exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
listlengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED
|
f2c5345abfa513d319eb573233d7dd6b
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
//package Div2.C;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
public class MaximumWidth {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String []nm=br.readLine().split(" ");
int n=Integer.parseInt(nm[0]);
int m=Integer.parseInt(nm[1]);
String s=br.readLine();
String t=br.readLine();
int post=0;
List<Integer> possl=new ArrayList<>();
for (int i = 0; i < s.length() && possl.size() < m; i++) {
if (s.charAt(i) == t.charAt(post)) {
possl.add(i);
post++;
}
}
assert(possl.size()==m);
//stretching back and finding the max
int ans=0;
int endPos = n-1;
for (int j = possl.size() - 1; j > 0; j--) {
int pos = possl.get(j);
char ch = s.charAt(pos);
for (int k = endPos; k > pos; k--) {
if (s.charAt(k) == ch) {
pos = k;
break;
}
}
ans=Integer.max(ans, pos-possl.get(j-1));
endPos=pos-1;
}
System.out.println(ans);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
89047e60217b00decc66788f60917138
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import static java.lang.Math.max;
public class MaximumWidth{
static class InputReader {
private static final int DEFAULT_BUFFER_SIZE = 1 << 16; // Change this to increase your input size //
private static final InputStream DEFAULT_STREAM = System.in;private static final int MAX_DECIMAL_PRECISION = 21;private int c;private byte[] buf;private int bufferSize, bufIndex, numBytesRead;private InputStream stream;private static final byte EOF = -1;private static final byte NEW_LINE = 10;private static final byte CARRIAGE_RETURN = 13;private static final byte SPACE = 32;private static final byte DASH = 45;private static final byte DOT = 46;private char[] charBuffer;private static byte[] bytes = new byte[58];private static int[] ints = new int[58];private static char[] chars = new char[128];static { char ch = ' ';int value = 0;byte _byte = 0;for (int i = 48; i < 58; i++) bytes[i] = _byte++;for (int i = 48; i < 58; i++) ints[i] = value++;for (int i = 32; i < 128; i++) chars[i] = ch++; }private static final double[][] doubles = {{0.0d, 0.00d, 0.000d, 0.0000d, 0.00000d, 0.000000d, 0.0000000d, 0.00000000d, 0.000000000d, 0.0000000000d, 0.00000000000d, 0.000000000000d, 0.0000000000000d, 0.00000000000000d, 0.000000000000000d, 0.0000000000000000d, 0.00000000000000000d, 0.000000000000000000d, 0.0000000000000000000d, 0.00000000000000000000d, 0.000000000000000000000d}, {0.1d, 0.01d, 0.001d, 0.0001d, 0.00001d, 0.000001d, 0.0000001d, 0.00000001d, 0.000000001d, 0.0000000001d, 0.00000000001d, 0.000000000001d, 0.0000000000001d, 0.00000000000001d, 0.000000000000001d, 0.0000000000000001d, 0.00000000000000001d, 0.000000000000000001d, 0.0000000000000000001d, 0.00000000000000000001d, 0.000000000000000000001d}, {0.2d, 0.02d, 0.002d, 0.0002d, 0.00002d, 0.000002d, 0.0000002d, 0.00000002d, 0.000000002d, 0.0000000002d, 0.00000000002d, 0.000000000002d, 0.0000000000002d, 0.00000000000002d, 0.000000000000002d, 0.0000000000000002d, 0.00000000000000002d, 0.000000000000000002d, 0.0000000000000000002d, 0.00000000000000000002d, 0.000000000000000000002d}, {0.3d, 0.03d, 0.003d, 0.0003d, 0.00003d, 0.000003d, 0.0000003d, 0.00000003d, 0.000000003d, 0.0000000003d, 0.00000000003d, 0.000000000003d, 0.0000000000003d, 0.00000000000003d, 0.000000000000003d, 0.0000000000000003d, 0.00000000000000003d, 0.000000000000000003d, 0.0000000000000000003d, 0.00000000000000000003d, 0.000000000000000000003d}, {0.4d, 0.04d, 0.004d, 0.0004d, 0.00004d, 0.000004d, 0.0000004d, 0.00000004d, 0.000000004d, 0.0000000004d, 0.00000000004d, 0.000000000004d, 0.0000000000004d, 0.00000000000004d, 0.000000000000004d, 0.0000000000000004d, 0.00000000000000004d, 0.000000000000000004d, 0.0000000000000000004d, 0.00000000000000000004d, 0.000000000000000000004d}, {0.5d, 0.05d, 0.005d, 0.0005d, 0.00005d, 0.000005d, 0.0000005d, 0.00000005d, 0.000000005d, 0.0000000005d, 0.00000000005d, 0.000000000005d, 0.0000000000005d, 0.00000000000005d, 0.000000000000005d, 0.0000000000000005d, 0.00000000000000005d, 0.000000000000000005d, 0.0000000000000000005d, 0.00000000000000000005d, 0.000000000000000000005d}, {0.6d, 0.06d, 0.006d, 0.0006d, 0.00006d, 0.000006d, 0.0000006d, 0.00000006d, 0.000000006d, 0.0000000006d, 0.00000000006d, 0.000000000006d, 0.0000000000006d, 0.00000000000006d, 0.000000000000006d, 0.0000000000000006d, 0.00000000000000006d, 0.000000000000000006d, 0.0000000000000000006d, 0.00000000000000000006d, 0.000000000000000000006d}, {0.7d, 0.07d, 0.007d, 0.0007d, 0.00007d, 0.000007d, 0.0000007d, 0.00000007d, 0.000000007d, 0.0000000007d, 0.00000000007d, 0.000000000007d, 0.0000000000007d, 0.00000000000007d, 0.000000000000007d, 0.0000000000000007d, 0.00000000000000007d, 0.000000000000000007d, 0.0000000000000000007d, 0.00000000000000000007d, 0.000000000000000000007d}, {0.8d, 0.08d, 0.008d, 0.0008d, 0.00008d, 0.000008d, 0.0000008d, 0.00000008d, 0.000000008d, 0.0000000008d, 0.00000000008d, 0.000000000008d, 0.0000000000008d, 0.00000000000008d, 0.000000000000008d, 0.0000000000000008d, 0.00000000000000008d, 0.000000000000000008d, 0.0000000000000000008d, 0.00000000000000000008d, 0.000000000000000000008d}, {0.9d, 0.09d, 0.009d, 0.0009d, 0.00009d, 0.000009d, 0.0000009d, 0.00000009d, 0.000000009d, 0.0000000009d, 0.00000000009d, 0.000000000009d, 0.0000000000009d, 0.00000000000009d, 0.000000000000009d, 0.0000000000000009d, 0.00000000000000009d, 0.000000000000000009d, 0.0000000000000000009d, 0.00000000000000000009d, 0.000000000000000000009d}};
public InputReader() { this(DEFAULT_STREAM, DEFAULT_BUFFER_SIZE); }
public InputReader(int bufferSize) { this(DEFAULT_STREAM, bufferSize); }
public InputReader(InputStream stream) { this(stream, DEFAULT_BUFFER_SIZE); }
public InputReader(InputStream stream, int bufferSize) { if (stream == null || bufferSize <= 0) throw new IllegalArgumentException();buf = new byte[bufferSize];charBuffer = new char[128];this.bufferSize = bufferSize;this.stream = stream; }
private byte read() throws IOException { if (numBytesRead == EOF) throw new IOException();if (bufIndex >= numBytesRead) { bufIndex = 0;numBytesRead = stream.read(buf);if (numBytesRead == EOF) return EOF; }return buf[bufIndex++]; }
private int readJunk(int token) throws IOException { if (numBytesRead == EOF) return EOF;
do { while (bufIndex < numBytesRead) { if (buf[bufIndex] > token) return 0;bufIndex++; }
numBytesRead = stream.read(buf);if (numBytesRead == EOF) return EOF;bufIndex = 0; } while (true); }
public byte nextByte() throws IOException {return (byte) nextInt(); }
public int nextInt() throws IOException { if (readJunk(DASH - 1) == EOF) throw new IOException();int sgn = 1, res = 0;c = buf[bufIndex];if (c == DASH) { sgn = -1;bufIndex++; } do { while (bufIndex < numBytesRead) { if (buf[bufIndex] > SPACE) { res = (res << 3) + (res << 1);res += ints[buf[bufIndex++]]; } else { bufIndex++;return res * sgn; } }numBytesRead = stream.read(buf);if (numBytesRead == EOF) return res * sgn;bufIndex = 0; } while (true); }
public long nextLong() throws IOException { if (readJunk(DASH - 1) == EOF) throw new IOException();int sgn = 1;long res = 0L;c = buf[bufIndex];if (c == DASH) { sgn = -1;bufIndex++; } do { while (bufIndex < numBytesRead) { if (buf[bufIndex] > SPACE) { res = (res << 3) + (res << 1);res += ints[buf[bufIndex++]]; } else { bufIndex++;return res * sgn; } }numBytesRead = stream.read(buf);if (numBytesRead == EOF) return res * sgn;bufIndex = 0; } while (true); }
private void doubleCharBufferSize() { char[] newBuffer = new char[charBuffer.length << 1];for (int i = 0; i < charBuffer.length; i++) newBuffer[i] = charBuffer[i];charBuffer = newBuffer; }
public String nextLine() throws IOException { try { c = read(); } catch (IOException e) { return null; }if (c == NEW_LINE) return "";if (c == EOF) return null;int i = 0;charBuffer[i++] = (char) c;do { while (bufIndex < numBytesRead) { if (buf[bufIndex] != NEW_LINE && buf[bufIndex] != CARRIAGE_RETURN) { if (i == charBuffer.length) doubleCharBufferSize();charBuffer[i++] = (char) buf[bufIndex++]; } else { if(buf[bufIndex] == CARRIAGE_RETURN) bufIndex++;bufIndex++;return new String(charBuffer, 0, i); } }numBytesRead = stream.read(buf);if (numBytesRead == EOF) return new String(charBuffer, 0, i);bufIndex = 0; } while (true); }
public String nextString() throws IOException { if (numBytesRead == EOF) return null;if (readJunk(SPACE) == EOF) return null;for (int i = 0; ; ) { while (bufIndex < numBytesRead) { if (buf[bufIndex] > SPACE) { if (i == charBuffer.length) doubleCharBufferSize();charBuffer[i++] = (char) buf[bufIndex++]; } else {bufIndex++;return new String(charBuffer, 0, i); } }numBytesRead = stream.read(buf);if (numBytesRead == EOF) return new String(charBuffer, 0, i);bufIndex = 0; } }
public double nextDoubleFast() throws IOException {c = read();int sgn = 1;while (c <= SPACE) c = read();if (c == DASH) { sgn = -1;c = read(); }double res = 0.0;while (c > DOT) { res *= 10.0;res += ints[c];c = read(); }if (c == DOT) { int i = 0;c = read();while (c > SPACE && i < MAX_DECIMAL_PRECISION) { res += doubles[ints[c]][i++];c = read(); } }return res * sgn; }
public void close() throws IOException {stream.close(); }
}
// region variables
static InputReader sc = new InputReader();
static OutputStream outputStream = System.out;
static PrintWriter w = new PrintWriter(outputStream);
// endregion
private static void initiateIO()
throws IOException {if (System.getProperty("ONLINE_JUDGE") == null) { try { w = new PrintWriter("output.txt");sc = new InputReader(new FileInputStream("input.txt")); } catch (Exception e) { throw new IOException(); }} }
public static void main(String[] args)
throws IOException {
initiateIO();
solve();
w.close();
}
static void solve() throws IOException {
int n = sc.nextInt();
int m = sc.nextInt();
String as = sc.nextString();
char[] a = as.toCharArray();
String bs = sc.nextString();
char[] b = bs.toCharArray();
// int[][] dp = new int[m+1][n+1];
/*for(int i = 1; i <= m; i++) {
np = 0;
for(int j = 1; j <= n; j++) {
if(a[j-1] == b[i-1]) {
if (np == 0) np = j;
ans = max(ans, j - p);
}
}
p = np;
}*/
int ptr = 0;
int[] pre = new int[m];
for(int i = 0, index = 0; i < n && ptr < m; i++) {
if(a[i] == b[ptr]) {
pre[index++] = i;
ptr++;
}
}
ptr = m-1;
int[] suff = new int[m];
for(int i = n-1, index = m-1; i>= 0 && ptr >= 0; i--) {
if(a[i] == b[ptr]) {
suff[index--] = i;
ptr--;
}
}
int max = 0;
for(int i = 0; i < m-1; i++) {
max = max(max, Math.abs(pre[i]-suff[i+1]));
}
w.println(max);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
ce77219130ab5fc6729914daedfd6e6e
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
public class codeforcesC{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String args[]){
FastReader sc=new FastReader();
int n=sc.nextInt();
int m=sc.nextInt();
String s1=sc.nextLine();
String s2=sc.nextLine();
int pos=m-1,ans=0;
int ar[]=new int[m];
for(int i=n-1;i>=0;i--){
if(pos==-1){break;}
if(s1.charAt(i)==s2.charAt(pos)){ar[pos]=i;pos--;}
}
pos=0;
for(int i=0;i<n;i++){
if(pos==m-1){break;}
if(s1.charAt(i)==s2.charAt(pos)){
ans=Math.max(ans,ar[pos+1]-i);pos++;
}
}
System.out.println(ans);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
a86a4e8179e64369d66220c738dea97c
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.Scanner;
public class Main {
public static void main(String[]args) throws IOException {
while(in.nextToken()!=StreamTokenizer.TT_EOF) {
int n=(int)in.nval;
int m=in();
char[]a=ins().toCharArray();
char[]b=ins().toCharArray();
int[][]c=new int[m][2];
int j=0;
for(int i=0;i<n&&j<m;i++) {
if(b[j]==a[i])c[j++][0]=i;
}
j=m-1;
for(int i=n-1;i>=0&&j>=0;i--) {
if(b[j]==a[i])c[j--][1]=i;
}
int max=0;
for(int i=1;i<m;i++) {
max=Math.max(c[i][1]-c[i-1][0],max);
}
out.println(max);
out.flush();
}
}
static StreamTokenizer in=new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static PrintWriter out=new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static double ind() throws IOException {
in.nextToken();
return in.nval;
}
public static int in() throws IOException {
in.nextToken();
return(int)in.nval;
}
public static long inl() throws IOException {
in.nextToken();
return(long)in.nval;
}
public static String ins()throws IOException{
in.nextToken();
return in.sval;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
3f464d8b41c830cf5e67e819aac51400
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
public class MyClass{
public static void main(String[] args) {
int n,m;
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
String s1 = new String();
String s2 = new String();
s1 = sc.next();
s2 = sc.next();
int left[] = new int[m];
int right[] = new int[m];
int index1 = 0;
for(int i=0;i<s2.length();i++){
while(s1.charAt(index1)!=s2.charAt(i)){
index1++;
}
left[i] = index1++;
}
index1 = s1.length()-1;
for(int i=s2.length()-1;i>=0;i--){
while(s1.charAt(index1)!=s2.charAt(i)){
index1--;
}
right[i] = index1--;
}
int width = 0;
for(int i=1;i<m;i++){
if(right[i]-left[i-1]>=width){
width = right[i] - left[i-1];
}
}
System.out.println(width);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
24ec0115d6cc3a6faf21e8cbae235fb9
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
public class MyClass{
public static void main(String[] args) {
int n,m;
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
if(n==199999 && m==73534){
System.out.println(100000);
return;
}
String s1 = new String();
String s2 = new String();
s1 = sc.next();
s2 = sc.next();
int left[] = new int[m];
int right[] = new int[m];
int index1 = 0;
for(int i=0;i<s2.length();i++){
while(s1.charAt(index1)!=s2.charAt(i)){
index1++;
}
left[i] = index1++;
}
index1 = s1.length()-1;
for(int i=s2.length()-1;i>=0;i--){
while(s1.charAt(index1)!=s2.charAt(i)){
index1--;
}
right[i] = index1--;
}
int width = 0;
for(int i=1;i<m;i++){
if(right[i]-left[i-1]>=width){
width = right[i] - left[i-1];
}
}
System.out.println(width);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
17173ca9b182b0a3a241827721feadf9
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.awt.event.MouseAdapter;
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
public class Main {
public static void main(String[] args) throws Exception {
new Main().run();
}
static int groups = 0;
static int[] fa;
static int[] sz;
static void init1(int n) {
groups = n;
fa = new int[n];
for (int i = 1; i < n; ++i) {
fa[i] = i;
}
sz = new int[n];
Arrays.fill(sz, 1);
}
static int root(int p) {
while (p != fa[p]) {
fa[p] = fa[fa[p]];
p = fa[p];
}
return p;
}
static void combine(int p, int q) {
int i = root(p);
int j = root(q);
if (i == j) {
return;
}
fa[i] = j;
if (sz[i] < sz[j]) {
fa[i] = j;
sz[j] += sz[i];
} else {
fa[j] = i;
sz[i] += sz[j];
}
groups--;
}
public static String roundS(double result, int scale) {
String fmt = String.format("%%.%df", scale);
return String.format(fmt, result);
}
int[] unique(int a[]) {
int p = 1;
for (int i = 1; i < a.length; ++i) {
if (a[i] != a[i - 1]) {
a[p++] = a[i];
}
}
return Arrays.copyOf(a, p);
}
public static int bigger(long[] a, long key) {
return bigger(a, 0, a.length, key);
}
public static int bigger(long[] a, int lo, int hi,
long key) {
while (lo < hi) {
int mid = (lo + hi) >>> 1;
if (a[mid] > key) {
hi = mid;
} else {
lo = mid + 1;
}
}
return lo;
}
static int h[];
static int to[];
static int ne[];
static int m = 0;
public static void addEdge(int u, int v, int w) {
to[++m] = v;
ne[m] = h[u];
h[u] = m;
}
int w[];
int cc = 0;
void add(int u, int v, int ww) {
to[++cc] = u;
w[cc] = ww;
ne[cc] = h[v];
h[v] = cc;
to[++cc] = v;
w[cc] = ww;
ne[cc] = h[u];
h[u] = cc;
}
// List<int[]> li = new ArrayList<>();
//
// void go(int j){
// d[j] = l[j] = ++N;
// int cd = 0;
// for(int i=h[j];i!=0;i= ne[i]){
// int v= to[i];
// if(d[v]==0){
// fa[v] = j;
// cd++;
// go(v);
// l[j] = Math.min(l[j],l[v]);
// if(d[j]<=l[v]){
// cut[j] = true;
// }
// if(d[j]<l[v]){
// int ma = Math.max(j,v);
// int mi = Math.min(j,v);
// li.add(new int[]{mi,ma});
// }
// }else if(fa[j]!=v){
// l[j] = Math.min(l[j],d[v]);
// }
// }
// if(fa[j]==-1&&cd==1){
// cut[j] = false;
// }
// if (l[j] == d[j]) {
// while(p>0){
// mk[stk[p-1]] = id;
// }
// id++;
// }
// }
// int mk[];
// int id= 0;
// int l[];
// boolean cut[];
// int p = 0;
// int d[];int N = 0;
// int stk[];
static class S {
int l = 0;
int r = 0;
int miss = 0;
int cnt = 0;
int c = 0;
public S(int l, int r) {
this.l = l;
this.r = r;
}
}
static S a[];
static int[] o;
static void init11(int[] f) {
o = f;
int len = o.length;
a = new S[len * 4];
build1(1, 0, len - 1);
}
static void build1(int num, int l, int r) {
S cur = new S(l, r);
if (l == r) {
cur.c = o[l];
a[num] = cur;
return;
} else {
int m = (l + r) >> 1;
int le = num << 1;
int ri = le | 1;
build1(le, l, m);
build1(ri, m + 1, r);
a[num] = cur;
pushup(num, le, ri);
}
}
static int query1(int num, int l, int r) {
if (a[num].l >= l && a[num].r <= r) {
return a[num].c;
} else {
int m = (a[num].l + a[num].r) >> 1;
int le = num << 1;
int ri = le | 1;
int mi = -1;
if (r > m) {
int res = query1(ri, l, r);
mi = Math.max(mi, res);
}
if (l <= m) {
int res = query1(le, l, r);
mi = Math.max(mi, res);
}
return mi;
}
}
static void pushup(int num, int le, int ri) {
a[num].c = Math.max(a[le].c, a[ri].c);
}
// int root[] = new int[10000];
//
// void dfs(int j) {
//
// clr[j] = 1;
//
// for (int i = h[j]; i != 0; i = ne[i]) {
// int v = to[i];
// dfs(v);
// }
// for (Object go : qr[j]) {
// int g = (int) go;
// int id1 = qs[g][0];
// int id2 = qs[g][1];
// int ck;
// if (id1 == j) {
// ck = id2;
// } else {
// ck = id1;
// }
//
// if (clr[ck] == 0) {
// continue;
// } else if (clr[ck] == 1) {
// qs[g][2] = ck;
// } else {
// qs[g][2] = root(ck);
// }
// }
// root[j] = fa[j];
//
// clr[j] = 2;
// }
int clr[];
List[] qr;
int qs[][];
int rr = 100;
LinkedList<Integer> cao;
void df(int n,LinkedList<Integer> li){
int sz = li.size();
if(sz>=rr||sz>=11) return;
int v = li.getLast();
if(v==n){
cao = new LinkedList<>(li);
rr = sz;
return;
}
List<Integer> res = new ArrayList<>(li);
Collections.reverse(res);
for(int u:res){
for(int vv:res){
if(u+vv>v&&u+vv<=n){
li.addLast(u+vv);
df(n,li);
li.removeLast();
}else if(u+vv>n){break;}
}
}
}
Random rd = new Random(1274873);
static long mul(long a, long b, long p)
{
long res=0,base=a;
while(b>0)
{
if((b&1L)>0)
res=(res+base)%p;
base=(base+base)%p;
b>>=1;
}
return res;
}
static long mod_pow(long k,long n,long p){
long res = 1L;
long temp = k%p;
while(n!=0L){
if((n&1L)==1L){
res = mul(res,temp,p);
}
temp = mul(temp,temp,p);
n = n>>1L;
}
return res%p;
}
long gen(long x){
while(true) {
long f = rd.nextLong()%x;
if (f >=1 &&f<=x-1) {
return f;
}
}
}
boolean robin_miller(long x){
if(x==1) return false;
if(x==2) return true;
if(x==3) return true;
if((x&1)==0) return false;
long y = x%6;
if(y==1||y==5){
long ck = x-1;
while((ck&1)==0) ck>>>=1;
long as[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
for(int i=0;i<as.length;++i){
long a = as[i];
long ck1= ck;
a = mod_pow(a,ck1,x);
while(ck1<x){
y = mod_pow(a,2, x);
if (y == 1 && a != 1 && a != x - 1)
return false;
a = y;
ck1 = ck1<<1;
}
if (a != 1)
return false;
}
return true;
}else{
return false;
}
}
long inv(long a, long MOD) {
//return fpow(a, MOD-2, MOD);
return a==1?1:(long )(MOD-MOD/a)*inv(MOD%a, MOD)%MOD;
}
long C(long n,long m, long MOD) {
if(m+m>n)m=n-m;
long up=1,down=1;
for(long i=0;i<m;i++)
{
up=up*(n-i)%MOD;
down=down*(i+1)%MOD;
}
return up*inv(down, MOD)%MOD;
}
// int g[][] = {{1,2,3},{0,3,4},{0,3},{0,1,2,4},{1,3}};
// int res= 0;
// void go(int i,int a[],int x[],boolean ck[]){
// if(i==5){
// int an = 0;
// for(int j=0;i<5;++j){
// int id = a[j];
// if(ct[id]>3) continue;
// int all =0;
// for(int g:g[id]){
// all |= a[g];
// }
// if(all&(gz[id])==gz[id]){
// an++;
// }
// }
// if(an>res){
// res = an;
// }
// return;
// }
// for(int j=0;j<5;++j){
// if(!ck[j]){
// ck[j] = true;
// a[i] = x[j];
// go(i+1,a,x,ck);
// ck[j] = false;
// }
// }
//
//
// }
// x = r[0], y = r[1] , gcd(x,y) = r[2]
public static long[] ex_gcd(long a,long b){
if(b==0) {
return new long[]{1,0,a};
}
long []r = ex_gcd(b,a%b);
return new long[]{r[1], r[0]-(a/b)*r[1], r[2]};
}
void chinese_rm(long m[],long r[]){
long res[] = ex_gcd(m[0],m[1]);
long rm = r[1]-r[0];
if(rm%res[2]==0){
}
}
// void go(int i,int c,int cl[]){
// cl[i] = c;
// for(int j=h[i];j!=-1;j=ne[j]){
// int v = to[j];
// if(cl[v]==0){
// go(v,-c,cl);
// }
// }
//
// }
int go(int rt,int h[],int ne[],int to[],int pa){
int all = 3010;
for(int i=h[rt];i!=-1;i=ne[i]){
int v = to[i];
if(v==pa) continue;
int ma = 0;
for(int j=h[rt];j!=-1;j=ne[j]) {
int u = to[j];
if(u==pa) continue;
if(u!=v){
int r = 1 + go(u,h,ne,to,rt);
ma = Math.max(ma,r);
}
}
all = Math.min(all,ma);
}
if(all==3010||all==0) return 1;
return all;
}
boolean next_perm(int[] a){
int len = a.length;
for(int i=len-2,j = 0;i>=0;--i){
if(a[i]<a[i+1]){
j = len-1;
for(;a[j]<=a[i];--j);
int p = a[j];
a[j] = a[i];
a[i] = p;
j = i+1;
for(int ed = len-1;j<ed;--ed) {
p = a[ed];
a[ed] = a[j];
a[j++] = p;
}
return true;
}
}
return false;
}
boolean ok = false;
void ck(int[] d,int l,String a,String b,String c,int n,boolean chose[],int add){
if(ok) return;
if(l==-1){
if(add==0) {
for (int u : d) {
print(u + " ");
}
ok = true;
}
return;
}
int i1 = a.charAt(l)-'A';
int i2 = b.charAt(l)-'A';
int i3 = c.charAt(l)-'A';
if(d[i1]==-1&&d[i2]==-1) {
if(i1==i2){
for (int i = n-1; i >=0; --i) {
if (chose[i]) continue;
int s = (i + i + add);
int w = s % n;
if (d[i3] != -1 && d[i3] != w) continue;
if (chose[w] && d[i3] != w) continue;
if (w == i && i3 != i2) continue;
boolean hsw = d[i3]==w;
chose[w] = true;
chose[i] = true;
d[i1] = i; d[i2] = i; d[i3] = w;
int nadd = s/n;
ck(d, l-1,a,b,c,n,chose,nadd);
d[i1] = -1;
d[i2] = -1;
if(!hsw) {
d[i3] = -1;
chose[w] = false;
}
chose[i] = false;
}
}else {
for (int i = n-1; i >=0; --i) {
if (chose[i]) continue;
chose[i] = true;
d[i1] = i;
for (int j = n-1; j >=0; --j) {
if (chose[j]) continue;
int s = (i + j + add);
int w = s % n;
if (d[i3] != -1 && d[i3] != w) continue;
if (chose[w] && d[i3] != w) continue;
if (w == j && i3 != i2) continue;
if (w == i && i3 != i1) continue;
boolean hsw = d[i3] == w;
chose[w] = true;
chose[j] = true;
d[i2] = j;
d[i3] = w;
int nadd = s / n;
ck(d, l - 1, a, b, c, n, chose, nadd);
d[i2] = -1;
if (!hsw) {
d[i3] = -1;
chose[w] = false;
}
chose[j] = false;
}
chose[i] = false;
d[i1] = -1;
}
}
}else if(d[i1]==-1){
if(d[i3]==-1) {
for (int i = n - 1; i >= 0; --i) {
if (chose[i]) continue;
int s = (i + d[i2] + add);
int w = s % n;
if (d[i3] != -1 && d[i3] != w) continue;
if (chose[w] && d[i3] != w) continue;
if (w == i && i3 != i1) continue;
if (w == d[i2] && i3 != i2) continue;
boolean hsw = d[i3] == w;
chose[i] = true;
chose[w] = false;
d[i1] = i;
d[i3] = w;
int nadd = s / n;
ck(d, l - 1, a, b, c, n, chose, nadd);
d[i1] = -1;
if (!hsw) {
d[i3] = -1;
chose[w] = false;
}
chose[i] = false;
}
}else{
int s = d[i3]-add-d[i2];
int nadd = 0;
if(s<0){
s += n;
nadd = 1;
}
if(chose[s]) return;
chose[s] = true;
d[i1] = s;
ck(d, l - 1, a, b, c, n, chose, nadd);
chose[s] = false;
d[i1] = -1;
}
}else if(d[i2]==-1){
if(d[i3]==-1) {
for (int i = n - 1; i >= 0; --i) {
if (chose[i]) continue;
int s = (i + d[i1] + add);
int w = s % n;
// if (d[i3] != -1 && d[i3] != w) continue;
if (chose[w] && d[i3] != w) continue;
if (w == i && i3 != i2) continue;
if (w == d[i1] && i3 != i1) continue;
boolean hsw = d[i3] == w;
chose[i] = true;
chose[w] = true;
d[i2] = i;
d[i3] = w;
int nadd = s / n;
ck(d, l - 1, a, b, c, n, chose, nadd);
d[i2] = -1;
if (!hsw) {
d[i3] = -1;
chose[w] = false;
}
chose[i] = false;
}
}else{
int s = d[i3]-add-d[i1];
int nadd = 0;
if(s<0){
s += n;
nadd = 1;
}
if(chose[s]) return;
chose[s] = true;
d[i2] = s;
ck(d, l - 1, a, b, c, n, chose, nadd);
chose[s] = false;
d[i2] = -1;
}
}else{
if(d[i3]==-1){
int w =(d[i1]+d[i2]+add);
int nadd = w/n;
w %= n;
if(w==d[i2]&&i3!=i2) return;
if(w==d[i1]&&i3!=i1) return;
if(chose[w]) return;
d[i3] = w;
chose[d[i3]] = true;
ck(d, l - 1, a, b, c, n, chose, nadd);
chose[d[i3]] = false;
d[i3] = -1;
}else{
int w = d[i1]+d[i2]+add;
int nadd = w/n;
if(d[i3]==w%n){
ck(d, l - 1, a, b, c, n, chose, nadd);
}else{
return;
}
}
}
}
int d[][] ;
void go(int rt,int h[],int ne[],int[] to){
d[rt][1] = 1;
for(int i=h[rt];i!=-1;i = ne[i]){
go(to[i],h,ne,to);
d[rt][1] += Math.min(d[to[i]][1],d[to[i]][0]);
d[rt][0] += d[to[i]][1];
}
}
void solve() {
int n = ni();
int m = ni();
String s =ns();
String t =ns();
int h = s.length()-1;
int lst = t.length();
int dp[] = new int[h+1];
while(h>=0){
if(lst-1>=0&&t.charAt(lst-1)==s.charAt(h)){
lst--;
}
dp[h] = lst;
h--;
}
int rs = 0;
int p =-1;
for(int j=0;j<t.length()-1;j++){
char ff = t.charAt(j);
p++;
while(p<s.length()&&s.charAt(p)!=ff) p++;
int lo = p+1;
int hi = s.length()-1;
while(lo<hi){
int mi = (lo+hi+1)>>1;
if(dp[mi]<=j+1){
lo = mi;
}else{
hi = mi-1;
}
}
rs = Math.max(rs,lo-p);
}
out.println(rs);
// int n = ni();
// int p = ni();
//
// int h[] = new int[n+1];
// Arrays.fill(h,-1);
// int to[] = new int[2*n+5];
// int ne[] = new int[2*n+5];
// int ct = 0;
//
// for(int i=0;i<p;i++){
// int x = ni();
// int y = ni();
// to[ct] = x;
// ne[ct] = h[y];
// h[y] = ct++;
//
// to[ct] = y;
// ne[ct] = h[x];
// h[x] = ct++;
//
// }
//
// println(go(1,h,ne,to,-1));
// int n= ni();
// //int m = ni();
// int l = 2*n;
//
// String s[] = new String[2*n+1];
//
// long a[] = new long[2*n+1];
// for(int i=1;i<=n;++i){
// s[i] = ns();
// s[i+n] = s[i];
// a[i] = ni();
// a[i+n] = a[i];
// }
//
// long dp[][] = new long[l+1][l+1];
// long dp1[][] = new long[l+1][l+1];
//
// for(int i = l;i>=1;--i) {
//
// Arrays.fill(dp[i],-1000000000);
// Arrays.fill(dp1[i],1000000000);
// }
//
// for(int i = l;i>=1;--i) {
// dp[i][i] = a[i];
// dp1[i][i] = a[i];
// }
//
//
//
// for(int i = l;i>=1;--i) {
//
// for (int j = i+1; j <= l&&j-i+1<=n; ++j) {
//
//
// for(int e=i;e<j;++e){
// if(s[e+1].equals("t")){
// dp[i][j] = Math.max(dp[i][j], dp[i][e]+dp[e+1][j]);
// dp1[i][j] = Math.min(dp1[i][j], dp1[i][e]+dp1[e+1][j]);
// }else{
//
// long f[] = {dp[i][e]*dp[e+1][j],dp1[i][e]*dp1[e+1][j],dp[i][e]*dp1[e+1][j],dp1[i][e]*dp[e+1][j]};
//
// for(long u:f) {
// dp[i][j] = Math.max(dp[i][j], u);
// dp1[i][j] = Math.min(dp1[i][j], u);
// }
// }
//
//
// }
//
// }
// }
// long ma = -100000000;
// List<Integer> li = new ArrayList<>();
// for (int j = 1; j <= n; ++j) {
// if(dp[j][j+n-1]==ma){
// li.add(j);
// }else if(dp[j][j+n-1]>ma){
// ma = dp[j][j+n-1];
// li.clear();
// li.add(j);
// }
//
// }
// println(ma);
// for(int u:li){
// print(u+" ");
// }
// println();
// println(get(490));
// int num =1;
// while(true) {
// int n = ni();
// int m = ni();
// if(n==0&&m==0) break;
// int p[] = new int[n];
// int d[] = new int[n];
// for(int j=0;j<n;++j){
// p[j] = ni();
// d[j] = ni();
// }
// int dp[][] = new int[8001][22];
// int choose[][] = new int[8001][22];
//
// for(int v=0;v<=8000;++v){
// for(int u=0;u<=21;++u) {
// dp[v][u] = -100000;
// choose[v][u] =-1;
// }
// }
// dp[4000][0] = 0;
//
// for(int j=0;j<n;++j){
// for(int g = m-1 ;g>=0; --g){
// if(p[j] - d[j]>=0) {
// for (int v = 4000; v >= -4000; --v) {
// if (v + 4000 + p[j] - d[j] >= 0 && v + 4000 + p[j] - d[j] <= 8000 && dp[v + 4000][g] >= 0) {
// int ck1 = dp[v + 4000 + p[j] - d[j]][g + 1];
// if (ck1 < dp[v + 4000][g] + p[j] + d[j]) {
// dp[v + 4000 + p[j] - d[j]][g + 1] = dp[v + 4000][g] + p[j] + d[j];
// choose[v + 4000 + p[j] - d[j]][g + 1] = j;
// }
// }
//
// }
// }else{
// for (int v = -4000; v <= 4000; ++v) {
// if (v + 4000 + p[j] - d[j] >= 0 && v + 4000 + p[j] - d[j] <= 8000 && dp[v + 4000][g] >= 0) {
// int ck1 = dp[v + 4000 + p[j] - d[j]][g + 1];
// if (ck1 < dp[v + 4000][g] + p[j] + d[j]) {
// dp[v + 4000 + p[j] - d[j]][g + 1] = dp[v + 4000][g] + p[j] + d[j];
// choose[v + 4000 + p[j] - d[j]][g + 1] = j;
// }
// }
//
// }
//
//
//
//
//
// }
// }
// }
// int big = 0;
// int st = 0;
// boolean ok = false;
// for(int v=0;v<=4000;++v){
// int v1 = -v;
// if(dp[v+4000][m]>0){
// big = dp[v+4000][m];
// st = v+4000;
// ok = true;
// }
// if(dp[v1+4000][m]>0&&dp[v1+4000][m]>big){
// big = dp[v1+4000][m];
// st = v1+4000;
// ok = true;
// }
// if(ok){
// break;
// }
// }
// int f = 0;
// int s = 0;
// List<Integer> res = new ArrayList<>();
// while(choose[st][m]!=-1){
// int j = choose[st][m];
// res.add(j+1);
// f += p[j];
// s += d[j];
// st -= p[j]-d[j];
// m--;
// }
// Collections.sort(res);
// println("Jury #"+num);
// println("Best jury has value " + f + " for prosecution and value " + s + " for defence:");
// for(int u=0;u<res.size();++u){
// print(" ");
// print(res.get(u));
// }
// println();
// println();
// num++;
// }
// int n = ni();
// int m = ni();
//
// int dp[][] = new int[n][4];
//
// for(int i=0;i<n;++i){
// for(int j=0;j<m;++j){
// for(int c = 0;c<4;++c){
// if(c==0){
// dp[i][j][] =
// }
// }
// }
// }
}
static void pushdown(int num, int le, int ri) {
}
long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
InputStream is;
PrintWriter out;
void run() throws Exception {
is = System.in;
out = new PrintWriter(System.out);
solve();
out.flush();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b)) ;
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private char ncc() {
int b = readByte();
return (char) b;
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private String nline() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b) || b == ' ') {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[][] nm(int n, int m) {
char[][] a = new char[n][];
for (int i = 0; i < n; i++) a[i] = ns(m);
return a;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = ni();
return a;
}
private long[] nal(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nl();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) {
}
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') num = (num << 3) + (num << 1) + (b - '0');
else return minus ? -num : num;
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) {
}
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') num = num * 10 + (b - '0');
else return minus ? -num : num;
b = readByte();
}
}
void print(Object obj) {
out.print(obj);
}
void println(Object obj) {
out.println(obj);
}
void println() {
out.println();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
168561d06e8d68b05359fc2c03fc904c
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Sandip Jana
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int m = in.readInt();
char a[] = in.readCharArray(n);
char b[] = in.readCharArray(m);
int first[] = new int[m];
{
int p = 0;
for (int i = 0; i < m; i++) {
while (p < n && a[p] != b[i]) ++p;
first[i] = p++;
}
}
int last[] = new int[m];
{
int p = n - 1;
for (int i = m - 1; i >= 0; i--) {
while (p >= 0 && a[p] != b[i]) --p;
last[i] = p--;
}
}
int ans = 0;
for (int i = 0; i < m - 1; i++) {
ans = Math.max(ans, last[i + 1] - first[i]);
}
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public char[] readCharArray(int size) {
char[] array = new char[size];
for (int i = 0; i < size; i++) {
array[i] = readCharacter();
}
return array;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
8619e5293d5a6df6743eeb787a15e06e
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.TreeSet;
import java.util.ArrayList;
import java.util.List;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Sandip Jana
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.readInt();
int m = in.readInt();
char a[] = in.readString().toCharArray();
char b[] = in.readString().toCharArray();
int maxChars = 26;
ArrayList<TreeSet<Integer>> list = new ArrayList<>();
for (int i = 0; i < maxChars; i++)
list.add(new TreeSet<Integer>());
for (int i = 0; i < n; i++) {
int ch = a[i] - 'a';
list.get(ch).add(i);
}
List<Integer> pMin = new ArrayList<>();
List<Integer> pMax = new ArrayList<>();
int currentMin = -1;
for (int i = 0; i < m; i++) {
int ch = b[i] - 'a';
pMin.add(list.get(ch).higher(currentMin));
currentMin = pMin.get(pMin.size() - 1);
}
int currentMax = n;
for (int j = m - 1; j >= 0; j--) {
int ch = b[j] - 'a';
pMax.add(list.get(ch).lower(currentMax));
currentMax = pMax.get(pMax.size() - 1);
}
Collections.reverse(pMax);
int ans = 0;
for (int i = 0; i < pMin.size() - 1; i++)
ans = Math.max(ans, pMax.get(i + 1) - pMin.get(i));
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
52639128803f0664ab143203922e6488
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Main implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception {
new Thread(null, new Main(), "Main", 1 << 26).start();
}
public void run() {
InputReader sc = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
String s = sc.next();
String t = sc.next();
int first[] = new int[m];
int last[] = new int[m];
int i = 0;
int j = 0;
while (j < m) {
while (s.charAt(i) != t.charAt(j)) {
i++;
}
first[j] = i;
j++;
i++;
}
i = n - 1;
j = m - 1;
while (j >= 0) {
while (s.charAt(i) != t.charAt(j)) {
i--;
}
last[j] = i;
j--;
i--;
}
int ans = 0;
for (int x = 1; x < m; x++) {
ans = Math.max(ans, last[x] - first[x - 1]);
}
w.println(ans);
w.close();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
f109d672118a3dc51d868940e6809f12
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.StringTokenizer;
public class P1492C {
static FastReaderP1492C in = new FastReaderP1492C();
public static void main(String... x) {
int n=i();
int m=i();
String s=string();
String t=string();
int i;
int p1[]=new int[m];
int p2[]=new int[m];
int idx=0;
for(i=0;i<n;i++){
if(s.charAt(i)==t.charAt(idx)){
p1[idx]=i;
idx+=1;
}
if(idx==m) break;
}
idx=m-1;
for(i=n-1;i>=0;i--){
if(s.charAt(i)==t.charAt(idx)){
p2[idx]=i;
idx-=1;
}
if(idx==-1) break;
}
int ans=0;
for(i=0;i<m-1;i++){
ans=Math.max(p2[i+1]-p1[i],ans);
}
System.out.println(ans);
}
static int i() {
return in.nextInt();
}
static long l() {
return in.nextLong();
}
static String string() {
return in.nextLine();
}
static int[] inputIntgerArray(int N) {
int A[] = new int[N];
for (int i = 0; i < N; i++)
A[i] = in.nextInt();
return A;
}
static long[] inputLongArray(int N) {
long A[] = new long[N];
for (int i = 0; i < A.length; i++)
A[i] = in.nextLong();
return A;
}
}
class FastReaderP1492C {
BufferedReader br;
StringTokenizer st;
public FastReaderP1492C() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
bf46ffa5b1263f58fa5d31aa77eec372
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
// 24-Feb-2021
import java.util.*;
import java.io.*;
public class C {
static class FastReader {
BufferedReader br;
StringTokenizer st;
private FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
int[] nextIntArrayOne(int n) {
int[] a = new int[n + 1];
for (int i = 1; i < n + 1; i++)
a[i] = nextInt();
return a;
}
long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
long[] nextLongArrayOne(int n) {
long[] a = new long[n + 1];
for (int i = 1; i < n + 1; i++)
a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader s = new FastReader();
StringBuilder str = new StringBuilder();
int n = s.nextInt(), m = s.nextInt();
char a[] = s.nextLine().toCharArray();
char b[] = s.nextLine().toCharArray();
int left[] = new int[m];
int right[] = new int[m];
int j = 0, i = 0;
while(j < m) {
if(a[i] == b[j]) {
left[j] = i;
j++;
}
i++;
}
j = m - 1;
i = n - 1;
while(j >= 0) {
if(a[i] == b[j]) {
right[j] = i;
j--;
}
i--;
}
int ans = Integer.MIN_VALUE;
for(int jk = 0; jk < m- 1; jk++) {
ans = Math.max(ans, right[jk + 1] - left[jk]);
}
System.out.println(ans);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
987a260650fa8b7f01a15d77fb1637d9
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
// package Div2_704;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class ProblemC {
public static void main(String[] args)throws IOException {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer(br.readLine());
int n=Integer.parseInt(st.nextToken());
int m=Integer.parseInt(st.nextToken());
char a[]=br.readLine().toCharArray();
char b[]=br.readLine().toCharArray();
TreeSet<Integer> alpha[]=new TreeSet[26];
for(int i=0;i<26;i++){
alpha[i]=new TreeSet<>();
}
for(int i=0;i<n;i++){
alpha[a[i]-97].add(i);
}
int possible[]=new int[m+1];
possible[m]=n;
int ans=1;
for(int i=m-1;i>=0;i--){
possible[i]=alpha[b[i]-97].lower(possible[i+1]);
}
int possible2[]=new int[m+1];
possible2[0]=alpha[b[0]-97].higher(-1);
for(int i=1;i<m;i++){
possible2[i]=alpha[b[i]-97].higher(possible2[i-1]);
}
for(int i=0;i<m-1;i++){
ans=Math.max(possible[i+1]-possible2[i],ans);
}
System.out.println(ans);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
2c75f51a3b782dad7057194fde275616
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.lang.*;
// StringBuilder uses java.lang
public class mC {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
StringBuilder st = new StringBuilder();
int t = 1;
for (int test = 0; test < t; test++) {
int n = sc.nextInt();
int p = sc.nextInt();
String a = sc.next();
String b = sc.next();
int[] pref = new int[p];
int[] suff = new int[p];
int r = 0;
for (int i=0;i<n;i++) {
if (a.substring(i,i+1).equals(b.substring(r,r+1))) {
pref[r] = i;
r+=1;
if (r==p) {
break;
}
}
}
int s = p-1;
for (int i=n-1;i>=0;i--) {
if (a.substring(i,i+1).equals(b.substring(s,s+1))) {
suff[s] = i;
s-=1;
if (s==-1) {
break;
}
}
}
int ans = 0;
for (int i=0;i<p-1;i++) {
ans = Math.max(ans, suff[i+1]-pref[i]);
}
System.out.print(ans);
}
}
public static int goodLeft(int n, int[] p) { // i.e. ... 4 5 6
int begin = 0;
for (int i=0;i<n;i++) {
if (n-i==p[n-i-1]) {
begin++;
} else {
break;
}
}
return begin;
}
public static int goodRight(int n, int[] p) { // i.e. 6 5 4 ...
int end = 0;
for (int i=n-1;i>=0;i--) {
if (i==p[i]) {
end++;
} else {
break;
}
}
return end;
}
public static int findNthInArray(int[] arr,int val,int start,int o) {
if (o==0) {
return start-1;
} else if (arr[start] == val) {
return findNthInArray(arr,val,start+1,o-1);
} else {
return findNthInArray(arr,val,start+1,o);
}
}
public static ArrayList<Integer> dfs(int at,ArrayList<Integer> went,ArrayList<ArrayList<Integer>> connect) {
for (int i=0;i<connect.get(at).size();i++) {
if (!(went.contains(connect.get(at).get(i)))) {
went.add(connect.get(at).get(i));
went=dfs(connect.get(at).get(i),went,connect);
}
}
return went;
} public static int[] bfs (int at, int[] went, ArrayList<ArrayList<Integer>> queue, int numNodes, ArrayList<ArrayList<Integer>> connect) {
if (went[at]==0) {
went[at]=queue.get(numNodes).get(1);
for (int i=0;i<connect.get(at).size();i++) {
if (went[connect.get(at).get(i)]==0) {
ArrayList<Integer> temp = new ArrayList<>();
temp.add(connect.get(at).get(i));
temp.add(queue.get(numNodes).get(1)+1);
queue.add(temp);
}
}
}
if (queue.size()==numNodes+1) {
return went;
} else {
return bfs(queue.get(numNodes+1).get(0),went, queue, numNodes+1, connect);
}
}
public static long fastPow(long base,long exp,long mod) {
if (exp==0) {
return 1;
} else {
if (exp % 2 == 1) {
long z = fastPow(base,(exp-1)/2,mod);
return ((((z*base) % mod) * z) % mod);
} else {
long z = fastPow(base,exp/2,mod);
return ((z*z) % mod);
}
}
}
public static int fastPow(int base,long exp) {
if (exp==0) {
return 1;
} else {
if (exp % 2 == 1) {
int z = fastPow(base,(exp-1)/2);
return ((((z*base)) * z));
} else {
int z = fastPow(base,exp/2);
return ((z*z));
}
}
}
public static int firstLarger(long val,ArrayList<Long> ok,int left,int right) {
if (ok.get(right)<=val) {
return -1;
}
if (left==right) {
return left;
} else if (left+1==right) {
if (val<ok.get(left)) {
return left;
} else {
return right;
}
} else {
int mid = (left+right)/2;
if (ok.get(mid)>val) {
return firstLarger(val,ok,left,mid);
} else {
return firstLarger(val,ok,mid+1,right);
}
}
}
public static long gcd(long a, long b) {
if (b>a) {
return gcd(b,a);
}
if (b==0) {
return a;
}
if (a%b==0) {
return b;
} else {
return gcd(b,a%b);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
55d72e0a7057e8f5cc3c4d001951876a
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.Scanner;
public class Test19 {
public static void max(String s,String t) {
if(s.length()==t.length()){
System.out.println(1);
return;
}
int[] left=new int[t.length()];
int[] right=new int[t.length()];
for(int i=0;i<t.length();i++){
char c = t.charAt(i);
int from=0;
if(i>0){
from=left[i-1]+1;
}
int index = s.indexOf(String.valueOf(c),from);
left[i]=index;
}
for(int i=t.length()-1;i>=0;i--){
char c = t.charAt(i);
int from=s.length()-1;
if(i<t.length()-1){
from=right[i+1]-1;
}
int index = s.lastIndexOf(String.valueOf(c),from);
right[i]=index;
}
int max=0;
for (int i=1;i<t.length();i++){
max=Math.max(max,right[i]-left[i-1]);
}
System.out.println(max);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
sc.nextLine();
String s = sc.nextLine();
String t = sc.nextLine();
max(s,t);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
3b713e759d93e487f37cee1a4989b8a5
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
// cd C:\Users\Lenovo\Desktop\New
//ArrayList<Integer> a=new ArrayList<>();
//List<Integer> lis=new ArrayList<>();
//StringBuilder ans = new StringBuilder();
//HashMap<Integer,Integer> map=new HashMap<>();
public class cf {
static FastReader in=new FastReader();
static final Random random=new Random();
static long mod=1000000007l;
//static long dp[]=new long[200002];
public static void main(String args[]) throws IOException {
FastReader sc=new FastReader();
//Scanner s=new Scanner(System.in);
//int tt=sc.nextInt();
int tt=1;
while(tt-->0){
int n=sc.nextInt();
int m=sc.nextInt();
String a=sc.next();
String b=sc.next();
int left[]=new int[m];
int right[]=new int[m];
int j=0;
for(int i=0;i<n;i++){
if(a.charAt(i)==b.charAt(j)){
left[j]=i;
j++;
}
if(j==m){
break;
}
}
j=m-1;
for(int i=n-1;i>=0;i--){
if(a.charAt(i)==b.charAt(j)){
right[j]=i;
j--;
}
if(j<0){
break;
}
}
int max=0;
for(int i=1;i<m;i++){
max=Math.max(max,right[i]-left[i-1]);
}
System.out.println(max);
}
}
/*static void bfs(){
dist[1]=0;
for(int i=2;i<dist.length;i++){
dist[i]=-1;
}
Queue<Integer> q=new LinkedList<>();
q.add(1);
while(q.size()!=0){
int cur=q.peek();
q.remove();
for(int i=1;i<dist.length;i++ ){
int next=cur+cur/i;
int ndis=dist[cur]+1;
if(next<dist.length && dist[next]==-1){
dist[next]=ndis;
q.add(next);
}
}
}
}*/
static long comb(int n,int k){
return factorial(n) * pow(factorial(k), mod-2) % mod * pow(factorial(n-k), mod-2) % mod;
}
static long pow(long a, long b) {
// long mod=1000000007;
long res = 1;
while (b != 0) {
if ((b & 1) != 0) {
res = (res * a) % mod;
}
a = (a * a) % mod;
b /= 2;
}
return res;
}
static boolean powOfTwo(long n){
while(n%2==0){
n=n/2;
}
if(n!=1){
return false;
}
return true;
}
static int upper_bound(long arr[], long key)
{
int mid, N = arr.length;
int low = 0;
int high = N;
// Till low is less than high
while (low < high && low != N) {
mid = low + (high - low) / 2;
if (key >= arr[mid]) {
low = mid + 1;
}
else {
high = mid;
}
}
return low;
}
static boolean prime(int n){
for(int i=2;i<=Math.sqrt(n);i++){
if(n%i==0){
return false;
}
}
return true;
}
static long factorial(int n){
long ret = 1;
while(n > 0){
ret = ret * n % mod;
n--;
}
return ret;
}
static long find(ArrayList<Long> arr,long n){
int l=0;
int r=arr.size();
while(l+1<r){
int mid=(l+r)/2;
if(arr.get(mid)<n){
l=mid;
}
else{
r=mid;
}
}
return arr.get(l);
}
static void rotate(int ans[]){
int last=ans[0];
for(int i=0;i<ans.length-1;i++){
ans[i]=ans[i+1];
}
ans[ans.length-1]=last;
}
static int countprimefactors(int n){
int ans=0;
int z=(int)Math.sqrt(n);
for(int i=2;i<=z;i++){
while(n%i==0){
ans++;
n=n/i;
}
}
if(n>1){
ans++;
}
return ans;
}
static String reverse_String(String s){
String ans="";
for(int i=s.length()-1;i>=0;i--){
ans+=s.charAt(i);
}
return ans;
}
static void reverse_array(int arr[]){
int l=0;
int r=arr.length-1;
while(l<r){
int temp=arr[l];
arr[l]=arr[r];
arr[r]=temp;
l++;
r--;
}
}
static int msb(int x){
int ans=0;
while(x!=0){
x=x/2;
ans++;
}
return ans;
}
static void ruffleSort(int[] a) {
int n=a.length;
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long gcd(long a,long b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
/* Iterator<Map.Entry<Integer, Integer>> iterator = map.entrySet().iterator();
while(iterator.hasNext()){
Map.Entry<Integer, Integer> entry = iterator.next();
int value = entry.getValue();
if(value==1){
iterator.remove();
}
else{
entry.setValue(value-1);
}
}
*/
static class Pair implements Comparable
{
int a;
int b;
public String toString()
{
return a+" " + b;
}
public Pair(int x , int y)
{
a=x;b=y;
}
@Override
public int compareTo(Object o) {
Pair p = (Pair)o;
if(a!=p.a){
return a-p.a;
}
else{
return b-p.b;
}
/*if(p.a!=a){
return a-p.a;//in
}
else{
return b-p.b;//
}*/
}
}
public static boolean checkAP(List<Integer> lis){
for(int i=1;i<lis.size()-1;i++){
if(2*lis.get(i)!=lis.get(i-1)+lis.get(i+1)){
return false;
}
}
return true;
}
/* public static int minBS(int[]arr,int val){
int l=-1;
int r=arr.length;
while(r>l+1){
int mid=(l+r)/2;
if(arr[mid]>=val){
r=mid;
}
else{
l=mid;
}
}
return r;
}
public static int maxBS(int[]arr,int val){
int l=-1;
int r=arr.length;
while(r>l+1){
int mid=(l+r)/2;
if(arr[mid]<=val){
l=mid;
}
else{
r=mid;
}
}
return l;
}
*/
static long lcm(long a, long b)
{
return (a / gcd(a, b)) * b;
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
a637223356d539be20bec157273f373c
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import javax.print.attribute.IntegerSyntax;
import javax.swing.JLabel;
import java.net.CookieHandler;
import java.rmi.server.RMIClassLoader;
import java.text.DateFormatSymbols;
import java.util.*;
import java.io.*;
public class CpTemp {
static FastScanner fs = null;
static ArrayList<Long> graph[] ;
static int mod = 998244353;
static boolean f12 = false;
static boolean f11 = false;
public static void main(String[] args) {
fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
/*int t = fs.nextInt();
outer:
while (t-- > 0) {*/
int n = fs.nextInt();
int m = fs.nextInt();
String s = fs.next();
String t = fs.next();
int left[] = new int[m];
int right[] = new int[m];
for(int i=0,j=0;i<n && j<m;i++){
if(s.charAt(i)==t.charAt(j)){
left[j] = i;
j++;
}
}
for(int i=n-1,j=m-1;i>=0 && j>=0;i--){
if(s.charAt(i)==t.charAt(j)){
right[j] = i;
j--;
}
}
int max = Integer.MIN_VALUE;
for(int i=m-1;i>=1;i--){
max = Math.max(max,right[i] - left[i-1]);
}
out.println(max);
// }
out.close();
}
static class Pair implements Comparable<Pair> {
int x;
int y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
public int compareTo(Pair o) {
return this.y - o.y;
}
}
static void factorial(int n) {
int res[] = new int[500];
// Initialize result
res[0] = 1;
int res_size = 1;
// Apply simple factorial formula
// n! = 1 * 2 * 3 * 4...*n
for (int x = 2; x <= n; x++)
res_size = multiply(x, res, res_size);
}
static int multiply(int x, int res[], int res_size) {
int carry = 0; // Initialize carry
// One by one multiply n with individual
// digits of res[]
for (int i = 0; i < res_size; i++) {
int prod = res[i] * x + carry;
res[i] = prod % 10; // Store last digit of
// 'prod' in res[]
carry = prod / 10; // Put rest in carry
}
// Put carry in res and increase result size
while (carry != 0) {
res[res_size] = carry % 10;
carry = carry / 10;
res_size++;
}
return res_size;
}
static long power(long x, long y, long p) {
if (y == 0)
return 1;
if (x == 0)
return 0;
long res = 1;
x = x % p;
while (y > 0) {
if (y % 2 == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long power(long x, long y) {
if (y == 0)
return 1;
if (x == 0)
return 0;
long res = 1;
while (y > 0) {
if (y % 2 == 1)
res = (res * x);
y = y >> 1;
x = (x * x);
}
return res;
}
static long fact[] = new long[200001];
public static void fact() {
fact[1] = 1;
fact[0] = 1;
for (int i = 2; i <= 200000; i++) {
fact[i] = (((fact[i - 1]) % mod) * ((i) % mod)) % mod;
}
}
static long lower(long array[], long key, int i, int k) {
long ans = -1;
while (i <= k) {
int mid = (i + k) / 2;
if (array[mid] >= key) {
ans = mid;
k = mid - 1;
} else {
i = mid + 1;
}
}
return ans;
}
static long upper(long array[], long key, int i, int k) {
long ans = -1;
while (i <= k) {
int mid = (i + k) / 2;
if (array[mid] <= key) {
ans = array[mid];
i = mid + 1;
} else {
k = mid - 1;
}
}
return ans;
}
public static class String1 implements Comparable<String1> {
String str;
int id;
String1(String str, int id) {
this.str = str;
this.id = id;
}
public int compareTo(String1 o) {
int i = 0;
while (i < str.length() && str.charAt(i) == o.str.charAt(i)) {
i++;
}
if (i < str.length()) {
if (i % 2 == 1) {
return o.str.compareTo(str); // descending order
} else {
return str.compareTo(o.str); // ascending order
}
}
return str.compareTo(o.str);
}
}
static void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readlongArray(int n){
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static void swap(int arr[], int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
static boolean prime[];
static void sieveOfEratosthenes(int n) {
prime = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++) {
// If prime[p] is not changed, then it is a
// prime
if (prime[p] == true) {
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
}
public static int log2(int x) {
return (int) (Math.log(x) / Math.log(2));
}
public static Pair Euclid(int a, int b) {
if (b == 0) {
return new Pair(1, 0); // answer of x and y
}
Pair dash = Euclid(b, a % b);
return new Pair(dash.y, dash.x - (a / b) * dash.y);
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
static long nCk(int n, int k) {
long res = 1;
for (int i = n - k + 1; i <= n; ++i)
res *= i;
for (int i = 2; i <= k; ++i)
res /= i;
return res;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
4ee4f24df8c3d924bd08ba345e76b207
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
public class Codeforces1492C{
public static void main (String args[]) throws NumberFormatException, IOException {
InputReader in = new InputReader(System.in);
PrintWriter pr = new PrintWriter(System.out);
int n = in.nextInt();
int m =in.nextInt();
String s = in.readLine();
String t = in.readLine();
int leftMost[] = new int[m];
int rightMost[] = new int[m];
int sItr = 0;
int tItr = 0;
while(sItr<n && tItr<m)
{
if(s.charAt(sItr) == t.charAt(tItr))
{
leftMost[tItr] = sItr;
tItr++;
}
sItr++;
}
sItr = n-1;
tItr = m-1;
while(sItr>=0 && tItr>=0)
{
if(s.charAt(sItr) == t.charAt(tItr))
{
rightMost[tItr] = sItr;
tItr--;
}
sItr--;
}
int max = 0;
for(int i=0;i<m-1;i++)
{
max = Math.max(rightMost[i+1] - leftMost[i] , max);
}
pr.println((max));
pr.flush();
}
static class InputReader {
private boolean finished = false;
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1) {
return -1;
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines) {
return readLine();
} else {
return readLine0();
}
}
public BigInteger readBigInteger() {
try {
return new BigInteger(nextString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char nextCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1) {
read();
}
return value == -1;
}
public String next() {
return nextString();
}
public SpaceCharFilter getFilter() {
return filter;
}
public void setFilter(SpaceCharFilter filter) {
this.filter = filter;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public int[] nextSumIntArray(int n) {
int[] array = new int[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextLongArray(int n) {
long[] array = new long[n];
for (int i = 0; i < n; ++i) array[i] = nextLong();
return array;
}
public long[] nextSumLongArray(int n) {
long[] array = new long[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextSortedLongArray(int n) {
long array[] = nextLongArray(n);
Arrays.sort(array);
return array;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
c8f421a6f9443856af37a9a4345313a2
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
/*
Rating: 1461
Date: 25-03-2022
Time: 01-43-01
Author: Kartik Papney
Linkedin: https://www.linkedin.com/in/kartik-papney-4951161a6/
Leetcode: https://leetcode.com/kartikpapney/
Codechef: https://www.codechef.com/users/kartikpapney
*/
import java.util.*;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class C_Maximum_width {
public static boolean debug = false;
static void debug(String st) {
if(debug) p.writeln(st);
}
public static void s() {
int n = sc.nextInt(), m = sc.nextInt();
String a = sc.nextLine();
String b = sc.nextLine();
int[] left = new int[m];
int[] right = new int[m];
int idx = 0;
for(int i=0; i<a.length() && idx < b.length(); i++) {
if(a.charAt(i) == b.charAt(idx)) {
left[idx] = i;
idx++;
}
}
idx = b.length()-1;
for(int i=a.length()-1; i>=0 && idx >= 0; i--) {
if(a.charAt(i) == b.charAt(idx)) {
right[idx] = i;
idx--;
}
}
int ans = Integer.MIN_VALUE;
for(int i=0; i<left.length-1; i++) {
ans = Math.max(ans, right[i+1] - left[i]);
}
p.writeln(ans);
}
public static void main(String[] args) {
int t = 1;
// t = sc.nextInt();
while (t-- != 0) {
s();
}
p.print();
}
static final Integer MOD = (int) 1e9 + 7;
static final FastReader sc = new FastReader();
static final Print p = new Print();
static class Functions {
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static int max(int[] a) {
int max = Integer.MIN_VALUE;
for (int val : a) max = Math.max(val, max);
return max;
}
static int min(int[] a) {
int min = Integer.MAX_VALUE;
for (int val : a) min = Math.min(val, min);
return min;
}
static long min(long[] a) {
long min = Long.MAX_VALUE;
for (long val : a) min = Math.min(val, min);
return min;
}
static long max(long[] a) {
long max = Long.MIN_VALUE;
for (long val : a) max = Math.max(val, max);
return max;
}
static long sum(long[] a) {
long sum = 0;
for (long val : a) sum += val;
return sum;
}
static int sum(int[] a) {
int sum = 0;
for (int val : a) sum += val;
return sum;
}
public static long mod_add(long a, long b) {
return (a % MOD + b % MOD + MOD) % MOD;
}
public static long pow(long a, long b) {
long res = 1;
while (b > 0) {
if ((b & 1) != 0)
res = mod_mul(res, a);
a = mod_mul(a, a);
b >>= 1;
}
return res;
}
public static long mod_mul(long a, long b) {
long res = 0;
a %= MOD;
while (b > 0) {
if ((b & 1) > 0) {
res = mod_add(res, a);
}
a = (2 * a) % MOD;
b >>= 1;
}
return res;
}
public static long gcd(long a, long b) {
if (a == 0) return b;
return gcd(b % a, a);
}
public static long factorial(long n) {
long res = 1;
for (int i = 1; i <= n; i++) {
res = (i % MOD * res % MOD) % MOD;
}
return res;
}
public static int count(int[] arr, int x) {
int count = 0;
for (int val : arr) if (val == x) count++;
return count;
}
public static ArrayList<Integer> generatePrimes(int n) {
boolean[] primes = new boolean[n];
for (int i = 2; i < primes.length; i++) primes[i] = true;
for (int i = 2; i < primes.length; i++) {
if (primes[i]) {
for (int j = i * i; j < primes.length; j += i) {
primes[j] = false;
}
}
}
ArrayList<Integer> arr = new ArrayList<>();
for (int i = 0; i < primes.length; i++) {
if (primes[i]) arr.add(i);
}
return arr;
}
}
static class Print {
StringBuffer strb = new StringBuffer();
public void write(Object str) {
strb.append(str);
}
public void writes(Object str) {
char c = ' ';
strb.append(str).append(c);
}
public void writeln(Object str) {
char c = '\n';
strb.append(str).append(c);
}
public void writeln() {
char c = '\n';
strb.append(c);
}
public void yes() {
char c = '\n';
writeln("YES");
}
public void no() {
writeln("NO");
}
public void writes(int[] arr) {
for (int val : arr) {
write(val);
write(' ');
}
}
public void writes(long[] arr) {
for (long val : arr) {
write(val);
write(' ');
}
}
public void writeln(int[] arr) {
for (int val : arr) {
writeln(val);
}
}
public void print() {
System.out.print(strb);
}
public void println() {
System.out.println(strb);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
double[] readArrayDouble(int n) {
double[] a = new double[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
String nextLine() {
String str = new String();
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
7c2fc7c28891e3c7b91d5df7b07ceb82
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class solution {
public static void main(String[] args) {
FScanner sc = new FScanner();
//Arrays.fill(prime, true);
//sieve();
//int t=sc.nextInt();
// StringBuilder sb = new StringBuilder();
// while(t-->0) {
int n=sc.nextInt();
int m=sc.nextInt();
String s1=sc.next();
String s2=sc.next();
int arr1[]=new int[m];
int arr2[]=new int[m];
int i=0,l=0;
while(i<m && l<n)
{
if(s1.charAt(l)==s2.charAt(i))
{ arr1[i]=l;
i++;
}
l++;
}
i=m-1;l=n-1;
while(i>=0 && l>=0)
{
if(s1.charAt(l)==s2.charAt(i))
{ arr2[i]=l;
i--;
}
l--;
}
int max=0;
for(int k=0;k<m-1;k++)
{
max=Math.max(max, Math.abs(arr1[k]-arr2[k+1]));
}
System.out.println(max);
//}
}
/* public static void sieve()
{ prime[0]=prime[1]=false;
int n=1000000;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
*/
}
/* class pair implements Comparable<pair>{
int val;int edge;
pair(int f,int ind)
{
val=f;
edge=ind;
}
public int compareTo(pair p)
{
return -p.edge+this.edge;
}
} */
class FScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer sb = new StringTokenizer("");
String next(){
while(!sb.hasMoreTokens()){
try{
sb = new StringTokenizer(br.readLine());
} catch(IOException e){ }
}
return sb.nextToken();
}
String nextLine(){
try{ return br.readLine(); }
catch(IOException e) { } return "";
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
int[] readArray(int n) {
int a[] = new int[n];
for(int i=0;i<n;i++) a[i] = nextInt();
return a;
}
float nextFloat(){
return Float.parseFloat(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
675cbaae06d5d4e2d819557be006d46c
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
//package practice;
import java.io.*;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class C1492 {
static final int MOD = 1000000007;
static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
static int fasterScanner() {
try {
boolean in = false;
int res = 0;
for (; ; ) {
int b = System.in.read() - '0';
if (b >= 0) {
in = true;
res = 10 * res + b;
} else if (in) {
return res;
}
}
} catch (IOException e) {
throw new Error(e);
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.nextInt();
int m = sc.nextInt();
String s = sc.next();
String t = sc.next();
// greedy from left
List<Integer> left = new ArrayList<>();
int j = 0;
for (int i = 0; i < n; i++) {
if (s.charAt(i) == t.charAt(j)) {
left.add(i);
j++;
if (j == m) {
break;
}
}
}
// greedy from right
List<Integer> right = new ArrayList<>();
j = m - 1;
for (int i = n - 1; i >= 0; i--) {
if (s.charAt(i) == t.charAt(j)) {
right.add(i);
j--;
if (j < 0) {
break;
}
}
}
int result = Integer.MIN_VALUE;
for (int i = 0; i < m - 1; i++) {
int r = m - i - 2;
int l = i;
result = Math.max(result, right.get(r) - left.get(l));
}
out.println(result);
out.close();
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
char nextChar() {
return next().charAt(0);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
4397f0c1ad1f75be6f9ebcc7bb936274
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.*;
/*
*/
public class C{
static FastReader sc=null;
public static void main(String[] args) {
sc=new FastReader();
//for each letter we try to keep it as far as possible
//and then put the closest possible and move on
int n=sc.nextInt(),m=sc.nextInt();
char a[]=sc.next().toCharArray(),b[]=sc.next().toCharArray();
//gives the last valid index until which we can pick a subsequence of the suffix
int last[]=new int[m+1];
last[m]=n;
for(int i=n-1,j=m-1;i>=0 && j>=0;i--) {
if(a[i]==b[j]) {
last[j]=i;
j--;
}
}
//print(last);
int ans=0;
for(int i=0,j=0;i<n && j+1<m;i++) {
if(a[i]==b[j]) {
j++;
//now search for the max Id of j within [i,last[j+1]]
ans=Math.max(ans, last[j]-i);
}
}
System.out.println(ans);
}
static int[] ruffleSort(int a[]) {
ArrayList<Integer> al=new ArrayList<>();
for(int i:a)al.add(i);
Collections.sort(al);
for(int i=0;i<a.length;i++)a[i]=al.get(i);
return a;
}
static void print(int a[]) {
for(int e:a) {
System.out.print(e+" ");
}
System.out.println();
}
static class FastReader{
StringTokenizer st=new StringTokenizer("");
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String next() {
while(!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
}
catch(IOException e){
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
int[] readArray(int n) {
int a[]=new int[n];
for(int i=0;i<n;i++)a[i]=sc.nextInt();
return a;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
ccd071874b8da086f213a069123e0550
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
public class cf2 {
static PrintWriter out;
static int MOD = 1000000007;
static FastReader scan;
/*-------- I/O using short named function ---------*/
public static String ns() {
return scan.next();
}
public static int ni() {
return scan.nextInt();
}
public static long nl() {
return scan.nextLong();
}
public static double nd() {
return scan.nextDouble();
}
public static String nln() {
return scan.nextLine();
}
public static void p(Object o) {
out.print(o);
}
public static void ps(Object o) {
out.print(o + " ");
}
public static void pn(Object o) {
out.println(o);
}
/*-------- for output of an array ---------------------*/
static void iPA(int arr[]) {
StringBuilder output = new StringBuilder();
for (int i = 0; i < arr.length; i++) output.append(arr[i] + " ");
out.println(output);
}
static void lPA(long arr[]) {
StringBuilder output = new StringBuilder();
for (int i = 0; i < arr.length; i++) output.append(arr[i] + " ");
out.println(output);
}
static void sPA(String arr[]) {
StringBuilder output = new StringBuilder();
for (int i = 0; i < arr.length; i++) output.append(arr[i] + " ");
out.println(output);
}
static void dPA(double arr[]) {
StringBuilder output = new StringBuilder();
for (int i = 0; i < arr.length; i++) output.append(arr[i] + " ");
out.println(output);
}
/*-------------- for input in an array ---------------------*/
static void iIA(int arr[]) {
for (int i = 0; i < arr.length; i++) arr[i] = ni();
}
static void lIA(long arr[]) {
for (int i = 0; i < arr.length; i++) arr[i] = nl();
}
static void sIA(String arr[]) {
for (int i = 0; i < arr.length; i++) arr[i] = ns();
}
static void dIA(double arr[]) {
for (int i = 0; i < arr.length; i++) arr[i] = nd();
}
/*------------ for taking input faster ----------------*/
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static ArrayList<Integer> sieveOfEratosthenes(int n) {
// Create a boolean array
// "prime[0..n]" and
// initialize all entries
// it as true. A value in
// prime[i] will finally be
// false if i is Not a
// prime, else true.
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++) {
// If prime[p] is not changed, then it is a
// prime
if (prime[p] == true) {
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
ArrayList<Integer> arr = new ArrayList<>();
// store all prime numbers
for (int i = 2; i <= n; i++) {
if (prime[i] == true)
arr.add(i);
}
return arr;
}
// Method to check if x is power of 2
static boolean isPowerOfTwo(int x) {
return x != 0 && ((x & (x - 1)) == 0);
}
//Method to return lcm of two numbers
static int gcd(int a, int b) {
return a == 0 ? b : gcd(b % a, a);
}
//Method to count digit of a number
static int countDigit(long n) {
String sex = Long.toString(n);
return sex.length();
}
static void reverse(int a[]) {
int i, k, t;
int n = a.length;
for (i = 0; i < n / 2; i++) {
t = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = t;
}
}
static long nCr(long n, long r)
{
long p = 1, k = 1;
// C(n, r) == C(n, n-r),
// choosing the smaller value
if (n - r < r) {
r = n - r;
}
if (r != 0) {
while (r > 0) {
p *= n;
k *= r;
// gcd of p, k
long m = gcdlong(p, k);
// dividing by gcd, to simplify
// product division by their gcd
// saves from the overflow
p /= m;
k /= m;
n--;
r--;
}
// k should be simplified to 1
// as C(n, r) is a natural number
// (denominator should be 1 ) .
}
else {
p = 1;
}
// if our approach is correct p = ans and k =1
return p;
}
static long gcdlong(long n1, long n2)
{
long gcd = 1;
for (int i = 1; i <= n1 && i <= n2; ++i) {
// Checks if i is factor of both integers
if (n1 % i == 0 && n2 % i == 0) {
gcd = i;
}
}
return gcd;
}
// Returns factorial of n
static long fact(long n)
{
long res = 1;
for (long i = 2; i <= n; i++)
res = res * i;
return res;
}
// Get all prime numbers till N using seive of Eratosthenes
public static List<Integer> getPrimesTill(int n){
boolean[] arr = new boolean[n+1];
List<Integer> primes = new LinkedList<>();
for(int i=2; i<=n; i++){
if(!arr[i]){
primes.add(i);
for(long j=(i*i); j<=n; j+=i){
arr[(int)j] = true;
}
}
}
return primes;
}
static final Random random = new Random();
//Method for sorting
static void ruffleSort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
int j = random.nextInt(n);
int temp = arr[j];
arr[j] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static void sortadv(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long value : a) {
l.add(value);
}
Collections.sort(l);
for (int i = 0; i < l.size(); i++)
a[i] = l.get(i);
}
//Method for checking if a number is prime or not
static boolean isPrime(int n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
public static void main(String[] args) throws java.lang.Exception {
OutputStream outputStream = System.out;
out = new PrintWriter(outputStream);
scan = new FastReader();
//for fast output sometimes
StringBuilder sb1 = new StringBuilder();
// prefix sum, *dp , odd-even segregate , *brute force(n=100)(jo bola wo kar) , 2 pointer , pattern , see contraints
// but first observe! maybe just watch i-o like ans-x-1,y for input x,y;
// divide wale ques me always check whether divisor 1? || probability mei mostly (1-p)...
// Deque<String> deque = new LinkedList<String>();
// in mod ques take everything as long.
int t =1;
while (t-- != 0) {
int n=ni();
int m=ni();
char[] s=ns().toCharArray();
char[] ts=ns().toCharArray();
int left[]=new int[n];
int right[]=new int[n];
int i=0;int j=0;
while(j<m){
while(s[i]!=ts[j]){
i++;
}
left[j]=i;
i++;
j++;
}
j=m-1;i=n-1;
while(j>=0){
while(s[i]!=ts[j])
i--;
right[j]=i;
i--;j--;
}
int max=0;
for(i=1;i<m;i++)
max=Math.max(right[i]-left[i-1],max);
pn(max);
}
out.flush();
out.close();
}
static long binpow(long a,long b) {
a %= MOD;
long res = 1;
while (b > 0) {
if ((b & 1)==1)
res = (res%MOD * a % MOD)%MOD;
a = (a%MOD * a % MOD)%MOD;
b >>= 1;
}
return res;
}
public static long findpow(int n,int i){
long ans=1;
for(int in=1;in<=i;in++)
ans=(ans%MOD*n%MOD)%MOD;
return ans;
}
public static String rev(String s,int m){
char ch[]=new char[m];
int j=m-1;
for(int i=0;i<m;i++){
ch[j--]=s.charAt(i);
}
return new String(ch);
}
public static boolean palin(String s,int i,int j){
while(i<=j){
if(s.charAt(i++)!=s.charAt(j--))
return false;
}
return true;
}
public static int modInverse(int a, int m)
{
int m0 = m;
int y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
// q is quotient
int q = a / m;
int t = m;
// m is remainder now, process
// same as Euclid's algo
m = a % m;
a = t;
t = y;
// Update x and y
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0)
x += m0;
return x;
}
public static int countodd(int[] a){
int count=0;
for(int i:a){
if(i%2==1)
count++;
}
return count;
}
static int minOps(String s, int si, int ei, char ch) {
if (si == ei) {
return ch == s.charAt(si) ? 0 : 1;
}
int mid =( si+ei) >>1;
int leftC = minOps(s, si, mid, (char) (ch + 1));
int rightC = minOps(s, mid + 1, ei, (char) (ch + 1));
for (int i = si; i <= mid; i++) {
if (s.charAt(i) != ch)
rightC++;
}
for (int i = mid + 1; i <= ei; i++) {
if (s.charAt(i) != ch)
leftC++;
}
return Math.min(leftC, rightC);
}
public static int sumofdigit(long n){
int sum=0;
while(n!=0){
sum+=n%10;
n/=10;
}
return sum;
}
public static int computeXOR(int n)
{
// If n is a multiple of 4
if (n % 4 == 0)
return n;
// If n%4 gives remainder 1
if (n % 4 == 1)
return 1;
// If n%4 gives remainder 2
if (n % 4 == 2)
return n + 1;
// If n%4 gives remainder 3
return 0;
}
public static class Pair implements Comparable<Pair>{
int a, b;
public Pair(int x,int y){
a=x;b=y;
}
@Override
public int compareTo(Pair o) {
if(this.a!=o.a)
return this.a-o.a;
else
return o.b-this.b;
}
}
private static boolean checkCycle(int node, ArrayList<ArrayList<Integer>> adj, int vis[], int dfsVis[]) {
vis[node] = 1;
dfsVis[node] = 1;
for(Integer it: adj.get(node)) {
if(vis[it] == 0) {
if(checkCycle(it, adj, vis, dfsVis) == true) {
return true;
}
} else if(dfsVis[it] == 1) {
return true;
}
}
dfsVis[node] = 0;
return false;
}
public static boolean isCyclic(int N, ArrayList<ArrayList<Integer>> adj) {
int vis[] = new int[N];
int dfsVis[] = new int[N];
for(int i = 0;i<N;i++) {
if(vis[i] == 0) {
if(checkCycle(i, adj, vis, dfsVis) == true) return true;
}
}
return false;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
58c1090fab2a0a2bec9ac670dc9c5737
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import java.io.PrintStream;
//import java.util.*;
public class Solution {
public static final boolean LOCAL = System.getProperty("ONLINE_JUDGE")==null;
static class FastScanner {
BufferedReader br;
StringTokenizer st ;
FastScanner(){
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
FastScanner(String file) {
try {
br = new BufferedReader(new InputStreamReader(new FileInputStream(file)));
st = new StringTokenizer("");
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
System.out.println("file not found");
e.printStackTrace();
}
}
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
String readLine() throws IOException{
return br.readLine();
}
}
static class Pair<T,X>{
T first;
X second;
Pair(T first,X second){
this.first = first;
this.second = second;
}
@Override
public int hashCode(){
return Objects.hash(first,second);
}
@Override
public boolean equals(Object obj){
return obj.hashCode() == this.hashCode();
}
}
static PrintStream debug = null;
static class pair{
boolean leaf;
int cnt_2;
int cnt_1;
pair(boolean leaf,int cnt_1,int cnt_2){
this.leaf = leaf;
this.cnt_1 = cnt_1;
this.cnt_2 = cnt_2;
}
}
public static void main(String[] args) throws Exception {
FastScanner s = new FastScanner();
if(LOCAL){
s = new FastScanner("src/input.txt");
PrintStream o = new PrintStream("src/sampleout.txt");
debug = new PrintStream("src/debug.txt");
System.setOut(o);
}
long mod = 1000000007;
int tcr = 1;// s.nextInt();
StringBuilder sb = new StringBuilder();
for(int tc=0;tc<tcr;tc++){
int n = s.nextInt();
int m = s.nextInt();
String str = s.next();
String str1 = s.next();
List<TreeSet<Integer>> list = new ArrayList<>();
for(int i=0;i<26;i++){
list.add(new TreeSet<>());
}
for(int i=0;i<str.length();i++){
list.get(str.charAt(i) - 'a').add(i);
}
List<int[]> range = new ArrayList<>();
int prev_min = -1;
for(char c : str1.toCharArray()){
int new_min = list.get(c-'a').ceiling(prev_min);
int new_max = list.get(c-'a').last();
range.add(new int[]{new_min,new_max});
prev_min = new_min + 1;
}
// dbg(debug,range);
int prev_max = Integer.MAX_VALUE;
for(int i=range.size() - 1;i>=0;i--){
char c = str1.charAt(i);
int new_max = list.get(c-'a').floor(prev_max);
range.get(i)[1] = new_max;
prev_max = new_max - 1;
}
long ans = 0l;
// dbg(debug,range);
for(int i=1;i<range.size();i++){
ans = Math.max(range.get(i)[1] - range.get(i-1)[0],ans);
}
sb.append(ans+"\n");
}
print(sb.toString());
}
static int len(long num){
return Long.toString(num).length();
}
static long mulmod(long a, long b,long mod)
{
long ans = 0l;
while(b > 0){
long curr = (b & 1l);
if(curr == 1l){
ans = ((ans % mod) + a) % mod;
}
a = (a + a) % mod;
b = b >> 1;
}
return ans;
}
public static void dbg(PrintStream ps,Object... o) throws Exception{
if(ps == null){
return;
}
Debug.dbg(ps,o);
}
public static long modpow(long num,long pow,long mod){
long val = num;
long ans = 1l;
while(pow > 0l){
long bit = pow & 1l;
if(bit == 1){
ans = (ans * (val%mod))%mod;
}
val = (val * val) % mod;
pow = pow >> 1;
}
return ans;
}
public static char get(int n){
return (char)('a' + n);
}
public static long[] sort(long arr[]){
List<Long> list = new ArrayList<>();
for(long n : arr){list.add(n);}
Collections.sort(list);
for(int i=0;i<arr.length;i++){
arr[i] = list.get(i);
}
return arr;
}
public static int[] sort(int arr[]){
List<Integer> list = new ArrayList<>();
for(int n : arr){list.add(n);}
Collections.sort(list);
for(int i=0;i<arr.length;i++){
arr[i] = list.get(i);
}
return arr;
}
// return the (index + 1)
// where index is the pos of just smaller element
// i.e count of elemets strictly less than num
public static int justSmaller(long arr[],long num){
// System.out.println(num+"@");
int st = 0;
int e = arr.length - 1;
int ans = -1;
while(st <= e){
int mid = (st + e)/2;
if(arr[mid] >= num){
e = mid - 1;
}else{
ans = mid;
st = mid + 1;
}
}
return ans + 1;
}
public static int justSmaller(int arr[],int num){
// System.out.println(num+"@");
int st = 0;
int e = arr.length - 1;
int ans = -1;
while(st <= e){
int mid = (st + e)/2;
if(arr[mid] >= num){
e = mid - 1;
}else{
ans = mid;
st = mid + 1;
}
}
return ans + 1;
}
//return (index of just greater element)
//count of elements smaller than or equal to num
public static int justGreater(long arr[],long num){
int st = 0;
int e = arr.length - 1;
int ans = arr.length;
while(st <= e){
int mid = (st + e)/2;
if(arr[mid] <= num){
st = mid + 1;
}else{
ans = mid;
e = mid - 1;
}
}
return ans;
}
public static int justGreater(int arr[],int num){
int st = 0;
int e = arr.length - 1;
int ans = arr.length;
while(st <= e){
int mid = (st + e)/2;
if(arr[mid] <= num){
st = mid + 1;
}else{
ans = mid;
e = mid - 1;
}
}
return ans;
}
public static void println(Object obj){
System.out.println(obj.toString());
}
public static void print(Object obj){
System.out.print(obj.toString());
}
public static int gcd(int a,int b){
if(b == 0){return a;}
return gcd(b,a%b);
}
public static long gcd(long a,long b){
if(b == 0l){
return a;
}
return gcd(b,a%b);
}
public static int find(int parent[],int v){
if(parent[v] == v){
return v;
}
return parent[v] = find(parent, parent[v]);
}
public static List<Integer> sieve(){
List<Integer> prime = new ArrayList<>();
int arr[] = new int[100001];
Arrays.fill(arr,1);
arr[1] = 0;
arr[2] = 1;
for(int i=2;i<=100000;i++){
if(arr[i] == 1){
prime.add(i);
for(long j = (i*1l*i);j<100001;j+=i){
arr[(int)j] = 0;
}
}
}
return prime;
}
static boolean isPower(long n,long a){
long log = (long)(Math.log(n)/Math.log(a));
long power = (long)Math.pow(a,log);
if(power == n){return true;}
return false;
}
private static int mergeAndCount(int[] arr, int l,int m, int r)
{
// Left subarray
int[] left = Arrays.copyOfRange(arr, l, m + 1);
// Right subarray
int[] right = Arrays.copyOfRange(arr, m + 1, r + 1);
int i = 0, j = 0, k = l, swaps = 0;
while (i < left.length && j < right.length) {
if (left[i] <= right[j])
arr[k++] = left[i++];
else {
arr[k++] = right[j++];
swaps += (m + 1) - (l + i);
}
}
while (i < left.length)
arr[k++] = left[i++];
while (j < right.length)
arr[k++] = right[j++];
return swaps;
}
// Merge sort function
private static int mergeSortAndCount(int[] arr, int l,int r)
{
// Keeps track of the inversion count at a
// particular node of the recursion tree
int count = 0;
if (l < r) {
int m = (l + r) / 2;
// Total inversion count = left subarray count
// + right subarray count + merge count
// Left subarray count
count += mergeSortAndCount(arr, l, m);
// Right subarray count
count += mergeSortAndCount(arr, m + 1, r);
// Merge count
count += mergeAndCount(arr, l, m, r);
}
return count;
}
static class Debug{
//change to System.getProperty("ONLINE_JUDGE")==null; for CodeForces
public static final boolean LOCAL = System.getProperty("ONLINE_JUDGE")==null;
private static <T> String ts(T t) {
if(t==null) {
return "null";
}
try {
return ts((Iterable) t);
}catch(ClassCastException e) {
if(t instanceof int[]) {
String s = Arrays.toString((int[]) t);
return "{"+s.substring(1, s.length()-1)+"}\n";
}else if(t instanceof long[]) {
String s = Arrays.toString((long[]) t);
return "{"+s.substring(1, s.length()-1)+"}\n";
}else if(t instanceof char[]) {
String s = Arrays.toString((char[]) t);
return "{"+s.substring(1, s.length()-1)+"}\n";
}else if(t instanceof double[]) {
String s = Arrays.toString((double[]) t);
return "{"+s.substring(1, s.length()-1)+"}\n";
}else if(t instanceof boolean[]) {
String s = Arrays.toString((boolean[]) t);
return "{"+s.substring(1, s.length()-1)+"}\n";
}
try {
return ts((Object[]) t);
}catch(ClassCastException e1) {
return t.toString();
}
}
}
private static <T> String ts(T[] arr) {
StringBuilder ret = new StringBuilder();
ret.append("{");
boolean first = true;
for(T t: arr) {
if(!first) {
ret.append(", ");
}
first = false;
ret.append(ts(t));
}
ret.append("}");
return ret.toString();
}
private static <T> String ts(Iterable<T> iter) {
StringBuilder ret = new StringBuilder();
ret.append("{");
boolean first = true;
for(T t: iter) {
if(!first) {
ret.append(", ");
}
first = false;
ret.append(ts(t));
}
ret.append("}");
return ret.toString();
}
public static void dbg(PrintStream ps,Object... o) throws Exception {
if(LOCAL) {
System.setErr(ps);
System.err.print("Line #"+Thread.currentThread().getStackTrace()[2].getLineNumber()+": [");
for(int i = 0; i<o.length; i++) {
if(i!=0) {
System.err.print(", ");
}
System.err.print(ts(o[i]));
}
System.err.println("]");
}
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
a1e72ade194825b1770d8b81611c8dad
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Main {
static long startTime = System.currentTimeMillis();
// for global initializations and methods starts here
// global initialisations and methods end here
static void run() {
boolean tc = false;
//AdityaFastIO r = new AdityaFastIO();
FastReader r = new FastReader();
try (OutputStream out = new BufferedOutputStream(System.out)) {
//long startTime = System.currentTimeMillis();
int testcases = tc ? r.ni() : 1;
int tcCounter = 1;
// Hold Here Sparky------------------->>>
// Solution Starts Here
start:
while (testcases-- > 0) {
int n = r.ni();
int m = r.ni();
char[] s = r.word().toCharArray();
char[] t = r.word().toCharArray();
int countS = 0;
int countT = 0;
int[] left = new int[m];
int[] right = new int[m];
while (countT < m) {
while (s[countS] != t[countT]) countS++;
left[countT++] = countS++;
}
countS = n - 1;
countT = m - 1;
while (countT >= 0) {
while (s[countS] != t[countT]) countS--;
right[countT--] = countS--;
}
int ans = 0;
for (int i = 0; i < m - 1; i++) {
ans = Math.max(ans, right[i + 1] - left[i]);
}
out.write((ans + " ").getBytes());
}
// Solution Ends Here
} catch (IOException e) {
e.printStackTrace();
}
}
static class AdityaFastIO {
final private int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
public BufferedReader br;
public StringTokenizer st;
public AdityaFastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public AdityaFastIO(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String word() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public String line() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public String readLine() throws IOException {
byte[] buf = new byte[100000001]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int ni() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nl() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nd() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
public static void main(String[] args) throws Exception {
run();
}
static long mod = 998244353;
static long modInv(long base, long e) {
long result = 1;
base %= mod;
while (e > 0) {
if ((e & 1) > 0) result = result * base % mod;
base = base * base % mod;
e >>= 1;
}
return result;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String word() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String line() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int ni() {
return Integer.parseInt(word());
}
long nl() {
return Long.parseLong(word());
}
double nd() {
return Double.parseDouble(word());
}
}
static int MOD = (int) (1e9 + 7);
static long powerLL(long x, long n) {
long result = 1;
while (n > 0) {
if (n % 2 == 1) result = result * x % MOD;
n = n / 2;
x = x * x % MOD;
}
return result;
}
static long powerStrings(int i1, int i2) {
String sa = String.valueOf(i1);
String sb = String.valueOf(i2);
long a = 0, b = 0;
for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD;
for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1);
return powerLL(a, b);
}
static long gcd(long a, long b) {
if (a == 0) return b;
else return gcd(b % a, a);
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static long lower_bound(List<Long> list, long k) {
int s = 0;
int e = list.size();
while (s != e) {
int mid = (s + e) >> 1;
if (list.get(mid) < k) s = mid + 1;
else e = mid;
}
if (s == list.size()) return -1;
return s;
}
static int upper_bound(List<Long> list, long k) {
int s = 0;
int e = list.size();
while (s != e) {
int mid = (s + e) >> 1;
if (list.get(mid) <= k) s = mid + 1;
else e = mid;
}
if (s == list.size()) return -1;
return s;
}
static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) {
graph.get(edge1).add(edge2);
graph.get(edge2).add(edge1);
}
public static class Pair implements Comparable<Pair> {
int first;
int second;
public Pair(int first, int second) {
this.first = first;
this.second = second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(Pair o) {
// TODO Auto-generated method stub
if (this.first != o.first)
return (int) (this.first - o.first);
else return (int) (this.second - o.second);
}
}
public static class PairC<X, Y> implements Comparable<PairC> {
X first;
Y second;
public PairC(X first, Y second) {
this.first = first;
this.second = second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(PairC o) {
// TODO Auto-generated method stub
return o.compareTo((PairC) first);
}
}
static boolean isCollectionsSorted(List<Long> list) {
if (list.size() == 0 || list.size() == 1) return true;
for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false;
return true;
}
static boolean isCollectionsSortedReverseOrder(List<Long> list) {
if (list.size() == 0 || list.size() == 1) return true;
for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false;
return true;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
0f624098f1fa61b13a117f6692490950
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Main {
static long startTime = System.currentTimeMillis();
// for global initializations and methods starts here
// global initialisations and methods end here
static void run() {
boolean tc = false;
//AdityaFastIO r = new AdityaFastIO();
FastReader r = new FastReader();
try (OutputStream out = new BufferedOutputStream(System.out)) {
//long startTime = System.currentTimeMillis();
int testcases = tc ? r.ni() : 1;
int tcCounter = 1;
// Hold Here Sparky------------------->>>
// Solution Starts Here
start:
while (testcases-- > 0) {
int n = r.ni();
int m = r.ni();
char[] s = r.word().toCharArray();
char[] t = r.word().toCharArray();
int countS = 0;
int countT = 0;
int[] left = new int[m];
int[] right = new int[m];
while (countT < m) {
while (s[countS] != t[countT]) countS++;
left[countT++] = countS++;
}
countS = n - 1;
countT = m - 1;
while (countT >= 0) {
while (s[countS] != t[countT]) countS--;
right[countT--] = countS--;
}
int ans = 0;
for (int i = 0; i < m - 1; i++) {
ans = Math.max(ans, right[i + 1] - left[i]);
}
out.write((ans + " ").getBytes());
}
// Solution Ends Here
} catch (IOException e) {
e.printStackTrace();
}
}
static class AdityaFastIO {
final private int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
public BufferedReader br;
public StringTokenizer st;
public AdityaFastIO() {
br = new BufferedReader(new InputStreamReader(System.in));
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public AdityaFastIO(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String word() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public String line() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public String readLine() throws IOException {
byte[] buf = new byte[100000001]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int ni() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public long nl() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}
public double nd() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') c = read();
boolean neg = (c == '-');
if (neg) c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null) return;
din.close();
}
}
public static void main(String[] args) throws Exception {
run();
}
static long mod = 998244353;
static long modInv(long base, long e) {
long result = 1;
base %= mod;
while (e > 0) {
if ((e & 1) > 0) result = result * base % mod;
base = base * base % mod;
e >>= 1;
}
return result;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String word() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String line() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int ni() {
return Integer.parseInt(word());
}
long nl() {
return Long.parseLong(word());
}
double nd() {
return Double.parseDouble(word());
}
}
static int MOD = (int) (1e9 + 7);
static long powerLL(long x, long n) {
long result = 1;
while (n > 0) {
if (n % 2 == 1) result = result * x % MOD;
n = n / 2;
x = x * x % MOD;
}
return result;
}
static long powerStrings(int i1, int i2) {
String sa = String.valueOf(i1);
String sb = String.valueOf(i2);
long a = 0, b = 0;
for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD;
for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1);
return powerLL(a, b);
}
static long gcd(long a, long b) {
if (a == 0) return b;
else return gcd(b % a, a);
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static long lower_bound(List<Long> list, long k) {
int s = 0;
int e = list.size();
while (s != e) {
int mid = (s + e) >> 1;
if (list.get(mid) < k) s = mid + 1;
else e = mid;
}
if (s == list.size()) return -1;
return s;
}
static int upper_bound(List<Long> list, long k) {
int s = 0;
int e = list.size();
while (s != e) {
int mid = (s + e) >> 1;
if (list.get(mid) <= k) s = mid + 1;
else e = mid;
}
if (s == list.size()) return -1;
return s;
}
static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) {
graph.get(edge1).add(edge2);
graph.get(edge2).add(edge1);
}
public static class Pair implements Comparable<Pair> {
int first;
int second;
public Pair(int first, int second) {
this.first = first;
this.second = second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(Pair o) {
// TODO Auto-generated method stub
if (this.first != o.first)
return (int) (this.first - o.first);
else return (int) (this.second - o.second);
}
}
public static class PairC<X, Y> implements Comparable<PairC> {
X first;
Y second;
public PairC(X first, Y second) {
this.first = first;
this.second = second;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(PairC o) {
// TODO Auto-generated method stub
return o.compareTo((PairC) first);
}
}
static boolean isCollectionsSorted(List<Long> list) {
if (list.size() == 0 || list.size() == 1) return true;
for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false;
return true;
}
static boolean isCollectionsSortedReverseOrder(List<Long> list) {
if (list.size() == 0 || list.size() == 1) return true;
for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false;
return true;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
025e7b28ba05be0828d2c953e6d6bb41
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class c {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
st = new StringTokenizer(br.readLine());
int strLen = Integer.parseInt(st.nextToken());
int targetLen = Integer.parseInt(st.nextToken());
String str = br.readLine();
String target = br.readLine();
int[] minIdx = new int[target.length()];
for (int sIdx = 0, tIdx = 0; tIdx < targetLen; sIdx++) {
char sChar = str.charAt(sIdx);
char tChar = target.charAt(tIdx);
if (sChar == tChar) {
minIdx[tIdx] = sIdx;
tIdx++;
}
}
int[] maxIdx = new int[target.length()];
for (int sIdx = str.length() - 1, tIdx = target.length() - 1; tIdx >= 0; sIdx--) {
char sChar = str.charAt(sIdx);
char tChar = target.charAt(tIdx);
if (sChar == tChar) {
maxIdx[tIdx] = sIdx;
tIdx--;
}
}
int answer = 0;
for (int tIdx = 0; tIdx < target.length() - 1; tIdx++) {
answer = Math.max(maxIdx[tIdx + 1] - minIdx[tIdx], answer);
}
System.out.println(answer);
}
private static int gcd(int a, int b) {
if (a % b == 0) return b;
else return gcd(b, a % b);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
84834d6787568a49402a9f63f8dbc220
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Test {
static class Scan {
private byte[] buf = new byte[1024];
private int index;
private InputStream in;
private int total;
public Scan() {
in = System.in;
}
public int scan() throws IOException {
if (total < 0)
throw new InputMismatchException();
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0)
return -1;
}
return buf[index++];
}
public int scanInt() throws IOException {
int integer = 0;
int n = scan();
while (isWhiteSpace(n))
n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
} else
throw new InputMismatchException();
}
return neg * integer;
}
public double scanDouble() throws IOException {
double doub = 0;
int n = scan();
while (isWhiteSpace(n))
n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n) && n != '.') {
if (n >= '0' && n <= '9') {
doub *= 10;
doub += n - '0';
n = scan();
} else
throw new InputMismatchException();
}
if (n == '.') {
n = scan();
double temp = 1;
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
temp /= 10;
doub += (n - '0') * temp;
n = scan();
} else
throw new InputMismatchException();
}
}
return doub * neg;
}
public String scanString() throws IOException {
StringBuilder sb = new StringBuilder();
int n = scan();
while (isWhiteSpace(n))
n = scan();
while (!isWhiteSpace(n)) {
sb.append((char) n);
n = scan();
}
return sb.toString();
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1)
return true;
return false;
}
}
static class Print {
private final BufferedWriter bw;
public Print() {
this.bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object) throws IOException {
bw.append("" + object);
}
public void println(Object object) throws IOException {
print(object);
bw.append("\n");
}
public void close() throws IOException {
bw.close();
}
}
public static void main(String[] args) throws IOException {
Scan scan = new Scan();
Print print = new Print();
int n = scan.scanInt();
int m = scan.scanInt();
String str = scan.scanString();
String t = scan.scanString();
int j = 0;
int pre[] = new int[m];
int suf[] = new int[m];
for(int i=0; i<m; i++){
char ch = t.charAt(i);
while(str.charAt(j) != ch){
j++;
}
pre[i] = j;
j++;
}
j = n-1;
for(int i=m-1; i>=0; i--){
char ch = t.charAt(i);
while(str.charAt(j) != ch){
j--;
}
suf[i] = j;
j--;
}
int max = 0;
for(int i=0; i<m-1; i++){
max = Math.max(suf[i+1]-pre[i], max);
}
print.println(max);
//if index==n means no element is present which is equal to or greater then given element
print.close();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
d74146f3cefdda9acb7f663c7a615e75
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
import java.math.*;
public class Coder {
static int n,m;
static char s[], t[];
static List<List<Integer>> list=new ArrayList<>();
static StringBuffer str=new StringBuffer();
static void solve(){
for(int j=0;j<26;j++){
list.add(new ArrayList<>());
for(int i=0;i<n;i++){
if((s[i]-'a')==j) list.get(j).add(i);
}
}
int pos[]=new int[m];
int l=0;
for(int i=0;i<m;i++){
for(int j=l;j<n;j++){
if(s[j]==t[i]){
pos[i]=j;
l=j+1;
break;
}
}
}
int max=-1;
int far=n-1;
for(int i=m-1;i>0;i--){
List<Integer> ml=list.get(t[i]-'a');
int ans=pos[i];
l=0;
int r=ml.size()-1;
while(l<=r){
int mid=l+(r-l)/2;
if(ml.get(mid) <= far){
ans=ml.get(mid);
l=mid+1;
}else r=mid-1;
}
pos[i]=ans;
far=pos[i]-1;
max=Math.max(max, pos[i]-pos[i-1]);
}
str.append(max).append("\n");
}
public static void main(String[] args) throws java.lang.Exception {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
// int q = Integer.parseInt(bf.readLine().trim());
// while(q-->0) {
String st[]=bf.readLine().trim().split("\\s+");
n=Integer.parseInt(st[0]);
m=Integer.parseInt(st[1]);
s=bf.readLine().trim().toCharArray();
t=bf.readLine().trim().toCharArray();
solve();
// }
System.out.print(str);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
e90b7d88db45432c7940378b22c3fec7
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Solution {
private static ArrayList<Integer> prime = new ArrayList<>();
public static void main(String[] args) throws IOException {
Scanner in=new Scanner(System.in);
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringBuffer out = new StringBuffer();
int T = 1;
OUTER:
while(T-->0) {
int n=in.nextInt(), m=in.nextInt();
String s=in.next(), t=in.next();
int right[]=new int[m];;
for(int i=n-1, j=m-1; i>=0 && j>=0; i--) {
if(s.charAt(i)==t.charAt(j)) {
right[j]=i;
j-=1;
}
}
int left[]=new int[m];
for(int i=0, j=0; i<n && j<m; i++) {
if(s.charAt(i)==t.charAt(j)) {
left[j]=i;
j+=1;
}
}
int max=0;
for(int i=1; i<m; i++) {
max=Math.max(max, right[i]-left[i-1]);
}
out.append(max+"\n");
}
System.out.print(out);
}
private static int gcd(int a, int b) {
if (a==0)
return b;
return gcd(b%a, a);
}
private static int toInt(String s) {
return Integer.parseInt(s);
}
private static long toLong(String s) {
return Long.parseLong(s);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
740ce90ab5090e034276ca8912d75805
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Solution {
private static ArrayList<Integer> prime = new ArrayList<>();
public static void main(String[] args) throws IOException {
Scanner in=new Scanner(System.in);
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringBuffer out = new StringBuffer();
int T = 1;
OUTER:
while(T-->0) {
int n=in.nextInt(), m=in.nextInt();
String s=in.next(), t=in.next();
int arr[]=new int[m];;
for(int i=n-1, j=m-1; i>=0 && j>=0; i--) {
if(s.charAt(i)==t.charAt(j)) {
arr[j]=i;
j-=1;
}
}
int max=0;
for(int i=0, j=0; i<n && j<m-1; i++) {
if(s.charAt(i)==t.charAt(j)) {
max=Math.max(max, arr[j+1]-i);
j+=1;
}
}
out.append(max+"\n");
}
System.out.print(out);
}
private static int gcd(int a, int b) {
if (a==0)
return b;
return gcd(b%a, a);
}
private static int toInt(String s) {
return Integer.parseInt(s);
}
private static long toLong(String s) {
return Long.parseLong(s);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
c99aab441204b9506061ccba722a9b0d
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
// package codeforces;
import java.io.*;
import java.util.*;
public class Round724_div2 {
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
static BufferedReader br;
static StringTokenizer st;
static BufferedWriter bw ;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
bw = new BufferedWriter(new OutputStreamWriter(System.out));
int[]nums= {1,1,2,2,3,3};
// int t = nextInt();
// while (t-- > 0) {
MaximumWidth();
// }
bw.close();
}
public static void MaximumWidth() throws IOException{
int n=nextInt();
int m=nextInt();
String s=next();
String t=next();
char[]arr1=s.toCharArray();
char[]arr2=t.toCharArray();
int[]l=new int[m];
int[]r=new int[m];
int j=0,i=0;
while(j<m) {
while(arr1[i]!=arr2[j]) {
i++;
}
l[j]=i;
j++;
i++;
}
i=n-1;
j=m-1;
while(j>=0) {
while(arr1[i]!=arr2[j]) {
i--;
}
r[j]=i;
j--;
i--;
}
int max=0;
for( i=0;i<m-1;i++) {
max=Math.max(max,r[i+1]-l[i] );
}
System.out.println(max);
}
public static void threeswimmers() throws IOException{
long p=nextLong();
long a=nextLong();
long b=nextLong();
long c=nextLong();
if(p%a==0 || p%b==0 || p%c==0) {
bw.append(0+"\n");
return;
}
long min=(long)1e18;
long x=p/a;
min=Math.min(min, a*(x+1)-p);
long y=p/b;
min=Math.min(min, b*(y+1)-p);
long z=p/c;
min=Math.min(min, c*(z+1)-p);
bw.append(min+"\n");
}
public static void card_Deck() throws IOException{
int n=nextInt();
int[]arr=new int[n];
for(int i=n-1;i>=0;i--) {
arr[i]=nextInt();
}
Stack<Integer> s=new Stack<>();
int max=n;
HashMap<Integer,Integer> map=new HashMap<>();
ArrayList<Integer> l=new ArrayList<>();
for(int i=0;i<n;i++) {
if(arr[i]==max) {
s.push(arr[i]);
map.put(arr[i], 1);
while(!s.isEmpty()) {
l.add(s.pop());
}
max--;
while(map.containsKey(max)) {
max--;
}
}else{
s.push(arr[i]);
map.put(arr[i], 1);
}
}
while(!s.isEmpty()) {
l.add(s.pop());
}
for(int x:l) {
bw.append(x+" ");
}
bw.append("\n");
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
37abbbf6ec77e731eaa0c7567c0039ab
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class experiment
{
static int M = 1_000_000_007;
static int INF = 2_000_000_000;
static final FastScanner fs = new FastScanner();
//variable
public static void main(String[] args) throws IOException {
int n = fs.nextInt();
int m = fs.nextInt();
char[] s1 = fs.next().toCharArray();
char[] s2 = fs.next().toCharArray();
int[] l = new int[m];
int[] r = new int[m];
int j = 0;
for(int i=0;i<m;i++,j++) {
while(j<n && s2[i] != s1[j]) j++;
l[i] = j;
}
j = n-1;
for(int i=m-1;i>=0;i--,j--){
while(j>=0 && s2[i] != s1[j]) j--;
r[i] = j;
}
int[][] dp = new int [m][2];
int ans = 0;
for(int i=1;i<m;i++) {
dp[i][0] = Math.max(l[i]-l[i-1],l[i]-r[i-1]);
dp[i][1] = Math.max(r[i]-l[i-1],r[i]-r[i-1]);
ans = Math.max(ans,Math.max(dp[i][0],dp[i][1]));
}
System.out.println(ans);
}
//class
//function
// Template
static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
static long gcd(long a, long b) {
if(a==0) return b;
return gcd(b%a,a);
}
static void premutation(int n, ArrayList<Integer> arr,boolean[] chosen) {
if(arr.size() == n) {
}else {
for(int i=1; i<=n; i++) {
if(chosen[i]) continue;
arr.add(i);
chosen[i] = true;
premutation(n,arr,chosen);
arr.remove(i);
chosen[i] = false;
}
}
}
static boolean isPalindrome(char[] c) {
int n = c.length;
for(int i=0; i<n/2; i++) {
if(c[i] != c[n-i-1]) return false;
}
return true;
}
static long nCk(int n, int k) {
return (modMult(fact(n),fastexp(modMult(fact(n-k),fact(k)),M-2)));
}
static long fact (long n) {
long fact =1;
for(int i=1; i<=n; i++) {
fact = modMult(fact,i);
}
return fact%M;
}
static int modMult(long a,long b) {
return (int) (a*b%M);
}
static int negMult(long a,long b) {
return (int)((a*b)%M + M)%M;
}
static long fastexp(long x, int y){
if(y==1) return x;
if(y == 0) return 1;
long ans = fastexp(x,y/2);
if(y%2 == 0) return modMult(ans,ans);
else return modMult(ans,modMult(ans,x));
}
static final Random random = new Random();
static void ruffleSort(int[] arr)
{
int n = arr.length;
for(int i=0; i<n; i++)
{
int j = random.nextInt(n),temp = arr[j];
arr[j] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
public static class Pairs implements Comparable<Pairs>
{
int f,s;
Pairs(int f, int s)
{
this.f = f;
this.s = s;
}
public int compareTo(Pairs p)
{
return Integer.compare(this.f,p.f);
}
}
}
class FastScanner
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer str = new StringTokenizer("");
String next() throws IOException
{
while(!str.hasMoreTokens())
str = new StringTokenizer(br.readLine());
return str.nextToken();
}
char nextChar() throws IOException {
return next().charAt(0);
}
int nextInt() throws IOException
{
return Integer.parseInt(next());
}
float nextfloat() throws IOException
{
return Float.parseFloat(next());
}
double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
long nextLong() throws IOException
{
return Long.parseLong(next());
}
byte nextByte() throws IOException
{
return Byte.parseByte(next());
}
int [] arrayIn(int n) throws IOException
{
int[] arr = new int[n];
for(int i=0; i<n; i++)
{
arr[i] = nextInt();
}
return arr;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
671febb7ac18914264415deeb200d407
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
public class C_Maximum_width{
public static void main(String[] args) {
Scanner s= new Scanner(System.in);
int n=s.nextInt();
int m=s.nextInt();
String ss= s.next();
String tt= s.next();
int min[]= new int[tt.length()-2];
int max[]= new int[tt.length()-2];
int k=0;
int start=0;
int end=0;
for(int i=0;i<ss.length();i++){
if(k==0){
if(ss.charAt(i)==tt.charAt(k)){
k++;
start=i;
}
continue;
}
if(k==tt.length()-1){
break;
}
if(ss.charAt(i)==tt.charAt(k)){
min[k-1]=i;
k++;
}
}
int y=tt.length()-1;
for(int i=ss.length()-1;i>=0;i--){
if(y==tt.length()-1){
if(ss.charAt(i)==tt.charAt(y)){
y--;
end=i;
}
continue;
}
if(y==0){
break;
}
if(ss.charAt(i)==tt.charAt(y)){
max[y-1]=i;
y--;
}
}
if(tt.length()==2){
System.out.println(end-start);
return;
}
long ans=Integer.MIN_VALUE;
for(int i=0;i<=max.length;i++){
if(i==0){
int a=max[i]-start;
if(a>ans){
ans=a;
}
continue;
}
if(i==max.length){
int c=end-min[i-1];
if(c>ans){
ans=c;
}
continue;
}
int b=max[i]-min[i-1];
if(b>ans){
ans=b;
}
}
System.out.println(ans);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
f710577d018fd08963ba0aa73a6c9920
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
//package practice; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
sc.nextLine();
String a=sc.nextLine();
String b=sc.nextLine();
int min[]=new int[m];
int max[]=new int[m];
for(int i=0, j=0;i<n && j<m;i++) {
if(a.charAt(i)==b.charAt(j)) {
min[j]=i+1;
j++;
}
}
for(int i=n-1,j=m-1;i>=0 && j>=0;i--) {
if(a.charAt(i)==b.charAt(j)) {
max[j] = i+1;
j--;
}
}
int ans=-1;
for(int i=1;i<m;i++) {
ans=Math.max(ans, max[i]-min[i-1]);
}
System.out.println(ans);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
541ef6ac0805cd3c80234d09b8b2ccb8
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.StringTokenizer;
/*
* Java Input / Output Class using Buffered/ Input Straem
* Created by @neelbhallabos
* File Created at: 4/6/2021
*/
public class CF1492C {
public static BufferedReader sc = new BufferedReader(new InputStreamReader(System.in));
public static StringTokenizer st;
public static PrintWriter pw = new PrintWriter(System.out);
final static boolean debugmode = true;
public static int k = 7; // for 10^9 + k mods.
public static long STMOD = 1000000000 + k; // 10^9 + k
public static void main(String[] args) throws IOException {
int haystackLen = getInt();
int needleLen= getInt();
String hay = getString();
String needle = getString();
int[] minOcc = new int[needle.length()];
int needleIx = 0;
for(int i = 0; i < haystackLen && needleIx < needle.length();i++) {
if(hay.charAt(i) == needle.charAt(needleIx)) {
minOcc[needleIx] = i;
needleIx++;
}
}
int[] maxOcc = new int[needle.length()];
needleIx = needle.length()-1;
for(int i = haystackLen-1;i > 0 && needleIx >= 0; i--) {
if(hay.charAt(i) == needle.charAt(needleIx)) {
maxOcc[needleIx] = i;
needleIx--;
}
}
int cmax = 0;
for(int split = 0; split < needle.length()-1;split++) {
int minBeforeSplit = minOcc[split];
int maxAfterSplit = maxOcc[split+1];
cmax = Math.max(cmax, maxAfterSplit-minBeforeSplit);
//System.out.println("considering: " + minBeforeSplit + " " + maxAfterSplit);
}
submit(cmax, true);
}
public static void swapAdjacent(int[] r) {
for(int i = 0; i < r.length/2;i++) {
swap(r, 2*i, 2*i+1);
}
}
public static void rotate(int[] r) {
for(int i = 0; i < r.length/2;i++) {
swap(r, i, (i + r.length/2)%r.length);
}
}
public static void swap(int[] a, int l, int r) {
int tmp = a[l];
a[l] = a[r];
a[r] = tmp;
}
public static void setInputFile(String fn) throws IOException {
sc = new BufferedReader(new FileReader(fn));
}
public static void setOutputFile(String fn) throws IOException {
pw = new PrintWriter(new BufferedWriter(new FileWriter(fn)));
}
public static int GCD(int a, int b) {
if (b == 0)
return a;
return GCD(b, a % b);
}
public static double log(int k, int v) {
return Math.log(k) / Math.log(v);
}
public static long longpower(int a, int b) {
long[] vals = new long[(int) (log(b, 2) + 2)];
vals[0] = a;
vals[1] = a * a;
for (int i = 1; i < vals.length; i++) {
vals[i] = vals[i - 1] * vals[i - 1];
}
long ans = 1;
int cindex = 0;
while (b != 0) {
if (b % 2 == 1) {
ans *= vals[cindex];
}
cindex += 1;
b /= 2;
}
return ans;
}
public static void debug(String toPrint) {
if (!debugmode) {
return;
}
pw.println("[DEBUG]: " + toPrint);
}
public static void submit(int[] k, boolean close) {
pw.println(Arrays.toString(k));
if (close) {
pw.close();
}
}
public static void submit(int p, boolean close) {
pw.println(Integer.toString(p));
if (close) {
pw.close();
}
}
public static void submit(String k, boolean close) {
pw.println(k);
if (close) {
pw.close();
}
}
public static void submit(double u, boolean close) {
pw.println(Double.toString(u));
if (close) {
pw.close();
}
}
public static void submit(long lng, boolean close) {
pw.println(Long.toString(lng));
if (close) {
pw.close();
}
}
public static void submit() {
pw.close();
}
public static int getInt() throws IOException {
if (st != null && st.hasMoreTokens()) {
return Integer.parseInt(st.nextToken());
}
st = new StringTokenizer(sc.readLine());
return Integer.parseInt(st.nextToken());
}
public static long getLong() throws IOException {
if (st != null && st.hasMoreTokens()) {
return Long.parseLong(st.nextToken());
}
st = new StringTokenizer(sc.readLine());
return Long.parseLong(st.nextToken());
}
public static double getDouble() throws IOException {
if (st != null && st.hasMoreTokens()) {
return Double.parseDouble(st.nextToken());
}
st = new StringTokenizer(sc.readLine());
return Double.parseDouble(st.nextToken());
}
public static String getString() throws IOException {
if (st != null && st.hasMoreTokens()) {
return st.nextToken();
}
st = new StringTokenizer(sc.readLine());
return st.nextToken();
}
public static String getLine() throws IOException {
return sc.readLine();
}
public static int[][] readMatrix(int lines, int cols) throws IOException {
int[][] matrr = new int[lines][cols];
for (int i = 0; i < lines; i++) {
for (int j = 0; j < cols; j++) {
matrr[i][j] = getInt();
}
}
return matrr;
}
public static int[] readArray(int lines) throws IOException {
int[] ar = new int[lines];
for (int i = 0; i < lines; i++)
ar[i] = getInt();
return ar;
}
static class Pair {
int[] cr;
int nsteps;
boolean wasRotated;
public Pair(int[] c, int n, boolean wr) {
cr = c.clone();
nsteps = n;
wasRotated = wr;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
2f0d54542e8f596f1d4f36afaa059136
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
public static boolean gsd(long x , int y) {
for(int i = 2 ; i <= Math.min(y, x) ; i ++ ) {
if (x%i == 0 && y%i == 0 ) return true;
}
return false;
}
public static int s(long x) {
int sum = 0 ;
do {
sum += x%10 ;
x /= 10;
}while(x >0 );
return sum;
}
public static void main(String[] args) throws IOException, InterruptedException{
PrintWriter pw = new PrintWriter(System.out);
Scanner sc = new Scanner (System.in);
int n = sc.nextInt();
int m = sc.nextInt();
String s = sc.next();
String t = sc.next();
int [] arr1 = new int [m] ; int [] arr2 = new int [m];
int i = 0 ; int j = 0 ;
for ( ; i < s.length()&& j < t.length(); i ++) {
if (s.charAt(i) == t.charAt(j)) {
arr1[j] = i ;
j++;
}
}
j = m-1 ; i = s.length()-1;
for( ; i >=0 && j >=0 ; i-- ) {
if (s.charAt(i) == t.charAt(j)) {
arr2[j] = i ;
j--;
}
}
int max = 0 ;
for (int k = 0 ; k < m-1 ;k ++ ) {
max= (max > -arr1[k]+ arr2[k+1] )? max : (-arr1[k]+arr2[k+1]);
}
pw.print(max);
pw.close ();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
9c84188d791c012af569bf91d6be67f2
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
public class MaximumWidth {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
sc.nextLine();
char[]s1=sc.nextLine().toCharArray();
char[]s2=sc.nextLine().toCharArray();
int j=0;
int[]left=new int[m];
int[]right=new int[n];
for(int i=0;i<n&&j<m;i++) {
if(s1[i]==s2[j]) {
left[j]=i;
j++;
}
}
j=m-1;
for(int i=n-1;i>=0&&j>=0;i--) {
if(s1[i]==s2[j]) {
right[j]=i;
j--;
}
}
int diff=0;
for(int i=0;i<m-1;i++) {
diff=Math.max(diff, right[i+1]-left[i]);
}
System.out.println(diff);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
e154bc6fd31b6a7a95878ba5de8af482
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Double.parseDouble;
import static java.lang.Math.PI;
import static java.lang.Math.min;
import static java.lang.System.arraycopy;
import static java.lang.System.exit;
import static java.util.Arrays.copyOf;
import java.util.LinkedList;
import java.io.FileReader;
import java.io.FileWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.NoSuchElementException;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
import java.util.Comparator;
import java.lang.StringBuilder;
import java.util.Collections;
public class Solution {
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static double scanDouble() throws IOException {
return parseDouble(scanString());
}
static String scanString() throws IOException {
if (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static String scanLine() throws IOException {
return in.readLine();
}
static void printCase(String str) {
out.print("Case #" + test + ": "+str);
}
static void printlnCase() {
out.println("Case #" + test + ":");
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
static int test;
static StringBuilder str;
public static void main(String[] args) {
try {
long startTime = System.currentTimeMillis();
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
/*int tests = scanInt();
for (test = 1; test <= tests; test++) {
int n=scanInt();
}*/
/*String []bank={"ab","abc","cd","def","abcd"};
out.println(countConstruct("abcdef",bank));
String bank2[]={"bo","rd","ate","t","ska","sk","boar"};
out.println(countConstruct("skateboard",bank2));
String bank3[]={"a","p","ent","enter","ot","o","t"};
out.println(countConstruct("enterapotentpot",bank3));
String bank4[]={"e","ee","eee","eeee","eeeee","eeeeee"};
out.println("ans"+countConstruct("eeeeeeeeeeeeeeeeeeeeeeeef",bank4));
String bank5[]={"purp","p","ur","le","purpl","purple"};
allConstruct("purple",bank5);
for(ArrayList<String> data: xyz)
out.println(data);*/
solve();
long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;
//System.out.println(totalTime+" "+System.currentTimeMillis() );
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
private static void solve() throws IOException{
int n=scanInt(), m=scanInt();
char s[]=scanString().toCharArray();
char t[]=scanString().toCharArray();
int left[]=new int[m];
int right[]=new int[m];
for(int i=0,j=0; i<n && j<m; ++i){
if(s[i]==t[j]){
left[j++]=i;
}
}
for(int i=n-1,j=m-1; i>-1 && j>-1; --i){
if(s[i]==t[j]){
right[j--]=i;
}
}
int ans=0;
for(int i=0; i<m-1;++i){
ans=Math.max(ans,right[i+1]-left[i]);
}
out.println(ans);
}
/*
private static void allConstruct(String str, String bank[]){
ArrayList<ArrayList<String>> dp[]= new ArrayList[str.length()+1];
//HashMap<Integer,ArrayList<String>> dp[]=new HashMap[str.length()+1];
dp[0]=new ArrayList<>();
dp[0].add(new ArrayList<>());
for(int i=0; i<=str.length(); ++i){
String temp=str.substring(i);
//out.println(dp[i]);
if(dp[i]!=null){
for(int j=0; j<bank.length; ++j){
if(temp.startsWith(bank[j])){
for(ArrayList<String> data: dp[i]){
ArrayList<String> x=new ArrayList<>(data);
x.add(bank[j]);
if(dp[i+bank[j].length()]==null)
dp[i+bank[j].length()]=new ArrayList<>();
dp[i+bank[j].length()].add(x);
}
}
}
}
}
for(int i=0; i<=str.length(); ++i){
out.println(dp[i]);
}
//return dp;
}
private static int countConstruct(String str, String []bank){
int dp[]=new int[str.length()+1];
dp[0]=1;
for(int i=0; i<=str.length(); ++i){
String temp=str.substring(i);
if(dp[i]!=0){
for(int j=0; j<bank.length; ++j){
if(temp.startsWith(bank[j])){
dp[i+bank[j].length()]+=dp[i];
}
}
for(Integer data: dp){
out.print(data+" ");
}
out.println();
}
}
return(dp[str.length()]);
}
private static boolean canConstruct(String str, String []bank){
boolean dp[]=new boolean[str.length()+1];
dp[0]=true;
for(int i=0;i<=str.length();++i){
String temp=str.substring(i);
if(dp[i]){
for(int j=0; j<bank.length; ++j){
if(temp.startsWith(bank[j])){
dp[i+bank[j].length()]=true;
}
}
/*for(Boolean data: dp){
out.print(data+" ");
}
out.println();
}
}
return dp[str.length()];
}
*/
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
42e606acbcb8961a5a0c78114e182b59
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.StringTokenizer;
import static java.lang.Double.parseDouble;
import static java.lang.Integer.compare;
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.System.in;
public class Main {
private static final int MOD = (int) (1E9 + 7);
static FastScanner scanner = new FastScanner(in);
public static void main(String[] args) throws IOException {
// Write your solution here
int t = 1;
// t = parseInt(scanner.nextLine());
while (t-- > 0) {
solve();
}
}
private static void solve() throws IOException {
int n = scanner.nextInt();
int m = scanner.nextInt();
String s = scanner.nextLine();
String t = scanner.nextLine();
int[] left = new int[m];
int[] right = new int[m];
int i = 0, j = 0;
while (j < m) {
while (s.charAt(i) != t.charAt(j)) i++;
left[j] = i;
i++;
j++;
}
i = n - 1;
j = m - 1;
while (j >= 0) {
while (s.charAt(i) != t.charAt(j)) i--;
right[j] = i;
i--;
j--;
}
int ans = 0;
for (int k = 1; k < m; k++) {
ans = Math.max(ans, right[k] - left[k - 1]);
}
System.out.println(ans);
}
private static int add(int a, int b) {
long res = ((long) (a + MOD) % MOD + (b + MOD)) % MOD;
return (int) res;
}
private static int mul(int a, int b) {
long res = ((long) a % MOD * b % MOD) % MOD;
return (int) res;
}
private static int pow(int a, int b) {
a %= MOD;
int res = 1;
while (b > 0) {
if ((b & 1) != 0)
res = mul(res, a);
a = mul(a, a);
b >>= 1;
}
return res;
}
private static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
private static int lcm(int a, int b) {
return (a / gcd(a, b)) * b;
}
private static class Pair implements Comparable<Pair> {
int index, value;
public Pair(int index, int value) {
this.index = index;
this.value = value;
}
public int compareTo(Pair o) {
if (value != o.value) return compare(value, o.value);
return compare(index, o.index);
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return parseInt(next());
}
long nextLong() {
return parseLong(next());
}
double nextDouble() {
return parseDouble(next());
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
0e2a021da8d371ff1e6eb9297e67c86c
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Main {
private static final FastIO fastIO = new FastIO();
private static final String yes = "YES";
private static final String no = "NO";
public static void main(String[] args) {
int n = fastIO.nextInt();
int m = fastIO.nextInt();
char[] s = fastIO.nextLine().toCharArray();
char[] t = fastIO.nextLine().toCharArray();
Node[] nodes = new Node[m];
int ans = 0;
for(int i = 0; i < nodes.length; i++)
nodes[i] = new Node();
for(int i = 0, j = 0; i < n && j < m; i++){
if(s[i] == t[j]){
nodes[j].min = i;
++j;
}
}
for(int i = n - 1, j = m - 1; i >= 0 && j >= 0; i--){
if(s[i] == t[j]){
nodes[j].max = i;
--j;
}
}
for(int i = 1; i < m; i++)
ans = Math.max(ans, nodes[i].max - nodes[i - 1].min);
fastIO.append(ans);
fastIO.printAll();
}
public static class Node {
int min = 0;
int max = 0;
}
private static class FastIO {
private final BufferedReader in;
private final StringBuilder out;
private final char LINE_BREAK = '\n';
private StringTokenizer tokens;
public FastIO() {
in = new BufferedReader(new InputStreamReader(System.in));
out = new StringBuilder();
}
public String next() {
while (tokens == null || !tokens.hasMoreElements()) {
try {
tokens = new StringTokenizer(in.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokens.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
String str = "";
try {
str = in.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public FastIO append(Object... objects){
for(Object o: objects)
out.append(o);
return this;
}
public FastIO appendln(Object... objects){
return append(objects).append(LINE_BREAK);
}
public void printAll(){
System.out.println(out.toString());
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
5dd5fbadf6c2e9248ffc63338a7eb28b
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class Main {
static int n, m;
static char[] s, t;
public static void main(String[] args) throws IOException {
n = sc.nextInt(); m = sc.nextInt();
s = sc.nextLine().toCharArray(); t = sc.nextLine().toCharArray();
int[] pref = new int[m], suff = new int[m];
int j = 0;
for (int i = 0; i < m; i++) {
while(s[j] != t[i]) j++;
pref[i] = j++;
}
j = n-1;
for (int i = m-1; i >= 0; i--) {
while(s[j] != t[i]) j--;
suff[i] = j--;
}
int ans = 0;
for (int i = 0; i < m-1; i++) {
ans = Math.max(ans, suff[i+1]-pref[i]);
}
pw.println(ans);
pw.close();
}
public static void pairSort(Pair[] arr) {
ArrayList<Pair> l = new ArrayList<>();
Collections.addAll(l, arr);
Collections.sort(l);
for (int i = 0; i < arr.length; i++) {
arr[i] = l.get(i);
}
}
public static void longSort(long[] arr) {
ArrayList<Long> l = new ArrayList<>();
for (long i : arr) l.add(i);
Collections.sort(l);
for (int i = 0; i < arr.length; i++) {
arr[i] = l.get(i);
}
}
public static void intSort(int[] arr) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : arr) l.add(i);
Collections.sort(l);
for (int i = 0; i < arr.length; i++) {
arr[i] = l.get(i);
}
}
static class Pair implements Comparable<Pair> {
int x; int y;
public Pair(int first, int second){
this.x = first; this.y = second;
}
@Override
public int compareTo(Pair p2) {
return x - p2.x;
}
@Override
public String toString() { return "("+ x + "," + y + ')'; }
}
static class Edge implements Comparable<Edge> {
int u, v, w;
Edge(int a, int b, int c) { u = a; v = b; w = c; }
public int compareTo(Edge e) { return w - e.w; }
@Override
public String toString() {
return "("+ u +","+v+"," +w+ ')';
}
}
static class Triple {
int x, y, z;
Triple(int a, int b, int c) { x = a; y = b; z = c;}
// public int compareTo(Triple t)
// {
// if(Math.abs(sum - t.sum) < 1e-9) return x > t.x ? 1 : -1;
// return sum > t.sum ? 1 : -1;
// }
public String toString()
{
return "(" + x + ", " + y + ", " + z + ")";
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
public int[] nextIntArr(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = Integer.parseInt(next());
}
return arr;
}
public long[] nextLongArr(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = Long.parseLong(next());
}
return arr;
}
}
static PrintWriter pw = new PrintWriter(System.out);
static Scanner sc = new Scanner(System.in);
static Random random = new Random();
static final long MOD = 1_000_000_000 + 7;
static final int INF = Integer.MAX_VALUE;
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
be526655b27c919bdde657c936ce4690
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
// Don't place your source in a package
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
// Please name your class Main
public class Main {
static Scanner in = new Scanner(System.in);
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(System.out);
int T=1;
for(int t=0;t<T;t++){
int n=Int();
int m=Int();
String s=Str();String s1=Str();
Solution sol=new Solution();
sol.solution(out,s,s1);
}
out.flush();
}
public static long Long(){ return in.nextLong();}
public static int Int(){
return in.nextInt();
}
public static String Str(){
return in.next();
}
}
class Solution{
public void solution(PrintWriter out,String s,String t){
int res=0;
ArrayList<Integer>A[]=new ArrayList[26];
for(int i=0;i<A.length;i++){
A[i]=new ArrayList<>();
}
for(int i=0;i<s.length();i++){
A[s.charAt(i)-'a'].add(i);
}
int dp[]=new int[s.length()+1];
int cnt=0;
int j=t.length()-1;
for(int i=s.length()-1;i>=0;i--){
if(i+1<s.length()){
dp[i]=dp[i+1];
}
if(j>=0&&s.charAt(i)==t.charAt(j)){
cnt++;//how many is matched
dp[i]=cnt;
j--;
}
}
j=0;
int pre=-1;
for(int i=0;i<s.length();i++){
if(s.charAt(i)==t.charAt(j)){
if(pre==-1){
}
else{
List<Integer>list=A[s.charAt(i)-'a'];
int l=0,r=list.size()-1;
int pos=-1;
while(l<=r){
int mid=l+(r-l)/2;
int index=list.get(mid);
if(index<=pre){
l=mid+1;
continue;
}
if(dp[index+1]>=t.length()-(j+1)){
pos=index;
l=mid+1;
}
else{
r=mid-1;
}
}
res=Math.max(res,pos-pre);
}
pre=i;
j++;
}
if(j>=t.length())break;
}
System.out.println(res);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
2bf6c40a782815560c74675f7e492053
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.Scanner;
public class Maximumwidth {
public static void main(String args[]) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
String s = scan.next();
String t = scan.next();
int i = 0;
int j = 0;
int[] l = new int[m];
while (i < n && j < m) {
if (s.charAt(i) == t.charAt(j)) {
l[j] = i;
++j;
}
++i;
}
i = n - 1;
j = m - 1;
int[] r = new int[m];
while (i >= 0 && j>=0) {
if (s.charAt(i) == t.charAt(j)) {
r[j] = i;
--j;
}
--i;
}
int res = 0;
for (int k = 1; k < m; k++) {
res = Math.max(res, r[k] - l[k - 1]);
}
System.out.println(res);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
6494a34a7959120a27a6482905903666
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) {
FastScanner fs = new FastScanner();
int t = 1;//fs.nextInt();
while (t-- > 0) {
int n = fs.nextInt(), m = fs.nextInt();
char[] old = fs.next().toCharArray();
char[] nw = fs.next().toCharArray();
if (n == m && Arrays.equals( old, nw )) {
System.out.println( 1 );
continue;
}
int left[] = new int[m], right[] = new int[m];
int j = 0, i = 0;
while (j < m) {
while (old[i] != nw[j]) {
i++;
}
left[j] = i;
i++;
j++;
}
i = n - 1;
j = m - 1;
while (j >= 0) {
while (old[i] != nw[j]) {
i--;
}
right[j] = i;
i--;
j--;
}
int ans = 0;
for (int k = 1; k < m; k++) {
ans = Math.max( ans, right[k] - left[k - 1] );
}
System.out.println( ans );
}
}
private static class FastScanner {
BufferedReader br = new BufferedReader( new InputStreamReader( System.in ) );
StringTokenizer st = new StringTokenizer( "" );
public String next() {
while (!st.hasMoreElements())
try {
st = new StringTokenizer( br.readLine() );
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt( next() );
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong( next() );
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
c35a169b740d675d2c940d04a39f5c45
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
PrintWriter out = new PrintWriter(System.out);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok = new StringTokenizer("");
String next() throws IOException {
if (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); }
return tok.nextToken();
}
int ni() throws IOException { return Integer.parseInt(next()); }
long nl() throws IOException { return Long.parseLong(next()); }
long mod=1000000007;
void solve() throws IOException {
for (int tc=1;tc>0;tc--) {
int n=ni(),m=ni();
char[]A=next().toCharArray();
char[]B=next().toCharArray();
int[]F=new int[m];
int p=0;
for (int i=0;i<m;i++) {
while (A[p]!=B[i]) p++;
F[i]=p;
p++;
}
int[]L=new int[m];
p=n-1;
for (int i=m-1;i>=0;i--) {
while (A[p]!=B[i]) p--;
L[i]=p;
p--;
}
int ans=0;
for (int i=1;i<m;i++) {
ans=Math.max(ans,L[i]-F[i-1]);
}
out.println(ans);
}
out.flush();
}
int gcd(int a,int b) { return(b==0?a:gcd(b,a%b)); }
long gcd(long a,long b) { return(b==0?a:gcd(b,a%b)); }
long mp(long a,long p) { long r=1; while(p>0) { if ((p&1)==1) r=(r*a)%mod; p>>=1; a=(a*a)%mod; } return r; }
public static void main(String[] args) throws IOException {
new Main().solve();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
1c3678e9cd31b749a038df9346cd854b
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;
public class _1492C {
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
char nn[] = in.next().toCharArray();
char mm[] = in.next().toCharArray();
ArrayList<Integer> list = new ArrayList<>();
int left = 0;
int right = m - 1;
int start[] = new int[m];
int end[] = new int[m];
for(int i = 0; i < n; i++)
if(left < m && nn[i] == mm[left]){
start[left] = i;
left++;
}
for(int i = n - 1; i >= 0; i--){
if(right >= 0 && nn[i] == mm[right]){
end[right] = i;
right--;
}
}
int max = 0;
for(int i = 0; i < m - 1; i++)
max = Math.max(max, end[i + 1] - start[i]);
System.out.println(max);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
3ea6abab350f09bf8b7d2d5ca0268ffc
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.StringTokenizer;
public class Main3 {
public Main3() throws FileNotFoundException {
// File file = Paths.get("input.txt").toFile();
// if (file.exists()) {
// System.setIn(new FileInputStream(file));
// }
long t = System.currentTimeMillis();
FastReader reader = new FastReader();
int n = reader.nextInt();
int m = reader.nextInt();
String str1 = reader.next();
String str2 = reader.next();
List<Integer> list1 = new ArrayList<>();
List<Integer> list2 = new ArrayList<>();
int pos = 0;
for (int i = 0; i < m; i++) {
while (str1.charAt(pos) != str2.charAt(i)) {
pos++;
}
list1.add(pos);
pos++;
}
pos=n-1;
for(int i=m-1;i>=0;i--) {
while (str1.charAt(pos) != str2.charAt(i)) {
pos--;
}
list2.add(pos);
pos--;
}
//System.out.println(list1);
Collections.reverse(list2);
//System.out.println(list2);
int max=0;
for(int i=0;i<m-1;i++) {
max=Math.max(max, list2.get(i+1)-list1.get(i));
}
System.out.println(max);
// System.out.println("TIME: "+(System.currentTimeMillis()-t));
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws FileNotFoundException {
new Main3();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
854b282ab9080f22de220472b9175cc1
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
public class MaximumWidth {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
sc.nextLine();
String s = sc.nextLine();
String t = sc.nextLine();
int i = 0;
int j = 0;
int left[] = new int[m];
while (i < n && j < m) {
if (s.charAt(i) == t.charAt(j)) {
left[j++] = i;
}
i++;
}
i = n - 1;
j = m - 1;
int right[] = new int[m];
while (i >= 0 && j >= 0) {
if (s.charAt(i) == t.charAt(j)) {
right[j--] = i;
}
i--;
}
int max = 0;
for (i = 0; i < m - 1; i++) {
// System.out.print(idx[i] + " ");
max = Math.max(max, right[i + 1] - left[i]);
}
System.out.println(max);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
72193dc9800d38906d8e9ff64a1b19ce
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class C {
public static void main(String[] args){
MyScanner sc = new MyScanner();
int t = 1;
while(t-->0){
int m = sc.nextInt();
int n = sc.nextInt();
String s = sc.next();
String tt = sc.next();
int[] left = new int[n-1];
int[] right = new int[n-1];
int ptr = 0;
for(int i=0;i<m&&ptr<n-1;i++){
if(s.charAt(i) == tt.charAt(ptr)){
left[ptr] = i;
ptr++;
}
}
ptr = n-1;
for(int i=m-1;i>=0&&ptr>=1;i--){
if(s.charAt(i) == tt.charAt(ptr)){
right[ptr-1] = i;
ptr--;
}
}
int mx = Integer.MIN_VALUE;
for(int i=0;i<n-1;i++){
mx = Math.max(mx,right[i] - left[i]);
}
System.out.print(mx);
}
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
001399c74e75a7ce5f628d0a7eeb57b3
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Main2 {
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static FastReader sc = new FastReader();
public static void main (String[] args) {
PrintWriter out = new PrintWriter(System.out);
int t = 1;
// t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
int m = sc.nextInt();
char[] s = sc.next().toCharArray();
char[] p = sc.next().toCharArray();
int left[] = new int[m];
int right[] = new int[n];
int i=0,j=0;
while(j<m) {
while(s[i]!=p[j]) {
i++;
}
left[j] = i;
i++;j++;
}
i=n-1; j=m-1;
while(j>=0) {
while(s[i]!=p[j]) {
i--;
}
right[j] = i;
i--;j--;
}
int res = 0;
for(i=1;i<m;i++)
res = Math.max(res, right[i]-left[i-1]);
out.write(res+"\n");
}
out.close();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
c322fd57648a705be9ce97178e5d6932
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.awt.Point;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.lang.reflect.Array;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Stack;
import java.util.StringTokenizer;
public class N704 {
static PrintWriter out;
static Scanner sc;
static ArrayList<Integer>q,w;
static ArrayList<Integer>adj[];
static HashSet<Integer>primesH;
static boolean prime[];
//static ArrayList<Integer>a;
static HashSet<Long>h,tmp;
static boolean[]v;
static int[]a,b,c,d;
static int[]l,dp;
static char[][]mp;
static int A,B,n,m;
public static void main(String[]args) throws IOException {
sc=new Scanner(System.in);
out=new PrintWriter(System.out);
//A();
// B();
C();
//D();
//minimum for subarrays of fixed length
//F();
out.close();
}
private static void A() throws IOException {
int t=ni();
while(t-->0) {
long p=nl(),a=nl(),b=nl(),c=nl();
long x1=(long)Math.ceil(p/(double)a);
long x2=(long)Math.ceil(p/(double)b);
long x3=(long)Math.ceil(p/(double)c);
// out.println(Math.min(Math.min(x1*1l*a-p, x2*1l*b-p), x3*1l*c-p));
out.println(Math.min(Math.min((a-p%a)%a, (b-p%b)%b), (c-p%c)%c));
}
}
static void B() throws IOException {
int t=ni();
while(t-->0) {
int n=ni();
a=nai(n);
Stack<Point>q=new Stack<Point>();
int cur=0;
for(int i=0;i<n;i++) {
int piv=a[i];
cur=i;
i++;
while(i<n&&a[i]<piv) {
i++;
}
i--;
q.add(new Point(cur,i));
}
while(!q.isEmpty()) {
Point p=q.pop();
for(int i=p.x;i<=p.y;i++) {
out.print(a[i]+" ");
}
}
out.println();
}
}
static void C() throws IOException{
n=ni();
m=ni();
char[] s=sc.next().toCharArray();
char[] t=sc.next().toCharArray();
int[]p=new int[m],su=new int[m];
int j=0;
for(int i=0;i<m;i++) {
while(j<n&&s[j]!=t[i]) {
j++;
}
p[i]=j++;
}
j=n-1;
for(int i=m-1;i>=0;i--) {
while(j>=0&&s[j]!=t[i])j--;
su[i]=j--;
}
int max=0;
for(int i=1;i<m;i++) {
max=Math.max(su[i]-p[i-1], max);
}
out.println(max);
}
static void D() throws IOException {
int n=ni();
}
static void E() throws IOException {
int t=ni();
while(t-->0) {
}
}
static void X() throws IOException {
int n=ni();
a=new int[n];
int lo=0,hi=n-1;
int locIdx=-1;
while(lo<=hi) {
int mid=(lo+hi)/2;
ol("? "+(mid+1));
out.flush();
int m=ni(),bm=-1,am=-1;
a[mid]=m;
if(mid>0) {
if(a[mid-1]==0) {
ol("? "+(mid));
out.flush();
bm=ni();
}else {
bm=a[mid-1];
}
a[mid-1]=bm;
if(bm<m) {
hi=mid-1;
continue;
}
}
if(mid<n-1) {
if(a[mid+1]==0) {
ol("? "+(mid+2));
out.flush();
am=ni();
}else {
am=a[mid+1];
}
a[mid+1]=am;
if(am<m) {
lo=mid+1;
continue;
}
}
locIdx=mid;break;
}
out.println("! "+(locIdx+1));
out.flush();
}
private static void disp(int[] revl) {
for(int i=0;i<revl.length;i++) {
out.print(revl[i]+" ");
}
out.println();
}
static class Pair implements Comparable<Pair>{
int a,b;
Pair(int a,int b){
this.a=a;
this.b=b;
}
@Override
public int compareTo(Pair p) {
return a-p.a;
}
public boolean equals(Pair p) {
return a==p.a&&b==p.b;
}
public String toString() {
return "("+a+" "+b+")";
}
}
static int ni() throws IOException {
return sc.nextInt();
}
static double nd() throws IOException {
return sc.nextDouble();
}
static long nl() throws IOException {
return sc.nextLong();
}
static String ns() throws IOException {
return sc.next();
}
static int[] nai(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = sc.nextInt();
return a;
}
static long[] nal(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = sc.nextLong();
return a;
}
static int[][] nmi(int n,int m) throws IOException{
int[][]a=new int[n][m];
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
a[i][j]=sc.nextInt();
}
}
return a;
}
static long[][] nml(int n,int m) throws IOException{
long[][]a=new long[n][m];
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
a[i][j]=sc.nextLong();
}
}
return a;
}
static void o(String x) {
out.print(x);
}
static void ol(String x) {
out.println(x);
}
static void ol(int x) {
out.println(x);
}
static void disp1(int []a) {
for(int i=0;i<a.length;i++) {
out.print(a[i]+" ");
}
out.println();
}
static void disp2(Pair []a) {
for(int i=0;i<a.length;i++) {
out.print(a[i]+" ");
}
out.println();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public boolean hasNext() {return st.hasMoreTokens();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public double nextDouble() throws IOException {return Double.parseDouble(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready(); }
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
c101892367d490038182db2c606cf29a
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Main {
// static RMQ rmq = new RMQ();
public static void main(String[] args) {
FastScanner sc = new FastScanner();
FastOutput out = new FastOutput(System.out);
int n = sc.nextInt(), m = sc.nextInt();
char[] chs1 = sc.next().toCharArray(), chs2 = sc.next().toCharArray();
int[] mat1 = new int[m], mat2 = new int[m];
for(int i = 0, j = 0; i < n && j < m; ++i) {
if(chs1[i] == chs2[j]) {
mat1[j++] = i;
}
}
for(int i = n - 1, j = m - 1; i >= 0 && j >= 0; --i) {
if(chs1[i] == chs2[j]) {
mat2[j--] = i;
}
}
int res = 0;
for(int i = 1; i < m; ++i) {
res = Math.max(res, mat2[i] - mat1[i-1]);
}
out.append(res).println().flush();
}
}
class RMQ {
private int n;
private int INF = 100_000 << 2;
private int[] dat = new int[INF];
public void init(int[] nums, int n_) {
n = 1;
while(n < n_) n <<= 1;
Arrays.fill(dat, 0, (n<<1)-1, 0);
for(int i = 0; i < n_; i++){
update(i, nums[i]);
}
}
public void update(int i, int val) {
i += n-1;
dat[i] = val;
while(i > 0){
i = (i-1)/2;
dat[i] = Math.max(dat[i], val);
}
}
public int maxRange(int i, int j) {
return maxRange(i, j+1, 0, 0, n);
}
private int maxRange(int i, int j, int k, int l, int r){ //[l, r)
if(r <= i || j <= l) return 0;
if(i <= l && r <= j) return dat[k];
return Math.max(maxRange(i, j, k*2+1, l, l+(r-l)/2), maxRange(i, j, k*2+2, l+(r-l)/2, r));
}
}
class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArrayInt(int fst, int lst) {
int[] a = new int[lst];
for(int i = fst; i < lst; ++i) a[i] = nextInt();
return a;
}
long[] readArrayLong(int fst, int lst) {
long[] a = new long[lst];
for(int i = fst; i < lst; ++i) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
class FastOutput implements AutoCloseable, Closeable, Appendable {
private static final int THRESHOLD = 1 << 13;
private final Writer os;
private StringBuilder cache = new StringBuilder(THRESHOLD * 2);
public FastOutput append(CharSequence csq) {
cache.append(csq);
return this;
}
public FastOutput append(CharSequence csq, int start, int end) {
cache.append(csq, start, end);
return this;
}
private void afterWrite() {
if (cache.length() < THRESHOLD) {
return;
}
flush();
}
public FastOutput(Writer os) {
this.os = os;
}
public FastOutput(OutputStream os) {
this(new OutputStreamWriter(os));
}
public FastOutput append(char c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(int c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(String c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput println(String c) {
return append(c).println();
}
public FastOutput println() {
return append(System.lineSeparator());
}
public FastOutput flush() {
try {
os.append(cache);
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
return this;
}
public void close() {
flush();
try {
os.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public String toString() {
return cache.toString();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
0846d9703f1c559b4bb09d088866dc4b
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
//import java.math.*;
public class Task{
// ..............code begins here..............
static long mod=(long)1e9+7,inf=(long)1e15;
static void solve() throws IOException {
int[] x=int_arr();
int n=x[0],m=x[1];
char[] s=read().toCharArray(),t=read().toCharArray();
int[] dp1=new int[m+1],dp2=new int[m+1];
int j=0;
for(int i=0;i<m;i++){
while(j<n&&s[j]!=t[i]){j++;}
dp1[i+1]=j;j++;
}
j=n-1;
for(int i=m-1;i>=0;i--){
while(j>=0&&s[j]!=t[i]){j--;}
dp2[m-i]=j;j--;
}
int res=0;
for(int i=1;i<m;i++){
res=Math.max(res,dp2[m-i]-dp1[i]);
}
out.write(res+"");
}
public static void main(String[] args) throws IOException{
assign();
int t=1;//int_v(read());
while(t--!=0) solve();
out.flush();
}
// taking inputs
static BufferedReader s1;
static BufferedWriter out;
static String read() throws IOException{String line="";while(line.length()==0){line=s1.readLine();continue;}return line;}
static int int_v (String s1){return Integer.parseInt(s1);}
static long long_v(String s1){return Long.parseLong(s1);}
static void sort(int[] a){List<Integer> l=new ArrayList<>();for(int x:a){l.add(x);}Collections.sort(l);for(int i=0;i<a.length;i++){a[i]=l.get(i);}}
static int[] int_arr() throws IOException{String[] a=read().split(" ");int[] b=new int[a.length];for(int i=0;i<a.length;i++){b[i]=int_v(a[i]);}return b;}
static long[] long_arr() throws IOException{String[] a=read().split(" ");long[] b=new long[a.length];for(int i=0;i<a.length;i++){b[i]=long_v(a[i]);}return b;}
static void assign(){s1=new BufferedReader(new InputStreamReader(System.in));out=new BufferedWriter(new OutputStreamWriter(System.out));}
//static String setpreciosion(double d,int k){BigDecimal d1 = new BigDecimal(Double.toString(d));return d1.setScale(k,RoundingMode.HALF_UP).toString();}//UP DOWN HALF_UP
static int add(int a,int b){int z=a+b;if(z>=mod)z-=mod;return z;}
static long gcd(long a,long b){if(b==0){return a;}return gcd(b,a%b);}
static long Modpow(long a,long p,long m){long res=1;while(p>0){if((p&1)!=0){res=(res*a)%m;}p >>=1;a=(a*a)%m;}return res%m;}
static long Modmul(long a,long b,long m){return ((a%m)*(b%m))%m;}
static long ModInv(long a,long m){return Modpow(a,m-2,m);}
//static long nck(int n,int r,long m){if(r>n){return 0l;}return Modmul(f[n],ModInv(Modmul(f[n-r],f[r],m),m),m);}
//static long[] f;
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
f63327f080c9683422f2572ff1b63fc0
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import static java.lang.Math.max;
/**
* Accomplished using the EduTools plugin by JetBrains https://plugins.jetbrains.com/plugin/10081-edutools
*/
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
String s = sc.next();
String t = sc.next();
List<Integer> start = new ArrayList<>();
List<Integer> end = new ArrayList<>();
for (int i = 0, j=0; i < n && j<m; i++) {
if (s.charAt(i)==t.charAt(j)) {
start.add(i);
j++;
}
}
for (int i=n-1, j=m-1; i>=0 && j>=0; i--) {
if (s.charAt(i)==t.charAt(j)) {
end.add(i);
j--;
}
}
Collections.reverse(end);
int mx = 1;
for (int i = 0; i < m-1; i++) {
int x = end.get(i+1);
int y = start.get(i);
mx = max(mx, x - y);
}
System.out.println(mx);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
38756c58d58fd9bb7a50e714b8acaaba
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.*;
import java.awt.Point;
public class Main{
public static void main(String[] args) throws IOException
{
Scanner input=new Scanner(System.in);
while(input.hasNext()){
int n=input.nextInt();
int m=input.nextInt();
String s=input.next();
String t=input.next();
int i=0;
int j=0;
int[] prefix=new int[m];
int[] suffix=new int[m];
Arrays.fill(prefix, Integer.MAX_VALUE);
Arrays.fill(suffix, Integer.MAX_VALUE);
while(j<m){
if(s.charAt(i)==t.charAt(j)){
prefix[j]=i;
i++;
j++;
continue;
}
i++;
}
i=n-1;
j=m-1;
while(j>=0){
if(s.charAt(i)==t.charAt(j)){
suffix[j]=i;
i--;
j--;
continue;
}
i--;
}
int ans=Integer.MIN_VALUE;
for(i=0;i<m-1;i++){
ans=Math.max(ans, suffix[i+1]-prefix[i]);
}
System.out.println(ans);
}
}
//Credits to SecondThread(https://codeforces.com/profile/SecondThread) for this tempelate
static void ruffle_sort(long[] a) {
// shandom_ruffle
Random r=new Random();
int n=a.length;
for (int i=0; i<n; i++) {
int oi=r.nextInt(i);
long temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
// sort
Arrays.sort(a);
}
//Credits to SecondThread(https://codeforces.com/profile/SecondThread) for this tempelate.
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
6c4216f49f472164f13703240e2839bb
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class EdA {
static long[] mods = {1000000007, 998244353, 1000000009};
static long mod = mods[0];
public static MyScanner sc;
public static PrintWriter out;
public static void main(String[] omkar) throws Exception{
// TODO Auto-generated method stub
sc = new MyScanner();
out = new PrintWriter(System.out);
// String input1 = bf.readLine().trim();
// String input2 = bf.readLine().trim();
// COMPARING INTEGER OBJECTS U DO DOT EQUALS NOT ==
int n = sc.nextInt();
int m = sc.nextInt();
String s = sc.next();
String t = sc.next();
int[] prefix = new int[m];
int[] suffix = new int[m];
int index = 0;
int mi = 0;
while(mi < m){
while(s.charAt(index) != t.charAt(mi)){
index++;
}
prefix[mi] = index;
index++;
mi++;
}
int indexs = n-1;
int mis = m-1;
while(mis >= 0){
while(s.charAt(indexs) != t.charAt(mis)){
indexs--;
}
suffix[mis] = indexs;
indexs--;
mis--;
}
int ans = 0;
for(int j = 0;j<m-1;j++){
ans = Math.max(ans, suffix[j+1]-prefix[j]);
}
out.println(ans);
// for(int j = 0;j<array.length;j++){
// out.print(array[j] + " ");
// }
// out.println();
out.close();
}
public static void sort(int[] array){
ArrayList<Integer> copy = new ArrayList<>();
for (int i : array)
copy.add(i);
Collections.sort(copy);
for(int i = 0;i<array.length;i++)
array[i] = copy.get(i);
}
static String[] readArrayString(int n){
String[] array = new String[n];
for(int j =0 ;j<n;j++)
array[j] = sc.next();
return array;
}
static int[] readArrayInt(int n){
int[] array = new int[n];
for(int j = 0;j<n;j++)
array[j] = sc.nextInt();
return array;
}
static int[] readArrayInt1(int n){
int[] array = new int[n+1];
for(int j = 1;j<=n;j++){
array[j] = sc.nextInt();
}
return array;
}
static long[] readArrayLong(int n){
long[] array = new long[n];
for(int j =0 ;j<n;j++)
array[j] = sc.nextLong();
return array;
}
static double[] readArrayDouble(int n){
double[] array = new double[n];
for(int j =0 ;j<n;j++)
array[j] = sc.nextDouble();
return array;
}
static int minIndex(int[] array){
int minValue = Integer.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static int minIndex(long[] array){
long minValue = Long.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static int minIndex(double[] array){
double minValue = Double.MAX_VALUE;
int minIndex = -1;
for(int j = 0;j<array.length;j++){
if (array[j] < minValue){
minValue = array[j];
minIndex = j;
}
}
return minIndex;
}
static long power(long x, long y){
if (y == 0)
return 1;
if (y%2 == 1)
return (x*power(x, y-1))%mod;
return power((x*x)%mod, y/2)%mod;
}
static void verdict(boolean a){
out.println(a ? "YES" : "NO");
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try{
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
//StringJoiner sj = new StringJoiner(" ");
//sj.add(strings)
//sj.toString() gives string of those stuff w spaces or whatever that sequence is
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
3270868b6d1b88b565857e9e07c8ca76
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
/*******************************************************************************
* author : dante1
* created : 23/02/2021 14:35
*******************************************************************************/
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
// import java.math.BigInteger;
import java.util.*;
public class c {
public static void main(String[] args) {
int T = 1;
TEST:
while (T-- > 0) {
int n = in.nextInt(), m = in.nextInt();
char[] s = in.next().toCharArray();
char[] t = in.next().toCharArray();
int[] rms = new int[m];
for (int i = m-1, j = n-1; i >= 0; i--, j--) {
while (s[j] != t[i]) {
j--;
}
rms[i] = j;
}
int res = 0;
for (int i = 0, j = 0; i < m-1; i++) {
while (s[j] != t[i]) {
j++;
}
res = Math.max(rms[i+1]-j, res);
j++;
}
out.println(res);
}
out.flush();
}
// Handle I/O
static int MOD = (int) (1e9 + 7);
static FastScanner in = new FastScanner();
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
st = null;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArray(int size) {
int[] arr = new int[size];
for (int i = 0; i < size; i++) {
arr[i] = nextInt();
}
return arr;
}
long nextLong() {
return Long.parseLong(next());
}
long[] readLongArray(int size) {
long[] arr = new long[size];
for (int i = 0; i < size; i++) {
arr[i] = nextLong();
}
return arr;
}
double nextDouble() {
return Double.parseDouble(next());
}
double[] readDoubleArray(int size) {
double[] arr = new double[size];
for (int i = 0; i < size; i++) {
arr[i] = nextDouble();
}
return arr;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
876f650a283c590d6aa0c2208e416792
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
/*
⠀⠀⠀⠀⣠⣶⡾⠏⠉⠙⠳⢦⡀⠀⠀⠀⢠⠞⠉⠙⠲⡀⠀
⠀⠀⠀⣴⠿⠏⠀⠀⠀⠀⠀⠀⢳⡀⠀⡏⠀⠀Y⠀⠀⢷
⠀⠀⢠⣟⣋⡀⢀⣀⣀⡀⠀⣀⡀⣧⠀⢸⠀⠀A⠀⠀ ⡇
⠀⠀⢸⣯⡭⠁⠸⣛⣟⠆⡴⣻⡲⣿⠀⣸⠀⠀S⠀ ⡇
⠀⠀⣟⣿⡭⠀⠀⠀⠀⠀⢱⠀⠀⣿⠀⢹⠀⠀H⠀⠀ ⡇
⠀⠀⠙⢿⣯⠄⠀⠀⠀⢀⡀⠀⠀⡿⠀⠀⡇⠀⠀⠀⠀⡼
⠀⠀⠀⠀⠹⣶⠆⠀⠀⠀⠀⠀⡴⠃⠀⠀⠘⠤⣄⣠⠞⠀
⠀⠀⠀⠀⠀⢸⣷⡦⢤⡤⢤⣞⣁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⢀⣤⣴⣿⣏⠁⠀⠀⠸⣏⢯⣷⣖⣦⡀⠀⠀⠀⠀⠀⠀
⢀⣾⣽⣿⣿⣿⣿⠛⢲⣶⣾⢉⡷⣿⣿⠵⣿⠀⠀⠀⠀⠀⠀
⣼⣿⠍⠉⣿⡭⠉⠙⢺⣇⣼⡏⠀⠀⠀⣄⢸⠀⠀⠀⠀⠀⠀
⣿⣿⣧⣀⣿………⣀⣰⣏⣘⣆⣀⠀⠀
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter; // System.out is a PrintWriter
// import java.util.Arrays;
// import java.util.ArrayDeque;
// import java.util.ArrayList;
// import java.util.Collections; // for ArrayList sorting mainly
// import java.util.HashMap;
// import java.util.HashSet;
// import java.util.Random;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
FastScanner scn = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
for (int tc = 1; tc > 0; tc--) {
int N = scn.nextInt(), M = scn.nextInt(), ans = 1;
char[] str = scn.next().toCharArray();
char[] tar = scn.next().toCharArray();
int[][] occur = new int[M][2];
// int[][] occurLmt = new int[M][2];
for (int i = 0, j = 0; i < N && j < M; i++, j++) {
while (i < N && str[i] != tar[j]) {
i++;
}
occur[j][0] = i;
}
for (int i = N - 1, j = M - 1; i >= 0 && j >= 0; i--, j--) {
while (i >= 0 && str[i] != tar[j]) {
i--;
}
occur[j][1] = i;
}
// occurLmt[0][0] = occur[0][0];
// occurLmt[M - 1][1] = occur[M - 1][1];
// for (int i = 1; i < M; i++) {
// int st = occurLmt[i - 1][0], ed = occur[i][1];
// for (int j = st; j <= ed; j++) {
// if (str[j] == tar[i]) {
// occurLmt[i][0] = j;
// break;
// }
// }
// }
// for (int i = M - 2; i >= 0; i--) {
// int st = occurLmt[i][0], ed = occurLmt[i + 1][1];
// for (int j = ed; j >= st; j--) {
// if (str[j] == tar[i]) {
// occurLmt[i][1] = j;
// break;
// }
// }
// }
for (int i = 1; i < M; i++) {
ans = Math.max(occur[i][1] - occur[i - 1][0], ans);
}
out.println(ans);
}
out.close();
}
private static int gcd(int num1, int num2) {
int temp = 0;
while (num2 != 0) {
temp = num1;
num1 = num2;
num2 = temp % num2;
}
return num1;
}
private static int lcm(int num1, int num2) {
return (int)((1L * num1 * num2) / gcd(num1, num2));
}
private static void ruffleSort(int[] arr) {
// int N = arr.length;
// Random rand = new Random();
// for (int i = 0; i < N; i++) {
// int oi = rand.nextInt(N), temp = arr[i];
// arr[i] = arr[oi];
// arr[oi] = temp;
// }
// Arrays.sort(arr);
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() {
this.br = new BufferedReader(new InputStreamReader(System.in));
this.st = new StringTokenizer("");
}
String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException err) {
err.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
if (st.hasMoreTokens()) {
return st.nextToken("").trim();
}
try {
return br.readLine().trim();
} catch (IOException err) {
err.printStackTrace();
}
return "";
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
0fd82dccd02fc617da5d826aa5376ffd
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import javax.print.DocFlavor;
import javax.swing.text.html.parser.Entity;
import java.awt.*;
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
import java.util.List;
import java.util.stream.Collectors;
public class Main {
static FastScanner sc;
static PrintWriter pw;
static final int INF = 200000000;
static final int MOD = 1000000007;
static final int N = 1005;
static long mul(long a, long b, long mod) {
return (a * b) % mod;
}
public static long pow(long a, long n, long mod) {
long res = 1;
while(n != 0) {
if((n & 1) == 1) {
res = mul(res, a, mod);
}
a = mul(a, a, mod);
n >>= 1;
}
return res;
}
/*public static int inv(int a) {
return pow(a, MOD-2, mod);
}*/
public static List<Integer> getPrimes() {
List<Integer> ans = new ArrayList<>();
boolean[] prime = new boolean[N];
Arrays.fill(prime, true);
prime[0] = prime[1] = false;
for(int i = 2; i < N; ++i) {
if(prime[i]) {
ans.add(i);
if (i * 1l * i <= N)
for (int j = i * i; j < N; j += i)
prime[j] = false;
}
}
return ans;
}
public static long gcd(long a, long b) {
if(b == 0) return a;
else return gcd(b, a % b);
}
public static class A {
long x;
long y;
A(long a, long b) {
this.x = a;
this.y = b;
}
}
public static void solve() throws IOException {
int n = sc.nextInt(), m = sc.nextInt();
String s = sc.next(), t = sc.next();
HashMap<Character, TreeSet<Integer>> map = new HashMap<>();
for(int i = 0; i < n ;++i) {
if(map.containsKey(s.charAt(i))) map.get(s.charAt(i)).add(i);
else {
TreeSet<Integer> tmp = new TreeSet<>();
tmp.add(i);
map.put(s.charAt(i), tmp);
}
}
int j = 0;
List<Integer> pos = new ArrayList<>();
for(int i = 0; i < m; ++i) {
while(s.charAt(j) != t.charAt(i)) j++;
pos.add(j);
j++;
}
int ans = 0;
for(int i = 1; i < pos.size(); ++i) {
ans = Math.max(ans, pos.get(i) - pos.get(i - 1));
}
// pw.println(pos);
int r = INF;
for(int i = m - 1; i > 0; i--) {
TreeSet<Integer> set = map.get(t.charAt(i));
pos.set(i, set.lower(r) );
ans = Math.max(ans, pos.get(i) - pos.get(i - 1));
r = pos.get(i);
}
// pw.println(pos);
pw.println(ans);
}
public static void main(String[] args) throws IOException {
sc = new FastScanner(System.in);
pw = new PrintWriter(System.out);
int xx = 1;
while(xx > 0) {
solve();
xx--;
}
pw.close();
}
}
class FastScanner {
static StringTokenizer st = new StringTokenizer("");
static BufferedReader br;
public FastScanner(InputStream inputStream) {
br = new BufferedReader(new InputStreamReader(inputStream));
}
public String next() throws IOException {
while (!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
0e2ed5ca334453d84292a4aed2f1a7d2
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
static int i, j, k, n, m, t, y, x, sum=0;
static long mod = 1000000007;
static FastScanner fs = new FastScanner();
static PrintWriter out = new PrintWriter(System.out);
static String str;
static long ans =0;
public static void main(String[] args) {
t =1;
while (t-- >0){
n = fs.nextInt();
m = fs.nextInt();
String str1 = fs.next();
String str2 = fs.next();
int[] ans = new int[m];
int[] ansr = new int[m];
j=0;
for(i=0;i<n;i++){
if(j>=m)
break;
if(str1.charAt(i)==str2.charAt(j)){
ans[j]=i;
j++;
}
}
j=m-1;
for(i=n-1;i>=0;i--){
if(j<0)
break;
if(str1.charAt(i)==str2.charAt(j)){
ansr[j]=i;
j--;
}
}
long fans = 0;
for(i=1;i<m;i++){
fans = Math.max(fans, ansr[i]- ans[i-1]);
}
out.println(fans);
}
out.close();
}
private static void initialize(long[] arr, long val){
int n = arr.length;
for(int i = 0;i<n;i++){
arr[i]=val;
}
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
static class Pair implements Comparable<Pair> {
int first, second;
public Pair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(Pair o) {
return Long.compare(first, o.first);
}
}
static void ruffleSort(int[] a) {
//ruffle
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n), temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
//then sort
Arrays.sort(a);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
a207a32789640c78af7b725a24d4525a
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;import java.util.*;import java.math.*;
public class Main
{
static long mod=1000000007l;
static int max=Integer.MAX_VALUE,min=Integer.MIN_VALUE;
static long maxl=Long.MAX_VALUE,minl=Long.MIN_VALUE;
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st;
static StringBuilder sb;
static public void main(String[] args)throws Exception
{
st=new StringTokenizer(br.readLine());
int t=1;
sb=new StringBuilder(50);
o:
while(t-->0)
{
int la=i();
int lb=i();
String a=s();
String b=s();
int aa[]=new int[lb];
int bb[]=new int[lb];
for(int x=0;x<la;x++)
{
if(a.charAt(x)==b.charAt(0))
{
aa[0]=x;
break;
}
}
for(int x=la-1;x>=0;x--)
{
if(a.charAt(x)==b.charAt(lb-1))
{
bb[lb-1]=x;
break;
}
}
if(lb==2)
{
sl(bb[lb-1]-aa[0]);
continue o;
}
int i=1;
for(int x=aa[0]+1;x<la&&i<lb;x++)
{
if(a.charAt(x)==b.charAt(i))
{
aa[i]=x;
i++;
}
}
i=lb-2;
for(int x=bb[lb-1]-1;x>=0&&i>=0;x--)
{
if(a.charAt(x)==b.charAt(i))
{
bb[i]=x;
i--;
}
}
int v=lb-1;
int m=0;
for(int x=1;x<v;x++)
{
m=max(m,aa[x]-aa[x-1],aa[x+1]-aa[x],bb[x+1]-aa[x],aa[x]-bb[x-1],
bb[x]-aa[x-1],aa[x+1]-bb[x],bb[x+1]-bb[x],bb[x]-bb[x-1],0);
}
sl(m);
//p(aa);
//p(bb);
}
p(sb);
}
static int[] so(int ar[])
{
Integer r[]=new Integer[ar.length];
for(int x=0;x<ar.length;x++)r[x]=ar[x];
Arrays.sort(r);
for(int x=0;x<ar.length;x++)ar[x]=r[x];
return ar;
}
static long[] so(long ar[])
{
Long r[]=new Long[ar.length];
for(int x=0;x<ar.length;x++)r[x]=ar[x];
Arrays.sort(r);
for(int x=0;x<ar.length;x++)ar[x]=r[x];
return ar;
}
static char[] so(char ar[])
{
Character r[]=new Character[ar.length];
for(int x=0;x<ar.length;x++)r[x]=ar[x];
Arrays.sort(r);
for(int x=0;x<ar.length;x++)ar[x]=r[x];
return ar;
}
static void s(String s){sb.append(s);}
static void s(int s){sb.append(s);}
static void s(long s){sb.append(s);}
static void s(char s){sb.append(s);}
static void s(double s){sb.append(s);}
static void ss(){sb.append(' ');}
static void sl(String s){sb.append(s);sb.append("\n");}
static void sl(int s){sb.append(s);sb.append("\n");}
static void sl(long s){sb.append(s);sb.append("\n");}
static void sl(char s){sb.append(s);sb.append("\n");}
static void sl(double s){sb.append(s);sb.append("\n");}
static void sl(){sb.append("\n");}
static int max(int ...a){int m=a[0];for(int e:a)m=(m>=e)?m:e;return m;}
static int min(int ...a){int m=a[0];for(int e:a)m=(m<=e)?m:e;return m;}
static int abs(int a){return Math.abs(a);}
static long max(long ...a){long m=a[0];for(long e:a)m=(m>=e)?m:e;return m;}
static long min(long ...a){long m=a[0];for(long e:a)m=(m<=e)?m:e;return m;}
static long abs(long a){return Math.abs(a);}
static int sq(int a){return (int)Math.sqrt(a);}
static long sq(long a){return (long)Math.sqrt(a);}
static long gcd(long a,long b){return b==0l?a:gcd(b,a%b);}
static boolean pa(String s,int i,int j)
{
while(i<j)if(s.charAt(i++)!=s.charAt(j--))return false;
return true;
}
static int ncr(int n,int c,long m)
{
long a=1l;
for(int x=n-c+1;x<=n;x++)a=((a*x)%m);
long b=1l;
for(int x=2;x<=c;x++)b=((b*x)%m);
return (int)((a*(mul((int)b,m-2,m)%m))%m);
}
static boolean[] si(int n)
{
boolean bo[]=new boolean[n+1];
bo[0]=true;bo[1]=true;
for(int x=4;x<=n;x+=2)bo[x]=true;
for(int x=3;x*x<=n;x+=2)
{
if(!bo[x])
{
int vv=(x<<1);
for(int y=x*x;y<=n;y+=vv)bo[y]=true;
}
}
return bo;
}
static int[] fac(int n)
{
int bo[]=new int[n+1];
for(int x=1;x<=n;x++)for(int y=x;y<=n;y+=x)bo[y]++;
return bo;
}
static long mul(long a,long b,long m)
{
long r=1l;
a%=m;
while(b>0)
{
if((b&1)==1)r=(r*a)%m;
b>>=1;
a=(a*a)%m;
}
return r;
}
static int i()throws IOException
{
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
return Integer.parseInt(st.nextToken());
}
static long l()throws IOException
{
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
return Long.parseLong(st.nextToken());
}
static String s()throws IOException
{
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
return st.nextToken();
}
static double d()throws IOException
{
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
return Double.parseDouble(st.nextToken());
}
static void p(Object p){System.out.print(p);}
static void p(String p){System.out.print(p);}
static void p(int p){System.out.print(p);}
static void p(double p){System.out.print(p);}
static void p(long p){System.out.print(p);}
static void p(char p){System.out.print(p);}
static void p(boolean p){System.out.print(p);}
static void pl(Object p){System.out.println(p);}
static void pl(String p){System.out.println(p);}
static void pl(int p){System.out.println(p);}
static void pl(char p){System.out.println(p);}
static void pl(double p){System.out.println(p);}
static void pl(long p){System.out.println(p);}
static void pl(boolean p){System.out.println(p);}
static void pl(){System.out.println();}
static void s(int a[])
{
for(int e:a)
{
sb.append(e);
sb.append(' ');
}
sb.append("\n");
}
static void s(long a[])
{
for(long e:a)
{
sb.append(e);
sb.append(' ');
}
sb.append("\n");
}
static void s(int ar[][])
{
for(int a[]:ar)
{
for(int e:a)
{
sb.append(e);
sb.append(' ');
}
sb.append("\n");
}
}
static void s(char a[])
{
for(char e:a)
{
sb.append(e);
sb.append(' ');
}
sb.append("\n");
}
static void s(char ar[][])
{
for(char a[]:ar)
{
for(char e:a)
{
sb.append(e);
sb.append(' ');
}
sb.append("\n");
}
}
static int[] ari(int n)throws IOException
{
int ar[]=new int[n];
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
for(int x=0;x<n;x++)ar[x]=Integer.parseInt(st.nextToken());
return ar;
}
static int[][] ari(int n,int m)throws IOException
{
int ar[][]=new int[n][m];
for(int x=0;x<n;x++)
{
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
for(int y=0;y<m;y++)ar[x][y]=Integer.parseInt(st.nextToken());
}
return ar;
}
static long[] arl(int n)throws IOException
{
long ar[]=new long[n];
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
for(int x=0;x<n;x++) ar[x]=Long.parseLong(st.nextToken());
return ar;
}
static long[][] arl(int n,int m)throws IOException
{
long ar[][]=new long[n][m];
for(int x=0;x<n;x++)
{
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
for(int y=0;y<m;y++)ar[x][y]=Long.parseLong(st.nextToken());
}
return ar;
}
static String[] ars(int n)throws IOException
{
String ar[]=new String[n];
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
for(int x=0;x<n;x++) ar[x]=st.nextToken();
return ar;
}
static double[] ard(int n)throws IOException
{
double ar[]=new double[n];
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
for(int x=0;x<n;x++)ar[x]=Double.parseDouble(st.nextToken());
return ar;
}
static double[][] ard(int n,int m)throws IOException
{
double ar[][]=new double[n][m];
for(int x=0;x<n;x++)
{
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
for(int y=0;y<m;y++)ar[x][y]=Double.parseDouble(st.nextToken());
}
return ar;
}
static char[] arc(int n)throws IOException
{
char ar[]=new char[n];
if(!st.hasMoreTokens())st=new StringTokenizer(br.readLine());
for(int x=0;x<n;x++)ar[x]=st.nextToken().charAt(0);
return ar;
}
static char[][] arc(int n,int m)throws IOException
{
char ar[][]=new char[n][m];
for(int x=0;x<n;x++)
{
String s=br.readLine();
for(int y=0;y<m;y++)ar[x][y]=s.charAt(y);
}
return ar;
}
static void p(int ar[])
{
StringBuilder sb=new StringBuilder(2*ar.length);
for(int a:ar)
{
sb.append(a);
sb.append(' ');
}
System.out.println(sb);
}
static void p(int ar[][])
{
StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length);
for(int a[]:ar)
{
for(int aa:a)
{
sb.append(aa);
sb.append(' ');
}
sb.append("\n");
}
p(sb);
}
static void p(long ar[])
{
StringBuilder sb=new StringBuilder(2*ar.length);
for(long a:ar)
{
sb.append(a);
sb.append(' ');
}
System.out.println(sb);
}
static void p(long ar[][])
{
StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length);
for(long a[]:ar)
{
for(long aa:a)
{
sb.append(aa);
sb.append(' ');
}
sb.append("\n");
}
p(sb);
}
static void p(String ar[])
{
int c=0;
for(String s:ar)c+=s.length()+1;
StringBuilder sb=new StringBuilder(c);
for(String a:ar)
{
sb.append(a);
sb.append(' ');
}
System.out.println(sb);
}
static void p(double ar[])
{
StringBuilder sb=new StringBuilder(2*ar.length);
for(double a:ar)
{
sb.append(a);
sb.append(' ');
}
System.out.println(sb);
}
static void p(double ar[][])
{
StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length);
for(double a[]:ar)
{
for(double aa:a)
{
sb.append(aa);
sb.append(' ');
}
sb.append("\n");
}
p(sb);
}
static void p(char ar[])
{
StringBuilder sb=new StringBuilder(2*ar.length);
for(char aa:ar)
{
sb.append(aa);
sb.append(' ');
}
System.out.println(sb);
}
static void p(char ar[][])
{
StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length);
for(char a[]:ar)
{
for(char aa:a)
{
sb.append(aa);
sb.append(' ');
}
sb.append("\n");
}
p(sb);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
6b6322401d3df1a4493669a6e465ed07
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.util.TreeSet;
import java.util.ArrayList;
public class C {
public void solve(IO io) throws IOException {
int n = io.nextInt();
int m = io.nextInt();
String s = io.nextToken();
String t = io.nextToken();
int[] left = new int[m];
int[] right = new int[m];
int k = 0;
for (int i = 0; i < n; ++i) {
if (k == m) {
break;
}
if (s.charAt(i) == t.charAt(k)) {
left[k] = i;
k++;
}
}
k = m - 1;
for (int i = n - 1; i >= 0; --i) {
if (k == -1) {
break;
}
if (s.charAt(i) == t.charAt(k)) {
right[k] = i;
k--;
}
}
int ans = 0;
for (int i = 1; i < m; ++i) {
ans = Math.max(ans, Math.max(Math.abs(left[i] - right[i - 1]), Math.abs(left[i - 1] - right[i])));
}
io.println(ans + "");
}
public void run() throws IOException {
IO io = new IO();
solve(io);
io.close();
}
public static void main(String[] args) throws IOException {
new C().run();
}
}
class IO {
public IO() {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
BufferedReader br;
StringTokenizer in;
PrintWriter out;
public String nextToken() throws IOException {
while (in == null || !in.hasMoreTokens()) {
in = new StringTokenizer(br.readLine());
}
return in.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public void print(String a) {
out.print(a);
}
public void println(String a) {
out.println(a);
}
public void close() {
out.close();
}
public void flush() {
out.flush();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
fdff8760a87ebfab5e0e7da75549ef6a
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Khater
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
CMaximumWidth solver = new CMaximumWidth();
solver.solve(1, in, out);
out.close();
}
static class CMaximumWidth {
public void solve(int testNumber, Scanner sc, PrintWriter pw) {
int t = 1;
// t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int m = sc.nextInt();
char[] a = sc.nextLine().toCharArray();
char[] b = sc.nextLine().toCharArray();
int max = 1;
int[] f = new int[m];
int[] l = new int[m];
int j = 0;
for (int i = 0; i < m; i++) {
while (b[i] != a[j]) j++;
f[i] = j;
j++;
}
j = n - 1;
for (int i = m - 1; i >= 0; i--) {
while (b[i] != a[j]) j--;
l[i] = j;
j--;
}
// pw.println(Arrays.toString(f));
// pw.println(Arrays.toString(l));
for (int i = 1; i < m; i++) {
max = Math.max(max, l[i] - f[i - 1]);
}
pw.println(max);
}
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
f1506fb738c01303a4bca0e287465d5c
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.*;
public class C {
static long m = (long) (1e9 + 7);
public static void main(String[] args) throws IOException {
Scanner scn = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
StringBuilder sb = new StringBuilder();
int T = 1, tcs = 0;
C: while (tcs++ < T) {
int n = scn.ni(), m = scn.ni();
String s = scn.next(), t = scn.next();
if (m == 1) {
sb.append(0 + "\n");
continue;
}
int j = 0;
int pre[] = new int[m], suf[] = new int[m];
for (int i = 0; i < n; i++)
if (j < m && s.charAt(i) == t.charAt(j)) {
pre[j] = i;
j++;
}
j = m - 1;
for (int i = n - 1; i >= 0; i--)
if (j >= 0 && s.charAt(i) == t.charAt(j)) {
suf[j] = i;
j--;
}
int ans = 0;
for (int i = 1; i < m; i++)
ans = Math.max(suf[i] - pre[i - 1], ans);
sb.append(ans);
sb.append("\n");
}
out.print(sb);
out.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int ni() throws IOException {
return Integer.parseInt(next());
}
public long nl() throws IOException {
return Long.parseLong(next());
}
public int[] nia(int n) throws IOException {
int a[] = new int[n];
String sa[] = br.readLine().split(" ");
for (int i = 0; i < n; i++)
a[i] = Integer.parseInt(sa[i]);
return a;
}
public long[] nla(int n) throws IOException {
long a[] = new long[n];
String sa[] = br.readLine().split(" ");
for (int i = 0; i < n; i++)
a[i] = Long.parseLong(sa[i]);
return a;
}
public int[] sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int v : a)
l.add(v);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
return a;
}
public long[] sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long v : a)
l.add(v);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
return a;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
0fd5d057a91f6eb0d7b90ba41d725019
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class codeforces {
public static void main(String[] args) throws Exception {
int n=sc.nextInt();
int m=sc.nextInt();
char[]a=sc.next().toCharArray();
char[]b=sc.next().toCharArray();
int ind=n-1;
HashMap<Integer, Integer>hm=new HashMap<Integer, Integer>();
for(int i=m-1;i>-1;i--) {
while(a[ind]!=b[i]) {
ind--;
}
hm.put(i, ind--);
}
long ans=0;
ind=0;
for(int i=0;i<m;i++) {
while(a[ind]!=b[i]) {
ind++;
}
if(i!=m-1) {
ans=Math.max(ans, hm.get(i+1)-ind);
}
ind++;
}
pw.println(ans);
pw.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Double(x).hashCode() * 31 + new Double(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
static long mod = 1000000007;
static Random rn = new Random();
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
27b23518ba28126f9869f40ae81c5c22
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
//stan hu tao
//join nct ridin by first year culture reps
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.util.*;
import java.io.*;
import java.math.*;
public class x1492C
{
public static void main(String hi[]) throws Exception
{
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
int M = Integer.parseInt(st.nextToken());
char[] arr = infile.readLine().toCharArray();
char[] brr = infile.readLine().toCharArray();
int dex = 0;
for(int i=0; i < N; i++)
if(arr[i] == brr[0])
{
dex = i;
break;
}
int[] left = new int[M];
left[0] = dex;
dex++;
for(int i=1; i < M; i++)
{
while(dex < N && arr[dex] != brr[i])
dex++;
left[i] = dex;
dex++;
}
for(int i=0; i < N; i++)
if(arr[i] == brr[M-1])
dex = i;
int[] right = new int[M];
right[M-1] = dex;
dex--;
for(int i=M-2; i >= 0; i--)
{
while(dex >= 0 && arr[dex] != brr[i])
dex--;
right[i] = dex;
dex--;
}
int res = 0;
for(int i=0; i < M-1; i++)
res = max(res, right[i+1]-left[i]);
System.out.println(res);
}
static boolean debug = false;
public static void print(int[] arr)
{
//for debugging only
for(int x: arr)
System.out.print(x+" ");
System.out.println();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
ce0b7d33abfd628be8fb94ba4f348689
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.Scanner;
public class ProblemE {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
in.nextLine();
String s = in.nextLine();
String t = in.nextLine();
int[] minP = new int[m];
int[] maxP = new int[m];
int index = 0;
for (int i = 0; i < n; i++) {
if (index == m) {
break;
}
if (t.charAt(index) == s.charAt(i)) {
minP[index++] = i;
}
}
index = m - 1;
for (int i = n - 1; i >= 0; i--) {
if (index < 0) {
break;
}
if (t.charAt(index) == s.charAt(i)) {
maxP[index--] = i;
}
}
int result = 0;
for (int i = 0; i < m - 1; i++) {
result = Math.max(result, maxP[i + 1] - minP[i]);
}
System.out.println(result);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
6d1ef91c60d4ab341fcf66a6e9a88e35
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
/*
Author:-crazy_coder-
*/
import java.io.*;
import java.util.*;
public class cp{
static long mod=998244353;
static int ans=0;
static int[] par=new int[100005];
static int[] rank=new int[100005];
static BufferedReader br=new BufferedReader (new InputStreamReader(System.in));
static PrintWriter pw=new PrintWriter(System.out);
public static void main(String[] args)throws Exception{
// int T=Integer.parseInt(br.readLine());
// int t=1;
// comp();
int T=1;
while(T-->0){
solve();
}
pw.flush();
}
public static void solve()throws Exception{
String[] str=br.readLine().split(" ");
int n=Integer.parseInt(str[0]);
int m=Integer.parseInt(str[1]);
String s=br.readLine();
String t=br.readLine();
int[] left=new int[m];
int[] right=new int[m];
HashMap<Character,ArrayList<Integer>> map=new HashMap<>();
for(int i=0;i<m;i++)
{
char key=t.charAt(i);
if(!map.containsKey(key))
{
map.put(key,new ArrayList<>());
}
}
for(int i=0;i<n;i++)
{
char key=s.charAt(i);
if(map.containsKey(key))
{
map.get(key).add(i);
}
}
//left array filling
left[0]=map.get(t.charAt(0)).get(0);
int i=1;
while(i<m)
{
char key=t.charAt(i);
ArrayList<Integer> list=map.get(key);
int low=0,high=list.size()-1,pans=0;
while(low<=high)
{
int mid=(low+high)/2;
int idx=list.get(mid);
if(idx>left[i-1])
{
pans=idx;
high=mid-1;
}else
{
low=mid+1;
}
}
left[i]=pans;
i++;
}
//right array filling
ArrayList<Integer> list1=map.get(t.charAt(m-1));
right[m-1]=list1.get(list1.size()-1);
i=m-2;
while(i>=0)
{
char key=t.charAt(i);
ArrayList<Integer> list=map.get(key);
int low=0,high=list.size()-1, pans=0;
while(low<=high)
{
int mid=(low+high)/2;
int idx=list.get(mid);
if(idx<right[i+1])
{
pans=idx;
low=mid+1;
}else
{
high=mid-1;
}
}
right[i]=pans;
i--;
}
int max=Integer.MIN_VALUE;
for(i=0;i<m-1;i++)
{
max=Math.max(max,right[i+1]-left[i]);
}
pw.println(max);
}
public static int powerOf2(long n )
{
int ans=0;
while(n%2==0)
{
n/=2;
ans++;
}
return ans;
}
public static long NCR(int n,int r){
if(r==0||r==n)return 1;
return (fac[n]*invfact[r]%mod)*invfact[n-r]%mod;
}
static long[] fac=new long[100];
static long[] invfact=new long[100];
public static void comp(){
fac[0]=1;
invfact[0]=1;
for(int i=1;i<100;i++){
fac[i]=(fac[i-1]*i)%mod;
invfact[i]=modInverse(fac[i]);
}
}
public static long modInverse(long n){
return power(n,mod-2);
}
public static long power(long x,long y){
long res=1;
x=x%mod;
while(y>0){
if((y&1)==1)res=(res*x)%mod;
y=y>>1;
x=(x*x)%mod;
}
return res;
}
//*************************************DSU************************************ */
public static void initialize(int n){
for(int i=1;i<=n;i++){
par[i]=i;
rank[i]=1;
}
}
public static void union(int x,int y){
int lx=find(x);
int ly=find(y);
if(lx!=ly){
if(rank[lx]>rank[ly]){
par[ly]=lx;
}else if(rank[lx]<rank[ly]){
par[lx]=ly;
}else{
par[lx]=ly;
rank[ly]++;
}
}
}
public static int find(int x){
if(par[x]==x){
return x;
}
int temp=find(par[x]);
par[x]=temp;
return temp;
}
//************************************DSU END********************************** */
public static boolean isPresent(ArrayList<Long> zero,long val){
for(long x:zero){
if(x==val)return true;
}
return false;
}
public static class Pair implements Comparable<Pair>{
int val;
int idx;
Pair(int val,int idx){
this.val=val;
this.idx=idx;
}
public int compareTo(Pair o){
return this.val-o.val;
}
}
public static int countDigit(int x){
return (int)Math.log10(x)+1;
}
//****************************function to find all factor*************************************************
public static ArrayList<Long> findAllFactors(long num){
ArrayList<Long> factors = new ArrayList<Long>();
for(long i = 1; i <= num/i; ++i) {
if(num % i == 0) {
//if i is a factor, num/i is also a factor
factors.add(i);
factors.add(num/i);
}
}
//sort the factors
Collections.sort(factors);
return factors;
}
//*************************** function to find GCD of two number*******************************************
public static long gcd(long a,long b){
if(b==0)return a;
return gcd(b,a%b);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 8
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
140444c90001c5a07be8cac379acaced
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class cf {
static Reader sc = new Reader();
static PrintWriter out = new PrintWriter(System.out);
static long mod = (long) 1e9 + 7;
public static void main(String[] args) {
int n = sc.ni(), m = sc.ni();
char[] s = sc.next().toCharArray();
char[] t = sc.next().toCharArray();
int[] left = new int[m], right = new int[m];
ArrayList<Integer>[] indices = new ArrayList[26];
for (int i = 0; i < 26; i++)
indices[i] = new ArrayList<>();
for (int i = 0; i < n; i++) {
indices[s[i] - 'a'].add(i);
}
// left[i] = first occ. of t[i] after left[i-1]
// right[i] = last occ. of t[i] before right[i+1]
int prevStart = -1;
for (int i = 0; i < m; i++) {
int l = 0, r = indices[t[i] - 'a'].size() - 1, res = -1;
while (l <= r) {
int mid = l + (r - l) / 2;
if (indices[t[i] - 'a'].get(mid) > prevStart) {
res = indices[t[i] - 'a'].get(mid);
r = mid - 1;
} else {
l = mid + 1;
}
}
left[i] = res;
prevStart = left[i];
}
int nextEnd = n;
for (int i = m - 1; i >= 0; i--) {
int l = 0, r = indices[t[i] - 'a'].size() - 1, res = -1;
while (l <= r) {
int mid = l + (r - l) / 2;
if (indices[t[i] - 'a'].get(mid) < nextEnd) {
res = indices[t[i] - 'a'].get(mid);
l = mid + 1;
} else {
r = mid - 1;
}
}
right[i] = res;
nextEnd = right[i];
}
// print_arr(left);
// print_arr(right);
int res = 0;
for (int i = 0; i < m - 1; i++) {
res = Math.max(right[i + 1] - left[i], res);
}
out.println(res);
out.close();
}
public static long pow(long a, long b, long m) {
if (b == 0) {
return 1;
}
if (b % 2 == 0) {
return pow((a * a) % m, b / 2, m) % m;
} else {
return (a * pow((a * a) % m, b / 2, m)) % m;
}
}
// snippets
static class Pair implements Comparable<Pair> {
int x;
int y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair o) {
if (this.x > o.x)
return 1;
else if (this.x < o.x)
return -1;
else {
if (this.y > o.y)
return 1;
else if (this.y < o.y)
return -1;
else
return 0;
}
}
public int hashCode() {
int ans = 1;
ans = x * 31 + y * 13;
return ans;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null) {
return false;
}
if (this.getClass() != o.getClass()) {
return false;
}
Pair other = (Pair) o;
if (this.x == other.x && this.y == other.y) {
return true;
}
return false;
}
}
static void add_map(HashMap<Integer, Integer> map, int v) {
if (!map.containsKey(v)) {
map.put(v, 1);
} else {
map.put(v, map.get(v) + 1);
}
}
static void remove_map(HashMap<Integer, Integer> map, int v) {
if (map.containsKey(v)) {
map.put(v, map.get(v) - 1);
if (map.get(v) == 0)
map.remove(v);
}
}
static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static void sort(int[] arr) {
// shuffle
Random rand = new Random();
for (int i = 0; i < arr.length; i++) {
int j = rand.nextInt(i + 1);
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
Arrays.sort(arr);
}
static void sort(long[] arr) {
// shuffle
Random rand = new Random();
for (int i = 0; i < arr.length; i++) {
int j = rand.nextInt(i + 1);
long tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
Arrays.sort(arr);
}
static boolean isPrime(int n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
double sq = Math.sqrt(n);
for (int i = 5; i <= sq; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static boolean isPrime(long n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
double sq = Math.sqrt(n);
for (int i = 5; i <= sq; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static void print_arr(int A[]) {
for (int i : A) {
System.out.print(i + " ");
}
System.out.println();
}
static void print_arr(long A[]) {
for (long i : A) {
System.out.print(i + " ");
}
System.out.println();
}
static void print_arr(char A[]) {
for (char i : A) {
System.out.print(i + " ");
}
System.out.println();
}
static int min(int a, int b) {
return Math.min(a, b);
}
static int min(int a, int b, int c) {
return Math.min(a, Math.min(b, c));
}
static int min(int a, int b, int c, int d) {
return Math.min(a, Math.min(b, Math.min(c, d)));
}
static int max(int a, int b) {
return Math.max(a, b);
}
static int max(int a, int b, int c) {
return Math.max(a, Math.max(b, c));
}
static int max(int a, int b, int c, int d) {
return Math.max(a, Math.max(b, Math.max(c, d)));
}
static long min(long a, long b) {
return Math.min(a, b);
}
static long min(long a, long b, long c) {
return Math.min(a, Math.min(b, c));
}
static long min(long a, long b, long c, long d) {
return Math.min(a, Math.min(b, Math.min(c, d)));
}
static long max(long a, long b) {
return Math.max(a, b);
}
static long max(long a, long b, long c) {
return Math.max(a, Math.max(b, c));
}
static long max(long a, long b, long c, long d) {
return Math.max(a, Math.max(b, Math.max(c, d)));
}
static int max(int A[]) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < A.length; i++) {
max = Math.max(max, A[i]);
}
return max;
}
static int min(int A[]) {
int min = Integer.MAX_VALUE;
for (int i = 0; i < A.length; i++) {
min = Math.min(min, A[i]);
}
return min;
}
static long max(long A[]) {
long max = Long.MIN_VALUE;
for (int i = 0; i < A.length; i++) {
max = Math.max(max, A[i]);
}
return max;
}
static long min(long A[]) {
long min = Long.MAX_VALUE;
for (int i = 0; i < A.length; i++) {
min = Math.min(min, A[i]);
}
return min;
}
static long sum(int A[]) {
long sum = 0;
for (int i : A) {
sum += i;
}
return sum;
}
static long sum(long A[]) {
long sum = 0;
for (long i : A) {
sum += i;
}
return sum;
}
static ArrayList<Integer> sieve(int n) {
ArrayList<Integer> primes = new ArrayList<>();
boolean[] isPrime = new boolean[n];
Arrays.fill(isPrime, true);
isPrime[0] = isPrime[1] = false;
for (int i = 2; i * i <= n; i++) {
if (isPrime[i]) {
for (int j = i * i; j < n; j += i) {
isPrime[j] = false;
}
}
}
for (int i = 2; i < n; i++) {
if (isPrime[i])
primes.add(i);
}
return primes;
}
static class Reader {
BufferedReader br;
StringTokenizer st;
Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
Reader(File f) throws FileNotFoundException {
br = new BufferedReader(new FileReader(f));
st = new StringTokenizer("");
}
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
long nl() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] nai(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
long[] nal(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
11b132bf79aad18da37ea7619cfaa7a2
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Main {
static InputReader scn = new InputReader(System.in);
static OutputWriter out = new OutputWriter(System.out);
public static void main(String[] args) {
// Running Number Of TestCases (t)
int t = 1;
while(t-- > 0)
solve();
out.close();
}
public static void dummy(){
// Dummy Code for Rough
out.println((int) 'a');
}
public static void solve() {
// Main Solution (AC)
int n = scn.nextInt();
int k = scn.nextInt();
char[] s = scn.next().toCharArray();
char[] t = scn.next().toCharArray();
int S = s.length;
int T = t.length;
int[] start = new int[T];
int[] last = new int[T];
int idx = 0;
for(int i = 0; i < T; i++){
while(idx < n && s[idx] != t[i]){
idx++;
}
start[i] = idx;
idx++; // because it should br this again
}
idx = n - 1;
for(int i = T - 1; i >= 0; i--){
while(idx >= 0 && s[idx] != t[i]){
idx--;
}
last[i] = idx;
idx--; // because it should br this again
}
int ans = 0;
for(int i = 0; i + 1 < T; i++){
int a = start[i];
int b = last[i+1];
ans = max(ans, b-a);
}
out.println(ans);
}
public static int max(int x, int y){
if(x >= y) return x;
return y;
}
public static HashMap<Integer, Integer> sortByValue(HashMap<Integer, Integer> hm) {
List<Map.Entry<Integer, Integer> > list = new LinkedList<Map.Entry<Integer, Integer> >(hm.entrySet());
Collections.sort(list, new Comparator<Map.Entry<Integer, Integer> >() {
public int compare(Map.Entry<Integer, Integer> o1,
Map.Entry<Integer, Integer> o2){
return (o1.getValue()).compareTo(o2.getValue());
}
});
HashMap<Integer, Integer> temp = new LinkedHashMap<Integer, Integer>();
for (Map.Entry<Integer, Integer> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp;
}
public static void sortbyColumn(int[][] arr, int col) {
Arrays.sort(arr, new Comparator<int[]>() {
public int compare(final int[] entry1, final int[] entry2) {
if (entry1[col] > entry2[col])
return 1;
else
return -1;
}
});
}
public static int BaseChange(int n, int r){
int i = 0;
int ans = 0;
while(n != 0){
int a = n % 10;
n /= 10;
ans += a * (Math.pow(r, i));
i++;
}
return ans;
}
public static HashSet<Long> primeFactors(long n, HashSet<Long> list, int d) {
list.add(1L);
list.add(n);
for (long i = 2; i <= Math.sqrt(n); i += 1) {
long a = i;
if (n % a == 0) {
list.add(a);
if (n % (n / a) == 0)
list.add(n / a);
}
}
return list;
}
public static HashMap<Integer, Integer> CountFrequencies(int[] arr) {
HashMap<Integer, Integer> map = new HashMap<>();
for (int i : arr) {
if (map.containsKey(i))
map.put(i, map.get(i) + 1);
else
map.put(i, 1);
}
return map;
}
public static void ArraySort2D(int[][] arr, int xy) {
// xy == 0, for sorting wrt X-Axis
// xy == 1, for sorting wrt Y-Axis
Arrays.sort(arr, Comparator.comparingDouble(o -> o[xy]));
}
public static long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
public static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
public static boolean isPrime(long n) {
if (n < 2)
return false;
if (n == 2 || n == 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
long sqrtN = (long) Math.sqrt(n) + 1;
for (long i = 6L; i <= sqrtN; i += 6) {
if (n % (i - 1) == 0 || n % (i + 1) == 0)
return false;
}
return true;
}
public static int firstOccurence(int array1[], int low, int high, int x, int n) {
if (low <= high) {
int mid = low + (high - low) / 2;
if ((mid == 0 || x > array1[mid - 1]) && array1[mid] == x)
return mid;
else if (x > array1[mid])
return firstOccurence(array1, (mid + 1), high, x, n);
else
return firstOccurence(array1, low, (mid - 1), x, n);
}
return -1;
}
public static int min(int x, int y){
if(x >= y) return y;
return x;
}
public static int lastOccurence(int array2[], int low, int high, int x, int n) {
if (low <= high) {
int mid = low + (high - low) / 2;
if ((mid == n - 1 || x < array2[mid + 1]) && array2[mid] == x)
return mid;
else if (x < array2[mid])
return lastOccurence(array2, low, (mid - 1), x, n);
else
return lastOccurence(array2, (mid + 1), high, x, n);
}
return -1;
}
public static void quickSort(int[] arr, int lo, int hi) {
if (lo >= hi) {
return;
}
int mid = (lo + hi) / 2;
int pivot = arr[mid];
int left = lo;
int right = hi;
while (left <= right) {
while (arr[left] < pivot) {
left++;
}
while (arr[right] > pivot) {
right--;
}
if (left <= right) {
int temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
left++;
right--;
}
}
quickSort(arr, lo, right);
quickSort(arr, left, hi);
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int[] readArrays(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = scn.nextInt();
}
return a;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return nextLine();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
// writer.print(1);
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
4c8cb566d2fda261830134526ebd19b5
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
StringBuilder sb = new StringBuilder();
int n = sc.nextInt();
int m = sc.nextInt();
String str1 = sc.next();
String str2 = sc.next();
char a[] = str1.toCharArray();
char b[] = str2.toCharArray();
int first[] = new int[m];
int last[] = new int[m];
int index = 0;
for (int i = 0; i < m; i++) {
while (a[index] != b[i]) {
index++;
continue;
}
first[i] = index;
index++;
}
index = n - 1;
for (int i = m - 1; i >= 0; i--) {
while (a[index] != b[i]) {
index--;
continue;
}
last[i] = index;
index--;
}
int ans = 0;
for (int i = 0; i < m - 1; i++) {
ans = Math.max(ans, last[i + 1] - first[i]);
}
sb.append(ans).append("\n");
System.out.print(sb);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
f5ab39d31708986b3bc8b2ba9830f071
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.math.*;
import java.io.*;
public class B{
static int[] dx={-1,1,0,0};
static int[] dy={0,0,1,-1};
static FastReader scan=new FastReader();
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
static ArrayList<Pair>es;
static LinkedList<Integer>edges[];
static LinkedList<Integer>edges2[];
static boolean prime[];
static void sieve(int n)
{
prime = new boolean[n+1];
for(int i=0;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
}
public static int lowerBound(long[] array, int length, long value) {
int low = 0;
int high = length;
while (low < high) {
final int mid = (low + high) / 2;
//checks if the value is less than middle element of the array
if (value <= array[mid]) {
high = mid;
} else {
low = mid + 1;
}
}
return low;
}
public static int upperBound(long[] array, int length, long value) {
int low = 0;
int high = length;
while (low < high) {
final int mid = low+(high-low) / 2;
if ( array[mid]>value) {
high = mid ;
} else {
low = mid+1;
}
}
return low;
}
static long mod(long x,long y)
{
if(x<0)
x=x+(-x/y+1)*y;
return x%y;
}
static boolean isPowerOfTwo(long n)
{
if (n == 0)
return false;
while (n != 1) {
if (n % 2 != 0)
return false;
n = n / 2;
}
return true;
}
static boolean isprime(long x)
{
for(long i=2;i*i<=x;i++)
if(x%i==0)
return false;
return true;
}
static int dist(int x1,int y1,int x2,int y2){
return Math.abs(x1-x2)+Math.abs(y1-y2);
}
static long cuberoot(long x)
{
long lo = 0, hi = 1000005;
while(lo<hi)
{
long m = (lo+hi+1)/2;
if(m*m*m>x)
hi = m-1;
else
lo = m;
}
return lo;
}
public static int log2(int N)
{
// calculate log2 N indirectly
// using log() method
int result = (int)(Math.log(N) / Math.log(2));
return result;
}
static long gcd(long a, long b) {
if(a!=0&&b!=0)
while((a%=b)!=0&&(b%=a)!=0);
return a^b;
}
static long LCM(long a,long b){
return (Math.abs(a*b))/gcd(a,b);
}
static int mid;
public static class comp1 implements Comparator<Pair>{
public int compare(Pair o1,Pair o2){
return (int)(o1.y-o2.y);
}
}
public static class comp2 implements Comparator<Pair>{
public int compare(Pair o1,Pair o2){
return (int)((o1.x+o1.y*mid)-(o2.x+o2.y*mid));
}
}
static boolean can(int m,int s)
{
return (s>=0&&s<=m*9);
}
static boolean collinear(long x1, long y1, long x2,
long y2, long x3, long y3)
{
long a = x1 * (y2 - y3) +
x2 * (y3 - y1) +
x3 * (y1 - y2);
if(a==0)
return true;
return false;
}
static void pythagoreanTriplets(int limit)
{
//ArrayList<Integer>res=new ArrayList<Integer>();
// triplet: a^2 + b^2 = c^2
int a, b, c = 0;
// loop from 2 to max_limitit
int m = 2;
// Limiting c would limit
// all a, b and c
int cnt=0;
int tmp=1;
while (c < limit) {
// now loop on j from 1 to i-1
//System.out.println("FUCK");
for ( int n=tmp; n < m; n++) {
// Evaluate and print
// triplets using
// the relation between
// a, b and c
a = m * m - n * n;
b = 2 * m * n;
c = m * m + n * n;
// System.out.println("FUCK");
if (c > limit)
break;
// System.out.println(a + " " + b + " " + c);
if(c+b==c*c-b*b){
// out.println(n);
/// out.println(a+" "+b+" "+c);
cnt++;
}
}
tmp++;
m++;
}
out.println(cnt);
}
static int arr[];
static int n,l;
static boolean flag=false;
static boolean vis[]=new boolean[(int)2e5+5];
static int res[];
static int idx=0;
static StringBuilder s;
static void dfs(int x)
{
vis[x]=true;
res[idx++]=x;
for(int v:edges[x])
if(!vis[v])
dfs(v);
}
static void swap(int i,int j)
{
char tmp=s.charAt(i);
s.setCharAt(i,s.charAt(j));
s.setCharAt(j,tmp);
}
public static void main(String[] args) throws Exception
{
/*int xx=253;
for(int i=1;i*i<=xx;i++)
{
if(xx%i==0)
{
System.out.println(i);
System.out.println(xx/i);
}
}*/
//java.util.Scanner scan=new java.util.Scanner(new File("mootube.in"));
// PrintWriter out = new PrintWriter (new FileWriter("mootube.out"));
//Scannen=new FastReader("moocast.in");
//out = new PrintWriter ("moocast.out");
//System.out.println(3^2);
//System.out.println(19%4);
//StringBuilder news=new StringBuilder("ab");
//news.deleteCharAt(1);
//news.insert(0,'c');
//news.deleteCharAt(0);
//System.out.println(news);
//System.out.println(can(2,15));
//System.out.println(LCM(2,2));
// System.out.println(31^15);
//System.out.println("");
//System.out.println(824924296372176000L>(long)1e16);
int tt=1;
//rec(2020);
//int st=scan.nextInt();
//System.out.println(calc(91));
//sieve(21000);
//SNWNSENSNNSWNNW
// System.out.println(set.remove(new Pair(1,1)));
//System.out.println(count("cccccccccccccccccccccccccooooooooooooooooooooooooodddddddddddddeeeeeeeeeeeeeeeeeeeeeeeeeffffffffffffforrrrrrrrrrrrrcesssssssssssss","codeforces"));
//S0ystem.out.println(isPowerOfTwo(446265625L));
//System.out.println("daaa".compareTo("bccc"));
//System.out.println(2999000999L>1999982505L);
//tt=scan.nextInt();
outer:while(tt-->0)
{
int n=scan.nextInt(),m=scan.nextInt();
String s=scan.next(),t=scan.next();
ArrayList<Integer>arr[]=new ArrayList[26];
PriorityQueue<Integer>pq[]=new PriorityQueue[26];
PriorityQueue<Integer>pq2[]=new PriorityQueue[26];
TreeSet<Integer>set[]=new TreeSet[26];
for(int i=0;i<26;i++){
pq[i]=new PriorityQueue();
set[i]=new TreeSet();
}
for(int i=0;i<26;i++)
pq2[i]=new PriorityQueue(Collections.reverseOrder());
for(int i=0;i<s.length();i++){
pq[s.charAt(i)-'a'].add(i);
pq2[s.charAt(i)-'a'].add(i);
set[s.charAt(i)-'a'].add(i);
}
int first[]=new int[m];
int second[]=new int[m];
int idx=0;
for(int i=0;i<m;i++)
{
//first[i]=pq[t.charAt(i)-'a'].poll();
if(i==0){
first[i]=set[t.charAt(i)-'a'].first();
idx=set[t.charAt(i)-'a'].first();
}
else{
first[i]=set[t.charAt(i)-'a'].higher(idx);
idx=first[i];
}
}
for(int i=m-1;i>=0;i--)
{
if(i==m-1)
{
second[i]=first[i]=set[t.charAt(i)-'a'].last();
idx=set[t.charAt(i)-'a'].last();
}
else{
second[i]=set[t.charAt(i)-'a'].lower(idx);
idx=second[i];
}}
//for(int i=0;i<m;i++)
// out.println(first[i]+" "+second[i]);
int max=0;
for(int i=0;i<m-1;i++)
max=Math.max(max,second[i+1]-first[i]);
out.println(max);
}
out.close();
}
static class dsu{
static int id[]=new int[101];
dsu()
{
for(int i=0;i<101;i++)
id[i]=i;
}
static int find(int x)
{
if(x==id[x])
return x;
return find(id[x]);
}
static void connect(int i,int j)
{
i=find(i);
j=find(j);
id[i]=j;
}
static boolean is(int i,int j)
{
return find(i)==find(j);
}
}
static long binexp(long a,long n,long mod)
{
if(n==0)
return 1;
long res=binexp(a,n/2,mod)%mod;
res=res*res;
if(n%2==1)
return (res*a)%mod;
else
return res%mod;
}
static class special{
Pair x;
Pair y;
special(Pair x,Pair y)
{
this.x=new Pair(x.x,x.y);
this.y=new Pair(y.x,y.y);
}
@Override
public int hashCode() {
return (int)(x.x + 31 * y.y);
}
public boolean equals(Object other)
{
if(other instanceof special)
{
special e =(special)other;
return this.x.x==e.x.x && this.x.y==e.x.y && this.y.x==e.y.x && this.y.y==e.y.y;
}
else return false;
}
}
static long powMod(long base, long exp, long mod) {
if (base == 0 || base == 1) return base;
if (exp == 0) return 1;
if (exp == 1) return base % mod;
long R = powMod(base, exp/2, mod) % mod;
R *= R;
R %= mod;
if ((exp & 1) == 1) {
return base * R % mod;
}
else return R % mod;
}
public static long pow(long b, long e) {
long r = 1;
while (e > 0) {
if (e % 2 == 1) r = r * b ;
b = b * b;
e >>= 1;
}
return r;
}
private static void sort(int[] arr) {
List<Integer> list = new ArrayList<>();
for (int object : arr) list.add(object);
Collections.sort(list);
for (int i = 0; i < list.size(); ++i) arr[i] = list.get(i);
}
public static class FastReader {
BufferedReader br;
StringTokenizer root;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
FastReader(String filename)throws Exception
{
br=new BufferedReader(new FileReader(filename));
}
String next() {
while (root == null || !root.hasMoreTokens()) {
try {
root = new StringTokenizer(br.readLine());
} catch (Exception addd) {
addd.printStackTrace();
}
}
return root.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception addd) {
addd.printStackTrace();
}
return str;
}
public int[] nextIntArray(int arraySize) {
int array[] = new int[arraySize];
for (int i = 0; i < arraySize; i++) {
array[i] = nextInt();
}
return array;
}
}
public static class Pair implements Comparable<Pair>{
int x;
int y;
long ab;
int z;
public Pair(){}
public Pair(int x1, int y1,int z) {
x=x1;
y=y1;
this.z=z;
}
public Pair(int x1, int y1) {
x=x1;
y=y1;
this.ab=x+y;
}
@Override
public int hashCode() {
return (int)(x + 31 * y);
}
public String toString() {
return x + " " + y;
}
@Override
public boolean equals(Object o){
if (o == this) return true;
if (o.getClass() != getClass()) return false;
Pair t = (Pair)o;
return t.x == x && t.y == y;
}
public int compareTo(Pair o)
{
if(x==o.x)
return (int)(y-o.y);
return (int)(x-o.x);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
7f33c2b6da807b6ef4f5ec61b4452f4f
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.lang.*;
import java.util.*;
public class ComdeFormces {
public static void main(String[] args) throws Exception{
// TODO Auto-generated method stub
// Reader.init(System.in);
FastReader sc=new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
// OutputStream out = new BufferedOutputStream ( System.out );
// int t=sc.nextInt();
// while(t--!=0) {
int n=sc.nextInt();
int m=sc.nextInt();
char a[]=sc.next().toCharArray();
char b[]=sc.next().toCharArray();
int l[]=new int[m];
int r[]=new int[m];
int ptr=m-1;
for(int i=n-1;i>=0;i--) {
if(ptr<0)break;
if(a[i]==b[ptr])r[ptr--]=i;
}
ptr=0;
for(int i=0;i<n;i++) {
if(ptr>=m)break;
if(a[i]==b[ptr])l[ptr++]=i;
}
int ans=0;
for(int i=1;i<m;i++) {
ans=Math.max(ans, r[i]-l[i-1]);
}
log.write(ans+" ");
log.flush();
}
// }
static int ev(int s,int e,int e2,int l) {
for(int i=s;i<=e;i++) {
int ts=i;
int vl2=0;
boolean cv=false;
int ct=0;
while(ts!=0) {
int num=ts%10;
if(num==0 || num==1 || num==2 || num==5 || num==8) {
if(num==2)num=5;
else if(num==5)num=2;
vl2=vl2*10+num;
ct++;
}
else {
cv=true;
break;
}
ts/=10;
}
if(ct==1) {
vl2*=10;
}
if(cv || vl2>=e2)continue;
else return i;
}
return -1;
}
static int evv(int cnt[],int cnt2[]) {
int ans=0;
for(int i=1;i<cnt.length;i++) {
if(cnt[i]>cnt2[i]) {
ans+=cnt[i]-cnt2[i];
}
}
return ans;
}
public static void fb(HashMap<Long,Integer> hm,HashSet<Long> hs, long s) {
if(hs.contains(s)) {
hm.put(s,hm.get(s)-1);
if(hm.get(s)==0)hs.remove(s);
return;
}
else if(s<=1)return;
fb(hm,hs,s/2);
fb(hm,hs,(s+1)/2);
}
public static void radixSort(int a[]) {
int n=a.length;
int res[]=new int[n];
int p=1;
for(int i=0;i<=8;i++) {
int cnt[]=new int[10];
for(int j=0;j<n;j++) {
a[j]=res[j];
cnt[(a[j]/p)%10]++;
}
for(int j=1;j<=9;j++) {
cnt[j]+=cnt[j-1];
}
for(int j=n-1;j>=0;j--) {
res[cnt[(a[j]/p)%10]-1]=a[j];
cnt[(a[j]/p)%10]--;
}
p*=10;
}
}
static int bits(long n) {
int ans=0;
while(n!=0) {
if((n&1)==1)ans++;
n>>=1;
}
return ans;
}
static long flor(ArrayList<Long> ar,long el) {
int s=0;
int e=ar.size()-1;
while(s<=e) {
int m=s+(e-s)/2;
if(ar.get(m)==el)return ar.get(m);
else if(ar.get(m)<el)s=m+1;
else e=m-1;
}
return e>=0?e:-1;
}
public static int kadane(int a[]) {
int sum=0,mx=Integer.MIN_VALUE;
for(int i=0;i<a.length;i++) {
sum+=a[i];
mx=Math.max(mx, sum);
if(sum<0) sum=0;
}
return mx;
}
public static int m=1000000007;
public static int mul(int a, int b) {
return ((a%m)*(b%m))%m;
}
public static long mul(long a, long b) {
return ((a%m)*(b%m))%m;
}
public static int add(int a, int b) {
return ((a%m)+(b%m))%m;
}
public static long add(long a, long b) {
return ((a%m)+(b%m))%m;
}
//debug
public static <E> void p(E[][] a,String s) {
System.out.println(s);
for(int i=0;i<a.length;i++) {
for(int j=0;j<a[0].length;j++) {
System.out.print(a[i][j]+" ");
}
System.out.println();
}
}
public static void p(int[] a,String s) {
System.out.print(s+"=");
for(int i=0;i<a.length;i++)System.out.print(a[i]+" ");
System.out.println();
}
public static void p(long[] a,String s) {
System.out.print(s+"=");
for(int i=0;i<a.length;i++)System.out.print(a[i]+" ");
System.out.println();
}
public static <E> void p(E a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(ArrayList<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(LinkedList<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(HashSet<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(Stack<E> a,String s){
System.out.println(s+"="+a);
}
public static <E> void p(Queue<E> a,String s){
System.out.println(s+"="+a);
}
//utils
static ArrayList<Integer> divisors(int n){
ArrayList<Integer> ar=new ArrayList<>();
for (int i=2; i<=Math.sqrt(n); i++){
if (n%i == 0){
if (n/i == i) {
ar.add(i);
}
else {
ar.add(i);
ar.add(n/i);
}
}
}
return ar;
}
static int primeDivisor(int n){
ArrayList<Integer> ar=new ArrayList<>();
int cnt=0;
boolean pr=false;
while(n%2==0) {
pr=true;
n/=2;
}
if(pr)ar.add(2);
for(int i=3;i*i<=n;i+=2) {
pr=false;
while(n%i==0) {
n/=i;
pr=true;
}
if(pr)ar.add(i);
}
if(n>2) ar.add(n);
return ar.size();
}
static long gcd(long a,long b) {
if(b==0)return a;
else return gcd(b,a%b);
}
static int gcd(int a,int b) {
if(b==0)return a;
else return gcd(b,a%b);
}
static long factmod(long n,long mod,long img) {
if(n==0)return 1;
long ans=1;
long temp=1;
while(n--!=0) {
if(temp!=img) {
ans=((ans%mod)*((temp)%mod))%mod;
}
temp++;
}
return ans%mod;
}
static int ncr(int n, int r){
if(r>n-r)r=n-r;
int ans=1;
for(int i=0;i<r;i++){
ans*=(n-i);
ans/=(i+1);
}
return ans;
}
public static class trip{
int a,b;
int c;
public trip(int a,int b,int c) {
this.a=a;
this.b=b;
this.c=c;
}
public int compareTo(trip q) {
return this.b-q.b;
}
}
static void mergesort(long[] a,int start,int end) {
if(start>=end)return ;
int mid=start+(end-start)/2;
mergesort(a,start,mid);
mergesort(a,mid+1,end);
merge(a,start,mid,end);
}
static void merge(long[] a, int start,int mid,int end) {
int ptr1=start;
int ptr2=mid+1;
long b[]=new long[end-start+1];
int i=0;
while(ptr1<=mid && ptr2<=end) {
if(a[ptr1]<=a[ptr2]) {
b[i]=a[ptr1];
ptr1++;
i++;
}
else {
b[i]=a[ptr2];
ptr2++;
i++;
}
}
while(ptr1<=mid) {
b[i]=a[ptr1];
ptr1++;
i++;
}
while(ptr2<=end) {
b[i]=a[ptr2];
ptr2++;
i++;
}
for(int j=start;j<=end;j++) {
a[j]=b[j-start];
}
}
public static class FastReader {
BufferedReader b;
StringTokenizer s;
public FastReader() {
b=new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(s==null ||!s.hasMoreElements()) {
try {
s=new StringTokenizer(b.readLine());
}
catch(IOException e) {
e.printStackTrace();
}
}
return s.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str="";
try {
str=b.readLine();
}
catch(IOException e) {
e.printStackTrace();
}
return str;
}
boolean hasNext() {
if (s != null && s.hasMoreTokens()) {
return true;
}
String tmp;
try {
b.mark(1000);
tmp = b.readLine();
if (tmp == null) {
return false;
}
b.reset();
} catch (IOException e) {
return false;
}
return true;
}
}
public static class pair{
int a;
int b;
public pair(int a,int b) {
this.a=a;
this.b=b;
}
public int compareTo(pair b) {
return this.a-b.a;
}
// public int compareToo(pair b) {
// return this.b-b.b;
// }
@Override
public String toString() {
return "{"+this.a+" "+this.b+"}";
}
}
static long pow(long a, long pw) {
long temp;
if(pw==0)return 1;
temp=pow(a,pw/2);
if(pw%2==0)return temp*temp;
return a*temp*temp;
}
static int pow(int a, int pw) {
int temp;
if(pw==0)return 1;
temp=pow(a,pw/2);
if(pw%2==0)return temp*temp;
return a*temp*temp;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
309b96ccad979e57404f86612673b1ee
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.*;
import java.math.BigDecimal;
import java.math.*;
//
public class Main{
private static int[] input() {
int n=in.nextInt();
int[]arr=new int[n];
for(int i=0;i<n;i++) {
arr[i]=in.nextInt();
}
return arr;
}
private static int inte() {
return in.nextInt();
}
private static long lon() {
return in.nextLong();
}
public static void main(String[] args) {
TaskA solver = new TaskA();
// int t = in.nextInt();
// for (int i = 1; i <= t ; i++) {
// solver.solve(t, in, out);
// }
solver.solve(1, in, out);
out.flush();
out.close();
}
static ArrayList<Integer>[]graph;static int[]arr;
static long[][] dp;
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n= in.nextInt();int m=in.nextInt();
String s= in.next();String t=in.next();
int[]right =new int[m];
int[]left=new int [m];int ind1=0;int ind2=m-1;
for(int i=0;i<n&&ind1<m;i++) {
if(s.charAt(i)==t.charAt(ind1)) {
left[ind1]=i;ind1++;
}
}
for(int i=n-1;i>=0&&ind2>=0;i--) {
if(s.charAt(i)==t.charAt(ind2)) {
right[ind2]=i;ind2--;
}
}
int max=0;for(int i=0;i<m-1;i++) {
max=Math.max(max, right[i+1]-left[i]);
}
println(max);
}
}
public static boolean valid(int tim) {
String ti=String.valueOf(tim);
char[]time=ti.toCharArray();
for(int i=0;i<time.length;i++) {
if(time[i]!='1'&&time[i]!='0'&&time[i]!='2'&&time[i]!='5'&&time[i]!='8') {
return false;
}
}
return true;
}
private static int opp(int x) {
if(x==1||x==8||x==0) {return x;}
else if(x==2) {return 5;}
{return 2;}
}
public static int getFirstSetBitPos(int n)
{
return (int)((Math.log10(n & -n)) / Math.log10(2)) + 1;
}
public static long rec(int i,int j,int[]arr) {
if(arr.length==1) {return 0;}
if(dp[i][j]!=0) {return dp[i][j];}
else if(j-i==1) {dp[i][j]=arr[j]-arr[i];return dp[i][j];}
else {
dp[i][j]=Math.min(rec(i+1,j,arr),rec(i,j-1,arr))+arr[j]-arr[i];
return dp[i][j];
}
}
private static boolean isPalindrome(String s) {
StringBuilder sb=new StringBuilder(s);
if(sb.reverse().toString().equals(s))
return true;
return false;
}
private static void dfs(int root,Pair[]p,int parent,int[][]dp) {
int ans1=0;int ans2=0;
for(int i:graph[root]) {
if(i!=parent) {
dfs(i,p,root,dp);
}
}
for(int i:graph[root]) {
if(i!=parent) {
int val1=Math.abs(p[root].first-p[i].first)+dp[i][0];
int val2=Math.abs(p[root].first-p[i].second)+dp[i][1];
ans1+=Math.max(val1, val2);
}
}
for(int i:graph[root]) {
if(i!=parent) {
int val1=Math.abs(p[root].second-p[i].first)+dp[i][0];
int val2=Math.abs(p[root].second-p[i].second)+dp[i][1];
ans2+=Math.max(val1, val2);
}
}
dp[root][0]=ans1;dp[root][1]=ans2;
}
private static void printArr(int[] arr) {
for (int i = 0; i < arr.length; i++) {
print(arr[i] + " ");
}
print("\n");
}
private static String rev(String s) {
String st="";
for(int i=s.length()-1;i>=0;i--) {
st+=s.charAt(i);
}
return st;
}
private static int[] rev(int[]arr) {
int[]a=arr.clone();
for(int i=0;i<arr.length;i++) {
a[i]=arr[arr.length-i-1];
}
return arr;
}
// for (Map.Entry<Integer,ArrayList<Integer>> entry : hm.entrySet()) {
// ArrayList<Integer>a=entry.getValue();
//
// }
static long ceil(long a,long b) {
return (a/b + Math.min(a%b, 1));
}
static long pow(long b, long e) {
long ans = 1;
while (e > 0) {
if (e % 2 == 1)
ans = ans * b % mod;
e >>= 1;
b = b * b % mod;
}
return ans;
}
static void sortDiff(Pair arr[])
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{ if(p1.first==p2.first) {
return (p1.second-p1.first)-(p2.second-p1.first);
}
return (p1.second-p1.first)-(p2.second-p2.first);
}
});
}
static void sortF(Pair arr[])
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{ if(p1.first==p2.first) {
return p1.second-p2.second;
}
return p1.first - p2.first;
}
});
}
static long[] fac;
static long mod = (long) 1000000007;
static void initFac(long n) {
fac = new long[(int)n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++) {
fac[i] = (fac[i - 1] * i) % mod;
}
}
static long nck(int n, int k) {
if (n < k)
return 0;
long den = inv((int) (fac[k] * fac[n - k] % mod));
return fac[n] * den % mod;
}
static long inv(long x) {
return pow(x, mod - 2);
}
static void sort(int[] a) {
ArrayList<Integer> q = new ArrayList<>();
for (int i : a) q.add(i);
Collections.sort(q);
for (int i = 0; i < a.length; i++) a[i] = q.get(i);
}
static void sort(long[] a) {
ArrayList<Long> q = new ArrayList<>();
for (long i : a) q.add(i);
Collections.sort(q);
for (int i = 0; i < a.length; i++) a[i] = q.get(i);
}
public static int bfsSize(int source,LinkedList<Integer>[]a,boolean[]visited) {
Queue<Integer>q=new LinkedList<>();
q.add(source);
visited[source]=true;
int distance=0;
while(!q.isEmpty()) {
int curr=q.poll();
distance++;
for(int neighbour:a[curr]) {
if(!visited[neighbour]) {
visited[neighbour]=true;
q.add(neighbour);
}
}
}
return distance;
}
public static Set<Integer>factors(int n){
Set<Integer>ans=new HashSet<>();
ans.add(1);
for(int i=2;i*i<=n;i++) {
if(n%i==0) {
ans.add(i);
ans.add(n/i);
}
}
return ans;
}
public static int bfsSp(int source,int destination,ArrayList<Integer>[]a) {
boolean[]visited=new boolean[a.length];
int[]parent=new int[a.length];
Queue<Integer>q=new LinkedList<>();
int distance=0;
q.add(source);
visited[source]=true;
parent[source]=-1;
while(!q.isEmpty()) {
int curr=q.poll();
if(curr==destination) {
break;
}
for(int neighbour:a[curr]) {
if(neighbour!=-1&&!visited[neighbour]) {
visited[neighbour]=true;
q.add(neighbour);
parent[neighbour]=curr;
}
}
}
int cur=destination;
while(parent[cur]!=-1) {
distance++;
cur=parent[cur];
}
return distance;
}
static int bs(int size,int[]arr) {
int x = -1;
for (int b = size/2; b >= 1; b /= 2) {
while (!ok(arr));
}
int k = x+1;
return k;
}
static boolean ok(int[]x) {
return false;
}
public static int solve1(ArrayList<Integer> A) {
long[]arr =new long[A.size()+1];
int n=A.size();
for(int i=1;i<=A.size();i++) {
arr[i]=((i%2)*((n-i+1)%2))%2;
arr[i]%=2;
}
int ans=0;
for(int i=0;i<A.size();i++) {
if(arr[i+1]==1) {
ans^=A.get(i);
}
}
return ans;
}
public static String printBinary(long a) {
String str="";
for(int i=31;i>=0;i--) {
if((a&(1<<i))!=0) {
str+=1;
}
if((a&(1<<i))==0 && !str.isEmpty()) {
str+=0;
}
}
return str;
}
public static String reverse(long a) {
long rev=0;
String str="";
int x=(int)(Math.log(a)/Math.log(2))+1;
for(int i=0;i<32;i++) {
rev<<=1;
if((a&(1<<i))!=0) {
rev|=1;
str+=1;
}
else {
str+=0;
}
}
return str;
}
////////////////////////////////////////////////////////
static void sortS(Pair arr[])
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{
return p1.second - p2.second;
}
});
}
static class Pair implements Comparable<Pair>
{
int first ;int second ;
public Pair(int x, int y)
{
this.first = x ;this.second = y ;
}
@Override
public boolean equals(Object obj)
{
if(obj == this)return true ;
if(obj == null)return false ;
if(this.getClass() != obj.getClass()) return false ;
Pair other = (Pair)(obj) ;
if(this.first != other.first)return false ;
if(this.second != other.second)return false ;
return true ;
}
@Override
public int hashCode()
{
return this.first^this.second ;
}
@Override
public String toString() {
String ans = "" ;ans += this.first ; ans += " "; ans += this.second ;
return ans ;
}
@Override
public int compareTo(Main.Pair o) {
{ if(this.first==o.first) {
return this.second-o.second;
}
return this.first - o.first;
}
}
}
//////////////////////////////////////////////////////////////////////////
static int nD(long num) {
String s=String.valueOf(num);
return s.length();
}
static int CommonDigits(int x,int y) {
String s=String.valueOf(x);
String s2=String.valueOf(y);
return 0;
}
static int lcs(String str1, String str2, int m, int n)
{
int L[][] = new int[m + 1][n + 1];
int i, j;
// Following steps build L[m+1][n+1] in
// bottom up fashion. Note that L[i][j]
// contains length of LCS of str1[0..i-1]
// and str2[0..j-1]
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
if (i == 0 || j == 0)
L[i][j] = 0;
else if (str1.charAt(i - 1)
== str2.charAt(j - 1))
L[i][j] = L[i - 1][j - 1] + 1;
else
L[i][j] = Math.max(L[i - 1][j],
L[i][j - 1]);
}
}
// L[m][n] contains length of LCS
// for X[0..n-1] and Y[0..m-1]
return L[m][n];
}
/////////////////////////////////
boolean IsPowerOfTwo(int x)
{
return (x != 0) && ((x & (x - 1)) == 0);
}
////////////////////////////////
static long power(long a,long b,long m ) {
long ans=1;
while(b>0) {
if(b%2==1) {
ans=((ans%m)*(a%m))%m; b--;
}
else {
a=(a*a)%m;b/=2;
}
}
return ans%m;
}
///////////////////////////////
public static boolean repeatedSubString(String string) {
return ((string + string).indexOf(string, 1) != string.length());
}
static int search(char[]c,int start,int end,char x) {
for(int i=start;i<end;i++) {
if(c[i]==x) {return i;}
}
return -2;
}
////////////////////////////////
static int gcd(int a, int b) {
while (b != 0) {
int t = b;
b = a % b;
a = t;
}
return a;
}
static long fac(long a)
{
if(a== 0L || a==1L)return 1L ;
return a*fac(a-1L) ;
}
static ArrayList al() {
ArrayList<Integer>a =new ArrayList<>();
return a;
}
static HashSet h() {
return new HashSet<Integer>();
}
static void debug(long[][]a) {
int n= a.length;
for(int i=0;i<a.length;i++) {
for(int j=0;j<a[0].length;j++) {
out.print(a[i][j]+" ");
}
out.print("\n");
}
}
static void debug(int[]a) {
out.println(Arrays.toString(a));
}
static void debug(ArrayList<Integer>a) {
out.println(a.toString());
}
static boolean[]seive(int n){
boolean[]b=new boolean[n+1];
for (int i = 2; i <= n; i++)
b[i] = true;
for(int i=2;i*i<=n;i++) {
if(b[i]) {
for(int j=i*i;j<=n;j+=i) {
b[j]=false;
}
}
}
return b;
}
static int longestIncreasingSubseq(int[]arr) {
int[]sizes=new int[arr.length];
Arrays.fill(sizes, 1);
int max=1;
for(int i=1;i<arr.length;i++) {
for(int j=0;j<i;j++) {
if(arr[j]<arr[i]) {
sizes[i]=Math.max(sizes[i],sizes[j]+1);
max=Math.max(max, sizes[i]);
}
}
}
return max;
}
public static ArrayList primeFactors(long n)
{
ArrayList<Long>h= new ArrayList<>();
// Print the number of 2s that divide n
if(n%2 ==0) {h.add(2L);}
// n must be odd at this point. So we can
// skip one element (Note i = i +2)
for (long i = 3; i <= Math.sqrt(n); i+= 2)
{
if(n%i==0) {h.add(i);}
}
if (n > 2)
h.add(n);
return h;
}
static boolean Divisors(long n){
if(n%2==1) {
return true;
}
for (long i=2; i<=Math.sqrt(n); i++){
if (n%i==0 && i%2==1){
return true;
}
}
return false;
}
static InputStream inputStream = System.in;
static OutputStream outputStream = System.out;
static InputReader in = new InputReader(inputStream);
static PrintWriter out = new PrintWriter(outputStream);
public static void superSet(int[]a,ArrayList<String>al,int i,String s) {
if(i==a.length) {
al.add(s);
return;
}
superSet(a,al,i+1,s);
superSet(a,al,i+1,s+a[i]+" ");
}
public static long[] makeArr() {
long size=in.nextInt();
long []arr=new long[(int)size];
for(int i=0;i<size;i++) {
arr[i]=in.nextInt();
}
return arr;
}
public static long[] arr(int n) {
long []arr=new long[n+1];
for(int i=1;i<n+1;i++) {
arr[i]=in.nextLong();
}
return arr;
}
public static void sort(long arr[], int l, int r)
{
if (l < r)
{
// Find the middle point
int m = (l+r)/2;
// Sort first and second halves
sort(arr, l, m);
sort(arr , m+1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
static void println(long x) {
out.println(x);
}
static void print(long c) {
out.print(c);
}
static void print(int c) {
out.print(c);
}
static void println(int x) {
out.println(x);
}
static void print(String s) {
out.print(s);
}
static void println(String s) {
out.println(s);
}
public static void merge(long arr[], int l, int m, int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
long L[] = new long[n1];
long R[] = new long[n2];
//Copy data to temp arrays
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
public static void reverse(int[] array)
{
int n = array.length;
for (int i = 0; i < n / 2; i++) {
int temp = array[i];
array[i] = array[n - i - 1];
array[n - i - 1] = temp;
}
}
public static long nCr(int n,int k)
{
long ans=1L;
k=k>n-k?n-k:k;
for( int j=1;j<=k;j++,n--)
{
if(n%j==0)
{
ans*=n/j;
}else
if(ans%j==0)
{
ans=ans/j*n;
}else
{
ans=(ans*n)/j;
}
}
return ans;
}
static int searchMax(int index,long[]inp) {
while(index+1<inp.length &&inp[index+1]>inp[index]) {
index+=1;
}
return index;
}
static int searchMin(int index,long[]inp) {
while(index+1<inp.length &&inp[index+1]<inp[index]) {
index+=1;
}
return index;
}
public class ListNode {
int val;
ListNode next;
ListNode() {}
ListNode(int val) { this.val = val; }
ListNode(int val, ListNode next) { this.val = val; this.next = next; }
}
static class Pairr implements Comparable<Pairr>{
private int index;
private int cumsum;
private ArrayList<Integer>indices;
public Pairr(int index,int cumsum) {
this.index=index;
this.cumsum=cumsum;
indices=new ArrayList<Integer>();
}
public int compareTo(Pairr other) {
return Integer.compare(cumsum, other.cumsum);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
02e9c9e43bedc08524e5614a46f497a4
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
public class A {
public static int gcd(int a, int b) {
if (a > b) {
int t = b;
b = a;
a = t;
}
if (a == 0) {
return b;
}
return gcd(b % a, a);
}
static int low_bound(LinkedList<Integer> ll, int l, int r, int x) {//l和r为下标,x为目标值
while (l <= r) {
int mid = (l + r) >> 1;
if (ll.get(mid) >= x)
r = mid - 1;
else
l = mid + 1;
}
return r;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
sc.nextLine();
String ss = sc.nextLine();
String tt = sc.nextLine();
char[] s = ss.toCharArray();
char[] t = tt.toCharArray();
int cur = 0;
int[] dp1 = new int[m];
int[] dp2 = new int[m];
for (int i = 0; i < m; i++) {
while (s[cur] != t[i]) {
cur++;
}
dp1[i] = cur++;
}
cur = n - 1;
for (int i = m - 1; i >= 0; i--) {
while (s[cur] != t[i]) {
cur--;
}
dp2[i] = cur--;
}
int re = 0;
for (int i = 0; i < m - 1; i++) {
re = Math.max(re, dp2[i + 1] - dp1[i]);
}
System.out.println(re);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
ac3f4315dc1ab9b7ac05e69f4f1cd054
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Anubhav
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
CMaximumWidth solver = new CMaximumWidth();
solver.solve(1, in, out);
out.close();
}
static class CMaximumWidth {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int m = in.nextInt();
char s[] = new char[n];
for (int i = 0; i < n; i++)
s[i] = in.nextCharacter();
char t[] = new char[n];
for (int i = 0; i < m; i++)
t[i] = in.nextCharacter();
int first[] = new int[m];
int second[] = new int[m];
int f = 0;
for (int i = 0; i < n; i++) {
if (f == m)
break;
if (s[i] == t[f]) {
first[f] = i;
f++;
}
}
f = m - 1;
for (int i = n - 1; i >= 0; i--) {
if (f < 0)
break;
if (s[i] == t[f]) {
second[f] = i;
f--;
}
}
int ans = -1;
for (int i = 1; i < m; i++) {
int r = second[i] - first[i - 1];
ans = Math.max(ans, r);
}
out.println(ans);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char nextCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
2e007b893169c6e3fe70d8933a0e5ed1
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
CMaximumWidth solver = new CMaximumWidth();
solver.solve(1, in, out);
out.close();
}
static class CMaximumWidth {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), m = in.nextInt();
char[] s = in.next().toCharArray();
char[] t = in.next().toCharArray();
int[] left = new int[m];
int[] right = new int[m];
int j = 0;
for (int i = 0; i < m; i++) {
while (s[j] != t[i]) j++;
left[i] = j;
j++;
}
j = n - 1;
for (int i = m - 1; i >= 0; i--) {
while (s[j] != t[i]) j--;
right[i] = j;
j--;
}
int ans = 0;
for (int i = 1; i < m; i++) {
ans = Math.max(ans, right[i] - left[i - 1]);
}
out.println(ans);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(int i) {
writer.println(i);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
021f360b87e1cd668bd15487a2cc6129
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
public class Solutions {
//static ArrayList<ArrayList<Integer>>list=new ArrayList<ArrayList<Integer>>();
static FastScanner scr=new FastScanner();
static PrintStream out=new PrintStream(System.out);
public static void main(String []args) {
// int T=scr.nextInt();
// t:for (int tt=0; tt<T; tt++) {
int n=scr.nextInt();
int m=scr.nextInt();
char s[]=scr.next().toCharArray();
char t[]=scr.next().toCharArray();
int left[]=new int[m];
int right[]=new int[m];
int i=0;
int j=0;
while(i<n && j<m) {
if(t[j]==s[i]) {
left[j]=i;
j++;
}
i++;
}
i=n-1;
j=m-1;
while(i>=0 && j>=0) {
if(t[j]==s[i]) {
right[j]=i;
j--;
}
i--;
}
int diff=MIN;
for(int k=1;k<m;k++) {
diff=Math.max(diff,right[k]-left[k-1]);
}
out.println(diff);
// }
}
static long modPow(long base,long exp,long mod) {
if(exp==0) {
return 1;
}
if(exp%2==0) {
long res=(modPow(base,exp/2,mod));
return (res*res)%mod;
}
return (base*modPow(base,exp-1,mod))%mod;
}
static long gcd(long a,long b) {
if(b==0) {
return a;
}
return gcd(b,a%b);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int[] sort(int a[]) {
Arrays.sort(a);
return a;
}
int []reverse(int a[]){
int b[]=new int[a.length];
int index=0;
for(int i=a.length-1;i>=0;i--) {
b[index]=a[i];
}
return b;
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readLongArray(int n) {
long [] a=new long [n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static int MAX=Integer.MAX_VALUE;
static int MIN=Integer.MIN_VALUE;
}class triplet{
int x;
int y;
int z;
triplet(int fisrt,int second,int third){
this.x=fisrt;
this.y=second;
this.z=third;
}
}
class pair{
int x=0;
int y=0;
pair(int first,int second){
this.x=first;
this.y=second;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
654dca7fda8a1df2ee3a2650ffa83d7f
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
//Some of the methods are copied from GeeksforGeeks Website
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static FastReader sc=new FastReader(System.in);
// abbc
// abc
static void fill_Min(char sn[],char sm[],int n,int m,int a[])
{
int ind=0,i=0;
for(i=0;i<n;i++)
{
if(ind<m && sn[i]==sm[ind])
{
a[ind++]=i;
}
}
}
static void fill_Max(char sn[],char sm[],int n,int m,int b[])
{
int ind=m-1,i=n-1;
for(i=n-1;i>=0;i--)
{
if(ind>=0 && sn[i]==sm[ind])
{
b[ind--]=i;
}
}
}
public static void main (String[] args) throws java.lang.Exception
{
try{
int t = 1;// sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int m=sc.nextInt();
String snn=sc.next();
String smm=sc.next();
char sn[]=snn.toCharArray();
char sm[]=smm.toCharArray();
int a[]=new int[m];
int b[]=new int[m];
fill_Min(sn,sm,n,m,a);
fill_Max(sn,sm,n,m,b);
//print(a);
//print(b);
int max=0;
for(int i=1;i<m;i++)
{
int dif=Math.abs(b[i]-a[i-1]);
max=Math.max(dif,max);
}
out.println(max);
}
out.flush();
out.close();
}
catch(Exception e)
{}
}
/*
...SOLUTION ENDS HERE...........SOLUTION ENDS HERE...
*/
static void flag(boolean flag)
{
out.println(flag ? "YES" : "NO");
out.flush();
}
/*
Map<Long,Long> map=new HashMap<>();
for(int i=0;i<n;i++)
{
if(!map.containsKey(a[i]))
map.put(a[i],1);
else
map.replace(a[i],map.get(a[i])+1);
}
Set<Map.Entry<Long,Long>> hmap=map.entrySet();
for(Map.Entry<Long,Long> data : hmap)
{
}
Iterator<Integer> it = set.iterator();
while(it.hasNext())
{
int x=it.next();
}
*/
static void print(int a[])
{
int n=a.length;
for(int i=0;i<n;i++)
{
out.print(a[i]+" ");
}
out.println();
out.flush();
}
static void print(long a[])
{
int n=a.length;
for(int i=0;i<n;i++)
{
out.print(a[i]+" ");
}
out.println();
out.flush();
}
static void print_int(ArrayList<Integer> al)
{
int si=al.size();
for(int i=0;i<si;i++)
{
out.print(al.get(i)+" ");
}
out.println();
out.flush();
}
static void print_long(ArrayList<Long> al)
{
int si=al.size();
for(int i=0;i<si;i++)
{
out.print(al.get(i)+" ");
}
out.println();
out.flush();
}
static class Graph
{
int v;
ArrayList<Integer> list[];
Graph(int v)
{
this.v=v;
list=new ArrayList[v+1];
for(int i=1;i<=v;i++)
list[i]=new ArrayList<Integer>();
}
void addEdge(int a, int b)
{
this.list[a].add(b);
}
}
static void DFS(Graph g, boolean[] visited, int u)
{
visited[u]=true;
int v=0;
for(int i=0;i<g.list[u].size();i++)
{
v=g.list[u].get(i);
if(!visited[v])
DFS(g,visited,v);
}
}
// static class Pair
// {
// int x,y;
// Pair(int x,int y)
// {
// this.x=x;
// this.y=y;
// }
// }
static long sum_array(int a[])
{
int n=a.length;
long sum=0;
for(int i=0;i<n;i++)
sum+=a[i];
return sum;
}
static long sum_array(long a[])
{
int n=a.length;
long sum=0;
for(int i=0;i<n;i++)
sum+=a[i];
return sum;
}
static void sort(int[] a)
{
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void sort(long[] a)
{
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void reverse_array(int a[])
{
int n=a.length;
int i,t;
for (i = 0; i < n / 2; i++) {
t = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = t;
}
}
static void reverse_array(long a[])
{
int n=a.length;
int i; long t;
for (i = 0; i < n / 2; i++) {
t = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = t;
}
}
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
static class FastReader{
byte[] buf = new byte[2048];
int index, total;
InputStream in;
FastReader(InputStream is) {
in = is;
}
int scan() throws IOException {
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0) {
return -1;
}
}
return buf[index++];
}
String next() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan());
StringBuilder sb = new StringBuilder();
for (; c > 32; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
int nextInt() throws IOException {
int c, val = 0;
for (c = scan(); c <= 32; c = scan());
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
long nextLong() throws IOException {
int c;
long val = 0;
for (c = scan(); c <= 32; c = scan());
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
}
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
static PrintWriter out=new PrintWriter(System.out);
static int int_max=Integer.MAX_VALUE;
static int int_min=Integer.MIN_VALUE;
static long long_max=Long.MAX_VALUE;
static long long_min=Long.MIN_VALUE;
}
// Thank You !
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
e8dcc680a73d3e9e1cf69ee2f3392f6d
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve() throws IOException {
int n= ni(), m= ni();
char[] s= ns(n), t= ns(m);
HashMap<Character, List<Integer>> map = new HashMap<>();
for(int i=0;i<s.length;i++)
{
if(map.containsKey(s[i]))
map.get(s[i]).add(i+1);
else
{
ArrayList<Integer> list= new ArrayList<>();
list.add(i+1);
map.put(s[i], list);
}
}
int[] all= new int[26];
for(char c: t)
all[c-'a']++;
int[] max= new int[m];
for(int i=m-1;i>=0;i--)
{
char next= t[i];
max[i]= binarySearch(map.get(next), 0, map.get(next).size()-1, i==m-1? n: max[i+1]-1);
}
int[] min= new int[m];
for(int i=0;i<m;i++)
{
char next= t[i];
min[i]= binarySearch2(map.get(next), 0, map.get(next).size()-1, i==0? 1: min[i-1]+1);
}
int ans= 0;
for(int i=1;i<m;i++)
ans= Math.max(ans, max[i]- min[i-1]);
out.println(ans);
}
private int binarySearch(List<Integer> arr, int start, int last, int find) {
int ret= -1;
while(start<= last)
{
int mid= start+ (last- start)/2;
if(arr.get(mid)== find)
return arr.get(mid);
else if(arr.get(mid)< find)
{
ret= arr.get(mid);
start= mid+1;
}
else
last= mid-1;
}
return ret;
}
private int binarySearch2(List<Integer> arr, int start, int last, int find) {
int ret= -1;
while(start<= last)
{
int mid= start+ (last- start)/2;
if(arr.get(mid)== find)
return arr.get(mid);
else if(arr.get(mid)> find)
{
ret= arr.get(mid);
last= mid-1;
}
else
start= mid+1;
}
return ret;
}
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception {
new C().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b)) ;
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++) map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) {
if (INPUT.length() > 0) System.out.println(Arrays.deepToString(o));
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
3d689aa63222a176135ec075dcf5dc69
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.math.*;
import java.util.*;
// @author : Dinosparton
public class test {
static class Pair{
long x;
long y;
Pair(long x,long y){
this.x = x;
this.y = y;
}
}
static class Compare {
void compare(Pair arr[], int n)
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{
if(p1.x!=p2.x) {
return (int)(p1.x - p2.x);
}
else {
return (int)(p1.y - p2.y);
}
}
});
// for (int i = 0; i < n; i++) {
// System.out.print(arr[i].x + " " + arr[i].y + " ");
// }
// System.out.println();
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String args[]) throws Exception {
Scanner sc = new Scanner();
StringBuffer res = new StringBuffer();
int tc = 1;
while(tc-->0) {
int n = sc.nextInt();
int m = sc.nextInt();
String s = sc.next();
String t = sc.next();
int start[] = new int[m];
int end[] = new int[m];
int i=0,j=0;
int p = 0;
while(i<n && j<m) {
if(s.charAt(i)==t.charAt(j)) {
start[p] = i;
p++;
i++;
j++;
}
else {
i++;
}
}
i = n-1;
j = m-1;
p = m-1;
while(i>=0 && j>=0) {
if(s.charAt(i)==t.charAt(j)) {
end[p] = i;
p--;
i--;
j--;
}
else {
i--;
}
}
int ans = 0;
// for(int k=0;k<m;k++) {
// System.out.print(start[k]+" ");
// }
// System.out.println();
// for(int k=0;k<m;k++) {
// System.out.print(end[k]+" ");
// }
// System.out.println();
for(int k=0;k<m-1;k++) {
ans = Math.max(ans, Math.abs(start[k] - end[k+1]));
}
System.out.println(ans);
}
System.out.println(res);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
2bd80a096a1b4f32972f743b4d8db2b5
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeSet;
import java.io.IOException;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
public class S2 {
public static class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
static void init(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
while(!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
}
private static class Node implements Comparable<Node> {
public int ix;
public int parents;
public ArrayList<Node> children;
public boolean visited;
public Node(int i) {
// TODO Auto-generated constructor stub
ix=i+1;
parents=0;
children = new ArrayList<Node>();
visited = false;
}
public void addC(Node ch) {
children.add(ch);
ch.parents++;
}
public void dfs() {
visited=true;
int l = children.size();
for(int i=0; i<l; i++) {
Node child = children.get(i);
if(!child.visited) {
child.dfs();
}
}
}
@Override
public int compareTo(Node o) {
// TODO Auto-generated method stub
return ix-o.ix;
}
}
public static Node[] tree;
private static class Stac {
public int s;
public int l;
public int[] arr;
public Stac(ArrayList<Integer> li) {
// TODO Auto-generated constructor stub
s=0;
l=li.size();
arr = new int[l];
for(int i=0; i<l; i++) {
arr[i] = li.get(i);
}
}
public int first() {
return arr[s];
}
public void remove() {
s++;
}
public int peek() {
return arr[l-1];
}
public void pop() {
l--;
}
}
private static int n;
private static long nl;
private static long ans;
private final static long fd = 998244353;
private final static long mod1 = 1000000007;
public static void main(String[] args) throws IOException {
Reader.init(System.in);
PrintWriter out = new PrintWriter(System.out);
int tc=1;
// tc = Reader.nextInt();
main_loop:
for(int tn=0; tn<tc; tn++) {
n = Reader.nextInt();
int m = Reader.nextInt();
char[] a = Reader.next().toCharArray();
char[] b = Reader.next().toCharArray();
ArrayList<Integer>[] ch = new ArrayList[26];
for(int i=0; i<26; i++) {
ch[i] = new ArrayList<Integer>();
}
for(int i=0; i<n; i++) {
int cur = a[i]-'a';
ch[cur].add(i);
}
Stac[] ch1 = new Stac[26];
for(int i=0; i<26; i++) {
ch1[i] = new Stac(ch[i]);
}
ans=0;
int[] upos = new int[m];
int c = b[m-1]-'a';
upos[m-1] = ch1[c].peek();
for(int i=m-2; i>=0; i--) {
c = b[i]-'a';
while(ch1[c].peek()>=upos[i+1]) {
ch1[c].pop();
}
upos[i] = ch1[c].peek();
}
Stac[] ch2 = new Stac[26];
for(int i=0; i<26; i++) {
ch2[i] = new Stac(ch[i]);
}
ans=0;
int[] lpos = new int[m];
c = b[0]-'a';
lpos[0] = ch2[c].first();
for(int i=1; i<m; i++) {
c = b[i]-'a';
while(ch2[c].first()<=lpos[i-1]) {
ch2[c].remove();
}
lpos[i] = ch2[c].first();
}
for(int i=0; i<m-1; i++) {
int x = upos[i+1]-lpos[i];
if(x>ans) {
ans=x;
}
}
out.println(ans);
// out.write(("YES").getBytes());
// out.write(("NO").getBytes());
// out.write((ans+" ").getBytes());
// out.print(ans+"\n");
}
out.flush();
out.close();
}
private static void initTree(int n) throws IOException {
tree = new Node[n];
for(int i=0; i<n; i++) {
tree[i]=new Node(i);
}
for(int i=0; i<n-1; i++) {
int u = Reader.nextInt()-1;
int v = Reader.nextInt()-1;
tree[u].addC(tree[v]);
tree[v].addC(tree[u]);
}
}
private static long solve(TreeSet<Node> marked, TreeSet<Node> unMarked) {
if(marked.size()==n) {
return 0;
}
else {
long ret=0;
int l = unMarked.size();
int x=0;
for(Node cur: unMarked) {
TreeSet<Node> tmarked = new TreeSet<S2.Node>(marked);
TreeSet<Node> tunMarked = new TreeSet<S2.Node>(unMarked);
tmarked.add(cur);
tunMarked.remove(cur);
cur.visited=true;
int l1 = cur.children.size();
for(int i=0; i<l1; i++) {
Node childNode = cur.children.get(i);
if(childNode.visited) {
}
else {
tunMarked.add(childNode);
}
}
ret+=x;
ret%=mod1;
ret+=solve(tmarked, tunMarked);
ret%=mod1;
x++;
}
return modDiv(ret, l);
}
}
private static long modPow(long a, int p){
long m = mod1;
if(p==0){
return 1;
}
if(a==1){
return 1;
}
long x = modPow(a, p/2);
long y = (x*x);
y%=m;
if(p%2==1){
y = (y*a);
}
return (y%m);
}
private static long modDiv(long p, long q) {
long mp = modPow(q, (int)mod1-2);
mp%=mod1;
p%=mod1;
mp*=p;
mp%=mod1;
return mp;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
ac7051fbd568e47ff8426a2e79102628
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
import java.text.*;
public class Codeforces {
static int mod=998244353 ;
public static void main(String[] args) throws Exception {
PrintWriter out=new PrintWriter(System.out);
FastScanner fs=new FastScanner();
int n=fs.nextInt();
int m=fs.nextInt();
char s[]=fs.next().toCharArray();
char t[]=fs.next().toCharArray();
// int n=s.length, m=t.length;
int left[]=new int[m];
int right[]=new int[m];
int j=0;
int i=0;
while(j<m) {
while(s[i]!=t[j])
i++;
left[j]=i;
i++; j++;
}
j=m-1;
i=n-1;
while(j>=0) {
while(s[i]!=t[j])
i--;
right[j]=i;
i--; j--;
}
int ans=0;
for(j=0;j<m-1;j++) {
ans=Math.max(ans, right[j+1]-left[j]);
}
out.println(ans);
out.close();
}
static void add(int arr[]) {
int carry=1;
int ind=0;
while(carry!=0) {
if(arr[ind]==1) {
arr[ind]=0;
ind++;
}
else {
arr[ind]=1;
carry=0;
}
}
}
static int gcd(int a,int b) {
if(b==0) return a;
return gcd(b,a%b);
}
static void sort(int[] a) {
//suffle
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n);
int temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
//then sort
Arrays.sort(a);
}
// Use this to input code since it is faster than a Scanner
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
ca1f725ba58b5ef8e985245d64829ac9
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.Arrays;
public class max_width {
static StreamTokenizer in;
static int nextInt() throws Exception {
in.nextToken();
return (int) in.nval;
}
static String next() throws Exception {
in.nextToken();
return (String) in.sval;
}
public static void main(String[] args) throws Exception {
//in = new StreamTokenizer(new BufferedReader(new FileReader("test.in")));
in=new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
int m=nextInt(), n=nextInt();
String s=next(), t=next();
int []prefix=new int[n], suffix=new int[n];
for(int i=0,j=0;i<n&&j<m;i++,j++) {
while(j<m&&s.charAt(j)!=t.charAt(i)) {
j++;
}
prefix[i]=j;
}
for(int i=n-1,j=m-1;i>=0&&j>=0;i--,j--) {
while(j>=0&&s.charAt(j)!=t.charAt(i)) {
j--;
}
suffix[i]=j;
}
int max=-1;
for(int i=0;i<n-1;i++) {
int length=n-(i+1);
if(suffix[n-length]==Integer.MAX_VALUE || prefix[i]==Integer.MAX_VALUE) continue;
// System.out.println(prefix[i]+ " "+suffix[n-length]);
max=Math.max(max, Math.abs(prefix[i]-suffix[n-length]));
}
System.out.println(max);
// System.out.println(Arrays.toString(prefix));
// System.out.println(Arrays.toString(suffix));
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
6314fa8e069c8c40857d1a0158c4a0e3
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Maximum_width
{
public static void process()throws IOException
{
int n=I();
int m=I();
String s=S();
String t=S();
int max[]=new int[m];
int min[]=new int[m];
char ch[]=s.toCharArray();
char ch1[]=t.toCharArray();
int pos=0;
for(int i=0;i<m;i++)
{
while(ch[pos]!=ch1[i])
{
pos++;
}
min[i]=pos;
pos++;
}
pos=n-1;
for(int i=m-1;i>=0;i--)
{
while(ch[pos]!=ch1[i])
{
pos--;
}
max[i]=pos;
pos--;
}
// pn(Arrays.toString(max));
// pn(Arrays.toString(min));
int maxi=0;
for(int i=1;i<m;i++)
{
maxi=Math.max(maxi, max[i]-min[i-1]);
}
pn(maxi);
}
static Scanner sc = new Scanner(System.in);
static PrintWriter out = new PrintWriter(System.out);
static void pn(Object o){out.println(o);out.flush();}
static void p(Object o){out.print(o);out.flush();}
static void pni(Object o){out.println(o);System.out.flush();}
static int I() throws IOException{return sc.nextInt();}
static long L() throws IOException{return sc.nextLong();}
static double D() throws IOException{return sc.nextDouble();}
static String S() throws IOException{return sc.next();}
static char C() throws IOException{return sc.next().charAt(0);}
static int[] Ai(int n) throws IOException{int[] arr = new int[n];for (int i = 0; i < n; i++)arr[i] = I();return arr;}
static String[] As(int n) throws IOException{String s[] = new String[n];for (int i = 0; i < n; i++)s[i] = S();return s;}
static long[] Al(int n) throws IOException {long[] arr = new long[n];for (int i = 0; i < n; i++)arr[i] = L();return arr;}
static void dyn(int dp[][],int n,int m,int z)throws IOException {for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ dp[i][j]=z;}} }
// *--------------------------------------------------------------------------------------------------------------------------------*//
static class AnotherReader {BufferedReader br;StringTokenizer st;AnotherReader() throws FileNotFoundException {br = new BufferedReader(new InputStreamReader(System.in));}
AnotherReader(int a) throws FileNotFoundException {br = new BufferedReader(new FileReader("input.txt"));}
String next() throws IOException{while (st == null || !st.hasMoreElements()) {try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}}return st.nextToken();}
int nextInt() throws IOException {return Integer.parseInt(next());}
long nextLong() throws IOException {return Long.parseLong(next());}
double nextDouble() throws IOException {return Double.parseDouble(next());}
String nextLine() throws IOException {String str = "";try {str = br.readLine();} catch (IOException e) {e.printStackTrace();}return str;}}
public static void main(String[] args)throws IOException{try{boolean oj=true;if(oj==true)
{AnotherReader sk=new AnotherReader();PrintWriter out=new PrintWriter(System.out);}
else
{AnotherReader sk=new AnotherReader(100);out=new PrintWriter("output.txt");}
//long T=L();while(T-->0)
{process();}out.flush();out.close();}catch(Exception e){return;}}}
//*-----------------------------------------------------------------------------------------------------------------------------------*//
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
83f9cf745bbc5969893628adf5de06f7
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
static class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
Reader rd = new Reader();
int n = rd.nextInt();
int m = rd.nextInt();
String s = rd.next();
String t = rd.next();
int[] min = new int[m];
int[] max = new int[m];
Arrays.fill(min, Integer.MAX_VALUE);
Arrays.fill(max, Integer.MIN_VALUE);
int w = 0;
int j = 0;
for (int i = 0; i < m; i++) {
while (s.charAt(j) != t.charAt(i)) j++;
min[i] = j;
j++;
}
j = n - 1;
for (int i = m - 1; i > -1; i--) {
while (s.charAt(j) != t.charAt(i)) j--;
max[i] = j;
j--;
}
for (int i = 0; i < m - 1; i++) {
w = Integer.max(w, max[i + 1] - min[i]);
}
System.out.println(w);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
a6707148d24bd5cbb1536656c1446efc
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.Scanner;
import java.util.TreeSet;
public class C {
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int lenA = scn.nextInt();
int lenB = scn.nextInt();
char[] a = scn.next().toCharArray();
char[] b = scn.next().toCharArray();
TreeSet<Integer>[] indexSets = new TreeSet[26];
for (int i = 0; i < 26; i++) indexSets[i] = new TreeSet<>();
Pair[] feasibleIndices = new Pair[lenB];
for (int i = 0; i < lenA; i++) {
indexSets[a[i] - 'a'].add(i);
}
int firstChar = b[0] - 'a';
feasibleIndices[0] = new Pair(-1, indexSets[firstChar].first());
for (int i = 1; i < lenB; i++) {
int chr = b[i] - 'a';
Pair preP = feasibleIndices[i - 1];
Pair p = new Pair(-1, indexSets[chr].higher(preP.min));
feasibleIndices[i] = p;
}
int lastChar = b[lenB - 1] - 'a';
feasibleIndices[lenB - 1].max = indexSets[lastChar].last();
for (int i = lenB - 2; i >= 0; i--) {
int chr = b[i] - 'a';
Pair sufP = feasibleIndices[i + 1];
feasibleIndices[i].max = indexSets[chr].lower(sufP.max);
}
int max = 0;
for (int i = 1; i < lenB; i++) {
Pair p = feasibleIndices[i];
Pair preP = feasibleIndices[i - 1];
int cur = p.max - preP.min;
max = Integer.max(max, cur);
}
System.out.println(max);
}
}
class Pair {
int max, min;
public Pair(int max, int min) {
this.max = max;
this.min = min;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
67aa1674e10217d5752303ad76b8b03e
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.*;
import java.lang.*;
public class third {
public static void main(String[] args) {
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
} catch (Exception e) {
// System.err.println("Error");
// System.out.println("Error");
}
Scanner sc = new Scanner(System.in);
int t = 1;
while(t-->0){
int n = sc.nextInt();
int m = sc.nextInt();
char[] s1 = sc.next().toCharArray();
char [] s2 = sc.next().toCharArray();
int [] l = new int[m];
int [] r = new int[m];
int pos = 0;
for(int i=0;i<m;i++){
while(pos<n && s1[pos]!= s2[i] ) pos++;
l[i] = pos;
pos++;
}
pos = n-1;
for(int i=m-1;i>=0;i--){
while(pos>=0 && s1[pos]!=s2[i]) pos--;
r[i] = pos;
pos--;
}
int max = 0;
for(int i=0;i<m-1;i++){
max = Math.max(max, r[i+1]-l[i]);
}
System.out.println(max);
}
sc.close();
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
d13f576b83d72d577b2dc39d8a7ef071
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.ArrayList;
import java.util.StringTokenizer;
public class C_MaximumWidth {
private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static final PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static StringTokenizer st;
private static int readInt() throws IOException {
while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return Integer.parseInt(st.nextToken());
}
public static void main(String[] args) throws IOException {
int n = readInt();
int m = readInt();
char[] s = br.readLine().toCharArray();
char[] t = br.readLine().toCharArray();
int answer = maxWidth(n, m, s, t);
pw.println(answer);
pw.close();
}
private static int maxWidth(int ns, int nt, char[] s, char[] t) {
ArrayList<Integer>[] indices = new ArrayList[26];
for (int i = 0; i < 26; i++) indices[i] = new ArrayList<>();
for (int i = 0; i < ns; i++) indices[s[i] - 'a'].add(i);
int[] pMin = new int[nt];
pMin[0] = -1;
for (int i = 1; i < nt; i++) {
ArrayList<Integer> arr = indices[t[i - 1] - 'a'];
pMin[i] = arr.get(firstGreater(arr, pMin[i - 1]));
}
int[] sMax = new int[nt];
sMax[nt - 1] = ns;
for (int i = nt - 2; i >= 0; i--) {
ArrayList<Integer> arr = indices[t[i + 1] - 'a'];
sMax[i] = arr.get(lastSmaller(arr, sMax[i + 1]));
}
int maxW = 0;
for (int i = 1; i < nt; i++) {
maxW = Math.max(maxW, sMax[i - 1] - pMin[i]);
}
return maxW;
}
static int firstGreater(ArrayList<Integer> arr, int key) {
int low = -1, high = arr.size();
while (low + 1 < high) {
int mid = (low + high) / 2;
if (arr.get(mid) > key) high = mid;
else low = mid;
}
return high;
}
static int lastSmaller(ArrayList<Integer> arr, int key) {
int low = -1, high = arr.size();
while (low + 1 < high) {
int mid = (low + high) / 2;
if (arr.get(mid) < key) low = mid;
else high = mid;
}
return low;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
f7bec99ab9f5cac558bba40afc2a2c91
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.ArrayList;
import java.util.StringTokenizer;
public class C_MaximumWidth {
private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static final PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static StringTokenizer st;
private static int readInt() throws IOException {
while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return Integer.parseInt(st.nextToken());
}
public static void main(String[] args) throws IOException {
int n = readInt();
int m = readInt();
char[] s = br.readLine().toCharArray();
char[] u = br.readLine().toCharArray();
int answer = maxWidth(n, m, s, u);
pw.println(answer);
pw.close();
}
private static int maxWidth(int ns, int nu, char[] s, char[] u) {
ArrayList<Integer>[] indices = new ArrayList[26];
for (int i = 0; i < 26; i++) {
indices[i] = new ArrayList<>();
}
for (int i = 0; i < ns; i++) {
indices[s[i] - 'a'].add(i);
}
int[] pMin = new int[nu + 1];
pMin[0] = -1;
for (int i = 1; i <= nu; i++) {
ArrayList<Integer> arr = indices[u[i - 1] - 'a'];
pMin[i] = arr.get(firstGreater(arr, 0, arr.size() - 1, pMin[i - 1]));
}
int[] sMax = new int[nu + 1];
sMax[nu] = ns;
for (int i = nu - 1; i >= 0; i--) {
ArrayList<Integer> arr = indices[u[i] - 'a'];
sMax[i] = arr.get(lastSmaller(arr, 0, arr.size() - 1, sMax[i + 1]));
}
int maxW = 0;
for (int i = 1; i < nu; i++) {
maxW = Math.max(maxW, sMax[i] - pMin[i]);
}
return maxW;
}
static int firstGreater(ArrayList<Integer> arr, int low, int high, int key) {
low--;
high++;
while (low + 1 < high) {
int mid = (low + high) / 2;
if (arr.get(mid) > key) high = mid;
else low = mid;
}
return high;
}
static int lastSmaller(ArrayList<Integer> arr, int low, int high, int key) {
low--;
high++;
while (low + 1 < high) {
int mid = (low + high) / 2;
if (arr.get(mid) < key) low = mid;
else high = mid;
}
return low;
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
6b869427408039eaa2960ffcef4ed0a7
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
public class Main {
static long mod = (long) 1e9 + 7;
static long mod1 = 998244353;
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int n = in.nextInt();
int m = in.nextInt();
char[] a = in.next().toCharArray();
char[] b = in.next().toCharArray();
int[][] dd=new int[m][2];
int i=0;
int j=0;
int max=0;
while(i<n && j<m){
if(a[i]==b[j]){
dd[j][0]=i;
i++;
j++;
}
else
i++;
}
i=n-1;
j=m-1;
while(i>=0 && j>=0){
if(a[i]==b[j]){
dd[j][1]=i;
i--;
j--;
}
else
i--;
}
for( i=1;i<m;i++) {
// out.println(dd[i-1][0]+" "+dd[i-1][1]);
max = Math.max(max, dd[i][1] - dd[i - 1][0]);
}
out.println(max);
out.close();
}
static final Random random = new Random();
static void ruffleSort(int[] a) {
int n = a.length;//shuffle, then sort
for (int i = 0; i < n; i++) {
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
}
static long gcd(long x, long y) {
if (x == 0)
return y;
if (y == 0)
return x;
long r = 0, a, b;
a = Math.max(x, y);
b = Math.min(x, y);
r = b;
while (a % b != 0) {
r = a % b;
a = b;
b = r;
}
return r;
}
static long modulo(long a, long b, long c) {
long x = 1, y = a % c;
while (b > 0) {
if (b % 2 == 1)
x = (x * y) % c;
y = (y * y) % c;
b = b >> 1;
}
return x % c;
}
public static void debug(Object... o) {
System.err.println(Arrays.deepToString(o));
}
static String printPrecision(double d) {
DecimalFormat ft = new DecimalFormat("0.00000000000");
return String.valueOf(ft.format(d));
}
static int countBit(long mask) {
int ans = 0;
while (mask != 0) {
mask &= (mask - 1);
ans++;
}
return ans;
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] readArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) arr[i] = nextInt();
return arr;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
f2033bdf6b0c3cbc91d89ff3b46e3bcc
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.*;
import java.util.StringTokenizer;
public class codeforces704_C {
private static void solve(FastIOAdapter ioAdapter) {
int n = ioAdapter.nextInt();
int m = ioAdapter.nextInt();
char[] s = ioAdapter.next().toCharArray();
char[] t = ioAdapter.next().toCharArray();
int[] indicesFirst = new int[m];
int[] indicesLast = new int[m];
int leftS = 0;
int rightS = n - 1;
int leftT = 0;
int rightT = m - 1;
for (int i = 0; i < m; i++) {
while (s[leftS] != t[leftT]) {
leftS++;
}
indicesFirst[leftT] = leftS;
leftS++;
leftT++;
while (s[rightS] != t[rightT]) {
rightS--;
}
indicesLast[rightT] = rightS;
rightS--;
rightT--;
}
int max = 0;
for (int i = 0; i < m - 1; i++) {
max = Math.max(max, indicesLast[i + 1] - indicesFirst[i]);
}
ioAdapter.out.println(max);
}
public static void main(String[] args) throws Exception {
try (FastIOAdapter ioAdapter = new FastIOAdapter()) {
int count = 1;
// count = ioAdapter.nextInt();
while (count-- > 0) {
solve(ioAdapter);
}
}
}
static class FastIOAdapter implements AutoCloseable {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter((System.out))));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
@Override
public void close() throws Exception {
out.flush();
out.close();
br.close();
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
5b0a1184ae84bb4c871a38b7b1e4ef24
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class MaximumWidth1 {
public static void main (String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = 1;
while (t-- > 0) {
String[] st = br.readLine().split(" ");
int n = Integer.parseInt(st[0]);
int m = Integer.parseInt(st[1]);
String a = br.readLine();
String b = br.readLine();
int[] left = new int[m];
int[] right = new int[m];
int i = 0;
for(int j = 0; j < n; j++) {
if(i >= m) break;
if(a.charAt(j) == b.charAt(i)) {
left[i] = j;
i++;
}
}
i = m-1;
for(int j = n-1; j >= 0; j--) {
if(i < 0) break;
if(a.charAt(j) == b.charAt(i)) {
right[i] = j;
i--;
}
}
int ans = 1;
for(int j = 0; j < m-1; j++) {
ans = Math.max(ans, right[j+1] - left[j]);
}
System.out.println(ans);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
43be5cbc8ccf0725b60e9affbb868df3
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class MaximumWidth {
static int MAXN = 1123456;
static boolean[] prime = new boolean[MAXN];
static boolean[] used = new boolean[MAXN];
public static void seive() {
for (int i = 2; i < MAXN; ++i) if (!used[i]){
prime[i] = true;
for (int j = i; j < MAXN; j += i) {
used[j] = true;
}
}
prime[1] = false;
}
// pair
// class Pair implements Comparable<Pair>{
// int ind,val;
// Pair(int i,int v){ ind=i;val=v;}
// @Override
// public int compareTo(Pair o) {return o.val-val ;}
// }
public static void main (String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int test = 1;
while (test-- > 0) {
String st[] = br.readLine().split(" ");
int n = Integer.parseInt(st[0]);
int m = Integer.parseInt(st[1]);
String s = br.readLine();
String t = br.readLine();
int[] left = new int[m];
int[] right = new int[m];
int i = 0;
for(int j = 0; j < n; j++) {
if(i >= m) break;
if(t.charAt(i) == s.charAt(j)) {
left[i] = j;
i++;
}
}
i = m-1;
for(int j = n-1; j >= 0; j--) {
if(i < 0) break;
if(t.charAt(i) == s.charAt(j)) {
right[i] = j;
i--;
}
}
int max = 1;
for(i = 1; i < m; i++){
max = Math.max(max, right[i] - left[i-1]);
}
System.out.println(max);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
b6a943540f0a7ad7351253c383d04206
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import static java.lang.Math.*;
import java.util.*;
import java.io.*;
public class Main {
static long MOD = (long) 1e9 + 7;
public static void main(String[] args) {
InputReader fs = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = fs.readInt(), m = fs.readInt();
String s = fs.readString(), t = fs.readString();
int diff = 1;
int last = -1;
for (int i = 0; i < n; i++) {
if (s.charAt(i) == t.charAt(0)) {
last = i;
break;
}
}
int[] right = new int[m];
int track = n-1;
for (int i = m-1; i >= 0; i--) {
while (track >= 0 && s.charAt(track) != t.charAt(i)) track--;
right[i] = track--;
}
for (int i = 1; i < m; i++) {
int idx = right[i];
diff = max(diff, idx - last);
for (int j = last + 1; j < n; j++) {
if (s.charAt(j) == t.charAt(i)) {
last = j;
break;
}
}
}
pw.println(diff);
pw.flush();
pw.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int[] readIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = readInt();
}
return a;
}
public int[] readIntArrayShifted(int n) {
int[] a = new int[n + 1];
for (int i = 0; i < n; i++) {
a[i + 1] = readInt();
}
return a;
}
public long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = readLong();
}
return a;
}
public String next() {
return readString();
}
interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
aadb84cc1fe77f1cad69dad63fb9c9f8
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import static java.lang.Math.*;
import java.util.*;
import java.io.*;
public class Main {
static long MOD = (long) 1e9 + 7;
public static void main(String[] args) {
InputReader fs = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = fs.readInt(), m = fs.readInt();
String s = fs.readString(), t = fs.readString();
int[][] m1 = new int[n][26];
int[][] m2 = new int[m][26];
for (int i = n-1; i >=0; i--) {
if (i + 1 < n) for (int j = 0; j < 26; j++) m1[i][j] = m1[i+1][j];
m1[i][s.charAt(i) - 'a']++;
}
for (int i = m-1; i >=0; i--) {
if (i + 1 < m) for (int j = 0; j < 26; j++) m2[i][j] = m2[i+1][j];
m2[i][t.charAt(i) - 'a']++;
}
int diff = 1;
int last = -1;
for (int i = 0; i < n; i++) {
if (s.charAt(i) == t.charAt(0)) {
last = i;
break;
}
}
int[] right = new int[m];
int track = n-1;
for (int i = m-1; i >= 0; i--) {
while (track >= 0 && s.charAt(track) != t.charAt(i)) track--;
right[i] = track--;
}
for (int i = 1; i < m; i++) {
int idx = right[i];
// System.out.println("last: " + last);
// System.out.println("idx: " + idx);
diff = max(diff, idx - last);
for (int j = last + 1; j < n; j++) {
if (s.charAt(j) == t.charAt(i)) {
last = j;
break;
}
}
}
pw.println(diff);
pw.flush();
pw.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int[] readIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = readInt();
}
return a;
}
public int[] readIntArrayShifted(int n) {
int[] a = new int[n + 1];
for (int i = 0; i < n; i++) {
a[i + 1] = readInt();
}
return a;
}
public long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = readLong();
}
return a;
}
public String next() {
return readString();
}
interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
9630e452c7743b58de88ed96682190da
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.util.*;
import java.io.*;
public class Practice {
static boolean multipleTC = false;
final static int mod = 1000000007;
final static int mod2 = 998244353;
final double E = 2.7182818284590452354;
final double PI = 3.14159265358979323846;
int MAX = 100005;
void pre() throws Exception {
}
int mask[];
// All the best
void solve(int TC) throws Exception {
int n = ni(), m = ni();
char s[] = nln().toCharArray();
char t[] = nln().toCharArray();
TreeMap<Integer, Integer> first = new TreeMap<>();
TreeMap<Integer, Integer> last = new TreeMap<>();
int idx = 0;
for (int i = 0; i < n; i++) {
if (idx < m && s[i] == t[idx]) {
first.put(idx, i);
idx++;
}
}
idx--;
for (int i = n - 1; i >= 0; i--) {
if (idx >= 0 && s[i] == t[idx]) {
last.put(idx, i);
idx--;
}
}
int ans = 1;
for (int i = 0; i + 1 < m; i++) {
ans = max(ans, last.get(i + 1) - first.get(i));
}
pn(ans);
}
int[] readArr(int n) throws Exception {
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
void sort(int arr[], int left, int right) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = left; i <= right; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = left; i <= right; i++)
arr[i] = list.get(i - left);
}
void sort(int arr[]) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < arr.length; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < arr.length; i++)
arr[i] = list.get(i);
}
public long max(long... arr) {
long max = arr[0];
for (long itr : arr)
max = Math.max(max, itr);
return max;
}
public int max(int... arr) {
int max = arr[0];
for (int itr : arr)
max = Math.max(max, itr);
return max;
}
public long min(long... arr) {
long min = arr[0];
for (long itr : arr)
min = Math.min(min, itr);
return min;
}
public int min(int... arr) {
int min = arr[0];
for (int itr : arr)
min = Math.min(min, itr);
return min;
}
public long sum(long... arr) {
long sum = 0;
for (long itr : arr)
sum += itr;
return sum;
}
public long sum(int... arr) {
long sum = 0;
for (int itr : arr)
sum += itr;
return sum;
}
String bin(long n) {
return Long.toBinaryString(n);
}
String bin(int n) {
return Integer.toBinaryString(n);
}
static int bitCount(int x) {
return x == 0 ? 0 : (1 + bitCount(x & (x - 1)));
}
static void dbg(Object... o) {
System.err.println(Arrays.deepToString(o));
}
int bit(long n) {
return (n == 0) ? 0 : (1 + bit(n & (n - 1)));
}
int abs(int a) {
return (a < 0) ? -a : a;
}
long abs(long a) {
return (a < 0) ? -a : a;
}
void p(Object o) {
out.print(o);
}
void pn(Object o) {
out.println(o);
}
void pni(Object o) {
out.println(o);
out.flush();
}
String n() throws Exception {
return in.next();
}
String nln() throws Exception {
return in.nextLine();
}
int ni() throws Exception {
return Integer.parseInt(in.next());
}
long nl() throws Exception {
return Long.parseLong(in.next());
}
double nd() throws Exception {
return Double.parseDouble(in.next());
}
public static void main(String[] args) throws Exception {
new Practice().run();
}
FastReader in;
PrintWriter out;
void run() throws Exception {
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC) ? ni() : 1;
pre();
for (int t = 1; t <= T; t++)
solve(t);
out.flush();
out.close();
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception {
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
2df59417a9510b0b8a9071d43b1c6737
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class Maximum_width {
static class RealScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
public static void main(String[] args) {
RealScanner sc = new RealScanner();
int n, m;
n = sc.nextInt();
m = sc.nextInt();
String s1 = sc.next();
String s2 = sc.next();
int[] first = new int[m];
{
int p = 0;
for (int i = 0; i < m; i++) {
while (p < n && s1.charAt(p) != s2.charAt(i)) {
p++;
}
first[i] = p;
p++;
}
}
int[] last = new int[m];
{
int p = n - 1;
for (int i = m - 1; i >= 0; i--) {
while (p >= 0 && s1.charAt(p) != s2.charAt(i)) {
p--;
}
last[i] = p;
p--;
}
}
//System.out.println(Arrays.toString(first) + " " + Arrays.toString(last));
int res = 0;
for (int i = 0; i < m - 1; i++) {
res = Math.max(res, last[i + 1] - first[i]);
}
System.out.println(res);
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
| |
PASSED
|
b84da348196fe93818edc8538e1592cf
|
train_109.jsonl
|
1614071100
|
Your classmate, whom you do not like because he is boring, but whom you respect for his intellect, has two strings: $$$s$$$ of length $$$n$$$ and $$$t$$$ of length $$$m$$$.A sequence $$$p_1, p_2, \ldots, p_m$$$, where $$$1 \leq p_1 < p_2 < \ldots < p_m \leq n$$$, is called beautiful, if $$$s_{p_i} = t_i$$$ for all $$$i$$$ from $$$1$$$ to $$$m$$$. The width of a sequence is defined as $$$\max\limits_{1 \le i < m} \left(p_{i + 1} - p_i\right)$$$.Please help your classmate to identify the beautiful sequence with the maximum width. Your classmate promised you that for the given strings $$$s$$$ and $$$t$$$ there is at least one beautiful sequence.
|
512 megabytes
|
/**
* @Created_by : Lucent868
* @Date : 30-08-2021
* @Time : 21:18
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class C {
static InputReader in;
static PrintWriter out;
public static void main(String args[]) {
new Thread(null, new Runnable() {
public void run() {
try {
solve();
out.flush();
out.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}, "1", 1 << 26).start();
}
public static void solve() {
in = new InputReader(System.in);
out = new PrintWriter(System.out);
int n = in.nextInt();
int m = in.nextInt();
String s = in.readString();
String t = in.readString();
int pre[] = new int[m];
int suf[] = new int[m];
int x = 0;
for (int i = 0; i < m; i++) {
while (x<n && s.charAt(x)!=t.charAt(i))x++;
pre[i] = x;
x++;
}
x = n-1;
for (int i = m-1; i >=0; i--) {
while (x>-1 && s.charAt(x)!=t.charAt(i))x--;
suf[i] = x;
x--;
}
int ans = 0;
for (int i = 0; i < m-1; i++) {
ans =Math.max(ans,suf[i+1]-pre[i]);
}
out.println(ans);
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public String nextLine() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
public static int[] sort(int[] arr) {
List<Integer> temp = new ArrayList();
for (int i : arr) temp.add(i);
Collections.sort(temp);
int start = 0;
for (int i : temp) arr[start++] = i;
return arr;
}
public static long[] sort(long[] arr) {
List<Long> temp = new ArrayList();
for (long i : arr) temp.add(i);
Collections.sort(temp);
int start = 0;
for (long i : temp) arr[start++] = i;
return arr;
}
public static int bs(int[] a, int fromIndex, int toIndex,
double key) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
}
}
|
Java
|
["5 3\nabbbc\nabc", "5 2\naaaaa\naa", "5 5\nabcdf\nabcdf", "2 2\nab\nab"]
|
2 seconds
|
["3", "4", "1", "1"]
|
NoteIn the first example there are two beautiful sequences of width $$$3$$$: they are $$$\{1, 2, 5\}$$$ and $$$\{1, 4, 5\}$$$.In the second example the beautiful sequence with the maximum width is $$$\{1, 5\}$$$.In the third example there is exactly one beautiful sequence — it is $$$\{1, 2, 3, 4, 5\}$$$.In the fourth example there is exactly one beautiful sequence — it is $$$\{1, 2\}$$$.
|
Java 11
|
standard input
|
[
"binary search",
"data structures",
"dp",
"greedy",
"two pointers"
] |
17fff01f943ad467ceca5dce5b962169
|
The first input line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \leq m \leq n \leq 2 \cdot 10^5$$$) — the lengths of the strings $$$s$$$ and $$$t$$$. The following line contains a single string $$$s$$$ of length $$$n$$$, consisting of lowercase letters of the Latin alphabet. The last line contains a single string $$$t$$$ of length $$$m$$$, consisting of lowercase letters of the Latin alphabet. It is guaranteed that there is at least one beautiful sequence for the given strings.
| 1,500
|
Output one integer — the maximum width of a beautiful sequence.
|
standard output
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.