repo_name
stringlengths
5
92
path
stringlengths
4
221
copies
stringclasses
19 values
size
stringlengths
4
6
content
stringlengths
766
896k
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
32
997
alpha_frac
float64
0.25
0.96
autogenerated
bool
1 class
ratio
float64
1.5
13.6
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
AndrewWasHere/audiolens
lib/beamformers/beamformer.py
1
2105
""" Copyright 2015 Andrew Lin. All rights reserved. Licensed under the BSD 3-clause License. See LICENSE.txt or <http://opensource.org/licenses/BSD-3-Clause>. """ from abc import ABCMeta, abstractmethod import numpy as np from lib.albatross import log _log = log.get_logger(__name__) class BeamFormerError(Exception): """Error while beam forming.""" class BeamFormer(metaclass=ABCMeta): """Audio beam former base class.""" def __init__(self, max_channels): self.max_channels = max_channels # Public Interfaces. ####################################################### def process(self, audio): """Process audio file. Args: audio (np.ndarray or list of np.ndarray): multi-channel audio. Raises: ValueError: Problem with audio. BeamFormerError: Problem while processing audio. """ _log.debug('%s.process(%s)', self.__class__.__name__, audio) # Process audio. if isinstance(audio, np.ndarray): _, channels = audio.shape audio = [audio[:, n] for n in range(channels)] n_channels = len(audio) if n_channels < 2: raise ValueError( 'Not enough channels in audio to beam form. (found %d)', n_channels ) elif self.max_channels and n_channels > self.max_channels: raise ValueError( 'Too many channels in audio. There cannot be more than %d ' 'channels. Found %d.', self.max_channels, n_channels ) self._process(audio) # Derived class implementation. # Private methods. ######################################################### @abstractmethod def _process(self, audio): """Process audio. This function is implemented in derived classes. Args: audio (list of np.ndarray): multi-channel audio. Raises: BeamFormerException (or a derivation thereof): Problem while processing audio. """
bsd-3-clause
896,673,129,523,582,500
27.445946
80
0.549644
false
4.606127
false
false
false
sportorg/pysport
sportorg/libs/iof/parser.py
1
10856
import xml.etree.ElementTree as ET class IOFParseResult(object): def __init__(self, name, data): self.name = name self.data = data def parse(file): ns = { 'iof': 'http://www.orienteering.org/datastandard/3.0', 'orgeo': 'http://orgeo.ru/iof-xml-extensions/3.0', } tree = ET.parse(file) results = [ IOFParseResult('EntryList', entry_list(tree, ns)), IOFParseResult('CourseData', course_data(tree, ns)), IOFParseResult('ResultList', result_list(tree, ns)), IOFParseResult('Event', event(tree, ns)), ] return [result for result in results if result.data is not None] def course_data(tree, ns): root = tree.getroot() if 'CourseData' not in root.tag: return courses = [] version = '0' if 'iofVersion' in root.attrib: version = root.attrib['iofVersion'][0] elif root.find('IOFVersion') is not None: version = root.find('IOFVersion').attrib['version'][0] if version == '3': for course_el in root.find('iof:RaceCourseData', ns).findall('iof:Course', ns): course = { 'name': course_el.find('iof:Name', ns).text, 'length': int(course_el.find('iof:Length', ns).text), 'climb': int(course_el.find('iof:Climb', ns).text), 'controls': [], } for course_control_el in course_el.findall('iof:CourseControl', ns): leg_length = 0 if course_control_el.find('iof:LegLength', ns) is not None: leg_length = int(course_control_el.find('iof:LegLength', ns).text) course['controls'].append( { 'type': course_control_el.attrib['type'], # Start, Control, Finish 'control': course_control_el.find('iof:Control', ns).text, 'leg_length': leg_length, } ) courses.append(course) elif version == '2': for course_el in root.findall('Course'): course_variation_el = course_el.find('CourseVariation') course = { 'name': course_el.find('CourseName').text.strip(), 'length': int(course_variation_el.find('CourseLength').text), 'climb': int(course_variation_el.find('CourseClimb').text.strip()) if course_variation_el.find( 'CourseClimb').text.strip().isdigit() else 0, 'controls': [], } for course_control_el in course_variation_el.findall('CourseControl'): leg_length = 0 if course_control_el.find('LegLength') is not None: leg_length = int(course_control_el.find('LegLength').text) course['controls'].append( { 'type': 'Control', 'control': course_control_el.find('ControlCode').text.strip(), 'leg_length': leg_length, } ) courses.append(course) return courses def entry_list(tree, ns): root = tree.getroot() if 'EntryList' not in root.tag: return groups = {} for group_el in root.findall('iof:Class', ns): group_id = group_el.find('iof:Id', ns).text groups[group_id] = { 'id': group_id, 'name': group_el.find('iof:Name', ns).text, 'short_name': group_el.find('iof:ShortName', ns).text, } person_entries = [] for person_entry_el in root.findall('iof:PersonEntry', ns): person_el = person_entry_el.find('iof:Person', ns) birth_date_el = person_el.find('iof:BirthDate', ns) id_el = person_el.find('iof:Id', ns) person = { 'family': person_el.find('iof:Name', ns).find('iof:Family', ns).text, 'given': person_el.find('iof:Name', ns).find('iof:Given', ns).text, 'extensions': {}, } if birth_date_el is not None: person['birth_date'] = birth_date_el.text if id_el is not None: person['id'] = id_el.text extensions_el = person_el.find('iof:Extensions', ns) if extensions_el: qual_el = extensions_el.find('orgeo:Qual', ns) if qual_el is not None: person['extensions']['qual'] = qual_el.text bib_el = extensions_el.find('orgeo:BibNumber', ns) if bib_el is not None: person['extensions']['bib'] = bib_el.text org_el = person_entry_el.find('iof:Organisation', ns) organization = None if org_el: organization = { 'id': org_el.find('iof:Id', ns).text, 'name': org_el.find('iof:Name', ns).text } role = org_el.find('iof:Role', ns) if role: role_person = role.find('iof:Person', ns) organization['role_person'] = '{} {}'.format( role_person.find('iof:Name', ns).find('iof:Family', ns).text, role_person.find('iof:Name', ns).find('iof:Given', ns).text ) group_el = person_entry_el.find('iof:Class', ns) if group_el: group = { 'id': group_el.find('iof:Id', ns).text, 'name': group_el.find('iof:Name', ns).text } groups[group['id']] = { 'id': group['id'], 'name': group['name'] } control_card_el = person_entry_el.find('iof:ControlCard', ns) control_card = '' if control_card_el is not None: control_card = control_card_el.text race_numbers = [] for race_num_el in person_entry_el.findall('iof:RaceNumber', ns): race_numbers.append(race_num_el.text) person_entries.append( { 'person': person, 'organization': organization, 'group': groups[group['id']] if group['id'] in groups else group, 'control_card': control_card, 'race_numbers': race_numbers, } ) return person_entries def result_list(tree, ns): root = tree.getroot() if 'ResultList' not in root.tag: return groups = {} person_results = [] for class_result in root.findall('iof:ClassResult', ns): """Group of results for class""" group_el = class_result.find('iof:Class', ns) group_id = group_el.find('iof:Id', ns).text groups[group_id] = { 'id': group_id, 'name': group_el.find('iof:Name', ns).text, 'short_name': group_el.find('iof:ShortName', ns).text if group_el.find('iof:ShortName', ns) else '' } for person_result_el in class_result.findall('iof:PersonResult', ns): person_el = person_result_el.find('iof:Person', ns) birth_date_el = person_el.find('iof:BirthDate', ns) id_el = person_el.find('iof:Id', ns) person = { 'family': person_el.find('iof:Name', ns).find('iof:Family', ns).text, 'given': person_el.find('iof:Name', ns).find('iof:Given', ns).text, 'extensions': {} } if birth_date_el is not None: person['birth_date'] = birth_date_el.text if id_el is not None: person['id'] = id_el.text org_el = person_result_el.find('iof:Organisation', ns) organization = None if org_el: organization = { 'id': org_el.find('iof:Id', ns).text, 'name': org_el.find('iof:Name', ns).text } role = org_el.find('iof:Role', ns) if role: role_person = role.find('iof:Person', ns) organization['role_person'] = '{} {}'.format( role_person.find('iof:Name', ns).find('iof:Family', ns).text, role_person.find('iof:Name', ns).find('iof:Given', ns).text ) result_el = person_result_el.find('iof:Result', ns) bib_el = result_el.find('iof:BibNumber', ns) control_card_el = result_el.find('iof:ControlCard', ns) finish_time_el = result_el.find('iof:FinishTime', ns) splits = [] for split in result_el .findall('iof:SplitTime', ns): split_time_el = split.find('iof:Time', ns) if split_time_el is not None: control_code = split.find('iof:ControlCode', ns) split_obj = { 'control_code': control_code.text, 'time': split_time_el.text } splits.append(split_obj) result = { 'bib': result_el.find('iof:BibNumber', ns).text if bib_el is not None else '', 'start_time': result_el.find('iof:StartTime', ns).text, 'finish_time': finish_time_el.text if finish_time_el is not None else '', 'status': result_el.find('iof:Status', ns).text, 'control_card': control_card_el.text if control_card_el is not None else '', 'splits': splits } person_results.append({ 'person': person, 'organization': organization, 'group': groups[group_id], 'result': result, }) return person_results def event(tree, ns): root = tree.getroot() event_obj = {'races': []} event_el = root.find('iof:Event', ns) if event_el is None: return if event_el.find('iof:Name', ns) is not None: event_obj['name'] = event_el.find('iof:Name', ns).text if event_el.find('iof:StartTime', ns) is not None: event_obj['start_time'] = event_el.find('iof:StartTime', ns).text if event_el.find('iof:URL', ns) is not None: event_obj['url'] = event_el.find('iof:URL', ns).text if event_el is not None: for race_el in event_el.findall('iof:Race', ns): race_obj = {'name': race_el.find('iof:Name', ns).text if race_el.find('iof:Name', ns) is not None else ''} start_time_el = race_el.find('iof:StartTime', ns) if start_time_el: if start_time_el.find('iof:Date', ns) is not None: race_obj['date'] = start_time_el.find('iof:Date', ns).text if start_time_el.find('iof:Time', ns) is not None: race_obj['time'] = start_time_el.find('iof:Time', ns).text event_obj['races'].append(race_obj) return event_obj
gpl-3.0
-5,870,004,246,323,201,000
37.496454
118
0.510041
false
3.652759
false
false
false
mindw/pip
pip/index.py
1
37607
"""Routines related to PyPI, indexes""" from __future__ import absolute_import import logging import cgi from collections import namedtuple import itertools import sys import os import re import mimetypes import posixpath import warnings from pip._vendor.six.moves.urllib import parse as urllib_parse from pip._vendor.six.moves.urllib import request as urllib_request from pip.compat import ipaddress from pip.utils import ( cached_property, splitext, normalize_path, ARCHIVE_EXTENSIONS, SUPPORTED_EXTENSIONS, ) from pip.utils.deprecation import RemovedInPip9Warning, RemovedInPip10Warning from pip.utils.logging import indent_log from pip.exceptions import ( DistributionNotFound, BestVersionAlreadyInstalled, InvalidWheelFilename, UnsupportedWheel, ) from pip.download import HAS_TLS, is_url, path_to_url, url_to_path from pip.wheel import Wheel, wheel_ext from pip.pep425tags import supported_tags from pip._vendor import html5lib, requests, six from pip._vendor.packaging.version import parse as parse_version from pip._vendor.packaging.utils import canonicalize_name from pip._vendor.requests.exceptions import SSLError __all__ = ['FormatControl', 'fmt_ctl_handle_mutual_exclude', 'PackageFinder'] SECURE_ORIGINS = [ # protocol, hostname, port # Taken from Chrome's list of secure origins (See: http://bit.ly/1qrySKC) ("https", "*", "*"), ("*", "localhost", "*"), ("*", "127.0.0.0/8", "*"), ("*", "::1/128", "*"), ("file", "*", None), # ssh is always secure. ("ssh", "*", "*"), ] logger = logging.getLogger(__name__) class InstallationCandidate(object): def __init__(self, project, version, location): self.project = project self.version = parse_version(version) self.location = location self._key = (self.project, self.version, self.location) def __repr__(self): return "<InstallationCandidate({0!r}, {1!r}, {2!r})>".format( self.project, self.version, self.location, ) def __hash__(self): return hash(self._key) def __lt__(self, other): return self._compare(other, lambda s, o: s < o) def __le__(self, other): return self._compare(other, lambda s, o: s <= o) def __eq__(self, other): return self._compare(other, lambda s, o: s == o) def __ge__(self, other): return self._compare(other, lambda s, o: s >= o) def __gt__(self, other): return self._compare(other, lambda s, o: s > o) def __ne__(self, other): return self._compare(other, lambda s, o: s != o) def _compare(self, other, method): if not isinstance(other, InstallationCandidate): return NotImplemented return method(self._key, other._key) class PackageFinder(object): """This finds packages. This is meant to match easy_install's technique for looking for packages, by reading pages and looking for appropriate links. """ def __init__(self, find_links, index_urls, allow_all_prereleases=False, trusted_hosts=None, process_dependency_links=False, session=None, format_control=None): """Create a PackageFinder. :param format_control: A FormatControl object or None. Used to control the selection of source packages / binary packages when consulting the index and links. """ if session is None: raise TypeError( "PackageFinder() missing 1 required keyword argument: " "'session'" ) # Build find_links. If an argument starts with ~, it may be # a local file relative to a home directory. So try normalizing # it and if it exists, use the normalized version. # This is deliberately conservative - it might be fine just to # blindly normalize anything starting with a ~... self.find_links = [] for link in find_links: if link.startswith('~'): new_link = normalize_path(link) if os.path.exists(new_link): link = new_link self.find_links.append(link) self.index_urls = index_urls self.dependency_links = [] # These are boring links that have already been logged somehow: self.logged_links = set() self.format_control = format_control or FormatControl(set(), set()) # Domains that we won't emit warnings for when not using HTTPS self.secure_origins = [ ("*", host, "*") for host in (trusted_hosts if trusted_hosts else []) ] # Do we want to allow _all_ pre-releases? self.allow_all_prereleases = allow_all_prereleases # Do we process dependency links? self.process_dependency_links = process_dependency_links # The Session we'll use to make requests self.session = session # If we don't have TLS enabled, then WARN if anyplace we're looking # relies on TLS. if not HAS_TLS: for link in itertools.chain(self.index_urls, self.find_links): parsed = urllib_parse.urlparse(link) if parsed.scheme == "https": logger.warning( "pip is configured with locations that require " "TLS/SSL, however the ssl module in Python is not " "available." ) break def add_dependency_links(self, links): # # FIXME: this shouldn't be global list this, it should only # # apply to requirements of the package that specifies the # # dependency_links value # # FIXME: also, we should track comes_from (i.e., use Link) if self.process_dependency_links: warnings.warn( "Dependency Links processing has been deprecated and will be " "removed in a future release.", RemovedInPip9Warning, ) self.dependency_links.extend(links) @staticmethod def _sort_locations(locations, expand_dir=False): """ Sort locations into "files" (archives) and "urls", and return a pair of lists (files,urls) """ files = [] urls = [] # puts the url for the given file path into the appropriate list def sort_path(path): url = path_to_url(path) if mimetypes.guess_type(url, strict=False)[0] == 'text/html': urls.append(url) else: files.append(url) for url in locations: is_local_path = os.path.exists(url) is_file_url = url.startswith('file:') if is_local_path or is_file_url: if is_local_path: path = url else: path = url_to_path(url) if os.path.isdir(path): if expand_dir: path = os.path.realpath(path) for item in os.listdir(path): sort_path(os.path.join(path, item)) elif is_file_url: urls.append(url) elif os.path.isfile(path): sort_path(path) else: logger.warning( "Url '%s' is ignored: it is neither a file " "nor a directory.", url) elif is_url(url): # Only add url with clear scheme urls.append(url) else: logger.warning( "Url '%s' is ignored. It is either a non-existing " "path or lacks a specific scheme.", url) return files, urls def _candidate_sort_key(self, candidate): """ Function used to generate link sort key for link tuples. The greater the return value, the more preferred it is. If not finding wheels, then sorted by version only. If finding wheels, then the sort order is by version, then: 1. existing installs 2. wheels ordered via Wheel.support_index_min() 3. source archives Note: it was considered to embed this logic into the Link comparison operators, but then different sdist links with the same version, would have to be considered equal """ support_num = len(supported_tags) if candidate.location.is_wheel: # can raise InvalidWheelFilename wheel = Wheel(candidate.location.filename) if not wheel.supported(): raise UnsupportedWheel( "%s is not a supported wheel for this platform. It " "can't be sorted." % wheel.filename ) pri = -(wheel.support_index_min()) else: # sdist pri = -(support_num) return (candidate.version, pri) def _validate_secure_origin(self, logger, location): # Determine if this url used a secure transport mechanism parsed = urllib_parse.urlparse(str(location)) origin = (parsed.scheme, parsed.hostname, parsed.port) # The protocol to use to see if the protocol matches. # Don't count the repository type as part of the protocol: in # cases such as "git+ssh", only use "ssh". (I.e., Only verify against # the last scheme.) protocol = origin[0].rsplit('+', 1)[-1] # Determine if our origin is a secure origin by looking through our # hardcoded list of secure origins, as well as any additional ones # configured on this PackageFinder instance. for secure_origin in (SECURE_ORIGINS + self.secure_origins): if protocol != secure_origin[0] and secure_origin[0] != "*": continue try: # We need to do this decode dance to ensure that we have a # unicode object, even on Python 2.x. addr = ipaddress.ip_address( origin[1] if ( isinstance(origin[1], six.text_type) or origin[1] is None ) else origin[1].decode("utf8") ) network = ipaddress.ip_network( secure_origin[1] if isinstance(secure_origin[1], six.text_type) else secure_origin[1].decode("utf8") ) except ValueError: # We don't have both a valid address or a valid network, so # we'll check this origin against hostnames. if (origin[1] and origin[1].lower() != secure_origin[1].lower() and secure_origin[1] != "*"): continue else: # We have a valid address and network, so see if the address # is contained within the network. if addr not in network: continue # Check to see if the port patches if (origin[2] != secure_origin[2] and secure_origin[2] != "*" and secure_origin[2] is not None): continue # If we've gotten here, then this origin matches the current # secure origin and we should return True return True # If we've gotten to this point, then the origin isn't secure and we # will not accept it as a valid location to search. We will however # log a warning that we are ignoring it. logger.warning( "The repository located at %s is not a trusted or secure host and " "is being ignored. If this repository is available via HTTPS it " "is recommended to use HTTPS instead, otherwise you may silence " "this warning and allow it anyways with '--trusted-host %s'.", parsed.hostname, parsed.hostname, ) return False def _get_index_urls_locations(self, project_name): """Returns the locations found via self.index_urls Checks the url_name on the main (first in the list) index and use this url_name to produce all locations """ def mkurl_pypi_url(url): loc = posixpath.join( url, urllib_parse.quote(canonicalize_name(project_name))) # For maximum compatibility with easy_install, ensure the path # ends in a trailing slash. Although this isn't in the spec # (and PyPI can handle it without the slash) some other index # implementations might break if they relied on easy_install's # behavior. if not loc.endswith('/'): loc = loc + '/' return loc return [mkurl_pypi_url(url) for url in self.index_urls] def find_all_candidates(self, project_name): """Find all available InstallationCandidate for project_name This checks index_urls, find_links and dependency_links. All versions found are returned as an InstallationCandidate list. See _link_package_versions for details on which files are accepted """ index_locations = self._get_index_urls_locations(project_name) index_file_loc, index_url_loc = self._sort_locations(index_locations) fl_file_loc, fl_url_loc = self._sort_locations( self.find_links, expand_dir=True) dep_file_loc, dep_url_loc = self._sort_locations(self.dependency_links) file_locations = ( Link(url) for url in itertools.chain( index_file_loc, fl_file_loc, dep_file_loc) ) # We trust every url that the user has given us whether it was given # via --index-url or --find-links # We explicitly do not trust links that came from dependency_links # We want to filter out any thing which does not have a secure origin. url_locations = [ link for link in itertools.chain( (Link(url) for url in index_url_loc), (Link(url) for url in fl_url_loc), (Link(url) for url in dep_url_loc), ) if self._validate_secure_origin(logger, link) ] logger.debug('%d location(s) to search for versions of %s:', len(url_locations), project_name) for location in url_locations: logger.debug('* %s', location) canonical_name = canonicalize_name(project_name) formats = fmt_ctl_formats(self.format_control, canonical_name) search = Search(project_name, canonical_name, formats) find_links_versions = self._package_versions( # We trust every directly linked archive in find_links (Link(url, '-f') for url in self.find_links), search ) page_versions = [] for page in self._get_pages(url_locations, project_name): logger.debug('Analyzing links from page %s', page.url) with indent_log(): page_versions.extend( self._package_versions(page.links, search) ) dependency_versions = self._package_versions( (Link(url) for url in self.dependency_links), search ) if dependency_versions: logger.debug( 'dependency_links found: %s', ', '.join([ version.location.url for version in dependency_versions ]) ) file_versions = self._package_versions(file_locations, search) if file_versions: file_versions.sort(reverse=True) logger.debug( 'Local files found: %s', ', '.join([ url_to_path(candidate.location.url) for candidate in file_versions ]) ) # This is an intentional priority ordering return ( file_versions + find_links_versions + page_versions + dependency_versions ) def find_requirement(self, req, upgrade): """Try to find a Link matching req Expects req, an InstallRequirement and upgrade, a boolean Returns a Link if found, Raises DistributionNotFound or BestVersionAlreadyInstalled otherwise """ all_candidates = self.find_all_candidates(req.name) # Filter out anything which doesn't match our specifier compatible_versions = set( req.specifier.filter( # We turn the version object into a str here because otherwise # when we're debundled but setuptools isn't, Python will see # packaging.version.Version and # pkg_resources._vendor.packaging.version.Version as different # types. This way we'll use a str as a common data interchange # format. If we stop using the pkg_resources provided specifier # and start using our own, we can drop the cast to str(). [str(c.version) for c in all_candidates], prereleases=( self.allow_all_prereleases if self.allow_all_prereleases else None ), ) ) applicable_candidates = [ # Again, converting to str to deal with debundling. c for c in all_candidates if str(c.version) in compatible_versions ] if applicable_candidates: best_candidate = max(applicable_candidates, key=self._candidate_sort_key) else: best_candidate = None if req.satisfied_by is not None: installed_version = parse_version(req.satisfied_by.version) else: installed_version = None if installed_version is None and best_candidate is None: logger.critical( 'Could not find a version that satisfies the requirement %s ' '(from versions: %s)', req, ', '.join( sorted( set(str(c.version) for c in all_candidates), key=parse_version, ) ) ) raise DistributionNotFound( 'No matching distribution found for %s' % req ) best_installed = False if installed_version and ( best_candidate is None or best_candidate.version <= installed_version): best_installed = True if not upgrade and installed_version is not None: if best_installed: logger.debug( 'Existing installed version (%s) is most up-to-date and ' 'satisfies requirement', installed_version, ) else: logger.debug( 'Existing installed version (%s) satisfies requirement ' '(most up-to-date version is %s)', installed_version, best_candidate.version, ) return None if best_installed: # We have an existing version, and its the best version logger.debug( 'Installed version (%s) is most up-to-date (past versions: ' '%s)', installed_version, ', '.join(sorted(compatible_versions, key=parse_version)) or "none", ) raise BestVersionAlreadyInstalled logger.debug( 'Using version %s (newest of versions: %s)', best_candidate.version, ', '.join(sorted(compatible_versions, key=parse_version)) ) return best_candidate.location def _get_pages(self, locations, project_name): """ Yields (page, page_url) from the given locations, skipping locations that have errors. """ seen = set() for location in locations: if location in seen: continue seen.add(location) page = self._get_page(location) if page is None: continue yield page _py_version_re = re.compile(r'-py([123]\.?[0-9]?)$') def _sort_links(self, links): """ Returns elements of links in order, non-egg links first, egg links second, while eliminating duplicates """ eggs, no_eggs = [], [] seen = set() for link in links: if link not in seen: seen.add(link) if link.egg_fragment: eggs.append(link) else: no_eggs.append(link) return no_eggs + eggs def _package_versions(self, links, search): result = [] for link in self._sort_links(links): v = self._link_package_versions(link, search) if v is not None: result.append(v) return result def _log_skipped_link(self, link, reason): if link not in self.logged_links: logger.debug('Skipping link %s; %s', link, reason) self.logged_links.add(link) def _link_package_versions(self, link, search): """Return an InstallationCandidate or None""" version = None if link.egg_fragment: egg_info = link.egg_fragment ext = link.ext else: egg_info, ext = link.splitext() if not ext: self._log_skipped_link(link, 'not a file') return if ext not in SUPPORTED_EXTENSIONS: self._log_skipped_link( link, 'unsupported archive format: %s' % ext) return if "binary" not in search.formats and ext == wheel_ext: self._log_skipped_link( link, 'No binaries permitted for %s' % search.supplied) return if "macosx10" in link.path and ext == '.zip': self._log_skipped_link(link, 'macosx10 one') return if ext == wheel_ext: try: wheel = Wheel(link.filename) except InvalidWheelFilename: self._log_skipped_link(link, 'invalid wheel filename') return if canonicalize_name(wheel.name) != search.canonical: self._log_skipped_link( link, 'wrong project name (not %s)' % search.supplied) return if not wheel.supported(): self._log_skipped_link( link, 'it is not compatible with this Python') return version = wheel.version # This should be up by the search.ok_binary check, but see issue 2700. if "source" not in search.formats and ext != wheel_ext: self._log_skipped_link( link, 'No sources permitted for %s' % search.supplied) return if not version: version = egg_info_matches(egg_info, search.supplied, link) if version is None: self._log_skipped_link( link, 'wrong project name (not %s)' % search.supplied) return match = self._py_version_re.search(version) if match: version = version[:match.start()] py_version = match.group(1) if py_version != sys.version[:3]: self._log_skipped_link( link, 'Python version is incorrect') return logger.debug('Found link %s, version: %s', link, version) return InstallationCandidate(search.supplied, version, link) def _get_page(self, link): return HTMLPage.get_page(link, session=self.session) def egg_info_matches( egg_info, search_name, link, _egg_info_re=re.compile(r'([a-z0-9_.]+)-([a-z0-9_.!+-]+)', re.I)): """Pull the version part out of a string. :param egg_info: The string to parse. E.g. foo-2.1 :param search_name: The name of the package this belongs to. None to infer the name. Note that this cannot unambiguously parse strings like foo-2-2 which might be foo, 2-2 or foo-2, 2. :param link: The link the string came from, for logging on failure. """ match = _egg_info_re.search(egg_info) if not match: logger.debug('Could not parse version from link: %s', link) return None if search_name is None: full_match = match.group(0) return full_match[full_match.index('-'):] name = match.group(0).lower() # To match the "safe" name that pkg_resources creates: name = name.replace('_', '-') # project name and version must be separated by a dash look_for = search_name.lower() + "-" if name.startswith(look_for): return match.group(0)[len(look_for):] else: return None class HTMLPage(object): """Represents one page, along with its URL""" def __init__(self, content, url, headers=None): # Determine if we have any encoding information in our headers encoding = None if headers and "Content-Type" in headers: content_type, params = cgi.parse_header(headers["Content-Type"]) if "charset" in params: encoding = params['charset'] self.content = content self.parsed = html5lib.parse( self.content, encoding=encoding, namespaceHTMLElements=False, ) self.url = url self.headers = headers def __str__(self): return self.url @classmethod def get_page(cls, link, skip_archives=True, session=None): if session is None: raise TypeError( "get_page() missing 1 required keyword argument: 'session'" ) url = link.url url = url.split('#', 1)[0] # Check for VCS schemes that do not support lookup as web pages. from pip.vcs import VcsSupport for scheme in VcsSupport.schemes: if url.lower().startswith(scheme) and url[len(scheme)] in '+:': logger.debug('Cannot look at %s URL %s', scheme, link) return None try: if skip_archives: filename = link.filename for bad_ext in ARCHIVE_EXTENSIONS: if filename.endswith(bad_ext): content_type = cls._get_content_type( url, session=session, ) if content_type.lower().startswith('text/html'): break else: logger.debug( 'Skipping page %s because of Content-Type: %s', link, content_type, ) return logger.debug('Getting page %s', url) # Tack index.html onto file:// URLs that point to directories (scheme, netloc, path, params, query, fragment) = \ urllib_parse.urlparse(url) if (scheme == 'file' and os.path.isdir(urllib_request.url2pathname(path))): # add trailing slash if not present so urljoin doesn't trim # final segment if not url.endswith('/'): url += '/' url = urllib_parse.urljoin(url, 'index.html') logger.debug(' file: URL is directory, getting %s', url) resp = session.get( url, headers={ "Accept": "text/html", "Cache-Control": "max-age=600", }, ) resp.raise_for_status() # The check for archives above only works if the url ends with # something that looks like an archive. However that is not a # requirement of an url. Unless we issue a HEAD request on every # url we cannot know ahead of time for sure if something is HTML # or not. However we can check after we've downloaded it. content_type = resp.headers.get('Content-Type', 'unknown') if not content_type.lower().startswith("text/html"): logger.debug( 'Skipping page %s because of Content-Type: %s', link, content_type, ) return inst = cls(resp.content, resp.url, resp.headers) except requests.HTTPError as exc: cls._handle_fail(link, exc, url) except SSLError as exc: reason = ("There was a problem confirming the ssl certificate: " "%s" % exc) cls._handle_fail(link, reason, url, meth=logger.info) except requests.ConnectionError as exc: cls._handle_fail(link, "connection error: %s" % exc, url) except requests.Timeout: cls._handle_fail(link, "timed out", url) except requests.TooManyRedirects as exc: cls._handle_fail( link, "Error: %s" % exc, url ) except Exception as e: reason = ("There was an unknown error: %s" % e) cls._handle_fail( link, reason, url ) else: return inst @staticmethod def _handle_fail(link, reason, url, meth=None): if meth is None: meth = logger.debug meth("Could not fetch URL %s: %s - skipping", link, reason) @staticmethod def _get_content_type(url, session): """Get the Content-Type of the given url, using a HEAD request""" scheme, netloc, path, query, fragment = urllib_parse.urlsplit(url) if scheme not in ('http', 'https'): # FIXME: some warning or something? # assertion error? return '' resp = session.head(url, allow_redirects=True) resp.raise_for_status() return resp.headers.get("Content-Type", "") @cached_property def base_url(self): bases = [ x for x in self.parsed.findall(".//base") if x.get("href") is not None ] if bases and bases[0].get("href"): return bases[0].get("href") else: return self.url @property def links(self): """Yields all links in the page""" for anchor in self.parsed.findall(".//a"): if anchor.get("href"): href = anchor.get("href") url = self.clean_link( urllib_parse.urljoin(self.base_url, href) ) yield Link(url, self) _clean_re = re.compile(r'[^a-z0-9$&+,/:;=?@.#%_\\|-]', re.I) def clean_link(self, url): """Makes sure a link is fully encoded. That is, if a ' ' shows up in the link, it will be rewritten to %20 (while not over-quoting % or other characters).""" return self._clean_re.sub( lambda match: '%%%2x' % ord(match.group(0)), url) class Link(object): def __init__(self, url, comes_from=None): # url can be a UNC windows share if url.startswith('\\\\'): url = path_to_url(url) self.url = url self.comes_from = comes_from def __str__(self): if self.comes_from: return '%s (from %s)' % (self.url, self.comes_from) else: return str(self.url) def __repr__(self): return '<Link %s>' % self def __eq__(self, other): if not isinstance(other, Link): return NotImplemented return self.url == other.url def __ne__(self, other): if not isinstance(other, Link): return NotImplemented return self.url != other.url def __lt__(self, other): if not isinstance(other, Link): return NotImplemented return self.url < other.url def __le__(self, other): if not isinstance(other, Link): return NotImplemented return self.url <= other.url def __gt__(self, other): if not isinstance(other, Link): return NotImplemented return self.url > other.url def __ge__(self, other): if not isinstance(other, Link): return NotImplemented return self.url >= other.url def __hash__(self): return hash(self.url) @property def filename(self): _, netloc, path, _, _ = urllib_parse.urlsplit(self.url) name = posixpath.basename(path.rstrip('/')) or netloc name = urllib_parse.unquote(name) assert name, ('URL %r produced no filename' % self.url) return name @property def scheme(self): return urllib_parse.urlsplit(self.url)[0] @property def netloc(self): return urllib_parse.urlsplit(self.url)[1] @property def path(self): return urllib_parse.unquote(urllib_parse.urlsplit(self.url)[2]) def splitext(self): return splitext(posixpath.basename(self.path.rstrip('/'))) @property def ext(self): return self.splitext()[1] @property def url_without_fragment(self): scheme, netloc, path, query, fragment = urllib_parse.urlsplit(self.url) return urllib_parse.urlunsplit((scheme, netloc, path, query, None)) _egg_fragment_re = re.compile(r'[#&]egg=([^&]*)') @property def egg_fragment(self): match = self._egg_fragment_re.search(self.url) if not match: return None return match.group(1) _subdirectory_fragment_re = re.compile(r'[#&]subdirectory=([^&]*)') @property def subdirectory_fragment(self): match = self._subdirectory_fragment_re.search(self.url) if not match: return None return match.group(1) _hash_re = re.compile( r'(sha1|sha224|sha384|sha256|sha512|md5)=([a-f0-9]+)' ) @property def hash(self): match = self._hash_re.search(self.url) if match: return match.group(2) return None @property def hash_name(self): match = self._hash_re.search(self.url) if match: return match.group(1) return None @property def show_url(self): return posixpath.basename(self.url.split('#', 1)[0].split('?', 1)[0]) @property def is_wheel(self): return self.ext == wheel_ext @property def is_artifact(self): """ Determines if this points to an actual artifact (e.g. a tarball) or if it points to an "abstract" thing like a path or a VCS location. """ from pip.vcs import vcs if self.scheme in vcs.all_schemes: return False return True FormatControl = namedtuple('FormatControl', 'no_binary only_binary') """This object has two fields, no_binary and only_binary. If a field is falsy, it isn't set. If it is {':all:'}, it should match all packages except those listed in the other field. Only one field can be set to {':all:'} at a time. The rest of the time exact package name matches are listed, with any given package only showing up in one field at a time. """ def fmt_ctl_handle_mutual_exclude(value, target, other): new = value.split(',') while ':all:' in new: other.clear() target.clear() target.add(':all:') del new[:new.index(':all:') + 1] if ':none:' not in new: # Without a none, we want to discard everything as :all: covers it return for name in new: if name == ':none:': target.clear() continue name = canonicalize_name(name) other.discard(name) target.add(name) def fmt_ctl_formats(fmt_ctl, canonical_name): result = set(["binary", "source"]) if canonical_name in fmt_ctl.only_binary: result.discard('source') elif canonical_name in fmt_ctl.no_binary: result.discard('binary') elif ':all:' in fmt_ctl.only_binary: result.discard('source') elif ':all:' in fmt_ctl.no_binary: result.discard('binary') return frozenset(result) def fmt_ctl_no_binary(fmt_ctl): fmt_ctl_handle_mutual_exclude( ':all:', fmt_ctl.no_binary, fmt_ctl.only_binary) def fmt_ctl_no_use_wheel(fmt_ctl): fmt_ctl_no_binary(fmt_ctl) warnings.warn( '--no-use-wheel is deprecated and will be removed in the future. ' ' Please use --no-binary :all: instead.', RemovedInPip10Warning, stacklevel=2) Search = namedtuple('Search', 'supplied canonical formats') """Capture key aspects of a search. :attribute supplied: The user supplied package. :attribute canonical: The canonical package name. :attribute formats: The formats allowed for this package. Should be a set with 'binary' or 'source' or both in it. """
mit
5,830,695,384,401,401,000
34.411488
79
0.551573
false
4.402599
false
false
false
maybelinot/findltr
findltr/utils.py
1
4673
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: maybelinot # @Email: edik.trott@yandex.ru # @Date: 2015-09-12 16:06:18 # @Last Modified by: maybelinot # @Last Modified time: 2015-09-12 20:14:58 from __future__ import unicode_literals, absolute_import import logging import os import subprocess import sys import time # EXTERNALLY INSTALLED from BCBio import GFF from Bio import SeqIO, Seq, SeqRecord, SeqFeature from Bio.Blast import NCBIXML from Bio.Blast.Applications import NcbiblastnCommandline from io import StringIO import yaml # Load logging before anything else logging.basicConfig(format='>> %(message)s') logr = logging.getLogger('findltr') def export_gff(seq, young_lcp, outputfile): gff_output = outputfile or 'rec_%s.gff3' % time.time() logr.info('Found LTRs are saved in ' + gff_output) records = [] # fix name to chrN based on input seq gff = SeqRecord.SeqRecord(Seq.Seq(seq), "seq0") top_feature = [] for idx, item in enumerate(young_lcp): seq1 = SeqRecord.SeqRecord( Seq.Seq(seq[item[0][0]:item[0][1]]), id="seq1") seq2 = SeqRecord.SeqRecord( Seq.Seq(seq[item[1][0]:item[1][1]]), id="seq2") with open("/tmp/seq1.fasta", "w") as query: SeqIO.write(seq1, query, "fasta") with open("/tmp/seq2.fasta", "w") as subject: SeqIO.write(seq2, subject, "fasta") blast_output = NcbiblastnCommandline( query="/tmp/seq1.fasta", subject="/tmp/seq2.fasta", outfmt=5)()[0] blast_result_record = NCBIXML.read(StringIO(unicode(blast_output, "utf-8"))) identity = 0 for alignment in blast_result_record.alignments: for hsp in alignment.hsps: identity = max( hsp.identities / float(hsp.align_length) * 100.0, identity) identity = "%0.2f" % identity # cut zeros tail # identity = identity.rstrip("0") # identity = identity.rstrip(".") # improve seqfeatures appending sub_qualifiers_region = {"source": "ltrfind", "ID": "repeat_region" + str(idx + 1)} top_feature.append(SeqFeature.SeqFeature(SeqFeature.FeatureLocation(item[0][0] - 4, item[1][1] + 4), type="repeat_region", strand=0, qualifiers=sub_qualifiers_region)) sub_qualifiers_target_site = {"source": "ltrfind", "Parent": "repeat_region" + str(idx + 1)} top_feature.append(SeqFeature.SeqFeature(SeqFeature.FeatureLocation(item[0][0] - 4, item[0][0]), type="target_site_duplication", strand=0, qualifiers=sub_qualifiers_target_site)) sub_qualifiers = {"source": "ltrfind", "ID": "LTR_retrotransposon" + str(idx + 1), "Parent": "repeat_region" + str(idx + 1), "ltr_similarity": identity, "seq_number": "0"} top_feature.append(SeqFeature.SeqFeature(SeqFeature.FeatureLocation(item[0][0], item[1][1]), type="LTR_retrotransposon", strand=0, qualifiers=sub_qualifiers)) sub_qualifiers_ltrs = {"source": "ltrfind", "Parent": "LTR_retrotransposon" + str(idx + 1)} top_feature.append(SeqFeature.SeqFeature(SeqFeature.FeatureLocation(item[0][0], item[0][1]), type="long_terminal_repeat", strand=0, qualifiers=sub_qualifiers_ltrs)) top_feature.append(SeqFeature.SeqFeature(SeqFeature.FeatureLocation(item[1][0], item[1][1]), type="long_terminal_repeat", strand=0, qualifiers=sub_qualifiers_ltrs)) top_feature.append(SeqFeature.SeqFeature(SeqFeature.FeatureLocation(item[1][1], item[1][1] + 4), type="target_site_duplication", strand=0, qualifiers=sub_qualifiers_target_site)) gff.features = top_feature # track name='findltr' description='findltr Supplied Track' with open(gff_output, "w") as out_handle: GFF.write([gff], out_handle) def run(cmd): cmd = cmd if isinstance(cmd, list) else cmd.split() try: process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except Exception as error: logr.error("'{0}' failed: {1}".format(cmd, error)) raise output, errors = process.communicate() if process.returncode != 0 or errors: if output: logr.error(output) if errors: logr.error(errors) sys.exit(process.returncode) return output, errors
gpl-3.0
-1,912,421,539,951,222,800
39.991228
114
0.598545
false
3.474349
false
false
false
hzlf/openbroadcast
website/djangorestframework/resources.py
1
15477
from django import forms from django.core.urlresolvers import reverse, get_urlconf, get_resolver, NoReverseMatch from django.db import models from django.db.models.query import QuerySet from django.db.models.fields.related import RelatedField from django.utils.encoding import smart_unicode from djangorestframework.response import ErrorResponse from djangorestframework.serializer import Serializer, _SkipField from djangorestframework.utils import as_tuple import decimal import inspect import re class BaseResource(Serializer): """ Base class for all Resource classes, which simply defines the interface they provide. """ fields = None include = None exclude = None def __init__(self, view=None, depth=None, stack=[], **kwargs): super(BaseResource, self).__init__(depth, stack, **kwargs) self.view = view def validate_request(self, data, files=None): """ Given the request content return the cleaned, validated content. Typically raises a :exc:`response.ErrorResponse` with status code 400 (Bad Request) on failure. """ return data def filter_response(self, obj): """ Given the response content, filter it into a serializable object. """ return self.serialize(obj) class Resource(BaseResource): """ A Resource determines how a python object maps to some serializable data. Objects that a resource can act on include plain Python object instances, Django Models, and Django QuerySets. """ # The model attribute refers to the Django Model which this Resource maps to. # (The Model's class, rather than an instance of the Model) model = None # By default the set of returned fields will be the set of: # # 0. All the fields on the model, excluding 'id'. # 1. All the properties on the model. # 2. The absolute_url of the model, if a get_absolute_url method exists for the model. # # If you wish to override this behaviour, # you should explicitly set the fields attribute on your class. fields = None class FormResource(Resource): """ Resource class that uses forms for validation. Also provides a :meth:`get_bound_form` method which may be used by some renderers. On calling :meth:`validate_request` this validator may set a :attr:`bound_form_instance` attribute on the view, which may be used by some renderers. """ form = None """ The :class:`Form` class that should be used for request validation. This can be overridden by a :attr:`form` attribute on the :class:`views.View`. """ def validate_request(self, data, files=None): """ Given some content as input return some cleaned, validated content. Raises a :exc:`response.ErrorResponse` with status code 400 (Bad Request) on failure. Validation is standard form validation, with an additional constraint that *no extra unknown fields* may be supplied. On failure the :exc:`response.ErrorResponse` content is a dict which may contain :obj:`'errors'` and :obj:`'field-errors'` keys. If the :obj:`'errors'` key exists it is a list of strings of non-field errors. If the :obj:`'field-errors'` key exists it is a dict of ``{'field name as string': ['errors as strings', ...]}``. """ return self._validate(data, files) def _validate(self, data, files, allowed_extra_fields=(), fake_data=None): """ Wrapped by validate to hide the extra flags that are used in the implementation. allowed_extra_fields is a list of fields which are not defined by the form, but which we still expect to see on the input. fake_data is a string that should be used as an extra key, as a kludge to force .errors to be populated when an empty dict is supplied in `data` """ # We'd like nice error messages even if no content is supplied. # Typically if an empty dict is given to a form Django will # return .is_valid() == False, but .errors == {} # # To get around this case we revalidate with some fake data. if fake_data: data[fake_data] = '_fake_data' allowed_extra_fields = tuple(allowed_extra_fields) + ('_fake_data',) bound_form = self.get_bound_form(data, files) if bound_form is None: return data self.view.bound_form_instance = bound_form data = data and data or {} files = files and files or {} seen_fields_set = set(data.keys()) form_fields_set = set(bound_form.fields.keys()) allowed_extra_fields_set = set(allowed_extra_fields) # In addition to regular validation we also ensure no additional fields are being passed in... unknown_fields = seen_fields_set - (form_fields_set | allowed_extra_fields_set) unknown_fields = unknown_fields - set(('csrfmiddlewaretoken', '_accept', '_method')) # TODO: Ugh. # Check using both regular validation, and our stricter no additional fields rule if bound_form.is_valid() and not unknown_fields: # Validation succeeded... cleaned_data = bound_form.cleaned_data # Add in any extra fields to the cleaned content... for key in (allowed_extra_fields_set & seen_fields_set) - set(cleaned_data.keys()): cleaned_data[key] = data[key] return cleaned_data # Validation failed... detail = {} if not bound_form.errors and not unknown_fields: # is_valid() was False, but errors was empty. # If we havn't already done so attempt revalidation with some fake data # to force django to give us an errors dict. if fake_data is None: return self._validate(data, files, allowed_extra_fields, '_fake_data') # If we've already set fake_dict and we're still here, fallback gracefully. detail = {u'errors': [u'No content was supplied.']} else: # Add any non-field errors if bound_form.non_field_errors(): detail[u'errors'] = bound_form.non_field_errors() # Add standard field errors field_errors = dict( (key, map(unicode, val)) for (key, val) in bound_form.errors.iteritems() if not key.startswith('__') ) # Add any unknown field errors for key in unknown_fields: field_errors[key] = [u'This field does not exist.'] if field_errors: detail[u'field-errors'] = field_errors # Return HTTP 400 response (BAD REQUEST) raise ErrorResponse(400, detail) def get_form_class(self, method=None): """ Returns the form class used to validate this resource. """ # A form on the view overrides a form on the resource. form = getattr(self.view, 'form', None) or self.form # Use the requested method or determine the request method if method is None and hasattr(self.view, 'request') and hasattr(self.view, 'method'): method = self.view.method elif method is None and hasattr(self.view, 'request'): method = self.view.request.method # A method form on the view or resource overrides the general case. # Method forms are attributes like `get_form` `post_form` `put_form`. if method: form = getattr(self, '%s_form' % method.lower(), form) form = getattr(self.view, '%s_form' % method.lower(), form) return form def get_bound_form(self, data=None, files=None, method=None): """ Given some content return a Django form bound to that content. If form validation is turned off (:attr:`form` class attribute is :const:`None`) then returns :const:`None`. """ form = self.get_form_class(method) if not form: return None if data is not None or files is not None: return form(data, files) return form() #class _RegisterModelResource(type): # """ # Auto register new ModelResource classes into ``_model_to_resource`` # """ # def __new__(cls, name, bases, dct): # resource_cls = type.__new__(cls, name, bases, dct) # model_cls = dct.get('model', None) # if model_cls: # _model_to_resource[model_cls] = resource_cls # return resource_cls class ModelResource(FormResource): """ Resource class that uses forms for validation and otherwise falls back to a model form if no form is set. Also provides a :meth:`get_bound_form` method which may be used by some renderers. """ # Auto-register new ModelResource classes into _model_to_resource #__metaclass__ = _RegisterModelResource form = None """ The form class that should be used for request validation. If set to :const:`None` then the default model form validation will be used. This can be overridden by a :attr:`form` attribute on the :class:`views.View`. """ model = None """ The model class which this resource maps to. This can be overridden by a :attr:`model` attribute on the :class:`views.View`. """ fields = None """ The list of fields to use on the output. May be any of: The name of a model field. To view nested resources, give the field as a tuple of ("fieldName", resource) where `resource` may be any of ModelResource reference, the name of a ModelResourc reference as a string or a tuple of strings representing fields on the nested model. The name of an attribute on the model. The name of an attribute on the resource. The name of a method on the model, with a signature like ``func(self)``. The name of a method on the resource, with a signature like ``func(self, instance)``. """ exclude = ('id', 'pk') """ The list of fields to exclude. This is only used if :attr:`fields` is not set. """ include = ('url',) """ The list of extra fields to include. This is only used if :attr:`fields` is not set. """ def __init__(self, view=None, depth=None, stack=[], **kwargs): """ Allow :attr:`form` and :attr:`model` attributes set on the :class:`View` to override the :attr:`form` and :attr:`model` attributes set on the :class:`Resource`. """ super(ModelResource, self).__init__(view, depth, stack, **kwargs) self.model = getattr(view, 'model', None) or self.model def validate_request(self, data, files=None): """ Given some content as input return some cleaned, validated content. Raises a :exc:`response.ErrorResponse` with status code 400 (Bad Request) on failure. Validation is standard form or model form validation, with an additional constraint that no extra unknown fields may be supplied, and that all fields specified by the fields class attribute must be supplied, even if they are not validated by the form/model form. On failure the ErrorResponse content is a dict which may contain :obj:`'errors'` and :obj:`'field-errors'` keys. If the :obj:`'errors'` key exists it is a list of strings of non-field errors. If the ''field-errors'` key exists it is a dict of {field name as string: list of errors as strings}. """ return self._validate(data, files, allowed_extra_fields=self._property_fields_set) def get_bound_form(self, data=None, files=None, method=None): """ Given some content return a ``Form`` instance bound to that content. If the :attr:`form` class attribute has been explicitly set then that class will be used to create the Form, otherwise the model will be used to create a ModelForm. """ form = self.get_form_class(method) if not form and self.model: # Fall back to ModelForm which we create on the fly class OnTheFlyModelForm(forms.ModelForm): class Meta: model = self.model #fields = tuple(self._model_fields_set) form = OnTheFlyModelForm # Both form and model not set? Okay bruv, whatevs... if not form: return None # Instantiate the ModelForm as appropriate if data is not None or files is not None: if issubclass(form, forms.ModelForm) and hasattr(self.view, 'model_instance'): # Bound to an existing model instance return form(data, files, instance=self.view.model_instance) else: return form(data, files) return form() def url(self, instance): """ Attempts to reverse resolve the url of the given model *instance* for this resource. Requires a ``View`` with :class:`mixins.InstanceMixin` to have been created for this resource. This method can be overridden if you need to set the resource url reversing explicitly. """ if not hasattr(self, 'view_callable'): raise _SkipField # dis does teh magicks... urlconf = get_urlconf() resolver = get_resolver(urlconf) possibilities = resolver.reverse_dict.getlist(self.view_callable[0]) for tuple_item in possibilities: possibility = tuple_item[0] # pattern = tuple_item[1] # Note: defaults = tuple_item[2] for django >= 1.3 for result, params in possibility: #instance_attrs = dict([ (param, getattr(instance, param)) for param in params if hasattr(instance, param) ]) instance_attrs = {} for param in params: if not hasattr(instance, param): continue attr = getattr(instance, param) if isinstance(attr, models.Model): instance_attrs[param] = attr.pk else: instance_attrs[param] = attr try: return reverse(self.view_callable[0], kwargs=instance_attrs) except NoReverseMatch: pass raise _SkipField @property def _model_fields_set(self): """ Return a set containing the names of validated fields on the model. """ model_fields = set(field.name for field in self.model._meta.fields) if fields: return model_fields & set(as_tuple(self.fields)) return model_fields - set(as_tuple(self.exclude)) @property def _property_fields_set(self): """ Returns a set containing the names of validated properties on the model. """ property_fields = set(attr for attr in dir(self.model) if isinstance(getattr(self.model, attr, None), property) and not attr.startswith('_')) if self.fields: return property_fields & set(as_tuple(self.fields)) return property_fields.union(set(as_tuple(self.include))) - set(as_tuple(self.exclude))
gpl-3.0
-5,236,262,275,512,934,000
36.841076
277
0.616528
false
4.368332
false
false
false
asttra/pysces
pysces/PyscesLink.py
1
52634
""" PySCeS - Python Simulator for Cellular Systems (http://pysces.sourceforge.net) Copyright (C) 2004-2015 B.G. Olivier, J.M. Rohwer, J.-H.S Hofmeyr all rights reserved, Brett G. Olivier (bgoli@users.sourceforge.net) Triple-J Group for Molecular Cell Physiology Stellenbosch University, South Africa. Permission to use, modify, and distribute this software is given under the terms of the PySceS (BSD style) license. See LICENSE.txt that came with this distribution for specifics. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. Brett G. Olivier """ from pysces.version import __version__ __doc__ = ''' PyscesLink ---------- Interfaces to external software and API's, has replaced the PySCeS contrib classes. ''' # for METATOOLlink import os, re, cStringIO # for SBWWebLink import urllib, urllib2, getpass class SBWlink(object): """Generic access for local SBW services using SBWPython """ sbw = None psbw = None sbwModuleProxy = None moduleDict = None modules = None def __init__(self): try: import SBW as SBW import SBW.psbw as psbw ## reload(SBW) ## reload(psbw) self.sbw = SBW self.psbw = SBW.psbw self.sbwModuleProxy = SBW.sbwModuleProxy self.moduleDict = SBW.sbwModuleProxy.moduleDict self.modules = [] for m in self.moduleDict: if self.moduleDict[m].pythonName not in ['python']: self.SBW_exposeAll(self.moduleDict[m]) self.modules.append(self.moduleDict[m].pythonName) setattr(self, self.moduleDict[m].pythonName, self.moduleDict[m]) print '\nSBWlink established.' except Exception, ex: print ex print '\nSBWlink not established.' def SBW_exposeAll(self, module): for s in module.services: s = getattr(module, s) for m in s.methods: getattr(s, m) def SBW_getActiveModules(self): idlist = [] namelst = [] for id in self.psbw.getModuleIdList(): idlist.append(id) namelst.append(self.psbw.getModuleName(id)) for id in self.moduleDict.keys(): if id not in idlist: self.moduleDict.pop(id) for name in range(len(self.modules)-1,-1,-1): if self.modules[name] not in namelst: delattr(self, self.modules[name]) self.modules.pop(name) for name in namelst: if name not in self.modules: self.SBW_loadModule(name) return namelst def SBW_loadModule(self, module_name): ans = 'Y' if module_name[-3:] == 'GUI': ans = raw_input('Warning! This may hang the console\n\yPress \'Y\' to continue: ') if ans == 'Y': module_id = self.psbw.SBWGetModuleInstance(module_name) assert module_id != None, '\nUnknow module, %s' % module_name module = self.sbwModuleProxy.ModuleProxy(module_id) self.SBW_exposeAll(module) if not self.moduleDict.has_key(module_id): print '<PySCeS_SBW> Adding ' + module.pythonName + ' to ModuleProxy (id=' + str(module_id) + ')' self.moduleDict.update({module_id : module}) if module.pythonName not in self.modules: print '<PySCeS_SBW> Adding ' + module.pythonName + ' to SBWlink' self.modules.append(module.pythonName) setattr(self, module.pythonName, module) else: print '\nModule %s not loaded' % module_name class SBWLayoutWebLink(object): """Enables access to DrawNetwork and SBMLLayout web services at www.sys-bio.org""" sbwhost = '128.208.17.26' sbml = None sbmllayout = None svg = None DEBUGMODE = False DEBUGLEVEL = 1 DRAWNETWORKLOADED = False LAYOUTMODULELOADED = False def setProxy(self, **kwargs): """Set as many proxy settings as you need. You may supply a user name without a password in which case you will be prompted to enter one (once) when required (NO guarantees, implied or otherwise, on password security AT ALL). Arguments can be: user = 'daUser', pwd = 'daPassword', host = 'proxy.paranoid.net', port = 3128 """ proxy_info = {} for k in kwargs.keys(): proxy_info.update({k : kwargs[k]}) if proxy_info.has_key('user') and not proxy_info.has_key('pwd'): proxy_info.update({'pwd' : getpass.getpass()}) proxy_support = urllib2.ProxyHandler({"http" : "http://%(user)s:%(pwd)s@%(host)s:%(port)d" % proxy_info}) opener = urllib2.build_opener(proxy_support, urllib2.HTTPHandler) urllib2.install_opener(opener) del proxy_info, proxy_support def loadSBMLFileFromDisk(self, File, Dir=None): if Dir != None: path = os.path.join(Dir, File) else: path = File if os.path.exists(path): self.sbmllayout = None self.svg = None self.DRAWNETWORKLOADED = False self.LAYOUTMODULELOADED = False sbmlF = file(path, 'r') self.sbml = sbmlF.read() sbmlF.close() return True else: print "%s is an invalid path" % path return False def loadSBMLFromString(self, str): self.sbmllayout = None self.svg = None self.DRAWNETWORKLOADED = False self.LAYOUTMODULELOADED = False self.sbml = str return True def urlGET(self, host, urlpath): url = 'http://%s%s' % (host,urlpath) con = urllib2.urlopen(url) resp = con.read() if self.DEBUGMODE: print con.headers if self.DEBUGMODE and self.DEBUGLEVEL == 2: print resp con.close() return resp def urlPOST(self, host, urlpath, data): assert type(data) == dict, '\nData must be a dictionary' url = 'http://%s%s' % (host, urlpath) con = urllib2.urlopen(url, urllib.urlencode(data)) resp = con.read() if self.DEBUGMODE: print con.headers if self.DEBUGMODE and self.DEBUGLEVEL == 2: print resp con.close() return resp def getVersion(self): print 'Inspector.getVersion()' ver = self.urlGET(self.sbwhost, '/generate/Inspector.asmx/getVersion') ver = ver.replace('<?xml version="1.0" encoding="utf-8"?>','') ver = ver.replace('<string xmlns="http://www.sys-bio.org/">','') ver = ver.replace('</string>','') return ver def drawNetworkLoadSBML(self): print 'DrawNetwork.loadSBML()' assert self.sbml != None, '\nNo SBML file loaded' data = {'var0' : self.sbml} self.DRAWNETWORKLOADED = True return self.urlPOST(self.sbwhost, '/generate/DrawNetwork.asmx/loadSBML', data) def drawNetworkGetSBMLwithLayout(self): print 'DrawNetwork.getSBML()' assert self.DRAWNETWORKLOADED, '\nSBML not loaded into DrawNetwork module' sbml = self.urlGET(self.sbwhost, '/generate/DrawNetwork.asmx/getSBML') sbml = sbml.replace('&gt;','>') sbml = sbml.replace('&lt;','<') sbml = sbml.replace('''<string xmlns="http://www.sys-bio.org/"><?xml version="1.0" encoding="utf-8"?>''','') sbml = sbml.replace('</string>','') self.sbmllayout = sbml return True def layoutModuleLoadSBML(self): print 'SBMLLayoutModule.loadSBML()' assert self.sbmllayout != None, '\nNo SBML Layout loaded' data = {'var0' : self.sbmllayout} self.LAYOUTMODULELOADED = True return self.urlPOST(self.sbwhost, '/generate/SBMLLayoutModule.asmx/loadSBML', data) def layoutModuleGetSVG(self): assert self.LAYOUTMODULELOADED, '\nSBML not loaded into SBMLLayout module' svg = self.urlGET(self.sbwhost, '/generate/SBMLLayoutModule.asmx/getSVG') svg = svg.replace('&gt;','>') svg = svg.replace('&lt;','<') svg = svg.replace('''<string xmlns="http://www.sys-bio.org/">''','') svg = svg.replace('''<?xml version="1.0" encoding="utf-8"?>''','') svg = svg.replace('</string>','') self.svg = svg return True def getSBML(self): return self.sbml def getSBMLlayout(self): return self.sbmllayout def getSVG(self): return self.svg class METATOOLlink(object): """New interface to METATOOL binaries""" __metatool_path__ = None __mod__ = None __emode_exe_int__ = None __emode_exe_dbl__ = None __emode_intmode__ = 0 __emode_userout__ = 0 __emode_file__ = None __metatool_file__ = None #EModes = '' def __init__(self, mod, __metatool_path__=None): # Initialise elementary modes self.__mod__ = mod if __metatool_path__ == None: self.__metatool_path__ = os.path.join(mod.__pysces_directory__, 'metatool') else: self.__metatool_path__ = os.path.join(__metatool_path__, 'metatool') assert self.__metatool_path__ != None, '\nPySCeS not found' self.__emode_file__ = self.__mod__.ModelFile[:-4] + '_emodes' self.__metatool_file__ = self.__mod__.ModelFile[:-4] + '_metatool' if os.sys.platform == 'win32': self.__emode_exe_int__ = os.path.join(self.__metatool_path__,'meta43_int.exe') self.__emode_exe_dbl__ = os.path.join(self.__metatool_path__,'meta43_double.exe') else: self.__emode_exe_int__ = os.path.join(self.__metatool_path__,'meta43_int') self.__emode_exe_dbl__ = os.path.join(self.__metatool_path__,'meta43_double') if os.path.exists(self.__emode_exe_int__): print 'Using METATOOL int', self.__emode_intmode__ = True else: self.__emode_exe_int__ = None if os.path.exists(self.__emode_exe_dbl__): print '\b\b\b\bdbl' self.__emode_intmode__ = False else: self.__emode_exe_dbl__ = None assert self.__emode_exe_dbl__ != None or self.__emode_exe_int__ != None, "\nMETATOOL binaries not available" def doEModes(self): """ doEModes() Calculate the elementary modes by way of an interface to MetaTool. METATOOL is a C program developed from 1998 to 2000 by Thomas Pfeiffer (Berlin) in cooperation with Stefan Schuster and Ferdinand Moldenhauer (Berlin) and Juan Carlos Nuno (Madrid). http://www.biologie.hu-berlin.de/biophysics/Theory/tpfeiffer/metatool.html Arguments: None """ print 'METATOOL is a C program developed from 1998 to 2000 by Thomas Pfeiffer (Berlin)' print 'in cooperation with Stefan Schuster and Ferdinand Moldenhauer (Berlin) and Juan Carlos Nuno (Madrid).' print 'http://www.biologie.hu-berlin.de/biophysics/Theory/tpfeiffer/metatool.html' goMode = 0 fileIn = 'pysces_metatool.dat' fileOut = 'pysces_metatool.out' goMode = 1 if goMode == 1: # Build MetaTool input file File = open(os.path.join(self.__mod__.ModelOutput,fileIn),'w') # Determine type of reaction out1 = [] for key in self.__mod__.__nDict__: #print key #print self.__mod__.__nDict__[key]['Type'] out1.append((key,self.__mod__.__nDict__[key]['Type'])) #print '\nExtracting metatool information from network dictionary ...\n' File.write('-ENZREV\n') for x in out1: if x[1] == 'Rever': File.write(x[0] + ' ') File.write('\n\n') File.write('-ENZIRREV\n') for x in out1: if x[1] == 'Irrev': File.write(x[0] + ' ') File.write('\n\n') File.write('-METINT\n') for x in self.__mod__.__species__: File.write(x + ' ') File.write('\n\n') File.write('-METEXT\n') for x in self.__mod__.__fixed_species__: File.write(x + ' ') File.write('\n\n') output = [] allInt = 1 for x in self.__mod__.__nDict__: reList = self.__mod__.__nDict__[x]['Reagents'] subs = '' prods = '' #print 'Reaction: ' + x for y in reList: if self.__emode_intmode__ == 1: # use int elementary modes if abs(int(reList[y]))/abs(float(reList[y])) != 1.0: print 'INFO: Coefficient not integer = ' + `reList[y]` allInt = 0 if reList[y] < 0: #print y.replace('self.','') + ' : substrate' if abs(int(reList[y])) != 1: subs += `abs(int(reList[y]))` + ' ' subs += y.replace('self.','') subs += ' + ' else: #print y.replace('self.','') + ' : product ' if abs(int(reList[y])) != 1: prods += `abs(int(reList[y]))` + ' ' prods += y.replace('self.','') prods += ' + ' #output.append(x + ' : ' + subs[:-3] + ' = ' + prods[:-3] + ' .') else: # use float/double elementary mode if reList[y] < 0.0: #print y.replace('self.','') + ' : substrate' if abs(float(reList[y])) != 1.0: subs += `abs(float(reList[y]))` + ' ' subs += y.replace('self.','') subs += ' + ' else: #print y.replace('self.','') + ' : product ' if abs(float(reList[y])) != 1.0: prods += `abs(float(reList[y]))` + ' ' prods += y.replace('self.','') prods += ' + ' output.append(x + ' : ' + subs[:-3] + ' = ' + prods[:-3] + ' .') File.write('-CAT\n') for x in output: File.write(x + '\n') File.write('\n') File.flush() File.close() if allInt == 1: if self.__emode_intmode__ == 1: eModeExe = self.__emode_exe_int__ else: eModeExe = self.__emode_exe_dbl__ print '\nMetatool running ...\n' ######### UPDATE: # Actually works fine on windows and posix - johann 20081128 print 'Generic run' os.spawnl(os.P_WAIT, eModeExe, eModeExe, os.path.join(self.__mod__.ModelOutput,fileIn), os.path.join(self.__mod__.ModelOutput,fileOut)) print '\nMetatool analysis complete\n' # Parse MetaTool output file and store the result in a string go = 0 go2 = 0 result = '' end = '' try: file2 = open(os.path.join(self.__mod__.ModelOutput,fileOut), 'r') for line in file2: c = re.match('ELEMENTARY MODES',line) d = re.match(' enzymes',line) e = re.match('The elementary mode',line) f = re.match('\n',line) g = re.match('The elementary',line) if c != None: go = 1 go2 = 0 if d != None: go2 = 1 if e != None: go2 = 0 if go == 1 and go2 == 1 and f == None: line = line.replace('reversible','\n reversible\n') line = line.replace('ir\n ','\n ir') if self.__emode_intmode__ == 1: line = line.replace('] ',']\n ') else: line = line.replace(') ',')\n ',1) result += line if go == 1 and g != None: end += line result += end result += '\n' file2.close() if self.__emode_userout__ == 1: fileo = open(os.path.join(self.__mod__.ModelOutput,self.__metatool_file__) + '.in','w') filer = open(os.path.join(self.__mod__.ModelOutput,fileIn),'r') for line in filer: fileo.write(line) fileo.write('\n\n') filer.close() fileo.close() filer = open(os.path.join(self.__mod__.ModelOutput,fileOut),'r') fileo = open(os.path.join(self.__mod__.ModelOutput,self.__metatool_file__) + '.out','w') for line in filer: fileo.write(line) filer.close() fileo.close() os.remove(os.path.join(self.__mod__.ModelOutput,fileIn)) os.remove(os.path.join(self.__mod__.ModelOutput,fileOut)) except Exception, EX: print 'doEmode:', EX print 'WARNING: Unable to open MetaTool output file\nPlease check the MetaTool executables: ' if os.name == 'posix': print '/MetaTool/meta43_double /MetaTool/meta43_int\nand their permissions' else: print '/MetaTool/meta43_double.exe /MetaTool/meta43_int.exe' else: print '\nINFO: non-integer coefficients\ \nTry using the double eMode function: self.__emode_intmode__=0' result = 'Elementary modes not calculated\n' else: print '\nNo elementary mode calculation possible - no meta43_xxx.exe' result = 'Elementary modes not calculated\n' self.EModes = result def getEModes(self): """ getEModes() Returns the elementary modes as a linked list of fluxes """ try: a = self.EModes FF = cStringIO.StringIO() FF.write(self.EModes) FF.reset() output = [] for line in FF: if re.match(' ',line) and not re.match(' reversible',line) and not re.match(' irreversible',line): tmp = [el for el in line.replace('\n','').split(' ') if el != ''] tmpOut = [] skip = False for el in range(len(tmp)): if skip: skip = False elif tmp[el][0] != '(': tmpOut.append(tmp[el]) elif tmp[el][0] == '(': tmpOut.append(tmp[el]+')'+tmp[el+1][:-1]) skip = True output.append(tmpOut) return output except AttributeError, atx: print atx print '\nINFO: Please run doEModes() first\n' def showEModes(self,File=None): """ showEModes(File=None) Print the results of an elementary mode analysis, generated with doEModes(), to screen or file. Arguments: File [default=None]: Boolean, if True write parsed elementary modes to file """ try: if File != None: #assert type(File) == file, 'showEmodes() needs an open file object' print '\nElementary modes written to file\n' f = open(os.path.join(self.__mod__.ModelOutput,self.__emode_file__ + '.out'),'w') f.write('\n## Elementary modes\n') f.write(self.EModes) f.close() else: print '\nElementary modes\n' print self.EModes except AttributeError, atx: print atx print '\nINFO: Please run doEModes() first\n' #stochsim link ''' _HAVE_STOMPY = False _STOMPY_LOAD_ERROR = '' try: ## import stompy import stochpy as stompy _HAVE_STOMPY = True except Exception, ex: _STOMPY_LOAD_ERROR = '%s' % ex _HAVE_STOMPY = False class StomPyInterface(object): """ StomPy interface to PySCeS this may move to pysces.link in the future """ SSA = None SSA_REACTIONS = None SSA_SPECIES = None stompy = None _MOD2PSC = None TMP_FNAME = None TMP_PATH = None MODEL_PATH = None OUTPUT_PATH = None STP_IS_TIME_SIM = False STP_METHOD = 'Direct' STP_TIMEEND = 1 STP_TRAJ = 1 STP_INTERACTIVE = True STP_TRACK_PROPENSITIES = True STP_WAITING_TIMES = True STP_STEPS = 10 STP_INITIAL_SPECIES = True STP_KEEP_PSC_FILES = False def __init__(self, model_path, output_path): """ An interface class to the StomPy stochastic simulator - *model_path* the default PySCeS model directory - *output_path* the default PySCeS output directory """ self.stompy = stompy self.OUTPUT_PATH = output_path self.MODEL_PATH = model_path self.TMP_PATH = os.path.join(model_path, 'orca') self._MOD2PSC = interface.writeMod2PSC def setProperty(self, **kwargs): """ Sets a StomPy simulation parameter - *method* [default='Direct'] select simulation algorithm - *trajectories* [default=1] - *interactive* [default=True] - *track_propensities* [default=True] - *steps* [default=10] """ ## print kwargs if kwargs.has_key('method'): self.STP_METHOD = kwargs['method'] ## print '%s = %s' % ('method', kwargs['method']) if kwargs.has_key('trajectories'): self.STP_TRAJ = kwargs['trajectories'] self.STP_TRAJ = 1 # TODO I need to look into this ## print 'Currently only single trajectories are supported via the PySCeS interface' ## print '%s = %s' % ('trajectories', self.STP_TRAJ) if kwargs.has_key('interactive'): self.STP_INTERACTIVE = kwargs['interactive'] ## print '%s = %s' % ('interactive', kwargs['interactive']) if kwargs.has_key('track_propensities'): self.STP_TRACK_PROPENSITIES = kwargs['track_propensities'] ## print '%s = %s' % ('track_propensities', kwargs['track_propensities']) if kwargs.has_key('steps'): self.STP_STEPS = kwargs['steps'] ## print '%s = %s' % ('steps', kwargs['steps']) if kwargs.has_key('species_initial'): self.STP_INITIAL_SPECIES = kwargs['initial_species'] ## print '%s = %s' % ('initial_species', kwargs['initial_species']) if kwargs.has_key('keep_psc_files'): self.STP_KEEP_PSC_FILES = kwargs['keep_psc_files'] ## print '%s = %s' % ('keep_psc_files', kwargs['keep_psc_files']) def initModelFromMod(self, pscmod, iValues=False): """ Initialise a StomPy SSA instance from a PySCeS model. - *pscmod* an initialised PySCeS model - *iValues* [default=False] use initial values (not current) """ self.TMP_FNAME = str(time.time()).replace('.','')+'.psc' if self.STP_INITIAL_SPECIES: for s in pscmod.species: setattr(pscmod, s, pscmod.__sDict__[s]['initial']) self._MOD2PSC(pscmod, self.TMP_FNAME, self.TMP_PATH, iValues=iValues) self.SSA = self.stompy.SSA(Method=self.STP_METHOD, File=self.TMP_FNAME, dir=self.TMP_PATH, IsInteractive=self.STP_INTERACTIVE) self.SSA.Trajectories(self.STP_TRAJ) self.SSA_REACTIONS = self.SSA.SSA.rate_names self.SSA_SPECIES = self.SSA.SSA.species if self.STP_TRACK_PROPENSITIES: self.SSA.TrackPropensities() try: print os.path.join(self.TMP_PATH, self.TMP_FNAME) if not self.STP_KEEP_PSC_FILES and self.TMP_PATH != None and self.TMP_FNAME != None: os.remove(os.path.join(self.TMP_PATH, self.TMP_FNAME)) except: print 'Could not delete intermediatery StomPy PSC file: %s' % os.path.join(self.TMP_PATH, self.TMP_FNAME) self.TMP_FNAME = None print 'StomPy model ... initialised.' def runTimeSimulation(self, pscmod, endtime=None, method='Direct', iValues=False): """ Run a stochastic simulation - *pscmod* and instanitiated PySCeS model - *endtime* [default=1] the end time **Note: this could take a long time i.e. generate ahuge amount of steps** - *method* [default='Direct'] select the simulation method, one of: - *Direct* - *FirstReactionMethod* - *NextReactionMethod* - *TauLeaping* - *iValues* [default=False] use initial values (not current) """ if method not in ['Direct','FirstReactionMethod','NextReactionMethod','TauLeaping']: print 'Method: %s does not exist using - Direct' % method self.STP_METHOD = 'Direct' else: self.STP_METHOD = method if endtime != None: self.STP_TIMEEND = endtime self.initModelFromMod(pscmod, iValues=iValues) ## self.SSA.Timesteps(self.STP_STEPS) self.SSA.Endtime(self.STP_TIMEEND) self.SSA.Run() self.STP_IS_TIME_SIM = True ## self.SSA.PlotTimeSim() print 'StomPy time simulation ... done.' # TODO STOCHPY ## if self.SSA.SSA.output[0][-1] == '': ## self.SSA.SSA.output[0][-1] = 0.0 ## sim_dat = numpy.array(self.SSA.SSA.output, 'd') ## pscmod.data_stochsim = IntegrationStochasticDataObj() ## pscmod.data_stochsim.setTime(sim_dat[:,0]) ## pscmod.data_stochsim.setSpecies(sim_dat[:,1:-1], self.SSA_SPECIES) pscmod.data_stochsim = self.SSA.data_stochsim if self.STP_WAITING_TIMES: wtimes, wt_lbls = self.getWaitingtimesData(reactions=None,lbls=True) pscmod.data_stochsim.setWaitingtimes(wtimes, wt_lbls) if self.STP_TRACK_PROPENSITIES: pscmod.data_stochsim.setPropensities(self.SSA.SSA.propensities_output) pscmod.data_stochsim.TYPE_INFO = 'Stochastic' def runStepSimulation(self, pscmod, steps=None, method='Direct', iValues=False): """ Run a stochastic simulation - *pscmod* and instanitiated PySCeS model - *steps* [default=10] the number of steps to simulate - *method* [default='Direct'] select the simulation method, one of: - *Direct* - *FirstReactionMethod* - *NextReactionMethod* - *TauLeaping* - *iValues* [default=False] use initial values (not current) """ if method not in ['Direct','FirstReactionMethod','NextReactionMethod','TauLeaping']: print 'Method: %s does not exist using - Direct' % method self.STP_METHOD = 'Direct' else: self.STP_METHOD = method if steps != None: self.STP_STEPS = steps self.initModelFromMod(pscmod, iValues=iValues) self.SSA.Timesteps(self.STP_STEPS) ## self.SSA.Endtime(self.STP_TIMEEND) self.SSA.Run() self.STP_IS_TIME_SIM = False print 'StomPy step simulation ... done.' ## print self.SSA.SSA.output[0] ## print self.SSA.SSA.output[1] ## print self.SSA.SSA.output[-1] ## header_line = self.SSA.SSA.output.pop(0) ## if self.SSA.SSA.output[0][-1] == '': ## self.SSA.SSA.output[0][-1] = 0.0 ## sim_dat = numpy.array(self.SSA.SSA.output, 'd') ## pscmod.data_stochsim = IntegrationStochasticDataObj() ## pscmod.data_stochsim.setTime(sim_dat[:,0]) ## pscmod.data_stochsim.setSpecies(sim_dat[:,1:-1], self.SSA_SPECIES) pscmod.data_stochsim = self.SSA.data_stochsim if self.STP_WAITING_TIMES: wtimes, wt_lbls = self.getWaitingtimesData(reactions=None,lbls=True) pscmod.data_stochsim.setWaitingtimes(wtimes, wt_lbls) if self.STP_TRACK_PROPENSITIES: pscmod.data_stochsim.setPropensities(self.SSA.SSA.propensities_output) pscmod.data_stochsim.TYPE_INFO = 'Stochastic' def getWaitingtimesData(self,reactions=None,lbls=False): """ Plots the waiting times for each reaction in the model. Makes use of ObtainWaitingtimes to derive the waiting times out of the SSA output. Input: - *reactions* [default=0] a list of reactions to plot defualts to all reactions - *traj* [default=0] trajectory to plot (defaults to first one) - *lbls* [default=False] if True return (data_array, column_labels) otherwise just data_array This method is derived from StomPy 0.9 (http://stompy.sf.net) Analysis.py """ if self.SSA.IsTauLeaping: print 'INFO: waiting times not available when method is Tau Leaping' if not lbls: return None else: return None, None self.SSA.GetWaitingtimes() if reactions == None: reactions = self.SSA_REACTIONS vect = [] vect_lbls = [] for r in reactions: if r in self.SSA_REACTIONS: vect.append(self.SSA_REACTIONS.index(r)+1) vect_lbls.append('wt'+str(r)) else: print "INFO: '%s' is not a valid reaction name" % r OUTPUT = [] ## for t in range(len(self.SSA.data_stochsim.waiting_times)): T_OUTPUT = [] for i in vect: if self.SSA.data_stochsim.waiting_times.has_key(i): waiting_time = self.SSA.data_stochsim.waiting_times[i] if len(waiting_time) > 1: # At least 2 waiting times are necessary per reaction T_OUTPUT.append(self.stompy.modules.Analysis.LogBin(waiting_time, 1.5)) # Create logarithmic bins else: T_OUTPUT.append(None) else: T_OUTPUT.append(None) OUTPUT.append(T_OUTPUT) if not lbls: return OUTPUT else: return OUTPUT, vect_lbls class IntegrationStochasticDataObj(object): """ This class is specifically designed to store the results of a stochastic time simulation It has methods for setting the Time, Labels, Species and Propensity data and getting Time, Species and Rate (including time) arrays. However, of more use: - getOutput(\*args) feed this method species/rate labels and it will return an array of [time, sp1, r1, ....] - getDataAtTime(time) the data generated at time point "time". - getDataInTimeInterval(time, bounds=None) more intelligent version of the above returns an array of all data points where: time-bounds <= time <= time+bounds """ time = None waiting_times = None species = None propensities = None xdata = None time_label = 'Time' waiting_time_labels = None species_labels = None propensities_labels = None xdata_labels = None HAS_SPECIES = False HAS_WAITING_TIMES = False HAS_PROPENSITIES = False HAS_TIME = False HAS_XDATA = False IS_VALID = True TYPE_INFO = 'Stochastic' def setLabels(self, species): """ Set the species - *species* a list of species labels """ self.species_labels = species def setTime(self, time, lbl=None): """ Set the time vector - *time* a 1d array of time points - *lbl* [default=None] is "Time" set as required """ self.time = time.reshape(len(time), 1) self.HAS_TIME = True if lbl != None: self.time_label = lbl def setSpecies(self, species, lbls=None): """ Set the species array - *species* an array of species vs time data - *lbls* [default=None] a list of species labels """ self.species = species self.HAS_SPECIES = True if lbls != None: self.species_labels = lbls def setWaitingtimes(self, waiting_times, lbls=None): """ Set the `waiting_times` this data structure is not an array but a nested list of: waiting time log bins per reaction per trajectory:: waiting_times = [traj_1, ..., traj_n] traj_1 = [wt_J1, ..., wt_Jn] # in order of SSA_REACTIONS wt_J1 = (xval, yval, nbin) xval =[x_1, ..., x_n] yval =[y_1, ..., y_n] nbin = n - *waiting_times* a list of waiting times - *lbls* [default=None] a list of matching reaction names """ self.waiting_times = waiting_times self.HAS_WAITING_TIMES = True if lbls != None: self.waiting_time_labels = lbls def setPropensities(self, propensities, lbls=None): """ Sets an array of propensities. - *propensities* a list of propensities - *lbls* [default=None] a list of matching reaction names """ if lbls == None: LB = copy.copy(propensities[0]) lbls = LB[1:] lbls = ['p'+str(r) for r in lbls] P_ARR = numpy.zeros((len(propensities), len(propensities[0])-1), 'd') P_ARR[-1,:] = numpy.NaN for r in range(1, P_ARR.shape[0]): P_ARR[r, :] = propensities[r][1:] self.propensities = P_ARR self.HAS_PROPENSITIES = True if lbls != None: self.propensities_labels = lbls ## print self.propensities_labels ## print self.propensities def setXData(self, xdata, lbls=None): """ Sets an array of extra simulation data - *xdata* an array of xdata vs time - *lbls* [default=None] a list of xdata labels """ self.xdata = xdata self.HAS_XDATA = True if lbls != None: self.xdata_labels = lbls def getTime(self, lbls=False): """ Return the time vector - *lbls* [default=False] return only the time array or optionally both the time array and time label """ output = None if self.HAS_TIME: output = self.time.reshape(len(self.time),) if not lbls: return output else: return output, [self.time_label] def getSpecies(self, lbls=False): """ Return an array fo time+species - *lbls* [default=False] return only the time+species array or optionally both the data array and a list of column label """ output = None if self.HAS_SPECIES: output = numpy.hstack((self.time, self.species)) labels = [self.time_label]+self.species_labels else: output = self.time labels = [self.time_label] if not lbls: return output else: return output, labels def getWaitingtimes(self, lbls=False, traj=[]): """ Return waiting times, time+waiting_time array - *lbls* [default=False] return only the time+waiting_time array or optionally both the data array and a list of column label - *traj* [default=[0]] return the firs or trajectories defined in this list """ output = None labels = None if self.HAS_WAITING_TIMES: output = [] if len(traj) == 0: traj = range(len(self.waiting_times)) ## if len(traj) == 1: ## output = self.waiting_times[0] ## else: for t in traj: output.append(self.waiting_times[t]) labels = self.waiting_time_labels else: output = [] labels = [] if not lbls: return output else: return output, labels def getPropensities(self, lbls=False): """ Return time+propensity array - *lbls* [default=False] return only the time+propensity array or optionally both the data array and a list of column label """ #assert self.propensities != None, "\nNo propensities" output = None if self.HAS_PROPENSITIES: print self.time.shape print self.propensities.shape output = numpy.hstack((self.time, self.propensities)) labels = [self.time_label]+self.propensities_labels else: output = self.time labels = [self.time_label] if not lbls: return output else: return output, labels def getXData(self, lbls=False): """ Return time+xdata array - *lbls* [default=False] return only the time+xdata array or optionally both the data array and a list of column label """ output = None if self.HAS_XDATA: output = numpy.hstack((self.time, self.xdata)) labels = [self.time_label]+self.xdata_labels else: output = self.time labels = [self.time_label] if not lbls: return output else: return output, labels def getDataAtTime(self, time): """ Return all data generated at "time" - *time* the required exact time point """ #TODO add rate rule data t = None sp = None ra = None ru = None xd = None temp_t = self.time.reshape(len(self.time),) for tt in range(len(temp_t)): if temp_t[tt] == time: t = tt if self.HAS_SPECIES: sp = self.species.take([tt], axis=0) if self.HAS_PROPENSITIES: ru = self.propensities.take([tt], axis=0) if self.HAS_XDATA: xd = self.xdata.take([tt], axis=0) break output = None if t is not None: output = numpy.array([[temp_t[t]]]) if sp is not None: output = numpy.hstack((output,sp)) if ra is not None: output = numpy.hstack((output,ra)) if ru is not None: output = numpy.hstack((output,ru)) if xd is not None: output = numpy.hstack((output,xd)) return output def getDataInTimeInterval(self, time, bounds=None): """ Returns an array of all data in interval: time-bounds <= time <= time+bounds where bound defaults to stepsize - *time* the interval midpoint - *bounds* [default=None] interval halfspan defaults to stepsize """ temp_t = self.time.reshape(len(self.time),) if bounds == None: bounds = temp_t[1] - temp_t[0] c1 = (temp_t >= time-bounds) c2 = (temp_t <= time+bounds) print 'Searching (%s:%s:%s)' % (time-bounds, time, time+bounds) t = [] sp = None ra = None for tt in range(len(c1)): if c1[tt] and c2[tt]: t.append(tt) output = None if len(t) > 0: output = self.time.take(t) output = output.reshape(len(output),1) if self.HAS_SPECIES and self.HAS_TIME: output = numpy.hstack((output, self.species.take(t, axis=0))) if self.HAS_PROPENSITIES: output = numpy.hstack((output, self.propensities.take(t, axis=0))) if self.HAS_XDATA: output = numpy.hstack((output, self.xdata.take(t, axis=0))) return output def getAllSimData(self,lbls=False): """ Return an array of time + all available simulation data - *lbls* [default=False] return only the data array or (data array, list of labels) """ labels = [self.time_label] if self.HAS_SPECIES and self.HAS_TIME: output = numpy.hstack((self.time, self.species)) labels += self.species_labels if self.HAS_PROPENSITIES: output = numpy.hstack((output, self.propensities)) labels += self.propensities_labels if self.HAS_XDATA: output = numpy.hstack((output, self.xdata)) labels += self.xdata_labels if not lbls: return output else: return output, labels def getSimData(self, *args, **kwargs): """ Feed this method species/xdata labels and it will return an array of [time, sp1, ....] - 'speces_l', 'xdatal' ... - *lbls* [default=False] return only the data array or (data array, list of labels) """ output = self.time if kwargs.has_key('lbls'): lbls = kwargs['lbls'] else: lbls = False lout = [self.time_label] for roc in args: if self.HAS_SPECIES and roc in self.species_labels: lout.append(roc) output = numpy.hstack((output, self.species.take([self.species_labels.index(roc)], axis=-1))) if self.HAS_PROPENSITIES and roc in self.propensities_labels: lout.append(roc) output = numpy.hstack((output, self.propensities.take([self.propensities_labels.index(roc)], axis=-1))) if self.HAS_XDATA and roc in self.xdata_labels: lout.append(roc) output = numpy.hstack((output, self.xdata.take([self.xdata_labels.index(roc)], axis=-1))) if not lbls: return output else: return output, lout class PysMod: #STOMPY INSERT START def StochSimPlot(self, plot='species', filename=None, title=None, log=None, format='points'): """ Plot the Stochastic simulation results, uses the new UPI pysces.plt interface: - *plot* [default='species'] output to plot, can be one of: - 'all' species and propensities - 'species' species - 'waiting_times' waiting_times - 'propensities' propensities - `['S1', 'R1', ]` a list of model attributes ('species') - *filename* [default=None] if defined file is exported to filename - *title* [default=None] the plot title - *log* [default=None] use log axis for axis 'x', 'y', 'xy' - *format* [default='lines'] use UPI or backend specific keys """ data = None labels = None allowedplots = ['all', 'species', 'propensities','waiting_times'] ## allowedplots = ['all', 'species', 'waiting_times'] if type(plot) != list and plot not in allowedplots: raise RuntimeError, '\nPlot must be one of %s not \"%s\"' % (str(allowedplots), plot) if plot == 'all': ## data, labels = self.data_stochsim.getSpecies(lbls=True) data, labels = self.data_stochsim.getAllSimData(lbls=True) elif plot == 'species': data, labels = self.data_stochsim.getSpecies(lbls=True) elif plot == 'propensities': data, labels = self.data_stochsim.getPropensities(lbls=True) ## data, labels = self.data_stochsim.getRates(lbls=True) elif plot == 'waiting_times': dataLst, labels = self.data_stochsim.getWaitingtimes(lbls=True) format='points' ## data, labels = self.data_stochsim.getRates(lbls=True) else: plot = [at for at in plot if at in self.__species__+[self.data_stochsim.time_label]+self.data_stochsim.propensities_labels] kwargs = {'lbls' : True} print plot if len(plot) > 0: data, labels = self.data_stochsim.getSimData(*plot, **kwargs) del allowedplots xu = 'Time (%(multiplier)s x %(kind)s x 10**%(scale)s)**%(exponent)s' % self.__uDict__['time'] if plot == 'waiting_times': xu = 'Inter-arrival time (%s)' % xu xrng_start = 0.1 xrng_end = 0.1 yrng_start = 0.1 yrng_end = 0.1 for wt in range(len(dataLst)): for d in range(len(dataLst[wt])): D = dataLst[wt][d] if plt.__USE_MATPLOTLIB__ and d > 0: plt.m.hold(True) if D != None and len(D[0]) > 0 and len(D[1]) > 0: data = numpy.vstack([D[0], D[1]]).transpose() if min(D[0]) < xrng_start and min(D[0]) > 0.0: xrng_start = min(D[0]) if max(D[0]) > xrng_end: xrng_end = max(D[0]) if min(D[1]) < yrng_start and min(D[1]) > 0.0: yrng_start = min(D[1]) if max(D[1]) > yrng_end: yrng_end = max(D[1]) plt.plotLines(data, 0, [1], titles=['Time']+[labels[d]], formats=[format]) plt.setRange('x', xrng_start*0.8, xrng_end*1.2) plt.setRange('y', yrng_start*0.8, yrng_end*1.2) if plt.__USE_MATPLOTLIB__: plt.m.hold(False) else: plt.plotLines(data, 0, range(1, data.shape[1]), titles=labels, formats=[format]) # set the x-axis range so that it is original range + 0.2*sim_end # this is a sceintifcally dtermned amount of space that is needed for the title at the # end of the line :-) - brett 20040209 RngTime = self.data_stochsim.getTime() end = RngTime[-1] + 0.2*RngTime[-1] plt.setRange('x', RngTime[0], end) del RngTime # For now StochPy results are plotted as Amounts directly from StochPy M = 'Amount' ## if self.__KeyWords__['Output_In_Conc']: ## M = 'Concentration' ## else: ## M = 'Amount (%(multiplier)s x %(kind)s x 10**%(scale)s)**%(exponent)s' % self.__uDict__['substance'] if plot == 'all': yl = 'Amount, propensities' elif plot == 'propensities': yl = 'Propensities' elif plot == 'waiting_times': yl = 'Frequency' if log == None: log = 'xy' elif plot == 'species': yl = '%s' % M else: yl = 'User defined' plt.setAxisLabel('x', xu) plt.setAxisLabel('y', yl) if log != None: plt.setLogScale(log) if title == None: plt.setGraphTitle('PySCeS/StochPy simulation (' + self.ModelFile + ') ' + time.strftime("%a, %d %b %Y %H:%M:%S")) else: plt.setGraphTitle(title) plt.replot() if filename != None: plt.export(filename, directory=self.ModelOutput, type='png') def doStochSim(self,end=10,mode='steps',method='Direct',trajectories=1): """ doStochSim(end=10, mode='steps', method='Direct') Run a stochastic simulation for until `end` is reached. This can be either steps or end time (which could be a *HUGE* number of steps). Arguments: - *end* [default=10] simulation end (steps or time) - *mode* [default='steps'] simulation mode, can be one of: - *steps* total number of steps to simulate - *time* simulate until time is reached - *method* [default='Direct'] stochastic algorithm, can be one of: - Direct - FirstReactionMethod - NextReactionMethod - TauLeaping """ if method not in ['Direct', 'FirstReactionMethod','NextReactionMethod','TauLeaping']: print 'Method "%s" not recognised using: "Direct"' % method method = 'Direct' if mode not in ['steps','time']: print 'Mode "%s" not recognised using: "steps"' % mode mode = 'steps' stompy_track_propensities = True stompy_keep_psc_files = False self.__STOMPY__.setProperty(method=method, trajectories=trajectories, interactive=True, track_propensities=stompy_track_propensities, keep_psc_files=stompy_keep_psc_files) if mode == 'time': self.__STOMPY__.runTimeSimulation(self, endtime=end, method=method) else: self.__STOMPY__.runStepSimulation(self, steps=end, method=method) def doStochSimPlot(self, end=10.0, mode='steps', method='Direct', plot='species', fmt='points', log=None, filename=None): """ doStochSimPlot(end=10.0, mode='steps', method='Direct', plot='species', fmt='points', log=None, filename=None) Run a stochastic simulation for until `end` is reached and plot the results. This can be either steps or end time (which could be a *HUGE* number of steps). Arguments: - *end* [default=10] simulation end (steps or time) - *mode* [default='steps'] simulation mode, can be one of: - *steps* total number of 'steps' to simulate - *time* simulate until 'time' is reached - *method* [default='Direct'] stochastic algorithm, can be one of: - Direct - FirstReactionMethod - NextReactionMethod - TauLeaping - *plot* [default='species'] output to plot, can be one of: - 'all' species and propensities - 'species' species - 'waiting_times' waiting_times - 'propensities' propensities - `['S1', 'R1', ]` a list of model attributes ('species') - *filename* [default=None] if defined file is exported to filename - *title* [default=None] the plot title - *log* [default=None] use log axis for axis 'x', 'y', 'xy' - *fmt* [default='lines'] use UPI or backend specific keys """ self.doStochSim(end=end, mode=mode, method=method,trajectories=1) self.StochSimPlot(plot='species', filename=filename, log=log, format=fmt) #STOMPY INSERT START if not _HAVE_STOMPY: def nofunc(self, *args, **kwargs): print '\nStochastic simulation not available, please download/install *StomPy* from: http://stompy.sf.net\n' PysMod.doStochSim = nofunc PysMod.doStochSimPlot = nofunc PysMod.StochSimPlot = nofunc '''
bsd-3-clause
621,127,197,163,312,800
36.223675
179
0.522609
false
3.787709
false
false
false
6/jcrawler
mbga_parser.py
1
5359
#-*- encoding:utf-8 -*- """ Parse MBGA data to generate statistics. """ import glob import os import re import csv import numpy from PIL import Image from datetime import datetime DATA_PATH = "data/mbga/{0}/" PERMISSIONS = { "メンバー全員": 1 # all members ,"主催者+副管理": 2 # sponsors and moderators ,"主催者のみ": 3 # sponsors } EMOTIONS = { "normal": 1 ,"shy": 2 ,"smile": 3 ,"angry": 4 ,"cry": 5 } def analyze_groups(): group_files = files('group', '*.data') groups = [] min_dist, max_dist = None, 0 for i in range(1, len(group_files), 2): n_members, permissions = parse(group_files[i-1], meta_parser) dist = parse(group_files[i], time_dist_parser) if dist and dist > max_dist: max_dist = dist if dist and (dist < min_dist or min_dist is None): min_dist = dist if not dist: dist = 0 groups.append([n_members, permissions, dist]) min_members_dist, max_members_dist = None, 0 for i,g in enumerate(groups): if g[2] is 0: groups[i].append(0) continue n_members, dist = g[0], float(g[2]) # scale from 0.01 (least activity) to 1.0 (most activity) scaled_dist = 1 - ((dist - min_dist) / (max_dist - min_dist) * 0.99) groups[i][2] = scaled_dist members_dist = scaled_dist / n_members groups[i].append(members_dist) if members_dist < min_members_dist or min_members_dist is None: min_members_dist = members_dist if members_dist > max_members_dist: max_members_dist = members_dist for i,g in enumerate(groups): if g[3] is 0: continue members_dist = g[3] scaled_members_dist = (members_dist - min_members_dist) / (max_members_dist - min_members_dist) * 0.99 + 0.01 groups[i][3] = scaled_members_dist print "n groups: {0}".format(len(groups)) headers = ('n_members','permissions','distance','member_distance') write_csv('mbga_groups.csv', headers, groups) def meta_parser(path, data): meta = re.findall("<li>([^<]+)</li>", data) meta = map(lambda x: x.split(":")[1], meta) # return [number of members, permissions] return int(meta[0].split("人")[0]), PERMISSIONS[meta[2]] def analyze_people(): ids = people_ids() mins = {'diary':None, 'greet':None, 'disc':None, 'test':None} maxs = {'diary':0, 'greet':0, 'disc':0, 'test':0} people = [] for i,id in enumerate(ids): # gather all data files associated with a specific person ID p_files = files('person', '*_{0}_*.data'.format(id)) data = {} for f in p_files: ftype = f.split("_")[-1].split(".")[0] if ftype == "demo": data['age'] = parse(f, demographics_parser) elif ftype in ["diary","greet","disc","test"]: dist = parse(f, time_dist_parser) data[ftype] = dist if dist and (mins[ftype] is None or dist < mins[ftype]): mins[ftype] = dist if dist and dist > maxs[ftype]: maxs[ftype] = dist people.append(data) people_csv = [] for i,person in enumerate(people): person_csv = [] for dtype,value in person.items(): if dtype == "age" or not value: if not value: value = 0 person_csv.append((dtype, value)) continue dist = float(value) scaled_dist = 1 - ((dist - mins[dtype])/(maxs[dtype] - mins[dtype])*0.99) person_csv.append((dtype, scaled_dist)) person_csv.sort() people_csv.append(map(lambda x: x[-1], person_csv)) headers = ('age', 'diary', 'disc', 'greet', 'intro') write_csv('mbga_people.csv', headers, people_csv) def people_ids(): people_files = files('person', '*.data') n_people = len(people_files)/7 people_ids = [] id_regex = re.compile("[0-9]+_([0-9]+)_[0-9]+") for f in people_files: m = id_regex.search(f) people_ids.append(m.group(1)) return set(people_ids) def demographics_parser(path, data): data = data.split("<dt>") age = -1 for d in data: if d.startswith ("誕生日(年齢)"): # birthdate (age) age = re.findall("[0-9]+", re.findall("<dd>([^<]+)</dd>", d)[0])[-1] return age def time_dist_parser(path, data): dist = False extracted = path.split("/")[-1].split("_")[0] time_extracted = datetime.strptime(extracted, "%Y%m%d%H%M%S") dates = re.findall("[0-9]{4}/[0-9]+/[0-9]+ [0-9]+:[0-9]+", data) if dates: oldest = datetime.strptime(dates[-1], "%Y/%m/%d %H:%M") dist = time_extracted - oldest dist = (dist.days * 86400) + dist.seconds return dist def analyze_avatars(): avatars = files('avatar', '*.png') data = [] for i,a in enumerate(avatars): pic = numpy.array(Image.open(a)) num_black_pixels = len(numpy.where(pic[0:1][0:1] == 0)[0]) bg_mod = 0 if num_black_pixels == 150 else 1 emotion = a.split("/")[-1].split("_")[-1].split(".")[0] data.append([EMOTIONS[emotion], bg_mod]) headers = ("emotion", "bg_mod") write_csv('mbga_avatars.csv', headers, data) def parse(data_path, parser): f = open(data_path, 'r').read() return parser(data_path, f) def files(folder, pattern): return glob.glob(os.path.join(DATA_PATH.format(folder), pattern)) def write_csv(fname, headers, list_of_lists): f = open(fname, 'wb') writer = csv.writer(f) writer.writerow(headers) for l in list_of_lists: writer.writerow(l) f.close() if __name__=="__main__": #analyze_groups() #analyze_people() analyze_avatars()
mit
6,223,290,673,111,375,000
30.426036
113
0.604029
false
2.939126
false
false
false
Jajcus/pyxmpp
pyxmpp/expdict.py
1
4727
# # (C) Copyright 2003-2010 Jacek Konieczny <jajcus@jajcus.net> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License Version # 2.1 as published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # """Dictionary with item expiration.""" __docformat__="restructuredtext en" import time import threading __all__ = ['ExpiringDictionary'] sentinel = object() class ExpiringDictionary(dict): """An extension to standard Python dictionary objects which implements item expiration. Each item in ExpiringDictionary has its expiration time assigned, after which the item is removed from the mapping. :Ivariables: - `_timeouts`: a dictionary with timeout values and timeout callback for stored objects. - `_default_timeout`: the default timeout value (in seconds from now). - `_lock`: access synchronization lock. :Types: - `_timeouts`: `dict` - `_default_timeout`: `int` - `_lock`: `threading.RLock`""" __slots__=['_timeouts','_default_timeout','_lock'] def __init__(self,default_timeout=300): """Initialize an `ExpiringDictionary` object. :Parameters: - `default_timeout`: default timeout value for stored objects. :Types: - `default_timeout`: `int`""" dict.__init__(self) self._timeouts={} self._default_timeout=default_timeout self._lock=threading.RLock() def __delitem__(self,key): self._lock.acquire() try: del self._timeouts[key] return dict.__delitem__(self,key) finally: self._lock.release() def __getitem__(self,key): self._lock.acquire() try: self._expire_item(key) return dict.__getitem__(self,key) finally: self._lock.release() def pop(self,key,default=sentinel): self._lock.acquire() try: self._expire_item(key) del self._timeouts[key] if default is not sentinel: return dict.pop(self,key,default) else: return dict.pop(self,key) finally: self._lock.release() def __setitem__(self,key,value): return self.set_item(key,value) def set_item(self,key,value,timeout=None,timeout_callback=None): """Set item of the dictionary. :Parameters: - `key`: the key. - `value`: the object to store. - `timeout`: timeout value for the object (in seconds from now). - `timeout_callback`: function to be called when the item expires. The callback should accept none, one (the key) or two (the key and the value) arguments. :Types: - `key`: any hashable value - `value`: any python object - `timeout`: `int` - `timeout_callback`: callable""" self._lock.acquire() try: if not timeout: timeout=self._default_timeout self._timeouts[key]=(time.time()+timeout,timeout_callback) return dict.__setitem__(self,key,value) finally: self._lock.release() def expire(self): """Do the expiration of dictionary items. Remove items that expired by now from the dictionary.""" self._lock.acquire() try: for k in self._timeouts.keys(): self._expire_item(k) finally: self._lock.release() def _expire_item(self,key): """Do the expiration of a dictionary item. Remove the item if it has expired by now. :Parameters: - `key`: key to the object. :Types: - `key`: any hashable value""" (timeout,callback)=self._timeouts[key] if timeout<=time.time(): item = dict.pop(self, key) del self._timeouts[key] if callback: try: callback(key,item) except TypeError: try: callback(key) except TypeError: callback() # vi: sts=4 et sw=4
lgpl-2.1
7,930,685,050,958,011,000
30.939189
80
0.576476
false
4.389044
false
false
false
ucsd-ccbb/Oncolist
src/restLayer/app/TermIdentifier.py
1
36204
__author__ = 'aarongary' import sys import pymongo import requests import MyGeneInfo from itertools import islice from app.util import set_status, create_edges_index from app.status import Status from bson.json_util import dumps from models.TermResolver import TermAnalyzer import ElasticSearch import os from sklearn.linear_model import LinearRegression import numpy as np import app import ESearch def bulk_identify_terms(terms): tr = TermAnalyzer() termsClassified = tr.process_terms_bulk(terms) return_value = { 'termClassification': termsClassified } return return_value def search_term_description(term): tr = TermAnalyzer() termsClassified = tr.process_terms_bulk(term) entrez_summary = ESearch.get_gene_summary_from_entrez(term) return_value = { 'termClassification': termsClassified, 'entrez_summary': entrez_summary } return return_value def bulk_identify_terms2(terms): term_with_id = [] #======================== # Process GENOME terms #======================== analyzed_terms = process_genome_terms(terms) for genome_term in analyzed_terms['special_terms']: a = { 'probabilitiesMap': { 'gene': '0.0', 'icd10': '0.0', 'drug': '0.0', 'disease': '0.0', 'genome': '1.0' }, 'status': 'success', 'termId': genome_term['familiar_term'], 'desc': 'Genome', 'geneSymbol': genome_term['familiar_term'], 'termTitle': genome_term['familiar_term'] + ' (' + genome_term['latin'] + ')' } term_with_id.append(a) terms = analyzed_terms['terms'] #======================== # Process DISEASE terms #======================== analyzed_terms = process_disease_terms(terms) for disease_term in analyzed_terms['special_terms']: a = { 'probabilitiesMap': { 'gene': '0.0', 'icd10': '0.0', 'drug': '0.0', 'disease': '1.0', 'genome': '0.0' }, 'status': 'success', 'termId': disease_term['familiar_term'], 'desc': 'Disease', 'geneSymbol': disease_term['familiar_term'], 'termTitle': disease_term['familiar_term'] + ' (' + disease_term['latin'] + ')' } term_with_id.append(a) terms = analyzed_terms['terms'] if(len(terms) > 0): queryTermArray = terms.split(',') types = ['gene','icd10','drug','disease','genome'] for queryTerm in queryTermArray: termTitle = queryTerm print queryTerm a = { 'probabilitiesMap': {}, 'status': 'success', 'termId': queryTerm.upper(), 'desc': '', 'geneSymbol': '', 'termTitle': queryTerm } term_result = identify_term(queryTerm) #tt = dumps(term_result) if(term_result is None or term_result.count() < 1): term_alt_result = identify_alt_term(queryTerm) #MyGeneInfo.get_gene_info_by_id(queryTerm) cc = dumps(term_alt_result) if(term_alt_result['term'] == 'UNKNOWN'): a['probabilitiesMap'] = { 'gene': '0.0', 'icd10': '0.0', 'drug': '0.0', 'disease': '0.0', 'genome': '0.0' } a['status'] = 'unknown' term_with_id.append(a) else: termDesc = '' termGeneSymbol = '' term_result_types_array = [] if(term_alt_result['type'] == 'GENE'): termDesc = term_alt_result['desc'] termGeneSymbol = term_alt_result['geneSymbol'] termTitle = queryTerm.upper() + ' (' + termGeneSymbol.upper() + ')' a['termId'] = termGeneSymbol.upper() if(term_alt_result['type'] not in term_result_types_array): term_result_types_array.append(term_alt_result['type']) total_found_terms = float(len(term_result_types_array)) for k in types: if(k.upper() in term_result_types_array): a['probabilitiesMap'][k] = str(1.0/total_found_terms) else: a['probabilitiesMap'][k] = str(0.0) a['desc'] = termDesc a['geneSymbol'] = termGeneSymbol a['termTitle'] = termTitle term_with_id.append(a) else: termDesc = '' termGeneSymbol = '' term_result_types_array = [] #tr = dumps(term_result) for item_type in term_result: if(item_type['type'] == 'GENE'): termDesc = item_type['desc'] termGeneSymbol = item_type['geneSymbol'] if(len(queryTerm) > 12 and queryTerm[:3] == 'ENS'): termTitle = termGeneSymbol.upper() + ' (' + queryTerm.upper() + ')' a['termId'] = termGeneSymbol.upper() if(item_type['type'] not in term_result_types_array): term_result_types_array.append(item_type['type']) total_found_terms = float(len(term_result_types_array)) for k in types: if(k.upper() in term_result_types_array): a['probabilitiesMap'][k] = str(1.0/total_found_terms) else: a['probabilitiesMap'][k] = str(0.0) a['desc'] = termDesc a['geneSymbol'] = termGeneSymbol a['termTitle'] = termTitle term_with_id.append(a) #print dumps(a) #term_with_id.append(term_result) return_value = { 'termClassification': term_with_id } #print dumps(return_value) return dumps(return_value) def identify_term(name): client = pymongo.MongoClient() db = client.identifiers allterms = db.allterms2 results = allterms.find({'term': name.upper(),'genomeType': 'human'}) return None if results is None else results def identify_alt_term(name): client = pymongo.MongoClient() db = client.identifiers allterms = db.allterms2 gene_alt_id = MyGeneInfo.get_gene_info_by_id(name) results = allterms.find_one({'term': gene_alt_id.upper(),'genomeType': 'human'}) if(results is None): results = { 'term': 'UNKNOWN', 'desc': 'UNKNOWN' } return results #def identify_term(name): # client = pymongo.MongoClient() # db = client.identifiers # allterms = db.allterms # result = allterms.find_one({'term': name.upper()}) # return None if result is None else result def add_terms_from_file(): client = pymongo.MongoClient() db = client.identifiers allterms = db.allterms2 #url = 'http://geneli.st:8181/add-terms1.tsv' #url = 'http://geneli.st:8181/mirna-terms.txt' url = 'http://geneli.st:8181/mirna_label.txt' r = requests.get(url) lines = list(r.iter_lines()) count=0 for idx, line in enumerate(lines): term, term_type = line.split('\t') term_to_add = { 'term': term.upper(), 'type': term_type } allterms.save(term_to_add) count = count + 1 print 'Done' print str(count) def load_variant_to_gene_from_file(): client = pymongo.MongoClient() db = client.identifiers variants = db.variants variants.drop() f_path = os.path.abspath('./variant_vs_gene.txt') f = open(f_path, 'r') count = 0 for line in f: count += 1 if(count % 5000 == 0): print str(count) + ' (' + "{0:.2f}%".format(float(count)/89000000 * 100) + ')' #print str(count) + ' (' + str(count/89000000) + ')c' #if(count > 10000): # break variant, gene = line.split('\t') #print variant + ' - ' + gene insertThisRecord = { 'geneSymbol': gene.rstrip().upper(), 'genomeType': 'human', 'term': variant.upper(), 'type': 'GENE' } variants.save(insertThisRecord) variants.create_index([ ("term", pymongo.ASCENDING) ]) def get_mirna_from_cluster_file(): f = open('/Users/aarongary/Development/DataSets/Terms/BRCA.json', 'r') count = 0 for line in f: if('hsa-' in line): print count count += 1 hsa_items = line.split('hsa-') for hsa_item in hsa_items: print hsa_item def add_biomart_terms_from_file(): client = pymongo.MongoClient() db = client.identifiers allterms = db.allterms2 allterms.drop() #filesToParse = [{'genomeType': 'human', 'url': 'http://geneli.st:8181/biomart/human Homo sapiens protein coding genes.txt','termType': 'GENE'}, # {'genomeType': 'human', 'url': 'http://geneli.st:8181/biomart/add-terms-non-GENE.tsv','termType': 'NONGENE'}] terms_host = 'http://ec2-52-40-169-254.us-west-2.compute.amazonaws.com:3000/Biomart' filesToParse = [ #{'genomeType': 'dog', 'url': terms_host + '/dog Canis familiaris protein coding genes.txt','termType': 'GENE'}, #{'genomeType': 'fruitfly', 'url': terms_host + '/fruitfly Drosophila melanogaster protein coding genes.txt','termType': 'GENE'}, #{'genomeType': 'monkey', 'url': terms_host + '/monkey Macaca mulatta protein coding genes.txt','termType': 'GENE'}, #{'genomeType': 'mouse', 'url': terms_host + '/mouse Mus musculus protein coding genes.txt','termType': 'GENE'}, #{'genomeType': 'rat', 'url': terms_host + '/rat Rattus norvegicus protein coding genes.txt','termType': 'GENE'}, #{'genomeType': 'worm', 'url': terms_host + '/worm Caenorhabditis elegans protein coding genes.txt','termType': 'GENE'}, #{'genomeType': 'zebrafish', 'url': terms_host + '/zebrafish Danio rerio protein coding genes.txt','termType': 'GENE'}, #{'genomeType': 'dog', 'url': terms_host + '/dog Canis familiaris mirna genes.txt','termType': 'GENE'}, #{'genomeType': 'fruitfly', 'url': terms_host + '/fruitfly Drosophila melanogaster pre-mirna genes.txt','termType': 'GENE'}, #{'genomeType': 'monkey', 'url': terms_host + '/monkey Macaca mulatta mirna genes.txt','termType': 'GENE'}, #{'genomeType': 'mouse', 'url': terms_host + '/mouse Mus musculus mirna genes.txt','termType': 'GENE'}, #{'genomeType': 'rat', 'url': terms_host + '/rat Rattus norvegicus mirna genes.txt','termType': 'GENE'}, #{'genomeType': 'worm', 'url': terms_host + '/worm Caenorhabditis elegans mirna genes.txt','termType': 'GENE'}, #{'genomeType': 'zebrafish', 'url': terms_host + '/zebrafish Danio rerio mirna genes.txt','termType': 'GENE'}, {'genomeType': 'human', 'url': terms_host + '/add-terms-DISEASE.tsv','termType': 'NONGENE'}, {'genomeType': 'human', 'url': terms_host + '/human Homo sapiens protein coding genes.txt','termType': 'GENE'}, {'genomeType': 'human', 'url': terms_host + '/human Homo sapiens miRNA genes.txt','termType': 'GENE'} ] for f in filesToParse: r = requests.get(f['url'], stream=True) lines = r.iter_lines() lines.next() # ignore header count = 0 for line in lines: count += 1 if(count % 1000 == 0): print count try: if(f['termType'] == 'GENE'): ensGID, desc, geneType, geneStatus, geneSymbol = line.split('\t') insertThisRecord = { 'ensGID': ensGID, 'desc': desc, 'geneType': geneType, 'geneStatus': geneStatus, 'geneSymbol': geneSymbol, 'genomeType': f['genomeType'], 'term': ensGID.upper(), 'type': 'GENE' } allterms.save(insertThisRecord) insertThisInvertedRecord = { 'ensGID': ensGID, 'desc': desc, 'geneType': geneType, 'geneStatus': geneStatus, 'geneSymbol': geneSymbol, 'genomeType': f['genomeType'], 'term': geneSymbol.upper(), 'type': 'GENE' } allterms.save(insertThisInvertedRecord) else: fTerm, fType = line.split('\t') allterms.save({'genomeType': 'human','term': fTerm.upper(),'type': fType}) #allterms.save({'genomeType': 'dog','term': fTerm.upper(),'type': fType}) #allterms.save({'genomeType': 'fruitfly','term': fTerm.upper(),'type': fType}) #allterms.save({'genomeType': 'monkey','term': fTerm.upper(),'type': fType}) #allterms.save({'genomeType': 'mouse','term': fTerm.upper(),'type': fType}) #allterms.save({'genomeType': 'rat','term': fTerm.upper(),'type': fType}) #allterms.save({'genomeType': 'worm','term': fTerm.upper(),'type': fType}) #allterms.save({'genomeType': 'zebrafish','term': fTerm.upper(),'type': fType}) except Exception as e: print 'Didnt work' + e.message print 'Done with file' allterms.ensure_index([("ensGID" , pymongo.ASCENDING)]) allterms.ensure_index([("term" , pymongo.ASCENDING)]) allterms.ensure_index([("type" , pymongo.ASCENDING)]) allterms.ensure_index([("geneType" , pymongo.ASCENDING)]) # allterms.create_indexes([ # pymongo.IndexModel([('ensGID', pymongo.ASCENDING)]), # pymongo.IndexModel([('term', pymongo.ASCENDING)]), # pymongo.IndexModel([('type', pymongo.ASCENDING)]), # pymongo.IndexModel([('geneType', pymongo.ASCENDING)]) # ]) print 'Done' return "" def add_terms_from_file_autocomplete(): client = pymongo.MongoClient() db = client.identifiers allterms = db.allterms #url = 'http://geneli.st:8181/add-terms3a.tsv' url = 'http://geneli.st:8181/add-terms3.tsv' r = requests.get(url) lines = list(r.iter_lines()) count=0 for idx, line in enumerate(lines): term, term_type = line.split('\t') #print term term_to_add = { 'term': term.upper(), 'type': term_type } allterms.save(term_to_add) count = count + 1 if(count % 200 == 0): print count #dumps(term_to_add) #allterms.create_indexes([pymongo.IndexModel([('term', pymongo.ASCENDING)])]) print 'Done' def add_terms_from_elasticsearch_autocomplete(): client = pymongo.MongoClient() db = client.identifiers allterms = db.allterms3 count=0 phenotypes = ElasticSearch.get_clinvar_phenotypes() for term in phenotypes: term_to_add = { 'term': term.upper(), 'type': 'ICD10' } allterms.save(term_to_add) count = count + 1 if(count % 200 == 0): print count #dumps(term_to_add) #allterms.create_indexes([pymongo.IndexModel([('term', pymongo.ASCENDING)])]) print 'Done' def load_terms_from_file(): client = pymongo.MongoClient() db = client.identifiers allterms = db.allterms allterms.drop() url = 'http://ec2-52-26-19-122.us-west-2.compute.amazonaws.com:8080/all-terms3.tsv' r = requests.get(url) lines = list(r.iter_lines()) count=0 for idx, line in enumerate(lines): term, term_type = line.split('\t') #print term term_to_add = { 'term': term.upper(), 'type': term_type } allterms.save(term_to_add) count = count + 1 if(count % 200 == 0): print count #dumps(term_to_add) allterms.create_indexes([pymongo.IndexModel([('term', pymongo.ASCENDING)])]) print 'Done' def process_genome_terms(terms): terms_uppercase = terms.upper() return_value = [] genome_id_kv = [ {'k': 'CANIS,FAMILIARIS', 'v': 'DOG'}, {'k': 'DROSOPHILA,MELANOGASTER', 'v': 'FRUITFLY'}, {'k': 'HOMO,SAPIEN', 'v': 'HUMAN'}, {'k': 'MACACA,MULATTA', 'v': 'MONKEY'}, {'k': 'MUS,MUSCULUS', 'v': 'MOUSE'}, {'k': 'RATTUS,NORVEGICUS', 'v': 'RAT'}, {'k': 'CAENORHABDITIS,ELEGANS', 'v': 'WORM'}, {'k': 'DANIO,RERIO', 'v': 'ZEBRAFISH'} ] for kv in genome_id_kv: if(kv['k'] in terms_uppercase): terms_uppercase = terms_uppercase.replace(kv['k'], '').replace(',,',',') return_value.append({'latin': kv['k'].replace(',',' '), 'familiar_term': kv['v']}) if(terms_uppercase[0:1] == ','): terms_uppercase = terms_uppercase[1:-1] if(terms_uppercase == ','): terms_uppercase = '' print terms_uppercase return {'terms': terms_uppercase, 'special_terms': return_value} def process_disease_terms(terms): terms_uppercase = terms.upper() return_value = [] genome_id_kv = [ {'k': 'BLADDER,CANCER', 'v': 'BLCA'}, {'k': 'BRAIN,CANCER', 'v': 'LGG'}, {'k': 'BREAST,CANCER', 'v': 'BRCA'}, {'k': 'CERVICAL,CANCER', 'v': 'CESC'}, {'k': 'ENDOCERVICAL,CANCER', 'v': 'CESC'}, {'k': 'CERVICAL,CANCER', 'v': 'CESC'}, {'k': 'CHOLANGIOCARCINOMA', 'v': 'CHOL'}, {'k': 'BILE,DUCT,CANCER', 'v': 'CHOL'}, {'k': 'COLON,CANCER', 'v': 'COAD'}, {'k': 'ESOPHAGEAL,CANCER', 'v': 'ESCA'}, {'k': 'GLIOBLASTOMA,CANCER', 'v': 'GBM'}, #Wikify {'k': 'HEAD,AND,NECK,CANCER', 'v': 'HNSC'}, {'k': 'NECK,CANCER', 'v': 'HNSC'}, {'k': 'HEAD,CANCER', 'v': 'HNSC'}, {'k': 'KIDNEY,CHROMOPHOBE', 'v': 'KICH'}, {'k': 'KIDNEY,RENAL,CLEAR,CELL,CARCINOMA', 'v': 'KIRC'}, #Wikify {'k': 'KIDNEY,RENAL,PAPILLARY,CELL,CARCINOMA', 'v': 'KIRP'}, {'k': 'LIVER,CANCER', 'v': 'LIHC'}, {'k': 'LUNG,CANCER', 'v': 'LUAD'}, {'k': 'LUNG,SQUAMOUS,CELL,CARCINOMA', 'v': 'LUSC'}, #Wikify {'k': 'LYMPHOID,CANCER', 'v': 'DLBC'}, {'k': 'LYMPHOMA,CANCER', 'v': 'DLBC'}, {'k': 'MESOTHELIOMA,CANCER', 'v': 'MESO'}, {'k': 'OVARIAN,CANCER', 'v': 'OV'}, {'k': 'PANCREATIC,CANCER', 'v': 'PAAD'}, {'k': 'PHEOCHROMOCYTOMA,CANCER', 'v': 'PCPG'}, {'k': 'PARAGANGLIOMA,CANCER', 'v': 'PCPG'}, {'k': 'PROSTATE,CANCER', 'v': 'PRAD'}, {'k': 'RECTUM,CANCER', 'v': 'READ'}, {'k': 'SARCOMA,CANCER', 'v': 'SARC'}, {'k': 'SKIN,CANCER', 'v': 'SKCM'}, {'k': 'STOMACH,CANCER', 'v': 'STAD'}, {'k': 'TESTICULAR,CANCER', 'v': 'TGCT'}, {'k': 'THYMOMA,CANCER', 'v': 'THYM'}, #Wikify {'k': 'THYROID,CANCER', 'v': 'THCA'}, {'k': 'UTERINE,CANCER', 'v': 'UCS'}, {'k': 'UTERINE,CORPUS,ENDOMETRIAL,CANCER', 'v': 'UCEC'}, #Wikify {'k': 'UVEAL,MELANOMA,CANCER', 'v': 'UVM'}, {'k': 'UVEAL,CANCER', 'v': 'UVM'}, {'k': 'LEUKEMIA', 'v': 'LAML'}, {'k': 'MYELOID,LEUKEMIA', 'v': 'LAML'}, {'k': 'ADRENOCORTICAL,CARCINOMA', 'v': 'ACC'}, {'k': 'BLADDER,UROTHELIAL,CARCINOMA', 'v': 'BLCA'}, {'k': 'BRAIN,LOWER,GRADE,GLIOMA', 'v': 'LGG'}, {'k': 'BREAST,INVASIVE,CARCINOMA', 'v': 'BRCA'}, {'k': 'CERVICAL,SQUAMOUS,CELL,CARCINOMA', 'v': 'CESC'}, {'k': 'ENDOCERVICAL,ADENOCARCINOMA', 'v': 'CESC'}, {'k': 'CHOLANGIOCARCINOMA', 'v': 'CHOL'}, {'k': 'COLON,ADENOCARCINOMA', 'v': 'COAD'}, {'k': 'ESOPHAGEAL,CARCINOMA', 'v': 'ESCA'}, {'k': 'GLIOBLASTOMA,MULTIFORME', 'v': 'GBM'}, {'k': 'HEAD,AND,NECK,SQUAMOUS,CELL,CARCINOMA', 'v': 'HNSC'}, {'k': 'KIDNEY,CHROMOPHOBE', 'v': 'KICH'}, {'k': 'KIDNEY,RENAL,CLEAR,CELL,CARCINOMA', 'v': 'KIRC'}, {'k': 'KIDNEY,RENAL,PAPILLARY,CELL,CARCINOMA', 'v': 'KIRP'}, {'k': 'LIVER,HEPATOCELLULAR,CARCINOMA', 'v': 'LIHC'}, {'k': 'LUNG,ADENOCARCINOMA', 'v': 'LUAD'}, {'k': 'LUNG,SQUAMOUS,CELL,CARCINOMA', 'v': 'LUSC'}, {'k': 'LYMPHOID,NEOPLASM,DIFFUSE,LARGE,B-CELL,LYMPHOMA', 'v': 'DLBC'}, {'k': 'MESOTHELIOMA', 'v': 'MESO'}, {'k': 'OVARIAN,SEROUS,CYSTADENOCARCINOMA', 'v': 'OV'}, {'k': 'PANCREATIC,ADENOCARCINOMA', 'v': 'PAAD'}, {'k': 'PHEOCHROMOCYTOMA', 'v': 'PCPG'}, {'k': 'PARAGANGLIOMA', 'v': 'PCPG'}, {'k': 'PROSTATE,ADENOCARCINOMA', 'v': 'PRAD'}, {'k': 'RECTUM,ADENOCARCINOMA', 'v': 'READ'}, {'k': 'SARCOMA', 'v': 'SARC'}, {'k': 'SKIN,CUTANEOUS,MELANOMA', 'v': 'SKCM'}, {'k': 'STOMACH,ADENOCARCINOMA', 'v': 'STAD'}, {'k': 'TESTICULAR,GERM,CELL,TUMORS', 'v': 'TGCT'}, {'k': 'THYMOMA', 'v': 'THYM'}, {'k': 'THYROID,CARCINOMA', 'v': 'THCA'}, {'k': 'UTERINE,CARCINOSARCOMA', 'v': 'UCS'}, {'k': 'UTERINE,CORPUS,ENDOMETRIAL,CARCINOMA', 'v': 'UCEC'}, {'k': 'UVEAL,MELANOMA', 'v': 'UVM'} ] for kv in genome_id_kv: if(kv['k'] in terms_uppercase): terms_uppercase = terms_uppercase.replace(kv['k'], '').replace(',,',',') return_value.append({'latin': kv['k'].replace(',',' '), 'familiar_term': kv['v']}) if(terms_uppercase[0:1] == ','): terms_uppercase = terms_uppercase[1:-1] if(terms_uppercase == ','): terms_uppercase = '' print terms_uppercase return {'terms': terms_uppercase, 'special_terms': return_value} def auto_complete_search(term): tr = TermAnalyzer() termsClassified = tr.identify_term_partial(term) return_value = { 'termClassification': termsClassified } return return_value def test_linear_classifier(): est = LinearRegression(fit_intercept=False) # random training data X = np.random.rand(10, 2) y = np.random.randint(2, size=10) est.fit(X, y) est.coef_ # access coefficients def load_disease_groups(): disease_groups_array = [{ 'genomeType': 'human', 'term': 'Adrenocortical Cancer ', 'group': 'Adrenal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Adrenocortical Carcinoma ', 'group': 'Adrenal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Pheochromocytoma and Paraganglioma ', 'group': 'Adrenal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Cholangiocarcinoma ', 'group': 'Bile', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Cholangiocarcinoma ', 'group': 'Bile', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Bladder Cancer', 'group': 'Bladder', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Bladder Urothelial Carcinoma ', 'group': 'Bladder', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Brain Lower Grade Glioma ', 'group': 'Brain', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Glioblastoma ', 'group': 'Brain', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Glioblastoma Multiforme', 'group': 'Brain', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Glioblastoma Multiforme and Brain Lower Grade Glioma ', 'group': 'Brain', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Glioma High Grade', 'group': 'Brain', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Breast Invasive Carcinoma ', 'group': 'Breast', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Breast Tumors RNA', 'group': 'Breast', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Cervical Cancer ChemoradioResistant', 'group': 'Cervical', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma ', 'group': 'Cervical', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Colon Adenocarcinoma', 'group': 'Colon', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Colon Adenocarcinoma and Rectum adenocarcinoma ', 'group': 'colon', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Colon Cancer ', 'group': 'colon', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Ulcerative Colitis Colon Inflammation ', 'group': 'colon', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Endometrial Cancer Stage I', 'group': 'Endometrial', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Esophageal Cancer', 'group': 'Esophagus', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Esophageal Carcinoma', 'group': 'Esophagus', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Head and Neck ', 'group': 'HeadAndNeck', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Head and Neck Squamous Cell Carcinoma ', 'group': 'HeadAndNeck', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Kidney Chromophobe ', 'group': 'Kidney', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Kidney Chromophobe and Kidney Renal Clear Cell Carcinoma and Kidney Renal Papillary Cell Carcinoma', 'group': 'Kidney', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Kidney Renal Clear Cell Carcinoma ', 'group': 'Kidney', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Kidney Renal Clear Cell Carcinoma ', 'group': 'Kidney', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Kidney Renal Papillary Cell Carcinoma ', 'group': 'Kidney', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Renal Cell Carcinoma', 'group': 'Kidney', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Acute Myeloid Leukemia ', 'group': 'Leukemia', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Acute Myeloid Leukemia ', 'group': 'Leukemia', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Hepatocellular Carcinoma ', 'group': 'Liver', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Liver Hepatocellular Carcinoma ', 'group': 'Liver', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Liver Hepatocellular Carcinoma Early Stage Cirrhosis ', 'group': 'Liver', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Blood Lung Cancer', 'group': 'Lung', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Blood Lung Cancer Stage I ', 'group': 'Lung', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Lung Adenocarcinoma ', 'group': 'Lung', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Lung Squamous Cell Carcinoma ', 'group': 'Lung', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Diffuse Large B-Cell Lymphoma', 'group': 'Lymphoma', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Lymphoid Neoplasm Diffuse Large B-cell Lymphoma', 'group': 'Lymphoma', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Mesothelioma ', 'group': 'Ovarian', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Ovarian Cancer', 'group': 'Ovarian', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Ovarian Serous Cystadenocarcinoma ', 'group': 'Ovarian', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Pancreatic ', 'group': 'Pancreatic', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Pancreatic Adenocarcinoma ', 'group': 'Pancreatic', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Pancreatic Ductal Adenocarcinoma', 'group': 'Pancreatic', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Prostate Adenocarcinoma', 'group': 'Prostate', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Prostate Carcinoma ', 'group': 'Prostate', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Rectal Cancer ', 'group': 'Rectal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Rectum Adenocarcinoma ', 'group': 'Rectal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Sarcoma ', 'group': 'Sarcoma', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Sarcoma ', 'group': 'Sarcoma', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Melanoma Malignant ', 'group': 'Skin', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Skin Cutaneous Melanoma', 'group': 'Skin', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Stomach Adenocarcinoma ', 'group': 'Stomach', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Stomach and Esophageal Carcinoma', 'group': 'Stomach', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Stomach Cancer 126 ', 'group': 'Stomach', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Testicular Germ Cell Tumors ', 'group': 'Testicular', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Thymoma ', 'group': 'Thymus', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Thyroid Cancer', 'group': 'Thyroid', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Thyroid Carcinoma', 'group': 'Thyroid', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Uterine Carcinosarcoma ', 'group': 'Uterine', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Uterine Corpus Endometrial Carcinoma ', 'group': 'Uterine', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Uveal Melanoma', 'group': 'Uveal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Uveal Melanoma', 'group': 'Uveal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Adrenal ', 'group': 'Adrenal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Bile ', 'group': 'Bile', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Bladder ', 'group': 'Bladder', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Brain', 'group': 'Brain', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Breast ', 'group': 'Breast', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Cervical', 'group': 'Cervical', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'colon', 'group': 'colon', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Endometrial', 'group': 'Endometrial', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Esophagus ', 'group': 'Esophagus', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'HeadAndNeck', 'group': 'HeadAndNeck', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Kidney ', 'group': 'Kidney', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Leukemia', 'group': 'Leukemia', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Liver', 'group': 'Liver', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Lung ', 'group': 'Lung', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Lymphoma', 'group': 'Lymphoma', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Ovarian ', 'group': 'Ovarian', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Pancreatic ', 'group': 'Pancreatic', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Prostate', 'group': 'Prostate', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Rectal ', 'group': 'Rectal', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Sarcoma ', 'group': 'Sarcoma', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Skin ', 'group': 'Skin', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Stomach ', 'group': 'Stomach', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Testicular ', 'group': 'Testicular', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Thymus ', 'group': 'Thymus', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Thyroid ', 'group': 'Thyroid', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Uterine ', 'group': 'Uterine', 'type': 'DISEASE' }, { 'genomeType': 'human', 'term': 'Uveal', 'group': 'Uveal', 'type': 'DISEASE' }] client = pymongo.MongoClient() db = client.identifiers allterms = db.allterms2 #allterms.drop() for disease in disease_groups_array: allterms.save({'genomeType': disease['genomeType'],'term': disease['term'].upper(),'type': disease['type'], 'group': disease['group']})
mit
2,962,690,134,142,557,700
28.196774
149
0.487626
false
3.239152
false
false
false
robinson96/GRAPE
vine/grapeMenu.py
1
6832
import traceback import addSubproject import bundle import branches import checkout import clone import commit import config import deleteBranch import foreach import grapeConfig import grapeGit as git import hooks import merge import mergeDevelop import mergeRemote import newFlowBranch import newWorkingTree import publish import pull import push import quit import resolveConflicts import resumable import review import stash import status import grapeTest as test import updateLocal import updateSubproject import updateView import utility import version import walkthrough ####################################################################### #The Menu class - encapsulates menu options and sections. # Menu Options are the objects that perform git-related or bitbucket-related tasks. # sections are groupings of menu options that are displayed together. ###################################################################### __menuInstance = None def menu(): global __menuInstance if __menuInstance is None: __menuInstance = _Menu() grapeConfig.readDefaults() grapeConfig.read() __menuInstance.postInit() return __menuInstance def _resetMenu(): """ Resets the Singleton Instance. Meant for testing purposes only. """ global __menuInstance __menuInstance = None grapeConfig.resetGrapeConfig() class _Menu(object): def __init__(self): self._options = {} #Add menu classes self._optionLookup = {} #Add/order your menu option here self._options = [addSubproject.AddSubproject(), bundle.Bundle(), bundle.Unbundle(), branches.Branches(), status.Status(), stash.Stash(), checkout.Checkout(), push.Push(), pull.Pull(), commit.Commit(), publish.Publish(), clone.Clone(), config.Config(), grapeConfig.WriteConfig(), foreach.ForEach(), merge.Merge(), mergeDevelop.MergeDevelop(), mergeRemote.MergeRemote(), deleteBranch.DeleteBranch(), newWorkingTree.NewWorkingTree(), resolveConflicts.ResolveConflicts(), review.Review(), test.Test(), updateLocal.UpdateLocal(), updateSubproject.UpdateSubproject(), hooks.InstallHooks(), hooks.RunHook(), updateView.UpdateView(), version.Version(), walkthrough.Walkthrough(), quit.Quit()] #Add/order the menu sections here self._sections = ['Getting Started', 'Code Reviews', 'Workspace', 'Merge', 'Gitflow Tasks', 'Hooks', 'Patches', 'Project Management', 'Other'] def postInit(self): # add dynamically generated (dependent on grapeConfig) options here self._options = self._options + newFlowBranch.NewBranchOptionFactory().createNewBranchOptions(grapeConfig. grapeConfig()) for currOption in self._options: self._optionLookup[currOption.key] = currOption ####### MENU STUFF ######################################################################### def getOption(self, choice): try: return self._optionLookup[choice] except KeyError: print("Unknown option '%s'" % choice) return None def applyMenuChoice(self, choice, args=None, option_args=None, globalArgs=None): chosen_option = self.getOption(choice) if chosen_option is None: return False if args is None or len(args) == 0: args = [chosen_option._key] #first argument better be the key if args[0] != chosen_option._key: args = [chosen_option._key]+args # use optdoc to parse arguments to the chosen_option. # utility.argParse also does the magic of filling in defaults from the config files as appropriate. if option_args is None and chosen_option.__doc__: try: config = chosen_option._config if config is None: config = grapeConfig.grapeConfig() else: config = grapeConfig.grapeRepoConfig(config) option_args = utility.parseArgs(chosen_option.__doc__, args[1:], config) except SystemExit as e: if len(args) > 1 and "--help" != args[1] and "-h" != args[1]: print("GRAPE PARSING ERROR: could not parse %s\n" % (args[1:])) raise e if globalArgs is not None: utility.applyGlobalArgs(globalArgs) try: if isinstance(chosen_option, resumable.Resumable): if option_args["--continue"]: return chosen_option._resume(option_args) return chosen_option.execute(option_args) except git.GrapeGitError as e: print traceback.print_exc() print ("GRAPE: Uncaught Error %s in grape-%s when executing '%s' in '%s'\n%s" % (e.code, chosen_option._key, e.gitCommand, e.cwd, e.gitOutput)) exit(e.code) except utility.NoWorkspaceDirException as e: print ("GRAPE: grape %s must be run from a grape workspace." % chosen_option.key) print ("GRAPE: %s" % e.message) exit(1) finally: if globalArgs is not None: utility.popGlobalArgs() # Present the main menu def presentTextMenu(self): width = 60 print("GRAPE - Git Replacement for \"Awesome\" PARSEC Environment".center(width, '*')) longest_key = 0 for currOption in self._options: if len(currOption.key) > longest_key: longest_key = len(currOption.key) for currSection in self._sections: lowered_section = currSection.strip().lower() print("\n" + (" %s " % currSection).center(width, '*')) for currOption in self._options: if currOption.section.strip().lower() != lowered_section: continue print("%s: %s" % (currOption.key.ljust(longest_key), currOption.description())) # configures a ConfigParser object with all default values and sections needed by our Option objects def setDefaultConfig(self, cfg): cfg.ensureSection("repo") cfg.set("repo", "name", "repo_name_not.yet.configured") cfg.set("repo", "url", "https://not.yet.configured/scm/project/unknown.git") cfg.set("repo", "httpsbase", "https://not.yet.configured") cfg.set("repo", "sshbase", "ssh://git@not.yet.configured") for currOption in self._options: currOption.setDefaultConfig(cfg)
bsd-3-clause
-6,110,235,504,380,364,000
38.72093
139
0.584602
false
4.48294
true
false
false
gluke77/rally
rally/common/db/api.py
1
13473
# Copyright 2013: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Defines interface for DB access. The underlying driver is loaded as a :class:`LazyPluggable`. Functions in this module are imported into the rally.common.db namespace. Call these functions from rally.common.db namespace, not the rally.common.db.api namespace. All functions in this module return objects that implement a dictionary-like interface. Currently, many of these objects are sqlalchemy objects that implement a dictionary interface. However, a future goal is to have all of these objects be simple dictionaries. **Related Flags** :backend: string to lookup in the list of LazyPluggable backends. `sqlalchemy` is the only supported backend right now. :connection: string specifying the sqlalchemy connection to use, like: `sqlite:///var/lib/cinder/cinder.sqlite`. :enable_new_services: when adding a new service to the database, is it in the pool of available hardware (Default: True) """ import datetime as dt from oslo_config import cfg from oslo_db import api as db_api from oslo_db import options as db_options import six from rally.common.i18n import _ CONF = cfg.CONF db_options.set_defaults(CONF, connection="sqlite:////tmp/rally.sqlite", sqlite_db="rally.sqlite") IMPL = None def serialize(fn): def conv(data): if data is None: return None if isinstance(data, (six.integer_types, six.string_types, six.text_type, dt.date, dt.time, float, )): return data if isinstance(data, dict): return {k: conv(v) for k, v in six.iteritems(data)} if isinstance(data, (list, tuple)): return [conv(i) for i in data] if hasattr(data, "_as_dict"): result = data._as_dict() for k, v in six.iteritems(result): result[k] = conv(v) return result raise ValueError(_("Can not serialize %s") % data) def wrapper(*args, **kwargs): result = fn(*args, **kwargs) return conv(result) return wrapper def get_impl(): global IMPL if not IMPL: _BACKEND_MAPPING = {"sqlalchemy": "rally.common.db.sqlalchemy.api"} IMPL = db_api.DBAPI.from_config(CONF, backend_mapping=_BACKEND_MAPPING) return IMPL def engine_reset(): """Reset DB engine.""" get_impl().engine_reset() def schema_cleanup(): """Drop DB schema. This method drops existing database.""" get_impl().schema_cleanup() def schema_upgrade(revision=None): """Migrate the database to `revision` or the most recent revision.""" return get_impl().schema_upgrade(revision) def schema_create(): """Create database schema from models description.""" return get_impl().schema_create() def schema_revision(): """Return the schema revision.""" return get_impl().schema_revision() def schema_stamp(revision): """Stamps database with provided revision.""" return get_impl().schema_stamp(revision) def task_get(uuid): """Returns task by uuid. :param uuid: UUID of the task. :raises TaskNotFound: if the task does not exist. :returns: task dict with data on the task. """ return get_impl().task_get(uuid) def task_get_status(uuid): """Returns task by uuid. :param uuid: UUID of the task. :raises TaskNotFound: if the task does not exist. :returns: task dict with data on the task. """ return get_impl().task_get_status(uuid) def task_get_detailed_last(): """Returns the most recently created task.""" return get_impl().task_get_detailed_last() def task_get_detailed(uuid): """Returns task with results by uuid. :param uuid: UUID of the task. :returns: task dict with data on the task and its results. """ return get_impl().task_get_detailed(uuid) def task_create(values): """Create task record in DB. :param values: dict with record values. :returns: task dict with data on the task. """ return get_impl().task_create(values) def task_update(uuid, values): """Update task by values. :param uuid: UUID of the task. :param values: dict with record values. :raises TaskNotFound: if the task does not exist. :returns: new updated task dict with data on the task. """ return get_impl().task_update(uuid, values) def task_update_status(task_uuid, status, allowed_statuses): """Update task status with specified value. :param task_uuid: string with UUID of Task instance. :param status: new value to wrote into db instead of status. :param allowed_statuses: list of expected statuses to update in db. :raises RallyException: if task not found with specified status. :returns: the count of rows match as returned by the database's "row count" feature """ return get_impl().task_update_status(task_uuid, allowed_statuses, status) def task_list(status=None, deployment=None): """Get a list of tasks. :param status: Task status to filter the returned list on. If set to None, all the tasks will be returned. :param deployment: deployment UUID to filter the returned list on. if set to None tasks from all deployments well be returned. :returns: A list of dicts with data on the tasks. """ return get_impl().task_list(status=status, deployment=deployment) def task_delete(uuid, status=None): """Delete a task. This method removes the task by the uuid, but if the status argument is specified, then the task is removed only when these statuses are equal otherwise an exception is raised. :param uuid: UUID of the task. :raises TaskNotFound: if the task does not exist. :raises TaskInvalidStatus: if the status of the task does not equal to the status argument. """ return get_impl().task_delete(uuid, status=status) def task_result_get_all_by_uuid(task_uuid): """Get list of task results. :param task_uuid: string with UUID of Task instance. :returns: list instances of TaskResult. """ return get_impl().task_result_get_all_by_uuid(task_uuid) def task_result_create(task_uuid, key, data): """Append result record to task. :param task_uuid: string with UUID of Task instance. :param key: key expected to update in task result. :param data: data expected to update in task result. :returns: TaskResult instance appended. """ return get_impl().task_result_create(task_uuid, key, data) def deployment_create(values): """Create a deployment from the values dictionary. :param values: dict with record values on the deployment. :returns: a dict with data on the deployment. """ return get_impl().deployment_create(values) def deployment_delete(uuid): """Delete a deployment by UUID. :param uuid: UUID of the deployment. :raises DeploymentNotFound: if the deployment does not exist. :raises DeploymentIsBusy: if the resource is not enough. """ return get_impl().deployment_delete(uuid) def deployment_get(deployment): """Get a deployment by UUID. :param deployment: UUID or name of the deployment. :raises DeploymentNotFound: if the deployment does not exist. :returns: a dict with data on the deployment. """ return get_impl().deployment_get(deployment) def deployment_update(uuid, values): """Update a deployment by values. :param uuid: UUID of the deployment. :param values: dict with items to update. :raises DeploymentNotFound: if the deployment does not exist. :returns: a dict with data on the deployment. """ return get_impl().deployment_update(uuid, values) def deployment_list(status=None, parent_uuid=None, name=None): """Get list of deployments. :param status: if None returns any deployments with any status. :param parent_uuid: filter by parent. If None, return only "root" deployments. :param name: Name of deployment :returns: a list of dicts with data on the deployments. """ return get_impl().deployment_list(status=status, parent_uuid=parent_uuid, name=name) def resource_create(values): """Create a resource from the values dictionary. :param values: a dict with data on the resource. :returns: a dict with updated data on the resource. """ return get_impl().resource_create(values) def resource_get_all(deployment_uuid, provider_name=None, type=None): """Return resources of a deployment. :param deployment_uuid: filter by uuid of a deployment :param provider_name: filter by provider_name, if is None, then return all providers :param type: filter by type, if is None, then return all types :returns: a list of dicts with data on a resource """ return get_impl().resource_get_all(deployment_uuid, provider_name=provider_name, type=type) def resource_delete(id): """Delete a resource. :param id: ID of a resource. :raises ResourceNotFound: if the resource does not exist. """ return get_impl().resource_delete(id) def verification_create(deployment_uuid): """Create Verification record in DB. :param deployment_uuid: UUID of the deployment. :returns: a dict with verification data. """ return get_impl().verification_create(deployment_uuid) def verification_get(verification_uuid): """Returns verification by UUID. :param verification_uuid: UUID of the verification. :raises NotFoundException: if verification does not exist. :returns: a dict with verification data. """ return get_impl().verification_get(verification_uuid) def verification_delete(verification_uuid): """Delete verification. :param verification_uuid: UUID of the verification. :raises NotFoundException: if verification does not exist. """ return get_impl().verification_delete(verification_uuid) def verification_update(uuid, values): """Update verification by values. :param uuid: UUID of the verification. :param values: dict with record values. :raises NotFoundException: if verification does not exist. :returns: new updated task dict with data on the task. """ return get_impl().verification_update(uuid, values) def verification_list(status=None): """Get a list of verifications. :param status: Verification status to filter the returned list on. :returns: A list of dicts with data on the verifications. """ return get_impl().verification_list(status=status) def verification_result_get(verification_uuid): """Get dict of verification results. :param verification_uuid: string with UUID of Verification instance. :returns: dict instance of VerificationResult. """ return get_impl().verification_result_get(verification_uuid) def verification_result_create(verification_uuid, values): """Append result record to verification. :param verification_uuid: string with UUID of Verification instance. :param values: dict with record values. :returns: TaskResult instance appended. """ return get_impl().verification_result_create(verification_uuid, values) def register_worker(values): """Register a new worker service at the specified hostname. :param values: A dict of values which must contain the following: { "hostname": the unique hostname which identifies this worker service. } :returns: A worker. :raises WorkerAlreadyRegistered: if worker already registered """ return get_impl().register_worker(values) def get_worker(hostname): """Retrieve a worker service record from the database. :param hostname: The hostname of the worker service. :returns: A worker. :raises WorkerNotFound: if worker not found """ return get_impl().get_worker(hostname) def unregister_worker(hostname): """Unregister this worker with the service registry. :param hostname: The hostname of the worker service. :raises WorkerNotFound: if worker not found """ get_impl().unregister_worker(hostname) def update_worker(hostname): """Mark a worker as active by updating its "updated_at" property. :param hostname: The hostname of this worker service. :raises WorkerNotFound: if worker not found """ get_impl().update_worker(hostname)
apache-2.0
8,278,875,098,060,252,000
29.620455
79
0.66496
false
4.224835
false
false
false
stackforge/cloudbase-init
cloudbaseinit/plugins/common/userdataplugins/cloudconfig.py
1
4200
# Copyright 2013 Mirantis Inc. # Copyright 2014 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as oslo_logging import yaml from cloudbaseinit import conf as cloudbaseinit_conf from cloudbaseinit.plugins.common import execcmd from cloudbaseinit.plugins.common.userdataplugins import base from cloudbaseinit.plugins.common.userdataplugins.cloudconfigplugins import ( factory ) CONF = cloudbaseinit_conf.CONF LOG = oslo_logging.getLogger(__name__) DEFAULT_ORDER_VALUE = 999 class CloudConfigError(Exception): pass class CloudConfigPluginExecutor(object): """A simple executor class for processing cloud-config plugins. :kwarg plugins: Pairs of plugin names and the values corresponding to that plugin. """ def __init__(self, **plugins): def _lookup_priority(plugin): all_plugins = (CONF.cloud_config_plugins or list(factory.PLUGINS.keys())) # return the order from the config or default list try: return all_plugins.index(plugin) except ValueError: # If plugin is not supported or does not exist # default to a sane and unreachable value. return DEFAULT_ORDER_VALUE self._expected_plugins = sorted( plugins.items(), key=lambda item: _lookup_priority(item[0])) @classmethod def from_yaml(cls, stream): """Initialize an executor from an yaml stream.""" loader = getattr(yaml, 'CLoader', yaml.Loader) try: content = yaml.load(stream, Loader=loader) except (TypeError, ValueError, AttributeError): raise CloudConfigError("Invalid yaml stream provided.") if not content: raise CloudConfigError("Empty yaml stream provided.") return cls(**content) def execute(self): """Call each plugin, in the order defined by _lookup_priority""" reboot = execcmd.NO_REBOOT plugins = factory.load_plugins() for plugin_name, value in self._expected_plugins: if CONF.cloud_config_plugins: try: CONF.cloud_config_plugins.index(plugin_name) except ValueError: LOG.info("Plugin %r is disabled", plugin_name) continue method = plugins.get(plugin_name) if not method: LOG.error("Plugin %r is currently not supported", plugin_name) continue try: requires_reboot = method(value) if requires_reboot: reboot = execcmd.RET_END except Exception: LOG.exception("Processing plugin %s failed", plugin_name) return reboot class CloudConfigPlugin(base.BaseUserDataPlugin): def __init__(self): super(CloudConfigPlugin, self).__init__("text/cloud-config") def process_non_multipart(self, part): """Process the given data, if it can be loaded through yaml. If any plugin requires a reboot, it will return a particular value, which will be processed on a higher level. """ try: executor = CloudConfigPluginExecutor.from_yaml(part) except CloudConfigError as ex: LOG.error('Could not process part type %(type)r: %(err)r', {'type': type(part), 'err': str(ex)}) else: return executor.execute() def process(self, part): payload = part.get_payload(decode=True) return self.process_non_multipart(payload)
apache-2.0
6,654,339,422,640,970,000
34.294118
78
0.628095
false
4.472843
true
false
false
ctb/2014-streaming
pipeline/sam-scan-to-coverage-dict.py
1
2919
#! /usr/bin/env python import sys import argparse import screed import cPickle def ignore_at(iter): for item in iter: if item.startswith('@'): continue yield item def main(): parser = argparse.ArgumentParser() parser.add_argument('genome') parser.add_argument('samfile') parser.add_argument('coverage_d_pickle') parser.add_argument('covhist') args = parser.parse_args() coords_d = {} for record in screed.open(args.genome): coords_d[record.name] = [0]*len(record.sequence) n = 0 n_skipped = 0 for samline in ignore_at(open(args.samfile)): n += 1 if n % 10000 == 0: print >>sys.stderr, '...', n readname, _, refname, refpos, _, _, _, _, _, seq = samline.split()[:10] if refname == '*' or refpos == '*': # (don't count these as skipped.) continue refpos = int(refpos) try: coord = coords_d[refname] for pos in range(len(seq)): coord[refpos - 1 + pos] += 1 except KeyError: print >>sys.stderr, "unknown refname: %s; ignoring (read %s)" % (refname, readname) n_skipped += 1 continue if n_skipped / float(n) > .01: raise Exception, "Error: too many reads ignored! %d of %d" % \ (n_skipped, n) # now, calculate coverage per read! coverage_d = {} total = 0. n = 0 for samline in ignore_at(open(args.samfile)): readname, _, refname, refpos, _, _, _, _, _, seq = samline.split()[:10] if refname == '*' or refpos == '*': # (don't count these as skipped.) continue refpos = int(refpos) try: coord = coords_d[refname] except KeyError: continue slice = list(coord[refpos - 1:refpos - 1 + len(seq)]) slice = sorted(slice) coverage = slice[len(slice)/2] # median assert readname not in coverage_d, readname coverage_d[readname] = coverage total += coverage n += 1 if n % 10000 == 0: print >>sys.stderr, '...', n print 'average of the median mapping coverage', total / float(n) print 'min coverage by read', min(coverage_d.values()) print 'max coverage by read', max(coverage_d.values()) covhist_d = {} sofar = 0 for v in coverage_d.values(): v = int(v + 0.5) covhist_d[v] = covhist_d.get(v, 0) + 1 fp = open(args.covhist, 'w') total = sum(covhist_d.values()) sofar = 0 for k in range(0, max(covhist_d.keys()) + 1): v = covhist_d.get(k, 0) sofar += v print >>fp, k, v, sofar, sofar / float(total) fp.close() fp = open(args.coverage_d_pickle, 'w') cPickle.dump(coverage_d, fp) fp.close() if __name__ == '__main__': main()
bsd-3-clause
-6,013,978,973,039,782,000
26.8
95
0.526208
false
3.564103
false
false
false
svanoort/python-client-benchmarks
benchmark.py
1
11059
#!/usr/bin/env python import timeit import time import string import argparse import csv import sys if sys.version_info[0] > 2: import urllib.parse as urlparse else: import urlparse # Import clients, so script fails fast if not available from pycurl import Curl try: from cStringIO import StringIO except: try: from StringIO import StringIO except ImportError: from io import StringIO import requests, urllib, urllib2, urllib3 def run_test(library, url, cycles, connection_reuse, options, setup_test, run_test, delay=None, timer=None): """ Runs a benchmark, showing start & stop the setup_test is a String.template with $url as an option the run_test allows for the same """ TIMER = timeit.default_timer if timer and timer.lower() == 'cpu': TIMER = time.clock # Linux only print("START testing {0} performance with {1} cycles and connection reuse {2}".format(library, cycles, connection_reuse)) print("Options: {0}".format(options)) run_cmd = string.Template(run_test).substitute(url=url) if delay: run_cmd = run_cmd + "; time.sleep({0})".format(delay) setup_cmd = string.Template(setup_test).substitute(url=url) mytime = timeit.timeit(stmt=run_cmd, setup=setup_cmd, number=cycles, timer=TIMER) if delay: mytime = mytime - (delay * cycles) print("END testing result: {0}".format(mytime)) print(' ') result = [library, connection_reuse, options, cycles, mytime] return result def run_size_benchmarks(url='', cycles=10, delay=None, output_file=None, length_api_format='/length/$length', **kwargs): timer_type = kwargs.get('timer') """ Run variable-size benchmarks, where URL is the base url """ sizes = [4, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072] # Yields ~10 GB of traffic, be careful! REQUESTS_NOREUSE = ('requests', False, 'Default', 'import requests', "r = requests.get('$url', verify=False)") REQUESTS_REUSE = ('requests', True, 'Default', "import requests; \ session = requests.Session(); \ r = requests.Request('GET', '$url').prepare()", "v = session.send(r, verify=False)") PYCURL_REUSE = ('pycurl', True, "Reuse handle, save response to new cStringIO buffer", "from pycurl import Curl; from cStringIO import StringIO; \ mycurl=Curl(); \ mycurl.setopt(mycurl.SSL_VERIFYPEER, 0); \ mycurl.setopt(mycurl.SSL_VERIFYHOST, 0); \ mycurl.setopt(mycurl.URL, '$url')", "body = StringIO(); \ mycurl.setopt(mycurl.WRITEFUNCTION, body.write); \ mycurl.perform(); \ val = body.getvalue(); \ body.close()") PYCURL_NOREUSE = ('pycurl', False, "Reuse handle, save response to new cStringIO buffer", "from pycurl import Curl; from cStringIO import StringIO; \ mycurl=Curl(); \ mycurl.setopt(mycurl.URL, '$url'); \ mycurl.setopt(mycurl.SSL_VERIFYPEER, 0); \ mycurl.setopt(mycurl.SSL_VERIFYHOST, 0); \ body = StringIO(); \ mycurl.setopt(mycurl.FORBID_REUSE, 1)", "body = StringIO(); \ mycurl.setopt(mycurl.WRITEFUNCTION, body.write); \ mycurl.perform(); \ val = body.getvalue(); \ body.close()") TEST_TYPES = [REQUESTS_NOREUSE, PYCURL_NOREUSE, REQUESTS_REUSE, PYCURL_REUSE] all_results = list() # Run tests for size in sizes: temp_url = url + string.Template(length_api_format).substitute(length=size) for test in TEST_TYPES: result = run_test(test[0], temp_url, cycles, test[1], test[2], test[3], test[4], delay=delay, timer=timer_type) del result[3] # Don't need cycles result.insert(0, size) all_results.append(result) # Transform tuples to size, time graphs for each response size final_output = [[x, 0, 0, 0, 0] for x in sizes] for i in xrange(0, len(sizes)): final_output[i][1] = all_results[i*4][4] final_output[i][2] = all_results[i*4+1][4] final_output[i][3] = all_results[i*4+2][4] final_output[i][4] = all_results[i*4+3][4] headers = ('Response_size', 'Requests Time (no cnxn reuse)', 'pyCurl Time (no cnxn reuse)', 'Requests Time (cnxn reuse)', 'pyCurl Time (cnxn reuse)') if output_file: with open(output_file, 'wb') as csvfile: outwriter = csv.writer(csvfile, dialect=csv.excel) outwriter.writerow(headers) for result in final_output: outwriter.writerow(result) def run_all_benchmarks(url='', cycles=10, delay=None, output_file=None, **kwargs): results = list() headers = ('Library','Reuse Connections?','Options', 'Time') tests = list() timer_type = kwargs.get('timer') # Library, cnxn_reuse, options, setup, run_stmt # Requests tests.append(('requests', False, 'Default', 'import requests', "r = requests.get('$url', verify=False)")) tests.append(('requests', True, 'Default', "import requests; \ session = requests.Session(); \ r = requests.Request('GET', '$url').prepare()", "v = session.send(r, verify=False)")) # PyCurl tests.append(('pycurl', True, "Reuse handle, don't save body", "from pycurl import Curl; \ mycurl=Curl(); \ mycurl.setopt(mycurl.SSL_VERIFYPEER, 0); \ mycurl.setopt(mycurl.SSL_VERIFYHOST, 0); \ mycurl.setopt(mycurl.URL, '$url'); \ mycurl.setopt(mycurl.WRITEFUNCTION, lambda x: None)", "mycurl.perform()")) tests.append(('pycurl', True, "Reuse handle, save response to new cStringIO buffer", "from pycurl import Curl; from cStringIO import StringIO; \ mycurl=Curl(); \ mycurl.setopt(mycurl.SSL_VERIFYPEER, 0); \ mycurl.setopt(mycurl.SSL_VERIFYHOST, 0); \ mycurl.setopt(mycurl.URL, '$url')", "body = StringIO(); \ mycurl.setopt(mycurl.WRITEFUNCTION, body.write); \ mycurl.perform(); \ val = body.getvalue(); \ body.close()")) tests.append(('pycurl', False, "Reuse handle, save response to new cStringIO buffer", "from pycurl import Curl; from cStringIO import StringIO; \ mycurl=Curl(); \ mycurl.setopt(mycurl.URL, '$url'); \ mycurl.setopt(mycurl.SSL_VERIFYPEER, 0); \ mycurl.setopt(mycurl.SSL_VERIFYHOST, 0); \ body = StringIO(); \ mycurl.setopt(mycurl.FORBID_REUSE, 1)", "body = StringIO(); \ mycurl.setopt(mycurl.WRITEFUNCTION, body.write); \ mycurl.perform(); \ val = body.getvalue(); \ body.close()")) # The use of global DNS cache avoids a bug on some linux systems with libcurl # playing badly with DNS resolvers tests.append(('pycurl', False, "New handle, save response to new cStringIO buffer", "from pycurl import Curl; from cStringIO import StringIO", "body = StringIO(); \ mycurl=Curl(); \ body = StringIO(); \ mycurl.setopt(mycurl.URL, '$url'); \ mycurl.setopt(mycurl.SSL_VERIFYPEER, 0); \ mycurl.setopt(mycurl.SSL_VERIFYHOST, 0); \ mycurl.setopt(mycurl.DNS_USE_GLOBAL_CACHE, True); \ mycurl.setopt(mycurl.WRITEFUNCTION, body.write); \ mycurl.perform(); \ val = body.getvalue(); \ body.close()")) # URLLIB3 # Making URLLIB3 accept self-signed certs is a beast. You have to create a connection pool with the hostname and port supplied. # See: http://stackoverflow.com/questions/18061640/ignore-certificate-validation-with-urllib3 # Yes, there's an option to bypass hostname verification but I cannot make it play nicely. parsed_url = urlparse.urlparse(url) scheme = parsed_url.scheme hostname = parsed_url.hostname port = parsed_url.port setup_string = "" if scheme == 'https': setup_string = "import urllib3; \ http_pool = urllib3.HTTPSConnectionPool('{0}', port={1}, cert_reqs='CERT_NONE', assert_hostname=False)".format(hostname, port) else: setup_string = "import urllib3; http_pool = urllib3.PoolManager()" tests.append(('urllib3', True, 'Default', setup_string, "body = http_pool.urlopen('GET', '$url').read()")) # URLLIB2 #tests.append(('urllib2', False, '', # "import urllib2", # "body = urllib2.urlopen('$url').read()")) # URLLIB tests.append(('urllib', False, 'Default', "import urllib", "body = urllib.urlopen('$url').read()")) for test in tests: my_result = run_test(test[0], url, cycles, test[1], test[2], test[3], test[4], delay=delay, timer=timer_type) results.append((test[0], test[1], test[2], my_result[-1])) if output_file: with open(output_file, 'wb') as csvfile: outwriter = csv.writer(csvfile, dialect=csv.excel) outwriter.writerow(('url', 'cycles', 'delay')) outwriter.writerow((url, cycles, delay)) outwriter.writerow(headers) for result in results: outwriter.writerow(result) if(__name__ == '__main__'): parser = argparse.ArgumentParser(description="Benchmark different python request frameworks") parser.add_argument('--url', metavar='u', type=str, default='http://localhost:8080/ping', help="URL to run requests against") parser.add_argument('--cycles', metavar='c', type=int, default=10000, help="Number of cycles to run") parser.add_argument('--delay', metavar='d', type=float, help="Delay in seconds between requests") parser.add_argument('--output-file', metavar='o', nargs='?', type=str, help="Output file to write CSV results to") parser.add_argument('--benchmark-type', type=str, default="full", choices=('full','size'), help="Benchmark type to run: full [default]=all libraries, 1 request, size=basic pycurl/requests tests with different request sizes") parser.add_argument('--timer', type=str, default="real", choices=('real','cpu'), help="Timer type: real [default] or cpu") parser.add_argument('--length-api-format', metavar='l', type=str, default="/length/$length", help="Template for API request that accepts response length parameter, for size benchmarks") args = vars(parser.parse_args()) if args.get('url') is None: print("No URL supplied, you must supply a URL!") exit(1) print('RUNNING PYTHON CLIENT BENCHMARKS WITH ARGS: {0}'.format(args)) if args['benchmark_type'] == 'full': run_all_benchmarks(**args) elif args['benchmark_type'] =='size': run_size_benchmarks(**args) else: raise Exception("Illegal benchmark type: {0}".format(args['benchmark_type']))
apache-2.0
8,804,450,190,701,221,000
41.698842
229
0.607288
false
3.6999
true
false
false
eeucalyptus/eeDA
app/graphics/wirerenderer.py
1
1977
from . import Renderer from data.util import Vector2i, Vector2d from .common import eeDAcolor, pMakeCircleArray, pMakeLineArray class WireRenderer(Renderer): DEPTH = 1.0 def __init__(self, wire, gl): super().__init__(gl) self.wire = wire self.callList = self._genCallList() def _genCallList(self): genList = self.gl.glGenLists(1) self.gl.glNewList(genList, self.gl.GL_COMPILE) self.width = self.wire.style['width'] / 2 self.color = self.wire.style['color'] self.pointAry = [] con0_pos = self.wire.connectors[0].pos con1_pos = self.wire.connectors[1].pos self.pointAry.append(self.wire.connectors[0].pos) # Start point for point in self.wire.points: self.pointAry.append(point) # Intermediate points self.pointAry.append(self.wire.connectors[1].pos) # End point self.vertices = pMakeLineArray(self.pointAry, Vector2i(), self.width, self.DEPTH) if not self.wire.connectors[0].other: self.renderUnconnected(self.pointAry[0]) if not self.wire.connectors[0].other: self.renderUnconnected(self.pointAry[-1]) self.setColor(self.color) self.gl.glEnableClientState(self.gl.GL_VERTEX_ARRAY) self.gl.glVertexPointer(3, self.gl.GL_FLOAT, 0, self.vertices) self.gl.glDrawArrays(self.gl.GL_TRIANGLE_STRIP, 0, len(self.vertices) / 3) self.gl.glDisableClientState(self.gl.GL_VERTEX_ARRAY) self.gl.glEndList() return genList def renderUnconnected(self, pos): self.setColor(eeDAcolor.WIRE_UNCONNECTED) self.gl.glEnableClientState(self.gl.GL_VERTEX_ARRAY) circle = pMakeCircleArray(pos, self.width * 1.5, self.DEPTH, 30) self.gl.glVertexPointer(3, self.gl.GL_FLOAT, 0, circle) self.gl.glDrawArrays(self.gl.GL_TRIANGLE_FAN, 0, len(circle) / 3) self.gl.glDisableClientState(self.gl.GL_VERTEX_ARRAY)
apache-2.0
-317,239,216,122,899,400
34.945455
89
0.654527
false
3.199029
false
false
false
andrewsosa/hackfsu_com
api/api/models/hack.py
1
3160
from django.db import models from api.models import Hackathon from api.models.judging_criteria import JudgingCriteria from api.models.judging_expo import JudgingExpo from django.contrib import admin from hackfsu_com.admin import hackfsu_admin class HackQuerySet(models.QuerySet): from api.models.judge_info import JudgeInfo def from_expo(self, expo: JudgingExpo): return self.filter( table_number__gte=expo.table_number_start, table_number__lte=expo.table_number_end ) def from_table_number(self, table: int): return self.get(table_number=table) def with_active_judge(self, judge: JudgeInfo): return self.filter(current_judges=judge) def without_previous_judge(self, judge: JudgeInfo): return self.exclude(judges=judge) class HackManager(models.Manager): def get_next_table_number(self): number = 1 hackathon = Hackathon.objects.current() while self.filter(hackathon=hackathon, table_number=number).exists(): number += 1 return number class Hack(models.Model): objects = HackManager.from_queryset(HackQuerySet)() hackathon = models.ForeignKey(to=Hackathon, on_delete=models.CASCADE) table_number = models.IntegerField() name = models.CharField(max_length=100) # Devpost "Submission Title" description = models.TextField() # Devpost "Plain Description" extra_judging_criteria = models.ManyToManyField(to=JudgingCriteria, blank=True) # Devpost "Desired Prizes" current_judges = models.ManyToManyField(to='api.JudgeInfo', blank=True, related_name='judges_current') judges = models.ManyToManyField(to='api.JudgeInfo', blank=True, related_name='judges') total_judge_score = models.IntegerField(default=0) times_judged = models.IntegerField(default=0) def get_expo(self): expo = JudgingExpo.objects.filter( hackathon=self.hackathon, table_number_start__lte=self.table_number, table_number_end__gte=self.table_number ) if expo.exists(): return expo.all()[0] return None def get_expo_name(self) -> str: expo = self.get_expo() if expo is None: return 'N/A' return expo.name def get_criteria_names(self) -> str: names = [] for criteria in self.extra_judging_criteria.all(): names.append(criteria.name) return ', '.join(names) def __str__(self): return self.name @admin.register(Hack, site=hackfsu_admin) class HackAdmin(admin.ModelAdmin): list_filter = ('hackathon',) list_display = ('id', 'name', 'expo', 'table_number', 'total_judge_score') list_editable = ('table_number',) list_display_links = ('id', 'name') search_fields = ('name', 'table_number') ordering = ('table_number', 'total_judge_score') @staticmethod def expo(obj: Hack): return obj.get_expo_name() @staticmethod def extra_criteria(obj: Hack) -> str: return obj.get_criteria_names()
apache-2.0
8,763,194,786,855,953,000
34.111111
117
0.641772
false
3.570621
false
false
false
2B5/ia-3B5
module3/syntax_processing/processing_purenltk.py
1
6358
import nltk from nltk.tokenize import sent_tokenize, word_tokenize _wordnet = nltk.corpus.wordnet from semantic_processing import semantic_processing as semantics from nltk.stem import WordNetLemmatizer class TextProcessor: def __init__(self, initial_text): self.text = initial_text def word_tag(self, word): if word[1] in ("NN", "NNS", "NNP", "NNPS"): return _wordnet.NOUN if word[1] in ("JJ", "JJR", "JJS"): return _wordnet.ADJ if word[1] in ("VB", "VBD", "VBG", "VBN", "VBP", "VBZ"): return _wordnet.VERB if word[1] in ("RB", "RBR", "RBS"): return _wordnet.ADV return None def get_sentiment(self, polarity): if polarity <= 0.5 and polarity >= 0: return "neutral" if polarity > 0.5: return "happy" if polarity < 0: return "sad" def remove_signs(self,word_list): new_list = word_list for word in new_list: if word in (".",";","!","?",","): word_list.remove(word) return new_list def traverse(self, t, np_list): try: t.label() except AttributeError: return else: if t.label() == 'NP': # print('NP:' + str(t.leaves())) np_list.append(t.leaves()) # print('NPhead:' + str(t.leaves()[-1])) for child in t: self.traverse(child, np_list) else: for child in t: self.traverse(child, np_list) def get_NP(self, np_list): final_list = [] for item in np_list: final_expr = "" for word in item: final_expr = final_expr + word[0] + " " final_list.append(final_expr) return final_list def processing(self): wordnet_lemmatizer = WordNetLemmatizer() map_list = [] try: sent_tokenize_list = sent_tokenize(self.text) for sentence in sent_tokenize_list: # print (sentence) word_list = self.remove_signs(word_tokenize(sentence)) tag_list = nltk.pos_tag(word_list) lemmatized_sent = [] proper_nouns = [] pronouns = [] verbs = [] nouns = [] processed_sentence = {} processed_sentence["original_sentence"] = sentence processed_sentence["subject"] = "" processed_sentence["predicate"] = "" processed_sentence["verbs"] = "" processed_sentence["nouns"] = [] processed_sentence["numbers"] = [] grammar = "NP: {<DT>?<JJ>*<NN>}" cp = nltk.RegexpParser(grammar) p_tree = cp.parse(tag_list) np_list = [] self.traverse(p_tree, np_list) final_list = self.get_NP(np_list) processed_sentence["noun_phrases"] = final_list for word in tag_list: w = word[0].lower() # print(word) tag = self.word_tag(word) # print(w, ": ", word[1]) if tag != None: lemmatized_word = wordnet_lemmatizer.lemmatize(w, tag) else : lemmatized_word = wordnet_lemmatizer.lemmatize(w, _wordnet.NOUN) if word[1] == "NNP" or word[1] == "NNPS": proper_nouns.append(lemmatized_word) if word[1] == "NN" or word[1] == "NNS": nouns.append(lemmatized_word) if word[1] == "CD" : processed_sentence["numbers"].append(lemmatized_word) if word[1] == "PRP": pronouns.append(lemmatized_word) if tag == "v": if (word[1] == "VBG" or word[1] == "VBN") and verbs[-1] == "be": verbs[-1] = lemmatized_word elif word[1] == "VBN" and verbs[-1] == "have": verbs[-1] = lemmatized_word else: verbs.append(lemmatized_word) if tag == "n" : processed_sentence["nouns"].append(lemmatized_word) lemmatized_sent.append(lemmatized_word) processed_sentence["sentence"] = lemmatized_sent processed_sentence["proper_nouns"] = proper_nouns # processed_sentance["Noun Phrase"] = list(noun_phrase) processed_sentence["pronouns"] = pronouns processed_sentence["verbs"] = verbs if len(processed_sentence["nouns"]) != 0 and len(pronouns) != 0: if lemmatized_sent.index(processed_sentence["nouns"][0]) < lemmatized_sent.index(pronouns[0]): processed_sentence["subject"] = processed_sentence["nouns"][0] else: processed_sentence["subject"] = pronouns[0] elif len(processed_sentence["nouns"]) != 0: processed_sentence["subject"] = processed_sentence["nouns"][0] elif len(pronouns) != 0: processed_sentence["subject"] = pronouns[0] if len(verbs) != 0: processed_sentence["predicate"] = verbs[0] processed_sentence["semantics"] = {} word_list = [w.lower() for w in word_list] context = semantics.remove_stopwords(word_list) lemmas = semantics.remove_stopwords(lemmatized_sent) for lemma in lemmas: processed_sentence["semantics"].setdefault(lemma, semantics.semantic_info(lemma, lemma, context)) map_list.append(processed_sentence) return map_list except Exception as e: print("Exception!") print(str(e)) print(type(e)) #text = "He is my brother." #t = TextProcessor(text) #lista = t.processing() #for prop in lista: # print(str(prop))
mit
-7,640,416,701,744,384,000
33.743169
117
0.477351
false
3.907806
false
false
false
edibledinos/pwnypack
docs/conf.py
1
11416
# -*- coding: utf-8 -*- # # pwnypack documentation build configuration file, created by # sphinx-quickstart on Wed Mar 25 15:04:19 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex import mock sys.path.insert(0, os.path.abspath('..')) on_rtd = os.environ.get('READTHEDOCS', None) == 'True' # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pwnypack' copyright = u'2015 - 2016, Certified Edible Dinosaurs' author = u'Ingmar Steen' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.9' # The full version, including alpha/beta/rc tags. release = '0.9.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'en' # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. if not on_rtd: html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'pwnydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pwny.tex', u'pwny Documentation', u'Author', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pwny', u'pwny Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pwny', u'pwny Documentation', author, 'pwny', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The basename for the epub file. It defaults to the project name. #epub_basename = project # The HTML theme for the epub output. Since the default themes are not optimized # for small screen space, using the same theme for HTML and epub output is # usually not wise. This defaults to 'epub', a theme designed to save visual # space. #epub_theme = 'epub' # The language of the text. It defaults to the language option # or 'en' if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Choose between 'default' and 'includehidden'. #epub_tocscope = 'default' # Fix unsupported image types using the Pillow. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True
mit
3,611,730,147,197,216,300
30.191257
80
0.705676
false
3.626429
true
false
false
quantwizard-com/pythonbacktest
pythonbacktest/animation/ipythonchartanimation.py
1
1578
from IPython.display import display from matplotlib import animation, rc import abc class IPythonChartAnimation(object): __metaclass__ = abc.ABCMeta VIDEO_TAG = """<video controls> <source src="data:video/x-m4v;base64,{0}" type="video/mp4"> Your browser does not support the video tag. </video>""" def __init__(self): self.__target_canvas = None self.__number_of_frames = None self.__interval = None @abc.abstractmethod def _init_animation(self): raise NotImplementedError() def _start_animation(self, animation_callback, init_animation_callback, target_canvas, frames=100, interval=200): anim = animation.FuncAnimation(target_canvas, animation_callback, init_func=init_animation_callback, frames=frames, interval=interval, blit=True) rc('animation', html='html5') display(anim) @property def target_canvas(self): return self.__target_canvas @target_canvas.setter def target_canvas(self, canvas): self.__target_canvas = canvas @property def number_of_frames(self): return self.__number_of_frames @number_of_frames.setter def number_of_frames(self, value): self.__number_of_frames = value @property def interval(self): return self.__interval @interval.setter def interval(self, inter): self.__interval = inter
apache-2.0
3,753,715,281,970,296,300
26.684211
95
0.586185
false
4.457627
false
false
false
haad/ansible
test/sanity/validate-modules/main.py
1
49902
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2015 Matt Martz <matt@sivel.net> # Copyright (C) 2015 Rackspace US, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function import abc import argparse import ast import json import errno import os import re import subprocess import sys import tempfile import traceback from collections import OrderedDict from contextlib import contextmanager from distutils.version import StrictVersion from fnmatch import fnmatch from ansible import __version__ as ansible_version from ansible.executor.module_common import REPLACER_WINDOWS from ansible.plugins.loader import fragment_loader from ansible.utils.plugin_docs import BLACKLIST, get_docstring from module_args import AnsibleModuleImportError, get_argument_spec from schema import doc_schema, metadata_1_1_schema, return_schema from utils import CaptureStd, parse_yaml from voluptuous.humanize import humanize_error from ansible.module_utils.six import PY3, with_metaclass if PY3: # Because there is no ast.TryExcept in Python 3 ast module TRY_EXCEPT = ast.Try # REPLACER_WINDOWS from ansible.executor.module_common is byte # string but we need unicode for Python 3 REPLACER_WINDOWS = REPLACER_WINDOWS.decode('utf-8') else: TRY_EXCEPT = ast.TryExcept BLACKLIST_DIRS = frozenset(('.git', 'test', '.github', '.idea')) INDENT_REGEX = re.compile(r'([\t]*)') TYPE_REGEX = re.compile(r'.*(if|or)(\s+[^"\']*|\s+)(?<!_)(?<!str\()type\(.*') BLACKLIST_IMPORTS = { 'requests': { 'new_only': True, 'error': { 'code': 203, 'msg': ('requests import found, should use ' 'ansible.module_utils.urls instead') } }, r'boto(?:\.|$)': { 'new_only': True, 'error': { 'code': 204, 'msg': 'boto import found, new modules should use boto3' } }, } class ReporterEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, Exception): return str(o) return json.JSONEncoder.default(self, o) class Reporter(object): def __init__(self): self.files = OrderedDict() def _ensure_default_entry(self, path): try: self.files[path] except KeyError: self.files[path] = { 'errors': [], 'warnings': [], 'traces': [], 'warning_traces': [] } def _log(self, path, code, msg, level='error', line=0, column=0): self._ensure_default_entry(path) lvl_dct = self.files[path]['%ss' % level] lvl_dct.append({ 'code': code, 'msg': msg, 'line': line, 'column': column }) def error(self, *args, **kwargs): self._log(*args, level='error', **kwargs) def warning(self, *args, **kwargs): self._log(*args, level='warning', **kwargs) def trace(self, path, tracebk): self._ensure_default_entry(path) self.files[path]['traces'].append(tracebk) def warning_trace(self, path, tracebk): self._ensure_default_entry(path) self.files[path]['warning_traces'].append(tracebk) @staticmethod @contextmanager def _output_handle(output): if output != '-': handle = open(output, 'w+') else: handle = sys.stdout yield handle handle.flush() handle.close() @staticmethod def _filter_out_ok(reports): temp_reports = OrderedDict() for path, report in reports.items(): if report['errors'] or report['warnings']: temp_reports[path] = report return temp_reports def plain(self, warnings=False, output='-'): """Print out the test results in plain format output is ignored here for now """ ret = [] for path, report in Reporter._filter_out_ok(self.files).items(): traces = report['traces'][:] if warnings and report['warnings']: traces.extend(report['warning_traces']) for trace in traces: print('TRACE:') print('\n '.join((' %s' % trace).splitlines())) for error in report['errors']: error['path'] = path print('%(path)s:%(line)d:%(column)d: E%(code)d %(msg)s' % error) ret.append(1) if warnings: for warning in report['warnings']: warning['path'] = path print('%(path)s:%(line)d:%(column)d: W%(code)d %(msg)s' % warning) return 3 if ret else 0 def json(self, warnings=False, output='-'): """Print out the test results in json format warnings is not respected in this output """ ret = [len(r['errors']) for _, r in self.files.items()] with Reporter._output_handle(output) as handle: print(json.dumps(Reporter._filter_out_ok(self.files), indent=4, cls=ReporterEncoder), file=handle) return 3 if sum(ret) else 0 class Validator(with_metaclass(abc.ABCMeta, object)): """Validator instances are intended to be run on a single object. if you are scanning multiple objects for problems, you'll want to have a separate Validator for each one.""" def __init__(self, reporter=None): self.reporter = reporter @abc.abstractproperty def object_name(self): """Name of the object we validated""" pass @abc.abstractproperty def object_path(self): """Path of the object we validated""" pass @abc.abstractmethod def validate(self): """Run this method to generate the test results""" pass class ModuleValidator(Validator): BLACKLIST_PATTERNS = ('.git*', '*.pyc', '*.pyo', '.*', '*.md', '*.rst', '*.txt') BLACKLIST_FILES = frozenset(('.git', '.gitignore', '.travis.yml', 'shippable.yml', '.gitattributes', '.gitmodules', 'COPYING', '__init__.py', 'VERSION', 'test-docs.sh')) BLACKLIST = BLACKLIST_FILES.union(BLACKLIST['MODULE']) PS_DOC_BLACKLIST = frozenset(( 'async_status.ps1', 'slurp.ps1', 'setup.ps1' )) WHITELIST_FUTURE_IMPORTS = frozenset(('absolute_import', 'division', 'print_function')) def __init__(self, path, analyze_arg_spec=False, base_branch=None, git_cache=None, reporter=None): super(ModuleValidator, self).__init__(reporter=reporter or Reporter()) self.path = path self.basename = os.path.basename(self.path) self.name, _ = os.path.splitext(self.basename) self.analyze_arg_spec = analyze_arg_spec self.base_branch = base_branch self.git_cache = git_cache or GitCache() self._python_module_override = False with open(path) as f: self.text = f.read() self.length = len(self.text.splitlines()) try: self.ast = ast.parse(self.text) except Exception: self.ast = None if base_branch: self.base_module = self._get_base_file() else: self.base_module = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if not self.base_module: return try: os.remove(self.base_module) except Exception: pass @property def object_name(self): return self.basename @property def object_path(self): return self.path def _python_module(self): if self.path.endswith('.py') or self._python_module_override: return True return False def _powershell_module(self): if self.path.endswith('.ps1'): return True return False def _just_docs(self): """Module can contain just docs and from __future__ boilerplate """ try: for child in self.ast.body: if not isinstance(child, ast.Assign): # allowed from __future__ imports if isinstance(child, ast.ImportFrom) and child.module == '__future__': for future_import in child.names: if future_import.name not in self.WHITELIST_FUTURE_IMPORTS: break else: continue return False return True except AttributeError: return False def _get_base_branch_module_path(self): """List all paths within lib/ansible/modules to try and match a moved module""" return self.git_cache.base_module_paths.get(self.object_name) def _has_alias(self): """Return true if the module has any aliases.""" return self.object_name in self.git_cache.head_aliased_modules def _get_base_file(self): # In case of module moves, look for the original location base_path = self._get_base_branch_module_path() command = ['git', 'show', '%s:%s' % (self.base_branch, base_path or self.path)] p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if int(p.returncode) != 0: return None t = tempfile.NamedTemporaryFile(delete=False) t.write(stdout) t.close() return t.name def _is_new_module(self): if self._has_alias(): return False return not self.object_name.startswith('_') and bool(self.base_branch) and not bool(self.base_module) def _check_interpreter(self, powershell=False): if powershell: if not self.text.startswith('#!powershell\n'): self.reporter.error( path=self.object_path, code=102, msg='Interpreter line is not "#!powershell"' ) return if not self.text.startswith('#!/usr/bin/python'): self.reporter.error( path=self.object_path, code=101, msg='Interpreter line is not "#!/usr/bin/python"' ) def _check_type_instead_of_isinstance(self, powershell=False): if powershell: return for line_no, line in enumerate(self.text.splitlines()): typekeyword = TYPE_REGEX.match(line) if typekeyword: # TODO: add column self.reporter.error( path=self.object_path, code=403, msg=('Type comparison using type() found. ' 'Use isinstance() instead'), line=line_no + 1 ) def _check_for_sys_exit(self): if 'sys.exit(' in self.text: # TODO: Add line/col self.reporter.error( path=self.object_path, code=205, msg='sys.exit() call found. Should be exit_json/fail_json' ) def _check_gpl3_header(self): header = '\n'.join(self.text.split('\n')[:20]) if ('GNU General Public License' not in header or ('version 3' not in header and 'v3.0' not in header)): self.reporter.error( path=self.object_path, code=105, msg='GPLv3 license header not found in the first 20 lines of the module' ) elif self._is_new_module(): if len([line for line in header if 'GNU General Public License' in line]) > 1: self.reporter.error( path=self.object_path, code=108, msg='Found old style GPLv3 license header: ' 'https://docs.ansible.com/ansible/devel/dev_guide/developing_modules_documenting.html#copyright' ) def _check_for_tabs(self): for line_no, line in enumerate(self.text.splitlines()): indent = INDENT_REGEX.search(line) if indent and '\t' in line: index = line.index('\t') self.reporter.error( path=self.object_path, code=402, msg='indentation contains tabs', line=line_no + 1, column=index ) def _find_blacklist_imports(self): for child in self.ast.body: names = [] if isinstance(child, ast.Import): names.extend(child.names) elif isinstance(child, TRY_EXCEPT): bodies = child.body for handler in child.handlers: bodies.extend(handler.body) for grandchild in bodies: if isinstance(grandchild, ast.Import): names.extend(grandchild.names) for name in names: # TODO: Add line/col for blacklist_import, options in BLACKLIST_IMPORTS.items(): if re.search(blacklist_import, name.name): new_only = options['new_only'] if self._is_new_module() and new_only: self.reporter.error( path=self.object_path, **options['error'] ) elif not new_only: self.reporter.error( path=self.object_path, **options['error'] ) def _find_module_utils(self, main): linenos = [] found_basic = False for child in self.ast.body: if isinstance(child, (ast.Import, ast.ImportFrom)): names = [] try: names.append(child.module) if child.module.endswith('.basic'): found_basic = True except AttributeError: pass names.extend([n.name for n in child.names]) if [n for n in names if n.startswith('ansible.module_utils')]: linenos.append(child.lineno) for name in child.names: if ('module_utils' in getattr(child, 'module', '') and isinstance(name, ast.alias) and name.name == '*'): msg = ( 208, ('module_utils imports should import specific ' 'components, not "*"') ) if self._is_new_module(): self.reporter.error( path=self.object_path, code=msg[0], msg=msg[1], line=child.lineno ) else: self.reporter.warning( path=self.object_path, code=msg[0], msg=msg[1], line=child.lineno ) if (isinstance(name, ast.alias) and name.name == 'basic'): found_basic = True if not linenos: self.reporter.error( path=self.object_path, code=201, msg='Did not find a module_utils import' ) elif not found_basic: self.reporter.warning( path=self.object_path, code=292, msg='Did not find "ansible.module_utils.basic" import' ) return linenos def _get_first_callable(self): linenos = [] for child in self.ast.body: if isinstance(child, (ast.FunctionDef, ast.ClassDef)): linenos.append(child.lineno) return min(linenos) def _find_main_call(self): lineno = False if_bodies = [] for child in self.ast.body: if isinstance(child, ast.If): try: if child.test.left.id == '__name__': if_bodies.extend(child.body) except AttributeError: pass bodies = self.ast.body bodies.extend(if_bodies) for child in bodies: # validate that the next to last line is 'if __name__ == "__main__"' if child.lineno == (self.length - 1): mainchecked = False try: if isinstance(child, ast.If) and \ child.test.left.id == '__name__' and \ len(child.test.ops) == 1 and \ isinstance(child.test.ops[0], ast.Eq) and \ child.test.comparators[0].s == '__main__': mainchecked = True except Exception: pass if not mainchecked: self.reporter.error( path=self.object_path, code=109, msg='Next to last line should be: if __name__ == "__main__":', line=child.lineno ) # validate that the final line is a call to main() if isinstance(child, ast.Expr): if isinstance(child.value, ast.Call): if (isinstance(child.value.func, ast.Name) and child.value.func.id == 'main'): lineno = child.lineno if lineno < self.length - 1: self.reporter.error( path=self.object_path, code=104, msg='Call to main() not the last line', line=lineno ) if not lineno: self.reporter.error( path=self.object_path, code=103, msg='Did not find a call to main' ) return lineno or 0 def _find_has_import(self): for child in self.ast.body: found_try_except_import = False found_has = False if isinstance(child, TRY_EXCEPT): bodies = child.body for handler in child.handlers: bodies.extend(handler.body) for grandchild in bodies: if isinstance(grandchild, ast.Import): found_try_except_import = True if isinstance(grandchild, ast.Assign): for target in grandchild.targets: if target.id.lower().startswith('has_'): found_has = True if found_try_except_import and not found_has: # TODO: Add line/col self.reporter.warning( path=self.object_path, code=291, msg='Found Try/Except block without HAS_ assignment' ) def _ensure_imports_below_docs(self, doc_info, first_callable): try: min_doc_line = min( [doc_info[key]['lineno'] for key in doc_info if doc_info[key]['lineno']] ) except ValueError: # We can't perform this validation, as there are no DOCs provided at all return max_doc_line = max( [doc_info[key]['end_lineno'] for key in doc_info if doc_info[key]['end_lineno']] ) import_lines = [] for child in self.ast.body: if isinstance(child, (ast.Import, ast.ImportFrom)): if isinstance(child, ast.ImportFrom) and child.module == '__future__': # allowed from __future__ imports for future_import in child.names: if future_import.name not in self.WHITELIST_FUTURE_IMPORTS: self.reporter.error( path=self.object_path, code=209, msg=('Only the following from __future__ imports are allowed: %s' % ', '.join(self.WHITELIST_FUTURE_IMPORTS)), line=child.lineno ) break else: # for-else. If we didn't find a problem nad break out of the loop, then this is a legal import continue import_lines.append(child.lineno) if child.lineno < min_doc_line: self.reporter.error( path=self.object_path, code=106, msg=('Import found before documentation variables. ' 'All imports must appear below ' 'DOCUMENTATION/EXAMPLES/RETURN/ANSIBLE_METADATA.'), line=child.lineno ) break elif isinstance(child, TRY_EXCEPT): bodies = child.body for handler in child.handlers: bodies.extend(handler.body) for grandchild in bodies: if isinstance(grandchild, (ast.Import, ast.ImportFrom)): import_lines.append(grandchild.lineno) if grandchild.lineno < min_doc_line: self.reporter.error( path=self.object_path, code=106, msg=('Import found before documentation ' 'variables. All imports must appear below ' 'DOCUMENTATION/EXAMPLES/RETURN/' 'ANSIBLE_METADATA.'), line=child.lineno ) break for import_line in import_lines: if not (max_doc_line < import_line < first_callable): msg = ( 107, ('Imports should be directly below DOCUMENTATION/EXAMPLES/' 'RETURN/ANSIBLE_METADATA.') ) if self._is_new_module(): self.reporter.error( path=self.object_path, code=msg[0], msg=msg[1], line=import_line ) else: self.reporter.warning( path=self.object_path, code=msg[0], msg=msg[1], line=import_line ) def _validate_ps_replacers(self): # loop all (for/else + error) # get module list for each # check "shape" of each module name module_requires = r'(?im)^#\s*requires\s+\-module(?:s?)\s*(Ansible\.ModuleUtils\..+)' found_requires = False for req_stmt in re.finditer(module_requires, self.text): found_requires = True # this will bomb on dictionary format - "don't do that" module_list = [x.strip() for x in req_stmt.group(1).split(',')] if len(module_list) > 1: self.reporter.error( path=self.object_path, code=210, msg='Ansible.ModuleUtils requirements do not support multiple modules per statement: "%s"' % req_stmt.group(0) ) continue module_name = module_list[0] if module_name.lower().endswith('.psm1'): self.reporter.error( path=self.object_path, code=211, msg='Module #Requires should not end in .psm1: "%s"' % module_name ) # also accept the legacy #POWERSHELL_COMMON replacer signal if not found_requires and REPLACER_WINDOWS not in self.text: self.reporter.error( path=self.object_path, code=207, msg='No Ansible.ModuleUtils module requirements/imports found' ) def _find_ps_docs_py_file(self): if self.object_name in self.PS_DOC_BLACKLIST: return py_path = self.path.replace('.ps1', '.py') if not os.path.isfile(py_path): self.reporter.error( path=self.object_path, code=503, msg='Missing python documentation file' ) def _get_docs(self): docs = { 'DOCUMENTATION': { 'value': None, 'lineno': 0, 'end_lineno': 0, }, 'EXAMPLES': { 'value': None, 'lineno': 0, 'end_lineno': 0, }, 'RETURN': { 'value': None, 'lineno': 0, 'end_lineno': 0, }, 'ANSIBLE_METADATA': { 'value': None, 'lineno': 0, 'end_lineno': 0, } } for child in self.ast.body: if isinstance(child, ast.Assign): for grandchild in child.targets: if grandchild.id == 'DOCUMENTATION': docs['DOCUMENTATION']['value'] = child.value.s docs['DOCUMENTATION']['lineno'] = child.lineno docs['DOCUMENTATION']['end_lineno'] = ( child.lineno + len(child.value.s.splitlines()) ) elif grandchild.id == 'EXAMPLES': docs['EXAMPLES']['value'] = child.value.s docs['EXAMPLES']['lineno'] = child.lineno docs['EXAMPLES']['end_lineno'] = ( child.lineno + len(child.value.s.splitlines()) ) elif grandchild.id == 'RETURN': docs['RETURN']['value'] = child.value.s docs['RETURN']['lineno'] = child.lineno docs['RETURN']['end_lineno'] = ( child.lineno + len(child.value.s.splitlines()) ) elif grandchild.id == 'ANSIBLE_METADATA': docs['ANSIBLE_METADATA']['value'] = child.value docs['ANSIBLE_METADATA']['lineno'] = child.lineno try: docs['ANSIBLE_METADATA']['end_lineno'] = ( child.lineno + len(child.value.s.splitlines()) ) except AttributeError: docs['ANSIBLE_METADATA']['end_lineno'] = ( child.value.values[-1].lineno ) return docs def _validate_docs_schema(self, doc, schema, name, error_code): # TODO: Add line/col errors = [] try: schema(doc) except Exception as e: for error in e.errors: error.data = doc errors.extend(e.errors) for error in errors: path = [str(p) for p in error.path] if isinstance(error.data, dict): error_message = humanize_error(error.data, error) else: error_message = error self.reporter.error( path=self.object_path, code=error_code, msg='%s.%s: %s' % (name, '.'.join(path), error_message) ) def _validate_docs(self): doc_info = self._get_docs() deprecated = False if not bool(doc_info['DOCUMENTATION']['value']): self.reporter.error( path=self.object_path, code=301, msg='No DOCUMENTATION provided' ) else: doc, errors, traces = parse_yaml( doc_info['DOCUMENTATION']['value'], doc_info['DOCUMENTATION']['lineno'], self.name, 'DOCUMENTATION' ) for error in errors: self.reporter.error( path=self.object_path, code=302, **error ) for trace in traces: self.reporter.trace( path=self.object_path, tracebk=trace ) if not errors and not traces: with CaptureStd(): try: get_docstring(self.path, fragment_loader, verbose=True) except AssertionError: fragment = doc['extends_documentation_fragment'] self.reporter.error( path=self.object_path, code=303, msg='DOCUMENTATION fragment missing: %s' % fragment ) except Exception: self.reporter.trace( path=self.object_path, tracebk=traceback.format_exc() ) self.reporter.error( path=self.object_path, code=304, msg='Unknown DOCUMENTATION error, see TRACE' ) if 'options' in doc and doc['options'] is None: self.reporter.error( path=self.object_path, code=320, msg='DOCUMENTATION.options must be a dictionary/hash when used', ) if self.object_name.startswith('_') and not os.path.islink(self.object_path): deprecated = True if 'deprecated' not in doc or not doc.get('deprecated'): self.reporter.error( path=self.object_path, code=318, msg='Module deprecated, but DOCUMENTATION.deprecated is missing' ) if os.path.islink(self.object_path): # This module has an alias, which we can tell as it's a symlink # Rather than checking for `module: $filename` we need to check against the true filename self._validate_docs_schema(doc, doc_schema(os.readlink(self.object_path).split('.')[0]), 'DOCUMENTATION', 305) else: # This is the normal case self._validate_docs_schema(doc, doc_schema(self.object_name.split('.')[0]), 'DOCUMENTATION', 305) self._check_version_added(doc) self._check_for_new_args(doc) if not bool(doc_info['EXAMPLES']['value']): self.reporter.error( path=self.object_path, code=310, msg='No EXAMPLES provided' ) else: _, errors, traces = parse_yaml(doc_info['EXAMPLES']['value'], doc_info['EXAMPLES']['lineno'], self.name, 'EXAMPLES', load_all=True) for error in errors: self.reporter.error( path=self.object_path, code=311, **error ) for trace in traces: self.reporter.trace( path=self.object_path, tracebk=trace ) if not bool(doc_info['RETURN']['value']): if self._is_new_module(): self.reporter.error( path=self.object_path, code=312, msg='No RETURN provided' ) else: self.reporter.warning( path=self.object_path, code=312, msg='No RETURN provided' ) else: data, errors, traces = parse_yaml(doc_info['RETURN']['value'], doc_info['RETURN']['lineno'], self.name, 'RETURN') if data: for ret_key in data: self._validate_docs_schema(data[ret_key], return_schema(data[ret_key]), 'RETURN.%s' % ret_key, 319) for error in errors: self.reporter.error( path=self.object_path, code=313, **error ) for trace in traces: self.reporter.trace( path=self.object_path, tracebk=trace ) if not bool(doc_info['ANSIBLE_METADATA']['value']): self.reporter.error( path=self.object_path, code=314, msg='No ANSIBLE_METADATA provided' ) else: metadata = None if isinstance(doc_info['ANSIBLE_METADATA']['value'], ast.Dict): metadata = ast.literal_eval( doc_info['ANSIBLE_METADATA']['value'] ) else: metadata, errors, traces = parse_yaml( doc_info['ANSIBLE_METADATA']['value'].s, doc_info['ANSIBLE_METADATA']['lineno'], self.name, 'ANSIBLE_METADATA' ) for error in errors: self.reporter.error( path=self.object_path, code=315, **error ) for trace in traces: self.reporter.trace( path=self.object_path, tracebk=trace ) if metadata: self._validate_docs_schema(metadata, metadata_1_1_schema(deprecated), 'ANSIBLE_METADATA', 316) return doc_info def _check_version_added(self, doc): if not self._is_new_module(): return try: version_added = StrictVersion(str(doc.get('version_added', '0.0') or '0.0')) except ValueError: version_added = doc.get('version_added', '0.0') self.reporter.error( path=self.object_path, code=306, msg='version_added is not a valid version number: %r' % version_added ) return should_be = '.'.join(ansible_version.split('.')[:2]) strict_ansible_version = StrictVersion(should_be) if (version_added < strict_ansible_version or strict_ansible_version < version_added): self.reporter.error( path=self.object_path, code=307, msg='version_added should be %s. Currently %s' % (should_be, version_added) ) def _validate_argument_spec(self): if not self.analyze_arg_spec: return try: spec = get_argument_spec(self.path) except AnsibleModuleImportError: self.reporter.error( path=self.object_path, code=321, msg='Exception attempting to import module for argument_spec introspection' ) self.reporter.trace( path=self.object_path, tracebk=traceback.format_exc() ) return for arg, data in spec.items(): if data.get('required') and data.get('default', object) != object: self.reporter.error( path=self.object_path, code=317, msg=('"%s" is marked as required but specifies ' 'a default. Arguments with a default ' 'should not be marked as required' % arg) ) def _check_for_new_args(self, doc): if not self.base_branch or self._is_new_module(): return with CaptureStd(): try: existing_doc = get_docstring(self.base_module, fragment_loader, verbose=True)[0] existing_options = existing_doc.get('options', {}) or {} except AssertionError: fragment = doc['extends_documentation_fragment'] self.reporter.warning( path=self.object_path, code=392, msg='Pre-existing DOCUMENTATION fragment missing: %s' % fragment ) return except Exception as e: self.reporter.warning_trace( path=self.object_path, tracebk=e ) self.reporter.warning( path=self.object_path, code=391, msg=('Unknown pre-existing DOCUMENTATION ' 'error, see TRACE. Submodule refs may ' 'need updated') ) return try: mod_version_added = StrictVersion( str(existing_doc.get('version_added', '0.0')) ) except ValueError: mod_version_added = StrictVersion('0.0') options = doc.get('options', {}) or {} should_be = '.'.join(ansible_version.split('.')[:2]) strict_ansible_version = StrictVersion(should_be) for option, details in options.items(): try: names = [option] + details.get('aliases', []) except (TypeError, AttributeError): # Reporting of this syntax error will be handled by schema validation. continue if any(name in existing_options for name in names): continue try: version_added = StrictVersion( str(details.get('version_added', '0.0')) ) except ValueError: version_added = details.get('version_added', '0.0') self.reporter.error( path=self.object_path, code=308, msg=('version_added for new option (%s) ' 'is not a valid version number: %r' % (option, version_added)) ) continue except Exception: # If there is any other exception it should have been caught # in schema validation, so we won't duplicate errors by # listing it again continue if (strict_ansible_version != mod_version_added and (version_added < strict_ansible_version or strict_ansible_version < version_added)): self.reporter.error( path=self.object_path, code=309, msg=('version_added for new option (%s) should ' 'be %s. Currently %s' % (option, should_be, version_added)) ) @staticmethod def is_blacklisted(path): base_name = os.path.basename(path) file_name, _ = os.path.splitext(base_name) if file_name.startswith('_') and os.path.islink(path): return True if not frozenset((base_name, file_name)).isdisjoint(ModuleValidator.BLACKLIST): return True for pat in ModuleValidator.BLACKLIST_PATTERNS: if fnmatch(base_name, pat): return True return False def validate(self): super(ModuleValidator, self).validate() if not self._python_module() and not self._powershell_module(): self.reporter.error( path=self.object_path, code=501, msg=('Official Ansible modules must have a .py ' 'extension for python modules or a .ps1 ' 'for powershell modules') ) self._python_module_override = True if self._python_module() and self.ast is None: self.reporter.error( path=self.object_path, code=401, msg='Python SyntaxError while parsing module' ) try: compile(self.text, self.path, 'exec') except Exception: self.reporter.trace( path=self.object_path, tracebk=traceback.format_exc() ) return if self._python_module(): doc_info = self._validate_docs() if self._python_module() and not self._just_docs(): self._validate_argument_spec() self._check_for_sys_exit() self._find_blacklist_imports() main = self._find_main_call() self._find_module_utils(main) self._find_has_import() self._check_for_tabs() first_callable = self._get_first_callable() self._ensure_imports_below_docs(doc_info, first_callable) if self._powershell_module(): self._validate_ps_replacers() self._find_ps_docs_py_file() self._check_gpl3_header() if not self._just_docs(): self._check_interpreter(powershell=self._powershell_module()) self._check_type_instead_of_isinstance( powershell=self._powershell_module() ) class PythonPackageValidator(Validator): BLACKLIST_FILES = frozenset(('__pycache__',)) def __init__(self, path, reporter=None): super(PythonPackageValidator, self).__init__(reporter=reporter or Reporter()) self.path = path self.basename = os.path.basename(path) @property def object_name(self): return self.basename @property def object_path(self): return self.path def validate(self): super(PythonPackageValidator, self).validate() if self.basename in self.BLACKLIST_FILES: return init_file = os.path.join(self.path, '__init__.py') if not os.path.exists(init_file): self.reporter.error( path=self.object_path, code=502, msg='Ansible module subdirectories must contain an __init__.py' ) def re_compile(value): """ Argparse expects things to raise TypeError, re.compile raises an re.error exception This function is a shorthand to convert the re.error exception to a TypeError """ try: return re.compile(value) except re.error as e: raise TypeError(e) def main(): parser = argparse.ArgumentParser(prog="validate-modules") parser.add_argument('modules', nargs='+', help='Path to module or module directory') parser.add_argument('-w', '--warnings', help='Show warnings', action='store_true') parser.add_argument('--exclude', help='RegEx exclusion pattern', type=re_compile) parser.add_argument('--arg-spec', help='Analyze module argument spec', action='store_true', default=False) parser.add_argument('--base-branch', default=None, help='Used in determining if new options were added') parser.add_argument('--format', choices=['json', 'plain'], default='plain', help='Output format. Default: "%(default)s"') parser.add_argument('--output', default='-', help='Output location, use "-" for stdout. ' 'Default "%(default)s"') args = parser.parse_args() args.modules[:] = [m.rstrip('/') for m in args.modules] reporter = Reporter() git_cache = GitCache(args.base_branch) check_dirs = set() for module in args.modules: if os.path.isfile(module): path = module if args.exclude and args.exclude.search(path): continue if ModuleValidator.is_blacklisted(path): continue with ModuleValidator(path, analyze_arg_spec=args.arg_spec, base_branch=args.base_branch, git_cache=git_cache, reporter=reporter) as mv: mv.validate() check_dirs.add(os.path.dirname(path)) for root, dirs, files in os.walk(module): basedir = root[len(module) + 1:].split('/', 1)[0] if basedir in BLACKLIST_DIRS: continue for dirname in dirs: if root == module and dirname in BLACKLIST_DIRS: continue path = os.path.join(root, dirname) if args.exclude and args.exclude.search(path): continue check_dirs.add(path) for filename in files: path = os.path.join(root, filename) if args.exclude and args.exclude.search(path): continue if ModuleValidator.is_blacklisted(path): continue with ModuleValidator(path, analyze_arg_spec=args.arg_spec, base_branch=args.base_branch, git_cache=git_cache, reporter=reporter) as mv: mv.validate() for path in sorted(check_dirs): pv = PythonPackageValidator(path, reporter=reporter) pv.validate() if args.format == 'plain': sys.exit(reporter.plain(warnings=args.warnings, output=args.output)) else: sys.exit(reporter.json(warnings=args.warnings, output=args.output)) class GitCache(object): def __init__(self, base_branch): self.base_branch = base_branch if self.base_branch: self.base_tree = self._git(['ls-tree', '-r', '--name-only', self.base_branch, 'lib/ansible/modules/']) else: self.base_tree = [] try: self.head_tree = self._git(['ls-tree', '-r', '--name-only', 'HEAD', 'lib/ansible/modules/']) except GitError as ex: if ex.status == 128: # fallback when there is no .git directory self.head_tree = self._get_module_files() else: raise except OSError as ex: if ex.errno == errno.ENOENT: # fallback when git is not installed self.head_tree = self._get_module_files() else: raise self.base_module_paths = dict((os.path.basename(p), p) for p in self.base_tree if os.path.splitext(p)[1] in ('.py', '.ps1')) self.base_module_paths.pop('__init__.py', None) self.head_aliased_modules = set() for path in self.head_tree: filename = os.path.basename(path) if filename.startswith('_') and filename != '__init__.py': if os.path.islink(path): self.head_aliased_modules.add(os.path.basename(os.path.realpath(path))) @staticmethod def _get_module_files(): module_files = [] for (dir_path, dir_names, file_names) in os.walk('lib/ansible/modules/'): for file_name in file_names: module_files.append(os.path.join(dir_path, file_name)) return module_files @staticmethod def _git(args): cmd = ['git'] + args p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if p.returncode != 0: raise GitError(stderr, p.returncode) return stdout.decode('utf-8').splitlines() class GitError(Exception): def __init__(self, message, status): super(GitError, self).__init__(message) self.status = status if __name__ == '__main__': try: main() except KeyboardInterrupt: pass
gpl-3.0
8,874,566,115,994,565,000
35.585044
132
0.487936
false
4.688275
false
false
false
sixdub/Minions
scans/models.py
1
1839
from django.db import models from django.contrib.auth.models import User from django.core.exceptions import ValidationError import re # Create your models here. class Scan(models.Model): name=models.CharField(max_length=200,default="") hosts=models.TextField(default="") profile=models.ForeignKey("Scan_Profile", related_name="scanprofile") user = models.ForeignKey(User,blank=True, null=True, related_name="user") version =models.CharField(max_length=100, blank=True, null=True) summary=models.TextField(blank=True, null=True) finished=models.BooleanField(default=False) def __unicode__(self): return self.args #only allow ip addresses and properly formatted host names to pass through. allow comma separated and split by line. def isvalid(self, el): el = el.rstrip() fqdn = re.findall("(?=^.{4,255}$)(^((?!-)[a-zA-Z0-9-]{0,62}[a-zA-Z0-9]\.)+[a-zA-Z]{2,63}$)", el) ips = re.findall("(?:[0-9]{1,3}\.){3}[0-9]{1,3}", el) if len(ips) + len(fqdn) <= 0: raise ValidationError("Proper FQDN or IP not provided") def clean(self): for line in self.hosts.split("\n"): #if your hosts field can have multiple lines, you can remove this elems = line.split(",")#creates an array from comma separated values if line: for el in elems: self.isvalid(el) class Scan_Profile(models.Model): name=models.CharField(max_length=100, default="", unique=True) author=models.ForeignKey(User, related_name="profile_author") cmdline=models.TextField(default="") def __unicode__(self): return self.name #dont allow any output format. We handle that :) def clean(self): if "nmap" in self.cmdline: raise ValidationError('Do not place "nmap" in the command line arguments!') m = re.findall("-o[A-Z]", self.cmdline) if m: raise ValidationError('No "-o" flags... We will decide the output for you!')
gpl-2.0
-5,329,743,307,292,903,000
35.058824
118
0.703643
false
3.17069
false
false
false
kubevirt/client-python
kubevirt/models/v1_domain_spec.py
1
10040
# coding: utf-8 """ KubeVirt API This is KubeVirt API an add-on for Kubernetes. OpenAPI spec version: 1.0.0 Contact: kubevirt-dev@googlegroups.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1DomainSpec(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'chassis': 'V1Chassis', 'clock': 'V1Clock', 'cpu': 'V1CPU', 'devices': 'V1Devices', 'features': 'V1Features', 'firmware': 'V1Firmware', 'io_threads_policy': 'str', 'machine': 'V1Machine', 'memory': 'V1Memory', 'resources': 'V1ResourceRequirements' } attribute_map = { 'chassis': 'chassis', 'clock': 'clock', 'cpu': 'cpu', 'devices': 'devices', 'features': 'features', 'firmware': 'firmware', 'io_threads_policy': 'ioThreadsPolicy', 'machine': 'machine', 'memory': 'memory', 'resources': 'resources' } def __init__(self, chassis=None, clock=None, cpu=None, devices=None, features=None, firmware=None, io_threads_policy=None, machine=None, memory=None, resources=None): """ V1DomainSpec - a model defined in Swagger """ self._chassis = None self._clock = None self._cpu = None self._devices = None self._features = None self._firmware = None self._io_threads_policy = None self._machine = None self._memory = None self._resources = None if chassis is not None: self.chassis = chassis if clock is not None: self.clock = clock if cpu is not None: self.cpu = cpu self.devices = devices if features is not None: self.features = features if firmware is not None: self.firmware = firmware if io_threads_policy is not None: self.io_threads_policy = io_threads_policy if machine is not None: self.machine = machine if memory is not None: self.memory = memory if resources is not None: self.resources = resources @property def chassis(self): """ Gets the chassis of this V1DomainSpec. Chassis specifies the chassis info passed to the domain. :return: The chassis of this V1DomainSpec. :rtype: V1Chassis """ return self._chassis @chassis.setter def chassis(self, chassis): """ Sets the chassis of this V1DomainSpec. Chassis specifies the chassis info passed to the domain. :param chassis: The chassis of this V1DomainSpec. :type: V1Chassis """ self._chassis = chassis @property def clock(self): """ Gets the clock of this V1DomainSpec. Clock sets the clock and timers of the vmi. :return: The clock of this V1DomainSpec. :rtype: V1Clock """ return self._clock @clock.setter def clock(self, clock): """ Sets the clock of this V1DomainSpec. Clock sets the clock and timers of the vmi. :param clock: The clock of this V1DomainSpec. :type: V1Clock """ self._clock = clock @property def cpu(self): """ Gets the cpu of this V1DomainSpec. CPU allow specified the detailed CPU topology inside the vmi. :return: The cpu of this V1DomainSpec. :rtype: V1CPU """ return self._cpu @cpu.setter def cpu(self, cpu): """ Sets the cpu of this V1DomainSpec. CPU allow specified the detailed CPU topology inside the vmi. :param cpu: The cpu of this V1DomainSpec. :type: V1CPU """ self._cpu = cpu @property def devices(self): """ Gets the devices of this V1DomainSpec. Devices allows adding disks, network interfaces, and others :return: The devices of this V1DomainSpec. :rtype: V1Devices """ return self._devices @devices.setter def devices(self, devices): """ Sets the devices of this V1DomainSpec. Devices allows adding disks, network interfaces, and others :param devices: The devices of this V1DomainSpec. :type: V1Devices """ if devices is None: raise ValueError("Invalid value for `devices`, must not be `None`") self._devices = devices @property def features(self): """ Gets the features of this V1DomainSpec. Features like acpi, apic, hyperv, smm. :return: The features of this V1DomainSpec. :rtype: V1Features """ return self._features @features.setter def features(self, features): """ Sets the features of this V1DomainSpec. Features like acpi, apic, hyperv, smm. :param features: The features of this V1DomainSpec. :type: V1Features """ self._features = features @property def firmware(self): """ Gets the firmware of this V1DomainSpec. Firmware. :return: The firmware of this V1DomainSpec. :rtype: V1Firmware """ return self._firmware @firmware.setter def firmware(self, firmware): """ Sets the firmware of this V1DomainSpec. Firmware. :param firmware: The firmware of this V1DomainSpec. :type: V1Firmware """ self._firmware = firmware @property def io_threads_policy(self): """ Gets the io_threads_policy of this V1DomainSpec. Controls whether or not disks will share IOThreads. Omitting IOThreadsPolicy disables use of IOThreads. One of: shared, auto :return: The io_threads_policy of this V1DomainSpec. :rtype: str """ return self._io_threads_policy @io_threads_policy.setter def io_threads_policy(self, io_threads_policy): """ Sets the io_threads_policy of this V1DomainSpec. Controls whether or not disks will share IOThreads. Omitting IOThreadsPolicy disables use of IOThreads. One of: shared, auto :param io_threads_policy: The io_threads_policy of this V1DomainSpec. :type: str """ self._io_threads_policy = io_threads_policy @property def machine(self): """ Gets the machine of this V1DomainSpec. Machine type. :return: The machine of this V1DomainSpec. :rtype: V1Machine """ return self._machine @machine.setter def machine(self, machine): """ Sets the machine of this V1DomainSpec. Machine type. :param machine: The machine of this V1DomainSpec. :type: V1Machine """ self._machine = machine @property def memory(self): """ Gets the memory of this V1DomainSpec. Memory allow specifying the VMI memory features. :return: The memory of this V1DomainSpec. :rtype: V1Memory """ return self._memory @memory.setter def memory(self, memory): """ Sets the memory of this V1DomainSpec. Memory allow specifying the VMI memory features. :param memory: The memory of this V1DomainSpec. :type: V1Memory """ self._memory = memory @property def resources(self): """ Gets the resources of this V1DomainSpec. Resources describes the Compute Resources required by this vmi. :return: The resources of this V1DomainSpec. :rtype: V1ResourceRequirements """ return self._resources @resources.setter def resources(self, resources): """ Sets the resources of this V1DomainSpec. Resources describes the Compute Resources required by this vmi. :param resources: The resources of this V1DomainSpec. :type: V1ResourceRequirements """ self._resources = resources def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1DomainSpec): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
apache-2.0
-6,167,048,185,573,170,000
25.560847
170
0.566036
false
4.286934
false
false
false
ConnectedSystems/veneer-py
veneer/navigate.py
1
2140
''' Prototype functionality for interacting with the Source model directly, including tab-completion in IPython/Jupyter. Eg v = veneer.Veneer() scenario = Queryable(v) scenario.Name = 'New Scenario Name' ''' class Queryable(object): def __init__(self,v,path='scenario',namespace=None): self._v = v self._path = path self._init = False self._ns = namespace def _eval_(self): return self._v.model.get(self._path,namespace=self._ns) def _child_(self,path): val = Queryable(self._v,'%s.%s'%(self._path,path),namespace=self._ns) return val def _double_quote_(self,maybe_string): v = maybe_string if not isinstance(v,str): return v if not "'" in v: return "'%s'"%v if not '"' in v: return '"%s"'%v v = v.replace('"','\\"') return '"%s"'%v def _child_idx_(self,ix): return Queryable(self._v,'%s[%s]'%(self._path,str(ix)),namespace=self._ns) def _initialise_children_(self,entries): if self._init: return self._init = True for r in entries: if r[:2]=='__': continue super(Queryable,self).__setattr__(r,self._child_(r)) def _run_script(self,script): return self._v.model._safe_run('%s\n%s'%(self._v.model._init_script(self._ns),script)) def __call__(self,*args,**kwargs): return self._v.model.call(self._path+str(tuple(args))) def __repr__(self): return str(self._eval_()) def __dir__(self): res = [e['Value'] for e in self._run_script('dir(%s)'%(self._path))['Response']['Value']] self._initialise_children_(res) return res def __getattr__(self,attrname): return self._child_(attrname) def __getitem__(self,ix): return self._child_idx_(ix) def __setattr__(self,a,v): if a.startswith('_'): return super(Queryable,self).__setattr__(a,v) v = self._double_quote_(v) if not self._v.model.set('%s.%s'%(self._path,a),v): raise Exception("Couldn't set property")
isc
-557,938,653,125,760,300
28.722222
119
0.550935
false
3.548922
false
false
false
pwwang/bioprocs
bioprocs/utils/shell2.py
1
1995
import sys from modkit import Modkit import cmdy DEFAULT_CONFIG = dict( default = dict(_raise = True), bedtools = dict(_prefix = '-'), biobambam = dict(_sep = '=', _prefix = ''), bowtie2 = dict(_dupkey = True), dtoxog = dict(_out = cmdy.DEVERR, _prefix = '-'), sort = dict(_sep = '', _dupkey = True), gatk3 = dict(_dupkey = True), hla_la = dict(_raw = True), liftover = dict(_prefix = '-', _sep = '='), oncotator = dict(_sep = 'auto'), optitype = dict(_dupkey = False), maf2vcf = dict(_sep = ' '), netmhc = dict(_prefix = '-'), # As of picard 2.20.5-SNAPSHOT # it's changing in the futher. See: https://github.com/broadinstitute/picard/wiki/Command-Line-Syntax-Transition-For-Users-(Pre-Transition) # Future one should be: # picard = dict(_sep = ' ', _prefix = '-') picard = dict(_sep = '=', _prefix = ''), plink = dict(_out = cmdy.DEVERR), pyclone = dict(_raw = True), razers3 = dict(_prefix = '-'), snpeff = dict(_prefix = '-'), vcfanno = dict(_prefix = '-'), vep = dict(_dupkey = True, _raw = True), ) cmdy.config._load(DEFAULT_CONFIG) def _modkit_delegate(name): return getattr(cmdy, name) # run command at foreground fg = cmdy(_fg = True, _debug = True) bg = cmdy(_bg = True, _debug = True) out = cmdy(_out = '>') pipe = cmdy(_pipe = True) ## aliases rm_rf = cmdy.rm.bake(r = True, f = True) ln_s = cmdy.ln.bake(s = True) kill_9 = cmdy.kill.bake(s = 9) wc_l = cmdy.wc.bake(l = True) cp = copy = cmdy.cp mv = move = cmdy.mv which = lambda x: cmdy.which(x).strip() runcmd = lambda cmd: cmdy.bash(c = cmd) def load_config(conf = None, **kwargs): conf = conf or {} conf.update(kwargs) conf2load = {'default': DEFAULT_CONFIG['default']} for key, val in conf.items(): conf2load[key] = DEFAULT_CONFIG.get(key, {}).copy() conf2load[key].update(val if isinstance(val, dict) else {'_exe': val}) cmdy.config._load(conf2load) fg.config._load(conf2load) out.config._load(conf2load) Modkit()
mit
2,583,899,961,950,900,000
28.776119
140
0.606015
false
2.604439
true
false
false
otuncelli/Xpert-Screen-Recorder
src/main.py
1
16935
# -*- coding: utf-8 -*- # ============================================================================= # Xpert Screen Recorder # Copyright (C) 2013 OSMAN TUNCELLI # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ============================================================================= import singleton, logging singleton.logger.setLevel(logging.CRITICAL) singleton.SingleInstance() import pygtk pygtk.require('2.0') import gtk, os, sys, subprocess, operator, signal, webbrowser from datetime import datetime from collections import OrderedDict from ConfigParser import ConfigParser DEBUG_MODE = False if not DEBUG_MODE: sys.stderr = open(os.path.devnull, 'w') LANG = 'en' def T(s): dic = {'Xpert Screen Recorder' : u'Xpert Ekran Görüntüsü Kaydedici', 'Start Recording' : u'Kaydı Başlat', 'Stop Recording' : u'Kaydı Durdur', 'Settings' : 'Ayarlar', 'About' : u'Hakkında', 'Exit' : u'Çıkış', 'Resolution' : u'Çözünürlük', 'Frame rate' : u'Çerçeve hızı', 'Language' : u'Arayüz Dili', 'Save To' : u'Kayıt Yeri', 'Xpert Screen Recorder is a multi-platform screencast recorder.' : u'Xpert Ekran Görüntüsü Kaydedici, ekran görüntüsünü çeşitli platformlarda kaydedebilen bir araçtır.', 'All Done! Do you want to watch the recorded video now?' : u'Tamamlandı! Kaydedilen görüntüyü şimdi izlemek ister misiniz?' } return (dic[s] if LANG == 'tr' else s) class Settings(object): def __init__(self, screen_size, inifile = 'settings.ini'): self.defaults = { 'framerate' : 30, 'resolution' : screen_size, 'saveto' : os.path.expanduser('~'), 'lang' : 'en' } self.active = self.defaults.copy() self.screen_size = screen_size self.dialog_shown = False self.valid_framerates = (15,25,30) self._set_valid_resolutions() self.valid_languages = OrderedDict((('en', 'English'), ('tr', u'Türkçe'))) self.inifile = inifile self.cp = ConfigParser() if os.path.isfile(inifile): self.cp.read(inifile) self.correct(self.cp._defaults) self.active = self.cp._defaults.copy() else: self.cp._defaults = self.defaults.copy() with open(inifile, 'w') as fp: self.cp.write(fp) def correct(self, d): try: d['framerate'] = int(d['framerate']) assert d['framerate'] in self.valid_framerates except: d['framerate'] = self.defaults['framerate'] try: d['resolution'] = eval(d['resolution']) assert d['resolution'] in self.valid_resolutions except: d['resolution'] = self.defaults['resolution'] try: assert os.path.isdir(d['saveto']) except: d['saveto'] = self.defaults['saveto'] try: assert d['lang'] in ('tr', 'en') except: d['lang'] = 'en' def _set_valid_resolutions(self): width_array = (1920, 1680, 1280, 960) aspect_ratio = operator.truediv(*self.screen_size) self.valid_resolutions = tuple((w, int(w / aspect_ratio)) for w in width_array if w <= self.screen_size[0]) def set_framerate(self, framerate): self.active['framerate'] = int(framerate) def set_resolution(self, res): if isinstance(res, basestring): self.active['resolution'] = tuple(res.split('x')) else: self.active['resolution'] = tuple(res) def set_saveto(self, saveto): self.active['saveto'] = saveto def get_framerate(self): return self.active['framerate'] def get_resolution(self): return self.active['resolution'] def get_saveto(self): return self.active['saveto'] def get_language(self): return self.active['lang'] def show_dialog(self, reload_func): self.dialog_shown = True self.reload_func = reload_func dialog = gtk.Dialog() dialog.set_type_hint(gtk.gdk.WINDOW_TYPE_HINT_UTILITY) dialog.set_size_request(250,250) dialog.set_resizable(False) dialog.set_position(gtk.WIN_POS_CENTER) label_settings = gtk.Label() label_resolution = gtk.Label() label_framerate = gtk.Label() label_language = gtk.Label() def set_settings_texts(): dialog.set_title(T('Settings')) label_settings.set_markup('<span font_family="Verdana" weight="heavy" size="x-large">' + dialog.get_title() + '</span>') label_resolution.set_text(T('Resolution') + ' :') label_framerate.set_text(T('Frame rate') + ' :') label_language.set_text(T('Language') + ' :') set_settings_texts() store_resolution = gtk.ListStore(str) store_framerate = gtk.ListStore(str) store_language = gtk.ListStore(str) for v in self.valid_languages.values(): store_language.append([v]) renderer = gtk.CellRendererText() renderer.set_alignment(1, 0.5) for vr in self.valid_resolutions: store_resolution.append(['x'.join(map(str, vr))]) self.combo_resolution = gtk.ComboBox(store_resolution) self.combo_resolution.pack_start(renderer) self.combo_resolution.add_attribute(renderer, 'text', 0) self.combo_resolution.set_active(self.valid_resolutions.index(self.get_resolution())) for fr in self.valid_framerates: store_framerate.append([fr]) self.combo_framerate = gtk.ComboBox(store_framerate) self.combo_framerate.pack_start(renderer) self.combo_framerate.add_attribute(renderer, 'text', 0) self.combo_framerate.set_active(self.valid_framerates.index(self.get_framerate())) self.combo_language = gtk.ComboBox(store_language) self.combo_language.pack_start(renderer) self.combo_language.add_attribute(renderer, 'text', 0) self.combo_language.set_active(self.valid_languages.keys().index(self.get_language())) button_browse = gtk.Button(T('Save To')) button_okay = gtk.Button(stock=gtk.STOCK_OK) button_okay.set_size_request(40, -1) button_cancel = gtk.Button(stock=gtk.STOCK_CANCEL) button_cancel.set_size_request(40, -1) padding = 5 table = gtk.Table(rows=3, columns=2, homogeneous=False) xyoptions = dict(xoptions=0, yoptions=0, xpadding=padding, ypadding=padding) table.attach(label_resolution, 0, 1, 0, 1, **xyoptions) table.attach(self.combo_resolution, 1, 2, 0, 1, xoptions=gtk.FILL|gtk.EXPAND, xpadding=padding, ypadding=padding) table.attach(label_framerate, 0, 1, 1, 2, **xyoptions) table.attach(self.combo_framerate, 1, 2, 1, 2, xoptions=gtk.FILL|gtk.EXPAND, xpadding=padding, ypadding=padding) table.attach(label_language, 0, 1, 2, 3, **xyoptions) table.attach(self.combo_language, 1, 2, 2, 3, xoptions=gtk.FILL|gtk.EXPAND, xpadding=padding, ypadding=padding) table.attach(button_browse, 1, 2, 3, 4, xoptions=gtk.FILL|gtk.EXPAND, xpadding=padding, ypadding=padding) vb = dialog.vbox vb.pack_start(label_settings, 1, 0, padding) vb.pack_start(table, 0, 0, padding) hb = gtk.HBox(homogeneous=False, spacing=0) hb.pack_start(button_okay, 1, 1, padding) hb.pack_start(button_cancel, 1, 1, padding) vb.pack_start(hb, 0, 0, padding) saveto = [self.get_saveto()] def on_browse(widget, saveto): fc = gtk.FileChooserDialog(T('Save To'), dialog, gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER|gtk.FILE_CHOOSER_ACTION_OPEN, (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_OK, gtk.RESPONSE_OK)) if os.path.isdir(saveto[0]): fc.set_current_folder(saveto[0]) try: response = fc.run() if response == gtk.RESPONSE_OK: saveto[0] = fc.get_filename() finally: fc.destroy() def on_ok(widget): global LANG LANG = self.active['lang'] = self.valid_languages.keys()[self.combo_language.get_active()] self.active['resolution'] = self.valid_resolutions[self.combo_resolution.get_active()] self.active['framerate'] = self.valid_framerates[self.combo_framerate.get_active()] self.active['saveto'] = saveto[0] self.cp._defaults = self.active.copy() with open(self.inifile, 'w') as fp: self.cp.write(fp) self.reload_func() dialog.destroy() def on_cancel(widget): self.active = self.cp._defaults.copy() dialog.destroy() button_browse.connect('clicked', lambda w : on_browse(w,saveto)) button_okay.connect('clicked', on_ok) button_cancel.connect('clicked', on_cancel) dialog.show_all() dialog.present_with_time(2) dialog.run() self.dialog_shown = False class XpertScreenRecorder(object): def __init__(self, indicator = None): global LANG self.app_version = "1.0" self.app_icon = gtk.StatusIcon() self.app_icon.set_from_stock(gtk.STOCK_MEDIA_PLAY) self.app_icon.connect('popup-menu', self.show_popup) self.app_icon.connect('activate', self.kill_popup) self.settings = Settings(self._get_screen_size()) self.active = self.settings.active LANG = self.active['lang'] self.menu = gtk.Menu() self.mi_rec_start = gtk.MenuItem() self.mi_rec_stop = gtk.MenuItem() self.mi_settings = gtk.MenuItem() self.mi_about = gtk.MenuItem() self.mi_exit = gtk.MenuItem() self._reload_texts() self.mi_rec_start.set_sensitive(True) self.mi_rec_stop.set_sensitive(False) self.mi_rec_start.connect('activate', self.start_recording) self.mi_rec_stop.connect('activate', self.stop_recording) self.mi_settings.connect('activate', lambda _: self.settings.show_dialog(self._reload_texts)) self.mi_about.connect('activate', self.show_about) self.mi_exit.connect('activate', self.exit) for mi in (self.mi_rec_start, self.mi_rec_stop, gtk.SeparatorMenuItem(), self.mi_settings, self.mi_about, self.mi_exit): self.menu.append(mi) self.menu.show_all() if indicator: indicator.set_menu(self.menu) self.indicator = indicator self._recording = False def _reload_texts(self): self.app_title = T('Xpert Screen Recorder') self.app_icon.set_tooltip_text('{} v{}'.format(self.app_title, self.app_version)) self.mi_rec_start.set_label(T('Start Recording')) self.mi_rec_stop.set_label(T('Stop Recording')) self.mi_settings.set_label(T('Settings')) self.mi_about.set_label(T('About')) self.mi_exit.set_label(T('Exit')) def _get_screen_size(self): screen = self.app_icon.get_screen() return screen.get_width(), screen.get_height() def is_recording(self): return self._recording def set_recording(self, boolean): self._recording = boolean self.app_icon.set_blinking(self._recording) if self._recording: if self.indicator: self.indicator.set_status(appindicator.STATUS_ATTENTION) self.app_icon.set_from_stock(gtk.STOCK_MEDIA_RECORD) self.mi_rec_start.set_sensitive(False) self.mi_rec_stop.set_sensitive(True) else: if self.indicator: self.indicator.set_status(appindicator.STATUS_ACTIVE) self.app_icon.set_from_stock(gtk.STOCK_MEDIA_PLAY) delattr(self, 'p') self.mi_rec_start.set_sensitive(True) self.mi_rec_stop.set_sensitive(False) def generate_filename(self): return os.path.join(self.active['saveto'], datetime.now().strftime("%Y_%m_%d_%H_%M_%S") + ".mp4") def start_recording(self, widget): framerate = self.active['framerate'] rtbufsize = bufsize = 2147483647 # you can also use smaller buffer sizes self.filename = self.generate_filename() if sys.platform == 'win32': # ffmpeg for windows cmdline = ['ffmpeg', '-r', framerate, '-rtbufsize', rtbufsize, '-f', 'dshow', '-i', 'video=screen-capture-recorder:audio=virtual-audio-capturer', '-threads', 2, '-pix_fmt', 'yuv420p','-bufsize', bufsize, '-c:v', 'libx264', '-preset', 'ultrafast', '-tune', 'zerolatency', '-threads', 2] startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess._subprocess.STARTF_USESHOWWINDOW else: cmdline = ['avconv', '-rtbufsize', rtbufsize, '-loglevel', 'quiet', '-f', 'alsa', '-i', 'pulse', '-f', 'x11grab', '-s:v', 'x'.join(map(str, self._get_screen_size())), '-i', ':0.0', '-ar', '44100', '-bufsize', bufsize, '-pix_fmt', 'yuv420p', '-c:v', 'libx264', '-c:a', 'libvo_aacenc', '-preset', 'ultrafast', '-tune', 'zerolatency', '-threads', 2] startupinfo = None if not DEBUG_MODE: cmdline += ['-loglevel', 'quiet'] if self.settings.screen_size <> self.active["resolution"]: cmdline += ['-vf', 'scale=%d:-1' % self.active["resolution"][0], '-sws_flags', 'lanczos'] cmdline.append(self.filename) cmdline = map(unicode, cmdline) if DEBUG_MODE: print ' '.join(cmdline) self.p = subprocess.Popen(cmdline, stdin=subprocess.PIPE, startupinfo = startupinfo) self.set_recording(True) def stop_recording(self, widget): if not self.is_recording(): return if sys.platform == 'win32': self.p.communicate('q\\n') else: self.p.send_signal(signal.SIGINT) self.p.wait() self.set_recording(False) md = gtk.MessageDialog(None, 0, gtk.MESSAGE_QUESTION, gtk.BUTTONS_YES_NO, T('All Done! Do you want to watch the recorded video now?')) md.set_position(gtk.WIN_POS_CENTER) response = md.run() md.destroy() if response == gtk.RESPONSE_YES: webbrowser.open(self.filename) def show_about(self, widget): about = gtk.AboutDialog() about.set_position(gtk.WIN_POS_CENTER) about.set_icon_name (self.app_title) about.set_name(self.app_title) about.set_version('v1.0') about.set_comments(T('Xpert Screen Recorder is a multi-platform screencast recorder.')) about.set_authors([u'Osman Tunçelli <tuncelliosman-at-gmail.com>']) about.run() about.destroy() def exit(self, widget): self.stop_recording(widget) self.app_icon.set_visible(False) gtk.main_quit() def kill_popup(self, widget): if hasattr(self, 'menu'): self.menu.popdown() def show_popup(self, icon, event_button, event_time): if not self.settings.dialog_shown: self.menu.popup(None, None, None if os.name == 'nt' else gtk.status_icon_position_menu, event_button, event_time, self.app_icon) main = gtk.main if __name__ == "__main__": indicator = None if sys.platform == 'linux2': import appindicator indicator = appindicator.Indicator("Xpert", "gtk-media-play-ltr", appindicator.CATEGORY_APPLICATION_STATUS) indicator.set_attention_icon(gtk.STOCK_MEDIA_RECORD) indicator.set_status(appindicator.STATUS_ACTIVE) app = XpertScreenRecorder(indicator) app.main()
gpl-3.0
-6,111,160,903,389,773,000
42.986979
180
0.584192
false
3.608203
false
false
false
jparal/loopy
loopy/io.py
1
3026
import tables as pt import numpy as np import loopy as lpy import shutil as sh # move import os.path as pth # exists def readhdf5(fname, path='/'): """ .. py:function:: writehdf5(fname, path='/') The function traverse HDF5 files and creates structured dictionary. :param fname: File name to read. :param path: Root path from where to start reading. :rtype: loopy.struct (i.e. dictionary) or variable """ def _traverse_tree(h5f, path): # Remove double slashes and the last one path = '/'+'/'.join(filter(None, path.split('/'))) gloc = ''.join(path.rpartition('/')[0:2]) name = path.rpartition('/')[2] # We want to read a single variable groups = h5f.listNodes(where=gloc, classname='Group') nodes = h5f.listNodes(where=gloc) leafs = [n for n in nodes if n not in groups] leaf = [n for n in leafs if n.name == name] if len(leaf) == 1: return leaf[0].read() dat = lpy.struct() for node in h5f.listNodes(where=path): name = node._v_name dat[name] = _traverse_tree(h5f, path+'/'+name) return dat h5f = pt.File(fname, 'r') dat = _traverse_tree(h5f, path) h5f.close() return dat def writehdf5(fname, data, path='/', append=False, backup=False): """ .. py:function:: writehdf5(fname, data, path='/', append=False) The function writes HDF5 file using PyTables and CArray. This is high level function which shoud handle the most common scenarios. :param fname: name of the HDF5 file :param path: location inside of HDF5 file (e.g. /new/Bz) :param data: the actual data to be stored :type data: dict or ndarray otherwise will be converted into ndarray :param append: Should the data be appended to an existing file? :param backup: This argument if True rename the file to .bak instead of overwriting the file. :rtype: none """ if backup and pth.exists(fname): sh.move(fname, fname+'.bak') mode = 'a' if append else 'w' filters = pt.Filters(complevel=6) h5f = pt.File(fname, mode) # Remove double slashes and the last one path = '/'+'/'.join(filter(None, path.split('/'))) dloc = path.rsplit('/',1) root = dloc[0] if np.size(dloc) > 1 else '/' root = root if root.startswith('/') else '/' + root name = path if np.size(dloc) == 1 else dloc[1] if isinstance(data, dict): h5f.close() for key in data.keys(): writehdf5(fname, data[key], path=path+'/'+key, append=True) return if not isinstance(data, np.ndarray): data = np.array(data, ndmin=1) atm = pt.Atom.from_dtype(data.dtype) arr = h5f.createCArray(root, name, atm, data.shape, \ createparents=True, filters=filters) arr[:] = data h5f.close() return from pyhdf.SD import SD, SDC def loadhdf4(fname,variable): data_set = SD(fname, SDC.READ) return data_set.select(variable)[:]
gpl-2.0
-3,930,732,108,166,029,000
30.195876
77
0.61236
false
3.466208
false
false
false
PeterHenell/performance-dashboard
performance-collector2/query.py
1
1713
import types class Query: """ Queries are a way for collectors to collect data. They are one way of getting data from the source. query_name - the name of the query key_column - the name of the key column in the result Does not produces anything but are a field of source. Only contain metadata about the query. Source can add functions to Query for collecting data from some kind of server. get_data_fun - the function or callable class to call in order for the query to collect data mapping - elasticsearch mapping specific for this query. If some of the fields from this query need to be mapped differently. Used during init of the indexes. non_data_fields = [] - Fields which should not be part of the delta calculations, instead be sent directly to es. """ def __init__(self, get_data, query_name, key_column, mapping, non_data_fields): assert isinstance(get_data, types.FunctionType) \ or callable(get_data), "get_data must be a function or callable class" assert len(query_name) > 0, "query_name must be a string" assert len(key_column) > 0, "key_column must have some value" assert type(mapping) is dict, "mapping must be a dictionary" assert type(non_data_fields) is list, "non_data_fields must be a list" self.query_name = query_name self.key_column = key_column self.mapping = mapping self.non_data_fields = non_data_fields self.get_data = get_data def get_data(self): result = self.get_data() assert type(result) is list, "Result from get_data function must be list of dict" return result
apache-2.0
7,730,568,456,058,332,000
41.825
117
0.669002
false
4.167883
false
false
false
aamlima/discobot
MPUtils.py
1
4400
import array import os from disco.voice.playable import (AbstractOpus, BasePlayable, BufferedIO, OpusEncoder, YoutubeDLInput) from disco.voice.queue import PlayableQueue from gevent.fileobject import FileObjectThread class YoutubeDLFInput(YoutubeDLInput): def read(self, sz): if sz is 0: if not os.path.isfile(os.path.join('data', self.info['id'])): f_obj = open(os.path.join('data', self.info['id']), 'wb') file = FileObjectThread(f_obj, 'wb') super(YoutubeDLFInput, self).read(0) file.write(self._buffer.read()) file.close() self.close() return b'' if not self._buffer: if os.path.isfile(os.path.join('data', self.info['id'])): with open(os.path.join('data', self.info['id']), 'rb') as file: self._buffer = BufferedIO(file.read()) else: f_obj = open(os.path.join('data', self.info['id']), 'wb') file = FileObjectThread(f_obj, 'wb') super(YoutubeDLFInput, self).read(0) file.write(self._buffer.read()) file.close() self._buffer.seekable() and self._buffer.seek(0) return self._buffer.read(sz) def close(self): if self._buffer: self._buffer.close() self._buffer = None class UnbufferedOpusEncoderPlayable(BasePlayable, OpusEncoder, AbstractOpus): def __init__(self, source, *args, **kwargs): self.source = source if hasattr(source, 'info'): self.info = source.info self.volume = 0.1 library_path = kwargs.pop('library_path', None) AbstractOpus.__init__(self, *args, **kwargs) OpusEncoder.__init__(self, self.sampling_rate, self.channels, library_path=library_path) self.source.read(0) def next_frame(self): if self.source: raw = self.source.read(self.frame_size) if len(raw) < self.frame_size: self.source.close() return None if self.volume == 1.0: return self.encode(raw, self.samples_per_frame) buffer = array.array('h', raw) for pos, byte in enumerate(buffer): buffer[pos] = int(min(32767, max(-32767, byte * self.volume))) return self.encode(buffer.tobytes(), self.samples_per_frame) return None class CircularQueue(PlayableQueue): def get(self): # pylint: disable=W0212 item = self._get() if item.source and item.source._buffer and item.source._buffer.seekable(): item.source._buffer.seek(0) self.append(item) return item def remove(self, index): if len(self._data) > index: return self._data.pop(index) return None def prepend(self, item): self._data.insert(0, item) if self._event: self._event.set() self._event = None def contains(self, item, func): for i in self._data: if func(i, item): return True return False def gen_player_data(player): data = {} data['paused'] = True if player.paused else False data['volume'] = player.volume data['duckingVolume'] = player.ducking_volume data['autopause'] = player.autopause data['autovolume'] = player.autovolume data['queue'] = len(player.queue) data['items'] = len(player.items) data['playlist'] = [{'id': value.info['id'], 'title':value.info['title'], 'duration':value.info['duration'], 'webpageUrl':value.info['webpage_url']} for value in player.queue] data['curItem'] = None if player.now_playing: data['curItem'] = { 'id': player.now_playing.info['id'], 'duration': player.now_playing.info['duration'], 'webpageUrl': player.now_playing.info['webpage_url'], 'title': player.now_playing.info['title'], 'thumbnail': player.now_playing.info['thumbnail'], 'fps': player.now_playing.sampling_rate * player.now_playing.sample_size / player.now_playing.frame_size, 'frame': player.tell_or_seek() / player.now_playing.frame_size } return data
gpl-3.0
3,910,258,917,146,183,000
33.645669
126
0.560227
false
3.859649
false
false
false
degoldschmidt/fly-analysis
src/experiment_stop.py
1
2820
""" Experiment stop (experiment_stop.py) This script takes a video and calculates the frame number of when the experiment was stopped, based on overall pixel changes. D.Goldschmidt - 09/08/16 """ import warnings warnings.filterwarnings("ignore") import numpy as np import cv2 import os import matplotlib.pyplot as plt ## package for plotting __VERBOSE = True def averag(input): sum = 0.*input[0] for vals in input: sum += vals return sum/len(input) # Func to print out only if VERBOSE def vprint(*arg): if __VERBOSE: s= " ".join( map( str, arg ) ) print(s) # Local test #folder = "/Users/degoldschmidt/" #filename = "output.avi" folder = "/Volumes/Elements/raw_data_flies/0727/" filename="VidSave_0726_20-13.avi" profolder = "../tmp/vid/" if not os.path.isfile(profolder + filename): os.system("ffmpeg -i " + folder + filename + " -vf fps=fps=4 -f avi -c:v libx264 -s 50x50 " + profolder + filename) ## maybe in fly logger cap = cv2.VideoCapture(profolder + filename) if not cap.isOpened(): print("Error: Could not open") length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) print("Open video", profolder + filename, "(","#frames:", length, "dims:", (width,height), "fps:", fps,")") delta = [] i=0 filter = int(500/fps) motionthr=50 frames = filter*[None] while(i+1 < length): if i%1000==0: vprint(i) # Capture frame-by-frame ret, gray = cap.read() # Our operations on the frame come here gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY) # center and radius are the results of HoughCircle # mask is a CV_8UC1 image with 0 mask = np.zeros((gray.shape[0], gray.shape[1]), dtype = "uint8") cv2.circle( mask, (int(width/2),int(height/2)), int(width/2-width/20), (255,255,255), -1, 8, 0 ) res = np.zeros((gray.shape[0], gray.shape[1]), dtype = "uint8") np.bitwise_and(gray, mask, res) if i>0: frames[(i-1)%filter] = res-oldpx if i > filter-1: out = averag(frames) if __VERBOSE: cv2.imshow('frame', out) delta.append(sum(sum(out))) oldpx = res i=i+1 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ddelta = [j-i for i, j in zip(delta[:-1], delta[1:])] plt.plot(delta[:],'k--', label="Sum of lowpass-filtered px changes") plt.plot(ddelta[:],'r-', label= "Temp. difference") plt.legend() if __VERBOSE: plt.show() ddelta = np.asarray(ddelta) stopframes = np.asarray(np.nonzero(ddelta > motionthr)) if stopframes.size > 0: print("Experiment stops at frame", stopframes[0,0]) else: print("No experiment stop detected")
gpl-3.0
2,363,480,963,356,214,000
27.21
142
0.63227
false
2.974684
false
false
false
Amarandus/xmppsh
plugins/ipdb.py
1
1331
import socket import sqlite3 class Plugin: def __init__(self, parser, sqlitecur): self._cursor = sqlitecur self._cursor.execute("CREATE TABLE IF NOT EXISTS IPs(Id INT, Name TEXT, IP TEXT, MUC TEXT)") parser.registerCommand([(u"ip", ), (u"list", "List all registered IPs", self._list)]) parser.registerCommand([(u"ip", ), (u"register", "Register your IP", self._register)]) def _list(self, ignore, fromUser): self._cursor.execute("SELECT Name, IP FROM IPs WHERE MUC=?", (fromUser.bare, )) rows = self._cursor.fetchall() msgtext = "" for r in rows: msgtext += "%s - %s\n" % (r[1], r[0]) return (msgtext, 0) def _register(self, ip, fromUser): try: socket.inet_aton(ip[0]) name = fromUser.resource muc = fromUser.bare self._cursor.execute("UPDATE OR IGNORE IPs SET IP=? WHERE Name=? AND MUC=?", (ip[0], name, muc)) if self._cursor.rowcount == 0: self._cursor.execute("INSERT OR IGNORE INTO IPs (IP, Name, MUC) VALUES (?, ?, ?)", (ip[0], name, muc)) return ("Your IP %s has been added" % (ip[0]), 1) except socket.error: return ("Your IP looks malformed", 1) except: return ("You omitted the IP", 1)
mit
-3,799,865,405,480,094,000
40.59375
118
0.557476
false
3.646575
false
false
false
jpzk/evopy
evopy/examples/problems/TR/ORIDSESSVC.py
1
2168
''' This file is part of evopy. Copyright 2012, Jendrik Poloczek evopy is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. evopy is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with evopy. If not, see <http://www.gnu.org/licenses/>. ''' from sys import path path.append("../../../..") from numpy import matrix from sklearn.cross_validation import KFold from evopy.strategies.ori_dses_svc import ORIDSESSVC from evopy.problems.tr_problem import TRProblem from evopy.simulators.simulator import Simulator from evopy.metamodel.dses_svc_linear_meta_model import DSESSVCLinearMetaModel from evopy.operators.scaling.scaling_standardscore import ScalingStandardscore from evopy.metamodel.cv.svc_cv_sklearn_grid_linear import SVCCVSkGridLinear from evopy.operators.termination.accuracy import Accuracy def get_method(): sklearn_cv = SVCCVSkGridLinear(\ C_range = [2 ** i for i in range(-1, 14, 2)], cv_method = KFold(20, 5)) meta_model = DSESSVCLinearMetaModel(\ window_size = 10, scaling = ScalingStandardscore(), crossvalidation = sklearn_cv, repair_mode = 'mirror') method = ORIDSESSVC(\ mu = 15, lambd = 100, theta = 0.3, pi = 70, initial_sigma = matrix([[4.5, 4.5]]), delta = 4.5, tau0 = 0.5, tau1 = 0.6, initial_pos = matrix([[10.0, 10.0]]), beta = 1.0, meta_model = meta_model) return method if __name__ == "__main__": problem = TRProblem() optimizer = get_method() print optimizer.description print problem.description optfit = problem.optimum_fitness() sim = Simulator(optimizer, problem, Accuracy(optfit, 10**(-3))) results = sim.simulate()
gpl-3.0
-3,507,452,398,660,205,600
30.42029
79
0.688653
false
3.595357
false
false
false
hyperwd/hwcram
vpc/migrations/0023_auto_20170926_0016.py
1
1677
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-09-25 16:16 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('vpc', '0022_auto_20170926_0005'), ] operations = [ migrations.AlterField( model_name='createip', name='bandwidth_charge_mode', field=models.CharField(blank=True, choices=[('traffic', '按流量计费'), ('bandwidth', '按带宽计费')], help_text="<font color='blue'>独享带宽填写</font>,<font color='red'>共享带宽留空</font>", max_length=10, null=True, verbose_name='带宽计费方式'), ), migrations.AlterField( model_name='createip', name='bandwidth_name', field=models.CharField(blank=True, help_text="<font color='blue'>独享带宽填写</font>,<font color='red'>共享带宽留空</font", max_length=128, null=True, verbose_name='带宽名称'), ), migrations.AlterField( model_name='createip', name='bandwidth_share_id', field=models.CharField(blank=True, help_text="<font color='blue'>独享带宽留空</font>,<font color='red'>共享带宽填写</font>", max_length=40, null=True, verbose_name='共享带宽ID'), ), migrations.AlterField( model_name='createip', name='bandwidth_size', field=models.IntegerField(blank=True, help_text="<font color='blue'>独享带宽,填写数字,范围1~300M</font>,<font color='red'>共享带宽留空</font>", null=True, verbose_name='带宽大小'), ), ]
mit
-2,558,818,778,893,020,000
42
230
0.608638
false
2.802607
false
false
false
Lemma1/MAC-POSTS
src/setup.py
1
2581
import os import re import sys import platform import subprocess from setuptools import setup, Extension from setuptools.command.build_ext import build_ext from distutils.version import LooseVersion class CMakeExtension(Extension): def __init__(self, name, sourcedir=''): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class CMakeBuild(build_ext): def run(self): try: out = subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError("CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) if platform.system() == "Windows": cmake_version = LooseVersion(re.search(r'version\s*([\d.]+)', out.decode()).group(1)) if cmake_version < '3.1.0': raise RuntimeError("CMake >= 3.1.0 is required on Windows") for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) # print "DEBUG", os.listdir(extdir) cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir, '-DPYTHON_EXECUTABLE=' + sys.executable] cfg = 'Debug' if self.debug else 'Release' build_args = ['--config', cfg] if platform.system() == "Windows": cmake_args += ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}'.format(cfg.upper(), extdir)] if sys.maxsize > 2**32: cmake_args += ['-A', 'x64'] build_args += ['--', '/m'] else: cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg] build_args += ['--', '-j2'] env = os.environ.copy() env['CXXFLAGS'] = '{} -DVERSION_INFO=\\"{}\\"'.format(env.get('CXXFLAGS', ''), self.distribution.get_version()) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp) setup( name='MNMAPI', version='0.0.1', author='Wei Ma', author_email='lemma171@gmail.com', description='A API library for MAC-POSTS (MNM)', long_description='', ext_modules=[CMakeExtension('MNMAPI')], cmdclass=dict(build_ext=CMakeBuild), zip_safe=False, )
mit
-3,688,370,340,519,691,000
35.871429
98
0.573809
false
3.863772
false
false
false
mishudark/indie
mongoforms/forms.py
1
4752
from mongoforms.forms import * from .fields import MongoFormFieldGeneratorCustom import types from django import forms from django.utils.datastructures import SortedDict from mongoengine.base import BaseDocument from mongoforms.fields import MongoFormFieldGenerator from mongoforms.utils import mongoengine_validate_wrapper, iter_valid_fields from mongoengine.fields import ReferenceField class MongoFormMetaClassCustom(type): """Metaclass to create a new MongoForm.""" def __new__(cls, name, bases, attrs): # get all valid existing Fields and sort them fields = [(field_name, attrs.pop(field_name)) for field_name, obj in \ attrs.items() if isinstance(obj, forms.Field)] fields.sort(lambda x, y: cmp(x[1].creation_counter, y[1].creation_counter)) # get all Fields from base classes for base in bases[::-1]: if hasattr(base, 'base_fields'): fields = base.base_fields.items() + fields # add the fields as "our" base fields attrs['base_fields'] = SortedDict(fields) # Meta class available? if 'Meta' in attrs and hasattr(attrs['Meta'], 'document') and \ issubclass(attrs['Meta'].document, BaseDocument): doc_fields = SortedDict() formfield_generator = getattr(attrs['Meta'], 'formfield_generator', \ MongoFormFieldGeneratorCustom)() # walk through the document fields for field_name, field in iter_valid_fields(attrs['Meta']): # add field and override clean method to respect mongoengine-validator doc_fields[field_name] = formfield_generator.generate(field_name, field) doc_fields[field_name].clean = mongoengine_validate_wrapper( doc_fields[field_name].clean, field._validate) # write the new document fields to base_fields doc_fields.update(attrs['base_fields']) attrs['base_fields'] = doc_fields # maybe we need the Meta class later attrs['_meta'] = attrs.get('Meta', object()) return super(MongoFormMetaClassCustom, cls).__new__(cls, name, bases, attrs) class MongoFormIndie(forms.BaseForm): """Base MongoForm class. Used to create new MongoForms""" __metaclass__ = MongoFormMetaClassCustom def __init__(self, data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=forms.util.ErrorList, label_suffix=':', empty_permitted=False, instance=None): """ initialize the form""" assert isinstance(instance, (types.NoneType, BaseDocument)), \ 'instance must be a mongoengine document, not %s' % \ type(instance).__name__ assert hasattr(self, 'Meta'), 'Meta class is needed to use MongoForm' # new instance or updating an existing one? if instance is None: if self._meta.document is None: raise ValueError('MongoForm has no document class specified.') self.instance = self._meta.document() object_data = {} self.instance._adding = True else: self.instance = instance self.instance._adding = False object_data = {} # walk through the document fields for field_name, field in iter_valid_fields(self._meta): # add field data if needed field_data = getattr(instance, field_name) if isinstance(self._meta.document._fields[field_name], ReferenceField): # field data could be None for not populated refs field_data = field_data and str(field_data.id) object_data[field_name] = field_data # additional initial data available? if initial is not None: object_data.update(initial) for field_name, field in iter_valid_fields(self._meta): if not data.get(field_name, None) and field.default: try: default = field.default() except Exception, e: default = field.default data[field_name] = default self._validate_unique = False super(MongoFormIndie, self).__init__(data, files, auto_id, prefix, object_data, error_class, label_suffix, empty_permitted) def save(self, commit=True): """save the instance or create a new one..""" # walk through the document fields for field_name, field in iter_valid_fields(self._meta): setattr(self.instance, field_name, self.cleaned_data.get(field_name)) if commit: self.instance.save() return self.instance
mit
4,198,350,166,523,423,000
40.684211
88
0.616162
false
4.420465
false
false
false
TGDiamond/Diamond
qa/rpc-tests/getblocktemplate.py
1
3681
#!/usr/bin/env python # Copyright (c) 2014 The Diamond Core developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Exercise the listtransactions API from test_framework import DiamondTestFramework from diamondrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def check_array_result(object_array, to_match, expected): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. """ num_matched = 0 for item in object_array: all_match = True for key,value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue for key,value in expected.items(): if item[key] != value: raise AssertionError("%s : expected %s=%s"%(str(item), str(key), str(value))) num_matched = num_matched+1 if num_matched == 0: raise AssertionError("No objects matched %s"%(str(to_match))) import threading class LongpollThread(threading.Thread): def __init__(self, node): threading.Thread.__init__(self) # query current longpollid templat = node.getblocktemplate() self.longpollid = templat['longpollid'] # create a new connection to the node, we can't use the same # connection from two threads self.node = AuthServiceProxy(node.url, timeout=600) def run(self): self.node.getblocktemplate({'longpollid':self.longpollid}) class GetBlockTemplateTest(DiamondTestFramework): ''' Test longpolling with getblocktemplate. ''' def run_test(self, nodes): print "Warning: this test will take about 70 seconds in the best case. Be patient." nodes[0].setgenerate(True, 10) templat = nodes[0].getblocktemplate() longpollid = templat['longpollid'] # longpollid should not change between successive invocations if nothing else happens templat2 = nodes[0].getblocktemplate() assert(templat2['longpollid'] == longpollid) # Test 1: test that the longpolling wait if we do nothing thr = LongpollThread(nodes[0]) thr.start() # check that thread still lives thr.join(5) # wait 5 seconds or until thread exits assert(thr.is_alive()) # Test 2: test that longpoll will terminate if another node generates a block nodes[1].setgenerate(True, 1) # generate a block on another node # check that thread will exit now that new transaction entered mempool thr.join(5) # wait 5 seconds or until thread exits assert(not thr.is_alive()) # Test 3: test that longpoll will terminate if we generate a block ourselves thr = LongpollThread(nodes[0]) thr.start() nodes[0].setgenerate(True, 1) # generate a block on another node thr.join(5) # wait 5 seconds or until thread exits assert(not thr.is_alive()) # Test 4: test that introducing a new transaction into the mempool will terminate the longpoll thr = LongpollThread(nodes[0]) thr.start() # generate a random transaction and submit it (txid, txhex, fee) = random_transaction(nodes, Decimal("1.1"), Decimal("0.0"), Decimal("0.001"), 20) # after one minute, every 10 seconds the mempool is probed, so in 80 seconds it should have returned thr.join(60 + 20) assert(not thr.is_alive()) if __name__ == '__main__': GetBlockTemplateTest().main()
mit
-8,546,662,378,669,306,000
38.159574
108
0.652268
false
4.022951
true
false
false
danianr/NINJa
joblist.py
1
1541
from collections import deque class JobList(object): def __init__(self, jobMap=None, initial=None): self.jobs = dict() self.merged= deque() if type(jobMap) is dict: for (user, prev) in jobMap.iteritems(): assert type(prev) is list self.jobs[user] = prev if initial is None: self.merged.extendleft(jobs) if type(initial) is deque: self.merged.extend(initial) def add(self, username, jobId): if username in self.jobs: for n in filter( lambda x: x in self.merged, self.jobs[username]): self.merged.remove(n) self.jobs[username].append(jobId) else: self.jobs[username] = [jobId] self.merged.extendleft(self.jobs[username]) def remove(self, removedJobs): for n in filter( lambda x: x in self.merged, removedJobs): self.merged.remove(n) for jobseq in self.jobs.values(): map( jobseq.remove, filter( lambda x: x in jobseq, removedJobs) ) def __iter__(self): return iter(self.merged) def __getitem__(self, n): return self.merged[n] def __getslice__(self, i, j): return self.merged[i:j] def __delitem__(self, n): self.remove([n]) def __delslice__(self, i, j): self.remove(self, self.merged[i:j]) def __repr__(self): return "JobList( jobMap=%s, initial=%s )" % \ (repr(self.jobs), repr(self.merged) ) def __str__(self): return "%s" % list(self.merged)
mit
-6,834,064,029,022,998,000
23.078125
75
0.573005
false
3.550691
false
false
false
jarhill0/ABot
memetext.py
1
6729
spork = 'hi every1 im new!!!!!!! holds up spork my name is katy but u can call me t3h PeNgU1N oF d00m!!!!!!!! lol…as ' \ 'u can see im very random!!!! thats why i came here, 2 meet random ppl like me _… im 13 years old (im mature ' \ '4 my age tho!!) i like 2 watch invader zim w/ my girlfreind (im bi if u dont like it deal w/it) its our ' \ 'favorite tv show!!! bcuz its SOOOO random!!!! shes random 2 of course but i want 2 meet more random ppl =) ' \ 'like they say the more the merrier!!!! lol…neways i hope 2 make alot of freinds here so give me lots of ' \ 'commentses!!!!\nDOOOOOMMMM!!!!!!!!!!!!!!!! <--- me bein random again _^ hehe…toodles!!!!!\n\nlove and ' \ 'waffles,\n\nt3h PeNgU1N oF d00m' settings = 'Current settings:\n/redditlimit followed by a number to set limit of reddit posts displayed by ' \ '/redditposts (example usage: `/redditlimit 5`)\n/subscribe or /unsubscribe followed by a topic (' \ '`xkcd`, `launches`, etc.) to subscribe or unsubscribe the current chat from notifications about ' \ 'that topic\n/timezone followed by a number between -24 and 24 to set your offset from UTC' marines = 'What the fuck did you just fucking say about me, you little bitch? I’ll have you know I graduated top of ' \ 'my class in the Navy Seals, and I’ve been involved in numerous secret raids on Al-Quaeda, and I have over ' \ '300 confirmed kills. I am trained in gorilla warfare and I’m the top sniper in the entire US armed forces.' \ ' You are nothing to me but just another target. I will wipe you the fuck out with precision the likes of ' \ 'which has never been seen before on this Earth, mark my fucking words. You think you can get away with ' \ 'saying that shit to me over the Internet? Think again, fucker. As we speak I am contacting my secret ' \ 'network of spies across the USA and your IP is being traced right now so you better prepare for the ' \ 'storm, maggot. The storm that wipes out the pathetic little thing you call your life. You’re fucking dead,' \ ' kid. I can be anywhere, anytime, and I can kill you in over seven hundred ways, and that’s just with my' \ ' bare hands. Not only am I extensively trained in unarmed combat, but I have access to the entire arsenal' \ ' of the United States Marine Corps and I will use it to its full extent to wipe your miserable ass off the' \ ' face of the continent, you little shit. If only you could have known what unholy retribution your little ' \ '“clever” comment was about to bring down upon you, maybe you would have held your fucking tongue. But you ' \ 'couldn’t, you didn’t, and now you’re paying the price, you goddamn idiot. I will shit fury all over you ' \ 'and you will drown in it. You’re fucking dead, kiddo.' myrynys = 'Whyt thy fyck dyd yyy yyst fyckyng syy ybyyt my, yyy lyttly bytch? y’ll hyvy yyy knyw Y ' \ 'grydyytyd typ yf my clyss yn thy Nyvy Syyls, ynd Y’ve byyn ynvylvyd yn nymyryys sycryt ryyds yn ' \ 'Yl-Qyyydy, ynd Y hyvy yvyr 300 cynfyrmyd kylls. Y ym tryynyd yn gyrylly wyrfyry ynd Y’m thy typ ' \ 'snypyr yn thy yntyry YS yrmyd fyrcys. Yyy yry nythyng ty my byt jyst ynythyr tyrgyt. Y wyll wypy ' \ 'yyy thy fyck yyt wyth prycysyyn thy lykys yf whych hys nyvyr byyn syyn byfyry yn thys Yyrth, ' \ 'myrk my fyckyng wyrds. Yyy thynk yyy cyn gyt ywyy wyth syyyng thyt shyt ty my yvyr thy Yntyrnyt?' \ 'Thynk ygyyn, fyckyr. Ys wy spyyk Y ym cyntyctyng my sycryt nytwyrk yf spyys ycryss thy YSY ynd ' \ 'yyyr YP ys byyng trycyd ryght nyw sy yyy byttyr prypyry fyr thy styrm, myggyt. Thy styrm thyt ' \ 'wypys yyt thy pythytyc lyttly thyng yyy cyll yyyr lyfy. Yyy’ry fyckyng dyyd, kyd. Y cyn by ' \ 'ynywhyry, ynytymy, ynd Y cyn kyll yyy yn yvyr syvyn hyndryd wyys, ynd thyt’s jyst wyth my byry ' \ 'hynds. Nyt ynly ym Y yxtynsyvyly tryynyd yn ynyrmyd cymbyt, byt y hyvy yccyss ty thy yntyry ' \ 'yrsynyl yf thy Ynytyd Stytys Myryny Cyrps ynd Y wyll ysy yt ty yts fyll yxtynt ty wypy yyyr ' \ 'mysyrybly yss yff thy fycy yf thy cyntynynt, yyy lyttly shyt. Yf ynly yyy cyyld hyvy knywn whyt ' \ 'ynhyly rytrybytyyn yyyr lyttly “clyvyr” cymmynt wys abyyt ty bryng dywn ypyn yyy, ' \ 'myyby yyy wyyld hyvy hyld yyyr fyckyng tyngyy. Byt yyy cyyldn’t, yyy dydn’t, ynd nyw yyy’ry ' \ 'pyyyng thy prycy, yyy gyddymn ydyyt. Y wyll shyt fyry yll yvyr yyy ynd yyy wyll drywn yn yt. ' \ 'Yyy’ry fyckyng dyyd, kyddy.' xD = """ 😂😂😂😂😂😂😂😂😂😂😂😂😂😂😂 😂🆒🆒🆒🆒🆒🆒🆒🆒🆒🆒🆒🆒🆒😂 😂🆒💯🆒🆒🆒💯🆒💯💯💯🆒🆒🆒😂 😂🆒💯💯🆒💯💯🆒💯🆒💯💯🆒🆒😂 😂🆒🆒💯🆒💯🆒🆒💯🆒🆒💯💯🆒😂 😂🆒🆒💯💯💯🆒🆒💯🆒🆒🆒💯🆒😂 😂🆒🆒🆒💯🆒🆒🆒💯🆒🆒🆒💯🆒😂 😂🆒🆒💯💯💯🆒🆒💯🆒🆒🆒💯🆒😂 😂🆒🆒💯🆒💯🆒🆒💯🆒🆒💯💯🆒😂 😂🆒💯💯🆒💯💯🆒💯🆒💯💯🆒🆒😂 😂🆒💯🆒🆒🆒💯🆒💯💯💯🆒🆒🆒😂 😂🆒🆒🆒🆒🆒🆒🆒🆒🆒🆒🆒🆒🆒😂 😂😂😂😂😂😂😂😂😂😂😂😂😂😂😂 """ pede = """ ╚═( ͡° ͜ʖ ͡°)═╝ ╚═(███)═╝ ╚═(███)═╝ .╚═(███)═╝ ..╚═(███)═╝ …╚═(███)═╝ …╚═(███)═╝ ..╚═(███)═╝ .╚═(███)═╝ ╚═(███)═╝ .╚═(███)═╝ ..╚═(███)═╝ …╚═(███)═╝ …╚═(███)═╝ ..╚═(███)═╝ .╚═(███)═╝ ╚═(███)═╝ .╚═(███)═╝ ..╚═(███)═╝ …╚═(███)═╝ …╚═(███)═╝ ..╚═(███)═╝ .╚═(███)═╝ ╚═(███)═╝ .╚═(███)═╝ ..╚═(███)═╝ …╚═(███)═╝ …╚═(███)═╝ ..╚═(███)═╝ .╚═(███)═╝ ╚═(███)═╝ .╚═(███)═╝ ..╚═(███)═╝ …╚═(███)═╝ …╚═(███)═╝ ..╚═(███)═╝ .╚═(███)═╝ ╚═(███)═╝ .╚═(███)═╝ ..╚═(███)═╝ …╚═(███)═╝ …╚═(███)═╝ …..╚(███)╝ ……╚(██)╝ ………(█) ……….* """
gpl-3.0
1,667,627,879,406,881,800
48.036036
120
0.580669
false
1.762306
false
false
false
hit9/skylark
examples/messageboard/messageboard/views.py
1
1358
# coding=utf8 from datetime import datetime from messageboard import app from messageboard.models import Message from flask import flash, render_template, request, redirect, url_for @app.route('/', methods=['GET']) def index(): query = Message.orderby( Message.create_at, desc=True).select() # sort by created time results = query.execute() messages = results.all() return render_template('template.html', messages=messages) @app.route('/create', methods=['POST']) def create(): title = request.form['title'] content = request.form['content'] if title and content: message = Message.create( title=title, content=content, create_at=datetime.now()) if message is not None: # ok flash(dict(type='success', content='New message created')) else: # create failed flash(dict(type='error', content='Failed to create new message')) else: # invalid input flash(dict(type='warning', content='Empty input')) return redirect(url_for('index')) @app.route('/delete/<int:id>') def delete(id): query = Message.at(id).delete() if query.execute(): flash(dict(type='success', content='Message %d dropped' % id)) else: flash(dict(type='error', content='Failed to drop message %d' % id)) return redirect(url_for('index'))
bsd-2-clause
4,533,618,793,132,142,000
29.863636
77
0.648012
false
3.891117
false
false
false
rwl/muntjac
muntjac/demo/sampler/features/panels/PanelBasicExample.py
1
1214
from muntjac.api import VerticalLayout, Panel, Label, Button from muntjac.ui.button import IClickListener class PanelBasicExample(VerticalLayout, IClickListener): def __init__(self): super(PanelBasicExample, self).__init__() self.setSpacing(True) # Panel 1 - with caption self._panel = Panel('This is a standard Panel') self._panel.setHeight('200px') # we want scrollbars # let's adjust the panels default layout (a VerticalLayout) layout = self._panel.getContent() layout.setMargin(True) # we want a margin layout.setSpacing(True) # and spacing between components self.addComponent(self._panel) # Let's add a few rows to provoke scrollbars: for _ in range(20): l = Label('The quick brown fox jumps over the lazy dog.') self._panel.addComponent(l) # Caption toggle: b = Button('Toggle caption') b.addListener(self, IClickListener) self.addComponent(b) def buttonClick(self, event): if self._panel.getCaption() == '': self._panel.setCaption('This is a standard Panel') else: self._panel.setCaption('')
apache-2.0
2,618,713,346,185,340,000
31.810811
69
0.625206
false
3.954397
false
false
false
intip/aldryn-bootstrap3
aldryn_bootstrap3/model_fields.py
1
8060
# -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import from six import with_metaclass import django.core.exceptions import django.db.models import django.forms from django.utils.encoding import smart_text from . import fields class SouthMixinBase(object): south_field_class = '' def south_field_triple(self): """Returns a suitable description of this field for South.""" if not self.south_field_class: raise NotImplementedError('please set south_field_class when using the south field mixin') # We'll just introspect ourselves, since we inherit. from south.modelsinspector import introspector field_class = self.south_field_class args, kwargs = introspector(self) # That's our definition! return field_class, args, kwargs class SouthCharFieldMixin(SouthMixinBase): south_field_class = "django.db.models.fields.CharField" class SouthTextFieldMixin(SouthMixinBase): south_field_class = "django.db.models.fields.TextField" class SouthIntegerFieldMixin(SouthMixinBase): south_field_class = "django.db.models.fields.IntegerField" class Classes(django.db.models.TextField, SouthTextFieldMixin): # TODO: validate default_field_class = fields.Classes def __init__(self, *args, **kwargs): if 'blank' not in kwargs: kwargs['blank'] = True if 'default' not in kwargs: kwargs['default'] = '' if 'help_text' not in kwargs: kwargs['help_text'] = 'space separated classes that are added to the class. see <a href="http://getbootstrap.com/css/" target="_blank">bootstrap docs</a>' super(Classes, self).__init__(*args, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, } defaults.update(kwargs) return super(Classes, self).formfield(**defaults) class Context(django.db.models.fields.CharField, SouthCharFieldMixin): default_field_class = fields.Context def __init__(self, *args, **kwargs): if 'max_length' not in kwargs: kwargs['max_length'] = 255 if 'blank' not in kwargs: kwargs['blank'] = False if 'default' not in kwargs: kwargs['default'] = self.default_field_class.DEFAULT super(Context, self).__init__(*args, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, 'choices_form_class': self.default_field_class, } defaults.update(kwargs) return super(Context, self).formfield(**defaults) def get_choices(self, **kwargs): # if there already is a "blank" choice, don't add another # default blank choice if '' in dict(self.choices).keys(): kwargs['include_blank'] = False return super(Context, self).get_choices(**kwargs) class Size(django.db.models.CharField, SouthCharFieldMixin): default_field_class = fields.Size def __init__(self, *args, **kwargs): if 'max_length' not in kwargs: kwargs['max_length'] = 255 if 'blank' not in kwargs: kwargs['blank'] = True if 'default' not in kwargs: kwargs['default'] = self.default_field_class.DEFAULT super(Size, self).__init__(*args, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, 'choices_form_class': self.default_field_class, } defaults.update(kwargs) return super(Size, self).formfield(**defaults) def get_choices(self, **kwargs): # if there already is a "blank" choice, don't add another # default blank choice if '' in dict(self.choices).keys(): kwargs['include_blank'] = False return super(Size, self).get_choices(**kwargs) class Icon(django.db.models.CharField, SouthCharFieldMixin): default_field_class = fields.Icon def __init__(self, *args, **kwargs): if 'max_length' not in kwargs: kwargs['max_length'] = 255 if 'blank' not in kwargs: kwargs['blank'] = True if 'default' not in kwargs: kwargs['default'] = self.default_field_class.DEFAULT super(Icon, self).__init__(*args, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, } defaults.update(kwargs) return super(Icon, self).formfield(**defaults) class IntegerField(django.db.models.IntegerField, SouthIntegerFieldMixin): default_field_class = fields.Integer def __init__(self, verbose_name=None, name=None, min_value=None, max_value=None, **kwargs): self.min_value, self.max_value = min_value, max_value django.db.models.IntegerField.__init__(self, verbose_name, name, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, 'min_value': self.min_value, 'max_value': self.max_value, } defaults.update(kwargs) return super(IntegerField, self).formfield(**defaults) class MiniText(django.db.models.TextField, SouthTextFieldMixin): default_field_class = fields.MiniText def __init__(self, *args, **kwargs): if 'blank' not in kwargs: kwargs['blank'] = True if 'default' not in kwargs: kwargs['default'] = '' super(MiniText, self).__init__(*args, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, } defaults.update(kwargs) return super(MiniText, self).formfield(**defaults) class LinkOrButton(django.db.models.fields.CharField, SouthCharFieldMixin): default_field_class = fields.LinkOrButton def __init__(self, *args, **kwargs): if 'max_length' not in kwargs: kwargs['max_length'] = 10 if 'blank' not in kwargs: kwargs['blank'] = False if 'default' not in kwargs: kwargs['default'] = self.default_field_class.DEFAULT super(LinkOrButton, self).__init__(*args, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, 'choices_form_class': self.default_field_class, } defaults.update(kwargs) return super(LinkOrButton, self).formfield(**defaults) def get_choices(self, **kwargs): # if there already is a "blank" choice, don't add another # default blank choice if '' in dict(self.choices).keys(): kwargs['include_blank'] = False return super(LinkOrButton, self).get_choices(**kwargs) # class JSONField(json_field.JSONField, SouthTextFieldMixin): # pass class Responsive(MiniText): default_field_class = fields.Responsive def __init__(self, *args, **kwargs): if 'blank' not in kwargs: kwargs['blank'] = True if 'default' not in kwargs: kwargs['default'] = '' super(Responsive, self).__init__(*args, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, } defaults.update(kwargs) return super(Responsive, self).formfield(**defaults) class ResponsivePrint(MiniText): default_field_class = fields.ResponsivePrint def __init__(self, *args, **kwargs): if 'blank' not in kwargs: kwargs['blank'] = True if 'default' not in kwargs: kwargs['default'] = '' super(ResponsivePrint, self).__init__(*args, **kwargs) def formfield(self, **kwargs): defaults = { 'form_class': self.default_field_class, } defaults.update(kwargs) return super(ResponsivePrint, self).formfield(**defaults) #TODO: # * btn-block, disabled # * pull-left, pull-right # * margins/padding
bsd-3-clause
6,422,208,715,115,952,000
32.443983
166
0.6134
false
3.990099
false
false
false
alubbock/pysb-legacy
pysb/tools/render_species.py
1
4636
#!/usr/bin/env python import sys import os import re import pygraphviz import pysb.bng def run(model): pysb.bng.generate_equations(model) graph = pygraphviz.AGraph(name="%s species" % model.name, rankdir="LR", fontname='Arial') graph.edge_attr.update(fontname='Arial', fontsize=8) for si, cp in enumerate(model.species): sgraph_name = 'cluster_s%d' % si cp_label = re.sub(r'% ', '%<br align="left"/>', str(cp)) + '<br align="left"/>' sgraph_label = '<<font point-size="10" color="blue">s%d</font><br align="left"/><font face="Consolas" point-size="6">%s</font>>' % (si, cp_label) sgraph = graph.add_subgraph(name=sgraph_name, label=sgraph_label, color="gray75", sortv=sgraph_name) bonds = {} for mi, mp in enumerate(cp.monomer_patterns): monomer_node = '%s_%d' % (sgraph_name, mi) monomer_label = '<<table border="0" cellborder="1" cellspacing="0">' monomer_label += '<tr><td bgcolor="#a0ffa0"><b>%s</b></td></tr>' % mp.monomer.name for site in mp.monomer.sites: site_state = None cond = mp.site_conditions[site] if isinstance(cond, str): site_state = cond elif isinstance(cond, tuple): site_state = cond[0] site_label = site if site_state is not None: site_label += '=<font color="purple">%s</font>' % site_state monomer_label += '<tr><td port="%s">%s</td></tr>' % (site, site_label) for site, value in mp.site_conditions.items(): site_bonds = [] # list of bond numbers if isinstance(value, int): site_bonds.append(value) elif isinstance(value, tuple): site_bonds.append(value[1]) elif isinstance(value, list): site_bonds += value for b in site_bonds: bonds.setdefault(b, []).append((monomer_node, site)) monomer_label += '</table>>' sgraph.add_node(monomer_node, label=monomer_label, shape="none", fontname="Arial", fontsize=8) for bi, sites in bonds.items(): node_names, port_names = zip(*sites) sgraph.add_edge(node_names, tailport=port_names[0], headport=port_names[1], label=str(bi)) return graph.string() usage = """ Usage: python -m pysb.tools.render_species mymodel.py > mymodel.dot Renders the species from a model into the "dot" graph format which can be visualized with Graphviz. To create a PDF from the .dot file, use the Graphviz tools in the following command pipeline: ccomps -x mymodel.dot | dot | gvpack -m0 | neato -n2 -T pdf -o mymodel.pdf You can also change the "dot" command to "circo" or "sfdp" for a different type of layout. Note that you can pipe the output of render_species straight into a Graphviz command pipeline without creating an intermediate .dot file, which is especially helpful if you are making continuous changes to the model and need to visualize your changes repeatedly: python -m pysb.tools.render_species mymodel.py | ccomps -x | dot | gvpack -m0 | neato -n2 -T pdf -o mymodel.pdf Note that some PDF viewers will auto-reload a changed PDF, so you may not even need to manually reopen it every time you rerun the tool. """ usage = usage[1:] # strip leading newline if __name__ == '__main__': # sanity checks on filename if len(sys.argv) <= 1: print usage, exit() model_filename = sys.argv[1] if not os.path.exists(model_filename): raise Exception("File '%s' doesn't exist" % model_filename) if not re.search(r'\.py$', model_filename): raise Exception("File '%s' is not a .py file" % model_filename) sys.path.insert(0, os.path.dirname(model_filename)) model_name = re.sub(r'\.py$', '', os.path.basename(model_filename)) # import it try: # FIXME if the model has the same name as some other "real" module which we use, # there will be trouble (use the imp package and import as some safe name?) model_module = __import__(model_name) except StandardError as e: print "Error in model script:\n" raise # grab the 'model' variable from the module try: model = model_module.__dict__['model'] except KeyError: raise Exception("File '%s' isn't a model file" % model_filename) print run(model)
bsd-2-clause
2,940,613,078,015,021,600
42.735849
153
0.59189
false
3.627543
false
false
false
xiangarpm/arpym_template
arpym_template/estimation/flexible_probabilities.py
1
4668
# -*- coding: utf-8 -*- """ For details, see `Section 3.1 <https://www.arpm.co/lab/redirect.php?permalink=setting-flexible-probabilities>`_. """ from collections import namedtuple import numpy as np class FlexibleProbabilities(object): """Flexible Probabilities """ def __init__(self, data): self.x = data self.p = np.ones(len(data))/len(data) def shape(self): """Shape of the data """ return self.x.shape def mean(self): """Sample mean with flexible probabilities """ return np.dot(self.p, self.x) def cov(self): """Sample covariance with flexible probabilities """ x_ = self.x - np.mean(self.x, axis=0) return np.dot(np.multiply(np.transpose(x_), self.p), x_) def equal_weight(self): """Equally weighted probabilities """ self.p = np.ones(len(self.x))/len(self.x) def exponential_decay(self, tau): """Exponentail decay probabilities """ t_ = len(self.x) self.p = np.exp(-np.log(2)/tau*(t_-np.arange(0, t_))) self.p = self.p / np.sum(self.p) def smooth_kernel(self, z=None, z_star=None, h=None, gamma=2): """Smooth kernel probabilities """ if z is None: z = self.x[:, 0] if z_star is None: z_star = np.mean(z) if h is None: h = np.std(z) self.p = np.exp(-(np.abs(z - z_star)/h)**gamma) self.p = self.p / np.sum(self.p) def effective_scenarios(self, Type=None): """This def computes the Effective Number of Scenarios of Flexible Probabilities via different types of defs For details on the function, please see |ex_effective_scenarios| |code_effective_scenarios| Note: The exponential of the entropy is set as default, otherwise specify ``Type.ExpEntropy.on = true`` to use the exponential of the entropy or specify ``Type.GenExpEntropy.on = true`` and supply the scalar ``Type.ExpEntropy.g`` to use the generalized exponential of the entropy. Args: Type (tuple): type of def: ``ExpEntropy``, ``GenExpEntropy`` Returns: ens (double): Effective Number of Scenarios .. |ex_effective_scenarios| image:: icon_ex_inline.png :scale: 20 % :target: https://www.arpm.co/lab/redirect.php?permalink=EBEffectNbScenFun .. |code_effective_scenarios| image:: icon-code-1.png :scale: 20 % :target: https://www.arpm.co/lab/redirect.php?code=EffectiveScenarios """ if Type is None: Type = namedtuple('type', ['Entropy']) Type.Entropy = 'Exp' if Type.Entropy != 'Exp': Type.Entropy = 'GenExp' # Code p_ = self.p if Type.Entropy == 'Exp': p_[p_ == 0] = 10 ** (-250) # avoid log(0) in ens computation ens = np.exp(-p_@np.log(p_.T)) else: ens = np.sum(p_ ** Type.g) ** (-1 / (Type.g - 1)) return ens def diff_length_mlfp(fp, nu, threshold, smartinverse=0, maxiter=10**5): """Maximum-likelihood with flexible probabilities for different-length series For details on the function, please see |ex_diff_length_mlfp| |code_diff_length_mlfp| Note: We suppose the missing values, if any, are at the beginning. (the farthest observations in the past could be missing). We reshuffle the series in a nested pattern, such that the series with the longer history comes first and the one with the shorter history comes last. Args: fp (FlexibleProbabilities): obsrevations with flexible probabilities nu (double): degrees of freedom for the multivariate Student t-distribution threshold (double): convergence thresholds smartinverse (double, optional): additional parameter: set it to 1 to use LRD smart inverse in the regression process maxiter (int, optional): maximum number of iterations inside ``MaxLikFPTReg`` Returns: mu (numpy.ndarray): DLFP estimate of the location parameter sig2 (numpy.ndarray): DLFP estimate of the dispersion parameter .. |ex_diff_length_mlfp| image:: icon_ex_inline.png :scale: 20 % :target: https://www.arpm.co/lab/redirect.php?permalink=DiffLengthRout .. |code_diff_length_mlfp| image:: icon-code-1.png :scale: 20 % :target: https://www.arpm.co/lab/redirect.php?codeplay=DiffLengthMLFP """ return None
bsd-2-clause
3,235,306,941,653,997,600
32.106383
95
0.592759
false
3.785888
false
false
false
Azulinho/sunflower-file-manager-with-tmsu-tagging-support
application/plugins/tmsu_column/plugin.py
1
1904
import gtk from plugins.file_list.plugin import Column, FileList from plugin_base.column_extension import ColumnExtension from subprocess import check_output def register_plugin(application): """Register plugin class with application""" application.register_column_extension(FileList, TagsColumn) class BaseColumn(ColumnExtension): """Base class for extending owner and group for item list""" def __init__(self, parent, store): ColumnExtension.__init__(self, parent, store) self._parent = parent # create column object self._create_column() def _create_column(self): """Create column""" self._cell_renderer = gtk.CellRendererText() self._parent.set_default_font_size(self._get_column_name(), 8) self._column = gtk.TreeViewColumn(self._get_column_title()) self._column.pack_start(self._cell_renderer, True) self._column.set_data('name', self._get_column_name()) def _get_column_name(self): """Returns column name""" return None def _get_column_title(self): """Returns column title""" return None def __set_cell_data(self, column, cell, store, selected_iter, data=None): """Set column value""" pass class TagsColumn(BaseColumn): """Adds support for displaying tags in item list""" def __set_cell_data(self, column, cell, store, selected_iter, data=None): """Set column value""" is_parent = store.get_value(selected_iter, Column.IS_PARENT_DIR) value = (store.get_value(selected_iter, Column.TAGS), '')[is_parent] cell.set_property('text', value) def _create_column(self): """Configure column""" BaseColumn._create_column(self) self._column.set_cell_data_func(self._cell_renderer, self.__set_cell_data) def _get_column_name(self): """Returns column name""" return 'tags' def _get_column_title(self): """Returns column title""" return _('Tags') def get_sort_column(self): """Return sort column""" return Column.TAGS
gpl-3.0
-4,224,020,129,806,103,600
25.816901
76
0.707458
false
3.294118
false
false
false
miquelcampos/GEAR_mc
gear/xsi/rig/component/eyelid_01/guide.py
1
7407
''' This file is part of GEAR_mc. GEAR_mc is a fork of Jeremie Passerin's GEAR project. GEAR is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/lgpl.html>. Author: Jeremie Passerin geerem@hotmail.com www.jeremiepasserin.com Fork Author: Miquel Campos hello@miqueltd.com www.miqueltd.com Date: 2013 / 08 / 16 ''' ## @package gear.xsi.rig.component.eyelid_01.guide # @author Miquel Campos # ########################################################## # GLOBAL ########################################################## # gear from gear.xsi import xsi, c, XSIMath from gear.xsi.rig.component.guide import ComponentGuide import gear.xsi.applyop as aop # guide info AUTHOR = "Miquel Campos " URL = "http://www.miqueltd.com" EMAIL = "hello@miqueltd.com" VERSION = [1,0,0] TYPE = "eyelid_01" NAME = "eyelid" DESCRIPTION = "eyelids rig" ########################################################## # CLASS ########################################################## class Guide(ComponentGuide): compType = TYPE compName = NAME description = DESCRIPTION author = AUTHOR url = URL email = EMAIL version = VERSION # ===================================================== ## # @param self def postInit(self): self.pick_transform = ["root", "#_loc"] self.save_transform = ["root", "upVector", "direction", "#_loc"] self.save_blade = ["blade"] self.addMinMax("#_loc", 1, -1) # ===================================================== ## Add more object to the object definition list. # @param self def addObjects(self): self.root = self.addRoot() self.locs = self.addLocMulti("#_loc", self.root, False) vTemp = XSIMath.CreateVector3(self.root.Kinematics.Global.PosX.Value , self.root.Kinematics.Global.PosY.Value +2, self.root.Kinematics.Global.PosZ.Value ) self.upVector = self.addLoc("upVector", self.root, vTemp ) vTemp = XSIMath.CreateVector3(self.root.Kinematics.Global.PosX.Value , self.root.Kinematics.Global.PosY.Value , self.root.Kinematics.Global.PosZ.Value +2 ) self.direction = self.addLoc("direction", self.root, vTemp ) centers = [self.direction, self.root, self.upVector] self.dispcrv = self.addDispCurve("crvUp", centers) self.blade = self.addBlade("blade", self.root, self.upVector) centers = [] centers.extend(self.locs) self.dispcrv = self.addDispCurve("crv", centers) # ===================================================== ## Add more parameter to the parameter definition list. # @param self def addParameters(self): # eye corners controlers self.pCornerA = self.addParam("cornerARef", c.siInt4, None, 0, None) self.pCornerAArray = self.addParam("cornerARefArray", c.siString, "") self.pCornerB = self.addParam("cornerBRef", c.siInt4, None, 0, None) self.pCornerBArray = self.addParam("cornerBRefArray", c.siString, "") # ===================================================== ## Add layout for new parameters. # @param self def addLayout(self): # -------------------------------------------------- # Items cornerAItemsCode = "cornerARefItems = []" +"\r\n"+\ "if PPG."+self.pCornerAArray.scriptName+".Value:" +"\r\n"+\ " a = PPG."+self.pCornerAArray.scriptName+".Value.split(',')" +"\r\n"+\ " for i, v in enumerate(a):" +"\r\n"+\ " cornerARefItems.append(a[i])" +"\r\n"+\ " cornerARefItems.append(i)" +"\r\n"+\ "item.UIItems = cornerARefItems" +"\r\n" cornerBItemsCode = "cornerBRefItems = []" +"\r\n"+\ "if PPG."+self.pCornerBArray.scriptName+".Value:" +"\r\n"+\ " a = PPG."+self.pCornerBArray.scriptName+".Value.split(',')" +"\r\n"+\ " for i, v in enumerate(a):" +"\r\n"+\ " cornerBRefItems.append(a[i])" +"\r\n"+\ " cornerBRefItems.append(i)" +"\r\n"+\ "item.UIItems = cornerBRefItems" +"\r\n" # -------------------------------------------------- # Layout tab = self.layout.addTab("Options") # IK/Upv References group = tab.addGroup("Eyelids controls") row = group.addRow() item = row.addEnumControl(self.pCornerA.scriptName, [], "Corner control A", c.siControlCombo) item.setCodeAfter(cornerAItemsCode) row.addButton("PickCornerARef", "Pick New") row.addButton("DeleteCornerARef", "Delete") row = group.addRow() item = row.addEnumControl(self.pCornerB.scriptName, [], "Corner control B", c.siControlCombo) item.setCodeAfter(cornerBItemsCode) row.addButton("PickCornerBRef", "Pick New") row.addButton("DeleteCornerBRef", "Delete") # ===================================================== ## Add logic for new layout. # @param self def addLogic(self): self.logic.addGlobalCode("from gear.xsi.rig.component import logic\r\nreload(logic)") self.logic.addOnClicked("PickCornerARef", "prop = PPG.Inspected(0)\r\n" + "logic.pickReferences(prop, '"+self.pCornerAArray.scriptName+"', '"+self.pCornerA.scriptName+"')\r\n" + "PPG.Refresh() \r\n") self.logic.addOnClicked("DeleteCornerARef", "prop = PPG.Inspected(0)\r\n" + "logic.deleteReference(prop, '"+self.pCornerAArray.scriptName+"', '"+self.pCornerA.scriptName+"')\r\n" + "PPG.Refresh() \r\n") self.logic.addOnClicked("PickCornerBRef", "prop = PPG.Inspected(0)\r\n" + "logic.pickReferences(prop, '"+self.pCornerBArray.scriptName+"', '"+self.pCornerB.scriptName+"')\r\n" + "PPG.Refresh() \r\n") self.logic.addOnClicked("DeleteCornerBRef", "prop = PPG.Inspected(0)\r\n" + "logic.deleteReference(prop, '"+self.pCornerBArray.scriptName+"', '"+self.pCornerB.scriptName+"')\r\n" + "PPG.Refresh() \r\n")
lgpl-3.0
-5,199,398,780,847,984,000
39.26087
164
0.509788
false
3.754181
false
false
false
esrille/replace-with-kanji-by-tutcode
mazegaki/kigou.py
1
1585
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Copyright 2017 Esrille Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # 記号やギリシア文字をつかっている語をリストアップします。 import re import sys re_kigou = re.compile(r"[〇〻\u0370-\u03FF¬°∃∧◇∨≪∪∩〓△▲▽▼■∀≒◆◇≫※□⇔≡⇒∈⊆⊇⊂⊃○●◎〒∵√]") re_kana = re.compile(r"[ぁ-んァ-ヶー]") re_non_regular_yomi = re.compile(r"[^ぁ-んァ-ヶー]") def is_inflectable(kana): return l[0][-1] == "―"; # # main # if __name__ == "__main__": for line in sys.stdin: l = line.split(" ", 1) kana = l[0] if re_non_regular_yomi.search(kana): continue; kanji = l[1].strip(" \n/").split("/") for cand in kanji[:]: if not re_kigou.search(cand): kanji.remove(cand) continue if re_kana.search(cand): kanji.remove(cand) continue if kanji: print(kana, " /", '/'.join(kanji), "/", sep='')
apache-2.0
5,985,953,077,179,379,000
27.66
79
0.59037
false
2.479239
false
false
false
peastman/cbang
config/rpm/__init__.py
1
4971
import os import shutil from SCons.Script import * from SCons.Action import CommandAction def replace_dash(s): return s.replace('-', '_') def write_spec_text_section(f, env, name, var): if var in env: f.write('%%%s\n%s\n\n' % (name, env.get(var).strip())) def write_spec_script(f, env, name, var): if var in env: script = env.get(var) input = None try: input = open(script, 'r') contents = input.read().strip() finally: if input is not None: input.close() f.write('%%%s\n%s\n\n' % (name, contents)) def install_files(f, env, key, build_dir, path, prefix = None, perms = None, dperms = 0755): if perms is None: perms = 0644 if key in env: target = build_dir + path # Copy env.CopyToPackage(env.get(key), target, perms, dperms) # Write files list for src, dst, mode in env.ResolvePackageFileMap(env.get(key), target): if prefix is not None: f.write(prefix + ' ') f.write(dst[len(build_dir):] + '\n') def build_function(target, source, env): name = env.get('package_name_lower') # Create package build dir build_dir = 'build/%s-RPM' % name if os.path.exists(build_dir): shutil.rmtree(build_dir) os.makedirs(build_dir) # Create the SPEC file spec_file = 'build/%s.spec' % name f = None try: f = open(spec_file, 'w') # Create the preamble write_var = env.WriteVariable write_var(env, f, 'Summary', 'summary') write_var(env, f, 'Name', 'package_name_lower', None, replace_dash) write_var(env, f, 'Version', 'version', None, replace_dash) write_var(env, f, 'Release', 'package_build', '1', replace_dash) write_var(env, f, 'License', 'rpm_license') write_var(env, f, 'Group', 'rpm_group') write_var(env, f, 'URL', 'url') write_var(env, f, 'Vendor', 'vendor') write_var(env, f, 'Packager', 'maintainer') write_var(env, f, 'Icon', 'icon') write_var(env, f, 'Prefix', 'prefix') #write_var(env, f, 'BuildArch', 'package_arch', env.GetPackageArch()) write_var(env, f, 'Provides', 'rpm_provides', multi = True) write_var(env, f, 'Conflicts', 'rpm_conflicts', multi = True) write_var(env, f, 'Obsoletes', 'rpm_obsoletes', multi = True) write_var(env, f, 'BuildRequires', 'rpm_build_requires', multi = True) write_var(env, f, 'Requires(pre)', 'rpm_pre_requires', multi = True) write_var(env, f, 'Requires', 'rpm_requires', multi = True) write_var(env, f, 'Requires(postun)', 'rpm_postun_requires', multi = True) # Description write_spec_text_section(f, env, 'description', 'description') # Scripts for script in ['prep', 'build', 'install', 'clean', 'pre', 'post', 'preun', 'postun', 'verifyscript']: write_spec_script(f, env, script, 'rpm_' + script) # Files if 'rpm_filelist' in env: f.write('%%files -f %s\n' % env.get('rpm_filelist')) else: f.write('%files\n') f.write('%defattr(- root root)\n') for files in [ ['documents', '/usr/share/doc/' + name, '%doc', None], ['programs', '/usr/bin', '%attr(0775 root root)', 0755], ['scripts', '/usr/bin', '%attr(0775 root root)', 0755], ['desktop_menu', '/usr/share/applications', None, None], ['init_d', '/etc/init.d', '%config %attr(0775 root root)', None], ['config', '/etc/' + name, '%config', None], ['icons', '/usr/share/pixmaps', None, None], ['platform_independent', '/usr/share/' + name, None, None], ]: install_files(f, env, files[0], build_dir, files[1], files[2], files[3]) # ChangeLog write_spec_text_section(f, env, 'changelog', 'rpm_changelog') finally: if f is not None: f.close() # Create directories needed by rpmbuild for dir in ['BUILD', 'BUILDROOT', 'RPMS', 'SOURCES', 'SPECS', 'SRPMS']: dir = 'build/' + dir if not os.path.exists(dir): os.makedirs(dir) # Build the package build_dir = os.path.realpath(build_dir) cmd = 'rpmbuild -bb --buildroot %s --define "_topdir %s/build" ' \ '--target %s %s' % ( build_dir, os.getcwd(), env.GetPackageArch(), spec_file) CommandAction(cmd).execute(target, [build_dir], env) # Move the package target = str(target[0]) path = 'build/RPMS/' + env.GetPackageArch() + '/' + target shutil.move(path, target) def generate(env): bld = Builder(action = build_function, source_factory = SCons.Node.FS.Entry, source_scanner = SCons.Defaults.DirScanner) env.Append(BUILDERS = {'RPM' : bld}) return True def exists(): return 1
lgpl-2.1
-2,002,260,641,959,615,500
32.816327
78
0.554416
false
3.388548
false
false
false
kaos-addict/weborf
python_cgi_weborf/cgi.py
1
8232
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Weborf Copyright (C) 2009 Salvo "LtWorf" Tomaselli Weborf is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. @author Salvo "LtWorf" Tomaselli <tiposchi@tiscali.it> This package provides useful functions for cgi scripts ''' import sys import os def pyinfo(): '''Shows information page''' print "<h1>Weborf Python CGI Module</h1>" print "<p>Version 0.2</p>" print "<p>Written by Salvo 'LtWorf' Tomaselli <tiposchi@tiscali.it></p>" i_vars=("GET","POST","SERVER","SESSION","COOKIE","FILES") for var in i_vars: v=eval(var) if isinstance(v,list): l=True else: #Dict l=False print "<H2>%s</H2>" % var print "<table border=1>" for j in v: if l: print "<tr><td>%s</td></tr>" % (j) else: print "<tr><td>%s</td><td><code>%s</code></td></tr>" % (j,v[j]) print "</table>" print "<p><h2>Weborf</h2></p><p>This program comes with ABSOLUTELY NO WARRANTY.<br>This is free software, and you are welcome to redistribute it<br>under certain conditions.<br>For details see the GPLv3 Licese.</p>" def __post_escape(val): '''Post fields use certains escapes. This function returns the original string. This function is for internal use, not meant for use by others''' val=val.replace("+"," ") #Replaces all + with a space i=val.find("%") #% is the char for an exadecimal escape while i!=-1: #If there is a % in the non parsed part of the string s=val[i+1] + val[i+2] #Extract the exadecimal code if s!="37": #Replaces all the escapes in the string val=val.replace("%"+s,chr(int(s,16))) else: '''Replaces only once because this char is a % so there would be % that aren't escapes in the non parsed part of the string''' val=val.replace("%"+s,chr(int(s,16)),1) i=val.find("%",i+1) return val def __read_post(): '''Reads POST data. This function is for internal use.''' #Reading POST Data if 'CONTENT_LENGTH' not in os.environ: return None RAW=sys.stdin.read(int(os.getenv('CONTENT_LENGTH'))) if os.getenv('CONTENT_TYPE')=='application/x-www-form-urlencoded': for i in RAW.split("&"): v=i.split("=") POST[__post_escape(v[0])]=__post_escape(v[1]) elif os.getenv('CONTENT_TYPE').startswith('multipart/form-data'): #Finding boundary for i in os.getenv('CONTENT_TYPE').split("; "): if i.strip().startswith("boundary"): boundary=i.split("=")[1] files=RAW.split(boundary) for i in files: j=i.split("\r\n\r\n") if len(j)==1: continue dic={} dic['content']=j[1][:-2] fields=j[0].split("\r\n") for k in fields: a=k.split(": ",1) if len(a)==2: dic[a[0]]=a[1] elif len(a[0])!=0: dic[a[0]]=None for k in dic['Content-Disposition'].split("; "): d=k.split("=",1) if len(d)>1: dic[d[0]]=d[1].replace("\"","") else: dic[d[0]]=None FILES.append(dic) return RAW def redirect(location): '''Sends to the client the request to redirect to another page. It will work only if headers aren't sent yet. It will make the script terminate immediately and redirect.''' os.write(1,"Status: 303\r\nLocation: "+location+"\r\n\r\n") #Writes location header sys.exit(0) #Redirects def savesession(): '''Saves the session to the file. Before terminating the script, this function has to be executed to ensure that the session is saved ''' import csv if 'PHPSESSID' not in COOKIE==None: return #No session to save #Opens the file with the session fp=file(TMPDIR+"/"+COOKIE['PHPSESSID'],"w") writer=csv.writer(fp) #Converting dictionary into 2 level array for csv module a=[] for i in SESSION: a.append((i,SESSION[i])) writer.writerows(a) fp.close() def session_start(): '''Inits the session vars''' if 'PHPSESSID' not in COOKIE or COOKIE['PHPSESSID']==None: #No session, creating a new one import random import md5 #Creating session's id with random numbers and multiple hashes r=random.Random() a=md5.md5(os.getenv("SCRIPT_FILENAME")).hexdigest()+md5.md5(str(r.random())).hexdigest() for i in range(10): a=md5.md5(a).hexdigest()+md5.md5(str(r.random())).hexdigest() s_id= "weborf-%s-%s" % (str(os.getpid()), a) setcookie('PHPSESSID',s_id) COOKIE['PHPSESSID']=s_id else:#Session exists, loading data import time try: #If session expired after inactivity if (os.stat(TMPDIR+"/"+COOKIE['PHPSESSID'])[7] + SESSIONEXPIRE) < time.time(): #Deletes old session file, just to try to avoid to fill the disk os.unlink(TMPDIR+"/"+COOKIE['PHPSESSID']) #Creating an empty session COOKIE['PHPSESSID']=None session_start() return import csv fp=file(TMPDIR+"/"+COOKIE['PHPSESSID']) reader=csv.reader(fp) #Creating a csv reader for i in reader.__iter__(): #Iterating rows SESSION[i[0]]=i[1] except: #Start sessions with a new session id COOKIE['PHPSESSID']=None session_start() def setcookie(name,value,expires=None): '''Sets a cookie, by default it will be a session cookie. Expires is the time in seconds to wait to make the cookie expire''' if expires!=None: s= "Set-Cookie: %s=%s; Max-Age=%s\r\n" % (str(name),str(value),str(expires)) else: s= "Set-Cookie: %s=%s\r\n" % (str(name),str(value)) sys.stdout.write(s) COOKIE[str(name)]=str(value) def finalize_headers(content="text/html"): '''This function finalizes headers. After calling this function the script can output its data. If Content-Type of the page is not text/html, it must be specified as parameter here.''' sys.stdout.write("Content-Type: %s\r\n\r\n"%content) def __get_array(sep,query): '''Returns dictionary containing all the data passed via GET''' dic={} if query==None: return dic for p in query.split(sep): i=p.split("=",1) if len(i)!=1: dic[i[0]]=i[1] elif len(i[0])!=0: dic[i[0]]=None return dic def __auth_fields(): '''If there is authentication, gets username and password''' #Deconding auth field v=os.getenv("HTTP_AUTHORIZATION") if v!=None: import base64 q=v.split(" ") os.environ['AUTH_TYPE']=q[0] auth=base64.b64decode(q[1]).split(":",1) os.environ['AUTH_USER']=auth[0] os.environ['AUTH_PW']=auth[1] #Loading configuration from file or setting default try: execfile("/etc/weborf/pywrapper.conf") except: TMPDIR="/tmp" SESSIONEXPIRE=600 #chdir_to_file(os.getenv("SCRIPT_FILENAME")) __auth_fields() #Changing the order of those lines can be dangerous COOKIE=__get_array('; ',os.getenv("HTTP_COOKIE")) GET=__get_array('&',os.getenv("QUERY_STRING")) SESSION={} POST={} FILES=[] RAW=__read_post() SERVER=os.environ #Executes file #execfile(os.getenv("SCRIPT_FILENAME")) #savesession()
gpl-3.0
-1,482,226,055,591,729,700
32.737705
219
0.58467
false
3.542169
false
false
false
cvsuser-chromium/chromium
chrome/common/extensions/docs/server2/caching_file_system.py
1
4951
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import posixpath import sys from file_system import FileSystem, StatInfo, FileNotFoundError from future import Future from object_store_creator import ObjectStoreCreator class _AsyncUncachedFuture(object): def __init__(self, uncached_read_futures, stats_for_uncached, current_results, file_system, object_store): self._uncached_read_futures = uncached_read_futures self._stats_for_uncached = stats_for_uncached self._current_results = current_results self._file_system = file_system self._object_store = object_store def Get(self): new_results = self._uncached_read_futures.Get() # Update the cached data in the object store. This is a path -> (read, # version) mapping. self._object_store.SetMulti(dict( (path, (new_result, self._stats_for_uncached[path].version)) for path, new_result in new_results.iteritems())) new_results.update(self._current_results) return new_results class CachingFileSystem(FileSystem): '''FileSystem which implements a caching layer on top of |file_system|. It's smart, using Stat() to decided whether to skip Read()ing from |file_system|, and only Stat()ing directories never files. ''' def __init__(self, file_system, object_store_creator): self._file_system = file_system def create_object_store(category, **optargs): return object_store_creator.Create( CachingFileSystem, category='%s/%s' % (file_system.GetIdentity(), category), **optargs) self._stat_object_store = create_object_store('stat') # The read caches can start populated (start_empty=False) because file # updates are picked up by the stat, so it doesn't need the force-refresh # which starting empty is designed for. Without this optimisation, cron # runs are extra slow. self._read_object_store = create_object_store('read', start_empty=False) self._read_binary_object_store = create_object_store('read-binary', start_empty=False) def Refresh(self): return self._file_system.Refresh() def Stat(self, path): '''Stats the directory given, or if a file is given, stats the file's parent directory to get info about the file. ''' # Always stat the parent directory, since it will have the stat of the child # anyway, and this gives us an entire directory's stat info at once. dir_path, file_path = posixpath.split(path) if dir_path and not dir_path.endswith('/'): dir_path += '/' # ... and we only ever need to cache the dir stat, too. dir_stat = self._stat_object_store.Get(dir_path).Get() if dir_stat is None: dir_stat = self._file_system.Stat(dir_path) assert dir_stat is not None # should raise a FileNotFoundError self._stat_object_store.Set(dir_path, dir_stat) if path == dir_path: stat_info = dir_stat else: file_version = dir_stat.child_versions.get(file_path) if file_version is None: raise FileNotFoundError('No stat found for %s in %s' % (path, dir_path)) stat_info = StatInfo(file_version) return stat_info def Read(self, paths, binary=False): '''Reads a list of files. If a file is in memcache and it is not out of date, it is returned. Otherwise, the file is retrieved from the file system. ''' read_object_store = (self._read_binary_object_store if binary else self._read_object_store) read_values = read_object_store.GetMulti(paths).Get() stat_values = self._stat_object_store.GetMulti(paths).Get() results = {} # maps path to read value uncached = {} # maps path to stat value for path in paths: stat_value = stat_values.get(path) if stat_value is None: # TODO(cduvall): do a concurrent Stat with the missing stat values. try: stat_value = self.Stat(path) except: return Future(exc_info=sys.exc_info()) read_value = read_values.get(path) if read_value is None: uncached[path] = stat_value continue read_data, read_version = read_value if stat_value.version != read_version: uncached[path] = stat_value continue results[path] = read_data if not uncached: return Future(value=results) return Future(delegate=_AsyncUncachedFuture( self._file_system.Read(uncached.keys(), binary=binary), uncached, results, self, read_object_store)) def GetIdentity(self): return self._file_system.GetIdentity() def __repr__(self): return '<%s of %s>' % (type(self).__name__, type(self._file_system).__name__)
bsd-3-clause
-7,957,290,888,908,834,000
37.084615
80
0.646738
false
3.861934
false
false
false
zhaochl/python-utils
tar_file_ftp/tar_file.py
1
1991
#!/usr/bin/env python # coding=utf-8 from file_util import * from pdb import * import commands import urllib2 #output = os.popen('ls') #print output.read() #print '----------------------------' #(status, output) = commands.getstatusoutput('ls') #print status, output def execute_cmd(cmd): _result={} (status, output) = commands.getstatusoutput(cmd) _result['status'] = status _result['output'] = output return _result def gen_ftp_sh(file_name): _content = """ ftp -n <<- EOF open timeplan.cn user name password cd /path/ bin put {} bye EOF """.format(file_name) return _content def gen_test_dir(dir_name): _content=""" if [ -d {} ];then echo "exist" exit else mkdir {} fi """.format(dir_name,dir_name) return _content def main(): name_list = read_file_line('list') content = '#!/bin/bash\n' content_file='' next_dir_index = 0 for index,name in enumerate(name_list): if len(name)==1: continue name = name.encode('utf8','ignore') dir_name = '_tmp_'+str(next_dir_index) content_file +='cp /path/'+name +' '+dir_name+'/\n' tar_name = dir_name+'.tar.gz' if index%100==0: f_name = '_bash_/bash_'+str(index)+'.sh' #content+='mkdir '+dir_name+'\n' content+=gen_test_dir(dir_name) content+=content_file content+="tar -zcvf "+ tar_name+' '+dir_name+'\n' content+= gen_ftp_sh(tar_name) content+='rm -rf '+tar_name+'\n' content+='rm -rf '+dir_name+'\n' content +="echo 'run at' `date +'%Y/%m/%d %H:%M:%S'`,file:"+tar_name+'\n' content_file='' next_dir_index = (index+100)/100 write_file(f_name,content) content = '#!/bin/bash\n' #if index>=2: # break print 'ok' if __name__=='__main__': #result = execute_cmd('ls') #print result['output'] main()
apache-2.0
8,161,350,097,538,408,000
24.525641
85
0.530889
false
3.237398
false
false
false
tensorflow/profiler
plugin/tensorboard_plugin_profile/convert/trace_events_json_test.py
1
4311
# -*- coding: utf-8 -*- # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests the Trace -> catapult JSON conversion.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tensorflow as tf from google.protobuf import text_format from tensorboard_plugin_profile.convert import trace_events_json from tensorboard_plugin_profile.protobuf import trace_events_pb2 class TraceEventsJsonStreamTest(tf.test.TestCase): def convert(self, proto_text): proto = trace_events_pb2.Trace() text_format.Parse(proto_text, proto) return json.loads(''.join(trace_events_json.TraceEventsJsonStream(proto))) def testJsonConversion(self): self.assertEqual( self.convert(""" devices { key: 2 value { name: 'D2' device_id: 2 resources { key: 2 value { resource_id: 2 name: 'R2.2' } } } } devices { key: 1 value { name: 'D1' device_id: 1 resources { key: 2 value { resource_id: 1 name: 'R1.2' } } } } trace_events { device_id: 1 resource_id: 2 name: "E1.2.1" timestamp_ps: 100000 duration_ps: 10000 args { key: "label" value: "E1.2.1" } args { key: "extra" value: "extra info" } } trace_events { device_id: 2 resource_id: 2 name: "E2.2.1" timestamp_ps: 105000 } """), dict( displayTimeUnit='ns', metadata={'highres-ticks': True}, traceEvents=[ dict( ph='M', pid=1, name='process_name', args=dict(name='D1')), dict( ph='M', pid=1, name='process_sort_index', args=dict(sort_index=1)), dict( ph='M', pid=1, tid=2, name='thread_name', args=dict(name='R1.2')), dict( ph='M', pid=1, tid=2, name='thread_sort_index', args=dict(sort_index=2)), dict( ph='M', pid=2, name='process_name', args=dict(name='D2')), dict( ph='M', pid=2, name='process_sort_index', args=dict(sort_index=2)), dict( ph='M', pid=2, tid=2, name='thread_name', args=dict(name='R2.2')), dict( ph='M', pid=2, tid=2, name='thread_sort_index', args=dict(sort_index=2)), dict( ph='X', pid=1, tid=2, name='E1.2.1', ts=0.1, dur=0.01, args=dict(label='E1.2.1', extra='extra info')), dict(ph='i', pid=2, tid=2, name='E2.2.1', ts=0.105, s='t'), {}, ])) if __name__ == '__main__': tf.test.main()
apache-2.0
1,974,153,693,499,353,600
30.933333
80
0.429135
false
4.453512
true
false
false
dpawlows/MGITM
srcPython/gitm_3d_test.py
1
1981
#!/usr/bin/env python ''' Open a GITM 3D file adn create a plot similar to the example given by Aaron. Note that as pybats.gitm is more developed, a plot like this should be made using syntax like, >>>a=gitm.GitmBin('filename') >>>a.add_alt_slice(0, 'Rho', add_cbar=True) That's how most pybats stuff works right now. ''' # Import shit. I needed a lot of shit this time. import numpy as np from spacepy.pybats import gitm import matplotlib.pyplot as plt from matplotlib.cm import get_cmap from matplotlib.ticker import ScalarFormatter, FormatStrFormatter # Open file. a=gitm.GitmBin('./3DALL_t061213_000000.bin') # Make contour of rho at lowest altitude (index 0). # Convert lat lon from rad to degrees. p=180.0/np.pi f=plt.figure() #make a fig. ax=f.add_subplot(111) #make an ax. # Create the contour for an altitude slice and call it 'cnt' (no jokes, please.) # The '61' is the number of contours; you could use a vector of values to set # levels manually if you wish. get_cmap accepts any of the color map names # from the colormap demo pic from the Matplotlib gallery; adding '_r' # reverses the colormap. cnt=ax.contourf(a['Longitude'][:,:,0]*p, p*a['Latitude'][:,:,0], a['Rho'][:,:,0], 61, cmap=get_cmap('Spectral_r')) # Configure axis. ax.set_xlabel('Longitude') ax.set_ylabel('Latitude') ax.set_title(r'$\rho$ at Altitude=%5.2f$km$' % (a['Altitude'][0,0,0]/1000.0)) f.suptitle('File=%s'%(a.attrs['file'])) # Add a colorbar and set the tick format to exponential notation. cb=plt.colorbar(cnt) cb.formatter=FormatStrFormatter('%7.2E') cb.update_ticks() # Add the quivers. ax.quiver(a['Longitude'][:,:,0]*p, p*a['Latitude'][:,:,0], a['V!Dn!N (east)'][:,:,0],a['V!Dn!N (north)'][:,:,0]) # Draw to screen. if plt.isinteractive(): plt.draw() #In interactive mode, you just "draw". else: # W/o interactive mode, "show" stops the user from typing more # at the terminal until plots are drawn. plt.show()
mit
-5,919,587,534,596,864,000
32.576271
80
0.67996
false
2.970015
false
false
false
superfluidity/RDCL3D
code/toscaparser/elements/statefulentitytype.py
1
4045
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from toscaparser.common.exception import ExceptionCollector from toscaparser.common.exception import InvalidTypeError from toscaparser.elements.attribute_definition import AttributeDef from toscaparser.elements.entity_type import EntityType from toscaparser.elements.property_definition import PropertyDef from toscaparser.unsupportedtype import UnsupportedType class StatefulEntityType(EntityType): '''Class representing TOSCA states.''' interfaces_node_lifecycle_operations = ['create', 'configure', 'start', 'stop', 'delete'] interfaces_relationship_configure_operations = ['post_configure_source', 'post_configure_target', 'add_target', 'remove_target'] def __init__(self, entitytype, prefix, custom_def=None): entire_entitytype = entitytype if UnsupportedType.validate_type(entire_entitytype): self.defs = None else: if entitytype.startswith(self.TOSCA + ":"): entitytype = entitytype[(len(self.TOSCA) + 1):] entire_entitytype = prefix + entitytype if not entitytype.startswith(self.TOSCA): entire_entitytype = prefix + entitytype if entire_entitytype in list(self.TOSCA_DEF.keys()): self.defs = self.TOSCA_DEF[entire_entitytype] entitytype = entire_entitytype elif custom_def and entitytype in list(custom_def.keys()): self.defs = custom_def[entitytype] else: self.defs = None ExceptionCollector.appendException( InvalidTypeError(what=entitytype)) self.type = entitytype def get_properties_def_objects(self): '''Return a list of property definition objects.''' properties = [] props = self.get_definition(self.PROPERTIES) if props: for prop, schema in props.items(): properties.append(PropertyDef(prop, None, schema)) return properties def get_properties_def(self): '''Return a dictionary of property definition name-object pairs.''' return {prop.name: prop for prop in self.get_properties_def_objects()} def get_property_def_value(self, name): '''Return the property definition associated with a given name.''' props_def = self.get_properties_def() if props_def and name in props_def.keys(): return props_def[name].value def get_attributes_def_objects(self): '''Return a list of attribute definition objects.''' attrs = self.get_value(self.ATTRIBUTES, parent=True) if attrs: return [AttributeDef(attr, None, schema) for attr, schema in attrs.items()] return [] def get_attributes_def(self): '''Return a dictionary of attribute definition name-object pairs.''' return {attr.name: attr for attr in self.get_attributes_def_objects()} def get_attribute_def_value(self, name): '''Return the attribute definition associated with a given name.''' attrs_def = self.get_attributes_def() if attrs_def and name in attrs_def.keys(): return attrs_def[name].value
apache-2.0
2,767,152,885,875,572,700
43.450549
78
0.616564
false
4.565463
false
false
false
lfloeer/hiprofile
lineprofile/utils.py
1
4109
import numpy as np import itertools as it def sample_prior(n_sampler, fitter, thermal_noise=0.023, thermal_noise_std=0.01): """Given a fitter object and the number of samplers, sample the prior distribution of the fit parameters for use as the initial positions for the walkers. There are two exceptions: 1) The outlier fraction is only sampled on the interval (fraction_min, fraction_min + 1), i.e. only in the lowest decade allowed by the prior distribution. 2) The initial values for the inlier standard deviation are drawn from a gaussian distribution determined by the parameters `thermal_noise` and `thermal_noise_std`. """ def sample_components(): """Get samples from prior on line profile""" for component_idx in range(fitter.n_disks): yield np.random.uniform(fitter.fint_min, fitter.fint_max, n_sampler) yield np.random.normal(fitter.v_center_mean[component_idx], fitter.v_center_std[component_idx], n_sampler) yield np.random.gamma(fitter.v_rot_k, fitter.v_rot_theta, n_sampler) yield fitter.turbulence_min + np.random.gamma(fitter.turbulence_k, fitter.turbulence_theta, n_sampler) yield np.random.beta(fitter.fsolid_p, fitter.fsolid_q, n_sampler) yield 2 * np.random.beta(fitter.asym_p, fitter.asym_q, n_sampler) - 1.0 def sample_gaussians(): """Get samples from prior on gaussians""" for component_idx in range(fitter.n_disks, fitter.n_disks + fitter.n_gaussians): yield np.random.uniform(fitter.fint_min, fitter.fint_max, n_sampler) yield np.random.normal(fitter.v_center_mean[component_idx], fitter.v_center_std[component_idx], n_sampler) yield np.random.uniform(fitter.gauss_disp_min, fitter.gauss_disp_max, n_sampler) def sample_baseline(): """Get samples from prior on baseline""" for _ in range(fitter.n_baseline): yield np.random.normal(0, 0.1, n_sampler) def sample_likelihood(): """Get samples from prior on posterior parameters""" yield np.random.uniform(fitter.fraction_min, fitter.fraction_min + 1, n_sampler) std_in_values = np.clip( np.random.normal(thermal_noise, thermal_noise_std, n_sampler), 1e-6, 1e6 ) std_in_values = np.log10(std_in_values) yield np.clip(std_in_values, fitter.std_in_min, fitter.std_in_max) yield np.random.normal(0., fitter.mu_out_std, n_sampler) yield np.random.uniform(fitter.std_out_min, fitter.std_out_max, n_sampler) prior_it = it.chain(sample_components(), sample_gaussians(), sample_baseline(), sample_likelihood()) return np.array([samples for samples in prior_it]).T.copy() def resample_position(position, n_walkers, n_dim, fitter, ball_size=1e-2): """Use rejection sampling to resample the walker positions""" scale_factors = np.ones(n_dim) scale_factors[3:6 * fitter.n_disks:6] = 10 scale_factors[2:6 * fitter.n_disks:6] = 100 scale_factors[1:6 * fitter.n_disks:6] = 10 scale_factors *= ball_size new_positions = np.array([position + scale_factors * np.random.randn(n_dim) for _ in xrange(n_walkers)]) valid = np.array([np.isfinite(fitter.ln_prior(p)) for p in new_positions]) for _ in xrange(20): n_invalid = np.sum(~valid) if n_invalid == 0: break new_positions[~valid] = np.array([position + ball_size * np.random.randn(n_dim) for _ in xrange(n_invalid)]) valid[~valid] = np.array([np.isfinite(fitter.ln_prior(p)) for p in new_positions[~valid]]) return new_positions
mit
-1,081,512,766,663,581,800
46.77907
104
0.590655
false
3.64273
false
false
false
JPinSPACE/AdventOfCode
day07/02_override_wire/solution.py
1
1717
""" Solution to the second puzzle of Day 7 on adventofcode.com """ import os PARTS = {} CACHE = {} def compute(value): """ Recursion is dumb. """ if value in CACHE: return CACHE[value] if value.isdigit(): return int(value) value = PARTS[value] if 'NOT' in value: value_a = value.split(' ')[1] return ~ compute(value_a) try: (value_a, operation, value_b) = value.split(' ') computed_a = compute(value_a) CACHE[value_a] = computed_a computed_b = compute(value_b) CACHE[value_b] = computed_b if operation == 'AND': computed = compute(value_a) & compute(value_b) elif operation == 'OR': computed = compute(value_a) | compute(value_b) elif operation == 'LSHIFT': computed = compute(value_a) << compute(value_b) elif operation == 'RSHIFT': computed = compute(value_a) >> compute(value_b) else: print "Topaz lied!" return computed except ValueError: return compute(value) def main(): """ Read in circuit instructions and assemble them! """ # pylint: disable=W0603 global CACHE basedir = os.path.dirname(os.path.realpath(__file__)) file_path = os.path.join(basedir, 'input') with open(file_path, 'r') as input_file: for line in input_file: line = line.strip() (operation, name) = line.split(' -> ') PARTS[name] = operation signal_a = compute('a') CACHE = {} PARTS['b'] = str(signal_a) solution = compute('a') print solution assert solution == 14710 if __name__ == '__main__': main()
mit
4,521,620,091,914,956,300
21.298701
62
0.550379
false
3.660981
false
false
false
onshape-public/onshape-clients
python/onshape_client/oas/models/bt_translation_request_info.py
1
6823
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.113 Contact: api-support@onshape.zendesk.com Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from onshape_client.oas.model_utils import ( # noqa: F401 ModelComposed, ModelNormal, ModelSimple, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) class BTTranslationRequestInfo(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ("request_state",): {"ACTIVE": "ACTIVE", "DONE": "DONE", "FAILED": "FAILED",}, } validations = {} additional_properties_type = None @staticmethod def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "document_id": (str,), # noqa: E501 "failure_reason": (str,), # noqa: E501 "href": (str,), # noqa: E501 "id": (str,), # noqa: E501 "name": (str,), # noqa: E501 "request_element_id": (str,), # noqa: E501 "request_state": (str,), # noqa: E501 "result_document_id": (str,), # noqa: E501 "result_element_ids": ([str],), # noqa: E501 "result_external_data_ids": ([str],), # noqa: E501 "result_workspace_id": (str,), # noqa: E501 "version_id": (str,), # noqa: E501 "view_ref": (str,), # noqa: E501 "workspace_id": (str,), # noqa: E501 } @staticmethod def discriminator(): return None attribute_map = { "document_id": "documentId", # noqa: E501 "failure_reason": "failureReason", # noqa: E501 "href": "href", # noqa: E501 "id": "id", # noqa: E501 "name": "name", # noqa: E501 "request_element_id": "requestElementId", # noqa: E501 "request_state": "requestState", # noqa: E501 "result_document_id": "resultDocumentId", # noqa: E501 "result_element_ids": "resultElementIds", # noqa: E501 "result_external_data_ids": "resultExternalDataIds", # noqa: E501 "result_workspace_id": "resultWorkspaceId", # noqa: E501 "version_id": "versionId", # noqa: E501 "view_ref": "viewRef", # noqa: E501 "workspace_id": "workspaceId", # noqa: E501 } @staticmethod def _composed_schemas(): return None required_properties = set( [ "_data_store", "_check_type", "_from_server", "_path_to_item", "_configuration", ] ) def __init__( self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs ): # noqa: E501 """bt_translation_request_info.BTTranslationRequestInfo - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. document_id (str): [optional] # noqa: E501 failure_reason (str): [optional] # noqa: E501 href (str): [optional] # noqa: E501 id (str): [optional] # noqa: E501 name (str): [optional] # noqa: E501 request_element_id (str): [optional] # noqa: E501 request_state (str): [optional] # noqa: E501 result_document_id (str): [optional] # noqa: E501 result_element_ids ([str]): [optional] # noqa: E501 result_external_data_ids ([str]): [optional] # noqa: E501 result_workspace_id (str): [optional] # noqa: E501 version_id (str): [optional] # noqa: E501 view_ref (str): [optional] # noqa: E501 workspace_id (str): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration for var_name, var_value in six.iteritems(kwargs): if ( var_name not in self.attribute_map and self._configuration is not None and self._configuration.discard_unknown_keys and self.additional_properties_type is None ): # discard variable. continue setattr(self, var_name, var_value)
mit
-7,788,842,874,007,090,000
36.081522
92
0.556793
false
4.044458
true
false
false
damoxc/ganeti
lib/opcodes.py
1
68014
# # # Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Google Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. """OpCodes module This module implements the data structures which define the cluster operations - the so-called opcodes. Every operation which modifies the cluster state is expressed via opcodes. """ # this are practically structures, so disable the message about too # few public methods: # pylint: disable=R0903 import logging import re import ipaddr from ganeti import constants from ganeti import errors from ganeti import ht from ganeti import objects from ganeti import outils # Common opcode attributes #: output fields for a query operation _POutputFields = ("output_fields", ht.NoDefault, ht.TListOf(ht.TNonEmptyString), "Selected output fields") #: the shutdown timeout _PShutdownTimeout = \ ("shutdown_timeout", constants.DEFAULT_SHUTDOWN_TIMEOUT, ht.TNonNegativeInt, "How long to wait for instance to shut down") #: the force parameter _PForce = ("force", False, ht.TBool, "Whether to force the operation") #: a required instance name (for single-instance LUs) _PInstanceName = ("instance_name", ht.NoDefault, ht.TNonEmptyString, "Instance name") #: Whether to ignore offline nodes _PIgnoreOfflineNodes = ("ignore_offline_nodes", False, ht.TBool, "Whether to ignore offline nodes") #: a required node name (for single-node LUs) _PNodeName = ("node_name", ht.NoDefault, ht.TNonEmptyString, "Node name") #: a required node group name (for single-group LUs) _PGroupName = ("group_name", ht.NoDefault, ht.TNonEmptyString, "Group name") #: Migration type (live/non-live) _PMigrationMode = ("mode", None, ht.TMaybe(ht.TElemOf(constants.HT_MIGRATION_MODES)), "Migration mode") #: Obsolete 'live' migration mode (boolean) _PMigrationLive = ("live", None, ht.TMaybeBool, "Legacy setting for live migration, do not use") #: Tag type _PTagKind = ("kind", ht.NoDefault, ht.TElemOf(constants.VALID_TAG_TYPES), "Tag kind") #: List of tag strings _PTags = ("tags", ht.NoDefault, ht.TListOf(ht.TNonEmptyString), "List of tag names") _PForceVariant = ("force_variant", False, ht.TBool, "Whether to force an unknown OS variant") _PWaitForSync = ("wait_for_sync", True, ht.TBool, "Whether to wait for the disk to synchronize") _PWaitForSyncFalse = ("wait_for_sync", False, ht.TBool, "Whether to wait for the disk to synchronize" " (defaults to false)") _PIgnoreConsistency = ("ignore_consistency", False, ht.TBool, "Whether to ignore disk consistency") _PStorageName = ("name", ht.NoDefault, ht.TMaybeString, "Storage name") _PUseLocking = ("use_locking", False, ht.TBool, "Whether to use synchronization") _PNameCheck = ("name_check", True, ht.TBool, "Whether to check name") _PNodeGroupAllocPolicy = \ ("alloc_policy", None, ht.TMaybe(ht.TElemOf(constants.VALID_ALLOC_POLICIES)), "Instance allocation policy") _PGroupNodeParams = ("ndparams", None, ht.TMaybeDict, "Default node parameters for group") _PQueryWhat = ("what", ht.NoDefault, ht.TElemOf(constants.QR_VIA_OP), "Resource(s) to query for") _PEarlyRelease = ("early_release", False, ht.TBool, "Whether to release locks as soon as possible") _PIpCheckDoc = "Whether to ensure instance's IP address is inactive" #: Do not remember instance state changes _PNoRemember = ("no_remember", False, ht.TBool, "Do not remember the state change") #: Target node for instance migration/failover _PMigrationTargetNode = ("target_node", None, ht.TMaybeString, "Target node for shared-storage instances") _PStartupPaused = ("startup_paused", False, ht.TBool, "Pause instance at startup") _PVerbose = ("verbose", False, ht.TBool, "Verbose mode") # Parameters for cluster verification _PDebugSimulateErrors = ("debug_simulate_errors", False, ht.TBool, "Whether to simulate errors (useful for debugging)") _PErrorCodes = ("error_codes", False, ht.TBool, "Error codes") _PSkipChecks = ("skip_checks", ht.EmptyList, ht.TListOf(ht.TElemOf(constants.VERIFY_OPTIONAL_CHECKS)), "Which checks to skip") _PIgnoreErrors = ("ignore_errors", ht.EmptyList, ht.TListOf(ht.TElemOf(constants.CV_ALL_ECODES_STRINGS)), "List of error codes that should be treated as warnings") # Disk parameters _PDiskParams = \ ("diskparams", None, ht.TMaybe(ht.TDictOf(ht.TElemOf(constants.DISK_TEMPLATES), ht.TDict)), "Disk templates' parameter defaults") # Parameters for node resource model _PHvState = ("hv_state", None, ht.TMaybeDict, "Set hypervisor states") _PDiskState = ("disk_state", None, ht.TMaybeDict, "Set disk states") #: Opportunistic locking _POpportunisticLocking = \ ("opportunistic_locking", False, ht.TBool, ("Whether to employ opportunistic locking for nodes, meaning nodes" " already locked by another opcode won't be considered for instance" " allocation (only when an iallocator is used)")) _PIgnoreIpolicy = ("ignore_ipolicy", False, ht.TBool, "Whether to ignore ipolicy violations") # Allow runtime changes while migrating _PAllowRuntimeChgs = ("allow_runtime_changes", True, ht.TBool, "Allow runtime changes (eg. memory ballooning)") #: IAllocator field builder _PIAllocFromDesc = lambda desc: ("iallocator", None, ht.TMaybeString, desc) #: a required network name _PNetworkName = ("network_name", ht.NoDefault, ht.TNonEmptyString, "Set network name") _PTargetGroups = \ ("target_groups", None, ht.TMaybeListOf(ht.TNonEmptyString), "Destination group names or UUIDs (defaults to \"all but current group\")") #: OP_ID conversion regular expression _OPID_RE = re.compile("([a-z])([A-Z])") #: Utility function for L{OpClusterSetParams} _TestClusterOsListItem = \ ht.TAnd(ht.TIsLength(2), ht.TItems([ ht.TElemOf(constants.DDMS_VALUES), ht.TNonEmptyString, ])) _TestClusterOsList = ht.TMaybeListOf(_TestClusterOsListItem) # TODO: Generate check from constants.INIC_PARAMS_TYPES #: Utility function for testing NIC definitions _TestNicDef = \ ht.Comment("NIC parameters")(ht.TDictOf(ht.TElemOf(constants.INIC_PARAMS), ht.TMaybeString)) _TSetParamsResultItemItems = [ ht.Comment("name of changed parameter")(ht.TNonEmptyString), ht.Comment("new value")(ht.TAny), ] _TSetParamsResult = \ ht.TListOf(ht.TAnd(ht.TIsLength(len(_TSetParamsResultItemItems)), ht.TItems(_TSetParamsResultItemItems))) # In the disks option we can provide arbitrary parameters too, which # we may not be able to validate at this level, so we just check the # format of the dict here and the checks concerning IDISK_PARAMS will # happen at the LU level _TDiskParams = \ ht.Comment("Disk parameters")(ht.TDictOf(ht.TNonEmptyString, ht.TOr(ht.TNonEmptyString, ht.TInt))) _TQueryRow = \ ht.TListOf(ht.TAnd(ht.TIsLength(2), ht.TItems([ht.TElemOf(constants.RS_ALL), ht.TAny]))) _TQueryResult = ht.TListOf(_TQueryRow) _TOldQueryRow = ht.TListOf(ht.TAny) _TOldQueryResult = ht.TListOf(_TOldQueryRow) _SUMMARY_PREFIX = { "CLUSTER_": "C_", "GROUP_": "G_", "NODE_": "N_", "INSTANCE_": "I_", } #: Attribute name for dependencies DEPEND_ATTR = "depends" #: Attribute name for comment COMMENT_ATTR = "comment" def _NameToId(name): """Convert an opcode class name to an OP_ID. @type name: string @param name: the class name, as OpXxxYyy @rtype: string @return: the name in the OP_XXXX_YYYY format """ if not name.startswith("Op"): return None # Note: (?<=[a-z])(?=[A-Z]) would be ideal, since it wouldn't # consume any input, and hence we would just have all the elements # in the list, one by one; but it seems that split doesn't work on # non-consuming input, hence we have to process the input string a # bit name = _OPID_RE.sub(r"\1,\2", name) elems = name.split(",") return "_".join(n.upper() for n in elems) def _GenerateObjectTypeCheck(obj, fields_types): """Helper to generate type checks for objects. @param obj: The object to generate type checks @param fields_types: The fields and their types as a dict @return: A ht type check function """ assert set(obj.GetAllSlots()) == set(fields_types.keys()), \ "%s != %s" % (set(obj.GetAllSlots()), set(fields_types.keys())) return ht.TStrictDict(True, True, fields_types) _TQueryFieldDef = \ _GenerateObjectTypeCheck(objects.QueryFieldDefinition, { "name": ht.TNonEmptyString, "title": ht.TNonEmptyString, "kind": ht.TElemOf(constants.QFT_ALL), "doc": ht.TNonEmptyString, }) def RequireFileStorage(): """Checks that file storage is enabled. While it doesn't really fit into this module, L{utils} was deemed too large of a dependency to be imported for just one or two functions. @raise errors.OpPrereqError: when file storage is disabled """ if not constants.ENABLE_FILE_STORAGE: raise errors.OpPrereqError("File storage disabled at configure time", errors.ECODE_INVAL) def RequireSharedFileStorage(): """Checks that shared file storage is enabled. While it doesn't really fit into this module, L{utils} was deemed too large of a dependency to be imported for just one or two functions. @raise errors.OpPrereqError: when shared file storage is disabled """ if not constants.ENABLE_SHARED_FILE_STORAGE: raise errors.OpPrereqError("Shared file storage disabled at" " configure time", errors.ECODE_INVAL) @ht.WithDesc("CheckFileStorage") def _CheckFileStorage(value): """Ensures file storage is enabled if used. """ if value == constants.DT_FILE: RequireFileStorage() elif value == constants.DT_SHARED_FILE: RequireSharedFileStorage() return True def _BuildDiskTemplateCheck(accept_none): """Builds check for disk template. @type accept_none: bool @param accept_none: whether to accept None as a correct value @rtype: callable """ template_check = ht.TElemOf(constants.DISK_TEMPLATES) if accept_none: template_check = ht.TMaybe(template_check) return ht.TAnd(template_check, _CheckFileStorage) def _CheckStorageType(storage_type): """Ensure a given storage type is valid. """ if storage_type not in constants.VALID_STORAGE_TYPES: raise errors.OpPrereqError("Unknown storage type: %s" % storage_type, errors.ECODE_INVAL) if storage_type == constants.ST_FILE: # TODO: What about shared file storage? RequireFileStorage() return True #: Storage type parameter _PStorageType = ("storage_type", ht.NoDefault, _CheckStorageType, "Storage type") @ht.WithDesc("IPv4 network") def _CheckCIDRNetNotation(value): """Ensure a given CIDR notation type is valid. """ try: ipaddr.IPv4Network(value) except ipaddr.AddressValueError: return False return True @ht.WithDesc("IPv4 address") def _CheckCIDRAddrNotation(value): """Ensure a given CIDR notation type is valid. """ try: ipaddr.IPv4Address(value) except ipaddr.AddressValueError: return False return True @ht.WithDesc("IPv6 address") def _CheckCIDR6AddrNotation(value): """Ensure a given CIDR notation type is valid. """ try: ipaddr.IPv6Address(value) except ipaddr.AddressValueError: return False return True @ht.WithDesc("IPv6 network") def _CheckCIDR6NetNotation(value): """Ensure a given CIDR notation type is valid. """ try: ipaddr.IPv6Network(value) except ipaddr.AddressValueError: return False return True _TIpAddress4 = ht.TAnd(ht.TString, _CheckCIDRAddrNotation) _TIpAddress6 = ht.TAnd(ht.TString, _CheckCIDR6AddrNotation) _TIpNetwork4 = ht.TAnd(ht.TString, _CheckCIDRNetNotation) _TIpNetwork6 = ht.TAnd(ht.TString, _CheckCIDR6NetNotation) _TMaybeAddr4List = ht.TMaybe(ht.TListOf(_TIpAddress4)) class _AutoOpParamSlots(outils.AutoSlots): """Meta class for opcode definitions. """ def __new__(mcs, name, bases, attrs): """Called when a class should be created. @param mcs: The meta class @param name: Name of created class @param bases: Base classes @type attrs: dict @param attrs: Class attributes """ assert "OP_ID" not in attrs, "Class '%s' defining OP_ID" % name slots = mcs._GetSlots(attrs) assert "OP_DSC_FIELD" not in attrs or attrs["OP_DSC_FIELD"] in slots, \ "Class '%s' uses unknown field in OP_DSC_FIELD" % name assert ("OP_DSC_FORMATTER" not in attrs or callable(attrs["OP_DSC_FORMATTER"])), \ ("Class '%s' uses non-callable in OP_DSC_FORMATTER (%s)" % (name, type(attrs["OP_DSC_FORMATTER"]))) attrs["OP_ID"] = _NameToId(name) return outils.AutoSlots.__new__(mcs, name, bases, attrs) @classmethod def _GetSlots(mcs, attrs): """Build the slots out of OP_PARAMS. """ # Always set OP_PARAMS to avoid duplicates in BaseOpCode.GetAllParams params = attrs.setdefault("OP_PARAMS", []) # Use parameter names as slots return [pname for (pname, _, _, _) in params] class BaseOpCode(outils.ValidatedSlots): """A simple serializable object. This object serves as a parent class for OpCode without any custom field handling. """ # pylint: disable=E1101 # as OP_ID is dynamically defined __metaclass__ = _AutoOpParamSlots def __getstate__(self): """Generic serializer. This method just returns the contents of the instance as a dictionary. @rtype: C{dict} @return: the instance attributes and their values """ state = {} for name in self.GetAllSlots(): if hasattr(self, name): state[name] = getattr(self, name) return state def __setstate__(self, state): """Generic unserializer. This method just restores from the serialized state the attributes of the current instance. @param state: the serialized opcode data @type state: C{dict} """ if not isinstance(state, dict): raise ValueError("Invalid data to __setstate__: expected dict, got %s" % type(state)) for name in self.GetAllSlots(): if name not in state and hasattr(self, name): delattr(self, name) for name in state: setattr(self, name, state[name]) @classmethod def GetAllParams(cls): """Compute list of all parameters for an opcode. """ slots = [] for parent in cls.__mro__: slots.extend(getattr(parent, "OP_PARAMS", [])) return slots def Validate(self, set_defaults): # pylint: disable=W0221 """Validate opcode parameters, optionally setting default values. @type set_defaults: bool @param set_defaults: Whether to set default values @raise errors.OpPrereqError: When a parameter value doesn't match requirements """ for (attr_name, default, test, _) in self.GetAllParams(): assert test == ht.NoType or callable(test) if not hasattr(self, attr_name): if default == ht.NoDefault: raise errors.OpPrereqError("Required parameter '%s.%s' missing" % (self.OP_ID, attr_name), errors.ECODE_INVAL) elif set_defaults: if callable(default): dval = default() else: dval = default setattr(self, attr_name, dval) if test == ht.NoType: # no tests here continue if set_defaults or hasattr(self, attr_name): attr_val = getattr(self, attr_name) if not test(attr_val): logging.error("OpCode %s, parameter %s, has invalid type %s/value" " '%s' expecting type %s", self.OP_ID, attr_name, type(attr_val), attr_val, test) raise errors.OpPrereqError("Parameter '%s.%s' fails validation" % (self.OP_ID, attr_name), errors.ECODE_INVAL) def _BuildJobDepCheck(relative): """Builds check for job dependencies (L{DEPEND_ATTR}). @type relative: bool @param relative: Whether to accept relative job IDs (negative) @rtype: callable """ if relative: job_id = ht.TOr(ht.TJobId, ht.TRelativeJobId) else: job_id = ht.TJobId job_dep = \ ht.TAnd(ht.TOr(ht.TList, ht.TTuple), ht.TIsLength(2), ht.TItems([job_id, ht.TListOf(ht.TElemOf(constants.JOBS_FINALIZED))])) return ht.TMaybeListOf(job_dep) TNoRelativeJobDependencies = _BuildJobDepCheck(False) #: List of submission status and job ID as returned by C{SubmitManyJobs} _TJobIdListItem = \ ht.TAnd(ht.TIsLength(2), ht.TItems([ht.Comment("success")(ht.TBool), ht.Comment("Job ID if successful, error message" " otherwise")(ht.TOr(ht.TString, ht.TJobId))])) TJobIdList = ht.TListOf(_TJobIdListItem) #: Result containing only list of submitted jobs TJobIdListOnly = ht.TStrictDict(True, True, { constants.JOB_IDS_KEY: ht.Comment("List of submitted jobs")(TJobIdList), }) class OpCode(BaseOpCode): """Abstract OpCode. This is the root of the actual OpCode hierarchy. All clases derived from this class should override OP_ID. @cvar OP_ID: The ID of this opcode. This should be unique amongst all children of this class. @cvar OP_DSC_FIELD: The name of a field whose value will be included in the string returned by Summary(); see the docstring of that method for details). @cvar OP_DSC_FORMATTER: A callable that should format the OP_DSC_FIELD; if not present, then the field will be simply converted to string @cvar OP_PARAMS: List of opcode attributes, the default values they should get if not already defined, and types they must match. @cvar OP_RESULT: Callable to verify opcode result @cvar WITH_LU: Boolean that specifies whether this should be included in mcpu's dispatch table @ivar dry_run: Whether the LU should be run in dry-run mode, i.e. just the check steps @ivar priority: Opcode priority for queue """ # pylint: disable=E1101 # as OP_ID is dynamically defined WITH_LU = True OP_PARAMS = [ ("dry_run", None, ht.TMaybeBool, "Run checks only, don't execute"), ("debug_level", None, ht.TMaybe(ht.TNonNegativeInt), "Debug level"), ("priority", constants.OP_PRIO_DEFAULT, ht.TElemOf(constants.OP_PRIO_SUBMIT_VALID), "Opcode priority"), (DEPEND_ATTR, None, _BuildJobDepCheck(True), "Job dependencies; if used through ``SubmitManyJobs`` relative (negative)" " job IDs can be used; see :doc:`design document <design-chained-jobs>`" " for details"), (COMMENT_ATTR, None, ht.TMaybeString, "Comment describing the purpose of the opcode"), ] OP_RESULT = None def __getstate__(self): """Specialized getstate for opcodes. This method adds to the state dictionary the OP_ID of the class, so that on unload we can identify the correct class for instantiating the opcode. @rtype: C{dict} @return: the state as a dictionary """ data = BaseOpCode.__getstate__(self) data["OP_ID"] = self.OP_ID return data @classmethod def LoadOpCode(cls, data): """Generic load opcode method. The method identifies the correct opcode class from the dict-form by looking for a OP_ID key, if this is not found, or its value is not available in this module as a child of this class, we fail. @type data: C{dict} @param data: the serialized opcode """ if not isinstance(data, dict): raise ValueError("Invalid data to LoadOpCode (%s)" % type(data)) if "OP_ID" not in data: raise ValueError("Invalid data to LoadOpcode, missing OP_ID") op_id = data["OP_ID"] op_class = None if op_id in OP_MAPPING: op_class = OP_MAPPING[op_id] else: raise ValueError("Invalid data to LoadOpCode: OP_ID %s unsupported" % op_id) op = op_class() new_data = data.copy() del new_data["OP_ID"] op.__setstate__(new_data) return op def Summary(self): """Generates a summary description of this opcode. The summary is the value of the OP_ID attribute (without the "OP_" prefix), plus the value of the OP_DSC_FIELD attribute, if one was defined; this field should allow to easily identify the operation (for an instance creation job, e.g., it would be the instance name). """ assert self.OP_ID is not None and len(self.OP_ID) > 3 # all OP_ID start with OP_, we remove that txt = self.OP_ID[3:] field_name = getattr(self, "OP_DSC_FIELD", None) if field_name: field_value = getattr(self, field_name, None) field_formatter = getattr(self, "OP_DSC_FORMATTER", None) if callable(field_formatter): field_value = field_formatter(field_value) elif isinstance(field_value, (list, tuple)): field_value = ",".join(str(i) for i in field_value) txt = "%s(%s)" % (txt, field_value) return txt def TinySummary(self): """Generates a compact summary description of the opcode. """ assert self.OP_ID.startswith("OP_") text = self.OP_ID[3:] for (prefix, supplement) in _SUMMARY_PREFIX.items(): if text.startswith(prefix): return supplement + text[len(prefix):] return text # cluster opcodes class OpClusterPostInit(OpCode): """Post cluster initialization. This opcode does not touch the cluster at all. Its purpose is to run hooks after the cluster has been initialized. """ OP_RESULT = ht.TBool class OpClusterDestroy(OpCode): """Destroy the cluster. This opcode has no other parameters. All the state is irreversibly lost after the execution of this opcode. """ OP_RESULT = ht.TNonEmptyString class OpClusterQuery(OpCode): """Query cluster information.""" OP_RESULT = ht.TDictOf(ht.TNonEmptyString, ht.TAny) class OpClusterVerify(OpCode): """Submits all jobs necessary to verify the cluster. """ OP_PARAMS = [ _PDebugSimulateErrors, _PErrorCodes, _PSkipChecks, _PIgnoreErrors, _PVerbose, ("group_name", None, ht.TMaybeString, "Group to verify"), ] OP_RESULT = TJobIdListOnly class OpClusterVerifyConfig(OpCode): """Verify the cluster config. """ OP_PARAMS = [ _PDebugSimulateErrors, _PErrorCodes, _PIgnoreErrors, _PVerbose, ] OP_RESULT = ht.TBool class OpClusterVerifyGroup(OpCode): """Run verify on a node group from the cluster. @type skip_checks: C{list} @ivar skip_checks: steps to be skipped from the verify process; this needs to be a subset of L{constants.VERIFY_OPTIONAL_CHECKS}; currently only L{constants.VERIFY_NPLUSONE_MEM} can be passed """ OP_DSC_FIELD = "group_name" OP_PARAMS = [ _PGroupName, _PDebugSimulateErrors, _PErrorCodes, _PSkipChecks, _PIgnoreErrors, _PVerbose, ] OP_RESULT = ht.TBool class OpClusterVerifyDisks(OpCode): """Verify the cluster disks. """ OP_RESULT = TJobIdListOnly class OpGroupVerifyDisks(OpCode): """Verifies the status of all disks in a node group. Result: a tuple of three elements: - dict of node names with issues (values: error msg) - list of instances with degraded disks (that should be activated) - dict of instances with missing logical volumes (values: (node, vol) pairs with details about the missing volumes) In normal operation, all lists should be empty. A non-empty instance list (3rd element of the result) is still ok (errors were fixed) but non-empty node list means some node is down, and probably there are unfixable drbd errors. Note that only instances that are drbd-based are taken into consideration. This might need to be revisited in the future. """ OP_DSC_FIELD = "group_name" OP_PARAMS = [ _PGroupName, ] OP_RESULT = \ ht.TAnd(ht.TIsLength(3), ht.TItems([ht.TDictOf(ht.TString, ht.TString), ht.TListOf(ht.TString), ht.TDictOf(ht.TString, ht.TListOf(ht.TListOf(ht.TString)))])) class OpClusterRepairDiskSizes(OpCode): """Verify the disk sizes of the instances and fixes configuration mimatches. Parameters: optional instances list, in case we want to restrict the checks to only a subset of the instances. Result: a list of tuples, (instance, disk, new-size) for changed configurations. In normal operation, the list should be empty. @type instances: list @ivar instances: the list of instances to check, or empty for all instances """ OP_PARAMS = [ ("instances", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), None), ] OP_RESULT = ht.TListOf(ht.TAnd(ht.TIsLength(3), ht.TItems([ht.TNonEmptyString, ht.TNonNegativeInt, ht.TNonNegativeInt]))) class OpClusterConfigQuery(OpCode): """Query cluster configuration values.""" OP_PARAMS = [ _POutputFields, ] OP_RESULT = ht.TListOf(ht.TAny) class OpClusterRename(OpCode): """Rename the cluster. @type name: C{str} @ivar name: The new name of the cluster. The name and/or the master IP address will be changed to match the new name and its IP address. """ OP_DSC_FIELD = "name" OP_PARAMS = [ ("name", ht.NoDefault, ht.TNonEmptyString, None), ] OP_RESULT = ht.TNonEmptyString class OpClusterSetParams(OpCode): """Change the parameters of the cluster. @type vg_name: C{str} or C{None} @ivar vg_name: The new volume group name or None to disable LVM usage. """ OP_PARAMS = [ _PHvState, _PDiskState, ("vg_name", None, ht.TMaybe(ht.TString), "Volume group name"), ("enabled_hypervisors", None, ht.TMaybe(ht.TAnd(ht.TListOf(ht.TElemOf(constants.HYPER_TYPES)), ht.TTrue)), "List of enabled hypervisors"), ("hvparams", None, ht.TMaybe(ht.TDictOf(ht.TNonEmptyString, ht.TDict)), "Cluster-wide hypervisor parameter defaults, hypervisor-dependent"), ("beparams", None, ht.TMaybeDict, "Cluster-wide backend parameter defaults"), ("os_hvp", None, ht.TMaybe(ht.TDictOf(ht.TNonEmptyString, ht.TDict)), "Cluster-wide per-OS hypervisor parameter defaults"), ("osparams", None, ht.TMaybe(ht.TDictOf(ht.TNonEmptyString, ht.TDict)), "Cluster-wide OS parameter defaults"), _PDiskParams, ("candidate_pool_size", None, ht.TMaybe(ht.TPositiveInt), "Master candidate pool size"), ("uid_pool", None, ht.NoType, "Set UID pool, must be list of lists describing UID ranges (two items," " start and end inclusive)"), ("add_uids", None, ht.NoType, "Extend UID pool, must be list of lists describing UID ranges (two" " items, start and end inclusive) to be added"), ("remove_uids", None, ht.NoType, "Shrink UID pool, must be list of lists describing UID ranges (two" " items, start and end inclusive) to be removed"), ("maintain_node_health", None, ht.TMaybeBool, "Whether to automatically maintain node health"), ("prealloc_wipe_disks", None, ht.TMaybeBool, "Whether to wipe disks before allocating them to instances"), ("nicparams", None, ht.TMaybeDict, "Cluster-wide NIC parameter defaults"), ("ndparams", None, ht.TMaybeDict, "Cluster-wide node parameter defaults"), ("ipolicy", None, ht.TMaybeDict, "Cluster-wide :ref:`instance policy <rapi-ipolicy>` specs"), ("drbd_helper", None, ht.TMaybe(ht.TString), "DRBD helper program"), ("default_iallocator", None, ht.TMaybe(ht.TString), "Default iallocator for cluster"), ("master_netdev", None, ht.TMaybe(ht.TString), "Master network device"), ("master_netmask", None, ht.TMaybe(ht.TNonNegativeInt), "Netmask of the master IP"), ("reserved_lvs", None, ht.TMaybeListOf(ht.TNonEmptyString), "List of reserved LVs"), ("hidden_os", None, _TestClusterOsList, "Modify list of hidden operating systems: each modification must have" " two items, the operation and the OS name; the operation can be" " ``%s`` or ``%s``" % (constants.DDM_ADD, constants.DDM_REMOVE)), ("blacklisted_os", None, _TestClusterOsList, "Modify list of blacklisted operating systems: each modification must" " have two items, the operation and the OS name; the operation can be" " ``%s`` or ``%s``" % (constants.DDM_ADD, constants.DDM_REMOVE)), ("use_external_mip_script", None, ht.TMaybeBool, "Whether to use an external master IP address setup script"), ] OP_RESULT = ht.TNone class OpClusterRedistConf(OpCode): """Force a full push of the cluster configuration. """ OP_RESULT = ht.TNone class OpClusterActivateMasterIp(OpCode): """Activate the master IP on the master node. """ OP_RESULT = ht.TNone class OpClusterDeactivateMasterIp(OpCode): """Deactivate the master IP on the master node. """ OP_RESULT = ht.TNone class OpQuery(OpCode): """Query for resources/items. @ivar what: Resources to query for, must be one of L{constants.QR_VIA_OP} @ivar fields: List of fields to retrieve @ivar qfilter: Query filter """ OP_DSC_FIELD = "what" OP_PARAMS = [ _PQueryWhat, _PUseLocking, ("fields", ht.NoDefault, ht.TListOf(ht.TNonEmptyString), "Requested fields"), ("qfilter", None, ht.TMaybe(ht.TList), "Query filter"), ] OP_RESULT = \ _GenerateObjectTypeCheck(objects.QueryResponse, { "fields": ht.TListOf(_TQueryFieldDef), "data": _TQueryResult, }) class OpQueryFields(OpCode): """Query for available resource/item fields. @ivar what: Resources to query for, must be one of L{constants.QR_VIA_OP} @ivar fields: List of fields to retrieve """ OP_DSC_FIELD = "what" OP_PARAMS = [ _PQueryWhat, ("fields", None, ht.TMaybeListOf(ht.TNonEmptyString), "Requested fields; if not given, all are returned"), ] OP_RESULT = \ _GenerateObjectTypeCheck(objects.QueryFieldsResponse, { "fields": ht.TListOf(_TQueryFieldDef), }) class OpOobCommand(OpCode): """Interact with OOB.""" OP_PARAMS = [ ("node_names", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "List of nodes to run the OOB command against"), ("command", ht.NoDefault, ht.TElemOf(constants.OOB_COMMANDS), "OOB command to be run"), ("timeout", constants.OOB_TIMEOUT, ht.TInt, "Timeout before the OOB helper will be terminated"), ("ignore_status", False, ht.TBool, "Ignores the node offline status for power off"), ("power_delay", constants.OOB_POWER_DELAY, ht.TNonNegativeFloat, "Time in seconds to wait between powering on nodes"), ] # Fixme: Make it more specific with all the special cases in LUOobCommand OP_RESULT = _TQueryResult class OpRestrictedCommand(OpCode): """Runs a restricted command on node(s). """ OP_PARAMS = [ _PUseLocking, ("nodes", ht.NoDefault, ht.TListOf(ht.TNonEmptyString), "Nodes on which the command should be run (at least one)"), ("command", ht.NoDefault, ht.TNonEmptyString, "Command name (no parameters)"), ] _RESULT_ITEMS = [ ht.Comment("success")(ht.TBool), ht.Comment("output or error message")(ht.TString), ] OP_RESULT = \ ht.TListOf(ht.TAnd(ht.TIsLength(len(_RESULT_ITEMS)), ht.TItems(_RESULT_ITEMS))) # node opcodes class OpNodeRemove(OpCode): """Remove a node. @type node_name: C{str} @ivar node_name: The name of the node to remove. If the node still has instances on it, the operation will fail. """ OP_DSC_FIELD = "node_name" OP_PARAMS = [ _PNodeName, ] OP_RESULT = ht.TNone class OpNodeAdd(OpCode): """Add a node to the cluster. @type node_name: C{str} @ivar node_name: The name of the node to add. This can be a short name, but it will be expanded to the FQDN. @type primary_ip: IP address @ivar primary_ip: The primary IP of the node. This will be ignored when the opcode is submitted, but will be filled during the node add (so it will be visible in the job query). @type secondary_ip: IP address @ivar secondary_ip: The secondary IP of the node. This needs to be passed if the cluster has been initialized in 'dual-network' mode, otherwise it must not be given. @type readd: C{bool} @ivar readd: Whether to re-add an existing node to the cluster. If this is not passed, then the operation will abort if the node name is already in the cluster; use this parameter to 'repair' a node that had its configuration broken, or was reinstalled without removal from the cluster. @type group: C{str} @ivar group: The node group to which this node will belong. @type vm_capable: C{bool} @ivar vm_capable: The vm_capable node attribute @type master_capable: C{bool} @ivar master_capable: The master_capable node attribute """ OP_DSC_FIELD = "node_name" OP_PARAMS = [ _PNodeName, _PHvState, _PDiskState, ("primary_ip", None, ht.NoType, "Primary IP address"), ("secondary_ip", None, ht.TMaybeString, "Secondary IP address"), ("readd", False, ht.TBool, "Whether node is re-added to cluster"), ("group", None, ht.TMaybeString, "Initial node group"), ("master_capable", None, ht.TMaybeBool, "Whether node can become master or master candidate"), ("vm_capable", None, ht.TMaybeBool, "Whether node can host instances"), ("ndparams", None, ht.TMaybeDict, "Node parameters"), ] OP_RESULT = ht.TNone class OpNodeQuery(OpCode): """Compute the list of nodes.""" OP_PARAMS = [ _POutputFields, _PUseLocking, ("names", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Empty list to query all nodes, node names otherwise"), ] OP_RESULT = _TOldQueryResult class OpNodeQueryvols(OpCode): """Get list of volumes on node.""" OP_PARAMS = [ _POutputFields, ("nodes", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Empty list to query all nodes, node names otherwise"), ] OP_RESULT = ht.TListOf(ht.TAny) class OpNodeQueryStorage(OpCode): """Get information on storage for node(s).""" OP_PARAMS = [ _POutputFields, _PStorageType, ("nodes", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "List of nodes"), ("name", None, ht.TMaybeString, "Storage name"), ] OP_RESULT = _TOldQueryResult class OpNodeModifyStorage(OpCode): """Modifies the properies of a storage unit""" OP_DSC_FIELD = "node_name" OP_PARAMS = [ _PNodeName, _PStorageType, _PStorageName, ("changes", ht.NoDefault, ht.TDict, "Requested changes"), ] OP_RESULT = ht.TNone class OpRepairNodeStorage(OpCode): """Repairs the volume group on a node.""" OP_DSC_FIELD = "node_name" OP_PARAMS = [ _PNodeName, _PStorageType, _PStorageName, _PIgnoreConsistency, ] OP_RESULT = ht.TNone class OpNodeSetParams(OpCode): """Change the parameters of a node.""" OP_DSC_FIELD = "node_name" OP_PARAMS = [ _PNodeName, _PForce, _PHvState, _PDiskState, ("master_candidate", None, ht.TMaybeBool, "Whether the node should become a master candidate"), ("offline", None, ht.TMaybeBool, "Whether the node should be marked as offline"), ("drained", None, ht.TMaybeBool, "Whether the node should be marked as drained"), ("auto_promote", False, ht.TBool, "Whether node(s) should be promoted to master candidate if necessary"), ("master_capable", None, ht.TMaybeBool, "Denote whether node can become master or master candidate"), ("vm_capable", None, ht.TMaybeBool, "Denote whether node can host instances"), ("secondary_ip", None, ht.TMaybeString, "Change node's secondary IP address"), ("ndparams", None, ht.TMaybeDict, "Set node parameters"), ("powered", None, ht.TMaybeBool, "Whether the node should be marked as powered"), ] OP_RESULT = _TSetParamsResult class OpNodePowercycle(OpCode): """Tries to powercycle a node.""" OP_DSC_FIELD = "node_name" OP_PARAMS = [ _PNodeName, _PForce, ] OP_RESULT = ht.TMaybeString class OpNodeMigrate(OpCode): """Migrate all instances from a node.""" OP_DSC_FIELD = "node_name" OP_PARAMS = [ _PNodeName, _PMigrationMode, _PMigrationLive, _PMigrationTargetNode, _PAllowRuntimeChgs, _PIgnoreIpolicy, _PIAllocFromDesc("Iallocator for deciding the target node" " for shared-storage instances"), ] OP_RESULT = TJobIdListOnly class OpNodeEvacuate(OpCode): """Evacuate instances off a number of nodes.""" OP_DSC_FIELD = "node_name" OP_PARAMS = [ _PEarlyRelease, _PNodeName, ("remote_node", None, ht.TMaybeString, "New secondary node"), _PIAllocFromDesc("Iallocator for computing solution"), ("mode", ht.NoDefault, ht.TElemOf(constants.NODE_EVAC_MODES), "Node evacuation mode"), ] OP_RESULT = TJobIdListOnly # instance opcodes class OpInstanceCreate(OpCode): """Create an instance. @ivar instance_name: Instance name @ivar mode: Instance creation mode (one of L{constants.INSTANCE_CREATE_MODES}) @ivar source_handshake: Signed handshake from source (remote import only) @ivar source_x509_ca: Source X509 CA in PEM format (remote import only) @ivar source_instance_name: Previous name of instance (remote import only) @ivar source_shutdown_timeout: Shutdown timeout used for source instance (remote import only) """ OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PForceVariant, _PWaitForSync, _PNameCheck, _PIgnoreIpolicy, _POpportunisticLocking, ("beparams", ht.EmptyDict, ht.TDict, "Backend parameters for instance"), ("disks", ht.NoDefault, ht.TListOf(_TDiskParams), "Disk descriptions, for example ``[{\"%s\": 100}, {\"%s\": 5}]``;" " each disk definition must contain a ``%s`` value and" " can contain an optional ``%s`` value denoting the disk access mode" " (%s)" % (constants.IDISK_SIZE, constants.IDISK_SIZE, constants.IDISK_SIZE, constants.IDISK_MODE, " or ".join("``%s``" % i for i in sorted(constants.DISK_ACCESS_SET)))), ("disk_template", ht.NoDefault, _BuildDiskTemplateCheck(True), "Disk template"), ("file_driver", None, ht.TMaybe(ht.TElemOf(constants.FILE_DRIVER)), "Driver for file-backed disks"), ("file_storage_dir", None, ht.TMaybeString, "Directory for storing file-backed disks"), ("hvparams", ht.EmptyDict, ht.TDict, "Hypervisor parameters for instance, hypervisor-dependent"), ("hypervisor", None, ht.TMaybeString, "Hypervisor"), _PIAllocFromDesc("Iallocator for deciding which node(s) to use"), ("identify_defaults", False, ht.TBool, "Reset instance parameters to default if equal"), ("ip_check", True, ht.TBool, _PIpCheckDoc), ("conflicts_check", True, ht.TBool, "Check for conflicting IPs"), ("mode", ht.NoDefault, ht.TElemOf(constants.INSTANCE_CREATE_MODES), "Instance creation mode"), ("nics", ht.NoDefault, ht.TListOf(_TestNicDef), "List of NIC (network interface) definitions, for example" " ``[{}, {}, {\"%s\": \"198.51.100.4\"}]``; each NIC definition can" " contain the optional values %s" % (constants.INIC_IP, ", ".join("``%s``" % i for i in sorted(constants.INIC_PARAMS)))), ("no_install", None, ht.TMaybeBool, "Do not install the OS (will disable automatic start)"), ("osparams", ht.EmptyDict, ht.TDict, "OS parameters for instance"), ("os_type", None, ht.TMaybeString, "Operating system"), ("pnode", None, ht.TMaybeString, "Primary node"), ("snode", None, ht.TMaybeString, "Secondary node"), ("source_handshake", None, ht.TMaybe(ht.TList), "Signed handshake from source (remote import only)"), ("source_instance_name", None, ht.TMaybeString, "Source instance name (remote import only)"), ("source_shutdown_timeout", constants.DEFAULT_SHUTDOWN_TIMEOUT, ht.TNonNegativeInt, "How long source instance was given to shut down (remote import only)"), ("source_x509_ca", None, ht.TMaybeString, "Source X509 CA in PEM format (remote import only)"), ("src_node", None, ht.TMaybeString, "Source node for import"), ("src_path", None, ht.TMaybeString, "Source directory for import"), ("start", True, ht.TBool, "Whether to start instance after creation"), ("tags", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Instance tags"), ] OP_RESULT = ht.Comment("instance nodes")(ht.TListOf(ht.TNonEmptyString)) class OpInstanceMultiAlloc(OpCode): """Allocates multiple instances. """ OP_PARAMS = [ _POpportunisticLocking, _PIAllocFromDesc("Iallocator used to allocate all the instances"), ("instances", ht.EmptyList, ht.TListOf(ht.TInstanceOf(OpInstanceCreate)), "List of instance create opcodes describing the instances to allocate"), ] _JOB_LIST = ht.Comment("List of submitted jobs")(TJobIdList) ALLOCATABLE_KEY = "allocatable" FAILED_KEY = "allocatable" OP_RESULT = ht.TStrictDict(True, True, { constants.JOB_IDS_KEY: _JOB_LIST, ALLOCATABLE_KEY: ht.TListOf(ht.TNonEmptyString), FAILED_KEY: ht.TListOf(ht.TNonEmptyString), }) def __getstate__(self): """Generic serializer. """ state = OpCode.__getstate__(self) if hasattr(self, "instances"): # pylint: disable=E1101 state["instances"] = [inst.__getstate__() for inst in self.instances] return state def __setstate__(self, state): """Generic unserializer. This method just restores from the serialized state the attributes of the current instance. @param state: the serialized opcode data @type state: C{dict} """ if not isinstance(state, dict): raise ValueError("Invalid data to __setstate__: expected dict, got %s" % type(state)) if "instances" in state: state["instances"] = map(OpCode.LoadOpCode, state["instances"]) return OpCode.__setstate__(self, state) def Validate(self, set_defaults): """Validates this opcode. We do this recursively. """ OpCode.Validate(self, set_defaults) for inst in self.instances: # pylint: disable=E1101 inst.Validate(set_defaults) class OpInstanceReinstall(OpCode): """Reinstall an instance's OS.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PForceVariant, ("os_type", None, ht.TMaybeString, "Instance operating system"), ("osparams", None, ht.TMaybeDict, "Temporary OS parameters"), ] OP_RESULT = ht.TNone class OpInstanceRemove(OpCode): """Remove an instance.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PShutdownTimeout, ("ignore_failures", False, ht.TBool, "Whether to ignore failures during removal"), ] OP_RESULT = ht.TNone class OpInstanceRename(OpCode): """Rename an instance.""" OP_PARAMS = [ _PInstanceName, _PNameCheck, ("new_name", ht.NoDefault, ht.TNonEmptyString, "New instance name"), ("ip_check", False, ht.TBool, _PIpCheckDoc), ] OP_RESULT = ht.Comment("New instance name")(ht.TNonEmptyString) class OpInstanceStartup(OpCode): """Startup an instance.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PForce, _PIgnoreOfflineNodes, ("hvparams", ht.EmptyDict, ht.TDict, "Temporary hypervisor parameters, hypervisor-dependent"), ("beparams", ht.EmptyDict, ht.TDict, "Temporary backend parameters"), _PNoRemember, _PStartupPaused, ] OP_RESULT = ht.TNone class OpInstanceShutdown(OpCode): """Shutdown an instance.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PForce, _PIgnoreOfflineNodes, ("timeout", constants.DEFAULT_SHUTDOWN_TIMEOUT, ht.TNonNegativeInt, "How long to wait for instance to shut down"), _PNoRemember, ] OP_RESULT = ht.TNone class OpInstanceReboot(OpCode): """Reboot an instance.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PShutdownTimeout, ("ignore_secondaries", False, ht.TBool, "Whether to start the instance even if secondary disks are failing"), ("reboot_type", ht.NoDefault, ht.TElemOf(constants.REBOOT_TYPES), "How to reboot instance"), ("reason", (constants.INSTANCE_REASON_SOURCE_UNKNOWN, None), ht.TAnd(ht.TIsLength(2), ht.TItems([ ht.TElemOf(constants.INSTANCE_REASON_SOURCES), ht.TMaybeString, ])), "The reason why the reboot is happening"), ] OP_RESULT = ht.TNone class OpInstanceReplaceDisks(OpCode): """Replace the disks of an instance.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PEarlyRelease, _PIgnoreIpolicy, ("mode", ht.NoDefault, ht.TElemOf(constants.REPLACE_MODES), "Replacement mode"), ("disks", ht.EmptyList, ht.TListOf(ht.TNonNegativeInt), "Disk indexes"), ("remote_node", None, ht.TMaybeString, "New secondary node"), _PIAllocFromDesc("Iallocator for deciding new secondary node"), ] OP_RESULT = ht.TNone class OpInstanceFailover(OpCode): """Failover an instance.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PShutdownTimeout, _PIgnoreConsistency, _PMigrationTargetNode, _PIgnoreIpolicy, _PIAllocFromDesc("Iallocator for deciding the target node for" " shared-storage instances"), ] OP_RESULT = ht.TNone class OpInstanceMigrate(OpCode): """Migrate an instance. This migrates (without shutting down an instance) to its secondary node. @ivar instance_name: the name of the instance @ivar mode: the migration mode (live, non-live or None for auto) """ OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PMigrationMode, _PMigrationLive, _PMigrationTargetNode, _PAllowRuntimeChgs, _PIgnoreIpolicy, ("cleanup", False, ht.TBool, "Whether a previously failed migration should be cleaned up"), _PIAllocFromDesc("Iallocator for deciding the target node for" " shared-storage instances"), ("allow_failover", False, ht.TBool, "Whether we can fallback to failover if migration is not possible"), ] OP_RESULT = ht.TNone class OpInstanceMove(OpCode): """Move an instance. This move (with shutting down an instance and data copying) to an arbitrary node. @ivar instance_name: the name of the instance @ivar target_node: the destination node """ OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PShutdownTimeout, _PIgnoreIpolicy, ("target_node", ht.NoDefault, ht.TNonEmptyString, "Target node"), _PIgnoreConsistency, ] OP_RESULT = ht.TNone class OpInstanceConsole(OpCode): """Connect to an instance's console.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, ] OP_RESULT = ht.TDict class OpInstanceActivateDisks(OpCode): """Activate an instance's disks.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, ("ignore_size", False, ht.TBool, "Whether to ignore recorded size"), _PWaitForSyncFalse, ] OP_RESULT = ht.TListOf(ht.TAnd(ht.TIsLength(3), ht.TItems([ht.TNonEmptyString, ht.TNonEmptyString, ht.TNonEmptyString]))) class OpInstanceDeactivateDisks(OpCode): """Deactivate an instance's disks.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PForce, ] OP_RESULT = ht.TNone class OpInstanceRecreateDisks(OpCode): """Recreate an instance's disks.""" _TDiskChanges = \ ht.TAnd(ht.TIsLength(2), ht.TItems([ht.Comment("Disk index")(ht.TNonNegativeInt), ht.Comment("Parameters")(_TDiskParams)])) OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, ("disks", ht.EmptyList, ht.TOr(ht.TListOf(ht.TNonNegativeInt), ht.TListOf(_TDiskChanges)), "List of disk indexes (deprecated) or a list of tuples containing a disk" " index and a possibly empty dictionary with disk parameter changes"), ("nodes", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "New instance nodes, if relocation is desired"), _PIAllocFromDesc("Iallocator for deciding new nodes"), ] OP_RESULT = ht.TNone class OpInstanceQuery(OpCode): """Compute the list of instances.""" OP_PARAMS = [ _POutputFields, _PUseLocking, ("names", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Empty list to query all instances, instance names otherwise"), ] OP_RESULT = _TOldQueryResult class OpInstanceQueryData(OpCode): """Compute the run-time status of instances.""" OP_PARAMS = [ _PUseLocking, ("instances", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Instance names"), ("static", False, ht.TBool, "Whether to only return configuration data without querying" " nodes"), ] OP_RESULT = ht.TDictOf(ht.TNonEmptyString, ht.TDict) def _TestInstSetParamsModList(fn): """Generates a check for modification lists. """ # Old format # TODO: Remove in version 2.8 including support in LUInstanceSetParams old_mod_item_fn = \ ht.TAnd(ht.TIsLength(2), ht.TItems([ ht.TOr(ht.TElemOf(constants.DDMS_VALUES), ht.TNonNegativeInt), fn, ])) # New format, supporting adding/removing disks/NICs at arbitrary indices mod_item_fn = \ ht.TAnd(ht.TIsLength(3), ht.TItems([ ht.TElemOf(constants.DDMS_VALUES_WITH_MODIFY), ht.Comment("Disk index, can be negative, e.g. -1 for last disk")(ht.TInt), fn, ])) return ht.TOr(ht.Comment("Recommended")(ht.TListOf(mod_item_fn)), ht.Comment("Deprecated")(ht.TListOf(old_mod_item_fn))) class OpInstanceSetParams(OpCode): """Change the parameters of an instance. """ TestNicModifications = _TestInstSetParamsModList(_TestNicDef) TestDiskModifications = _TestInstSetParamsModList(_TDiskParams) OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PForce, _PForceVariant, _PIgnoreIpolicy, ("nics", ht.EmptyList, TestNicModifications, "List of NIC changes: each item is of the form ``(op, index, settings)``," " ``op`` is one of ``%s``, ``%s`` or ``%s``, ``index`` can be either -1" " to refer to the last position, or a zero-based index number; a" " deprecated version of this parameter used the form ``(op, settings)``," " where ``op`` can be ``%s`` to add a new NIC with the specified" " settings, ``%s`` to remove the last NIC or a number to modify the" " settings of the NIC with that index" % (constants.DDM_ADD, constants.DDM_MODIFY, constants.DDM_REMOVE, constants.DDM_ADD, constants.DDM_REMOVE)), ("disks", ht.EmptyList, TestDiskModifications, "List of disk changes; see ``nics``"), ("beparams", ht.EmptyDict, ht.TDict, "Per-instance backend parameters"), ("runtime_mem", None, ht.TMaybePositiveInt, "New runtime memory"), ("hvparams", ht.EmptyDict, ht.TDict, "Per-instance hypervisor parameters, hypervisor-dependent"), ("disk_template", None, ht.TMaybe(_BuildDiskTemplateCheck(False)), "Disk template for instance"), ("remote_node", None, ht.TMaybeString, "Secondary node (used when changing disk template)"), ("os_name", None, ht.TMaybeString, "Change the instance's OS without reinstalling the instance"), ("osparams", None, ht.TMaybeDict, "Per-instance OS parameters"), ("wait_for_sync", True, ht.TBool, "Whether to wait for the disk to synchronize, when changing template"), ("offline", None, ht.TMaybeBool, "Whether to mark instance as offline"), ("conflicts_check", True, ht.TBool, "Check for conflicting IPs"), ] OP_RESULT = _TSetParamsResult class OpInstanceGrowDisk(OpCode): """Grow a disk of an instance.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PWaitForSync, ("disk", ht.NoDefault, ht.TInt, "Disk index"), ("amount", ht.NoDefault, ht.TNonNegativeInt, "Amount of disk space to add (megabytes)"), ("absolute", False, ht.TBool, "Whether the amount parameter is an absolute target or a relative one"), ] OP_RESULT = ht.TNone class OpInstanceChangeGroup(OpCode): """Moves an instance to another node group.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PEarlyRelease, _PIAllocFromDesc("Iallocator for computing solution"), _PTargetGroups, ] OP_RESULT = TJobIdListOnly # Node group opcodes class OpGroupAdd(OpCode): """Add a node group to the cluster.""" OP_DSC_FIELD = "group_name" OP_PARAMS = [ _PGroupName, _PNodeGroupAllocPolicy, _PGroupNodeParams, _PDiskParams, _PHvState, _PDiskState, ("ipolicy", None, ht.TMaybeDict, "Group-wide :ref:`instance policy <rapi-ipolicy>` specs"), ] OP_RESULT = ht.TNone class OpGroupAssignNodes(OpCode): """Assign nodes to a node group.""" OP_DSC_FIELD = "group_name" OP_PARAMS = [ _PGroupName, _PForce, ("nodes", ht.NoDefault, ht.TListOf(ht.TNonEmptyString), "List of nodes to assign"), ] OP_RESULT = ht.TNone class OpGroupQuery(OpCode): """Compute the list of node groups.""" OP_PARAMS = [ _POutputFields, ("names", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Empty list to query all groups, group names otherwise"), ] OP_RESULT = _TOldQueryResult class OpGroupSetParams(OpCode): """Change the parameters of a node group.""" OP_DSC_FIELD = "group_name" OP_PARAMS = [ _PGroupName, _PNodeGroupAllocPolicy, _PGroupNodeParams, _PDiskParams, _PHvState, _PDiskState, ("ipolicy", None, ht.TMaybeDict, "Group-wide instance policy specs"), ] OP_RESULT = _TSetParamsResult class OpGroupRemove(OpCode): """Remove a node group from the cluster.""" OP_DSC_FIELD = "group_name" OP_PARAMS = [ _PGroupName, ] OP_RESULT = ht.TNone class OpGroupRename(OpCode): """Rename a node group in the cluster.""" OP_PARAMS = [ _PGroupName, ("new_name", ht.NoDefault, ht.TNonEmptyString, "New group name"), ] OP_RESULT = ht.Comment("New group name")(ht.TNonEmptyString) class OpGroupEvacuate(OpCode): """Evacuate a node group in the cluster.""" OP_DSC_FIELD = "group_name" OP_PARAMS = [ _PGroupName, _PEarlyRelease, _PIAllocFromDesc("Iallocator for computing solution"), _PTargetGroups, ] OP_RESULT = TJobIdListOnly # OS opcodes class OpOsDiagnose(OpCode): """Compute the list of guest operating systems.""" OP_PARAMS = [ _POutputFields, ("names", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Which operating systems to diagnose"), ] OP_RESULT = _TOldQueryResult # ExtStorage opcodes class OpExtStorageDiagnose(OpCode): """Compute the list of external storage providers.""" OP_PARAMS = [ _POutputFields, ("names", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Which ExtStorage Provider to diagnose"), ] OP_RESULT = _TOldQueryResult # Exports opcodes class OpBackupQuery(OpCode): """Compute the list of exported images.""" OP_PARAMS = [ _PUseLocking, ("nodes", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Empty list to query all nodes, node names otherwise"), ] OP_RESULT = ht.TDictOf(ht.TNonEmptyString, ht.TOr(ht.Comment("False on error")(ht.TBool), ht.TListOf(ht.TNonEmptyString))) class OpBackupPrepare(OpCode): """Prepares an instance export. @ivar instance_name: Instance name @ivar mode: Export mode (one of L{constants.EXPORT_MODES}) """ OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, ("mode", ht.NoDefault, ht.TElemOf(constants.EXPORT_MODES), "Export mode"), ] OP_RESULT = ht.TMaybeDict class OpBackupExport(OpCode): """Export an instance. For local exports, the export destination is the node name. For remote exports, the export destination is a list of tuples, each consisting of hostname/IP address, port, magic, HMAC and HMAC salt. The HMAC is calculated using the cluster domain secret over the value "${index}:${hostname}:${port}". The destination X509 CA must be a signed certificate. @ivar mode: Export mode (one of L{constants.EXPORT_MODES}) @ivar target_node: Export destination @ivar x509_key_name: X509 key to use (remote export only) @ivar destination_x509_ca: Destination X509 CA in PEM format (remote export only) """ OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, _PShutdownTimeout, # TODO: Rename target_node as it changes meaning for different export modes # (e.g. "destination") ("target_node", ht.NoDefault, ht.TOr(ht.TNonEmptyString, ht.TList), "Destination information, depends on export mode"), ("shutdown", True, ht.TBool, "Whether to shutdown instance before export"), ("remove_instance", False, ht.TBool, "Whether to remove instance after export"), ("ignore_remove_failures", False, ht.TBool, "Whether to ignore failures while removing instances"), ("mode", constants.EXPORT_MODE_LOCAL, ht.TElemOf(constants.EXPORT_MODES), "Export mode"), ("x509_key_name", None, ht.TMaybe(ht.TList), "Name of X509 key (remote export only)"), ("destination_x509_ca", None, ht.TMaybeString, "Destination X509 CA (remote export only)"), ] OP_RESULT = \ ht.TAnd(ht.TIsLength(2), ht.TItems([ ht.Comment("Finalizing status")(ht.TBool), ht.Comment("Status for every exported disk")(ht.TListOf(ht.TBool)), ])) class OpBackupRemove(OpCode): """Remove an instance's export.""" OP_DSC_FIELD = "instance_name" OP_PARAMS = [ _PInstanceName, ] OP_RESULT = ht.TNone # Tags opcodes class OpTagsGet(OpCode): """Returns the tags of the given object.""" OP_DSC_FIELD = "name" OP_PARAMS = [ _PTagKind, # Not using _PUseLocking as the default is different for historical reasons ("use_locking", True, ht.TBool, "Whether to use synchronization"), # Name is only meaningful for nodes and instances ("name", ht.NoDefault, ht.TMaybeString, "Name of object to retrieve tags from"), ] OP_RESULT = ht.TListOf(ht.TNonEmptyString) class OpTagsSearch(OpCode): """Searches the tags in the cluster for a given pattern.""" OP_DSC_FIELD = "pattern" OP_PARAMS = [ ("pattern", ht.NoDefault, ht.TNonEmptyString, "Search pattern (regular expression)"), ] OP_RESULT = ht.TListOf(ht.TAnd(ht.TIsLength(2), ht.TItems([ ht.TNonEmptyString, ht.TNonEmptyString, ]))) class OpTagsSet(OpCode): """Add a list of tags on a given object.""" OP_PARAMS = [ _PTagKind, _PTags, # Name is only meaningful for groups, nodes and instances ("name", ht.NoDefault, ht.TMaybeString, "Name of object where tag(s) should be added"), ] OP_RESULT = ht.TNone class OpTagsDel(OpCode): """Remove a list of tags from a given object.""" OP_PARAMS = [ _PTagKind, _PTags, # Name is only meaningful for groups, nodes and instances ("name", ht.NoDefault, ht.TMaybeString, "Name of object where tag(s) should be deleted"), ] OP_RESULT = ht.TNone # Test opcodes class OpTestDelay(OpCode): """Sleeps for a configured amount of time. This is used just for debugging and testing. Parameters: - duration: the time to sleep, in seconds - on_master: if true, sleep on the master - on_nodes: list of nodes in which to sleep If the on_master parameter is true, it will execute a sleep on the master (before any node sleep). If the on_nodes list is not empty, it will sleep on those nodes (after the sleep on the master, if that is enabled). As an additional feature, the case of duration < 0 will be reported as an execution error, so this opcode can be used as a failure generator. The case of duration == 0 will not be treated specially. """ OP_DSC_FIELD = "duration" OP_PARAMS = [ ("duration", ht.NoDefault, ht.TNumber, None), ("on_master", True, ht.TBool, None), ("on_nodes", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), None), ("repeat", 0, ht.TNonNegativeInt, None), ] def OP_DSC_FORMATTER(self, value): # pylint: disable=C0103,R0201 """Custom formatter for duration. """ try: v = float(value) except TypeError: v = value return str(v) class OpTestAllocator(OpCode): """Allocator framework testing. This opcode has two modes: - gather and return allocator input for a given mode (allocate new or replace secondary) and a given instance definition (direction 'in') - run a selected allocator for a given operation (as above) and return the allocator output (direction 'out') """ OP_DSC_FIELD = "iallocator" OP_PARAMS = [ ("direction", ht.NoDefault, ht.TElemOf(constants.VALID_IALLOCATOR_DIRECTIONS), None), ("mode", ht.NoDefault, ht.TElemOf(constants.VALID_IALLOCATOR_MODES), None), ("name", ht.NoDefault, ht.TNonEmptyString, None), ("nics", ht.NoDefault, ht.TMaybeListOf(ht.TDictOf(ht.TElemOf([constants.INIC_MAC, constants.INIC_IP, "bridge"]), ht.TMaybeString)), None), ("disks", ht.NoDefault, ht.TMaybe(ht.TList), None), ("hypervisor", None, ht.TMaybeString, None), _PIAllocFromDesc(None), ("tags", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), None), ("memory", None, ht.TMaybe(ht.TNonNegativeInt), None), ("vcpus", None, ht.TMaybe(ht.TNonNegativeInt), None), ("os", None, ht.TMaybeString, None), ("disk_template", None, ht.TMaybeString, None), ("instances", None, ht.TMaybeListOf(ht.TNonEmptyString), None), ("evac_mode", None, ht.TMaybe(ht.TElemOf(constants.IALLOCATOR_NEVAC_MODES)), None), ("target_groups", None, ht.TMaybeListOf(ht.TNonEmptyString), None), ("spindle_use", 1, ht.TNonNegativeInt, None), ("count", 1, ht.TNonNegativeInt, None), ] class OpTestJqueue(OpCode): """Utility opcode to test some aspects of the job queue. """ OP_PARAMS = [ ("notify_waitlock", False, ht.TBool, None), ("notify_exec", False, ht.TBool, None), ("log_messages", ht.EmptyList, ht.TListOf(ht.TString), None), ("fail", False, ht.TBool, None), ] class OpTestDummy(OpCode): """Utility opcode used by unittests. """ OP_PARAMS = [ ("result", ht.NoDefault, ht.NoType, None), ("messages", ht.NoDefault, ht.NoType, None), ("fail", ht.NoDefault, ht.NoType, None), ("submit_jobs", None, ht.NoType, None), ] WITH_LU = False # Network opcodes # Add a new network in the cluster class OpNetworkAdd(OpCode): """Add an IP network to the cluster.""" OP_DSC_FIELD = "network_name" OP_PARAMS = [ _PNetworkName, ("network", ht.NoDefault, _TIpNetwork4, "IPv4 subnet"), ("gateway", None, ht.TMaybe(_TIpAddress4), "IPv4 gateway"), ("network6", None, ht.TMaybe(_TIpNetwork6), "IPv6 subnet"), ("gateway6", None, ht.TMaybe(_TIpAddress6), "IPv6 gateway"), ("mac_prefix", None, ht.TMaybeString, "MAC address prefix that overrides cluster one"), ("add_reserved_ips", None, _TMaybeAddr4List, "Which IP addresses to reserve"), ("conflicts_check", True, ht.TBool, "Whether to check for conflicting IP addresses"), ("tags", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Network tags"), ] OP_RESULT = ht.TNone class OpNetworkRemove(OpCode): """Remove an existing network from the cluster. Must not be connected to any nodegroup. """ OP_DSC_FIELD = "network_name" OP_PARAMS = [ _PNetworkName, _PForce, ] OP_RESULT = ht.TNone class OpNetworkSetParams(OpCode): """Modify Network's parameters except for IPv4 subnet""" OP_DSC_FIELD = "network_name" OP_PARAMS = [ _PNetworkName, ("gateway", None, ht.TMaybeValueNone(_TIpAddress4), "IPv4 gateway"), ("network6", None, ht.TMaybeValueNone(_TIpNetwork6), "IPv6 subnet"), ("gateway6", None, ht.TMaybeValueNone(_TIpAddress6), "IPv6 gateway"), ("mac_prefix", None, ht.TMaybeValueNone(ht.TString), "MAC address prefix that overrides cluster one"), ("add_reserved_ips", None, _TMaybeAddr4List, "Which external IP addresses to reserve"), ("remove_reserved_ips", None, _TMaybeAddr4List, "Which external IP addresses to release"), ] OP_RESULT = ht.TNone class OpNetworkConnect(OpCode): """Connect a Network to a specific Nodegroup with the defined netparams (mode, link). Nics in this Network will inherit those params. Produce errors if a NIC (that its not already assigned to a network) has an IP that is contained in the Network this will produce error unless --no-conflicts-check is passed. """ OP_DSC_FIELD = "network_name" OP_PARAMS = [ _PGroupName, _PNetworkName, ("network_mode", ht.NoDefault, ht.TElemOf(constants.NIC_VALID_MODES), "Connectivity mode"), ("network_link", ht.NoDefault, ht.TString, "Connectivity link"), ("conflicts_check", True, ht.TBool, "Whether to check for conflicting IPs"), ] OP_RESULT = ht.TNone class OpNetworkDisconnect(OpCode): """Disconnect a Network from a Nodegroup. Produce errors if NICs are present in the Network unless --no-conficts-check option is passed. """ OP_DSC_FIELD = "network_name" OP_PARAMS = [ _PGroupName, _PNetworkName, ] OP_RESULT = ht.TNone class OpNetworkQuery(OpCode): """Compute the list of networks.""" OP_PARAMS = [ _POutputFields, _PUseLocking, ("names", ht.EmptyList, ht.TListOf(ht.TNonEmptyString), "Empty list to query all groups, group names otherwise"), ] OP_RESULT = _TOldQueryResult def _GetOpList(): """Returns list of all defined opcodes. Does not eliminate duplicates by C{OP_ID}. """ return [v for v in globals().values() if (isinstance(v, type) and issubclass(v, OpCode) and hasattr(v, "OP_ID") and v is not OpCode)] OP_MAPPING = dict((v.OP_ID, v) for v in _GetOpList())
gpl-2.0
7,356,497,005,016,279,000
30.285189
80
0.657835
false
3.517298
false
false
false
ronggong/jingjuSingingPhraseMatching
phoneticSimilarity/phonemeDurationStat.py
1
5978
''' * Copyright (C) 2017 Music Technology Group - Universitat Pompeu Fabra * * This file is part of jingjuSingingPhraseMatching * * pypYIN is free software: you can redistribute it and/or modify it under * the terms of the GNU Affero General Public License as published by the Free * Software Foundation (FSF), either version 3 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the Affero GNU General Public License * version 3 along with this program. If not, see http://www.gnu.org/licenses/ * * If you have any problem about this python version code, please contact: Rong Gong * rong.gong@upf.edu * * * If you want to refer this code, please use this article: * ''' from general.trainTestSeparation import getRecordingNamesSimi from general.textgridParser import syllableTextgridExtraction import matplotlib.pyplot as plt from scipy.misc import factorial from scipy.optimize import curve_fit from scipy.stats import gamma,expon from general.filePath import * from general.parameters import * from general.phonemeMap import dic_pho_map import json import numpy as np import os def phoDurCollection(recordings): ''' collect durations of pho into dictionary :param recordings: :return: ''' dict_duration_pho = {} for recording in recordings: nestedPhonemeLists, numSyllables, numPhonemes \ = syllableTextgridExtraction(textgrid_path,recording,syllableTierName,phonemeTierName) for pho in nestedPhonemeLists: for p in pho[1]: dur_pho = p[1] - p[0] sampa_pho = dic_pho_map[p[2]] if sampa_pho not in dict_duration_pho.keys(): dict_duration_pho[sampa_pho] = [dur_pho] else: dict_duration_pho[sampa_pho].append(dur_pho) return dict_duration_pho def poisson(k, lamb): return (lamb**k/factorial(k)) * np.exp(-lamb) def durPhoDistribution(array_durPho,sampa_pho,plot=False): ''' pho durations histogram :param array_durPho: :return: ''' # plt.figure(figsize=(10, 6)) # integer bin edges offset_bin = 0.005 bins = np.arange(0, max(array_durPho)+2, 2*offset_bin) - offset_bin # histogram entries, bin_edges, patches = plt.hist(array_durPho, bins=bins, normed=True, fc=(0, 0, 1, 0.7),label='pho: '+sampa_pho+' duration histogram') # centroid duration bin_centres = bin_edges-offset_bin bin_centres = bin_centres[:-1] centroid = np.sum(bin_centres*entries)/np.sum(entries) ##-- fit with poisson distribution # bin_middles = 0.5*(bin_edges[1:] + bin_edges[:-1]) # # parameters, cov_matrix = curve_fit(poisson, bin_middles, entries) # # x = np.linspace(0, max(array_durPho), 1000) # x = np.arange(0,max(array_durPho),hopsize_t) # # p = poisson(x, *parameters) ##-- fit with gamma distribution # discard some outlier durations by applying 2 standard deviations interval mean_array_durPho=np.mean(array_durPho) std_array_durPho=np.std(array_durPho) index_keep = np.where(array_durPho<mean_array_durPho+2*std_array_durPho) array_durPho_keep = array_durPho[index_keep] # discard some duration in histogram to make the fitting reasonable if class_name == 'laosheng': if sampa_pho == 'in': array_durPho_keep = array_durPho_keep[np.where(array_durPho_keep<2.5)] elif sampa_pho == '@n': array_durPho_keep = array_durPho_keep[np.where(array_durPho_keep<3)] elif sampa_pho == 'eI^': array_durPho_keep = array_durPho_keep[np.where(array_durPho_keep<1.5)] elif sampa_pho == 'EnEn': array_durPho_keep = array_durPho_keep[np.where(array_durPho_keep<2.0)] elif sampa_pho == 'UN': array_durPho_keep = array_durPho_keep[np.where(array_durPho_keep<2.5)] # step is the hopsize_t, corresponding to each frame # maximum length is the 4 times of the effective length x = np.arange(0, 8*max(array_durPho_keep),hopsize_t_phoneticSimilarity) param = gamma.fit(array_durPho_keep,floc = 0) y = gamma.pdf(x, *param) # y = expon.pdf(x) if plot: # possion fitting curve # plt.plot(x,p,'r',linewidth=2,label='Poisson distribution fitting curve') # gamma fitting curve # plt.plot(x, y, 'r-', lw=2, alpha=0.6, label='gamma pdf') plt.axvline(centroid, linewidth = 3, color = 'r', label = 'centroid frequency') plt.legend(fontsize=18) plt.xlabel('Pho duration distribution ',fontsize=18) plt.ylabel('Probability',fontsize=18) plt.axis('tight') plt.tight_layout() plt.show() y /= np.sum(y) return y.tolist(),centroid if __name__ == '__main__': rp = os.path.dirname(__file__) for cn in ['danAll', 'laosheng']: recordings_train = getRecordingNamesSimi('TRAIN',cn) dict_duration_pho = phoDurCollection(recordings_train) dict_centroid_dur = {} dict_dur_dist = {} for pho in dict_duration_pho: durDist,centroid_dur = durPhoDistribution(np.array(dict_duration_pho[pho]),pho,plot=False) dict_centroid_dur[pho] = centroid_dur dict_dur_dist[pho] = durDist # the first proba is always 0 # dump duration centroid with open(os.path.join(rp, 'lyricsRecognizer' ,'dict_centroid_dur'+cn+'.json'),'wb') as outfile: json.dump(dict_centroid_dur,outfile) # the gamma occupancy duration distribution is never used # with open('dict_dur_dist_'+class_name+'.json','wb') as outfile: # json.dump(dict_dur_dist,outfile)
agpl-3.0
-4,279,212,085,165,763,000
34.583333
145
0.652559
false
3.319267
false
false
false
MatKallada/nbgrader
nbgrader/tests/apps/base.py
1
1462
import os import shutil import pytest import stat from IPython.nbformat import write as write_nb from IPython.nbformat.v4 import new_notebook @pytest.mark.usefixtures("temp_cwd") class BaseTestApp(object): def _empty_notebook(self, path): nb = new_notebook() full_dest = os.path.join(os.getcwd(), path) if not os.path.exists(os.path.dirname(full_dest)): os.makedirs(os.path.dirname(full_dest)) if os.path.exists(full_dest): os.remove(full_dest) with open(full_dest, 'w') as f: write_nb(nb, f, 4) def _copy_file(self, src, dest): full_src = os.path.join(os.path.dirname(__file__), src) full_dest = os.path.join(os.getcwd(), dest) if not os.path.exists(os.path.dirname(full_dest)): os.makedirs(os.path.dirname(full_dest)) shutil.copy(full_src, full_dest) def _make_file(self, path, contents=""): full_dest = os.path.join(os.getcwd(), path) if not os.path.exists(os.path.dirname(full_dest)): os.makedirs(os.path.dirname(full_dest)) if os.path.exists(full_dest): os.remove(full_dest) with open(full_dest, "w") as fh: fh.write(contents) def _get_permissions(self, filename): return oct(os.stat(filename).st_mode)[-3:] def _file_contents(self, path): with open(path, "r") as fh: contents = fh.read() return contents
bsd-3-clause
2,815,919,129,602,504,700
31.488889
63
0.604651
false
3.330296
false
false
false
philgyford/django-ditto
ditto/lastfm/urls.py
1
2255
from django.conf.urls import url from . import views app_name = "lastfm" # The pattern for matching an Album/Artist/Track slug: slug_chars = "[\w.,:;=@&+%()$!°’~-]+" # noqa: W605 urlpatterns = [ url(regex=r"^$", view=views.HomeView.as_view(), name="home"), url( regex=r"^library/$", view=views.ScrobbleListView.as_view(), name="scrobble_list" ), url( regex=r"^library/albums/$", view=views.AlbumListView.as_view(), name="album_list", ), url( regex=r"^library/artists/$", view=views.ArtistListView.as_view(), name="artist_list", ), url( regex=r"^library/tracks/$", view=views.TrackListView.as_view(), name="track_list", ), url( regex=r"^music/(?P<artist_slug>%s)/$" % slug_chars, view=views.ArtistDetailView.as_view(), name="artist_detail", ), url( regex=r"^music/(?P<artist_slug>%s)/\+albums/$" % slug_chars, view=views.ArtistAlbumsView.as_view(), name="artist_albums", ), url( regex=r"^music/(?P<artist_slug>%s)/(?P<album_slug>%s)/$" % (slug_chars, slug_chars), view=views.AlbumDetailView.as_view(), name="album_detail", ), url( regex=r"^music/(?P<artist_slug>%s)/_/(?P<track_slug>%s)/$" % (slug_chars, slug_chars), view=views.TrackDetailView.as_view(), name="track_detail", ), # User pages. url( regex=r"^user/(?P<username>[a-z0-9]+)/$", view=views.UserDetailView.as_view(), name="user_detail", ), url( regex=r"^user/(?P<username>[a-z0-9]+)/library/$", view=views.UserScrobbleListView.as_view(), name="user_scrobble_list", ), url( regex=r"^user/(?P<username>[a-z0-9]+)/library/albums/$", view=views.UserAlbumListView.as_view(), name="user_album_list", ), url( regex=r"^user/(?P<username>[a-z0-9]+)/library/artists/$", view=views.UserArtistListView.as_view(), name="user_artist_list", ), url( regex=r"^user/(?P<username>[a-z0-9]+)/library/tracks/$", view=views.UserTrackListView.as_view(), name="user_track_list", ), ]
mit
1,310,448,974,129,350,100
26.802469
88
0.543961
false
3.171831
false
false
false
OpenTechFund/WebApp
opentech/apply/review/migrations/0001_initial.py
1
1068
# Generated by Django 2.0.2 on 2018-03-13 17:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('funds', '0028_update_on_delete_django2'), ] operations = [ migrations.CreateModel( name='Review', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('review', models.TextField()), ('author', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('submission', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='funds.ApplicationSubmission', related_name='reviews')), ], ), migrations.AlterUniqueTogether( name='review', unique_together={('author', 'submission')}, ), ]
gpl-2.0
-8,155,020,913,151,318,000
33.451613
153
0.618914
false
4.238095
false
false
false
yinglanma/AI-project
examples/OpenAIGym/run-atari.py
1
3274
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: run-atari.py # Author: Yuxin Wu <ppwwyyxxc@gmail.com> import numpy as np import tensorflow as tf import os, sys, re, time import random import argparse import six from tensorpack import * from tensorpack.RL import * IMAGE_SIZE = (84, 84) FRAME_HISTORY = 4 CHANNEL = FRAME_HISTORY * 3 IMAGE_SHAPE3 = IMAGE_SIZE + (CHANNEL,) NUM_ACTIONS = None ENV_NAME = None from common import play_one_episode def get_player(dumpdir=None): pl = GymEnv(ENV_NAME, dumpdir=dumpdir, auto_restart=False) pl = MapPlayerState(pl, lambda img: cv2.resize(img, IMAGE_SIZE[::-1])) global NUM_ACTIONS NUM_ACTIONS = pl.get_action_space().num_actions() pl = HistoryFramePlayer(pl, FRAME_HISTORY) return pl class Model(ModelDesc): def _get_input_vars(self): assert NUM_ACTIONS is not None return [InputVar(tf.float32, (None,) + IMAGE_SHAPE3, 'state'), InputVar(tf.int32, (None,), 'action'), InputVar(tf.float32, (None,), 'futurereward') ] def _get_NN_prediction(self, image): image = image / 255.0 with argscope(Conv2D, nl=tf.nn.relu): l = Conv2D('conv0', image, out_channel=32, kernel_shape=5) l = MaxPooling('pool0', l, 2) l = Conv2D('conv1', l, out_channel=32, kernel_shape=5) l = MaxPooling('pool1', l, 2) l = Conv2D('conv2', l, out_channel=64, kernel_shape=4) l = MaxPooling('pool2', l, 2) l = Conv2D('conv3', l, out_channel=64, kernel_shape=3) l = FullyConnected('fc0', l, 512, nl=tf.identity) l = PReLU('prelu', l) policy = FullyConnected('fc-pi', l, out_dim=NUM_ACTIONS, nl=tf.identity) return policy def _build_graph(self, inputs): state, action, futurereward = inputs policy = self._get_NN_prediction(state) self.logits = tf.nn.softmax(policy, name='logits') def run_submission(cfg, output, nr): player = get_player(dumpdir=output) predfunc = get_predict_func(cfg) for k in range(nr): if k != 0: player.restart_episode() score = play_one_episode(player, predfunc) print("Total:", score) def do_submit(output): gym.upload(output, api_key='xxx') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.') # nargs='*' in multi mode parser.add_argument('--load', help='load model', required=True) parser.add_argument('--env', help='environment name', required=True) parser.add_argument('--episode', help='number of episodes to run', type=int, default=100) parser.add_argument('--output', help='output directory', default='gym-submit') args = parser.parse_args() ENV_NAME = args.env assert ENV_NAME logger.info("Environment Name: {}".format(ENV_NAME)) p = get_player(); del p # set NUM_ACTIONS if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu cfg = PredictConfig( model=Model(), session_init=SaverRestore(args.load), input_var_names=['state'], output_var_names=['logits']) run_submission(cfg, args.output, args.episode)
apache-2.0
-3,475,211,309,922,932,000
32.070707
105
0.618815
false
3.320487
false
false
false
pydcs/dcs
dcs/coalition.py
1
13638
import sys from typing import Dict, Union, List, TYPE_CHECKING import dcs.countries as countries import dcs.unitgroup as unitgroup import dcs.planes as planes import dcs.helicopters as helicopters import dcs.ships as ships from dcs.unit import Vehicle, Static, Ship, FARP, SingleHeliPad from dcs.flyingunit import Plane, Helicopter from dcs.point import MovingPoint, StaticPoint from dcs.country import Country from dcs.status_message import StatusMessage, MessageType, MessageSeverity if TYPE_CHECKING: from . import Mission class Coalition: def __init__(self, name, bullseye=None): self.name = name self.countries = {} # type: Dict[str, Country] self.bullseye = bullseye self.nav_points = [] # TODO @staticmethod def _sort_keys(points): keys = [] for imp_point_idx in points: keys.append(int(imp_point_idx)) keys.sort() return keys @staticmethod def _import_moving_point(mission, group: unitgroup.Group, imp_group) -> unitgroup.Group: keys = Coalition._sort_keys(imp_group["route"]["points"]) for imp_point_idx in keys: imp_point = imp_group["route"]["points"][imp_point_idx] point = MovingPoint() point.load_from_dict(imp_point, mission.translation) group.add_point(point) return group @staticmethod def _import_static_point(mission, group: unitgroup.Group, imp_group) -> unitgroup.Group: keys = Coalition._sort_keys(imp_group["route"]["points"]) for imp_point_idx in keys: imp_point = imp_group["route"]["points"][imp_point_idx] point = StaticPoint() point.load_from_dict(imp_point, mission.translation) group.add_point(point) return group @staticmethod def _park_unit_on_airport( mission: 'Mission', group: unitgroup.Group, unit: Union[Plane, Helicopter]) -> List[StatusMessage]: ret = [] if group.points[0].airdrome_id is not None and unit.parking is not None: airport = mission.terrain.airport_by_id(group.points[0].airdrome_id) slot = airport.parking_slot(unit.parking) if slot is not None: unit.set_parking(slot) else: msg = "Parking slot id '{i}' for unit '{u}' in group '{p}' on airport '{a}' " \ "not valid, placing on next free".format(i=unit.parking, u=unit.name, a=airport.name, p=group.name) print("WARN", msg, file=sys.stderr) ret.append(StatusMessage(msg, MessageType.PARKING_SLOT_NOT_VALID, MessageSeverity.WARN)) slot = airport.free_parking_slot(unit.unit_type) if slot is not None: unit.set_parking(slot) else: msg = "No free parking slots for unit '{u}' in unit group '{p}' on airport '{a}', ignoring"\ .format(u=unit.name, a=airport.name, p=group.name) print("ERRO", msg, file=sys.stderr) ret.append(StatusMessage(msg, MessageType.PARKING_SLOTS_FULL, MessageSeverity.ERROR)) return ret @staticmethod def get_name(mission: "Mission", name: str) -> str: # Group, unit names are not localized for missions are created in 2.7. if mission.version < 19: return str(mission.translation.get_string(name)) else: return name def load_from_dict(self, mission, d) -> List[StatusMessage]: status: List[StatusMessage] = [] for country_idx in d["country"]: imp_country = d["country"][country_idx] _country = countries.get_by_id(imp_country["id"]) if "vehicle" in imp_country: for vgroup_idx in imp_country["vehicle"]["group"]: vgroup = imp_country["vehicle"]["group"][vgroup_idx] vg = unitgroup.VehicleGroup(vgroup["groupId"], self.get_name(mission, vgroup["name"]), vgroup["start_time"]) vg.load_from_dict(vgroup) mission.current_group_id = max(mission.current_group_id, vg.id) Coalition._import_moving_point(mission, vg, vgroup) # units for imp_unit_idx in vgroup["units"]: imp_unit = vgroup["units"][imp_unit_idx] unit = Vehicle( id=imp_unit["unitId"], name=self.get_name(mission, imp_unit["name"]), _type=imp_unit["type"]) unit.load_from_dict(imp_unit) mission.current_unit_id = max(mission.current_unit_id, unit.id) vg.add_unit(unit) _country.add_vehicle_group(vg) if "ship" in imp_country: for group_idx in imp_country["ship"]["group"]: imp_group = imp_country["ship"]["group"][group_idx] vg = unitgroup.ShipGroup(imp_group["groupId"], self.get_name(mission, imp_group["name"]), imp_group["start_time"]) vg.load_from_dict(imp_group) mission.current_group_id = max(mission.current_group_id, vg.id) Coalition._import_moving_point(mission, vg, imp_group) # units for imp_unit_idx in imp_group["units"]: imp_unit = imp_group["units"][imp_unit_idx] unit = Ship( id=imp_unit["unitId"], name=self.get_name(mission, imp_unit["name"]), _type=ships.ship_map[imp_unit["type"]]) unit.load_from_dict(imp_unit) mission.current_unit_id = max(mission.current_unit_id, unit.id) vg.add_unit(unit) _country.add_ship_group(vg) if "plane" in imp_country: for pgroup_idx in imp_country["plane"]["group"]: pgroup = imp_country["plane"]["group"][pgroup_idx] plane_group = unitgroup.PlaneGroup(pgroup["groupId"], self.get_name(mission, pgroup["name"]), pgroup["start_time"]) plane_group.load_from_dict(pgroup) mission.current_group_id = max(mission.current_group_id, plane_group.id) Coalition._import_moving_point(mission, plane_group, pgroup) # units for imp_unit_idx in pgroup["units"]: imp_unit = pgroup["units"][imp_unit_idx] plane = Plane( _id=imp_unit["unitId"], name=self.get_name(mission, imp_unit["name"]), _type=planes.plane_map[imp_unit["type"]], _country=_country) plane.load_from_dict(imp_unit) if _country.reserve_onboard_num(plane.onboard_num): msg = "{c} Plane '{p}' already using tail number: {t}".format( c=self.name.upper(), p=plane.name, t=plane.onboard_num) status.append(StatusMessage(msg, MessageType.ONBOARD_NUM_DUPLICATE, MessageSeverity.WARN)) print("WARN:", msg, file=sys.stderr) status += self._park_unit_on_airport(mission, plane_group, plane) mission.current_unit_id = max(mission.current_unit_id, plane.id) plane_group.add_unit(plane) # check runway start # if plane_group.points[0].airdrome_id is not None and plane_group.units[0].parking is None: # airport = mission.terrain.airport_by_id(plane_group.points[0].airdrome_id) # airport.occupy_runway(plane_group) _country.add_plane_group(plane_group) if "helicopter" in imp_country: for pgroup_idx in imp_country["helicopter"]["group"]: pgroup = imp_country["helicopter"]["group"][pgroup_idx] helicopter_group = unitgroup.HelicopterGroup( pgroup["groupId"], self.get_name(mission, pgroup["name"]), pgroup["start_time"]) helicopter_group.load_from_dict(pgroup) mission.current_group_id = max(mission.current_group_id, helicopter_group.id) Coalition._import_moving_point(mission, helicopter_group, pgroup) # units for imp_unit_idx in pgroup["units"]: imp_unit = pgroup["units"][imp_unit_idx] heli = Helicopter( _id=imp_unit["unitId"], name=self.get_name(mission, imp_unit["name"]), _type=helicopters.helicopter_map[imp_unit["type"]], _country=_country) heli.load_from_dict(imp_unit) if _country.reserve_onboard_num(heli.onboard_num): msg = "{c} Helicopter '{h}' already using tail number: {t}".format( c=self.name.upper(), h=heli.name, t=heli.onboard_num) status.append(StatusMessage(msg, MessageType.ONBOARD_NUM_DUPLICATE, MessageSeverity.WARN)) print("WARN:", msg, file=sys.stderr) status += self._park_unit_on_airport(mission, helicopter_group, heli) mission.current_unit_id = max(mission.current_unit_id, heli.id) helicopter_group.add_unit(heli) # check runway start # if helicopter_group.points[0].airdrome_id is not None and helicopter_group.units[0].parking is None: # airport = mission.terrain.airport_by_id(helicopter_group.points[0].airdrome_id) # airport.occupy_runway(helicopter_group) _country.add_helicopter_group(helicopter_group) if "static" in imp_country: for sgroup_idx in imp_country["static"]["group"]: sgroup = imp_country["static"]["group"][sgroup_idx] static_group = unitgroup.StaticGroup(sgroup["groupId"], self.get_name(mission, sgroup["name"])) static_group.load_from_dict(sgroup) mission.current_group_id = max(mission.current_group_id, static_group.id) Coalition._import_static_point(mission, static_group, sgroup) # units for imp_unit_idx in sgroup["units"]: imp_unit = sgroup["units"][imp_unit_idx] if imp_unit["type"] == "FARP": static = FARP( unit_id=imp_unit["unitId"], name=self.get_name(mission, imp_unit["name"])) elif imp_unit["type"] == "SINGLE_HELIPAD": static = SingleHeliPad( unit_id=imp_unit["unitId"], name=self.get_name(mission, imp_unit["name"])) else: static = Static( unit_id=imp_unit["unitId"], name=self.get_name(mission, imp_unit["name"]), _type=imp_unit["type"]) static.load_from_dict(imp_unit) mission.current_unit_id = max(mission.current_unit_id, static.id) static_group.add_unit(static) _country.add_static_group(static_group) self.add_country(_country) return status def set_bullseye(self, bulls): self.bullseye = bulls def add_country(self, country): self.countries[country.name] = country return country def remove_country(self, name): return self.countries.pop(name) def swap_country(self, coalition, name): return coalition.add_country(self.remove_country(name)) def country(self, country_name: str): return self.countries.get(country_name, None) def country_by_id(self, _id: int): for cn in self.countries: c = self.countries[cn] if c.id == _id: return c return None def find_group(self, group_name, search="exact"): for c in self.countries: g = self.countries[c].find_group(group_name, search) if g: return g return None def dict(self): d = {"name": self.name} if self.bullseye: d["bullseye"] = self.bullseye d["country"] = {} i = 1 for country in sorted(self.countries.keys()): d["country"][i] = self.country(country).dict() i += 1 d["nav_points"] = {} return d
lgpl-3.0
-5,853,055,812,100,301,000
45.546075
122
0.510045
false
4.048085
false
false
false
compsci-hfh/app
project/project/defaults.py
1
8179
import os from django.contrib import messages SETTINGS_DIR = os.path.dirname(os.path.abspath(__file__)) PROJECT_DIR = os.path.dirname(SETTINGS_DIR) BUILDOUT_DIR = os.path.dirname(PROJECT_DIR) VAR_DIR = os.path.join(BUILDOUT_DIR, "var") ########################################################################## # # Secret settings # ########################################################################## # If a secret_settings file isn't defined, open a new one and save a # SECRET_KEY in it. Then import it. All passwords and other secret # settings should be stored in secret_settings.py. NOT in settings.py try: from secret_settings import * except ImportError: print "Couldn't find secret_settings.py file. Creating a new one." secret_path = os.path.join(SETTINGS_DIR, "secret_settings.py") with open(secret_path, 'w') as secret_settings: secret_key = ''.join([chr(ord(x) % 90 + 33) for x in os.urandom(40)]) secret_settings.write("SECRET_KEY = '''%s'''\n" % secret_key) from secret_settings import * ########################################################################## # # Authentication settings # ########################################################################## # When a user successfully logs in, redirect here by default LOGIN_REDIRECT_URL = '/' # The address to redirect to when a user must authenticate LOGIN_URL = '/accounts/google/login/?process=login' ACCOUNT_SIGNUP_FORM_CLASS = 'project.profiles.forms.SignupForm' # Require that users who are signing up provide an email address ACCOUNT_EMAIL_REQUIRED = True # Don't store login tokens. We don't need them. SOCIALACCOUNT_STORE_TOKENS = False # Try to pull username/email from provider. SOCIALACCOUNT_AUTO_SIGNUP = False SOCIALACCOUNT_PROVIDERS = { 'google': { 'SCOPE': ['profile', 'email'], 'AUTH_PARAMS': { 'access_type': 'online' } }, } AUTHENTICATION_BACKENDS = ( 'allauth.account.auth_backends.AuthenticationBackend', ) ABSOLUTE_URL_OVERRIDES = { 'auth.user': lambda u: "/profile/%s/" % u.username, } ########################################################################## # # Email Settings # ########################################################################## # These should be added to secret_settings.py # EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # EMAIL_HOST = '' # EMAIL_PORT = 587 # EMAIL_HOST_USER = '' # EMAIL_HOST_PASSWORD = '' # EMAIL_USE_TLS = True # DEFAULT_FROM_EMAIL = '' ########################################################################## # # API settings # ########################################################################## REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.IsAuthenticated', ) } ########################################################################## # # Bleach settings # ########################################################################## import bleach ALLOWED_HTML_TAGS = bleach.ALLOWED_TAGS + ['h1', 'h2', 'h3', 'p', 'img'] ALLOWED_HTML_ATTRS = bleach.ALLOWED_ATTRIBUTES ALLOWED_HTML_ATTRS.update({ 'img': ['src', 'alt'], }) ########################################################################## # # Crispy settings # ########################################################################## CRISPY_TEMPLATE_PACK = "bootstrap3" ########################################################################## # # Messages settings # ########################################################################## # Change the default messgae tags to play nice with Bootstrap MESSAGE_TAGS = { messages.DEBUG: 'alert-info', messages.INFO: 'alert-info', messages.SUCCESS: 'alert-success', messages.WARNING: 'alert-warning', messages.ERROR: 'alert-danger', } ########################################################################## # # Database settings # ########################################################################## # Should be overridden by development.py or production.py DATABASES = None ########################################################################## # # Location settings # ########################################################################## TIME_ZONE = 'America/Chicago' LANGUAGE_CODE = 'en-us' USE_I18N = True USE_L10N = True USE_TZ = True ########################################################################## # # Static files settings # ########################################################################## MEDIA_ROOT = os.path.join(VAR_DIR, "uploads") MEDIA_URL = '/uploads/' STATIC_ROOT = os.path.join(VAR_DIR, "static") STATIC_URL = '/static/' ADMIN_MEDIA_PREFIX = '/static/admin/' STATICFILES_DIRS = ( os.path.join(PROJECT_DIR, "static"), ) STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', ) COMPRESS_PRECOMPILERS = ( ('text/coffeescript', 'coffee --compile --stdio'), ('text/x-sass', 'sass {infile} {outfile}'), ('text/x-scss', 'sass --scss {infile} {outfile}'), ) COMPRESS_ENABLED = True ########################################################################## # # Template settings # ########################################################################## TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(PROJECT_DIR, "templates")], 'OPTIONS': { 'context_processors': [ # Django 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.csrf', 'django.template.context_processors.debug', 'django.template.context_processors.media', 'django.template.context_processors.request', 'django.template.context_processors.static', ], 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'django.template.loaders.eggs.Loader', ] }, }, ] ########################################################################## # # Middleware settings # ########################################################################## MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ########################################################################## # # URL settings # ########################################################################## ROOT_URLCONF = 'project.project.urls' ########################################################################## # # Installed apps settings # ########################################################################## INSTALLED_APPS = ( # Django Content types *must* be first. 'django.contrib.contenttypes', # AllAuth 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', # Admin Tools 'admin_tools', 'admin_tools.theming', 'admin_tools.menu', 'admin_tools.dashboard', # Django 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.staticfiles', # Crispy Forms 'crispy_forms', # Rest Framework 'rest_framework', # Django Extensions 'django_extensions', # Compressor 'compressor', # H4H apps 'project.teams', 'project.profiles', 'project.submission', # Sentry client 'raven.contrib.django.raven_compat', )
mit
8,719,486,345,774,488,000
26.354515
77
0.493948
false
4.511307
false
false
false
rudhir-upretee/Sumo17_With_Netsim
tools/build/checkSvnProps.py
1
6351
#!/usr/bin/env python """ @file checkSvnProps.py @author Michael Behrisch @date 2010 @version $Id: checkSvnProps.py 13811 2013-05-01 20:31:43Z behrisch $ Checks svn property settings for all files. SUMO, Simulation of Urban MObility; see http://sumo.sourceforge.net/ Copyright (C) 2010-2013 DLR (http://www.dlr.de/) and contributors All rights reserved """ import os, subprocess, sys, xml.sax from optparse import OptionParser _SOURCE_EXT = [".h", ".cpp", ".py", ".pl", ".java", ".am"] _TESTDATA_EXT = [".xml", ".prog", ".csv", ".complex", ".dfrouter", ".duarouter", ".jtrrouter", ".astar", ".chrouter", ".tcl", ".txt", ".netconvert", ".netgen", ".od2trips", ".polyconvert", ".sumo", ".meso", ".tools", ".traci", ".activitygen", ".scenario", ".sumocfg", ".netccfg", ".netgcfg"] _VS_EXT = [".vsprops", ".sln", ".vcproj", ".bat", ".props", ".vcxproj", ".filters"] _KEYWORDS = "HeadURL Id LastChangedBy LastChangedDate LastChangedRevision" class PropertyReader(xml.sax.handler.ContentHandler): """Reads the svn properties of files as written by svn pl -v --xml""" def __init__(self, doFix): self._fix = doFix self._file = "" self._property = None self._value = "" self._hadEOL = False self._hadKeywords = False def startElement(self, name, attrs): if name == 'target': self._file = attrs['path'] seen.add(os.path.join(svnRoot, self._file)) if name == 'property': self._property = attrs['name'] def characters(self, content): if self._property: self._value += content def endElement(self, name): ext = os.path.splitext(self._file)[1] if name == 'property' and self._property == "svn:eol-style": self._hadEOL = True if name == 'property' and self._property == "svn:keywords": self._hadKeywords = True if ext in _SOURCE_EXT or ext in _TESTDATA_EXT or ext in _VS_EXT: if name == 'property' and self._property == "svn:executable" and ext not in [".py", ".pl", ".bat"]: print self._file, self._property, self._value if self._fix: subprocess.call(["svn", "pd", "svn:executable", self._file]) if name == 'property' and self._property == "svn:mime-type": print self._file, self._property, self._value if self._fix: subprocess.call(["svn", "pd", "svn:mime-type", self._file]) if ext in _SOURCE_EXT or ext in _TESTDATA_EXT: if name == 'property' and self._property == "svn:eol-style" and self._value != "LF"\ or name == "target" and not self._hadEOL: print self._file, "svn:eol-style", self._value if self._fix: if os.name == "posix": subprocess.call(["sed", "-i", r's/\r$//', self._file]) subprocess.call(["sed", "-i", r's/\r/\n/g', self._file]) subprocess.call(["svn", "ps", "svn:eol-style", "LF", self._file]) if ext in _SOURCE_EXT: if name == 'property' and self._property == "svn:keywords" and self._value != _KEYWORDS\ or name == "target" and not self._hadKeywords: print self._file, "svn:keywords", self._value if self._fix: subprocess.call(["svn", "ps", "svn:keywords", _KEYWORDS, self._file]) if ext in _VS_EXT: if name == 'property' and self._property == "svn:eol-style" and self._value != "CRLF"\ or name == "target" and not self._hadEOL: print self._file, "svn:eol-style", self._value if self._fix: subprocess.call(["svn", "ps", "svn:eol-style", "CRLF", self._file]) if name == 'property': self._value = "" self._property = None if name == 'target': self._hadEOL = False self._hadKeywords = False optParser = OptionParser() optParser.add_option("-v", "--verbose", action="store_true", default=False, help="tell me what you are doing") optParser.add_option("-f", "--fix", action="store_true", default=False, help="fix invalid svn properties") (options, args) = optParser.parse_args() seen = set() sumoRoot = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) svnRoots = [sumoRoot] if len(args) > 0: svnRoots = [os.path.abspath(a) for a in args] else: upDir = os.path.dirname(sumoRoot) for l in subprocess.Popen(["svn", "pg", "svn:externals", upDir], stdout=subprocess.PIPE, stderr=open(os.devnull, 'w')).communicate()[0].splitlines(): if l[:5] == "sumo/": svnRoots.append(os.path.join(upDir, l.split()[0])) for svnRoot in svnRoots: if options.verbose: print "checking", svnRoot output = subprocess.Popen(["svn", "pl", "-v", "-R", "--xml", svnRoot], stdout=subprocess.PIPE).communicate()[0] xml.sax.parseString(output, PropertyReader(options.fix)) if options.verbose: print "re-checking tree at", sumoRoot for root, dirs, files in os.walk(sumoRoot): for name in files: fullName = os.path.join(root, name) if fullName in seen or subprocess.call(["svn", "ls", fullName], stdout=open(os.devnull, 'w'), stderr=subprocess.STDOUT): continue ext = os.path.splitext(name)[1] if ext in _SOURCE_EXT or ext in _TESTDATA_EXT or ext in _VS_EXT: print fullName, "svn:eol-style" if options.fix: if ext in _VS_EXT: subprocess.call(["svn", "ps", "svn:eol-style", "CRLF", fullName]) else: if os.name == "posix": subprocess.call(["sed", "-i", 's/\r$//', fullName]) subprocess.call(["svn", "ps", "svn:eol-style", "LF", fullName]) if ext in _SOURCE_EXT: print fullName, "svn:keywords" if options.fix: subprocess.call(["svn", "ps", "svn:keywords", _KEYWORDS, fullName]) for ignoreDir in ['.svn', 'foreign', 'contributed']: if ignoreDir in dirs: dirs.remove(ignoreDir)
gpl-3.0
-8,763,534,845,186,761,000
44.364286
153
0.551724
false
3.625
false
false
false
frew/simpleproto
scons-local-1.1.0/SCons/Tool/packaging/src_targz.py
1
1623
"""SCons.Tool.Packaging.targz The targz SRC packager. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/packaging/src_targz.py 3603 2008/10/10 05:46:45 scons" from SCons.Tool.packaging import putintopackageroot def package(env, target, source, PACKAGEROOT, **kw): bld = env['BUILDERS']['Tar'] bld.set_suffix('.tar.gz') target, source = putintopackageroot(target, source, env, PACKAGEROOT, honor_install_location=0) return bld(env, target, source, TARFLAGS='-zc')
bsd-2-clause
757,621,664,930,149,500
42.864865
99
0.754775
false
3.836879
false
false
false
splotz90/urh
src/urh/ui/ui_signal_frame.py
1
41337
# -*- coding: utf-8 -*- # # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_SignalFrame(object): def setupUi(self, SignalFrame): SignalFrame.setObjectName("SignalFrame") SignalFrame.resize(1057, 509) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(SignalFrame.sizePolicy().hasHeightForWidth()) SignalFrame.setSizePolicy(sizePolicy) SignalFrame.setMinimumSize(QtCore.QSize(0, 0)) SignalFrame.setMaximumSize(QtCore.QSize(16777215, 16777215)) SignalFrame.setSizeIncrement(QtCore.QSize(0, 0)) SignalFrame.setBaseSize(QtCore.QSize(0, 0)) SignalFrame.setMouseTracking(False) SignalFrame.setAcceptDrops(True) SignalFrame.setAutoFillBackground(False) SignalFrame.setStyleSheet("") SignalFrame.setFrameShape(QtWidgets.QFrame.NoFrame) SignalFrame.setFrameShadow(QtWidgets.QFrame.Raised) SignalFrame.setLineWidth(1) self.horizontalLayout = QtWidgets.QHBoxLayout(SignalFrame) self.horizontalLayout.setObjectName("horizontalLayout") self.gridLayout_2 = QtWidgets.QGridLayout() self.gridLayout_2.setSizeConstraint(QtWidgets.QLayout.SetFixedSize) self.gridLayout_2.setObjectName("gridLayout_2") spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_2.addItem(spacerItem, 12, 0, 1, 1) self.horizontalLayout_5 = QtWidgets.QHBoxLayout() self.horizontalLayout_5.setSpacing(7) self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.cbModulationType = QtWidgets.QComboBox(SignalFrame) self.cbModulationType.setObjectName("cbModulationType") self.cbModulationType.addItem("") self.cbModulationType.addItem("") self.cbModulationType.addItem("") self.horizontalLayout_5.addWidget(self.cbModulationType) self.btnAdvancedModulationSettings = QtWidgets.QToolButton(SignalFrame) icon = QtGui.QIcon.fromTheme("configure") self.btnAdvancedModulationSettings.setIcon(icon) self.btnAdvancedModulationSettings.setIconSize(QtCore.QSize(16, 16)) self.btnAdvancedModulationSettings.setObjectName("btnAdvancedModulationSettings") self.horizontalLayout_5.addWidget(self.btnAdvancedModulationSettings) self.gridLayout_2.addLayout(self.horizontalLayout_5, 9, 1, 1, 1) self.labelModulation = QtWidgets.QLabel(SignalFrame) self.labelModulation.setObjectName("labelModulation") self.gridLayout_2.addWidget(self.labelModulation, 9, 0, 1, 1) self.chkBoxSyncSelection = QtWidgets.QCheckBox(SignalFrame) self.chkBoxSyncSelection.setChecked(True) self.chkBoxSyncSelection.setObjectName("chkBoxSyncSelection") self.gridLayout_2.addWidget(self.chkBoxSyncSelection, 22, 0, 1, 1) self.sliderSpectrogramMin = QtWidgets.QSlider(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.sliderSpectrogramMin.sizePolicy().hasHeightForWidth()) self.sliderSpectrogramMin.setSizePolicy(sizePolicy) self.sliderSpectrogramMin.setMinimum(-150) self.sliderSpectrogramMin.setMaximum(10) self.sliderSpectrogramMin.setOrientation(QtCore.Qt.Horizontal) self.sliderSpectrogramMin.setObjectName("sliderSpectrogramMin") self.gridLayout_2.addWidget(self.sliderSpectrogramMin, 19, 1, 1, 1) self.spinBoxNoiseTreshold = QtWidgets.QDoubleSpinBox(SignalFrame) self.spinBoxNoiseTreshold.setDecimals(4) self.spinBoxNoiseTreshold.setMaximum(1.0) self.spinBoxNoiseTreshold.setSingleStep(0.0001) self.spinBoxNoiseTreshold.setObjectName("spinBoxNoiseTreshold") self.gridLayout_2.addWidget(self.spinBoxNoiseTreshold, 2, 1, 1, 1) self.chkBoxShowProtocol = QtWidgets.QCheckBox(SignalFrame) self.chkBoxShowProtocol.setObjectName("chkBoxShowProtocol") self.gridLayout_2.addWidget(self.chkBoxShowProtocol, 21, 0, 1, 1) self.labelNoise = QtWidgets.QLabel(SignalFrame) self.labelNoise.setObjectName("labelNoise") self.gridLayout_2.addWidget(self.labelNoise, 2, 0, 1, 1) self.lineEditSignalName = QtWidgets.QLineEdit(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lineEditSignalName.sizePolicy().hasHeightForWidth()) self.lineEditSignalName.setSizePolicy(sizePolicy) self.lineEditSignalName.setMinimumSize(QtCore.QSize(214, 0)) self.lineEditSignalName.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.lineEditSignalName.setAcceptDrops(False) self.lineEditSignalName.setObjectName("lineEditSignalName") self.gridLayout_2.addWidget(self.lineEditSignalName, 1, 0, 1, 2) self.cbProtoView = QtWidgets.QComboBox(SignalFrame) self.cbProtoView.setObjectName("cbProtoView") self.cbProtoView.addItem("") self.cbProtoView.addItem("") self.cbProtoView.addItem("") self.gridLayout_2.addWidget(self.cbProtoView, 21, 1, 1, 1) self.lInfoLenText = QtWidgets.QLabel(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lInfoLenText.sizePolicy().hasHeightForWidth()) self.lInfoLenText.setSizePolicy(sizePolicy) self.lInfoLenText.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.lInfoLenText.setObjectName("lInfoLenText") self.gridLayout_2.addWidget(self.lInfoLenText, 4, 0, 1, 1) self.spinBoxInfoLen = QtWidgets.QSpinBox(SignalFrame) self.spinBoxInfoLen.setMinimumSize(QtCore.QSize(100, 0)) self.spinBoxInfoLen.setMinimum(1) self.spinBoxInfoLen.setMaximum(999999999) self.spinBoxInfoLen.setObjectName("spinBoxInfoLen") self.gridLayout_2.addWidget(self.spinBoxInfoLen, 4, 1, 1, 1) self.spinBoxTolerance = QtWidgets.QSpinBox(SignalFrame) self.spinBoxTolerance.setMinimumSize(QtCore.QSize(100, 0)) self.spinBoxTolerance.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.spinBoxTolerance.setMaximum(9999) self.spinBoxTolerance.setObjectName("spinBoxTolerance") self.gridLayout_2.addWidget(self.spinBoxTolerance, 7, 1, 1, 1) self.lErrorTolerance = QtWidgets.QLabel(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lErrorTolerance.sizePolicy().hasHeightForWidth()) self.lErrorTolerance.setSizePolicy(sizePolicy) self.lErrorTolerance.setMinimumSize(QtCore.QSize(0, 0)) self.lErrorTolerance.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.lErrorTolerance.setObjectName("lErrorTolerance") self.gridLayout_2.addWidget(self.lErrorTolerance, 7, 0, 1, 1) self.lSignalViewText = QtWidgets.QLabel(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lSignalViewText.sizePolicy().hasHeightForWidth()) self.lSignalViewText.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setUnderline(False) self.lSignalViewText.setFont(font) self.lSignalViewText.setObjectName("lSignalViewText") self.gridLayout_2.addWidget(self.lSignalViewText, 15, 0, 1, 1) self.line = QtWidgets.QFrame(SignalFrame) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.gridLayout_2.addWidget(self.line, 13, 0, 1, 2) self.lCenterOffset = QtWidgets.QLabel(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lCenterOffset.sizePolicy().hasHeightForWidth()) self.lCenterOffset.setSizePolicy(sizePolicy) self.lCenterOffset.setMinimumSize(QtCore.QSize(0, 0)) self.lCenterOffset.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.lCenterOffset.setWhatsThis("") self.lCenterOffset.setObjectName("lCenterOffset") self.gridLayout_2.addWidget(self.lCenterOffset, 3, 0, 1, 1) self.spinBoxCenterOffset = QtWidgets.QDoubleSpinBox(SignalFrame) self.spinBoxCenterOffset.setMinimumSize(QtCore.QSize(100, 0)) self.spinBoxCenterOffset.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.spinBoxCenterOffset.setDecimals(4) self.spinBoxCenterOffset.setMinimum(-3.15) self.spinBoxCenterOffset.setMaximum(6.28) self.spinBoxCenterOffset.setSingleStep(0.0001) self.spinBoxCenterOffset.setObjectName("spinBoxCenterOffset") self.gridLayout_2.addWidget(self.spinBoxCenterOffset, 3, 1, 1, 1) self.btnAutoDetect = QtWidgets.QPushButton(SignalFrame) icon = QtGui.QIcon.fromTheme("system-software-update") self.btnAutoDetect.setIcon(icon) self.btnAutoDetect.setIconSize(QtCore.QSize(16, 16)) self.btnAutoDetect.setCheckable(True) self.btnAutoDetect.setChecked(True) self.btnAutoDetect.setObjectName("btnAutoDetect") self.gridLayout_2.addWidget(self.btnAutoDetect, 11, 0, 1, 2) self.cbSignalView = QtWidgets.QComboBox(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.cbSignalView.sizePolicy().hasHeightForWidth()) self.cbSignalView.setSizePolicy(sizePolicy) self.cbSignalView.setObjectName("cbSignalView") self.cbSignalView.addItem("") self.cbSignalView.addItem("") self.cbSignalView.addItem("") self.gridLayout_2.addWidget(self.cbSignalView, 15, 1, 1, 1) self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.btnSaveSignal = QtWidgets.QToolButton(SignalFrame) self.btnSaveSignal.setMinimumSize(QtCore.QSize(24, 24)) self.btnSaveSignal.setMaximumSize(QtCore.QSize(24, 24)) icon = QtGui.QIcon.fromTheme("document-save") self.btnSaveSignal.setIcon(icon) self.btnSaveSignal.setObjectName("btnSaveSignal") self.gridLayout.addWidget(self.btnSaveSignal, 0, 3, 1, 1) spacerItem1 = QtWidgets.QSpacerItem(10, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem1, 0, 2, 1, 1) self.btnCloseSignal = QtWidgets.QToolButton(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnCloseSignal.sizePolicy().hasHeightForWidth()) self.btnCloseSignal.setSizePolicy(sizePolicy) self.btnCloseSignal.setMinimumSize(QtCore.QSize(24, 24)) self.btnCloseSignal.setMaximumSize(QtCore.QSize(24, 24)) self.btnCloseSignal.setStyleSheet("color:red;") icon = QtGui.QIcon.fromTheme("window-close") self.btnCloseSignal.setIcon(icon) self.btnCloseSignal.setObjectName("btnCloseSignal") self.gridLayout.addWidget(self.btnCloseSignal, 0, 9, 1, 1) self.lSignalTyp = QtWidgets.QLabel(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lSignalTyp.sizePolicy().hasHeightForWidth()) self.lSignalTyp.setSizePolicy(sizePolicy) self.lSignalTyp.setObjectName("lSignalTyp") self.gridLayout.addWidget(self.lSignalTyp, 0, 1, 1, 1) self.lSignalNr = QtWidgets.QLabel(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lSignalNr.sizePolicy().hasHeightForWidth()) self.lSignalNr.setSizePolicy(sizePolicy) self.lSignalNr.setWordWrap(False) self.lSignalNr.setIndent(-1) self.lSignalNr.setObjectName("lSignalNr") self.gridLayout.addWidget(self.lSignalNr, 0, 0, 1, 1) self.btnInfo = QtWidgets.QToolButton(SignalFrame) self.btnInfo.setMinimumSize(QtCore.QSize(24, 24)) self.btnInfo.setMaximumSize(QtCore.QSize(24, 24)) icon = QtGui.QIcon.fromTheme("dialog-information") self.btnInfo.setIcon(icon) self.btnInfo.setObjectName("btnInfo") self.gridLayout.addWidget(self.btnInfo, 0, 6, 1, 1) self.btnReplay = QtWidgets.QToolButton(SignalFrame) self.btnReplay.setMinimumSize(QtCore.QSize(24, 24)) self.btnReplay.setMaximumSize(QtCore.QSize(24, 24)) self.btnReplay.setText("") icon = QtGui.QIcon.fromTheme("media-playback-start") self.btnReplay.setIcon(icon) self.btnReplay.setObjectName("btnReplay") self.gridLayout.addWidget(self.btnReplay, 0, 5, 1, 1) self.gridLayout_2.addLayout(self.gridLayout, 0, 0, 1, 2) self.labelFFTWindowSize = QtWidgets.QLabel(SignalFrame) self.labelFFTWindowSize.setObjectName("labelFFTWindowSize") self.gridLayout_2.addWidget(self.labelFFTWindowSize, 18, 0, 1, 1) self.sliderFFTWindowSize = QtWidgets.QSlider(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.sliderFFTWindowSize.sizePolicy().hasHeightForWidth()) self.sliderFFTWindowSize.setSizePolicy(sizePolicy) self.sliderFFTWindowSize.setMinimum(6) self.sliderFFTWindowSize.setMaximum(15) self.sliderFFTWindowSize.setOrientation(QtCore.Qt.Horizontal) self.sliderFFTWindowSize.setObjectName("sliderFFTWindowSize") self.gridLayout_2.addWidget(self.sliderFFTWindowSize, 18, 1, 1, 1) self.sliderSpectrogramMax = QtWidgets.QSlider(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.sliderSpectrogramMax.sizePolicy().hasHeightForWidth()) self.sliderSpectrogramMax.setSizePolicy(sizePolicy) self.sliderSpectrogramMax.setMinimum(-150) self.sliderSpectrogramMax.setMaximum(10) self.sliderSpectrogramMax.setOrientation(QtCore.Qt.Horizontal) self.sliderSpectrogramMax.setObjectName("sliderSpectrogramMax") self.gridLayout_2.addWidget(self.sliderSpectrogramMax, 20, 1, 1, 1) self.labelSpectrogramMin = QtWidgets.QLabel(SignalFrame) self.labelSpectrogramMin.setObjectName("labelSpectrogramMin") self.gridLayout_2.addWidget(self.labelSpectrogramMin, 19, 0, 1, 1) self.labelSpectrogramMax = QtWidgets.QLabel(SignalFrame) self.labelSpectrogramMax.setObjectName("labelSpectrogramMax") self.gridLayout_2.addWidget(self.labelSpectrogramMax, 20, 0, 1, 1) self.horizontalLayout.addLayout(self.gridLayout_2) self.splitter = QtWidgets.QSplitter(SignalFrame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.splitter.sizePolicy().hasHeightForWidth()) self.splitter.setSizePolicy(sizePolicy) self.splitter.setStyleSheet("QSplitter::handle:vertical {\n" "margin: 4px 0px;\n" " background-color: qlineargradient(x1:0, y1:0, x2:1, y2:0, \n" "stop:0 rgba(255, 255, 255, 0), \n" "stop:0.5 rgba(100, 100, 100, 100), \n" "stop:1 rgba(255, 255, 255, 0));\n" " image: url(:/icons/data/icons/splitter_handle_horizontal.svg);\n" "}") self.splitter.setFrameShape(QtWidgets.QFrame.NoFrame) self.splitter.setLineWidth(1) self.splitter.setOrientation(QtCore.Qt.Vertical) self.splitter.setHandleWidth(6) self.splitter.setChildrenCollapsible(False) self.splitter.setObjectName("splitter") self.layoutWidget = QtWidgets.QWidget(self.splitter) self.layoutWidget.setObjectName("layoutWidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.layoutWidget) self.verticalLayout.setSizeConstraint(QtWidgets.QLayout.SetDefaultConstraint) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.stackedWidget = QtWidgets.QStackedWidget(self.layoutWidget) self.stackedWidget.setLineWidth(0) self.stackedWidget.setObjectName("stackedWidget") self.pageSignal = QtWidgets.QWidget() self.pageSignal.setObjectName("pageSignal") self.horizontalLayout_6 = QtWidgets.QHBoxLayout(self.pageSignal) self.horizontalLayout_6.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_6.setSpacing(0) self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.gvLegend = LegendGraphicView(self.pageSignal) self.gvLegend.setMinimumSize(QtCore.QSize(0, 150)) self.gvLegend.setMaximumSize(QtCore.QSize(30, 16777215)) self.gvLegend.setFrameShape(QtWidgets.QFrame.NoFrame) self.gvLegend.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.gvLegend.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn) self.gvLegend.setInteractive(False) self.gvLegend.setResizeAnchor(QtWidgets.QGraphicsView.AnchorViewCenter) self.gvLegend.setRubberBandSelectionMode(QtCore.Qt.ContainsItemShape) self.gvLegend.setOptimizationFlags(QtWidgets.QGraphicsView.DontSavePainterState) self.gvLegend.setObjectName("gvLegend") self.horizontalLayout_6.addWidget(self.gvLegend) self.gvSignal = EpicGraphicView(self.pageSignal) self.gvSignal.setEnabled(True) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.gvSignal.sizePolicy().hasHeightForWidth()) self.gvSignal.setSizePolicy(sizePolicy) self.gvSignal.setMinimumSize(QtCore.QSize(0, 150)) self.gvSignal.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.gvSignal.setMouseTracking(True) self.gvSignal.setFocusPolicy(QtCore.Qt.WheelFocus) self.gvSignal.setContextMenuPolicy(QtCore.Qt.DefaultContextMenu) self.gvSignal.setAutoFillBackground(False) self.gvSignal.setStyleSheet("") self.gvSignal.setFrameShape(QtWidgets.QFrame.NoFrame) self.gvSignal.setFrameShadow(QtWidgets.QFrame.Raised) self.gvSignal.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.gvSignal.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn) self.gvSignal.setInteractive(False) self.gvSignal.setRenderHints(QtGui.QPainter.Antialiasing|QtGui.QPainter.TextAntialiasing) self.gvSignal.setDragMode(QtWidgets.QGraphicsView.NoDrag) self.gvSignal.setCacheMode(QtWidgets.QGraphicsView.CacheNone) self.gvSignal.setTransformationAnchor(QtWidgets.QGraphicsView.NoAnchor) self.gvSignal.setResizeAnchor(QtWidgets.QGraphicsView.NoAnchor) self.gvSignal.setViewportUpdateMode(QtWidgets.QGraphicsView.MinimalViewportUpdate) self.gvSignal.setRubberBandSelectionMode(QtCore.Qt.ContainsItemShape) self.gvSignal.setOptimizationFlags(QtWidgets.QGraphicsView.DontClipPainter|QtWidgets.QGraphicsView.DontSavePainterState) self.gvSignal.setObjectName("gvSignal") self.horizontalLayout_6.addWidget(self.gvSignal) self.stackedWidget.addWidget(self.pageSignal) self.pageSpectrogram = QtWidgets.QWidget() self.pageSpectrogram.setObjectName("pageSpectrogram") self.horizontalLayout_4 = QtWidgets.QHBoxLayout(self.pageSpectrogram) self.horizontalLayout_4.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_4.setSpacing(0) self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.gvSpectrogram = SpectrogramGraphicView(self.pageSpectrogram) self.gvSpectrogram.setMouseTracking(True) self.gvSpectrogram.setFrameShape(QtWidgets.QFrame.NoFrame) self.gvSpectrogram.setInteractive(False) self.gvSpectrogram.setRenderHints(QtGui.QPainter.TextAntialiasing) self.gvSpectrogram.setCacheMode(QtWidgets.QGraphicsView.CacheNone) self.gvSpectrogram.setTransformationAnchor(QtWidgets.QGraphicsView.NoAnchor) self.gvSpectrogram.setViewportUpdateMode(QtWidgets.QGraphicsView.MinimalViewportUpdate) self.gvSpectrogram.setOptimizationFlags(QtWidgets.QGraphicsView.DontClipPainter|QtWidgets.QGraphicsView.DontSavePainterState) self.gvSpectrogram.setObjectName("gvSpectrogram") self.horizontalLayout_4.addWidget(self.gvSpectrogram) self.stackedWidget.addWidget(self.pageSpectrogram) self.horizontalLayout_2.addWidget(self.stackedWidget) self.verticalLayout_5 = QtWidgets.QVBoxLayout() self.verticalLayout_5.setObjectName("verticalLayout_5") self.lYScale = QtWidgets.QLabel(self.layoutWidget) self.lYScale.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedStates)) self.lYScale.setObjectName("lYScale") self.verticalLayout_5.addWidget(self.lYScale) self.sliderYScale = QtWidgets.QSlider(self.layoutWidget) self.sliderYScale.setMinimum(1) self.sliderYScale.setMaximum(100) self.sliderYScale.setOrientation(QtCore.Qt.Vertical) self.sliderYScale.setTickPosition(QtWidgets.QSlider.TicksBelow) self.sliderYScale.setObjectName("sliderYScale") self.verticalLayout_5.addWidget(self.sliderYScale) self.horizontalLayout_2.addLayout(self.verticalLayout_5) self.verticalLayout.addLayout(self.horizontalLayout_2) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.btnShowHideStartEnd = QtWidgets.QToolButton(self.layoutWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnShowHideStartEnd.sizePolicy().hasHeightForWidth()) self.btnShowHideStartEnd.setSizePolicy(sizePolicy) self.btnShowHideStartEnd.setAutoFillBackground(False) self.btnShowHideStartEnd.setStyleSheet("") icon = QtGui.QIcon.fromTheme("arrow-down-double") self.btnShowHideStartEnd.setIcon(icon) self.btnShowHideStartEnd.setCheckable(True) self.btnShowHideStartEnd.setObjectName("btnShowHideStartEnd") self.horizontalLayout_3.addWidget(self.btnShowHideStartEnd) self.lNumSelectedSamples = QtWidgets.QLabel(self.layoutWidget) self.lNumSelectedSamples.setObjectName("lNumSelectedSamples") self.horizontalLayout_3.addWidget(self.lNumSelectedSamples) self.lTextSelectedSamples = QtWidgets.QLabel(self.layoutWidget) self.lTextSelectedSamples.setObjectName("lTextSelectedSamples") self.horizontalLayout_3.addWidget(self.lTextSelectedSamples) self.line_3 = QtWidgets.QFrame(self.layoutWidget) self.line_3.setFrameShape(QtWidgets.QFrame.VLine) self.line_3.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_3.setObjectName("line_3") self.horizontalLayout_3.addWidget(self.line_3) self.lDuration = QtWidgets.QLabel(self.layoutWidget) self.lDuration.setObjectName("lDuration") self.horizontalLayout_3.addWidget(self.lDuration) self.line_2 = QtWidgets.QFrame(self.layoutWidget) self.line_2.setFrameShape(QtWidgets.QFrame.VLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.horizontalLayout_3.addWidget(self.line_2) self.labelRSSI = QtWidgets.QLabel(self.layoutWidget) self.labelRSSI.setObjectName("labelRSSI") self.horizontalLayout_3.addWidget(self.labelRSSI) spacerItem2 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem2) self.btnFilter = QtWidgets.QToolButton(self.layoutWidget) icon = QtGui.QIcon.fromTheme("view-filter") self.btnFilter.setIcon(icon) self.btnFilter.setPopupMode(QtWidgets.QToolButton.MenuButtonPopup) self.btnFilter.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.btnFilter.setArrowType(QtCore.Qt.NoArrow) self.btnFilter.setObjectName("btnFilter") self.horizontalLayout_3.addWidget(self.btnFilter) self.verticalLayout.addLayout(self.horizontalLayout_3) self.additionalInfos = QtWidgets.QHBoxLayout() self.additionalInfos.setSpacing(6) self.additionalInfos.setObjectName("additionalInfos") self.lStart = QtWidgets.QLabel(self.layoutWidget) self.lStart.setObjectName("lStart") self.additionalInfos.addWidget(self.lStart) self.spinBoxSelectionStart = QtWidgets.QSpinBox(self.layoutWidget) self.spinBoxSelectionStart.setReadOnly(False) self.spinBoxSelectionStart.setMaximum(99999999) self.spinBoxSelectionStart.setObjectName("spinBoxSelectionStart") self.additionalInfos.addWidget(self.spinBoxSelectionStart) self.lEnd = QtWidgets.QLabel(self.layoutWidget) self.lEnd.setObjectName("lEnd") self.additionalInfos.addWidget(self.lEnd) self.spinBoxSelectionEnd = QtWidgets.QSpinBox(self.layoutWidget) self.spinBoxSelectionEnd.setMaximum(99999999) self.spinBoxSelectionEnd.setObjectName("spinBoxSelectionEnd") self.additionalInfos.addWidget(self.spinBoxSelectionEnd) spacerItem3 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.additionalInfos.addItem(spacerItem3) self.lZoomText = QtWidgets.QLabel(self.layoutWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lZoomText.sizePolicy().hasHeightForWidth()) self.lZoomText.setSizePolicy(sizePolicy) self.lZoomText.setMinimumSize(QtCore.QSize(0, 0)) self.lZoomText.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setItalic(False) font.setUnderline(False) self.lZoomText.setFont(font) self.lZoomText.setTextFormat(QtCore.Qt.PlainText) self.lZoomText.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.lZoomText.setObjectName("lZoomText") self.additionalInfos.addWidget(self.lZoomText) self.spinBoxXZoom = QtWidgets.QSpinBox(self.layoutWidget) self.spinBoxXZoom.setMinimum(100) self.spinBoxXZoom.setMaximum(999999999) self.spinBoxXZoom.setObjectName("spinBoxXZoom") self.additionalInfos.addWidget(self.spinBoxXZoom) spacerItem4 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.additionalInfos.addItem(spacerItem4) self.lSamplesInView = QtWidgets.QLabel(self.layoutWidget) self.lSamplesInView.setObjectName("lSamplesInView") self.additionalInfos.addWidget(self.lSamplesInView) self.lStrich = QtWidgets.QLabel(self.layoutWidget) self.lStrich.setObjectName("lStrich") self.additionalInfos.addWidget(self.lStrich) self.lSamplesTotal = QtWidgets.QLabel(self.layoutWidget) self.lSamplesTotal.setObjectName("lSamplesTotal") self.additionalInfos.addWidget(self.lSamplesTotal) self.lSamplesViewText = QtWidgets.QLabel(self.layoutWidget) self.lSamplesViewText.setObjectName("lSamplesViewText") self.additionalInfos.addWidget(self.lSamplesViewText) self.verticalLayout.addLayout(self.additionalInfos) self.txtEdProto = TextEditProtocolView(self.splitter) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.txtEdProto.sizePolicy().hasHeightForWidth()) self.txtEdProto.setSizePolicy(sizePolicy) self.txtEdProto.setMinimumSize(QtCore.QSize(0, 80)) self.txtEdProto.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.txtEdProto.setBaseSize(QtCore.QSize(0, 0)) self.txtEdProto.setContextMenuPolicy(QtCore.Qt.DefaultContextMenu) self.txtEdProto.setAcceptDrops(False) self.txtEdProto.setObjectName("txtEdProto") self.horizontalLayout.addWidget(self.splitter) self.retranslateUi(SignalFrame) self.stackedWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(SignalFrame) SignalFrame.setTabOrder(self.btnSaveSignal, self.btnInfo) SignalFrame.setTabOrder(self.btnInfo, self.btnCloseSignal) SignalFrame.setTabOrder(self.btnCloseSignal, self.lineEditSignalName) SignalFrame.setTabOrder(self.lineEditSignalName, self.spinBoxNoiseTreshold) SignalFrame.setTabOrder(self.spinBoxNoiseTreshold, self.spinBoxCenterOffset) SignalFrame.setTabOrder(self.spinBoxCenterOffset, self.spinBoxInfoLen) SignalFrame.setTabOrder(self.spinBoxInfoLen, self.spinBoxTolerance) SignalFrame.setTabOrder(self.spinBoxTolerance, self.chkBoxShowProtocol) SignalFrame.setTabOrder(self.chkBoxShowProtocol, self.cbProtoView) SignalFrame.setTabOrder(self.cbProtoView, self.chkBoxSyncSelection) SignalFrame.setTabOrder(self.chkBoxSyncSelection, self.txtEdProto) SignalFrame.setTabOrder(self.txtEdProto, self.btnShowHideStartEnd) SignalFrame.setTabOrder(self.btnShowHideStartEnd, self.spinBoxSelectionStart) SignalFrame.setTabOrder(self.spinBoxSelectionStart, self.spinBoxSelectionEnd) def retranslateUi(self, SignalFrame): _translate = QtCore.QCoreApplication.translate SignalFrame.setWindowTitle(_translate("SignalFrame", "Frame")) self.cbModulationType.setToolTip(_translate("SignalFrame", "<html><head/><body><p>Choose signals modulation:</p><ul><li>Amplitude Shift Keying (ASK)</li><li>Frequency Shift Keying (FSK)</li><li>Phase Shift Keying (PSK)</li></ul></body></html>")) self.cbModulationType.setItemText(0, _translate("SignalFrame", "ASK")) self.cbModulationType.setItemText(1, _translate("SignalFrame", "FSK")) self.cbModulationType.setItemText(2, _translate("SignalFrame", "PSK")) self.btnAdvancedModulationSettings.setText(_translate("SignalFrame", "...")) self.labelModulation.setText(_translate("SignalFrame", "Modulation:")) self.chkBoxSyncSelection.setToolTip(_translate("SignalFrame", "If this is set to true, your selected protocol bits will show up in the signal view, and vice versa.")) self.chkBoxSyncSelection.setText(_translate("SignalFrame", "Sync Selection")) self.spinBoxNoiseTreshold.setToolTip(_translate("SignalFrame", "<html><head/><body><p>Set the <span style=\" font-weight:600;\">noise magnitude</span> of your signal. You can tune this value to mute noise in your signal and reveal the true data.</p></body></html>")) self.chkBoxShowProtocol.setToolTip(_translate("SignalFrame", "Show the extracted protocol based on the parameters InfoLen, PauseLen and ZeroTreshold (in QuadratureDemod-View).\n" "\n" "If you want your protocol to be better seperated, edit the PauseLen using right-click menu from a selection in SignalView or ProtocolView.")) self.chkBoxShowProtocol.setText(_translate("SignalFrame", "Show Signal as")) self.labelNoise.setToolTip(_translate("SignalFrame", "<html><head/><body><p>Set the <span style=\" font-weight:600;\">noise magnitude</span> of your signal. You can tune this value to mute noise in your signal and reveal the true data.</p></body></html>")) self.labelNoise.setText(_translate("SignalFrame", "Noise:")) self.lineEditSignalName.setText(_translate("SignalFrame", "SignalName")) self.cbProtoView.setItemText(0, _translate("SignalFrame", "Bits")) self.cbProtoView.setItemText(1, _translate("SignalFrame", "Hex")) self.cbProtoView.setItemText(2, _translate("SignalFrame", "ASCII")) self.lInfoLenText.setToolTip(_translate("SignalFrame", "<html><head/><body><p>This is the length of one (raw) bit <span style=\" font-weight:600;\">in samples</span>.</p><p><br/></p><p>Tune this value using either <span style=\" font-style:italic;\">the spinbox on the right</span> or the <span style=\" font-style:italic;\">context-menu of the SignalView</span>.</p></body></html>")) self.lInfoLenText.setText(_translate("SignalFrame", "Bit Length:")) self.spinBoxInfoLen.setToolTip(_translate("SignalFrame", "<html><head/><body><p>This is the length of one (raw) bit <span style=\" font-weight:600;\">in samples</span>.</p><p><br/></p><p>Tune this value using either <span style=\" font-style:italic;\">the spinbox on the right</span> or the <span style=\" font-style:italic;\">context-menu of the SignalView</span>.</p></body></html>")) self.spinBoxTolerance.setToolTip(_translate("SignalFrame", "<html><head/><body><p>This is the error tolerance for determining the <span style=\" font-weight:600;\">pulse lengths</span> in the demodulated signal.</p><p><span style=\" font-weight:400; font-style:italic;\">Example:</span> Say, we are reading a ones pulse and the tolerance value was set to 5. Then 5 errors (which must follow sequentially) are accepted.</p><p>Tune this value if you have <span style=\" font-weight:600;\">spiky data</span> after demodulation.</p></body></html>")) self.lErrorTolerance.setToolTip(_translate("SignalFrame", "<html><head/><body><p>This is the error tolerance for determining the <span style=\" font-weight:600;\">pulse lengths</span> in the demodulated signal.</p><p><span style=\" font-weight:400; font-style:italic;\">Example:</span> Say, we are reading a ones pulse and the tolerance value was set to 5. Then 5 errors (which must follow sequentially) are accepted.</p><p>Tune this value if you have <span style=\" font-weight:600;\">spiky data</span> after demodulation.</p></body></html>")) self.lErrorTolerance.setText(_translate("SignalFrame", "Error Tolerance:")) self.lSignalViewText.setText(_translate("SignalFrame", "Signal View:")) self.lCenterOffset.setToolTip(_translate("SignalFrame", "<html><head/><body><p>This is the threshold used for determining if a <span style=\" font-weight:600;\">bit is one or zero</span>. You can set it here or grab the middle of the area in <span style=\" font-style:italic;\">Quadrature Demod View.</span></p></body></html>")) self.lCenterOffset.setText(_translate("SignalFrame", "Center:")) self.spinBoxCenterOffset.setToolTip(_translate("SignalFrame", "<html><head/><body><p>This is the threshold used for determining if a <span style=\" font-weight:600;\">bit is one or zero</span>. You can set it here or grab the middle of the area in <span style=\" font-style:italic;\">Quadrature Demod View</span>.</p></body></html>")) self.btnAutoDetect.setToolTip(_translate("SignalFrame", "<html><head/><body><p>Automatically detect Center and Bit Length, when you change the demodulation type. You can disable this behaviour for faster switching between demodulations.</p></body></html>")) self.btnAutoDetect.setText(_translate("SignalFrame", "Autodetect parameters")) self.cbSignalView.setToolTip(_translate("SignalFrame", "<html><head/><body><p>Choose the view of your signal. Analog, Demodulated or Spectrogram.</p><p>The quadrature demodulation uses a <span style=\" font-weight:600;\">treshold of magnitude,</span> to <span style=\" font-weight:600;\">supress noise</span>. All samples with a magnitude lower than this treshold will be eliminated (set to <span style=\" font-style:italic;\">-127</span>) after demod.</p><p>Tune this value by selecting a <span style=\" font-style:italic;\">noisy area</span> and mark it as noise using <span style=\" font-weight:600;\">context menu</span>.</p><p>Current noise treshold is: </p></body></html>")) self.cbSignalView.setItemText(0, _translate("SignalFrame", "Analog")) self.cbSignalView.setItemText(1, _translate("SignalFrame", "Demodulated")) self.cbSignalView.setItemText(2, _translate("SignalFrame", "Spectrogram")) self.btnSaveSignal.setText(_translate("SignalFrame", "...")) self.btnCloseSignal.setText(_translate("SignalFrame", "X")) self.lSignalTyp.setText(_translate("SignalFrame", "<Signaltyp>")) self.lSignalNr.setText(_translate("SignalFrame", "1:")) self.btnInfo.setText(_translate("SignalFrame", "...")) self.btnReplay.setToolTip(_translate("SignalFrame", "Replay signal")) self.labelFFTWindowSize.setText(_translate("SignalFrame", "FFT Window Size:")) self.labelSpectrogramMin.setText(_translate("SignalFrame", "Data<sub>min</sub>:")) self.labelSpectrogramMax.setText(_translate("SignalFrame", "Data<sub>max</sub>:")) self.lYScale.setText(_translate("SignalFrame", "Y-Scale")) self.btnShowHideStartEnd.setText(_translate("SignalFrame", "-")) self.lNumSelectedSamples.setToolTip(_translate("SignalFrame", "Number of currently selected samples.")) self.lNumSelectedSamples.setText(_translate("SignalFrame", "0")) self.lTextSelectedSamples.setToolTip(_translate("SignalFrame", "Number of currently selected samples.")) self.lTextSelectedSamples.setText(_translate("SignalFrame", "selected")) self.lDuration.setText(_translate("SignalFrame", "42 µs")) self.labelRSSI.setText(_translate("SignalFrame", "RSSI: 0,434")) self.btnFilter.setText(_translate("SignalFrame", "Filter (moving average)")) self.lStart.setText(_translate("SignalFrame", "Start:")) self.lEnd.setText(_translate("SignalFrame", "End:")) self.lZoomText.setToolTip(_translate("SignalFrame", "<html><head/><body><p>Current (relative) Zoom. Standard is 100%, if you zoom in, this factor increases. You can directly set a value in the spinbox or use the <span style=\" font-weight:600;\">mousewheel to zoom</span>.</p></body></html>")) self.lZoomText.setText(_translate("SignalFrame", "X-Zoom:")) self.spinBoxXZoom.setToolTip(_translate("SignalFrame", "<html><head/><body><p>Current (relative) Zoom. Standard is 100%, if you zoom in, this factor increases. You can directly set a value in the spinbox or use the <span style=\" font-weight:600;\">mousewheel to zoom</span>.</p></body></html>")) self.spinBoxXZoom.setSuffix(_translate("SignalFrame", "%")) self.lSamplesInView.setText(_translate("SignalFrame", "0")) self.lStrich.setText(_translate("SignalFrame", "/")) self.lSamplesTotal.setText(_translate("SignalFrame", "0")) self.lSamplesViewText.setText(_translate("SignalFrame", "Samples in view")) from urh.ui.views.EpicGraphicView import EpicGraphicView from urh.ui.views.LegendGraphicView import LegendGraphicView from urh.ui.views.SpectrogramGraphicView import SpectrogramGraphicView from urh.ui.views.TextEditProtocolView import TextEditProtocolView from . import urh_rc
gpl-3.0
-743,312,303,342,755,300
68.472269
688
0.734614
false
3.828471
false
false
false
appsembler/roles
logstash/templates/remove_old_indices.py
1
1444
#!/usr/bin/env python import logging import sys import curator import elasticsearch import certifi HOSTS = ["{{ logstash_output_elasticsearch_hosts | join('\", \"') }}"] USERNAME = '{{ logstash_output_elasticsearch_user }}' PASSWORD = '{{ logstash_output_elasticsearch_password }}' DELETE_OLDER_THAN = {{ logstash_remove_older_than }} def main(): for host in HOSTS: scheme, _, domain = host.rpartition('://') scheme = scheme if scheme else 'http' basic_auth_uri = '{}://{}:{}@{}'.format(scheme, USERNAME, PASSWORD, domain) client = elasticsearch.Elasticsearch([basic_auth_uri], verify_certs=True, ca_certs=certifi.where()) index_list = curator.IndexList(client) index_list.filter_by_regex(kind='prefix', value='logstash-') index_list.filter_by_age(source='name', direction='older', timestring='%Y.%m.%d', unit='days', unit_count=DELETE_OLDER_THAN) if len(index_list.indices): logging.info('Deleting indices: {}' .format(', '.join(index_list.indices))) delete_indices = curator.DeleteIndices(index_list) delete_indices.do_action() else: logging.info('No indices to delete') if __name__ == '__main__': logging.basicConfig(stream=sys.stdout, level=logging.INFO) main()
mit
-3,186,540,673,562,931,000
33.380952
83
0.580332
false
4.011111
false
false
false
cogitare-ai/cogitare
cogitare/data/dataholder.py
1
15342
import torch import math from abc import ABCMeta, abstractmethod from cogitare import utils from six import add_metaclass import numpy from dask import threaded, delayed, compute, multiprocessing def _identity(x): return x @add_metaclass(ABCMeta) class AbsDataHolder(object): """ An abstract object that acts as a data holder. A data holder is a utility to hold datasets, which provide some simple functions to work with the dataset, such as sorting, splitting, dividing it into chunks, loading batches using multi-thread, and so on. It's the recommended way to pass data to Cogitare's models because it already provides a compatible interface to iterate over batches. To improve the performance, the data holder loads batches using multiprocessing and multithreading data loader with `Dask <http://dask.pydata.org/>`_. Usually, this object should not be used directly, only if you are developing a custom data loader. Cogitare already provides the following implementations for the most common data types: - Tensors: :class:`~cogitare.data.TensorHolder` - Numpy: :class:`~cogitare.data.NumpyHolder` - Callable (functions that receive the sample id, and returns its data): :class:`~cogitare.data.CallableHolder` - :class:`~cogitare.data.AutoHolder`: inspect the data to choose one of the available data holders. Args: data (torch.Tensor, numpy.ndarray, callable): the data to be managed by the data holder. batch_size (int): the size of the batch. shuffle (bool): if True, shuffles the dataset after each iteration. drop_last (bool): if True, then skip the batch if its size is lower that **batch_size** (can occur in the last batch). total_samples (int): the number of total samples. If provided, this will limit the number of samples to be accessed in the data. mode (str): must be one of: 'sequential', 'threaded', 'multiprocessing'. Use one of them to choose the batch loading methods. Take a loook here: https://dask.pydata.org/en/latest/scheduler-choice.html for an overview of the advantage of each mode. single (bool): if True, returns only the first element of each batch. Is designed to be used with models where you only use one sample per batch (batch_size == 1). So instead of returning a list with a single sample, with ``single == True``, the sample itself will be returned and not the list. on_sample_loaded (callable): if provided, this function will be called when a new sample is loaded. It must receive one argument, the sample. And return one value that will replace the sample data. This is used to apply pre-processing on single samples while loading. on_batch_loaded (callable): if provided, this function will be called when a new batch is loaded. It must receive one argument, the batch data. And return the batch after applying some operation on the data. This can be used to apply pre-processing functions on a batch of data (such as image filtering, moving the data to GPU, and etc). """ @property def total_samples(self): """Returns the number of individual samples in this dataset. """ return self._total_samples @total_samples.setter def total_samples(self, value): if hasattr(self._data, '__len__'): size = len(self._data) else: size = None if size is not None: utils.assert_raise(value <= size, ValueError, 'The value must be lesser or equal to the' 'length of the input data') utils.assert_raise(value >= 1, ValueError, 'number of samples must be greater or equal to 1') self._total_samples = value self._remaining_samples = value self._requires_reset = True @property def indices(self): if self._indices is None: self._indices = numpy.arange(self.total_samples) return self._indices @property def batch_size(self): """The size of the mini-batch used by the iterator. When a new batch_size is set, the iterator will reset. """ return self._batch_size @batch_size.setter def batch_size(self, value): self._batch_size = value self._requires_reset = True def __init__(self, data, batch_size=1, shuffle=True, drop_last=False, total_samples=None, mode='sequential', single=False, on_sample_loaded=None, on_batch_loaded=None): valid_modes = ['threaded', 'multiprocessing', 'sequential'] utils.assert_raise(mode in valid_modes, ValueError, '"mode" must be one of: ' + ', '.join(valid_modes)) if on_sample_loaded is None: on_sample_loaded = _identity if on_batch_loaded is None: on_batch_loaded = _identity self._indices = None self._single = single self._mode = mode self._total_samples = total_samples self._remaining_samples = None self._on_sample_loaded = on_sample_loaded self._on_batch_loaded = on_batch_loaded self._data = data self._batch_size = batch_size self._current_batch = 0 self._drop_last = drop_last self._shuffle = shuffle self._requires_reset = True if mode == 'sequential': self._get = None elif mode == 'threaded': self._get = threaded.get else: self._get = multiprocessing.get def _clone(self): return type(self)(data=self._data, batch_size=self._batch_size, shuffle=self._shuffle, drop_last=self._drop_last, total_samples=self._total_samples, mode=self._mode, single=self._single, on_sample_loaded=self._on_sample_loaded, on_batch_loaded=self._on_batch_loaded) def __repr__(self): """Using repr(data) or str(data), display the shape of the data. """ return '{} with {}x{} samples'.format(type(self).__name__, len(self), self._batch_size) def __getitem__(self, key): """Get a sample in the dataset using its indices. Example:: sample = data[0] sample2 = data[1] """ return self._on_sample_loaded(self.get_sample(self.indices[key])) def _get_batch_size(self): batch_size = min(self._batch_size, self._remaining_samples) if batch_size < self._batch_size and self._drop_last: self._requires_reset = True raise StopIteration if batch_size == 0: self._requires_reset = True raise StopIteration return batch_size def _get_batch(self): if self._requires_reset: self.reset() batch_size = self._get_batch_size() def load(loader): return [loader(self.__getitem__)(self._current_batch * self._batch_size + i) for i in range(batch_size)] if self._get: # use dask jobs = load(lambda x: delayed(x, traverse=False)) results = compute(jobs, scheduler=self._get)[0] else: results = load(_identity) self._current_batch += 1 self._remaining_samples -= batch_size results = self._on_batch_loaded(results) if self._single: return results[0] return results @abstractmethod def get_sample(self, key): pass def __len__(self): """Return the number of batches in the dataset. """ if self._drop_last: return self.total_samples // self._batch_size else: return (self.total_samples + self._batch_size - 1) // self._batch_size def __iter__(self): """Creates an iterator to iterate over batches in the dataset. After each iteration over the batches, the dataset will be shuffled if the **shuffle** parameter is True. Example:: for sample in data: print(sample) """ return self def __next__(self): return self._get_batch() next = __next__ def reset(self): """Reset the batch iterator. This method returns the iterator to the first sample, and shuffle the dataset if shuffle is enabled. """ self._requires_reset = False self._current_batch = 0 self._remaining_samples = self.total_samples if self._shuffle: self.shuffle() def shuffle(self): """Shuffle the samples in the dataset. This operation will not affect the original data. """ numpy.random.shuffle(self.indices) def split(self, ratio): """Split the data holder into two data holders. The first one will receive *total_samples * ratio* samples, and the second data holder will receive the remaining samples. Args: ratio (:obj:`float`): ratio of the split. Must be between 0 and 1. Returns: (data1, data2): two data holder, in the same type that the original. Example:: >>> print(data) TensorHolder with 875x64 samples >>> data1, data2 = data.split(0.8) >>> print(data1) TensorHolder with 700x64 samples >>> print(data2) TensorHolder with 175x64 samples """ utils.assert_raise(0 < ratio < 1, ValueError, '"ratio" must be between 0 and 1') pos = int(math.floor(self.total_samples * ratio)) data1 = self._clone() data2 = self._clone() data1._indices = self.indices[:pos] data2._indices = self.indices[pos:] data1._total_samples = pos data2._total_samples = self.total_samples - pos return data1, data2 def split_chunks(self, n): """Split the data holder into N data holders with the sample number of samples each. Args: n (int): number of new splits. Returns: output (list): list of N data holders. Example:: >>> print(data) TensorHolder with 875x64 samples >>> data1, data2, data3 = data.split_chunks(3) >>> print(data1) TensorHolder with 292x64 samples >>> print(data2) TensorHolder with 292x64 samples >>> print(data3) TensorHolder with 292x64 samples """ size = self.total_samples // n data = [] for i in range(n): begin, end = i * size, min((i + 1) * size, self.total_samples) holder = self._clone() holder._indices = self.indices[begin:end] holder._total_samples = end - begin data.append(holder) return data class CallableHolder(AbsDataHolder): """CallableHolder is a data holder for abritary data type. As data input, it uses a callable that receive the sample index as parameter, and must return the sample. It can be used to load non-Tensor or non-numpy datasets, such as texts, dicts, and anything else. You are free to use CallableHolder with any data type. .. note:: When using CallableHolder, you must specify the number of samples in the dataset. The callable will be called asking for samples from 0 to (total_samples - 1). Example:: >>> def load_sample(idx): ... return list(range(idx, idx + 10)) >>> # when using the CallableHolder. you must pass the number of samples to >>> # be loaded. >>> # you can set the total_samples using the parameter in the constructor >>> data = CallableHolder(load_sample, batch_size=8, total_samples=20) >>> # or by setting the property >>> data.total_samples = 20 >>> next(data) [[8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]] """ @property def total_samples(self): """The number of samples in the dataset. You must set this value before accessing the data. """ if self._total_samples is None: raise ValueError('"total_samples" not defined. Callable objects requires the' ' number of total_samples before being used') return super(CallableHolder, self).total_samples @total_samples.setter def total_samples(self, value): return super(CallableHolder, self.__class__).total_samples.fset(self, value) def __init__(self, *args, **kwargs): super(CallableHolder, self).__init__(*args, **kwargs) def get_sample(self, key): return self._data(key) class TensorHolder(AbsDataHolder): """ A data holder to work with :class:`torch.Tensor` objects. Example:: >>> tensor = torch.Tensor([[1,2,3], [4,5,6], [7,8,9]]) >>> tensor 1 2 3 4 5 6 7 8 9 [torch.FloatTensor of size 3x3] >>> data = TensorHolder(tensor, batch_size=2) >>> for sample in data: ... print('Sample:') ... print(sample) ... print('Sample as tensor:') ... print(utils.to_tensor(sample)) Sample: [ 7 8 9 [torch.FloatTensor of size 3] , 4 5 6 [torch.FloatTensor of size 3] ] Sample as tensor: 7 8 9 4 5 6 [torch.FloatTensor of size 2x3] Sample: [ 1 2 3 [torch.FloatTensor of size 3] ] Sample as tensor: 1 2 3 [torch.FloatTensor of size 1x3] """ def __init__(self, *args, **kwargs): super(TensorHolder, self).__init__(*args, **kwargs) size = len(self._data) if self._total_samples is None: self.total_samples = size def get_sample(self, key): return self._data[key] def NumpyHolder(data, *args, **kwargs): """ When creating the object, it converts the numpy data to Tensor using :func:`torch.from_numpy` and then creates an :class:`~cogitare.data.TensorHolder` instance. """ data = torch.from_numpy(data) return TensorHolder(data, *args, **kwargs) def AutoHolder(data, *args, **kwargs): """Check the data type to infer which data holder to use. """ if torch.is_tensor(data): return TensorHolder(data, *args, **kwargs) elif isinstance(data, numpy.ndarray): return NumpyHolder(data, *args, **kwargs) elif callable(data): return CallableHolder(data, *args, **kwargs) else: raise ValueError('Unable to infer data type!')
mit
-4,970,938,022,273,481,000
32.352174
120
0.584865
false
4.183801
false
false
false
Aeva/voxelpress
old_stuff/old_python_stuff/arduino/acm_firmwares/acm_kind.py
1
1717
from glob import glob from ..reprap_kind import ReprapKind class ReprapACM(ReprapKind): """Repraps which are controlled by an ACM device of some kind (usually an Arduino).""" def __init__(self, connection, firmware="Unknown", *args, **kargs): self.__serial = connection self.__buffer = False self.info = {} # Set a plausible printer uuid, which may be overridden by the # firmware driver. self.info["uuid"] = self.__serial.make_uuid(firmware) ReprapKind.__init__(self, *args, **kargs) def shutdown(self, disconnected=False): """Callback used to turn off the backend and release any resources.""" self.__serial.disconnect(disconnected) def gcode(self, line): """Send a line of gcode to the printer, and returns data if applicable.""" self.__serial.send(line) return self.__serial.poll() def __stream(self, fobject): """Extracts gcode commands from a file like object, removes comments and blank lines, and then streams the commands to the printer.""" self.hold() for line in fobject: if line.startswith(";"): continue code = line.split(";")[0].strip() self.gcode(code) def run_job(self, target): """Run a print job. Target can be a file path or file-like object.""" fobject = None if type(target) in [unicode, str]: found = glob(target) if found: # FIXME, should cue up multiple jobs, not just do one...? fobject = open(found[0]) if fobject: self.__stream(fobject)
gpl-3.0
1,986,246,930,187,726,600
32.666667
73
0.576005
false
4.25
false
false
false
Tjorriemorrie/trading
07_reinforcement/signals/sarsa.py
1
7351
''' signals by MA and RSI and Ichimoku ''' import pandas as pd import numpy as np from features import FeatureFactory import pickle from random import random, choice from pprint import pprint import time currencies = [ # 'AUDUSD', # 'EURGBP', # 'EURJPY', 'EURUSD', # 'GBPJPY', # 'GBPUSD', # 'NZDUSD', # 'USDCAD', # 'USDCHF', # 'USDJPY', ] intervals = [ # '60', '1440', ] actions = [ 'stay-out', 'enter-long', 'stay-long', 'exit-long', 'enter-short', 'stay-short', 'exit-short', ] def loadData(currency, interval): # print 'loading dataframe...' df = pd.read_csv( r'../data/' + currency.upper() + interval + '.csv', names=['date', 'time', 'open', 'high', 'low', 'close', 'volume'], dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float', 'volume': 'int'}, # parse_dates=[[0, 1]], # index_col=0, ) # print df.tail() data = df.as_matrix() opens = data[:, 2].astype(float) highs = data[:, 3].astype(float) lows = data[:, 4].astype(float) closes = data[:, 5].astype(float) volumes = data[:, 6].astype(int) # print 'dataframe loaded' return opens, highs, lows, closes, volumes def loadThetas(currency, interval, cntFeatures): # print 'loading thetas' try: with open('models/{0}_{1}.thts'.format(currency, interval), 'r') as f: thetas = pickle.load(f) except IOError: thetas = [np.random.rand(cntFeatures) for a in actions] # pprint(thetas) # print 'thetas loaded' return thetas def saveThetas(currency, interval, thetas): # print 'saving thetas' with open('models/{0}_{1}.thts'.format(currency, interval), 'w') as f: pickle.dump(thetas, f) # print 'thetas saved' def getReward(rewards, s, a): ''' if action is stay-out: obviously no reward: we will then only enter trades if we expect positive returns if action is exiting: no reward as well: we will not enforce exiting positions, we will only exit when we expect negative returns. we get rewards only for entering and keeping positions (as long as positive returns are expected) ''' if a == 0: r = 0 elif a in [3, 6]: r = 0 else: r = rewards[s] return r def getActionStateValue(thetas, Fsa, a): # pprint(Fsa) # pprint(thetas[a]) Qsa = sum(f * t for f, t in zip(Fsa, thetas[a])) return float(Qsa) def getActionsAvailable(a): # stay-out: stay-out & enter-long & enter-short if a == 0: return [0, 1, 4] elif a == 1: return [2] elif a == 2: return [2, 3] elif a == 4: return [5] elif a == 5: return [5, 6] else: raise Exception('no available actions for {0}'.format(a)) def getAction(thetas, features, a): # exploration actionsAvailable = getActionsAvailable(a) # print 'actions available', actionsAvailable if random() < epsilon: a = choice(actionsAvailable) # exploitation else: aMax = None QsaHighest = -1000 for a in actionsAvailable: Qsa = getActionStateValue(thetas, features[a], a) if Qsa > QsaHighest: QsaHighest = Qsa aMax = a a = aMax return a ff = FeatureFactory() alpha = 0.1 epsilon = 0.1 gamma = 0.9 if __name__ == '__main__': interval = '1440' # interval = choice(intervals) for currency in currencies: print '\n', currency, interval # load data opens, highs, lows, closes, volumes = loadData(currency, interval) print 'data loaded' dataSize = len(closes) # extract features features = ff.getFeatures(opens, highs, lows, closes, volumes) print 'get features' cntFeatures = len(features) # pprint(features) # get rewards print 'get rewards' rewards = ff.getRewardsCycle(closes) # load thetas print 'load thetas' thetas = loadThetas(currency, interval, cntFeatures) # train outcomes = [] durations = [] print 'start' for i in xrange(100): # initialize state and action a = actions.index('stay-out') # print 'a start', a, actions[a] # print 'len closes', len(closes) # pprint(range(len(closes))) s = choice(range(len(closes))) # print 's start', s iniS = s # keep going until we hit an exit (that will be 1 episode/trade) while a not in [3, 6]: # set of features at state/index and action/noeffect Fsa = features[s] # take action a # observe r r = getReward(rewards, s, a) # print s, 'r of', r, 'for', actions[a], 'from', iniS, 'till', s # next state ss = s + 1 if ss >= dataSize: break # Qsa (action-state-values) Qsa = getActionStateValue(thetas, Fsa, a) # print s, 'Qsa', Qsa # start delta delta = r - Qsa # print s, 'delta start', delta # get next action aa = getAction(thetas, features, a) # print s, 'a', aa, actions[aa] # get features and Qsa Fsa = features[aa] Qsa = getActionStateValue(thetas, Fsa, aa) # end delta delta += gamma * Qsa # print s, 'delta end', delta # update thetas thetas[a] = [theta + alpha * delta for theta in thetas[a]] # pprint(thetas[a]) # normalize thetas # pprint(thetas[a]) mmin = min(thetas[a]) mmax = max(thetas[a]) rrange = mmax - mmin # print 'N', 'min', mmin, 'max', mmax, 'range', rrange thetas[a] = [(mmax - t) / rrange for t in thetas[a]] # print s, 'normalized', min(thetas[a]), max(thetas[a]) # until s is terminal if aa in [3, 6]: outcomes.append(closes[s] - closes[iniS] if aa == 3 else closes[iniS] - closes[s]) durations.append(s - iniS) print '\n', '#', len(outcomes), actions[a], r print 'Net outcomes', sum(outcomes) print 'Avg durations', int(sum(durations) / len(durations)) wins = sum([1. for o in outcomes if o > 0]) print currency, 'Win ratio', int(wins / len(outcomes) * 100) # time.sleep(0.3) # if iniS not set, then set it if a == 0 and aa in [1, 4]: iniS = s # s <- s' a <- a' s = ss a = aa # save periodically if i % 100 == 99: saveThetas(currency, interval, thetas) # print 'Net outcomes', sum(outcomes) # print currency, 'Win ratio', int(wins / len(outcomes) * 100) saveThetas(currency, interval, thetas)
mit
1,470,180,100,407,404,800
27.492248
134
0.513264
false
3.628332
false
false
false
TougalooCSC/CSC455Spring15Prototypes
prototype01/migrations/versions/47f6450771a6_.py
1
2742
"""empty message Revision ID: 47f6450771a6 Revises: None Create Date: 2015-04-15 16:44:40.764749 """ # revision identifiers, used by Alembic. revision = '47f6450771a6' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('decks') op.drop_table('users') op.drop_table('flashcard_responses') op.drop_table('flashcards') ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('flashcards', sa.Column('created_at', sa.DATETIME(), nullable=True), sa.Column('updated_at', sa.DATETIME(), nullable=True), sa.Column('is_active', sa.BOOLEAN(), nullable=True), sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('question_text', sa.VARCHAR(length=256), nullable=True), sa.Column('question_answer', sa.VARCHAR(length=127), nullable=True), sa.Column('created_by', sa.INTEGER(), nullable=True), sa.ForeignKeyConstraint(['created_by'], [u'users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('flashcard_responses', sa.Column('created_at', sa.DATETIME(), nullable=True), sa.Column('updated_at', sa.DATETIME(), nullable=True), sa.Column('is_active', sa.BOOLEAN(), nullable=True), sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('response', sa.VARCHAR(length=127), nullable=True), sa.Column('flashcard_id', sa.INTEGER(), nullable=True), sa.Column('user_id', sa.INTEGER(), nullable=True), sa.ForeignKeyConstraint(['flashcard_id'], [u'flashcards.id'], ), sa.ForeignKeyConstraint(['user_id'], [u'users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('users', sa.Column('created_at', sa.DATETIME(), nullable=True), sa.Column('updated_at', sa.DATETIME(), nullable=True), sa.Column('is_active', sa.BOOLEAN(), nullable=True), sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('name', sa.VARCHAR(length=120), nullable=True), sa.Column('email', sa.VARCHAR(length=120), nullable=True), sa.Column('password', sa.VARCHAR(length=30), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('decks', sa.Column('created_at', sa.DATETIME(), nullable=True), sa.Column('updated_at', sa.DATETIME(), nullable=True), sa.Column('is_active', sa.BOOLEAN(), nullable=True), sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('title', sa.VARCHAR(length=127), nullable=True), sa.Column('created_by', sa.INTEGER(), nullable=True), sa.ForeignKeyConstraint(['created_by'], [u'users.id'], ), sa.PrimaryKeyConstraint('id') ) ### end Alembic commands ###
gpl-3.0
7,827,077,548,879,713,000
37.619718
72
0.660832
false
3.43179
false
false
false
gitprouser/appengine-bottle-skeleton
lib/ndb/msgprop_test.py
1
17472
# # Copyright 2008 The ndb Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for msgprop.py.""" from protorpc import messages from . import model from . import msgprop from . import test_utils from .google_imports import datastore_errors from .google_test_imports import unittest class Color(messages.Enum): RED = 620 GREEN = 495 BLUE = 450 SAMPLE_PB = r"""key < app: "ndb-test-app-id" path < Element { type: "Storage" id: 1 } > > entity_group < Element { type: "Storage" id: 1 } > property < name: "greet.text" value < stringValue: "abc" > multiple: false > raw_property < meaning: 14 name: "greet.__protobuf__" value < stringValue: "\n\003abc\020{" > multiple: false > """ class MsgPropTests(test_utils.NDBTest): the_module = msgprop def setUp(self): super(MsgPropTests, self).setUp() global Greeting class Greeting(messages.Message): text = messages.StringField(1, required=True) when = messages.IntegerField(2) color = messages.EnumField(Color, 3) def testBasics(self): class Storage(model.Model): greet = msgprop.MessageProperty(Greeting, indexed_fields=['text'], verbose_name='The Greeting') self.assertEqual(Storage.greet._verbose_name, 'The Greeting') greet = Greeting(text='abc', when=123) store = Storage(greet=greet) key = store.put() result = key.get() self.assertFalse(result is store) self.assertEqual(result.greet.text, 'abc') self.assertEqual(result.greet.when, 123) self.assertEqual(result.greet, Greeting(when=123, text='abc')) self.assertEqual(result, Storage(greet=Greeting(when=123, text='abc'), key=key)) self.assertEqual(str(result._to_pb()), SAMPLE_PB) def testValidator(self): logs = [] def validator(prop, value): logs.append((prop, value)) return value class Storage(model.Model): greet = msgprop.MessageProperty(Greeting, indexed_fields=['text'], validator=validator) greet = Greeting(text='abc', when=123) store = Storage(greet=greet) self.assertEqual(logs, [(Storage.greet, greet)]) def testReprMessageProperty(self): greet1 = msgprop.MessageProperty(Greeting, 'foo') self.assertEqual(repr(greet1), "MessageProperty(Greeting, 'foo')") greet2 = msgprop.MessageProperty(Greeting, 'foo', protocol='protojson') self.assertEqual(repr(greet2), "MessageProperty(Greeting, 'foo', protocol='protojson')") greet3 = msgprop.MessageProperty(Greeting, 'foo', indexed_fields=['text']) self.assertEqual( repr(greet3), "MessageProperty(Greeting, 'foo', indexed_fields=('text',))") greets = msgprop.MessageProperty(Greeting, 'foo', repeated=True) self.assertEqual(repr(greets), "MessageProperty(Greeting, 'foo', repeated=True)") def testReprEnumProperty(self): color = msgprop.EnumProperty(Color, 'bar') self.assertEqual(repr(color), "EnumProperty(Color, 'bar')") colors = msgprop.EnumProperty(Color, 'bar', repeated=True) self.assertEqual(repr(colors), "EnumProperty(Color, 'bar', repeated=True)") def testQuery(self): class Storage(model.Model): greet = msgprop.MessageProperty(Greeting, indexed_fields=['text']) greet1 = Greeting(text='abc', when=123) store1 = Storage(greet=greet1) store1.put() greet2 = Greeting(text='def', when=456) store2 = Storage(greet=greet2) store2.put() q = Storage.query(Storage.greet.text == 'abc') self.assertEqual(q.fetch(), [store1]) self.assertRaises(AttributeError, lambda: Storage.greet.when) def testErrors(self): class Storage(model.Model): greet = msgprop.MessageProperty(Greeting, indexed_fields=['text']) # Call MessageProperty(x) where x is not a Message class. self.assertRaises(TypeError, msgprop.MessageProperty, Storage) self.assertRaises(TypeError, msgprop.MessageProperty, 42) self.assertRaises(TypeError, msgprop.MessageProperty, None) # Call MessageProperty(Greeting, indexed_fields=x) where x # includes invalid field names. self.assertRaises(ValueError, msgprop.MessageProperty, Greeting, indexed_fields=['text', 'nope']) self.assertRaises(TypeError, msgprop.MessageProperty, Greeting, indexed_fields=['text', 42]) self.assertRaises(TypeError, msgprop.MessageProperty, Greeting, indexed_fields=['text', None]) self.assertRaises(ValueError, msgprop.MessageProperty, Greeting, indexed_fields=['text', 'text']) # Duplicate. # Set a MessageProperty value to a non-Message instance. self.assertRaises(TypeError, Storage, greet=42) def testNothingIndexed(self): class Store(model.Model): gr = msgprop.MessageProperty(Greeting) gr = Greeting(text='abc', when=123) st = Store(gr=gr) st.put() self.assertEqual(Store.query().fetch(), [st]) self.assertRaises(AttributeError, lambda: Store.gr.when) def testForceProtocol(self): class Store(model.Model): gr = msgprop.MessageProperty(Greeting, protocol='protobuf') gr = Greeting(text='abc', when=123) st = Store(gr=gr) st.put() self.assertEqual(Store.query().fetch(), [st]) def testRepeatedMessageProperty(self): class StoreSeveral(model.Model): greets = msgprop.MessageProperty(Greeting, repeated=True, indexed_fields=['text', 'when']) ga = Greeting(text='abc', when=123) gb = Greeting(text='abc', when=456) gc = Greeting(text='def', when=123) gd = Greeting(text='def', when=456) s1 = StoreSeveral(greets=[ga, gb]) k1 = s1.put() s2 = StoreSeveral(greets=[gc, gd]) k2 = s2.put() res1 = k1.get() self.assertEqual(res1, s1) self.assertFalse(res1 is s1) self.assertEqual(res1.greets, [ga, gb]) res = StoreSeveral.query(StoreSeveral.greets.text == 'abc').fetch() self.assertEqual(res, [s1]) res = StoreSeveral.query(StoreSeveral.greets.when == 123).fetch() self.assertEqual(res, [s1, s2]) def testIndexedEnumField(self): class Storage(model.Model): greet = msgprop.MessageProperty(Greeting, indexed_fields=['color']) gred = Greeting(text='red', color=Color.RED) gblue = Greeting(text='blue', color=Color.BLUE) s1 = Storage(greet=gred) s1.put() s2 = Storage(greet=gblue) s2.put() self.assertEqual(Storage.query(Storage.greet.color == Color.RED).fetch(), [s1]) self.assertEqual(Storage.query(Storage.greet.color < Color.RED).fetch(), [s2]) def testRepeatedIndexedField(self): class AltGreeting(messages.Message): lines = messages.StringField(1, repeated=True) when = messages.IntegerField(2) class Store(model.Model): altg = msgprop.MessageProperty(AltGreeting, indexed_fields=['lines']) s1 = Store(altg=AltGreeting(lines=['foo', 'bar'], when=123)) s1.put() s2 = Store(altg=AltGreeting(lines=['baz', 'bletch'], when=456)) s2.put() res = Store.query(Store.altg.lines == 'foo').fetch() self.assertEqual(res, [s1]) def testRepeatedIndexedFieldInRepeatedMessageProperty(self): class AltGreeting(messages.Message): lines = messages.StringField(1, repeated=True) when = messages.IntegerField(2) self.assertRaises(TypeError, msgprop.MessageProperty, AltGreeting, indexed_fields=['lines'], repeated=True) def testBytesField(self): class BytesGreeting(messages.Message): data = messages.BytesField(1) when = messages.IntegerField(2) class Store(model.Model): greet = msgprop.MessageProperty(BytesGreeting, indexed_fields=['data']) bg = BytesGreeting(data='\xff', when=123) st = Store(greet=bg) st.put() res = Store.query(Store.greet.data == '\xff').fetch() self.assertEqual(res, [st]) def testNestedMessageField(self): class Inner(messages.Message): count = messages.IntegerField(1) greet = messages.MessageField(Greeting, 2) class Outer(messages.Message): inner = messages.MessageField(Inner, 1) extra = messages.StringField(2) class Store(model.Model): outer = msgprop.MessageProperty(Outer, indexed_fields=['inner.greet.text']) greet = Greeting(text='abc', when=123) inner = Inner(count=42, greet=greet) outer = Outer(inner=inner) st = Store(outer=outer) st.put() res = Store.query(Store.outer.inner.greet.text == 'abc').fetch() self.assertEqual(res, [st]) def testNestedMessageFieldIsNone(self): class Outer(messages.Message): greeting = messages.MessageField(Greeting, 1) class Store(model.Model): outer = msgprop.MessageProperty(Outer, indexed_fields=['greeting.text']) outer1 = Outer(greeting=None) store1 = Store(outer=outer1) store1.put() res = Store.query(Store.outer.greeting.text == 'abc').fetch() self.assertEqual(res, []) def testRepeatedNestedMessageField(self): class Outer(messages.Message): greeting = messages.MessageField(Greeting, 1) extra = messages.IntegerField(2) class Store(model.Model): outers = msgprop.MessageProperty(Outer, repeated=True, indexed_fields=['greeting.text']) gr1 = Greeting(text='abc', when=123) gr2 = Greeting(text='def', when=456) outer1 = Outer(greeting=gr1, extra=1) outer2 = Outer(greeting=gr2, extra=2) store1 = Store(outers=[outer1]) store1.put() store2 = Store(outers=[outer2]) store2.put() store3 = Store(outers=[outer1, outer2]) store3.put() res = Store.query(Store.outers.greeting.text == 'abc').fetch() self.assertEqual(res, [store1, store3]) def testNestedRepeatedMessageField(self): class Outer(messages.Message): greetings = messages.MessageField(Greeting, 1, repeated=True) extra = messages.IntegerField(2) class Store(model.Model): outer = msgprop.MessageProperty(Outer, indexed_fields=['greetings.text', 'extra']) gr1 = Greeting(text='abc', when=123) gr2 = Greeting(text='def', when=456) outer1 = Outer(greetings=[gr1], extra=1) outer2 = Outer(greetings=[gr2], extra=2) outer3 = Outer(greetings=[gr1, gr2], extra=3) store1 = Store(outer=outer1) store1.put() store2 = Store(outer=outer2) store2.put() store3 = Store(outer=outer3) store3.put() res = Store.query(Store.outer.greetings.text == 'abc').fetch() self.assertEqual(res, [store1, store3]) def testNestedFieldErrors(self): class Outer(messages.Message): greetings = messages.MessageField(Greeting, 1, repeated=True) extra = messages.IntegerField(2) # Parent/child conflicts. self.assertRaises(ValueError, msgprop.MessageProperty, Outer, indexed_fields=['greetings.text', 'greetings']) self.assertRaises(ValueError, msgprop.MessageProperty, Outer, indexed_fields=['greetings', 'greetings.text']) # Duplicate inner field. self.assertRaises(ValueError, msgprop.MessageProperty, Outer, indexed_fields=['greetings.text', 'greetings.text']) # Can't index MessageField. self.assertRaises(ValueError, msgprop.MessageProperty, Outer, indexed_fields=['greetings']) # Can't specify subfields for non-MessageField. self.assertRaises(ValueError, msgprop.MessageProperty, Outer, indexed_fields=['extra.foobar']) # Non-existent subfield. self.assertRaises(ValueError, msgprop.MessageProperty, Outer, indexed_fields=['greetings.foobar']) def testDoubleNestedRepeatErrors(self): class Inner(messages.Message): greets = messages.MessageField(Greeting, 1, repeated=True) class Outer(messages.Message): inner = messages.MessageField(Inner, 1) inners = messages.MessageField(Inner, 2, repeated=True) msgprop.MessageProperty(Inner, repeated=True) # Should not fail msgprop.MessageProperty(Outer, repeated=True) # Should not fail self.assertRaises(TypeError, msgprop.MessageProperty, Inner, repeated=True, indexed_fields=['greets.text']) self.assertRaises(TypeError, msgprop.MessageProperty, Outer, indexed_fields=['inners.greets.text']) self.assertRaises(TypeError, msgprop.MessageProperty, Outer, repeated=True, indexed_fields=['inner.greets.text']) def testEnumProperty(self): class Foo(model.Model): color = msgprop.EnumProperty(Color, default=Color.RED, choices=[Color.RED, Color.GREEN]) colors = msgprop.EnumProperty(Color, repeated=True) foo1 = Foo(colors=[Color.RED, Color.GREEN]) foo1.put() foo2 = Foo(color=Color.GREEN, colors=[Color.RED, Color.BLUE]) foo2.put() res = Foo.query(Foo.color == Color.RED).fetch() self.assertEqual(res, [foo1]) res = Foo.query(Foo.colors == Color.RED).fetch() self.assertEqual(res, [foo1, foo2]) class FooBar(model.Model): color = msgprop.EnumProperty(Color, indexed=False, verbose_name='The Color String', validator=lambda prop, val: Color.BLUE) self.assertEqual(FooBar.color._verbose_name, 'The Color String') foobar1 = FooBar(color=Color.RED) self.assertEqual(foobar1.color, Color.BLUE) # Tests the validator foobar1.put() self.assertRaises(datastore_errors.BadFilterError, lambda: FooBar.color == Color.RED) # Test some errors. self.assertRaises(datastore_errors.BadValueError, Foo, color=Color.BLUE) # Not in choices self.assertRaises(TypeError, Foo, color='RED') # Not an enum self.assertRaises(TypeError, Foo, color=620) # Not an enum # Invalid default self.assertRaises(TypeError, msgprop.EnumProperty, Color, default=42) # Invalid choice self.assertRaises(TypeError, msgprop.EnumProperty, Color, choices=[42]) foo2.colors.append(42) self.ExpectWarnings() self.assertRaises(TypeError, foo2.put) # Late-stage validation class Bar(model.Model): color = msgprop.EnumProperty(Color, required=True) bar1 = Bar() self.assertRaises(datastore_errors.BadValueError, bar1.put) # Missing value def testPropertyNameConflict(self): class MyMsg(messages.Message): blob_ = messages.StringField(1) msgprop.MessageProperty(MyMsg) # Should be okay self.assertRaises(ValueError, msgprop.MessageProperty, MyMsg, indexed_fields=['blob_']) def testProtocolChange(self): class Storage(model.Model): greeting = msgprop.MessageProperty(Greeting, protocol='protobuf') greet1 = Greeting(text='abc', when=123) store1 = Storage(greeting=greet1) key1 = store1.put() class Storage(model.Model): greeting = msgprop.MessageProperty(Greeting, protocol='protojson') store2 = key1.get() self.assertEqual(store2.greeting, greet1) def testProjectionQueries(self): class Wrapper(messages.Message): greet = messages.MessageField(Greeting, 1) class Storage(model.Model): wrap = msgprop.MessageProperty(Wrapper, indexed_fields=['greet.text', 'greet.when']) gr1 = Greeting(text='abc', when=123) wr1 = Wrapper(greet=gr1) st1 = Storage(wrap=wr1) st1.put() res1 = Storage.query().get(projection=['wrap.greet.text', Storage.wrap.greet.when]) self.assertNotEqual(res1, st1) self.assertEqual(res1.wrap, st1.wrap) res2 = Storage.query().get(projection=['wrap.greet.text']) self.assertEqual(res2.wrap, Wrapper(greet=Greeting(text='abc'))) def testProjectionQueriesRepeatedField(self): class Wrapper(messages.Message): greets = messages.MessageField(Greeting, 1, repeated=True) class Storage(model.Model): wrap = msgprop.MessageProperty(Wrapper, indexed_fields=['greets.text', 'greets.when']) gr1 = Greeting(text='abc', when=123) wr1 = Wrapper(greets=[gr1]) st1 = Storage(wrap=wr1) st1.put() res1 = Storage.query().get(projection=['wrap.greets.text', Storage.wrap.greets.when]) self.assertNotEqual(res1, st1) self.assertEqual(res1.wrap, st1.wrap) res2 = Storage.query().get(projection=['wrap.greets.text']) self.assertEqual(res2.wrap, Wrapper(greets=[Greeting(text='abc')])) if __name__ == '__main__': unittest.main()
apache-2.0
6,636,100,694,403,759,000
36.655172
80
0.651843
false
3.654466
true
false
false
akrause2014/dispel4py
dispel4py/new/mpi_process.py
1
4853
# Copyright (c) The University of Edinburgh 2014 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from mpi4py import MPI comm=MPI.COMM_WORLD rank=comm.Get_rank() size=comm.Get_size() from processor import GenericWrapper, simpleLogger, STATUS_TERMINATED, STATUS_ACTIVE import processor import types import traceback def process(workflow, inputs, args): processes={} inputmappings = {} outputmappings = {} success=True nodes = [ node.getContainedObject() for node in workflow.graph.nodes() ] if rank == 0 and not args.simple: try: processes, inputmappings, outputmappings = processor.assign_and_connect(workflow, size) except: success=False success=comm.bcast(success,root=0) if args.simple or not success: ubergraph = processor.create_partitioned(workflow) nodes = [ node.getContainedObject() for node in ubergraph.graph.nodes() ] if rank == 0: print 'Partitions: %s' % ', '.join(('[%s]' % ', '.join((pe.id for pe in part)) for part in workflow.partitions)) for node in ubergraph.graph.nodes(): wrapperPE = node.getContainedObject() print('%s contains %s' % (wrapperPE.id, [n.getContainedObject().id for n in wrapperPE.workflow.graph.nodes()])) try: processes, inputmappings, outputmappings = processor.assign_and_connect(ubergraph, size) inputs = processor.map_inputs_to_partitions(ubergraph, inputs) success = True except: # print traceback.format_exc() print 'dispel4py.mpi_process: Not enough processes for execution of graph' success = False success=comm.bcast(success,root=0) if not success: return try: inputs = { pe.id : v for pe, v in inputs.iteritems() } except AttributeError: pass processes=comm.bcast(processes,root=0) inputmappings=comm.bcast(inputmappings,root=0) outputmappings=comm.bcast(outputmappings,root=0) inputs=comm.bcast(inputs,root=0) if rank == 0: print 'Processes: %s' % processes # print 'Inputs: %s' % inputs for pe in nodes: if rank in processes[pe.id]: provided_inputs = processor.get_inputs(pe, inputs) wrapper = MPIWrapper(pe, provided_inputs) wrapper.targets = outputmappings[rank] wrapper.sources = inputmappings[rank] wrapper.process() class MPIWrapper(GenericWrapper): def __init__(self, pe, provided_inputs=None): GenericWrapper.__init__(self, pe) self.pe.log = types.MethodType(simpleLogger, pe) self.pe.rank = rank self.provided_inputs = provided_inputs self.terminated = 0 def _read(self): result = super(MPIWrapper, self)._read() if result is not None: return result status = MPI.Status() msg=comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status) tag = status.Get_tag() while tag == STATUS_TERMINATED: self.terminated += 1 if self.terminated >= self._num_sources: break else: msg=comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status) tag = status.Get_tag() return msg, tag def _write(self, name, data): try: targets = self.targets[name] except KeyError: # no targets # self.pe.log('Produced output: %s' % {name: data}) return for (inputName, communication) in targets: output = { inputName : data } dest = communication.getDestination(output) for i in dest: # self.pe.log('Sending %s to %s' % (output, i)) request=comm.isend(output, tag=STATUS_ACTIVE, dest=i) status = MPI.Status() request.Wait(status) def _terminate(self): for output, targets in self.targets.iteritems(): for (inputName, communication) in targets: for i in communication.destinations: # self.pe.log('Terminating consumer %s' % i) request=comm.isend(None, tag=STATUS_TERMINATED, dest=i)
apache-2.0
4,039,095,439,215,027,000
36.620155
127
0.608902
false
4.071309
false
false
false
tim-shea/learnability
network_test.py
1
1160
#!/usr/bin/env python # -*- coding: utf-8 -*- from scipy.stats import binned_statistic as bin_stat from lif import * from syn import * prefs.codegen.target = 'numpy' defaultclock.dt = 1*ms params = LifParams(constant_input=3) params.update(SynParams()) neurons = LifNeurons(1000, params) excitatory_synapses = ExcitatorySynapses(neurons, params) excitatory_synapses.connect('i != j and i < 800', p=0.1) excitatory_synapses.w = 1.0 inhibitory_synapses = InhibitorySynapses(neurons, params) inhibitory_synapses.connect('i != j and i >= 800', p=0.1) inhibitory_synapses.w = -1.0 rate_monitor = PopulationRateMonitor(neurons) spike_monitor = SpikeMonitor(neurons) network = Network() network.add(neurons, excitatory_synapses, inhibitory_synapses, rate_monitor, spike_monitor) network.run(10*second, report='stdout', report_period=1.0*second, namespace={}) figure() subplot(211) suptitle('Network Activity') binned_rate = bin_stat(rate_monitor.t/second, rate_monitor.rate, bins=100) plot(binned_rate[1][:-1], binned_rate[0]) ylabel('Firing Rate (Hz)') subplot(212) plot(spike_monitor.t/second, spike_monitor.i, '.k') ylabel('Neuron #') xlabel('Time (s)') show()
cc0-1.0
-6,118,570,399,146,441,000
32.142857
91
0.741379
false
2.768496
false
true
false
sumpfgottheit/arps
arps_old/restserver/views/taskresult.py
1
3216
# -*- coding: utf-8 -*- __author__ = 'saf' import logging from flask import render_template, url_for, request from flask.views import View from arps_old.models import CeleryResult from arps_old.restserver import app, redis_conn log = logging.getLogger(__name__) class TaskResultView(View): methods = ['GET', ] endpoint = 'endpoint_taskresult_detail' endpoint_list = 'endpoint_taskresult_list' endpoint_ajax_results = 'endpoint_taskresults_ajax' template = 'taskresult/taskresult_detail.html' template_list = 'taskresult/taskresult_list.html' def dispatch_request(self, *args, **kwargs): _id = kwargs.get('id', None) if request.endpoint == self.endpoint_ajax_results: return self.ajax_results() if request.endpoint == self.endpoint_list: return self.list(_id) elif _id is not None: return self.show_object(_id) self.return_404(_id) def ajax_results(self): T = TaskUpdateRepoMetadataMetaStore results_for_repo = T.query.join(T.result).filter(T.release_id == release_id, T.repository_id == repository_id).order_by(CeleryResult.start.desc()).all() results_for_repo = [r.result for r in results_for_repo] results = [] for result in results_for_repo: results.append(result.json) results[-1]['detail_url'] = url_for(TaskResultView.endpoint, id=result.id) return jsonify({'data': results}) def list(self, task): results = CeleryResult.query.filter_by(task=task).order_by(CeleryResult.submitted.desc()).limit(20).all() return render_template(self.template_list, results=results, task=task) def show_object(self, _id): result = CeleryResult.query.get(_id) if redis_conn.llen(_id) > app.config['MAX_LINES_FOR_STDOUT_ERR']: a = redis_conn.lrange(_id, 0, app.config['MAX_LINES_FOR_STDOUT_ERR'] // 2) b = redis_conn.lrange(_id, redis_conn.llen(_id) - app.config['MAX_LINES_FOR_STDOUT_ERR'] // 2, -1) n = redis_conn.llen(_id) - app.config['MAX_LINES_FOR_STDOUT_ERR'] a = [(int(line[0]), line[1:]) for line in [line.decode('utf-8') for line in a]] b = [(int(line[0]), line[1:]) for line in [line.decode('utf-8') for line in b]] c = [(3, '========================================================' + "=" * len(str(n))), (3, '============ TOO MUCH DATA - SKIPPED {} LINES ============'.format(n)), (3, '========================================================' + "=" * len(str(n)))] lines = a + c + b else: lines = redis_conn.lrange(_id, 0, -1) lines = [(int(line[0]), line[1:]) for line in [line.decode('utf-8') for line in lines]] return render_template(self.template, result=result, lines=reversed(lines)) taskresult_view = TaskResultView.as_view(TaskResultView.endpoint) app.add_url_rule('/tasks/detail/<id>', view_func=taskresult_view) app.add_url_rule('/tasks', view_func=taskresult_view, endpoint=TaskResultView.endpoint_list) app.add_url_rule('/tasks/ajax', view_func=taskresult_view, endpoint=TaskResultView.endpoint_ajax_results)
mit
5,123,974,780,708,314,000
43.054795
160
0.598881
false
3.443255
false
false
false
twneale/rexlex
rexlex/log_config.py
1
7091
''' Establish custom log levels for rexlexer's verbose output. ''' import logging from rexlex.config import LOG_MSG_MAXWIDTH # --------------------------------------------------------------------------- # Establish custom log levels. # --------------------------------------------------------------------------- # Used to report tokens getting yielded. REXLEX_TRACE_RESULT = 9 # Used to report starting, stopping, etc. REXLEX_TRACE_META = 8 # Used to report changes to lexer state. REXLEX_TRACE_STATE = 7 # Used to report on specific rules. REXLEX_TRACE_RULE = 6 # Used to dump as much info as possible. REXLEX_TRACE = 5 REXLEX_LOG_LEVELS = ( (REXLEX_TRACE_RESULT, 'REXLEX_TRACE_RESULT', 'rexlex_trace_result'), (REXLEX_TRACE_META, 'REXLEX_TRACE_META', 'rexlex_trace_meta'), (REXLEX_TRACE_STATE, 'REXLEX_TRACE_STATE', 'rexlex_trace_state'), (REXLEX_TRACE_RULE, 'REXLEX_TRACE_RULE', 'rexlex_trace_rule'), (REXLEX_TRACE, 'REXLEX_TRACE', 'rexlex_trace'), ) for loglevel, loglevel_name, method_name in REXLEX_LOG_LEVELS: logging.addLevelName(loglevel, loglevel_name) def rexlex_trace_result(self, message, *args, **kws): if self.isEnabledFor(REXLEX_TRACE_RESULT): self._log(REXLEX_TRACE_RESULT, message, args, **kws) setattr(logging.Logger, 'rexlex_trace_result', rexlex_trace_result) def rexlex_trace_meta(self, message, *args, **kws): if self.isEnabledFor(REXLEX_TRACE_META): self._log(REXLEX_TRACE_META, message, args, **kws) setattr(logging.Logger, 'rexlex_trace_meta', rexlex_trace_meta) def rexlex_trace_state(self, message, *args, **kws): if self.isEnabledFor(REXLEX_TRACE_STATE): self._log(REXLEX_TRACE_STATE, message, args, **kws) setattr(logging.Logger, 'rexlex_trace_state', rexlex_trace_state) def rexlex_trace_rule(self, message, *args, **kws): if self.isEnabledFor(REXLEX_TRACE_RULE): self._log(REXLEX_TRACE_RULE, message, args, **kws) setattr(logging.Logger, 'rexlex_trace_rule', rexlex_trace_rule) def rexlex_trace(self, message, *args, **kws): if self.isEnabledFor(REXLEX_TRACE): self._log(REXLEX_TRACE, message, args, **kws) setattr(logging.Logger, 'rexlex_trace', rexlex_trace) # --------------------------------------------------------------------------- # Colorize them. # --------------------------------------------------------------------------- # # Copyright (C) 2010-2012 Vinay Sajip. All rights reserved. # Licensed under the new BSD license. # import ctypes import logging import os class ColorizingStreamHandler(logging.StreamHandler): # color names to indices color_map = { 'black': 0, 'red': 1, 'green': 2, 'yellow': 3, 'blue': 4, 'magenta': 5, 'cyan': 6, 'white': 7, } #levels to (background, foreground, bold/intense) if os.name == 'nt': level_map = { REXLEX_TRACE: (None, 'blue', True), REXLEX_TRACE_RULE: (None, 'white', False), REXLEX_TRACE_STATE: (None, 'yellow', True), REXLEX_TRACE_META: (None, 'red', True), REXLEX_TRACE_RESULT: ('red', 'white', True), } else: level_map = { REXLEX_TRACE: (None, 'blue', False), REXLEX_TRACE_RULE: (None, 'white', False), REXLEX_TRACE_STATE: (None, 'yellow', False), REXLEX_TRACE_META: (None, 'red', False), REXLEX_TRACE_RESULT: ('red', 'white', True), } csi = '\x1b[' reset = '\x1b[0m' @property def is_tty(self): # bluff for Jenkins if os.environ.get('JENKINS_URL'): return True isatty = getattr(self.stream, 'isatty', None) return isatty and isatty() def emit(self, record): try: message = self.format(record) stream = self.stream if not self.is_tty: stream.write(message) else: self.output_colorized(message) stream.write(getattr(self, 'terminator', '\n')) self.flush() except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) if os.name != 'nt': def output_colorized(self, message): # NOQA self.stream.write(message) else: import re ansi_esc = re.compile(r'\x1b\[((?:\d+)(?:;(?:\d+))*)m') nt_color_map = { 0: 0x00, # black 1: 0x04, # red 2: 0x02, # green 3: 0x06, # yellow 4: 0x01, # blue 5: 0x05, # magenta 6: 0x03, # cyan 7: 0x07, # white } def output_colorized(self, message): # NOQA parts = self.ansi_esc.split(message) write = self.stream.write h = None fd = getattr(self.stream, 'fileno', None) if fd is not None: fd = fd() if fd in (1, 2): # stdout or stderr h = ctypes.windll.kernel32.GetStdHandle(-10 - fd) while parts: text = parts.pop(0) if text: write(text) if parts: params = parts.pop(0) if h is not None: params = [int(p) for p in params.split(';')] color = 0 for p in params: if 40 <= p <= 47: color |= self.nt_color_map[p - 40] << 4 elif 30 <= p <= 37: color |= self.nt_color_map[p - 30] elif p == 1: color |= 0x08 # foreground intensity on elif p == 0: # reset to default color color = 0x07 else: pass # error condition ignored ctypes.windll.kernel32.SetConsoleTextAttribute(h, color) def colorize(self, message, record): if record.levelno in self.level_map: bg, fg, bold = self.level_map[record.levelno] params = [] if bg in self.color_map: params.append(str(self.color_map[bg] + 40)) if fg in self.color_map: params.append(str(self.color_map[fg] + 30)) if bold: params.append('1') if params: message = ''.join((self.csi, ';'.join(params), 'm', message, self.reset)) return message def format(self, record): message = logging.StreamHandler.format(self, record) if self.is_tty: # Don't colorize any traceback parts = message.split('\n', 1) parts[0] = self.colorize(parts[0], record) message = '\n'.join(parts) return message
bsd-3-clause
-7,196,659,918,402,147,000
33.42233
77
0.502468
false
3.736038
false
false
false
supermitch/mech-ai
server/game.py
1
2542
import datetime import json import logging import maps import queue import state import utils import world class GAME_STATUS(object): """ Game status constants. """ lobby = 'lobby' # In matchmaking lobby, waiting for all players playing = 'playing' # In game mode, waiting for turns complete = 'complete' # Game finished cancelled = 'cancelled' # Broken? class PLAYER_STATUS(object): waiting = 'waiting' # Hasn't joined the lobby yet joined = 'joined' # Has joined the lobby playing = 'playing' # Sending moves and waiting for game state lost = 'lost' # Missed turns/broken? class Game(object): def __init__(self, id=None, players=None, name='Mech AI', map_name='default', rounds=17): """ Initialize a new game. Note that when we load a game from the repo, we init an empty game, so all our arguments to the constructor are optional. """ self.id = id self.name = name if name else 'Mech AI' self.map_name = map_name if map_name else 'default' self.players = players # List of player usernames self.winner = None self.status = GAME_STATUS.lobby self.created = datetime.datetime.now() # These attributes are persisted in the state, not DB properties map = maps.get_map(self.map_name) self.state = state.State(map=map, rounds=rounds, players=players) self.queue = queue.Queue(players=players) self.transactions = [] self.transactions.append({ 'move': None, 'message': (True, 'Initial state'), 'state': self.state.jsonable, }) @property def not_joined(self): """ Return list of unjoined players. """ return ', '.join(self.queue.not_joined) def set_user_status(self, username, status): """ Update Queue with new status. """ self.queue.set_status(username, status) def update(self, username, move): """ Execute a round. """ the_world = world.World(self) # Convert our self (a game object) into a World success, reason = the_world.update(move) if success: self.queue.increment_move() self.state.increment_turn() if self.state.game_complete: self.status = GAME_STATUS.complete self.transactions.append({ 'move': move, 'message': (success, reason), 'state': self.state.jsonable, }) return success, reason
mit
-3,785,946,842,478,620,700
30.382716
93
0.606609
false
3.934985
false
false
false
rndusr/stig
stig/utils/__init__.py
1
1595
# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details # http://www.gnu.org/licenses/gpl-3.0.txt from types import SimpleNamespace from ._converter import DataSizeConverter convert = SimpleNamespace(bandwidth=DataSizeConverter(), size=DataSizeConverter()) def cached_property(fget=None, *, after_creation=None): """ Property that replaces itself with the requested value when accessed `after_creation` is called with the instance of the property when the property is accessed for the first time. """ # https://stackoverflow.com/a/6849299 class _cached_property(): def __init__(self, fget): self._fget = fget self._property_name = fget.__name__ self._after_creation = after_creation self._cache = {} def __get__(self, obj, cls): value = self._fget(obj) setattr(obj, self._property_name, value) if self._after_creation is not None: self._after_creation(obj) return value if fget is None: return _cached_property else: return _cached_property(fget)
gpl-3.0
4,341,910,219,779,885,600
34.444444
73
0.662696
false
4.346049
false
false
false
mozilla/stoneridge
srcleaner.py
1
1738
#!/usr/bin/env python # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at http://mozilla.org/MPL/2.0/. import logging import os import shutil import sys import time import stoneridge class StoneRidgeCleaner(object): def __init__(self): self.workdir = stoneridge.get_config('stoneridge', 'work') self.keep = stoneridge.get_config_int('cleaner', 'keep') def run(self): logging.debug('cleaner running') with stoneridge.cwd(self.workdir): while True: listing = os.listdir('.') logging.debug('candidate files: %s' % (listing,)) directories = [l for l in listing if os.path.isdir(l) and not l.startswith('.')] logging.debug('directories: %s' % (directories,)) times = [(d, os.stat(d).st_mtime) for d in directories] times.sort(key=lambda x: x[1]) delete_us = times[:-self.keep] logging.debug('directories to delete: %s' % (delete_us,)) for d in delete_us: logging.debug('removing %s' % (d,)) shutil.rmtree(d) # Check again in a minute time.sleep(60) def daemon(args): cleaner = StoneRidgeCleaner() cleaner.run() os.unlink(args.pidfile) sys.exit(0) @stoneridge.main def main(): """A simple cleanup program for stone ridge that blows away the working directory """ parser = stoneridge.DaemonArgumentParser() args = parser.parse_args() parser.start_daemon(daemon, args=args)
mpl-2.0
-5,283,611,898,606,058,000
27.966667
78
0.581703
false
3.811404
false
false
false
codingneo/CLRPrediction
src/model/ftrl_proximal.py
1
3602
"""Follow The Regularized Leader Proximal Online Learning Author: """ from math import exp, sqrt class model(object): ''' Our main algorithm: Follow the regularized leader - proximal In short, this is an adaptive-learning-rate sparse logistic-regression with efficient L1-L2-regularization Reference: http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf ''' def __init__(self, alpha, beta, L1, L2, D, interaction): # parameters self.alpha = alpha self.beta = beta self.L1 = L1 self.L2 = L2 # feature related parameters self.D = D self.interaction = interaction # model # n: squared sum of past gradients # z: weights # w: lazy weights self.n = [0.] * D self.z = [0.] * D self.w = {} def _indices(self, x): ''' A helper generator that yields the indices in x The purpose of this generator is to make the following code a bit cleaner when doing feature interaction. ''' # first yield index of the bias term yield 0 # then yield the normal indices for index in x: yield index # now yield interactions (if applicable) if self.interaction: D = self.D L = len(x) x = sorted(x) for i in xrange(L): for j in xrange(i+1, L): # one-hot encode interactions with hash trick yield abs(hash(str(x[i]) + '_' + str(x[j]))) % D def predict(self, x): ''' Get probability estimation on x INPUT: x: features OUTPUT: probability of p(y = 1 | x; w) ''' # parameters alpha = self.alpha beta = self.beta L1 = self.L1 L2 = self.L2 # model n = self.n z = self.z w = {} # wTx is the inner product of w and x wTx = 0. for i in self._indices(x): sign = -1. if z[i] < 0 else 1. # get sign of z[i] # build w on the fly using z and n, hence the name - lazy weights # we are doing this at prediction instead of update time is because # this allows us for not storing the complete w if sign * z[i] <= L1: # w[i] vanishes due to L1 regularization w[i] = 0. else: # apply prediction time L1, L2 regularization to z and get w w[i] = (sign * L1 - z[i]) / ((beta + sqrt(n[i])) / alpha + L2) wTx += w[i] # cache the current w for update stage self.w = w # bounded sigmoid function, this is the probability estimation return 1. / (1. + exp(-max(min(wTx, 10.), -10.))) def update(self, x, p, y): ''' Update model using x, p, y INPUT: x: feature, a list of indices p: click probability prediction of our model y: answer MODIFIES: self.n: increase by squared gradient self.z: weights ''' # parameter alpha = self.alpha # model n = self.n z = self.z w = self.w # gradient under logloss g = p - y # update z and n for i in self._indices(x): sigma = (sqrt(n[i] + g * g) - sqrt(n[i])) / alpha z[i] += g - sigma * w[i] n[i] += g * g
apache-2.0
8,417,160,105,458,115,000
25.688889
79
0.493615
false
4.020089
false
false
false
nerdvegas/rez
src/rezgui/widgets/VariantSummaryWidget.py
1
4520
from Qt import QtCompat, QtCore, QtWidgets from rezgui.util import create_pane, get_timestamp_str from rez.packages import Package, Variant from rez.util import find_last_sublist class VariantSummaryWidget(QtWidgets.QWidget): def __init__(self, parent=None): super(VariantSummaryWidget, self).__init__(parent) self.variant = None self.label = QtWidgets.QLabel() self.table = QtWidgets.QTableWidget(0, 1) self.table.setGridStyle(QtCore.Qt.DotLine) self.table.setFocusPolicy(QtCore.Qt.NoFocus) self.table.setSelectionMode(QtWidgets.QAbstractItemView.NoSelection) self.table.setAlternatingRowColors(True) hh = self.table.horizontalHeader() hh.setStretchLastSection(True) hh.setVisible(False) vh = self.table.verticalHeader() QtCompat.QHeaderView.setSectionResizeMode( vh, QtWidgets.QHeaderView.ResizeToContents) create_pane([self.label, self.table], False, compact=True, parent_widget=self) self.clear() def clear(self): self.label.setText("no package selected") self.table.clear() self.table.setRowCount(0) vh = self.table.verticalHeader() vh.setVisible(False) self.setEnabled(False) def set_variant(self, variant): if variant == self.variant: return if variant is None: self.clear() else: self.setEnabled(True) if isinstance(variant, Package): label_name = variant.qualified_name location = variant.uri else: label_name = variant.qualified_package_name location = variant.parent.uri label = "%s@%s" % (label_name, variant.wrapped.location) self.label.setText(label) self.table.clear() rows = [] if variant.description: desc = variant.description max_chars = 1000 if len(desc) > max_chars: desc = desc[:max_chars] + "..." rows.append(("description: ", desc)) if variant.uri: rows.append(("location: ", location)) if variant.timestamp: release_time_str = get_timestamp_str(variant.timestamp) rows.append(("released: ", release_time_str)) if variant.authors: txt = "; ".join(variant.authors) rows.append(("authors: ", txt)) if variant.requires: var_strs = [str(x) for x in variant.requires] if isinstance(variant, Variant): # put variant-specific requires in square brackets if variant.requires: index = find_last_sublist(variant.requires, variant.requires) if index is not None: var_strs[index] = "[%s" % var_strs[index] index2 = index + len(variant.requires) - 1 var_strs[index2] = "%s]" % var_strs[index2] txt = "; ".join(var_strs) rows.append(("requires: ", txt)) self.table.setRowCount(len(rows)) for i, row in enumerate(rows): label, value = row item = QtWidgets.QTableWidgetItem(label) item.setTextAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignTop) self.table.setVerticalHeaderItem(i, item) item = QtWidgets.QTableWidgetItem(value) self.table.setItem(i, 0, item) vh = self.table.verticalHeader() vh.setVisible(True) self.table.resizeRowsToContents() self.variant = variant # Copyright 2013-2016 Allan Johns. # # This library is free software: you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation, either # version 3 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library. If not, see <http://www.gnu.org/licenses/>.
lgpl-3.0
-3,228,950,963,447,475,000
37.632479
85
0.589159
false
4.329502
false
false
false
innes213/TradingTools
examples/dashboard.py
1
2782
from pyhoofinance.defs import * from pyhoofinance.quotedata import get_quote from tradingtools.market_metrics.historic_change_and_stdv import s_and_p_historic from tradingtools.market_metrics.market_cap_index_performance import market_cap_index_performance from tradingtools.market_metrics.sector_performance import sector_performance from tradingtools.technicals.indicators.SMA import SMA if __name__ == '__main__': day_ranges = [1, 2, 5, 10, 20, 100, 200, 500] print '\n================= S&P Dashboard =================\n' print '\nMarket Cap index performance:\n' data = market_cap_index_performance(dayranges=day_ranges) if data is not None: outstr = 'Index\t' for i in day_ranges: outstr = outstr + str(i) + '-day\t' print outstr for idx, perf_list in data: outstr = '%s: \t' % idx for perf in perf_list: outstr = outstr + '%5.2f%%\t' % (100 * perf) print outstr print '\nSummary of price changes\n' data = s_and_p_historic(1) for daydata in data: outstr = '%12s: ' % str(daydata['tradedate']) + \ 'Advancers: %5i \t' % daydata['gainers'] + \ 'Decliners: %5i \t' % daydata['decliners'] + \ 'Average change: %2.2f%% \t' % daydata['avgpercentchange'] + \ 'Std Dev: %2.2f%% \t' % daydata['percentchangestdev'] + \ 'Total Volume: %i \t' % int(daydata['volume']) print outstr print '\nS & P Sector Performance\n' data = sector_performance(day_ranges) if data is not None: outstr = 'Sector' for i in day_ranges: outstr = outstr + '\t%i-day' % i print outstr for symbol, perf_data in data: outstr = '%s:' % symbol for perf in perf_data: outstr = outstr + '\t%3.2f%%' % (100 * perf) print outstr # Sector Rotation triggers print '\nS & P Sector Rotation\n' spyquote = get_quote('SPY') spylast = spyquote[LAST_TRADE_PRICE_ONLY_STR] d0 = spyquote[LAST_TRADE_DATE_STR] #[TODO: replace number of days with 1 month and 1 year # get S&P 500 1 year performance and moving average spymadays = 240 # values greater than 36 diverge from yahoo and etrade sma calculations spysma = SMA(num_periods=1, window_size=spymadays).calculate_for_symbol('SPY')[0] spymadelta = 100 * (spylast - spysma) / spysma num_days = 22 data = sector_performance(num_days) print d0.strftime('As of %d %b, %Y') print 'SPY difference from %i moving average: %3.2f%% ' % (spymadays, spymadelta) print '%i-Day Performance' % num_days for symbol, perf in data: print '%s: %3.2f%%' % (symbol, 100 * perf)
bsd-2-clause
7,186,727,864,974,381,000
39.318841
97
0.593817
false
3.269095
false
false
false
googleapis/googleapis-gen
google/ads/googleads/v6/googleads-py/google/ads/googleads/v6/services/types/shared_criterion_service.py
1
5893
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v6.enums.types import response_content_type as gage_response_content_type from google.ads.googleads.v6.resources.types import shared_criterion as gagr_shared_criterion from google.rpc import status_pb2 # type: ignore __protobuf__ = proto.module( package='google.ads.googleads.v6.services', marshal='google.ads.googleads.v6', manifest={ 'GetSharedCriterionRequest', 'MutateSharedCriteriaRequest', 'SharedCriterionOperation', 'MutateSharedCriteriaResponse', 'MutateSharedCriterionResult', }, ) class GetSharedCriterionRequest(proto.Message): r"""Request message for [SharedCriterionService.GetSharedCriterion][google.ads.googleads.v6.services.SharedCriterionService.GetSharedCriterion]. Attributes: resource_name (str): Required. The resource name of the shared criterion to fetch. """ resource_name = proto.Field( proto.STRING, number=1, ) class MutateSharedCriteriaRequest(proto.Message): r"""Request message for [SharedCriterionService.MutateSharedCriteria][google.ads.googleads.v6.services.SharedCriterionService.MutateSharedCriteria]. Attributes: customer_id (str): Required. The ID of the customer whose shared criteria are being modified. operations (Sequence[google.ads.googleads.v6.services.types.SharedCriterionOperation]): Required. The list of operations to perform on individual shared criteria. partial_failure (bool): If true, successful operations will be carried out and invalid operations will return errors. If false, all operations will be carried out in one transaction if and only if they are all valid. Default is false. validate_only (bool): If true, the request is validated but not executed. Only errors are returned, not results. response_content_type (google.ads.googleads.v6.enums.types.ResponseContentTypeEnum.ResponseContentType): The response content type setting. Determines whether the mutable resource or just the resource name should be returned post mutation. """ customer_id = proto.Field( proto.STRING, number=1, ) operations = proto.RepeatedField( proto.MESSAGE, number=2, message='SharedCriterionOperation', ) partial_failure = proto.Field( proto.BOOL, number=3, ) validate_only = proto.Field( proto.BOOL, number=4, ) response_content_type = proto.Field( proto.ENUM, number=5, enum=gage_response_content_type.ResponseContentTypeEnum.ResponseContentType, ) class SharedCriterionOperation(proto.Message): r"""A single operation (create, remove) on an shared criterion. Attributes: create (google.ads.googleads.v6.resources.types.SharedCriterion): Create operation: No resource name is expected for the new shared criterion. remove (str): Remove operation: A resource name for the removed shared criterion is expected, in this format: ``customers/{customer_id}/sharedCriteria/{shared_set_id}~{criterion_id}`` """ create = proto.Field( proto.MESSAGE, number=1, oneof='operation', message=gagr_shared_criterion.SharedCriterion, ) remove = proto.Field( proto.STRING, number=3, oneof='operation', ) class MutateSharedCriteriaResponse(proto.Message): r"""Response message for a shared criterion mutate. Attributes: partial_failure_error (google.rpc.status_pb2.Status): Errors that pertain to operation failures in the partial failure mode. Returned only when partial_failure = true and all errors occur inside the operations. If any errors occur outside the operations (e.g. auth errors), we return an RPC level error. results (Sequence[google.ads.googleads.v6.services.types.MutateSharedCriterionResult]): All results for the mutate. """ partial_failure_error = proto.Field( proto.MESSAGE, number=3, message=status_pb2.Status, ) results = proto.RepeatedField( proto.MESSAGE, number=2, message='MutateSharedCriterionResult', ) class MutateSharedCriterionResult(proto.Message): r"""The result for the shared criterion mutate. Attributes: resource_name (str): Returned for successful operations. shared_criterion (google.ads.googleads.v6.resources.types.SharedCriterion): The mutated shared criterion with only mutable fields after mutate. The field will only be returned when response_content_type is set to "MUTABLE_RESOURCE". """ resource_name = proto.Field( proto.STRING, number=1, ) shared_criterion = proto.Field( proto.MESSAGE, number=2, message=gagr_shared_criterion.SharedCriterion, ) __all__ = tuple(sorted(__protobuf__.manifest))
apache-2.0
-4,445,974,067,140,955,000
32.674286
128
0.665535
false
4.261027
false
false
false
Winand/pandas
pandas/core/internals.py
1
186942
import copy from warnings import catch_warnings import itertools import re import operator from datetime import datetime, timedelta, date from collections import defaultdict from functools import partial import numpy as np from pandas.core.base import PandasObject from pandas.core.dtypes.dtypes import ( ExtensionDtype, DatetimeTZDtype, CategoricalDtype) from pandas.core.dtypes.common import ( _TD_DTYPE, _NS_DTYPE, _ensure_int64, _ensure_platform_int, is_integer, is_dtype_equal, is_timedelta64_dtype, is_datetime64_dtype, is_datetimetz, is_sparse, is_categorical, is_categorical_dtype, is_integer_dtype, is_datetime64tz_dtype, is_bool_dtype, is_object_dtype, is_datetimelike_v_numeric, is_float_dtype, is_numeric_dtype, is_numeric_v_string_like, is_extension_type, is_list_like, is_re, is_re_compilable, is_scalar, _get_dtype) from pandas.core.dtypes.cast import ( maybe_downcast_to_dtype, maybe_upcast, maybe_promote, infer_dtype_from, infer_dtype_from_scalar, soft_convert_objects, maybe_convert_objects, astype_nansafe, find_common_type) from pandas.core.dtypes.missing import ( isna, notna, array_equivalent, _isna_compat, is_null_datelike_scalar) import pandas.core.dtypes.concat as _concat from pandas.core.dtypes.generic import ABCSeries, ABCDatetimeIndex from pandas.core.common import is_null_slice import pandas.core.algorithms as algos from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import maybe_convert_indices, length_of_indexer from pandas.core.categorical import Categorical, _maybe_to_categorical from pandas.core.indexes.datetimes import DatetimeIndex from pandas.io.formats.printing import pprint_thing import pandas.core.missing as missing from pandas.core.sparse.array import _maybe_to_sparse, SparseArray from pandas._libs import lib, tslib from pandas._libs.tslib import Timedelta from pandas._libs.lib import BlockPlacement import pandas.core.computation.expressions as expressions from pandas.util._decorators import cache_readonly from pandas.util._validators import validate_bool_kwarg from pandas import compat from pandas.compat import range, map, zip, u class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_datetimetz = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _box_to_block_values = True _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if ndim and len(self.mgr_locs) != len(self.values): raise ValueError('Wrong number of items passed %d, placement ' 'implies %d' % (len(self.values), len(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if dtype is Categorical or dtype is CategoricalDtype: # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) elif is_categorical_dtype(dtype): return True return False def external_values(self, dtype=None): """ return an outside world format, currently just the ndarray """ return self.values def internal_values(self, dtype=None): """ return an internal format, currently just the ndarray this should be the pure internal API format """ return self.values def formatting_values(self): """Return the internal values used by the DataFrame/SeriesFormatter""" return self.internal_values() def get_values(self, dtype=None): """ return an internal format, currently just the ndarray this is often overriden to handle to_dense like operations """ if is_object_dtype(dtype): return self.values.astype(object) return self.values def to_dense(self): return self.values.view() @property def _na_value(self): return np.nan @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block(self, values, placement=None, ndim=None, **kwargs): """ Create a new block, with type inference propagate any values that are not specified """ if placement is None: placement = self.mgr_locs if ndim is None: ndim = self.ndim return make_block(values, placement=placement, ndim=ndim, **kwargs) def make_block_scalar(self, values, **kwargs): """ Create a ScalarBlock """ return ScalarBlock(values) def make_block_same_class(self, values, placement=None, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. """ if placement is None: placement = self.mgr_locs return make_block(values, placement=placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out all of the items here name = pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % (name, len(self), self.dtype) else: shape = ' x '.join([pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % (name, pprint_thing( self.mgr_locs.indexer), shape, self.dtype) return result def __len__(self): return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items, mgr=None): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd(values=self.get_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def merge(self, other): return _merge_blocks([self, other]) def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = algos.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return self.make_block(new_values, fastpath=True) def iget(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, mgr=None, **kwargs): """ apply the function to my values; return a block if we are not one """ with np.errstate(all='ignore'): result = func(self.values, **kwargs) if not isinstance(result, Block): result = self.make_block(values=_block_shape(result, ndim=self.ndim)) return result def fillna(self, value, limit=None, inplace=False, downcast=None, mgr=None): """ fillna on the block with the value. If we fail, then convert to ObjectBlock and try again """ inplace = validate_bool_kwarg(inplace, 'inplace') if not self._can_hold_na: if inplace: return self else: return self.copy() mask = isna(self.values) if limit is not None: if not is_integer(limit): raise ValueError('Limit must be an integer') if limit < 1: raise ValueError('Limit must be greater than 0') if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim - 1) > limit] = False # fillna, but if we cannot coerce, then try again as an ObjectBlock try: values, _, _, _ = self._try_coerce_args(self.values, value) blocks = self.putmask(mask, value, inplace=inplace) blocks = [b.make_block(values=self._try_coerce_result(b.values)) for b in blocks] return self._maybe_downcast(blocks, downcast) except (TypeError, ValueError): # we can't process the value, but nothing to do if not mask.any(): return self if inplace else self.copy() # operate column-by-column def f(m, v, i): block = self.coerce_to_target_dtype(value) # slice out our block if i is not None: block = block.getitem_block(slice(i, i + 1)) return block.fillna(value, limit=limit, inplace=inplace, downcast=None) return self.split_and_operate(mask, f, inplace) def split_and_operate(self, mask, f, inplace): """ split the block per-column, and apply the callable f per-column, return a new block for each. Handle masking which will not change a block unless needed. Parameters ---------- mask : 2-d boolean mask f : callable accepting (1d-mask, 1d values, indexer) inplace : boolean Returns ------- list of blocks """ if mask is None: mask = np.ones(self.shape, dtype=bool) new_values = self.values def make_a_block(nv, ref_loc): if isinstance(nv, Block): block = nv elif isinstance(nv, list): block = nv[0] else: # Put back the dimension that was taken from it and make # a block out of the result. try: nv = _block_shape(nv, ndim=self.ndim) except (AttributeError, NotImplementedError): pass block = self.make_block(values=nv, placement=ref_loc, fastpath=True) return block # ndim == 1 if self.ndim == 1: if mask.any(): nv = f(mask, new_values, None) else: nv = new_values if inplace else new_values.copy() block = make_a_block(nv, self.mgr_locs) return [block] # ndim > 1 new_blocks = [] for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): nv = f(m, v, i) else: nv = v if inplace else v.copy() block = make_a_block(nv, [ref_loc]) new_blocks.append(block) return new_blocks def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks if not isinstance(blocks, list): blocks = [blocks] return _extend_blocks([b.downcast(downcast) for b in blocks]) def downcast(self, dtypes=None, mgr=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return self values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = 'infer' nv = maybe_downcast_to_dtype(values, dtypes) return self.make_block(nv, fastpath=True) # ndim > 1 if dtypes is None: return self if not (dtypes == 'infer' or isinstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # operate column-by-column # this is expensive as it splits the blocks items-by-item def f(m, v, i): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") if dtype is not None: v = maybe_downcast_to_dtype(v, dtype) return v return self.split_and_operate(None, f, False) def astype(self, dtype, copy=False, errors='raise', values=None, **kwargs): return self._astype(dtype, copy=copy, errors=errors, values=values, **kwargs) def _astype(self, dtype, copy=False, errors='raise', values=None, klass=None, mgr=None, raise_on_error=False, **kwargs): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ errors_legal_values = ('raise', 'ignore') if errors not in errors_legal_values: invalid_arg = ("Expected value of kwarg 'errors' to be one of {}. " "Supplied value is '{}'".format( list(errors_legal_values), errors)) raise ValueError(invalid_arg) # may need to convert to categorical # this is only called for non-categoricals if self.is_categorical_astype(dtype): if (('categories' in kwargs or 'ordered' in kwargs) and isinstance(dtype, CategoricalDtype)): raise TypeError("Cannot specify a CategoricalDtype and also " "`categories` or `ordered`. Use " "`dtype=CategoricalDtype(categories, ordered)`" " instead.") kwargs = kwargs.copy() categories = getattr(dtype, 'categories', None) ordered = getattr(dtype, 'ordered', False) kwargs.setdefault('categories', categories) kwargs.setdefault('ordered', ordered) return self.make_block(Categorical(self.values, **kwargs)) # astype processing dtype = np.dtype(dtype) if self.dtype == dtype: if copy: return self.copy() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the copy here if values is None: if issubclass(dtype.type, (compat.text_type, compat.string_types)): # use native type formatting for datetime/tz/timedelta if self.is_datelike: values = self.to_native_types() # astype formatting else: values = self.values else: values = self.get_values(dtype=dtype) # _astype_nansafe works fine with 1-d only values = astype_nansafe(values.ravel(), dtype, copy=True) values = values.reshape(self.shape) newb = make_block(values, placement=self.mgr_locs, dtype=dtype, klass=klass) except: if errors == 'raise': raise newb = self.copy() if copy else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set astype for copy = [%s] for dtype " "(%s [%s]) with smaller itemsize that current " "(%s [%s])" % (copy, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, copy=True, **kwargs): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return self.copy() if copy else self def _can_hold_element(self, element): """ require the same dtype as ourselves """ dtype = self.values.dtype.type if is_list_like(element): element = np.asarray(element) tipo = element.dtype.type return issubclass(tipo, dtype) return isinstance(element, dtype) def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have roundtripped thru object in the mean-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if isinstance(dtype, compat.string_types) and dtype == 'infer': return result if not isinstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if isna(result).all(): return result.astype(np.bool_) else: result = result.astype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.astype(np.object_) return result # may need to change the dtype here return maybe_downcast_to_dtype(result, dtype) def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ if np.any(notna(other)) and not self._can_hold_element(other): # coercion issues # let higher levels handle raise TypeError("cannot convert {} to an {}".format( type(other).__name__, type(self).__name__.lower().replace('Block', ''))) return values, False, other, False def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def to_native_types(self, slicer=None, na_rep='nan', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) if not self.is_object and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def copy(self, deep=True, mgr=None): """ copy constructor """ values = self.values if deep: values = values.copy() return self.make_block_same_class(values) def replace(self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mgr=None): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility. """ inplace = validate_bool_kwarg(inplace, 'inplace') original_to_replace = to_replace # try to replace, if we raise an error, convert to ObjectBlock and # retry try: values, _, to_replace, _ = self._try_coerce_args(self.values, to_replace) mask = missing.mask_missing(values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False blocks = self.putmask(mask, value, inplace=inplace) if convert: blocks = [b.convert(by_item=True, numeric=False, copy=not inplace) for b in blocks] return blocks except (TypeError, ValueError): # try again with a compatible block block = self.astype(object) return block.replace( to_replace=original_to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert) def _replace_single(self, *args, **kwargs): """ no-op on a non-ObjectBlock """ return self if kwargs['inplace'] else self.copy() def setitem(self, indexer, value, mgr=None): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce if block dtype can store value values = self.values try: values, _, value, _ = self._try_coerce_args(values, value) # can keep its own dtype if hasattr(value, 'dtype') and is_dtype_equal(values.dtype, value.dtype): dtype = self.dtype else: dtype = 'infer' except (TypeError, ValueError): # current dtype cannot store value, coerce to common dtype find_dtype = False if hasattr(value, 'dtype'): dtype = value.dtype find_dtype = True elif is_scalar(value): if isna(value): # NaN promotion is handled in latter path dtype = False else: dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) find_dtype = True else: dtype = 'infer' if find_dtype: dtype = find_common_type([values.dtype, dtype]) if not is_dtype_equal(self.dtype, dtype): b = self.astype(dtype) return b.setitem(indexer, value, mgr=mgr) # value must be storeable at this moment arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = maybe_promote(arr_value.dtype) values = values.astype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = len(values) # length checking # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and l: if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value") def _is_scalar_indexer(indexer): # return True if we are all scalar indexers if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if is_list_like(indexer) and not len(indexer): return True if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could # be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif (len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape)): values[indexer] = value try: values = values.astype(arr_value.dtype) except ValueError: pass # set else: values[indexer] = value # coerce and try to infer the dtypes of the result values = self._try_coerce_and_cast_result(values, dtype) block = self.make_block(transf(values), fastpath=True) return block def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False, mgr=None): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False axis : int transpose : boolean Set to True if self is stored with axes reversed Returns ------- a list of new blocks, the result of the putmask """ new_values = self.values if inplace else self.values.copy() if hasattr(new, 'reindex_axis'): new = new.values if hasattr(mask, 'reindex_axis'): mask = mask.values # if we are passed a scalar None, convert it here if not is_list_like(new) and isna(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): _, _, new, _ = self._try_coerce_args(new_values, new) if transpose: new_values = new_values.T # If the default repeat behavior in np.putmask would go in the # wrong direction, then explictly repeat and reshape new instead if getattr(new, 'ndim', 0) >= 1: if self.ndim - 1 == new.ndim and axis == 1: new = np.repeat( new, new_values.shape[-1]).reshape(self.shape) new = new.astype(new_values.dtype) # we require exact matches between the len of the # values we are setting (or is compat). np.putmask # doesn't check this and will simply truncate / pad # the output, but we want sane error messages # # TODO: this prob needs some better checking # for 2D cases if ((is_list_like(new) and np.any(mask[mask]) and getattr(new, 'ndim', 1) == 1)): if not (mask.shape[-1] == len(new) or mask[mask].shape[-1] == len(new) or len(new) == 1): raise ValueError("cannot assign mismatch " "length to masked array") np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): if transpose: mask = mask.T if isinstance(new, np.ndarray): new = new.T axis = new_values.ndim - axis - 1 # Pseudo-broadcast if getattr(new, 'ndim', 0) >= 1: if self.ndim - 1 == new.ndim: new_shape = list(new.shape) new_shape.insert(axis, 1) new = new.reshape(tuple(new_shape)) # operate column-by-column def f(m, v, i): if i is None: # ndim==1 case. n = new else: if isinstance(new, np.ndarray): n = np.squeeze(new[i % new.shape[0]]) else: n = np.array(new) # type of the new block dtype, _ = maybe_promote(n.dtype) # we need to explicitly astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(v, m, n) return nv new_blocks = self.split_and_operate(mask, f, inplace) return new_blocks if inplace: return [self] if transpose: new_values = new_values.T return [self.make_block(new_values, fastpath=True)] def coerce_to_target_dtype(self, other): """ coerce the current block to a dtype compat for other we will return a block, possibly object, and not raise we can also safely try to coerce to the same dtype and will receive the same block """ # if we cannot then coerce to object dtype, _ = infer_dtype_from(other, pandas_dtype=True) if is_dtype_equal(self.dtype, dtype): return self if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype): # we don't upcast to bool return self.astype(object) elif ((self.is_float or self.is_complex) and (is_integer_dtype(dtype) or is_float_dtype(dtype))): # don't coerce float/complex to int return self elif (self.is_datetime or is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype)): # not a datetime if not ((is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype)) and self.is_datetime): return self.astype(object) # don't upcast timezone with different timezone or no timezone mytz = getattr(self.dtype, 'tz', None) othertz = getattr(dtype, 'tz', None) if str(mytz) != str(othertz): return self.astype(object) raise AssertionError("possible recursion in " "coerce_to_target_dtype: {} {}".format( self, other)) elif (self.is_timedelta or is_timedelta64_dtype(dtype)): # not a timedelta if not (is_timedelta64_dtype(dtype) and self.is_timedelta): return self.astype(object) raise AssertionError("possible recursion in " "coerce_to_target_dtype: {} {}".format( self, other)) try: return self.astype(dtype) except (ValueError, TypeError): pass return self.astype(object) def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, limit_direction='forward', fill_value=None, coerce=False, downcast=None, mgr=None, **kwargs): inplace = validate_bool_kwarg(inplace, 'inplace') def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = missing.clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast, mgr=mgr) # try an interp method try: m = missing.clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, limit_direction=limit_direction, fill_value=fill_value, inplace=inplace, downcast=downcast, mgr=mgr, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".format(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, mgr=None): """ fillna but using the interpolate machinery """ inplace = validate_bool_kwarg(inplace, 'inplace') # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] values = self.values if inplace else self.values.copy() values, _, fill_value, _ = self._try_coerce_args(values, fill_value) values = missing.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [self.make_block(values, klass=self.__class__, fastpath=True)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, limit_direction='forward', inplace=False, downcast=None, mgr=None, **kwargs): """ interpolate using scipy wrappers """ inplace = validate_bool_kwarg(inplace, 'inplace') data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".format(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to missing.interpolate_1d return missing.interpolate_1d(index, x, method=method, limit=limit, limit_direction=limit_direction, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [self.make_block(interp_values, klass=self.__class__, fastpath=True)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ # algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock # so need to preserve types # sparse is treated like an ndarray, but needs .get_values() shaping values = self.values if self.is_sparse: values = self.get_values() if fill_tuple is None: fill_value = self.fill_value new_values = algos.take_nd(values, indexer, axis=axis, allow_fill=False) else: fill_value = fill_tuple[0] new_values = algos.take_nd(values, indexer, axis=axis, allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if not is_dtype_equal(new_values.dtype, self.dtype): return self.make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def diff(self, n, axis=1, mgr=None): """ return block for the diff of the values """ new_values = algos.diff(self.values, n, axis=axis) return [self.make_block(values=new_values, fastpath=True)] def shift(self, periods, axis=0, mgr=None): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, _ensure_platform_int(periods), axis=axis) axis_indexer = [slice(None)] * self.ndim if periods > 0: axis_indexer[axis] = slice(None, periods) else: axis_indexer[axis] = slice(periods, None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [self.make_block(new_values, fastpath=True)] def eval(self, func, other, raise_on_error=True, try_cast=False, mgr=None): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) try_cast : try casting the results to the input type Returns ------- a new block, the result of the func """ orig_other = other values = self.values if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed try: values, values_mask, other, other_mask = self._try_coerce_args( transf(values), other) except TypeError: block = self.coerce_to_target_dtype(orig_other) return block.eval(func, orig_other, raise_on_error=raise_on_error, try_cast=try_cast, mgr=mgr) # get the result, may need to transpose the other def get_result(other): # avoid numpy warning of comparisons again None if other is None: result = not func.__name__ == 'eq' # avoid numpy warning of elementwise comparisons to object elif is_numeric_v_string_like(values, other): result = False # avoid numpy warning of elementwise comparisons elif func.__name__ == 'eq': if is_list_like(other) and not isinstance(other, np.ndarray): other = np.asarray(other) # if we can broadcast, then ok if values.shape[-1] != other.shape[-1]: return False result = func(values, other) else: result = func(values, other) # mask if needed if isinstance(values_mask, np.ndarray) and values_mask.any(): result = result.astype('float64', copy=False) result[values_mask] = np.nan if other_mask is True: result = result.astype('float64', copy=False) result[:] = np.nan elif isinstance(other_mask, np.ndarray) and other_mask.any(): result = result.astype('float64', copy=False) result[other_mask.ravel()] = np.nan return result # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: # The 'detail' variable is defined in outer scope. raise TypeError('Could not operate %s with block values %s' % (repr(other), str(detail))) # noqa else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # get the result try: with np.errstate(all='ignore'): result = get_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of allowing to pass through except ValueError as detail: raise except Exception as detail: result = handle_error() # technically a broadcast error in numpy can 'work' by returning a # boolean False if not isinstance(result, np.ndarray): if not isinstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if isinstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) result = _block_shape(result, ndim=self.ndim) return [self.make_block(result, fastpath=True, )] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False, axis=0, transpose=False, mgr=None): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) axis : int transpose : boolean Set to True if self is stored with axes reversed Returns ------- a new block(s), the result of the func """ values = self.values orig_other = other if transpose: values = values.T if hasattr(other, 'reindex_axis'): other = other.values if hasattr(cond, 'reindex_axis'): cond = cond.values # If the default broadcasting would go in the wrong direction, then # explictly reshape other instead if getattr(other, 'ndim', 0) >= 1: if values.ndim - 1 == other.ndim and axis == 1: other = other.reshape(tuple(other.shape + (1, ))) if not hasattr(cond, 'shape'): raise ValueError("where must have a condition that is ndarray " "like") # our where function def func(cond, values, other): if cond.ravel().all(): return values values, values_mask, other, other_mask = self._try_coerce_args( values, other) try: return self._try_coerce_result(expressions.where( cond, values, other, raise_on_error=True)) except Exception as detail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(other), str(detail))) else: # return the values result = np.empty(values.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) try: result = func(cond, values, other) except TypeError: # we cannot coerce, return a compat dtype # we are explicity ignoring raise_on_error here block = self.coerce_to_target_dtype(other) blocks = block.where(orig_other, cond, align=align, raise_on_error=raise_on_error, try_cast=try_cast, axis=axis, transpose=transpose) return self._maybe_downcast(blocks, 'infer') if self._can_hold_na or self.ndim == 1: if transpose: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return self.make_block(result) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): r = self._try_cast_result(result.take(m.nonzero()[0], axis=axis)) result_blocks.append( self.make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) def _unstack(self, unstacker_func, new_columns): """Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """ unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [make_block(new_values, placement=new_placement)] return blocks, mask def quantile(self, qs, interpolation='linear', axis=0, mgr=None): """ compute the quantiles of the Parameters ---------- qs: a scalar or list of the quantiles to be computed interpolation: type of interpolation, default 'linear' axis: axis to compute, default 0 Returns ------- tuple of (axis, block) """ kw = {'interpolation': interpolation} values = self.get_values() values, _, _, _ = self._try_coerce_args(values, values) def _nanpercentile1D(values, mask, q, **kw): values = values[~mask] if len(values) == 0: if is_scalar(q): return self._na_value else: return np.array([self._na_value] * len(q), dtype=values.dtype) return np.percentile(values, q, **kw) def _nanpercentile(values, q, axis, **kw): mask = isna(self.values) if not is_scalar(mask) and mask.any(): if self.ndim == 1: return _nanpercentile1D(values, mask, q, **kw) else: # for nonconsolidatable blocks mask is 1D, but values 2D if mask.ndim < values.ndim: mask = mask.reshape(values.shape) if axis == 0: values = values.T mask = mask.T result = [_nanpercentile1D(val, m, q, **kw) for (val, m) in zip(list(values), list(mask))] result = np.array(result, dtype=values.dtype, copy=False).T return result else: return np.percentile(values, q, axis=axis, **kw) from pandas import Float64Index is_empty = values.shape[axis] == 0 if is_list_like(qs): ax = Float64Index(qs) if is_empty: if self.ndim == 1: result = self._na_value else: # create the array of na_values # 2d len(values) * len(qs) result = np.repeat(np.array([self._na_value] * len(qs)), len(values)).reshape(len(values), len(qs)) else: try: result = _nanpercentile(values, np.array(qs) * 100, axis=axis, **kw) except ValueError: # older numpies don't handle an array for q result = [_nanpercentile(values, q * 100, axis=axis, **kw) for q in qs] result = np.array(result, copy=False) if self.ndim > 1: result = result.T else: if self.ndim == 1: ax = Float64Index([qs]) else: ax = mgr.axes[0] if is_empty: if self.ndim == 1: result = self._na_value else: result = np.array([self._na_value] * len(self)) else: result = _nanpercentile(values, qs * 100, axis=axis, **kw) ndim = getattr(result, 'ndim', None) or 0 result = self._try_coerce_result(result) if is_scalar(result): return ax, self.make_block_scalar(result) return ax, make_block(result, placement=np.arange(len(result)), ndim=ndim) class ScalarBlock(Block): """ a scalar compat Block """ __slots__ = ['_mgr_locs', 'values', 'ndim'] def __init__(self, values): self.ndim = 0 self.mgr_locs = [0] self.values = values @property def dtype(self): return type(self.values) @property def shape(self): return tuple([0]) def __len__(self): return 0 class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False, **kwargs): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a length. self.mgr_locs = placement # kludgetastic if ndim is None: if len(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not isinstance(values, self._holder): raise TypeError("values must be {0}".format(self._holder.__name__)) self.values = values @property def shape(self): if self.ndim == 1: return (len(self.values)), return (len(self.mgr_locs), len(self.values)) def get_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if not is_null_slice(col) and col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False, mgr=None): """ putmask the data to the block; we must be a single block and not generate other blocks return the resulting block Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ inplace = validate_bool_kwarg(inplace, 'inplace') # use block's copy logic. # .values may be an Index which does shallow copy by default new_values = self.values if inplace else self.copy().values new_values, _, new, _ = self._try_coerce_args(new_values, new) if isinstance(new, np.ndarray) and len(new) == len(mask): new = new[mask] mask = _safe_reshape(mask, new_values.shape) new_values[mask] = new new_values = self._try_coerce_result(new_values) return [self.make_block(values=new_values)] def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.get_values()[slicer] def _try_cast_result(self, result, dtype=None): return result def _unstack(self, unstacker_func, new_columns): """Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """ # NonConsolidatable blocks can have a single item only, so we return # one block per item unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [self.make_block_same_class(vals, [place]) for vals, place in zip(new_values, new_placement)] return blocks, mask class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.asarray(element) tipo = element.dtype.type return (issubclass(tipo, (np.floating, np.integer)) and not issubclass(tipo, (np.datetime64, np.timedelta64))) return (isinstance(element, (float, int, np.floating, np.int_)) and not isinstance(element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64))) def to_native_types(self, slicer=None, na_rep='', float_format=None, decimal='.', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] # see gh-13418: no special formatting is desired at the # output (important for appropriate 'quoting' behaviour), # so do not pass it through the FloatArrayFormatter if float_format is None and decimal == '.': mask = isna(values) if not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter(values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False) return formatter.get_result_as_array() def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (isinstance(element, (float, int, complex, np.float_, np.int_)) and not isinstance(element, (bool, np.bool_))) def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return (issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) and self.dtype.itemsize >= element.dtype.itemsize) return is_integer(element) def should_store(self, value): return is_integer_dtype(value) and value.dtype == self.dtype class DatetimeLikeBlockMixin(object): @property def _na_value(self): return tslib.NaT @property def fill_value(self): return tslib.iNaT def get_values(self, dtype=None): """ return object dtype as boxed values, such as Timestamps/Timedelta """ if is_object_dtype(dtype): return lib.map_infer(self.values.ravel(), self._box_func).reshape(self.values.shape) return self.values class TimeDeltaBlock(DatetimeLikeBlockMixin, IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def _box_func(self): return lambda x: tslib.Timedelta(x, unit='ns') def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.timedelta64) return isinstance(element, (timedelta, np.timedelta64)) def fillna(self, value, **kwargs): # allow filling with integers to be # interpreted as seconds if is_integer(value) and not isinstance(value, np.timedelta64): value = Timedelta(value, unit='s') return super(TimeDeltaBlock, self).fillna(value, **kwargs) def _try_coerce_args(self, values, other): """ Coerce values and other to int64, with null values converted to iNaT. values is always ndarray-like, other may not be Parameters ---------- values : ndarray-like other : ndarray-like or scalar Returns ------- base-type values, values mask, base-type other, other mask """ values_mask = isna(values) values = values.view('i8') other_mask = False if isinstance(other, bool): raise TypeError elif is_null_datelike_scalar(other): other = tslib.iNaT other_mask = True elif isinstance(other, Timedelta): other_mask = isna(other) other = other.value elif isinstance(other, timedelta): other = Timedelta(other).value elif isinstance(other, np.timedelta64): other_mask = isna(other) other = Timedelta(other).value elif hasattr(other, 'dtype') and is_timedelta64_dtype(other): other_mask = isna(other) other = other.astype('i8', copy=False).view('i8') else: # coercion issues # let higher levels handle raise TypeError return values, values_mask, other, other_mask def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if isinstance(result, np.ndarray): mask = isna(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('m8[ns]') result[mask] = tslib.iNaT elif isinstance(result, (np.integer, np.float)): result = self._box_func(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).ravel() # FIXME: # should use the formats.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(format='all') for val in values.ravel()[imask]], dtype=object) return rvalues class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.asarray(element) return issubclass(element.dtype.type, np.bool_) return isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replace(self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mgr=None): inplace = validate_bool_kwarg(inplace, 'inplace') to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super(BoolBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, mgr=mgr) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None, **kwargs): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement, **kwargs) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) # TODO: Refactor when convert_objects is removed since there will be 1 path def convert(self, *args, **kwargs): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ if args: raise NotImplementedError by_item = True if 'by_item' not in kwargs else kwargs['by_item'] new_inputs = ['coerce', 'datetime', 'numeric', 'timedelta'] new_style = False for kw in new_inputs: new_style |= kw in kwargs if new_style: fn = soft_convert_objects fn_inputs = new_inputs else: fn = maybe_convert_objects fn_inputs = ['convert_dates', 'convert_numeric', 'convert_timedeltas'] fn_inputs += ['copy'] fn_kwargs = {} for key in fn_inputs: if key in kwargs: fn_kwargs[key] = kwargs[key] # operate column-by-column def f(m, v, i): shape = v.shape values = fn(v.ravel(), **fn_kwargs) try: values = values.reshape(shape) values = _block_shape(values, ndim=self.ndim) except (AttributeError, NotImplementedError): pass return values if by_item and not self._is_single_block: blocks = self.split_and_operate(None, f, False) else: values = f(None, self.values.ravel(), None) blocks = [make_block(values, ndim=self.ndim, placement=self.mgr_locs)] return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = len(self.items) self.values = np.empty(tuple(new_shape), dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks return _extend_blocks([b.convert(datetime=True, numeric=False) for b in blocks]) def _can_hold_element(self, element): return True def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ if isinstance(other, ABCDatetimeIndex): # to store DatetimeTZBlock as object other = other.asobject.values return values, False, other, False def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or is_extension_type(value)) def replace(self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mgr=None): to_rep_is_list = is_list_like(to_replace) value_is_list = is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list result_blocks = [] blocks = [self] if not either_list and is_re(to_replace): return self._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=True, convert=convert, mgr=mgr) elif not (either_list or regex): return super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, mgr=mgr) elif both_lists: for to_rep, v in zip(to_replace, value): result_blocks = [] for b in blocks: result = b._replace_single(to_rep, v, inplace=inplace, filter=filter, regex=regex, convert=convert, mgr=mgr) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks elif to_rep_is_list and regex: for to_rep in to_replace: result_blocks = [] for b in blocks: result = b._replace_single(to_rep, value, inplace=inplace, filter=filter, regex=regex, convert=convert, mgr=mgr) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks return self._replace_single(to_replace, value, inplace=inplace, filter=filter, convert=convert, regex=regex, mgr=mgr) def _replace_single(self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mgr=None): inplace = validate_bool_kwarg(inplace, 'inplace') # to_replace is regex compilable to_rep_re = regex and is_re_compilable(to_replace) # regex is regex compilable regex_re = is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replace and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string try: pattern = to_replace.pattern except AttributeError: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object return super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex, mgr=mgr) new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isna(value) or not isinstance(value, compat.string_types): def re_replacer(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) # convert block = self.make_block(new_values) if convert: block = block.convert(by_item=True, numeric=False) return block class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _verify_integrity = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(_maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() def convert(self, copy=True, **kwargs): return self.copy() if copy else self @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def _try_coerce_result(self, result): """ reverse of try_coerce_args """ # GH12564: CategoricalBlock is 1-dim only # while returned results could be any dim if ((not is_categorical_dtype(result)) and isinstance(result, np.ndarray)): result = _block_shape(result, ndim=self.ndim) return result def fillna(self, value, limit=None, inplace=False, downcast=None, mgr=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") values = self.values if inplace else self.values.copy() values = self._try_coerce_result(values.fillna(value=value, limit=limit)) return [self.make_block(values=values)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.copy() return self.make_block_same_class( values=values.fillna(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def shift(self, periods, axis=0, mgr=None): return self.make_block_same_class(values=self.values.shift(periods), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def _astype(self, dtype, copy=False, errors='raise', values=None, klass=None, mgr=None): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ if self.is_categorical_astype(dtype): values = self.values else: values = np.asarray(self.values).astype(dtype, copy=False) if copy: values = values.copy() return self.make_block(values) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isna(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) class DatetimeBlock(DatetimeLikeBlockMixin, Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values = tslib.cast_to_nanoseconds(values) super(DatetimeBlock, self).__init__(values, fastpath=True, placement=placement, **kwargs) def _astype(self, dtype, mgr=None, **kwargs): """ these automatically copy, so copy=True has no effect raise on an except if raise == True """ # if we are passed a datetime64[ns, tz] if is_datetime64tz_dtype(dtype): dtype = DatetimeTZDtype(dtype) values = self.values if getattr(values, 'tz', None) is None: values = DatetimeIndex(values).tz_localize('UTC') values = values.tz_convert(dtype.tz) return self.make_block(values) # delegate return super(DatetimeBlock, self)._astype(dtype=dtype, **kwargs) def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return element.dtype == _NS_DTYPE or element.dtype == np.int64 return (is_integer(element) or isinstance(element, datetime) or isna(element)) def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smallest i8, and will correctly round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be Parameters ---------- values : ndarray-like other : ndarray-like or scalar Returns ------- base-type values, values mask, base-type other, other mask """ values_mask = isna(values) values = values.view('i8') other_mask = False if isinstance(other, bool): raise TypeError elif is_null_datelike_scalar(other): other = tslib.iNaT other_mask = True elif isinstance(other, (datetime, np.datetime64, date)): other = self._box_func(other) if getattr(other, 'tz') is not None: raise TypeError("cannot coerce a Timestamp with a tz on a " "naive Block") other_mask = isna(other) other = other.asm8.view('i8') elif hasattr(other, 'dtype') and is_datetime64_dtype(other): other_mask = isna(other) other = other.astype('i8', copy=False).view('i8') else: # coercion issues # let higher levels handle raise TypeError return values, values_mask, other, other_mask def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if isinstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: try: result = result.astype('M8[ns]') except ValueError: pass elif isinstance(result, (np.integer, np.float, np.datetime64)): result = self._box_func(result) return result @property def _box_func(self): return tslib.Timestamp def to_native_types(self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[..., slicer] from pandas.io.formats.format import _get_format_datetime64_from_values format = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime( values.view('i8').ravel(), tz=getattr(self.values, 'tz', None), format=format, na_rep=na_rep).reshape(values.shape) return np.atleast_2d(result) def should_store(self, value): return (issubclass(value.dtype.type, np.datetime64) and not is_datetimetz(value)) def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ if values.dtype != _NS_DTYPE: # Workaround for numpy 1.6 bug values = tslib.cast_to_nanoseconds(values) self.values[locs] = values class DatetimeTZBlock(NonConsolidatableMixIn, DatetimeBlock): """ implement a datetime64 block with a tz attribute """ __slots__ = () _holder = DatetimeIndex is_datetimetz = True def __init__(self, values, placement, ndim=2, **kwargs): if not isinstance(values, self._holder): values = self._holder(values) dtype = kwargs.pop('dtype', None) if dtype is not None: if isinstance(dtype, compat.string_types): dtype = DatetimeTZDtype.construct_from_string(dtype) values = values._shallow_copy(tz=dtype.tz) if values.tz is None: raise ValueError("cannot create a DatetimeTZBlock without a tz") super(DatetimeTZBlock, self).__init__(values, placement=placement, ndim=ndim, **kwargs) def copy(self, deep=True, mgr=None): """ copy constructor """ values = self.values if deep: values = values.copy(deep=True) return self.make_block_same_class(values) def external_values(self): """ we internally represent the data as a DatetimeIndex, but for external compat with ndarray, export as a ndarray of Timestamps """ return self.values.astype('datetime64[ns]').values def get_values(self, dtype=None): # return object dtype as Timestamps with the zones if is_object_dtype(dtype): f = lambda x: lib.Timestamp(x, tz=self.values.tz) return lib.map_infer( self.values.ravel(), f).reshape(self.values.shape) return self.values def _slice(self, slicer): """ return a slice of my values """ if isinstance(slicer, tuple): col, loc = slicer if not is_null_slice(col) and col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] return self.values[slicer] def _try_coerce_args(self, values, other): """ localize and return i8 for the values Parameters ---------- values : ndarray-like other : ndarray-like or scalar Returns ------- base-type values, values mask, base-type other, other mask """ values_mask = _block_shape(isna(values), ndim=self.ndim) # asi8 is a view, needs copy values = _block_shape(values.asi8, ndim=self.ndim) other_mask = False if isinstance(other, ABCSeries): other = self._holder(other) other_mask = isna(other) if isinstance(other, bool): raise TypeError elif (is_null_datelike_scalar(other) or (is_scalar(other) and isna(other))): other = tslib.iNaT other_mask = True elif isinstance(other, self._holder): if other.tz != self.values.tz: raise ValueError("incompatible or non tz-aware value") other = other.asi8 other_mask = isna(other) elif isinstance(other, (np.datetime64, datetime, date)): other = lib.Timestamp(other) tz = getattr(other, 'tz', None) # test we can have an equal time zone if tz is None or str(tz) != str(self.values.tz): raise ValueError("incompatible or non tz-aware value") other_mask = isna(other) other = other.value else: raise TypeError return values, values_mask, other, other_mask def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if isinstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('M8[ns]') elif isinstance(result, (np.integer, np.float, np.datetime64)): result = lib.Timestamp(result, tz=self.values.tz) if isinstance(result, np.ndarray): # allow passing of > 1dim if its trivial if result.ndim > 1: result = result.reshape(np.prod(result.shape)) result = self.values._shallow_copy(result) return result @property def _box_func(self): return lambda x: tslib.Timestamp(x, tz=self.dtype.tz) def shift(self, periods, axis=0, mgr=None): """ shift the block by periods """ # think about moving this to the DatetimeIndex. This is a non-freq # (number of periods) shift ### N = len(self) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.asi8.take(indexer) if periods > 0: new_values[:periods] = tslib.iNaT else: new_values[periods:] = tslib.iNaT new_values = self.values._shallow_copy(new_values) return [self.make_block_same_class(new_values, placement=self.mgr_locs)] class SparseBlock(NonConsolidatableMixIn, Block): """ implement as a list of sparse arrays of the same dtype """ __slots__ = () is_sparse = True is_numeric = True _box_to_block_values = False _can_hold_na = True _ftype = 'sparse' _holder = SparseArray @property def shape(self): return (len(self.mgr_locs), self.sp_index.length) @property def itemsize(self): return self.dtype.itemsize @property def fill_value(self): # return np.nan return self.values.fill_value @fill_value.setter def fill_value(self, v): self.values.fill_value = v def to_dense(self): return self.values.to_dense().view() @property def sp_values(self): return self.values.sp_values @sp_values.setter def sp_values(self, v): # reset the sparse values self.values = SparseArray(v, sparse_index=self.sp_index, kind=self.kind, dtype=v.dtype, fill_value=self.values.fill_value, copy=False) @property def sp_index(self): return self.values.sp_index @property def kind(self): return self.values.kind def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None, mgr=None, **kwargs): if values is None: values = self.values values = values.astype(dtype, copy=copy) return self.make_block_same_class(values=values, placement=self.mgr_locs) def __len__(self): try: return self.sp_index.length except: return 0 def copy(self, deep=True, mgr=None): return self.make_block_same_class(values=self.values, sparse_index=self.sp_index, kind=self.kind, copy=deep, placement=self.mgr_locs) def make_block_same_class(self, values, placement, sparse_index=None, kind=None, dtype=None, fill_value=None, copy=False, fastpath=True, **kwargs): """ return a new block """ if dtype is None: dtype = values.dtype if fill_value is None and not isinstance(values, SparseArray): fill_value = self.values.fill_value # if not isinstance(values, SparseArray) and values.ndim != self.ndim: # raise ValueError("ndim mismatch") if values.ndim == 2: nitems = values.shape[0] if nitems == 0: # kludgy, but SparseBlocks cannot handle slices, where the # output is 0-item, so let's convert it to a dense block: it # won't take space since there's 0 items, plus it will preserve # the dtype. return self.make_block(np.empty(values.shape, dtype=dtype), placement, fastpath=True) elif nitems > 1: raise ValueError("Only 1-item 2d sparse blocks are supported") else: values = values.reshape(values.shape[1]) new_values = SparseArray(values, sparse_index=sparse_index, kind=kind or self.kind, dtype=dtype, fill_value=fill_value, copy=copy) return self.make_block(new_values, fastpath=fastpath, placement=placement) def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = missing.interpolate_2d(self.values.to_dense(), method, axis, limit, fill_value) return self.make_block_same_class(values=values, placement=self.mgr_locs) def fillna(self, value, limit=None, inplace=False, downcast=None, mgr=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") values = self.values if inplace else self.values.copy() values = values.fillna(value, downcast=downcast) return [self.make_block_same_class(values=values, placement=self.mgr_locs)] def shift(self, periods, axis=0, mgr=None): """ shift the block by periods """ N = len(self.values.T) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.to_dense().take(indexer) # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(new_values) if periods > 0: new_values[:periods] = fill_value else: new_values[periods:] = fill_value return [self.make_block_same_class(new_values, placement=self.mgr_locs)] def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) # taking on the 0th axis always here if fill_value is None: fill_value = self.fill_value return self.make_block_same_class(self.values.take(indexer), fill_value=fill_value, placement=self.mgr_locs) def sparse_reindex(self, new_index): """ sparse reindex and return a new block current reindex only works for float64 dtype! """ values = self.values values = values.sp_index.to_int_index().reindex( values.sp_values.astype('float64'), values.fill_value, new_index) return self.make_block_same_class(values, sparse_index=new_index, placement=self.mgr_locs) def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=False): if klass is None: dtype = dtype or values.dtype vtype = dtype.type if isinstance(values, SparseArray): klass = SparseBlock elif issubclass(vtype, np.floating): klass = FloatBlock elif (issubclass(vtype, np.integer) and issubclass(vtype, np.timedelta64)): klass = TimeDeltaBlock elif (issubclass(vtype, np.integer) and not issubclass(vtype, np.datetime64)): klass = IntBlock elif dtype == np.bool_: klass = BoolBlock elif issubclass(vtype, np.datetime64): if hasattr(values, 'tz'): klass = DatetimeTZBlock else: klass = DatetimeBlock elif is_datetimetz(values): klass = DatetimeTZBlock elif issubclass(vtype, np.complexfloating): klass = ComplexBlock elif is_categorical(values): klass = CategoricalBlock else: klass = ObjectBlock elif klass is DatetimeTZBlock and not is_datetimetz(values): return klass(values, ndim=ndim, fastpath=fastpath, placement=placement, dtype=dtype) return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) # TODO: flexible with index=None and/or items=None class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame, Series, Panel, etc. Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_ftype_counts get_dtypes get_ftypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) get_scalar(label_tup) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = ['axes', 'blocks', '_ndim', '_shape', '_known_consolidated', '_is_consolidated', '_blknos', '_blklocs'] def __init__(self, blocks, axes, do_integrity_check=True, fastpath=True): self.axes = [_ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) for block in blocks: if block.is_sparse: if len(block.mgr_locs) != 1: raise AssertionError("Sparse block refers to multiple " "items") else: if self.ndim != block.ndim: raise AssertionError('Number of Block dimensions (%d) ' 'must equal number of axes (%d)' % (block.ndim, self.ndim)) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [_ensure_index([])] + [_ensure_index(a) for a in self.axes[1:]] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(len(ax) for ax in self.axes) @property def ndim(self): return len(self.axes) def set_axis(self, axis, new_labels): new_labels = _ensure_index(new_labels) old_len = len(self.axes[axis]) new_len = len(new_labels) if new_len != old_len: raise ValueError('Length mismatch: Expected axis has %d elements, ' 'new values have %d elements' % (old_len, new_len)) self.axes[axis] = new_labels def rename_axis(self, mapper, axis, copy=True, level=None): """ Rename one of axes. Parameters ---------- mapper : unary callable axis : int copy : boolean, default True level : int, default None """ obj = self.copy(deep=copy) obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) return obj def add_prefix(self, prefix): f = partial('{prefix}{}'.format, prefix=prefix) return self.rename_axis(f, axis=0) def add_suffix(self, suffix): f = partial('{}{suffix}'.format, suffix=suffix) return self.rename_axis(f, axis=0) @property def _is_single_block(self): if self.ndim == 1: return True if len(self.blocks) != 1: return False blk = self.blocks[0] return (blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice(0, len(self), 1)) def _rebuild_blknos_and_blklocs(self): """ Update mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(len(rl)) if (new_blknos == -1).any(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs # make items read only for now def _get_items(self): return self.axes[0] items = property(fget=_get_items) def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts def get_dtype_counts(self): return self._get_counts(lambda b: b.dtype.name) def get_ftype_counts(self): return self._get_counts(lambda b: b.ftype) def get_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return algos.take_1d(dtypes, self._blknos, allow_fill=False) def get_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return algos.take_1d(ftypes, self._blknos, allow_fill=False) def __getstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = [ax for ax in self.axes] extra_state = { '0.14.1': { 'axes': axes_array, 'blocks': [dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks] } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): # numpy < 1.7 pickle compat if values.dtype == 'M8[us]': values = values.astype('M8[ns]') return make_block(values, placement=mgr_locs) if (isinstance(state, tuple) and len(state) >= 4 and '0.14.1' in state[3]): state = state[3]['0.14.1'] self.axes = [_ensure_index(ax) for ax in state['axes']] self.blocks = tuple(unpickle_block(b['values'], b['mgr_locs']) for b in state['blocks']) else: # discard anything after 3rd, support beta pickling format for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [_ensure_index(ax) for ax in ax_arrays] if len(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workaround for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-unique # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the assumption that # block items corresponded to manager items 1-to-1. all_mgr_locs = [slice(0, len(bitems[0]))] else: all_mgr_locs = [self.axes[0].get_indexer(blk_items) for blk_items in bitems] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, all_mgr_locs)) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __len__(self): return len(self.items) def __unicode__(self): output = pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += u('\nItems: %s') % ax else: output += u('\nAxis %d: %s') % (i, ax) for block in self.blocks: output += u('\n%s') % pprint_thing(block) return output def _verify_integrity(self): mgr_shape = self.shape tot_items = sum(len(x.mgr_locs) for x in self.blocks) for block in self.blocks: if block._verify_integrity and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if len(self.items) != tot_items: raise AssertionError('Number of manager items must equal union of ' 'block items\n# manager items: {0}, # ' 'tot_items: {1}'.format( len(self.items), tot_items)) def apply(self, f, axes=None, filter=None, do_integrity_check=False, consolidate=True, **kwargs): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the callable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only call the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check consolidate: boolean, default True. Join together blocks having same dtype Returns ------- Block Manager (new object) """ result_blocks = [] # filter kwarg is used in replace-* family of methods if filter is not None: filter_locs = set(self.items.get_indexer_for(filter)) if len(filter_locs) == len(self.items): # All items are included, as if there were no filtering filter = None else: kwargs['filter'] = filter_locs if consolidate: self._consolidate_inplace() if f == 'where': align_copy = True if kwargs.get('align', True): align_keys = ['other', 'cond'] else: align_keys = ['cond'] elif f == 'putmask': align_copy = False if kwargs.get('align', True): align_keys = ['new', 'mask'] else: align_keys = ['mask'] elif f == 'eval': align_copy = False align_keys = ['other'] elif f == 'fillna': # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? align_copy = False align_keys = ['value'] else: align_keys = [] aligned_args = dict((k, kwargs[k]) for k in align_keys if hasattr(kwargs[k], 'reindex_axis')) for b in self.blocks: if filter is not None: if not b.mgr_locs.isin(filter_locs).any(): result_blocks.append(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = getattr(obj, '_info_axis_number', 0) kwargs[k] = obj.reindex_axis(b_items, axis=axis, copy=align_copy) kwargs['mgr'] = self applied = getattr(b, f)(**kwargs) result_blocks = _extend_blocks(applied, result_blocks) if len(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__(result_blocks, axes or self.axes, do_integrity_check=do_integrity_check) bm._consolidate_inplace() return bm def reduction(self, f, axis=0, consolidate=True, transposed=False, **kwargs): """ iterate over the blocks, collect and create a new block manager. This routine is intended for reduction type operations and will do inference on the generated blocks. Parameters ---------- f: the callable or function name to operate on at the block level axis: reduction axis, default 0 consolidate: boolean, default True. Join together blocks having same dtype transposed: boolean, default False we are holding transposed data Returns ------- Block Manager (new object) """ if consolidate: self._consolidate_inplace() axes, blocks = [], [] for b in self.blocks: kwargs['mgr'] = self axe, block = getattr(b, f)(axis=axis, **kwargs) axes.append(axe) blocks.append(block) # note that some DatetimeTZ, Categorical are always ndim==1 ndim = set([b.ndim for b in blocks]) if 2 in ndim: new_axes = list(self.axes) # multiple blocks that are reduced if len(blocks) > 1: new_axes[1] = axes[0] # reset the placement to the original for b, sb in zip(blocks, self.blocks): b.mgr_locs = sb.mgr_locs else: new_axes[axis] = Index(np.concatenate( [ax.values for ax in axes])) if transposed: new_axes = new_axes[::-1] blocks = [b.make_block(b.values.T, placement=np.arange(b.shape[1]) ) for b in blocks] return self.__class__(blocks, new_axes) # 0 ndim if 0 in ndim and 1 not in ndim: values = np.array([b.values for b in blocks]) if len(values) == 1: return values.item() blocks = [make_block(values, ndim=1)] axes = Index([ax[0] for ax in axes]) # single block values = _concat._concat_compat([b.values for b in blocks]) # compute the orderings of our original data if len(self.blocks) > 1: indexer = np.empty(len(self.axes[0]), dtype=np.intp) i = 0 for b in self.blocks: for j in b.mgr_locs: indexer[j] = i i = i + 1 values = values.take(indexer) return SingleBlockManager( [make_block(values, ndim=1, placement=np.arange(len(values)))], axes[0]) def isna(self, **kwargs): return self.apply('apply', **kwargs) def where(self, **kwargs): return self.apply('where', **kwargs) def eval(self, **kwargs): return self.apply('eval', **kwargs) def quantile(self, **kwargs): return self.reduction('quantile', **kwargs) def setitem(self, **kwargs): return self.apply('setitem', **kwargs) def putmask(self, **kwargs): return self.apply('putmask', **kwargs) def diff(self, **kwargs): return self.apply('diff', **kwargs) def interpolate(self, **kwargs): return self.apply('interpolate', **kwargs) def shift(self, **kwargs): return self.apply('shift', **kwargs) def fillna(self, **kwargs): return self.apply('fillna', **kwargs) def downcast(self, **kwargs): return self.apply('downcast', **kwargs) def astype(self, dtype, **kwargs): return self.apply('astype', dtype=dtype, **kwargs) def convert(self, **kwargs): return self.apply('convert', **kwargs) def replace(self, **kwargs): return self.apply('replace', **kwargs) def replace_list(self, src_list, dest_list, inplace=False, regex=False, mgr=None): """ do a list replace """ inplace = validate_bool_kwarg(inplace, 'inplace') if mgr is None: mgr = self # figure out our mask a-priori to avoid repeated replacements values = self.as_matrix() def comp(s): if isna(s): return isna(values) return _maybe_compare(values, getattr(s, 'asm8', s), operator.eq) masks = [comp(s) for i, s in enumerate(src_list)] result_blocks = [] src_len = len(src_list) - 1 for blk in self.blocks: # its possible to get multiple result blocks here # replace ALWAYS will return a list rb = [blk if inplace else blk.copy()] for i, (s, d) in enumerate(zip(src_list, dest_list)): new_rb = [] for b in rb: if b.dtype == np.object_: convert = i == src_len result = b.replace(s, d, inplace=inplace, regex=regex, mgr=mgr, convert=convert) new_rb = _extend_blocks(result, new_rb) else: # get our mask for this element, sized to this # particular block m = masks[i][b.mgr_locs.indexer] if m.any(): b = b.coerce_to_target_dtype(d) new_rb.extend(b.putmask(m, d, inplace=True)) else: new_rb.append(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm def reshape_nd(self, axes, **kwargs): """ a 2d-nd reshape operation on a BlockManager """ return self.apply('reshape_nd', axes=axes, **kwargs) def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = len(ftypes) == len(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return len(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return all([block.is_numeric for block in self.blocks]) @property def is_datelike_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return any([block.is_datelike for block in self.blocks]) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if len(self.blocks) == 1: return self.blocks[0].is_view # It is technically possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def get_bool_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], copy) def get_numeric_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], copy) def combine(self, blocks, copy=True): """ return a new manager with the blocks """ if len(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0]) new_blocks = [] for b in blocks: b = b.copy(deep=copy) b.mgr_locs = algos.take_1d(inv_indexer, b.mgr_locs.as_array, axis=0, allow_fill=False) new_blocks.append(b) axes = list(self.axes) axes[0] = self.items.take(indexer) return self.__class__(new_blocks, axes, do_integrity_check=False) def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: slicer = [slice(None)] * (axis + 1) slicer[axis] = slobj slicer = tuple(slicer) new_blocks = [blk.getitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = self.__class__(new_blocks, new_axes, do_integrity_check=False, fastpath=True) bm._consolidate_inplace() return bm def __contains__(self, item): return item in self.items @property def nblocks(self): return len(self.blocks) def copy(self, deep=True, mgr=None): """ Make deep or shallow copy of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shallow copy (do not copy data) If 'all', copy data and a deep copy of the index Returns ------- copy : BlockManager """ # this preserves the notion of view copying of axes if deep: if deep == 'all': copy = lambda ax: ax.copy(deep=True) else: copy = lambda ax: ax.view() new_axes = [copy(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.apply('copy', axes=new_axes, deep=deep, do_integrity_check=False) def as_matrix(self, items=None): if len(self.blocks) == 0: return np.empty(self.shape, dtype=float) if items is not None: mgr = self.reindex_axis(items, axis=0) else: mgr = self if self._is_single_block or not self.is_mixed_type: return mgr.blocks[0].get_values() else: return mgr._interleave() def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) result = np.empty(self.shape, dtype=dtype) if result.shape[0] == 0: # Workaround for numpy 1.7 bug: # # >>> a = np.empty((0,10)) # >>> a[slice(0,0)] # array([], shape=(0, 10), dtype=float64) # >>> a[[]] # Traceback (most recent call last): # File "<stdin>", line 1, in <module> # IndexError: index 0 is out of bounds for axis 0 with size 0 return result itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.get_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.all(): raise AssertionError('Some items were not contained in blocks') return result def to_dict(self, copy=True): """ Return a dict of str(dtype) -> BlockManager Parameters ---------- copy : boolean, default True Returns ------- values : a dict of dtype -> BlockManager Notes ----- This consolidates based on str(dtype) """ self._consolidate_inplace() bd = {} for b in self.blocks: bd.setdefault(str(b.dtype), []).append(b) return {dtype: self.combine(blocks, copy=copy) for dtype, blocks in bd.items()} def xs(self, key, axis=1, copy=True, takeable=False): if axis < 1: raise AssertionError('Can only take xs across axis >= 1, got %d' % axis) # take by position if takeable: loc = key else: loc = self.axes[axis].get_loc(key) slicer = [slice(None, None) for _ in range(self.ndim)] slicer[axis] = loc slicer = tuple(slicer) new_axes = list(self.axes) # could be an array indexer! if isinstance(loc, (slice, np.ndarray)): new_axes[axis] = new_axes[axis][loc] else: new_axes.pop(axis) new_blocks = [] if len(self.blocks) > 1: # we must copy here as we are mixed type for blk in self.blocks: newb = make_block(values=blk.values[slicer], klass=blk.__class__, fastpath=True, placement=blk.mgr_locs) new_blocks.append(newb) elif len(self.blocks) == 1: block = self.blocks[0] vals = block.values[slicer] if copy: vals = vals.copy() new_blocks = [make_block(values=vals, placement=block.mgr_locs, klass=block.__class__, fastpath=True, )] return self.__class__(new_blocks, new_axes) def fast_xs(self, loc): """ get a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if len(self.blocks) == 1: return self.blocks[0].iget((slice(None), loc)) items = self.items # non-unique (GH4726) if not items.is_unique: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # unique dtype = _interleaved_dtype(self.blocks) n = len(items) result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk._try_coerce_result(blk.iget((i, loc))) return result def consolidate(self): """ Join together blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def get(self, item, fastpath=True): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_unique: if not isna(item): loc = self.items.get_loc(item) else: indexer = np.arange(len(self.items))[isna(self.items)] # allow a single nan location indexer if not is_scalar(indexer): if len(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.iget(loc, fastpath=fastpath) else: if isna(item): raise TypeError("cannot label index with a null key") indexer = self.items.get_indexer_for([item]) return self.reindex_indexer(new_axis=self.items[indexer], indexer=indexer, axis=0, allow_dups=True) def iget(self, i, fastpath=True): """ Return the data as a SingleBlockManager if fastpath=True and possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.iget(self._blklocs[i]) if not fastpath or not block._box_to_block_values or values.ndim != 1: return values # fastpath shortcut for select a single-dim from a 2-dim BM return SingleBlockManager( [block.make_block_same_class(values, placement=slice(0, len(values)), ndim=1, fastpath=True)], self.axes[1]) def get_scalar(self, tup): """ Retrieve single item """ full_loc = list(ax.get_loc(x) for ax, x in zip(self.axes, tup)) blk = self.blocks[self._blknos[full_loc[0]]] values = blk.values # FIXME: this may return non-upcasted types? if values.ndim == 1: return values[full_loc[1]] full_loc[0] = self._blklocs[full_loc[0]] return values[tuple(full_loc)] def delete(self, item): """ Delete selected item (items if non-unique) in-place. """ indexer = self.items.get_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumsum() is_blk_deleted = [False] * len(self.blocks) if isinstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smallints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if len(blk_del) == len(bml): is_blk_deleted[blkno] = True continue elif len(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple(b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno]) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value, check=False): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items if check, then validate that we are not setting the same data in-place """ # FIXME: refactor, clearly separate broadcasting & zip-like assignment # can prob also fix the various if tests for sparse/categorical value_is_extension_type = is_extension_type(value) # categorical/spares/datetimetz if value_is_extension_type: def value_getitem(placement): return value else: if value.ndim == self.ndim - 1: value = _safe_reshape(value, (1,) + value.shape) def value_getitem(placement): return value else: def value_getitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError('Shape of new values must be compatible ' 'with manager shape') try: loc = self.items.get_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(len(self.items), item, value) return if isinstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].copy() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in _get_blkno_placements(blknos, len(self.blocks), group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_getitem(val_locs), check=check) else: unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.append(val_locs) # If all block items are unfit, schedule the block for removal. if len(val_locs) == len(blk.mgr_locs): removed_blknos.append(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(len(blk)) if len(removed_blknos): # Remove blocks & update blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - len(removed_blknos)) self._blknos = algos.take_1d(new_blknos, self._blknos, axis=0, allow_fill=False) self.blocks = tuple(blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos)) if unfit_val_locs: unfit_mgr_locs = np.concatenate(unfit_mgr_locs) unfit_count = len(unfit_mgr_locs) new_blocks = [] if value_is_extension_type: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block(values=value.copy(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1)) for mgr_loc in unfit_mgr_locs) self._blknos[unfit_mgr_locs] = (np.arange(unfit_count) + len(self.blocks)) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:]) new_blocks.append( make_block(values=value_getitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs)) self._blknos[unfit_mgr_locs] = len(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc, item, value, allow_duplicates=False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like allow_duplicates: bool If False, trying to insert non-unique item will raise """ if not allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError('cannot insert {}, already exists'.format(item)) if not isinstance(loc, int): raise TypeError("loc must be int") # insert to the axis; this could possibly raise a TypeError new_axis = self.items.insert(loc, item) block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc + 1)) for blkno, count in _fast_count_smallints(self._blknos[loc:]): blk = self.blocks[blkno] if count == len(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.copy() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.append is a lot faster (at least in numpy 1.7.1), let's use it # if we can. self._blklocs = np.append(self._blklocs, 0) self._blknos = np.append(self._blknos, len(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, len(self.blocks)) self.axes[0] = new_axis self.blocks += (block,) self._shape = None self._known_consolidated = False if len(self.blocks) > 100: self._consolidate_inplace() def reindex_axis(self, new_index, axis, method=None, limit=None, fill_value=None, copy=True): """ Conform block manager to new index. """ new_index = _ensure_index(new_index) new_index, indexer = self.axes[axis].reindex(new_index, method=method, limit=limit) return self.reindex_indexer(new_index, indexer, axis=axis, fill_value=fill_value, copy=copy) def reindex_indexer(self, new_axis, indexer, axis, fill_value=None, allow_dups=False, copy=True): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object allow_dups : bool pandas-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not copy: return self result = self.copy(deep=copy) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't allow reindexing with dups if not allow_dups: self.axes[axis]._can_reindex(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(indexer, fill_tuple=(fill_value,)) else: new_blocks = [blk.take_nd(indexer, axis=axis, fill_tuple=( fill_value if fill_value is not None else blk.fill_value,)) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axis return self.__class__(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ allow_fill = fill_tuple is not None sl_type, slobj, sllen = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], allow_fill=allow_fill) if self._is_single_block: blk = self.blocks[0] if sl_type in ('slice', 'mask'): return [blk.getitem_block(slobj, new_mgr_locs=slice(0, sllen))] elif not allow_fill or self.ndim == 1: if allow_fill and fill_tuple[0] is None: _, fill_value = maybe_promote(blk.dtype) fill_tuple = (fill_value, ) return [blk.take_nd(slobj, axis=0, new_mgr_locs=slice(0, sllen), fill_tuple=fill_tuple)] if sl_type in ('slice', 'mask'): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = algos.take_1d(self._blknos, slobj, fill_value=-1, allow_fill=allow_fill) blklocs = algos.take_1d(self._blklocs, slobj, fill_value=-1, allow_fill=allow_fill) # When filling blknos, make sure blknos is updated before appending to # blocks list, that way new blkno is exactly len(blocks). # # FIXME: mgr_groupby_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in _get_blkno_placements(blknos, len(self.blocks), group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.append(self._make_na_block(placement=mgr_locs, fill_value=fill_value)) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's # only one item and each mgr loc is a copy of that single # item. for mgr_loc in mgr_locs: newblk = blk.copy(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.append(newblk) else: blocks.append(blk.take_nd(blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None)) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = len(placement) dtype, fill_value = infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along any axis. """ self._consolidate_inplace() indexer = (np.arange(indexer.start, indexer.stop, indexer.step, dtype='int64') if isinstance(indexer, slice) else np.asanyarray(indexer, dtype='int64')) n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).any(): raise Exception('Indices must be nonzero and less than ' 'the axis length') new_labels = self.axes[axis].take(indexer) return self.reindex_indexer(new_axis=new_labels, indexer=indexer, axis=axis, allow_dups=True) def merge(self, other, lsuffix='', rsuffix=''): if not self._is_indexed_like(other): raise AssertionError('Must have same axes to merge managers') l, r = items_overlap_with_suffix(left=self.items, lsuffix=lsuffix, right=other.items, rsuffix=rsuffix) new_items = _concat_indexes([l, r]) new_blocks = [blk.copy(deep=False) for blk in self.blocks] offset = self.shape[0] for blk in other.blocks: blk = blk.copy(deep=False) blk.mgr_locs = blk.mgr_locs.add(offset) new_blocks.append(blk) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(_consolidate(new_blocks), new_axes) def _is_indexed_like(self, other): """ Check all axes except items """ if self.ndim != other.ndim: raise AssertionError('Number of dimensions must agree ' 'got %d and %d' % (self.ndim, other.ndim)) for ax, oax in zip(self.axes[1:], other.axes[1:]): if not ax.equals(oax): return False return True def equals(self, other): self_axes, other_axes = self.axes, other.axes if len(self_axes) != len(other_axes): return False if not all(ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if len(self.blocks) != len(other.blocks): return False # canonicalize block order, using a tuple combining the type # name and then mgr_locs because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.dtype.name, block.mgr_locs.as_array.tolist()) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return all(block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks)) def unstack(self, unstacker_func): """Return a blockmanager with all blocks unstacked. Parameters ---------- unstacker_func : callable A (partially-applied) ``pd.core.reshape._Unstacker`` class. Returns ------- unstacked : BlockManager """ dummy = unstacker_func(np.empty((0, 0)), value_columns=self.items) new_columns = dummy.get_new_columns() new_index = dummy.get_new_index() new_blocks = [] columns_mask = [] for blk in self.blocks: blocks, mask = blk._unstack( partial(unstacker_func, value_columns=self.items[blk.mgr_locs.indexer]), new_columns) new_blocks.extend(blocks) columns_mask.extend(mask) new_columns = new_columns[columns_mask] bm = BlockManager(new_blocks, [new_columns, new_index]) return bm class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__(self, block, axis, do_integrity_check=False, fastpath=False): if isinstance(axis, list): if len(axis) != 1: raise ValueError("cannot create SingleBlockManager with more " "than 1 axis") axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] if isinstance(block, list): # empty block if len(block) == 0: block = [np.array([])] elif len(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] else: self.axes = [_ensure_index(axis)] # create the block here if isinstance(block, list): # provide consolidation to the interleaved_dtype if len(block) > 1: dtype = _interleaved_dtype(block) block = [b.astype(dtype) for b in block] block = _consolidate(block) if len(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] if not isinstance(block, Block): block = make_block(block, placement=slice(0, len(axis)), ndim=1, fastpath=True) self.blocks = [block] def _post_setstate(self): pass @property def _block(self): return self.blocks[0] @property def _values(self): return self._block.values @property def _blknos(self): """ compat with BlockManager """ return None @property def _blklocs(self): """ compat with BlockManager """ return None def reindex(self, new_axis, indexer=None, method=None, fill_value=None, limit=None, copy=True): # if we are the same and don't copy, just return if self.index.equals(new_axis): if copy: return self.copy(deep=True) else: return self values = self._block.get_values() if indexer is None: indexer = self.items.get_indexer_for(new_axis) if fill_value is None: fill_value = np.nan new_values = algos.take_1d(values, indexer, fill_value=fill_value) # fill if needed if method is not None or limit is not None: new_values = missing.interpolate_2d(new_values, method=method, limit=limit, fill_value=fill_value) if self._block.is_sparse: make_block = self._block.make_block_same_class block = make_block(new_values, copy=copy, placement=slice(0, len(new_axis))) mgr = SingleBlockManager(block, new_axis) mgr._consolidate_inplace() return mgr def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") return self.__class__(self._block._slice(slobj), self.index[slobj], fastpath=True) @property def index(self): return self.axes[0] def convert(self, **kwargs): """ convert the whole block as one """ kwargs['by_item'] = False return self.apply('convert', **kwargs) @property def dtype(self): return self._block.dtype @property def array_dtype(self): return self._block.array_dtype @property def ftype(self): return self._block.ftype def get_dtype_counts(self): return {self.dtype.name: 1} def get_ftype_counts(self): return {self.ftype: 1} def get_dtypes(self): return np.array([self._block.dtype]) def get_ftypes(self): return np.array([self._block.ftype]) def external_values(self): return self._block.external_values() def internal_values(self): return self._block.internal_values() def formatting_values(self): """Return the internal values used by the DataFrame/SeriesFormatter""" return self._block.formatting_values() def get_values(self): """ return a dense type view """ return np.array(self._block.to_dense(), copy=False) @property def asobject(self): """ return a object dtype array. datetime/timedelta like values are boxed to Timestamp/Timedelta instances. """ return self._block.get_values(dtype=object) @property def itemsize(self): return self._block.values.itemsize @property def _can_hold_na(self): return self._block._can_hold_na def is_consolidated(self): return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.get_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for getting a cross-section return a view of the data """ return self._block.values[loc] def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(map(int, [tot_items] + list(block_shape))) implied = tuple(map(int, [len(ax) for ax in axes])) if passed == implied and e is not None: raise e if block_shape[0] == 0: raise ValueError("Empty data passed with indices specified.") raise ValueError("Shape of passed values is {0}, indices imply {1}".format( passed, implied)) def create_block_manager_from_blocks(blocks, axes): try: if len(blocks) == 1 and not isinstance(blocks[0], Block): # if blocks[0] is of length 0, return empty blocks if not len(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement # is basically "all items", but if there're many, don't bother # converting, it's an error anyway. blocks = [make_block(values=blocks[0], placement=slice(0, len(axes[0])))] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: blocks = [getattr(b, 'values', b) for b in blocks] tot_items = sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except ValueError as e: construction_error(len(arrays), arrays[0].shape, axes, e) def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? float_items = [] complex_items = [] int_items = [] bool_items = [] object_items = [] sparse_items = [] datetime_items = [] datetime_tz_items = [] cat_items = [] extra_locs = [] names_idx = Index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(len(names_idx)) else: assert names_idx.intersection(axes[0]).is_unique names_indexer = names_idx.get_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.append(i) continue k = names[name_idx] v = arrays[name_idx] if is_sparse(v): sparse_items.append((i, k, v)) elif issubclass(v.dtype.type, np.floating): float_items.append((i, k, v)) elif issubclass(v.dtype.type, np.complexfloating): complex_items.append((i, k, v)) elif issubclass(v.dtype.type, np.datetime64): if v.dtype != _NS_DTYPE: v = tslib.cast_to_nanoseconds(v) if is_datetimetz(v): datetime_tz_items.append((i, k, v)) else: datetime_items.append((i, k, v)) elif is_datetimetz(v): datetime_tz_items.append((i, k, v)) elif issubclass(v.dtype.type, np.integer): int_items.append((i, k, v)) elif v.dtype == np.bool_: bool_items.append((i, k, v)) elif is_categorical(v): cat_items.append((i, k, v)) else: object_items.append((i, k, v)) blocks = [] if len(float_items): float_blocks = _multi_blockify(float_items) blocks.extend(float_blocks) if len(complex_items): complex_blocks = _multi_blockify(complex_items) blocks.extend(complex_blocks) if len(int_items): int_blocks = _multi_blockify(int_items) blocks.extend(int_blocks) if len(datetime_items): datetime_blocks = _simple_blockify(datetime_items, _NS_DTYPE) blocks.extend(datetime_blocks) if len(datetime_tz_items): dttz_blocks = [make_block(array, klass=DatetimeTZBlock, fastpath=True, placement=[i], ) for i, _, array in datetime_tz_items] blocks.extend(dttz_blocks) if len(bool_items): bool_blocks = _simple_blockify(bool_items, np.bool_) blocks.extend(bool_blocks) if len(object_items) > 0: object_blocks = _simple_blockify(object_items, np.object_) blocks.extend(object_blocks) if len(sparse_items) > 0: sparse_blocks = _sparse_blockify(sparse_items) blocks.extend(sparse_blocks) if len(cat_items) > 0: cat_blocks = [make_block(array, klass=CategoricalBlock, fastpath=True, placement=[i]) for i, _, array in cat_items] blocks.extend(cat_blocks) if len(extra_locs): shape = (len(extra_locs),) + tuple(len(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.append(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.astype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes """ # group by dtype grouper = itertools.groupby(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays(list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.append(block) return new_blocks def _sparse_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes (and are sparse) """ new_blocks = [] for i, names, array in tuples: array = _maybe_to_sparse(array) block = make_block(array, klass=SparseBlock, fastpath=True, placement=[i]) new_blocks.append(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if isinstance(x, ABCSeries): return x._values else: return np.asarray(x) def _shape_compat(x): if isinstance(x, ABCSeries): return len(x), else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (len(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype(blocks): if not len(blocks): return None dtype = find_common_type([b.dtype for b in blocks]) # only numpy compat if isinstance(dtype, ExtensionDtype): dtype = np.object return dtype def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.groupby(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: merged_blocks = _merge_blocks(list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate) new_blocks = _extend_blocks(merged_blocks, new_blocks) return new_blocks def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len(set([b.dtype for b in blocks])) != 1: raise AssertionError("_merge_blocks are invalid!") dtype = blocks[0].dtype # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = _vstack([b.values for b in blocks], dtype) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, fastpath=True, placement=new_mgr_locs) # no merge return blocks def _extend_blocks(result, blocks=None): """ return a new extended blocks, givin the result """ if blocks is None: blocks = [] if isinstance(result, list): for r in result: if isinstance(r, list): blocks.extend(r) else: blocks.append(r) elif isinstance(result, BlockManager): blocks.extend(result.blocks) else: blocks.append(result) return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim < ndim: if shape is None: shape = values.shape values = values.reshape(tuple((1, ) + shape)) return values def _vstack(to_stack, dtype): # work around NumPy 1.6 bug if dtype == _NS_DTYPE or dtype == _TD_DTYPE: new_values = np.vstack([x.view('i8') for x in to_stack]) return new_values.view(dtype) else: return np.vstack(to_stack) def _maybe_compare(a, b, op): is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) # numpy deprecation warning to have i8 vs integer comparisions if is_datetimelike_v_numeric(a, b): result = False # numpy deprecation warning if comparing numeric vs string-like elif is_numeric_v_string_like(a, b): result = False else: result = op(a, b) if is_scalar(result) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = 'ndarray(dtype=%s)' % a.dtype if is_b_array: type_names[1] = 'ndarray(dtype=%s)' % b.dtype raise TypeError("Cannot compare types %r and %r" % tuple(type_names)) return result def _concat_indexes(indexes): return indexes[0].append(indexes[1:]) def _block2d_to_blocknd(values, placement, shape, labels, ref_items): """ pivot to the labels shape """ panel_shape = (len(placement),) + shape # TODO: lexsort depth needs to be 2!! # Create observation selection vector using major and minor # labels, for converting to panel format. selector = _factor_indexer(shape[1:], labels) mask = np.zeros(np.prod(shape), dtype=bool) mask.put(selector, True) if mask.all(): pvalues = np.empty(panel_shape, dtype=values.dtype) else: dtype, fill_value = maybe_promote(values.dtype) pvalues = np.empty(panel_shape, dtype=dtype) pvalues.fill(fill_value) for i in range(len(placement)): pvalues[i].flat[mask] = values[:, i] return make_block(pvalues, placement=placement) def _factor_indexer(shape, labels): """ given a tuple of shape and a list of Categorical labels, return the expanded label indexer """ mult = np.array(shape)[::-1].cumprod()[::-1] return _ensure_platform_int( np.sum(np.array(labels).T * np.append(mult, [1]), axis=1).T) def _get_blkno_placements(blknos, blk_count, group=True): """ Parameters ---------- blknos : array of int64 blk_count : int group : bool Returns ------- iterator yield (BlockPlacement, blkno) """ blknos = _ensure_int64(blknos) # FIXME: blk_count is unused, but it may avoid the use of dicts in cython for blkno, indexer in lib.get_blkno_indexers(blknos, group): yield blkno, BlockPlacement(indexer) def items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ to_rename = left.intersection(right) if len(to_rename) == 0: return left, right else: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: %s' % to_rename) def lrenamer(x): if x in to_rename: return '%s%s' % (x, lsuffix) return x def rrenamer(x): if x in to_rename: return '%s%s' % (x, rsuffix) return x return (_transform_index(left, lrenamer), _transform_index(right, rrenamer)) def _safe_reshape(arr, new_shape): """ If possible, reshape `arr` to have shape `new_shape`, with a couple of exceptions (see gh-13012): 1) If `arr` is a Categorical or Index, `arr` will be returned as is. 2) If `arr` is a Series, the `_values` attribute will be reshaped and returned. Parameters ---------- arr : array-like, object to be reshaped new_shape : int or tuple of ints, the new shape """ if isinstance(arr, ABCSeries): arr = arr._values if not isinstance(arr, Categorical): arr = arr.reshape(new_shape) return arr def _transform_index(index, func, level=None): """ Apply function to all values found in index. This includes transforming multiindex entries separately. Only apply function to one level of the MultiIndex if level is specified. """ if isinstance(index, MultiIndex): if level is not None: items = [tuple(func(y) if i == level else y for i, y in enumerate(x)) for x in index] else: items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name) def _putmask_smart(v, m, n): """ Return a new ndarray, try to preserve dtype if possible. Parameters ---------- v : `values`, updated in-place (array like) m : `mask`, applies to both sides (array like) n : `new values` either scalar or an array like aligned with `values` Returns ------- values : ndarray with updated values this *may* be a copy of the original See Also -------- ndarray.putmask """ # we cannot use np.asarray() here as we cannot have conversions # that numpy does when numeric are mixed with strings # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.repeat(n, len(m)) elif isinstance(n, np.ndarray) and n.ndim == 0: # numpy scalar n = np.repeat(np.array(n, ndmin=1), len(m)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[m] # make sure that we have a nullable type # if we have nulls if not _isna_compat(v, nn[0]): raise ValueError # we ignore ComplexWarning here with catch_warnings(record=True): nn_at = nn.astype(v.dtype) # avoid invalid dtype comparisons # between numbers & strings # only compare integers/floats # don't compare integers to datetimelikes if (not is_numeric_v_string_like(nn, nn_at) and (is_float_dtype(nn.dtype) or is_integer_dtype(nn.dtype) and is_float_dtype(nn_at.dtype) or is_integer_dtype(nn_at.dtype))): comp = (nn == nn_at) if is_list_like(comp) and comp.all(): nv = v.copy() nv[m] = nn_at return nv except (ValueError, IndexError, TypeError): pass n = np.asarray(n) def _putmask_preserve(nv, n): try: nv[m] = n[m] except (IndexError, ValueError): nv[m] = n return nv # preserves dtype if possible if v.dtype.kind == n.dtype.kind: return _putmask_preserve(v, n) # change the dtype if needed dtype, _ = maybe_promote(n.dtype) if is_extension_type(v.dtype) and is_object_dtype(dtype): v = v.get_values(dtype) else: v = v.astype(dtype) return _putmask_preserve(v, n) def concatenate_block_managers(mgrs_indexers, axes, concat_axis, copy): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool """ concat_plan = combine_concat_plans( [get_mgr_concatenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers], concat_axis) blocks = [make_block( concatenate_join_units(join_units, concat_axis, copy=copy), placement=placement) for placement, join_units in concat_plan] return BlockManager(blocks, axes) def get_empty_dtype_and_na(join_units): """ Return dtype and N/A values to use when concatenating specified units. Returned N/A value may be None which means there was no casting involved. Returns ------- dtype na """ if len(join_units) == 1: blk = join_units[0].block if blk is None: return np.float64, np.nan has_none_blocks = False dtypes = [None] * len(join_units) for i, unit in enumerate(join_units): if unit.block is None: has_none_blocks = True else: dtypes[i] = unit.dtype upcast_classes = defaultdict(list) null_upcast_classes = defaultdict(list) for dtype, unit in zip(dtypes, join_units): if dtype is None: continue if is_categorical_dtype(dtype): upcast_cls = 'category' elif is_datetimetz(dtype): upcast_cls = 'datetimetz' elif issubclass(dtype.type, np.bool_): upcast_cls = 'bool' elif issubclass(dtype.type, np.object_): upcast_cls = 'object' elif is_datetime64_dtype(dtype): upcast_cls = 'datetime' elif is_timedelta64_dtype(dtype): upcast_cls = 'timedelta' elif is_float_dtype(dtype) or is_numeric_dtype(dtype): upcast_cls = dtype.name else: upcast_cls = 'float' # Null blocks should not influence upcast class selection, unless there # are only null blocks, when same upcasting rules must be applied to # null upcast classes. if unit.is_na: null_upcast_classes[upcast_cls].append(dtype) else: upcast_classes[upcast_cls].append(dtype) if not upcast_classes: upcast_classes = null_upcast_classes # create the result if 'object' in upcast_classes: return np.dtype(np.object_), np.nan elif 'bool' in upcast_classes: if has_none_blocks: return np.dtype(np.object_), np.nan else: return np.dtype(np.bool_), None elif 'category' in upcast_classes: return np.dtype(np.object_), np.nan elif 'datetimetz' in upcast_classes: dtype = upcast_classes['datetimetz'] return dtype[0], tslib.iNaT elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslib.iNaT elif 'timedelta' in upcast_classes: return np.dtype('m8[ns]'), tslib.iNaT else: # pragma g = np.find_common_type(upcast_classes, []) if is_float_dtype(g): return g, g.type(np.nan) elif is_numeric_dtype(g): if has_none_blocks: return np.float64, np.nan else: return g, None msg = "invalid dtype determination in get_concat_dtype" raise AssertionError(msg) def concatenate_join_units(join_units, concat_axis, copy): """ Concatenate values from several join units along selected axis. """ if concat_axis == 0 and len(join_units) > 1: # Concatenating join units along ax0 is handled in _merge_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = get_empty_dtype_and_na(join_units) to_concat = [ju.get_reindexed_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units] if len(to_concat) == 1: # Only one block, nothing to concatenate. concat_values = to_concat[0] if copy and concat_values.base is not None: concat_values = concat_values.copy() else: concat_values = _concat._concat_compat(to_concat, axis=concat_axis) return concat_values def get_mgr_concatenation_plan(mgr, indexers): """ Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindex shape , save for item axis which will be separate # for each block anyway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = len(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = algos.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = algos.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in _get_blkno_placements(blknos, len(mgr.blocks), group=False): assert placements.is_slice_like join_unit_indexers = indexers.copy() shape = list(mgr_shape) shape[0] = len(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexing = (len(placements) == len(blk.mgr_locs) and # Fastpath detection of join unit not # needing to reindex its block: no ax0 # reindexing took place and block # placement was sequential before. ((ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1) or # Slow-ish detection: all indexer locs # are sequential (and length match is # checked above). (np.diff(ax0_blk_indexer) == 1).all())) # Omit indexer if no item reindexing is required. if unit_no_ax0_reindexing: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.append((placements, unit)) return plan def combine_concat_plans(plans, concat_axis): """ Combine multiple concatenation plans into one. existing_plan is updated in-place. """ if len(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concat_axis == 0: offset = 0 for plan in plans: last_plc = None for plc, unit in plan: yield plc.add(offset), [unit] last_plc = plc if last_plc is not None: offset += last_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(map(iter, plans)) next_items = list(map(_next_or_none, plans)) while num_ended[0] != len(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengths = list(map(len, placements)) min_len, max_len = min(lengths), max(lengths) if min_len == max_len: yield placements[0], units next_items[:] = map(_next_or_none, plans) else: yielded_placement = None yielded_units = [None] * len(next_items) for i, (plc, unit) in enumerate(next_items): yielded_units[i] = unit if len(plc) > min_len: # trim_join_unit updates unit in place, so only # placement needs to be sliced to skip min_len. next_items[i] = (plc[min_len:], trim_join_unit(unit, min_len)) else: yielded_placement = plc next_items[i] = _next_or_none(plans[i]) yield yielded_placement, yielded_units def trim_join_unit(join_unit, length): """ Reduce join_unit's shape along item axis to length. Extra items that didn't fit are returned as a separate block. """ if 0 not in join_unit.indexers: extra_indexers = join_unit.indexers if join_unit.block is None: extra_block = None else: extra_block = join_unit.block.getitem_block(slice(length, None)) join_unit.block = join_unit.block.getitem_block(slice(length)) else: extra_block = join_unit.block extra_indexers = copy.copy(join_unit.indexers) extra_indexers[0] = extra_indexers[0][length:] join_unit.indexers[0] = join_unit.indexers[0][:length] extra_shape = (join_unit.shape[0] - length,) + join_unit.shape[1:] join_unit.shape = (length,) + join_unit.shape[1:] return JoinUnit(block=extra_block, indexers=extra_indexers, shape=extra_shape) class JoinUnit(object): def __init__(self, block, shape, indexers=None): # Passing shape explicitly is required for cases when block is None. if indexers is None: indexers = {} self.block = block self.indexers = indexers self.shape = shape def __repr__(self): return '%s(%r, %s)' % (self.__class__.__name__, self.block, self.indexers) @cache_readonly def needs_filling(self): for indexer in self.indexers.values(): # FIXME: cache results of indexer == -1 checks. if (indexer == -1).any(): return True return False @cache_readonly def dtype(self): if self.block is None: raise AssertionError("Block is None, no dtype") if not self.needs_filling: return self.block.dtype else: return _get_dtype(maybe_promote(self.block.dtype, self.block.fill_value)[0]) @cache_readonly def is_na(self): if self.block is None: return True if not self.block._can_hold_na: return False # Usually it's enough to check but a small fraction of values to see if # a block is NOT null, chunks should help in such cases. 1000 value # was chosen rather arbitrarily. values = self.block.values if self.block.is_categorical: values_flat = values.categories elif self.block.is_sparse: # fill_value is not NaN and have holes if not values._null_fill_value and values.sp_index.ngaps > 0: return False values_flat = values.ravel(order='K') else: values_flat = values.ravel(order='K') total_len = values_flat.shape[0] chunk_len = max(total_len // 40, 1000) for i in range(0, total_len, chunk_len): if not isna(values_flat[i:i + chunk_len]).all(): return False return True def get_reindexed_values(self, empty_dtype, upcasted_na): if upcasted_na is None: # No upcasting is necessary fill_value = self.block.fill_value values = self.block.get_values() else: fill_value = upcasted_na if self.is_na: if getattr(self.block, 'is_object', False): # we want to avoid filling with np.nan if we are # using None; we already know that we are all # nulls values = self.block.values.ravel(order='K') if len(values) and values[0] is None: fill_value = None if getattr(self.block, 'is_datetimetz', False): pass elif getattr(self.block, 'is_categorical', False): pass elif getattr(self.block, 'is_sparse', False): pass else: missing_arr = np.empty(self.shape, dtype=empty_dtype) missing_arr.fill(fill_value) return missing_arr if not self.indexers: if not self.block._can_consolidate: # preserve these for validation in _concat_compat return self.block.values if self.block.is_bool: # External code requested filling/upcasting, bool values must # be upcasted to object to avoid being upcasted to numeric. values = self.block.astype(np.object_).values elif self.block.is_categorical: values = self.block.values else: # No dtype upcasting is done here, it will be performed during # concatenation itself. values = self.block.get_values() if not self.indexers: # If there's no indexing to be done, we want to signal outside # code that this array must be copied explicitly. This is done # by returning a view and checking `retval.base`. values = values.view() else: for ax, indexer in self.indexers.items(): values = algos.take_nd(values, indexer, axis=ax, fill_value=fill_value) return values def _fast_count_smallints(arr): """Faster version of set(arr) for sequences of small numbers.""" if len(arr) == 0: # Handle empty arr case separately: numpy 1.6 chokes on that. return np.empty((0, 2), dtype=arr.dtype) else: counts = np.bincount(arr.astype(np.int_)) nz = counts.nonzero()[0] return np.c_[nz, counts[nz]] def _preprocess_slice_or_indexer(slice_or_indexer, length, allow_fill): if isinstance(slice_or_indexer, slice): return 'slice', slice_or_indexer, lib.slice_len(slice_or_indexer, length) elif (isinstance(slice_or_indexer, np.ndarray) and slice_or_indexer.dtype == np.bool_): return 'mask', slice_or_indexer, slice_or_indexer.sum() else: indexer = np.asanyarray(slice_or_indexer, dtype=np.int64) if not allow_fill: indexer = maybe_convert_indices(indexer, length) return 'fancy', indexer, len(indexer)
bsd-3-clause
4,438,622,254,422,599,700
32.88472
79
0.539857
false
4.2034
false
false
false
MSLNZ/msl-equipment
msl/examples/equipment/energetiq/eq99.py
1
1074
""" Example showing how to communicate with an EQ-99 Manager from Energetiq. """ import time from msl.equipment import ( EquipmentRecord, ConnectionRecord, Backend, ) record = EquipmentRecord( manufacturer='Energetiq', model='EQ-99', connection=ConnectionRecord( address='COM6', # update for your controller backend=Backend.MSL, ) ) # connect to the Manager eq99 = record.connect() # get the total number of running hours of the lamp print('Lamp ON time is {} hours'.format(eq99.get_lamptime())) # turn the output on eq99.set_output(True) # wait for the lamp to turn on t0 = time.time() while True: value, bitmask = eq99.condition_register() print('Elapsed time: {:3.0f} seconds, bitmask: {}'.format(time.time() - t0, bitmask)) if bitmask[5] == '1': # index 5 represents the "Lamp on" state print('Lamp is on') break time.sleep(1) # do other stuff while the lamp is on time.sleep(10) # turn the output off when done eq99.set_output(False) # disconnect from the Manager eq99.disconnect()
mit
-7,131,231,820,671,970,000
21.851064
89
0.676909
false
3.215569
false
false
false
btjhjeon/ConversationalQA
skipthoughts/decoding/train.py
2
7706
""" Main trainer function """ import theano import theano.tensor as tensor import cPickle as pkl import numpy import copy import os import warnings import sys import time import homogeneous_data from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams from collections import defaultdict from utils import * from layers import get_layer, param_init_fflayer, fflayer, param_init_gru, gru_layer from optim import adam from model import init_params, build_model, build_sampler from vocab import load_dictionary from search import gen_sample # main trainer def trainer(X, C, stmodel, dimctx=4800, #vector dimensionality dim_word=620, # word vector dimensionality dim=1600, # the number of GRU units encoder='gru', decoder='gru', doutput=False, max_epochs=5, dispFreq=1, decay_c=0., grad_clip=5., n_words=40000, maxlen_w=100, optimizer='adam', batch_size = 16, saveto='/u/rkiros/research/semhash/models/toy.npz', dictionary='/ais/gobi3/u/rkiros/bookgen/book_dictionary_large.pkl', embeddings=None, saveFreq=1000, sampleFreq=100, reload_=False): # Model options model_options = {} model_options['dimctx'] = dimctx model_options['dim_word'] = dim_word model_options['dim'] = dim model_options['encoder'] = encoder model_options['decoder'] = decoder model_options['doutput'] = doutput model_options['max_epochs'] = max_epochs model_options['dispFreq'] = dispFreq model_options['decay_c'] = decay_c model_options['grad_clip'] = grad_clip model_options['n_words'] = n_words model_options['maxlen_w'] = maxlen_w model_options['optimizer'] = optimizer model_options['batch_size'] = batch_size model_options['saveto'] = saveto model_options['dictionary'] = dictionary model_options['embeddings'] = embeddings model_options['saveFreq'] = saveFreq model_options['sampleFreq'] = sampleFreq model_options['reload_'] = reload_ print model_options # reload options if reload_ and os.path.exists(saveto): print 'reloading...' + saveto with open('%s.pkl'%saveto, 'rb') as f: models_options = pkl.load(f) # load dictionary print 'Loading dictionary...' worddict = load_dictionary(dictionary) # Load pre-trained embeddings, if applicable if embeddings != None: print 'Loading embeddings...' with open(embeddings, 'rb') as f: embed_map = pkl.load(f) dim_word = len(embed_map.values()[0]) model_options['dim_word'] = dim_word preemb = norm_weight(n_words, dim_word) pz = defaultdict(lambda : 0) for w in embed_map.keys(): pz[w] = 1 for w in worddict.keys()[:n_words-2]: if pz[w] > 0: preemb[worddict[w]] = embed_map[w] else: preemb = None # Inverse dictionary word_idict = dict() for kk, vv in worddict.iteritems(): word_idict[vv] = kk word_idict[0] = '<eos>' word_idict[1] = 'UNK' print 'Building model' params = init_params(model_options, preemb=preemb) # reload parameters if reload_ and os.path.exists(saveto): params = load_params(saveto, params) tparams = init_tparams(params) trng, inps, cost = build_model(tparams, model_options) print 'Building sampler' f_init, f_next = build_sampler(tparams, model_options, trng) # before any regularizer print 'Building f_log_probs...', f_log_probs = theano.function(inps, cost, profile=False) print 'Done' # weight decay, if applicable if decay_c > 0.: decay_c = theano.shared(numpy.float32(decay_c), name='decay_c') weight_decay = 0. for kk, vv in tparams.iteritems(): weight_decay += (vv ** 2).sum() weight_decay *= decay_c cost += weight_decay # after any regularizer print 'Building f_cost...', f_cost = theano.function(inps, cost, profile=False) print 'Done' print 'Done' print 'Building f_grad...', grads = tensor.grad(cost, wrt=itemlist(tparams)) f_grad_norm = theano.function(inps, [(g**2).sum() for g in grads], profile=False) f_weight_norm = theano.function([], [(t**2).sum() for k,t in tparams.iteritems()], profile=False) if grad_clip > 0.: g2 = 0. for g in grads: g2 += (g**2).sum() new_grads = [] for g in grads: new_grads.append(tensor.switch(g2 > (grad_clip**2), g / tensor.sqrt(g2) * grad_clip, g)) grads = new_grads lr = tensor.scalar(name='lr') print 'Building optimizers...', # (compute gradients), (updates parameters) f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost) print 'Optimization' # Each sentence in the minibatch have same length (for encoder) train_iter = homogeneous_data.HomogeneousData([X,C], batch_size=batch_size, maxlen=maxlen_w) uidx = 0 lrate = 0.01 for eidx in xrange(max_epochs): n_samples = 0 print 'Epoch ', eidx for x, c in train_iter: n_samples += len(x) uidx += 1 x, mask, ctx = homogeneous_data.prepare_data(x, c, worddict, stmodel, maxlen=maxlen_w, n_words=n_words) if x == None: print 'Minibatch with zero sample under length ', maxlen_w uidx -= 1 continue ud_start = time.time() cost = f_grad_shared(x, mask, ctx) f_update(lrate) ud = time.time() - ud_start if numpy.isnan(cost) or numpy.isinf(cost): print 'NaN detected' return 1., 1., 1. if numpy.mod(uidx, dispFreq) == 0: print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost, 'UD ', ud if numpy.mod(uidx, saveFreq) == 0: print 'Saving...', params = unzip(tparams) numpy.savez(saveto, history_errs=[], **params) pkl.dump(model_options, open('%s.pkl'%saveto, 'wb')) print 'Done' if numpy.mod(uidx, sampleFreq) == 0: x_s = x mask_s = mask ctx_s = ctx for jj in xrange(numpy.minimum(10, len(ctx_s))): sample, score = gen_sample(tparams, f_init, f_next, ctx_s[jj].reshape(1, model_options['dimctx']), model_options, trng=trng, k=1, maxlen=100, stochastic=False, use_unk=False) print 'Truth ',jj,': ', for vv in x_s[:,jj]: if vv == 0: break if vv in word_idict: print word_idict[vv], else: print 'UNK', print for kk, ss in enumerate([sample[0]]): print 'Sample (', kk,') ', jj, ': ', for vv in ss: if vv == 0: break if vv in word_idict: print word_idict[vv], else: print 'UNK', print print 'Seen %d samples'%n_samples if __name__ == '__main__': pass
mit
-6,543,742,380,335,079,000
31.242678
133
0.536854
false
3.773751
false
false
false
sljrobin/dotfiles
dzen2/.dzen2/scripts/Music.py
1
6137
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Filename: Music.py # Description: Functions for Music # Author: Simon L. J. Robin | https://sljrobin.org # Created: 2016-09-11 22:50:11 # Modified: 2016-09-25 23:50:25 # ################################################################################ import os import subprocess import sys sys.path.insert(0, os.environ['HOME'] + "/.dzen2/lib") import Colors import Icons ################################################################################ class Music(object): """Functions for Music. """ def __format_metadata(self, color_artist, color_title, color_album,\ color_percentage, color_repeat, color_random): """Formats the song's metadata for printing. Args: color_artist: Artist's color. color_title: Title's color. color_album: Album's color. color_percentage: Percentage's color. color_repeat: Repeat's color. color_random: Random's color. """ # Getting song's metadata song_metadata = self.__get_metadata() # Metadata list song_artist = song_metadata[0] # Artist song_album = song_metadata[1] # Album song_title = song_metadata[2] # Title song_time = song_metadata[3] # Time song_percentage = song_metadata[4] # Percentage song_repeat = song_metadata[5] # Repeat song_random = song_metadata[6] # Random # Artist sys.stdout.write("^fg(%s)[^fg()" % Colors.CL_BASE03) sys.stdout.write("^fg(%s)%s^fg()" % (color_artist, song_artist)) sys.stdout.write("^fg(%s)][^fg()" % Colors.CL_BASE03) # Title sys.stdout.write("^fg(%s)%s^fg()" % (color_title, song_title)) sys.stdout.write("^fg(%s)][^fg()" % Colors.CL_BASE03) # Album sys.stdout.write("^fg(%s)%s^fg()" % (color_album, song_album)) sys.stdout.write("^fg(%s)][^fg()" % Colors.CL_BASE03) # Time / Percentage sys.stdout.write("^fg(%s)%s %s%%^fg()" % (color_percentage,\ song_time, song_percentage)) sys.stdout.write("^fg(%s)]^fg()" % Colors.CL_BASE03) # Repeat if song_repeat != "off": sys.stdout.write("^fg(%s)[^fg()" % Colors.CL_BASE03) sys.stdout.write("^fg(%s)R^fg()" % color_repeat) sys.stdout.write("^fg(%s)]^fg()" % Colors.CL_BASE03) # Random if song_random != "off": sys.stdout.write("^fg(%s)[^fg()" % Colors.CL_BASE03) sys.stdout.write("^fg(%s)~^fg()" % color_random) sys.stdout.write("^fg(%s)]^fg()" % Colors.CL_BASE03) ############################################################################ def __get_metadata(self): """Gets the song's metadata. Returns: Song's metadata. """ # Executing command and parsing output metadata_format = '%artist%\\n%album%\\n%title%\\n%track%' cmd = subprocess.Popen(['mpc', '--format', metadata_format],\ stdout=subprocess.PIPE) cmd_out, cmd_err = cmd.communicate() cmd_outparsed = cmd_out.split('\n') # Getting status status = self.__get_music_status() # Getting Artist / Album / Title artist = cmd_outparsed[0] album = cmd_outparsed[1] title = cmd_outparsed[2] # Gettting Time / Percentage / Repeat / Random for line in cmd_outparsed: if "#" in line: # Time if status == "playing": time = line.split(' ')[4] elif status == "paused": time = line.split(' ')[5] # Percentage if status == "playing": percentage = line.split(' ')[5].translate(None, "()%") elif status == "paused": percentage = line.split(' ')[6].translate(None, "()%") if "volume" in line: # Repeat repeat = line.split(' ')[5] # Random random = line.split(' ')[9] # Parsing metadata metadata = [artist, album, title,\ time, percentage,\ repeat, random] return metadata ############################################################################ def __get_music_status(self): """Gets MPC status. Returns: MPC status. """ # Executing command and parsing output cmd = subprocess.Popen(['mpc'], stdout=subprocess.PIPE) cmd_out, cmd_err = cmd.communicate() cmd_outparsed = cmd_out.split('\n') # Looking for MPC status status_line = cmd_outparsed[1] for line in cmd_outparsed: if "playing" in status_line: status = "playing" return status elif "paused" in status_line: status = "paused" return status else: status = "stopped" return status ############################################################################ def show_song(self): """Shows information about the current playing song. """ icon = Icons.Icons() # Icon # Getting status status = self.__get_music_status() if status == "playing": icon.show_icon("music_play") self.__format_metadata(Colors.CL_BASE0B, Colors.CL_BASE0D,\ Colors.CL_BASE0A, Colors.CL_BASE08,\ Colors.CL_BASE09, Colors.CL_BASE0E) elif status == "paused": icon.show_icon("music_pause") self.__format_metadata(Colors.CL_BASE04, Colors.CL_BASE04,\ Colors.CL_BASE04, Colors.CL_BASE04,\ Colors.CL_BASE04, Colors.CL_BASE04) else: icon.show_icon("music_stop")
gpl-2.0
-8,595,044,930,207,759,000
36.193939
80
0.473032
false
4.053501
false
false
false
migasfree/migasfree
setup.py
1
6056
# -*- coding: UTF-8 -*- # Copyright (c) 2011-2020 Jose Antonio Chavarría <jachavar@gmail.com> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. __author__ = 'Jose Antonio Chavarría' __license__ = 'GPLv3' # http://guide.python-distribute.org/ # python setup.py --help-commands # python setup.py build # python setup.py sdist # python setup.py bdist --format=rpm # python setup.py --command-packages=stdeb.command bdist_deb (python-stdeb) # http://zetcode.com/articles/packageinpython/ # TODO https://wiki.ubuntu.com/PackagingGuide/Python # TODO https://help.ubuntu.com/community/PythonRecipes/DebianPackage import sys if not hasattr(sys, 'version_info') or sys.version_info < (3, 5, 0, 'final'): raise SystemExit('migasfree-server requires Python 3.5 or later.') import os from distutils.core import setup from distutils.command.install_data import install_data PATH = os.path.dirname(__file__) README = open(os.path.join(PATH, 'README.md')).read() VERSION = __import__('migasfree').__version__ class InstallData(install_data): def _find_other_files(self): data_files = [] for directory in ['packages']: for root, _, files in os.walk(directory): final_files = [] for archive in files: final_files.append(os.path.join(root, archive)) data_files.append( ( '/usr/share/%s' % os.path.join('migasfree-server', root), final_files ) ) return data_files def _find_doc_files(self): data_files = [] for root, _, files in os.walk('doc'): # first level does not matter if root == 'doc': continue final_files = [] for archive in files: final_files.append(os.path.join(root, archive)) # remove doc directory from root tmp_dir = root.replace('doc/', '', 1) data_files.append( ( '/usr/share/doc/%s' % os.path.join( 'migasfree-server', tmp_dir ), final_files ) ) return data_files def run(self): self.data_files.extend(self._find_other_files()) self.data_files.extend(self._find_doc_files()) install_data.run(self) setup( name='migasfree-server', version=VERSION, description='migasfree-server is a Django app to manage systems management', long_description=README, license='GPLv3', author='Alberto Gacías', author_email='alberto@migasfree.org', url='http://www.migasfree.org/', platforms=['Linux'], packages=[ 'migasfree', 'migasfree.server', 'migasfree.server.admin', 'migasfree.server.migrations', 'migasfree.server.models', 'migasfree.server.templatetags', 'migasfree.server.views', 'migasfree.catalog', 'migasfree.catalog.migrations', 'migasfree.settings', 'migasfree.stats', 'migasfree.stats.views', ], package_dir={ 'migasfree': 'migasfree', 'migasfree.server': 'migasfree/server', 'migasfree.server.admin': 'migasfree/server/admin', 'migasfree.server.migrations': 'migasfree/server/migrations', 'migasfree.server.models': 'migasfree/server/models', 'migasfree.server.templatetags': 'migasfree/server/templatetags', 'migasfree.server.views': 'migasfree/server/views', 'migasfree.catalog': 'migasfree/catalog', 'migasfree.catalog.migrations': 'migasfree/catalog/migrations', 'migasfree.stats': 'migasfree/stats', 'migasfree.stats.views': 'migasfree/stats/views', }, cmdclass={ 'install_data': InstallData, }, package_data={ 'migasfree': [ 'i18n/*/LC_MESSAGES/*.mo', 'server/fixtures/*', 'server/static/ajax-select/*.css', 'server/static/ajax-select/*.js', 'server/static/ajax-select/images/*', 'server/static/css/*', 'server/static/img/*', 'server/static/js/*.js', 'server/static/js/d3/*', 'server/static/fonts/*', 'server/templates/*.html', 'server/templates/*/*.html', 'server/templates/*/*/*.html', 'server/templates/*/*/*/*.html', 'catalog/static/css/*', 'catalog/static/img/*', 'catalog/static/js/*.js', 'catalog/static/js/locales/*.js', ], }, data_files=[ ('/usr/share/doc/migasfree-server', [ 'AUTHORS', 'COPYING', 'INSTALL', 'MANIFEST.in', 'README.md', ]), ], # http://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Framework :: Django', 'License :: OSI Approved :: GNU General Public License (GPL)', 'Natural Language :: English', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules', ], )
gpl-3.0
-6,168,221,606,599,370,000
32.076503
81
0.577895
false
3.843175
false
false
false
ganga-devs/ganga
ganga/GangaCore/Utility/execute.py
1
13130
import os import base64 import subprocess import threading import pickle as pickle import signal from copy import deepcopy from GangaCore.Core.exceptions import GangaException from GangaCore.Utility.logging import getLogger logger = getLogger() def bytes2string(obj): if isinstance(obj, bytes): return obj.decode("utf-8") if isinstance(obj, dict): return {bytes2string(key): bytes2string(value) for key, value in obj.items()} if isinstance(obj, list): return [bytes2string(item) for item in obj] if isinstance(obj, tuple): return tuple(bytes2string(item) for item in obj) return obj def env_update_script(indent=''): """ This function creates an extension to a python script, or just a python script to be run at the end of the piece of code we're interested in. This piece of code will dump the environment after the execution has taken place into a temporary file. This returns a tuple of the script it's generated and the pipes file handlers used to store the end in memory Args: indent (str): This is the indent to apply to the script if this script is to be appended to a python file """ fdread, fdwrite = os.pipe() os.set_inheritable(fdwrite, True) this_script = ''' import os import pickle as pickle with os.fdopen(###FD_WRITE###,'wb') as envpipe: pickle.dump(dict(os.environ), envpipe, 2) ''' from GangaCore.GPIDev.Lib.File.FileUtils import indentScript script = indentScript(this_script, '###INDENT###') script = script.replace('###INDENT###' , indent )\ .replace('###FD_READ###' , str(fdread) )\ .replace('###FD_WRITE###', str(fdwrite)) return script, (fdread, fdwrite) def python_wrapper(command, python_setup='', update_env=False, indent=''): """ This section of code wraps the given python command inside a small wrapper class to allow us to control the output. Optionally we can also append to the end of this file a script to allow us to extract the environment after we've finished executing our command. Args: command (str): This is the python code to be executed (can be multi-line) python_setup (str): This is some python code to be executed before the python code in question (aka a script header. update_env (bool): Contol whether we want to capture the env after running indent (str): This allows for an indent to be applied to the script so it can be placed inside other python scripts This returns the file handler objects for the env_update_script, the python wrapper itself and the script which has been generated to be run """ fdread, fdwrite = os.pipe() os.set_inheritable(fdwrite, True) this_script = ''' from __future__ import print_function import os, sys, traceback import pickle as pickle with os.fdopen(###PKL_FDWRITE###, 'wb') as PICKLE_STREAM: def output(data): pickle.dump(data, PICKLE_STREAM, 2) local_ns = {'pickle' : pickle, 'PICKLE_STREAM' : PICKLE_STREAM, 'output' : output} try: full_command = """###SETUP### """ full_command += """ \n###COMMAND### """ exec(full_command, local_ns) except: pickle.dump(traceback.format_exc(), PICKLE_STREAM, 2) ''' from GangaCore.GPIDev.Lib.File.FileUtils import indentScript script = indentScript(this_script, '###INDENT###') script = script.replace('###INDENT###' , indent )\ .replace('###SETUP###' , python_setup.strip())\ .replace('###COMMAND###' , command.strip() )\ .replace('###PKL_FDREAD###' , str(fdread) )\ .replace('###PKL_FDWRITE###', str(fdwrite) ) env_file_pipes = None if update_env: update_script, env_file_pipes = env_update_script() script += update_script return script, (fdread, fdwrite), env_file_pipes def __reader(pipes, output_ns, output_var, require_output): """ This function un-pickles a pickle from a file and return it as an element in a dictionary Args: pipes (tuple): This is a tuple containing the (read_pipe, write_pipe) from os.pipes containing the pickled object output_ns (dict): This is the dictionary we should put the un-pickled object output_var (str): This is the key we should use to determine where to put the object in the output_ns require_output (bool): Should the reader give a warning if the pickle stream is not readable """ os.close(pipes[1]) with os.fdopen(pipes[0], 'rb') as read_file: try: # rcurrie this deepcopy hides a strange bug that the wrong dict is sometimes returned from here. Remove at your own risk output_ns[output_var] = deepcopy(pickle.load(read_file)) except UnicodeDecodeError: output_ns[output_var] = deepcopy(bytes2string(pickle.load(read_file, encoding="bytes"))) except Exception as err: if require_output: logger.error('Error getting output stream from command: %s', err) def __timeout_func(process, timed_out): """ This function is used to kill functions which are timing out behind the scenes and taking longer than a threshold time to execute. Args: process (class): This is a subprocess class which knows of the pid of wrapping thread around the command we want to kill timed_out (Event): A threading event to be set when the command has timed out """ if process.returncode is None: timed_out.set() try: os.killpg(process.pid, signal.SIGKILL) except Exception as e: logger.error("Exception trying to kill process: %s" % e) def start_timer(p, timeout): """ Function to construct and return the timer thread and timed_out Args: p (object): This is the subprocess object which will be used to run the command of interest timeout (int): This is the timeout in seconds after which the command will be killed """ # Start the background thread to catch timeout events timed_out = threading.Event() timer = threading.Timer(timeout, __timeout_func, args=(p, timed_out)) timer.daemon = True if timeout is not None: timer.start() return timer, timed_out def update_thread(pipes, thread_output, output_key, require_output): """ Function to construct and return background thread used to read a pickled object into the thread_output for updating the environment after executing a users code Args: started_threads (list): List containing background threads which have been started pipes (tuple): Tuple containing (read_pipe, write_pipe) which is the pipe the pickled obj is written to thread_output (dict): Dictionary containing the thread outputs which are used after executing the command output_key (str): Used to know where in the thread_output to store the output of this thread require_output (bool): Does the reader require valid pickled output. """ ev = threading.Thread(target=__reader, args=(pipes, thread_output, output_key, require_output)) ev.daemon = True ev.start() return ev def execute(command, timeout=None, env=None, cwd=None, shell=True, python_setup='', eval_includes=None, update_env=False, ): """ Execute an external command. This will execute an external python command when shell=False or an external bash command when shell=True Args: command (str): This is the command that we want to execute in string format timeout (int): This is the timeout which we want to assign to a function and it will be killed if it runs for longer than n seconds env (dict): This is the environment to use for launching the new command cwd (str): This is the cwd the command is to be executed within. shell (bool): True for a bash command to be executed, False for a command to be executed within Python python_setup (str): A python command to be executed beore the main command is eval_includes (str): An string used to construct an environment which, if passed, is used to eval the stdout into a python object update_env (bool): Should we update the env being passed to what the env was after the command finished running """ if update_env and env is None: raise GangaException('Cannot update the environment if None given.') if not shell: # We want to run a python command inside a small Python wrapper stream_command = 'python -' command, pkl_file_pipes, env_file_pipes = python_wrapper(command, python_setup, update_env) else: # We want to run a shell command inside a _NEW_ shell environment. # i.e. What I run here I expect to behave in the same way from the command line after I exit Ganga stream_command = "bash " if update_env: # note the exec gets around the problem of indent and base64 gets # around the \n command_update, env_file_pipes = env_update_script() command += ''';python -c "import base64;exec(base64.b64decode(%s))"''' % base64.b64encode(command_update.encode("utf-8")) # Some minor changes to cleanup the getting of the env if env is None: env = os.environ # Construct the object which will contain the environment we want to run the command in p = subprocess.Popen(stream_command, shell=True, env=env, cwd=cwd, preexec_fn=os.setsid, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, close_fds=False) # This is where we store the output thread_output = {} # Start the timer thread used to kill commands which have likely stalled timer, timed_out = start_timer(p, timeout) if update_env: env_output_key = 'env_output' update_env_thread = update_thread(env_file_pipes, thread_output, env_output_key, require_output=True) if not shell: pkl_output_key = 'pkl_output' update_pkl_thread = update_thread(pkl_file_pipes, thread_output, pkl_output_key, require_output=False) # Execute the main command of interest logger.debug("Executing Command:\n'%s'" % str(command)) stdout, stderr = p.communicate(command) # Close the timeout watching thread logger.debug("stdout: %s" % stdout) logger.debug("stderr: %s" % stderr) timer.cancel() if timeout is not None: timer.join() # Finish up and decide what to return if stderr != '': # this is still debug as using the environment from dirac default_env maked a stderr message dump out # even though it works logger.debug(stderr) if timed_out.isSet(): return 'Command timed out!' # Decode any pickled objects from disk if update_env: update_env_thread.join() if env_output_key in thread_output: env.update(thread_output[env_output_key]) else: logger.error("Expected to find the updated env after running a command") logger.error("Command: %s" % command) logger.error("stdout: %s" % stdout) logger.error("stderr: %s" % stderr) raise RuntimeError("Missing update env after running command") if not shell and not eval_includes: update_pkl_thread.join() if pkl_output_key in thread_output: return thread_output[pkl_output_key] stdout_temp = None try: # If output if stdout: if isinstance(stdout, bytes): stdout_temp = pickle.loads(stdout) else: try: stdout_temp = pickle.loads(stdout.encode("utf-8")) except pickle.UnpicklingError: stdout_temp = pickle.loads(stdout.encode("latin1")) # Downsides to wanting to be explicit in how this failed is you need to know all the ways it can! except (pickle.UnpicklingError, EOFError, ValueError) as err: if not shell: log = logger.error else: log = logger.debug log("Command Failed to Execute:\n%s" % command) log("Command Output is:\n%s" % stdout) log("Error received:\n%s" % err) if not stdout_temp: local_ns = locals() if isinstance(eval_includes, str): try: exec(eval_includes, {}, local_ns) except: logger.debug("Failed to eval the env, can't eval stdout") pass if isinstance(stdout, str) and stdout: try: stdout_temp = eval(stdout, {}, local_ns) except Exception as err2: logger.debug("Err2: %s" % str(err2)) pass if stdout_temp: stdout = stdout_temp return stdout
gpl-2.0
-4,757,166,225,924,737,000
42.190789
144
0.640823
false
4.168254
false
false
false
valmynd/MediaFetcher
src/plugins/youtube_dl/youtube_dl/extractor/hitbox.py
1
5692
# coding: utf-8 from __future__ import unicode_literals import re from .common import InfoExtractor from ..utils import ( clean_html, parse_iso8601, float_or_none, int_or_none, compat_str, determine_ext, ) class HitboxIE(InfoExtractor): IE_NAME = 'hitbox' _VALID_URL = r'https?://(?:www\.)?(?:hitbox|smashcast)\.tv/(?:[^/]+/)*videos?/(?P<id>[0-9]+)' _TESTS = [{ 'url': 'http://www.hitbox.tv/video/203213', 'info_dict': { 'id': '203213', 'title': 'hitbox @ gamescom, Sub Button Hype extended, Giveaway - hitbox News Update with Oxy', 'alt_title': 'hitboxlive - Aug 9th #6', 'description': '', 'ext': 'mp4', 'thumbnail': r're:^https?://.*\.jpg$', 'duration': 215.1666, 'resolution': 'HD 720p', 'uploader': 'hitboxlive', 'view_count': int, 'timestamp': 1407576133, 'upload_date': '20140809', 'categories': ['Live Show'], }, 'params': { # m3u8 download 'skip_download': True, }, }, { 'url': 'https://www.smashcast.tv/hitboxlive/videos/203213', 'only_matching': True, }] def _extract_metadata(self, url, video_id): thumb_base = 'https://edge.sf.hitbox.tv' metadata = self._download_json( '%s/%s' % (url, video_id), video_id, 'Downloading metadata JSON') date = 'media_live_since' media_type = 'livestream' if metadata.get('media_type') == 'video': media_type = 'video' date = 'media_date_added' video_meta = metadata.get(media_type, [])[0] title = video_meta.get('media_status') alt_title = video_meta.get('media_title') description = clean_html( video_meta.get('media_description') or video_meta.get('media_description_md')) duration = float_or_none(video_meta.get('media_duration')) uploader = video_meta.get('media_user_name') views = int_or_none(video_meta.get('media_views')) timestamp = parse_iso8601(video_meta.get(date), ' ') categories = [video_meta.get('category_name')] thumbs = [{ 'url': thumb_base + video_meta.get('media_thumbnail'), 'width': 320, 'height': 180 }, { 'url': thumb_base + video_meta.get('media_thumbnail_large'), 'width': 768, 'height': 432 }] return { 'id': video_id, 'title': title, 'alt_title': alt_title, 'description': description, 'ext': 'mp4', 'thumbnails': thumbs, 'duration': duration, 'uploader': uploader, 'view_count': views, 'timestamp': timestamp, 'categories': categories, } def _real_extract(self, url): video_id = self._match_id(url) player_config = self._download_json( 'https://www.smashcast.tv/api/player/config/video/%s' % video_id, video_id, 'Downloading video JSON') formats = [] for video in player_config['clip']['bitrates']: label = video.get('label') if label == 'Auto': continue video_url = video.get('url') if not video_url: continue bitrate = int_or_none(video.get('bitrate')) if determine_ext(video_url) == 'm3u8': if not video_url.startswith('http'): continue formats.append({ 'url': video_url, 'ext': 'mp4', 'tbr': bitrate, 'format_note': label, 'protocol': 'm3u8_native', }) else: formats.append({ 'url': video_url, 'tbr': bitrate, 'format_note': label, }) self._sort_formats(formats) metadata = self._extract_metadata( 'https://www.smashcast.tv/api/media/video', video_id) metadata['formats'] = formats return metadata class HitboxLiveIE(HitboxIE): IE_NAME = 'hitbox:live' _VALID_URL = r'https?://(?:www\.)?(?:hitbox|smashcast)\.tv/(?P<id>[^/?#&]+)' _TESTS = [{ 'url': 'http://www.hitbox.tv/dimak', 'info_dict': { 'id': 'dimak', 'ext': 'mp4', 'description': 'md5:c9f80fa4410bc588d7faa40003fc7d0e', 'timestamp': int, 'upload_date': compat_str, 'title': compat_str, 'uploader': 'Dimak', }, 'params': { # live 'skip_download': True, }, }, { 'url': 'https://www.smashcast.tv/dimak', 'only_matching': True, }] @classmethod def suitable(cls, url): return False if HitboxIE.suitable(url) else super(HitboxLiveIE, cls).suitable(url) def _real_extract(self, url): video_id = self._match_id(url) player_config = self._download_json( 'https://www.smashcast.tv/api/player/config/live/%s' % video_id, video_id) formats = [] cdns = player_config.get('cdns') servers = [] for cdn in cdns: # Subscribe URLs are not playable if cdn.get('rtmpSubscribe') is True: continue base_url = cdn.get('netConnectionUrl') host = re.search(r'.+\.([^\.]+\.[^\./]+)/.+', base_url).group(1) if base_url not in servers: servers.append(base_url) for stream in cdn.get('bitrates'): label = stream.get('label') if label == 'Auto': continue stream_url = stream.get('url') if not stream_url: continue bitrate = int_or_none(stream.get('bitrate')) if stream.get('provider') == 'hls' or determine_ext(stream_url) == 'm3u8': if not stream_url.startswith('http'): continue formats.append({ 'url': stream_url, 'ext': 'mp4', 'tbr': bitrate, 'format_note': label, 'rtmp_live': True, }) else: formats.append({ 'url': '%s/%s' % (base_url, stream_url), 'ext': 'mp4', 'tbr': bitrate, 'rtmp_live': True, 'format_note': host, 'page_url': url, 'player_url': 'http://www.hitbox.tv/static/player/flowplayer/flowplayer.commercial-3.2.16.swf', }) self._sort_formats(formats) metadata = self._extract_metadata( 'https://www.smashcast.tv/api/media/live', video_id) metadata['formats'] = formats metadata['is_live'] = True metadata['title'] = self._live_title(metadata.get('title')) return metadata
gpl-3.0
-2,053,292,684,659,356,200
25.598131
102
0.608046
false
2.767137
true
false
false
RedFantom/GSF-Parser
frames/strategies.py
1
14275
""" Author: RedFantom Contributors: Daethyra (Naiii) and Sprigellania (Zarainia) License: GNU GPLv3 as in LICENSE Copyright (C) 2016-2018 RedFantom """ # Standard Library from ast import literal_eval import sys # UI Libraries import tkinter as tk from tkinter import ttk from tkinter import messagebox # Project Modules from widgets.strategy.list import StrategiesList from widgets.strategy.map import Map from toplevels.strategy.settings import SettingsToplevel from toplevels.strategy.map import MapToplevel class StrategiesFrame(ttk.Frame): """ Frame to display a StrategiesList and Map widget to allow the user to create and edit Strategies with custom item in them to visualize their tactics. An interface to allow real-time Strategy editing is also provided. """ def __init__(self, *args, **kwargs): ttk.Frame.__init__(self, *args, **kwargs) """ The two core widgets of this frame, with lots of callbacks to support the different functionality. Not all functionality is provided through callbacks, and providing any other widget than the StrategiesFrame as a master widget is inadvisable. This is the result of bad coding practices. """ self.list = StrategiesList(self, callback=self._set_phase, settings_callback=self.open_settings, frame=self) self.map = Map(self, moveitem_callback=self.list.move_item_phase, additem_callback=self.list.add_item_to_phase, canvasheight=385, canvaswidth=385) self.large = None self.settings = None self.in_map = self.map # Create the widgets to support the description section on the right of the frame. self.description_header = ttk.Label(self, text="Description", font=("default", 12), justify=tk.LEFT) self.description = tk.Text(self, width=20 if sys.platform != "linux" else 30, height=23, wrap=tk.WORD) # Bind the KeyPress event to a callback. A KeyPress is fired when *any* key is pressed on the keyboard. self.description.bind("<KeyPress>", self.set_description_callback) self.description_scroll = ttk.Scrollbar(self, orient=tk.VERTICAL, command=self.description.yview) self.description.config(yscrollcommand=self.description_scroll.set) self.client = None self.description_update_task = None # This frame calls grid_widgets in its __init__ function self.grid_widgets() def open_settings(self, *args): """ Callback for the Settings button to open a SettingsToplevel. Only one SettingsToplevel is allowed to be open at any given time, to prevent any problems with the Client/Server functionality. If a SettingsToplevel is already open, lifts the SettingsToplevel to the front so it is visible to the user. """ if self.settings: self.settings.lift() return """ The StrategiesFrame instance is passed as an argument because not all functionality is provided through callbacks, but some code is directly executed on the StrategiesFrame instance. Bad coding practices yet again. """ self.settings = SettingsToplevel(master=self, disconnect_callback=self.disconnect_callback) def grid_widgets(self): """It is pretty obvious what this does""" self.list.grid(column=0, row=1, sticky="nswe", rowspan=2) self.map.grid(column=1, row=1, sticky="nswe", pady=5, rowspan=2) self.description_header.grid(column=3, columnspan=2, sticky="w", pady=(5, 0), padx=5, row=1) self.description.grid(column=3, row=2, sticky="nwe", padx=5, pady=(0, 5)) self.description_scroll.grid(column=4, row=2, sticky="ns") def _set_phase(self, phase): """ Callback for the StrategiesList widget to call when a new Phase is selected. :param phase: Phase name """ for map in self.maps: map.update_map(self.list.db[self.list.selected_strategy][phase]) return def set_description_callback(self, *args): """Delay for issue #142""" self.after(5, self.set_description) def set_description(self): """ Update the description of a certain item in the database. Also immediately saves the database, so the description is automatically saved when updated. """ if self.client and self.settings.client_permissions[self.client.name][1] is False: self.description.delete("1.0", tk.END) self.description.insert("1.0", self.list.db[self.list.selected_strategy][self.list.selected_phase].description) if self.list.selected_phase is not None: self.list.db[self.list.selected_strategy][self.list.selected_phase]. \ description = self.description.get("1.0", tk.END) self.list.db.save_database() else: self.list.db[self.list.selected_strategy].description = self.description.get("1.0", tk.END) self.list.db.save_database() if self.settings is not None: allowed = self.settings.client_permissions[self.client.name][1] if self.client and (allowed is True or allowed == "True" or allowed == "Master"): self.send_description() def send_description(self): """ Function to make sure that the description only gets sent two seconds after stopping typing when editing it, to lower bandwidth requirements. """ if self.description_update_task: self.after_cancel(self.description_update_task) self.description_update_task = self.after( 2000, lambda: self.client.update_description( self.list.selected_strategy, self.list.selected_phase, self.description.get("1.0", tk.END))) def show_large(self): """ Callback for the Edit (large map)-Button of the StrategiesList widget to open a larger map in a Toplevel (the MapToplevel from toplevels.strategy_toplevels) """ self.large = MapToplevel(frame=self) if self.list.selected_phase is None: return self.large.map.update_map(self.list.db[self.list.selected_strategy][self.list.selected_phase]) # If the instance is connected to a network, then the Map in the MapToplevel should know about it. if self.client: self.large.map.client = self.client def client_connected(self, client): """ Callback for the SettingsToplevel (when open) to call when a Client object is connected to a network. Sets the client attribute for this instance, calls another callback, sets the client attribute for the Map instance and *starts the Client Thread to start the functionality of the Client*. """ self.client = client self.list.client_connected(client) self.map.client = self.client if self.in_map: self.in_map.client = self.client self.client.start() def insert_callback(self, command, args): """ Callback that has numerous functions: - Before doing anything checks if the Client object is valid for operations to be performed - Inserts a log entry for the command received into the ServerToplevel widget if the client is a master client - Executes the command of the network on the Map widgets with the given arguments * add_item * move_item * del_item :param command: command received from the network :param args: arguments to perform this command :return: None :raises: ValueError when the Client is not set or not logged in :raises: ValueError when the command received is unknown """ print("Insert callback received: ", command, args) # If the command is a login, then only a log should be created, and *all* Strategies in the database # are sent to the new client to ensure smooth editing of the Strategies # These are the commands with which the master can control the Server and its Clients if command == "readonly": target, allowed = args if target != self.client.name: return allowed = literal_eval(allowed) for map in self.maps: map.set_readonly(allowed) if allowed: messagebox.showinfo("Info", "You are now allowed to edit the maps.") else: messagebox.showinfo("Info", "You are no longer allowed to edit the maps.") elif command == "kicked": messagebox.showerror("Info", "You were kicked from the Server.") self.settings.disconnect_client() return elif command == "banned": messagebox.showerror("Info", "You were banned from the Server.") self.settings.disconnect_client() return elif command == "allowshare": if not isinstance(args, list): args = literal_eval(args) _, name, allowed = args if not isinstance(allowed, bool): allowed = literal_eval(allowed) self.settings.update_share(name, allowed) if name != self.client.name: return if allowed: messagebox.showinfo("Info", "You are now allowed by the Master of the Server to share your Strategies.") else: messagebox.showinfo("Info", "You are now no longer allowed by the Master of the Server to share your " "Strategies.") return elif command == "allowedit": _, name, allowed = args if not isinstance(allowed, bool): allowed = literal_eval(allowed) if name == self.client.name: if allowed: messagebox.showinfo("Info", "You are now allowed by the Master of the Server to edit the " "Strategies you have available. These edits will be shared with the " "other users.") for map in self.maps: map.set_readonly(False) else: messagebox.showinfo("Info", "You are now no longer allowed by the Master of the Server to edit the " "Strategies you have available.") for map in self.maps: map.set_readonly(True) self.settings.update_edit(name, allowed) return elif command == "master": name = args if name == self.client.name: messagebox.showinfo("Info", "You are now the Master of the Server.") self.settings.update_master() else: self.settings.new_master(name) return elif command == "master_login": name = args self.settings._login_callback(name, "master") elif command == "client_login": name = args self.settings._login_callback(name, "client") elif command == "logout": name = args self.settings._logout_callback(name) elif command == "description": _, strategy, phase, description = args if phase == "None": phase = None self.list.db[strategy][phase].description = description if strategy == self.list.selected_strategy: self.description.delete("1.0", tk.END) self.description.insert("1.0", description) # The arguments *always* include the Strategy name and Phase name for # the operations to be performed on if these do not match the selected # Strategy and Phase, then no visible changes occur on the Map widgets. # However, the saving of the changes happen before this code is reached, # and thus if the user moves to the other Strategy and Phase that the # operations were performed on, the user will still see the changed # elements elif self.list.selected_strategy != args[0] or self.list.selected_phase != args[1]: return # Perform the operations on the Map instances to make the visual changes elif command == "add_item": _, _, text, font, color = args for map in self.maps: map.add_item(text, font=font, color=color) elif command == "del_item": _, _, text = args for map in self.maps: map.canvas.delete(map.items[text][0], map.items[text][1]) elif command == "move_item": _, _, text, x, y = args for map in self.maps: rectangle, item = map.items[text] if map is self.in_map: coords = (int(int(x) / 768 * 385), int(int(y) / 768 * 385)) map.canvas.coords(item, *coords) else: map.canvas.coords(item, int(x), int(y)) map.canvas.coords(rectangle, map.canvas.bbox(item)) else: raise ValueError("Unknown command: {0} with args {1}".format(command, args)) def disconnect_callback(self): """ Callback that is called when the Client is disconnected from the Server, for whatever reason. All changes the master Client made are already saved, so this code only resets the state of the widgets in the StrategiesFrame instance. """ self.map.client = None if self.in_map: self.in_map.client = None self.client = None self.list.client = None self.map.set_readonly(False) @property def maps(self): """Return list of Map objects available in StrategiesFrame instance""" if self.in_map is not self.map: return [self.map, self.in_map] return [self.map]
gpl-3.0
-627,416,942,596,403,500
44.31746
120
0.605044
false
4.418137
false
false
false
intip/aldryn-bootstrap3
aldryn_bootstrap3/south_migrations/0022_auto__add_field_boostrap3alertplugin_icon.py
1
25863
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Boostrap3AlertPlugin.icon' db.add_column(u'aldryn_bootstrap3_boostrap3alertplugin', 'icon', self.gf(u'django.db.models.fields.CharField')(default=u'', max_length=255, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Boostrap3AlertPlugin.icon' db.delete_column(u'aldryn_bootstrap3_boostrap3alertplugin', 'icon') models = { u'aldryn_bootstrap3.boostrap3alertplugin': { 'Meta': {'object_name': 'Boostrap3AlertPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'context': (u'django.db.models.fields.CharField', [], {'default': "u'default'", 'max_length': '255'}), 'icon': (u'django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '255', 'blank': 'True'}) }, u'aldryn_bootstrap3.boostrap3blockquoteplugin': { 'Meta': {'object_name': 'Boostrap3BlockquotePlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'reverse': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'aldryn_bootstrap3.boostrap3buttonplugin': { 'Meta': {'object_name': 'Boostrap3ButtonPlugin', '_ormbases': ['cms.CMSPlugin']}, 'anchor': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'btn_block': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'btn_context': (u'django.db.models.fields.CharField', [], {'default': "u'default'", 'max_length': '255', 'blank': 'True'}), 'btn_size': (u'django.db.models.fields.CharField', [], {'default': "u'md'", 'max_length': '255', 'blank': 'True'}), 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'file': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['filer.File']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'icon_left': (u'django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '255', 'blank': 'True'}), 'icon_right': (u'django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '255', 'blank': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '256', 'blank': 'True'}), 'mailto': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'null': 'True', 'blank': 'True'}), 'page_link': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.Page']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'phone': ('django.db.models.fields.CharField', [], {'max_length': '40', 'null': 'True', 'blank': 'True'}), 'target': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'txt_context': (u'django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '255', 'blank': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'default': "u'lnk'", 'max_length': '10'}), 'url': ('django.db.models.fields.URLField', [], {'default': "u''", 'max_length': '200', 'blank': 'True'}) }, u'aldryn_bootstrap3.boostrap3iconplugin': { 'Meta': {'object_name': 'Boostrap3IconPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'icon': (u'django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '255'}) }, u'aldryn_bootstrap3.boostrap3imageplugin': { 'Meta': {'object_name': 'Boostrap3ImagePlugin', '_ormbases': ['cms.CMSPlugin']}, 'alt': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'aspect_ratio': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '10', 'blank': 'True'}), 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'file': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'+'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['filer.Image']"}), 'shape': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '64', 'blank': 'True'}), 'thumbnail': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'title': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}) }, u'aldryn_bootstrap3.boostrap3labelplugin': { 'Meta': {'object_name': 'Boostrap3LabelPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'context': (u'django.db.models.fields.CharField', [], {'default': "u'default'", 'max_length': '255'}), 'label': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '256', 'blank': 'True'}) }, u'aldryn_bootstrap3.boostrap3panelbodyplugin': { 'Meta': {'object_name': 'Boostrap3PanelBodyPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}) }, u'aldryn_bootstrap3.boostrap3panelfooterplugin': { 'Meta': {'object_name': 'Boostrap3PanelFooterPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}) }, u'aldryn_bootstrap3.boostrap3panelheadingplugin': { 'Meta': {'object_name': 'Boostrap3PanelHeadingPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'title': ('django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}) }, u'aldryn_bootstrap3.boostrap3panelplugin': { 'Meta': {'object_name': 'Boostrap3PanelPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'context': (u'django.db.models.fields.CharField', [], {'default': "u'default'", 'max_length': '255'}) }, u'aldryn_bootstrap3.boostrap3wellplugin': { 'Meta': {'object_name': 'Boostrap3WellPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), 'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'+'", 'unique': 'True', 'primary_key': 'True', 'to': "orm['cms.CMSPlugin']"}), 'size': (u'django.db.models.fields.CharField', [], {'default': "u'md'", 'max_length': '255', 'blank': 'True'}) }, u'aldryn_bootstrap3.bootstrap3columnplugin': { 'Meta': {'object_name': 'Bootstrap3ColumnPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), u'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), u'lg_col': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'lg_offset': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'lg_pull': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'lg_push': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'md_col': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'md_offset': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'md_pull': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'md_push': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'sm_col': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'sm_offset': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'sm_pull': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'sm_push': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'tag': ('django.db.models.fields.SlugField', [], {'default': "u'div'", 'max_length': '50'}), u'xs_col': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'xs_offset': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'xs_pull': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'xs_push': (u'django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}) }, u'aldryn_bootstrap3.bootstrap3rowplugin': { 'Meta': {'object_name': 'Bootstrap3RowPlugin', '_ormbases': ['cms.CMSPlugin']}, 'classes': (u'django.db.models.fields.TextField', [], {'default': "u''", 'blank': 'True'}), u'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}) }, u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'cms.cmsplugin': { 'Meta': {'object_name': 'CMSPlugin'}, 'changed_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '15', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.CMSPlugin']", 'null': 'True', 'blank': 'True'}), 'placeholder': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.Placeholder']", 'null': 'True'}), 'plugin_type': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'position': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, 'cms.page': { 'Meta': {'ordering': "('tree_id', 'lft')", 'unique_together': "(('publisher_is_draft', 'application_namespace'), ('reverse_id', 'site', 'publisher_is_draft'))", 'object_name': 'Page'}, 'application_namespace': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'application_urls': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'changed_by': ('django.db.models.fields.CharField', [], {'max_length': '70'}), 'changed_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'created_by': ('django.db.models.fields.CharField', [], {'max_length': '70'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'in_navigation': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'is_home': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'languages': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'limit_visibility_in_menu': ('django.db.models.fields.SmallIntegerField', [], {'default': 'None', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'login_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'navigation_extenders': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '80', 'null': 'True', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['cms.Page']"}), 'placeholders': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['cms.Placeholder']", 'symmetrical': 'False'}), 'publication_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'publication_end_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'publisher_is_draft': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'publisher_public': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'publisher_draft'", 'unique': 'True', 'null': 'True', 'to': "orm['cms.Page']"}), 'reverse_id': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '40', 'null': 'True', 'blank': 'True'}), 'revision_id': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'djangocms_pages'", 'to': u"orm['sites.Site']"}), 'soft_root': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'template': ('django.db.models.fields.CharField', [], {'default': "'INHERIT'", 'max_length': '100'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'xframe_options': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'cms.placeholder': { 'Meta': {'object_name': 'Placeholder'}, 'default_width': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slot': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'filer.file': { 'Meta': {'object_name': 'File'}, '_file_size': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'file': ('django.db.models.fields.files.FileField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'folder': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'all_files'", 'null': 'True', 'to': u"orm['filer.Folder']"}), 'has_all_mandatory_data': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '255', 'blank': 'True'}), 'original_filename': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'owned_files'", 'null': 'True', 'to': u"orm['auth.User']"}), 'polymorphic_ctype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'polymorphic_filer.file_set'", 'null': 'True', 'to': u"orm['contenttypes.ContentType']"}), 'sha1': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '40', 'blank': 'True'}), 'uploaded_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, u'filer.folder': { 'Meta': {'ordering': "(u'name',)", 'unique_together': "((u'parent', u'name'),)", 'object_name': 'Folder'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), u'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), u'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'filer_owned_folders'", 'null': 'True', 'to': u"orm['auth.User']"}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'children'", 'null': 'True', 'to': u"orm['filer.Folder']"}), u'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), u'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'uploaded_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, 'filer.image': { 'Meta': {'object_name': 'Image'}, '_height': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), '_width': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'author': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'date_taken': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'default_alt_text': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'default_caption': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'file_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['filer.File']", 'unique': 'True', 'primary_key': 'True'}), 'must_always_publish_author_credit': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'must_always_publish_copyright': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'subject_location': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '64', 'null': 'True', 'blank': 'True'}) }, u'sites.site': { 'Meta': {'ordering': "(u'domain',)", 'object_name': 'Site', 'db_table': "u'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['aldryn_bootstrap3']
bsd-3-clause
-6,558,731,824,654,015,000
92.710145
196
0.556819
false
3.465032
false
false
false
domanova/highres-cortex
bin/od_column-regionsMain.py
1
18809
#! /usr/bin/env python # -*- coding: utf-8 -*- # # Copyright CEA (2014). # Copyright Université Paris XI (2014). # # Contributor: Olga Domanova <olga.domanova@cea.fr>. # # This file is part of highres-cortex, a collection of software designed # to process high-resolution magnetic resonance images of the cerebral # cortex. # # This software is governed by the CeCILL licence under French law and # abiding by the rules of distribution of free software. You can use, # modify and/or redistribute the software under the terms of the CeCILL # licence as circulated by CEA, CNRS and INRIA at the following URL: # <http://www.cecill.info/>. # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the licence, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of scientific # software, that may mean that it is complicated to manipulate, and that # also therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL licence and that you accept its terms. # an example how to run this script # time od_column-regionsMain.py -i /volatile/od243208/brainvisa_manual/ml140175/dist/classif_with_outer_boundaries_ml140175_L.nii.gz -d /volatile/od243208/brainvisa_manual/ad140157_columns/ -k ad140157_L # od_column-regionsMain.py -i /neurospin/lnao/dysbrain/testBatchColumnsExtrProfiles/af140169/af140169_T1inT2_ColumnsCutNew20It/dist/classif_with_outer_boundaries_af140169_R_cut_noSulci_extended.nii.gz -d /neurospin/lnao/dysbrain/testBatchColumnsExtrProfiles/af140169/af140169_T1inT2_ColumnsCutNew20It/ -k af140169_R_cut_noSulci_extended from soma import aims, aimsalgo import sys, glob, os, subprocess, sys, time import numpy as np from optparse import OptionParser import highres_cortex.cortex_topo, highres_cortex.div_gradn, highres_cortex.od_get_exchanged_propvol, highres_cortex.od_relabel_conjunction, highres_cortex.od_relabel, highres_cortex.od_randomize_labels #read in the path and the directory pathToClassifFile = None pathToClassifFileWithoutBorders = None data_directory = None result_directory = None heat_directory = None keyWord = None parser = OptionParser('Calculate column-regions in a cortical region') parser.add_option('-i', dest='pathToClassifFile', help='Path to the volume with labeled cortex (100), and white matter (200), as well as the borders (50 and 150)') # if nothing is given: exit parser.add_option('-j', dest='pathToClassifFileWithoutBorders', help='Path to the volume with labeled cortex (100), and white matter (200)') # if nothing is given: exit parser.add_option('-d', dest='data_directory', help='directory for the results') # if nothing is given exit parser.add_option('-k', dest='keyWord', help='KeyWord for the result files (including the patient ID and the hemisphere)') # if nothing is given exit options, args = parser.parse_args(sys.argv) print options print args if options.pathToClassifFile is None: print >> sys.stderr, 'New: exit. No classification volume was given' sys.exit(0) else: pathToClassifFile = options.pathToClassifFile if options.pathToClassifFileWithoutBorders is None: print >> sys.stderr, 'New: exit. No pathToClassifFileWithoutBorders volume was given' sys.exit(0) else: pathToClassifFileWithoutBorders = options.pathToClassifFileWithoutBorders if options.data_directory is None: print >> sys.stderr, 'New: exit. No directory for results was given' sys.exit(0) else: data_directory = options.data_directory result_directory = data_directory + 'column_regions/' heat_directory = data_directory + 'heat/' iso_directory = data_directory + 'isovolume/' if options.keyWord is None: print >> sys.stderr, 'New: exit. No keyword for results was given' sys.exit(0) else: keyWord = options.keyWord # in the given directory create the subdirectory for the results if not os.path.exists(result_directory): os.makedirs(result_directory) #AimsThreshold -b -m eq -t 50 \ #-i /volatile/od243208/brainvisa_manual/ml140175/classif_with_outer_boundaries_ml140175_L.nii.gz \ #-o /volatile/od243208/brainvisa_manual/ml140175/CSF_interface_ml140175_L.nii volClassif = aims.read(pathToClassifFile) arrSurfCSF = np.array(volClassif, copy = False) arrSurfCSF[np.where(arrSurfCSF != 50)] = 0 arrSurfCSF[np.where(arrSurfCSF == 50)] = 32767 aims.write(volClassif, result_directory + 'CSF_interface_%s.nii' % (keyWord)) # OK #AimsThreshold -b -m eq -t 150 \ #-i ../classif_with_outer_boundaries.nii.gz \ #-o white_interface.nii volClassif = aims.read(pathToClassifFile) arrSurfWhite = np.array(volClassif, copy = False) arrSurfWhite[np.where(arrSurfWhite != 150)] = 0 arrSurfWhite[np.where(arrSurfWhite == 150)] = 32767 aims.write(volClassif, result_directory + 'white_interface_%s.nii' % (keyWord)) # OK #ylLabelEachVoxel --verbose \ #-i CSF_interface.nii.gz \ #-o CSF_labelled_interface.nii \ #--first-label 100000001 subprocess.check_call(['ylLabelEachVoxel', '--verbose', '-i', result_directory + 'CSF_interface_%s.nii' % (keyWord), '-o', result_directory + 'CSF_labelled_interface_%s.nii' % (keyWord), '--first-label', '100000001']) # OK #ylLabelEachVoxel --verbose \ #-i white_interface.nii.gz \ #-o white_labelled_interface.nii \ #--first-label 200000001 subprocess.check_call(['ylLabelEachVoxel', '--verbose', '-i', result_directory + 'white_interface_%s.nii' % (keyWord), '-o', result_directory + 'white_labelled_interface_%s.nii' % (keyWord), '--first-label', '200000001']) # OK #AimsThreshold -b --fg -1 -m di -t 100 \ #-i ../classif.nii.gz \ # can take the classif with outer boundaries! as cortex is the same there #-o negative_outside_cortex.nii volClassif = aims.read(pathToClassifFile) arrNegOutCortex = np.array(volClassif, copy = False) arrNegOutCortex[np.where(arrNegOutCortex != 100)] = -1 arrNegOutCortex[np.where(arrNegOutCortex == 100)] = 0 aims.write(volClassif, result_directory + 'negative_outside_cortex_%s.nii' % (keyWord)) # OK #AimsFileConvert -t S32 \ #-i negative_outside_cortex.nii \ #-o negative_outside_cortex_S32.nii c = aims.Converter(intype=volClassif, outtype=aims.Volume('S32')) volNegOutCortex = c(volClassif) aims.write(volNegOutCortex, result_directory + 'negative_outside_cortex_S32_%s.nii' % (keyWord)) # OK #AimsMerge -m sv \ #-i negative_outside_cortex_S32.nii \ #-M CSF_labelled_interface.nii \ #-o CSF_labelled_interface_negative_outside.nii arrNegOutCortex = np.array(volNegOutCortex, copy = False) volCSFLabelInt = aims.read(result_directory + 'CSF_labelled_interface_%s.nii' % (keyWord)) arrCSFLabelInt = np.array(volCSFLabelInt, copy = False) arrNegOutCortex[arrCSFLabelInt != 0] = arrCSFLabelInt[arrCSFLabelInt != 0] aims.write(volNegOutCortex, result_directory + 'CSF_labelled_interface_negative_outside_%s.nii' % (keyWord)) # OK #AimsMerge -m ao -v 200000000 \ #-i CSF_labelled_interface_negative_outside.nii \ #-M white_labelled_interface.nii \ #-o propvol_CSF_labels.nii.gz volWhiteLabInt = aims.read(result_directory + 'white_labelled_interface_%s.nii' % (keyWord)) arrWhiteLabInt = np.array(volWhiteLabInt, copy = False) arrNegOutCortex[arrWhiteLabInt != 0] = 200000000 aims.write(volNegOutCortex, result_directory + 'propvol_CSF_labels_%s.nii.gz' % (keyWord)) # OK #AimsMerge -m sv \ #-i negative_outside_cortex_S32.nii \ #-M white_labelled_interface.nii \ #-o white_labelled_interface_negative_outside.nii volNegOutCortex = aims.read(result_directory + 'negative_outside_cortex_S32_%s.nii' % (keyWord)) arrNegOutCortex = np.array(volNegOutCortex, copy = False) arrNegOutCortex[arrWhiteLabInt != 0] = arrWhiteLabInt[arrWhiteLabInt != 0] aims.write(volNegOutCortex, result_directory + 'white_labelled_interface_negative_outside_%s.nii' % (keyWord)) # OK #AimsMerge -m ao -v 100000000 \ #-i white_labelled_interface_negative_outside.nii \ #-M CSF_labelled_interface.nii \ #-o propvol_white_labels.nii.gz arrNegOutCortex[np.where(arrCSFLabelInt != 0)] = 100000000 aims.write(volNegOutCortex, result_directory + 'propvol_white_labels_%s.nii.gz' % (keyWord)) # OK subprocess.check_call(['time', 'ylPropagateAlongField', '--verbose', '--grad-field', heat_directory + 'heat_%s.nii.gz' % (keyWord), '--seeds', result_directory + 'propvol_CSF_labels_%s.nii.gz' % (keyWord), '--step', '-0.05', '--target-label', '200000000', '--output', result_directory + 'heat_CSF_labels_on_white_%s.nii.gz' % (keyWord)]) # OK #ylPropagateAlongField --verbose \ #--grad-field ../heat/heat.nii.gz \ #--seeds propvol_CSF_labels.nii.gz \ #--step -0.05 \ #--target-label 200000000 \ #--output heat_CSF_labels_on_white.nii.gz #time for the whole cortex 1:27.7 subprocess.check_call(['time', 'ylPropagateAlongField', '--verbose', '--grad-field', heat_directory + 'heat_%s.nii.gz' % (keyWord), '--seeds', result_directory + 'propvol_white_labels_%s.nii.gz' % (keyWord), '--step', '0.05', '--target-label', '100000000', '--output', result_directory + 'heat_white_labels_on_CSF_%s.nii.gz' % (keyWord)]) # OK #ylPropagateAlongField --verbose \ #--grad-field ../heat/heat.nii.gz \ #--seeds propvol_white_labels.nii.gz \ #--step 0.05 \ #--target-label 100000000 \ #--output heat_white_labels_on_CSF.nii.gz #time for the whole cortex 1:43.87 volCSF_labels_on_white = aims.read(result_directory + 'heat_CSF_labels_on_white_%s.nii.gz' % (keyWord)) volwhite_labels_on_CSF = aims.read(result_directory + 'heat_white_labels_on_CSF_%s.nii.gz' % (keyWord)) volClassif = aims.read(pathToClassifFile) volExchangedPropVol = highres_cortex.od_get_exchanged_propvol.getExchangedPropagationVolume(volCSF_labels_on_white, volwhite_labels_on_CSF, volClassif, result_directory, keyWord) aims.write(volExchangedPropVol, result_directory + "exchanged_propvol_%s.nii.gz" %(keyWord)) #python get_exchanged_propvol.py # -> exchanged_propvol.nii.gz # Why is the previous step necessary? # # The obvious alternative is to do exactly as described in the OHBM paper: do # the projections on the original labels of each voxel. # # The previous case aggregates the adjacent voxels of one interface that point # towards the same voxel on the other interface. This reduces # over-segmentation. # # Another way of reducing over-segmentation would be to aggregate together # voxels that have one projection in common, instead of both (see conjunction # step later on). But this introduces the problem of transitivity. This was # investigated previously on the ferret data (under the name Billiard), but was # considered a dead-end and the above solution seems to solve this problem most # efficiently. # There is a problem with the propagation of labels: the step size is fixed, # which means that sometimes the point can skip the corner of a voxel, and thus # go directly from a bulk voxel to an outside voxel. In this case it is # recorded as a "dead-end" advection path, no resulting label is recorded and # it appears as zero in the result. # # This problem also appears in the previous "exchange" step, but is mitigated # by the subsequent connex component detection (each failed propagation is # assigned a different label). # # Quick fix: fix the conjunction step to not aggregate zeros. # # TODO: the proper way to fix this would be to force the advection path to # respect the boundaries of voxels, so that the corner of voxels cannot be # skipped over. This would also prevent the advection path from crossing the # thin CSF surface within the sulcus (comes from skeleton). # I could take into account the fake cortex–CSF interface that exists at the # cut plane, by assigning it a special label (e.g. 500000000) in the # exchanged_propvol label. It would then need to be treated specially: any # voxel that projects onto this label would be excluded from the region list, # and thus would not take part in the merging step. This would prevent the # creation of regions that connect to this spurious surface, but this would not # prevent the nearby regions from being deformed by the perturbation of the # field. It would thus probably be overkill to implement this special case. # Care is needed when dealing with regions close to the cut plane anyway. #AimsMerge -m oo -l 150 -v 0 \ #-i exchanged_propvol.nii.gz \ #-M ../classif_with_outer_boundaries.nii.gz \ #-o ./exchanged_labels_on_CSF.nii arrExchangedPropVol = np.array(volExchangedPropVol, copy = False) arrClassif = np.array(volClassif, copy = False) arrExchangedPropVol[arrClassif == 150] = 0 aims.write(volExchangedPropVol, result_directory + 'exchanged_labels_on_CSF_%s.nii' %(keyWord)) # OK #AimsMerge -m oo -l 50 -v 0 \ #-i ./exchanged_propvol.nii.gz \ #-M ../classif_with_outer_boundaries.nii.gz \ #-o ./exchanged_labels_on_white.nii volExchangedPropVol = aims.read(result_directory + "exchanged_propvol_%s.nii.gz" %(keyWord)) arrExchangedPropVol = np.array(volExchangedPropVol, copy = False) arrExchangedPropVol[arrClassif == 50] = 0 aims.write(volExchangedPropVol, result_directory + 'exchanged_labels_on_white_%s.nii' %(keyWord)) # OK #ylPropagateAlongField --verbose \ #--grad-field ../heat/heat.nii.gz \ #--seeds exchanged_labels_on_CSF.nii \ #--step -0.05 \ #--target-label 0 \ #--output heat_CSF_on_bulk.nii.gz \ #--dest-points heat_CSF_points_on_bulk.nii.gz subprocess.check_call(['time', 'ylPropagateAlongField', '--verbose', '--grad-field', heat_directory + 'heat_%s.nii.gz' % (keyWord), '--seeds',result_directory + 'exchanged_labels_on_CSF_%s.nii' %(keyWord), '--step', '-0.05', '--target-label', '0', '--output', result_directory + 'heat_CSF_on_bulk_%s.nii.gz' % (keyWord), '--dest-points', result_directory + 'heat_CSF_points_on_bulk_%s.nii.gz' % (keyWord)]) # time for the full cortex: 4:56.95 #ylPropagateAlongField --verbose \ #--grad-field ../heat/heat.nii.gz \ #--seeds exchanged_labels_on_white.nii \ #--step 0.05 \ #--target-label 0 \ #--output heat_white_on_bulk.nii.gz \ #--dest-points heat_white_points_on_bulk.nii.gz subprocess.check_call(['time', 'ylPropagateAlongField', '--verbose', '--grad-field', heat_directory + 'heat_%s.nii.gz' % (keyWord), '--seeds',result_directory + 'exchanged_labels_on_white_%s.nii' %(keyWord), '--step', '0.05', '--target-label', '0', '--output', result_directory + 'heat_white_on_bulk_%s.nii.gz' % (keyWord), '--dest-points', result_directory + 'heat_white_points_on_bulk_%s.nii.gz' % (keyWord)]) # time for the full cortex: 5:59.33 #python relabel_conjunction.py # -> ./conjunction.nii.gz vol1 = aims.read(result_directory + 'heat_CSF_on_bulk_%s.nii.gz' % (keyWord)) vol2 = aims.read(result_directory + 'heat_white_on_bulk_%s.nii.gz' % (keyWord)) volRelabeledConj = highres_cortex.od_relabel_conjunction.relabel_conjunctions(vol1, vol2) aims.write(volRelabeledConj, result_directory + 'conjunction_%s.nii.gz' % (keyWord)) # Yann added to ensure cortical columns traverse the cortex: #AimsConnectComp -c 26 \ #-i conjunction.nii.gz \ #-o conjunction_connected.nii.gz subprocess.check_call(['AimsConnectComp', '-c', '26', '-i', result_directory + 'conjunction_%s.nii.gz' % (keyWord), '-o', result_directory + 'conjunction_connected_%s.nii.gz' % (keyWord)]) #ylMergeCortexColumnRegions --verbose 2 \ #-i conjunction.nii.gz \ #-o merged.nii \ #--proj-csf heat_CSF_points_on_bulk.nii.gz \ #--proj-white heat_white_points_on_bulk.nii.gz \ #--goal-diameter 1 # Yann changed!! to ensure cortical columns traverse the cortex and various diameters are allowed: #ylMergeCortexColumnRegions --verbose 2 \ #-i conjunction_connected.nii.gz \ #-o merged.nii \ #--proj-csf heat_CSF_points_on_bulk.nii.gz \ #--proj-white heat_white_points_on_bulk.nii.gz \ #--classif ../classif.nii.gz \ #--goal-diameter 1 subprocess.check_call(['time', 'ylMergeCortexColumnRegions', '--verbose', '2', '-i', result_directory + 'conjunction_connected_%s.nii.gz' % (keyWord), '-o',result_directory + 'merged_%s.nii' %(keyWord), '--proj-csf', result_directory + 'heat_CSF_points_on_bulk_%s.nii.gz' % (keyWord), '--proj-white', result_directory + 'heat_white_points_on_bulk_%s.nii.gz' % (keyWord), '--classif', pathToClassifFileWithoutBorders, '--goal-diameter', '1']) # time for the full cortex : 0:58.83 #python relabel.py vol1 = aims.read(result_directory + 'merged_%s.nii' %(keyWord)) vol2 = highres_cortex.od_relabel.relabel(vol1) aims.write(vol2, result_directory + 'merged_relabelled_%s.nii.gz' % (keyWord)) #python randomize_labels.py vol1 = highres_cortex.od_randomize_labels.relabel(vol2) aims.write(vol1, result_directory + 'merged_randomized_%s.nii.gz' %(keyWord)) print np.max(np.array(vol1)) # number of different columns 111067 ## test for another diameter of cortical columns. E.g. of 3 mm, and 5 mm, and 9mm #diams = [3, 5, 7, 9] #diams = [9] diams = [3, 5, 7, 9] for diam in diams: subprocess.check_call(['ylMergeCortexColumnRegions', '--verbose', '2', '-i', result_directory + 'conjunction_connected_%s.nii.gz' % (keyWord), '-o',result_directory + 'merged_%s_diam%s.nii' %(keyWord, diam), '--proj-csf', result_directory + 'heat_CSF_points_on_bulk_%s.nii.gz' % (keyWord), '--proj-white', result_directory + 'heat_white_points_on_bulk_%s.nii.gz' % (keyWord), '--classif', pathToClassifFileWithoutBorders, '--goal-diameter', str(diam)]) #python relabel.py vol1 = aims.read(result_directory + 'merged_%s_diam%s.nii' %(keyWord, diam)) vol2 = highres_cortex.od_relabel.relabel(vol1) aims.write(vol2, result_directory + 'merged_relabelled_%s_diam%s.nii.gz' % (keyWord, diam)) #python randomize_labels.py vol1 = highres_cortex.od_randomize_labels.relabel(vol2) aims.write(vol1, result_directory + 'merged_randomized_%s_diam%s.nii.gz' %(keyWord, diam)) print np.max(np.array(vol1)) # number of different columns
gpl-3.0
-1,059,299,137,137,612,500
50.103261
461
0.718281
false
2.953667
false
false
false
demisto/content
Packs/ApiModules/Scripts/MicrosoftApiModule/MicrosoftApiModule.py
1
23628
import traceback import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * import requests import re import base64 from cryptography.hazmat.primitives.ciphers.aead import AESGCM from typing import Dict, Tuple, List, Optional class Scopes: graph = 'https://graph.microsoft.com/.default' security_center = 'https://api.securitycenter.windows.com/.default' # authorization types OPROXY_AUTH_TYPE = 'oproxy' SELF_DEPLOYED_AUTH_TYPE = 'self_deployed' # grant types in self-deployed authorization CLIENT_CREDENTIALS = 'client_credentials' AUTHORIZATION_CODE = 'authorization_code' REFRESH_TOKEN = 'refresh_token' # guardrails-disable-line DEVICE_CODE = 'urn:ietf:params:oauth:grant-type:device_code' REGEX_SEARCH_URL = r'(?P<url>https?://[^\s]+)' SESSION_STATE = 'session_state' class MicrosoftClient(BaseClient): def __init__(self, tenant_id: str = '', auth_id: str = '', enc_key: str = '', token_retrieval_url: str = 'https://login.microsoftonline.com/{tenant_id}/oauth2/v2.0/token', app_name: str = '', refresh_token: str = '', auth_code: str = '', scope: str = 'https://graph.microsoft.com/.default', grant_type: str = CLIENT_CREDENTIALS, redirect_uri: str = 'https://localhost/myapp', resource: Optional[str] = '', multi_resource: bool = False, resources: List[str] = None, verify: bool = True, self_deployed: bool = False, azure_ad_endpoint: str = 'https://login.microsoftonline.com', *args, **kwargs): """ Microsoft Client class that implements logic to authenticate with oproxy or self deployed applications. It also provides common logic to handle responses from Microsoft. Args: tenant_id: If self deployed it's the tenant for the app url, otherwise (oproxy) it's the token auth_id: If self deployed it's the client id, otherwise (oproxy) it's the auth id and may also contain the token url enc_key: If self deployed it's the client secret, otherwise (oproxy) it's the encryption key scope: The scope of the application (only if self deployed) resource: The resource of the application (only if self deployed) multi_resource: Where or not module uses a multiple resources (self-deployed, auth_code grant type only) resources: Resources of the application (for multi-resource mode) verify: Demisto insecure parameter self_deployed: Indicates whether the integration mode is self deployed or oproxy """ super().__init__(verify=verify, *args, **kwargs) # type: ignore[misc] if not self_deployed: auth_id_and_token_retrieval_url = auth_id.split('@') auth_id = auth_id_and_token_retrieval_url[0] if len(auth_id_and_token_retrieval_url) != 2: self.token_retrieval_url = 'https://oproxy.demisto.ninja/obtain-token' # guardrails-disable-line else: self.token_retrieval_url = auth_id_and_token_retrieval_url[1] self.app_name = app_name self.auth_id = auth_id self.enc_key = enc_key self.tenant_id = tenant_id self.refresh_token = refresh_token else: self.token_retrieval_url = token_retrieval_url.format(tenant_id=tenant_id) self.client_id = auth_id self.client_secret = enc_key self.tenant_id = tenant_id self.auth_code = auth_code self.grant_type = grant_type self.resource = resource self.scope = scope self.redirect_uri = redirect_uri self.auth_type = SELF_DEPLOYED_AUTH_TYPE if self_deployed else OPROXY_AUTH_TYPE self.verify = verify self.azure_ad_endpoint = azure_ad_endpoint self.multi_resource = multi_resource if self.multi_resource: self.resources = resources if resources else [] self.resource_to_access_token: Dict[str, str] = {} def http_request( self, *args, resp_type='json', headers=None, return_empty_response=False, scope: Optional[str] = None, resource: str = '', **kwargs): """ Overrides Base client request function, retrieves and adds to headers access token before sending the request. Args: resp_type: Type of response to return. will be ignored if `return_empty_response` is True. headers: Headers to add to the request. return_empty_response: Return the response itself if the return_code is 206. scope: A scope to request. Currently will work only with self-deployed app. resource (str): The resource identifier for which the generated token will have access to. Returns: Response from api according to resp_type. The default is `json` (dict or list). """ if 'ok_codes' not in kwargs: kwargs['ok_codes'] = (200, 201, 202, 204, 206, 404) token = self.get_access_token(resource=resource, scope=scope) default_headers = { 'Authorization': f'Bearer {token}', 'Content-Type': 'application/json', 'Accept': 'application/json' } if headers: default_headers.update(headers) response = super()._http_request( # type: ignore[misc] *args, resp_type="response", headers=default_headers, **kwargs) # 206 indicates Partial Content, reason will be in the warning header. # In that case, logs with the warning header will be written. if response.status_code == 206: demisto.debug(str(response.headers)) is_response_empty_and_successful = (response.status_code == 204) if is_response_empty_and_successful and return_empty_response: return response # Handle 404 errors instead of raising them as exceptions: if response.status_code == 404: try: error_message = response.json() except Exception: error_message = 'Not Found - 404 Response' raise NotFoundError(error_message) try: if resp_type == 'json': return response.json() if resp_type == 'text': return response.text if resp_type == 'content': return response.content if resp_type == 'xml': ET.parse(response.text) return response except ValueError as exception: raise DemistoException('Failed to parse json object from response: {}'.format(response.content), exception) def get_access_token(self, resource: str = '', scope: Optional[str] = None) -> str: """ Obtains access and refresh token from oproxy server or just a token from a self deployed app. Access token is used and stored in the integration context until expiration time. After expiration, new refresh token and access token are obtained and stored in the integration context. Args: resource (str): The resource identifier for which the generated token will have access to. scope (str): A scope to get instead of the default on the API. Returns: str: Access token that will be added to authorization header. """ integration_context = get_integration_context() refresh_token = integration_context.get('current_refresh_token', '') # Set keywords. Default without the scope prefix. access_token_keyword = f'{scope}_access_token' if scope else 'access_token' valid_until_keyword = f'{scope}_valid_until' if scope else 'valid_until' if self.multi_resource: access_token = integration_context.get(resource) else: access_token = integration_context.get(access_token_keyword) valid_until = integration_context.get(valid_until_keyword) if access_token and valid_until: if self.epoch_seconds() < valid_until: return access_token auth_type = self.auth_type if auth_type == OPROXY_AUTH_TYPE: if self.multi_resource: for resource_str in self.resources: access_token, expires_in, refresh_token = self._oproxy_authorize(resource_str) self.resource_to_access_token[resource_str] = access_token self.refresh_token = refresh_token else: access_token, expires_in, refresh_token = self._oproxy_authorize(scope=scope) else: access_token, expires_in, refresh_token = self._get_self_deployed_token( refresh_token, scope, integration_context) time_now = self.epoch_seconds() time_buffer = 5 # seconds by which to shorten the validity period if expires_in - time_buffer > 0: # err on the side of caution with a slightly shorter access token validity period expires_in = expires_in - time_buffer valid_until = time_now + expires_in integration_context.update({ access_token_keyword: access_token, valid_until_keyword: valid_until, 'current_refresh_token': refresh_token }) # Add resource access token mapping if self.multi_resource: integration_context.update(self.resource_to_access_token) set_integration_context(integration_context) if self.multi_resource: return self.resource_to_access_token[resource] return access_token def _oproxy_authorize(self, resource: str = '', scope: Optional[str] = None) -> Tuple[str, int, str]: """ Gets a token by authorizing with oproxy. Args: scope: A scope to add to the request. Do not use it. resource: Resource to get. Returns: tuple: An access token, its expiry and refresh token. """ content = self.refresh_token or self.tenant_id headers = self._add_info_headers() oproxy_response = requests.post( self.token_retrieval_url, headers=headers, json={ 'app_name': self.app_name, 'registration_id': self.auth_id, 'encrypted_token': self.get_encrypted(content, self.enc_key), 'scope': scope }, verify=self.verify ) if not oproxy_response.ok: msg = 'Error in authentication. Try checking the credentials you entered.' try: demisto.info('Authentication failure from server: {} {} {}'.format( oproxy_response.status_code, oproxy_response.reason, oproxy_response.text)) err_response = oproxy_response.json() server_msg = err_response.get('message') if not server_msg: title = err_response.get('title') detail = err_response.get('detail') if title: server_msg = f'{title}. {detail}' elif detail: server_msg = detail if server_msg: msg += ' Server message: {}'.format(server_msg) except Exception as ex: demisto.error('Failed parsing error response - Exception: {}'.format(ex)) raise Exception(msg) try: gcloud_function_exec_id = oproxy_response.headers.get('Function-Execution-Id') demisto.info(f'Google Cloud Function Execution ID: {gcloud_function_exec_id}') parsed_response = oproxy_response.json() except ValueError: raise Exception( 'There was a problem in retrieving an updated access token.\n' 'The response from the Oproxy server did not contain the expected content.' ) return (parsed_response.get('access_token', ''), parsed_response.get('expires_in', 3595), parsed_response.get('refresh_token', '')) def _get_self_deployed_token(self, refresh_token: str = '', scope: Optional[str] = None, integration_context: Optional[dict] = None ) -> Tuple[str, int, str]: if self.grant_type == AUTHORIZATION_CODE: if not self.multi_resource: return self._get_self_deployed_token_auth_code(refresh_token, scope=scope) else: expires_in = -1 # init variable as an int for resource in self.resources: access_token, expires_in, refresh_token = self._get_self_deployed_token_auth_code(refresh_token, resource) self.resource_to_access_token[resource] = access_token return '', expires_in, refresh_token elif self.grant_type == DEVICE_CODE: return self._get_token_device_code(refresh_token, scope, integration_context) else: # by default, grant_type is CLIENT_CREDENTIALS return self._get_self_deployed_token_client_credentials(scope=scope) def _get_self_deployed_token_client_credentials(self, scope: Optional[str] = None) -> Tuple[str, int, str]: """ Gets a token by authorizing a self deployed Azure application in client credentials grant type. Args: scope; A scope to add to the headers. Else will get self.scope. Returns: tuple: An access token and its expiry. """ data = { 'client_id': self.client_id, 'client_secret': self.client_secret, 'grant_type': CLIENT_CREDENTIALS } # Set scope. if self.scope or scope: data['scope'] = scope if scope else self.scope if self.resource: data['resource'] = self.resource response_json: dict = {} try: response = requests.post(self.token_retrieval_url, data, verify=self.verify) if response.status_code not in {200, 201}: return_error(f'Error in Microsoft authorization. Status: {response.status_code},' f' body: {self.error_parser(response)}') response_json = response.json() except Exception as e: return_error(f'Error in Microsoft authorization: {str(e)}') access_token = response_json.get('access_token', '') expires_in = int(response_json.get('expires_in', 3595)) return access_token, expires_in, '' def _get_self_deployed_token_auth_code( self, refresh_token: str = '', resource: str = '', scope: Optional[str] = None) -> Tuple[str, int, str]: """ Gets a token by authorizing a self deployed Azure application. Returns: tuple: An access token, its expiry and refresh token. """ data = assign_params( client_id=self.client_id, client_secret=self.client_secret, resource=self.resource if not resource else resource, redirect_uri=self.redirect_uri ) if scope: data['scope'] = scope refresh_token = refresh_token or self._get_refresh_token_from_auth_code_param() if refresh_token: data['grant_type'] = REFRESH_TOKEN data['refresh_token'] = refresh_token else: if SESSION_STATE in self.auth_code: raise ValueError('Malformed auth_code parameter: Please copy the auth code from the redirected uri ' 'without any additional info and without the "session_state" query parameter.') data['grant_type'] = AUTHORIZATION_CODE data['code'] = self.auth_code response_json: dict = {} try: response = requests.post(self.token_retrieval_url, data, verify=self.verify) if response.status_code not in {200, 201}: return_error(f'Error in Microsoft authorization. Status: {response.status_code},' f' body: {self.error_parser(response)}') response_json = response.json() except Exception as e: return_error(f'Error in Microsoft authorization: {str(e)}') access_token = response_json.get('access_token', '') expires_in = int(response_json.get('expires_in', 3595)) refresh_token = response_json.get('refresh_token', '') return access_token, expires_in, refresh_token def _get_token_device_code( self, refresh_token: str = '', scope: Optional[str] = None, integration_context: Optional[dict] = None ) -> Tuple[str, int, str]: """ Gets a token by authorizing a self deployed Azure application. Returns: tuple: An access token, its expiry and refresh token. """ data = { 'client_id': self.client_id, 'scope': scope } if refresh_token: data['grant_type'] = REFRESH_TOKEN data['refresh_token'] = refresh_token else: data['grant_type'] = DEVICE_CODE if integration_context: data['code'] = integration_context.get('device_code') response_json: dict = {} try: response = requests.post(self.token_retrieval_url, data, verify=self.verify) if response.status_code not in {200, 201}: return_error(f'Error in Microsoft authorization. Status: {response.status_code},' f' body: {self.error_parser(response)}') response_json = response.json() except Exception as e: return_error(f'Error in Microsoft authorization: {str(e)}') access_token = response_json.get('access_token', '') expires_in = int(response_json.get('expires_in', 3595)) refresh_token = response_json.get('refresh_token', '') return access_token, expires_in, refresh_token def _get_refresh_token_from_auth_code_param(self) -> str: refresh_prefix = "refresh_token:" if self.auth_code.startswith(refresh_prefix): # for testing we allow setting the refresh token directly demisto.debug("Using refresh token set as auth_code") return self.auth_code[len(refresh_prefix):] return '' @staticmethod def error_parser(error: requests.Response) -> str: """ Args: error (requests.Response): response with error Returns: str: string of error """ try: response = error.json() demisto.error(str(response)) inner_error = response.get('error', {}) if isinstance(inner_error, dict): err_str = f"{inner_error.get('code')}: {inner_error.get('message')}" else: err_str = inner_error if err_str: return err_str # If no error message raise ValueError except ValueError: return error.text @staticmethod def epoch_seconds(d: datetime = None) -> int: """ Return the number of seconds for given date. If no date, return current. Args: d (datetime): timestamp Returns: int: timestamp in epoch """ if not d: d = MicrosoftClient._get_utcnow() return int((d - MicrosoftClient._get_utcfromtimestamp(0)).total_seconds()) @staticmethod def _get_utcnow() -> datetime: return datetime.utcnow() @staticmethod def _get_utcfromtimestamp(_time) -> datetime: return datetime.utcfromtimestamp(_time) @staticmethod def get_encrypted(content: str, key: str) -> str: """ Encrypts content with encryption key. Args: content: Content to encrypt key: encryption key from oproxy Returns: timestamp: Encrypted content """ def create_nonce(): return os.urandom(12) def encrypt(string, enc_key): """ Encrypts string input with encryption key. Args: string: String to encrypt enc_key: Encryption key Returns: bytes: Encrypted value """ # String to bytes try: enc_key = base64.b64decode(enc_key) except Exception as err: return_error(f"Error in Microsoft authorization: {str(err)}" f" Please check authentication related parameters.", error=traceback.format_exc()) # Create key aes_gcm = AESGCM(enc_key) # Create nonce nonce = create_nonce() # Create ciphered data data = string.encode() ct = aes_gcm.encrypt(nonce, data, None) return base64.b64encode(nonce + ct) now = MicrosoftClient.epoch_seconds() encrypted = encrypt(f'{now}:{content}', key).decode('utf-8') return encrypted @staticmethod def _add_info_headers() -> Dict[str, str]: # pylint: disable=no-member headers = {} try: headers = get_x_content_info_headers() except Exception as e: demisto.error('Failed getting integration info: {}'.format(str(e))) return headers def device_auth_request(self) -> dict: response_json = {} try: response = requests.post( url=f'{self.azure_ad_endpoint}/organizations/oauth2/v2.0/devicecode', data={ 'client_id': self.client_id, 'scope': self.scope }, verify=self.verify ) if not response.ok: return_error(f'Error in Microsoft authorization. Status: {response.status_code},' f' body: {self.error_parser(response)}') response_json = response.json() except Exception as e: return_error(f'Error in Microsoft authorization: {str(e)}') set_integration_context({'device_code': response_json.get('device_code')}) return response_json def start_auth(self, complete_command: str) -> str: response = self.device_auth_request() message = response.get('message', '') re_search = re.search(REGEX_SEARCH_URL, message) url = re_search.group('url') if re_search else None user_code = response.get('user_code') return f"""### Authorization instructions 1. To sign in, use a web browser to open the page [{url}]({url}) and enter the code **{user_code}** to authenticate. 2. Run the **{complete_command}** command in the War Room.""" class NotFoundError(Exception): """Exception raised for 404 - Not Found errors. Attributes: message -- explanation of the error """ def __init__(self, message): self.message = message
mit
5,221,532,628,645,901,000
40.163763
119
0.577874
false
4.367468
false
false
false
kopringo/Scarky2
Scarky2/builder/models.py
1
3520
#-*- coding: utf-8 -*- from django.db import models, IntegrityError from django.contrib.auth.models import User #from sphere_engine import ProblemsClientV3 from django.conf import settings from django.utils import timezone import json import uuid import code from logging import Logger logger = Logger(__file__) # Create your models here. class Language(models.Model): label = models.CharField(max_length=32) version = models.CharField(max_length=32) remote_id = models.IntegerField() visible = models.BooleanField(default=True) def __unicode__(self): return u'%s' % self.label @staticmethod def sync_languages(): #client = ProblemsClientV3(settings.SPHERE_ENGINE_TOKEN) languages = client.problems.languages() languages = json.loads(languages) for language in languages: l = Language() l.label = language['name'] l.version = language['ver'] l.remote_id = language['id'] l.save() PROBLEM_RANK = ( ('bin-date', 'Binary by date'), ('bin-time', 'Binary by time'), ('bin-source', 'Binary by length of source code'), ) class Problem(models.Model): code = models.CharField(max_length=8, unique=True) date = models.DateTimeField() remote_code = models.CharField(max_length=32) user = models.ForeignKey(User, blank=True, null=True) secret = models.CharField(max_length=40) saved = models.BooleanField(default=False) name = models.CharField(max_length=128) content = models.TextField() input = models.FileField(upload_to='uploaded') output = models.FileField(upload_to='uploaded') rank = models.CharField(max_length=16, choices=PROBLEM_RANK) languages = models.ManyToManyField('Language') date_start = models.DateTimeField(blank=True, null=True) date_stop = models.DateTimeField(blank=True, null=True) website = models.URLField(blank=True) resource = models.CharField(max_length=128, blank=True) email = models.EmailField(blank=True) stats_visits = models.IntegerField(default=0) stats_submissions = models.IntegerField(default=0) @staticmethod def create_problem(user=None): i = 0 while True: code = str(uuid.uuid1())[0:8] secret = str(uuid.uuid1()) try: problem = Problem() problem.code = code problem.secret = secret problem.date = timezone.now() problem.user = user problem.save() return problem except IntegrityError as e: logger.exception(e) i = i + 1 if i > 10: raise Exception('create_problem exception') def __unicode__(self): return u'%s. %s' % (str(self.id), self.name) class ProblemFile(models.Model): name = models.CharField(max_length=128) oname = models.CharField(max_length=128) problem = models.ForeignKey('Problem') class Submission(models.Model): date = models.DateTimeField() problem = models.ForeignKey(Problem) language = models.ForeignKey('Language') status = models.IntegerField(default=0) time = models.FloatField(default=0.0) mem = models.IntegerField(default=0) remote_id = models.IntegerField(default=0) def __unicode__(self): return u'%s' % str(self.id) #
mit
6,629,684,123,329,770,000
29.608696
64
0.618466
false
4.0553
false
false
false
krishnatray/data_science_project_portfolio
galvanize/TechnicalExcercise/q1.py
1
2695
# Q1 Technical Challenge # Author: Sushil K Sharma # ----------------------- """ Problem Statement: Create a text content analyzer. This is a tool used by writers to find statistics such as word and sentence count on essays or articles they are writing. Write a Python program that analyzes input from a file and compiles statistics on it. The program should output: 1. The total word count 2. The count of unique words 3. The number of sentences """ # Assumptions: #------------- # 1. I have assumed that sentences are ended by period. # 2. This program is case insensitive i.e. ignored the case for counting words. def content_analyzer(input_text): # assumptions: this program is case insensitive i.e. "Word", "WORD", "wOrd", etc. considerd same. arr = input_text.lower().split() lines=input_text.split(". ") # dictionary to keep track of unique words unique_words = {} # Initialize Counters word_count = 0; unique_word_count = 0; sentences_count =0; sentences_length_sum =0 for word in arr: word_count +=1 if word in unique_words: unique_words[word] += 1 else: unique_words[word] = 1 unique_word_count += 1 for sentence in lines: sentences_count += 1 sentences_length_sum += len(sentence) avg_sentence_length=0 if sentences_count > 0: avg_sentence_length = sentences_length_sum / sentences_count # Print Results print ("Results:") print ("-------") print ("Total word count:", word_count) print ("Unique Words:", unique_word_count) print ("Sentences:",sentences_count) # Brownie points # -------------- # 1. The ability to calculate the average sentence length in words print ("Avg. Sentence Length:",sentences_count) # 2. A list of words used, in order of descending frequency print ("A list of words used, in order of descending frequency:") print("--------------------------------------------------------") unique_words_sorted = sorted(unique_words, key=unique_words.get, reverse=True) for word in unique_words_sorted: print(f"{word} {unique_words[word]}" ) # Brownie point # 4 : The ability to accept input from STDIN, or from a file specified on the command line. print("**************************") print("**** Content Analyzer ****") print("**************************\n") input_text= input("Please enter a few sentences: ") content_analyzer(input_text) print("*************************************") print("**** Completed: Content Analyzer ****") print("*************************************")
mit
-2,832,477,704,902,959,000
33.460526
239
0.589239
false
4.064857
false
false
false
maltsev/LatexWebOffice
app/views/auth.py
1
8497
# -*- coding: utf-8 -*- """ * Purpose : managing user account registration and login * Creation Date : 22-10-2014 * Last Modified : Mo 02 Mär 2015 15:23:28 CET * Author : maltsev * Coauthors : mattis, christian * Sprintnumber : 1 * Backlog entry : RUA1, RUA4 """ import re import urllib import datetime from django.shortcuts import redirect, render_to_response from django.contrib import messages, auth from django.contrib.auth.decorators import login_required from django.views.decorators.csrf import csrf_exempt from django.template import RequestContext from django.core.mail import EmailMessage from django.core.urlresolvers import reverse from django.core.exceptions import ObjectDoesNotExist from django.contrib.auth import get_user_model User = get_user_model() from app.common.constants import ERROR_MESSAGES import settings from app.models.recoverkey import RecoverKey # see # https://docs.djangoproject.com/en/dev/topics/auth/default/#django.contrib.auth.login ## Default handler for login requests by the client that sends the client the login page. # If correct login details were sent with the request (over POST data), the user will be redirected to a success page. # Otherwise an error message will be inserted into the django messages queue. # @param request The HttpRequest Object def login(request): if request.user.is_authenticated(): return redirect('projekt') email = '' if request.session.has_key('email'): email=request.session.get('email') del request.session['email'] if request.method == 'POST' and 'action' in request.POST and 'email' in request.POST: email = request.POST['email'] if request.POST['action']=='login': password = request.POST['password'] # Email is case-insensitive, but login is case-sensitive user = auth.authenticate(username=email.lower(), password=password) if user is not None: if user.is_active: auth.login(request, user) return redirect('projekt') else: messages.error(request, ERROR_MESSAGES['INACTIVEACCOUNT'] % email) else: messages.error(request, ERROR_MESSAGES['WRONGLOGINCREDENTIALS']) elif request.POST['action'] == 'password-lost': try: user = User.objects.get(email__iexact=email) recoverKey = RecoverKey.objects.getByUser(user) subject="Latexweboffice Passwortreset" url = request.build_absolute_uri(reverse('recoverpw'))+'?'+urllib.urlencode({'email': email, 'key': recoverKey.key}) body=u""" Hallo! Jemand hat einen Link zur Passwortwiederherstellung angefordert: %s Falls dies nicht von Ihnen angefordert wurde, ignorieren Sie bitte diese Email. Mit freundlichen Grüßen, Ihr LatexWebOfficeteam """ emailsend=EmailMessage(subject, body % url) emailsend.to=[email] emailsend.send() except ObjectDoesNotExist: pass messages.success(request,ERROR_MESSAGES['EMAILPWRECOVERSEND']% email) sso_url = '' if 'SSO_URL' in dir(settings): sso_url = settings.SSO_URL params = {'email': email, 'IS_SSO_ENABLED': settings.IS_SSO_ENABLED, 'SSO_URL': sso_url} return render_to_response('login.html', params, context_instance=RequestContext(request)) def lostPwHandler(request): if request.method == 'GET' and 'email' in request.GET and 'key' in request.GET: email = request.GET['email'] key = request.GET['key'] try: user = User.objects.get(email__iexact=email) if RecoverKey.objects.isValid(user, key): return render_to_response('passwordrecover.html', {'email':email,'key':key}, context_instance=RequestContext(request)) except ObjectDoesNotExist: pass elif request.method == 'POST' and 'email' in request.POST and 'key' in request.POST and 'password1' in request.POST: email=request.POST['email'] key=request.POST['key'] try: user=User.objects.get(email__iexact=email) if RecoverKey.objects.isValid(user, key): user.set_password(request.POST['password1']) RecoverKey.objects.get(key=key).delete() user.save() messages.success(request,ERROR_MESSAGES['PASSWORDCHANGED']) request.session['email'] = email return redirect('login') except ObjectDoesNotExist: pass return render_to_response('passwordrecoverwrong.html',context_instance=RequestContext(request)) ## Logout # @param request The HttpRequest Object @login_required def logout(request): auth.logout(request) if 'SSO_LOGOUT_URL' in dir(settings) and request.build_absolute_uri().find('https://sso.') == 0: return redirect(settings.SSO_LOGOUT_URL) else: return redirect('login') ## Default handler for registration requests by the client that sends the user the registration page. # If correct registration details were sent with the request (over POST data), the user will be logged in # and redirected to the start page # Otherwise an error message will be inserted into the django messages queue. # @param request The HttpRequest Object def registration(request): if request.user.is_authenticated(): return redirect('projekt') email = '' first_name = '' if request.method == 'POST': first_name = request.POST['first_name'] email = request.POST['email'].lower() password1 = request.POST['password1'] password2 = request.POST['password2'] # boolean, true if there are errors in the user data foundErrors = False # validation checks # no empty fields if first_name == '' or email == '' or password1 == '': messages.error(request, ERROR_MESSAGES['NOEMPTYFIELDS']) foundErrors = True # email already registered if User.objects.filter(username__iexact=email).count() != 0: messages.error(request, ERROR_MESSAGES['EMAILALREADYEXISTS']) foundErrors = True # no valid email format if not validEmail(email): messages.error(request, ERROR_MESSAGES['INVALIDEMAIL']) foundErrors = True # passwords may not contain any spaces if ' ' in password1: messages.error((request), ERROR_MESSAGES['NOSPACESINPASSWORDS']) foundErrors = True # passwords do not match if password1 != password2: messages.error(request, ERROR_MESSAGES['PASSWORDSDONTMATCH']) foundErrors = True # if all validation checks pass, create new user if not foundErrors: new_user = User.objects.create_user(email, email, password=password1) new_user.first_name = first_name new_user.save() # user login and redirection to start page user = auth.authenticate(username=email, password=password1) if user is not None: if user.is_active: auth.login(request, user) return redirect('projekt') else: messages.error(request, ERROR_MESSAGES['LOGINORREGFAILED']) sso_url = '' if 'SSO_URL' in dir(settings): sso_url = settings.SSO_URL return render_to_response('registration.html', {'first_name': first_name, 'IS_SSO_ENABLED': settings.IS_SSO_ENABLED, 'SSO_URL': sso_url, 'email': email}, context_instance=RequestContext(request)) @csrf_exempt #Überprüft, ob eine Emailadresse bereits registiert ist. Falls sie registiert ist, wird false zurückgesendet. Andernfalls true. def userexists(request): from django.http import HttpResponse if request.method=='POST' and request.POST.get('email'): if User.objects.filter(username=request.POST.get('email')).exists(): return HttpResponse("false") return HttpResponse('true') # Helper function to check if a email address is valid def validEmail(email): regex_email=re.compile("^[a-zA-Z0-9.!#$%&'*+\/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$") return regex_email.match(email)
gpl-3.0
1,439,265,107,998,456,800
35.286325
163
0.641032
false
3.923752
false
false
false
ContinuumIO/dask
dask/array/random.py
2
19970
import numbers import warnings from itertools import product from numbers import Integral from operator import getitem import numpy as np from .core import ( normalize_chunks, Array, slices_from_chunks, asarray, broadcast_shapes, broadcast_to, ) from .creation import arange from ..base import tokenize from ..highlevelgraph import HighLevelGraph from ..utils import ignoring, random_state_data, derived_from, skip_doctest def doc_wraps(func): """ Copy docstring from one function to another """ warnings.warn( "dask.array.random.doc_wraps is deprecated and will be removed in a future version", FutureWarning, ) def _(func2): if func.__doc__ is not None: func2.__doc__ = skip_doctest(func.__doc__) return func2 return _ class RandomState(object): """ Mersenne Twister pseudo-random number generator This object contains state to deterministically generate pseudo-random numbers from a variety of probability distributions. It is identical to ``np.random.RandomState`` except that all functions also take a ``chunks=`` keyword argument. Parameters ---------- seed: Number Object to pass to RandomState to serve as deterministic seed RandomState: Callable[seed] -> RandomState A callable that, when provided with a ``seed`` keyword provides an object that operates identically to ``np.random.RandomState`` (the default). This might also be a function that returns a ``randomgen.RandomState``, ``mkl_random``, or ``cupy.random.RandomState`` object. Examples -------- >>> import dask.array as da >>> state = da.random.RandomState(1234) # a seed >>> x = state.normal(10, 0.1, size=3, chunks=(2,)) >>> x.compute() array([10.01867852, 10.04812289, 9.89649746]) See Also -------- np.random.RandomState """ def __init__(self, seed=None, RandomState=None): self._numpy_state = np.random.RandomState(seed) self._RandomState = RandomState def seed(self, seed=None): self._numpy_state.seed(seed) def _wrap( self, funcname, *args, size=None, chunks="auto", extra_chunks=(), **kwargs ): """ Wrap numpy random function to produce dask.array random function extra_chunks should be a chunks tuple to append to the end of chunks """ if size is not None and not isinstance(size, (tuple, list)): size = (size,) args_shapes = {ar.shape for ar in args if isinstance(ar, (Array, np.ndarray))} args_shapes.union( {ar.shape for ar in kwargs.values() if isinstance(ar, (Array, np.ndarray))} ) shapes = list(args_shapes) if size is not None: shapes.extend([size]) # broadcast to the final size(shape) size = broadcast_shapes(*shapes) chunks = normalize_chunks( chunks, size, # ideally would use dtype here dtype=kwargs.get("dtype", np.float64), ) slices = slices_from_chunks(chunks) def _broadcast_any(ar, shape, chunks): if isinstance(ar, Array): return broadcast_to(ar, shape).rechunk(chunks) if isinstance(ar, np.ndarray): return np.ascontiguousarray(np.broadcast_to(ar, shape)) # Broadcast all arguments, get tiny versions as well # Start adding the relevant bits to the graph dsk = {} dsks = [] lookup = {} small_args = [] dependencies = [] for i, ar in enumerate(args): if isinstance(ar, (np.ndarray, Array)): res = _broadcast_any(ar, size, chunks) if isinstance(res, Array): dependencies.append(res) dsks.append(res.dask) lookup[i] = res.name elif isinstance(res, np.ndarray): name = "array-{}".format(tokenize(res)) lookup[i] = name dsk[name] = res small_args.append(ar[tuple(0 for _ in ar.shape)]) else: small_args.append(ar) small_kwargs = {} for key, ar in kwargs.items(): if isinstance(ar, (np.ndarray, Array)): res = _broadcast_any(ar, size, chunks) if isinstance(res, Array): dependencies.append(res) dsks.append(res.dask) lookup[key] = res.name elif isinstance(res, np.ndarray): name = "array-{}".format(tokenize(res)) lookup[key] = name dsk[name] = res small_kwargs[key] = ar[tuple(0 for _ in ar.shape)] else: small_kwargs[key] = ar sizes = list(product(*chunks)) seeds = random_state_data(len(sizes), self._numpy_state) token = tokenize(seeds, size, chunks, args, kwargs) name = "{0}-{1}".format(funcname, token) keys = product( [name], *([range(len(bd)) for bd in chunks] + [[0]] * len(extra_chunks)) ) blocks = product(*[range(len(bd)) for bd in chunks]) vals = [] for seed, size, slc, block in zip(seeds, sizes, slices, blocks): arg = [] for i, ar in enumerate(args): if i not in lookup: arg.append(ar) else: if isinstance(ar, Array): dependencies.append(ar) arg.append((lookup[i],) + block) else: # np.ndarray arg.append((getitem, lookup[i], slc)) kwrg = {} for k, ar in kwargs.items(): if k not in lookup: kwrg[k] = ar else: if isinstance(ar, Array): dependencies.append(ar) kwrg[k] = (lookup[k],) + block else: # np.ndarray kwrg[k] = (getitem, lookup[k], slc) vals.append( (_apply_random, self._RandomState, funcname, seed, size, arg, kwrg) ) meta = _apply_random( self._RandomState, funcname, seed, (0,) * len(size), small_args, small_kwargs, ) dsk.update(dict(zip(keys, vals))) graph = HighLevelGraph.from_collections(name, dsk, dependencies=dependencies) return Array(graph, name, chunks + extra_chunks, meta=meta) @derived_from(np.random.RandomState, skipblocks=1) def beta(self, a, b, size=None, chunks="auto", **kwargs): return self._wrap("beta", a, b, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def binomial(self, n, p, size=None, chunks="auto", **kwargs): return self._wrap("binomial", n, p, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def chisquare(self, df, size=None, chunks="auto", **kwargs): return self._wrap("chisquare", df, size=size, chunks=chunks, **kwargs) with ignoring(AttributeError): @derived_from(np.random.RandomState, skipblocks=1) def choice(self, a, size=None, replace=True, p=None, chunks="auto"): dependencies = [] # Normalize and validate `a` if isinstance(a, Integral): # On windows the output dtype differs if p is provided or # absent, see https://github.com/numpy/numpy/issues/9867 dummy_p = np.array([1]) if p is not None else p dtype = np.random.choice(1, size=(), p=dummy_p).dtype len_a = a if a < 0: raise ValueError("a must be greater than 0") else: a = asarray(a) a = a.rechunk(a.shape) dtype = a.dtype if a.ndim != 1: raise ValueError("a must be one dimensional") len_a = len(a) dependencies.append(a) a = a.__dask_keys__()[0] # Normalize and validate `p` if p is not None: if not isinstance(p, Array): # If p is not a dask array, first check the sum is close # to 1 before converting. p = np.asarray(p) if not np.isclose(p.sum(), 1, rtol=1e-7, atol=0): raise ValueError("probabilities do not sum to 1") p = asarray(p) else: p = p.rechunk(p.shape) if p.ndim != 1: raise ValueError("p must be one dimensional") if len(p) != len_a: raise ValueError("a and p must have the same size") dependencies.append(p) p = p.__dask_keys__()[0] if size is None: size = () elif not isinstance(size, (tuple, list)): size = (size,) chunks = normalize_chunks(chunks, size, dtype=np.float64) if not replace and len(chunks[0]) > 1: err_msg = ( "replace=False is not currently supported for " "dask.array.choice with multi-chunk output " "arrays" ) raise NotImplementedError(err_msg) sizes = list(product(*chunks)) state_data = random_state_data(len(sizes), self._numpy_state) name = "da.random.choice-%s" % tokenize( state_data, size, chunks, a, replace, p ) keys = product([name], *(range(len(bd)) for bd in chunks)) dsk = { k: (_choice, state, a, size, replace, p) for k, state, size in zip(keys, state_data, sizes) } graph = HighLevelGraph.from_collections( name, dsk, dependencies=dependencies ) return Array(graph, name, chunks, dtype=dtype) # @derived_from(np.random.RandomState, skipblocks=1) # def dirichlet(self, alpha, size=None, chunks="auto"): @derived_from(np.random.RandomState, skipblocks=1) def exponential(self, scale=1.0, size=None, chunks="auto", **kwargs): return self._wrap("exponential", scale, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def f(self, dfnum, dfden, size=None, chunks="auto", **kwargs): return self._wrap("f", dfnum, dfden, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def gamma(self, shape, scale=1.0, size=None, chunks="auto", **kwargs): return self._wrap("gamma", shape, scale, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def geometric(self, p, size=None, chunks="auto", **kwargs): return self._wrap("geometric", p, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def gumbel(self, loc=0.0, scale=1.0, size=None, chunks="auto", **kwargs): return self._wrap("gumbel", loc, scale, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def hypergeometric(self, ngood, nbad, nsample, size=None, chunks="auto", **kwargs): return self._wrap( "hypergeometric", ngood, nbad, nsample, size=size, chunks=chunks, **kwargs ) @derived_from(np.random.RandomState, skipblocks=1) def laplace(self, loc=0.0, scale=1.0, size=None, chunks="auto", **kwargs): return self._wrap("laplace", loc, scale, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def logistic(self, loc=0.0, scale=1.0, size=None, chunks="auto", **kwargs): return self._wrap("logistic", loc, scale, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def lognormal(self, mean=0.0, sigma=1.0, size=None, chunks="auto", **kwargs): return self._wrap("lognormal", mean, sigma, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def logseries(self, p, size=None, chunks="auto", **kwargs): return self._wrap("logseries", p, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def multinomial(self, n, pvals, size=None, chunks="auto", **kwargs): return self._wrap( "multinomial", n, pvals, size=size, chunks=chunks, extra_chunks=((len(pvals),),), ) @derived_from(np.random.RandomState, skipblocks=1) def negative_binomial(self, n, p, size=None, chunks="auto", **kwargs): return self._wrap("negative_binomial", n, p, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def noncentral_chisquare(self, df, nonc, size=None, chunks="auto", **kwargs): return self._wrap( "noncentral_chisquare", df, nonc, size=size, chunks=chunks, **kwargs ) @derived_from(np.random.RandomState, skipblocks=1) def noncentral_f(self, dfnum, dfden, nonc, size=None, chunks="auto", **kwargs): return self._wrap( "noncentral_f", dfnum, dfden, nonc, size=size, chunks=chunks, **kwargs ) @derived_from(np.random.RandomState, skipblocks=1) def normal(self, loc=0.0, scale=1.0, size=None, chunks="auto", **kwargs): return self._wrap("normal", loc, scale, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def pareto(self, a, size=None, chunks="auto", **kwargs): return self._wrap("pareto", a, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def permutation(self, x): from .slicing import shuffle_slice if isinstance(x, numbers.Number): x = arange(x, chunks="auto") index = np.arange(len(x)) self._numpy_state.shuffle(index) return shuffle_slice(x, index) @derived_from(np.random.RandomState, skipblocks=1) def poisson(self, lam=1.0, size=None, chunks="auto", **kwargs): return self._wrap("poisson", lam, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def power(self, a, size=None, chunks="auto", **kwargs): return self._wrap("power", a, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def randint(self, low, high=None, size=None, chunks="auto", dtype="l", **kwargs): return self._wrap( "randint", low, high, size=size, chunks=chunks, dtype=dtype, **kwargs ) @derived_from(np.random.RandomState, skipblocks=1) def random_integers(self, low, high=None, size=None, chunks="auto", **kwargs): return self._wrap( "random_integers", low, high, size=size, chunks=chunks, **kwargs ) @derived_from(np.random.RandomState, skipblocks=1) def random_sample(self, size=None, chunks="auto", **kwargs): return self._wrap("random_sample", size=size, chunks=chunks, **kwargs) random = random_sample @derived_from(np.random.RandomState, skipblocks=1) def rayleigh(self, scale=1.0, size=None, chunks="auto", **kwargs): return self._wrap("rayleigh", scale, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def standard_cauchy(self, size=None, chunks="auto", **kwargs): return self._wrap("standard_cauchy", size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def standard_exponential(self, size=None, chunks="auto", **kwargs): return self._wrap("standard_exponential", size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def standard_gamma(self, shape, size=None, chunks="auto", **kwargs): return self._wrap("standard_gamma", shape, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def standard_normal(self, size=None, chunks="auto", **kwargs): return self._wrap("standard_normal", size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def standard_t(self, df, size=None, chunks="auto", **kwargs): return self._wrap("standard_t", df, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def tomaxint(self, size=None, chunks="auto", **kwargs): return self._wrap("tomaxint", size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def triangular(self, left, mode, right, size=None, chunks="auto", **kwargs): return self._wrap( "triangular", left, mode, right, size=size, chunks=chunks, **kwargs ) @derived_from(np.random.RandomState, skipblocks=1) def uniform(self, low=0.0, high=1.0, size=None, chunks="auto", **kwargs): return self._wrap("uniform", low, high, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def vonmises(self, mu, kappa, size=None, chunks="auto", **kwargs): return self._wrap("vonmises", mu, kappa, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def wald(self, mean, scale, size=None, chunks="auto", **kwargs): return self._wrap("wald", mean, scale, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def weibull(self, a, size=None, chunks="auto", **kwargs): return self._wrap("weibull", a, size=size, chunks=chunks, **kwargs) @derived_from(np.random.RandomState, skipblocks=1) def zipf(self, a, size=None, chunks="auto", **kwargs): return self._wrap("zipf", a, size=size, chunks=chunks, **kwargs) def _choice(state_data, a, size, replace, p): state = np.random.RandomState(state_data) return state.choice(a, size=size, replace=replace, p=p) def _apply_random(RandomState, funcname, state_data, size, args, kwargs): """Apply RandomState method with seed""" if RandomState is None: RandomState = np.random.RandomState state = RandomState(state_data) func = getattr(state, funcname) return func(*args, size=size, **kwargs) _state = RandomState() seed = _state.seed beta = _state.beta binomial = _state.binomial chisquare = _state.chisquare if hasattr(_state, "choice"): choice = _state.choice exponential = _state.exponential f = _state.f gamma = _state.gamma geometric = _state.geometric gumbel = _state.gumbel hypergeometric = _state.hypergeometric laplace = _state.laplace logistic = _state.logistic lognormal = _state.lognormal logseries = _state.logseries multinomial = _state.multinomial negative_binomial = _state.negative_binomial noncentral_chisquare = _state.noncentral_chisquare noncentral_f = _state.noncentral_f normal = _state.normal pareto = _state.pareto permutation = _state.permutation poisson = _state.poisson power = _state.power rayleigh = _state.rayleigh random_sample = _state.random_sample random = random_sample randint = _state.randint random_integers = _state.random_integers triangular = _state.triangular uniform = _state.uniform vonmises = _state.vonmises wald = _state.wald weibull = _state.weibull zipf = _state.zipf """ Standard distributions """ standard_cauchy = _state.standard_cauchy standard_exponential = _state.standard_exponential standard_gamma = _state.standard_gamma standard_normal = _state.standard_normal standard_t = _state.standard_t
bsd-3-clause
2,665,391,172,766,181,000
37.330134
92
0.595143
false
3.77077
false
false
false
odahoda/noisicaa
noisicaa/builtin_nodes/sample_track/node_description.py
1
1608
#!/usr/bin/python3 # @begin:license # # Copyright (c) 2015-2019, Benjamin Niemann <pink@odahoda.de> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # @end:license from noisicaa import node_db SampleTrackDescription = node_db.NodeDescription( uri='builtin://sample-track', display_name='Sample Track', type=node_db.NodeDescription.PROCESSOR, node_ui=node_db.NodeUIDescription( type='builtin://sample-track', ), processor=node_db.ProcessorDescription( type='builtin://sample-script', ), builtin_icon='track-type-sample', ports=[ node_db.PortDescription( name='out:left', direction=node_db.PortDescription.OUTPUT, types=[node_db.PortDescription.AUDIO], ), node_db.PortDescription( name='out:right', direction=node_db.PortDescription.OUTPUT, types=[node_db.PortDescription.AUDIO], ), ] )
gpl-2.0
120,325,731,447,951,020
31.816327
73
0.688433
false
3.893462
false
false
false
SqueezeStudioAnimation/omtk
python/omtk/modules/rigLimb.py
1
14788
import pymel.core as pymel import collections from omtk import constants from omtk.core.classModule import Module from omtk.core.classCtrl import BaseCtrl from omtk.core.utils import decorator_uiexpose from omtk.modules import rigIK from omtk.modules import rigFK from omtk.modules import rigTwistbone from omtk.libs import libRigging from omtk.libs import libCtrlShapes from omtk.libs import libAttr from omtk.libs import libPython class BaseAttHolder(BaseCtrl): def __createNode__(self, size=None, refs=None, **kwargs): # Resolve size automatically if refs are provided. ref = next(iter(refs), None) if isinstance(refs, collections.Iterable) else refs if size is None and ref is not None: size = libRigging.get_recommended_ctrl_size(ref) else: size = 1.0 node = libCtrlShapes.create_shape_attrholder(size=size, **kwargs) # Hide default keyable attributes node.t.set(channelBox=False) node.r.set(channelBox=False) node.s.set(channelBox=False) return node class CtrlElbow(BaseCtrl): def __createNode__(self, size=None, refs=None, *args, **kwargs): # Resolve size automatically if refs are provided ref = next(iter(refs), None) if isinstance(refs, collections.Iterable) else refs if size is None and ref is not None: size = libRigging.get_recommended_ctrl_size(ref) * 1.25 else: size = 1.0 return libCtrlShapes.create_shape_cross(size=size, **kwargs) class Limb(Module): """ Generic IK/FK setup. Twistbones are included. """ kAttrName_State = 'fkIk' # The name of the IK/FK attribute _CLASS_SYS_IK = rigIK.IK _CLASS_SYS_FK = rigFK.FK _CLASS_CTRL_ATTR = BaseAttHolder _CLASS_CTRL_ELBOW = CtrlElbow _CLASS_SYS_TWIST = rigTwistbone.Twistbone def __init__(self, *args, **kwargs): super(Limb, self).__init__(*args, **kwargs) self.sysIK = None self.sysFK = None self.sys_twist = [] self.create_twist = True self.ctrl_elbow = None self.attState = None self.offset_ctrl_ik = None self.ctrl_attrs = None self.STATE_IK = 1.0 self.STATE_FK = 0.0 def build(self, *args, **kwargs): super(Limb, self).build(*args, **kwargs) nomenclature_anm = self.get_nomenclature_anm() nomenclature_rig = self.get_nomenclature_rig() # Resolve IK system name # Create IK system self.sysIK = self.init_module( self._CLASS_SYS_IK, self.sysIK, inputs=self.chain_jnt, suffix='ik', ) self.sysIK.build(constraint=False, **kwargs) # Create FK system self.sysFK = self.init_module( self._CLASS_SYS_FK, self.sysFK, inputs=self.chain_jnt, suffix='fk', ) # We want to keep the name of the input on the fk self.sysFK._FORCE_INPUT_NAME = True self.sysFK.build(constraint=False, **kwargs) # Create twistbone system if needed if self.create_twist: num_twist_sys = self.sysIK.iCtrlIndex # Ensure the twistbone list have the proper size libPython.resize_list(self.sys_twist, num_twist_sys) # If the IK system is a quad, we need to have two twist system for i, sys_twist in enumerate(self.sys_twist): # Resolve module name # todo: validate name twist_nomenclature = self.get_nomenclature().copy() twist_nomenclature.add_tokens('bend') twist_nomenclature += self.rig.nomenclature(self.chain_jnt[i].stripNamespace().nodeName()) # twist_nomenclature = self.get_nomenclature() + self.rig.nomenclature(self.chain_jnt[i].name()) sys_twist = self.init_module( self._CLASS_SYS_TWIST, sys_twist, inputs=self.chain_jnt[i:(i + 2)], # suffix='bend' ) self.sys_twist[i] = sys_twist sys_twist.name = twist_nomenclature.resolve() sys_twist.build(num_twist=3, create_bend=True, **kwargs) # Lock X and Y axis on the elbow/knee ctrl if self.rig.DEFAULT_UPP_AXIS == constants.Axis.y: libAttr.lock_hide_rotation(self.sysFK.ctrls[1], z=False) elif self.rig.DEFAULT_UPP_AXIS == constants.Axis.z: libAttr.lock_hide_rotation(self.sysFK.ctrls[1], y=False) # Store the offset between the ik ctrl and it's joint equivalent. # Useful when they don't match for example on a leg setup. self.offset_ctrl_ik = self.sysIK.ctrl_ik.getMatrix(worldSpace=True) * self.chain_jnt[self.iCtrlIndex].getMatrix( worldSpace=True).inverse() # Add attributes to the attribute holder. # Add ikFk state attribute on the grp_rig. # This is currently controlled by self.ctrl_attrs. pymel.addAttr(self.grp_rig, longName=self.kAttrName_State, hasMinValue=True, hasMaxValue=True, minValue=0, maxValue=1, defaultValue=1, k=True) attr_ik_weight = self.grp_rig.attr(self.kAttrName_State) attr_fk_weight = libRigging.create_utility_node('reverse', inputX=attr_ik_weight).outputX # Create attribute holder (this is where the IK/FK attribute will be stored) # Note that this is production specific and should be defined in a sub-class implementation. jnt_hand = self.chain_jnt[self.sysIK.iCtrlIndex] ctrl_attrs_name = nomenclature_anm.resolve('atts') if not isinstance(self.ctrl_attrs, self._CLASS_CTRL_ATTR): self.ctrl_attrs = self._CLASS_CTRL_ATTR() self.ctrl_attrs.build(name=ctrl_attrs_name, refs=jnt_hand) self.ctrl_attrs.setParent(self.grp_anm) pymel.parentConstraint(jnt_hand, self.ctrl_attrs.offset) pymel.addAttr(self.ctrl_attrs, longName=self.kAttrName_State, hasMinValue=True, hasMaxValue=True, minValue=0, maxValue=1, defaultValue=1, k=True) pymel.connectAttr(self.ctrl_attrs.attr(self.kAttrName_State), self.grp_rig.attr(self.kAttrName_State)) # Create a chain for blending ikChain and fkChain chain_blend = pymel.duplicate(list(self.chain_jnt), renameChildren=True, parentOnly=True) for input_, node in zip(self.chain_jnt, chain_blend): blend_nomenclature = nomenclature_rig.rebuild(input_.stripNamespace().nodeName()) node.rename(blend_nomenclature.resolve('blend')) # Blend ikChain with fkChain constraint_ik_chain = self.sysIK._chain_ik if getattr(self.sysIK, '_chain_quad_ik', None): constraint_ik_chain = self.sysIK._chain_quad_ik # Note: We need to set the parent of the chain_blend BEFORE creating the constraint. # Otherwise we might expose oneself to evaluation issues (happened on maya 2018.2). # The symptom is the chain_blend rotation being aligned to the world and the rig being build on top. # At first the scene would seem ok, however doing a dgdirty or reloading the scene would introduce flipping. chain_blend[0].setParent(self.grp_rig) for blend, oIk, oFk in zip(chain_blend, constraint_ik_chain, self.sysFK.ctrls): # Note that maintainOffset should not be necessary, however the rigLegQuad IK can be flipped in some # rare cases. For now since prod need it we'll activate the flag (see Task #70938), however it would # be appreciated if the ugliness of the rigLegQuad module don't bleed into the rigLimb module. constraint = pymel.parentConstraint(oIk, oFk, blend, maintainOffset=True) attr_weight_ik, attr_weight_fk = constraint.getWeightAliasList() pymel.connectAttr(attr_ik_weight, attr_weight_ik) pymel.connectAttr(attr_fk_weight, attr_weight_fk) # # Create elbow chain # This provide the elbow ctrl, an animator friendly way of cheating the elbow on top of the blend chain. # # Create a chain that provide the elbow controller and override the blend chain # (witch should only be nodes already) chain_elbow = pymel.duplicate(self.chain_jnt[:self.sysIK.iCtrlIndex + 1], renameChildren=True, parentOnly=True) for input_, node in zip(self.chain_jnt, chain_elbow): nomenclature_elbow = nomenclature_rig.rebuild(input_.stripNamespace().nodeName()) node.rename(nomenclature_elbow.resolve('elbow')) # todo: find a better name??? chain_elbow[0].setParent(self.grp_rig) # Create elbow ctrl # Note that this only affect the chain until @iCtrlIndex for i in range(1, self.sysIK.iCtrlIndex): ctrl_elbow_name = nomenclature_anm.resolve('elbow{:02}'.format(i)) ctrl_elbow_parent = chain_blend[i] if not isinstance(self.ctrl_elbow, self._CLASS_CTRL_ELBOW): self.ctrl_elbow = self._CLASS_CTRL_ELBOW(create_offset=True) ctrl_elbow_ref = self.chain_jnt[i] # jnt_elbow self.ctrl_elbow.build(refs=ctrl_elbow_ref) self.ctrl_elbow.rename(ctrl_elbow_name) self.ctrl_elbow.setParent(self.grp_anm) pymel.parentConstraint(ctrl_elbow_parent, self.ctrl_elbow.offset, maintainOffset=False) pymel.pointConstraint(chain_blend[0], chain_elbow[0], maintainOffset=False) pymel.aimConstraint(self.ctrl_elbow, chain_elbow[i - 1], worldUpType=2, worldUpObject=chain_blend[i - 1]) # Object Rotation Up pymel.aimConstraint(chain_blend[i + 1], chain_elbow[i], worldUpType=2, worldUpObject=chain_blend[i]) # Object Rotation Up pymel.pointConstraint(self.ctrl_elbow, chain_elbow[i], maintainOffset=False) # Constraint the last elbow joint on the blend joint at the ctrl index pymel.parentConstraint(chain_blend[self.sysIK.iCtrlIndex], chain_elbow[self.sysIK.iCtrlIndex]) # Constraint input chain # Note that we only constraint to the elbow chain until @iCtrlIndex. # Afterward we constraint to the blend chain. for i in range(self.sysIK.iCtrlIndex): inn = self.chain_jnt[i] ref = chain_elbow[i] pymel.parentConstraint(ref, inn, maintainOffset=True) # todo: set to maintainOffset=False? for i in range(self.sysIK.iCtrlIndex, len(self.chain_jnt)): inn = self.chain_jnt[i] ref = chain_blend[i] pymel.parentConstraint(ref, inn, maintainOffset=True) # todo: set to maintainOffset=False? # Connect visibility pymel.connectAttr(attr_ik_weight, self.sysIK.grp_anm.visibility) pymel.connectAttr(attr_fk_weight, self.sysFK.grp_anm.visibility) # Connect globalScale pymel.connectAttr(self.grp_rig.globalScale, self.sysIK.grp_rig.globalScale, force=True) self.globalScale = self.grp_rig.globalScale # Expose the attribute, the rig will reconise it. # Parent sub-modules so they are affected by displayLayer assignment and such. self.sysIK.grp_anm.setParent(self.grp_anm) self.sysIK.grp_rig.setParent(self.grp_rig) self.sysFK.grp_anm.setParent(self.grp_anm) # Patch in case twist network exist, but twist are set to false if self.create_twist: for sys_twist in self.sys_twist: if sys_twist.create_bend: sys_twist.grp_anm.setParent(self.grp_anm) sys_twist.grp_rig.setParent(self.grp_rig) self.attState = attr_ik_weight # Expose state def unbuild(self): for twist_sys in self.sys_twist: twist_sys.unbuild() if self.sysIK and self.sysIK.is_built(): self.sysIK.unbuild() if self.sysFK and self.sysFK.is_built(): self.sysFK.unbuild() super(Limb, self).unbuild() self.attState = None def parent_to(self, parent): # Do nothing as everything is handled by the sysIK and sysFK modules. pass # # Functions called for IK/FK switch (animation tools) # def snap_ik_to_fk(self): # Position ikCtrl ctrl_ik_tm = self.chain_jnt[self.sysIK.iCtrlIndex].getMatrix(worldSpace=True) self.sysIK.ctrl_ik.node.setMatrix(self.offset_ctrl_ik * ctrl_ik_tm, worldSpace=True) # Position swivel # pos_ref = self.sysFK.ctrls[self.sysIK.iCtrlIndex - 1].getTranslation(space='world') pos_s = self.sysFK.ctrls[0].getTranslation(space='world') pos_m = self.sysFK.ctrls[self.sysIK.iCtrlIndex - 1].getTranslation(space='world') pos_e = self.sysFK.ctrls[self.sysIK.iCtrlIndex].getTranslation(space='world') length_start = pos_m.distanceTo(pos_s) length_end = pos_m.distanceTo(pos_e) length_ratio = length_start / (length_start + length_end) pos_middle = (pos_e - pos_s) * length_ratio + pos_s dir_swivel = pos_m - pos_middle dir_swivel.normalize() pos_swivel = (dir_swivel * self.sysIK.swivelDistance) + pos_middle self.sysIK.ctrl_swivel.node.setTranslation(pos_swivel, space='world') def snap_fk_to_ik(self): for ctrl, jnt in zip(self.sysFK.ctrls, self.chain_jnt): ctrl.node.setMatrix(jnt.getMatrix(worldSpace=True), worldSpace=True) def switch_to_ik(self): self.snap_ik_to_fk() attr_state = libAttr.get_settable_attr(self.attState) if attr_state: attr_state.set(self.STATE_IK) def switch_to_fk(self): self.snap_fk_to_ik() attr_state = libAttr.get_settable_attr(self.attState) if attr_state: attr_state.set(self.STATE_FK) def iter_ctrls(self): for ctrl in super(Limb, self).iter_ctrls(): yield ctrl if self.sysIK: for ctrl in self.sysIK.iter_ctrls(): yield ctrl if self.sysFK: for ctrl in self.sysFK.iter_ctrls(): yield ctrl yield self.ctrl_attrs yield self.ctrl_elbow @decorator_uiexpose() def assign_twist_weights(self): for module in self.sys_twist: if module.__class__.__name__ == self._CLASS_SYS_TWIST.__name__: module.assign_twist_weights() @decorator_uiexpose() def unassign_twist_weights(self): for module in self.sys_twist: if module.__class__.__name__ == self._CLASS_SYS_TWIST.__name__: module.unassign_twist_weights() def register_plugin(): return Limb
mit
-8,440,778,741,539,320,000
43.275449
120
0.632675
false
3.383208
false
false
false