size, dtype=np.bool) for t0, t1 in zip(tstarts, tstops): ok = (all_times >= t0) & (all_times < t1) good_timeslot[ok] = True # Finally, look for contiguous spans that are in a good timeslot *and* # have the same underlying bblock number. These are our intersected # blocks. old_bblock_ids = [] ledges = [] redges = [] cur_bblock_id = -1 for i in range(all_times.size): if bblock_ids[i] != cur_bblock_id or not good_timeslot[i]: if cur_bblock_id >= 0: # Ending a previous span. redges.append(all_times[i]) cur_bblock_id = -1 if good_timeslot[i]: # Starting a new span. ledges.append(all_times[i]) old_bblock_ids.append(bblock_ids[i]) cur_bblock_id = bblock_ids[i] if cur_bblock_id >= 0: # End the last span. redges.append(tstops[-1]) # Finally, rewrite all of the data as planned. old_bblock_ids = np.array(old_bblock_ids, dtype=np.int) info.counts = info.counts[old_bblock_ids] info.rates = info.rates[old_bblock_ids] info.widths = info.widths[old_bblock_ids] info.ledges = np.array(ledges) info.redges = np.array(redges) info.midpoints = 0.5 * (info.ledges + info.redges) info.nblocks = info.ledges.size return info def bs_tt_bblock (times, tstarts, tstops, p0=0.05, nbootstrap=512): """Bayesian Blocks for time-tagged events with bootstrapping uncertainty assessment. THE UNCERTAINTIES ARE NOT VERY GOOD! Arguments: tstarts - Array of input bin start times. tstops - Array of input bin stop times. times - Array of event arrival times. p0=0.05 - Probability of preferring solutions with additional bins. nbootstrap=512 - Number of bootstrap runs to perform. Returns a Holder with: blockstarts - Start times of output blocks. bsrates - Mean event rate in each bin from bootstrap analysis. bsrstds - ~Uncertainty: stddev of event rate in each bin from bootstrap analysis. counts - Number of events in each output block. finalp0 - Final value of p0, after iteration to minimize `nblocks`. ledges - Times of left edges of output blocks. midpoints - Times of midpoints of output blocks. nblocks - Number of output blocks. ncells - Number of input cells/bins. origp0 - Original value of p0. rates - Event rate associated with each block. redges - Times of right edges of output blocks. widths - Width of each output block. """ times = np.asarray (times) tstarts = np.asarray (tstarts) tstops = np.asarray (tstops) nevents = times.size if nevents < 1: raise ValueError ('must be given at least 1 event') info = tt_bblock (tstarts, tstops, times, p0) # Now bootstrap resample to assess uncertainties on the bin heights. This # is the approach recommended by Scargle+. bsrsums = np.zeros (info.nblocks) bsrsumsqs = np.zeros (info.nblocks) for _ in range (nbootstrap): bstimes = times[np.random.randint (0, times.size, times.size)] bstimes.sort () bsinfo = tt_bblock (tstarts, tstops, bstimes, p0) blocknums = np.minimum (np.searchsorted (bsinfo.redges, info.midpoints), bsinfo.nblocks - 1) samprates = bsinfo.rates[blocknums] bsrsums += samprates bsrsumsqs += samprates**2 bsrmeans = bsrsums / nbootstrap mask = bsrsumsqs / nbootstrap <= bsrmeans**2 bsrstds = np.sqrt (np.where (mask, 0, bsrsumsqs / nbootstrap - bsrmeans**2)) info.bsrates = bsrmeans info.bsrstds = bsrstds return info
mit
-3,543,484,899,377,232,400
36.265766
89
0.620513
false
3.614242
false
false
false
mganeva/mantid
scripts/Muon/GUI/Common/home_tab/home_tab_view.py
1
1149
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + from __future__ import (absolute_import, division, print_function) from PyQt4 import QtGui class HomeTabView(QtGui.QWidget): def __init__(self, parent=None,widget_list=None): super(HomeTabView, self).__init__(parent) self._widget_list = widget_list self.splitter = None self.vertical_layout = None self.setup_interface() def setup_interface(self): self.setObjectName("HomeTab") self.setWindowTitle("Home Tab") self.resize(500, 100) self.vertical_layout = QtGui.QVBoxLayout() if self._widget_list: for i, widget in enumerate(self._widget_list): widget.setParent(self) self.vertical_layout.addWidget(widget) self.setLayout(self.vertical_layout) # for docking def getLayout(self): return self.vertical_layout
gpl-3.0
5,541,721,634,874,385,000
27.725
68
0.652742
false
3.804636
false
false
false
snowflakedb/snowflake-connector-python
src/snowflake/connector/proxy.py
1
1473
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2021 Snowflake Computing Inc. All right reserved. # import os def set_proxies(proxy_host, proxy_port, proxy_user=None, proxy_password=None): """Sets proxy dict for requests.""" PREFIX_HTTP = "http://" PREFIX_HTTPS = "https://" proxies = None if proxy_host and proxy_port: if proxy_host.startswith(PREFIX_HTTP): proxy_host = proxy_host[len(PREFIX_HTTP) :] elif proxy_host.startswith(PREFIX_HTTPS): proxy_host = proxy_host[len(PREFIX_HTTPS) :] if proxy_user or proxy_password: proxy_auth = "{proxy_user}:{proxy_password}@".format( proxy_user=proxy_user if proxy_user is not None else "", proxy_password=proxy_password if proxy_password is not None else "", ) else: proxy_auth = "" proxies = { "http": "http://{proxy_auth}{proxy_host}:{proxy_port}".format( proxy_host=proxy_host, proxy_port=str(proxy_port), proxy_auth=proxy_auth, ), "https": "http://{proxy_auth}{proxy_host}:{proxy_port}".format( proxy_host=proxy_host, proxy_port=str(proxy_port), proxy_auth=proxy_auth, ), } os.environ["HTTP_PROXY"] = proxies["http"] os.environ["HTTPS_PROXY"] = proxies["https"] return proxies
apache-2.0
845,093,474,728,301,600
34.926829
84
0.552614
false
3.876316
false
false
false
smarterclayton/solum
solum/openstack/common/rpc/amqp.py
1
23625
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # Copyright 2011 - 2012, Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Shared code between AMQP based openstack.common.rpc implementations. The code in this module is shared between the rpc implemenations based on AMQP. Specifically, this includes impl_kombu and impl_qpid. impl_carrot also uses AMQP, but is deprecated and predates this code. """ import collections import inspect import sys import uuid from eventlet import greenpool from eventlet import pools from eventlet import queue from eventlet import semaphore from oslo.config import cfg from solum.openstack.common import excutils from solum.openstack.common.gettextutils import _ # noqa from solum.openstack.common import local from solum.openstack.common import log as logging from solum.openstack.common.rpc import common as rpc_common amqp_opts = [ cfg.BoolOpt('amqp_durable_queues', default=False, deprecated_name='rabbit_durable_queues', deprecated_group='DEFAULT', help='Use durable queues in amqp.'), cfg.BoolOpt('amqp_auto_delete', default=False, help='Auto-delete queues in amqp.'), ] cfg.CONF.register_opts(amqp_opts) UNIQUE_ID = '_unique_id' LOG = logging.getLogger(__name__) class Pool(pools.Pool): """Class that implements a Pool of Connections.""" def __init__(self, conf, connection_cls, *args, **kwargs): self.connection_cls = connection_cls self.conf = conf kwargs.setdefault("max_size", self.conf.rpc_conn_pool_size) kwargs.setdefault("order_as_stack", True) super(Pool, self).__init__(*args, **kwargs) self.reply_proxy = None # TODO(comstud): Timeout connections not used in a while def create(self): LOG.debug(_('Pool creating new connection')) return self.connection_cls(self.conf) def empty(self): while self.free_items: self.get().close() # Force a new connection pool to be created. # Note that this was added due to failing unit test cases. The issue # is the above "while loop" gets all the cached connections from the # pool and closes them, but never returns them to the pool, a pool # leak. The unit tests hang waiting for an item to be returned to the # pool. The unit tests get here via the tearDown() method. In the run # time code, it gets here via cleanup() and only appears in service.py # just before doing a sys.exit(), so cleanup() only happens once and # the leakage is not a problem. self.connection_cls.pool = None _pool_create_sem = semaphore.Semaphore() def get_connection_pool(conf, connection_cls): with _pool_create_sem: # Make sure only one thread tries to create the connection pool. if not connection_cls.pool: connection_cls.pool = Pool(conf, connection_cls) return connection_cls.pool class ConnectionContext(rpc_common.Connection): """The class that is actually returned to the create_connection() caller. This is essentially a wrapper around Connection that supports 'with'. It can also return a new Connection, or one from a pool. The function will also catch when an instance of this class is to be deleted. With that we can return Connections to the pool on exceptions and so forth without making the caller be responsible for catching them. If possible the function makes sure to return a connection to the pool. """ def __init__(self, conf, connection_pool, pooled=True, server_params=None): """Create a new connection, or get one from the pool.""" self.connection = None self.conf = conf self.connection_pool = connection_pool if pooled: self.connection = connection_pool.get() else: self.connection = connection_pool.connection_cls( conf, server_params=server_params) self.pooled = pooled def __enter__(self): """When with ConnectionContext() is used, return self.""" return self def _done(self): """If the connection came from a pool, clean it up and put it back. If it did not come from a pool, close it. """ if self.connection: if self.pooled: # Reset the connection so it's ready for the next caller # to grab from the pool self.connection.reset() self.connection_pool.put(self.connection) else: try: self.connection.close() except Exception: pass self.connection = None def __exit__(self, exc_type, exc_value, tb): """End of 'with' statement. We're done here.""" self._done() def __del__(self): """Caller is done with this connection. Make sure we cleaned up.""" self._done() def close(self): """Caller is done with this connection.""" self._done() def create_consumer(self, topic, proxy, fanout=False): self.connection.create_consumer(topic, proxy, fanout) def create_worker(self, topic, proxy, pool_name): self.connection.create_worker(topic, proxy, pool_name) def join_consumer_pool(self, callback, pool_name, topic, exchange_name, ack_on_error=True): self.connection.join_consumer_pool(callback, pool_name, topic, exchange_name, ack_on_error) def consume_in_thread(self): self.connection.consume_in_thread() def __getattr__(self, key): """Proxy all other calls to the Connection instance.""" if self.connection: return getattr(self.connection, key) else: raise rpc_common.InvalidRPCConnectionReuse() class ReplyProxy(ConnectionContext): """Connection class for RPC replies / callbacks.""" def __init__(self, conf, connection_pool): self._call_waiters = {} self._num_call_waiters = 0 self._num_call_waiters_wrn_threshhold = 10 self._reply_q = 'reply_' + uuid.uuid4().hex super(ReplyProxy, self).__init__(conf, connection_pool, pooled=False) self.declare_direct_consumer(self._reply_q, self._process_data) self.consume_in_thread() def _process_data(self, message_data): msg_id = message_data.pop('_msg_id', None) waiter = self._call_waiters.get(msg_id) if not waiter: LOG.warn(_('No calling threads waiting for msg_id : %(msg_id)s' ', message : %(data)s'), {'msg_id': msg_id, 'data': message_data}) LOG.warn(_('_call_waiters: %s') % str(self._call_waiters)) else: waiter.put(message_data) def add_call_waiter(self, waiter, msg_id): self._num_call_waiters += 1 if self._num_call_waiters > self._num_call_waiters_wrn_threshhold: LOG.warn(_('Number of call waiters is greater than warning ' 'threshhold: %d. There could be a MulticallProxyWaiter ' 'leak.') % self._num_call_waiters_wrn_threshhold) self._num_call_waiters_wrn_threshhold *= 2 self._call_waiters[msg_id] = waiter def del_call_waiter(self, msg_id): self._num_call_waiters -= 1 del self._call_waiters[msg_id] def get_reply_q(self): return self._reply_q def msg_reply(conf, msg_id, reply_q, connection_pool, reply=None, failure=None, ending=False, log_failure=True): """Sends a reply or an error on the channel signified by msg_id. Failure should be a sys.exc_info() tuple. """ with ConnectionContext(conf, connection_pool) as conn: if failure: failure = rpc_common.serialize_remote_exception(failure, log_failure) msg = {'result': reply, 'failure': failure} if ending: msg['ending'] = True _add_unique_id(msg) # If a reply_q exists, add the msg_id to the reply and pass the # reply_q to direct_send() to use it as the response queue. # Otherwise use the msg_id for backward compatibilty. if reply_q: msg['_msg_id'] = msg_id conn.direct_send(reply_q, rpc_common.serialize_msg(msg)) else: conn.direct_send(msg_id, rpc_common.serialize_msg(msg)) class RpcContext(rpc_common.CommonRpcContext): """Context that supports replying to a rpc.call.""" def __init__(self, **kwargs): self.msg_id = kwargs.pop('msg_id', None) self.reply_q = kwargs.pop('reply_q', None) self.conf = kwargs.pop('conf') super(RpcContext, self).__init__(**kwargs) def deepcopy(self): values = self.to_dict() values['conf'] = self.conf values['msg_id'] = self.msg_id values['reply_q'] = self.reply_q return self.__class__(**values) def reply(self, reply=None, failure=None, ending=False, connection_pool=None, log_failure=True): if self.msg_id: msg_reply(self.conf, self.msg_id, self.reply_q, connection_pool, reply, failure, ending, log_failure) if ending: self.msg_id = None def unpack_context(conf, msg): """Unpack context from msg.""" context_dict = {} for key in list(msg.keys()): # NOTE(vish): Some versions of python don't like unicode keys # in kwargs. key = str(key) if key.startswith('_context_'): value = msg.pop(key) context_dict[key[9:]] = value context_dict['msg_id'] = msg.pop('_msg_id', None) context_dict['reply_q'] = msg.pop('_reply_q', None) context_dict['conf'] = conf ctx = RpcContext.from_dict(context_dict) rpc_common._safe_log(LOG.debug, _('unpacked context: %s'), ctx.to_dict()) return ctx def pack_context(msg, context): """Pack context into msg. Values for message keys need to be less than 255 chars, so we pull context out into a bunch of separate keys. If we want to support more arguments in rabbit messages, we may want to do the same for args at some point. """ if isinstance(context, dict): context_d = dict([('_context_%s' % key, value) for (key, value) in context.iteritems()]) else: context_d = dict([('_context_%s' % key, value) for (key, value) in context.to_dict().iteritems()]) msg.update(context_d) class _MsgIdCache(object): """This class checks any duplicate messages.""" # NOTE: This value is considered can be a configuration item, but # it is not necessary to change its value in most cases, # so let this value as static for now. DUP_MSG_CHECK_SIZE = 16 def __init__(self, **kwargs): self.prev_msgids = collections.deque([], maxlen=self.DUP_MSG_CHECK_SIZE) def check_duplicate_message(self, message_data): """AMQP consumers may read same message twice when exceptions occur before ack is returned. This method prevents doing it. """ if UNIQUE_ID in message_data: msg_id = message_data[UNIQUE_ID] if msg_id not in self.prev_msgids: self.prev_msgids.append(msg_id) else: raise rpc_common.DuplicateMessageError(msg_id=msg_id) def _add_unique_id(msg): """Add unique_id for checking duplicate messages.""" unique_id = uuid.uuid4().hex msg.update({UNIQUE_ID: unique_id}) LOG.debug(_('UNIQUE_ID is %s.') % (unique_id)) class _ThreadPoolWithWait(object): """Base class for a delayed invocation manager. Used by the Connection class to start up green threads to handle incoming messages. """ def __init__(self, conf, connection_pool): self.pool = greenpool.GreenPool(conf.rpc_thread_pool_size) self.connection_pool = connection_pool self.conf = conf def wait(self): """Wait for all callback threads to exit.""" self.pool.waitall() class CallbackWrapper(_ThreadPoolWithWait): """Wraps a straight callback. Allows it to be invoked in a green thread. """ def __init__(self, conf, callback, connection_pool, wait_for_consumers=False): """Initiates CallbackWrapper object. :param conf: cfg.CONF instance :param callback: a callable (probably a function) :param connection_pool: connection pool as returned by get_connection_pool() :param wait_for_consumers: wait for all green threads to complete and raise the last caught exception, if any. """ super(CallbackWrapper, self).__init__( conf=conf, connection_pool=connection_pool, ) self.callback = callback self.wait_for_consumers = wait_for_consumers self.exc_info = None def _wrap(self, message_data, **kwargs): """Wrap the callback invocation to catch exceptions. """ try: self.callback(message_data, **kwargs) except Exception: self.exc_info = sys.exc_info() def __call__(self, message_data): self.exc_info = None self.pool.spawn_n(self._wrap, message_data) if self.wait_for_consumers: self.pool.waitall() if self.exc_info: raise self.exc_info[1], None, self.exc_info[2] class ProxyCallback(_ThreadPoolWithWait): """Calls methods on a proxy object based on method and args.""" def __init__(self, conf, proxy, connection_pool): super(ProxyCallback, self).__init__( conf=conf, connection_pool=connection_pool, ) self.proxy = proxy self.msg_id_cache = _MsgIdCache() def __call__(self, message_data): """Consumer callback to call a method on a proxy object. Parses the message for validity and fires off a thread to call the proxy object method. Message data should be a dictionary with two keys: method: string representing the method to call args: dictionary of arg: value Example: {'method': 'echo', 'args': {'value': 42}} """ # It is important to clear the context here, because at this point # the previous context is stored in local.store.context if hasattr(local.store, 'context'): del local.store.context rpc_common._safe_log(LOG.debug, _('received %s'), message_data) self.msg_id_cache.check_duplicate_message(message_data) ctxt = unpack_context(self.conf, message_data) method = message_data.get('method') args = message_data.get('args', {}) version = message_data.get('version') namespace = message_data.get('namespace') if not method: LOG.warn(_('no method for message: %s') % message_data) ctxt.reply(_('No method for message: %s') % message_data, connection_pool=self.connection_pool) return self.pool.spawn_n(self._process_data, ctxt, version, method, namespace, args) def _process_data(self, ctxt, version, method, namespace, args): """Process a message in a new thread. If the proxy object we have has a dispatch method (see rpc.dispatcher.RpcDispatcher), pass it the version, method, and args and let it dispatch as appropriate. If not, use the old behavior of magically calling the specified method on the proxy we have here. """ ctxt.update_store() try: rval = self.proxy.dispatch(ctxt, version, method, namespace, **args) # Check if the result was a generator if inspect.isgenerator(rval): for x in rval: ctxt.reply(x, None, connection_pool=self.connection_pool) else: ctxt.reply(rval, None, connection_pool=self.connection_pool) # This final None tells multicall that it is done. ctxt.reply(ending=True, connection_pool=self.connection_pool) except rpc_common.ClientException as e: LOG.debug(_('Expected exception during message handling (%s)') % e._exc_info[1]) ctxt.reply(None, e._exc_info, connection_pool=self.connection_pool, log_failure=False) except Exception: # sys.exc_info() is deleted by LOG.exception(). exc_info = sys.exc_info() LOG.error(_('Exception during message handling'), exc_info=exc_info) ctxt.reply(None, exc_info, connection_pool=self.connection_pool) class MulticallProxyWaiter(object): def __init__(self, conf, msg_id, timeout, connection_pool): self._msg_id = msg_id self._timeout = timeout or conf.rpc_response_timeout self._reply_proxy = connection_pool.reply_proxy self._done = False self._got_ending = False self._conf = conf self._dataqueue = queue.LightQueue() # Add this caller to the reply proxy's call_waiters self._reply_proxy.add_call_waiter(self, self._msg_id) self.msg_id_cache = _MsgIdCache() def put(self, data): self._dataqueue.put(data) def done(self): if self._done: return self._done = True # Remove this caller from reply proxy's call_waiters self._reply_proxy.del_call_waiter(self._msg_id) def _process_data(self, data): result = None self.msg_id_cache.check_duplicate_message(data) if data['failure']: failure = data['failure'] result = rpc_common.deserialize_remote_exception(self._conf, failure) elif data.get('ending', False): self._got_ending = True else: result = data['result'] return result def __iter__(self): """Return a result until we get a reply with an 'ending' flag.""" if self._done: raise StopIteration while True: try: data = self._dataqueue.get(timeout=self._timeout) result = self._process_data(data) except queue.Empty: self.done() raise rpc_common.Timeout() except Exception: with excutils.save_and_reraise_exception(): self.done() if self._got_ending: self.done() raise StopIteration if isinstance(result, Exception): self.done() raise result yield result def create_connection(conf, new, connection_pool): """Create a connection.""" return ConnectionContext(conf, connection_pool, pooled=not new) _reply_proxy_create_sem = semaphore.Semaphore() def multicall(conf, context, topic, msg, timeout, connection_pool): """Make a call that returns multiple times.""" LOG.debug(_('Making synchronous call on %s ...'), topic) msg_id = uuid.uuid4().hex msg.update({'_msg_id': msg_id}) LOG.debug(_('MSG_ID is %s') % (msg_id)) _add_unique_id(msg) pack_context(msg, context) with _reply_proxy_create_sem: if not connection_pool.reply_proxy: connection_pool.reply_proxy = ReplyProxy(conf, connection_pool) msg.update({'_reply_q': connection_pool.reply_proxy.get_reply_q()}) wait_msg = MulticallProxyWaiter(conf, msg_id, timeout, connection_pool) with ConnectionContext(conf, connection_pool) as conn: conn.topic_send(topic, rpc_common.serialize_msg(msg), timeout) return wait_msg def call(conf, context, topic, msg, timeout, connection_pool): """Sends a message on a topic and wait for a response.""" rv = multicall(conf, context, topic, msg, timeout, connection_pool) # NOTE(vish): return the last result from the multicall rv = list(rv) if not rv: return return rv[-1] def cast(conf, context, topic, msg, connection_pool): """Sends a message on a topic without waiting for a response.""" LOG.debug(_('Making asynchronous cast on %s...'), topic) _add_unique_id(msg) pack_context(msg, context) with ConnectionContext(conf, connection_pool) as conn: conn.topic_send(topic, rpc_common.serialize_msg(msg)) def fanout_cast(conf, context, topic, msg, connection_pool): """Sends a message on a fanout exchange without waiting for a response.""" LOG.debug(_('Making asynchronous fanout cast...')) _add_unique_id(msg) pack_context(msg, context) with ConnectionContext(conf, connection_pool) as conn: conn.fanout_send(topic, rpc_common.serialize_msg(msg)) def cast_to_server(conf, context, server_params, topic, msg, connection_pool): """Sends a message on a topic to a specific server.""" _add_unique_id(msg) pack_context(msg, context) with ConnectionContext(conf, connection_pool, pooled=False, server_params=server_params) as conn: conn.topic_send(topic, rpc_common.serialize_msg(msg)) def fanout_cast_to_server(conf, context, server_params, topic, msg, connection_pool): """Sends a message on a fanout exchange to a specific server.""" _add_unique_id(msg) pack_context(msg, context) with ConnectionContext(conf, connection_pool, pooled=False, server_params=server_params) as conn: conn.fanout_send(topic, rpc_common.serialize_msg(msg)) def notify(conf, context, topic, msg, connection_pool, envelope): """Sends a notification event on a topic.""" LOG.debug(_('Sending %(event_type)s on %(topic)s'), dict(event_type=msg.get('event_type'), topic=topic)) _add_unique_id(msg) pack_context(msg, context) with ConnectionContext(conf, connection_pool) as conn: if envelope: msg = rpc_common.serialize_msg(msg) conn.notify_send(topic, msg) def cleanup(connection_pool): if connection_pool: connection_pool.empty() def get_control_exchange(conf): return conf.control_exchange
apache-2.0
-6,104,428,898,525,230,000
36.146226
79
0.603513
false
4.065565
false
false
false
plusreed/foxpy
main3.py
1
2910
from discord.ext import commands import discord import datetime, re import asyncio import copy import logging import traceback import sys from collections import Counter import config description = """ I'm Fox, a multi-purpose and modular Discord bot. """ init_cogs = [ 'plugins.admin.eval', 'plugins.admin.shutdown', 'plugins.core.math', 'plugins.core.ping', 'plugins.core.lastfm', 'plugins.music.voice', ] dc_log = logging.getLogger(discord) dc_log.setLevel(logging.DEBUG) log = logging.getLogger() log.setLevel(logging.INFO) handler = logging.FileHandler(filename='fox.log', encoding='utf-8', mode='w') log.addHandler(handler) hattr = dict(hidden=True) prefix = ['$', '^'] fox = commands.Bot(command_prefix=prefix, description=description, pm_help=None, help_attrs=hattr) @fox.event async def on_command_error(error, ctx): if isinstance(error, commands.NoPrivateMessage): await fox.send_message(ctx.message.author, "Sorry, you can't use this command in private messages.") elif isinstance(error, commands.DisabledCommand): await fox.send_message(ctx.message.author, 'Sorry, it looks like that command is disabled.') elif isinstance(error, commands.CommandInvokeError): print('In {0.command.qualified_name}:'.format(ctx)) traceback.print_tb(error.original.__traceback__) print('{0.__class__.__name__}: {0}'.format(error.original)) @fox.event async def on_ready(): print('Fox is now ready!') print('Username: ' + fox.user.name) print('ID: ' + fox.user.id) print('------') if not hasattr(fox, 'uptime'): fox.uptime = datetime.datetime.utcnow() @fox.event async def on_resumed(): print("Fox has resumed.") @fox.event async def on_command(command, ctx): fox.commands_used[command.name] += 1 message = ctx.message if message.channel.is_private: destination = 'Private Message' else: destination = '#{0.channel.name} ({0.server.name})'.format(message) log.info('{0.timestamp}: {0.author.name} in {1}: {0.content}'.format(message, destination)) @fox.event async def on_message(message): if message.author.bot: return await fox.process_commands(message) # @bot.command() # async def ping(): # await bot.say("pong") if __name__ == '__main__': if any('debug' in arg.lower() for arg in sys.argv): print("Fox is running in debug mode. The command prefix is now '^^'.") fox.command_prefix = '^^' fox.client_id = config.BOT_ID fox.commands_used = Counter() for plugin in init_cogs: try: fox.load_extention(plugin) except Exception as e: print('Error: failed to load plugin {}\n{}: {}'.format(plugin, type(e).__name__, e)) fox.run(config.BOT_TOKEN) handlers = log.handlers[:] for hdlr in handlers: hdlr.close() log.removeHandler(hdlr)
mit
-8,494,187,333,163,795,000
25.944444
108
0.657388
false
3.427562
false
false
false
Sirs0ri/PersonalAssistant
samantha/plugins/schedule_plugin.py
1
8649
"""This plugin triggers schedules events. The different commands are triggered: * every 10 seconds * at the start of every minute * ..hour * ..day * ..month * ..year All these events are triggered as soon as possible, i.e. 'Day' will be triggered at 0:00, month on the 1st at 0:00, etc. """ ############################################################################### # # TODO: [ ] # ############################################################################### # standard library imports import datetime import logging import random import threading import time # related third party imports # application specific imports import samantha.context as context from samantha.core import subscribe_to from samantha.plugins.plugin import Plugin from samantha.tools import eventbuilder __version__ = "1.3.17" # Initialize the logger LOGGER = logging.getLogger(__name__) SUNRISE = datetime.datetime(1970, 1, 1) SUNSET = datetime.datetime(1970, 1, 1) PLUGIN = Plugin("Schedule", True, LOGGER, __file__) def worker(): """Check if events should be triggered, sleep 1sec, repeat.""" name = __name__ + ".Thread" logger = logging.getLogger(name) logger.debug("Started.") def _check_daytime(_datetime_obj, _timelist): if (SUNSET < SUNRISE < _datetime_obj or SUNRISE < _datetime_obj < SUNSET or _datetime_obj < SUNSET < SUNRISE): # The sun has risen. time_of_day = "day" else: # The sun hasn't risen yet. time_of_day = "night" if time_of_day == context.get_value("time.time_of_day", None): logger.debug("It's still %stime.", time_of_day) else: logger.debug("It's now %stime.", time_of_day) context.set_property("time.time_of_day", time_of_day) keyword = "time.time_of_day.{}".format(time_of_day) eventbuilder.eEvent(sender_id=name, keyword=keyword, data=_timelist).trigger() # calculate time between now and sunrise if SUNRISE < _datetime_obj: # the sunrise is in the past sunrise_pre_post = "post" diff_sunrise = _datetime_obj - SUNRISE else: # the sunrise is in the future sunrise_pre_post = "pre" diff_sunrise = SUNRISE - _datetime_obj if 0 < diff_sunrise.seconds % 300 < 59: # the difference between now and the sunrise is a multiple of 5 # minutes (this check is executed every minute, thus I'm checking # this in a way that the condition becomes true every 5th minute. keyword_sunrise = "time.sunrise.{}.{}".format( sunrise_pre_post, diff_sunrise.seconds / 60) LOGGER.warning("Triggering event '%s'!", keyword_sunrise) eventbuilder.eEvent(sender_id=name, keyword=keyword_sunrise, data=_timelist).trigger() # calculate time between now and sunset if SUNSET < _datetime_obj: # the sunset is in the past sunset_pre_post = "post" diff_sunset = _datetime_obj - SUNSET else: # the sunset is in the future sunset_pre_post = "pre" diff_sunset = SUNSET - _datetime_obj if 0 < diff_sunset.seconds % 300 < 59: # the difference between now and the sunset is a multiple of 5 # minutes (this check is executed every minute, thus I'm checking # this in a way that the condition becomes true every 5th minute. keyword_sunset = "time.sunset.{}.{}".format( sunset_pre_post, diff_sunset.seconds / 60) LOGGER.warning("Triggering event '%s'!", keyword_sunset) eventbuilder.eEvent(sender_id=name, keyword=keyword_sunset, data=_timelist).trigger() logger.debug("SUNRISE: %s, SUNSET: %s, NOW: %s", SUNRISE, SUNSET, _datetime_obj) def _trigger(keyword, data): if "10s" in keyword: ttl = 8 elif "10s" in keyword: ttl = 55 elif "10s" in keyword: ttl = 3300 else: ttl = 0 eventbuilder.eEvent(sender_id=name, keyword=keyword, data=data, ttl=ttl).trigger() # Initialize the two random events. # They'll be triggered randomly once an hour/once a day. These two counters # count down the seconds until the next event. They'll be reset to a random # value every hour (day) between 0 and the number of seconds in an hour/day # The default values are 120secs for the hourly event and 180 for the daily # so that the two events are being triggered relatively soon after starting rnd_hourly_counter = 120 rnd_daily_counter = 180 while True: datetime_obj = datetime.datetime.now() timetuple = datetime_obj.timetuple() """ # value: time.struct_time(tm_year=2016, tm_mon=1, tm_mday=22, # tm_hour=11, tm_min=26, tm_sec=13, # tm_wday=4, tm_yday=22, tm_isdst=-1) # ..[0]: tm_year = 2016 # ..[1]: tm_mon = 1 # ..[2]: tm_mday = 22 # ..[3]: tm_hour = 11 # ..[4]: tm_min = 26 # ..[5]: tm_sec = 13 # ..[6]: tm_wday = 4 # ..[7]: tm_yday = 22 # ..[8]: tm_isdst = -1 """ timelist = list(timetuple) if rnd_hourly_counter == 0: _trigger(keyword="time.schedule.hourly_rnd", data=timelist) if rnd_daily_counter == 0: _trigger(keyword="time.schedule.daily_rnd", data=timelist) rnd_hourly_counter -= 1 rnd_daily_counter -= 1 if timelist[5] in [0, 10, 20, 30, 40, 50]: _trigger(keyword="time.schedule.10s", data=timelist) if timelist[5] == 0: # Seconds = 0 -> New Minute _trigger(keyword="time.schedule.min", data=timelist) # Check for a change in the time of day _check_daytime(datetime_obj, timelist) if timelist[4] == 0: # Minutes = 0 -> New Hour _trigger(keyword="time.schedule.hour", data=timelist) rnd_hourly_counter = random.randint(0, 3599) if timelist[3] == 0: # Hours = 0 -> New Day _trigger(keyword="time.schedule.day", data=timelist) rnd_daily_counter = random.randint(0, 86399) if timelist[2] == 1: # Day of Month = 1 -> New Month _trigger(keyword="time.schedule.mon", data=timelist) if timelist[1] == 1: # Month = 1 -> New Year _trigger(keyword="time.schedule.year", data=timelist) # sleep to take work from the CPU time.sleep(1) @subscribe_to("system.onstart") def start_thread(key, data): """Set up the plugin by starting the worker-thread.""" thread = threading.Thread(target=worker) thread.daemon = True thread.start() return "Worker started successfully." @subscribe_to("weather.sys.update") def sun_times(key, data): """Update the times for sunset and -rise.""" global SUNRISE, SUNSET result = "" invalid = True if "sunrise" in data: invalid = False sunrise = datetime.datetime.fromtimestamp(data["sunrise"]) if SUNRISE is not sunrise: SUNRISE = sunrise LOGGER.debug("Updated Sunrise to %s", SUNRISE.strftime('%Y-%m-%d %H:%M:%S')) result += "Sunrise updated successfully." if "sunset" in data: invalid = False sunset = datetime.datetime.fromtimestamp(data["sunset"]) if SUNSET is not sunset: SUNSET = sunset LOGGER.debug("Updated Sunset to %s", SUNSET.strftime('%Y-%m-%d %H:%M:%S')) result += "Sunset updated successfully." if invalid: result = "Error: The data does not contain info about sunrise/-set." if result == "": result = "Sunrise/-set were already up to date." return result
mit
360,726,340,552,907,840
36.441558
79
0.529194
false
3.998613
false
false
false
RaphaelNajera/Sunlight_Sensor
documentation/CENG355 Solar Capstone/firmware/Solar_Capstone_PV_v4.py
1
5201
#Retrieving from PV1, PV2, PV4 #Working on retrieving from PV3 #Solar Capstone #Johnson, Raphael & Adrian from bs4 import BeautifulSoup from datetime import datetime import urllib.request import threading #Loop import time from ctypes import c_short from ctypes import c_byte from ctypes import c_ubyte from time import sleep #Module for push data to firebase import pyrebase #Config for connecting to the Firebase config = { "apiKey": "AIzaSyB_inMZruQbJUzueOSRqf0-zwbYoUnZqDA", "authDomain": "solar-capstone.firebaseapp.com", "databaseURL": "https://solar-capstone.firebaseio.com/", "storageBucket": "solar-capstone.appspot.com", #"serviceAccount": "path/to/serviceAccountKey.json" } #==================================================================================================== #Send the data to firebase database every 30 minutes. #PV1 def SendtoFirebasePV1(db, Date, Power, Dailyyield, Totalyield): PV1 = {"Date": Date, "Power": Power, "Daily_yield": Dailyyield, "Total_yield": Totalyield} PV1_result = db.child("PV1").push(PV1) return; #PV2 def SendtoFirebasePV2(db, Date, Power, Dailyyield, Totalyield): PV2 = {"Date": Date, "Power": Power, "Daily_yield": Dailyyield, "Total_yield": Totalyield} PV2_result = db.child("PV2").push(PV2) return; #PV3 #PV4 def SendtoFirebasePV4(db, Date, Power, Dailyyield, Totalyield): PV4 = {"Date": Date, "Power": Power, "Daily_yield": Dailyyield, "Total_yield": Totalyield} PV4_result = db.child("PV4").push(PV4) return; #==================================================================================================== def GetAuthorized(firebase): auth = firebase.auth() return ''; #==================================================================================================== #This function execute every hour to retrieve data from all solar panels def repeatEveryHourly(): firebase = pyrebase.initialize_app(config) #runs the code every 30mins or replace the timer with threading.Timer(1800.0, repeatEveryHourly).start() #grabs the current date and time currentTime = datetime.now() print(currentTime.strftime("\n%Y/%m/%d %I:%M %p\n")) date = currentTime.strftime("%Y/%m/%d %I:%M %p") #requesting to open this html for reading PV1 = urllib.request.urlopen("http://10.116.25.7/home.htm").read() PV2 = urllib.request.urlopen("http://10.116.25.5/production?locale=en").read() #PV3 PV4 = urllib.request.urlopen("http://10.116.25.6/home.htm").read() #uses the BeautifulSoup function to process xml and html in Python. PV1_data = BeautifulSoup(PV1,'lxml') PV2_data = BeautifulSoup(PV2, 'lxml') PV4_data = BeautifulSoup(PV4, 'lxml') #used the find() function to find all html tags consisting with <table> with an id of "OvTb1" #PV1 PV1_table = PV1_data.find('table', id="OvTbl") PV1table_row = PV1_table.find_all('tr') #PV2 PV2_table = PV2_data.find_all('table') #PV4 PV4_table = PV4_data.find('table', id="OvTbl") PV4table_row = PV4_table.find_all('tr') #Global variables for string comparison power = "Power:" daily = "Daily yield:" total = "Total yield:" #PV2 global variables for string comparison power_2 = "Currently" daily_2 = "Today" total_2 = "Since Installation" #Variables for PV1 PV1_power = "" PV1_daily = "" PV1_total = "" #Variables for PV2 PV2_daily = "" PV2_power = "" PV2_total = "" #Variables for PV4 PV4_power = "" PV4_daily = "" PV4_total = "" #Display the info print("Solar Panel PV1") for tr in PV1table_row: td = tr.find_all('td') row = [i.string for i in td] print(row[0] + " " + row[1]) if power == row[0]: PV1_power = row[1] #print(PV1_power) if daily == row[0]: PV1_daily = row[1] #print(PV1_daily) if total == row[0]: PV1_total = row[1] #print(PV1_total) print("\nSolar Panel PV2") for tr in PV2_table: td = tr.find_all('td') row = [i.text for i in td] #Testing #print("\n Row0: "+row[0]) #print("\n Row1: "+row[1]) #print("\n Row2: "+row[2]) #print("\n Row3: "+row[3]) #print("\n Row4: "+row[4]) #print("\n Row5: "+row[5]) #print("\n Row6: "+row[6]) #print("\n Row7: "+row[7]) #print("\n Row8: "+row[8]) if power_2 == row[1]: PV2_power = row[2] print("Power:"+PV2_power) if daily_2 == row[3]: PV2_daily = row[4] print("Daily yield: "+PV2_daily) if total_2 == row[7]: PV2_total = row[8] print("Total yield:"+PV2_total) print("\nSolar Panel PV4") for tr in PV4table_row: td = tr.find_all('td') row = [i.text for i in td] print(row[0] + " " + row[1]) if power == row[0]: PV4_power = row[1] #print(PV4_power) if daily == row[0]: PV4_daily = row[1] #print(PV4_daily) if total == row[0]: PV4_total = row[1] #print(PV4_total) #Calls to push the data to the firebase SendtoFirebasePV1( firebase.database(), date, PV1_power, PV1_daily, PV1_total) SendtoFirebasePV2( firebase.database(), date, PV2_power, PV2_daily, PV2_total) SendtoFirebasePV4( firebase.database(), date, PV4_power, PV4_daily, PV4_total) #==================================================================================== #Main program def main(): repeatEveryHourly() return if __name__ == "__main__": main()
agpl-3.0
-4,950,104,520,752,690,000
28.224719
101
0.614882
false
2.733053
false
false
false
seleniumbase/SeleniumBase
seleniumbase/translate/chinese.py
1
22162
# Chinese / 中文 - Translations - Python 3 Only! from seleniumbase import BaseCase from seleniumbase import MasterQA class 硒测试用例(BaseCase): # noqa def __init__(self, *args, **kwargs): super(硒测试用例, self).__init__(*args, **kwargs) self._language = "Chinese" def 开启(self, *args, **kwargs): # open(url) return self.open(*args, **kwargs) def 开启网址(self, *args, **kwargs): # open_url(url) return self.open_url(*args, **kwargs) def 单击(self, *args, **kwargs): # click(selector) return self.click(*args, **kwargs) def 双击(self, *args, **kwargs): # double_click(selector) return self.double_click(*args, **kwargs) def 慢单击(self, *args, **kwargs): # slow_click(selector) return self.slow_click(*args, **kwargs) def 如果可见请单击(self, *args, **kwargs): # click_if_visible(selector, by=By.CSS_SELECTOR) return self.click_if_visible(*args, **kwargs) def 单击链接文本(self, *args, **kwargs): # click_link_text(link_text) return self.click_link_text(*args, **kwargs) def 更新文本(self, *args, **kwargs): # update_text(selector, text) return self.update_text(*args, **kwargs) def 输入文本(self, *args, **kwargs): # type(selector, text) # Same as update_text() return self.type(*args, **kwargs) def 添加文本(self, *args, **kwargs): # add_text(selector, text) return self.add_text(*args, **kwargs) def 获取文本(self, *args, **kwargs): # get_text(selector, text) return self.get_text(*args, **kwargs) def 断言文本(self, *args, **kwargs): # assert_text(text, selector) return self.assert_text(*args, **kwargs) def 确切断言文本(self, *args, **kwargs): # assert_exact_text(text, selector) return self.assert_exact_text(*args, **kwargs) def 断言链接文本(self, *args, **kwargs): # assert_link_text(link_text) return self.assert_link_text(*args, **kwargs) def 断言元素(self, *args, **kwargs): # assert_element(selector) return self.assert_element(*args, **kwargs) def 断言元素可见(self, *args, **kwargs): # assert_element_visible(selector) # Same as self.assert_element() return self.assert_element_visible(*args, **kwargs) def 断言元素不可见(self, *args, **kwargs): # assert_element_not_visible(selector) return self.assert_element_not_visible(*args, **kwargs) def 断言元素存在(self, *args, **kwargs): # assert_element_present(selector) return self.assert_element_present(*args, **kwargs) def 断言元素不存在(self, *args, **kwargs): # assert_element_absent(selector) return self.assert_element_absent(*args, **kwargs) def 断言属性(self, *args, **kwargs): # assert_attribute(selector, attribute, value) return self.assert_attribute(*args, **kwargs) def 断言标题(self, *args, **kwargs): # assert_title(title) return self.assert_title(*args, **kwargs) def 获取标题(self, *args, **kwargs): # get_title() return self.get_title(*args, **kwargs) def 断言为真(self, *args, **kwargs): # assert_true(expr) return self.assert_true(*args, **kwargs) def 断言为假(self, *args, **kwargs): # assert_false(expr) return self.assert_false(*args, **kwargs) def 断言等于(self, *args, **kwargs): # assert_equal(first, second) return self.assert_equal(*args, **kwargs) def 断言不等于(self, *args, **kwargs): # assert_not_equal(first, second) return self.assert_not_equal(*args, **kwargs) def 刷新页面(self, *args, **kwargs): # refresh_page() return self.refresh_page(*args, **kwargs) def 获取当前网址(self, *args, **kwargs): # get_current_url() return self.get_current_url(*args, **kwargs) def 获取页面源代码(self, *args, **kwargs): # get_page_source() return self.get_page_source(*args, **kwargs) def 回去(self, *args, **kwargs): # go_back() return self.go_back(*args, **kwargs) def 向前(self, *args, **kwargs): # go_forward() return self.go_forward(*args, **kwargs) def 文本是否显示(self, *args, **kwargs): # is_text_visible(text, selector="html") return self.is_text_visible(*args, **kwargs) def 元素是否可见(self, *args, **kwargs): # is_element_visible(selector) return self.is_element_visible(*args, **kwargs) def 元素是否启用(self, *args, **kwargs): # is_element_enabled(selector) return self.is_element_enabled(*args, **kwargs) def 元素是否存在(self, *args, **kwargs): # is_element_present(selector) return self.is_element_present(*args, **kwargs) def 等待文本(self, *args, **kwargs): # wait_for_text(text, selector="html") return self.wait_for_text(*args, **kwargs) def 等待元素(self, *args, **kwargs): # wait_for_element(selector) return self.wait_for_element(*args, **kwargs) def 等待元素可见(self, *args, **kwargs): # wait_for_element_visible(selector) # Same as wait_for_element() return self.wait_for_element_visible(*args, **kwargs) def 等待元素不可见(self, *args, **kwargs): # wait_for_element_not_visible(selector) return self.wait_for_element_not_visible(*args, **kwargs) def 等待元素存在(self, *args, **kwargs): # wait_for_element_present(selector) return self.wait_for_element_present(*args, **kwargs) def 等待元素不存在(self, *args, **kwargs): # wait_for_element_absent(selector) return self.wait_for_element_absent(*args, **kwargs) def 等待属性(self, *args, **kwargs): # wait_for_attribute(selector, attribute, value) return self.wait_for_attribute(*args, **kwargs) def 睡(self, *args, **kwargs): # sleep(seconds) return self.sleep(*args, **kwargs) def 等待(self, *args, **kwargs): # wait(seconds) # Same as sleep(seconds) return self.wait(*args, **kwargs) def 提交(self, *args, **kwargs): # submit(selector) return self.submit(*args, **kwargs) def 清除(self, *args, **kwargs): # clear(selector) return self.clear(*args, **kwargs) def 专注于(self, *args, **kwargs): # focus(selector) return self.focus(*args, **kwargs) def JS单击(self, *args, **kwargs): # js_click(selector) return self.js_click(*args, **kwargs) def JS更新文本(self, *args, **kwargs): # js_update_text(selector, text) return self.js_update_text(*args, **kwargs) def JS输入文本(self, *args, **kwargs): # js_type(selector, text) return self.js_type(*args, **kwargs) def 检查HTML(self, *args, **kwargs): # inspect_html() return self.inspect_html(*args, **kwargs) def 保存截图(self, *args, **kwargs): # save_screenshot(name) return self.save_screenshot(*args, **kwargs) def 保存截图到日志(self, *args, **kwargs): # save_screenshot_to_logs(name) return self.save_screenshot_to_logs(*args, **kwargs) def 选择文件(self, *args, **kwargs): # choose_file(selector, file_path) return self.choose_file(*args, **kwargs) def 执行脚本(self, *args, **kwargs): # execute_script(script) return self.execute_script(*args, **kwargs) def 安全执行脚本(self, *args, **kwargs): # safe_execute_script(script) return self.safe_execute_script(*args, **kwargs) def 加载JQUERY(self, *args, **kwargs): # activate_jquery() return self.activate_jquery(*args, **kwargs) def 阻止广告(self, *args, **kwargs): # ad_block() return self.ad_block(*args, **kwargs) def 跳过(self, *args, **kwargs): # skip(reason="") return self.skip(*args, **kwargs) def 检查断开的链接(self, *args, **kwargs): # assert_no_404_errors() return self.assert_no_404_errors(*args, **kwargs) def 检查JS错误(self, *args, **kwargs): # assert_no_js_errors() return self.assert_no_js_errors(*args, **kwargs) def 切换到帧(self, *args, **kwargs): # switch_to_frame(frame) return self.switch_to_frame(*args, **kwargs) def 切换到默认内容(self, *args, **kwargs): # switch_to_default_content() return self.switch_to_default_content(*args, **kwargs) def 打开新窗口(self, *args, **kwargs): # open_new_window() return self.open_new_window(*args, **kwargs) def 切换到窗口(self, *args, **kwargs): # switch_to_window(window) return self.switch_to_window(*args, **kwargs) def 切换到默认窗口(self, *args, **kwargs): # switch_to_default_window() return self.switch_to_default_window(*args, **kwargs) def 切换到最新的窗口(self, *args, **kwargs): # switch_to_newest_window() return self.switch_to_newest_window(*args, **kwargs) def 最大化窗口(self, *args, **kwargs): # maximize_window() return self.maximize_window(*args, **kwargs) def 亮点(self, *args, **kwargs): # highlight(selector) return self.highlight(*args, **kwargs) def 亮点单击(self, *args, **kwargs): # highlight_click(selector) return self.highlight_click(*args, **kwargs) def 滚动到(self, *args, **kwargs): # scroll_to(selector) return self.scroll_to(*args, **kwargs) def 滚动到顶部(self, *args, **kwargs): # scroll_to_top() return self.scroll_to_top(*args, **kwargs) def 滚动到底部(self, *args, **kwargs): # scroll_to_bottom() return self.scroll_to_bottom(*args, **kwargs) def 悬停并单击(self, *args, **kwargs): # hover_and_click(hover_selector, click_selector) return self.hover_and_click(*args, **kwargs) def 是否被选中(self, *args, **kwargs): # is_selected(selector) return self.is_selected(*args, **kwargs) def 按向上箭头(self, *args, **kwargs): # press_up_arrow(selector="html", times=1) return self.press_up_arrow(*args, **kwargs) def 按向下箭头(self, *args, **kwargs): # press_down_arrow(selector="html", times=1) return self.press_down_arrow(*args, **kwargs) def 按向左箭头(self, *args, **kwargs): # press_left_arrow(selector="html", times=1) return self.press_left_arrow(*args, **kwargs) def 按向右箭头(self, *args, **kwargs): # press_right_arrow(selector="html", times=1) return self.press_right_arrow(*args, **kwargs) def 单击可见元素(self, *args, **kwargs): # click_visible_elements(selector) return self.click_visible_elements(*args, **kwargs) def 按文本选择选项(self, *args, **kwargs): # select_option_by_text(dropdown_selector, option) return self.select_option_by_text(*args, **kwargs) def 按索引选择选项(self, *args, **kwargs): # select_option_by_index(dropdown_selector, option) return self.select_option_by_index(*args, **kwargs) def 按值选择选项(self, *args, **kwargs): # select_option_by_value(dropdown_selector, option) return self.select_option_by_value(*args, **kwargs) def 创建演示文稿(self, *args, **kwargs): # create_presentation(name=None, theme="default", transition="default") return self.create_presentation(*args, **kwargs) def 添加幻灯片(self, *args, **kwargs): # add_slide(content=None, image=None, code=None, iframe=None, # content2=None, notes=None, transition=None, name=None) return self.add_slide(*args, **kwargs) def 保存演示文稿(self, *args, **kwargs): # save_presentation(name=None, filename=None, # show_notes=False, interval=0) return self.save_presentation(*args, **kwargs) def 开始演示文稿(self, *args, **kwargs): # begin_presentation(name=None, filename=None, # show_notes=False, interval=0) return self.begin_presentation(*args, **kwargs) def 创建饼图(self, *args, **kwargs): # create_pie_chart(chart_name=None, title=None, subtitle=None, # data_name=None, unit=None, libs=True) return self.create_pie_chart(*args, **kwargs) def 创建条形图(self, *args, **kwargs): # create_bar_chart(chart_name=None, title=None, subtitle=None, # data_name=None, unit=None, libs=True) return self.create_bar_chart(*args, **kwargs) def 创建柱形图(self, *args, **kwargs): # create_column_chart(chart_name=None, title=None, subtitle=None, # data_name=None, unit=None, libs=True) return self.create_column_chart(*args, **kwargs) def 创建折线图(self, *args, **kwargs): # create_line_chart(chart_name=None, title=None, subtitle=None, # data_name=None, unit=None, zero=False, libs=True) return self.create_line_chart(*args, **kwargs) def 创建面积图(self, *args, **kwargs): # create_area_chart(chart_name=None, title=None, subtitle=None, # data_name=None, unit=None, zero=False, libs=True) return self.create_area_chart(*args, **kwargs) def 将系列添加到图表(self, *args, **kwargs): # add_series_to_chart(data_name=None, chart_name=None) return self.add_series_to_chart(*args, **kwargs) def 添加数据点(self, *args, **kwargs): # add_data_point(label, value, color=None, chart_name=None) return self.add_data_point(*args, **kwargs) def 保存图表(self, *args, **kwargs): # save_chart(chart_name=None, filename=None) return self.save_chart(*args, **kwargs) def 显示图表(self, *args, **kwargs): # display_chart(chart_name=None, filename=None, interval=0) return self.display_chart(*args, **kwargs) def 提取图表(self, *args, **kwargs): # extract_chart(chart_name=None) return self.extract_chart(*args, **kwargs) def 创建游览(self, *args, **kwargs): # create_tour(name=None, theme=None) return self.create_tour(*args, **kwargs) def 创建SHEPHERD游览(self, *args, **kwargs): # create_shepherd_tour(name=None, theme=None) return self.create_shepherd_tour(*args, **kwargs) def 创建BOOTSTRAP游览(self, *args, **kwargs): # create_bootstrap_tour(name=None, theme=None) return self.create_bootstrap_tour(*args, **kwargs) def 创建DRIVERJS游览(self, *args, **kwargs): # create_driverjs_tour(name=None, theme=None) return self.create_driverjs_tour(*args, **kwargs) def 创建HOPSCOTCH游览(self, *args, **kwargs): # create_hopscotch_tour(name=None, theme=None) return self.create_hopscotch_tour(*args, **kwargs) def 创建INTROJS游览(self, *args, **kwargs): # create_introjs_tour(name=None, theme=None) return self.create_introjs_tour(*args, **kwargs) def 添加游览步骤(self, *args, **kwargs): # add_tour_step(message, selector=None, name=None, # title=None, theme=None, alignment=None) return self.add_tour_step(*args, **kwargs) def 播放游览(self, *args, **kwargs): # play_tour(name=None) return self.play_tour(*args, **kwargs) def 导出游览(self, *args, **kwargs): # export_tour(name=None, filename="my_tour.js", url=None) return self.export_tour(*args, **kwargs) def 获取PDF文本(self, *args, **kwargs): # get_pdf_text(pdf, page=None, maxpages=None, password=None, # codec='utf-8', wrap=False, nav=False, override=False) return self.get_pdf_text(*args, **kwargs) def 断言PDF文本(self, *args, **kwargs): # assert_pdf_text(pdf, text, page=None, maxpages=None, password=None, # codec='utf-8', wrap=True, nav=False, override=False) return self.assert_pdf_text(*args, **kwargs) def 下载文件(self, *args, **kwargs): # download_file(file) return self.download_file(*args, **kwargs) def 下载的文件是否存在(self, *args, **kwargs): # is_downloaded_file_present(file) return self.is_downloaded_file_present(*args, **kwargs) def 获取下载的文件路径(self, *args, **kwargs): # get_path_of_downloaded_file(file) return self.get_path_of_downloaded_file(*args, **kwargs) def 检查下载的文件(self, *args, **kwargs): # assert_downloaded_file(file) return self.assert_downloaded_file(*args, **kwargs) def 删除下载的文件(self, *args, **kwargs): # delete_downloaded_file(file) return self.delete_downloaded_file(*args, **kwargs) def 失败(self, *args, **kwargs): # fail(msg=None) # Inherited from "unittest" return self.fail(*args, **kwargs) def 获取(self, *args, **kwargs): # get(url) # Same as open(url) return self.get(*args, **kwargs) def 访问(self, *args, **kwargs): # visit(url) # Same as open(url) return self.visit(*args, **kwargs) def 访问网址(self, *args, **kwargs): # visit_url(url) # Same as open(url) return self.visit_url(*args, **kwargs) def 获取元素(self, *args, **kwargs): # get_element(selector) # Element can be hidden return self.get_element(*args, **kwargs) def 查找元素(self, *args, **kwargs): # find_element(selector) # Element must be visible return self.find_element(*args, **kwargs) def 删除第一个元素(self, *args, **kwargs): # remove_element(selector) return self.remove_element(*args, **kwargs) def 删除所有元素(self, *args, **kwargs): # remove_elements(selector) return self.remove_elements(*args, **kwargs) def 查找文本(self, *args, **kwargs): # find_text(text, selector="html") # Same as wait_for_text return self.find_text(*args, **kwargs) def 设置文本(self, *args, **kwargs): # set_text(selector, text) return self.set_text(*args, **kwargs) def 获取属性(self, *args, **kwargs): # get_attribute(selector, attribute) return self.get_attribute(*args, **kwargs) def 设置属性(self, *args, **kwargs): # set_attribute(selector, attribute, value) return self.set_attribute(*args, **kwargs) def 设置所有属性(self, *args, **kwargs): # set_attributes(selector, attribute, value) return self.set_attributes(*args, **kwargs) def 写文本(self, *args, **kwargs): # write(selector, text) # Same as update_text() return self.write(*args, **kwargs) def 设置消息主题(self, *args, **kwargs): # set_messenger_theme(theme="default", location="default") return self.set_messenger_theme(*args, **kwargs) def 显示讯息(self, *args, **kwargs): # post_message(message, duration=None, pause=True, style="info") return self.post_message(*args, **kwargs) def 打印(self, *args, **kwargs): # _print(msg) # Same as Python print() return self._print(*args, **kwargs) def 推迟断言元素(self, *args, **kwargs): # deferred_assert_element(selector) return self.deferred_assert_element(*args, **kwargs) def 推迟断言文本(self, *args, **kwargs): # deferred_assert_text(text, selector="html") return self.deferred_assert_text(*args, **kwargs) def 处理推迟断言(self, *args, **kwargs): # process_deferred_asserts(print_only=False) return self.process_deferred_asserts(*args, **kwargs) def 接受警报(self, *args, **kwargs): # accept_alert(timeout=None) return self.accept_alert(*args, **kwargs) def 解除警报(self, *args, **kwargs): # dismiss_alert(timeout=None) return self.dismiss_alert(*args, **kwargs) def 切换到警报(self, *args, **kwargs): # switch_to_alert(timeout=None) return self.switch_to_alert(*args, **kwargs) def 拖放(self, *args, **kwargs): # drag_and_drop(drag_selector, drop_selector) return self.drag_and_drop(*args, **kwargs) def 设置HTML(self, *args, **kwargs): # set_content(html_string, new_page=False) return self.set_content(*args, **kwargs) def 加载HTML文件(self, *args, **kwargs): # load_html_file(html_file, new_page=True) return self.load_html_file(*args, **kwargs) def 打开HTML文件(self, *args, **kwargs): # open_html_file(html_file) return self.open_html_file(*args, **kwargs) def 删除所有COOKIE(self, *args, **kwargs): # delete_all_cookies() return self.delete_all_cookies(*args, **kwargs) def 获取用户代理(self, *args, **kwargs): # get_user_agent() return self.get_user_agent(*args, **kwargs) def 获取语言代码(self, *args, **kwargs): # get_locale_code() return self.get_locale_code(*args, **kwargs) class MasterQA_中文(MasterQA, 硒测试用例): def 校验(self, *args, **kwargs): # "Manual Check" self.DEFAULT_VALIDATION_TITLE = "手动检查" # "Does the page look good?" self.DEFAULT_VALIDATION_MESSAGE = "页面是否看起来不错?" # verify(QUESTION) return self.verify(*args, **kwargs)
mit
8,168,400,214,733,496,000
33.495017
79
0.597419
false
2.927675
false
false
false
bolkedebruin/airflow
tests/providers/microsoft/azure/operators/test_azure_container_instances.py
1
9083
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from collections import namedtuple import mock from azure.mgmt.containerinstance.models import ContainerState, Event from airflow.exceptions import AirflowException from airflow.providers.microsoft.azure.operators.azure_container_instances import ( AzureContainerInstancesOperator, ) def make_mock_cg(container_state, events=None): """ Make a mock Container Group as the underlying azure Models have read-only attributes See https://docs.microsoft.com/en-us/rest/api/container-instances/containergroups """ events = events or [] instance_view_dict = {"current_state": container_state, "events": events} instance_view = namedtuple("InstanceView", instance_view_dict.keys())(*instance_view_dict.values()) container_dict = {"instance_view": instance_view} container = namedtuple("Container", container_dict.keys())(*container_dict.values()) container_g_dict = {"containers": [container]} container_g = namedtuple("ContainerGroup", container_g_dict.keys())(*container_g_dict.values()) return container_g class TestACIOperator(unittest.TestCase): @mock.patch("airflow.providers.microsoft.azure.operators." "azure_container_instances.AzureContainerInstanceHook") def test_execute(self, aci_mock): expected_c_state = ContainerState(state='Terminated', exit_code=0, detail_status='test') expected_cg = make_mock_cg(expected_c_state) aci_mock.return_value.get_state.return_value = expected_cg aci_mock.return_value.exists.return_value = False aci = AzureContainerInstancesOperator(ci_conn_id=None, registry_conn_id=None, resource_group='resource-group', name='container-name', image='container-image', region='region', task_id='task') aci.execute(None) self.assertEqual(aci_mock.return_value.create_or_update.call_count, 1) (called_rg, called_cn, called_cg), _ = \ aci_mock.return_value.create_or_update.call_args self.assertEqual(called_rg, 'resource-group') self.assertEqual(called_cn, 'container-name') self.assertEqual(called_cg.location, 'region') self.assertEqual(called_cg.image_registry_credentials, None) self.assertEqual(called_cg.restart_policy, 'Never') self.assertEqual(called_cg.os_type, 'Linux') called_cg_container = called_cg.containers[0] self.assertEqual(called_cg_container.name, 'container-name') self.assertEqual(called_cg_container.image, 'container-image') self.assertEqual(aci_mock.return_value.delete.call_count, 1) @mock.patch("airflow.providers.microsoft.azure.operators." "azure_container_instances.AzureContainerInstanceHook") def test_execute_with_failures(self, aci_mock): expected_c_state = ContainerState(state='Terminated', exit_code=1, detail_status='test') expected_cg = make_mock_cg(expected_c_state) aci_mock.return_value.get_state.return_value = expected_cg aci_mock.return_value.exists.return_value = False aci = AzureContainerInstancesOperator(ci_conn_id=None, registry_conn_id=None, resource_group='resource-group', name='container-name', image='container-image', region='region', task_id='task') with self.assertRaises(AirflowException): aci.execute(None) self.assertEqual(aci_mock.return_value.delete.call_count, 1) @mock.patch("airflow.providers.microsoft.azure.operators." "azure_container_instances.AzureContainerInstanceHook") def test_execute_with_tags(self, aci_mock): expected_c_state = ContainerState(state='Terminated', exit_code=0, detail_status='test') expected_cg = make_mock_cg(expected_c_state) tags = {"testKey": "testValue"} aci_mock.return_value.get_state.return_value = expected_cg aci_mock.return_value.exists.return_value = False aci = AzureContainerInstancesOperator(ci_conn_id=None, registry_conn_id=None, resource_group='resource-group', name='container-name', image='container-image', region='region', task_id='task', tags=tags) aci.execute(None) self.assertEqual(aci_mock.return_value.create_or_update.call_count, 1) (called_rg, called_cn, called_cg), _ = \ aci_mock.return_value.create_or_update.call_args self.assertEqual(called_rg, 'resource-group') self.assertEqual(called_cn, 'container-name') self.assertEqual(called_cg.location, 'region') self.assertEqual(called_cg.image_registry_credentials, None) self.assertEqual(called_cg.restart_policy, 'Never') self.assertEqual(called_cg.os_type, 'Linux') self.assertEqual(called_cg.tags, tags) called_cg_container = called_cg.containers[0] self.assertEqual(called_cg_container.name, 'container-name') self.assertEqual(called_cg_container.image, 'container-image') self.assertEqual(aci_mock.return_value.delete.call_count, 1) @mock.patch("airflow.providers.microsoft.azure.operators." "azure_container_instances.AzureContainerInstanceHook") def test_execute_with_messages_logs(self, aci_mock): events = [Event(message="test"), Event(message="messages")] expected_c_state1 = ContainerState(state='Running', exit_code=0, detail_status='test') expected_cg1 = make_mock_cg(expected_c_state1, events) expected_c_state2 = ContainerState(state='Terminated', exit_code=0, detail_status='test') expected_cg2 = make_mock_cg(expected_c_state2, events) aci_mock.return_value.get_state.side_effect = [expected_cg1, expected_cg2] aci_mock.return_value.get_logs.return_value = ["test", "logs"] aci_mock.return_value.exists.return_value = False aci = AzureContainerInstancesOperator(ci_conn_id=None, registry_conn_id=None, resource_group='resource-group', name='container-name', image='container-image', region='region', task_id='task') aci.execute(None) self.assertEqual(aci_mock.return_value.create_or_update.call_count, 1) self.assertEqual(aci_mock.return_value.get_state.call_count, 2) self.assertEqual(aci_mock.return_value.get_logs.call_count, 2) self.assertEqual(aci_mock.return_value.delete.call_count, 1) def test_name_checker(self): valid_names = ['test-dash', 'name-with-length---63' * 3] invalid_names = ['test_underscore', 'name-with-length---84' * 4, 'name-ending-with-dash-', '-name-starting-with-dash'] for name in invalid_names: with self.assertRaises(AirflowException): AzureContainerInstancesOperator._check_name(name) for name in valid_names: checked_name = AzureContainerInstancesOperator._check_name(name) self.assertEqual(checked_name, name) if __name__ == '__main__': unittest.main()
apache-2.0
2,417,109,348,444,527,600
45.106599
97
0.594187
false
4.345933
true
false
false
alfred82santa/telebot
aiotelebot/formatters.py
1
2590
from json import dumps from aiohttp.hdrs import CONTENT_TYPE from aiohttp.multipart import MultipartWriter from aiohttp.payload import get_payload from multidict import CIMultiDict from dirty_models.fields import ArrayField, ModelField from dirty_models.models import BaseModel from dirty_models.utils import ModelFormatterIter, JSONEncoder, ListFormatterIter from service_client.json import json_decoder from .messages import FileModel, Response class ContainsFileError(Exception): pass class TelegramModelFormatterIter(ModelFormatterIter): def format_field(self, field, value): if isinstance(field, ModelField): if isinstance(value, FileModel): return value return dumps(value, cls=JSONEncoder) elif isinstance(field, ArrayField): return dumps(ListFormatterIter(obj=value, field=value.get_field_type(), parent_formatter=ModelFormatterIter(model=self.model)), cls=JSONEncoder) return super(TelegramModelFormatterIter, self).format_field(field, value) class TelegramJsonEncoder(JSONEncoder): def default(self, obj): if isinstance(obj, FileModel): raise ContainsFileError() elif isinstance(obj, BaseModel): obj = TelegramModelFormatterIter(obj) return super(TelegramJsonEncoder, self).default(obj) def telegram_encoder(content, *args, **kwargs): try: return dumps(content, cls=TelegramJsonEncoder) except ContainsFileError: pass formatter = TelegramModelFormatterIter(content) kwargs['endpoint_desc']['stream_request'] = True mp = MultipartWriter('form-data') for field, value in formatter: content_dispositon = {'name': field} if isinstance(value, FileModel): part = get_payload(value.stream, headers=CIMultiDict()) if value.name: content_dispositon['filename'] = value.name if value.mime_type: part.headers[CONTENT_TYPE] = value.mime_type else: part = get_payload(str(value), headers=CIMultiDict()) part.set_content_disposition("form-data", **content_dispositon) mp.append_payload(part) try: kwargs['request_params']['headers'].update(mp.headers) except KeyError: kwargs['request_params']['headers'] = mp.headers return mp def telegram_decoder(content, *args, **kwargs): return Response(json_decoder(content, *args, **kwargs))
lgpl-3.0
2,767,400,065,749,186,000
30.975309
98
0.661004
false
4.345638
false
false
false
ActiveState/code
recipes/Python/578102_Nautilus_script_push_files_S3/recipe-578102.py
1
1426
#!/usr/bin/env python import mimetypes import os import sys import boto from boto.s3.connection import S3Connection from boto.s3.key import Key def get_s3_conn(): return S3Connection() def get_bucket(conn, name): return conn.get_bucket(name) og = os.environ.get bucket_name = og('NAUTILUS_BUCKET_NAME', 'media.foo.com') bucket_prefix = og('NAUTILUS_BUCKET_PREFIX', 'scrapspace/files') conn = get_s3_conn() bucket = get_bucket(conn, bucket_name) def get_ctype(f): return mimetypes.guess_type(f)[0] or "application/x-octet-stream" def put_file(filename, keyname): new_key = Key(bucket) new_key.key = keyname new_key.set_metadata('Content-Type', get_ctype(filename)) new_key.set_contents_from_filename(filename) if __name__ == '__main__': for name in sys.argv[1:]: full = os.path.abspath(name) if os.path.isdir(name): parent_dir = os.path.dirname(full) for base, directories, files in os.walk(full): for filename in files: full_path = os.path.join(base, filename) rel_path = os.path.relpath(full_path, parent_dir) keyname = os.path.join(bucket_prefix, rel_path) put_file(full_path, keyname) else: filename = os.path.basename(name) keyname = os.path.join(bucket_prefix, filename) put_file(filename, keyname)
mit
-6,771,188,464,086,638,000
28.708333
69
0.626928
false
3.293303
false
false
false
wmvanvliet/psychic
psychic/scalpplot.py
1
3391
import numpy as np import matplotlib.pyplot as plt from scipy import interpolate from matplotlib.path import Path from matplotlib.patches import PathPatch, Circle from . import positions def plot_scalp(densities, sensors, sensor_locs=None, plot_sensors=True, plot_contour=True, cmap=None, clim=None, smark='k.', linewidth=2, fontsize=8): if sensor_locs is None: sensor_locs = positions.POS_10_5 if cmap is None: cmap = plt.get_cmap('RdBu_r') # add densities if clim is None: cmax = np.max(np.abs(densities)) clim = [-cmax, cmax] locs = [positions.project_scalp(*sensor_locs[lab]) for lab in sensors] add_density(densities, locs, cmap=cmap, clim=clim, plot_contour=plot_contour) # setup plot MARGIN = 1.2 plt.xlim(-MARGIN, MARGIN) plt.ylim(-MARGIN, MARGIN) plt.box(False) ax = plt.gca() ax.set_aspect(1.2) ax.yaxis.set_ticks([],[]) ax.xaxis.set_ticks([],[]) # add details add_head(linewidth) if plot_sensors: add_sensors(sensors, locs, smark, fontsize) def add_head(linewidth=2): '''Draw head outline''' nose = [(Path.MOVETO, (-.1, 1.)), (Path.LINETO, (0, 1.1)), (Path.LINETO, (.1, 1.))] lear = [(Path.MOVETO, (-1, .134)), (Path.LINETO, (-1.04, 0.08)), (Path.LINETO, (-1.08, -0.11)), (Path.LINETO, (-1.06, -0.16)), (Path.LINETO, (-1.02, -0.15)), (Path.LINETO, (-1, -0.12))] rear = [(c, (-px, py)) for (c, (px, py)) in lear] # plot outline ax = plt.gca() ax.add_artist(plt.Circle((0, 0), 1, fill=False, linewidth=linewidth)) # add nose and ears for p in [nose, lear, rear]: code, verts = list(zip(*p)) ax.add_patch(PathPatch(Path(verts, code), fill=False, linewidth=linewidth)) def add_sensors(labels, locs, smark='k.', fontsize=8): '''Adds sensor names and markers''' for (label, (x, y)) in zip(labels, locs): if len(labels) <= 16: plt.text(x, y + .03, label, fontsize=fontsize, ha='center') plt.plot(x, y, smark, ms=2.) def add_density(dens, locs, cmap=plt.cm.jet, clim=None, plot_contour=True): ''' This function draws the densities using the locations provided in sensor_dict. The two are connected throught the list labels. The densities are inter/extrapolated on a grid slightly bigger than the head using scipy.interpolate.rbf. The grid is drawn using the colors provided in cmap and clim inside a circle. Contours are drawn on top of this grid. ''' RESOLUTION = 50 RADIUS = 1.2 xs, ys = list(zip(*locs)) extent = [-1.2, 1.2, -1.2, 1.2] vmin, vmax = clim # interpolate # TODO: replace with Gaussian process interpolator. ids don't trust SciPy's # interpolation functions (they wiggle and they segfault). rbf = interpolate.Rbf(xs, ys, dens, function='linear') xg = np.linspace(extent[0], extent[1], RESOLUTION) yg = np.linspace(extent[2], extent[3], RESOLUTION) xg, yg = np.meshgrid(xg, yg) zg = rbf(xg, yg) # draw contour if plot_contour: plt.contour(xg, yg, np.where(xg ** 2 + yg ** 2 <= RADIUS ** 2, zg, np.nan), np.linspace(vmin, vmax, 13), colors='k', extent=extent, linewidths=.3) # draw grid, needs to be last to enable plt.colormap() to work im = plt.imshow(zg, origin='lower', extent=extent, vmin=vmin, vmax=vmax, cmap=cmap) # clip grid to circle patch = Circle((0, 0), radius=RADIUS, facecolor='none', edgecolor='none') plt.gca().add_patch(patch) im.set_clip_path(patch)
bsd-3-clause
607,890,273,072,048,300
32.245098
99
0.654969
false
2.861603
false
false
false
ShaguptaS/python
bigml/tests/create_evaluation_steps.py
1
3119
# -*- coding: utf-8 -*- #!/usr/bin/env python # # Copyright 2012, 2015 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time import json from datetime import datetime, timedelta from world import world from bigml.api import HTTP_CREATED from bigml.api import FINISHED from bigml.api import FAULTY from bigml.api import get_status from read_evaluation_steps import i_get_the_evaluation #@step(r'I create an evaluation for the model with the dataset$') def i_create_an_evaluation(step): dataset = world.dataset.get('resource') model = world.model.get('resource') resource = world.api.create_evaluation(model, dataset) world.status = resource['code'] assert world.status == HTTP_CREATED world.location = resource['location'] world.evaluation = resource['object'] world.evaluations.append(resource['resource']) #@step(r'I create an evaluation for the ensemble with the dataset$') def i_create_an_evaluation_ensemble(step): dataset = world.dataset.get('resource') ensemble = world.ensemble.get('resource') resource = world.api.create_evaluation(ensemble, dataset) world.status = resource['code'] assert world.status == HTTP_CREATED world.location = resource['location'] world.evaluation = resource['object'] world.evaluations.append(resource['resource']) #@step(r'I wait until the evaluation status code is either (\d) or (-\d) less than (\d+)') def wait_until_evaluation_status_code_is(step, code1, code2, secs): start = datetime.utcnow() i_get_the_evaluation(step, world.evaluation['resource']) status = get_status(world.evaluation) while (status['code'] != int(code1) and status['code'] != int(code2)): time.sleep(3) assert datetime.utcnow() - start < timedelta(seconds=int(secs)) i_get_the_evaluation(step, world.evaluation['resource']) status = get_status(world.evaluation) assert status['code'] == int(code1) #@step(r'I wait until the evaluation is ready less than (\d+)') def the_evaluation_is_finished_in_less_than(step, secs): wait_until_evaluation_status_code_is(step, FINISHED, FAULTY, secs) #@step(r'the measured "(.*)" is (\d+\.*\d*)') def the_measured_measure_is_value(step, measure, value): ev = world.evaluation['result']['model'][measure] + 0.0 assert ev == float(value), "The %s is: %s and %s is expected" % ( measure, ev, float(value)) #@step(r'the measured "(.*)" is greater than (\d+\.*\d*)') def the_measured_measure_is_greater_value(step, measure, value): assert world.evaluation['result']['model'][measure] + 0.0 > float(value)
apache-2.0
8,521,414,331,171,372,000
38.987179
90
0.702469
false
3.60578
false
false
false
miquelo/exectask
packages/exectask/context.py
1
4804
# # This file is part of EXECTASK. # # EXECTASK is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # EXECTASK is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with EXECTASK. If not, see <http://www.gnu.org/licenses/>. # from exectask.expression import * from exectask.merge import * import json import sys class ExecuteTaskContext: class NonePrinterFactory: def printer(self, out): return NonePrinter() class NonePrinter: def print(self, text, level=0, color=None, style=None): pass def __init__(self, actions={}, printer_fact=NonePrinterFactory()): self.__actions = actions self.__printer_fact = printer_fact self.__variables_stack = [ {} ] self.__variables = ExpressionDict(self.__variables_stack[-1], self) def __len__(self): return self.__variables.__len__() def __length_hint__(self): return self.__variables.__length_hint__() def __getitem__(self, key): return self.__variables.__getitem__(key) def __missing__(self): self.__variables.__missing__() def __setitem__(self, key, value): self.__variables.__setitem__(key, value) def __delitem__(self, key): self.__variables.__delitem__(key) def __iter__(self): return self.__variables.__iter__() def __reversed__(self): return self.__variables.__reversed__() def __contains__(self, item): return self.__variables.__contains__(item) def items(self): return self.__variables.items() def printer(self, out): return self.__printer_fact.printer(out) def execute_task(self, task, variables={}): # Check parameter types if not isinstance(task, dict): raise TypeError('\'task\' must be a dictionary') if not isinstance(variables, dict): raise TypeError('\'variables\' must be a dictionary') # Gather top variables top_vars = self.__variables_stack[-1] try: task_vars = task['variables'] if not isinstance(task_vars, dict): raise TypeError('Task \'variables\' must be a dictionary') merge_dict(top_vars, task_vars) except KeyError: pass merge_dict(top_vars, variables) # Update variables stack self.__variables_stack.append(top_vars) self.__variables = ExpressionDict(self.__variables_stack[-1], self) # Gather description and actions task_desc = None task_actions = [] for key, value in task.items(): if key == 'variables': pass # Already gathered elif key == 'description': if not isinstance(value, str): raise TypeError('Task \'description\' must be an string') task_desc = expression_eval(value, self) elif key == 'actions': if not isinstance(value, list): raise TypeError('Task \'actions\' must be a list') task_actions = value else: raise TypeError('Unknown task field \'{}\''.format(key)) # Print task information printer = self.__printer_fact.printer(sys.stdout) if task_desc is not None: printer.print('==> {}'.format(task_desc), 0, 'white', 'bright') printer.print('Variables:', 1) printer.print(json.dumps(top_vars, indent=4, sort_keys=True), 1) printer.print('Actions:', 1) printer.print(json.dumps(task_actions, indent=4, sort_keys=True), 1) # Call task actions for action in ExpressionList(task_actions, self): self.call_action(action) # Restore variables stack self.__variables_stack.pop() self.__variables = ExpressionDict(self.__variables_stack[-1], self) def call_action(self, action): # Check parameter types if not isinstance(action, dict): raise TypeError('\'action\' must be a dictionary') # Gather name and parameters name = None parameters = {} for key, value in action.items(): if key == 'name': if not isinstance(value, str): raise TypeError('Action \'name\' must be an string') name = value elif key == 'parameters': if not isinstance(value, dict): raise TypeError('Action \'parameters\' must be a ' 'dictionary') parameters = value else: raise TypeError('Unknown action field \'{}\''.format(key)) if name is None: raise TypeError('Action \'name\' must be defined') # Call action function try: fn = self.__actions[name] except KeyError: raise TypeError('Action \'{}\' was not found'.format(name)) action_locals = { 'fn': fn, 'context': self, 'parameters': parameters } eval('fn(context, parameters)', {}, action_locals)
gpl-3.0
-5,314,101,906,513,230,000
27.595238
70
0.667777
false
3.542773
false
false
false
VanceKingSaxbeA/MarketsEngine
src/bloombergquote.py
1
1536
/*Owner & Copyrights: Vance King Saxbe. A.*/""" Copyright (c) <2014> Author Vance King Saxbe. A, and contributors Power Dominion Enterprise, Precieux Consulting and other contributors. Modelled, Architected and designed by Vance King Saxbe. A. with the geeks from GoldSax Consulting and GoldSax Technologies email @vsaxbe@yahoo.com. Development teams from Power Dominion Enterprise, Precieux Consulting. Project sponsored by GoldSax Foundation, GoldSax Group and executed by GoldSax Manager."""import urllib3 import string from time import localtime, strftime class bloombergquote: def getquote(symbol): url = "http://www.bloomberg.com/quote/"+symbol http = urllib3.PoolManager() r = http.request('GET', url) r.release_conn() f = r.data.decode("UTF-8") a = f.split('span class="ticker_data">') b = [] tstamp = strftime("%H:%M:%S", localtime()) contents = [] try: b = a[1].split('</span>') contents.extend(symbol.replace(':','')) contents.extend(strftime("%Y-%m-%d")) contents.extend(tstamp) contents.extend(b[0]) except IndexError: print("Index error") return contents /*email to provide support at vancekingsaxbe@powerdominionenterprise.com, businessaffairs@powerdominionenterprise.com, For donations please write to fundraising@powerdominionenterprise.com*/
mit
-6,879,921,841,213,445,000
52
508
0.628255
false
3.859296
false
false
false
alekseyig/fusion
lib/pylibcurl/multi.py
1
2883
#coding=utf8 import ctypes import lib import const import prototype from pylibcurl.base import Base ### classes class Multi(Base): _pointer_type = ctypes.POINTER(const.CURLM) _lib_init_func = lib.curl_multi_init _lib_cleanup_func = lib.curl_multi_cleanup def __init__(self, **kwargs): self._handles = set() self._callbacks = {} if kwargs: self.setopt(**kwargs) def __setattr__(self, name, value): try: self.setopt(**{name: value}) except ValueError: object.__setattr__(self, name, value) def _clear(self): self._handles.clear() self._callbacks.clear() def add_handle(self, curl): lib.curl_multi_add_handle(self._handle, curl._handle) self._handles.add(curl) def remove_handle(self, curl): lib.curl_multi_remove_handle(self._handle, curl._handle) self._handles.remove(curl) def assign(self, socket, callback): raise NotImplementedError def fdset(self): raise NotImplementedError def perform(self): running_handles = ctypes.c_int() code = lib.curl_multi_perform(self._handle, ctypes.byref(running_handles)) return code, running_handles.value def socket_action(self, socket, event): running_handles = ctypes.c_int() code = lib.curl_multi_socket_action(self._handle, socket, event, ctypes.byref(running_handles)) return code, running_handles.value def info_read(self): """ return tuple(msg, number_in_queue) or return None """ return lib.curl_multi_info_read(self._handle) def setopt(self, **kwargs): """ c.pipelning = 1 or c.setopt(pipelining=1) or c.setopt(pipelining=1, maxconnects=10) """ def setopt(name, value): option_name = 'CURLMOPT_%s' % name.upper() if name.islower() and hasattr(const, option_name): option_value = getattr(const, option_name) if hasattr(prototype, name): if callable(value): value = getattr(prototype, name)(value) self._callbacks[name] = value else: self._callbacks[name] = None lib.curl_multi_setopt(self._handle, option_value, value) else: raise ValueError('invalid option name "%s"' % name) for k, v in kwargs.items(): setopt(k, v) def strerror(self, errornum): return lib.curl_multi_strerror(errornum) def timeout(self): time_out = ctypes.c_long() lib.curl_multi_timeout(self._handle, ctypes.byref(time_out)) return time_out.value
mit
-3,252,982,349,766,039,000
26.990291
103
0.556712
false
4.072034
false
false
false
michalpravda/Anki_helpers
add-ons/export.py
1
1192
# import the main window object (mw) from ankiqt from aqt import mw # import the "show info" tool from utils.py from aqt.utils import showInfo # import all of the Qt GUI library from aqt.qt import * import re # We're going to add a menu item below. First we want to create a function to # be called when the menu item is activated. def testFunction(): ids = mw.col.findCards("deck:'slovicka nemecky'") with open('d:\\exp.txt', 'w') as f: output = set() for id in ids: card = mw.col.getCard(id) note = card.note() for (name, value) in note.items(): if (name == 'Word') or name == 'Text': value = re.sub('{{c.::(.*?)}}', '\\1', value) value = value.replace('&nbsp;', '').replace('<div>', '').replace('</div>', '') output.add(value.encode('utf-8')) lis = sorted(list(output)) for val in lis: f.write(val + '\n') f.close # create a new menu item, "test" action = QAction("test", mw) # set it to call testFunction when it's clicked mw.connect(action, SIGNAL("triggered()"), testFunction) # and add it to the tools menu mw.form.menuTools.addAction(action)
mit
-2,603,656,548,504,197,600
33.057143
96
0.598154
false
3.455072
false
false
false
paulscherrerinstitute/pyscan
tests/helpers/scan_old.py
1
38634
from copy import deepcopy from datetime import datetime from time import sleep import numpy as np from tests.helpers.utils import TestPyScanDal # This is just a dummy GUI class. class DummyClass: def __init__(self): self.Progress = 1 # For Thomas!! def showPanel(self, s): pass def emit(self, signal): pass class Scan(object): def __init__(self, fromGUI=0): self.epics_dal = None self.fromGUI = fromGUI self.outdict = None self.n_validations = None self.n_observables = None self.n_readbacks = None self.ProgDisp = DummyClass() self.abortScan = 0 self.pauseScan = 0 def finalizeScan(self): self.epics_dal.close_group('All') if self.inlist[-1]['Monitor']: self.epics_dal.close_group('Monitor') self.outdict['ErrorMessage'] = 'Measurement finalized (finished/aborted) normally. ' \ 'Need initialisation before next measurement.' if self.fromGUI: self.ProgDisp.showPanel(0) def _add_group(self, dic, name, sources, result, close=True): temp_handle = self.epics_dal.add_group(name, sources) [output, summary, status] = self.epics_dal.get_group(temp_handle) if summary != 1: # Something wrong. Try again. [output, summary, status] = self.epics_dal.get_group(temp_handle) if summary != 1: for si in status: if si != 1: wch = sources[status.index(si)] self.epics_dal.close_group(temp_handle) raise ValueError('Something wrong in Epics channel: ' + wch) if result: dic[result] = output if close: self.epics_dal.close_group(temp_handle) def initializeScan(self, inlist, dal): self.epics_dal = dal or TestPyScanDal() self.inlist = [] if not isinstance(inlist, list): # It is a simple SKS or MKS inlist = [inlist] try: for index, dic in enumerate(inlist): dic['ID'] = index # Just in case there are identical input dictionaries. (Normally, it may not happen.) if index == len(inlist) - 1 and ('Waiting' not in dic.keys()): raise ValueError('Waiting for the scan was not given.') self._setup_knobs(index, dic) self._setup_knob_scan_values(index, dic) if index == len(inlist) - 1 and ('Observable' not in dic.keys()): raise ValueError('The observable is not given.') elif index == len(inlist) - 1: if not isinstance(dic['Observable'], list): dic['Observable'] = [dic['Observable']] if index == len(inlist) - 1 and ('NumberOfMeasurements' not in dic.keys()): dic['NumberOfMeasurements'] = 1 if 'PreAction' in dic.keys(): if not isinstance(dic['PreAction'], list): raise ValueError('PreAction should be a list. Input dictionary ' + str(i) + '.') for l in dic['PreAction']: if not isinstance(l, list): raise ValueError('Every PreAction should be a list. Input dictionary ' + str(i) + '.') if len(l) != 5: if not l[0] == 'SpecialAction': raise ValueError('Every PreAction should be in a form of ' '[Ch-set, Ch-read, Value, Tolerance, Timeout]. ' 'Input dictionary ' + str(i) + '.') if 'PreActionWaiting' not in dic.keys(): dic['PreActionWaiting'] = 0.0 if not isinstance(dic['PreActionWaiting'], float) and not isinstance(dic['PreActionWaiting'], int): raise ValueError('PreActionWating should be a float. Input dictionary ' + str(i) + '.') if 'PreActionOrder' not in dic.keys(): dic['PreActionOrder'] = [0] * len(dic['PreAction']) if not isinstance(dic['PreActionOrder'], list): raise ValueError('PreActionOrder should be a list. Input dictionary ' + str(i) + '.') else: dic['PreAction'] = [] dic['PreActionWaiting'] = 0.0 dic['PreActionOrder'] = [0] * len(dic['PreAction']) if 'In-loopPreAction' in dic.keys(): if not isinstance(dic['In-loopPreAction'], list): raise ValueError('In-loopPreAction should be a list. Input dictionary ' + str(i) + '.') for l in dic['In-loopPreAction']: if not isinstance(l, list): raise ValueError('Every In-loopPreAction should be a list. ' 'Input dictionary ' + str(i) + '.') if len(l) != 5: if not l[0] == 'SpecialAction': raise ValueError('Every In-loopPreAction should be in a form of ' '[Ch-set, Ch-read, Value, Tolerance, Timeout]. ' 'Input dictionary ' + str(i) + '.') if 'In-loopPreActionWaiting' not in dic.keys(): dic['In-loopPreActionWaiting'] = 0.0 if not isinstance(dic['In-loopPreActionWaiting'], float) and not isinstance( dic['In-loopPreActionWaiting'], int): raise ValueError('In-loopPreActionWating should be a float. Input dictionary ' + str(i) + '.') if 'In-loopPreActionOrder' not in dic.keys(): dic['In-loopPreActionOrder'] = [0] * len(dic['In-loopPreAction']) if not isinstance(dic['In-loopPreActionOrder'], list): raise ValueError('In-loopPreActionOrder should be a list. Input dictionary ' + str(i) + '.') else: dic['In-loopPreAction'] = [] dic['In-loopPreActionWaiting'] = 0.0 dic['In-loopPreActionOrder'] = [0] * len(dic['In-loopPreAction']) if 'PostAction' in dic.keys(): if dic['PostAction'] == 'Restore': PA = [] for i in range(0, len(dic['Knob'])): k = dic['Knob'][i] v = dic['KnobSaved'][i] PA.append([k, k, v, 1.0, 10]) dic['PostAction'] = PA elif not isinstance(dic['PostAction'], list): raise ValueError('PostAction should be a list. Input dictionary ' + str(i) + '.') Restore = 0 for i in range(0, len(dic['PostAction'])): l = dic['PostAction'][i] if l == 'Restore': Restore = 1 PA = [] for j in range(0, len(dic['Knob'])): k = dic['Knob'][j] v = dic['KnobSaved'][j] PA.append([k, k, v, 1.0, 10]) elif not isinstance(l, list): raise ValueError('Every PostAction should be a list. Input dictionary ' + str(i) + '.') elif len(l) != 5: if not l[0] == 'SpecialAction': raise ValueError('Every PostAction should be in a form of ' '[Ch-set, Ch-read, Value, Tolerance, Timeout]. ' 'Input dictionary ' + str(i) + '.') if Restore: dic['PostAction'].remove('Restore') dic['PostAction'] = dic['PostAction'] + PA else: dic['PostAction'] = [] if 'In-loopPostAction' in dic.keys(): if dic['In-loopPostAction'] == 'Restore': PA = [] for i in range(0, len(dic['Knob'])): k = dic['Knob'][i] v = dic['KnobSaved'][i] PA.append([k, k, v, 1.0, 10]) dic['In-loopPostAction'] = PA elif not isinstance(dic['In-loopPostAction'], list): raise ValueError('In-loopPostAction should be a list. Input dictionary ' + str(i) + '.') Restore = 0 for i in range(0, len(dic['In-loopPostAction'])): l = dic['In-loopPostAction'][i] if l == 'Restore': Restore = 1 PA = [] for j in range(0, len(dic['Knob'])): k = dic['Knob'][j] v = dic['KnobSaved'][j] PA.append([k, k, v, 1.0, 10]) dic['In-loopPostAction'][i] = PA elif not isinstance(l, list): raise ValueError('Every In-loopPostAction should be a list. ' 'Input dictionary ' + str(i) + '.') elif len(l) != 5: raise ValueError('Every In-loopPostAction should be in a form of ' '[Ch-set, Ch-read, Value, Tolerance, Timeout]. ' 'Input dictionary ' + str(i) + '.') if Restore: dic['In-loopPostAction'].remove('Restore') dic['In-loopPostAction'] = dic['In-loopPostAction'] + PA else: dic['In-loopPostAction'] = [] if 'Validation' in dic.keys(): if not isinstance(dic['Validation'], list): raise ValueError('Validation should be a list of channels. Input dictionary ' + str(i) + '.') else: dic['Validation'] = [] self._setup_monitors(dic, index, inlist) if 'Additive' not in dic.keys(): dic['Additive'] = 0 if index == len(inlist) - 1 and ('StepbackOnPause' not in dic.keys()): dic['StepbackOnPause'] = 1 self.allch = [] self.n_readbacks = 0 for d in inlist: self.allch.append(d['KnobReadback']) self.n_readbacks += len(d['KnobReadback']) self.allch.append(inlist[-1]['Validation']) self.n_validations = len(inlist[-1]['Validation']) self.allch.append(inlist[-1]['Observable']) self.n_observables = len(inlist[-1]['Observable']) self.allch = [item for sublist in self.allch for item in sublist] # Recursive in one line! self._add_group(dic, 'All', self.allch, None, close=False) self.Ntot = 1 # Total number of measurements for dic in inlist: if not dic['Series']: self.Ntot = self.Ntot * dic['Nstep'] else: self.Ntot = self.Ntot * sum(dic['Nstep']) self.inlist = inlist self.ProgDisp.Progress = 0 # Prealocating the place for the output self.outdict = {"ErrorMessage": None, "KnobReadback": self.allocateOutput(), "Validation": self.allocateOutput(), "Observable": self.allocateOutput()} except ValueError as e: self.outdict = {"ErrorMessage": str(e)} return self.outdict def _setup_monitors(self, dic, index, inlist): if index == len(inlist) - 1 and ('Monitor' in dic.keys()) and (dic['Monitor']): if isinstance(dic['Monitor'], str): dic['Monitor'] = [dic['Monitor']] self._add_group(dic, 'Monitor', dic['Monitor'], None) if 'MonitorValue' not in dic.keys(): [dic['MonitorValue'], summary, status] = self.epics_dal.get_group('Monitor') elif not isinstance(dic['MonitorValue'], list): dic['MonitorValue'] = [dic['MonitorValue']] if len(dic['MonitorValue']) != len(dic['Monitor']): raise ValueError('The length of MonitorValue does not meet to the length of Monitor.') if 'MonitorTolerance' not in dic.keys(): dic['MonitorTolerance'] = [] [Value, summary, status] = self.epics_dal.get_group('Monitor') for v in Value: if isinstance(v, str): dic['MonitorTolerance'].append(None) elif v == 0: dic['MonitorTolerance'].append(0.1) else: dic['MonitorTolerance'].append( abs(v * 0.1)) # 10% of the current value will be the torelance when not given elif not isinstance(dic['MonitorTolerance'], list): dic['MonitorTolerance'] = [dic['MonitorTolerance']] if len(dic['MonitorTolerance']) != len(dic['Monitor']): raise ValueError('The length of MonitorTolerance does not meet to the length of Monitor.') if 'MonitorAction' not in dic.keys(): raise ValueError('MonitorAction is not give though Monitor is given.') if not isinstance(dic['MonitorAction'], list): dic['MonitorAction'] = [dic['MonitorAction']] for m in dic['MonitorAction']: if m != 'Abort' and m != 'Wait' and m != 'WaitAndAbort': raise ValueError('MonitorAction shold be Wait, Abort, or WaitAndAbort.') if 'MonitorTimeout' not in dic.keys(): dic['MonitorTimeout'] = [30.0] * len(dic['Monitor']) elif not isinstance(dic['MonitorTimeout'], list): dic['MonitorValue'] = [dic['MonitorValue']] if len(dic['MonitorValue']) != len(dic['Monitor']): raise ValueError('The length of MonitorValue does not meet to the length of Monitor.') for m in dic['MonitorTimeout']: try: float(m) except: raise ValueError('MonitorTimeout should be a list of float(or int).') elif index == len(inlist) - 1: dic['Monitor'] = [] dic['MonitorValue'] = [] dic['MonitorTolerance'] = [] dic['MonitorAction'] = [] dic['MonitorTimeout'] = [] def _setup_knob_scan_values(self, index, dic): if 'Series' not in dic.keys(): dic['Series'] = 0 if not dic['Series']: # Setting up scan values for SKS and MKS if 'ScanValues' not in dic.keys(): if 'ScanRange' not in dic.keys(): raise ValueError('Neither ScanRange nor ScanValues is given ' 'in the input dictionary ' + str(index) + '.') elif not isinstance(dic['ScanRange'], list): raise ValueError('ScanRange is not given in the right format. ' 'Input dictionary ' + str(index) + '.') elif not isinstance(dic['ScanRange'][0], list): dic['ScanRange'] = [dic['ScanRange']] if ('Nstep' not in dic.keys()) and ('StepSize' not in dic.keys()): raise ValueError('Neither Nstep nor StepSize is given.') if 'Nstep' in dic.keys(): # StepSize is ignored when Nstep is given if not isinstance(dic['Nstep'], int): raise ValueError('Nstep should be an integer. Input dictionary ' + str(index) + '.') ran = [] for r in dic['ScanRange']: s = (r[1] - r[0]) / (dic['Nstep'] - 1) f = np.arange(r[0], r[1], s) f = np.append(f, np.array(r[1])) ran.append(f.tolist()) dic['KnobExpanded'] = ran else: # StepSize given if len(dic['Knob']) > 1: raise ValueError('Give Nstep instead of StepSize for MKS. ' 'Input dictionary ' + str(index) + '.') # StepSize is only valid for SKS r = dic['ScanRange'][0] s = dic['StepSize'][0] f = np.arange(r[0], r[1], s) f = np.append(f, np.array(r[1])) dic['Nstep'] = len(f) dic['KnobExpanded'] = [f.tolist()] else: # Scan values explicitly defined. if not isinstance(dic['ScanValues'], list): raise ValueError('ScanValues is not given in the right fromat. ' 'Input dictionary ' + str(index) + '.') if len(dic['ScanValues']) != len(dic['Knob']) and len(dic['Knob']) != 1: raise ValueError('The length of ScanValues does not meet to the number of Knobs.') if len(dic['Knob']) > 1: minlen = 100000 for r in dic['ScanValues']: if minlen > len(r): minlen = len(r) ran = [] for r in dic['ScanValues']: ran.append(r[0:minlen]) # Cut at the length of the shortest list. dic['KnobExpanded'] = ran dic['Nstep'] = minlen else: dic['KnobExpanded'] = [dic['ScanValues']] dic['Nstep'] = len(dic['ScanValues']) else: # Setting up scan values for Series scan if 'ScanValues' not in dic.keys(): raise ValueError('ScanValues should be given for Series ' 'scan in the input dictionary ' + str(index) + '.') if not isinstance(dic['ScanValues'], list): raise ValueError('ScanValues should be given as a list (of lists) ' 'for Series scan in the input dictionary ' + str(index) + '.') if len(dic['Knob']) != len(dic['ScanValues']): raise ValueError('Scan values length does not match to the ' 'number of knobs in the input dictionary ' + str(index) + '.') Nstep = [] for vl in dic['ScanValues']: if not isinstance(vl, list): raise ValueError('ScanValue element should be given as a list for ' 'Series scan in the input dictionary ' + str(index) + '.') Nstep.append(len(vl)) dic['Nstep'] = Nstep def _setup_knobs(self, index, dic): """ Setup the values for moving knobs in the scan. :param index: Index in the dictionary. :param dic: The dictionary. """ if 'Knob' not in dic.keys(): raise ValueError('Knob for the scan was not given for the input dictionary' + str(index) + '.') else: if not isinstance(dic['Knob'], list): dic['Knob'] = [dic['Knob']] if 'KnobReadback' not in dic.keys(): dic['KnobReadback'] = dic['Knob'] if not isinstance(dic['KnobReadback'], list): dic['KnobReadback'] = [dic['KnobReadback']] if len(dic['KnobReadback']) != len(dic['Knob']): raise ValueError('The number of KnobReadback does not meet to the number of Knobs.') if 'KnobTolerance' not in dic.keys(): dic['KnobTolerance'] = [1.0] * len(dic['Knob']) if not isinstance(dic['KnobTolerance'], list): dic['KnobTolerance'] = [dic['KnobTolerance']] if len(dic['KnobTolerance']) != len(dic['Knob']): raise ValueError('The number of KnobTolerance does not meet to the number of Knobs.') if 'KnobWaiting' not in dic.keys(): dic['KnobWaiting'] = [10.0] * len(dic['Knob']) if not isinstance(dic['KnobWaiting'], list): dic['KnobWaiting'] = [dic['KnobWaiting']] if len(dic['KnobWaiting']) != len(dic['Knob']): raise ValueError('The number of KnobWaiting does not meet to the number of Knobs.') if 'KnobWaitingExtra' not in dic.keys(): dic['KnobWaitingExtra'] = 0.0 else: try: dic['KnobWaitingExtra'] = float(dic['KnobWaitingExtra']) except: raise ValueError('KnobWaitingExtra is not a number in the input dictionary ' + str(index) + '.') self._add_group(dic, str(index), dic['Knob'], 'KnobSaved') def startMonitor(self, dic): self.epics_dal.add_group("Monitor", dic["Monitor"]) # def cbMonitor(h): # def matchValue(h): # en = self.MonitorInfo[h][1] # c = self.epics_dal.getPVCache(h) # v = c.value[0] # if v == '': # # To comply with RF-READY-STATUS channle, where ENUM is empty... # c = self.epics_dal.getPVCache(h, dt='int') # v = c.value[0] # if isinstance(self.MonitorInfo[h][2], list): # Monitor value is in list, i.e. several cases are okay # if v in self.MonitorInfo[h][2]: # print('value OK') # return 1 # else: # print('kkkkkkk', en, self.MonitorInfo[h][2], v) # print('value NG') # return 0 # elif isinstance(v, str): # if v == self.MonitorInfo[h][2]: # print('value OK') # return 1 # else: # print('nnnnn', en, self.MonitorInfo[h][2], v) # print('value NG') # return 0 # # elif isinstance(v, int) or isinstance(v, float): # if abs(v - self.MonitorInfo[h][2]) <= self.MonitorInfo[h][3]: # return 1 # else: # print('value NG') # print(v, self.MonitorInfo[h][2], self.MonitorInfo[h][3]) # return 0 # else: # 'Return value from getPVCache', v # # if matchValue(h): # self.stopScan[self.MonitorInfo[h][0]] = 0 # else: # self.stopScan[self.MonitorInfo[h][0]] = 1 # # dic = self.inlist[-1] # self.stopScan = [0] * len(dic['Monitor']) # self.MonitorInfo = {} # # HandleList = self.epics_dal.getHandlesFromWithinGroup(self.MonitorHandle) # # self.cafe.openPrepare() # for i in range(0, len(HandleList)): # h = HandleList[i] # self.MonitorInfo[h] = [i, dic['Monitor'][i], dic['MonitorValue'][i], dic['MonitorTolerance'][i], # dic['MonitorAction'][i], dic['MonitorTimeout']] # # self.epics_dal.openMonitorPrepare() # m0 = self.epics_dal.groupMonitorStartWithCBList(self.MonitorHandle, cb=[cbMonitor] * len(dic['Monitor'])) # # self.epics_dal.openMonitorNowAndWait(2) def PreAction(self, dic, key='PreAction'): order = np.array(dic[key + 'Order']) maxo = order.max() mino = order.min() stat = 0 for i in range(mino, maxo + 1): for j in range(0, len(order)): od = order[j] if i == od: if dic[key][j][0].lower() == 'specialaction': self.ObjectSA.SpecialAction(dic[key][j][1]) else: chset = dic[key][j][0] chread = dic[key][j][1] val = dic[key][j][2] tol = dic[key][j][3] timeout = dic[key][j][4] if chset.lower() == 'match': # print('****************************----') try: status = self.epics_dal.match(val, chread, tol, timeout, 1) # print('--------------', status) except Exception as inst: print('Exception in preAction') print(inst) stat = 1 else: try: status = self.epics_dal.set_and_match(chset, val, chread, tol, timeout, 0) # print('===========', status) except Exception as inst: print('Exception in preAction') print(inst) stat = 1 sleep(dic[key + 'Waiting']) return stat # Future development: Give it to output dictionary def PostAction(self, dic, key='PostAction'): for act in dic[key]: if act[0] == 'SpecialAction': self.ObjectSA.SpecialAction(act[1]) else: chset = act[0] chread = act[1] val = act[2] tol = act[3] timeout = act[4] try: self.epics_dal.set_and_match(chset, val, chread, tol, timeout, 0) except Exception as inst: print(inst) def CrossReference(self, Object): self.ObjectSA = Object def allocateOutput(self): root_list = [] for dimension in reversed(self.inlist): n_steps = dimension['Nstep'] if dimension['Series']: # For Series scan, each step of each knob represents another result. current_dimension_list = [] for n_steps_in_knob in n_steps: current_knob_list = [] for _ in range(n_steps_in_knob): current_knob_list.append(deepcopy(root_list)) current_dimension_list.append(deepcopy(current_knob_list)) root_list = current_dimension_list else: # For line scan, each step represents another result. current_dimension_list = [] for _ in range(n_steps): current_dimension_list.append(deepcopy(root_list)) root_list = current_dimension_list return root_list def execute_scan(self): self.Scan(self.outdict['KnobReadback'], self.outdict['Validation'], self.outdict['Observable'], 0) def startScan(self): if self.outdict['ErrorMessage']: if 'After the last scan,' not in self.outdict['ErrorMessage']: self.outdict[ 'ErrorMessage'] = 'It seems that the initialization was not successful... No scan was performed.' return self.outdict self.outdict['TimeStampStart'] = datetime.now() self.stopScan = [] self.abortScan = 0 self.pauseScan = 0 if self.inlist[-1]['Monitor']: self.startMonitor(self.inlist[-1]) if self.fromGUI: self.ProgDisp.showPanel(1) self.ProgDisp.abortScan = 0 self.ProgDisp.emit("pb") self.Ndone = 0 self.execute_scan() if self.fromGUI: self.ProgDisp.showPanel(0) self.finalizeScan() self.outdict['TimeStampEnd'] = datetime.now() return self.outdict def Scan(self, Rback, Valid, Obs, dic_index): dic = self.inlist[dic_index] # print('*****************', dic) # Execute pre actions. if len(dic['PreAction']): self.PreAction(dic) series_scan = True if dic['Series'] else False last_pass = dic_index == len(self.inlist) - 1 # Knob, KnobReadback = Writer # KnobExpanded = Vector scan. if last_pass: if series_scan: self.last_series_scan(Obs, Rback, Valid, dic) else: self.last_line_scan(Obs, Rback, Valid, dic) else: if series_scan: self.series_scan(Obs, Rback, Valid, dic_index) else: self.line_scan(Obs, Rback, Valid, dic_index) # Execute post actions. if len(dic['PostAction']): self.PostAction(dic) def post_measurment_actions(self, Obs, Rback, Valid, dic, step_index): step_index = step_index + 1 self.Ndone = self.Ndone + 1 step_index = self.verify_and_stepback(step_index, Obs, Rback, Valid, dic) self.update_progress() return step_index def update_progress(self): self.ProgDisp.Progress = 100.0 * self.Ndone / self.Ntot if self.fromGUI: self.ProgDisp.emit("pb") def verify_and_stepback(self, Iscan, Obs, Rback, Valid, dic): Stepback = 0 count = [0] * len(self.stopScan) k_stop = None p_stop = None while self.stopScan.count(1) + self.pauseScan: # Problem detected in the channel under monitoring Stepback = 1 sleep(1.0) for k in range(0, len(self.stopScan)): if self.stopScan[k]: k_stop = k if dic['MonitorAction'][k] == 'Abort': self.abortScan = 1 count[k] = count[k] + 1 else: count[k] = 0 if dic['MonitorAction'][k] == 'WaitAndAbort' and count[k] > dic['MonitorTimeout'][k]: self.abortScan = 1 if self.abortScan: if len(dic['PostAction']): self.PostAction(dic) raise Exception("Scan aborted") # print('Monitor??') # print(self.stopScan) if self.pauseScan: p_stop = 1 if k_stop and dic['MonitorAction'][k_stop] == 'WaitAndNoStepBack': Stepback = 0 if p_stop and not dic['StepbackOnPause']: Stepback = 0 if Stepback: # print('Stepping back') Iscan = Iscan - 1 self.Ndone = self.Ndone - 1 Rback[Iscan].pop() Valid[Iscan].pop() Obs[Iscan].pop() if self.fromGUI and self.ProgDisp.abortScan: self.abortScan = 1 if self.abortScan: if len(dic['PostAction']): self.PostAction(dic) raise Exception("Scan aborted") if len(dic['In-loopPostAction']): self.PostAction(dic, 'In-loopPostAction') return Iscan def pre_measurment_actions(self, dic): if dic['KnobWaitingExtra']: sleep(dic['KnobWaitingExtra']) if len(dic['In-loopPreAction']): self.PreAction(dic, 'In-loopPreAction') def measure_and_save(self, Iscan, Obs, Rback, Valid, dic, Kscan=None): for j in range(dic['NumberOfMeasurements']): [v, s, sl] = self.epics_dal.get_group('All') if self.n_readbacks == 1: rback_result = v[0] else: rback_result = v[0:self.n_readbacks] if self.n_validations == 1: valid_result = v[self.n_readbacks] else: valid_result = v[self.n_readbacks:self.n_readbacks + self.n_validations] if self.n_observables == 1: obs_result = v[-1] else: obs_result = v[self.n_readbacks + self.n_validations: self.n_readbacks + self.n_validations + self.n_observables] if dic['NumberOfMeasurements'] > 1: if Kscan is not None: Rback[Kscan][Iscan].append(rback_result) Valid[Kscan][Iscan].append(valid_result) Obs[Kscan][Iscan].append(obs_result) else: Rback[Iscan].append(rback_result) Valid[Iscan].append(valid_result) Obs[Iscan].append(obs_result) else: if Kscan is not None: Rback[Kscan][Iscan] = rback_result Valid[Kscan][Iscan] = valid_result Obs[Kscan][Iscan] = obs_result else: Rback[Iscan] = rback_result Valid[Iscan] = valid_result Obs[Iscan] = obs_result sleep(dic['Waiting']) def line_scan(self, Obs, Rback, Valid, dic_index): dic = self.inlist[dic_index] for step_index in range(dic['Nstep']): # print('Dict' + str(dic_index) + ' Loop' + str(step_index)) for knob_index in range(len(dic['Knob'])): if dic['Additive']: KV = np.array(dic['KnobExpanded'][knob_index]) + dic['KnobSaved'][knob_index] else: KV = dic['KnobExpanded'][knob_index] try: self.set_knob_value(dic, knob_index, KV[step_index]) except Exception as inst: print('Exception in range_scan') print(inst) # Delay between setting the position and reading the values. if dic['KnobWaitingExtra']: sleep(dic['KnobWaitingExtra']) self.Scan(Rback[step_index], Valid[step_index], Obs[step_index], dic_index + 1) if self.abortScan: if len(dic['PostAction']): self.PostAction(dic) raise Exception("Scan aborted") def set_knob_value(self, dic, knob_index, pv_value): set_pv_name = dic['Knob'][knob_index] readback_pv_name = dic['KnobReadback'][knob_index] pv_tolerance = dic['KnobTolerance'][knob_index] pv_wait_time = dic['KnobWaiting'][knob_index] self.epics_dal.set_and_match(set_pv_name, pv_value, readback_pv_name, pv_tolerance, pv_wait_time, 0) def last_line_scan(self, Obs, Rback, Valid, dic): step_index = 0 while step_index < dic['Nstep']: # print(step_index) # set knob for this loop for knob_index in range(len(dic['Knob'])): # Replace later with a group method, setAndMatchGroup? if dic['Additive']: KV = np.array(dic['KnobExpanded'][knob_index]) + dic['KnobSaved'][knob_index] else: KV = dic['KnobExpanded'][knob_index] try: self.set_knob_value(dic, knob_index, KV[step_index]) except Exception as inst: print('Exception in Scan loop') print(inst) self.pre_measurment_actions(dic) self.measure_and_save(step_index, Obs, Rback, Valid, dic) step_index = self.post_measurment_actions(Obs, Rback, Valid, dic, step_index) def series_scan(self, Obs, Rback, Valid, dic_index): dic = self.inlist[dic_index] # For every PV. for Kscan in range(0, len(dic['Knob'])): # For the number of steps for this PV. for step_index in range(dic['Nstep'][Kscan]): # For every PV. for knob_index in range(len(dic['Knob'])): # if knob_index == Kscan: if dic['Additive']: KV = dic['KnobSaved'] + dic['ScanValues'][knob_index][step_index] else: KV = dic['ScanValues'][knob_index][step_index] else: KV = dic['KnobSaved'][knob_index] try: self.set_knob_value(dic, knob_index, KV) except Exception as inst: raise ValueError('Exception in series_scan', inst) if dic['KnobWaitingExtra']: sleep(dic['KnobWaitingExtra']) self.Scan(Rback[Kscan][step_index], Valid[Kscan][step_index], Obs[Kscan][step_index], dic_index+1) if self.abortScan: if len(dic['PostAction']): self.PostAction(dic) raise Exception("Scan aborted") def last_series_scan(self, Obs, Rback, Valid, dic): Kscan = 0 while Kscan < len(dic['Knob']): step_index = 0 while step_index < dic['Nstep'][Kscan]: # print(Kscan, step_index) # set knob for this loop for knob_index in range(0, len(dic['Knob'])): # Replace later with a group method, setAndMatchGroup? if knob_index == Kscan: if dic['Additive']: KV = dic['KnobSaved'][knob_index] + dic['ScanValues'][knob_index][step_index] else: KV = dic['ScanValues'][knob_index][step_index] else: KV = dic['KnobSaved'][knob_index] try: self.set_knob_value(dic, knob_index, KV) except Exception as inst: print('Exception in preAction') print(inst) self.pre_measurment_actions(dic) self.measure_and_save(step_index, Obs, Rback, Valid, dic, Kscan) step_index = self.post_measurment_actions(Obs, Rback, Valid, dic, step_index) Kscan = Kscan + 1
gpl-3.0
2,175,520,377,062,554,000
41.689503
120
0.476523
false
4.1771
false
false
false
ankonzoid/Deep-Reinforcement-Learning-Tutorials
advanced_ML/model_tree/src/ModelTree.py
1
13608
""" ModelTree.py (author: Anson Wong / git: ankonzoid) """ import numpy as np from copy import deepcopy from graphviz import Digraph class ModelTree(object): def __init__(self, model, max_depth=5, min_samples_leaf=10, search_type="greedy", n_search_grid=100): self.model = model self.max_depth = max_depth self.min_samples_leaf = min_samples_leaf self.search_type = search_type self.n_search_grid = n_search_grid self.tree = None def get_params(self, deep=True): return { "model": self.model.get_params() if deep else self.model, "max_depth": self.max_depth, "min_samples_leaf": self.min_samples_leaf, "search_type": self.search_type, "n_search_grid": self.n_search_grid, } def set_params(self, **params): for param, value in params.items(): setattr(self, param, value) return self def __repr__(self): class_name = self.__class__.__name__ return "{}({})".format(class_name, ', '.join([ "{}={}".format(k,v) for k, v in self.get_params(deep=False).items() ])) # ====================== # Fit # ====================== def fit(self, X, y, verbose=False): # Settings model = self.model min_samples_leaf = self.min_samples_leaf max_depth = self.max_depth search_type = self.search_type n_search_grid = self.n_search_grid if verbose: print(" max_depth={}, min_samples_leaf={}, search_type={}...".format(max_depth, min_samples_leaf, search_type)) def _build_tree(X, y): global index_node_global def _create_node(X, y, depth, container): loss_node, model_node = _fit_model(X, y, model) node = {"name": "node", "index": container["index_node_global"], "loss": loss_node, "model": model_node, "data": (X, y), "n_samples": len(X), "j_feature": None, "threshold": None, "children": {"left": None, "right": None}, "depth": depth} container["index_node_global"] += 1 return node # Recursively split node + traverse node until a terminal node is reached def _split_traverse_node(node, container): # Perform split and collect result result = _splitter(node, model, max_depth=max_depth, min_samples_leaf=min_samples_leaf, search_type=search_type, n_search_grid=n_search_grid) # Return terminal node if split is not advised if not result["did_split"]: if verbose: depth_spacing_str = " ".join([" "] * node["depth"]) print(" {}*leaf {} @ depth {}: loss={:.6f}, N={}".format(depth_spacing_str, node["index"], node["depth"], node["loss"], result["N"])) return # Update node information based on splitting result node["j_feature"] = result["j_feature"] node["threshold"] = result["threshold"] del node["data"] # delete node stored data # Extract splitting results (X_left, y_left), (X_right, y_right) = result["data"] model_left, model_right = result["models"] # Report created node to user if verbose: depth_spacing_str = " ".join([" "] * node["depth"]) print(" {}node {} @ depth {}: loss={:.6f}, j_feature={}, threshold={:.6f}, N=({},{})".format(depth_spacing_str, node["index"], node["depth"], node["loss"], node["j_feature"], node["threshold"], len(X_left), len(X_right))) # Create children nodes node["children"]["left"] = _create_node(X_left, y_left, node["depth"]+1, container) node["children"]["right"] = _create_node(X_right, y_right, node["depth"]+1, container) node["children"]["left"]["model"] = model_left node["children"]["right"]["model"] = model_right # Split nodes _split_traverse_node(node["children"]["left"], container) _split_traverse_node(node["children"]["right"], container) container = {"index_node_global": 0} # mutatable container root = _create_node(X, y, 0, container) # depth 0 root node _split_traverse_node(root, container) # split and traverse root node return root # Construct tree self.tree = _build_tree(X, y) # ====================== # Predict # ====================== def predict(self, X): assert self.tree is not None def _predict(node, x): no_children = node["children"]["left"] is None and \ node["children"]["right"] is None if no_children: y_pred_x = node["model"].predict([x])[0] return y_pred_x else: if x[node["j_feature"]] <= node["threshold"]: # x[j] < threshold return _predict(node["children"]["left"], x) else: # x[j] > threshold return _predict(node["children"]["right"], x) y_pred = np.array([_predict(self.tree, x) for x in X]) return y_pred # ====================== # Explain # ====================== def explain(self, X, header): assert self.tree is not None def _explain(node, x, explanation): no_children = node["children"]["left"] is None and \ node["children"]["right"] is None if no_children: return explanation else: if x[node["j_feature"]] <= node["threshold"]: # x[j] < threshold explanation.append("{} = {:.6f} <= {:.6f}".format(header[node["j_feature"]], x[node["j_feature"]], node["threshold"])) return _explain(node["children"]["left"], x, explanation) else: # x[j] > threshold explanation.append("{} = {:.6f} > {:.6f}".format(header[node["j_feature"]], x[node["j_feature"]], node["threshold"])) return _explain(node["children"]["right"], x, explanation) explanations = [_explain(self.tree, x, []) for x in X] return explanations # ====================== # Loss # ====================== def loss(self, X, y, y_pred): loss = self.model.loss(X, y, y_pred) return loss # ====================== # Tree diagram # ====================== def export_graphviz(self, output_filename, feature_names, export_png=True, export_pdf=False): """ Assumes node structure of: node["name"] node["n_samples"] node["children"]["left"] node["children"]["right"] node["j_feature"] node["threshold"] node["loss"] """ g = Digraph('g', node_attr={'shape': 'record', 'height': '.1'}) def build_graphviz_recurse(node, parent_node_index=0, parent_depth=0, edge_label=""): # Empty node if node is None: return # Create node node_index = node["index"] if node["children"]["left"] is None and node["children"]["right"] is None: threshold_str = "" else: threshold_str = "{} <= {:.1f}\\n".format(feature_names[node['j_feature']], node["threshold"]) label_str = "{} n_samples = {}\\n loss = {:.6f}".format(threshold_str, node["n_samples"], node["loss"]) # Create node nodeshape = "rectangle" bordercolor = "black" fillcolor = "white" fontcolor = "black" g.attr('node', label=label_str, shape=nodeshape) g.node('node{}'.format(node_index), color=bordercolor, style="filled", fillcolor=fillcolor, fontcolor=fontcolor) # Create edge if parent_depth > 0: g.edge('node{}'.format(parent_node_index), 'node{}'.format(node_index), label=edge_label) # Traverse child or append leaf value build_graphviz_recurse(node["children"]["left"], parent_node_index=node_index, parent_depth=parent_depth + 1, edge_label="") build_graphviz_recurse(node["children"]["right"], parent_node_index=node_index, parent_depth=parent_depth + 1, edge_label="") # Build graph build_graphviz_recurse(self.tree, parent_node_index=0, parent_depth=0, edge_label="") # Export pdf if export_pdf: print("Saving model tree diagram to '{}.pdf'...".format(output_filename)) g.format = "pdf" g.render(filename=output_filename, view=False, cleanup=True) # Export png if export_png: print("Saving model tree diagram to '{}.png'...".format(output_filename)) g.format = "png" g.render(filename=output_filename, view=False, cleanup=True) # *********************************** # # Side functions # # *********************************** def _splitter(node, model, max_depth=5, min_samples_leaf=10, search_type="greedy", n_search_grid=100): # Extract data X, y = node["data"] depth = node["depth"] N, d = X.shape # Find feature splits that might improve loss did_split = False loss_best = node["loss"] data_best = None models_best = None j_feature_best = None threshold_best = None # Perform threshold split search only if node has not hit max depth if (depth >= 0) and (depth < max_depth): for j_feature in range(d): # If using adaptive search type, decide on one to use search_type_use = search_type if search_type == "adaptive": if N > n_search_grid: search_type_use = "grid" else: search_type_use = "greedy" # Use decided search type and generate threshold search list (j_feature) threshold_search = [] if search_type_use == "greedy": for i in range(N): threshold_search.append(X[i, j_feature]) elif search_type_use == "grid": x_min, x_max = np.min(X[:, j_feature]), np.max(X[:, j_feature]) dx = (x_max - x_min) / n_search_grid for i in range(n_search_grid+1): threshold_search.append(x_min + i*dx) else: exit("err: invalid search_type = {} given!".format(search_type)) # Perform threshold split search on j_feature for threshold in threshold_search: # Split data based on threshold (X_left, y_left), (X_right, y_right) = _split_data(j_feature, threshold, X, y) N_left, N_right = len(X_left), len(X_right) # Splitting conditions split_conditions = [N_left >= min_samples_leaf, N_right >= min_samples_leaf] # Do not attempt to split if split conditions not satisfied if not all(split_conditions): continue # Compute weight loss function loss_left, model_left = _fit_model(X_left, y_left, model) loss_right, model_right = _fit_model(X_right, y_right, model) loss_split = (N_left*loss_left + N_right*loss_right) / N # Update best parameters if loss is lower if loss_split < loss_best: did_split = True loss_best = loss_split models_best = [model_left, model_right] data_best = [(X_left, y_left), (X_right, y_right)] j_feature_best = j_feature threshold_best = threshold # Return the best result result = {"did_split": did_split, "loss": loss_best, "models": models_best, "data": data_best, "j_feature": j_feature_best, "threshold": threshold_best, "N": N} return result def _fit_model(X, y, model): model_copy = deepcopy(model) # must deepcopy the model! model_copy.fit(X, y) y_pred = model_copy.predict(X) loss = model_copy.loss(X, y, y_pred) assert loss >= 0.0 return loss, model_copy def _split_data(j_feature, threshold, X, y): idx_left = np.where(X[:, j_feature] <= threshold)[0] idx_right = np.delete(np.arange(0, len(X)), idx_left) assert len(idx_left) + len(idx_right) == len(X) return (X[idx_left], y[idx_left]), (X[idx_right], y[idx_right])
mit
7,199,203,135,097,981,000
37.769231
241
0.486846
false
4.155115
false
false
false
sevenian3/ChromaStarPy
KappasRaylGas.py
1
10384
# -*- coding: utf-8 -*- """ Created on Tue Apr 25 17:18:39 2017 @author: ishort """ import math import Useful import PartitionFn import ToolBox #import numpy #/* Rayleigh scattering opacity routines taken from Moog (moogjul2014/, MOOGJUL2014.tar) #Chris Sneden (Universtiy of Texas at Austin) and collaborators #http://www.as.utexas.edu/~chris/moog.html #//From Moog source file Opacscat.f #*/ """ #JB# #a function to create a cubic function fit extrapolation def cubicFit(x,y): coeffs = numpy.polyfit(x,y,3) #returns an array of coefficents for the cubic fit of the form #Ax^3 + Bx^2 + Cx + D as [A,B,C,D] return coeffs #this will work for any number of data points! def valueFromFit(fit,x): #return the value y for a given fit, at point x return (fit[0]*(x**3)+fit[1]*(x**2)+fit[2]*x+fit[3]) """ masterTemp=[130,500,3000,8000,10000] #JB# def masterRayl(numDeps, numLams, temp, lambdaScale, stagePops, gsName, gsFirstMol, molPops): """ /*c****************************************************************************** c The subroutines needed to calculate the opacities from scattering by c H I, H2, He I, are in this file. These are from ATLAS9. c****************************************************************************** */""" #//System.out.println("masterRayl called..."); #//From Moog source file Opacitymetals.f #// From how values such as aC1[] are used in Moog file Opacit.f to compute the total opacity #// and then the optical depth scale, I infer that they are extinction coefficients #// in cm^-1 #// #// There does not seem to be any correction for stimulated emission logE = math.log10(math.e) masterRScat = [ [ 0.0 for i in range(numDeps) ] for j in range(numLams) ] logUH1 = [0.0 for i in range(5)] logUHe1 = [0.0 for i in range(5)] logStatWH1 = 0.0 logStatWHe1 = 0.0 theta = 1.0 species = "" logGroundPopsH1 = [0.0 for i in range(numDeps)] logGroundPopsHe1 = [0.0 for i in range(numDeps)] logH2Pops = [0.0 for i in range(numDeps)] #// #// H I: Z=1 --> iZ=0: sigH1 = [0.0 for i in range(numDeps)] #// He I: Z=2 --> iZ=1: sigHe1 = [0.0 for i in range(numDeps)] species = "HI" logUH1 = PartitionFn.getPartFn2(species) species = "HeI" logUHe1 = PartitionFn.getPartFn2(species) sigH2 = [0.0 for i in range(numDeps)] #Find index of H2 in molPops array for iH2 in range(len(gsName)): if (gsName[iH2].strip() == "H2"): break; #print("iH2 ", iH2, " iH2-gsFirstMol ", (iH2-gsFirstMol)) #//System.out.println("iD PopsH1 PopsHe1"); for iD in range(numDeps): #//neutral stage #//Assumes ground state stat weight, g_1, is 1.0 #theta = 5040.0 / temp[0][iD] #// U[0]: theta = 1.0, U[1]: theta = 0.5 """ if (theta <= 0.5): logStatWH1 = logUH1[1] logStatWHe1 = logUHe1[1] elif ( (theta < 1.0) and (theta > 0.5) ): logStatWH1 = ( (theta-0.5) * logUH1[0] ) + ( (1.0-theta) * logUH1[1] ) logStatWHe1 = ( (theta-0.5) * logUHe1[0] ) + ( (1.0-theta) * logUHe1[1] ) #//divide by common factor of interpolation interval of 0.5 = (1.0 - 0.5): logStatWH1 = 2.0 * logStatWH1 logStatWHe1 = 2.0 * logStatWHe1 else: logStatWH1 = logUH1[0] logStatWHe1 = logUHe1[0] """ thisTemp = temp[0][iD]; #JB# logWH1Fit = ToolBox.cubicFit(masterTemp,logUH1) logStatWH1 = ToolBox.valueFromFit(logWH1Fit,thisTemp) logWHe1Fit = ToolBox.cubicFit(masterTemp,logUHe1) logStatWHe1 = ToolBox.valueFromFit(logWHe1Fit,thisTemp) #logStatWH1Fun = spline(masterTemp,logUH1) #logStatWH1=logStatWH1Fun(thisTemp) #logStatWHe1Fun = spline(masterTemp,logUHe1) #logStatWHe1=logStatWHe1Fun(thisTemp) #JB# #// NEW Interpolation with temperature for new partition function: lburns thisTemp = temp[0][iD]; if (thisTemp <= 130.0): logStatWH1 = logUH1[0] logStatWHe1 = logUHe1[0] if (thisTemp >= 10000.0): logStatWH1 = logUH1[4] logStatWHe1 = logUHe1[4] """ elif (thisTemp > 130 and thisTemp <= 500): logStatWH1 = logUH1[1] * (thisTemp - 130)/(500 - 130) \ + logUH1[0] * (500 - thisTemp)/(500 - 130) logStatWHe1 = logUHe1[1] * (thisTemp - 130)/(500 - 130) \ + logUHe1[0] * (500 - thisTemp)/(500 - 130) elif (thisTemp > 500 and thisTemp <= 3000): logStatWH1 = logUH1[2] * (thisTemp - 500)/(3000 - 500) \ + logUH1[1] * (3000 - thisTemp)/(3000 - 500) logStatWHe1 = logUHe1[2] * (thisTemp - 500)/(3000 - 500) \ + logUHe1[1] * (3000 - thisTemp)/(3000 - 500) elif (thisTemp > 3000 and thisTemp <= 8000): logStatWH1 = logUH1[3] * (thisTemp - 3000)/(8000 - 3000) \ + logUH1[2] * (8000 - thisTemp)/(8000 - 3000) logStatWHe1 = logUHe1[3] * (thisTemp - 3000)/(8000 - 3000) \ + logUHe1[2] * (8000 - thisTemp)/(8000 - 3000) elif (thisTemp > 8000 and thisTemp < 10000): logStatWH1 = logUH1[4] * (thisTemp - 8000)/(10000 - 8000) \ + logUH1[3] * (10000 - thisTemp)/(10000 - 8000) logStatWHe1 = logUHe1[4] * (thisTemp - 8000)/(10000 - 8000) \ + logUHe1[3] * (10000 - thisTemp)/(10000 - 8000) else: #// for temperatures of greater than or equal to 10000K lburns logStatWH1 = logUH1[4] logStatWHe1 = logUHe1[4] """ logGroundPopsH1[iD] = stagePops[0][0][iD] - logStatWH1 logGroundPopsHe1[iD] = stagePops[1][0][iD] - logStatWHe1 logH2Pops[iD] = molPops[iH2-gsFirstMol][iD] #print("iD " , iD , " logH2 " , logH2Pops[iD]) #// if (iD%10 == 1){ #// System.out.format("%03d, %21.15f, %21.15f %n", #// iD, logE*logGroundPopsH1[iD], logE*logGroundPopsHe1[iD]); #// } kapRScat = 0.0 #//System.out.println("iD iL lambda sigH1 sigHe1 "); for iL in range(numLams): #// for i in range(numDeps): sigH1[i] = 0.0 sigHe1[i] = 0.0 sigH2[i] = 0.0 #//System.out.println("Calling opacH1 from masterMetal..."); sigH1 = opacHscat(numDeps, temp, lambdaScale[iL], logGroundPopsH1) sigHe1 = opacHescat(numDeps, temp, lambdaScale[iL], logGroundPopsHe1) sigH2 = opacH2scat(numDeps, temp, lambdaScale[iL], logH2Pops) for iD in range(numDeps): kapRScat = sigH1[iD] + sigHe1[iD] + sigH2[iD] masterRScat[iL][iD] = math.log(kapRScat) #if ( (iD%10 == 0) and (iL%10 == 0) ): # print("iD ", iD, " iL ", iL, " lambda ", lambdaScale[iL], math.log10(sigH1[iD]), math.log10(sigHe1[iD]), math.log10(sigH2[iD]) ) #} //iD #} //iL return masterRScat #} //end method masterRayl def opacHscat(numDeps, temp, lambda2, logGroundPops): """//c****************************************************************************** //c This routine computes H I Rayleigh scattering opacities. //c******************************************************************************""" #//System.out.println("opacHscat called"); sigH = [0.0 for i in range(numDeps)] #//cross-section is zero below threshold, so initialize: for i in range(numDeps): sigH[i] = 0.0 freq = Useful.c() / lambda2 #// include 'Atmos.com' #// include 'Kappa.com' #// include 'Linex.com' wavetemp = 2.997925e18 / min(freq, 2.463e15) ww = math.pow(wavetemp, 2) sig = ( 5.799e-13 + (1.422e-6/ww) + (2.784/(ww*ww)) ) / (ww*ww) for i in range(numDeps): sigH[i] = sig * 2.0 * math.exp(logGroundPops[i]) return sigH #} //end method opacHscat def opacHescat(numDeps, temp, lambda2, logGroundPops): """//c****************************************************************************** //c This routine computes He I Rayleigh scattering opacities. //c******************************************************************************""" #//System.out.println("opacHescat called"); sigHe = [0.0 for i in range(numDeps)] #//cross-section is zero below threshold, so initialize: for i in range(numDeps): sigHe[i] = 0.0 freq = Useful.c() / lambda2 #// include 'Atmos.com' #// include 'Kappa.com' #// include 'Linex.com' wavetemp = 2.997925e18 / min(freq, 5.15e15) ww = math.pow(wavetemp, 2) sig = (5.484e-14/ww/ww) * math.pow( ( 1.0 + ((2.44e5 + (5.94e10/(ww-2.90e5)))/ww) ), 2 ) for i in range(numDeps): sigHe[i] = sig * math.exp(logGroundPops[i]) return sigHe #} //end method opacHescat def opacH2scat(numDeps, temp, lambda2, molPops): sigH2 = [0.0e0 for i in range(numDeps)] #//cross-section is zero below threshold, so initialize: for i in range(numDeps): sigH2[i] = 0.0 freq = Useful.c() / lambda2; """ //c****************************************************************************** //c This routine computes H2 I Rayleigh scattering opacities. //c****************************************************************************** // include 'Atmos.com' // include 'Kappa.com' // include 'Linex.com' """ wavetemp = 2.997925e18 / min(freq, 2.463e15) ww = wavetemp**2 sig = ( 8.14e-13 + (1.28e-6/ww) + (1.61/(ww*ww)) ) / (ww*ww) #print("freq ", freq, " wavetemp ", wavetemp, " ww ", ww, " sig ", sig) for i in range(numDeps): sigH2[i] = sig * math.exp(molPops[i]) #print("i " , i , " molPops " , molPops[i] , " sigH2 " , sigH2[i]) return sigH2
mit
1,023,656,047,883,678,600
33.2
149
0.510401
false
2.96347
false
false
false
ac-seguridad/ac-seguridad
project/manejador/cliente_entrada.py
1
2574
# Este archivo es el encargado de recibir la placa leída y decidir si dejar # pasar a un vehículo o no, dependiendo de la configuración de este. Además, # busca si la placa está registrada en el sistema, en caso de estarlo, busca # el usuario asociado al vehículo. # Este archivo básicamente maneja las alertas que se generan en el sistema. # from ac_seguridad.models import * import requests from mysocket import MySocket import socket import pdb # Constantes. NUM_PUERTA = 5 RIF = "12345" HOST = "localhost" PORT = 8000 #1234 acceso restringido #0000 acceso no restringido #pdb.set_trace() # Funciones def leer_placa(): placa = input("Placa: ") return placa # Programa comienza aquí. # ref: https://docs.python.org/3/howto/sockets.html # Crear un socket como cliente. print("Creando socket") # socket_cliente = MySocket() # socket_cliente.connect(host=HOST, port=PORT) print("Socket conectado.") # Enviar primer mensaje: # Estructura del primer mensaje: # * RIF: lleno # * ticket: None. # * placa: llena. # * tipo: llena ('placa_leida') # * puerta: llena. # * lectura_automatica: llena, sus posibles valores son: # True: lectura realizada de forma automática # False: lentura realizada de forma manual # None: No aplica la información (ejemplo, mensajes servidor-cliente) # * registrado: si el ticket es registrado, en el caso de entrada es None print("Preparando mensaje") mensaje = dict() mensaje['estacionamiento'] = RIF mensaje['ticket'] = None mensaje['placa'] = leer_placa() mensaje['puerta'] = NUM_PUERTA mensaje['tipo'] = 'placa_leida_entrada' mensaje['lectura_automatica']= True mensaje['registrado']=None print("Enviando mensaje: {}".format(mensaje)) # socket_cliente.sendall_json(mensaje) # socket_cliente.mysend("Hola, este es el mensaje\0".encode(encoding="utf-8", errors="strict")) url = "http://{}:{}/manejador/manejar_mensaje/".format(HOST,PORT) data_mensaje = mensaje respuesta_request = requests.post(url, data=data_mensaje) respuesta = respuesta_request.json() print("Mensaje enviado") print("Recibiendo respuesta") # respuesta = socket_cliente.receive() pdb.set_trace() print("Respuesta recibida: {}".format(respuesta)) if (respuesta['tipo'] == "OK_entrada_estacionamiento"): print("Luz verde.") elif (respuesta['tipo'] == "NO_entrada_estacionamiento"): print("Luz roja.") elif (respuesta['tipo'] == "NO_carro_dentro"): print("Luz roja.") else: print("Respuesta no válida") # socket_cliente.sock.shutdown(socket.SHUT_WR) # socket_cliente.sock.close()
apache-2.0
5,597,889,476,890,702,000
28.45977
95
0.712446
false
2.512745
false
false
false
open-synergy/opnsynid-stock-logistics-warehouse
stock_other_receipt_operation/tests/test_warehouse.py
1
2104
# -*- coding: utf-8 -*- # © 2017 OpenSynergy Indonesia # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl.html). from .base import BaseOtherReceiptOperation import itertools class TestWarehouse(BaseOtherReceiptOperation): def test_warehouse_create(self): reception_steps = [ "one_step", "two_steps", "three_steps", "transit_one_step", "transit_two_steps", "transit_three_steps", ] delivery_steps = [ "ship_only", "pick_ship", "pick_pack_ship", "ship_transit", "pick_ship_transit", "pick_pack_ship_transit", ] num = 1 for combination in itertools.product(reception_steps, delivery_steps): self.create_wh({ "name": "X WH %s" % str(num), "code": "X%s" % str(num), "reception_steps": combination[0], "delivery_steps": combination[1], }) num += 1 def test_warehouse_edit(self): reception_steps = [ "one_step", "two_steps", "three_steps", "transit_one_step", "transit_two_steps", "transit_three_steps", ] delivery_steps = [ "ship_only", "pick_ship", "pick_pack_ship", "ship_transit", "pick_ship_transit", "pick_pack_ship_transit", ] num = 1 for combination in itertools.product(reception_steps, delivery_steps): if num == 1: wh = self.create_wh({ "name": "X WH %s" % str(num), "code": "X%s" % str(num), "reception_steps": combination[0], "delivery_steps": combination[1], }) else: self.edit_wh(wh, { "reception_steps": combination[0], "delivery_steps": combination[1], }) num += 1
agpl-3.0
-107,100,302,950,765,000
29.478261
78
0.456015
false
4.005714
false
false
false
amerlyq/piony
piony/gstate.py
1
3033
from PyQt5.QtCore import QObject, pyqtSignal # , QRect, QPoint # from PyQt5.QtWidgets import qApp from piony import logger from piony.config import ymlparser as yml from piony.config.argparser import ArgParser from piony.config.budparser import BudParser, BudError from piony.config.keyparser import KeymapParser class GState(QObject): invalidated = pyqtSignal(dict) def __init__(self, argv): super().__init__() logger.info('%s init', self.__class__.__qualname__) self.active_window = '%1' self.cfg = None self.bud = None self.now = None # Instant states like current visibility, etc self.kmp = None yml.init() self._psArg = ArgParser() self.update(argv) def update(self, argv): kgs = self.parse(argv) # chg_gs = self.compare(kgs) # if chg_gs: # self.invalidated.emit(self.get_gs(), chg_gs) logger.info('GState updated') self.invalidated.emit(kgs) def _set_args_from_command_line(self, cfg, args): ar = [(k, v) for k, v in vars(args).items() if v] for section, opts in cfg.items(): for k, v in ar: if k in opts: cfg[section][k] = str(v) def parse(self, argv): # NEED: RFC args = self._psArg.parse(argv[1:]) self._psArg.apply(args) # Set gvars cfg = yml.parse(yml.G_CONFIG_PATH) self.sty = yml.parse(yml.G_STYLE_PATH) kp = KeymapParser() self.kmp = kp.convert() if args.kill: print("kill:") self.quit.emit() self._psArg.apply(args) # Set gvars self._set_args_from_command_line(cfg, args) entries = args.buds if args.buds else str(cfg['Bud']['default']) Bud_Ps = BudParser() try: bud = Bud_Ps.parse(entries) except BudError as e: print("Error:", e) if not self.bud: # NOTE: work must go on if client args are bad? # qApp.quit() # don't work until main loop raise e # TODO: Make 'bReload' as tuple to distinguish necessary refreshes. bReload = {} bReload['toggle'] = bool(0 == len(argv)) bReload['Window'] = bool(self.cfg and cfg['Window'] != self.cfg['Window']) self.cfg = cfg self.bud = bud # TODO: ret whole new current state? return bReload def compare(self, kgs): # WARNING: broken """ Used as separate function because of embedded file paths in arg """ # Compose dict of current GState variables # curr_gs = self.get_gs() # Detected changes in global state chg_gs = [('cfg', 'Window'), 'bud'] # TODO: recursive diff cgs/kgs and inserting 1 in changed keys/branches return chg_gs # TODO: replace with namedtuple (use it to emit) def get_gs(self): return {k: v for k, v in self.__dict__.items() if not k.startswith('__') and not callable(k)}
gpl-3.0
6,719,100,791,870,633,000
33.465909
82
0.5727
false
3.53085
false
false
false
Quantia-Analytics/AzureML-Regression-Example
Python files/transform.py
1
2490
# -*- coding: utf-8 -*- """ Created on Tue Jul 21 12:49:06 2015 @author: Steve Elston """ ## The main function with a single argument, a Pandas data frame ## from the first input port of the Execute Python Script module. def azureml_main(BikeShare): import pandas as pd from sklearn import preprocessing import utilities as ut import numpy as np import os ## If not in the Azure environment, read the data from a csv ## file for testing purposes. Azure = False if(Azure == False): pathName = "C:/Users/Steve/GIT/Quantia-Analytics/AzureML-Regression-Example/Python files" fileName = "BikeSharing.csv" filePath = os.path.join(pathName, fileName) BikeShare = pd.read_csv(filePath) ## Drop the columns we do not need BikeShare = BikeShare.drop(['instant', 'instant', 'atemp', 'casual', 'registered'], 1) ## Normalize the numeric columns scale_cols = ['temp', 'hum', 'windspeed'] arry = BikeShare[scale_cols].as_matrix() BikeShare[scale_cols] = preprocessing.scale(arry) ## Create a new column to indicate if the day is a working day or not. work_day = BikeShare['workingday'].as_matrix() holiday = BikeShare['holiday'].as_matrix() BikeShare['isWorking'] = np.where(np.logical_and(work_day == 1, holiday == 0), 1, 0) ## Compute a new column with the count of months from ## the start of the series which can be used to model ## trend BikeShare['monthCount'] = ut.mnth_cnt(BikeShare) ## Shift the order of the hour variable so that it is smoothly ## "humped over 24 hours.## Add a column of the count of months which could hr = BikeShare.hr.as_matrix() BikeShare['xformHr'] = np.where(hr > 4, hr - 5, hr + 19) ## Add a variable with unique values for time of day for working ## and non-working days. isWorking = BikeShare['isWorking'].as_matrix() BikeShare['xformWorkHr'] = np.where(isWorking, BikeShare.xformHr, BikeShare.xformHr + 24.0) BikeShare['dayCount'] = pd.Series(range(BikeShare.shape[0]))/24 return BikeShare
gpl-2.0
-3,416,187,222,252,025,300
37.921875
97
0.562651
false
3.958665
false
false
false
nbsdx/abac
examples/python_tests/acme_rockets_rt0/query.py
1
3122
#!/usr/bin/env python """ Run the queries described in README cmd: env keystore=`pwd` ./query.py """ import os import ABAC ctxt = ABAC.Context() # Keystore is the directory containing the principal credentials. # Load existing principals and/or policy credentials if (os.environ.has_key("keystore")) : keystore=os.environ["keystore"] ctxt.load_directory(keystore) else: print("keystore is not set...") exit(1) # retrieve principals' keyid value from local credential files acmeID=ABAC.ID("Acme_ID.pem"); acmeID.load_privkey("Acme_private.pem"); acme=acmeID.keyid() coyoteID=ABAC.ID("Coyote_ID.pem"); coyoteID.load_privkey("Coyote_private.pem"); coyote=coyoteID.keyid() bigbirdID=ABAC.ID("Bigbird_ID.pem"); bigbirdID.load_privkey("Bigbird_private.pem"); bigbird=bigbirdID.keyid() ########################################################################## # dump the loaded attribute policies # print "\n...policy attribute set..." credentials = ctxt.credentials() for credential in credentials: print "context: %s <- %s" % (credential.head().string(), credential.tail().string()) ########################################################################## # is coyote a preferred_customer of Acme ? # role=[keyid:Acme].role:preferred_customer # p =[keyid:coyote] print "\n===good============ Acme.preferred_customer <- Coyote" (success, credentials) = ctxt.query("%s.preferred_customer" % acme, coyote) if success: print "success!" else: print "failure!" for credential in credentials: print "credential %s <- %s" % (credential.head().string(), credential.tail().string()) ########################################################################## # can coyote buy rockets from Acme ? # role=[keyid:Acme].role:buy_rockets # p =[keyid:coyote] print "\n===good============ Acme.buy_rockets <- Coyote" (success, credentials) = ctxt.query("%s.buy_rockets" % acme, coyote) if success: print "success!" else: print "failure!" for credential in credentials: print "credential %s <- %s" % (credential.head().string(), credential.tail().string()) ########################################################################## # is Acme a friend of coyote ? # role=[keyid:Coyote].role:friend # p=[keyid:Acme] print "\n===bad=============== Coyote.friend <- Acme" (success, credentials) = ctxt.query("%s.friend" % coyote, acme) if success: print "success!" else: print "failure!" for credential in credentials: print "credential %s <- %s" % (credential.head().string(), credential.tail().string()) ########################################################################## # using complex role to ask a question.. expecting to fail # role=[keyid:Acme].role:buy_rockets # p=[keyid:Acme].role:preferred_customer print "\n===bad?=============== Acme.buy_rockets <- Acme.preferred_customer" (success, credentials) = ctxt.query("%s.buy_rockets" % acme, "%s.preferred_customer" % acme) if success: print "success!" else: print "failure!" for credential in credentials: print "credential %s <- %s" % (credential.head().string(), credential.tail().string())
mit
-4,170,137,190,318,609,000
30.535354
92
0.601858
false
3.484375
false
false
false
shantanu561993/FAndR
docs/conf.py
1
8415
#!/usr/bin/env python # -*- coding: utf-8 -*- # # FAR documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import FAR # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Find and Replace' copyright = u'2015, Shantanu Khandelwal' # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = FAR.__version__ # The full version, including alpha/beta/rc tags. release = FAR.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to # some non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built # documents. #keep_warnings = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as # html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the # top of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon # of the docs. This file should be a Windows icon file (.ico) being # 16x16 or 32x32 pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) # here, relative to this directory. They are copied after the builtin # static files, so a file named "default.css" will overwrite the builtin # "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names # to template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. # Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. # Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages # will contain a <link> tag referring to it. The value of this option # must be the base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'FARdoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'FAR.tex', u'Find and Replace Documentation', u'Shantanu Khandelwal', 'manual'), ] # The name of an image file (relative to this directory) to place at # the top of the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings # are parts, not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'FAR', u'Find and Replace Documentation', [u'Shantanu Khandelwal'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'FAR', u'Find and Replace Documentation', u'Shantanu Khandelwal', 'FAR', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
bsd-3-clause
2,237,559,652,515,695,600
29.6
76
0.7041
false
3.716873
true
false
false
volodymyrss/3ML
threeML/plugins/spectrum/binned_spectrum_set.py
1
3209
import numpy as np from threeML.utils.time_interval import TimeIntervalSet from threeML.plugins.spectrum.binned_spectrum import BinnedSpectrum class BinnedSpectrumSet(object): def __init__(self, binned_spectrum_list, reference_time=0.0, time_intervals=None): """ a set of binned spectra with optional time intervals :param binned_spectrum_list: lit of binned spectal :param reference_time: reference time for time intervals :param time_intervals: optional timeinterval set """ self._binned_spectrum_list = binned_spectrum_list # type: list(BinnedSpectrum) self._reference_time = reference_time # normalize the time intervals if there are any if time_intervals is not None: self._time_intervals = time_intervals - reference_time # type: TimeIntervalSet assert len(time_intervals) == len( binned_spectrum_list), 'time intervals mus be the same length as binned spectra' else: self._time_intervals = None @property def reference_time(self): return self._reference_time def __getitem__(self, item): return self._binned_spectrum_list[item] def __len__(self): return len(self._binned_spectrum_list) def time_to_index(self, time): """ get the index of the input time :param time: time to search for :return: integer """ assert self._time_intervals is not None, 'This spectrum set has no time intervals' return self._time_intervals.containing_bin(time) def sort(self): """ sort the bin spectra in place according to time :return: """ assert self._time_intervals is not None, 'must have time intervals to do sorting' # get the sorting index idx = self._time_intervals.argsort() # reorder the spectra self._binned_spectrum_list = self._binned_spectrum_list[idx] # sort the time intervals in place self._time_intervals.sort() @property def quality_per_bin(self): return np.array([spectrum.quality for spectrum in self._binned_spectrum_list]) @property def n_channels(self): return self.counts_per_bin.shape[1] @property def counts_per_bin(self): return np.array([spectrum.counts for spectrum in self._binned_spectrum_list]) @property def count_errors_per_bin(self): return np.array([spectrum.count_errors for spectrum in self._binned_spectrum_list]) @property def rates_per_bin(self): return np.array([spectrum.rates for spectrum in self._binned_spectrum_list]) @property def rate_errors_per_bin(self): return np.array([spectrum.rate_errors for spectrum in self._binned_spectrum_list]) @property def sys_errors_per_bin(self): return np.array([spectrum.sys_errors for spectrum in self._binned_spectrum_list]) @property def exposure_per_bin(self): return np.array([spectrum.exposure for spectrum in self._binned_spectrum_list]) @property def time_intervals(self): return self._time_intervals
bsd-3-clause
-6,567,661,062,073,182,000
25.303279
96
0.647554
false
4.103581
false
false
false
lowks/SDST
seqtools/demultiplexer.py
1
7927
import argparse import subprocess import os import collections import pylev from seqtools.utils import revcomp,fileOpen from seqtools.fastq import Fastq def isIndexRevComp(indexfile,indexes,n=500000): """Determine if the indexes are reverse complemented or not :param indexfile: filename of the Fastq index file :param indexes: list or tuple of index strings :param n: integer number of reads to sample """ print("HERE") ifile = Fastq(indexfile) ilength=len(indexes[0]) print(ilength) indexreads = collections.defaultdict(int) for i in range(n): indexreads[ifile.next().sequence[:ilength]]+=1 counts = {'normal':0, 'revcomp':0} for k,v in list(indexreads.items()): print(k,v) for i in indexes: if(pylev.levenshtein(k,i)<=1): counts['normal']+=v continue if(pylev.levenshtein(k,revcomp(i))<=1): counts['revcomp']+=v if(counts['revcomp']>counts['normal']): print('using revcomp') else: print('NOT revcomp') return(counts['revcomp']>counts['normal']) def demultiplex(readfile, indexfile, indexes, readfile2=None, indexfile2=None): """Demultiplex from separate FASTQ files. All FASTQ files can be gzipped (with suffix .gz). :param readfile: The filename of the first fastq file :param indexfile: The filename of the first index fastq file :param indexes: An iterable of indexes. If dual-barcoding is used, the indexes should be comma-separated strings, one string for each barcode pair. :param indexfile2: The filename of the second index fastq file. If this parameter is included, then the indexes parameter should be a set of comma-separated pairs of indexes. :param readfile2: The filename of the second fastq file [optional] """ # single readfile, single indexfile if(readfile2 is None) and (indexfile2 is None): rfile1 = Fastq(readfile) (rpath,rname) = os.path.split(readfile) ifile = Fastq(indexfile) indexRevComp = isIndexRevComp(indexfile,indexes) existingIndexes = [] for i in indexes: ofname1 = os.path.join(rpath,i + "_" + rname) if(not os.path.exists(ofname1)): ofile1[i]=fileOpen(os.path.join(rpath,i + "_" + rname),'w') else: print(ofname1," already exists, skipping") existingIndexes.append(i) for i in existingIndexes: indexes.remove(i) if(len(indexes)==0): exit(0) for (r1,i) in zip(rfile1,ifile): try: if indexRevComp: i2 = revcomp(i.sequence[:indexlen]) ofile1[i2].write(str(r1)) else: i2 = i.sequence[:indexlen] ofile1[i2].write(str(r1)) except KeyError: pass rfile1.close() ifile.close() for ofile in list(ofile1.values()): ofile.close() ## for i in indexes: ## os.rename(os.path.join(rpath,'tmp.' + i + "_" + rname), ## os.path.join(rpath,i + "_" + rname)) # two readfiles, single indexfile if(readfile2 is not None) and (indexfile2 is None): print("here1") rfile1 = Fastq(readfile) rfile2 = Fastq(readfile2) (rpath,rname) = os.path.split(readfile) (rpath2,rname2) = os.path.split(readfile2) ifile = Fastq(indexfile) indexRevComp = isIndexRevComp(indexfile,indexes) ofile1 = {} ofile2 = {} existingIndexes = [] for i in indexes: ofname1 = os.path.join(rpath,i + "_" + rname) ofname2 = os.path.join(rpath2,i + "_" + rname2) if(os.path.exists(ofname1) and os.path.exists(ofname2)): print(ofname1,ofname2, " already exist, skipping") existingIndexes.append(i) else: ofile1[i]=fileOpen(os.path.join(rpath,i + "_" + rname),'w') ofile2[i]=fileOpen(os.path.join(rpath2,i + "_" + rname2),'w') for i in existingIndexes: indexes.remove(i) if(len(indexes)==0): exit(0) indexlen = len(indexes[0]) for (r1,r2,i) in zip(rfile1,rfile2,ifile): try: if indexRevComp: i2 = revcomp(i.sequence[:indexlen]) ofile1[i2].write(str(r1)) ofile2[i2].write(str(r2)) else: i2 = i.sequence[:indexlen] ofile1[i2].write(str(r1)) ofile2[i2].write(str(r2)) except KeyError: pass rfile1.close() rfile2.close() ifile.close() for ofile in list(ofile1.values()): ofile.close() for ofile in list(ofile2.values()): ofile.close() ## for i in indexes: ## print os.path.join(rpath,'tmp.' + i + "_" + rname),os.path.join(rpath,i + "_"+rname) ## os.rename(os.path.join(rpath,'tmp.' + i + "_" + rname), ## os.path.join(rpath,i + "_"+rname)) ## os.rename(os.path.join(rpath2,'tmp.' + i +"_"+ rname2), ## os.path.join(rpath2,i +"_"+ rname2)) # two readfiles, two indexfiles if(readfile2 is not None) and (indexfile2 is not None): rfile1 = Fastq(readfile) rfile2 = Fastq(readfile2) (rpath,rname) = os.path.split(readfile) (rpath2,rname2) = os.path.split(readfile2) ifile = Fastq(indexfile) ifile2 = Fastq(indexfile2) indexes = [tuple(x.split(',')) for x in indexes] indexRevComp = isIndexRevComp(indexfile,[i[0] for i in indexes]) ofile1 = {} ofile2 = {} existingIndexes = [] for j in indexes: i = ''.join(j) ofname1 = os.path.join(rpath,i + "_" + rname) ofname2 = os.path.join(rpath2,i + "_" + rname2) if(os.path.exists(ofname1) and os.path.exists(ofname2)): print(ofname1,ofname2, " already exist, skipping") existingIndexes.append(i) else: ofile1[i]=fileOpen(ofname1,'w') ofile2[i]=fileOpen(ofname2,'w') for i in existingIndexes: indexes.remove(i) if(len(indexes)==0): exit(0) indexlen = len(indexes[0][0]) for (r1,r2,i,i2) in zip(rfile1,rfile2,ifile,ifile2): try: if indexRevComp: ir = revcomp(i.sequence[:indexlen]) ir2 = revcomp(i2.sequence[:indexlen]) istr = ir+ir2 ofile1[istr].write(str(r1)) ofile2[istr].write(str(r2)) else: ir = i.sequence[:indexlen] ir2 = i2.sequence[:indexlen] istr = ir+ir2 ofile1[istr].write(str(r1)) ofile2[istr].write(str(r2)) except KeyError: pass rfile1.close() rfile2.close() ifile.close() ifile2.close() for ofile in list(ofile1.values()): ofile.close() for ofile in list(ofile2.values()): ofile.close() ## for i in indexes: ## ofname1 = os.path.join(rpath,''.join(i) + "_" + rname) ## ofname2 = os.path.join(rpath2,''.join(i) + "_" + rname2) ## os.rename(os.path.join(rpath,'tmp.' + ofname1), ## os.path.join(rpath,ofname1)) ## os.rename(os.path.join(rpath2,'tmp.'+ofname2), ## os.path.join(rpath2,ofname2))
mit
2,461,416,735,547,084,000
37.110577
181
0.526303
false
3.529386
false
false
false
ragavvenkatesan/Convolutional-Neural-Networks
yann/core/conv.py
1
10586
""" ``yann.core.conv.py`` is one file that contains all the convolution operators. It contains two functions for performing either 2d convolution (``conv2d``) or 3d convolution (``conv3d``). These functions shall be called by every convolution layer from ``yann.layers.py`` TODO: * Add 3D convolution support from theano. * Add Masked convolution support. """ from theano.tensor.nnet import conv2d from theano.tensor.nnet.abstract_conv import conv2d_grad_wrt_inputs as deconv2d from theano.tensor.nnet.abstract_conv import get_conv_output_shape as conv_shape class convolver_2d(object): """ Class that performs convolution This class basically performs convolution. These ouputs can be probed using the convolution layer if needed. This keeps things simple. Args: input: This variable should either ``thenao.tensor4`` (``theano.matrix`` reshaped also works) variable or an output from a pervious layer which is a ``theano.tensor4`` convolved with a ``theano.shared``. The input should be of shape ``(batchsize, channels, height, width)``. For those who have tried ``pylearn2`` or such, this is called bc01 format. fitlers: This variable should be ``theano.shared`` variables of filter weights could even be a filter bank. ``filters`` should be of shape ``(nchannels, nkerns, filter_height, filter_width)``. ``nchannles`` is the number of input \ channels and ``nkerns`` is the number of kernels or output channels. subsample: Stride Tuple of ``(int, int)``. filter_shape: This variable should be a tuple or an array: ``[nkerns, nchannles, filter_height, filter_width]`` image_shape: This variable should a tuple or an array: ``[batchsize, channels, height, width]`` ``image_shape[1]`` must be equal to ``filter_shape[1]`` border_mode: The input to this can be either ``'same'`` or other theano defaults Notes: * ``conv2d.out`` output, Output that could be provided as output to the next layer or to other convolutional layer options. The size of the outut depends on border mode and subsample operation performed. * ``conv2d.out_shp``: (``int``, ``int``), A tuple (height, width) of all feature maps The options for ``border_mode`` input which at the moment of writing this doc are * ``'valid'`` - apply filter wherever it completely overlaps with the input. Generates output of shape ``input shape - filter shape + 1`` * ``'full'``- apply filter wherever it partly overlaps with the input. Generates output of shape ``input shape + filter shape - 1`` * ``'half'``: pad input with a symmetric border of ``filter rows // 2`` rows and ``filter columns // 2`` columns, then perform a valid convolution. For filters with an odd number of rows and columns, this leads to the output shape being equal to the input shape. * ``<int>``: pad input with a symmetric border of zeros of the given width, then perform a valid convolution. * ``(<int1>, <int2>)``: pad input with a symmetric border of ``int1`` rows and ``int2`` columns, then perform a valid convolution. Refer to `theano documentation's convolution page <http://deeplearning.net/software/theano/library/tensor/nnet/conv.html>`_ for more details on this. Basically cuDNN is used for ``same`` because at the moment of writing this funciton, ``theano.conv2d`` doesn't support``same`` convolutions on the GPU. For everything else, ``theano`` default will be used. TODO: Implement ``border_mode = 'same'`` for libgpuarray backend. As of now only supports CUDA backend. Need to something about this. With V0.10 of theano, I cannot use cuda.dnn for same convolution. """ def __init__ ( self, input, filters, subsample, filter_shape, image_shape, border_mode = 'valid', verbose = 1 ): if not image_shape[1] == filter_shape[1]: raise Exception ("input_shape[1] and filter_shape[1] must match") if verbose >=3 : print "... creating convolution operator" _,_,_out_height,_out_width = conv_shape (image_shape = image_shape, kernel_shape = filter_shape, border_mode = border_mode, subsample = subsample) self.out = conv2d ( input = input, filters = filters, input_shape = image_shape, filter_shape = filter_shape, subsample = subsample, border_mode = border_mode, ) self.out_shp = (_out_height, _out_width) class deconvolver_2d(object): """ class that performs deconvolution This class basically performs convolution. Args: input: This variable should either ``thenao.tensor4`` (``theano.matrix`` reshaped also works) variable or an output from a pervious layer which is a ``theano.tensor4`` convolved with a ``theano.shared``. The input should be of shape ``(batchsize, channels, height, width)``. For those who have tried ``pylearn2`` or such, this is called bc01 format. fitlers: This variable should be ``theano.shared`` variables of filter weights could even be a filter bank. ``filters`` should be of shape ``(nchannels, nkerns, filter_height, filter_width)``. ``nchannles`` is the number of input \ channels and ``nkerns`` is the number of kernels or output channels. subsample: Stride Tuple of ``(int, int)``. filter_shape: This variable should be a tuple or an array: ``[nkerns, nchannles, filter_height, filter_width]`` image_shape: This variable should a tuple or an array: ``[batchsize, channels, height, width]`` ``image_shape[1]`` must be equal to ``filter_shape[1]`` output_shape: Request a size of output of image required. This variable should a tuple. border_mode: The input to this can be either ``'same'`` or other theano defaults Notes: * ``conv2d.out`` output, Output that could be provided as output to the next layer or to other convolutional layer options. The size of the outut depends on border mode and subsample operation performed. * ``conv2d.out_shp``: (``int``, ``int``), A tuple (height, width) of all feature maps The options for ``border_mode`` input which at the moment of writing this doc are * ``'valid'`` - apply filter wherever it completely overlaps with the input. Generates output of shape ``input shape - filter shape + 1`` * ``'full'``- apply filter wherever it partly overlaps with the input. Generates output of shape ``input shape + filter shape - 1`` * ``'half'``: pad input with a symmetric border of ``filter rows // 2`` rows and ``filter columns // 2`` columns, then perform a valid convolution. For filters with an odd number of rows and columns, this leads to the output shape being equal to the input shape. * ``<int>``: pad input with a symmetric border of zeros of the given width, then perform a valid convolution. * ``(<int1>, <int2>)``: pad input with a symmetric border of ``int1`` rows and ``int2`` columns, then perform a valid convolution. Refer to `theano documentation's convolution page <http://deeplearning.net/software/theano/library/tensor/nnet/conv.html>`_ for more details on this. Basically cuDNN is used for ``same`` because at the moment of writing this funciton, ``theano.conv2d`` doesn't support``same`` convolutions on the GPU. For everything else, ``theano`` default will be used. TODO: Implement ``border_mode = 'same'`` and full for libgpuarray backend. As of now only supports CUDA backend. Need to something about this. With V0.10 of theano, I cannot use cuda.dnn for same convolution. Right now deconvolution works only with ``border_mode = 'valid'`` """ def __init__ ( self, input, filters, subsample, filter_shape, image_shape, output_shape, border_mode = 'valid', verbose = 1 ): # if not image_shape[1] == filter_shape[1]: # raise Exception ("input_shape[1] and filter_shape[1] must match") if verbose >=3 : print "... creating deconvolution operator" # Transpose the convoltuion # self.filters.dimshuffle(1, 0, 2, 3)[:, :, ::-1, ::-1] _out_height = output_shape[2] _out_width = output_shape[3] self.out = deconv2d ( output_grad = input, filters = filters, input_shape = output_shape, #filter_shape = filter_shape, border_mode = border_mode, subsample = subsample, ) self.out_shp = (_out_height, _out_width) # Check by using the reverse on a convolution shape, the actual size. _,_,_in_height,_in_width = conv_shape (image_shape = output_shape, kernel_shape = filter_shape, border_mode = border_mode, subsample = subsample) if not _in_height == image_shape [2] and _in_width == image_shape [3]: raise Exception (" This dimensionality of th output image cannot be achieved.") if __name__ == '__main__': #pragma: no cover pass
mit
6,412,593,143,335,912,000
44.051064
100
0.573871
false
4.588643
false
false
false
moberweger/deep-prior-pp
src/trainer/optimizer.py
1
4689
"""Basis for different optimization algorithms. Optimizer provides interface for creating the update rules for gradient based optimization. It includes SGD, NAG, RMSProp, etc. Copyright 2015 Markus Oberweger, ICG, Graz University of Technology <oberweger@icg.tugraz.at> This file is part of DeepPrior. DeepPrior is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. DeepPrior is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with DeepPrior. If not, see <http://www.gnu.org/licenses/>. """ import theano import theano.tensor as T import numpy __author__ = "Markus Oberweger <oberweger@icg.tugraz.at>" __copyright__ = "Copyright 2015, ICG, Graz University of Technology, Austria" __credits__ = ["Paul Wohlhart", "Markus Oberweger"] __license__ = "GPL" __version__ = "1.0" __maintainer__ = "Markus Oberweger" __email__ = "oberweger@icg.tugraz.at" __status__ = "Development" class Optimizer(object): """ Class with different optimizers of the loss function """ def __init__(self, grads, params): """ Initialize object :param grads: gradients of the loss function :param params: model parameters that should be updated """ self.grads = grads self.params = params self.updates = [] self.shared = [] if len(grads) != len(params): print "Warning: Size of gradients ({}) does not fit size of parameters ({})!".format(len(grads), len(params)) def ADAM(self, learning_rate=0.0002, beta1=0.9, beta2=0.999, epsilon=1e-8, gamma=1-1e-8): """ Adam update rule by Kingma and Ba, ICLR 2015, version 2 (with momentum decay). :param learning_rate: alpha in the paper, the step size :param beta1: exponential decay rate of the 1st moment estimate :param beta2: exponential decay rate of the 2nd moment estimate :param epsilon: small epsilon to prevent divide-by-0 errors :param gamma: exponential increase rate of beta1 :return: updates """ t = theano.shared(numpy.cast[theano.config.floatX](1.0)) # timestep, for bias correction beta1_t = beta1*gamma**(t-1.) # decay the first moment running average coefficient for param_i, grad_i in zip(self.params, self.grads): mparam_i = theano.shared(numpy.zeros(param_i.get_value().shape, dtype=theano.config.floatX)) # 1st moment self.shared.append(mparam_i) vparam_i = theano.shared(numpy.zeros(param_i.get_value().shape, dtype=theano.config.floatX)) # 2nd moment self.shared.append(vparam_i) m = beta1_t * mparam_i + (1. - beta1_t) * grad_i # new value for 1st moment estimate v = beta2 * vparam_i + (1. - beta2) * T.sqr(grad_i) # new value for 2nd moment estimate m_unbiased = m / (1. - beta1**t) # bias corrected 1st moment estimate v_unbiased = v / (1. - beta2**t) # bias corrected 2nd moment estimate w = param_i - (learning_rate * m_unbiased) / (T.sqrt(v_unbiased) + epsilon) # new parameter values self.updates.append((mparam_i, m)) self.updates.append((vparam_i, v)) self.updates.append((param_i, w)) self.updates.append((t, t + 1.)) return self.updates def RMSProp(self, learning_rate=0.01, decay=0.9, epsilon=1.0 / 100.): """ RMSProp of Tieleman et al. :param learning_rate: learning rate :param decay: decay rate of gradient history :param epsilon: gradient clip :return: update """ for param_i, grad_i in zip(self.params, self.grads): # Accumulate gradient msg = theano.shared(numpy.zeros(param_i.get_value().shape, dtype=theano.config.floatX)) self.shared.append(msg) new_mean_squared_grad = (decay * msg + (1 - decay) * T.sqr(grad_i)) # Compute update rms_grad_t = T.sqrt(new_mean_squared_grad) rms_grad_t = T.maximum(rms_grad_t, epsilon) delta_x_t = -learning_rate * grad_i / rms_grad_t # Apply update self.updates.append((param_i, param_i + delta_x_t)) self.updates.append((msg, new_mean_squared_grad)) return self.updates
gpl-3.0
-5,467,339,482,598,829,000
39.076923
121
0.641288
false
3.546899
false
false
false
synw/django-mqueue
mqueue/signals.py
1
2131
from __future__ import print_function from mqueue.models import MEvent from mqueue.utils import get_user, get_url, get_admin_url, get_object_name def mmessage_create(sender, instance, created, **kwargs): if created is True: # try to get the user user = get_user(instance) # try to get the object name obj_name = get_object_name(instance, user) # try to get the admin url admin_url = get_admin_url(instance) event_class = instance.__class__.__name__ + ' created' # create event MEvent.objects.create( model=instance.__class__, name=obj_name, obj_pk=instance.pk, user=user, url=get_url(instance), admin_url=admin_url, event_class=event_class, ) return def mmessage_delete(sender, instance, **kwargs): # try to get the user user = get_user(instance) # try to get the object name obj_name = get_object_name(instance, user) event_class = instance.__class__.__name__ + ' deleted' # create event MEvent.objects.create( model=instance.__class__, name=obj_name, obj_pk=instance.pk, user=user, event_class=event_class, ) return def mmessage_save(sender, instance, created, **kwargs): if created is False: # try to get the user user = get_user(instance) if 'name' not in kwargs.keys(): # try to get the object name obj_name = get_object_name(instance, user) else: obj_name = kwargs('name') # try to get the admin url admin_url = get_admin_url(instance) event_str = ' edited' if created: event_str = ' created' event_class = instance.__class__.__name__ + event_str # create event MEvent.objects.create( model=instance.__class__, name=obj_name, obj_pk=instance.pk, user=user, url=get_url(instance), admin_url=admin_url, event_class=event_class, ) return
mit
5,622,654,903,332,074,000
29.442857
74
0.56077
false
3.895795
false
false
false
rodgzilla/fractal_GAN
src/mandel_test.py
1
5720
import sys import pygame from pygame import gfxdraw from pygame import Color import cmath import random pygame.init() # The small size will help for future generation. unit = 75 width = 3 * unit height = 2 * unit # nb_sections represents the number of slice of each axis we are going # to consider for the zoom. The number of sections considered will be # nb_sections * nb_sections nb_sections = 10 section_width = int(width / nb_sections) section_height = int(height / nb_sections) # We select the region on which we zoom amongst the top_select most bright top_select = 20 def convert_pixel_complex(x, y, re_min, re_max, im_min, im_max): """ Converts pixel coordinates to complex plane coordinates. The re and im arguments indicates the part of the complex plane represented by the window. """ re = x * (re_max - re_min) / width + re_min im = y * (im_max - im_min) / height + im_min return complex(re, im) def draw_mandel(window, sequence, max_iter, re_min = -2, re_max = 1, im_min = -1, im_max = 1): """ Computes the mandelbrot set on a given part of the complex plane. """ screen_array = [[0] * height for _ in range(width)] # For every pixel of the screen for x in range(width): for y in range(height): # Compute the associated complex number c = convert_pixel_complex(x, y, re_min, re_max, im_min, im_max) # Then, compute max_iter element of sequence function with # c as initial value z = c for i in range(max_iter): z = sequence(z, c) # If we detect that the sequence diverges if (z.real * z.real + z.imag * z.imag) > 4: # We draw a pixel which intensity corresponds to # the number of iterations we ran before detecting # the divergence. color_ratio = int((i * 255.) / max_iter) gfxdraw.pixel(window, x, y, Color(color_ratio, color_ratio, color_ratio, 255)) screen_array[x][y] = color_ratio break else: # If we did not detect a divergence in max_iter steps, # we consider that the sequence does not diverge and # draw a black pixel. gfxdraw.pixel(window, x, y, Color(0,0,0,255)) pygame.display.flip() return screen_array def sec_number_to_indices(w_sec, h_sec): """ Converts sections indices into window coordinates. """ x_min = w_sec * section_width x_max = (w_sec + 1) * section_width y_min = h_sec * section_height y_max = (h_sec + 1) * section_height return x_min, x_max, y_min, y_max def section_intensity(screen_array, weight, w_sec, h_sec): """ Computes the weighted average of the pixel intensity after computing the Mandelbrot set. """ x_min, x_max, y_min, y_max = sec_number_to_indices(w_sec, h_sec) s = sum((weight(screen_array[x][y]) for x in range(x_min, x_max) for y in range(y_min, y_max))) norm = section_width * section_height return s / norm def sections_to_intensities(screen_array, weight = lambda x: x): """ Creates a dictionary which associates sections indices to their weighted average pixel intensity. """ sec_to_int = {} for w_sec in range(nb_sections): for h_sec in range(nb_sections): sec_to_int[(w_sec, h_sec)] = section_intensity(screen_array, weight, w_sec, h_sec) return sec_to_int def sort_section_intensities(sec_to_int): """ Sorts the sections indices according to their intensities in decreasing order. """ return sorted(sec_to_int.keys(), key = sec_to_int.get, reverse = True) def generate_fractal_sequence(window, sequence = lambda z, c: z**2 + c, seq_len = 8, top_select = 5): """ Generates the multiple zoom on the Mandelbrot set. seq_len pictures will be generated and the zoom will chose amongst the top_select most intense sections. """ tl = complex(-2, 1) # top left complex number br = complex(1, -1) # bottom right complex number for i in range(seq_len): min_re, max_re = tl.real, br.real min_im, max_im = br.imag, tl.imag # Experimental formula to have greater max_iter when we zoom max_iter = 50 + i ** 3 * 16 print('iteration', i + 1) print('min_re, max_re = ', min_re, ',', max_re) print('min_im, max_im = ', min_im, ',', max_im) print('max_iter', max_iter) # Draw the fractal in the window, divide the result in # sections and compute their intensities. Chose one of the # most intense section and update the top left and bottom # right complex numbers to zoom on this section. screen_array = draw_mandel(window, sequence, max_iter, min_re, max_re, min_im, max_im) sec_to_int = sections_to_intensities(screen_array) w_sec_max, h_sec_max = random.choice(sort_section_intensities(sec_to_int)[:top_select]) x_min, x_max, y_min, y_max = sec_number_to_indices(w_sec_max, h_sec_max) tl = convert_pixel_complex(x_min, y_min, min_re, max_re, min_im, max_im) br = convert_pixel_complex(x_max, y_max, min_re, max_re, min_im, max_im) if __name__ == '__main__': window = pygame.display.set_mode((width, height)) generate_fractal_sequence(window, seq_len = 6) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit(0)
gpl-3.0
5,040,484,455,637,613,000
37.648649
109
0.597203
false
3.481436
false
false
false
hsoft/pdfmasher
ebooks/compression/palmdoc.py
1
1892
# Copyright 2008, Kovid Goyal <kovid at kovidgoyal.net> # Copyright 2013 Hardcoded Software (http://www.hardcoded.net) # # This software is licensed under the "GPL v3" License as described in the "LICENSE" file, # which should be included with this package. The terms are also available at # http://www.hardcoded.net/licenses/gplv3_license from struct import pack def compress_doc(data): out = bytearray() i = 0 ldata = len(data) while i < ldata: if i > 10 and (ldata - i) > 10: chunk = b'' match = -1 for j in range(10, 2, -1): chunk = data[i:i+j] try: match = data.rindex(chunk, 0, i) except ValueError: continue if (i - match) <= 2047: break match = -1 if match >= 0: n = len(chunk) m = i - match code = 0x8000 + ((m << 3) & 0x3ff8) + (n - 3) out += pack(b'>H', code) i += n continue och = data[i] ch = bytes([och]) i += 1 if ch == b' ' and (i + 1) < ldata: onch = data[i] if onch >= 0x40 and onch < 0x80: out += pack(b'>B', onch ^ 0x80) i += 1 continue if och == 0 or (och > 8 and och < 0x80): out += ch else: j = i binseq = [ch] while j < ldata and len(binseq) < 8: och = data[j] ch = bytes([och]) if och == 0 or (och > 8 and och < 0x80): break binseq.append(ch) j += 1 out += pack(b'>B', len(binseq)) out += b''.join(binseq) i += len(binseq) - 1 return bytes(out)
gpl-3.0
-5,296,342,882,972,843,000
31.067797
91
0.426004
false
3.673786
false
false
false
markalansmith/draftmim
spider/nbadraft_net/nbadraft_net/spiders/nbadraft.py
1
2465
# -*- coding: utf-8 -*- import scrapy import urlparse from urllib2 import quote from nbadraft_net import PlayerItem class NbadraftSpider(scrapy.Spider): name = "nbadraft" allowed_domains = ["nbadraft.net"] start_urls = ( 'http://www.nbadraft.net/2016mock_draft', ) def parse(self, response): selector = scrapy.Selector(response) updated_on = selector.xpath('//p[@class="updated"]/text()').extract()[0] mock_draft_one = selector.xpath('//div[@id="nba_consensus_mock1"]') mock_draft_two = selector.xpath('//div[@id="nba_consensus_mock2"]') for mock_draft in [mock_draft_one, mock_draft_two]: player_rows = mock_draft.xpath('.//table/tbody/tr') for player_row in player_rows: player_item = PlayerItem() player_info = player_row.xpath('./td/text()').extract() player_name = player_row.xpath('./td/a/text()').extract()[0] player_page = player_row.xpath('./td/a/@href').extract()[-1] player_page_url = urlparse.urljoin(response.url, player_page.strip()) player_page_request = scrapy.Request(player_page_url, callback=self.parse_player_page_request) player_mock_draft_pos = int(player_info[0]) player_height = player_info[2] player_weight = int(player_info[3]) player_position = player_info[4] player_school = player_info[5] player_class = player_info[6] player_item['name'] = player_name self.logger.info("PlayerInfo: %s, Player Name: %s, Player Page: %s" % (str(player_info), player_name, str(player_page_request),)) yield player_page_request def parse_player_page_request(self, response): selector = scrapy.Selector(response) player_stats = selector.xpath('//div[@id="nba_player_stats"]') player_img_src = player_stats.xpath('./img/@src').extract() player_attribute_scores = selector.xpath('//p[@class="nba_player_attrib_score"]/text()').extract() player_overall_score = selector.xpath('//p[@class="whitebox"]/text()').extract() player_notes = selector.xpath('//div[@id="nbap_content_bottom"]/p/text()').extract() player_videos = selector.xpath('//div[@id="nbap_content_bottom"]/p/iframe/@src').extract() return
apache-2.0
-2,331,472,478,925,752,000
41.5
145
0.586207
false
3.717949
false
false
false
ngageoint/scale
scale/recipe/configuration/json/recipe_config_v6.py
1
8823
"""Manages the v6 recipe configuration schema""" from __future__ import unicode_literals from jsonschema import validate from jsonschema.exceptions import ValidationError from job.configuration.mount import HostMountConfig, VolumeMountConfig from job.execution.configuration.volume import HOST_TYPE, VOLUME_TYPE from recipe.configuration.configuration import DEFAULT_PRIORITY, RecipeConfiguration from recipe.configuration.exceptions import InvalidRecipeConfiguration SCHEMA_VERSION = '7' SCHEMA_VERSIONS = ['6', '7'] RECIPE_CONFIG_SCHEMA = { 'type': 'object', 'required': ['output_workspaces'], 'additionalProperties': False, 'properties': { 'version': { 'description': 'Version of the recipe configuration schema', 'type': 'string', }, 'mounts': { 'description': 'Defines volumes to use for the jobs\' mounts', 'type': 'object', 'additionalProperties': { '$ref': '#/definitions/mount' }, }, 'output_workspaces': { 'description': 'Defines workspaces to use for the jobs\' output files', 'type': 'object', 'required': ['default', 'outputs'], 'additionalProperties': False, 'properties': { 'default': { 'description': 'Defines the jobs\' default output workspace', 'type': 'string', }, 'outputs': { 'description': 'Defines a workspace for each given output name', 'type': 'object', 'additionalProperties': { 'type': 'string', }, }, }, }, 'priority': { 'description': 'Defines the jobs\' priority', 'type': 'integer', 'minimum': 1, }, 'settings': { 'description': 'Defines values to use for the jobs\' settings', 'type': 'object', 'additionalProperties': { 'type': 'string', }, }, }, 'definitions': { 'mount': { 'oneOf': [{ 'type': 'object', 'description': 'A configuration for a host mount', 'required': ['type', 'host_path'], 'additionalProperties': False, 'properties': { 'type': { 'enum': ['host'], }, 'host_path': { 'type': 'string', }, }, }, { 'type': 'object', 'description': 'A configuration for a volume mount', 'required': ['type', 'driver', 'driver_opts'], 'additionalProperties': False, 'properties': { 'type': { 'enum': ['volume'], }, 'driver': { 'type': 'string', }, 'driver_opts': { 'type': 'object', 'additionalProperties': { 'type': 'string', }, }, }, }], }, }, } def convert_config_to_v6_json(config): """Returns the v6 recipe configuration JSON for the given configuration :param config: The recipe configuration :type config: :class:`recipe.configuration.configuration.RecipeConfiguration` :returns: The v6 recipe configuration JSON :rtype: :class:`recipe.configuration.json.recipe_config_v6.RecipeConfigurationV6` """ mounts_dict = {} for mount_config in config.mounts.values(): if mount_config.mount_type == HOST_TYPE: mounts_dict[mount_config.name] = {'type': 'host', 'host_path': mount_config.host_path} elif mount_config.mount_type == VOLUME_TYPE: vol_dict = {'type': 'volume', 'driver_opts': mount_config.driver_opts} if mount_config.driver: vol_dict['driver'] = mount_config.driver mounts_dict[mount_config.name] = vol_dict workspace_dict = {'outputs': config.output_workspaces} if config.default_output_workspace: workspace_dict['default'] = config.default_output_workspace config_dict = {'version': SCHEMA_VERSION, 'mounts': mounts_dict, 'output_workspaces': workspace_dict, 'priority': config.priority, 'settings': config.settings} return RecipeConfigurationV6(config=config_dict, do_validate=False) class RecipeConfigurationV6(object): """Represents a v6 recipe configuration JSON""" def __init__(self, config=None, existing=None, do_validate=False): """Creates a v6 job configuration JSON object from the given dictionary :param config: The recipe configuration JSON dict :type config: dict :param existing: Existing RecipeConfiguration to use for default values for unspecified fields :type existing: RecipeConfigurationV6 :param do_validate: Whether to perform validation on the JSON schema :type do_validate: bool :raises :class:`recipe.configuration.exceptions.InvalidRecipeConfiguration`: If the given configuration is invalid """ if not config: config = {} self._config = config self._existing_config = None if existing: self._existing_config = existing._config if 'version' not in self._config: self._config['version'] = SCHEMA_VERSION if self._config['version'] not in SCHEMA_VERSIONS: msg = '%s is an unsupported version number' raise InvalidRecipeConfiguration('INVALID_VERSION', msg % self._config['version']) self._populate_default_values() try: if do_validate: validate(self._config, RECIPE_CONFIG_SCHEMA) except ValidationError as ex: raise InvalidRecipeConfiguration('INVALID_CONFIGURATION', 'Invalid configuration: %s' % unicode(ex)) def get_configuration(self): """Returns the recipe configuration represented by this JSON :returns: The recipe configuration :rtype: :class:`recipe.configuration.configuration.RecipeConfiguration`: """ config = RecipeConfiguration() for name, mount_dict in self._config['mounts'].items(): if mount_dict['type'] == 'host': config.add_mount(HostMountConfig(name, mount_dict['host_path'])) elif mount_dict['type'] == 'volume': config.add_mount(VolumeMountConfig(name, mount_dict['driver'], mount_dict['driver_opts'])) default_workspace = self._config['output_workspaces']['default'] if default_workspace: config.default_output_workspace = default_workspace for output, workspace in self._config['output_workspaces']['outputs'].items(): config.add_output_workspace(output, workspace) config.priority = self._config['priority'] for name, value in self._config['settings'].items(): config.add_setting(name, value) return config def get_dict(self): """Returns the internal dictionary :returns: The internal dictionary :rtype: dict """ return self._config def _populate_default_values(self): """Populates any missing required values with defaults """ if 'mounts' not in self._config: self._config['mounts'] = self._existing_config['mounts'] if self._existing_config else {} for mount_dict in self._config['mounts'].values(): if mount_dict['type'] == 'volume': if 'driver' not in mount_dict: mount_dict['driver'] = '' if 'driver_opts' not in mount_dict: mount_dict['driver_opts'] = {} if 'output_workspaces' not in self._config: self._config['output_workspaces'] = self._existing_config['output_workspaces'] if self._existing_config else {} if 'default' not in self._config['output_workspaces']: self._config['output_workspaces']['default'] = '' if 'outputs' not in self._config['output_workspaces']: self._config['output_workspaces']['outputs'] = {} if 'priority' not in self._config: self._config['priority'] = self._existing_config['priority'] if self._existing_config else DEFAULT_PRIORITY if 'settings' not in self._config: self._config['settings'] = self._existing_config['settings'] if self._existing_config else {}
apache-2.0
5,617,838,189,864,306,000
37.030172
123
0.557067
false
4.7056
true
false
false
ekansa/open-context-py
opencontext_py/apps/ldata/arachne/api.py
1
5134
import json import requests from urllib.parse import urlparse, parse_qs from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.libs.generalapi import GeneralAPI class ArachneAPI(): """ Interacts with Arachne """ ARACHNE_SEARCH = 'arachne.dainst.org/search' DEFAULT_API_BASE_URL = 'https://arachne.dainst.org/data/search' DEFAULT_HTML_BASE_URL = 'https://arachne.dainst.org/search' DEFAULT_IMAGE_BASE_URL = 'https://arachne.dainst.org/data/image/height/' DEFAULT_ENTITY_BASE_URL = 'https://arachne.dainst.org/entity/' DEFAULT_IMAGE_HEIGHT = 120 def __init__(self): self.arachne_json_r = False self.arachne_json_url = False self.arachne_html_url = False self.filter_by_images = True self.image_height = self.DEFAULT_IMAGE_HEIGHT self.result_count = False self.results = False def get_keyword_results(self, keyword): """ sends JSON request, makes list of oc_object entities if search finds entities """ self.get_keyword_search_json(keyword) self.get_result_metadata() self.generate_results_list() return self.results def get_results_from_search_url(self, search_url): """ parses a search URL, then makes a lost of oc_object entities if search finds entities """ self.get_json_from_search_url(search_url) self.get_result_metadata() self.generate_results_list() return self.results def get_result_metadata(self): """ gets metadata about the search result """ if self.arachne_json_r is not False: if 'size' in self.arachne_json_r: self.result_count = self.arachne_json_r['size'] def generate_results_list(self): """ makes a list of results with full URLs """ if self.arachne_json_r is not False: if 'entities' in self.arachne_json_r: self.results = [] for entity in self.arachne_json_r['entities']: oc_obj = LastUpdatedOrderedDict() oc_obj['id'] = self.generate_entity_url(entity['entityId']) oc_obj['slug'] = oc_obj['id'] if 'title' in entity: oc_obj['label'] = entity['title'] elif 'subtitle' in entity: oc_obj['label'] = entity['subtitle'] else: oc_obj['label'] = '[No Arachne Label]' oc_obj['oc-gen:thumbnail-uri'] = self.generate_thumbnail_image_src(entity['thumbnailId']) oc_obj['type'] = 'oc-gen:image' self.results.append(oc_obj) def generate_entity_url(self, entity_id): """ makes a URL for the entity """ url = self.DEFAULT_ENTITY_BASE_URL + str(entity_id) return url def generate_thumbnail_image_src(self, thumb_id): """ makes a URL for the thumbnail image bitmap file """ url = self.DEFAULT_IMAGE_BASE_URL + str(thumb_id) url += '?height=' + str(self.image_height) return url def get_json_from_search_url(self, search_url): """ gets json data from Arachne by first parsing a search url and then converting that into a keyword search """ self.arachne_html_url = search_url payload = parse_qs(urlparse(search_url).query) print('payload: ' + str(payload)) json_r = self.get_arachne_json(payload) return json_r def get_keyword_search_json(self, keyword): """ gets json data from Arachne in response to a keyword search """ payload = {} payload['q'] = keyword json_r = self.get_arachne_json(payload) return json_r def get_arachne_json(self, payload): """ executes a search for json data from arachne """ if isinstance(payload, dict): if self.filter_by_images: payload['fq'] = 'facet_image:"ja"' url = self.DEFAULT_API_BASE_URL try: gapi = GeneralAPI() r = requests.get(url, params=payload, timeout=240, headers=gapi.client_headers) print('r url: ' + r.url) self.set_arachne_search_urls(r.url) r.raise_for_status() json_r = r.json() except: json_r = False else: json_r = False self.arachne_json_r = json_r return json_r def set_arachne_search_urls(self, arachne_json_url): """ Sets URLs for Arachne searches, JSON + HTML """ self.arachne_json_url = arachne_json_url if not isinstance(self.arachne_html_url, str): self.arachne_html_url = arachne_json_url.replace(self.DEFAULT_API_BASE_URL, self.DEFAULT_HTML_BASE_URL)
gpl-3.0
7,220,749,312,685,747,000
37.313433
109
0.553954
false
3.880574
false
false
false
tensorflow/graphics
tensorflow_graphics/image/transformer.py
1
7541
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """This module implements image transformation functionalities.""" import enum from typing import Optional from six.moves import range import tensorflow as tf from tensorflow_addons import image as tfa_image from tensorflow_graphics.geometry.representation import grid from tensorflow_graphics.util import export_api from tensorflow_graphics.util import shape from tensorflow_graphics.util import type_alias class ResamplingType(enum.Enum): NEAREST = 0 BILINEAR = 1 class BorderType(enum.Enum): ZERO = 0 DUPLICATE = 1 class PixelType(enum.Enum): INTEGER = 0 HALF_INTEGER = 1 def sample(image: type_alias.TensorLike, warp: type_alias.TensorLike, resampling_type: ResamplingType = ResamplingType.BILINEAR, border_type: BorderType = BorderType.ZERO, pixel_type: PixelType = PixelType.HALF_INTEGER, name: Optional[str] = "sample") -> tf.Tensor: """Samples an image at user defined coordinates. Note: The warp maps target to source. In the following, A1 to An are optional batch dimensions. Args: image: A tensor of shape `[B, H_i, W_i, C]`, where `B` is the batch size, `H_i` the height of the image, `W_i` the width of the image, and `C` the number of channels of the image. warp: A tensor of shape `[B, A_1, ..., A_n, 2]` containing the x and y coordinates at which sampling will be performed. The last dimension must be 2, representing the (x, y) coordinate where x is the index for width and y is the index for height. resampling_type: Resampling mode. Supported values are `ResamplingType.NEAREST` and `ResamplingType.BILINEAR`. border_type: Border mode. Supported values are `BorderType.ZERO` and `BorderType.DUPLICATE`. pixel_type: Pixel mode. Supported values are `PixelType.INTEGER` and `PixelType.HALF_INTEGER`. name: A name for this op. Defaults to "sample". Returns: Tensor of sampled values from `image`. The output tensor shape is `[B, A_1, ..., A_n, C]`. Raises: ValueError: If `image` has rank != 4. If `warp` has rank < 2 or its last dimension is not 2. If `image` and `warp` batch dimension does not match. """ with tf.name_scope(name): image = tf.convert_to_tensor(value=image, name="image") warp = tf.convert_to_tensor(value=warp, name="warp") shape.check_static(image, tensor_name="image", has_rank=4) shape.check_static( warp, tensor_name="warp", has_rank_greater_than=1, has_dim_equals=(-1, 2)) shape.compare_batch_dimensions( tensors=(image, warp), last_axes=0, broadcast_compatible=False) if pixel_type == PixelType.HALF_INTEGER: warp -= 0.5 if resampling_type == ResamplingType.NEAREST: warp = tf.math.round(warp) if border_type == BorderType.DUPLICATE: image_size = tf.cast(tf.shape(input=image)[1:3], dtype=warp.dtype) height, width = tf.unstack(image_size, axis=-1) warp_x, warp_y = tf.unstack(warp, axis=-1) warp_x = tf.clip_by_value(warp_x, 0.0, width - 1.0) warp_y = tf.clip_by_value(warp_y, 0.0, height - 1.0) warp = tf.stack((warp_x, warp_y), axis=-1) return tfa_image.resampler(image, warp) def perspective_transform( image: type_alias.TensorLike, transform_matrix: type_alias.TensorLike, output_shape: Optional[type_alias.TensorLike] = None, resampling_type: ResamplingType = ResamplingType.BILINEAR, border_type: BorderType = BorderType.ZERO, pixel_type: PixelType = PixelType.HALF_INTEGER, name: Optional[str] = "perspective_transform", ) -> tf.Tensor: """Applies a projective transformation to an image. The projective transformation is represented by a 3 x 3 matrix [[a0, a1, a2], [b0, b1, b2], [c0, c1, c2]], mapping a point `[x, y]` to a transformed point `[x', y'] = [(a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k]`, where `k = c0 x + c1 y + c2`. Note: The transformation matrix maps target to source by transforming output points to input points. Args: image: A tensor of shape `[B, H_i, W_i, C]`, where `B` is the batch size, `H_i` the height of the image, `W_i` the width of the image, and `C` the number of channels of the image. transform_matrix: A tensor of shape `[B, 3, 3]` containing projective transform matrices. The transformation maps target to source by transforming output points to input points. output_shape: The heigh `H_o` and width `W_o` output dimensions after the transform. If None, output is the same size as input image. resampling_type: Resampling mode. Supported values are `ResamplingType.NEAREST` and `ResamplingType.BILINEAR`. border_type: Border mode. Supported values are `BorderType.ZERO` and `BorderType.DUPLICATE`. pixel_type: Pixel mode. Supported values are `PixelType.INTEGER` and `PixelType.HALF_INTEGER`. name: A name for this op. Defaults to "perspective_transform". Returns: A tensor of shape `[B, H_o, W_o, C]` containing transformed images. Raises: ValueError: If `image` has rank != 4. If `transform_matrix` has rank < 3 or its last two dimensions are not 3. If `image` and `transform_matrix` batch dimension does not match. """ with tf.name_scope(name): image = tf.convert_to_tensor(value=image, name="image") transform_matrix = tf.convert_to_tensor( value=transform_matrix, name="transform_matrix") output_shape = tf.shape( input=image)[-3:-1] if output_shape is None else tf.convert_to_tensor( value=output_shape, name="output_shape") shape.check_static(image, tensor_name="image", has_rank=4) shape.check_static( transform_matrix, tensor_name="transform_matrix", has_rank=3, has_dim_equals=((-1, 3), (-2, 3))) shape.compare_batch_dimensions( tensors=(image, transform_matrix), last_axes=0, broadcast_compatible=False) dtype = image.dtype zero = tf.cast(0.0, dtype) height, width = tf.unstack(output_shape, axis=-1) warp = grid.generate( starts=(zero, zero), stops=(tf.cast(width, dtype) - 1.0, tf.cast(height, dtype) - 1.0), nums=(width, height)) warp = tf.transpose(a=warp, perm=[1, 0, 2]) if pixel_type == PixelType.HALF_INTEGER: warp += 0.5 padding = [[0, 0] for _ in range(warp.shape.ndims)] padding[-1][-1] = 1 warp = tf.pad( tensor=warp, paddings=padding, mode="CONSTANT", constant_values=1.0) warp = warp[..., tf.newaxis] transform_matrix = transform_matrix[:, tf.newaxis, tf.newaxis, ...] warp = tf.linalg.matmul(transform_matrix, warp) warp = warp[..., 0:2, 0] / warp[..., 2, :] return sample(image, warp, resampling_type, border_type, pixel_type) # API contains all public functions and classes. __all__ = export_api.get_functions_and_classes()
apache-2.0
-7,227,354,629,905,629,000
36.331683
79
0.670335
false
3.457588
false
false
false
buscarini/meta
templates/model/platforms/sql/Platform.py
1
1689
import sys import os import json from meta.MetaProcessor import MetaProcessor class Platform(MetaProcessor): """docstring for Platform""" def preprocess_property(self,property,hash,hashes): """docstring for preprocess_property""" property['_camelcase_'] = self.stringUtils.camelcase(str(property['name'])) property['_capitalized_'] = self.stringUtils.capitalize(str(property['name'])) if 'default' in property: property['default'] = self.globalPlatform.platformValueForValue(property['default']) type = property['type'] property['type_' + type] = True platformType = self.globalPlatform.platformTypeForType(type) if platformType!=None: property['type'] = platformType else: print("Error: unknown property type: " + type) sys.exit() def preprocess(self,hash,hashes): if hash!=None and 'properties' in hash: i=0 properties = hash['properties'] for property in properties: self.preprocess_property(property,hash,hashes) i=i+1 self.preprocessList(properties) if hash!=None and 'primaryKeys' in hash: self.preprocessList(hash['primaryKeys']) def finalFileName(self,fileName,hash): """docstring for finalFileName""" entityName = None if hash!=None and 'entityName' in hash: entityName = hash['entityName'] if (entityName): fileName = fileName.replace("entity",entityName) return fileName
mit
-3,116,892,086,885,498,400
32.8
96
0.58733
false
4.825714
false
false
false
chrsbats/kvstore
kvstore/fs.py
1
2352
from __future__ import absolute_import import traceback import os, errno import shutil from .signal import interrupt_protect class FileSystemAdapter(object): def __init__(self, path, **kwargs): # expand ~ or we'll end up creating a /~ directory # abspath doesn't do this for us self.path = os.path.abspath(os.path.expanduser(path)) self.make_sure_path_exists(self.path) def make_sure_path_exists(self, key): try: os.makedirs(key) except OSError as exception: if exception.errno != errno.EEXIST: raise def key_path(self, key): key = key if key[0] == '/': key = key[1:] return os.path.join(self.path, key) def get(self, key): full_path = self.key_path(key) try: with open(full_path,'r') as f: return f.read() except IOError as e: if e.errno == errno.ENOENT: raise KeyError('{}: {}'.format(key,str(e))) raise @interrupt_protect def put(self, key, data, **kwargs): full_path = self.key_path(key) directory = os.path.dirname(full_path) self.make_sure_path_exists(directory) with open(full_path,'w') as f: f.write(data) def delete(self, key): full_path = self.key_path(key) try: os.remove(full_path) except OSError: # doesn't exist pass def exists(self, key): full_path = self.key_path(key) if os.path.isfile(full_path): try: with open(full_path,'r') as f: return True except IOError: return False else: return False def list(self, key='/'): full_path = self.key_path(key) for directory, subdirs, files in os.walk(full_path): for file in files: if file[0] == '.': continue path = os.path.join(directory, file) # remove our directory path = path.split(self.path)[1] yield path def drop_all(self): # delete the directory and then recreate it shutil.rmtree(self.path, ignore_errors=True) self.make_sure_path_exists(self.path)
mit
6,117,030,195,128,649,000
28.772152
61
0.528912
false
4.013652
false
false
false
UncleBarney/ochothon
images/portal/resources/toolset/toolset/commands/grep.py
1
2581
# # Copyright (c) 2015 Autodesk Inc. # All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import json from toolset.io import fire, run from toolset.tool import Template #: Our ochopod logger. logger = logging.getLogger('ochopod') def go(): class _Tool(Template): help = \ ''' Displays high-level information for the specified cluster(s). ''' tag = 'grep' def customize(self, parser): parser.add_argument('clusters', type=str, nargs='+', help='1+ clusters (can be a glob pattern, e.g foo*)') parser.add_argument('-j', '--json', action='store_true', help='switch for json output') def body(self, args, proxy): outs = {} for token in args.clusters: def _query(zk): replies = fire(zk, token, 'info') return len(replies), [[key, '|', hints['ip'], '|', hints['node'], '|', hints['process'], '|', hints['state']] for key, (_, hints, code) in sorted(replies.items()) if code == 200] total, js = run(proxy, _query) outs.update({item[0]: {'ip': item[2], 'node': item[4], 'process': item[6], 'state': item[8]} for item in js}) if js and not args.json: # # - justify & format the whole thing in a nice set of columns # pct = (len(js) * 100) / total logger.info('<%s> -> %d%% replies (%d pods total) ->\n' % (token, pct, len(js))) rows = [['pod', '|', 'pod IP', '|', 'node', '|', 'process', '|', 'state'], ['', '|', '', '|', '', '|', '', '|', '']] + js widths = [max(map(len, col)) for col in zip(*rows)] for row in rows: logger.info(' '.join((val.ljust(width) for val, width in zip(row, widths)))) if args.json: logger.info(json.dumps(outs)) return _Tool()
apache-2.0
3,284,121,562,353,902,000
34.356164
141
0.532352
false
3.989181
false
false
false
windworship/kmeansds
clustered_ds.py
1
17562
# -*- coding: utf-8 -*- # # Author: huang # ''' The implementation of the framework of combining kmeans with distant supervision ''' import argparse import logging import time import random import collections from sklearn.cluster import MiniBatchKMeans, Birch from sklearn.feature_extraction import FeatureHasher from sklearn.metrics.pairwise import euclidean_distances NEG_RATIO = 0.05 # the ratio of subsample negatives SUBSAMPLE = True # Subsample the cluster or not class MentionDatum(object): ''' The Class of Mention in the Datum ''' ENTITY = {} # First entity of the entity pair TYPE = {} # Type of first entity NE = {} # Type of second entity SLOT = {} # Second entity of the entity pair RELATION = {} # Belonged Relation in DS FEATURE = {} FEATURE_APPEARENCE = [] # Class variable of the counts of values entity_number = 0 type_number = 0 ne_number = 0 slot_number = 0 relation_number = 0 feature_number = 0 # Initialization for @property _entity_id = None _entity_type = None _ne_type = None _slot_value = None _relation = [] _features = [] def __init__(self, args): self.entity_id = args[0] self.entity_type = args[1] self.ne_type = args[2] self.slot_value = args[3] self.relation = args[4] self.features = args[5:] self.relabel_relation = [] @property def entity_id(self): return self._entity_id @property def entity_type(self): return self._entity_type @property def ne_type(self): return self._ne_type @property def slot_value(self): return self._slot_value @property def relation(self): return self._relation @property def features(self): return self._features @entity_id.setter def entity_id(self, value): if value not in MentionDatum.ENTITY: MentionDatum.ENTITY[value] = self.entity_number MentionDatum.entity_number += 1 self._entity_id = MentionDatum.ENTITY.get(value) @entity_type.setter def entity_type(self, value): if value not in MentionDatum.TYPE: MentionDatum.TYPE[value] = self.type_number MentionDatum.type_number += 1 self._entity_type = MentionDatum.TYPE.get(value) @ne_type.setter def ne_type(self, value): if value not in MentionDatum.NE: MentionDatum.NE[value] = self.ne_number MentionDatum.ne_number += 1 self._ne_type = MentionDatum.NE.get(value) @slot_value.setter def slot_value(self, value): if value not in MentionDatum.SLOT: MentionDatum.SLOT[value] = self.slot_number MentionDatum.slot_number += 1 self._slot_value = MentionDatum.SLOT.get(value) @relation.setter def relation(self, value): value = value.split('|') reform_relation = [] for rel in value: if rel not in MentionDatum.RELATION: MentionDatum.RELATION[rel] = self.relation_number MentionDatum.relation_number += 1 reform_relation.append(MentionDatum.RELATION.get(rel)) self._relation = reform_relation @features.setter def features(self, value): reform_feature = [] for feature in value: if feature not in MentionDatum.FEATURE: MentionDatum.FEATURE[feature] = self.feature_number MentionDatum.feature_number += 1 MentionDatum.FEATURE_APPEARENCE.append(0) feature_index = MentionDatum.FEATURE.get(feature) MentionDatum.FEATURE_APPEARENCE[feature_index] += 1 reform_feature.append(feature_index) self._features = reform_feature def __str__(self): relation = self.relation if not self.relabel_relation else self.relabel_relation mention_str =\ ( '{0} {1} {2} {3} {4} {5}' ).format( MentionDatum.ENTITY.get(self.entity_id), MentionDatum.TYPE.get(self.entity_type), MentionDatum.NE.get(self.ne_type), MentionDatum.SLOT.get(self.slot_value), '|'.join([MentionDatum.RELATION.get(rel) for rel in relation]), ' '.join([MentionDatum.FEATURE.get(fea) for fea in self.features]), ) return mention_str @classmethod def shrink_features(cls, threshold=5): ''' Shrink the features whose appearence is less than the setting threshold. ''' shrinked_index = 0 shrinked_feature = {} cls.FEATURE_INDEX = {} # Regenerate index for shrinked feature space for fea, index in cls.FEATURE.iteritems(): if cls.FEATURE_APPEARENCE[index] >= threshold: shrinked_feature[fea] = index cls.FEATURE_INDEX[index] = shrinked_index shrinked_index += 1 shrinked_feature_number = cls.feature_number - shrinked_index cls.feature_number = shrinked_index cls.FEATURE_APPEARENCE = None logging.info('[OK]...Feature Shrinking') logging.info('---# of shrinked Features: {0}'.format(shrinked_feature_number)) def _feature_vector_generation(self): ''' Generate the feature vector in the shrinked feature space. ''' return dict( [ (str(MentionDatum.FEATURE_INDEX[index]), 1) for index in self.features if index in MentionDatum.FEATURE_INDEX ] ) @classmethod def regenerate_feature(cls, mentions): ''' Generate feature vectors for all relation mentions ''' return [mention._feature_vector_generation() for mention in mentions] @classmethod def transpose_values(cls): ''' Transpose all value dicts for the generation of datum files. ''' cls.ENTITY = dict( zip(cls.ENTITY.values(), cls.ENTITY.keys()) ) cls.TYPE = dict(zip(cls.TYPE.values(), cls.TYPE.keys())) cls.NE = dict(zip(cls.NE.values(), cls.NE.keys())) cls.SLOT = dict(zip(cls.SLOT.values(), cls.SLOT.keys())) cls.RELATION = dict( zip(cls.RELATION.values(), cls.RELATION.keys()) ) cls.FEATURE = dict( zip(cls.FEATURE.values(), cls.FEATURE.keys()) ) def _subsample_negatives(mention): ''' Subsample negatives from mention. :type mention: MentionDatum :rtype boolean ''' nr = MentionDatum.RELATION.get('_NR', None) if nr is not None\ and [nr] == mention.relation\ and random.uniform(0, 1) > NEG_RATIO: return False return True def _read_datum_file(file_path): ''' Load the datum from the datum file :type file_path: basestring :type neg_ratio: double in [0,1] :rtype List[MentionDatum] ''' mentions = [] with open(file_path) as f: for line in f: mention = MentionDatum(line.split()) if not _subsample_negatives(mention): continue mentions.append(mention) logging.debug( '---[OK]...Datum File {0} Loaded | {1} Mentions Loaded'.format( file_path, len(mentions), ) ) return mentions def datums_read(directory, number=88): ''' Load datums from NUMBER of datum files in the DIRECTORY :type directory: basestring :type number: int in [0, # of datum file in the DIRECTORY] :rtype List[MentionDatum] ''' def _generate_file_path(index, generate_mode='{0}/kb_part-00{1:0>2d}.datums'): ''' Generate the file path in the directory ''' return generate_mode.format(directory, index) start = time.clock() loaded_mentions = [] for datum_number in xrange(number): loaded_mentions += _read_datum_file(_generate_file_path(datum_number+1)) time_cost = time.clock() - start logging.info( ( '[OK]...All Datums Loaded\n' '---Cost Time: {0} | Average Per File: {1}\n' '---# of Loaded Mentions: {2}\n' '---# of Loaded Entities: {3}\n' '---# of Loaded Entity Types: {4}\n' '---# of Loaded NE Types: {5}\n' '---# of Loaded Slots: {6}\n' '---# of Loaded Relations: {7}\n' '---# of Loaded Features: {8}\n' ).format( time_cost, time_cost/number, len(loaded_mentions), MentionDatum.entity_number, MentionDatum.type_number, MentionDatum.ne_number, MentionDatum.slot_number, MentionDatum.relation_number, MentionDatum.feature_number, ) ) return loaded_mentions def _generate_feature_space(mentions): ''' Generate the features space. --------------------------------- :type mentions: List[MentionDatum] :rtype: numpy.ndarray ''' start = time.clock() # Shrink the features MentionDatum.shrink_features(threshold=5) # Regenerate feature vectors feature_space = MentionDatum.regenerate_feature(mentions) # Generate feature space feature_space =\ FeatureHasher( n_features=MentionDatum.feature_number ).transform(feature_space) time_cost = time.clock() - start logging.info('[OK]...Generate Feature Space in {0}s'.format(time_cost)) return feature_space def _minibatchkmeans(feature_space, cluster_number): ''' Use MinibatchKkmeans to divide the feature_space into cluster_number bags. ------------------------------------------------------------------------- :type feature_space: numpy.ndarray :type cluster_number: int :rtype: numpy.ndarray[n_mentions,] labels of the mentions ''' start = time.clock() model =\ MiniBatchKMeans( n_clusters=cluster_number, n_init=22, batch_size=5700 ) predicts = model.fit_predict(feature_space) logging.info('[OK]...Kmeans Clustering | Cost {0}s'.format(time.clock()-start)) return predicts def _predict_to_cluster(predicts, mentions): ''' Transform predicts to clusters. ------------------------------- :type predicts: numpy.ndarray[n_samples,] :type mentions: List[MentionDatum] :rtype: List[[int,]] ''' cluster_number = len(set(predicts)) clusters = [[] for size in xrange(cluster_number)] for index, predict in enumerate(predicts): clusters[predict]+=mentions[index].relation logging.info('------[OK]...Labels Transform To Clusters') return clusters def _assign_cluster_relation(predicts, mentions): ''' Assign each cluster the most similar relation according to the assumption. -------------------------------------------------------------------------- :type predicts: numpy.ndarray[n_samples,] :type mentions: List[MentionDatum] :rtype: List[(int, double)] ''' start = time.clock() relation_for_clusters = [] # Predicts -> clusters clusters = _predict_to_cluster(predicts, mentions) for cluster in clusters: relation_counter = collections.Counter(cluster) logging.info('---Cluster assign: {0}'.format(relation_counter)) assign_relation = relation_counter.most_common(1)[0] relation_for_clusters.append( ( assign_relation[0], (assign_relation[1]+0.0)/len(cluster), ) ) time_cost = time.clock() - start logging.info('---[OK]...Assign cluster relations cost of {0}'.format(time_cost)) return relation_for_clusters def _subsample_mention(predicts, clusters, mentions): ''' Subsample mentions in a cluster based on the probability of the relation. ------------------------------------------------------------------------- :type predicts: numpy.ndarray[n_samples,] :type clusters: List[(int, double)] :type mentions: List[MentionDatum] :rtype: None ''' start = time.clock() subsample_number = 0 for index, predict in enumerate(predicts): relation, probability = clusters[predict] if not SUBSAMPLE or random.random() < probability: mentions[index].relabel_relation.append(relation) subsample_number += 1 time_cost = time.clock() - start logging.info('---[OK]...Subsample mentions cost of {0}'.format(time_cost)) logging.info('------# of subsamples: {0}'.format(subsample_number)) def kmeans_predict(mentions, cluster_number=100): ''' The framework predicts labels of mentions as following: 1. Generate the feature space 2. Kmeans divides the feature space into k clusters 3. Reassign each cluster a relation based on DS 4. Subsample mentions in the cluster to be labeled with corresponding relation NOTE: Usually k is much higher than the # of known relations. --------------------------------------------------- :type mentions:List[DatumMention] :type cluster_number:int :rtype None ''' start = time.clock() feature_space = _generate_feature_space(mentions) predicts = _minibatchkmeans(feature_space, cluster_number) relation_for_clusters = _assign_cluster_relation(predicts, mentions) _generate_cluster(predicts, relation_for_clusters, mentions) _subsample_mention(predicts, relation_for_clusters, mentions) logging.info('[OK]...Framework | Cost {0}s'.format(time.clock()-start)) def regenerate_datums(mentions, filepath): ''' Regenerate datums with the new relation ------------------------------------------------- :type mentions: List[MentionDatum] :type filepath: basestring :rtype: None ''' start = time.clock() file_number = len(mentions) / 90000 + 1 negative_number = 0 nr = MentionDatum.RELATION.get('_NR') #transpose values MentionDatum.transpose_values() for index in xrange(file_number): with open(filepath + '/{0:0>2d}.datums'.format(index), 'w') as f: for mention in mentions[index*90000:(index+1)*90000]: if nr in mention.relabel_relation: negative_number += 1 f.write(str(mention)) f.write('\n') logging.debug('---[OK]...Generate {0:0>2d}.datums'.format(index)) spend = time.clock() - start logging.info('[OK]...Generate {0} Datums File'.format(file_number)) logging.info('[OK]...Negative number: {0}'.format(negative_number)) logging.info('---Cost time: {0} | Average per file: {1}'.format(spend, spend/file_number)) def _generate_cluster(predicts, clusters, mentions): ''' Generate clusters from predicts. ======================================= :type predicts: numpy.ndarray[n_samples,] :type clusters: List[(int, double)] :type mentions: List[MentionDatum] :rtype: None ''' entity_index = dict( zip(MentionDatum.ENTITY.values(), MentionDatum.ENTITY.keys()) ) slot_index = dict( zip(MentionDatum.SLOT.values(), MentionDatum.SLOT.keys()) ) relation_index = dict( zip(MentionDatum.RELATION.values(), MentionDatum.RELATION.keys()) ) cluster_results = [[] for index in xrange(100)] for index, predict in enumerate(predicts): relation, probability = clusters[predict] cluster_results[predict].append( ( entity_index[mentions[index].entity_id], slot_index[mentions[index].slot_value], relation_index[mentions[index].relation[0]], relation_index[relation], ) ) for index, cluster_result in enumerate(cluster_results): with open('result/'+str(index), 'w') as f: f.write('\n'.join([str(result) for result in cluster_result])) with open('result/index', 'w') as f: f.write('\n'.join([str(index) for index in sorted(enumerate(clusters), key=lambda x:x[1][1])])) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.info('METHOD START') parser = argparse.ArgumentParser() parser.add_argument('-n', type=int) parser.add_argument('-r', type=float) parser.add_argument('-o', type=str) parser.add_argument('-d', type=str) parser.add_argument('-s', type=bool) parser.add_argument('-f', type=int) args = parser.parse_args() start = time.clock() cluster_number = args.n NEG_RATIO = (args.r + 0.0) / 100 SUBSAMPLE = True if args.s else False logging.info('CLUSTER NUMBER:{0}'.format(cluster_number)) logging.info('NEG_RATIO:{0}'.format(NEG_RATIO)) logging.info('OUTPUT_DIR:{0}'.format(args.o)) logging.info('DATA_DIR:{0}'.format(args.d)) logging.info('SUBSAMPLE:{0}'.format(SUBSAMPLE)) mentions = datums_read(args.d, number=args.f) kmeans_predict(mentions, cluster_number) regenerate_datums( mentions, args.o, ) logging.info('Method End With {0}s'.format(time.clock()-start))
mit
-1,580,487,062,954,818,800
31.643123
103
0.581597
false
3.894013
false
false
false
SwordYork/sequencing
sequencing_np/nn/rnn_cells/rnn.py
1
2729
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: Sword York # GitHub: https://github.com/SwordYork/sequencing # No rights reserved. # from abc import ABCMeta, abstractmethod from ..base import Layer from ... import np, TIME_MAJOR class RNN(Layer, metaclass=ABCMeta): def __init__(self, init_state, param_keys, activation=None, base_name=None, name=None, *args, **kwargs): """ numpy rnn cell. It only used for inferring, not training, thus we don't need initialization in this implementation. The weights and other things are passed by params. :param init_state: initial states of RNN, [B, H] or tuple([B, H], ...) :param param_keys: name of params, such as kernel and bias :param activation: activation function :param base_name: name of parent Layer :param name: name of this Layer """ super(RNN, self).__init__(param_keys, base_name, name, **kwargs) # get state size if type(init_state) != type(np.empty([])): self.init_state = tuple(init_state) self.hidden_units = tuple(init_state)[0].shape[1] else: self.init_state = init_state self.hidden_units = init_state.shape[1] self.time_major = TIME_MAJOR self.activation = activation or np.tanh def encode(self, inputs, sequence_length=None, reverse=False): """ Encode multi-step inputs. :param inputs: if time_major [T, B, ...] else [B, T, ...] :param sequence_length: length of the sequence [B] :param reverse: used in bidirectional RNN :return: lstm outputs """ if not self.time_major: inputs = np.transpose(inputs, (1, 0, 2)) steps = inputs.shape[0] outputs = np.zeros(inputs.shape[:-1] + (self.hidden_units,), inputs.dtype) state = self.init_state iter_range = reversed(range(steps)) if reverse else range(steps) for idx in iter_range: # rnn step curr_input = inputs[idx, :, :] mask = idx < sequence_length if sequence_length is not None else None outputs[idx, :, :], state = self.step(state, curr_input, mask) if not self.time_major: outputs = np.transpose(outputs, (1, 0, 2)) return outputs, state @abstractmethod def step(self, prev_states, input_, mask=None): """ run rnn for one step :param prev_states: [B, ...] :param input_: [B, ...] :param mask: mask the terminated sequence in the batch :return: output, state """ raise NotImplementedError
mit
-3,731,958,042,420,923,400
33.544304
83
0.5797
false
3.955072
false
false
false
olemb/mido
tests/test_syx.py
1
1299
from pytest import raises from mido.messages import Message from mido.syx import read_syx_file, write_syx_file def test_read(tmpdir): path = tmpdir.join("test.syx").strpath msg = Message('sysex', data=(1, 2, 3)) with open(path, 'wb') as outfile: outfile.write(msg.bin()) assert read_syx_file(path) == [msg] with open(path, 'wt') as outfile: outfile.write(msg.hex()) assert read_syx_file(path) == [msg] with open(path, 'wt') as outfile: outfile.write('NOT HEX') with raises(ValueError): read_syx_file(path) def test_handle_any_whitespace(tmpdir): path = tmpdir.join("test.syx").strpath with open(path, 'wt') as outfile: outfile.write('F0 01 02 \t F7\n F0 03 04 F7\n') assert read_syx_file(path) == [Message('sysex', data=[1, 2]), Message('sysex', data=[3, 4])] def test_write(tmpdir): # p = tmpdir.mkdir("sub").join("hello.txt") path = tmpdir.join("test.syx").strpath msg = Message('sysex', data=(1, 2, 3)) write_syx_file(path, [msg]) with open(path, 'rb') as infile: assert infile.read() == msg.bin() write_syx_file(path, [msg], plaintext=True) with open(path, 'rt') as infile: assert infile.read().strip() == msg.hex()
mit
8,884,796,596,589,155,000
27.23913
65
0.595843
false
3.137681
true
false
false
leanix/leanix-sdk-python
src/leanix/models/ProjectHasResource.py
1
1781
#!/usr/bin/env python """ The MIT License (MIT) Copyright (c) 2017 LeanIX GmbH Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ class ProjectHasResource: """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): self.swaggerTypes = { 'ID': 'str', 'projectID': 'str', 'resourceID': 'str', 'comment': 'str', 'projectImpactID': 'str' } self.ID = None # str self.projectID = None # str self.resourceID = None # str self.comment = None # str self.projectImpactID = None # str
mit
5,855,163,189,732,606,000
37.717391
105
0.705783
false
4.441397
false
false
false
stormi/tsunami
src/primaires/vehicule/vecteur.py
1
8948
# -*-coding:Utf-8 -* # Copyright (c) 2010 DAVY Guillaume # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant la classe Vecteur, détaillée plus bas.""" from math import sqrt, cos, sin, radians, degrees, atan, pi from abstraits.obase import * from primaires.salle.coordonnees import Coordonnees # Constantes NPRECISION = 5 class Vecteur(BaseObj): """Classe représentant un vecteur en trois dimensions. Elle gère les opérations usuelles dessus, ainsi que leur rotation autour d'un axe du repère. """ def __init__(self, x=0, y=0, z=0, parent=None): """Constructeur du vecteur""" BaseObj.__init__(self) self.parent = parent self._x = x self._y = y self._z = z self._construire() def __getnewargs__(self): return () def __str__(self): """Affiche le vecteur plus proprement""" return "({}, {}, {})".format(self.x, self.y, self.z) def __repr__(self): """Affichage des coordonnées dans un cas de debug""" return "Vecteur(x={}, y={}, z={})".format(self.x, self.y, self.z) @property def coordonnees(self): return Coordonnees(self.x, self.y, self.z) @property def tuple(self): """Retourne le tuple (x, y, z)""" return (self.x, self.y, self.z) @property def norme(self): return sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2) @property def direction(self): """Retourne un angle en degré représentant la direction. 0 => est 45 => sud-est 90 => sud 135 => sud-ouest 180 => ouest 225 => nord-ouest 270 => nord 315 => nord-est """ return -self.argument() % 360 @property def inclinaison(self): """Retourne l'angle d'inclinaison en degré.""" x, y, z = self.x, self.y, self.z n = sqrt(x ** 2 + y ** 2) if n == 0: if z == 0: return 0 else: return 90 return degrees(atan(z/n)) @property def nom_direction(self): """Retourne le nom de la direction. 0 => "est" 45 => "sud-est" ... """ direction = self.direction if direction < 22.5: return "est" elif direction < 67.5: return "sud-est" elif direction < 112.5: return "sud" elif direction < 157.5: return "sud-ouest" elif direction < 202.5: return "ouest" elif direction < 247.5: return "nord-ouest" elif direction < 292.5: return "nord" elif direction < 337.5: return "nord-est" else: return "est" def _get_x(self): return self._x def _set_x(self, x): self._x = round(x, NPRECISION) x = property(_get_x, _set_x) def _get_y(self): return self._y def _set_y(self, y): self._y = round(y, NPRECISION) y = property(_get_y, _set_y) def _get_z(self): return self._z def _set_z(self, z): self._z = round(z, NPRECISION) z = property(_get_z, _set_z) def copier(self): """Retourne une copie de self""" return Vecteur(self.x, self.y, self.z, self.parent) def est_nul(self, arrondi=3): """Retourne True si le vcteur est considéré comme nul.""" x = round(self._x, arrondi) y = round(self._y, arrondi) z = round(self._z, arrondi) return x == 0 and y == 0 and z == 0 def tourner_autour_x(self, angle): """Tourne autour de l'âxe X. L'angle doit être en degré. """ r = radians(angle) x, y, z = self.x, self.y, self.z self.x = x * 1 + y * 0 + z * 0 self.y = x * 0 + y * cos(r) - z * sin(r) self.z = x * 0 + y * sin(r) + z * cos(r) return self def tourner_autour_y(self, angle): """Tourne autour de l'âxe Y. L'angle doit être en degré. """ r = radians(angle) x, y, z = self.x, self.y, self.z self.x = x * cos(r) - y * 0 + z * sin(r) self.y = x * 0 + y * 1 + z * 0 self.z = x * sin(r) + y * 0 + z * cos(r) return self def tourner_autour_z(self, angle): """Tourne autour de l'âxe Z. L'angle doit être en degré. """ r = radians(angle) x, y, z = self.x, self.y, self.z self.x = x * cos(r) - -1 * y * sin(r) + z * 0 self.y = -1 * x * sin(r) + y * cos(r) + z * 0 self.z = x * 0 + y * 0 + z * 1 return self def incliner(self, angle): """Incline le véhicule. L'angle doit être en degré. """ r = radians(angle) x, y, z = self.x, self.y, self.z n = sqrt(x * x + y * y) if n == 0: if z == 0 or sin(r) == 0 or (x == 0 and y == 0): self.x = 0 self.y = 0 self.z = z * cos(r) else: raise ValueError("impossible d'incliner un vecteur vertical") else: self.x = x * cos(r) - z * x * sin(r) / n self.y = y * cos(r) - z * y * sin(r) / n self.z = z * cos(r) + sin(r) * n return self def argument(self): x, y = self.x, self.y if x > 0: return degrees(atan(y / x)) % 360 elif x < 0: return (180 + degrees(atan(y / x))) % 360 elif y > 0: return 90 elif y < 0: return -90 else: return 0 def normalise(self): norme = self.norme if norme == 0: raise ValueError("impossible de normaliser nul") return Vecteur(self.x / norme, self.y / norme, self.z / norme) def orienter(self, angle): """Oriente le vecteur horizontalement. L'angle doit être indiqué en degré. A la différence de tourner_autour_z, l'angle précisé est absolu. Après l'appelle à la méthode vecteur.orienter(180) par exemple, vecteur.direction doit être 180. """ direction = self.direction angle -= direction self.tourner_autour_z(angle) # Méthodes spéciales mathématiques def __neg__(self): """Retourne le vecteur négatif.""" return Vecteur(-self.x, -self.y, -self.z) def __add__(self, autre): """Additionne deux vecteurs.""" return Vecteur(self.x + autre.x, self.y + autre.y, self.z + autre.z) def __sub__(self, autre): """Soustrait deux vecteurs.""" return Vecteur(self.x - autre.x, self.y - autre.y, self.z - autre.z) def __mul__(self, valeur): """Multiplie le vecteur par un nombre.""" return Vecteur(self.x * valeur, self.y * valeur, self.z * valeur) def __rmul__(self, valeur): """Multiplie le vecteur par un nombre.""" return Vecteur(self.x * valeur, self.y * valeur, self.z * valeur) def __eq__(self, autre): return self.x == autre.x and self.y == autre.y and self.z == autre.z def __hash__(self): return hash(self.tuple) # Fonctions du module (à utiliser pour l'optimisation) def get_direction(vecteur): """Retourne la direction en degrés du vecteur.""" argument = (-vecteur.argument) % (pi * 2) return degrees(argument) % 360
bsd-3-clause
3,360,314,228,164,489,000
28.892617
79
0.554558
false
3.272594
false
false
false
musically-ut/python-glob2
setup.py
2
1227
#!/usr/bin/env python import os from setuptools import setup, find_packages # Figure out the version import re here = os.path.dirname(os.path.abspath(__file__)) version_re = re.compile( r'__version__ = (\(.*?\))') fp = open(os.path.join(here, 'glob2', '__init__.py')) version = None for line in fp: match = version_re.search(line) if match: version = eval(match.group(1)) break else: raise Exception("Cannot find version in __init__.py") fp.close() setup( name = 'glob2', version = ".".join(map(str, version)), description = 'Version of the glob module that can capture patterns '+ 'and supports recursive wildcards', author = 'Michael Elsdoerfer', author_email = 'michael@elsdoerfer.com', license='BSD', url = 'http://github.com/miracle2k/python-glob2/', classifiers = [ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Topic :: Software Development :: Libraries', ], packages = find_packages() )
bsd-2-clause
-5,408,287,253,185,717,000
28.214286
74
0.611247
false
3.858491
false
false
false
sammyshj/nyx
nyx/panel/header.py
1
16295
# Copyright 2009-2016, Damian Johnson and The Tor Project # See LICENSE for licensing information """ Top panel for every page, containing basic system and tor related information. This expands the information it presents to two columns if there's room available. """ import os import time import stem import stem.control import stem.util.proc import stem.util.str_tools import stem.util.system import nyx.controller import nyx.curses import nyx.panel import nyx.popups import nyx.tracker from stem.util import conf, log from nyx import msg, tor_controller from nyx.curses import RED, GREEN, YELLOW, CYAN, WHITE, BOLD, HIGHLIGHT MIN_DUAL_COL_WIDTH = 141 # minimum width where we'll show two columns SHOW_FD_THRESHOLD = 60 # show file descriptor usage if usage is over this percentage UPDATE_RATE = 5 # rate in seconds at which we refresh CONFIG = conf.config_dict('nyx', { 'attr.flag_colors': {}, 'attr.version_status_colors': {}, 'tor.chroot': '', }) class HeaderPanel(nyx.panel.DaemonPanel): """ Top area containing tor settings and system information. """ def __init__(self): nyx.panel.DaemonPanel.__init__(self, UPDATE_RATE) self._vals = Sampling.create() self._last_width = nyx.curses.screen_size().width self._reported_inactive = False self._message = None self._message_attr = [] tor_controller().add_status_listener(self.reset_listener) def show_message(self, message = None, *attr, **kwargs): """ Sets the message displayed at the bottom of the header. If not called with anything it clears the override. :param str message: message to be displayed :param list attr: text attributes to apply :param int max_wait: seconds to wait for user input, no limit if **None** :returns: :class:`~nyx.curses.KeyInput` user pressed if provided a **max_wait**, **None** otherwise or if prompt was canceled """ self._message = message self._message_attr = attr self.redraw() if 'max_wait' in kwargs: user_input = nyx.curses.key_input(kwargs['max_wait']) self.show_message() # clear override return user_input def is_wide(self): """ True if we should show two columns of information, False otherwise. """ return self._last_width >= MIN_DUAL_COL_WIDTH def get_height(self): """ Provides the height of the content, which is dynamically determined by the panel's maximum width. """ max_height = nyx.panel.DaemonPanel.get_height(self) if self._vals.is_relay: return min(max_height, 5 if self.is_wide() else 7) else: return min(max_height, 4 if self.is_wide() else 5) def send_newnym(self): """ Requests a new identity and provides a visual queue. """ controller = tor_controller() if not controller.is_newnym_available(): return controller.signal(stem.Signal.NEWNYM) # If we're wide then the newnym label in this panel will give an # indication that the signal was sent. Otherwise use a msg. if not self.is_wide(): self.show_message('Requesting a new identity', HIGHLIGHT, max_wait = 1) def key_handlers(self): def _reconnect(): if self._vals.is_connected: return controller = tor_controller() self.show_message('Reconnecting...', HIGHLIGHT) try: try: controller.reconnect(chroot_path = CONFIG['tor.chroot']) except stem.connection.MissingPassword: password = nyx.controller.input_prompt('Controller Password: ') if password: controller.authenticate(password) log.notice("Reconnected to Tor's control port") self.show_message('Tor reconnected', HIGHLIGHT, max_wait = 1) except Exception as exc: self.show_message('Unable to reconnect (%s)' % exc, HIGHLIGHT, max_wait = 3) controller.close() return ( nyx.panel.KeyHandler('n', action = self.send_newnym), nyx.panel.KeyHandler('r', action = _reconnect), ) def _draw(self, subwindow): vals = self._vals # local reference to avoid concurrency concerns self._last_width = subwindow.width is_wide = self.is_wide() # space available for content nyx_controller = nyx.controller.get_controller() left_width = max(subwindow.width / 2, 77) if is_wide else subwindow.width right_width = subwindow.width - left_width pause_time = nyx_controller.get_pause_time() if nyx_controller.is_paused() else None _draw_platform_section(subwindow, 0, 0, left_width, vals) if vals.is_connected: _draw_ports_section(subwindow, 0, 1, left_width, vals) else: _draw_disconnected(subwindow, 0, 1, vals.last_heartbeat) if is_wide: _draw_resource_usage(subwindow, left_width, 0, right_width, vals, pause_time) if vals.is_relay: _draw_fingerprint_and_fd_usage(subwindow, left_width, 1, right_width, vals) _draw_flags(subwindow, 0, 2, vals.flags) _draw_exit_policy(subwindow, left_width, 2, vals.exit_policy) elif vals.is_connected: _draw_newnym_option(subwindow, left_width, 1, vals.newnym_wait) else: _draw_resource_usage(subwindow, 0, 2, left_width, vals, pause_time) if vals.is_relay: _draw_fingerprint_and_fd_usage(subwindow, 0, 3, left_width, vals) _draw_flags(subwindow, 0, 4, vals.flags) _draw_status(subwindow, 0, self.get_height() - 1, nyx_controller.is_paused(), self._message, *self._message_attr) def reset_listener(self, controller, event_type, _): self._update() if event_type == stem.control.State.CLOSED: log.notice('Tor control port closed') def _update(self): self._vals = Sampling.create(self._vals) if self._vals.fd_used and self._vals.fd_limit != -1: fd_percent = 100 * self._vals.fd_used / self._vals.fd_limit if fd_percent >= 90: log_msg = msg('panel.header.fd_used_at_ninety_percent', percentage = fd_percent) log.log_once('fd_used_at_ninety_percent', log.WARN, log_msg) log.DEDUPLICATION_MESSAGE_IDS.add('fd_used_at_sixty_percent') elif fd_percent >= 60: log_msg = msg('panel.header.fd_used_at_sixty_percent', percentage = fd_percent) log.log_once('fd_used_at_sixty_percent', log.NOTICE, log_msg) if self._vals.is_connected: if not self._reported_inactive and (time.time() - self._vals.last_heartbeat) >= 10: self._reported_inactive = True log.notice('Relay unresponsive (last heartbeat: %s)' % time.ctime(self._vals.last_heartbeat)) elif self._reported_inactive and (time.time() - self._vals.last_heartbeat) < 10: self._reported_inactive = False log.notice('Relay resumed') self.redraw() class Sampling(object): def __init__(self, **attr): self._attr = attr for key, value in attr.items(): setattr(self, key, value) @staticmethod def create(last_sampling = None): controller = tor_controller() retrieved = time.time() pid = controller.get_pid('') tor_resources = nyx.tracker.get_resource_tracker().get_value() nyx_total_cpu_time = sum(os.times()[:3], stem.util.system.SYSTEM_CALL_TIME) or_listeners = controller.get_listeners(stem.control.Listener.OR, []) control_listeners = controller.get_listeners(stem.control.Listener.CONTROL, []) if controller.get_conf('HashedControlPassword', None): auth_type = 'password' elif controller.get_conf('CookieAuthentication', None) == '1': auth_type = 'cookie' else: auth_type = 'open' try: fd_used = stem.util.proc.file_descriptors_used(pid) except IOError: fd_used = None if last_sampling: nyx_cpu_delta = nyx_total_cpu_time - last_sampling.nyx_total_cpu_time nyx_time_delta = retrieved - last_sampling.retrieved nyx_cpu = nyx_cpu_delta / nyx_time_delta else: nyx_cpu = 0.0 attr = { 'retrieved': retrieved, 'is_connected': controller.is_alive(), 'connection_time': controller.connection_time(), 'last_heartbeat': controller.get_latest_heartbeat(), 'fingerprint': controller.get_info('fingerprint', 'Unknown'), 'nickname': controller.get_conf('Nickname', ''), 'newnym_wait': controller.get_newnym_wait(), 'exit_policy': controller.get_exit_policy(None), 'flags': getattr(controller.get_network_status(default = None), 'flags', []), 'version': str(controller.get_version('Unknown')).split()[0], 'version_status': controller.get_info('status/version/current', 'Unknown'), 'address': or_listeners[0][0] if (or_listeners and or_listeners[0][0] != '0.0.0.0') else controller.get_info('address', 'Unknown'), 'or_port': or_listeners[0][1] if or_listeners else '', 'dir_port': controller.get_conf('DirPort', '0'), 'control_port': str(control_listeners[0][1]) if control_listeners else None, 'socket_path': controller.get_conf('ControlSocket', None), 'is_relay': bool(or_listeners), 'auth_type': auth_type, 'pid': pid, 'start_time': stem.util.system.start_time(pid), 'fd_limit': int(controller.get_info('process/descriptor-limit', '-1')), 'fd_used': fd_used, 'nyx_total_cpu_time': nyx_total_cpu_time, 'tor_cpu': '%0.1f' % (100 * tor_resources.cpu_sample), 'nyx_cpu': '%0.1f' % (nyx_cpu), 'memory': stem.util.str_tools.size_label(tor_resources.memory_bytes) if tor_resources.memory_bytes > 0 else 0, 'memory_percent': '%0.1f' % (100 * tor_resources.memory_percent), 'hostname': os.uname()[1], 'platform': '%s %s' % (os.uname()[0], os.uname()[2]), # [platform name] [version] } return Sampling(**attr) def format(self, message, crop_width = None): formatted_msg = message.format(**self._attr) if crop_width is not None: formatted_msg = stem.util.str_tools.crop(formatted_msg, crop_width) return formatted_msg def _draw_platform_section(subwindow, x, y, width, vals): """ Section providing the user's hostname, platform, and version information... nyx - odin (Linux 3.5.0-52-generic) Tor 0.2.5.1-alpha-dev (unrecommended) |------ platform (40 characters) ------| |----------- tor version -----------| """ initial_x, space_left = x, min(width, 40) x = subwindow.addstr(x, y, vals.format('nyx - {hostname}', space_left)) space_left -= x - initial_x if space_left >= 10: subwindow.addstr(x, y, ' (%s)' % vals.format('{platform}', space_left - 3)) x, space_left = initial_x + 43, width - 43 if vals.version != 'Unknown' and space_left >= 10: x = subwindow.addstr(x, y, vals.format('Tor {version}', space_left)) space_left -= x - 43 - initial_x if space_left >= 7 + len(vals.version_status): version_color = CONFIG['attr.version_status_colors'].get(vals.version_status, WHITE) x = subwindow.addstr(x, y, ' (') x = subwindow.addstr(x, y, vals.version_status, version_color) subwindow.addstr(x, y, ')') def _draw_ports_section(subwindow, x, y, width, vals): """ Section providing our nickname, address, and port information... Unnamed - 0.0.0.0:7000, Control Port (cookie): 9051 """ if not vals.is_relay: x = subwindow.addstr(x, y, 'Relaying Disabled', CYAN) else: x = subwindow.addstr(x, y, vals.format('{nickname} - {address}:{or_port}')) if vals.dir_port != '0': x = subwindow.addstr(x, y, vals.format(', Dir Port: {dir_port}')) if vals.control_port: if width >= x + 19 + len(vals.control_port) + len(vals.auth_type): auth_color = RED if vals.auth_type == 'open' else GREEN x = subwindow.addstr(x, y, ', Control Port (') x = subwindow.addstr(x, y, vals.auth_type, auth_color) subwindow.addstr(x, y, vals.format('): {control_port}')) else: subwindow.addstr(x, y, vals.format(', Control Port: {control_port}')) elif vals.socket_path: subwindow.addstr(x, y, vals.format(', Control Socket: {socket_path}')) def _draw_disconnected(subwindow, x, y, last_heartbeat): """ Message indicating that tor is disconnected... Tor Disconnected (15:21 07/13/2014, press r to reconnect) """ x = subwindow.addstr(x, y, 'Tor Disconnected', RED, BOLD) last_heartbeat_str = time.strftime('%H:%M %m/%d/%Y', time.localtime(last_heartbeat)) subwindow.addstr(x, y, ' (%s, press r to reconnect)' % last_heartbeat_str) def _draw_resource_usage(subwindow, x, y, width, vals, pause_time): """ System resource usage of the tor process... cpu: 0.0% tor, 1.0% nyx mem: 0 (0.0%) pid: 16329 uptime: 12-20:42:07 """ if vals.start_time: if not vals.is_connected: now = vals.connection_time elif pause_time: now = pause_time else: now = time.time() uptime = stem.util.str_tools.short_time_label(now - vals.start_time) else: uptime = '' sys_fields = ( (0, vals.format('cpu: {tor_cpu}% tor, {nyx_cpu}% nyx')), (27, vals.format('mem: {memory} ({memory_percent}%)')), (47, vals.format('pid: {pid}')), (59, 'uptime: %s' % uptime), ) for (start, label) in sys_fields: if width >= start + len(label): subwindow.addstr(x + start, y, label) else: break def _draw_fingerprint_and_fd_usage(subwindow, x, y, width, vals): """ Presents our fingerprint, and our file descriptor usage if we're running out... fingerprint: 1A94D1A794FCB2F8B6CBC179EF8FDD4008A98D3B, file desc: 900 / 1000 (90%) """ initial_x, space_left = x, width x = subwindow.addstr(x, y, vals.format('fingerprint: {fingerprint}', width)) space_left -= x - initial_x if space_left >= 30 and vals.fd_used and vals.fd_limit != -1: fd_percent = 100 * vals.fd_used / vals.fd_limit if fd_percent >= SHOW_FD_THRESHOLD: if fd_percent >= 95: percentage_format = (RED, BOLD) elif fd_percent >= 90: percentage_format = (RED,) elif fd_percent >= 60: percentage_format = (YELLOW,) else: percentage_format = () x = subwindow.addstr(x, y, ', file descriptors' if space_left >= 37 else ', file desc') x = subwindow.addstr(x, y, vals.format(': {fd_used} / {fd_limit} (')) x = subwindow.addstr(x, y, '%i%%' % fd_percent, *percentage_format) subwindow.addstr(x, y, ')') def _draw_flags(subwindow, x, y, flags): """ Presents flags held by our relay... flags: Running, Valid """ x = subwindow.addstr(x, y, 'flags: ') if flags: for i, flag in enumerate(flags): flag_color = CONFIG['attr.flag_colors'].get(flag, WHITE) x = subwindow.addstr(x, y, flag, flag_color, BOLD) if i < len(flags) - 1: x = subwindow.addstr(x, y, ', ') else: subwindow.addstr(x, y, 'none', CYAN, BOLD) def _draw_exit_policy(subwindow, x, y, exit_policy): """ Presents our exit policy... exit policy: reject *:* """ x = subwindow.addstr(x, y, 'exit policy: ') if not exit_policy: return rules = list(exit_policy.strip_private().strip_default()) for i, rule in enumerate(rules): policy_color = GREEN if rule.is_accept else RED x = subwindow.addstr(x, y, str(rule), policy_color, BOLD) if i < len(rules) - 1: x = subwindow.addstr(x, y, ', ') if exit_policy.has_default(): if rules: x = subwindow.addstr(x, y, ', ') subwindow.addstr(x, y, '<default>', CYAN, BOLD) def _draw_newnym_option(subwindow, x, y, newnym_wait): """ Provide a notice for requiesting a new identity, and time until it's next available if in the process of building circuits. """ if newnym_wait == 0: subwindow.addstr(x, y, "press 'n' for a new identity") else: plural = 's' if newnym_wait > 1 else '' subwindow.addstr(x, y, 'building circuits, available again in %i second%s' % (newnym_wait, plural)) def _draw_status(subwindow, x, y, is_paused, message, *attr): """ Provides general usage information or a custom message. """ if message: subwindow.addstr(x, y, message, *attr) elif not is_paused: controller = nyx.controller.get_controller() subwindow.addstr(x, y, 'page %i / %i - m: menu, p: pause, h: page help, q: quit' % (controller.get_page() + 1, controller.get_page_count())) else: subwindow.addstr(x, y, 'Paused', HIGHLIGHT)
gpl-3.0
-6,505,644,122,368,500,000
31.076772
144
0.639828
false
3.259
false
false
false
nens/dpnetcdf
dpnetcdf/migrations/0050_auto__del_field_datasource_imported.py
1
5366
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting field 'Datasource.imported' db.delete_column('dpnetcdf_datasource', 'imported') def backwards(self, orm): # Adding field 'Datasource.imported' db.add_column('dpnetcdf_datasource', 'imported', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True), keep_default=False) models = { 'dpnetcdf.datasource': { 'Meta': {'object_name': 'Datasource'}, 'dataset': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['dpnetcdf.OpendapDataset']", 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'shape_file': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['dpnetcdf.ShapeFile']", 'null': 'True'}), 'variable': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['dpnetcdf.Variable']", 'null': 'True'}) }, 'dpnetcdf.maplayer': { 'Meta': {'object_name': 'MapLayer'}, 'datasources': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['dpnetcdf.Datasource']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parameter': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'styles': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['dpnetcdf.Style']", 'symmetrical': 'False', 'blank': 'True'}) }, 'dpnetcdf.opendapcatalog': { 'Meta': {'object_name': 'OpendapCatalog'}, 'base_url': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'catalog_url': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'http_url': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'opendap_url': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'service_prefix': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'dpnetcdf.opendapdataset': { 'Meta': {'object_name': 'OpendapDataset'}, 'calculation_facility': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}), 'catalog': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['dpnetcdf.OpendapSubcatalog']"}), 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'program': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'scenario': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}), 'strategy': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}), 'time_zero': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'variables': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['dpnetcdf.Variable']", 'symmetrical': 'False'}), 'year': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}) }, 'dpnetcdf.opendapsubcatalog': { 'Meta': {'object_name': 'OpendapSubcatalog'}, 'catalog': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['dpnetcdf.OpendapCatalog']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'identifier': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, 'dpnetcdf.shapefile': { 'Meta': {'object_name': 'ShapeFile'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'identifier': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'path': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}) }, 'dpnetcdf.style': { 'Meta': {'object_name': 'Style'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'xml': ('django.db.models.fields.TextField', [], {'blank': 'True'}) }, 'dpnetcdf.variable': { 'Meta': {'object_name': 'Variable'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['dpnetcdf']
gpl-3.0
-3,347,639,049,884,668,400
59.988636
162
0.547521
false
3.623228
false
false
false
antonxy/audiosync
gui.py
1
5008
import tkinter as tk from tkinter.ttk import Progressbar from tkinter import filedialog, messagebox import os import errno from threading import Thread import program_logic def get_paths_in_dir(directory): filenames = os.listdir(directory) return [os.path.abspath(os.path.join(directory, name)) for name in filenames] class MainFrame(tk.Frame): def __init__(self, parent): super(MainFrame, self).__init__(parent) self.parent = parent self.dir_var = tk.StringVar() self.audio_progress_var = tk.IntVar() self.video_progress_var = tk.IntVar() self.fps_var = tk.StringVar() self.audio_shift_var = tk.StringVar() self.start_button = None self.generate_ui() self.center_window() def generate_ui(self): self.parent.title('audiosync') dir_frame = tk.Frame(self) dir_frame.pack(fill=tk.X) tk.Label(dir_frame, text='Directory:').pack(side=tk.LEFT) tk.Entry(dir_frame, textvariable=self.dir_var).pack(fill=tk.X, expand=1, side=tk.LEFT) tk.Button(dir_frame, text='Select', command=self.select_dir).pack(side=tk.LEFT) tk.Button(dir_frame, text='Create Structure', command=self.create_directory_structure).pack(side=tk.RIGHT) fps_frame = tk.Frame(self) fps_frame.pack() tk.Label(fps_frame, text='FPS:').pack(side=tk.LEFT) tk.Entry(fps_frame, textvariable=self.fps_var).pack(side=tk.LEFT) audio_shift_frame = tk.Frame(self) audio_shift_frame.pack() tk.Label(audio_shift_frame, text='Shift Audio forward').pack(side=tk.LEFT) tk.Entry(audio_shift_frame, textvariable=self.audio_shift_var).pack(side=tk.LEFT) tk.Label(audio_shift_frame, text='frames').pack(side=tk.LEFT) cmd_frame = tk.Frame(self) cmd_frame.pack(fill=tk.X) self.start_button = tk.Button(cmd_frame, text='Start', command=self.execute) self.start_button.pack() Progressbar(self, variable=self.video_progress_var).pack(fill=tk.X) Progressbar(self, variable=self.audio_progress_var).pack(fill=tk.X) self.pack(fill=tk.BOTH, expand=1) def center_window(self): w = 500 h = 140 sw = self.parent.winfo_screenwidth() sh = self.parent.winfo_screenheight() x = (sw - w) / 2 y = (sh - h) / 2 self.parent.geometry('%dx%d+%d+%d' % (w, h, x, y)) def select_dir(self): dir_path = filedialog.askdirectory() if dir_path != '': self.dir_var.set(dir_path) def create_directory_structure(self): dir_path = self.dir_var.get() if dir_path != '': dir_names = ['video', 'audio', 'edl'] for dir_name in dir_names: new_dir_path = os.path.join(dir_path, dir_name) try: os.makedirs(new_dir_path) except OSError as ex: if ex.errno != errno.EEXIST: raise def execute(self): directory = self.dir_var.get() if directory is '': messagebox.showerror(title='audiosync', message='No directory selected') return try: fps = float(self.fps_var.get()) except ValueError: messagebox.showerror(title='audiosync', message='FPS has to be decimal number') return try: audio_shift = int(self.audio_shift_var.get()) except ValueError: messagebox.showerror(title='audiosync', message='Audio shift has to be integer') return thread = Thread(target=self.thread_target, args=(self.audio_progress_var, self.video_progress_var, self.start_button, fps, directory, audio_shift)) thread.start() self.start_button.config(state='disabled') @staticmethod def thread_target(audio_progress_var, video_progress_var, start_button, fps, directory, audio_shift): video_ret = analyse_directory(os.path.join(directory, 'video'), video_progress_var) audio_ret = analyse_directory(os.path.join(directory, 'audio'), audio_progress_var) program_logic.rename_files(audio_ret, 'a') program_logic.rename_files(video_ret, 'v') program_logic.generate_edls(video_ret, audio_ret, fps, os.path.join(directory, 'edl'), audio_shift) audio_progress_var.set(0) video_progress_var.set(0) start_button.config(state='normal') def analyse_directory(directory, progress_var): ret_list = [] files = os.listdir(directory) for n, filename in enumerate(files): path = os.path.abspath(os.path.join(directory, filename)) result = program_logic.analyse_file(path) if result is not None: ret_list.append(result) progress_var.set(int((n + 1) / len(files) * 100)) return ret_list if __name__ == '__main__': root = tk.Tk() app = MainFrame(root) root.mainloop()
mit
6,802,534,413,358,462,000
33.784722
128
0.609425
false
3.516854
false
false
false
felipenaselva/felipe.repository
plugin.program.Build.Tools/resources/libs/skinSwitch.py
1
9353
################################################################################ # Copyright (C) 2015 OpenELEQ # # # # This Program is free software; you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation; either version 2, or (at your option) # # any later version. # # # # This Program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with XBMC; see the file COPYING. If not, write to # # the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. # # http://www.gnu.org/copyleft/gpl.html # ################################################################################ import os, re,glob, shutil, time, xbmc, xbmcaddon, thread, wizard as wiz, uservar try: import json as simplejson except: import simplejson KODIV = float(xbmc.getInfoLabel("System.BuildVersion")[:4]) COLOR1 = uservar.COLOR1 COLOR2 = uservar.COLOR2 HOME = xbmc.translatePath('special://home/') ADDONS = os.path.join(HOME, 'addons') #DIALOG = xbmcgui.Dialog() def getOld(old): try: old = '"%s"' % old query = '{"jsonrpc":"2.0", "method":"Settings.GetSettingValue","params":{"setting":%s}, "id":1}' % (old) response = xbmc.executeJSONRPC(query) response = simplejson.loads(response) if response.has_key('result'): if response['result'].has_key('value'): return response ['result']['value'] except: pass return None def setNew(new, value): try: new = '"%s"' % new value = '"%s"' % value query = '{"jsonrpc":"2.0", "method":"Settings.SetSettingValue","params":{"setting":%s,"value":%s}, "id":1}' % (new, value) response = xbmc.executeJSONRPC(query) except: pass return None def swapSkins(skin): if skin == 'skin.confluence': HOME = xbmc.translatePath('special://home/') skinfold = os.path.join(HOME, 'userdata', 'addon_data', 'skin.confluence') settings = os.path.join(skinfold, 'settings.xml') if not os.path.exists(settings): string = '<settings>\n <setting id="FirstTimeRun" type="bool">true</setting>\n</settings>' os.makedirs(skinfold) f = open(settings, 'w'); f.write(string); f.close() else: xbmcaddon.Addon(id='skin.confluence').setSetting('FirstTimeRun', 'true') old = 'lookandfeel.skin' value = skin current = getOld(old) new = old setNew(new, value) # if not xbmc.getCondVisibility(Skin.HasSetting(FirstTimeRun)): # while xbmc.getCondVisibility('Window.IsVisible(1112)'): # xbmc.executebuiltin('SendClick(100)') def swapUS(): new = '"addons.unknownsources"' value = 'true' query = '{"jsonrpc":"2.0", "method":"Settings.GetSettingValue","params":{"setting":%s}, "id":1}' % (new) response = xbmc.executeJSONRPC(query) wiz.log("Unknown Sources Get Settings: %s" % str(response), xbmc.LOGDEBUG) if 'false' in response: thread.start_new_thread(dialogWatch, ()) xbmc.sleep(200) query = '{"jsonrpc":"2.0", "method":"Settings.SetSettingValue","params":{"setting":%s,"value":%s}, "id":1}' % (new, value) response = xbmc.executeJSONRPC(query) wiz.LogNotify("[COLOR %s]%s[/COLOR]" % (COLOR1, ADDONTITLE), '[COLOR %s]Unknown Sources:[/COLOR] [COLOR %s]Enabled[/COLOR]' % (COLOR1, COLOR2)) wiz.log("Unknown Sources Set Settings: %s" % str(response), xbmc.LOGDEBUG) def dialogWatch(): x = 0 while not xbmc.getCondVisibility("Window.isVisible(yesnodialog)") and x < 100: x += 1 xbmc.sleep(100) if xbmc.getCondVisibility("Window.isVisible(yesnodialog)"): xbmc.executebuiltin('SendClick(11)') ######################################################################################## #######################################Still Needs Work######################################### ######################################################################################## #def popUPmenu(): # fold = glob.glob(os.path.join(ADDONS, 'skin*')) # addonnames = []; addonids = []; addonfolds = [] # for folder in sorted(fold, key = lambda x: x): # xml = os.path.join(folder, 'addon.xml') # if os.path.exists(xml): # foldername = os.path.split(folder[:-1])[1] # f = open(xml) # a = f.read() # f.close() # getid = parseDOM(a, 'addon', ret='id') # getname = parseDOM(a, 'addon', ret='name') # addid = foldername if len(getid) == 0 else getid[0] # title = foldername if len(getname) == 0 else getname[0] # temp = title.replace('[', '<').replace(']', '>') # temp = re.sub('<[^<]+?>', '', temp) # addonnames.append(temp) # addonids.append(addid) # addonfolds.append(foldername) # #currskin = ["Current Skin -- %s" % currSkin()] + addonids # select = DIALOG.select("Select the Skin you want to swap with.", addonids#currskin ) # if select == -1: return # elif select == 1: addonids[select] # swapSkins(addonids) def parseDOM(html, name=u"", attrs={}, ret=False): # Copyright (C) 2010-2011 Tobias Ussing And Henrik Mosgaard Jensen if isinstance(html, str): try: html = [html.decode("utf-8")] except: html = [html] elif isinstance(html, unicode): html = [html] elif not isinstance(html, list): return u"" if not name.strip(): return u"" ret_lst = [] for item in html: temp_item = re.compile('(<[^>]*?\n[^>]*?>)').findall(item) for match in temp_item: item = item.replace(match, match.replace("\n", " ")) lst = [] for key in attrs: lst2 = re.compile('(<' + name + '[^>]*?(?:' + key + '=[\'"]' + attrs[key] + '[\'"].*?>))', re.M | re.S).findall(item) if len(lst2) == 0 and attrs[key].find(" ") == -1: lst2 = re.compile('(<' + name + '[^>]*?(?:' + key + '=' + attrs[key] + '.*?>))', re.M | re.S).findall(item) if len(lst) == 0: lst = lst2 lst2 = [] else: test = range(len(lst)) test.reverse() for i in test: if not lst[i] in lst2: del(lst[i]) if len(lst) == 0 and attrs == {}: lst = re.compile('(<' + name + '>)', re.M | re.S).findall(item) if len(lst) == 0: lst = re.compile('(<' + name + ' .*?>)', re.M | re.S).findall(item) if isinstance(ret, str): lst2 = [] for match in lst: attr_lst = re.compile('<' + name + '.*?' + ret + '=([\'"].[^>]*?[\'"])>', re.M | re.S).findall(match) if len(attr_lst) == 0: attr_lst = re.compile('<' + name + '.*?' + ret + '=(.[^>]*?)>', re.M | re.S).findall(match) for tmp in attr_lst: cont_char = tmp[0] if cont_char in "'\"": if tmp.find('=' + cont_char, tmp.find(cont_char, 1)) > -1: tmp = tmp[:tmp.find('=' + cont_char, tmp.find(cont_char, 1))] if tmp.rfind(cont_char, 1) > -1: tmp = tmp[1:tmp.rfind(cont_char)] else: if tmp.find(" ") > 0: tmp = tmp[:tmp.find(" ")] elif tmp.find("/") > 0: tmp = tmp[:tmp.find("/")] elif tmp.find(">") > 0: tmp = tmp[:tmp.find(">")] lst2.append(tmp.strip()) lst = lst2 else: lst2 = [] for match in lst: endstr = u"</" + name start = item.find(match) end = item.find(endstr, start) pos = item.find("<" + name, start + 1 ) while pos < end and pos != -1: tend = item.find(endstr, end + len(endstr)) if tend != -1: end = tend pos = item.find("<" + name, pos + 1) if start == -1 and end == -1: temp = u"" elif start > -1 and end > -1: temp = item[start + len(match):end] elif end > -1: temp = item[:end] elif start > -1: temp = item[start + len(match):] if ret: endstr = item[end:item.find(">", item.find(endstr)) + 1] temp = match + temp + endstr item = item[item.find(temp, item.find(match)) + len(temp):] lst2.append(temp) lst = lst2 ret_lst += lst return ret_lst
gpl-2.0
-3,929,239,323,546,178,600
40.207048
145
0.481664
false
3.576673
false
false
false
DLR-SC/prov-db-connector
provdbconnector/utils/converter.py
1
3299
from functools import reduce from io import BufferedReader from provdbconnector.exceptions.utils import ParseException, NoDocumentException import six from prov.model import ProvDocument import logging log = logging.getLogger(__name__) def form_string(content): """ Take a string or BufferedReader as argument and transform the string into a ProvDocument :param content: Takes a sting or BufferedReader :return: ProvDocument """ if isinstance(content, ProvDocument): return content elif isinstance(content, BufferedReader): content = reduce(lambda total, a: total + a, content.readlines()) if type(content) is six.binary_type: content_str = content[0:15].decode() if content_str.find("{") > -1: return ProvDocument.deserialize(content=content, format='json') if content_str.find('<?xml') > -1: return ProvDocument.deserialize(content=content, format='xml') elif content_str.find('document') > -1: return ProvDocument.deserialize(content=content, format='provn') raise ParseException("Unsupported input type {}".format(type(content))) def to_json(document=None): """ Try to convert a ProvDocument into the json representation :param document: :type document: prov.model.ProvDocument :return: Json string of the document :rtype: str """ if document is None: raise NoDocumentException() return document.serialize(format='json') def from_json(json=None): """ Try to convert a json string into a document :param json: The json str :type json: str :return: Prov Document :rtype: prov.model.ProvDocument :raise: NoDocumentException """ if json is None: raise NoDocumentException() return ProvDocument.deserialize(source=json, format='json') def to_provn(document=None): """ Try to convert a document into a provn representation :param document: Prov document to convert :type document: prov.model.ProvDocument :return: The prov-n str :rtype: str :raise: NoDocumentException """ if document is None: raise NoDocumentException() return document.serialize(format='provn') def from_provn(provn_str=None): """ Try to convert a provn string into a ProvDocument :param provn_str: The string to convert :type provn_str: str :return: The Prov document :rtype: ProvDocument :raises: NoDocumentException """ if provn_str is None: raise NoDocumentException() return ProvDocument.deserialize(source=provn_str, format='provn') def to_xml(document=None): """ Try to convert a document into an xml string :param document: The ProvDocument to convert :param document: ProvDocument :return: The xml string :rtype: str """ if document is None: raise NoDocumentException() return document.serialize(format='xml') def from_xml(xml_str=None): """ Try to convert a xml string into a ProvDocument :param xml_str: The xml string :type xml_str: str :return: The Prov document :rtype: ProvDocument """ if xml_str is None: raise NoDocumentException() return ProvDocument.deserialize(source=xml_str, format='xml')
apache-2.0
-8,106,690,724,174,002,000
26.491667
92
0.678387
false
4.023171
false
false
false
fangxingli/hue
desktop/libs/indexer/src/indexer/smart_indexer_tests.py
1
9419
# Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.from nose.tools import assert_equal import StringIO import logging from nose.tools import assert_equal, assert_true from nose.plugins.skip import SkipTest from desktop.lib.django_test_util import make_logged_in_client from desktop.lib.test_utils import grant_access, add_to_group from hadoop.pseudo_hdfs4 import is_live_cluster, shared_cluster from indexer.file_format import ApacheCombinedFormat, RubyLogFormat, HueLogFormat from indexer.fields import Field from indexer.controller import CollectionManagerController from indexer.operations import get_operator from indexer.smart_indexer import Indexer LOG = logging.getLogger(__name__) def _test_fixed_type_format_generate_morphline(format_): indexer = Indexer("test") format_instance = format_() morphline = indexer.generate_morphline_config("test_collection", { "columns": [field.to_dict() for field in format_instance.fields], "format": format_instance.get_format() }) assert_true(isinstance(morphline, basestring)) def _test_generate_field_operation_morphline(operation_format): fields = TestIndexer.simpleCSVFields[:] fields[0]['operations'].append(operation_format) indexer = Indexer("test") morphline =indexer.generate_morphline_config("test_collection", { "columns": fields, "format": TestIndexer.simpleCSVFormat }) assert_true(isinstance(morphline, basestring)) class TestIndexer(): simpleCSVString = """id,Rating,Location,Name,Time 1,5,San Francisco,Good Restaurant,8:30pm 2,4,San Mateo,Cafe,11:30am 3,3,Berkeley,Sauls,2:30pm """ simpleCSVFields = [ { "name": "id", "type": "long", "operations": [], "keep": True, "required": False }, { "name": "Rating", "type": "long", "operations": [], "keep": True, "required": False }, { "name": "Location", "type": "string", "operations": [], "keep": True, "required": False }, { "name": "Name", "type": "string", "operations": [], "keep": True, "required": False }, { "name": "Time", "type": "string", "operations": [], "keep": True, "required": False } ] simpleCSVFormat = { 'type': 'csv', 'fieldSeparator': ',', 'recordSeparator': '\n', 'hasHeader': True, 'quoteChar': '"' } def setUp(self): self.c = make_logged_in_client(is_superuser=False) grant_access("test", "test", "indexer") add_to_group("test") def test_guess_csv_format(self): stream = StringIO.StringIO(TestIndexer.simpleCSVString) indexer = Indexer("test") guessed_format = indexer.guess_format({'file': {"stream": stream, "name": "test.csv"}}) fields = indexer.guess_field_types({"file":{"stream": stream, "name": "test.csv"}, "format": guessed_format})['columns'] # test format expected_format = self.simpleCSVFormat assert_equal(expected_format, guessed_format) # test fields expected_fields = self.simpleCSVFields for expected, actual in zip(expected_fields, fields): for key in ("name", "type"): assert_equal(expected[key], actual[key]) def test_guess_format_invalid_csv_format(self): indexer = Indexer("test") stream = StringIO.StringIO(TestIndexer.simpleCSVString) guessed_format = indexer.guess_format({'file': {"stream": stream, "name": "test.csv"}}) guessed_format["fieldSeparator"] = "invalid separator" fields = indexer.guess_field_types({"file": {"stream": stream, "name": "test.csv"}, "format": guessed_format})['columns'] assert_equal(fields, []) stream.seek(0) guessed_format = indexer.guess_format({'file': {"stream": stream, "name": "test.csv"}}) guessed_format["recordSeparator"] = "invalid separator" fields = indexer.guess_field_types({"file": {"stream": stream, "name": "test.csv"}, "format": guessed_format})['columns'] assert_equal(fields, []) stream.seek(0) guessed_format = indexer.guess_format({'file': {"stream": stream, "name": "test.csv"}}) guessed_format["quoteChar"] = "invalid quoteChar" fields = indexer.guess_field_types({"file": {"stream": stream, "name": "test.csv"}, "format": guessed_format})['columns'] assert_equal(fields, []) def test_generate_csv_morphline(self): indexer = Indexer("test") morphline =indexer.generate_morphline_config("test_collection", { "columns": self.simpleCSVFields, "format": self.simpleCSVFormat }) assert_true(isinstance(morphline, basestring)) def test_generate_apache_combined_morphline(self): _test_fixed_type_format_generate_morphline(ApacheCombinedFormat) def test_generate_ruby_logs_morphline(self): _test_fixed_type_format_generate_morphline(RubyLogFormat) def test_generate_hue_log_morphline(self): _test_fixed_type_format_generate_morphline(HueLogFormat) def test_generate_split_operation_morphline(self): split_dict = get_operator('split').get_default_operation() split_dict['fields'] = [ Field("test_field_1", "string").to_dict(), Field("test_field_2", "string").to_dict() ] _test_generate_field_operation_morphline(split_dict) def test_generate_extract_uri_components_operation_morphline(self): extract_uri_dict = get_operator('extract_uri_components').get_default_operation() extract_uri_dict['fields'] = [ Field("test_field_1", "string").to_dict(), Field("test_field_2", "string").to_dict() ] _test_generate_field_operation_morphline(extract_uri_dict) def test_generate_grok_operation_morphline(self): grok_dict = get_operator('grok').get_default_operation() grok_dict['fields'] = [ Field("test_field_1", "string").to_dict(), Field("test_field_2", "string").to_dict() ] _test_generate_field_operation_morphline(grok_dict) def test_generate_convert_date_morphline(self): convert_date_dict = get_operator('convert_date').get_default_operation() _test_generate_field_operation_morphline(convert_date_dict) def test_generate_geo_ip_morphline(self): geo_ip_dict = get_operator('geo_ip').get_default_operation() geo_ip_dict['fields'] = [ Field("test_field_1", "string").to_dict(), Field("test_field_2", "string").to_dict() ] _test_generate_field_operation_morphline(geo_ip_dict) def test_generate_translate_morphline(self): translate_dict = get_operator('translate').get_default_operation() translate_dict['fields'] = [ Field("test_field_1", "string").to_dict(), Field("test_field_2", "string").to_dict() ] translate_dict['settings']['mapping'].append({"key":"key","value":"value"}) _test_generate_field_operation_morphline(translate_dict) def test_generate_find_replace_morphline(self): find_replace_dict = get_operator('find_replace').get_default_operation() _test_generate_field_operation_morphline(find_replace_dict) def test_end_to_end(self): if not is_live_cluster(): raise SkipTest() cluster = shared_cluster() fs = cluster.fs collection_name = "test_collection" indexer = Indexer("test", fs=fs, jt=cluster.jt) input_loc = "/tmp/test.csv" # upload the test file to hdfs fs.create(input_loc, data=TestIndexer.simpleCSVString, overwrite=True) # open a filestream for the file on hdfs stream = fs.open(input_loc) # guess the format of the file file_type_format = indexer.guess_format({'file': {"stream": stream, "name": "test.csv"}}) field_types = indexer.guess_field_types({"file":{"stream": stream, "name": "test.csv"}, "format": file_type_format}) format_ = field_types.copy() format_['format'] = file_type_format # find a field name available to use for the record's uuid unique_field = indexer.get_unique_field(format_) is_unique_generated = indexer.is_unique_generated(format_) # generate morphline morphline = indexer.generate_morphline_config(collection_name, format_, unique_field) schema_fields = indexer.get_kept_field_list(format_['columns']) if is_unique_generated: schema_fields += [{"name": unique_field, "type": "string"}] # create the collection from the specified fields collection_manager = CollectionManagerController("test") if collection_manager.collection_exists(collection_name): collection_manager.delete_collection(collection_name, None) collection_manager.create_collection(collection_name, schema_fields, unique_key_field=unique_field) # index the file indexer.run_morphline(collection_name, morphline, input_loc)
apache-2.0
-8,800,027,289,137,888,000
31.818815
125
0.675656
false
3.622692
true
false
false
oVirt/ovirt-setup-lib
tests/commons.py
1
1744
# # ovirt-setup-lib -- ovirt setup library # Copyright (C) 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import mock import unittest2 class BaseTestCase(unittest2.TestCase): _patchers = {} def mock_base(self): if 'Base' not in self._patchers: self._patchers['Base'] = 'otopi.base.Base' def mock_plugin(self): import otopi.plugin # imported here to make mock happy assert otopi.plugin # assertion here to make pyflakes happy if 'Plugin' not in self._patchers: self.mock_base() self._patchers['Plugin'] = 'otopi.plugin.PluginBase' def mock_context(self): import otopi.context # imported here to make mock happy assert otopi.context # assertion here to make pyflakes happy if 'Context' not in self._patchers: self.mock_base() self._patchers['Context'] = 'otopi.context.Context' def mock_otopi(self): self.mock_plugin() self.mock_context() def apply_patch(self): for cls_name in self._patchers: patcher = mock.patch(self._patchers[cls_name]) setattr(self, cls_name, patcher.start()) self.addCleanup(patcher.stop)
apache-2.0
-5,747,025,881,998,846,000
31.90566
74
0.661697
false
3.799564
false
false
false
XiaodunServerGroup/medicalmooc
cms/djangoapps/contentstore/views/course.py
1
55485
# -*- coding: utf-8 -*- #coding=utf-8 import Queue import sys,os from envs.common import PROJECT_ROOT import xlrd from student.views import do_institution_import_teacher_create_account,do_institution_import_student_create_account import random reload(sys) sys.setdefaultencoding('utf8') """ Views related to operations on course objects """ import json import random import string # pylint: disable=W0402 import re import bson import socket import urllib2 from Crypto.Cipher import DES import base64 import hashlib import analytics.basic from datetime import * from django.utils import timezone from django.db.models import Q from django.utils.translation import ugettext as _ from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User, Group from django_future.csrf import ensure_csrf_cookie from django.conf import settings from django.views.decorators.http import require_http_methods from django.views.decorators.csrf import csrf_exempt from django.core.exceptions import PermissionDenied from django.core.urlresolvers import reverse from django.http import HttpResponseBadRequest, HttpResponseNotFound, HttpResponseRedirect, HttpResponse, Http404 from util.json_request import JsonResponse from edxmako.shortcuts import render_to_response from xmodule.error_module import ErrorDescriptor from xmodule.modulestore.django import modulestore, loc_mapper from xmodule.contentstore.content import StaticContent from xmodule.modulestore.exceptions import ( ItemNotFoundError, InvalidLocationError) from xmodule.modulestore import Location from xmodule.fields import Date from contentstore.course_info_model import get_course_updates, update_course_updates, delete_course_update, get_course_update_items from contentstore.utils import ( get_lms_link_for_item, add_extra_panel_tab, remove_extra_panel_tab, get_modulestore) from contentstore.utils import send_mail_update from models.settings.course_details import CourseDetails, CourseSettingsEncoder from models.settings.course_grading import CourseGradingModel from models.settings.course_metadata import CourseMetadata from util.json_request import expect_json from .access import has_course_access from .tabs import initialize_course_tabs from .component import ( OPEN_ENDED_COMPONENT_TYPES, NOTE_COMPONENT_TYPES, ADVANCED_COMPONENT_POLICY_KEY) from django_comment_common.models import assign_default_role from django_comment_common.utils import seed_permissions_roles from student.models import CourseEnrollment,UserProfile,UploadFileForm from xmodule.html_module import AboutDescriptor from xmodule.modulestore.locator import BlockUsageLocator, CourseLocator from course_creators.views import get_course_creator_status, add_user_with_status_unrequested from contentstore import utils from student.roles import CourseInstructorRole, CourseStaffRole, CourseCreatorRole, GlobalStaff from student import auth from microsite_configuration import microsite __all__ = ['course_info_handler', 'course_handler', 'course_info_update_handler', 'settings_handler', 'grading_handler', 'advanced_settings_handler', 'calendar_settings_handler', 'calendar_common', 'calendar_common_addevent', 'calendar_common_deleteevent', 'calendar_common_updateevent', 'calendar_settings_getevents', 'textbooks_list_handler', 'textbooks_detail_handler', 'course_audit_api', 'institution_upload_teacher', 'remove_institute_teacher', 'teacher_intro_edit', 'import_student'] WENJUAN_STATUS = { "0": "未发布", "1": "收集中", "2": "已结束", "3": "暂停中", "4": "状态未明", "-1": "已删除", } def _get_locator_and_course(package_id, branch, version_guid, block_id, user, depth=0): """ Internal method used to calculate and return the locator and course module for the view functions in this file. """ locator = BlockUsageLocator(package_id=package_id, branch=branch, version_guid=version_guid, block_id=block_id) if not has_course_access(user, locator): raise PermissionDenied() course_location = loc_mapper().translate_locator_to_location(locator) course_module = modulestore().get_item(course_location, depth=depth) return locator, course_module def _get_institute(curr_user): course_org = "" u = UserProfile.objects.get(user_id=curr_user.id) if u.profile_role == 'in': course_org = u.name elif u.profile_role == 'th' and u.institute: course_org = UserProfile.objects.get(user_id=u.institute).name print course_org.encode('utf-8') return course_org # pylint: disable=unused-argument @login_required def course_handler(request, tag=None, package_id=None, branch=None, version_guid=None, block=None): """ The restful handler for course specific requests. It provides the course tree with the necessary information for identifying and labeling the parts. The root will typically be a 'course' object but may not be especially as we support modules. GET html: return course listing page if not given a course id html: return html page overview for the given course if given a course id json: return json representing the course branch's index entry as well as dag w/ all of the children replaced w/json docs where each doc has {'_id': , 'display_name': , 'children': } POST json: create a course, return resulting json descriptor (same as in GET course/...). Leaving off /branch/draft would imply create the course w/ default branches. Cannot change the structure contents ('_id', 'display_name', 'children') but can change the index entry. PUT json: update this course (index entry not xblock) such as repointing head, changing display name, org, package_id, prettyid. Return same json as above. DELETE json: delete this branch from this course (leaving off /branch/draft would imply delete the course) """ response_format = request.REQUEST.get('format', 'html') if response_format == 'json' or 'application/json' in request.META.get('HTTP_ACCEPT', 'application/json'): if request.method == 'GET': return JsonResponse(_course_json(request, package_id, branch, version_guid, block)) elif request.method == 'POST': # not sure if this is only post. If one will have ids, it goes after access return create_new_course(request) elif not has_course_access( request.user, BlockUsageLocator(package_id=package_id, branch=branch, version_guid=version_guid, block_id=block) ): raise PermissionDenied() elif request.method == 'PUT': raise NotImplementedError() elif request.method == 'DELETE': raise NotImplementedError() else: return HttpResponseBadRequest() elif request.method == 'GET': # assume html if package_id is None: return course_listing(request) else: return course_index(request, package_id, branch, version_guid, block) else: return HttpResponseNotFound() @login_required def _course_json(request, package_id, branch, version_guid, block): """ Returns a JSON overview of a course """ __, course = _get_locator_and_course( package_id, branch, version_guid, block, request.user, depth=None ) return _xmodule_json(course, course.location.course_id) def _xmodule_json(xmodule, course_id): """ Returns a JSON overview of an XModule """ locator = loc_mapper().translate_location( course_id, xmodule.location, published=False, add_entry_if_missing=True ) is_container = xmodule.has_children result = { 'display_name': xmodule.display_name, 'id': unicode(locator), 'category': xmodule.category, 'is_draft': getattr(xmodule, 'is_draft', False), 'is_container': is_container, } if is_container: result['children'] = [_xmodule_json(child, course_id) for child in xmodule.get_children()] return result def _accessible_courses_list(request): """ List all courses available to the logged in user by iterating through all the courses """ courses = modulestore('direct').get_courses() # filter out courses that we don't have access too def course_filter(course): """ Get courses to which this user has access """ if GlobalStaff().has_user(request.user): return course.location.course != 'templates' return (has_course_access(request.user, course.location) # pylint: disable=fixme # TODO remove this condition when templates purged from db and course.location.course != 'templates' ) courses = filter(course_filter, courses) return courses # pylint: disable=invalid-name def _accessible_courses_list_from_groups(request): """ List all courses available to the logged in user by reversing access group names """ courses_list = [] course_ids = set() user_staff_group_names = request.user.groups.filter( Q(name__startswith='instructor_') | Q(name__startswith='staff_') ).values_list('name', flat=True) # we can only get course_ids from role names with the new format (instructor_org/number/run or # instructor_org.number.run but not instructor_number). for user_staff_group_name in user_staff_group_names: # to avoid duplication try to convert all course_id's to format with dots e.g. "edx.course.run" if user_staff_group_name.startswith("instructor_"): # strip starting text "instructor_" course_id = user_staff_group_name[11:] else: # strip starting text "staff_" course_id = user_staff_group_name[6:] course_ids.add(course_id.replace('/', '.').lower()) for course_id in course_ids: # get course_location with lowercase id course_location = loc_mapper().translate_locator_to_location( CourseLocator(package_id=course_id), get_course=True, lower_only=True ) if course_location is None: raise ItemNotFoundError(course_id) course = modulestore('direct').get_course(course_location.course_id) courses_list.append(course) return courses_list @login_required @ensure_csrf_cookie def course_listing(request): """ List all courses available to the logged in user Try to get all courses by first reversing django groups and fallback to old method if it fails Note: overhead of pymongo reads will increase if getting courses from django groups fails """ if GlobalStaff().has_user(request.user): # user has global access so no need to get courses from django groups courses = _accessible_courses_list(request) else: try: courses = _accessible_courses_list_from_groups(request) except ItemNotFoundError: # user have some old groups or there was some error getting courses from django groups # so fallback to iterating through all courses courses = _accessible_courses_list(request) # update location entry in "loc_mapper" for user courses (add keys 'lower_id' and 'lower_course_id') for course in courses: loc_mapper().create_map_entry(course.location) def format_course_for_view(course): """ return tuple of the data which the view requires for each course """ # published = false b/c studio manipulates draft versions not b/c the course isn't pub'd course_loc = loc_mapper().translate_location( course.location.course_id, course.location, published=False, add_entry_if_missing=True ) return ( course.display_name, # note, couldn't get django reverse to work; so, wrote workaround course_loc.url_reverse('course/', ''), get_lms_link_for_item(course.location), course.display_org_with_default, course.display_number_with_default, course.location.name ) # questionnaire # KEY: site(required) user(required) ctime(required format yyyy-mm-dd HH:MM) email(required) mobile qparams = { "site": '99999', # TODO: settings.WENJUANSITEID "user": request.user.username, "ctime": datetime.now().strftime("%Y-%m-%d %H:%M"), "email": request.user.email } def sorted_url(params_hash={}): pkeys = params_hash.keys() pkeys.sort() demd5_str = hashlib.md5("".join([params_hash[k] for k in pkeys]) + settings.WENJUAN_SECKEY).hexdigest() return ("&".join(["".join([k, '=', v]) for k, v in params_hash.iteritems()]), demd5_str) # demd5_qparams_str = hashlib.md5("".join([qparams[k] for k in qparams_keys]) + "9d15a674a6e621058f1ea9171413b7c0").hexdigest() wenjuan_domain = settings.WENJUAN_DOMAIN wenjuan_loginapi = "{}/openapi/login?{}&md5={}".format(wenjuan_domain, *sorted_url(qparams)) # get questionnaire list qlist = [] try: list_url = "{}/openapi/proj_list?{}&md5={}".format(wenjuan_domain, *sorted_url(qparams)) timeout = 10 socket.setdefaulttimeout(timeout) req = urllib2.Request(list_url.replace(' ', '%20')) # {"status": 1, "respondent_count": 0, "proj_id": "AzaYja", "ctime": "2014-08-08 15:23", "title": "测试问卷", "type": "survey"} for wj in json.load(urllib2.urlopen(req)): """ list structure [ title, status, reponse, create time, q url result url ] """ qlist.append([ wj.get('title', "未知"), WENJUAN_STATUS[str(wj.get('status', 4))], wj.get('respondent_count', 0), wj.get('ctime', ''), "{}/s/{}".format(wenjuan_domain, wj.get('proj_id', '')), "{}/openapi/basic_chart/?{}&md5={}".format(wenjuan_domain, *sorted_url({"site": '99999', "user": request.user.username,"proj_id": wj.get("proj_id", "")})) ]) except: print "=====error===== " * 5 curr_user = User.objects.get(username=request.user) course_org = _get_institute(curr_user) profile = UserProfile.objects.get(user_id=curr_user.id) # get institute teacher user userprofile_list = UserProfile.objects.all() user_institute_teacher_list = [] for ul in userprofile_list: if ul.institute == str(profile.user_id) and ul.profile_role == 'th': u = User.objects.get(id=ul.user_id) content = { 'id': int(u.id), 'username': u.username.encode('utf8'), 'email': u.email.encode('utf8'), 'name': ul.name.encode('utf8') } user_institute_teacher_list.append(content) # import student user_student_list = [] for sl in userprofile_list: if sl.institute == str(profile.user_id) and sl.profile_role == 'st': s = User.objects.get(id=sl.user_id) student_context = { 'id': int(s.id), 'username': s.username.encode('utf8'), 'email': s.email.encode('utf8'), 'name': sl.name.encode('utf8') } user_student_list.append(student_context) return render_to_response('index.html', { 'courses': [format_course_for_view(c) for c in courses if not isinstance(c, ErrorDescriptor)], 'user': request.user, 'request_course_creator_url': reverse('contentstore.views.request_course_creator'), 'course_creator_status': _get_course_creator_status(request.user), 'course_org': course_org, 'wenjuan_link': wenjuan_loginapi, 'qlist': qlist, 'profile': profile, 'user_institute_teacher_list': user_institute_teacher_list, 'user_student_list': user_student_list }) @login_required @ensure_csrf_cookie def course_index(request, package_id, branch, version_guid, block): """ Display an editable course overview. org, course, name: Attributes of the Location for the item to edit """ locator, course = _get_locator_and_course( package_id, branch, version_guid, block, request.user, depth=3 ) lms_link = get_lms_link_for_item(course.location) sections = course.get_children() return render_to_response('overview.html', { 'context_course': course, 'lms_link': lms_link, 'sections': sections, 'course_graders': json.dumps( CourseGradingModel.fetch(locator).graders ), 'parent_locator': locator, 'new_section_category': 'chapter', 'new_subsection_category': 'sequential', 'new_unit_category': 'vertical', 'category': 'vertical' }) @expect_json def create_new_course(request): """ Create a new course. Returns the URL for the course overview page. """ if not auth.has_access(request.user, CourseCreatorRole()): raise PermissionDenied() org = request.json.get('org') number = request.json.get('number') display_name = request.json.get('display_name') course_category = request.json.get('course_category') course_level = request.json.get('course_level') course_price = request.json.get('course_price') run = request.json.get('run') try: dest_location = Location(u'i4x', org, number, u'course', run) except InvalidLocationError as error: return JsonResponse({ "ErrMsg": _("Unable to create course '{name}'.\n\n{err}").format( name=display_name, err=error.message)}) # see if the course already exists existing_course = None try: existing_course = modulestore('direct').get_item(dest_location) except ItemNotFoundError: pass if existing_course is not None: return JsonResponse({ 'ErrMsg': _( 'There is already a course defined with the same ' 'organization, course number, and course run. Please ' 'change either organization or course number to be ' 'unique.' ), 'OrgErrMsg': _( 'Please change either the organization or ' 'course number so that it is unique.' ), 'CourseErrMsg': _( 'Please change either the organization or ' 'course number so that it is unique.' ), }) # dhm: this query breaks the abstraction, but I'll fix it when I do my suspended refactoring of this # file for new locators. get_items should accept a query rather than requiring it be a legal location course_search_location = bson.son.SON({ '_id.tag': 'i4x', # cannot pass regex to Location constructor; thus this hack # pylint: disable=E1101 '_id.org': re.compile(u'^{}$'.format(dest_location.org), re.IGNORECASE | re.UNICODE), # pylint: disable=E1101 '_id.course': re.compile(u'^{}$'.format(dest_location.course), re.IGNORECASE | re.UNICODE), '_id.category': 'course', }) courses = modulestore().collection.find(course_search_location, fields=('_id')) if courses.count() > 0: return JsonResponse({ 'ErrMsg': _( 'There is already a course defined with the same ' 'organization and course number. Please ' 'change at least one field to be unique.'), 'OrgErrMsg': _( 'Please change either the organization or ' 'course number so that it is unique.'), 'CourseErrMsg': _( 'Please change either the organization or ' 'course number so that it is unique.'), }) # instantiate the CourseDescriptor and then persist it # note: no system to pass if display_name is None and course_category is None and course_level is None: metadata = {} else: metadata = {'display_name': display_name, 'course_category': course_category, 'course_level': course_level, 'course_price': course_price} modulestore('direct').create_and_save_xmodule( dest_location, metadata=metadata ) new_course = modulestore('direct').get_item(dest_location) # clone a default 'about' overview module as well dest_about_location = dest_location.replace( category='about', name='overview' ) overview_template = AboutDescriptor.get_template('overview.yaml') modulestore('direct').create_and_save_xmodule( dest_about_location, system=new_course.system, definition_data=overview_template.get('data') ) initialize_course_tabs(new_course, request.user) new_location = loc_mapper().translate_location(new_course.location.course_id, new_course.location, False, True) # can't use auth.add_users here b/c it requires request.user to already have Instructor perms in this course # however, we can assume that b/c this user had authority to create the course, the user can add themselves CourseInstructorRole(new_location).add_users(request.user) auth.add_users(request.user, CourseStaffRole(new_location), request.user) # seed the forums seed_permissions_roles(new_course.location.course_id) # auto-enroll the course creator in the course so that "View Live" will # work. CourseEnrollment.enroll(request.user, new_course.location.course_id) _users_assign_default_role(new_course.location) # begin change showanswer to attempted # it can also add other parameter on Advanced settings course_location = loc_mapper().translate_locator_to_location(new_location) course_module = get_modulestore(course_location).get_item(course_location) data_json = { "showanswer": "always", "course_audit": "1" } CourseMetadata.update_from_json(course_module, data_json, True, request.user) # end return JsonResponse({'url': new_location.url_reverse("course/", "")}) def _users_assign_default_role(course_location): """ Assign 'Student' role to all previous users (if any) for this course """ enrollments = CourseEnrollment.objects.filter(course_id=course_location.course_id) for enrollment in enrollments: assign_default_role(course_location.course_id, enrollment.user) # pylint: disable=unused-argument @login_required @ensure_csrf_cookie @require_http_methods(["GET"]) def course_info_handler(request, tag=None, package_id=None, branch=None, version_guid=None, block=None): """ GET html: return html for editing the course info handouts and updates. """ __, course_module = _get_locator_and_course( package_id, branch, version_guid, block, request.user ) if 'text/html' in request.META.get('HTTP_ACCEPT', 'text/html'): handouts_old_location = course_module.location.replace(category='course_info', name='handouts') handouts_locator = loc_mapper().translate_location( course_module.location.course_id, handouts_old_location, False, True ) update_location = course_module.location.replace(category='course_info', name='updates') update_locator = loc_mapper().translate_location( course_module.location.course_id, update_location, False, True ) return render_to_response( 'course_info.html', { 'context_course': course_module, 'updates_url': update_locator.url_reverse('course_info_update/'), 'handouts_locator': handouts_locator, 'base_asset_url': StaticContent.get_base_url_path_for_course_assets(course_module.location) + '/' } ) else: return HttpResponseBadRequest("Only supports html requests") # pylint: disable=unused-argument @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT", "DELETE")) @expect_json def course_info_update_handler(request, tag=None, package_id=None, branch=None, version_guid=None, block=None, provided_id=None): """ restful CRUD operations on course_info updates. provided_id should be none if it's new (create) and index otherwise. GET json: return the course info update models POST json: create an update PUT or DELETE json: change an existing update """ if 'application/json' not in request.META.get('HTTP_ACCEPT', 'application/json'): return HttpResponseBadRequest("Only supports json requests") course_location = loc_mapper().translate_locator_to_location( CourseLocator(package_id=package_id), get_course=True ) updates_location = course_location.replace(category='course_info', name=block) print request.path print 'course_location: ' , course_location print 'updates_location:', updates_location if provided_id == '': provided_id = None # check that logged in user has permissions to this item (GET shouldn't require this level?) if not has_course_access(request.user, updates_location): raise PermissionDenied() if request.method == 'GET': course_updates = get_course_updates(updates_location, provided_id) if isinstance(course_updates, dict) and course_updates.get('error'): return JsonResponse(get_course_updates(updates_location, provided_id), course_updates.get('status', 400)) else: return JsonResponse(get_course_updates(updates_location, provided_id)) elif request.method == 'DELETE': try: return JsonResponse(delete_course_update(updates_location, request.json, provided_id, request.user)) except: return HttpResponseBadRequest( "Failed to delete", content_type="text/plain" ) # can be either and sometimes django is rewriting one to the other: elif request.method in ('POST', 'PUT'): if request.json.get('is_send_mail','false')=='true': notice_course_update_to_student(request.json,course_location, package_id) try: return JsonResponse(update_course_updates(updates_location, request.json, provided_id, request.user)) except: return HttpResponseBadRequest( "Failed to save", content_type="text/plain" ) def notice_course_update_to_student(json,course_location,package_id): # 发送邮件给所有的注册学生 queue = Queue.Queue() course_module = modulestore().get_item(course_location, depth=0) sub = "课程 [" + course_module.display_name_with_default + '] 更新提醒' try: update_content = json['content'] update_content = "<p>感谢您参加人卫慕课"+course_module.display_name_with_default.encode("utf-8")+"课程,目前该门课程有新内容更新,具体如下:</p><p>"+"\n\n"+update_content+"\n\n"+"</p><p>为了保证您的学习进度,请尽快开始学习,"+course_module.display_name_with_default.encode("utf-8")+"课程团队竭诚为您服务。<br/>祝您学习愉快!<br/>"+course_module.display_name_with_default.encode("utf-8")+"课程团队</p>" student_email_list = analytics.basic.enrolled_students_features(package_id.replace(".", "/"), ['email']) print student_email_list student_data_email_list = [] for i in student_email_list: queue.put(i.values()[0]) for k in range(2): threadname = 'Thread' + str(k) send_mail_update(threadname, queue, update_content, sub) print 'success' # queue.join() except: raise print 'failure' @login_required @ensure_csrf_cookie @require_http_methods(("GET", "PUT", "POST")) @expect_json def settings_handler(request, tag=None, package_id=None, branch=None, version_guid=None, block=None): """ Course settings for dates and about pages GET html: get the page json: get the CourseDetails model PUT json: update the Course and About xblocks through the CourseDetails model """ locator, course_module = _get_locator_and_course( package_id, branch, version_guid, block, request.user ) if 'text/html' in request.META.get('HTTP_ACCEPT', '') and request.method == 'GET': upload_asset_url = locator.url_reverse('assets/') # see if the ORG of this course can be attributed to a 'Microsite'. In that case, the # course about page should be editable in Studio about_page_editable = not microsite.get_value_for_org( course_module.location.org, 'ENABLE_MKTG_SITE', settings.FEATURES.get('ENABLE_MKTG_SITE', False) ) short_description_editable = settings.FEATURES.get('EDITABLE_SHORT_DESCRIPTION', True) return render_to_response('settings.html', { 'context_course': course_module, 'course_locator': locator, 'lms_link_for_about_page': utils.get_lms_link_for_about_page(course_module.location), 'course_image_url': utils.course_image_url(course_module), 'details_url': locator.url_reverse('/settings/details/'), 'about_page_editable': about_page_editable, 'short_description_editable': short_description_editable, 'upload_asset_url': upload_asset_url }) elif 'application/json' in request.META.get('HTTP_ACCEPT', ''): if request.method == 'GET': return JsonResponse( CourseDetails.fetch(locator), # encoder serializes dates, old locations, and instances encoder=CourseSettingsEncoder ) else: # post or put, doesn't matter. return JsonResponse( CourseDetails.update_from_json(locator, request.json, request.user), encoder=CourseSettingsEncoder ) @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT", "DELETE")) @expect_json def grading_handler(request, tag=None, package_id=None, branch=None, version_guid=None, block=None, grader_index=None): """ Course Grading policy configuration GET html: get the page json no grader_index: get the CourseGrading model (graceperiod, cutoffs, and graders) json w/ grader_index: get the specific grader PUT json no grader_index: update the Course through the CourseGrading model json w/ grader_index: create or update the specific grader (create if index out of range) """ locator, course_module = _get_locator_and_course( package_id, branch, version_guid, block, request.user ) if 'text/html' in request.META.get('HTTP_ACCEPT', '') and request.method == 'GET': course_details = CourseGradingModel.fetch(locator) return render_to_response('settings_graders.html', { 'context_course': course_module, 'course_locator': locator, 'course_details': json.dumps(course_details, cls=CourseSettingsEncoder), 'grading_url': locator.url_reverse('/settings/grading/'), }) elif 'application/json' in request.META.get('HTTP_ACCEPT', ''): if request.method == 'GET': if grader_index is None: return JsonResponse( CourseGradingModel.fetch(locator), # encoder serializes dates, old locations, and instances encoder=CourseSettingsEncoder ) else: return JsonResponse(CourseGradingModel.fetch_grader(locator, grader_index)) elif request.method in ('POST', 'PUT'): # post or put, doesn't matter. # None implies update the whole model (cutoffs, graceperiod, and graders) not a specific grader if grader_index is None: return JsonResponse( CourseGradingModel.update_from_json(locator, request.json, request.user), encoder=CourseSettingsEncoder ) else: return JsonResponse( CourseGradingModel.update_grader_from_json(locator, request.json, request.user) ) elif request.method == "DELETE" and grader_index is not None: CourseGradingModel.delete_grader(locator, grader_index, request.user) return JsonResponse() # pylint: disable=invalid-name def _config_course_advanced_components(request, course_module): """ Check to see if the user instantiated any advanced components. This is a hack that does the following : 1) adds/removes the open ended panel tab to a course automatically if the user has indicated that they want to edit the combinedopendended or peergrading module 2) adds/removes the notes panel tab to a course automatically if the user has indicated that they want the notes module enabled in their course """ # TODO refactor the above into distinct advanced policy settings filter_tabs = True # Exceptional conditions will pull this to False if ADVANCED_COMPONENT_POLICY_KEY in request.json: # Maps tab types to components tab_component_map = { 'open_ended': OPEN_ENDED_COMPONENT_TYPES, 'notes': NOTE_COMPONENT_TYPES, } # Check to see if the user instantiated any notes or open ended # components for tab_type in tab_component_map.keys(): component_types = tab_component_map.get(tab_type) found_ac_type = False for ac_type in component_types: if ac_type in request.json[ADVANCED_COMPONENT_POLICY_KEY]: # Add tab to the course if needed changed, new_tabs = add_extra_panel_tab(tab_type, course_module) # If a tab has been added to the course, then send the # metadata along to CourseMetadata.update_from_json if changed: course_module.tabs = new_tabs request.json.update({'tabs': new_tabs}) # Indicate that tabs should not be filtered out of # the metadata filter_tabs = False # Set this flag to avoid the tab removal code below. found_ac_type = True #break # If we did not find a module type in the advanced settings, # we may need to remove the tab from the course. if not found_ac_type: # Remove tab from the course if needed changed, new_tabs = remove_extra_panel_tab(tab_type, course_module) if changed: course_module.tabs = new_tabs request.json.update({'tabs':new_tabs}) # Indicate that tabs should *not* be filtered out of # the metadata filter_tabs = False return filter_tabs @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT")) @expect_json def calendar_common(request, course_id): """ Course settings configuration GET html: get the page json: get the model PUT, POST json: update the Course's settings. The payload is a json rep of the metadata dicts. The dict can include a "unsetKeys" entry which is a list of keys whose values to unset: i.e., revert to default """ return render_to_response('calendar_common.html', { }) @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT")) @expect_json def calendar_settings_handler(request, package_id=None, branch=None, version_guid=None, block=None, tag=None): locator, course_module = _get_locator_and_course( package_id, branch, version_guid, block, request.user ) if 'text/html' in request.META.get('HTTP_ACCEPT', '') and request.method == 'GET': return render_to_response('settings_calendar.html', { 'package_id': package_id, 'context_course': course_module, 'advanced_dict': json.dumps(CourseMetadata.fetch(course_module)), 'advanced_settings_url': locator.url_reverse('settings/calendar') }) elif 'application/json' in request.META.get('HTTP_ACCEPT', ''): if request.method == 'GET': return JsonResponse(CourseMetadata.fetch(course_module)) else: # Whether or not to filter the tabs key out of the settings metadata filter_tabs = _config_course_advanced_components(request, course_module) try: return JsonResponse(CourseMetadata.update_from_json( course_module, request.json, filter_tabs=filter_tabs, user=request.user, )) except (TypeError, ValueError) as err: return HttpResponseBadRequest( "Incorrect setting format. {}".format(err), content_type="text/plain" ) @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT")) @expect_json def calendar_common_addevent(request,course_id): return JsonResponse(modulestore("course_calendar").save_event(course_id,{"title":request.GET.get("title"),"start":request.GET.get("start"),"end":request.GET.get("end")})) @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT")) @expect_json def calendar_common_delevent(request,course_id): print request.GET.get("title") print request.GET.get("start") print request.GET.get("end") return modulestore("course_calendar")._get_cals() @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT")) @expect_json def calendar_common_updateevent(request,course_id): event_id = request.GET.get("id") start = request.GET.get("start") end = request.GET.get("end") title = request.GET.get("title") modulestore("course_calendar").update_event(course_id,event_id,{"title":title, "start": start, "end": end}) return JsonResponse({"success":1}) @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT")) @expect_json def calendar_settings_getevents(request, course_id): events_json = [] for event in modulestore("course_calendar").range_events(course_id,request.GET.get("start"),request.GET.get("end")): events_json.append({"id":event["id"],"title":event["calendar"]["title"],"start":event["calendar"]["start"],"end":event["calendar"]["end"]}) return JsonResponse(events_json) @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT")) @expect_json def calendar_common_deleteevent(request, course_id): events_json = [] modulestore("course_calendar").delete_event(request.GET.get("delete_id")) return JsonResponse({"success":1}) @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT")) @expect_json def advanced_settings_handler(request, package_id=None, branch=None, version_guid=None, block=None, tag=None): """ Course settings configuration GET html: get the page json: get the model PUT, POST json: update the Course's settings. The payload is a json rep of the metadata dicts. The dict can include a "unsetKeys" entry which is a list of keys whose values to unset: i.e., revert to default """ locator, course_module = _get_locator_and_course( package_id, branch, version_guid, block, request.user ) if 'text/html' in request.META.get('HTTP_ACCEPT', '') and request.method == 'GET': return render_to_response('settings_advanced.html', { 'context_course': course_module, 'advanced_dict': json.dumps(CourseMetadata.fetch(course_module)), 'advanced_settings_url': locator.url_reverse('settings/advanced') }) elif 'application/json' in request.META.get('HTTP_ACCEPT', ''): if request.method == 'GET': return JsonResponse(CourseMetadata.fetch(course_module)) else: # Whether or not to filter the tabs key out of the settings metadata filter_tabs = _config_course_advanced_components(request, course_module) try: return JsonResponse(CourseMetadata.update_from_json( course_module, request.json, filter_tabs=filter_tabs, user=request.user, )) except (TypeError, ValueError) as err: return HttpResponseBadRequest( "Incorrect setting format. {}".format(err), content_type="text/plain" ) class TextbookValidationError(Exception): "An error thrown when a textbook input is invalid" pass def validate_textbooks_json(text): """ Validate the given text as representing a single PDF textbook """ try: textbooks = json.loads(text) except ValueError: raise TextbookValidationError("invalid JSON") if not isinstance(textbooks, (list, tuple)): raise TextbookValidationError("must be JSON list") for textbook in textbooks: validate_textbook_json(textbook) # check specified IDs for uniqueness all_ids = [textbook["id"] for textbook in textbooks if "id" in textbook] unique_ids = set(all_ids) if len(all_ids) > len(unique_ids): raise TextbookValidationError("IDs must be unique") return textbooks def validate_textbook_json(textbook): """ Validate the given text as representing a list of PDF textbooks """ if isinstance(textbook, basestring): try: textbook = json.loads(textbook) except ValueError: raise TextbookValidationError("invalid JSON") if not isinstance(textbook, dict): raise TextbookValidationError("must be JSON object") if not textbook.get("tab_title"): raise TextbookValidationError("must have tab_title") tid = unicode(textbook.get("id", "")) if tid and not tid[0].isdigit(): raise TextbookValidationError("textbook ID must start with a digit") return textbook def assign_textbook_id(textbook, used_ids=()): """ Return an ID that can be assigned to a textbook and doesn't match the used_ids """ tid = Location.clean(textbook["tab_title"]) if not tid[0].isdigit(): # stick a random digit in front tid = random.choice(string.digits) + tid while tid in used_ids: # add a random ASCII character to the end tid = tid + random.choice(string.ascii_lowercase) return tid @require_http_methods(("GET", "POST", "PUT")) @login_required @ensure_csrf_cookie def textbooks_list_handler(request, tag=None, package_id=None, branch=None, version_guid=None, block=None): """ A RESTful handler for textbook collections. GET html: return textbook list page (Backbone application) json: return JSON representation of all textbooks in this course POST json: create a new textbook for this course PUT json: overwrite all textbooks in the course with the given list """ locator, course = _get_locator_and_course( package_id, branch, version_guid, block, request.user ) store = get_modulestore(course.location) if not "application/json" in request.META.get('HTTP_ACCEPT', 'text/html'): # return HTML page upload_asset_url = locator.url_reverse('assets/', '') textbook_url = locator.url_reverse('/textbooks') return render_to_response('textbooks.html', { 'context_course': course, 'textbooks': course.pdf_textbooks, 'upload_asset_url': upload_asset_url, 'textbook_url': textbook_url, }) # from here on down, we know the client has requested JSON if request.method == 'GET': return JsonResponse(course.pdf_textbooks) elif request.method == 'PUT': try: textbooks = validate_textbooks_json(request.body) except TextbookValidationError as err: return JsonResponse({"error": err.message}, status=400) tids = set(t["id"] for t in textbooks if "id" in t) for textbook in textbooks: if not "id" in textbook: tid = assign_textbook_id(textbook, tids) textbook["id"] = tid tids.add(tid) if not any(tab['type'] == 'pdf_textbooks' for tab in course.tabs): course.tabs.append({"type": "pdf_textbooks"}) course.pdf_textbooks = textbooks store.update_item(course, request.user.id) return JsonResponse(course.pdf_textbooks) elif request.method == 'POST': # create a new textbook for the course try: textbook = validate_textbook_json(request.body) except TextbookValidationError as err: return JsonResponse({"error": err.message}, status=400) if not textbook.get("id"): tids = set(t["id"] for t in course.pdf_textbooks if "id" in t) textbook["id"] = assign_textbook_id(textbook, tids) existing = course.pdf_textbooks existing.append(textbook) course.pdf_textbooks = existing if not any(tab['type'] == 'pdf_textbooks' for tab in course.tabs): tabs = course.tabs tabs.append({"type": "pdf_textbooks"}) course.tabs = tabs store.update_item(course, request.user.id) resp = JsonResponse(textbook, status=201) resp["Location"] = locator.url_reverse('textbooks', textbook["id"]).encode("utf-8") return resp @login_required @ensure_csrf_cookie @require_http_methods(("GET", "POST", "PUT", "DELETE")) def textbooks_detail_handler(request, tid, tag=None, package_id=None, branch=None, version_guid=None, block=None): """ JSON API endpoint for manipulating a textbook via its internal ID. Used by the Backbone application. GET json: return JSON representation of textbook POST or PUT json: update textbook based on provided information DELETE json: remove textbook """ __, course = _get_locator_and_course( package_id, branch, version_guid, block, request.user ) store = get_modulestore(course.location) matching_id = [tb for tb in course.pdf_textbooks if unicode(tb.get("id")) == unicode(tid)] if matching_id: textbook = matching_id[0] else: textbook = None if request.method == 'GET': if not textbook: return JsonResponse(status=404) return JsonResponse(textbook) elif request.method in ('POST', 'PUT'): # can be either and sometimes # django is rewriting one to the other try: new_textbook = validate_textbook_json(request.body) except TextbookValidationError as err: return JsonResponse({"error": err.message}, status=400) new_textbook["id"] = tid if textbook: i = course.pdf_textbooks.index(textbook) new_textbooks = course.pdf_textbooks[0:i] new_textbooks.append(new_textbook) new_textbooks.extend(course.pdf_textbooks[i + 1:]) course.pdf_textbooks = new_textbooks else: course.pdf_textbooks.append(new_textbook) store.update_item(course, request.user.id) return JsonResponse(new_textbook, status=201) elif request.method == 'DELETE': if not textbook: return JsonResponse(status=404) i = course.pdf_textbooks.index(textbook) new_textbooks = course.pdf_textbooks[0:i] new_textbooks.extend(course.pdf_textbooks[i + 1:]) course.pdf_textbooks = new_textbooks store.update_item(course, request.user.id) return JsonResponse() def _get_course_creator_status(user): """ Helper method for returning the course creator status for a particular user, taking into account the values of DISABLE_COURSE_CREATION and ENABLE_CREATOR_GROUP. If the user passed in has not previously visited the index page, it will be added with status 'unrequested' if the course creator group is in use. """ if user.is_staff: course_creator_status = 'granted' elif settings.FEATURES.get('DISABLE_COURSE_CREATION', False): course_creator_status = 'disallowed_for_this_site' elif settings.FEATURES.get('ENABLE_CREATOR_GROUP', False): course_creator_status = get_course_creator_status(user) if course_creator_status is None: # User not grandfathered in as an existing user, has not previously visited the dashboard page. # Add the user to the course creator admin table with status 'unrequested'. add_user_with_status_unrequested(user) course_creator_status = get_course_creator_status(user) else: course_creator_status = 'granted' return course_creator_status @csrf_exempt def course_audit_api(request, course_id, operation): re_json = {"success": False} request_method = request.method if request_method != "POST": return JsonResponse(re_json) # get course location and module infomation try: course_location_info = course_id.split('.') locator = BlockUsageLocator(package_id=course_id, branch='draft', version_guid=None, block_id=course_location_info[-1]) course_location = loc_mapper().translate_locator_to_location(locator) course_module = get_modulestore(course_location).get_item(course_location) instructors = CourseInstructorRole(locator).users_with_role() if len(instructors) <= 0: return JsonResponse(re_json) user = instructors[0] meta_json = {} if operation == "pass": meta_json["course_audit"] = 1 elif operation == "offline": meta_json["course_audit"] = 0 else: return JsonResponse(re_json) re_json["success"] = True CourseMetadata.update_from_json(course_module, meta_json, True, user) return JsonResponse(re_json) except: return JsonResponse(re_json) @csrf_exempt def institution_upload_teacher(request): messg='' if request.method == 'POST': use_id = request.GET['id'] form = UploadFileForm(request.POST, request.FILES) if form.is_valid(): filename = form.cleaned_data['file'] filename_suffix = filename.name.split('.')[-1] if filename_suffix == 'xls' or filename_suffix == 'xlsx': f = handle_uploaded_file(filename) os.chmod(f, 0o777) xls_insert_into_db(request, f, use_id) messg = '教师导入成功' else: messg = '上传文件要为excel格式' else: form = UploadFileForm() return JsonResponse({'messg': messg}) def handle_uploaded_file(f): f_path = PROJECT_ROOT + '/static/upload/'+f.name.encode('utf8') with open(f_path.encode('utf8'), 'wb+') as info: for chunk in f.chunks(): info.write(chunk) return f_path.encode('utf8') def xls_insert_into_db(request, xlsfile, instutition_id): wb = xlrd.open_workbook(xlsfile) sh = wb.sheet_by_index(0) rows = sh.nrows def as_display_string(cell): if cell.ctype in (2,3): cell_value = int(cell.value) else: cell_value = cell.value return str(cell_value).strip() for i in range(1, rows): username = sh.cell(i, 2).value email = sh.cell(i, 0).value password = as_display_string(sh.cell(i, 1)) name = sh.cell(i, 3).value post_vars = { 'username': username, 'email': email, 'password': password, 'name': name } do_institution_import_teacher_create_account(post_vars, instutition_id) return HttpResponseRedirect('/course') def remove_institute_teacher(request): institute_id = request.GET['id'] profile_user = UserProfile.objects.get(user_id=institute_id) profile_user.institute = None profile_user.save() return JsonResponse('/course') @login_required @ensure_csrf_cookie def teacher_intro_edit(request, id): if request.user.id !=int(id): raise Http404 if request.method == 'POST': picurl = request.POST.get('picurl', '').strip() shortbio = request.POST.get('shortbio', '') profile = UserProfile.objects.get(user_id=id) if picurl: if not picurl.startswith('http://'): picurl = 'http://' + picurl profile.picurl = picurl profile.shortbio = shortbio profile.save() else: profile = UserProfile.objects.get(user_id=id) if not profile.shortbio: profile.shortbio = "" return render_to_response('teacher_intro_edit.html', {'profile':profile}) # import_student @csrf_exempt def import_student(request): messg='' if request.method == 'POST': use_id = request.GET['id'] print use_id form = UploadFileForm(request.POST, request.FILES) if form.is_valid(): filename = form.cleaned_data['file'] filename_suffix = filename.name.split('.')[-1] if filename_suffix == 'xls' or filename_suffix == 'xlsx': f = handle_uploaded_file(filename) os.chmod(f, 0o777) xls_student_insert_into_db(request, f, use_id) messg = '学生导入成功' else: messg = '导入文件要为excel格式' else: form = UploadFileForm() return JsonResponse({'messg': messg}) def xls_student_insert_into_db(request, xlsfile, instutition_id): wb = xlrd.open_workbook(xlsfile) sh = wb.sheet_by_index(0) rows = sh.nrows def as_display_string(cell): if cell.ctype in (2,3): cell_value = int(cell.value) else: cell_value = cell.value return str(cell_value).strip() for i in range(1, rows): username = sh.cell(i, 2).value email = sh.cell(i, 0).value password = as_display_string(sh.cell(i, 1)) name = sh.cell(i, 3).value post_vars = { 'username': username, 'email': email, 'password': password, 'name': name } if len(User.objects.filter(username=post_vars['username'])) > 0: post_vars['username'] = post_vars['username'] + str(random.randint(0,10000)) do_institution_import_student_create_account(post_vars, instutition_id) return HttpResponseRedirect('/course')
agpl-3.0
6,436,884,706,447,725,000
38.430714
338
0.633716
false
3.935762
false
false
false
cuoretech/dowork
dowork/Model/Comment.py
1
5452
from database_config import * from py2neo import neo4j, node import json # Class : Blog # Methods: # 1) db_init(self) - Private # 2) getNode(self) - Returns the Comment Node # 3) getName(self) - Returns name of Comment # 4) setDescription(self, description) - Takes description as a string # 5) getDescription(self) - Returns description # 6) setContent(self, content) - Takes content in as a string # 7) getContent(self) - Returns content as a string # 8) setTime(self, time) - Set the time of when the post was created (in millis) # 9) getTime(self) - Gets the time in millis # 12) setOwner(self, owner) - owner is a User node, Owner.getNode() # 13) getOwner(self) - Returns a User Node # Constants: class Comment: graph_db = None commentInstance = None def db_init(self): if self.graph_db is None: self.graph_db = neo4j.GraphDatabaseService(db_config['uri']) # # Function : getNode # Arguments : # Returns : instance Node # def getNode(self): return self.commentInstance # # Function : Constructor # Arguments : Uri of Existing Blog Node OR Name of Blog # def __init__(self, URI=None, Name=None, Content=None, Owner=None, Parent=None): global LBL_COMMENT self.db_init() temp = None if URI is not None: temp = neo4j.Node(URI) elif Name is not None: temp, = self.graph_db.create({"name": Name}) temp.add_labels(LBL_COMMENT) else: raise Exception("Name or URI not specified") self.commentInstance = temp if Content is not None: self.commentInstance["content"] = Content if Owner is not None: global REL_CREATEDBY, LBL_USER if LBL_USER in Owner.get_labels(): self.commentInstance.get_or_create_path(REL_CREATEDBY, Owner) else: raise Exception("The Node Provided is not a User") if Parent is not None: global REL_HASCOMMENT, LBL_TASK, LBL_POST, LBL_EVENT if (LBL_TASK in Parent.get_labels()) or (LBL_POST in Parent.get_labels()): Parent.get_or_create_path(REL_HASCOMMENT, self.commentInstance) # # Function : getName # Arguments : # Returns : name of blog # def getName(self): if self.commentInstance is not None: return self.commentInstance["name"] else: return None # # Function : setDescription # Arguments : (String) description # def setDescription(self, description): self.commentInstance["description"] = description # # Function : getDescription # Arguments : # Returns : (String) description # def getDescription(self): return self.commentInstance["description"] # # Function : setContent # Arguments : String content # Returns : # def setContent(self, content): self.commentInstance["content"] = content # # Function : getContent # Arguments : # Returns : (String) content # def getContent(self): return self.commentInstance["content"] # # Function : setTime # Arguments : String time (in milliseconds) # Returns : # def setTime(self, time): self.commentInstance["time"] = time # # Function : getTime # Arguments : # Returns : (String) time # def getTime(self): return self.commentInstance["time"] # # Function : setOwner # Arguments : (User Node) owner # Returns : a 'Path' object containing nodes and relationships used # def setOwner(self, owner): global HAS_OWNER, LBL_USER if LBL_USER in owner.get_labels(): return self.commentInstance.get_or_create_path(REL_HASOWNER, owner) else: raise Exception("The Node Provided is not a User") # # Function : getOwner # Arguments : # Returns : a Owner Node or None (if there is no node) # def getOwner(self): global REL_HASOWNER relationships = list(self.commentInstance.match_outgoing(REL_HASOWNER)) if len(relationships) != 0: return relationships[0].end_node else: return None # # Function : setParent # Arguments : (Task or Post or Comment Node) parent # Returns : a 'Path' object containing nodes and relationships used # def setParent(self, parent): global REL_HASCOMMENT, LBL_POST, LBL_TASK, LBL_COMMENT if (LBL_POST in parent.get_labels()) \ or (LBL_TASK in parent.get_labels()) \ or (LBL_COMMENT in parent.get_labels()): return parent.get_or_create_path(REL_HASCOMMENT, self.commentInstance) else: raise Exception("The Node Provided is not a Post or Task") # # Function : getParent # Arguments : # Returns : a Parent Node or None (if there is no node) # def getParent(self): global REL_HASCOMMENT relationships = list(self.commentInstance.match_incoming(REL_HASCOMMENT)) if len(relationships) != 0: return relationships[0].start_node else: return None
apache-2.0
5,440,216,274,128,202,000
29.458101
111
0.586574
false
3.850282
false
false
false
stormrose-va/xobox
xobox/utils/loader.py
1
3215
# -*- coding: utf-8 -*- """ xobox.utils.loader ~~~~~~~~~~~~~~~~~~ :copyright: Copyright 2017 by the Stormrose Project team, see AUTHORS. :license: MIT License, see LICENSE for details. """ import importlib import os from xobox.utils import filters def detect_class_modules(mod, parent=object): """ Detect available class modules or packages and return a dictionary of valid class names, referring to the module they are contained within. :param str mod: the module or package to be scanned for classes :param parent: the class potential candidates must be derived off :returns: dictionary of detected classes, mapping the class name to the module name in which the class has been detected """ # initialise result dictionary result = {} candidates = [] # get a list of all files and directories inside the module try: package_instance = importlib.import_module(mod) except ImportError: return result pkg_file = os.path.splitext(package_instance.__file__) if pkg_file[0][-8:] == '__init__' and pkg_file[1][1:3] == 'py': # it's a package, so we have to look for modules gen_dir = os.listdir(os.path.dirname(os.path.realpath(package_instance.__file__))) # only consider modules and packages, and exclude the base module for file_candidate in filter(filters.modules, gen_dir): # Python files are modules; the name needs to be without file ending if file_candidate[-3:] == '.py': file_candidate = file_candidate[:-3] # try if the detected package or module can be imported try: class_module_candidate = importlib.import_module('.'.join([mod, file_candidate])) except ImportError: class_module_candidate = None # if the module or module could be imported, append it to the list of candidate modules. if class_module_candidate: candidates.append(class_module_candidate) else: candidates.append(package_instance) # test if any of the candidates contain # classes derived from the parent class for candidate in candidates: for member_candidate in filter(filters.members, dir(candidate)): try: if issubclass(getattr(candidate, member_candidate), parent) \ and getattr(candidate, member_candidate).__name__ != parent.__name__: result[member_candidate] = candidate.__name__ except TypeError: pass # return the dictionary return result def load_member(mod, member): """ Load a member (function, class, ...) from a module and return it :param str mod: the module or package name where the class should be loaded from :param str member: the name of the member to be loaded :returns: reference to the loaded member (i. e. class or function pointer) """ try: mod = importlib.import_module(mod) except ImportError: return None try: result = getattr(mod, member) except AttributeError: return None return result
mit
-4,367,746,705,474,805,000
33.945652
100
0.63297
false
4.606017
false
false
false
hideaki-t/sqlite-fts-python
tests/test_many.py
1
3058
from __future__ import print_function, unicode_literals import sqlite3 import os import tempfile from faker import Factory import pytest import sqlitefts as fts from sqlitefts import fts5 igo = pytest.importorskip('igo') fake = Factory.create('ja_JP') class IgoTokenizer(fts.Tokenizer): def __init__(self, path=None): self.tagger = igo.tagger.Tagger(path) def tokenize(self, text): for m in self.tagger.parse(text): start = len(text[:m.start].encode('utf-8')) yield m.surface, start, start + len(m.surface.encode('utf-8')) class IgoTokenizer5(fts5.FTS5Tokenizer): def __init__(self, path=None): self.tagger = igo.tagger.Tagger(path) def tokenize(self, text, flags=None): for m in self.tagger.parse(text): start = len(text[:m.start].encode('utf-8')) yield m.surface, start, start + len(m.surface.encode('utf-8')) @pytest.fixture def conn(): f, db = tempfile.mkstemp() try: os.close(f) c = sqlite3.connect(db) create_table(c) yield c c.close() finally: os.remove(db) @pytest.fixture def nr(): return 10000 def create_table(c): fts.register_tokenizer(c, 'igo', fts.make_tokenizer_module(IgoTokenizer())) fts5.register_tokenizer(c, 'igo', fts5.make_fts5_tokenizer(IgoTokenizer5())) c.execute("CREATE VIRTUAL TABLE fts USING FTS4(tokenize=igo)") c.execute("CREATE VIRTUAL TABLE fts5 USING FTS5(w, tokenize=igo)") def test_insert_many_each(conn, nr): with conn: for i in range(nr): conn.execute('INSERT INTO fts VALUES(?)', [fake.address()]) conn.execute('INSERT INTO fts5 VALUES(?)', [fake.address()]) assert conn.execute("SELECT COUNT(*) FROM fts").fetchall()[0][0] == nr assert conn.execute("SELECT COUNT(*) FROM fts5").fetchall()[0][0] == nr def test_insert_many_many(conn, nr): with conn: conn.executemany('INSERT INTO fts VALUES(?)', ([fake.address()] for _ in range(nr))) conn.executemany('INSERT INTO fts5 VALUES(?)', ([fake.address()] for _ in range(nr))) assert conn.execute("SELECT COUNT(*) FROM fts").fetchall()[0][0] == nr assert conn.execute("SELECT COUNT(*) FROM fts5").fetchall()[0][0] == nr def test_insert_many_use_select(conn, nr): with conn: conn.executemany('INSERT INTO fts VALUES(?)', ([fake.address()] for _ in range(nr))) conn.executemany('INSERT INTO fts5 VALUES(?)', ([fake.address()] for _ in range(nr))) with conn: conn.execute('INSERT INTO fts SELECT * FROM fts') conn.execute('INSERT INTO fts5 SELECT * FROM fts5') assert conn.execute("SELECT COUNT(*) FROM fts").fetchall()[0][0] == nr * 2 assert conn.execute("SELECT COUNT(*) FROM fts5").fetchall()[0][0] == nr * 2
mit
4,999,511,117,820,486,000
32.604396
79
0.581099
false
3.589202
true
false
false
kooksee/TIOT
test/project/src/app/proto/protocol/LightProtocol.py
1
3560
# encoding=utf-8 import binascii import json from twisted.internet.protocol import Protocol class LightProtocol(Protocol): def __init__(self): self.ip = '' self.port = '' def connectionMade(self): # import socket #self.transport.socket._sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) #在客户端连接上那一瞬间就会触发服务器,然后服务器开始循环发送数据 self.ip = str(self.transport.client[0]) self.port = str(self.transport.client[1]) self.factory.numProtocols += 1 print 'conn build From ip:' + self.ip + ' port:' + self.port print 'current conn num is ' + str(self.factory.numProtocols) + "\n" self.divName = self.ip + ":" + self.port + "##" + self.__class__.__name__ self.factory.controller.add_client(self.divName, self.transport) # import threading # timer = threading.Timer(0, self.dataReceived, [""]) # timer.start() return def connectionLost(self, reason): print 'conn lost reason --> ' + str(reason) self.factory.numProtocols -= 1 print 'conn lost. ip:' + self.ip + ' port:' + self.port print 'current conn num is ' + str(self.factory.numProtocols) + "\n" self.factory.controller.del_client(self.divName) return def dataReceived(self, data): # print 'recv data from ip:' + self.ip + ' port:' + self.port + ' data:' + "\n" + data kdiv = self.factory.controller.online_session # data = str(data) data_hex = '' data_hex1 = '' if data == '1': data_hex = ' 7e 00 16 10 00 00 7d 33 a2 00 40 71 54 0a ff fe 00 00 01 00 00 01 00 00 00 00 2c' data_hex = str(bytearray.fromhex(data_hex))#无 data_hex1 = '7e 00 16 10 00 00 7d 33 a2 00 40 71 53 bc ff fe 00 00 01 00 00 01 00 00 00 00 7b' data_hex1 = str(bytearray.fromhex(data_hex1))#风扇 print data_hex elif data == '2': data_hex = ' 7e 00 16 10 00 00 7d 33 a2 00 40 71 54 0a ff fe 00 00 01 00 00 02 00 00 00 00 2b' data_hex = str(bytearray.fromhex(data_hex))#灯 print data_hex data_hex1 = '7e 00 16 10 00 00 7d 33 a2 00 40 71 53 bc ff fe 00 00 01 00 00 02 00 00 00 00 7a' data_hex1 = str(bytearray.fromhex(data_hex1))#灯 elif data == '3': data_hex = ' 7e 00 16 10 00 00 7d 33 a2 00 40 71 54 0a ff fe 00 00 01 00 00 03 00 00 00 00 2a' data_hex = str(bytearray.fromhex(data_hex)) print data_hex data_hex1 = '7e 00 16 10 00 00 7d 33 a2 00 40 71 53 bc ff fe 00 00 01 00 00 03 00 00 00 00 79' data_hex1 = str(bytearray.fromhex(data_hex1)) elif data == '0': data_hex = ' 7e 00 16 10 00 00 7d 33 a2 00 40 71 54 0a ff fe 00 00 01 00 00 00 00 00 00 00 2d' data_hex = str(bytearray.fromhex(data_hex)) print data_hex data_hex1 = '7e 00 16 10 00 00 7d 33 a2 00 40 71 53 bc ff fe 00 00 01 00 00 00 00 00 00 00 7c' data_hex1 = str(bytearray.fromhex(data_hex1)) for div in kdiv: if div == self.divName: print "设备" + div + "正在把数据-->" for div in kdiv: # print div.split("##")[-1]," ",self.__class__.__name__ if div.split("##")[-1] == self.__class__.__name__: kdiv[div].write(data_hex) kdiv[div].write(data_hex1) print div print "传递给:" + div print "\n" return
gpl-2.0
-6,347,997,613,682,692,000
35.125
106
0.563437
false
3.118705
false
false
false
manuvarkey/cmbautomiser
cmbautomiser/openpyxl/descriptors/excel.py
1
2252
from __future__ import absolute_import #copyright openpyxl 2010-2015 """ Excel specific descriptors """ from openpyxl.xml.constants import REL_NS from openpyxl.compat import safe_string from openpyxl.xml.functions import Element from . import ( MatchPattern, MinMax, Integer, String, Typed, Sequence, ) from .serialisable import Serialisable from openpyxl.utils.cell import RANGE_EXPR class HexBinary(MatchPattern): pattern = "[0-9a-fA-F]+$" class UniversalMeasure(MatchPattern): pattern = r"[0-9]+(\.[0-9]+)?(mm|cm|in|pt|pc|pi)" class TextPoint(MinMax): """ Size in hundredths of points. In theory other units of measurement can be used but these are unbounded """ expected_type = int min = -400000 max = 400000 Coordinate = Integer class Percentage(MatchPattern): pattern = r"((100)|([0-9][0-9]?))(\.[0-9][0-9]?)?%" class Extension(Serialisable): uri = String() def __init__(self, uri=None, ): self.uri = uri class ExtensionList(Serialisable): ext = Sequence(expected_type=Extension) def __init__(self, ext=(), ): self.ext = ext class Relation(String): namespace = REL_NS allow_none = True class Base64Binary(MatchPattern): # http://www.w3.org/TR/xmlschema11-2/#nt-Base64Binary pattern = "^(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2}==|[A-Za-z0-9+/]{3}=|[A-Za-z0-9+/]{4})$" class Guid(MatchPattern): # https://msdn.microsoft.com/en-us/library/dd946381(v=office.12).aspx pattern = r"{[0-9A-F]{8}-[0-9A-F]{4}-[0-9A-F]{4}-[0-9A-F]{4}-[0-9A-F]{12}\}" class CellRange(MatchPattern): pattern = r"^[$]?([A-Za-z]{1,3})[$]?(\d+)(:[$]?([A-Za-z]{1,3})[$]?(\d+)?)?$|^[A-Za-z]{1,3}:[A-Za-z]{1,3}$" allow_none = True def __set__(self, instance, value): if value is not None: value = value.upper() super(CellRange, self).__set__(instance, value) def _explicit_none(tagname, value, namespace=None): """ Override serialisation because explicit none required """ if namespace is not None: tagname = "{%s}%s" % (namespace, tagname) return Element(tagname, val=safe_string(value))
gpl-3.0
-4,408,916,376,172,166,000
20.245283
110
0.596803
false
3.010695
false
false
false
abingham/yapga
setup.py
1
1127
import distribute_setup distribute_setup.use_setuptools() from setuptools import setup, find_packages setup( name='yapga', version='1', packages=find_packages(), # metadata for upload to PyPI author='Austin Bingham', author_email='austin.bingham@gmail.com', description="Yet Another Python Gerrit API", license='MIT', keywords='gerrit', url='http://github.com/abingham/yapga', # download_url = '', long_description='An API for working with Gerrit ' 'from Python via the REST API.', zip_safe=True, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', ], platforms='any', setup_requires=[], install_requires=[ 'baker', 'matplotlib', # 'nltk', <-- This doesn't work right now for python3. 'numpy', ], entry_points={ 'console_scripts': [ 'yapga = yapga.app.main:main', ], }, )
mit
5,641,950,641,626,381,000
25.209302
63
0.583851
false
3.954386
false
false
false
conradoplg/navi
libnavi/model/note.py
1
1196
from pubsub import pub class Note(object): def __init__(self, name, path): self.name = name self.path = path def open(self, create=False): self.text = u'' if self.path: try: with self.path.open('r') as f: #TODO: detect encoding self.text = f.read().decode('utf-8') except EnvironmentError: #TODO: add nicer message if not create: raise except UnicodeDecodeError: #TODO: add nicer message raise pub.sendMessage('note.opened', note=self) def save(self, text): self.text = text if self.path: try: with self.path.open('w') as f: f.write(text.encode('utf-8')) except EnvironmentError: #TODO: add nicer message raise except UnicodeEncodeError: #TODO: add nicer message raise pub.sendMessage('note.saved', note=self) def close(self): pub.sendMessage('note.closed', note=self)
mit
5,750,002,080,750,410,000
29.692308
56
0.474916
false
4.803213
false
false
false
Fokko/incubator-airflow
airflow/sensors/external_task_sensor.py
1
7096
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os from sqlalchemy import func from airflow.exceptions import AirflowException from airflow.models import DagBag, DagModel, DagRun, TaskInstance from airflow.sensors.base_sensor_operator import BaseSensorOperator from airflow.utils.db import provide_session from airflow.utils.decorators import apply_defaults from airflow.utils.state import State class ExternalTaskSensor(BaseSensorOperator): """ Waits for a different DAG or a task in a different DAG to complete for a specific execution_date :param external_dag_id: The dag_id that contains the task you want to wait for :type external_dag_id: str :param external_task_id: The task_id that contains the task you want to wait for. If ``None`` (default value) the sensor waits for the DAG :type external_task_id: str or None :param allowed_states: list of allowed states, default is ``['success']`` :type allowed_states: list :param execution_delta: time difference with the previous execution to look at, the default is the same execution_date as the current task or DAG. For yesterday, use [positive!] datetime.timedelta(days=1). Either execution_delta or execution_date_fn can be passed to ExternalTaskSensor, but not both. :type execution_delta: datetime.timedelta :param execution_date_fn: function that receives the current execution date and returns the desired execution dates to query. Either execution_delta or execution_date_fn can be passed to ExternalTaskSensor, but not both. :type execution_date_fn: callable :param check_existence: Set to `True` to check if the external task exists (when external_task_id is not None) or check if the DAG to wait for exists (when external_task_id is None), and immediately cease waiting if the external task or DAG does not exist (default value: False). :type check_existence: bool """ template_fields = ['external_dag_id', 'external_task_id'] ui_color = '#19647e' @apply_defaults def __init__(self, external_dag_id, external_task_id=None, allowed_states=None, execution_delta=None, execution_date_fn=None, check_existence=False, *args, **kwargs): super().__init__(*args, **kwargs) self.allowed_states = allowed_states or [State.SUCCESS] if external_task_id: if not set(self.allowed_states) <= set(State.task_states): raise ValueError( 'Valid values for `allowed_states` ' 'when `external_task_id` is not `None`: {}'.format(State.task_states) ) else: if not set(self.allowed_states) <= set(State.dag_states): raise ValueError( 'Valid values for `allowed_states` ' 'when `external_task_id` is `None`: {}'.format(State.dag_states) ) if execution_delta is not None and execution_date_fn is not None: raise ValueError( 'Only one of `execution_delta` or `execution_date_fn` may ' 'be provided to ExternalTaskSensor; not both.') self.execution_delta = execution_delta self.execution_date_fn = execution_date_fn self.external_dag_id = external_dag_id self.external_task_id = external_task_id self.check_existence = check_existence # we only check the existence for the first time. self.has_checked_existence = False @provide_session def poke(self, context, session=None): if self.execution_delta: dttm = context['execution_date'] - self.execution_delta elif self.execution_date_fn: dttm = self.execution_date_fn(context['execution_date']) else: dttm = context['execution_date'] dttm_filter = dttm if isinstance(dttm, list) else [dttm] serialized_dttm_filter = ','.join( [datetime.isoformat() for datetime in dttm_filter]) self.log.info( 'Poking for %s.%s on %s ... ', self.external_dag_id, self.external_task_id, serialized_dttm_filter ) DM = DagModel TI = TaskInstance DR = DagRun # we only do the check for 1st time, no need for subsequent poke if self.check_existence and not self.has_checked_existence: dag_to_wait = session.query(DM).filter( DM.dag_id == self.external_dag_id ).first() if not dag_to_wait: raise AirflowException('The external DAG ' '{} does not exist.'.format(self.external_dag_id)) else: if not os.path.exists(dag_to_wait.fileloc): raise AirflowException('The external DAG ' '{} was deleted.'.format(self.external_dag_id)) if self.external_task_id: refreshed_dag_info = DagBag(dag_to_wait.fileloc).get_dag(self.external_dag_id) if not refreshed_dag_info.has_task(self.external_task_id): raise AirflowException('The external task' '{} in DAG {} does not exist.'.format(self.external_task_id, self.external_dag_id)) self.has_checked_existence = True if self.external_task_id: # .count() is inefficient count = session.query(func.count()).filter( TI.dag_id == self.external_dag_id, TI.task_id == self.external_task_id, TI.state.in_(self.allowed_states), TI.execution_date.in_(dttm_filter), ).scalar() else: # .count() is inefficient count = session.query(func.count()).filter( DR.dag_id == self.external_dag_id, DR.state.in_(self.allowed_states), DR.execution_date.in_(dttm_filter), ).scalar() session.commit() return count == len(dttm_filter)
apache-2.0
4,054,005,438,354,515,500
42.533742
103
0.609076
false
4.211276
false
false
false
stefanwebb/tensorflow-models
tensorflow_models/models/emvb_debug2.py
1
9483
# MIT License # # Copyright (c) 2017, Stefan Webb. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import math import tensorflow_models as tf_models def create_placeholders(settings): x = tf.placeholder(tf.float32, shape=tf_models.batchshape(settings), name='samples') z = tf.placeholder(tf.float32, shape=tf_models.latentshape(settings), name='codes') return x, z def create_prior(settings): temperature = 0.5 prior_prob = settings['prior_prob'] dist_prior = tf.contrib.distributions.RelaxedBernoulli(temperature, probs=prior_prob) return tf.identity(tf.cast(dist_prior.sample(sample_shape=tf_models.latentshape(settings)), dtype=tf.float32) * 2. - 1., name='p_z/sample') def create_encoder(settings, reuse=True): encoder_network = settings['architecture']['encoder']['fn'] temperature = 2./3. x_placeholder = tf_models.samples_placeholder() assert(not x_placeholder is None) noise = tf.random_normal(tf_models.noiseshape(settings), 0, 1, dtype=tf.float32) with tf.variable_scope('encoder', reuse=reuse): logits_z = encoder_network(settings, x_placeholder, noise, is_training=False) dist_z_given_x = tf.contrib.distributions.RelaxedBernoulli(temperature, logits=logits_z) encoder = tf.identity(tf.cast(dist_z_given_x.sample(), dtype=tf.float32) * 2. - 1., name='q_z_given_x_eps/sample') return encoder def create_decoder(settings, reuse=True): decoder_network = settings['architecture']['decoder']['fn'] z_placeholder = tf_models.codes_placeholder() assert(not z_placeholder is None) with tf.variable_scope('decoder', reuse=reuse): logits_x = decoder_network(settings, z_placeholder, is_training=False) #dist_x_given_z = tf.contrib.distributions.Bernoulli(logits=logits_x, dtype=tf.float32) #decoder = tf.identity(dist_x_given_z.sample(), name='p_x_given_z/sample') decoder = tf.identity(tf.nn.sigmoid(logits_x), name='p_x_given_z/sample') return decoder def create_probs(settings, inputs, is_training, reuse=False): temperature = 2./3. encoder_network = settings['architecture']['encoder']['fn'] decoder_network = settings['architecture']['decoder']['fn'] critic_network = settings['architecture']['critic']['fn'] discriminator_network = settings['architecture']['discriminator']['fn'] # The noise is distributed i.i.d. N(0, 1) noise = tf.random_normal(tf_models.noiseshape(settings), 0, 1, dtype=tf.float32) # Create a tiled version of the inputs for adaptive contrast inputs_ac = tf.tile(tf.expand_dims(tf_models.flatten(inputs), axis=0), multiples=[settings['ac_size'],1,1]) noise_ac = tf.random_normal((settings['ac_size'], settings['batch_size'], settings['noise_dimension']), 0, 1, dtype=tf.float32) ac_batchshape = tf_models.batchshape(settings) ac_batchshape[0] *= settings['ac_size'] #print(ac_batchshape) #raise Exception() # Use black-box inference network to sample z, given inputs and noise with tf.variable_scope('encoder', reuse=reuse): logits_z = encoder_network(settings, inputs, noise, is_training=is_training) tf.get_variable_scope().reuse_variables() logits_z_ac = encoder_network(settings, tf.reshape(inputs_ac, ac_batchshape), tf.reshape(noise_ac, (settings['ac_size']*settings['batch_size'], -1)), is_training=is_training) #logits_z_ac = tf.reduce_mean(tf.reshape(logits_z_ac, (settings['ac_size'], settings['batch_size'], -1)), 0) logits_z_ac = tf.reduce_logsumexp(tf.reshape(logits_z_ac, (settings['ac_size'], settings['batch_size'], -1)), 0) - tf.log(tf.constant(settings['ac_size'], dtype=tf.float32)) dist_z_given_x_ac = tf.contrib.distributions.Logistic(loc=logits_z_ac/temperature, scale=tf.constant(1./temperature, shape=logits_z_ac.shape)) logits_sample_ac = tf.identity(tf.cast(dist_z_given_x_ac.sample(), dtype=tf.float32)) z_sample_ac = tf.identity(tf.sigmoid(logits_sample_ac) * 2. - 1.) dist_z_given_x = tf.contrib.distributions.Logistic(loc=logits_z/temperature, scale=tf.constant(1./temperature, shape=logits_z.shape)) logits_sample = tf.cast(dist_z_given_x.sample(), dtype=tf.float32) z_sample = tf.sigmoid(logits_sample) * 2. - 1. dist_prior_ac = tf.contrib.distributions.Logistic(loc=0., scale=1./temperature) sample_prior_ac = tf.sigmoid(tf.cast(dist_prior_ac.sample(sample_shape=(settings['batch_size'], settings['latent_dimension'])), dtype=tf.float32))*2. - 1. sample_for_discr = tf.identity(tf.sigmoid(logits_sample - logits_z_ac/temperature)*2. - 1., name='z/sample') # Prior temperature_prior = 0.5 prior_prob = settings['prior_prob'] logits_prior_prob = math.log(prior_prob / (1. - prior_prob)) dist_prior = tf.contrib.distributions.Logistic(loc=logits_prior_prob/temperature_prior, scale=1./temperature_prior) logits_prior = tf.cast(dist_prior.sample(sample_shape=tf_models.latentshape(settings)), dtype=tf.float32) z_prior = tf.identity(tf.sigmoid(logits_prior)*2. - 1., name='z/prior') # Use generator to determine distribution of reconstructed input with tf.variable_scope('decoder', reuse=reuse): logits_x = decoder_network(settings, z_sample, is_training=is_training) dist_x_given_z = tf.contrib.distributions.Bernoulli(logits=tf_models.flatten(logits_x), dtype=tf.float32) # Log likelihood of reconstructed inputs lg_p_x_given_z = tf.identity(tf.reduce_sum(dist_x_given_z.log_prob(tf_models.flatten(inputs)), 1), name='p_x_given_z/log_prob') lg_r_alpha = tf.identity(tf.reduce_sum(dist_z_given_x_ac.log_prob(logits_sample), 1), name='r_alpha/log_prob') # Form interpolated variable eps = tf.random_uniform([settings['batch_size'], 1], minval=0., maxval=1.) #z_inter = eps*z_prior + (1. - eps)*z_sample z_inter = tf.identity(eps*sample_for_discr + (1. - eps)*sample_prior_ac, name='z/interpolated') #logits_inter = tf.identity(tf_models.safe_log(z_inter) - tf_models.safe_log(1. - z_inter), name='z/interpolated') #print(logits_prior.shape, logits_sample.shape, logits_inter.shape) #raise Exception() # Critic D(x, z) for EMVB learning with tf.variable_scope('critic', reuse=reuse): critic = tf.identity(critic_network(settings, inputs, sample_for_discr, is_training=is_training), name='generator') tf.get_variable_scope().reuse_variables() prior_critic = tf.identity(critic_network(settings, inputs, sample_prior_ac, is_training=is_training), name='prior') inter_critic = tf.identity(critic_network(settings, inputs, z_inter, is_training=is_training), name='inter') # Discriminator T(x, z) for AVB learning with tf.variable_scope('discriminator', reuse=reuse): discriminator = tf.identity(discriminator_network(settings, inputs, sample_for_discr, is_training=is_training), name='generator') tf.get_variable_scope().reuse_variables() prior_discriminator = tf.identity(discriminator_network(settings, inputs, sample_prior_ac, is_training=is_training), name='prior') x = tf.identity(inputs, name='x') #print('inputs.name', inputs.name) lg_p_z = tf.identity(tf.reduce_sum(dist_prior.log_prob(logits_sample), 1), name='p_z/log_prob') return lg_p_x_given_z, critic, prior_critic, inter_critic, z_inter, discriminator, prior_discriminator, lg_p_z, lg_r_alpha def lg_likelihood(x, z, settings, reuse=True, is_training=False): decoder_network = settings['architecture']['decoder']['fn'] real_z = tf.sigmoid(z)*2. - 1. with tf.variable_scope('model'): with tf.variable_scope('decoder', reuse=reuse): logits_x = decoder_network(settings, real_z, is_training=is_training) dist_x_given_z = tf.contrib.distributions.Bernoulli(logits=tf_models.flatten(logits_x), dtype=tf.float32) return tf.reduce_sum(dist_x_given_z.log_prob(tf_models.flatten(x)), 1) def lg_prior(z, settings, reuse=True, is_training=False): temperature = 0.5 prior_prob = settings['prior_prob'] logits_prior_prob = math.log(prior_prob / (1. - prior_prob)) dist_prior = tf.contrib.distributions.Logistic(loc=logits_prior_prob/temperature, scale=1./temperature) return tf.reduce_sum(tf_models.flatten(dist_prior.log_prob(z)), 1) def sample_prior(settings): temperature = 0.5 prior_prob = settings['prior_prob'] logits_prior_prob = math.log(prior_prob / (1. - prior_prob)) dist_prior = tf.contrib.distributions.Logistic(loc=logits_prior_prob/temperature, scale=1./temperature) return tf.identity(tf.cast(dist_prior.sample(sample_shape=tf_models.latentshape(settings)), dtype=tf.float32), name='p_z/sample')
mit
9,025,626,535,856,672,000
49.71123
176
0.735949
false
3.076898
false
false
false
ingadhoc/stock
stock_ux/models/stock_warehouse_orderpoint.py
1
2683
############################################################################## # For copyright and license notices, see __manifest__.py file in module root # directory ############################################################################## from odoo import models, fields, api class StockWarehouseOrderpoint(models.Model): _name = 'stock.warehouse.orderpoint' _inherit = ['stock.warehouse.orderpoint', 'mail.thread'] rotation_stdev = fields.Float( compute='_compute_rotation', help="Desvío estandar de las cantidades entregas a clientes en los " "últimos 120 días.", digits='Product Unit of Measure', ) warehouse_rotation_stdev = fields.Float( compute='_compute_rotation', help="Desvío estandar de las cantidades entregas desde este almacen" " a clientes en los últimos 120 días.", digits='Product Unit of Measure', ) rotation = fields.Float( help='Cantidades entregadas a clientes en los ' 'últimos 120 días dividido por 4 para mensualizar ' '(restadas devoluciones).', compute='_compute_rotation', digits='Product Unit of Measure', ) warehouse_rotation = fields.Float( help='Cantidades entregadas desde este almacen a clientes en los ' 'últimos 120 días dividido por 4 para mensualizar' '(restadas devoluciones).', compute='_compute_rotation', digits='Product Unit of Measure', ) product_min_qty = fields.Float(tracking=True) product_max_qty = fields.Float(tracking=True) qty_multiple = fields.Float(tracking=True) location_id = fields.Many2one(tracking=True) product_id = fields.Many2one(tracking=True) @api.depends('product_id', 'location_id') def _compute_rotation(self): warehouse_with_products = self.filtered('product_id') (self - warehouse_with_products).update({ 'rotation': 0.0, 'rotation_stdev': 0.0, 'warehouse_rotation_stdev': 0.0, 'warehouse_rotation': 0.0, }) for rec in warehouse_with_products: rotation, rotation_stdev = rec.product_id.get_product_rotation( compute_stdev=True) warehouse_rotation, warehouse_rotation_stdev = \ rec.product_id.get_product_rotation( rec.warehouse_id.view_location_id, compute_stdev=True) rec.update({ 'rotation': rotation, 'rotation_stdev': rotation_stdev, 'warehouse_rotation_stdev': warehouse_rotation_stdev, 'warehouse_rotation': warehouse_rotation, })
agpl-3.0
7,736,426,344,456,536,000
40.123077
78
0.5896
false
3.948301
false
false
false
EmilioK97/pydeepl
pydeepl/pydeepl.py
1
3012
import requests BASE_URL = 'https://www2.deepl.com/jsonrpc' LANGUAGES = { 'auto': 'Auto', 'DE': 'German', 'EN': 'English', 'FR': 'French', 'ES': 'Spanish', 'IT': 'Italian', 'NL': 'Dutch', 'PL': 'Polish' } JSONRPC_VERSION = '2.0' class SplittingError(Exception): def __init__(self, message): super(SplittingError, self).__init__(message) def split_sentences(text, lang='auto', json=False): if text is None: raise SplittingError('Text can\'t be be None.') if lang not in LANGUAGES.keys(): raise SplittingError('Language {} not available.'.format(lang)) parameters = { 'jsonrpc': JSONRPC_VERSION, 'method': 'LMT_split_into_sentences', 'params': { 'texts': [ text ], 'lang': { 'lang_user_selected': lang }, }, } response = requests.post(BASE_URL, json=parameters).json() if 'result' not in response: raise SplittingError('DeepL call resulted in a unknown result.') splitted_texts = response['result']['splitted_texts'] if len(splitted_texts) == 0: raise SplittingError('Text could not be splitted.') if json: return response return splitted_texts[0] class TranslationError(Exception): def __init__(self, message): super(TranslationError, self).__init__(message) def translate(text, to_lang, from_lang='auto', json=False): if text is None: raise TranslationError('Text can\'t be None.') if len(text) > 5000: raise TranslationError('Text too long (limited to 5000 characters).') if to_lang not in LANGUAGES.keys(): raise TranslationError('Language {} not available.'.format(to_lang)) if from_lang is not None and from_lang not in LANGUAGES.keys(): raise TranslationError('Language {} not available.'.format(from_lang)) parameters = { 'jsonrpc': JSONRPC_VERSION, 'method': 'LMT_handle_jobs', 'params': { 'jobs': [ { 'kind':'default', 'raw_en_sentence': text } ], 'lang': { 'user_preferred_langs': [ from_lang, to_lang ], 'source_lang_user_selected': from_lang, 'target_lang': to_lang }, }, } response = requests.post(BASE_URL, json=parameters).json() if 'result' not in response: raise TranslationError('DeepL call resulted in a unknown result.') translations = response['result']['translations'] if len(translations) == 0 \ or translations[0]['beams'] is None \ or translations[0]['beams'][0]['postprocessed_sentence'] is None: raise TranslationError('No translations found.') if json: return response return translations[0]['beams'][0]['postprocessed_sentence']
mit
-3,052,785,514,397,001,000
26.888889
78
0.557437
false
4.075778
false
false
false
ehouarn-perret/EhouarnPerret.Python.HackerRank
0 - Tutorials/30 Days of Code/Day 4 - Class vs. Instance.py
1
1605
""" In this challenge, we're going to learn about the difference between a class and an instance; because this is an Object Oriented concept, it's only enabled in certain languages. Task Write a Person class with an instance variable, age, and a constructor that takes an integer, initial_age, as a parameter. The constructor must assign initial_age to _age after confirming the argument passed as _initial_age is not negative. If a negative argument is passed as initial_age, the constructor should set to and print "Age is not valid, setting age to 0." In addition, you must write the following instance methods: age_1_year() should increase the instance variable _age by 1. is_old() should perform the following conditional actions: If age < 13, print "You are young.". If age >= 13 and age < 18, print "You are a teenager.". Otherwise, print "You are old.". """ class Person: # Add some more code to run some checks on initial_age def __init__(self, initial_age): if initial_age < 0: print("Age is not valid, setting age to 0.") self._age = 0 else: self._age = initial_age # Do some computations in here and print out the correct statement to the console def is_old(self): if self._age < 13: print("You are young.") elif (13 <= self._age) and (self._age < 18): print("You are a teenager.") else: print("You are old.") # Increment the age of the person in here def age_1_year(self): self._age += 1 T = int(input()) for i in range(0, T): age = int(input()) p = Person(age) p.is_old() for j in range(0, 3): p.age_1_year() p.is_old() print("")
mit
-2,068,696,048,610,836,000
30.470588
126
0.694704
false
3.282209
false
false
false
RCMRD/geonode
geonode/documents/views.py
1
16713
import json from guardian.shortcuts import get_perms from django.shortcuts import render_to_response, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect, Http404 from django.template import RequestContext, loader from django.utils.translation import ugettext as _ from django.contrib.auth.decorators import login_required from django.conf import settings from django.core.urlresolvers import reverse from django.core.exceptions import PermissionDenied from django_downloadview.response import DownloadResponse from django.views.generic.edit import UpdateView, CreateView from django.db.models import F from django.forms.util import ErrorList from geonode.utils import resolve_object from geonode.security.views import _perms_info_json from geonode.people.forms import ProfileForm from geonode.base.forms import CategoryForm from geonode.base.models import TopicCategory, ResourceBase from geonode.documents.models import Document from geonode.documents.forms import DocumentForm, DocumentCreateForm, DocumentReplaceForm from geonode.documents.models import IMGTYPES from geonode.utils import build_social_links ALLOWED_DOC_TYPES = settings.ALLOWED_DOCUMENT_TYPES _PERMISSION_MSG_DELETE = _("You are not permitted to delete this document") _PERMISSION_MSG_GENERIC = _("You do not have permissions for this document.") _PERMISSION_MSG_MODIFY = _("You are not permitted to modify this document") _PERMISSION_MSG_METADATA = _( "You are not permitted to modify this document's metadata") _PERMISSION_MSG_VIEW = _("You are not permitted to view this document") def _resolve_document(request, docid, permission='base.change_resourcebase', msg=_PERMISSION_MSG_GENERIC, **kwargs): ''' Resolve the document by the provided primary key and check the optional permission. ''' return resolve_object(request, Document, {'pk': docid}, permission=permission, permission_msg=msg, **kwargs) def document_detail(request, docid): """ The view that show details of each document """ document = None try: document = _resolve_document( request, docid, 'base.view_resourcebase', _PERMISSION_MSG_VIEW) except Http404: return HttpResponse( loader.render_to_string( '404.html', RequestContext( request, { })), status=404) except PermissionDenied: return HttpResponse( loader.render_to_string( '401.html', RequestContext( request, { 'error_message': _("You are not allowed to view this document.")})), status=403) if document is None: return HttpResponse( 'An unknown error has occured.', content_type="text/plain", status=401 ) else: try: related = document.content_type.get_object_for_this_type( id=document.object_id) except: related = '' # Update count for popularity ranking, # but do not includes admins or resource owners if request.user != document.owner and not request.user.is_superuser: Document.objects.filter(id=document.id).update(popular_count=F('popular_count') + 1) metadata = document.link_set.metadata().filter( name__in=settings.DOWNLOAD_FORMATS_METADATA) context_dict = { 'perms_list': get_perms(request.user, document.get_self_resource()), 'permissions_json': _perms_info_json(document), 'resource': document, 'metadata': metadata, 'imgtypes': IMGTYPES, 'related': related} if settings.SOCIAL_ORIGINS: context_dict["social_links"] = build_social_links(request, document) if getattr(settings, 'EXIF_ENABLED', False): try: from geonode.contrib.exif.utils import exif_extract_dict exif = exif_extract_dict(document) if exif: context_dict['exif_data'] = exif except: print "Exif extraction failed." return render_to_response( "documents/document_detail.html", RequestContext(request, context_dict)) def document_download(request, docid): document = get_object_or_404(Document, pk=docid) if not request.user.has_perm( 'base.download_resourcebase', obj=document.get_self_resource()): return HttpResponse( loader.render_to_string( '401.html', RequestContext( request, { 'error_message': _("You are not allowed to view this document.")})), status=401) return DownloadResponse(document.doc_file) class DocumentUploadView(CreateView): template_name = 'documents/document_upload.html' form_class = DocumentCreateForm def get_context_data(self, **kwargs): context = super(DocumentUploadView, self).get_context_data(**kwargs) context['ALLOWED_DOC_TYPES'] = ALLOWED_DOC_TYPES return context def form_valid(self, form): """ If the form is valid, save the associated model. """ self.object = form.save(commit=False) self.object.owner = self.request.user resource_id = self.request.POST.get('resource', None) if resource_id: self.object.content_type = ResourceBase.objects.get(id=resource_id).polymorphic_ctype self.object.object_id = resource_id # by default, if RESOURCE_PUBLISHING=True then document.is_published # must be set to False is_published = True if settings.RESOURCE_PUBLISHING: is_published = False self.object.is_published = is_published self.object.save() self.object.set_permissions(form.cleaned_data['permissions']) abstract = None date = None regions = [] keywords = [] bbox = None if getattr(settings, 'EXIF_ENABLED', False): try: from geonode.contrib.exif.utils import exif_extract_metadata_doc exif_metadata = exif_extract_metadata_doc(self.object) if exif_metadata: date = exif_metadata.get('date', None) keywords.extend(exif_metadata.get('keywords', [])) bbox = exif_metadata.get('bbox', None) abstract = exif_metadata.get('abstract', None) except: print "Exif extraction failed." if getattr(settings, 'NLP_ENABLED', False): try: from geonode.contrib.nlp.utils import nlp_extract_metadata_doc nlp_metadata = nlp_extract_metadata_doc(self.object) if nlp_metadata: regions.extend(nlp_metadata.get('regions', [])) keywords.extend(nlp_metadata.get('keywords', [])) except: print "NLP extraction failed." if abstract: self.object.abstract = abstract self.object.save() if date: self.object.date = date self.object.date_type = "Creation" self.object.save() if len(regions) > 0: self.object.regions.add(*regions) if len(keywords) > 0: self.object.keywords.add(*keywords) if bbox: bbox_x0, bbox_x1, bbox_y0, bbox_y1 = bbox Document.objects.filter(id=self.object.pk).update( bbox_x0=bbox_x0, bbox_x1=bbox_x1, bbox_y0=bbox_y0, bbox_y1=bbox_y1) if getattr(settings, 'SLACK_ENABLED', False): try: from geonode.contrib.slack.utils import build_slack_message_document, send_slack_message send_slack_message(build_slack_message_document("document_new", self.object)) except: print "Could not send slack message for new document." return HttpResponseRedirect( reverse( 'document_metadata', args=( self.object.id, ))) class DocumentUpdateView(UpdateView): template_name = 'documents/document_replace.html' pk_url_kwarg = 'docid' form_class = DocumentReplaceForm queryset = Document.objects.all() context_object_name = 'document' def get_context_data(self, **kwargs): context = super(DocumentUpdateView, self).get_context_data(**kwargs) context['ALLOWED_DOC_TYPES'] = ALLOWED_DOC_TYPES return context def form_valid(self, form): """ If the form is valid, save the associated model. """ self.object = form.save() return HttpResponseRedirect( reverse( 'document_metadata', args=( self.object.id, ))) @login_required def document_metadata( request, docid, template='documents/document_metadata.html'): document = None try: document = _resolve_document( request, docid, 'base.change_resourcebase_metadata', _PERMISSION_MSG_METADATA) except Http404: return HttpResponse( loader.render_to_string( '404.html', RequestContext( request, { })), status=404) except PermissionDenied: return HttpResponse( loader.render_to_string( '401.html', RequestContext( request, { 'error_message': _("You are not allowed to edit this document.")})), status=403) if document is None: return HttpResponse( 'An unknown error has occured.', content_type="text/plain", status=401 ) else: poc = document.poc metadata_author = document.metadata_author topic_category = document.category if request.method == "POST": document_form = DocumentForm( request.POST, instance=document, prefix="resource") category_form = CategoryForm( request.POST, prefix="category_choice_field", initial=int( request.POST["category_choice_field"]) if "category_choice_field" in request.POST else None) else: document_form = DocumentForm(instance=document, prefix="resource") category_form = CategoryForm( prefix="category_choice_field", initial=topic_category.id if topic_category else None) if request.method == "POST" and document_form.is_valid( ) and category_form.is_valid(): new_poc = document_form.cleaned_data['poc'] new_author = document_form.cleaned_data['metadata_author'] new_keywords = document_form.cleaned_data['keywords'] new_category = TopicCategory.objects.get( id=category_form.cleaned_data['category_choice_field']) if new_poc is None: if poc is None: poc_form = ProfileForm( request.POST, prefix="poc", instance=poc) else: poc_form = ProfileForm(request.POST, prefix="poc") if poc_form.is_valid(): if len(poc_form.cleaned_data['profile']) == 0: # FIXME use form.add_error in django > 1.7 errors = poc_form._errors.setdefault('profile', ErrorList()) errors.append(_('You must set a point of contact for this resource')) poc = None if poc_form.has_changed and poc_form.is_valid(): new_poc = poc_form.save() if new_author is None: if metadata_author is None: author_form = ProfileForm(request.POST, prefix="author", instance=metadata_author) else: author_form = ProfileForm(request.POST, prefix="author") if author_form.is_valid(): if len(author_form.cleaned_data['profile']) == 0: # FIXME use form.add_error in django > 1.7 errors = author_form._errors.setdefault('profile', ErrorList()) errors.append(_('You must set an author for this resource')) metadata_author = None if author_form.has_changed and author_form.is_valid(): new_author = author_form.save() if new_poc is not None and new_author is not None: the_document = document_form.save() the_document.poc = new_poc the_document.metadata_author = new_author the_document.keywords.add(*new_keywords) Document.objects.filter(id=the_document.id).update(category=new_category) if getattr(settings, 'SLACK_ENABLED', False): try: from geonode.contrib.slack.utils import build_slack_message_document, send_slack_messages send_slack_messages(build_slack_message_document("document_edit", the_document)) except: print "Could not send slack message for modified document." return HttpResponseRedirect( reverse( 'document_detail', args=( document.id, ))) if poc is not None: document_form.fields['poc'].initial = poc.id poc_form = ProfileForm(prefix="poc") poc_form.hidden = True if metadata_author is not None: document_form.fields['metadata_author'].initial = metadata_author.id author_form = ProfileForm(prefix="author") author_form.hidden = True return render_to_response(template, RequestContext(request, { "document": document, "document_form": document_form, "poc_form": poc_form, "author_form": author_form, "category_form": category_form, })) def document_search_page(request): # for non-ajax requests, render a generic search page if request.method == 'GET': params = request.GET elif request.method == 'POST': params = request.POST else: return HttpResponse(status=405) return render_to_response( 'documents/document_search.html', RequestContext( request, { 'init_search': json.dumps( params or {}), "site": settings.SITEURL})) @login_required def document_remove(request, docid, template='documents/document_remove.html'): try: document = _resolve_document( request, docid, 'base.delete_resourcebase', _PERMISSION_MSG_DELETE) if request.method == 'GET': return render_to_response(template, RequestContext(request, { "document": document })) if request.method == 'POST': if getattr(settings, 'SLACK_ENABLED', False): slack_message = None try: from geonode.contrib.slack.utils import build_slack_message_document slack_message = build_slack_message_document("document_delete", document) except: print "Could not build slack message for delete document." document.delete() try: from geonode.contrib.slack.utils import send_slack_messages send_slack_messages(slack_message) except: print "Could not send slack message for delete document." else: document.delete() return HttpResponseRedirect(reverse("document_browse")) else: return HttpResponse("Not allowed", status=403) except PermissionDenied: return HttpResponse( 'You are not allowed to delete this document', content_type="text/plain", status=401 )
gpl-3.0
-4,495,816,925,612,968,000
36.05765
113
0.569557
false
4.566393
false
false
false
intelxed/xed
tests/split-tests.py
1
2317
#!/usr/bin/env python # -*- python -*- #BEGIN_LEGAL # #Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #END_LEGAL import os,sys,re,glob def work(): files = glob.glob("*.txt") for fn in files: lines = file(fn).readlines() lines = map(lambda x: x.strip(), lines) ofn = fn + ".new" of = open(ofn,'w') for line in lines: if line: incodes, cmd = line.split(';') # incodes are tossed cmd = cmd.strip() codes = [] if ' -de ' in cmd: codes.append('DEC') codes.append('ENC') elif ' -e ' in cmd: codes.append('ENC') elif ' -d ' in cmd: codes.append('DEC') elif 'ild' in cmd: codes.append('DEC') elif 'ex1' in cmd: codes.append('DEC') elif 'ex3' in cmd: codes.append('ENC') elif 'ex4' in cmd: codes.append('DEC') elif 'ex6' in cmd: codes.append('DEC') codes.append('ENC') else: codes.append('OTHER') if 'C4' in cmd or 'C5' in cmd or 'c4' in cmd or 'c5' in cmd: codes.append('AVX') if ' 8f' in cmd: # total hack: FIXME, miss some xop stuff in c4 space codes.append('XOP') if ' v' in cmd or ' V' in cmd: codes.append('AVX') cs = " ".join(codes) of.write("{0:20s} ; {1}\n".format(cs, cmd)) of.close() if __name__ == "__main__": work()
apache-2.0
1,102,383,340,792,462,800
32.1
86
0.482952
false
3.9811
false
false
false
ewdurbin/sentry-datadog-helpers
sentry_datadog_helpers/test/utils.py
1
5855
import sys from functools import wraps __all__ = ('surrogate', ) class surrogate(object): """ Originally Created by Kostia Balitsky Contains Modifications by Griffin Smith See: https://github.com/ikostia/surrogate and https://github.com/glittershark/surrogate Licensed as: This code can be used, distributed and modified in any ways one wants. If one gets any use of it author is already rewarded. On the other hand, do not expect any guaranteed support from author. Use it as is. Add empty module stub that can be imported for every subpath in path. Those stubs can later be patched by mock's patch decorator. Example: @surrogate('sys.my.cool.module1') @surrogate('sys.my.cool.module2') @mock.patch('sys.my.cool.module1', mock1) @mock.patch('sys.my.cool.module2', mock2) def function(): from sys.my import cool from sys.my.cool import module1 from sys.my.cool import module2 """ def __init__(self, path): self.path = path self.elements = self.path.split('.') def __enter__(self): self.prepared = self.prepare() def __exit__(self, *args): if self.prepared: self.restore() def __call__(self, func): @wraps(func) def _wrapper(*args, **kwargs): prepared = self.prepare() result = func(*args, **kwargs) if prepared: self.restore() return result return _wrapper @property def nothing_to_stub(self): """Check if there are no modules to stub""" return len(self.elements) == 0 def prepare(self): """Preparations before actual function call""" self._determine_existing_modules() if self.nothing_to_stub: return False self._create_module_stubs() self._save_base_module() self._add_module_stubs() return True def restore(self): """Post-actions to restore initial state of the system""" self._remove_module_stubs() self._restore_base_module() def _get_importing_path(self, elements): """Return importing path for a module that is last in elements list""" ip = '.'.join(elements) if self.known_path: ip = self.known_path + '.' + ip return ip def _create_module_stubs(self): """Create stubs for all not-existing modules""" # last module in our sequence # it should be loaded last_module = type(self.elements[-1], (object, ), { '__all__': [], '_importing_path': self._get_importing_path(self.elements)}) modules = [last_module] # now we create a module stub for each # element in a path. # each module stub contains `__all__` # list and a member that # points to the next module stub in # sequence for element in reversed(self.elements[:-1]): next_module = modules[-1] module = type(element, (object, ), { next_module.__name__: next_module, '__all__': [next_module.__name__]}) modules.append(module) self.modules = list(reversed(modules)) self.modules[0].__path__ = [] def _determine_existing_modules(self): """ Find out which of the modules from specified path are already imported (e.g. present in sys.modules) those modules should not be replaced by stubs. """ known = 0 while known < len(self.elements) and\ '.'.join(self.elements[:known + 1]) in sys.modules: known += 1 self.known_path = '.'.join(self.elements[:known]) self.elements = self.elements[known:] def _save_base_module(self): """ Remember state of the last of existing modules The last of the sequence of existing modules is the only one we will change. So we must remember it's state in order to restore it afterwards. """ try: # save last of the existing modules self.base_module = sys.modules[self.known_path] except KeyError: self.base_module = None # save `__all__` attribute of the base_module self.base_all = [] if hasattr(self.base_module, '__all__'): self.base_all = list(self.base_module.__all__) if self.base_module: # change base_module's `__all__` attribute # to include the first module of the sequence self.base_module.__all__ = self.base_all + [self.elements[0]] setattr(self.base_module, self.elements[0], self.modules[0]) def _add_module_stubs(self): """Push created module stubs into sys.modules""" for i, module in enumerate(self.modules): module._importing_path =\ self._get_importing_path(self.elements[:i + 1]) sys.modules[module._importing_path] = module def _remove_module_stubs(self): """Remove fake modules from sys.modules""" for module in reversed(self.modules): if module._importing_path in sys.modules: del sys.modules[module._importing_path] def _restore_base_module(self): """Restore the state of the last existing module""" if self.base_module: self.base_module.__all__ = self.base_all if not self.base_all: del self.base_module.__all__ if hasattr(self.base_module, self.elements[0]): delattr(self.base_module, self.elements[0])
bsd-3-clause
1,469,070,899,879,551,500
33.040698
78
0.561913
false
4.292522
false
false
false
dagss/numpy_svn
numpy/polynomial/chebyshev.py
1
38012
""" Objects for dealing with Chebyshev series. This module provides a number of objects (mostly functions) useful for dealing with Chebyshev series, including a `Chebyshev` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Constants --------- - `chebdomain` -- Chebyshev series default domain, [-1,1]. - `chebzero` -- (Coefficients of the) Chebyshev series that evaluates identically to 0. - `chebone` -- (Coefficients of the) Chebyshev series that evaluates identically to 1. - `chebx` -- (Coefficients of the) Chebyshev series for the identity map, ``f(x) = x``. Arithmetic ---------- - `chebadd` -- add two Chebyshev series. - `chebsub` -- subtract one Chebyshev series from another. - `chebmul` -- multiply two Chebyshev series. - `chebdiv` -- divide one Chebyshev series by another. - `chebval` -- evaluate a Chebyshev series at given points. Calculus -------- - `chebder` -- differentiate a Chebyshev series. - `chebint` -- integrate a Chebyshev series. Misc Functions -------------- - `chebfromroots` -- create a Chebyshev series with specified roots. - `chebroots` -- find the roots of a Chebyshev series. - `chebvander` -- Vandermonde-like matrix for Chebyshev polynomials. - `chebfit` -- least-squares fit returning a Chebyshev series. - `chebtrim` -- trim leading coefficients from a Chebyshev series. - `chebline` -- Chebyshev series of given straight line. - `cheb2poly` -- convert a Chebyshev series to a polynomial. - `poly2cheb` -- convert a polynomial to a Chebyshev series. Classes ------- - `Chebyshev` -- A Chebyshev series class. See also -------- `numpy.polynomial` Notes ----- The implementations of multiplication, division, integration, and differentiation use the algebraic identities [1]_: .. math :: T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\ z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}. where .. math :: x = \\frac{z + z^{-1}}{2}. These identities allow a Chebyshev series to be expressed as a finite, symmetric Laurent series. In this module, this sort of Laurent series is referred to as a "z-series." References ---------- .. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev Polynomials," *Journal of Statistical Planning and Inference 14*, 2008 (preprint: http://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4) """ from __future__ import division __all__ = ['chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd', 'chebsub', 'chebmul', 'chebdiv', 'chebval', 'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots', 'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'Chebyshev'] import numpy as np import numpy.linalg as la import polyutils as pu import warnings from polytemplate import polytemplate chebtrim = pu.trimcoef # # A collection of functions for manipulating z-series. These are private # functions and do minimal error checking. # def _cseries_to_zseries(cs) : """Covert Chebyshev series to z-series. Covert a Chebyshev series to the equivalent z-series. The result is never an empty array. The dtype of the return is the same as that of the input. No checks are run on the arguments as this routine is for internal use. Parameters ---------- cs : 1-d ndarray Chebyshev coefficients, ordered from low to high Returns ------- zs : 1-d ndarray Odd length symmetric z-series, ordered from low to high. """ n = cs.size zs = np.zeros(2*n-1, dtype=cs.dtype) zs[n-1:] = cs/2 return zs + zs[::-1] def _zseries_to_cseries(zs) : """Covert z-series to a Chebyshev series. Covert a z series to the equivalent Chebyshev series. The result is never an empty array. The dtype of the return is the same as that of the input. No checks are run on the arguments as this routine is for internal use. Parameters ---------- zs : 1-d ndarray Odd length symmetric z-series, ordered from low to high. Returns ------- cs : 1-d ndarray Chebyshev coefficients, ordered from low to high. """ n = (zs.size + 1)//2 cs = zs[n-1:].copy() cs[1:n] *= 2 return cs def _zseries_mul(z1, z2) : """Multiply two z-series. Multiply two z-series to produce a z-series. Parameters ---------- z1, z2 : 1-d ndarray The arrays must be 1-d but this is not checked. Returns ------- product : 1-d ndarray The product z-series. Notes ----- This is simply convolution. If symmetic/anti-symmetric z-series are denoted by S/A then the following rules apply: S*S, A*A -> S S*A, A*S -> A """ return np.convolve(z1, z2) def _zseries_div(z1, z2) : """Divide the first z-series by the second. Divide `z1` by `z2` and return the quotient and remainder as z-series. Warning: this implementation only applies when both z1 and z2 have the same symmetry, which is sufficient for present purposes. Parameters ---------- z1, z2 : 1-d ndarray The arrays must be 1-d and have the same symmetry, but this is not checked. Returns ------- (quotient, remainder) : 1-d ndarrays Quotient and remainder as z-series. Notes ----- This is not the same as polynomial division on account of the desired form of the remainder. If symmetic/anti-symmetric z-series are denoted by S/A then the following rules apply: S/S -> S,S A/A -> S,A The restriction to types of the same symmetry could be fixed but seems like uneeded generality. There is no natural form for the remainder in the case where there is no symmetry. """ z1 = z1.copy() z2 = z2.copy() len1 = len(z1) len2 = len(z2) if len2 == 1 : z1 /= z2 return z1, z1[:1]*0 elif len1 < len2 : return z1[:1]*0, z1 else : dlen = len1 - len2 scl = z2[0] z2 /= scl quo = np.empty(dlen + 1, dtype=z1.dtype) i = 0 j = dlen while i < j : r = z1[i] quo[i] = z1[i] quo[dlen - i] = r tmp = r*z2 z1[i:i+len2] -= tmp z1[j:j+len2] -= tmp i += 1 j -= 1 r = z1[i] quo[i] = r tmp = r*z2 z1[i:i+len2] -= tmp quo /= scl rem = z1[i+1:i-1+len2].copy() return quo, rem def _zseries_der(zs) : """Differentiate a z-series. The derivative is with respect to x, not z. This is achieved using the chain rule and the value of dx/dz given in the module notes. Parameters ---------- zs : z-series The z-series to differentiate. Returns ------- derivative : z-series The derivative Notes ----- The zseries for x (ns) has been multiplied by two in order to avoid using floats that are incompatible with Decimal and likely other specialized scalar types. This scaling has been compensated by multiplying the value of zs by two also so that the two cancels in the division. """ n = len(zs)//2 ns = np.array([-1, 0, 1], dtype=zs.dtype) zs *= np.arange(-n, n+1)*2 d, r = _zseries_div(zs, ns) return d def _zseries_int(zs) : """Integrate a z-series. The integral is with respect to x, not z. This is achieved by a change of variable using dx/dz given in the module notes. Parameters ---------- zs : z-series The z-series to integrate Returns ------- integral : z-series The indefinite integral Notes ----- The zseries for x (ns) has been multiplied by two in order to avoid using floats that are incompatible with Decimal and likely other specialized scalar types. This scaling has been compensated by dividing the resulting zs by two. """ n = 1 + len(zs)//2 ns = np.array([-1, 0, 1], dtype=zs.dtype) zs = _zseries_mul(zs, ns) div = np.arange(-n, n+1)*2 zs[:n] /= div[:n] zs[n+1:] /= div[n+1:] zs[n] = 0 return zs # # Chebyshev series functions # def poly2cheb(pol) : """ poly2cheb(pol) Convert a polynomial to a Chebyshev series. Convert an array representing the coefficients of a polynomial (relative to the "standard" basis) ordered from lowest degree to highest, to an array of the coefficients of the equivalent Chebyshev series, ordered from lowest to highest degree. Parameters ---------- pol : array_like 1-d array containing the polynomial coefficients Returns ------- cs : ndarray 1-d array containing the coefficients of the equivalent Chebyshev series. See Also -------- cheb2poly Notes ----- Note that a consequence of the input needing to be array_like and that the output is an ndarray, is that if one is going to use this function to convert a Polynomial instance, P, to a Chebyshev instance, T, the usage is ``T = Chebyshev(poly2cheb(P.coef))``; see Examples below. Examples -------- >>> from numpy import polynomial as P >>> p = P.Polynomial(np.arange(4)) >>> p Polynomial([ 0., 1., 2., 3.], [-1., 1.]) >>> c = P.Chebyshev(P.poly2cheb(p.coef)) >>> c Chebyshev([ 1. , 3.25, 1. , 0.75], [-1., 1.]) """ [pol] = pu.as_series([pol]) pol = pol[::-1] zs = pol[:1].copy() x = np.array([.5, 0, .5], dtype=pol.dtype) for i in range(1, len(pol)) : zs = _zseries_mul(zs, x) zs[i] += pol[i] return _zseries_to_cseries(zs) def cheb2poly(cs) : """ cheb2poly(cs) Convert a Chebyshev series to a polynomial. Convert an array representing the coefficients of a Chebyshev series, ordered from lowest degree to highest, to an array of the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest to highest degree. Parameters ---------- cs : array_like 1-d array containing the Chebyshev series coefficients, ordered from lowest order term to highest. Returns ------- pol : ndarray 1-d array containing the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest order term to highest. See Also -------- poly2cheb Notes ----- Note that a consequence of the input needing to be array_like and that the output is an ndarray, is that if one is going to use this function to convert a Chebyshev instance, T, to a Polynomial instance, P, the usage is ``P = Polynomial(cheb2poly(T.coef))``; see Examples below. Examples -------- >>> from numpy import polynomial as P >>> c = P.Chebyshev(np.arange(4)) >>> c Chebyshev([ 0., 1., 2., 3.], [-1., 1.]) >>> p = P.Polynomial(P.cheb2poly(c.coef)) >>> p Polynomial([ -2., -8., 4., 12.], [-1., 1.]) """ [cs] = pu.as_series([cs]) pol = np.zeros(len(cs), dtype=cs.dtype) quo = _cseries_to_zseries(cs) x = np.array([.5, 0, .5], dtype=pol.dtype) for i in range(0, len(cs) - 1) : quo, rem = _zseries_div(quo, x) pol[i] = rem[0] pol[-1] = quo[0] return pol # # These are constant arrays are of integer type so as to be compatible # with the widest range of other types, such as Decimal. # # Chebyshev default domain. chebdomain = np.array([-1,1]) # Chebyshev coefficients representing zero. chebzero = np.array([0]) # Chebyshev coefficients representing one. chebone = np.array([1]) # Chebyshev coefficients representing the identity x. chebx = np.array([0,1]) def chebline(off, scl) : """ Chebyshev series whose graph is a straight line. Parameters ---------- off, scl : scalars The specified line is given by ``off + scl*x``. Returns ------- y : ndarray This module's representation of the Chebyshev series for ``off + scl*x``. See Also -------- polyline Examples -------- >>> import numpy.polynomial.chebyshev as C >>> C.chebline(3,2) array([3, 2]) >>> C.chebval(-3, C.chebline(3,2)) # should be -3 -3.0 """ if scl != 0 : return np.array([off,scl]) else : return np.array([off]) def chebfromroots(roots) : """ Generate a Chebyshev series with the given roots. Return the array of coefficients for the C-series whose roots (a.k.a. "zeros") are given by *roots*. The returned array of coefficients is ordered from lowest order "term" to highest, and zeros of multiplicity greater than one must be included in *roots* a number of times equal to their multiplicity (e.g., if `2` is a root of multiplicity three, then [2,2,2] must be in *roots*). Parameters ---------- roots : array_like Sequence containing the roots. Returns ------- out : ndarray 1-d array of the C-series' coefficients, ordered from low to high. If all roots are real, ``out.dtype`` is a float type; otherwise, ``out.dtype`` is a complex type, even if all the coefficients in the result are real (see Examples below). See Also -------- polyfromroots Notes ----- What is returned are the :math:`c_i` such that: .. math:: \\sum_{i=0}^{n} c_i*T_i(x) = \\prod_{i=0}^{n} (x - roots[i]) where ``n == len(roots)`` and :math:`T_i(x)` is the `i`-th Chebyshev (basis) polynomial over the domain `[-1,1]`. Note that, unlike `polyfromroots`, due to the nature of the C-series basis set, the above identity *does not* imply :math:`c_n = 1` identically (see Examples). Examples -------- >>> import numpy.polynomial.chebyshev as C >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis array([ 0. , -0.25, 0. , 0.25]) >>> j = complex(0,1) >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis array([ 1.5+0.j, 0.0+0.j, 0.5+0.j]) """ if len(roots) == 0 : return np.ones(1) else : [roots] = pu.as_series([roots], trim=False) prd = np.array([1], dtype=roots.dtype) for r in roots : fac = np.array([.5, -r, .5], dtype=roots.dtype) prd = _zseries_mul(fac, prd) return _zseries_to_cseries(prd) def chebadd(c1, c2): """ Add one Chebyshev series to another. Returns the sum of two Chebyshev series `c1` + `c2`. The arguments are sequences of coefficients ordered from lowest order term to highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``. Parameters ---------- c1, c2 : array_like 1-d arrays of Chebyshev series coefficients ordered from low to high. Returns ------- out : ndarray Array representing the Chebyshev series of their sum. See Also -------- chebsub, chebmul, chebdiv, chebpow Notes ----- Unlike multiplication, division, etc., the sum of two Chebyshev series is a Chebyshev series (without having to "reproject" the result onto the basis set) so addition, just like that of "standard" polynomials, is simply "component-wise." Examples -------- >>> from numpy.polynomial import chebyshev as C >>> c1 = (1,2,3) >>> c2 = (3,2,1) >>> C.chebadd(c1,c2) array([ 4., 4., 4.]) """ # c1, c2 are trimmed copies [c1, c2] = pu.as_series([c1, c2]) if len(c1) > len(c2) : c1[:c2.size] += c2 ret = c1 else : c2[:c1.size] += c1 ret = c2 return pu.trimseq(ret) def chebsub(c1, c2): """ Subtract one Chebyshev series from another. Returns the difference of two Chebyshev series `c1` - `c2`. The sequences of coefficients are from lowest order term to highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``. Parameters ---------- c1, c2 : array_like 1-d arrays of Chebyshev series coefficients ordered from low to high. Returns ------- out : ndarray Of Chebyshev series coefficients representing their difference. See Also -------- chebadd, chebmul, chebdiv, chebpow Notes ----- Unlike multiplication, division, etc., the difference of two Chebyshev series is a Chebyshev series (without having to "reproject" the result onto the basis set) so subtraction, just like that of "standard" polynomials, is simply "component-wise." Examples -------- >>> from numpy.polynomial import chebyshev as C >>> c1 = (1,2,3) >>> c2 = (3,2,1) >>> C.chebsub(c1,c2) array([-2., 0., 2.]) >>> C.chebsub(c2,c1) # -C.chebsub(c1,c2) array([ 2., 0., -2.]) """ # c1, c2 are trimmed copies [c1, c2] = pu.as_series([c1, c2]) if len(c1) > len(c2) : c1[:c2.size] -= c2 ret = c1 else : c2 = -c2 c2[:c1.size] += c1 ret = c2 return pu.trimseq(ret) def chebmul(c1, c2): """ Multiply one Chebyshev series by another. Returns the product of two Chebyshev series `c1` * `c2`. The arguments are sequences of coefficients, from lowest order "term" to highest, e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``. Parameters ---------- c1, c2 : array_like 1-d arrays of Chebyshev series coefficients ordered from low to high. Returns ------- out : ndarray Of Chebyshev series coefficients representing their product. See Also -------- chebadd, chebsub, chebdiv, chebpow Notes ----- In general, the (polynomial) product of two C-series results in terms that are not in the Chebyshev polynomial basis set. Thus, to express the product as a C-series, it is typically necessary to "re-project" the product onto said basis set, which typically produces "un-intuitive" (but correct) results; see Examples section below. Examples -------- >>> from numpy.polynomial import chebyshev as C >>> c1 = (1,2,3) >>> c2 = (3,2,1) >>> C.chebmul(c1,c2) # multiplication requires "reprojection" array([ 6.5, 12. , 12. , 4. , 1.5]) """ # c1, c2 are trimmed copies [c1, c2] = pu.as_series([c1, c2]) z1 = _cseries_to_zseries(c1) z2 = _cseries_to_zseries(c2) prd = _zseries_mul(z1, z2) ret = _zseries_to_cseries(prd) return pu.trimseq(ret) def chebdiv(c1, c2): """ Divide one Chebyshev series by another. Returns the quotient-with-remainder of two Chebyshev series `c1` / `c2`. The arguments are sequences of coefficients from lowest order "term" to highest, e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``. Parameters ---------- c1, c2 : array_like 1-d arrays of Chebyshev series coefficients ordered from low to high. Returns ------- [quo, rem] : ndarrays Of Chebyshev series coefficients representing the quotient and remainder. See Also -------- chebadd, chebsub, chebmul, chebpow Notes ----- In general, the (polynomial) division of one C-series by another results in quotient and remainder terms that are not in the Chebyshev polynomial basis set. Thus, to express these results as C-series, it is typically necessary to "re-project" the results onto said basis set, which typically produces "un-intuitive" (but correct) results; see Examples section below. Examples -------- >>> from numpy.polynomial import chebyshev as C >>> c1 = (1,2,3) >>> c2 = (3,2,1) >>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not (array([ 3.]), array([-8., -4.])) >>> c2 = (0,1,2,3) >>> C.chebdiv(c2,c1) # neither "intuitive" (array([ 0., 2.]), array([-2., -4.])) """ # c1, c2 are trimmed copies [c1, c2] = pu.as_series([c1, c2]) if c2[-1] == 0 : raise ZeroDivisionError() lc1 = len(c1) lc2 = len(c2) if lc1 < lc2 : return c1[:1]*0, c1 elif lc2 == 1 : return c1/c2[-1], c1[:1]*0 else : z1 = _cseries_to_zseries(c1) z2 = _cseries_to_zseries(c2) quo, rem = _zseries_div(z1, z2) quo = pu.trimseq(_zseries_to_cseries(quo)) rem = pu.trimseq(_zseries_to_cseries(rem)) return quo, rem def chebpow(cs, pow, maxpower=16) : """Raise a Chebyshev series to a power. Returns the Chebyshev series `cs` raised to the power `pow`. The arguement `cs` is a sequence of coefficients ordered from low to high. i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.`` Parameters ---------- cs : array_like 1d array of chebyshev series coefficients ordered from low to high. pow : integer Power to which the series will be raised maxpower : integer, optional Maximum power allowed. This is mainly to limit growth of the series to umanageable size. Default is 16 Returns ------- coef : ndarray Chebyshev series of power. See Also -------- chebadd, chebsub, chebmul, chebdiv Examples -------- """ # cs is a trimmed copy [cs] = pu.as_series([cs]) power = int(pow) if power != pow or power < 0 : raise ValueError("Power must be a non-negative integer.") elif maxpower is not None and power > maxpower : raise ValueError("Power is too large") elif power == 0 : return np.array([1], dtype=cs.dtype) elif power == 1 : return cs else : # This can be made more efficient by using powers of two # in the usual way. zs = _cseries_to_zseries(cs) prd = zs for i in range(2, power + 1) : prd = np.convolve(prd, zs) return _zseries_to_cseries(prd) def chebder(cs, m=1, scl=1) : """ Differentiate a Chebyshev series. Returns the series `cs` differentiated `m` times. At each iteration the result is multiplied by `scl` (the scaling factor is for use in a linear change of variable). The argument `cs` is the sequence of coefficients from lowest order "term" to highest, e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``. Parameters ---------- cs: array_like 1-d array of Chebyshev series coefficients ordered from low to high. m : int, optional Number of derivatives taken, must be non-negative. (Default: 1) scl : scalar, optional Each differentiation is multiplied by `scl`. The end result is multiplication by ``scl**m``. This is for use in a linear change of variable. (Default: 1) Returns ------- der : ndarray Chebyshev series of the derivative. See Also -------- chebint Notes ----- In general, the result of differentiating a C-series needs to be "re-projected" onto the C-series basis set. Thus, typically, the result of this function is "un-intuitive," albeit correct; see Examples section below. Examples -------- >>> from numpy.polynomial import chebyshev as C >>> cs = (1,2,3,4) >>> C.chebder(cs) array([ 14., 12., 24.]) >>> C.chebder(cs,3) array([ 96.]) >>> C.chebder(cs,scl=-1) array([-14., -12., -24.]) >>> C.chebder(cs,2,-1) array([ 12., 96.]) """ cnt = int(m) if cnt != m: raise ValueError, "The order of derivation must be integer" if cnt < 0 : raise ValueError, "The order of derivation must be non-negative" if not np.isscalar(scl) : raise ValueError, "The scl parameter must be a scalar" # cs is a trimmed copy [cs] = pu.as_series([cs]) if cnt == 0: return cs elif cnt >= len(cs): return cs[:1]*0 else : zs = _cseries_to_zseries(cs) for i in range(cnt): zs = _zseries_der(zs)*scl return _zseries_to_cseries(zs) def chebint(cs, m=1, k=[], lbnd=0, scl=1): """ Integrate a Chebyshev series. Returns, as a C-series, the input C-series `cs`, integrated `m` times from `lbnd` to `x`. At each iteration the resulting series is **multiplied** by `scl` and an integration constant, `k`, is added. The scaling factor is for use in a linear change of variable. ("Buyer beware": note that, depending on what one is doing, one may want `scl` to be the reciprocal of what one might expect; for more information, see the Notes section below.) The argument `cs` is a sequence of coefficients, from lowest order C-series "term" to highest, e.g., [1,2,3] represents the series :math:`T_0(x) + 2T_1(x) + 3T_2(x)`. Parameters ---------- cs : array_like 1-d array of C-series coefficients, ordered from low to high. m : int, optional Order of integration, must be positive. (Default: 1) k : {[], list, scalar}, optional Integration constant(s). The value of the first integral at zero is the first value in the list, the value of the second integral at zero is the second value, etc. If ``k == []`` (the default), all constants are set to zero. If ``m == 1``, a single scalar can be given instead of a list. lbnd : scalar, optional The lower bound of the integral. (Default: 0) scl : scalar, optional Following each integration the result is *multiplied* by `scl` before the integration constant is added. (Default: 1) Returns ------- S : ndarray C-series coefficients of the integral. Raises ------ ValueError If ``m < 1``, ``len(k) > m``, ``np.isscalar(lbnd) == False``, or ``np.isscalar(scl) == False``. See Also -------- chebder Notes ----- Note that the result of each integration is *multiplied* by `scl`. Why is this important to note? Say one is making a linear change of variable :math:`u = ax + b` in an integral relative to `x`. Then :math:`dx = du/a`, so one will need to set `scl` equal to :math:`1/a` - perhaps not what one would have first thought. Also note that, in general, the result of integrating a C-series needs to be "re-projected" onto the C-series basis set. Thus, typically, the result of this function is "un-intuitive," albeit correct; see Examples section below. Examples -------- >>> from numpy.polynomial import chebyshev as C >>> cs = (1,2,3) >>> C.chebint(cs) array([ 0.5, -0.5, 0.5, 0.5]) >>> C.chebint(cs,3) array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667, 0.00625 ]) >>> C.chebint(cs, k=3) array([ 3.5, -0.5, 0.5, 0.5]) >>> C.chebint(cs,lbnd=-2) array([ 8.5, -0.5, 0.5, 0.5]) >>> C.chebint(cs,scl=-2) array([-1., 1., -1., -1.]) """ cnt = int(m) if np.isscalar(k) : k = [k] if cnt != m: raise ValueError, "The order of integration must be integer" if cnt < 0 : raise ValueError, "The order of integration must be non-negative" if len(k) > cnt : raise ValueError, "Too many integration constants" if not np.isscalar(lbnd) : raise ValueError, "The lbnd parameter must be a scalar" if not np.isscalar(scl) : raise ValueError, "The scl parameter must be a scalar" # cs is a trimmed copy [cs] = pu.as_series([cs]) if cnt == 0: return cs else: k = list(k) + [0]*(cnt - len(k)) for i in range(cnt) : zs = _cseries_to_zseries(cs)*scl zs = _zseries_int(zs) cs = _zseries_to_cseries(zs) cs[0] += k[i] - chebval(lbnd, cs) return cs def chebval(x, cs): """Evaluate a Chebyshev series. If `cs` is of length `n`, this function returns : ``p(x) = cs[0]*T_0(x) + cs[1]*T_1(x) + ... + cs[n-1]*T_{n-1}(x)`` If x is a sequence or array then p(x) will have the same shape as x. If r is a ring_like object that supports multiplication and addition by the values in `cs`, then an object of the same type is returned. Parameters ---------- x : array_like, ring_like Array of numbers or objects that support multiplication and addition with themselves and with the elements of `cs`. cs : array_like 1-d array of Chebyshev coefficients ordered from low to high. Returns ------- values : ndarray, ring_like If the return is an ndarray then it has the same shape as `x`. See Also -------- chebfit Examples -------- Notes ----- The evaluation uses Clenshaw recursion, aka synthetic division. Examples -------- """ # cs is a trimmed copy [cs] = pu.as_series([cs]) if isinstance(x, tuple) or isinstance(x, list) : x = np.asarray(x) if len(cs) == 1 : c0 = cs[0] c1 = 0 elif len(cs) == 2 : c0 = cs[0] c1 = cs[1] else : x2 = 2*x c0 = cs[-2] c1 = cs[-1] for i in range(3, len(cs) + 1) : tmp = c0 c0 = cs[-i] - c1 c1 = tmp + c1*x2 return c0 + c1*x def chebvander(x, deg) : """Vandermonde matrix of given degree. Returns the Vandermonde matrix of degree `deg` and sample points `x`. This isn't a true Vandermonde matrix because `x` can be an arbitrary ndarray and the Chebyshev polynomials aren't powers. If ``V`` is the returned matrix and `x` is a 2d array, then the elements of ``V`` are ``V[i,j,k] = T_k(x[i,j])``, where ``T_k`` is the Chebyshev polynomial of degree ``k``. Parameters ---------- x : array_like Array of points. The values are converted to double or complex doubles. deg : integer Degree of the resulting matrix. Returns ------- vander : Vandermonde matrix. The shape of the returned matrix is ``x.shape + (deg+1,)``. The last index is the degree. """ x = np.asarray(x) + 0.0 order = int(deg) + 1 v = np.ones((order,) + x.shape, dtype=x.dtype) if order > 1 : x2 = 2*x v[1] = x for i in range(2, order) : v[i] = v[i-1]*x2 - v[i-2] return np.rollaxis(v, 0, v.ndim) def chebfit(x, y, deg, rcond=None, full=False, w=None): """ Least squares fit of Chebyshev series to data. Fit a Chebyshev series ``p(x) = p[0] * T_{0}(x) + ... + p[deg] * T_{deg}(x)`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. w : array_like, shape (`M`,), optional Weights. If not None, the contribution of each point ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the weights are chosen so that the errors of the products ``w[i]*y[i]`` all have the same variance. The default value is None. .. versionadded:: 1.5.0 Returns ------- coef : ndarray, shape (M,) or (M, K) Chebyshev coefficients ordered from low to high. If `y` was 2-D, the coefficients for the data in column k of `y` are in column `k`. [residuals, rank, singular_values, rcond] : present when `full` = True Residuals of the least-squares fit, the effective rank of the scaled Vandermonde matrix and its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', RankWarning) See Also -------- chebval : Evaluates a Chebyshev series. chebvander : Vandermonde matrix of Chebyshev series. polyfit : least squares fit using polynomials. linalg.lstsq : Computes a least-squares fit from the matrix. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution are the coefficients ``c[i]`` of the Chebyshev series ``T(x)`` that minimizes the squared error ``E = \\sum_j |y_j - T(x_j)|^2``. This problem is solved by setting up as the overdetermined matrix equation ``V(x)*c = y``, where ``V`` is the Vandermonde matrix of `x`, the elements of ``c`` are the coefficients to be solved for, and the elements of `y` are the observed values. This equation is then solved using the singular value decomposition of ``V``. If some of the singular values of ``V`` are so small that they are neglected, then a `RankWarning` will be issued. This means that the coeficient values may be poorly determined. Using a lower order fit will usually get rid of the warning. The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious and have large contributions from roundoff error. Fits using Chebyshev series are usually better conditioned than fits using power series, but much can depend on the distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting Examples -------- """ order = int(deg) + 1 x = np.asarray(x) + 0.0 y = np.asarray(y) + 0.0 # check arguments. if deg < 0 : raise ValueError, "expected deg >= 0" if x.ndim != 1: raise TypeError, "expected 1D vector for x" if x.size == 0: raise TypeError, "expected non-empty vector for x" if y.ndim < 1 or y.ndim > 2 : raise TypeError, "expected 1D or 2D array for y" if len(x) != len(y): raise TypeError, "expected x and y to have same length" # set up the least squares matrices lhs = chebvander(x, deg) rhs = y if w is not None: w = np.asarray(w) + 0.0 if w.ndim != 1: raise TypeError, "expected 1D vector for w" if len(x) != len(w): raise TypeError, "expected x and w to have same length" # apply weights if rhs.ndim == 2: lhs *= w[:, np.newaxis] rhs *= w[:, np.newaxis] else: lhs *= w[:, np.newaxis] rhs *= w # set rcond if rcond is None : rcond = len(x)*np.finfo(x.dtype).eps # scale the design matrix and solve the least squares equation scl = np.sqrt((lhs*lhs).sum(0)) c, resids, rank, s = la.lstsq(lhs/scl, rhs, rcond) c = (c.T/scl).T # warn on rank reduction if rank != order and not full: msg = "The fit may be poorly conditioned" warnings.warn(msg, pu.RankWarning) if full : return c, [resids, rank, s, rcond] else : return c def chebroots(cs): """ Compute the roots of a Chebyshev series. Return the roots (a.k.a "zeros") of the C-series represented by `cs`, which is the sequence of the C-series' coefficients from lowest order "term" to highest, e.g., [1,2,3] represents the C-series ``T_0 + 2*T_1 + 3*T_2``. Parameters ---------- cs : array_like 1-d array of C-series coefficients ordered from low to high. Returns ------- out : ndarray Array of the roots. If all the roots are real, then so is the dtype of ``out``; otherwise, ``out``'s dtype is complex. See Also -------- polyroots Notes ----- Algorithm(s) used: Remember: because the C-series basis set is different from the "standard" basis set, the results of this function *may* not be what one is expecting. Examples -------- >>> import numpy.polynomial as P >>> import numpy.polynomial.chebyshev as C >>> P.polyroots((-1,1,-1,1)) # x^3 - x^2 + x - 1 has two complex roots array([ -4.99600361e-16-1.j, -4.99600361e-16+1.j, 1.00000e+00+0.j]) >>> C.chebroots((-1,1,-1,1)) # T3 - T2 + T1 - T0 has only real roots array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00]) """ # cs is a trimmed copy [cs] = pu.as_series([cs]) if len(cs) <= 1 : return np.array([], dtype=cs.dtype) if len(cs) == 2 : return np.array([-cs[0]/cs[1]]) n = len(cs) - 1 cmat = np.zeros((n,n), dtype=cs.dtype) cmat.flat[1::n+1] = .5 cmat.flat[n::n+1] = .5 cmat[1, 0] = 1 cmat[:,-1] -= cs[:-1]*(.5/cs[-1]) roots = la.eigvals(cmat) roots.sort() return roots # # Chebyshev series class # exec polytemplate.substitute(name='Chebyshev', nick='cheb', domain='[-1,1]')
bsd-3-clause
4,376,316,724,196,033,500
28.466667
79
0.597154
false
3.458151
false
false
false
francielsilvestrini/soupport
controllers/attachments.py
1
1465
# -*- coding: utf-8 -*- def attachments(): owner_table = getlist(request.args, 0) owner_key = getlist(request.args, 1) if not (owner_table and owner_key): response.view = 'others/gadget_error.html' return dict(msg='attachments dont work!') delete_id = request.vars.get('delete', 0) if delete_id: db(db.attachments.id == delete_id).delete() db.attachments.owner_table.default = owner_table db.attachments.owner_key.default = owner_key query = ((db.attachments.owner_table == owner_table) & (db.attachments.owner_key == owner_key)) form = SQLFORM(db.attachments, upload=UPLOAD_URLS['attachments']) if request.vars.attachment != None: form.vars.name = request.vars.attachment.filename form.post_vars = form.vars.name form.process() content = db(query).select() return dict(form=form, content=content) def attachment_download(): if not request.args(0) or not request.args[0].isdigit(): raise HTTP(404) id = int(request.args[0]) import cStringIO import contenttype as c s=cStringIO.StringIO() (filename,file) = db.attachments.attachment.retrieve(db.attachments[id].attachment) s.write(file.read()) response.headers['Content-Type'] = c.contenttype(filename) response.headers['Content-Disposition'] = "attachment; filename=%s" % filename return s.getvalue()
lgpl-3.0
645,892,210,916,495,400
33.731707
99
0.63959
false
3.737245
false
false
false
FDelporte/PiGameConsole
SlideShow.py
1
2521
import Tkinter as tk from itertools import cycle from Tkinter import * from PIL import Image, ImageTk # pip install pillow + sudo apt-get install python-imaging-tk # based on example found on # https://raspberrypi.stackexchange.com/questions/18261/how-do-i-display-an-image-file-png-in-a-simple-window class SlideShow(tk.Frame): canvas = None current_image = 0 stopShowing = False SLIDE_DURATION = 7500 NUMBER_OF_SLIDES = 1 def __init__(self, parent, w, h): tk.Frame.__init__(self, parent) # Set up the GUI window via Tk self.canvas = Canvas(self, background="black", width=w, height=h) self.canvas.pack(side="bottom", fill="x", padx=4) # pick an image file you have .bmp .jpg .gif. .png # load the file and covert it to a Tkinter image object self.image1 = ImageTk.PhotoImage(Image.open('pictures/speelpong.jpg')) if self.NUMBER_OF_SLIDES >= 2: self.image2 = ImageTk.PhotoImage(Image.open('pictures/ouderraad2.jpg')) if self.NUMBER_OF_SLIDES >= 3: self.image3 = ImageTk.PhotoImage(Image.open('pictures/ouderraad3.jpg')) # make the root window the size of the image #self.canvas.geometry("%dx%d+%d+%d" % (w, h, 0, 0)) # root has no image argument, so use a label as a panel self.panel1 = tk.Label(self.canvas, image=self.image1) self.display = self.image1 self.panel1.pack(side=tk.TOP, fill=tk.BOTH, expand=tk.YES) print "Display image1" if self.NUMBER_OF_SLIDES > 1: self.after(self.SLIDE_DURATION, self.update_image) #self.root.mainloop() def stop(self): self.stopShowing = True def update_image(self): if self.display == self.image1 and self.NUMBER_OF_SLIDES >= 2: self.panel1.configure(image=self.image2) print "Display image2" self.display = self.image2 elif self.display == self.image2 and self.NUMBER_OF_SLIDES >= 3: self.panel1.configure(image=self.image3) print "Display image3" self.display = self.image3 else: self.panel1.configure(image=self.image1) print "Display image1" self.display = self.image1 if self.stopShowing == False: self.after(self.SLIDE_DURATION, self.update_image) # Set to call again in 30 seconds
apache-2.0
5,571,100,893,828,448,000
35.028571
109
0.603332
false
3.535764
false
false
false
bas-stringer/scry
log.py
1
2549
from __init__ import LOG_DIRECTORY from utility import assert_dir from os.path import join from datetime import datetime from shutil import copyfile REQUEST_DIR = join(LOG_DIRECTORY,'requests') RESPONSE_DIR = join(LOG_DIRECTORY,'responses') assert_dir(REQUEST_DIR) assert_dir(RESPONSE_DIR) def log_request(request): now = datetime.now() date = now.date().isoformat() time = now.time().isoformat() last_path = join(LOG_DIRECTORY,'last_request.log') spacer = '\n\n----------\n\n' vals = request.values print 'Logging HTTP request ('+time+')' with open(last_path,'w') as f: f.write('Method :\t'+request.method+'\n') f.write('Time :\t'+time+'\n') f.write('Base URL :\t'+request.base_url+'\n') f.write('Full Path:\t'+request.full_path+spacer) f.write('Values (Len '+str(len(vals))+'):'+'\t'+str(vals) + '\n') for k in vals: f.write('\n'+k+':\t'+vals[k]) f.write(spacer) f.write('Content Length :\t'+str(request.content_length)+'\n') f.write('Content Type :\t'+str(request.content_type)+'\n') f.write('Parsed Content Type:\t'+str(request._parsed_content_type)+spacer) f.write('Accepted Response Types:\t'+str(request.accept_mimetypes)+spacer) f.write(str(dir(request)) + spacer) for prop in dir(request): if prop.find('__') != -1: continue elif prop == 'access_route': continue # Not sure why, but not skipping this causes issues f.write('=== ' + prop + ' ===\n\n') val = getattr(request,prop) fnc = hasattr(val,'__call__') if fnc: f.write(str(type(val)) + spacer) else: f.write(str(val) + spacer) # Copy the new last_request.log file to the appropriate location dir_path = join(REQUEST_DIR,date) file_path = join(dir_path,'%s.log' % (time)) assert_dir(dir_path) copyfile(last_path,file_path) return date, time def log_response(response, date, time): print 'Logging HTTP response ('+time+')' last_path = join(LOG_DIRECTORY,'last_response.log') with open(last_path,'w') as f: f.write(response) # Copy the new last_response.log file to the appropriate location dir_path = join(RESPONSE_DIR,date) file_path = join(dir_path,'%s.log' % (time)) assert_dir(dir_path) copyfile(last_path,file_path)
mit
8,292,879,116,061,946,000
33.931507
101
0.572381
false
3.421477
false
false
false
Krakn/learning
src/python/mit_opencourseware/6001x/wk02pset02/problem03.py
1
1204
def exactPayment(balance, annualInterestRate): """ The following variables contain values as described below: balance - the outstanding balance on the credit card annualInterestRate - annual interest rate as a decimal valueLow - Balance without interest valueHigh - Balance with full interest reallyGoodGuess - Average of the previous two variables """ monthlyInterestRate = annualInterestRate / 12.0 boundLow = balance / 12.0 boundHigh = (balance * (1 + annualInterestRate)) / 12.0 reallyGoodGuess = round((boundLow + boundHigh) / 2, 2) remainingBalance = balance while round(boundLow, 1) != round(boundHigh, 1): remainingBalance = balance for _ in range(1, 13): remainingBalance -= reallyGoodGuess remainingBalance += remainingBalance * monthlyInterestRate if round(remainingBalance, 1) > 0: boundLow = reallyGoodGuess reallyGoodGuess = round((boundLow + boundHigh) / 2, 2) if round(remainingBalance, 1) < 0: boundHigh = reallyGoodGuess reallyGoodGuess = round((boundLow + boundHigh) / 2, 2) print(reallyGoodGuess)
isc
5,623,401,946,856,234,000
40.517241
70
0.658638
false
4.284698
false
false
false
massivezh/qmc
gui.py
1
3955
#!/usr/bin/env python # Simple GUI for qmc.py # FIXME Experimental - doesn't do any check on what is passed as input ;) # # Copyright (C) 2011 Marcello Pogliani # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import qmc import sys import signal from PyQt4.Qt import * signal.signal(signal.SIGINT, signal.SIG_DFL) # TODO refactor the library to allow GUI to output some intermediate steps! if __name__ == "__main__": app = QApplication(sys.argv) widget = QWidget() widget.resize(450, 350) widget.setWindowTitle('Quine McCluskey Algorithm') layout = QGridLayout(widget) widget.setLayout(layout) # widgets go = QPushButton('GO!', widget) reset = QPushButton('Reset', widget) add_function = QPushButton('Add function', widget) costfun_selector = QButtonGroup(widget) costfun_selector_literals = QRadioButton('# of literals', widget) costfun_selector_implicants = QRadioButton('# of implicants', widget) costfun_selector.addButton(costfun_selector_literals) costfun_selector.addButton(costfun_selector_implicants) costfun_selector_literals.setChecked(True) # default cost function cost = QLCDNumber(widget) result = QTextEdit(widget) insert_pane = QTableWidget(1, 2, widget); insert_pane.setHorizontalHeaderLabels(['ONset', 'DCset']) # bind widgets to layout layout.addWidget (insert_pane, 1, 1, 1, 4) layout.addWidget(add_function, 2, 1, 1, 1) layout.addWidget(go, 2, 2, 1, 2) layout.addWidget(reset, 2, 4, 1, 1) layout.addWidget(QLabel('Cost function:', widget), 3, 1, 1, 2) layout.addWidget(costfun_selector_implicants, 4, 1, 1, 2) layout.addWidget(costfun_selector_literals, 5, 1, 1, 2) layout.addWidget(QLabel('Computed cost:', widget), 6, 1, 2, 1) layout.addWidget(cost, 6, 2, 2, 1) layout.addWidget(result, 3, 3, 5, 2) def addFunction(): insert_pane.setRowCount(insert_pane.rowCount()+1) def toList(obj): if obj == None: l = [] else: s = obj.text().toAscii() l = s.split(',') l = [i.toInt()[0] for i in l] return l def startMinimization(): lof = [] for row in range(insert_pane.rowCount()): curf_onset = toList(insert_pane.item(row, 0)) curf_dcset = toList(insert_pane.item(row, 1)) if curf_onset != []: lof.append(qmc.QmcFunction(curf_onset, curf_dcset)) if costfun_selector_literals.isChecked(): costf = qmc.LITERALS_COST_FUNCTION elif costfun_selector_implicants.isChecked(): costf = qmc.IMPLICANTS_COST_FUNCTION if lof != []: qmc.VERBOSE = False # no debug printfs when running from the GUI! q = qmc.QuineMcCluskey(lof, costf) q.findPrimeImplicants() q.simplify() result.setText(str(q.sol)) cost.display(q.sol.getCost()) else: result.setText("Input is empty!") def clearAll(): insert_pane.setRowCount(1) insert_pane.clearContents() result.clear() cost.display(0) pass widget.connect(add_function, SIGNAL('clicked()'), addFunction) widget.connect(go, SIGNAL('clicked()'), startMinimization) widget.connect(reset, SIGNAL('clicked()'), clearAll) widget.show() sys.exit(app.exec_())
apache-2.0
-570,660,592,206,888,800
33.692982
77
0.636157
false
3.585675
false
false
false
jldbc/pybaseball
pybaseball/datahelpers/postprocessing.py
1
7149
import re from datetime import datetime from typing import Any, List, Union, Optional import attr import numpy as np import pandas as pd null_regexes = [ re.compile(r'^\s*$'), re.compile(r'^null$', re.RegexFlag.IGNORECASE) ] date_formats = [ # Standard statcast format (re.compile(r'^\d{4}-\d{1,2}-\d{1,2}$'), '%Y-%m-%d'), # Just in case (https://github.com/jldbc/pybaseball/issues/104) (re.compile(r'^\d{4}-\d{1,2}-\d{1,2}T\d{2}:\d{2}:\d{2}.\d{1,6}Z$'), '%Y-%m-%dT%H:%M:%S.%fZ'), ] def try_parse_dataframe( data: pd.DataFrame, parse_numerics: bool = True, null_replacement: Union[str, int, float, datetime] = np.nan, known_percentages: Optional[List[str]] = None ) -> pd.DataFrame: data_copy = data.copy() if parse_numerics: data_copy = coalesce_nulls(data_copy, null_replacement) data_copy = data_copy.apply( pd.to_numeric, errors='ignore', downcast='signed' ).convert_dtypes(convert_string=False) string_columns = [ dtype_tuple[0] for dtype_tuple in data_copy.dtypes.items() if str(dtype_tuple[1]) in ["object", "string"] ] for column in string_columns: # Only check the first value of the column and test that; # this is faster than blindly trying to convert entire columns first_value_index = data_copy[column].first_valid_index() if first_value_index is None: # All nulls continue first_value = data_copy[column].loc[first_value_index] if str(first_value).endswith('%') or column.endswith('%') or \ (known_percentages is not None and column in known_percentages): data_copy[column] = data_copy[column].astype(str).str.replace("%", "").astype(float) / 100.0 else: # Doing it this way as just applying pd.to_datetime on # the whole dataframe just tries to gobble up ints/floats as timestamps for date_regex, date_format in date_formats: if isinstance(first_value, str) and date_regex.match(first_value): data_copy[column] = data_copy[column].apply(pd.to_datetime, errors='ignore', format=date_format) data_copy[column] = data_copy[column].convert_dtypes(convert_string=False) break return data_copy # pylint: disable=too-many-return-statements def try_parse( value: Union[None, str, int, datetime, float], column_name: str, null_replacement: Union[str, int, float, datetime] = np.nan, known_percentages: Optional[List[str]] = None ) -> Union[str, int, float, datetime]: if value is None: return null_replacement if not isinstance(value, str): return value for regex in null_regexes: if regex.match(value): return null_replacement # Is it a date? for date_regex, date_format in date_formats: if date_regex.match(value): try: return datetime.strptime(value, date_format) except: # pylint: disable=bare-except pass # Is it an float or an int (including percetages)? try: percentage = ( value.endswith('%') or column_name.endswith('%') or \ (known_percentages is not None and column_name in known_percentages) ) if percentage: return try_parse_percentage(value) if '.' in value: return float(value) return int(value) except: # pylint: disable=bare-except pass return value def try_parse_percentage(value: str) -> float: return float(value.strip(' %')) / 100.0 def coalesce_nulls(data: pd.DataFrame, value: Union[str, int, float, datetime] = np.nan) -> pd.DataFrame: # Fill missing values with NaN for regex in null_regexes: data.replace(regex.pattern, value, regex=True, inplace=True) return data def columns_except(data: pd.DataFrame, columns: List[str]) -> List[str]: return list(np.setdiff1d(data.columns, columns)) def convert_numeric(data: pd.DataFrame, numeric_columns: List[str]) -> pd.DataFrame: # data.loc[data[numeric_cols] == ''] = None # data[numeric_cols] = data[numeric_cols].astype(float) # Ideally we'd do it the pandas way ^, but it's barfing when some columns have no data for col in numeric_columns: data[col] = data[col].astype(float) return data def convert_percentages(data: pd.DataFrame, columns: List[str]) -> pd.DataFrame: # convert percent strings to float values for col in columns: # Skip if column is all NA (happens for some of the more obscure stats + in older seasons) if col in data.columns and data[col].count() > 0: data[col] = data[col].str.strip(' %') data[col] = data[col].astype(float) / 100.0 else: # print(col) pass return data def compute_pa(bat_df: pd.DataFrame) -> pd.Series: """ Computes PA, using AB, HBP, SH, and SF. If any of those columns are null, they're filled with 0 :param bat_df: :return: """ plate_appearances = bat_df.loc[:, "AB"].fillna(0) for stat in ["BB", "HBP", "SH", "SF"]: plate_appearances += bat_df.loc[:, stat].fillna(0) return plate_appearances.astype(int) def augment_lahman_batting(bat_df: pd.DataFrame) -> pd.DataFrame: """ augments the Lahman batting data frame, with PA, X1B (singles), and TB. :param bat_df: :return: """ plate_appearances = compute_pa(bat_df) singles = ( bat_df.loc[:, "H"] - bat_df.loc[:, "2B"] - bat_df.loc[:, "3B"] - bat_df.loc[:, "HR"] ) total_bases = ( bat_df.loc[:, "HR"] * 4 + bat_df.loc[:, "3B"] * 3 + bat_df.loc[:, "2B"] * 2 + singles ) return bat_df.assign( PA=plate_appearances.astype(int), X1B=singles.astype(int), TB=total_bases.astype(int) ).rename({"X1B": "1B"}, axis=1) def augment_lahman_pitching(stats_df: pd.DataFrame) -> pd.DataFrame: """ augments the Lahman pitching data frame. currently a noop. :param stats_df: :return: """ return stats_df def aggregate_by_season(stats_df: pd.DataFrame) -> pd.DataFrame: return stats_df.groupby(["playerID", "yearID"]).sum().reset_index() # pylint: disable=unused-argument def check_is_zero_one(instance: Any, attribute: attr.Attribute, value: Union[int, float]) -> None: if value not in [0, 1]: raise ValueError(f"{attribute} must be either 0 or 1, not {value}") # pylint: disable=unused-argument def check_greater_zero(instance: Any, attribute: attr.Attribute, value: Union[int, float]) -> None: if value <= 0: raise ValueError( f"{attribute} must be greater than zero, not {value}" ) # pylint: disable=unused-argument def check_between_zero_one(instance: Any, attribute: attr.Attribute, value: Union[int, float]) -> None: if not 0 <= value <= 1: raise ValueError( f"{attribute} must be between zero and one, not {value}" )
mit
1,013,509,468,966,282,900
31.202703
116
0.608896
false
3.428777
false
false
false
ifsmirnov/jngen
build.py
1
2593
#!/usr/bin/python3 import re, os HEADER_REGEX = re.compile('#include "(.*)"') # This list may contain not all headers directly, but each jngen header # must be among the dependencies of some file from here. LIBRARY_HEADERS = [ "array.h", "random.h", "common.h", "tree.h", "graph.h", "geometry.h", "math_jngen.h", "rnda.h", "rnds.h", "testcases.h", "options.h", "printers.h", "repr.h", "query_builder.h", "drawer/drawer.h", "suites/suites.h", ] def posix_path_to_native(posix_path): return os.path.join(*posix_path.split('/')) def extract_header(line): res = HEADER_REGEX.match(line) if res: return res.groups()[0] def extract_direct_deps(posix_filename): dir = os.path.dirname(posix_filename) # check explicitly on win res = set() with open(posix_path_to_native(posix_filename)) as fin: for line in fin.readlines(): t = extract_header(line) if t and not t.endswith("_inl.h"): res.add(dir + '/' + t if dir else t) return res deps = {} def extract_deps(posix_filename): posix_filename = os.path.normpath(posix_filename) if posix_filename in deps: return deps[posix_filename] deps[posix_filename] = set((posix_filename,)) for dep in extract_direct_deps(posix_filename): deps[posix_filename].update(extract_deps(dep)) return deps[posix_filename] def write_file(filename, stream): dir = os.path.dirname(filename) # check explicitly on win with open(posix_path_to_native(filename)) as fin: for line in fin.readlines(): include_or_not = HEADER_REGEX.match(line) if include_or_not: if include_or_not.groups()[0].endswith("_inl.h"): t = include_or_not.groups()[0] write_file(dir + '/' + t if dir else t, stream) elif '#pragma once' not in line: stream.write(line) headers = set() for h in LIBRARY_HEADERS: headers.update(extract_deps(h)) headers = ['header.h'] + sorted(headers) deps['footer.h'] = set(headers + ['footer.h']) headers += ['footer.h'] deps['header.h'] = set(('header.h',)) headers_in_order = [] while headers: for h in headers: if len(deps[h]) == 1: headers_in_order.append(h) for other in deps: deps[other].discard(h) del deps[h] headers.remove(h) break with open("jngen.h", "w") as fout: for filename in headers_in_order: write_file(filename, fout)
mit
101,050,475,562,257,710
24.421569
71
0.587736
false
3.371912
false
false
false
d0ugal/discode-server
discode_server/db.py
1
4273
import collections import datetime import hashlib import logging from sanic import exceptions import aiopg.sa import sqlalchemy as sa from discode_server.utils import baseconv from discode_server.utils import highlight log = logging.getLogger(__file__) meta = sa.MetaData() paste = sa.Table( 'pastes', meta, sa.Column('id', sa.Integer, primary_key=True), sa.Column('contents', sa.Text(), nullable=False), sa.Column('created_on', sa.DateTime, default=datetime.datetime.utcnow), sa.Column('sha', sa.String(64), nullable=False), sa.Column('lexer', sa.String(60), nullable=True), sa.Column('lexer_guessed', sa.Boolean, default=False), ) comment = sa.Table( 'comments', meta, sa.Column('id', sa.Integer, primary_key=True), sa.Column('paste_id', sa.Integer, sa.ForeignKey("pastes.id", ondelete="CASCADE"), nullable=False), sa.Column('line', sa.Integer, nullable=False), sa.Column('contents', sa.Text(), nullable=False), sa.Column('created_on', sa.DateTime, default=datetime.datetime.utcnow), ) class Paste: def __init__(self, record, comments=None): self._record = record self.comments = collections.defaultdict(list) if not comments: return for comment in comments: self.comments[comment.line].append(comment.contents) @property def id(self): return baseconv.base36.from_decimal(self._record.id) @property def decimal_id(self): return self._record.id @property def contents(self): return self._record.contents @property def lexer(self): return self._record.lexer @property def created_on(self): return self._record.created_on class Comment: def __init__(self, record): self._record = record @property def id(self): return self._record.id @property def contents(self): return self._record.contents @property def line(self): return self._record.line class PasteNotFound(exceptions.NotFound): pass async def create_engine(db_config, loop): return await aiopg.sa.create_engine( **db_config, loop=loop ) async def get_paste(conn, paste_id): query = sa.select([paste]).where(paste.c.id == paste_id) result = await conn.execute(query) p = await result.first() comments = await get_comments(conn, paste_id) if not p: raise PasteNotFound("Paste Not Found") return Paste(p, comments) async def get_pastes(conn): query = sa.select([paste.c.id, paste.c.created_on]) result = await conn.execute(query) pastes = await result.fetchall() if not pastes: raise PasteNotFound("Paste Not Found") return [Paste(r) for r in pastes] async def delete_expired(conn): try: log.info("Deleteing expired pastes") days = 30 utcnow = datetime.datetime.utcnow() delete_after = utcnow - datetime.timedelta(days=days) await conn.execute(paste.delete().where( paste.c.created_on < delete_after)) except: log.exception("Failed to delete expired pastes") async def create_comment(conn, paste_id, line, contents): result = await conn.execute(comment.insert().values( paste_id=paste_id, line=line, contents=contents)) record = await result.fetchone() await conn.execute(f"NOTIFY channel, %s", f"{paste_id},{line},{record.id}") return record async def get_comments(conn, paste_id): query = sa.select([comment]).where(comment.c.paste_id == paste_id) result = await conn.execute(query) comments = await result.fetchall() return [Comment(c) for c in comments] async def create(conn, contents, lexer, created_on=None): sha = hashlib.sha256(contents.encode('utf-8')).hexdigest() lexer, detected = highlight.guess(contents, lexer) values = { 'contents': contents, 'sha': sha, 'lexer': lexer, 'lexer_guessed': detected, } if created_on is not None: values['created_on'] = created_on result = await conn.execute(paste.insert().values(**values)) record = await result.fetchone() if not record: raise Exception("whelp") return Paste(record)
bsd-2-clause
5,807,472,579,117,242,000
25.054878
79
0.646852
false
3.696367
false
false
false
shoyer/xarray
xarray/core/indexing.py
1
51766
import enum import functools import operator from collections import defaultdict from contextlib import suppress from datetime import timedelta from typing import Any, Callable, Iterable, Sequence, Tuple, Union import numpy as np import pandas as pd from . import duck_array_ops, nputils, utils from .npcompat import DTypeLike from .pycompat import dask_array_type, integer_types, sparse_array_type from .utils import is_dict_like, maybe_cast_to_coords_dtype def expanded_indexer(key, ndim): """Given a key for indexing an ndarray, return an equivalent key which is a tuple with length equal to the number of dimensions. The expansion is done by replacing all `Ellipsis` items with the right number of full slices and then padding the key with full slices so that it reaches the appropriate dimensionality. """ if not isinstance(key, tuple): # numpy treats non-tuple keys equivalent to tuples of length 1 key = (key,) new_key = [] # handling Ellipsis right is a little tricky, see: # http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing found_ellipsis = False for k in key: if k is Ellipsis: if not found_ellipsis: new_key.extend((ndim + 1 - len(key)) * [slice(None)]) found_ellipsis = True else: new_key.append(slice(None)) else: new_key.append(k) if len(new_key) > ndim: raise IndexError("too many indices") new_key.extend((ndim - len(new_key)) * [slice(None)]) return tuple(new_key) def _expand_slice(slice_, size): return np.arange(*slice_.indices(size)) def _sanitize_slice_element(x): from .variable import Variable from .dataarray import DataArray if isinstance(x, (Variable, DataArray)): x = x.values if isinstance(x, np.ndarray): if x.ndim != 0: raise ValueError( f"cannot use non-scalar arrays in a slice for xarray indexing: {x}" ) x = x[()] if isinstance(x, np.timedelta64): # pandas does not support indexing with np.timedelta64 yet: # https://github.com/pandas-dev/pandas/issues/20393 x = pd.Timedelta(x) return x def _asarray_tuplesafe(values): """ Convert values into a numpy array of at most 1-dimension, while preserving tuples. Adapted from pandas.core.common._asarray_tuplesafe """ if isinstance(values, tuple): result = utils.to_0d_object_array(values) else: result = np.asarray(values) if result.ndim == 2: result = np.empty(len(values), dtype=object) result[:] = values return result def _is_nested_tuple(possible_tuple): return isinstance(possible_tuple, tuple) and any( isinstance(value, (tuple, list, slice)) for value in possible_tuple ) def get_indexer_nd(index, labels, method=None, tolerance=None): """Wrapper around :meth:`pandas.Index.get_indexer` supporting n-dimensional labels """ flat_labels = np.ravel(labels) flat_indexer = index.get_indexer(flat_labels, method=method, tolerance=tolerance) indexer = flat_indexer.reshape(labels.shape) return indexer def convert_label_indexer(index, label, index_name="", method=None, tolerance=None): """Given a pandas.Index and labels (e.g., from __getitem__) for one dimension, return an indexer suitable for indexing an ndarray along that dimension. If `index` is a pandas.MultiIndex and depending on `label`, return a new pandas.Index or pandas.MultiIndex (otherwise return None). """ new_index = None if isinstance(label, slice): if method is not None or tolerance is not None: raise NotImplementedError( "cannot use ``method`` argument if any indexers are " "slice objects" ) indexer = index.slice_indexer( _sanitize_slice_element(label.start), _sanitize_slice_element(label.stop), _sanitize_slice_element(label.step), ) if not isinstance(indexer, slice): # unlike pandas, in xarray we never want to silently convert a # slice indexer into an array indexer raise KeyError( "cannot represent labeled-based slice indexer for dimension " f"{index_name!r} with a slice over integer positions; the index is " "unsorted or non-unique" ) elif is_dict_like(label): is_nested_vals = _is_nested_tuple(tuple(label.values())) if not isinstance(index, pd.MultiIndex): raise ValueError( "cannot use a dict-like object for selection on " "a dimension that does not have a MultiIndex" ) elif len(label) == index.nlevels and not is_nested_vals: indexer = index.get_loc(tuple(label[k] for k in index.names)) else: for k, v in label.items(): # index should be an item (i.e. Hashable) not an array-like if isinstance(v, Sequence) and not isinstance(v, str): raise ValueError( "Vectorized selection is not " "available along level variable: " + k ) indexer, new_index = index.get_loc_level( tuple(label.values()), level=tuple(label.keys()) ) # GH2619. Raise a KeyError if nothing is chosen if indexer.dtype.kind == "b" and indexer.sum() == 0: raise KeyError(f"{label} not found") elif isinstance(label, tuple) and isinstance(index, pd.MultiIndex): if _is_nested_tuple(label): indexer = index.get_locs(label) elif len(label) == index.nlevels: indexer = index.get_loc(label) else: indexer, new_index = index.get_loc_level( label, level=list(range(len(label))) ) else: label = ( label if getattr(label, "ndim", 1) > 1 # vectorized-indexing else _asarray_tuplesafe(label) ) if label.ndim == 0: if isinstance(index, pd.MultiIndex): indexer, new_index = index.get_loc_level(label.item(), level=0) elif isinstance(index, pd.CategoricalIndex): if method is not None: raise ValueError( "'method' is not a valid kwarg when indexing using a CategoricalIndex." ) if tolerance is not None: raise ValueError( "'tolerance' is not a valid kwarg when indexing using a CategoricalIndex." ) indexer = index.get_loc(label.item()) else: indexer = index.get_loc( label.item(), method=method, tolerance=tolerance ) elif label.dtype.kind == "b": indexer = label else: if isinstance(index, pd.MultiIndex) and label.ndim > 1: raise ValueError( "Vectorized selection is not available along " "MultiIndex variable: " + index_name ) indexer = get_indexer_nd(index, label, method, tolerance) if np.any(indexer < 0): raise KeyError(f"not all values found in index {index_name!r}") return indexer, new_index def get_dim_indexers(data_obj, indexers): """Given a xarray data object and label based indexers, return a mapping of label indexers with only dimension names as keys. It groups multiple level indexers given on a multi-index dimension into a single, dictionary indexer for that dimension (Raise a ValueError if it is not possible). """ invalid = [ k for k in indexers if k not in data_obj.dims and k not in data_obj._level_coords ] if invalid: raise ValueError(f"dimensions or multi-index levels {invalid!r} do not exist") level_indexers = defaultdict(dict) dim_indexers = {} for key, label in indexers.items(): (dim,) = data_obj[key].dims if key != dim: # assume here multi-index level indexer level_indexers[dim][key] = label else: dim_indexers[key] = label for dim, level_labels in level_indexers.items(): if dim_indexers.get(dim, False): raise ValueError( "cannot combine multi-index level indexers with an indexer for " f"dimension {dim}" ) dim_indexers[dim] = level_labels return dim_indexers def remap_label_indexers(data_obj, indexers, method=None, tolerance=None): """Given an xarray data object and label based indexers, return a mapping of equivalent location based indexers. Also return a mapping of updated pandas index objects (in case of multi-index level drop). """ if method is not None and not isinstance(method, str): raise TypeError("``method`` must be a string") pos_indexers = {} new_indexes = {} dim_indexers = get_dim_indexers(data_obj, indexers) for dim, label in dim_indexers.items(): try: index = data_obj.indexes[dim] except KeyError: # no index for this dimension: reuse the provided labels if method is not None or tolerance is not None: raise ValueError( "cannot supply ``method`` or ``tolerance`` " "when the indexed dimension does not have " "an associated coordinate." ) pos_indexers[dim] = label else: coords_dtype = data_obj.coords[dim].dtype label = maybe_cast_to_coords_dtype(label, coords_dtype) idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance) pos_indexers[dim] = idxr if new_idx is not None: new_indexes[dim] = new_idx return pos_indexers, new_indexes def slice_slice(old_slice, applied_slice, size): """Given a slice and the size of the dimension to which it will be applied, index it with another slice to return a new slice equivalent to applying the slices sequentially """ step = (old_slice.step or 1) * (applied_slice.step or 1) # For now, use the hack of turning old_slice into an ndarray to reconstruct # the slice start and stop. This is not entirely ideal, but it is still # definitely better than leaving the indexer as an array. items = _expand_slice(old_slice, size)[applied_slice] if len(items) > 0: start = items[0] stop = items[-1] + int(np.sign(step)) if stop < 0: stop = None else: start = 0 stop = 0 return slice(start, stop, step) def _index_indexer_1d(old_indexer, applied_indexer, size): assert isinstance(applied_indexer, integer_types + (slice, np.ndarray)) if isinstance(applied_indexer, slice) and applied_indexer == slice(None): # shortcut for the usual case return old_indexer if isinstance(old_indexer, slice): if isinstance(applied_indexer, slice): indexer = slice_slice(old_indexer, applied_indexer, size) else: indexer = _expand_slice(old_indexer, size)[applied_indexer] else: indexer = old_indexer[applied_indexer] return indexer class ExplicitIndexer: """Base class for explicit indexer objects. ExplicitIndexer objects wrap a tuple of values given by their ``tuple`` property. These tuples should always have length equal to the number of dimensions on the indexed array. Do not instantiate BaseIndexer objects directly: instead, use one of the sub-classes BasicIndexer, OuterIndexer or VectorizedIndexer. """ __slots__ = ("_key",) def __init__(self, key): if type(self) is ExplicitIndexer: raise TypeError("cannot instantiate base ExplicitIndexer objects") self._key = tuple(key) @property def tuple(self): return self._key def __repr__(self): return f"{type(self).__name__}({self.tuple})" def as_integer_or_none(value): return None if value is None else operator.index(value) def as_integer_slice(value): start = as_integer_or_none(value.start) stop = as_integer_or_none(value.stop) step = as_integer_or_none(value.step) return slice(start, stop, step) class BasicIndexer(ExplicitIndexer): """Tuple for basic indexing. All elements should be int or slice objects. Indexing follows NumPy's rules for basic indexing: each axis is independently sliced and axes indexed with an integer are dropped from the result. """ __slots__ = () def __init__(self, key): if not isinstance(key, tuple): raise TypeError(f"key must be a tuple: {key!r}") new_key = [] for k in key: if isinstance(k, integer_types): k = int(k) elif isinstance(k, slice): k = as_integer_slice(k) else: raise TypeError( f"unexpected indexer type for {type(self).__name__}: {k!r}" ) new_key.append(k) super().__init__(new_key) class OuterIndexer(ExplicitIndexer): """Tuple for outer/orthogonal indexing. All elements should be int, slice or 1-dimensional np.ndarray objects with an integer dtype. Indexing is applied independently along each axis, and axes indexed with an integer are dropped from the result. This type of indexing works like MATLAB/Fortran. """ __slots__ = () def __init__(self, key): if not isinstance(key, tuple): raise TypeError(f"key must be a tuple: {key!r}") new_key = [] for k in key: if isinstance(k, integer_types): k = int(k) elif isinstance(k, slice): k = as_integer_slice(k) elif isinstance(k, np.ndarray): if not np.issubdtype(k.dtype, np.integer): raise TypeError( f"invalid indexer array, does not have integer dtype: {k!r}" ) if k.ndim != 1: raise TypeError( f"invalid indexer array for {type(self).__name__}; must have " f"exactly 1 dimension: {k!r}" ) k = np.asarray(k, dtype=np.int64) else: raise TypeError( f"unexpected indexer type for {type(self).__name__}: {k!r}" ) new_key.append(k) super().__init__(new_key) class VectorizedIndexer(ExplicitIndexer): """Tuple for vectorized indexing. All elements should be slice or N-dimensional np.ndarray objects with an integer dtype and the same number of dimensions. Indexing follows proposed rules for np.ndarray.vindex, which matches NumPy's advanced indexing rules (including broadcasting) except sliced axes are always moved to the end: https://github.com/numpy/numpy/pull/6256 """ __slots__ = () def __init__(self, key): if not isinstance(key, tuple): raise TypeError(f"key must be a tuple: {key!r}") new_key = [] ndim = None for k in key: if isinstance(k, slice): k = as_integer_slice(k) elif isinstance(k, np.ndarray): if not np.issubdtype(k.dtype, np.integer): raise TypeError( f"invalid indexer array, does not have integer dtype: {k!r}" ) if ndim is None: ndim = k.ndim elif ndim != k.ndim: ndims = [k.ndim for k in key if isinstance(k, np.ndarray)] raise ValueError( "invalid indexer key: ndarray arguments " f"have different numbers of dimensions: {ndims}" ) k = np.asarray(k, dtype=np.int64) else: raise TypeError( f"unexpected indexer type for {type(self).__name__}: {k!r}" ) new_key.append(k) super().__init__(new_key) class ExplicitlyIndexed: """Mixin to mark support for Indexer subclasses in indexing. """ __slots__ = () class ExplicitlyIndexedNDArrayMixin(utils.NDArrayMixin, ExplicitlyIndexed): __slots__ = () def __array__(self, dtype=None): key = BasicIndexer((slice(None),) * self.ndim) return np.asarray(self[key], dtype=dtype) class ImplicitToExplicitIndexingAdapter(utils.NDArrayMixin): """Wrap an array, converting tuples into the indicated explicit indexer.""" __slots__ = ("array", "indexer_cls") def __init__(self, array, indexer_cls=BasicIndexer): self.array = as_indexable(array) self.indexer_cls = indexer_cls def __array__(self, dtype=None): return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): key = expanded_indexer(key, self.ndim) result = self.array[self.indexer_cls(key)] if isinstance(result, ExplicitlyIndexed): return type(self)(result, self.indexer_cls) else: # Sometimes explicitly indexed arrays return NumPy arrays or # scalars. return result class LazilyOuterIndexedArray(ExplicitlyIndexedNDArrayMixin): """Wrap an array to make basic and outer indexing lazy. """ __slots__ = ("array", "key") def __init__(self, array, key=None): """ Parameters ---------- array : array_like Array like object to index. key : ExplicitIndexer, optional Array indexer. If provided, it is assumed to already be in canonical expanded form. """ if isinstance(array, type(self)) and key is None: # unwrap key = array.key array = array.array if key is None: key = BasicIndexer((slice(None),) * array.ndim) self.array = as_indexable(array) self.key = key def _updated_key(self, new_key): iter_new_key = iter(expanded_indexer(new_key.tuple, self.ndim)) full_key = [] for size, k in zip(self.array.shape, self.key.tuple): if isinstance(k, integer_types): full_key.append(k) else: full_key.append(_index_indexer_1d(k, next(iter_new_key), size)) full_key = tuple(full_key) if all(isinstance(k, integer_types + (slice,)) for k in full_key): return BasicIndexer(full_key) return OuterIndexer(full_key) @property def shape(self): shape = [] for size, k in zip(self.array.shape, self.key.tuple): if isinstance(k, slice): shape.append(len(range(*k.indices(size)))) elif isinstance(k, np.ndarray): shape.append(k.size) return tuple(shape) def __array__(self, dtype=None): array = as_indexable(self.array) return np.asarray(array[self.key], dtype=None) def transpose(self, order): return LazilyVectorizedIndexedArray(self.array, self.key).transpose(order) def __getitem__(self, indexer): if isinstance(indexer, VectorizedIndexer): array = LazilyVectorizedIndexedArray(self.array, self.key) return array[indexer] return type(self)(self.array, self._updated_key(indexer)) def __setitem__(self, key, value): if isinstance(key, VectorizedIndexer): raise NotImplementedError( "Lazy item assignment with the vectorized indexer is not yet " "implemented. Load your data first by .load() or compute()." ) full_key = self._updated_key(key) self.array[full_key] = value def __repr__(self): return f"{type(self).__name__}(array={self.array!r}, key={self.key!r})" class LazilyVectorizedIndexedArray(ExplicitlyIndexedNDArrayMixin): """Wrap an array to make vectorized indexing lazy. """ __slots__ = ("array", "key") def __init__(self, array, key): """ Parameters ---------- array : array_like Array like object to index. key : VectorizedIndexer """ if isinstance(key, (BasicIndexer, OuterIndexer)): self.key = _outer_to_vectorized_indexer(key, array.shape) else: self.key = _arrayize_vectorized_indexer(key, array.shape) self.array = as_indexable(array) @property def shape(self): return np.broadcast(*self.key.tuple).shape def __array__(self, dtype=None): return np.asarray(self.array[self.key], dtype=None) def _updated_key(self, new_key): return _combine_indexers(self.key, self.shape, new_key) def __getitem__(self, indexer): # If the indexed array becomes a scalar, return LazilyOuterIndexedArray if all(isinstance(ind, integer_types) for ind in indexer.tuple): key = BasicIndexer(tuple(k[indexer.tuple] for k in self.key.tuple)) return LazilyOuterIndexedArray(self.array, key) return type(self)(self.array, self._updated_key(indexer)) def transpose(self, order): key = VectorizedIndexer(tuple(k.transpose(order) for k in self.key.tuple)) return type(self)(self.array, key) def __setitem__(self, key, value): raise NotImplementedError( "Lazy item assignment with the vectorized indexer is not yet " "implemented. Load your data first by .load() or compute()." ) def __repr__(self): return f"{type(self).__name__}(array={self.array!r}, key={self.key!r})" def _wrap_numpy_scalars(array): """Wrap NumPy scalars in 0d arrays.""" if np.isscalar(array): return np.array(array) else: return array class CopyOnWriteArray(ExplicitlyIndexedNDArrayMixin): __slots__ = ("array", "_copied") def __init__(self, array): self.array = as_indexable(array) self._copied = False def _ensure_copied(self): if not self._copied: self.array = as_indexable(np.array(self.array)) self._copied = True def __array__(self, dtype=None): return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): return type(self)(_wrap_numpy_scalars(self.array[key])) def transpose(self, order): return self.array.transpose(order) def __setitem__(self, key, value): self._ensure_copied() self.array[key] = value class MemoryCachedArray(ExplicitlyIndexedNDArrayMixin): __slots__ = ("array",) def __init__(self, array): self.array = _wrap_numpy_scalars(as_indexable(array)) def _ensure_cached(self): if not isinstance(self.array, NumpyIndexingAdapter): self.array = NumpyIndexingAdapter(np.asarray(self.array)) def __array__(self, dtype=None): self._ensure_cached() return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): return type(self)(_wrap_numpy_scalars(self.array[key])) def transpose(self, order): return self.array.transpose(order) def __setitem__(self, key, value): self.array[key] = value def as_indexable(array): """ This function always returns a ExplicitlyIndexed subclass, so that the vectorized indexing is always possible with the returned object. """ if isinstance(array, ExplicitlyIndexed): return array if isinstance(array, np.ndarray): return NumpyIndexingAdapter(array) if isinstance(array, pd.Index): return PandasIndexAdapter(array) if isinstance(array, dask_array_type): return DaskIndexingAdapter(array) if hasattr(array, "__array_function__"): return NdArrayLikeIndexingAdapter(array) raise TypeError("Invalid array type: {}".format(type(array))) def _outer_to_vectorized_indexer(key, shape): """Convert an OuterIndexer into an vectorized indexer. Parameters ---------- key : Outer/Basic Indexer An indexer to convert. shape : tuple Shape of the array subject to the indexing. Returns ------- VectorizedIndexer Tuple suitable for use to index a NumPy array with vectorized indexing. Each element is an array: broadcasting them together gives the shape of the result. """ key = key.tuple n_dim = len([k for k in key if not isinstance(k, integer_types)]) i_dim = 0 new_key = [] for k, size in zip(key, shape): if isinstance(k, integer_types): new_key.append(np.array(k).reshape((1,) * n_dim)) else: # np.ndarray or slice if isinstance(k, slice): k = np.arange(*k.indices(size)) assert k.dtype.kind in {"i", "u"} shape = [(1,) * i_dim + (k.size,) + (1,) * (n_dim - i_dim - 1)] new_key.append(k.reshape(*shape)) i_dim += 1 return VectorizedIndexer(tuple(new_key)) def _outer_to_numpy_indexer(key, shape): """Convert an OuterIndexer into an indexer for NumPy. Parameters ---------- key : Basic/OuterIndexer An indexer to convert. shape : tuple Shape of the array subject to the indexing. Returns ------- tuple Tuple suitable for use to index a NumPy array. """ if len([k for k in key.tuple if not isinstance(k, slice)]) <= 1: # If there is only one vector and all others are slice, # it can be safely used in mixed basic/advanced indexing. # Boolean index should already be converted to integer array. return key.tuple else: return _outer_to_vectorized_indexer(key, shape).tuple def _combine_indexers(old_key, shape, new_key): """ Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key] """ if not isinstance(old_key, VectorizedIndexer): old_key = _outer_to_vectorized_indexer(old_key, shape) if len(old_key.tuple) == 0: return new_key new_shape = np.broadcast(*old_key.tuple).shape if isinstance(new_key, VectorizedIndexer): new_key = _arrayize_vectorized_indexer(new_key, new_shape) else: new_key = _outer_to_vectorized_indexer(new_key, new_shape) return VectorizedIndexer( tuple(o[new_key.tuple] for o in np.broadcast_arrays(*old_key.tuple)) ) @enum.unique class IndexingSupport(enum.Enum): # for backends that support only basic indexer BASIC = 0 # for backends that support basic / outer indexer OUTER = 1 # for backends that support outer indexer including at most 1 vector. OUTER_1VECTOR = 2 # for backends that support full vectorized indexer. VECTORIZED = 3 def explicit_indexing_adapter( key: ExplicitIndexer, shape: Tuple[int, ...], indexing_support: IndexingSupport, raw_indexing_method: Callable, ) -> Any: """Support explicit indexing by delegating to a raw indexing method. Outer and/or vectorized indexers are supported by indexing a second time with a NumPy array. Parameters ---------- key : ExplicitIndexer Explicit indexing object. shape : Tuple[int, ...] Shape of the indexed array. indexing_support : IndexingSupport enum Form of indexing supported by raw_indexing_method. raw_indexing_method: callable Function (like ndarray.__getitem__) that when called with indexing key in the form of a tuple returns an indexed array. Returns ------- Indexing result, in the form of a duck numpy-array. """ raw_key, numpy_indices = decompose_indexer(key, shape, indexing_support) result = raw_indexing_method(raw_key.tuple) if numpy_indices.tuple: # index the loaded np.ndarray result = NumpyIndexingAdapter(np.asarray(result))[numpy_indices] return result def decompose_indexer( indexer: ExplicitIndexer, shape: Tuple[int, ...], indexing_support: IndexingSupport ) -> Tuple[ExplicitIndexer, ExplicitIndexer]: if isinstance(indexer, VectorizedIndexer): return _decompose_vectorized_indexer(indexer, shape, indexing_support) if isinstance(indexer, (BasicIndexer, OuterIndexer)): return _decompose_outer_indexer(indexer, shape, indexing_support) raise TypeError(f"unexpected key type: {indexer}") def _decompose_slice(key, size): """ convert a slice to successive two slices. The first slice always has a positive step. """ start, stop, step = key.indices(size) if step > 0: # If key already has a positive step, use it as is in the backend return key, slice(None) else: # determine stop precisely for step > 1 case # e.g. [98:2:-2] -> [98:3:-2] stop = start + int((stop - start - 1) / step) * step + 1 start, stop = stop + 1, start + 1 return slice(start, stop, -step), slice(None, None, -1) def _decompose_vectorized_indexer( indexer: VectorizedIndexer, shape: Tuple[int, ...], indexing_support: IndexingSupport, ) -> Tuple[ExplicitIndexer, ExplicitIndexer]: """ Decompose vectorized indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index loaded on-memory np.ndarray. Parameters ---------- indexer: VectorizedIndexer indexing_support: one of IndexerSupport entries Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (VectorizedIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a vectorized indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports outer indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = OuterIndexer([0, 1, 3], [2, 3]) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = VectorizedIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # vectorized indexing for on-memory np.ndarray. """ assert isinstance(indexer, VectorizedIndexer) if indexing_support is IndexingSupport.VECTORIZED: return indexer, BasicIndexer(()) backend_indexer_elems = [] np_indexer_elems = [] # convert negative indices indexer_elems = [ np.where(k < 0, k + s, k) if isinstance(k, np.ndarray) else k for k, s in zip(indexer.tuple, shape) ] for k, s in zip(indexer_elems, shape): if isinstance(k, slice): # If it is a slice, then we will slice it as-is # (but make its step positive) in the backend, # and then use all of it (slice(None)) for the in-memory portion. bk_slice, np_slice = _decompose_slice(k, s) backend_indexer_elems.append(bk_slice) np_indexer_elems.append(np_slice) else: # If it is a (multidimensional) np.ndarray, just pickup the used # keys without duplication and store them as a 1d-np.ndarray. oind, vind = np.unique(k, return_inverse=True) backend_indexer_elems.append(oind) np_indexer_elems.append(vind.reshape(*k.shape)) backend_indexer = OuterIndexer(tuple(backend_indexer_elems)) np_indexer = VectorizedIndexer(tuple(np_indexer_elems)) if indexing_support is IndexingSupport.OUTER: return backend_indexer, np_indexer # If the backend does not support outer indexing, # backend_indexer (OuterIndexer) is also decomposed. backend_indexer1, np_indexer1 = _decompose_outer_indexer( backend_indexer, shape, indexing_support ) np_indexer = _combine_indexers(np_indexer1, shape, np_indexer) return backend_indexer1, np_indexer def _decompose_outer_indexer( indexer: Union[BasicIndexer, OuterIndexer], shape: Tuple[int, ...], indexing_support: IndexingSupport, ) -> Tuple[ExplicitIndexer, ExplicitIndexer]: """ Decompose outer indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index the loaded on-memory np.ndarray. Parameters ---------- indexer: OuterIndexer or BasicIndexer indexing_support: One of the entries of IndexingSupport Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (OuterIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a orthogonal indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports basic indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = BasicIndexer(slice(0, 3), slice(2, 3)) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = OuterIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # outer indexing for on-memory np.ndarray. """ if indexing_support == IndexingSupport.VECTORIZED: return indexer, BasicIndexer(()) assert isinstance(indexer, (OuterIndexer, BasicIndexer)) backend_indexer = [] np_indexer = [] # make indexer positive pos_indexer = [] for k, s in zip(indexer.tuple, shape): if isinstance(k, np.ndarray): pos_indexer.append(np.where(k < 0, k + s, k)) elif isinstance(k, integer_types) and k < 0: pos_indexer.append(k + s) else: pos_indexer.append(k) indexer_elems = pos_indexer if indexing_support is IndexingSupport.OUTER_1VECTOR: # some backends such as h5py supports only 1 vector in indexers # We choose the most efficient axis gains = [ (np.max(k) - np.min(k) + 1.0) / len(np.unique(k)) if isinstance(k, np.ndarray) else 0 for k in indexer_elems ] array_index = np.argmax(np.array(gains)) if len(gains) > 0 else None for i, (k, s) in enumerate(zip(indexer_elems, shape)): if isinstance(k, np.ndarray) and i != array_index: # np.ndarray key is converted to slice that covers the entire # entries of this key. backend_indexer.append(slice(np.min(k), np.max(k) + 1)) np_indexer.append(k - np.min(k)) elif isinstance(k, np.ndarray): # Remove duplicates and sort them in the increasing order pkey, ekey = np.unique(k, return_inverse=True) backend_indexer.append(pkey) np_indexer.append(ekey) elif isinstance(k, integer_types): backend_indexer.append(k) else: # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) if indexing_support == IndexingSupport.OUTER: for k, s in zip(indexer_elems, shape): if isinstance(k, slice): # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) elif isinstance(k, integer_types): backend_indexer.append(k) elif isinstance(k, np.ndarray) and (np.diff(k) >= 0).all(): backend_indexer.append(k) np_indexer.append(slice(None)) else: # Remove duplicates and sort them in the increasing order oind, vind = np.unique(k, return_inverse=True) backend_indexer.append(oind) np_indexer.append(vind.reshape(*k.shape)) return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) # basic indexer assert indexing_support == IndexingSupport.BASIC for k, s in zip(indexer_elems, shape): if isinstance(k, np.ndarray): # np.ndarray key is converted to slice that covers the entire # entries of this key. backend_indexer.append(slice(np.min(k), np.max(k) + 1)) np_indexer.append(k - np.min(k)) elif isinstance(k, integer_types): backend_indexer.append(k) else: # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) return (BasicIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) def _arrayize_vectorized_indexer(indexer, shape): """ Return an identical vindex but slices are replaced by arrays """ slices = [v for v in indexer.tuple if isinstance(v, slice)] if len(slices) == 0: return indexer arrays = [v for v in indexer.tuple if isinstance(v, np.ndarray)] n_dim = arrays[0].ndim if len(arrays) > 0 else 0 i_dim = 0 new_key = [] for v, size in zip(indexer.tuple, shape): if isinstance(v, np.ndarray): new_key.append(np.reshape(v, v.shape + (1,) * len(slices))) else: # slice shape = (1,) * (n_dim + i_dim) + (-1,) + (1,) * (len(slices) - i_dim - 1) new_key.append(np.arange(*v.indices(size)).reshape(shape)) i_dim += 1 return VectorizedIndexer(tuple(new_key)) def _dask_array_with_chunks_hint(array, chunks): """Create a dask array using the chunks hint for dimensions of size > 1.""" import dask.array as da if len(chunks) < array.ndim: raise ValueError("not enough chunks in hint") new_chunks = [] for chunk, size in zip(chunks, array.shape): new_chunks.append(chunk if size > 1 else (1,)) return da.from_array(array, new_chunks) def _logical_any(args): return functools.reduce(operator.or_, args) def _masked_result_drop_slice(key, data=None): key = (k for k in key if not isinstance(k, slice)) chunks_hint = getattr(data, "chunks", None) new_keys = [] for k in key: if isinstance(k, np.ndarray): if isinstance(data, dask_array_type): new_keys.append(_dask_array_with_chunks_hint(k, chunks_hint)) elif isinstance(data, sparse_array_type): import sparse new_keys.append(sparse.COO.from_numpy(k)) else: new_keys.append(k) else: new_keys.append(k) mask = _logical_any(k == -1 for k in new_keys) return mask def create_mask(indexer, shape, data=None): """Create a mask for indexing with a fill-value. Parameters ---------- indexer : ExplicitIndexer Indexer with -1 in integer or ndarray value to indicate locations in the result that should be masked. shape : tuple Shape of the array being indexed. data : optional Data for which mask is being created. If data is a dask arrays, its chunks are used as a hint for chunks on the resulting mask. If data is a sparse array, the returned mask is also a sparse array. Returns ------- mask : bool, np.ndarray, SparseArray or dask.array.Array with dtype=bool Same type as data. Has the same shape as the indexing result. """ if isinstance(indexer, OuterIndexer): key = _outer_to_vectorized_indexer(indexer, shape).tuple assert not any(isinstance(k, slice) for k in key) mask = _masked_result_drop_slice(key, data) elif isinstance(indexer, VectorizedIndexer): key = indexer.tuple base_mask = _masked_result_drop_slice(key, data) slice_shape = tuple( np.arange(*k.indices(size)).size for k, size in zip(key, shape) if isinstance(k, slice) ) expanded_mask = base_mask[(Ellipsis,) + (np.newaxis,) * len(slice_shape)] mask = duck_array_ops.broadcast_to(expanded_mask, base_mask.shape + slice_shape) elif isinstance(indexer, BasicIndexer): mask = any(k == -1 for k in indexer.tuple) else: raise TypeError("unexpected key type: {}".format(type(indexer))) return mask def _posify_mask_subindexer(index): """Convert masked indices in a flat array to the nearest unmasked index. Parameters ---------- index : np.ndarray One dimensional ndarray with dtype=int. Returns ------- np.ndarray One dimensional ndarray with all values equal to -1 replaced by an adjacent non-masked element. """ masked = index == -1 unmasked_locs = np.flatnonzero(~masked) if not unmasked_locs.size: # indexing unmasked_locs is invalid return np.zeros_like(index) masked_locs = np.flatnonzero(masked) prev_value = np.maximum(0, np.searchsorted(unmasked_locs, masked_locs) - 1) new_index = index.copy() new_index[masked_locs] = index[unmasked_locs[prev_value]] return new_index def posify_mask_indexer(indexer): """Convert masked values (-1) in an indexer to nearest unmasked values. This routine is useful for dask, where it can be much faster to index adjacent points than arbitrary points from the end of an array. Parameters ---------- indexer : ExplicitIndexer Input indexer. Returns ------- ExplicitIndexer Same type of input, with all values in ndarray keys equal to -1 replaced by an adjacent non-masked element. """ key = tuple( _posify_mask_subindexer(k.ravel()).reshape(k.shape) if isinstance(k, np.ndarray) else k for k in indexer.tuple ) return type(indexer)(key) def is_fancy_indexer(indexer: Any) -> bool: """Return False if indexer is a int, slice, a 1-dimensional list, or a 0 or 1-dimensional ndarray; in all other cases return True """ if isinstance(indexer, (int, slice)): return False if isinstance(indexer, np.ndarray): return indexer.ndim > 1 if isinstance(indexer, list): return bool(indexer) and not isinstance(indexer[0], int) return True class NumpyIndexingAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a NumPy array to use explicit indexing.""" __slots__ = ("array",) def __init__(self, array): # In NumpyIndexingAdapter we only allow to store bare np.ndarray if not isinstance(array, np.ndarray): raise TypeError( "NumpyIndexingAdapter only wraps np.ndarray. " "Trying to wrap {}".format(type(array)) ) self.array = array def _indexing_array_and_key(self, key): if isinstance(key, OuterIndexer): array = self.array key = _outer_to_numpy_indexer(key, self.array.shape) elif isinstance(key, VectorizedIndexer): array = nputils.NumpyVIndexAdapter(self.array) key = key.tuple elif isinstance(key, BasicIndexer): array = self.array # We want 0d slices rather than scalars. This is achieved by # appending an ellipsis (see # https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#detailed-notes). key = key.tuple + (Ellipsis,) else: raise TypeError("unexpected key type: {}".format(type(key))) return array, key def transpose(self, order): return self.array.transpose(order) def __getitem__(self, key): array, key = self._indexing_array_and_key(key) return array[key] def __setitem__(self, key, value): array, key = self._indexing_array_and_key(key) try: array[key] = value except ValueError: # More informative exception if read-only view if not array.flags.writeable and not array.flags.owndata: raise ValueError( "Assignment destination is a view. " "Do you want to .copy() array first?" ) else: raise class NdArrayLikeIndexingAdapter(NumpyIndexingAdapter): __slots__ = ("array",) def __init__(self, array): if not hasattr(array, "__array_function__"): raise TypeError( "NdArrayLikeIndexingAdapter must wrap an object that " "implements the __array_function__ protocol" ) self.array = array class DaskIndexingAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a dask array to support explicit indexing.""" __slots__ = ("array",) def __init__(self, array): """ This adapter is created in Variable.__getitem__ in Variable._broadcast_indexes. """ self.array = array def __getitem__(self, key): if not isinstance(key, VectorizedIndexer): # if possible, short-circuit when keys are effectively slice(None) # This preserves dask name and passes lazy array equivalence checks # (see duck_array_ops.lazy_array_equiv) rewritten_indexer = False new_indexer = [] for idim, k in enumerate(key.tuple): if isinstance(k, Iterable) and duck_array_ops.array_equiv( k, np.arange(self.array.shape[idim]) ): new_indexer.append(slice(None)) rewritten_indexer = True else: new_indexer.append(k) if rewritten_indexer: key = type(key)(tuple(new_indexer)) if isinstance(key, BasicIndexer): return self.array[key.tuple] elif isinstance(key, VectorizedIndexer): return self.array.vindex[key.tuple] else: assert isinstance(key, OuterIndexer) key = key.tuple try: return self.array[key] except NotImplementedError: # manual orthogonal indexing. # TODO: port this upstream into dask in a saner way. value = self.array for axis, subkey in reversed(list(enumerate(key))): value = value[(slice(None),) * axis + (subkey,)] return value def __setitem__(self, key, value): raise TypeError( "this variable's data is stored in a dask array, " "which does not support item assignment. To " "assign to this variable, you must first load it " "into memory explicitly using the .load() " "method or accessing its .values attribute." ) def transpose(self, order): return self.array.transpose(order) class PandasIndexAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a pandas.Index to preserve dtypes and handle explicit indexing. """ __slots__ = ("array", "_dtype") def __init__(self, array: Any, dtype: DTypeLike = None): self.array = utils.safe_cast_to_index(array) if dtype is None: if isinstance(array, pd.PeriodIndex): dtype = np.dtype("O") elif hasattr(array, "categories"): # category isn't a real numpy dtype dtype = array.categories.dtype elif not utils.is_valid_numpy_dtype(array.dtype): dtype = np.dtype("O") else: dtype = array.dtype else: dtype = np.dtype(dtype) self._dtype = dtype @property def dtype(self) -> np.dtype: return self._dtype def __array__(self, dtype: DTypeLike = None) -> np.ndarray: if dtype is None: dtype = self.dtype array = self.array if isinstance(array, pd.PeriodIndex): with suppress(AttributeError): # this might not be public API array = array.astype("object") return np.asarray(array.values, dtype=dtype) @property def shape(self) -> Tuple[int]: return (len(self.array),) def __getitem__( self, indexer ) -> Union[NumpyIndexingAdapter, np.ndarray, np.datetime64, np.timedelta64]: key = indexer.tuple if isinstance(key, tuple) and len(key) == 1: # unpack key so it can index a pandas.Index object (pandas.Index # objects don't like tuples) (key,) = key if getattr(key, "ndim", 0) > 1: # Return np-array if multidimensional return NumpyIndexingAdapter(self.array.values)[indexer] result = self.array[key] if isinstance(result, pd.Index): result = PandasIndexAdapter(result, dtype=self.dtype) else: # result is a scalar if result is pd.NaT: # work around the impossibility of casting NaT with asarray # note: it probably would be better in general to return # pd.Timestamp rather np.than datetime64 but this is easier # (for now) result = np.datetime64("NaT", "ns") elif isinstance(result, timedelta): result = np.timedelta64(getattr(result, "value", result), "ns") elif isinstance(result, pd.Timestamp): # Work around for GH: pydata/xarray#1932 and numpy/numpy#10668 # numpy fails to convert pd.Timestamp to np.datetime64[ns] result = np.asarray(result.to_datetime64()) elif self.dtype != object: result = np.asarray(result, dtype=self.dtype) # as for numpy.ndarray indexing, we always want the result to be # a NumPy array. result = utils.to_0d_array(result) return result def transpose(self, order) -> pd.Index: return self.array # self.array should be always one-dimensional def __repr__(self) -> str: return "{}(array={!r}, dtype={!r})".format( type(self).__name__, self.array, self.dtype ) def copy(self, deep: bool = True) -> "PandasIndexAdapter": # Not the same as just writing `self.array.copy(deep=deep)`, as # shallow copies of the underlying numpy.ndarrays become deep ones # upon pickling # >>> len(pickle.dumps((self.array, self.array))) # 4000281 # >>> len(pickle.dumps((self.array, self.array.copy(deep=False)))) # 8000341 array = self.array.copy(deep=True) if deep else self.array return PandasIndexAdapter(array, self._dtype)
apache-2.0
-2,998,736,085,517,629,000
34.431896
98
0.60333
false
4.087327
false
false
false
liugangabc/ccs_web
tcpclient.py
1
2137
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- from tornado import ioloop, httpclient, gen from tornado.gen import Task import pdb, time, logging import tornado.ioloop import tornado.iostream import socket #Init logging def init_logging(): logger = logging.getLogger() logger.setLevel(logging.DEBUG) sh = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s -%(module)s:%(filename)s-L%(lineno)d-%(levelname)s: %(message)s') sh.setFormatter(formatter) logger.addHandler(sh) logging.info("Current log level is : %s", logging.getLevelName(logger.getEffectiveLevel())) class TCPClient(object): def __init__(self, host, port, io_loop=None): self.host = host self.port = port self.io_loop = io_loop self.shutdown = False self.stream = None self.sock_fd = None self.EOF = b' END' def get_stream(self): self.sock_fd = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) self.stream = tornado.iostream.IOStream(self.sock_fd) self.stream.set_close_callback(self.on_close) def connect(self): self.get_stream() self.stream.connect((self.host, self.port), self.send_message) def on_receive(self, data): logging.info("Received: %s", data) self.stream.close() def on_close(self): if self.shutdown: self.io_loop.stop() def send_message(self): logging.info("Send message....") self.stream.write(b"Hello Server!" + self.EOF) self.stream.read_until(self.EOF, self.on_receive) logging.info("After send....") def set_shutdown(self): self.shutdown = True def main(): init_logging() io_loop = tornado.ioloop.IOLoop.instance() c1 = TCPClient("127.0.0.1", 8001, io_loop) c2 = TCPClient("127.0.0.1", 8001, io_loop) c1.connect() c2.connect() c2.set_shutdown() logging.info("**********************start ioloop******************") io_loop.start() if __name__ == "__main__": try: main() except Exception, ex: print "Ocurred Exception: %s" % str(ex) quit()
apache-2.0
-9,188,828,094,435,973,000
27.506667
110
0.613009
false
3.435691
false
false
false
atodorov/pykickstart
tests/commands/timezone.py
1
6651
# # Chris Lumens <clumens@redhat.com> # # Copyright 2009 Red Hat, Inc. # # This copyrighted material is made available to anyone wishing to use, modify, # copy, or redistribute it subject to the terms and conditions of the GNU # General Public License v.2. This program is distributed in the hope that it # will be useful, but WITHOUT ANY WARRANTY expressed or implied, including the # implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. Any Red Hat # trademarks that are incorporated in the source code or documentation are not # subject to the GNU General Public License and may only be used or replicated # with the express permission of Red Hat, Inc. # import unittest from tests.baseclass import CommandTest from pykickstart.errors import KickstartParseError from pykickstart.commands.timezone import FC3_Timezone, F18_Timezone class Timezone_TestCase(unittest.TestCase): def runTest(self): cmd = F18_Timezone() self.assertEqual(cmd.__str__(), '') class FC3_TestCase(CommandTest): command = "timezone" def runTest(self): # assert defaults self.assertFalse(FC3_Timezone().isUtc) self.assertFalse(F18_Timezone().nontp) # pass self.assert_parse("timezone Eastern", "timezone Eastern\n") # On FC6 and later, we write out --isUtc regardless of what the input was. if self.__class__.__name__ == "FC3_TestCase": self.assert_parse("timezone --utc Eastern", "timezone --utc Eastern\n") else: self.assert_parse("timezone --utc Eastern", "timezone --isUtc Eastern\n") # fail self.assert_parse_error("timezone") self.assert_parse_error("timezone Eastern Central") self.assert_parse_error("timezone --blah Eastern") self.assert_parse_error("timezone --utc") self.assert_parse_error("timezone --bogus-option") # extra test coverage cmd = self.handler().commands[self.command] cmd.timezone = None self.assertEqual(cmd.__str__(), "") class FC6_TestCase(FC3_TestCase): def runTest(self): FC3_TestCase.runTest(self) # pass self.assert_parse("timezone --isUtc Eastern", "timezone --isUtc Eastern\n") # fail self.assert_parse_error("timezone --isUtc") class F18_TestCase(FC6_TestCase): def runTest(self): # pass self.assert_parse("timezone --utc Europe/Prague") self.assert_parse("timezone --isUtc Europe/Prague\n") self.assert_parse("timezone --isUtc Eastern", "timezone Eastern --isUtc\n") self.assert_parse("timezone Europe/Prague") self.assert_parse("timezone Europe/Prague --nontp", "timezone Europe/Prague --nontp\n") self.assert_parse("timezone Europe/Prague " "--ntpservers=ntp.cesnet.cz,tik.nic.cz") self.assert_parse("timezone Europe/Prague --ntpservers=ntp.cesnet.cz", "timezone Europe/Prague --ntpservers=ntp.cesnet.cz\n") # fail self.assert_parse_error("timezone") self.assert_parse_error("timezone Eastern Central") self.assert_parse_error("timezone --blah Eastern") self.assert_parse_error("timezone --utc") self.assert_parse_error("timezone --isUtc") self.assert_parse_error("timezone Europe/Prague --nontp " "--ntpservers=ntp.cesnet.cz") self.assert_parse_error("timezone Europe/Prague --ntpservers=" "ntp.cesnet.cz, tik.nic.cz") class F23_TestCase(F18_TestCase): def runTest(self): # should keep multiple instances of the same URL self.assert_parse("timezone --utc Europe/Prague --ntpservers=ntp.cesnet.cz,0.fedora.pool.ntp.org," + "0.fedora.pool.ntp.org,0.fedora.pool.ntp.org,0.fedora.pool.ntp.org", "timezone Europe/Prague --isUtc --ntpservers=ntp.cesnet.cz,0.fedora.pool.ntp.org," + "0.fedora.pool.ntp.org,0.fedora.pool.ntp.org,0.fedora.pool.ntp.org\n") self.assert_parse("timezone --utc Europe/Sofia --ntpservers=,0.fedora.pool.ntp.org,") # fail self.assert_parse_error("timezone Europe/Sofia --nontp --ntpservers=0.fedora.pool.ntp.org,1.fedora.pool.ntp.org") class RHEL7_TestCase(F18_TestCase): def runTest(self): # since RHEL7 command version the timezone command can be used # without a timezone specification self.assert_parse("timezone --utc") self.assert_parse("timezone Europe/Sofia") self.assert_parse("timezone --isUtc") self.assert_parse("timezone --ntpservers=ntp.cesnet.cz") self.assert_parse("timezone --ntpservers=ntp.cesnet.cz,tik.nic.cz") # unknown argument self.assert_parse_error("timezone --blah") # more than two timezone specs self.assert_parse_error("timezone foo bar", exception=KickstartParseError) self.assert_parse_error("timezone --utc foo bar", exception=KickstartParseError) # just "timezone" without any arguments is also wrong as it really dosn't make sense self.assert_parse_error("timezone") # fail self.assert_parse_error("timezone Europe/Sofia --nontp --ntpservers=0.fedora.pool.ntp.org,1.fedora.pool.ntp.org") class F25_TestCase(F23_TestCase): def runTest(self): # since RHEL7 command version the timezone command can be used # without a timezone specification self.assert_parse("timezone --utc") self.assert_parse("timezone --isUtc") self.assert_parse("timezone --ntpservers=ntp.cesnet.cz") self.assert_parse("timezone --ntpservers=ntp.cesnet.cz,tik.nic.cz") # unknown argument self.assert_parse_error("timezone --blah") # more than two timezone specs self.assert_parse_error("timezone foo bar", exception=KickstartParseError) self.assert_parse_error("timezone --utc foo bar", exception=KickstartParseError) # just "timezone" without any arguments is also wrong as it really dosn't make sense self.assert_parse_error("timezone") # fail self.assert_parse_error("timezone Europe/Sofia --nontp --ntpservers=0.fedora.pool.ntp.org,1.fedora.pool.ntp.org") if __name__ == "__main__": unittest.main()
gpl-2.0
-2,127,721,929,382,395,400
43.046358
121
0.658097
false
3.778977
true
false
false
scorpilix/Golemtest
apps/rendering/resources/imgcompare.py
1
3797
import logging import math from apps.rendering.resources.imgrepr import (EXRImgRepr, ImgRepr, load_img, PILImgRepr) logger = logging.getLogger("apps.rendering") PSNR_ACCEPTABLE_MIN = 30 def check_size(file_, res_x, res_y): img = load_img(file_) if img is None: return False return img.get_size() == (res_x, res_y) def calculate_psnr(mse, max_=255): if mse <= 0 or max_ <= 0: raise ValueError("MSE & MAX_ must be higher than 0") return 20 * math.log10(max_) - 10 * math.log10(mse) def calculate_mse(img1, img2, start1=(0, 0), start2=(0, 0), box=None): mse = 0 if not isinstance(img1, ImgRepr) or not isinstance(img2, ImgRepr): raise TypeError("img1 and img2 must be ImgRepr") if box is None: (res_x, res_y) = img1.get_size() else: (res_x, res_y) = box for i in range(0, res_x): for j in range(0, res_y): [r1, g1, b1] = img1.get_pixel((start1[0] + i, start1[1] + j)) [r2, g2, b2] = img2.get_pixel((start2[0] + i, start2[1] + j)) mse += (r1 - r2) * (r1 - r2) + \ (g1 - g2) * (g1 - g2) + \ (b1 - b2) * (b1 - b2) if res_x <= 0 or res_y <= 0: raise ValueError("Image or box resolution must be greater than 0") mse /= res_x * res_y * 3 return mse def compare_imgs(img1, img2, max_col=255, start1=(0, 0), start2=(0, 0), box=None): mse = calculate_mse(img1, img2, start1, start2, box) logger.debug("MSE = {}".format(mse)) if mse == 0: return True psnr = calculate_psnr(mse, max_col) logger.debug("PSNR = {}".format(psnr)) return psnr >= PSNR_ACCEPTABLE_MIN def compare_pil_imgs(file1, file2): try: img1 = PILImgRepr() img1.load_from_file(file1) img2 = PILImgRepr() img2.load_from_file(file2) return compare_imgs(img1, img2) except Exception as err: logger.info("Can't compare images {}, {}: {}".format(file1, file2, err)) return False def compare_exr_imgs(file1, file2): try: img1 = EXRImgRepr() img1.load_from_file(file1) img2 = EXRImgRepr() img2.load_from_file(file2) return compare_imgs(img1, img2, 1) except Exception as err: logger.info("Can't compare images {}, {}: {}".format(file1, file2, err)) return False def advance_verify_img(file_, res_x, res_y, start_box, box_size, compare_file, cmp_start_box): try: img = load_img(file_) cmp_img = load_img(compare_file) if img is None or cmp_img is None: return False if img.get_size() != (res_x, res_y): return False def _box_too_small(box): return box[0] <= 0 or box[1] <= 0 def _box_too_big(box): return box[0] > res_x or box[1] > res_y if _box_too_small(box_size) or _box_too_big(box_size): logger.error("Wrong box size for advanced verification " \ "{}".format(box_size)) if isinstance(img, PILImgRepr) and isinstance(cmp_img, PILImgRepr): return compare_imgs(img, cmp_img, start1=start_box, start2=cmp_start_box, box=box_size) else: return compare_imgs(img, cmp_img, max_col=1, start1=start_box, start2=cmp_start_box, box=box_size) except Exception: logger.exception("Cannot verify images {} and {}".format(file_, compare_file)) return False
gpl-3.0
-3,704,521,870,128,538,000
32.307018
79
0.523045
false
3.2761
false
false
false
cloudedbats/cloudedbats_wurb
cloudedbats_wurb/wurb_raspberry_pi/control_by_gpio.py
1
4508
#!/usr/bin/python3 # -*- coding:utf-8 -*- # Project: http://cloudedbats.org # Copyright (c) 2016-2018 Arnold Andreasson # License: MIT License (see LICENSE.txt or http://opensource.org/licenses/mit). import time import logging import threading # Check if GPIO is available. gpio_available = True try: import RPi.GPIO as GPIO except: gpio_available = False class ControlByGpio(object): """ Use GPIO for control when running without a graphical user interface. """ def __init__(self, callback_function=None): """ """ self._callback_function = callback_function self._logger = logging.getLogger('CloudedBatsWURB') # Recording control. self.rec_on_state = False self.rec_off_state = False self.rec_on_count = 0 self.rec_off_count = 0 # GPIO if not gpio_available: self._logger.error('GPIO control: RaspberryPi-GPIO not available.') return # self._gpio_pin_rec_on = 37 # '#37 (GPIO 26)' self._gpio_pin_rec_off = 38 # '#38 (GPIO 20)' self._setup_gpio() # self._active = True self._start_gpio_check() def stop(self): """ """ self._active = False def is_gpio_rec_on(self): """ """ return self.rec_on_state def is_gpio_rec_off(self): """ """ return self.rec_off_state def is_gpio_rec_auto(self): """ """ return (self.rec_on_state == False) and (self.rec_off_state == False) def _fire_event(self, event): """ Event for the state machine. """ if self._callback_function: self._callback_function(event) def _setup_gpio(self): """ """ GPIO.setmode(GPIO.BOARD) # Use pin numbers (1-40). # Use the built in pull-up resistors. GPIO.setup(self._gpio_pin_rec_on, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(self._gpio_pin_rec_off, GPIO.IN, pull_up_down=GPIO.PUD_UP) def _start_gpio_check(self): """ """ # Check GPIO activity in a separate thread. self._check_gpio_thread = threading.Thread(target = self._check_gpio, args = []) self._check_gpio_thread.start() def _check_gpio(self): """ """ old_rec_on_state = self.rec_on_state old_rec_off_state = self.rec_off_state while self._active: time.sleep(0.1) try: # Check if recording on is active. if GPIO.input(self._gpio_pin_rec_on): # High = inactive. self.rec_on_count = 0 self.rec_on_state = False else: # Low = active. if self.rec_on_count >= 5: # After 0.5 sec. self.rec_on_state = True else: self.rec_on_count += 1 # Check if recording off is active. if GPIO.input(self._gpio_pin_rec_off): # High = inactive. self.rec_off_count = 0 self.rec_off_state = False else: # Low = active. if self.rec_off_count >= 5: # After 0.5 sec. self.rec_off_state = True else: self.rec_off_count += 1 # Fire event. if (old_rec_on_state != self.rec_on_state) or \ (old_rec_off_state != self.rec_off_state): if self.rec_on_state: # Rec on active. self._fire_event('gpio_rec_on') self._logger.debug('GPIO control: Fire event: gpio_rec_on.') elif self.rec_off_state: # Rec off active. self._fire_event('gpio_rec_off') self._logger.debug('GPIO control: Fire event: gpio_rec_off.') else: # Both inactive = Auto. self._fire_event('gpio_rec_auto') self._logger.debug('GPIO control: Fire event: gpio_rec_auto.') # old_rec_on_state = self.rec_on_state old_rec_off_state = self.rec_off_state except: pass
mit
-5,799,279,537,577,791,000
34.496063
88
0.482919
false
4.017825
false
false
false
jabez007/Archons_Oracle
Oracle/Oracle.py
1
5883
#!/usr/bin/env python3 # https://theneuralperspective.com/2016/10/04/05-recurrent-neural-networks-rnn-part-1-basic-rnn-char-rnn/ # https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/ # Larger LSTM Network to Generate Text for Last Hope LARP import sys import os import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import LSTM from keras.callbacks import ModelCheckpoint from keras.utils import np_utils SEQ_LENGTH = 29 STEP = 1 HIDDEN_LAYER = 512 BATCH_SIZE = 128 _dataX_ = list() _int_to_char_ = dict() _char_to_int_ = dict() def train(): """ Below are 10 ideas that may further improve the model that you could experiment with are: -- Predict fewer than 1,000 characters as output for a given seed. -- Remove all punctuation from the source text, and therefore from the models’ vocabulary. -- Try a one hot encoded for the input sequences. * Train the model on padded sentences rather than random sequences of characters. * Increase the number of training epochs to 100 or many hundreds. -- Add dropout to the visible input layer and consider tuning the dropout percentage. -- Tune the batch size, try a batch size of 1 as a (very slow) baseline and larger sizes from there. -- Add more memory units to the layers and/or more layers. -- Experiment with scale factors (temperature) when interpreting the prediction probabilities. * Change the LSTM layers to be “stateful” to maintain state across batches. """ raw_text = load_data() X, y = format_data(raw_text) model = build_model(X, y) # define the checkpoint filepath="weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=2, save_best_only=True, mode='min') # verbose = 2. This gives you one output per epoch. callbacks_list = [checkpoint] # fit the model model.fit(X, y, epochs=50, batch_size=BATCH_SIZE, callbacks=callbacks_list) # Tune the batch size def sample(seed = "", length = 280): # on November 7, 2017, the limit was doubled to 280 raw_text = load_data() X, y = format_data(raw_text) model = build_model(X, y) # pick a random seed if seed == "": start = numpy.random.randint(0, len(_dataX_)-1) pattern = _dataX_[start] else: pattern = [ _char_to_int_[char] if char in _char_to_int_.keys() else _char_to_int_[" "] for char in (seed.lower().strip() + " ").rjust(SEQ_LENGTH)[-SEQ_LENGTH:] ] print("Seed:") print("\"" + ''.join([_int_to_char_[value] for value in pattern]) + "\"") # generate characters generated_text = "" n_vocab = len(_int_to_char_) for i in range(length): # 140 for twitter character limit... x = numpy.zeros((1, SEQ_LENGTH, n_vocab)) for tt, char in enumerate(pattern): x[0, tt, char] = 1. prediction = model.predict(x, verbose=0)[0] #index = numpy.argmax(prediction) index = numpy.random.choice(range(n_vocab), 1, p=prediction[SEQ_LENGTH-1])[0] result = _int_to_char_[index] sys.stdout.write(result) sys.stdout.flush() generated_text += result pattern.append(index) pattern = pattern[1:len(pattern)] print("\nDone.") return generated_text def load_data(filename = "lasthope.txt"): # load text and covert to lowercase raw_text = open(filename, encoding="utf8").read() raw_text = raw_text.lower() return raw_text def format_data(raw_text): global _int_to_char_, _char_to_int_ # create mapping of unique chars to integers chars = sorted(list(set(raw_text))) _char_to_int_ = dict((c, i) for i, c in enumerate(chars)) _int_to_char_ = dict((i, c) for i, c in enumerate(chars)) # summarize the loaded data n_chars = len(raw_text) n_vocab = len(chars) print("Total Characters: " + str(n_chars)) print("Total Vocab: " + str(n_vocab)) # prepare the dataset of input to output pairs encoded as integers dataY = [] for i in range(0, n_chars - SEQ_LENGTH, STEP): seq_in = raw_text[i: i+SEQ_LENGTH] seq_out = raw_text[i+1: i+1+SEQ_LENGTH] _dataX_.append([_char_to_int_[char] for char in seq_in]) dataY.append([_char_to_int_[char] for char in seq_out]) n_patterns = len(_dataX_) print("Total Patterns: " + str(n_patterns)) # One-hot encode X and y X = numpy.zeros((n_patterns, SEQ_LENGTH, n_vocab), dtype=numpy.bool) for i, seq in enumerate(_dataX_): for t, char in enumerate(seq): X[i, t, char] = 1 y = numpy.zeros((n_patterns, SEQ_LENGTH, n_vocab), dtype=numpy.bool) for i, seq in enumerate(dataY): for t, char in enumerate(seq): y[i, t, char] = 1 return X, y def build_model(X, y): # define the LSTM model model = Sequential() model.add(LSTM(HIDDEN_LAYER, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)) model.add(Dropout(0.3)) model.add(LSTM(HIDDEN_LAYER, return_sequences=True)) model.add(LSTM(HIDDEN_LAYER, return_sequences=True)) model.add(Dense(y.shape[2], activation='softmax')) # load previous network weights loss = 10 filename = "" for f in os.listdir(): if f.endswith('.hdf5'): if float(f.split('.')[0].split('-')[2]) < loss: filename = f if filename != "": print("checkpoint file: " + filename) model.load_weights(filename) model.compile(loss='categorical_crossentropy', optimizer='adam') return model # # # # if __name__ == "__main__": train()
mit
-5,439,092,132,026,910,000
38.442953
159
0.622767
false
3.506563
false
false
false
hydroffice/hyo_soundspeed
hyo2/soundspeed/formats/writers/abstract.py
1
2150
from abc import ABCMeta, abstractmethod # , abstractproperty import os import logging logger = logging.getLogger(__name__) from hyo2.soundspeed.base.files import FileManager from hyo2.soundspeed.formats.abstract import AbstractFormat class AbstractWriter(AbstractFormat, metaclass=ABCMeta): """ Abstract data writer """ def __repr__(self): return "<%s:writer:%s:%s>" % (self.name, self.version, ",".join(self._ext)) def __init__(self): super(AbstractWriter, self).__init__() self.fod = None @abstractmethod def write(self, ssp, data_path, data_file=None, project=''): pass @abstractmethod def _write_header(self): pass @abstractmethod def _write_body(self): pass def finalize(self): if self.fod: if not self.fod.io.closed: self.fod.io.close() class AbstractTextWriter(AbstractWriter, metaclass=ABCMeta): """ Abstract text data writer """ def __init__(self): super(AbstractTextWriter, self).__init__() def _write(self, data_path, data_file, encoding='utf8', append=False, binary=False): """Helper function to write the raw file""" # data_path = os.path.join(data_path, self.name.lower()) # commented to avoid the creation of sub-folders if not os.path.exists(data_path): os.makedirs(data_path) if data_file: if len(data_file.split('.')) == 1: data_file += (".%s" % (list(self.ext)[0],)) file_path = os.path.join(data_path, data_file) else: if self.ssp.cur.meta.original_path: data_file = "%s.%s" % (os.path.basename(self.ssp.cur.meta.original_path), list(self.ext)[0]) else: data_file = 'output.%s' % (list(self.ext)[0],) file_path = os.path.join(data_path, data_file) logger.info("output file: %s" % file_path) if append: mode = 'a' else: mode = 'w' if binary: mode = '%sb' % mode self.fod = FileManager(file_path, mode=mode, encoding=encoding)
lgpl-2.1
-3,848,063,316,767,106,600
27.289474
114
0.58
false
3.668942
false
false
false
Fluent-networks/floranet
floranet/web/rest/gateway.py
1
7710
import ipaddress from flask_restful import Resource, reqparse, abort, inputs, fields, marshal from flask_login import login_required from twisted.internet.defer import inlineCallbacks, returnValue from crochet import wait_for, TimeoutError from floranet.models.gateway import Gateway from floranet.log import log # Crochet timeout. If the code block does not complete within this time, # a TimeoutError exception is raised. from __init__ import TIMEOUT class GatewayResource(Resource): """Gateway resource base class. Attributes: restapi (RestApi): Flask Restful API object server (NetServer): FloraNet network server object fields (dict): Dictionary of attributes to be returned to a REST request parser (RequestParser): Flask RESTful request parser args (dict): Parsed request argument """ def __init__(self, **kwargs): self.restapi = kwargs['restapi'] self.server = kwargs['server'] self.fields = { 'host': fields.String, 'eui': fields.Integer, 'name': fields.String, 'enabled': fields.Boolean, 'power': fields.Integer, 'created': fields.DateTime(dt_format='iso8601'), 'updated': fields.DateTime(dt_format='iso8601') } self.parser = reqparse.RequestParser(bundle_errors=True) self.parser.add_argument('host', type=str) self.parser.add_argument('eui', type=int) self.parser.add_argument('name', type=str) self.parser.add_argument('enabled', type=inputs.boolean) self.parser.add_argument('power', type=int) self.args = self.parser.parse_args() class RestGateway(GatewayResource): """RestGateway Resource class. Manages RESTAPI GET and PUT transactions for gateways. """ def __init__(self, **kwargs): super(RestGateway, self).__init__(**kwargs) @login_required @wait_for(timeout=TIMEOUT) @inlineCallbacks def get(self, host): """Method to handle gateway GET requests""" try: g = yield Gateway.find(where=['host = ?', host], limit=1) # Return a 404 if not found. if g is None: abort(404, message={'error': "Gateway {} doesn't exist.".format(host)}) returnValue(marshal(g, self.fields)) except TimeoutError: log.error("REST API timeout retrieving gateway {host}", host=host) @login_required @wait_for(timeout=TIMEOUT) @inlineCallbacks def put(self, host): """Method to handle gateway PUT requests Args: host (str): Gateway host address """ try: gateway = yield Gateway.find(where=['host = ?', host], limit=1) # Return a 404 if not found. if gateway is None: abort(404, message={'error': "Gateway {} doesn't exist".format(host)}) kwargs = {} for a,v in self.args.items(): if v is not None and v != getattr(gateway, a): kwargs[a] = v setattr(gateway, a, v) (valid, message) = yield gateway.valid() if not valid: abort(400, message=message) # Update the gateway and server with the new attributes if kwargs: gateway.update(**kwargs) self.server.lora.updateGateway(host, gateway) returnValue(({}, 200)) except TimeoutError: log.error("REST API timeout retrieving gateway {host}", host=host) @login_required @wait_for(timeout=TIMEOUT) @inlineCallbacks def delete(self, host): """Method to handle gateway DELETE requests Args: host (str): Gateway host """ try: g = yield Gateway.find(where=['host = ?', host], limit=1) # Return a 404 if not found. if g is None: abort(404, message={'error': "Gateway {} doesn't exist.".format(host)}) deleted = yield g.delete() self.server.lora.deleteGateway(g) returnValue(({}, 200)) except TimeoutError: log.error("REST API timeout retrieving gateway {host}", host=host) class RestGateways(GatewayResource): """ RestGateways Resource class. Manages REST API GET and POST transactions for reading multiple gateways, and creating gateways. """ def __init__(self, **kwargs): super(RestGateways, self).__init__(**kwargs) @login_required @wait_for(timeout=TIMEOUT) @inlineCallbacks def get(self): """Method to get all gateways""" try: gateways = yield Gateway.all() if gateways is None: returnValue({}) data = {} for i,g in enumerate(gateways): data[i] = marshal(g, self.fields) returnValue(data) except TimeoutError: # Exception returns 500 to client log.error("REST API timeout retrieving all gateways") @login_required @wait_for(timeout=TIMEOUT) @inlineCallbacks def post(self): """Method to create a gateway""" host = self.args['host'] name = self.args['name'] eui = self.args['eui'] enabled = self.args['enabled'] power = self.args['power'] message = {} # Check for required args required = {'host', 'name', 'eui', 'enabled', 'power'} for r in required: if self.args[r] is None: message[r] = "Missing the {} parameter.".format(r) if message: abort(400, message=message) # Ensure we have a valid address try: ipaddress.ip_address(host) except (ipaddress.AddressValueError, ValueError): message = {'error': "Invalid IP address {} ".format(host)} abort(400, message=message) # Ensure we have a valid EUI if not isinstance(eui, (int, long)): message = {'error': "Invalid gateway EUI {} ".format(eui)} abort(400, message=message) # Check this gateway does not currently exist exists = yield Gateway.exists(where=['host = ?', host]) if exists: message = {'error': "Gateway address {} ".format(host) + \ "currently exists."} abort(400, message=message) # Check the EUI does not currently exist exists = yield Gateway.exists(where=['eui = ?', eui]) if exists: message = {'error': "Gateway EUI {} ".format(eui) + \ "currently exists."} abort(400, message=message) # Create and validate gateway = Gateway(host=host, eui=eui, name=name, enabled=enabled, power=power) (valid, message) = gateway.valid() if not valid: abort(400, message=message) try: g = yield gateway.save() if g is None: abort(500, message={'error': "Error saving the gateway."}) # Add the new gateway to the server. self.server.lora.addGateway(g) location = self.restapi.api.prefix + '/gateway/' + str(host) returnValue(({}, 201, {'Location': location})) except TimeoutError: # Exception returns 500 to client log.error("REST API timeout for gateway POST request")
mit
563,634,068,682,700,800
34.045455
87
0.557717
false
4.482558
false
false
false
firelab/viirs_ba
misc_utils/run_fom.py
1
1752
# # Script to run all of the figure of merit code for a single run back to back. # import viirs_fom as vf import sys def all_fom(database_name, workers=12) : # I over U FOM vf.calc_all_ioveru_fom('{}_schema_info.csv'.format(database_name), 'gt', 'burnmask13', workers=workers) # Zones vf.do_all_zonetbl_runs('.','gt','burnmask13', zone_tbl='fixed_zone_counts', workers=workers, mask_tbl='bobafet13') # 2013 events vf.do_all_zonetbl_runs('.','gt','burnmask13', zonedef_tbl='calevents_2013', zone_tbl='fixed_events_2013_counts', zone_col='fireid', year=2013, workers=workers, spatial_filter=True, mask_tbl='bobafet13') # 2014 events vf.do_all_zonetbl_runs('.','gt','burnmask14', zonedef_tbl='calevents_2014', zone_tbl='fixed_events_2014_counts', zone_col='fireid', year=2014, workers=workers, spatial_filter=True, mask_tbl='bobafet14') # if __name__ == "__main__" : if len(sys.argv) != 2 : print "Usage: {0} database_name".format(sys.argv[0]) print "Run this from the base directory of a batch-of-runs, and" print "provide the database name associated with the entire batch." sys.exit() all_fom(sys.argv[1])
cc0-1.0
-7,760,519,851,290,668,000
36.933333
78
0.450913
false
4
false
false
false