exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
listlengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
5d7ab82d9d4e3a206a780af89fe8459f
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class P1627A { static Scanner scan = new Scanner(System.in); public static void main(String[] args) { int tc = i(); for (int i = 0; i < tc; i++) { solve(); } } private static void solve() { int n = i(), m = i(), r = i() - 1, c = i() - 1; String[] rows = new String[n]; for (int i = 0; i < n; i++) { rows[i] = s(); } if (bl(rows, r, c)) { p("0"); return; } int best = 3; all: for (int i = 0; i < n ; i++) { for (int j = 0; j < m; j++) { if (bl(rows, i, j)) { if (i == r || j == c) { best = 1; break all; } else { best = 2; } } } } p(best == 3 ? "-1" : "" + best); } private static int i() { return scan.nextInt(); } private static String s() { return scan.next(); } private static boolean bl(String[] rows, int r, int c) { return rows[r].charAt(c) == 'B'; } private static void p(String text) { System.out.println(text); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
624361a1c883354084fe0dc4193586d5
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; import java.math.BigInteger; //code by tishrah_ public class _practise { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] ia(int n) { int a[]=new int[n]; for(int i=0;i<n;i++)a[i]=nextInt(); return a; } int[][] ia(int n , int m) { int a[][]=new int[n][m]; for(int i=0;i<n;i++) for(int j=0;j<m ;j++) a[i][j]=nextInt(); return a; } long[][] la(int n , int m) { long a[][]=new long[n][m]; for(int i=0;i<n;i++) for(int j=0;j<m ;j++) a[i][j]=nextLong(); return a; } char[][] ca(int n , int m) { char a[][]=new char[n][m]; for(int i=0;i<n;i++) { String x =next(); for(int j=0;j<m ;j++) a[i][j]=x.charAt(j); } return a; } long[] la(int n) { long a[]=new long[n]; for(int i=0;i<n;i++)a[i]=nextLong(); return a; } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void sort(long[] a) {int n=a.length;Random r=new Random();for (int i=0; i<a.length; i++) {long oi=r.nextInt(n), temp=a[i];a[i]=a[(int)oi];a[(int)oi]=temp;}Arrays.sort(a);} static void sort(int[] a) {int n=a.length;Random r=new Random();for (int i=0; i<a.length; i++) {int oi=r.nextInt(n), temp=a[i];a[i]=a[oi];a[oi]=temp;}Arrays.sort(a);} public static long sum(long a[]) {long sum=0; for(long i : a) sum+=i; return(sum);} public static long count(long a[] , long x) {long c=0; for(long i : a) if(i==x) c++; return(c);} public static int sum(int a[]) { int sum=0; for(int i : a) sum+=i; return(sum);} public static int count(int a[] ,int x) {int c=0; for(int i : a) if(i==x) c++; return(c);} public static int count(String s ,char ch) {int c=0; char x[] = s.toCharArray(); for(char i : x) if(ch==i) c++; return(c);} public static boolean prime(int n) {for(int i=2 ; i<=Math.sqrt(n) ; i++) if(n%i==0) return false; return true;} public static boolean prime(long n) {for(long i=2 ; i<=Math.sqrt(n) ; i++) if(n%i==0) return false; return true;} public static int gcd(int n1, int n2) { if (n2 != 0)return gcd(n2, n1 % n2); else return n1;} public static long gcd(long n1, long n2) { if (n2 != 0)return gcd(n2, n1 % n2); else return n1;} public static int[] freq(int a[], int n) { int f[]=new int[n+1]; for(int i:a) f[i]++; return f;} public static int[] pos(int a[], int n) { int f[]=new int[n+1]; for(int i=0; i<n ;i++) f[a[i]]=i; return f;} public static int[] rev(int a[]) { for(int i=0 ; i<(a.length+1)/2;i++) { int temp=a[i]; a[i]=a[a.length-1-i]; a[a.length-1-i]=temp; } return a; } public static boolean palin(String s) { StringBuilder sb = new StringBuilder(); sb.append(s); String str=String.valueOf(sb.reverse()); if(s.equals(str)) return true; else return false; } public static String rev(String s) { StringBuilder sb = new StringBuilder(); sb.append(s); return String.valueOf(sb.reverse()); } public static void main(String args[]) { FastReader in=new FastReader(); PrintWriter so = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); _practise ob = new _practise(); int T = in.nextInt(); // int T = 1; tc : while(T-->0) { int n = in.nextInt(); int m = in.nextInt(); int x=in.nextInt(); int y=in.nextInt(); char ch[][] = in.ca(n, m); boolean flag=false; for(int i=0 ; i<n ; i++) { for(char e : ch[i]) if(e=='B') flag=true; } if(!flag) so.println(-1); else if(ch[x-1][y-1]=='B') so.println(0); else { flag=false; for(int i=0 ; i<n ; i++) if(ch[i][y-1]=='B') flag=true; for(int i=0 ; i<m ; i++) if(ch[x-1][i]=='B') flag=true; if(flag) so.println("1"); else so.println(2); } } so.flush(); /*String s = in.next(); * Arrays.stream(f).min().getAsInt() * BigInteger f = new BigInteger("1"); 1 ke jagah koi bhi value ho skta jo aap * initial value banan chahte int a[] = new int[n]; Stack<Integer> stack = new Stack<Integer>(); Deque<Integer> q = new LinkedList<>(); or Deque<Integer> q = new ArrayDeque<Integer>(); PriorityQueue<Long> pq = new PriorityQueue<Long>(); ArrayList<Integer> al = new ArrayList<Integer>(); StringBuilder sb = new StringBuilder(); HashSet<Integer> st = new LinkedHashSet<Integer>(); Set<Integer> s = new HashSet<Integer>(); Map<Long,Integer> hm = new HashMap<Long, Integer>(); //<key,value> for(Map.Entry<Integer, Integer> i :hm.entrySet()) for(int i : hm.values()) for(int i : hm.keySet()) HashMap<Integer, Integer> hmap = new HashMap<Integer, Integer>(); so.println("HELLO"); Arrays.sort(a,Comparator.comparingDouble(o->o[0])) Arrays.sort(a, (aa, bb) -> Integer.compare(aa[1], bb[1])); Set<String> ts = new TreeSet<>();*/ } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
54dcdbc7977c7bcdd7e7831bd757f6d1
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
public class Main { public static void main(String[] args) { for(int t=nextInt();t-->0;) { int n=nextInt(),m=nextInt(),r=nextInt()-1,c=nextInt()-1,ans=99; for(int i=0;i<n;i++) { char s[]=next().toCharArray(); for(int j=0;j<m;j++) if(s[j]=='B') { int x; if(r==i&&c==j) x=0; else if(r==i||c==j) x=1; else x=2; ans=Math.min(ans,x); } } println(ans>50?-1:ans); } close(); } static int nextInt() { int x=0,p=1,c=0;do c=read();while(c<=32);if(c=='-'){p=-1;c=read();} for(;c>='0'&&c<='9';c=read())x=x*10+c-'0'; return x*p; } static String next() { StringBuilder s=new StringBuilder(); int c;do c=read();while(c<=32);for(;c>32;c=read()) s.append((char)c); return s.toString(); } static int read(){int z=-1;try{z=System.in.read();}catch(Throwable e){}return z;} static final java.io.BufferedWriter bw=new java.io.BufferedWriter(new java.io.OutputStreamWriter(System.out)); //static {Runtime.getRuntime().addShutdownHook(new Thread(()->close()));} static void close(){try{bw.close();}catch(Throwable e){}} static void print(String s){try{bw.write(s);}catch(Throwable e){}} static void println(Object s){print(s+"\n");} }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
7dec3b3c825380eb9a65e875893a1b9a
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; /** * A_Not_Shading */ public class A_Not_Shading { public static int solve(String[] s,int r,int c){ int res=-1; // Scanner sc = new Scanner(System.in) ; // int n= sc.nextInt(); // int m= sc.nextInt(); // int r= sc.nextInt(); // r--; // int c= sc.nextInt(); // c--; // String[] s=new String[n]; // sc.nextLine(); // char[][] grid = new char[n][m]; // for (int i = 0; i < n; i++) { // s[i]= new String(); // s[i]=sc.nextLine(); // for (int k = 0; k < grid.length; k++) { // if(s[i].charAt(k)=='B' ){ // res=2; // } // if (s[i].charAt(k)=='B' && (r==i || c==k)){ // res=1; // fina=res; // } // } // } if (s[r].charAt(c)=='B') { return 0; } for (int i = 0; i < s.length; i++) { for (int j = 0; j < s[0].length(); j++) { if (s[i].charAt(j)=='B' && (r==i || c==j)) { return 1; } else if(s[i].charAt(j)=='B' ){ res=2; } } } return res; } public static void main(String[] args) { try (Scanner sc = new Scanner(System.in)) { int t= sc.nextInt(); while (t>0) { int fina=-1; // Scanner sc = new Scanner(System.in) ; int n= sc.nextInt(); int m= sc.nextInt(); int r= sc.nextInt(); r--; int c= sc.nextInt(); c--; String[] s=new String[n]; sc.nextLine(); // char[][] grid = new char[n][m]; for (int i = 0; i < n; i++) { s[i]= new String(); s[i]=sc.nextLine(); } fina = solve(s, r, c); System.out.println(fina); t--; } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
47afab16a0a544c75720ba00de1fe801
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
//package div766; import java.util.ArrayList; import java.util.Scanner; public class A766 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); boolean F =false; outer: for (int i = 0; i < N; i++) { int r = sc.nextInt(); int l = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); // System.out.println(r); // System.out.println(l); // System.out.println(a); // System.out.println(b); // int[] row = new int[r]; // int[] lo = new int[l]; ArrayList<Integer> row = new ArrayList<>(r); ArrayList<Integer> lo = new ArrayList<>(l); for (int ro = 0; ro < r; ro++) { row.add(0); } for (int low = 0; low < l; low++) { lo.add(0); } // for(int ro:row){ // ro = 0; // } // for(int low:lo){ // low = 0; // } for(int j = 0; j < r; j++){ String p = sc.next(); // System.out.println(p); char[] ppp = p.toCharArray(); // for() // System.out.println(p.charAt(0)); for (int pp = 0; pp < l; pp++) { // System.out.println(ppp[pp]); if(ppp[pp] == 'B'){ if(j==a-1&&pp==b-1){ System.out.println(0); F = true; } row.set(j,1); lo.set(pp,1); } } } if(F){ F = false; continue outer; } if(!row.contains(1)&&!lo.contains(1)){ System.out.println(-1); // break outer; }else{ if(row.get(a-1)==0&&lo.get(b-1)==0){ System.out.println(2); // break outer; }else{ System.out.println(1); // break outer; } } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
e9251f97e8a48ba01926ef92edf2b168
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class NotShading { public static void main(String[] args) { Scanner in = new Scanner(System.in); NotShading y = new NotShading(); int cases = Integer.parseInt(in.nextLine()); int a,b,c,d; String tmp; String[] tmp1; for (int i = 0; i < cases; i++) { tmp = in.nextLine(); tmp1 = tmp.split(" "); a = Integer.parseInt(tmp1[0]); b = Integer.parseInt(tmp1[1]); c = Integer.parseInt(tmp1[2]); d = Integer.parseInt(tmp1[3]); System.out.println(y.rowsColumns(in,a,b,c-1,d-1)); } in.close(); } public int rowsColumns(Scanner in, int n, int m, int r, int c) { // System.out.println("input: "+n+" "+m+" "+r+" "+c); boolean oneOrZero = false; boolean positive = false; boolean zero = false; String curRow; for (int i = 0; i < n; i++) { curRow = in.nextLine(); boolean column = curRow.charAt(c) == 'B'; if (i == r) { if (column) { zero = true; } if (curRow.indexOf("B") >= 0) { oneOrZero = true; } } else { if (column) { oneOrZero = true; } if (curRow.indexOf("B") >= 0) { positive = true; } } } if (zero) { return 0; } else if (oneOrZero) { return 1; } else if (positive) { return 2; } else { return -1; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
e7f980c4b20bfe3e3e91865287471b93
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.lang.*; import java.io.*; import java.util.*; public class Cfone{ public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); int m=sc.nextInt(); int r=sc.nextInt(); int c=sc.nextInt(); sc.nextLine(); r--; c--; char[][] arr=new char[n][m]; boolean flag = false; for(int i=0;i<n;i++){ String row = sc.nextLine(); char[] ch = row.toCharArray(); for(int j=0;j<m;j++){ arr[i][j]=ch[j]; if(arr[i][j] == 'B') flag = true; } } int ans = -1; int minAns = Integer.MAX_VALUE; if(flag == true){ outerloop: for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(arr[i][j] == 'B' && i == r && j == c){ ans =0; if(minAns>ans){ minAns = ans; } break outerloop; } if(arr[i][j] == 'B'){ if(i == r || j == c){ ans = 1; if(minAns>ans){ minAns = ans; } }else{ ans = 2; if(minAns>ans){ minAns = ans; } } } } } }else{ ans = -1; minAns = -1; } System.out.println(minAns); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
c3cfba2cba9f2d199afe0a7e4b3d439f
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
//import java.util.HashSet; import java.util.ArrayList; // import java.util.Arrays; // import java.util.Collections; import java.util.Scanner; //import java.lang.StringBuilder; public class Solution { public static void main(String[] args) { Scanner in = new Scanner(System.in); int cases = in.nextInt(); for (int t = 1; t <= cases; t++) { int rows = in.nextInt(); int columns = in.nextInt(); int targetRow = in.nextInt(); int targetColumn = in.nextInt(); ArrayList<ArrayList<Character>> grid = new ArrayList<>(); int solution = 0; boolean bOccurred = false; // Filling grid for (int i = 0; i < rows; i++) { ArrayList<Character> row = new ArrayList<>(); if (i == 0) in.nextLine(); String s = in.nextLine(); for (int j = 0; j < columns; j++) { if (s.charAt(j) == 'B') { bOccurred = true; } row.add(s.charAt(j)); } grid.add(row); } if (!bOccurred) { System.out.println(-1); continue; } if (grid.get(targetRow - 1).get(targetColumn - 1) == 'B') { System.out.println(0); continue; } if (bAtRow(targetRow, grid) == 0 && bAtCol(targetColumn, grid) == 0) { System.out.println(2); continue; } System.out.println(1); } in.close(); } public static int bAtRow(int targetRow, ArrayList<ArrayList<Character>> grid) { int count = 0; ArrayList<Character> row = grid.get(targetRow - 1); for (int i = 0; i < row.size(); i++) { if (row.get(i) == 'B') { count++; } } return count; } public static int bAtCol(int targetCol, ArrayList<ArrayList<Character>> grid) { int count = 0; for (int i = 0; i < grid.size(); i++) { if (grid.get(i).get(targetCol - 1) == 'B') { count++; } } return count; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
9de726428094d52e1c43c8e6e650a64d
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class m { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int a=0;a<t;a++) { int n=sc.nextInt(); int m=sc.nextInt(); int r=sc.nextInt(); int c=sc.nextInt(); int arr[][]=new int[n][m]; int b=0,w=0,f=0; sc.nextLine(); for(int i=0;i<n;i++) { String s=sc.nextLine(); for(int j=0;j<m;j++) { if(s.charAt(j)=='W') { arr[i][j]=0; w++; } else if(s.charAt(j)=='B') { arr[i][j]=1; b++; } } } r=r-1; c=c-1; if(b==0) { System.out.println("-1"); } else if(arr[r][c]==1) { System.out.println(f); } else { if(arr[r][c]!=1) { for(int q1=0;q1<m;q1++) { if(arr[r][q1]==1) { f++; break; } } if(f!=1) { for(int q1=0;q1<n;q1++) { if(arr[q1][c]==1) { f++; break; } } } if(f==1) { System.out.println(f); } else { System.out.println(2); } } } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
649a8b975548ff5a5d91f15baeafe7ea
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; public class GFG { public static void main (String[] args) { Scanner sc = new Scanner(System.in); String line = sc.nextLine(); int tc = Integer.parseInt(line); while(tc -- > 0){ line = sc.nextLine(); //System.out.println(line); //System.exit(1); String [] inputs = line.trim().split(" "); int m = Integer.parseInt(inputs[0]); int n = Integer.parseInt(inputs[1]); int r = Integer.parseInt(inputs[2])-1; int c = Integer.parseInt(inputs[3])-1; int result = Integer.MAX_VALUE; for(int i = 0; i < m; i++){ line = sc.nextLine(); for(int j = 0; j < line.length(); j++) { if(line.charAt(j) == 'B') { if(r == i && c == j) { result = Math.min(result,0); } else if (r == i || c == j) { result = Math.min(result,1); } else { result = Math.min(result,2); } } } } System.out.println(result == Integer.MAX_VALUE ? -1 : result); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
30bd012f6ef4b3c197b064972a84d8e6
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { sc=new MScanner(System.in); pw=new PrintWriter(System.out); int t=Integer.valueOf(sc.nextLine()) ; for (int i=0;i<t;i++){ solver(); } pw.flush(); } private static void solver() throws IOException { String[] s = sc.nextLine().split(" "); int n=Integer.valueOf(s[0]); int m=Integer.valueOf(s[1]); int r=Integer.valueOf(s[2]); int c=Integer.valueOf(s[3]); int ans=3; for (int i=0;i<n;i++){ String s1=sc.nextLine(); for (int j=0;j<m;j++){ if(s1.charAt(j)=='B'){ if(r-1==i && c-1==j) ans=0; ans=Math.min(ans,(r-1==i || c-1==j)?1:2); } } } if(ans==3) ans=-1; pw.write(ans+"\n"); pw.flush(); } static int curt; static PrintWriter pw; static MScanner sc; static class MScanner { StringTokenizer st; BufferedReader br; public MScanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public MScanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int[] intArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public long[] longArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public int[] intSortedArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); shuffle(in); Arrays.sort(in); return in; } public long[] longSortedArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); shuffle(in); Arrays.sort(in); return in; } public Integer[] IntegerArr(int n) throws IOException { Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public Long[] LongArr(int n) throws IOException { Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } static void dbg(int[]in) { System.out.println(Arrays.toString(in)); } static void dbg(long[]in) { System.out.println(Arrays.toString(in)); } static void sort(int[]in) { shuffle(in); Arrays.sort(in); } static void sort(long[]in) { shuffle(in); Arrays.sort(in); } static void shuffle(int[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); int tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } static void shuffle(long[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); long tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
0d88a3629ade4c99b490fb8e8e6eef13
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; public class Main { static FastReader in = new FastReader(); static final Random random=new Random(); static long mod=1000000007L; static HashMap<String,Integer>map=new HashMap<>(); static String solve() { StringBuilder st = new StringBuilder(); String S = ""; int n = in.nextInt(); int m = in.nextInt(); int r = in.nextInt(); int c = in.nextInt(); int flag = 0; int flagr = 0; int flagc = 0; String ar[] = new String[n]; for(int i = 0; i<n; i++){ ar[i]= in.nextLine(); for(int j = 0; j<m; j++){ char ch = ar[i].charAt(j); if(ch == 'B' && flag == 0){ flag = 1; } if((j+1 == c || i+1 == r )&&ch == 'B'){ flagr = flagc = 1; } } } if(flag == 0){ return "-1"; } else if(ar[r-1].charAt(c-1) == 'B'){ return "0"; } else if(flagr ==1 || flagc ==1){ return "1"; } else{ return "2"; } } public static void main(String args[]) throws IOException { int t=in.nextInt(); StringBuilder res=new StringBuilder(); int cse=1; loop: while(t-->0) { String S = solve(); res.append(S + "\n"); } print(res); System.out.flush(); } static int max(int a, int b) { if(a<b) return b; return a; } static void ruffleSort(int[] a) { int n=a.length; for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static < E > void print(E res) { System.out.println(res); } static int gcd(int a,int b) { if(b==0) { return a; } return gcd(b,a%b); } static int arraygcd(int[] ar) { int n = ar.length; int result = ar[0]; for(int i = 1; i<n; i++) { result = gcd(ar[i], result); } return result; } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static int arraylcm(int[] ar) { int result = ar[0]; int n = ar.length; for(int i = 1; i<n; i++) { result = lcm(result, ar[i]); } return result; } static int abs(int a) { if(a<0) return -1*a; return a; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int [] readintarray(int n) { int res [] = new int [n]; for(int i = 0; i<n; i++)res[i] = nextInt(); return res; } long [] readlongarray(int n) { long res [] = new long [n]; for(int i = 0; i<n; i++)res[i] = nextLong(); return res; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
a7dfbbc2398d7c4b371d72e51a9d58a3
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { try (Scanner scanner = new Scanner(System.in)) { int noTestCases = scanner.nextInt(); while (noTestCases-- > 0) { int rowsNumber = scanner.nextInt(); int colsNumber = scanner.nextInt(); int targetRow = scanner.nextInt() - 1; int targetCol = scanner.nextInt() - 1; scanner.nextLine(); char[][] rows = new char[rowsNumber][]; for (int idx = 0; idx < rowsNumber; idx++) { rows[idx] = scanner.nextLine().toCharArray(); } if (rows[targetRow][targetCol] == 'B') { System.out.println(0); } else if (isBlackInRow(rows, targetRow) || isBlackInCol(rows, targetCol)) { System.out.println(1); } else if (isBlack(rows)) { System.out.println(2); } else { System.out.println(-1); } } } } private static boolean isBlack(char[][] rows) { for (char[] row : rows) { for (char c : row) { if (c == 'B') { return true; } } } return false; } private static boolean isBlackInCol(char[][] rows, int targetCol) { for (char[] row : rows) { if (row[targetCol] == 'B') { return true; } } return false; } private static boolean isBlackInRow(char[][] rows, int targetRow) { for (char c : rows[targetRow]) { if (c == 'B') { return true; } } return false; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
0835bfd399d91a6e0a52de687cdb7e5b
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class file { public static void main (String[] args) throws java.lang.Exception { Scanner sc=new Scanner (System.in); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int m=sc.nextInt(); int r=sc.nextInt(); int c=sc.nextInt(); char arr[][]=new char[n][m]; boolean flag=false,flag2=false; int ans=0; for(int i=0;i<n;i++) { String s=sc.next(); for(int j=0;j<m;j++) { arr[i][j]=s.charAt(j); if(arr[i][j]=='B') flag=true; } } if(arr[r-1][c-1]=='B') ans=0; else if(flag==false) ans=-1; else { for(int j=0;j<m;j++) {if(arr[r-1][j]=='B') { flag2=true; }} if(flag2==false) {for(int i=0;i<n;i++) { if(arr[i][c-1]=='B') flag2=true; } } if(flag2==true) ans=1; else ans=2; } System.out.println(ans); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
548a8cf1a85247919d0bbdf5435ed301
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; public class A1627 { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt() - 1; int c = sc.nextInt() - 1; boolean oneB = false; int ans = 2; for (int i = 0; i < n; i++) { char[] row = sc.next().toCharArray(); for (int j = 0; j < m; j++) { if (row[j] == 'B') { oneB = true; if (i == r && j == c) { ans = 0; } else if (i == r || j == c) { ans = Math.min(ans, 1); } } } } pw.println(oneB ? ans : -1); } pw.close(); } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader f) { br = new BufferedReader(f); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextIntArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = Integer.parseInt(next()); } return arr; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
3a9593f697405b21508f2cf19a12c225
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class BinaryDecimal { public static void main(String[] args) { Scanner fs = new Scanner(System.in); int t = fs.nextInt(); while (t-- > 0) { int n = fs.nextInt(); int m = fs.nextInt(); int r = fs.nextInt(); int c = fs.nextInt(); int a[][] = new int[n][m]; int black = 0; for (int i = 0; i < n; i++) { String s = fs.next(); for (int j = 0; j < m; j++) { if (s.charAt(j) == 'B') { black++; a[i][j] = 1; } } } r--; c--; if (a[r][c] == 1) System.out.println(0); else if (black == 0) System.out.println(-1); else { boolean flag = false; for (int i = 0; i < m; i++) if (a[r][i] == 1) { flag = true; break; } if (!flag) { for (int i = 0; i < n; i++) if (a[i][c] == 1) { flag = true; break; } } if (flag) System.out.println(1); else System.out.println(2); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
cb2d7261af8571a4915008c37c7b1762
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; public class A1627 { static FastScanner sc = new FastScanner(); public static void main(String[] args) { int T = sc.nextInt(); while (T-- > 0) { solve(); } } public static void solve() { int n = sc.nextInt(), m = sc.nextInt(), r = sc.nextInt(), c = sc.nextInt(); String[] a = new String[n]; for (int i = 0; i < n; i++) { a[i] = sc.next(); } if (a[r - 1].charAt(c - 1) == 'B') { System.out.println(0); } else { int d = 0; for (int i = 0; i < n; i++) { for (int k = 0; k < m; k++) { if (a[i].charAt(k) == 'W') { d++; } } } int b = 0; for (int q = 0; q < m; q++) { if (a[r - 1].charAt(q) == 'B') { b++; } } int j = 0; for (int e = 0; e < n; e++) { if (a[e].charAt(c - 1) == 'B') { j++; } } if (d == n * m) { System.out.println(-1); } else { if (b == 0 && j == 0) { System.out.println(2); } else { System.out.println(1); } } } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } return a; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
18a5d70ca11177cbbe3a2579298f3dd5
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class test302 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int t=in.nextInt(); for(int j=0;j<t;j++) { boolean b=false,c=false,d=false; int m=in.nextInt(); int n=in.nextInt(); int x=in.nextInt(); int y=in.nextInt(); for(int i=0;i<m;i++) { char[] a=in.next().toCharArray(); for(int k=0;k<n;k++) { if(a[k]=='B') { c=true; } if(k==y-1 && i==x-1) { if(a[k]=='B') d=true; } else if(k==y-1 || i==x-1) { if(a[k]=='B') b=true; } } } if(c) { if(d) { System.out.println(0); } else if(b) { System.out.println(1); } else { System.out.println(2); } } else { System.out.println(-1); } } in.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
35cb37d21bcb201ead45d9be69dc129e
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Random; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; public final class CFPS { static FastReader fr = new FastReader(); static PrintWriter out = new PrintWriter(System.out); static final int gigamod = 1000000007; static final int mod = 998244353; static int t = 1; static boolean[] isPrime; static int[] smallestFactorOf; static final int UP = 0, LEFT = 1, DOWN = 2, RIGHT = 3; static long cmp; @SuppressWarnings({"unused"}) public static void main(String[] args) throws Exception { t = fr.nextInt(); OUTER: for (int tc = 0; tc < t; tc++) { int n = fr.nextInt(), m = fr.nextInt(), r = fr.nextInt() - 1, c = fr.nextInt() - 1; char[][] grid = new char[n][]; for (int i = 0; i < n; i++) grid[i] = fr.next().toCharArray(); int blackCnt = 0; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (grid[i][j] == 'B') blackCnt++; if (blackCnt == 0) { out.println(-1); continue OUTER; } // it is possible if (grid[r][c] == 'B') { out.println(0); continue OUTER; } for (int col = 0; col < m; col++) if (grid[r][col] == 'B') { out.println(1); continue OUTER; } for (int row = 0; row < n; row++) { if (grid[row][c] == 'B') { out.println(1); continue OUTER; } } out.println(2); } out.close(); } static class Pair implements Comparable<Pair> { int first, second; int idx; Pair() { first = second = 0; } Pair (int ff, int ss) {first = ff; second = ss;} Pair (int ff, int ss, int ii) { first = ff; second = ss; idx = ii; } public int compareTo(Pair that) { cmp = first - that.first; if (cmp == 0) cmp = second - that.second; return (int) cmp; } } // (range add - segment min) segTree static int nn; static int[] arr; static int[] tree; static int[] lazy; static void build(int node, int leftt, int rightt) { if (leftt == rightt) { tree[node] = arr[leftt]; return; } int mid = (leftt + rightt) >> 1; build(node << 1, leftt, mid); build(node << 1 | 1, mid + 1, rightt); tree[node] = Math.min(tree[node << 1], tree[node << 1 | 1]); } static void segAdd(int node, int leftt, int rightt, int segL, int segR, int val) { if (lazy[node] != 0) { tree[node] += lazy[node]; if (leftt != rightt) { lazy[node << 1] += lazy[node]; lazy[node << 1 | 1] += lazy[node]; } lazy[node] = 0; } if (segL > rightt || segR < leftt) return; if (segL <= leftt && rightt <= segR) { tree[node] += val; if (leftt != rightt) { lazy[node << 1] += val; lazy[node << 1 | 1] += val; } lazy[node] = 0; return; } int mid = (leftt + rightt) >> 1; segAdd(node << 1, leftt, mid, segL, segR, val); segAdd(node << 1 | 1, mid + 1, rightt, segL, segR, val); tree[node] = Math.min(tree[node << 1], tree[node << 1 | 1]); } static int minQuery(int node, int leftt, int rightt, int segL, int segR) { if (lazy[node] != 0) { tree[node] += lazy[node]; if (leftt != rightt) { lazy[node << 1] += lazy[node]; lazy[node << 1 | 1] += lazy[node]; } lazy[node] = 0; } if (segL > rightt || segR < leftt) return Integer.MAX_VALUE / 10; if (segL <= leftt && rightt <= segR) return tree[node]; int mid = (leftt + rightt) >> 1; return Math.min(minQuery(node << 1, leftt, mid, segL, segR), minQuery(node << 1 | 1, mid + 1, rightt, segL, segR)); } static class Segment { int li, ri, wi, id; Segment(int ll, int rr, int ww, int ii) { li = ll; ri = rr; wi = ww; id = ii; } } static void compute_automaton(String s, int[][] aut) { s += '#'; int n = s.length(); int[] pi = prefix_function(s.toCharArray()); for (int i = 0; i < n; i++) { for (int c = 0; c < 26; c++) { int j = i; while (j > 0 && 'A' + c != s.charAt(j)) j = pi[j-1]; if ('A' + c == s.charAt(j)) j++; aut[i][c] = j; } } } static void timeDFS(int current, int from, UGraph ug, int[] time, int[] tIn, int[] tOut) { tIn[current] = ++time[0]; for (int adj : ug.adj(current)) if (adj != from) timeDFS(adj, current, ug, time, tIn, tOut); tOut[current] = ++time[0]; } static boolean areCollinear(long x1, long y1, long x2, long y2, long x3, long y3) { // we will check if c3 lies on line through (c1, c2) long a = x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2); return a == 0; } static int[] treeDiameter(UGraph ug) { int n = ug.V(); int farthest = -1; int[] distTo = new int[n]; diamDFS(0, -1, 0, ug, distTo); int maxDist = -1; for (int i = 0; i < n; i++) if (maxDist < distTo[i]) { maxDist = distTo[i]; farthest = i; } distTo = new int[n + 1]; diamDFS(farthest, -1, 0, ug, distTo); distTo[n] = farthest; return distTo; } static void diamDFS(int current, int from, int dist, UGraph ug, int[] distTo) { distTo[current] = dist; for (int adj : ug.adj(current)) if (adj != from) diamDFS(adj, current, dist + 1, ug, distTo); } static class TreeDistFinder { UGraph ug; int n; int[] depthOf; LCA lca; TreeDistFinder(UGraph ug) { this.ug = ug; n = ug.V(); depthOf = new int[n]; depthCalc(0, -1, ug, 0, depthOf); lca = new LCA(ug, 0); } TreeDistFinder(UGraph ug, int a) { this.ug = ug; n = ug.V(); depthOf = new int[n]; depthCalc(a, -1, ug, 0, depthOf); lca = new LCA(ug, a); } private void depthCalc(int current, int from, UGraph ug, int depth, int[] depthOf) { depthOf[current] = depth; for (int adj : ug.adj(current)) if (adj != from) depthCalc(adj, current, ug, depth + 1, depthOf); } public int dist(int a, int b) { int lc = lca.lca(a, b); return (depthOf[a] - depthOf[lc] + depthOf[b] - depthOf[lc]); } } public static long[][] GCDSparseTable(long[] a) { int n = a.length; int b = 32-Integer.numberOfLeadingZeros(n); long[][] ret = new long[b][]; for(int i = 0, l = 1;i < b;i++, l*=2) { if(i == 0) { ret[i] = a; } else { ret[i] = new long[n-l+1]; for(int j = 0;j < n-l+1;j++) { ret[i][j] = gcd(ret[i-1][j], ret[i-1][j+l/2]); } } } return ret; } public static long sparseRangeGCDQ(long[][] table, int l, int r) { // [a,b) if(l > r)return 1; // 1:0, 2:1, 3:1, 4:2, 5:2, 6:2, 7:2, 8:3 int t = 31-Integer.numberOfLeadingZeros(r-l); return gcd(table[t][l], table[t][r-(1<<t)]); } static class Trie { TrieNode root; Trie(char[][] strings) { root = new TrieNode('A', false); construct(root, strings); } public Stack<String> set(TrieNode root) { Stack<String> set = new Stack<>(); StringBuilder sb = new StringBuilder(); for (TrieNode next : root.next) collect(sb, next, set); return set; } private void collect(StringBuilder sb, TrieNode node, Stack<String> set) { if (node == null) return; sb.append(node.character); if (node.isTerminal) set.add(sb.toString()); for (TrieNode next : node.next) collect(sb, next, set); if (sb.length() > 0) sb.setLength(sb.length() - 1); } private void construct(TrieNode root, char[][] strings) { // we have to construct the Trie for (char[] string : strings) { if (string.length == 0) continue; root.next[string[0] - 'a'] = put(root.next[string[0] - 'a'], string, 0); if (root.next[string[0] - 'a'] != null) root.isLeaf = false; } } private TrieNode put(TrieNode node, char[] string, int idx) { boolean isTerminal = (idx == string.length - 1); if (node == null) node = new TrieNode(string[idx], isTerminal); node.character = string[idx]; node.isTerminal |= isTerminal; if (!isTerminal) { node.isLeaf = false; node.next[string[idx + 1] - 'a'] = put(node.next[string[idx + 1] - 'a'], string, idx + 1); } return node; } class TrieNode { char character; TrieNode[] next; boolean isTerminal, isLeaf; boolean canWin, canLose; TrieNode(char c, boolean isTerminallll) { character = c; isTerminal = isTerminallll; next = new TrieNode[26]; isLeaf = true; } } } static class Edge implements Comparable<Edge> { int from, to; long weight, ans; int id; // int hash; Edge(int fro, int t, long wt, int i) { from = fro; to = t; id = i; weight = wt; // hash = Objects.hash(from, to, weight); } /*public int hashCode() { return hash; }*/ public int compareTo(Edge that) { return Long.compare(this.id, that.id); } } public static long[][] minSparseTable(long[] a) { int n = a.length; int b = 32-Integer.numberOfLeadingZeros(n); long[][] ret = new long[b][]; for(int i = 0, l = 1;i < b;i++, l*=2) { if(i == 0) { ret[i] = a; }else { ret[i] = new long[n-l+1]; for(int j = 0;j < n-l+1;j++) { ret[i][j] = Math.min(ret[i-1][j], ret[i-1][j+l/2]); } } } return ret; } public static long sparseRangeMinQ(long[][] table, int l, int r) { // [a,b) if(l >= r)return Integer.MAX_VALUE; // 1:0, 2:1, 3:1, 4:2, 5:2, 6:2, 7:2, 8:3 int t = 31-Integer.numberOfLeadingZeros(r-l); return Math.min(table[t][l], table[t][r-(1<<t)]); } public static long[][] maxSparseTable(long[] a) { int n = a.length; int b = 32-Integer.numberOfLeadingZeros(n); long[][] ret = new long[b][]; for(int i = 0, l = 1;i < b;i++, l*=2) { if(i == 0) { ret[i] = a; }else { ret[i] = new long[n-l+1]; for(int j = 0;j < n-l+1;j++) { ret[i][j] = Math.max(ret[i-1][j], ret[i-1][j+l/2]); } } } return ret; } public static long sparseRangeMaxQ(long[][] table, int l, int r) { // [a,b) if(l >= r)return Integer.MIN_VALUE; // 1:0, 2:1, 3:1, 4:2, 5:2, 6:2, 7:2, 8:3 int t = 31-Integer.numberOfLeadingZeros(r-l); return Math.max(table[t][l], table[t][r-(1<<t)]); } static class LCA { int[] height, first, segtree; ArrayList<Integer> euler; boolean[] visited; int n; LCA(UGraph ug, int root) { n = ug.V(); height = new int[n]; first = new int[n]; euler = new ArrayList<>(); visited = new boolean[n]; dfs(ug, root, 0); int m = euler.size(); segtree = new int[m * 4]; build(1, 0, m - 1); } void dfs(UGraph ug, int node, int h) { visited[node] = true; height[node] = h; first[node] = euler.size(); euler.add(node); for (int adj : ug.adj(node)) { if (!visited[adj]) { dfs(ug, adj, h + 1); euler.add(node); } } } void build(int node, int b, int e) { if (b == e) { segtree[node] = euler.get(b); } else { int mid = (b + e) / 2; build(node << 1, b, mid); build(node << 1 | 1, mid + 1, e); int l = segtree[node << 1], r = segtree[node << 1 | 1]; segtree[node] = (height[l] < height[r]) ? l : r; } } int query(int node, int b, int e, int L, int R) { if (b > R || e < L) return -1; if (b >= L && e <= R) return segtree[node]; int mid = (b + e) >> 1; int left = query(node << 1, b, mid, L, R); int right = query(node << 1 | 1, mid + 1, e, L, R); if (left == -1) return right; if (right == -1) return left; return height[left] < height[right] ? left : right; } int lca(int u, int v) { int left = first[u], right = first[v]; if (left > right) { int temp = left; left = right; right = temp; } return query(1, 0, euler.size() - 1, left, right); } } static class FenwickTree { long[] array; // 1-indexed array, In this array We save cumulative information to perform efficient range queries and updates public FenwickTree(int size) { array = new long[size + 1]; } public long rsq(int ind) { assert ind > 0; long sum = 0; while (ind > 0) { sum += array[ind]; //Extracting the portion up to the first significant one of the binary representation of 'ind' and decrementing ind by that number ind -= ind & (-ind); } return sum; } public long rsq(int a, int b) { assert b >= a && a > 0 && b > 0; return rsq(b) - rsq(a - 1); } public void update(int ind, long value) { assert ind > 0; while (ind < array.length) { array[ind] += value; //Extracting the portion up to the first significant one of the binary representation of 'ind' and incrementing ind by that number ind += ind & (-ind); } } public int size() { return array.length - 1; } } static class Point implements Comparable<Point> { long x; long y; long z; long id; // private int hashCode; Point() { x = z = y = 0; // this.hashCode = Objects.hash(x, y, cost); } Point(Point p) { this.x = p.x; this.y = p.y; this.z = p.z; this.id = p.id; // this.hashCode = Objects.hash(x, y, cost); } Point(long x, long y, long z, long id) { this.x = x; this.y = y; this.z = z; this.id = id; // this.hashCode = Objects.hash(x, y, id); } Point(long a, long b) { this.x = a; this.y = b; this.z = 0; // this.hashCode = Objects.hash(a, b); } Point(long x, long y, long id) { this.x = x; this.y = y; this.id = id; } @Override public int compareTo(Point o) { if (this.x < o.x) return -1; if (this.x > o.x) return 1; if (this.y < o.y) return -1; if (this.y > o.y) return 1; if (this.z < o.z) return -1; if (this.z > o.z) return 1; return 0; } @Override public boolean equals(Object that) { return this.compareTo((Point) that) == 0; } } static class BinaryLift { // FUNCTIONS: k-th ancestor and LCA in log(n) int[] parentOf; int maxJmpPow; int[][] binAncestorOf; int n; int[] lvlOf; // How this works? // a. For every node, we store the b-ancestor for b in {1, 2, 4, 8, .. log(n)}. // b. When we need k-ancestor, we represent 'k' in binary and for each set bit, we // lift level in the tree. public BinaryLift(UGraph tree) { n = tree.V(); maxJmpPow = logk(n, 2) + 1; parentOf = new int[n]; binAncestorOf = new int[n][maxJmpPow]; lvlOf = new int[n]; for (int i = 0; i < n; i++) Arrays.fill(binAncestorOf[i], -1); parentConstruct(0, -1, tree, 0); binConstruct(); } // TODO: Implement lvlOf[] initialization public BinaryLift(int[] parentOf) { this.parentOf = parentOf; n = parentOf.length; maxJmpPow = logk(n, 2) + 1; binAncestorOf = new int[n][maxJmpPow]; lvlOf = new int[n]; for (int i = 0; i < n; i++) Arrays.fill(binAncestorOf[i], -1); UGraph tree = new UGraph(n); for (int i = 1; i < n; i++) tree.addEdge(i, parentOf[i]); binConstruct(); parentConstruct(0, -1, tree, 0); } private void parentConstruct(int current, int from, UGraph tree, int depth) { parentOf[current] = from; lvlOf[current] = depth; for (int adj : tree.adj(current)) if (adj != from) parentConstruct(adj, current, tree, depth + 1); } private void binConstruct() { for (int node = 0; node < n; node++) for (int lvl = 0; lvl < maxJmpPow; lvl++) binConstruct(node, lvl); } private int binConstruct(int node, int lvl) { if (node < 0) return -1; if (lvl == 0) return binAncestorOf[node][lvl] = parentOf[node]; if (node == 0) return binAncestorOf[node][lvl] = -1; if (binAncestorOf[node][lvl] != -1) return binAncestorOf[node][lvl]; return binAncestorOf[node][lvl] = binConstruct(binConstruct(node, lvl - 1), lvl - 1); } // return ancestor which is 'k' levels above this one public int ancestor(int node, int k) { if (node < 0) return -1; if (node == 0) if (k == 0) return node; else return -1; if (k > (1 << maxJmpPow) - 1) return -1; if (k == 0) return node; int ancestor = node; int highestBit = Integer.highestOneBit(k); while (k > 0 && ancestor != -1) { ancestor = binAncestorOf[ancestor][logk(highestBit, 2)]; k -= highestBit; highestBit = Integer.highestOneBit(k); } return ancestor; } public int lca(int u, int v) { if (u == v) return u; // The invariant will be that 'u' is below 'v' initially. if (lvlOf[u] < lvlOf[v]) { int temp = u; u = v; v = temp; } // Equalizing the levels. u = ancestor(u, lvlOf[u] - lvlOf[v]); if (u == v) return u; // We will now raise level by largest fitting power of two until possible. for (int power = maxJmpPow - 1; power > -1; power--) if (binAncestorOf[u][power] != binAncestorOf[v][power]) { u = binAncestorOf[u][power]; v = binAncestorOf[v][power]; } return ancestor(u, 1); } } static class DFSTree { // NOTE: The thing is made keeping in mind that the whole // input graph is connected. UGraph tree; UGraph backUG; int hasBridge; int n; Edge backEdge; DFSTree(UGraph ug) { this.n = ug.V(); tree = new UGraph(n); hasBridge = -1; backUG = new UGraph(n); treeCalc(0, -1, new boolean[n], ug); } private void treeCalc(int current, int from, boolean[] marked, UGraph ug) { if (marked[current]) { // This is a backEdge. backUG.addEdge(from, current); backEdge = new Edge(from, current, 1, 0); return; } if (from != -1) tree.addEdge(from, current); marked[current] = true; for (int adj : ug.adj(current)) if (adj != from) treeCalc(adj, current, marked, ug); } public boolean hasBridge() { if (hasBridge != -1) return (hasBridge == 1); // We have to determine the bridge. bridgeFinder(); return (hasBridge == 1); } int[] levelOf; int[] dp; private void bridgeFinder() { // Finding the level of each node. levelOf = new int[n]; levelDFS(0, -1, 0); // Applying DP solution. // dp[i] -> Highest level reachable from subtree of 'i' using // some backEdge. dp = new int[n]; Arrays.fill(dp, Integer.MAX_VALUE / 100); dpDFS(0, -1); // Now, we will check each edge and determine whether its a // bridge. for (int i = 0; i < n; i++) for (int adj : tree.adj(i)) { // (i -> adj) is the edge. if (dp[adj] > levelOf[i]) hasBridge = 1; } if (hasBridge != 1) hasBridge = 0; } private void levelDFS(int current, int from, int lvl) { levelOf[current] = lvl; for (int adj : tree.adj(current)) if (adj != from) levelDFS(adj, current, lvl + 1); } private int dpDFS(int current, int from) { dp[current] = levelOf[current]; for (int back : backUG.adj(current)) dp[current] = Math.min(dp[current], levelOf[back]); for (int adj : tree.adj(current)) if (adj != from) dp[current] = Math.min(dp[current], dpDFS(adj, current)); return dp[current]; } } static class UnionFind { // Uses weighted quick-union with path compression. private int[] parent; // parent[i] = parent of i private int[] size; // size[i] = number of sites in tree rooted at i // Note: not necessarily correct if i is not a root node private int count; // number of components public UnionFind(int n) { count = n; parent = new int[n]; size = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; size[i] = 1; } } // Number of connected components. public int count() { return count; } // Find the root of p. public int find(int p) { while (p != parent[p]) p = parent[p]; return p; } public boolean connected(int p, int q) { return find(p) == find(q); } public int numConnectedTo(int node) { return size[find(node)]; } // Weighted union. public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // make smaller root point to larger one if (size[rootP] < size[rootQ]) { parent[rootP] = rootQ; size[rootQ] += size[rootP]; } else { parent[rootQ] = rootP; size[rootP] += size[rootQ]; } count--; } public static int[] connectedComponents(UnionFind uf) { // We can do this in nlogn. int n = uf.size.length; int[] compoColors = new int[n]; for (int i = 0; i < n; i++) compoColors[i] = uf.find(i); HashMap<Integer, Integer> oldToNew = new HashMap<>(); int newCtr = 0; for (int i = 0; i < n; i++) { int thisOldColor = compoColors[i]; Integer thisNewColor = oldToNew.get(thisOldColor); if (thisNewColor == null) thisNewColor = newCtr++; oldToNew.put(thisOldColor, thisNewColor); compoColors[i] = thisNewColor; } return compoColors; } } static class UGraph { // Adjacency list. private HashSet<Integer>[] adj; private static final String NEWLINE = "\n"; private int E; @SuppressWarnings("unchecked") public UGraph(int V) { adj = (HashSet<Integer>[]) new HashSet[V]; E = 0; for (int i = 0; i < V; i++) adj[i] = new HashSet<Integer>(); } public void addEdge(int from, int to) { if (adj[from].contains(to)) return; E++; adj[from].add(to); adj[to].add(from); } public HashSet<Integer> adj(int from) { return adj[from]; } public int degree(int v) { return adj[v].size(); } public int V() { return adj.length; } public int E() { return E; } public String toString() { StringBuilder s = new StringBuilder(); s.append(V() + " vertices, " + E() + " edges " + NEWLINE); for (int v = 0; v < V(); v++) { s.append(v + ": "); for (int w : adj[v]) { s.append(w + " "); } s.append(NEWLINE); } return s.toString(); } public static void dfsMark(int current, boolean[] marked, UGraph g) { if (marked[current]) return; marked[current] = true; Iterable<Integer> adj = g.adj(current); for (int adjc : adj) dfsMark(adjc, marked, g); } public static void dfsMark(int current, int from, long[] distTo, boolean[] marked, UGraph g, ArrayList<Integer> endPoints) { if (marked[current]) return; marked[current] = true; if (from != -1) distTo[current] = distTo[from] + 1; HashSet<Integer> adj = g.adj(current); int alreadyMarkedCtr = 0; for (int adjc : adj) { if (marked[adjc]) alreadyMarkedCtr++; dfsMark(adjc, current, distTo, marked, g, endPoints); } if (alreadyMarkedCtr == adj.size()) endPoints.add(current); } public static void bfsOrder(int current, UGraph g) { } public static void dfsMark(int current, int[] colorIds, int color, UGraph g) { if (colorIds[current] != -1) return; colorIds[current] = color; Iterable<Integer> adj = g.adj(current); for (int adjc : adj) dfsMark(adjc, colorIds, color, g); } public static int[] connectedComponents(UGraph g) { int n = g.V(); int[] componentId = new int[n]; Arrays.fill(componentId, -1); int colorCtr = 0; for (int i = 0; i < n; i++) { if (componentId[i] != -1) continue; dfsMark(i, componentId, colorCtr, g); colorCtr++; } return componentId; } public static boolean hasCycle(UGraph ug) { int n = ug.V(); boolean[] marked = new boolean[n]; boolean[] hasCycleFirst = new boolean[1]; for (int i = 0; i < n; i++) { if (marked[i]) continue; hcDfsMark(i, ug, marked, hasCycleFirst, -1); } return hasCycleFirst[0]; } // Helper for hasCycle. private static void hcDfsMark(int current, UGraph ug, boolean[] marked, boolean[] hasCycleFirst, int parent) { if (marked[current]) return; if (hasCycleFirst[0]) return; marked[current] = true; HashSet<Integer> adjc = ug.adj(current); for (int adj : adjc) { if (marked[adj] && adj != parent && parent != -1) { hasCycleFirst[0] = true; return; } hcDfsMark(adj, ug, marked, hasCycleFirst, current); } } } static class Digraph { // Adjacency list. private HashSet<Integer>[] adj; private static final String NEWLINE = "\n"; private int E; @SuppressWarnings("unchecked") public Digraph(int V) { adj = (HashSet<Integer>[]) new HashSet[V]; E = 0; for (int i = 0; i < V; i++) adj[i] = new HashSet<Integer>(); } public void addEdge(int from, int to) { if (adj[from].contains(to)) return; E++; adj[from].add(to); } public HashSet<Integer> adj(int from) { return adj[from]; } public int V() { return adj.length; } public int E() { return E; } public Digraph reversed() { Digraph dg = new Digraph(V()); for (int i = 0; i < V(); i++) for (int adjVert : adj(i)) dg.addEdge(adjVert, i); return dg; } public String toString() { StringBuilder s = new StringBuilder(); s.append(V() + " vertices, " + E() + " edges " + NEWLINE); for (int v = 0; v < V(); v++) { s.append(v + ": "); for (int w : adj[v]) { s.append(w + " "); } s.append(NEWLINE); } return s.toString(); } public static int[] KosarajuSharirSCC(Digraph dg) { int[] id = new int[dg.V()]; Digraph reversed = dg.reversed(); // Gotta perform topological sort on this one to get the stack. Stack<Integer> revStack = Digraph.topologicalSort(reversed); // Initializing id and idCtr. id = new int[dg.V()]; int idCtr = -1; // Creating a 'marked' array. boolean[] marked = new boolean[dg.V()]; while (!revStack.isEmpty()) { int vertex = revStack.pop(); if (!marked[vertex]) sccDFS(dg, vertex, marked, ++idCtr, id); } return id; } private static void sccDFS(Digraph dg, int source, boolean[] marked, int idCtr, int[] id) { marked[source] = true; id[source] = idCtr; for (Integer adjVertex : dg.adj(source)) if (!marked[adjVertex]) sccDFS(dg, adjVertex, marked, idCtr, id); } public static Stack<Integer> topologicalSort(Digraph dg) { // dg has to be a directed acyclic graph. // We'll have to run dfs on the digraph and push the deepest nodes on stack first. // We'll need a Stack<Integer> and a int[] marked. Stack<Integer> topologicalStack = new Stack<Integer>(); boolean[] marked = new boolean[dg.V()]; // Calling dfs for (int i = 0; i < dg.V(); i++) if (!marked[i]) runDfs(dg, topologicalStack, marked, i); return topologicalStack; } static void runDfs(Digraph dg, Stack<Integer> topologicalStack, boolean[] marked, int source) { marked[source] = true; for (Integer adjVertex : dg.adj(source)) if (!marked[adjVertex]) runDfs(dg, topologicalStack, marked, adjVertex); topologicalStack.add(source); } } static class FastReader { private BufferedReader bfr; private StringTokenizer st; public FastReader() { bfr = new BufferedReader(new InputStreamReader(System.in)); } String next() { if (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bfr.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } char nextChar() { return next().toCharArray()[0]; } String nextString() { return next(); } int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } double[] nextDoubleArray(int n) { double[] arr = new double[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextDouble(); return arr; } long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); return arr; } int[][] nextIntGrid(int n, int m) { int[][] grid = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) grid[i][j] = fr.nextInt(); } return grid; } } @SuppressWarnings("serial") static class CountMap<T> extends TreeMap<T, Integer>{ CountMap() { } CountMap(Comparator<T> cmp) { } CountMap(T[] arr) { this.putCM(arr); } public Integer putCM(T key) { return super.put(key, super.getOrDefault(key, 0) + 1); } public Integer removeCM(T key) { int count = super.getOrDefault(key, -1); if (count == -1) return -1; if (count == 1) return super.remove(key); else return super.put(key, count - 1); } public Integer getCM(T key) { return super.getOrDefault(key, 0); } public void putCM(T[] arr) { for (T l : arr) this.putCM(l); } } static long dioGCD(long a, long b, long[] x0, long[] y0) { if (b == 0) { x0[0] = 1; y0[0] = 0; return a; } long[] x1 = new long[1], y1 = new long[1]; long d = dioGCD(b, a % b, x1, y1); x0[0] = y1[0]; y0[0] = x1[0] - y1[0] * (a / b); return d; } static boolean diophantine(long a, long b, long c, long[] x0, long[] y0, long[] g) { g[0] = dioGCD(Math.abs(a), Math.abs(b), x0, y0); if (c % g[0] > 0) { return false; } x0[0] *= c / g[0]; y0[0] *= c / g[0]; if (a < 0) x0[0] = -x0[0]; if (b < 0) y0[0] = -y0[0]; return true; } static long[][] prod(long[][] mat1, long[][] mat2) { int n = mat1.length; long[][] prod = new long[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) // determining prod[i][j] // it will be the dot product of mat1[i][] and mat2[][i] for (int k = 0; k < n; k++) prod[i][j] += mat1[i][k] * mat2[k][j]; return prod; } static long[][] matExpo(long[][] mat, long power) { int n = mat.length; long[][] ans = new long[n][n]; if (power == 0) return null; if (power == 1) return mat; long[][] half = matExpo(mat, power / 2); ans = prod(half, half); if (power % 2 == 1) { ans = prod(ans, mat); } return ans; } static int KMPNumOcc(char[] text, char[] pat) { int n = text.length; int m = pat.length; char[] patPlusText = new char[n + m + 1]; for (int i = 0; i < m; i++) patPlusText[i] = pat[i]; patPlusText[m] = '^'; // Seperator for (int i = 0; i < n; i++) patPlusText[m + i] = text[i]; int[] fullPi = piCalcKMP(patPlusText); int answer = 0; for (int i = 0; i < n + m + 1; i++) if (fullPi[i] == m) answer++; return answer; } static int[] piCalcKMP(char[] s) { int n = s.length; int[] pi = new int[n]; for (int i = 1; i < n; i++) { int j = pi[i - 1]; while (j > 0 && s[i] != s[j]) j = pi[j - 1]; if (s[i] == s[j]) j++; pi[i] = j; } return pi; } static boolean[] prefMatchesSuff(char[] s) { int n = s.length; boolean[] res = new boolean[n + 1]; int[] pi = prefix_function(s); res[0] = true; for (int p = n; p != 0; p = pi[p]) res[p] = true; return res; } static int[] prefix_function(char[] s) { int n = s.length; int[] pi = new int[n]; for (int i = 1; i < n; i++) { int j = pi[i-1]; while (j > 0 && s[i] != s[j]) j = pi[j-1]; if (s[i] == s[j]) j++; pi[i] = j; } return pi; } static long hash(long key) { long h = Long.hashCode(key); h ^= (h >>> 20) ^ (h >>> 12) ^ (h >>> 7) ^ (h >>> 4); return h & (gigamod-1); } static void Yes() {out.println("Yes");}static void YES() {out.println("YES");}static void yes() {out.println("Yes");}static void No() {out.println("No");}static void NO() {out.println("NO");}static void no() {out.println("no");} static int mapTo1D(int row, int col, int n, int m) { // Maps elements in a 2D matrix serially to elements in // a 1D array. return row * m + col; } static int[] mapTo2D(int idx, int n, int m) { // Inverse of what the one above does. int[] rnc = new int[2]; rnc[0] = idx / m; rnc[1] = idx % m; return rnc; } static boolean[] primeGenerator(int upto) { // Sieve of Eratosthenes: isPrime = new boolean[upto + 1]; smallestFactorOf = new int[upto + 1]; Arrays.fill(smallestFactorOf, 1); Arrays.fill(isPrime, true); isPrime[1] = isPrime[0] = false; for (long i = 2; i < upto + 1; i++) if (isPrime[(int) i]) { smallestFactorOf[(int) i] = (int) i; // Mark all the multiples greater than or equal // to the square of i to be false. for (long j = i; j * i < upto + 1; j++) { if (isPrime[(int) j * (int) i]) { isPrime[(int) j * (int) i] = false; smallestFactorOf[(int) j * (int) i] = (int) i; } } } return isPrime; } static HashMap<Integer, Integer> smolNumPrimeFactorization(int num) { if (smallestFactorOf == null) primeGenerator(num + 1); HashMap<Integer, Integer> fnps = new HashMap<>(); while (num != 1) { fnps.put(smallestFactorOf[num], fnps.getOrDefault(smallestFactorOf[num], 0) + 1); num /= smallestFactorOf[num]; } return fnps; } static HashMap<Long, Integer> primeFactorization(long num) { // Returns map of factor and its power in the number. HashMap<Long, Integer> map = new HashMap<>(); while (num % 2 == 0) { num /= 2; Integer pwrCnt = map.get(2L); map.put(2L, pwrCnt != null ? pwrCnt + 1 : 1); } for (long i = 3; i * i <= num; i += 2) { while (num % i == 0) { num /= i; Integer pwrCnt = map.get(i); map.put(i, pwrCnt != null ? pwrCnt + 1 : 1); } } // If the number is prime, we have to add it to the // map. if (num != 1) map.put(num, 1); return map; } static HashSet<Long> divisors(long num) { HashSet<Long> divisors = new HashSet<Long>(); divisors.add(1L); divisors.add(num); for (long i = 2; i * i <= num; i++) { if (num % i == 0) { divisors.add(num/i); divisors.add(i); } } return divisors; } static void coprimeGenerator(int m, int n, ArrayList<Point> coprimes, int limit, int numCoprimes) { if (m > limit) return; if (m <= limit && n <= limit) coprimes.add(new Point(m, n)); if (coprimes.size() > numCoprimes) return; coprimeGenerator(2 * m - n, m, coprimes, limit, numCoprimes); coprimeGenerator(2 * m + n, m, coprimes, limit, numCoprimes); coprimeGenerator(m + 2 * n, n, coprimes, limit, numCoprimes); } static long nCr(long n, long r, long[] fac) { long p = gigamod; if (r == 0) return 1; return (fac[(int)n] * modInverse(fac[(int)r], p) % p * modInverse(fac[(int)n - (int)r], p) % p) % p; } static long modInverse(long n, long p) { return power(n, p - 2, p); } static long modDiv(long a, long b){return mod(a * power(b, mod - 2, mod), mod);} static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if ((y & 1)==1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static int logk(long n, long k) { return (int)(Math.log(n) / Math.log(k)); } static long gcd(long a, long b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } static int gcd(int a, int b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } static long gcd(long[] arr) { int n = arr.length; long gcd = arr[0]; for (int i = 1; i < n; i++) { gcd = gcd(gcd, arr[i]); } return gcd; } static int gcd(int[] arr) { int n = arr.length; int gcd = arr[0]; for (int i = 1; i < n; i++) { gcd = gcd(gcd, arr[i]); } return gcd; } static long lcm(long[] arr) { long lcm = arr[0]; int n = arr.length; for (int i = 1; i < n; i++) { lcm = (lcm * arr[i]) / gcd(lcm, arr[i]); } return lcm; } static long lcm(long a, long b) { return (a * b)/gcd(a, b); } static boolean less(int a, int b) { return a < b ? true : false; } static boolean isSorted(int[] a) { for (int i = 1; i < a.length; i++) { if (less(a[i], a[i - 1])) return false; } return true; } static boolean isSorted(long[] a) { for (int i = 1; i < a.length; i++) { if (a[i] < a[i - 1]) return false; } return true; } static void swap(int[] a, int i, int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(long[] a, int i, int j) { long temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(double[] a, int i, int j) { double temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(char[] a, int i, int j) { char temp = a[i]; a[i] = a[j]; a[j] = temp; } static void sort(int[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(char[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(long[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(double[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void reverseSort(int[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(char[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverse(char[] arr) { int n = arr.length; for (int i = 0; i < n / 2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(long[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(double[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void shuffleArray(long[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { long tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static void shuffleArray(int[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { int tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static void shuffleArray(double[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { double tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static void shuffleArray(char[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { char tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static boolean isPrime(long n) {if (n<=1)return false;if(n<=3)return true;if(n%2==0||n%3==0)return false;for(long i=5;i*i<=n;i=i+6)if(n%i==0||n%(i+2)==0)return false;return true;} static String toString(int[] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++)sb.append(dp[i]+" ");return sb.toString();} static String toString(boolean[] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++)sb.append(dp[i]+" ");return sb.toString();} static String toString(long[] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++)sb.append(dp[i]+" ");return sb.toString();} static String toString(char[] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++)sb.append(dp[i]+"");return sb.toString();} static String toString(int[][] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++){for(int j=0;j<dp[i].length;j++){sb.append(dp[i][j]+" ");}sb.append('\n');}return sb.toString();} static String toString(long[][] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++){for(int j=0;j<dp[i].length;j++) {sb.append(dp[i][j]+" ");}sb.append('\n');}return sb.toString();} static String toString(double[][] dp){StringBuilder sb=new StringBuilder();for(int i = 0;i<dp.length;i++){for(int j = 0;j<dp[i].length;j++){sb.append(dp[i][j]+" ");}sb.append('\n');}return sb.toString();} static String toString(char[][] dp){StringBuilder sb = new StringBuilder();for(int i = 0;i<dp.length;i++){for(int j = 0;j<dp[i].length;j++){sb.append(dp[i][j]+"");}sb.append('\n');}return sb.toString();} static long mod(long a, long m){return(a%m+1000000L*m)%m;} } /* * * int[] arr = new int[] {1810, 1700, 1710, 2320, 2000, 1785, 1780 , 2130, 2185, 1430, 1460, 1740, 1860, 1100, 1905, 1650}; int n = arr.length; sort(arr); int bel1700 = 0, bet1700n1900 = 0, abv1900 = 0; for (int i = 0; i < n; i++) if (arr[i] < 1700) bel1700++; else if (1700 <= arr[i] && arr[i] < 1900) bet1700n1900++; else if (arr[i] >= 1900) abv1900++; out.println("COUNT: " + n); out.println("PERFS: " + toString(arr)); out.println("MEDIAN: " + arr[n / 2]); out.println("AVERAGE: " + Arrays.stream(arr).average().getAsDouble()); out.println("[0, 1700): " + bel1700 + "/" + n); out.println("[1700, 1900): " + bet1700n1900 + "/" + n); out.println("[1900, 2400): " + abv1900 + "/" + n); * * */ // NOTES: // ASCII VALUE OF 'A': 65 // ASCII VALUE OF 'a': 97 // Range of long: 9 * 10^18 // ASCII VALUE OF '0': 48 // Primes upto 'n' can be given by (n / (logn)).
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
92b0fc13bda609b37df0e3827f51845c
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class Main{ public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t=scanner.nextInt(); while (t--!=0){ int n=scanner.nextInt(); int m=scanner.nextInt(); int r=scanner.nextInt(); int c=scanner.nextInt(); boolean hasblack=false; char[][] map=new char[n][m]; boolean rhasblack=false; boolean chasblack=false; for (int i=0;i<n;i++){ String s=scanner.next(); for (int j=0;j<s.length();j++){ map[i][j]=s.charAt(j); if (map[i][j]=='B'){ hasblack=true; } if (j==c-1&&map[i][j]=='B'){ chasblack=true; } if (i==r-1&&map[i][j]=='B'){ rhasblack=true; } } } if (!hasblack){ System.out.println(-1); continue; } if (map[r-1][c-1]=='B'){ System.out.println(0); continue; } if (rhasblack||chasblack){ System.out.println(1); continue; } System.out.println(2); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
259662a514bab018060ac3347a3d061f
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.util.StringTokenizer; public class Not_Shading { static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream( new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte)c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) { return; } din.close(); } } public static void main(String Args[]) throws java.lang.Exception { try { Scanner obj = new Scanner (System.in); int t = obj.nextInt(); while (t > 0) { t--; int n = obj.nextInt(); int m = obj.nextInt(); int r = obj.nextInt(); int c = obj.nextInt(); r--; c--; int i, j; boolean cell = false, black = false, rowcol = false; for (i=0;i<n;i++) { String str = obj.next(); for (j=0;j<m;j++) { char ch = str.charAt(j); if (ch == 'B') { black = true; } if (i == r && j == c && ch == 'B') { cell = true; } if ((i == r || j == c) && ch == 'B') { rowcol = true; } } } if (!black) { System.out.println ("-1"); } else if (cell) { System.out.println ("0"); } else if (rowcol) { System.out.println ("1"); } else { System.out.println ("2"); } } }catch(Exception e){ return; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
a6451601d82a2db2f5e4211ad1311c67
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; public class Solution{ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } int MAX = Integer.MAX_VALUE/2; public static void main(String... args) throws Exception{ FastReader in = new FastReader(); BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out)); Solution sol = new Solution(); int t = in.nextInt(); while(t-->0){ sol.solve(in, out); } out.flush(); } // boolean debug = true; boolean debug = false; HashMap<String, Long> hm; private void solve(FastReader in, BufferedWriter out) throws Exception{ int n = in.nextInt(); int m = in.nextInt(); int r = in.nextInt(); int c = in.nextInt(); r--;c--; boolean[][] black = new boolean[n][m]; for(int i=0;i<n;i++) Arrays.fill(black[i], false); boolean blackP = false; for(int i=0;i<n;i++){ char[] input = in.next().toCharArray(); for(int j=0;j<m;j++){ if(input[j] == 'B'){ black[i][j] = true; blackP = true; } } } if(!blackP){ out.write("-1\n"); return; } boolean vis[][] = new boolean[n][m]; for(int i=0;i<n;i++) Arrays.fill(vis[i], false); LinkedList<int[]> queue = new LinkedList<>(); queue.add(new int[]{r, c}); vis[r][c] = true; int ans = 0; boolean found = false; while(queue.size()>0){ int size = queue.size(); for(int i=0;i<size;i++){ int u[] = queue.remove(); int x = u[0]; int y = u[1]; if(debug) System.out.println(x+ " " + y); if(black[x][y]){ found = true; break; } // go to each same row cells for(int j=0;j<m;j++){ if(!vis[r][j]){ queue.add(new int[]{r, j}); vis[r][j] = true; } } // go to each same col cells for(int j=0;j<n;j++){ if(!vis[j][c]){ queue.add(new int[]{j, c}); vis[j][c] = true; } } } if(found) break; ans++; } out.write(ans+"\n"); } private boolean isPoss(int x, int y, int n, int m){ if(x<0 || y<0 || x>=n || y>=m) return false; return true; } } /* ------ [2,6,4,6] [3,7,6,1] 3 6 6 6 2 7 4 1 ------------------------- 3 2 3 6 2 7 3 7 2 6 ------------------------- 2 3 ------------------------- */
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
d8706e0ee7cf43d8c838f3ea185d45ad
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import static java.lang.System.currentTimeMillis; /* * @author: Hivilsm * @createTime: 2022-04-27, 23:29:16 * @description: Platform */ public class Accepted { static FastReader in = new FastReader(); static PrintWriter out = new PrintWriter(System.out); static Random rand = new Random(); static int[][] DIRS = new int[][]{{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; public static void main(String[] args) { // long start = currentTimeMillis(); // int t = 3; int t = i(); out.println(); out.println(); out.println(); while (t-- > 0){ out.println(sol()); // int[] ans = sol(); // for (int i : ans){ // out.print(i + " "); // } // out.println(); // boolean ans = sol(); // if (ans){ // out.println("YES"); // }else{ // out.println("NO"); // } } // long end = currentTimeMillis(); // out.println(end - start); out.flush(); out.close(); } static int sol() { int n = i(), m = i(); int row = i() - 1, col = i() - 1; char[][] g = new char[n][m]; boolean isBlack = false; for (int i = 0; i < n; i++){ String s = s(); for (int j = 0; j < m; j++){ g[i][j] = s.charAt(j); if (g[i][j] == 'B'){ isBlack = true; } } } if (!isBlack){ return -1; } if (g[row][col] == 'B'){ return 0; } int sum = 0; for (int i = 0; i < n; i++){ if (g[i][col] == 'B'){ sum++; } } for (int i = 0; i < m; i++){ if (g[row][i] == 'B'){ sum++; } } return sum == 0 ? 2 : 1; } static boolean check(int x, int y, int n, int m){ return x >= 0 && y >= 0 && x < n && y < m; } static void swap(int[] nums, int l, int r){ int tmp = nums[l]; nums[l] = nums[r]; nums[r] = tmp; } static void ranArr() { int n = 3, len = 10, val = 10; System.out.println(n); for (int i = 0; i < n; i++) { int cnt = rand.nextInt(len) + 1; System.out.println(cnt); for (int j = 0; j < cnt; j++) { System.out.print(rand.nextInt(val) + " "); } System.out.println(); } } static double fastPower(double x, int n) { if (x == 0) return 0; long b = n; double res = 1.0; if (b < 0) { x = 1 / x; b = -b; } while (b > 0) { if ((b & 1) == 1) res *= x; x *= x; b >>= 1; } return res; } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static double d() { return in.nextDouble(); } static String s() { return in.nextLine(); } static int[] inputI(int n) { int nums[] = new int[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextInt(); } return nums; } static long[] inputLong(int n) { long nums[] = new long[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextLong(); } return nums; } } class ListNode { int val; ListNode next; public ListNode() { } public ListNode(int val) { this.val = val; } } class TreeNode { int val; TreeNode left; TreeNode right; public TreeNode() { } public TreeNode(int val) { this.val = val; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
a6e0ca03cfe8525baaa78ac5effb6809
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class Problem_1627A { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); int n, m, r, c; for (int i = 0; i < t; i++) { n = scanner.nextInt(); m = scanner.nextInt(); r = scanner.nextInt() - 1; c = scanner.nextInt() - 1; char[][] grid = new char[n][]; for (int j = 0; j < n; j++) { grid[j] = scanner.next().toCharArray(); } boolean allWhite = true; for (int j = 0; j < n; j++) { for (int k = 0; k < m; k++) { if (grid[j][k] == 'B') { allWhite = false; break; } } } boolean exist = false; for (int j = 0; j < n; j++) { if (j != r && grid[j][c] == 'B') { exist = true; break; } } for (int j = 0; j < m; j++) { if (j != c && grid[r][j] == 'B') { exist = true; break; } } if (allWhite) { System.out.println(-1); } else if (grid[r][c] == 'B') { System.out.println(0); } else if (exist) { System.out.println(1); } else { System.out.println(2); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
16be6ba0b8cbeeafa0a757eb3d4ce799
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; /** * <a href = "https://codeforces.com/problemset/problem/1627/A"> Link </a>. * @author Bris * @version 1.0 * @since 6:46:11 PM - Apr 20, 2022 */ public class A1627 { /** * The main method. * @param args Unused. */ public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); while (t-->0) { int n = scanner.nextInt(); int m = scanner.nextInt(); int r = scanner.nextInt(); int c = scanner.nextInt(); char[][] grid = new char[n][m]; for (int i = 0; i < n; i++) { grid[i] = scanner.next().toCharArray(); } int ans = -1; if (grid[r-1][c-1] == 'B') { ans = 0; System.out.println(ans); continue; } for (int i = 0; i < m; i++) { if (grid[r-1][i] == 'B') { ans = 1; } } for (int i = 0; i < n; i++) { if (grid[i][c-1] == 'B') { ans = 1; } } if (ans == 1) { System.out.println(ans); continue; } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (grid[i][j] == 'B') { ans = 2; } } } System.out.println(ans); } scanner.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
2556e8bd759db48ddc4bfa3e373eeb98
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class A1627 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t=0; t<T; t++) { int rows = in.nextInt(); int columns = in.nextInt(); int R = in.nextInt()-1; int C = in.nextInt()-1; char[][] G = new char[rows][]; for (int r=0; r<rows; r++) { G[r] = in.next().toCharArray(); } int best = -1; for (int r=0; r<rows; r++) { for (int c=0; c<columns; c++) { if (G[r][c] == 'B') { int current = 0; if (r == R) current++; if (c == C) current++; best = Math.max(best, current); } } } if (best != -1) { best = 2 - best; } System.out.println(best); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
4bfe1df3fec0aacd2dfdd5a28208c66e
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; public class Rough { public static void main(String[] args) throws Exception { Scanner s = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int tc = s.nextInt(); for(int t=1;t<=tc;t++) { int r=s.nextInt(); int c=s.nextInt(); int x=s.nextInt(); int y=s.nextInt(); char[][] ar=new char[r][c]; s.nextLine(); for(int j=0;j<r;j++) { ar[j]=s.next().toCharArray(); } boolean doer=false; for(int i=0;i<r;i++) { for(int k=0;k<c;k++) { if(ar[i][k]=='B') { doer=true; break; } } } boolean doer1=false; for(int i=0;i<c;i++) { if(ar[x-1][i]=='B') { doer1=true; break; } } boolean doer2=false; for(int i=0;i<r;i++) { if(ar[i][y-1]=='B') { doer2=true; break; } } if(doer) { if(ar[x-1][y-1]=='B')pw.println(0); else if(doer1||doer2)pw.println(1); else pw.println(2); } else pw.println(-1); } pw.close(); } static final Random ran=new Random(); static void sort(int[] ar) { int n=ar.length; for(int i=0;i<n;i++) { int doer=ran.nextInt(n),temp=ar[doer]; ar[doer]=ar[i];ar[i]=temp; } Arrays.sort(ar); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
dcdb35fcc3251e4bd24ef6f64021f827
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.net.URI; import java.net.URISyntaxException; import java.sql.Array; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.Deque; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.LinkedHashSet; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; import java.util.Set; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import java.util.Vector; import org.w3c.dom.Node; public class codechef3 { static class comp implements Comparator<String> { @Override public int compare(String o1, String o2) { if(o1.length()>o2.length()) return 1; else if(o1.length()<o2.length()) return -1; else return o1.compareTo(o2); } } static class Pair<Integer,Intetger> { int k=0; int v=0; public Pair(int a,int b) { k=a; v=b; } public int getKey() { return k; } } static class FastReader {BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //------------------------------------------------------------------------------------------- public static void main(String[] args) { FastReader s=new FastReader(); int t=s.nextInt(); while(t-->0) { int n=s.nextInt(); int m=s.nextInt(); int r=s.nextInt(); int c=s.nextInt(); String a[]=new String[n]; for(int i=0;i<n;i++) a[i]=s.next(); // System.out.println(a[r-1].charAt(c-1)); if(a[r-1].charAt(c-1)=='B') System.out.println("0"); else { int flag=0; int flag1=0; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { if(a[i].charAt(j)=='B') { if(i==r-1||j==c-1) flag1=1; flag=1; } } if(flag1==1) break; } if(flag==0) System.out.println("-1"); else if(flag1==1) System.out.println(flag1); else System.out.println("2"); } } } //1 1 1 1 1 1 1 1 1 1 1 1 }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
98a9a6a0b0fe5742f0908204d605685c
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class fun{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int m=sc.nextInt(); int a=sc.nextInt(); int b=sc.nextInt(); char ar[][]=new char[n][m];int c=0,k=0; for(int i=0;i<n;i++) { String s=sc.next(); for(int j=0;j<m;j++) { ar[i][j]=s.charAt(j); if(ar[i][j]=='B') { c++; }if(ar[i][j]=='B'&&(i==a-1||j==b-1)) { k++; } } } if(c==0) { System.out.println("-1"); }else if(ar[a-1][b-1]=='B') { System.out.println("0"); }else if(k==0) { System.out.println("2"); }else { System.out.println("1"); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
daa570c66505e22739e48cb423f732b6
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
/*----->Hope Can Set You Free<-----*/ import java.util.*; public class NotShading { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(),m=sc.nextInt(),r=sc.nextInt(),c=sc.nextInt(),yo=0,jaigamoto=0,ashepase=0; for(int i=0;i<n;i++) { StringBuilder sb=new StringBuilder(sc.next()); for(int k=0;k<sb.length();k++){ if(sb.charAt(k)=='B') { yo=1; } if(i==r-1) { if(sb.charAt(k)=='B') { ashepase=1; } }else { if(k==c-1) { if(sb.charAt(k)=='B') { ashepase=1; } } } if(i==r-1 && k==c-1) { if(sb.charAt(k)=='B') { jaigamoto=1; } } } } if(jaigamoto==1) { System.out.println("0"); }else if(ashepase==1) { System.out.println("1"); }else if(yo==1) { System.out.println("2"); }else { System.out.println("-1"); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
10e133c6f7c41e7c636665f1b81d7030
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; public class A { static PrintWriter pw = new PrintWriter(System.out); static FastReader fr = new FastReader(); public static void main(String[] args) { int t = fr.nextInt(); while (t-- > 0) { solve(); } pw.flush(); } static void solve() { int n = fr.nextInt(); int m = fr.nextInt(); int r = fr.nextInt(); int c = fr.nextInt(); r--; c--; int ans = 1337; char[][] grid = new char[n][m]; for (int i = 0; i < n; i++) { grid[i] = fr.nextLine().toCharArray(); } if (grid[r][c] == 'B') ans = 0; else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if ((i == r && grid[i][j] == 'B') || (j == c && grid[i][c] == 'B')) { ans = min(ans, 1); break; } else if (grid[i][j] == 'B') { ans = min(ans, 2); } } } } pw.println( ans == 1337 ? -1 : ans); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
1e491c2fc1668ca38f9456b52b0a98b7
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class SolveProblem { public static void main(String[] args) { notShading(); } private static void notShading(){ Scanner scanner = new Scanner(System.in); int caseNum = scanner.nextInt(); while(caseNum>0){ int n,m,r,c; n = scanner.nextInt(); m = scanner.nextInt(); r = scanner.nextInt() - 1; c = scanner.nextInt() - 1; scanner.nextLine(); char[][] grid = new char[n][m]; boolean findBlack = false; boolean blackInRC = false; for(int i=0;i<n;i++){ String s = scanner.nextLine(); for(int j=0;j<m;j++){ grid[i][j] = s.charAt(j); if(grid[i][j] == 'B'){ findBlack = true; if(i == r || j == c){ blackInRC = true; } } } } // 要把r,c变黑 // 如果本身就是黑,0 // 如果全部都是白,-1 // 如果r,c上有黑,1 // 其他,2 if(grid[r][c] == 'B'){ System.out.println(0); }else if(!findBlack){ System.out.println(-1); }else if(blackInRC){ System.out.println(1); }else{ System.out.println(2); } caseNum --; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
4b21c3dd283bd5d2b23803c8f703ed87
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { // your code goes here try { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(), m=sc.nextInt(); int x=sc.nextInt(), y=sc.nextInt(); char arr[][]=new char[n][m]; boolean isBlack=false; for(int i=0;i<n;i++) { String st = sc.next(); arr[i] = st.toCharArray(); for(int j=0;j<m;j++) { // arr[i][j]=sc.next().charAt(0); if(arr[i][j]=='B') { isBlack=true; } } } if(isBlack==false) { System.out.println(-1); continue; } x--; y--; if(arr[x][y]=='B') { System.out.println(0); // System.out.println(x+" "+y); continue; } boolean isOne=false; for(int i=0;i<m;i++) { if(arr[x][i]=='B') { isOne=true; break; } } if(isOne) { System.out.println(1); continue; } for(int i=0;i<n;i++) { if(arr[i][y]=='B') { isOne=true; break; } } if(isOne) { System.out.println(1); } else{ System.out.println(2); } } } catch(Exception e) { } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
8413922b3c9d0d9413917df3ccb1ebe9
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
//CP- MASS_2701 import java.util.*; import java.io.*; public class A_Not_Shading { static FastReader in=new FastReader(); static final Random random=new Random(); static long mod=1000000007L; static HashMap<String,Integer>map=new HashMap<>(); public static void main(String args[]) throws IOException { int t=in.nextInt(); int cse=1; loop: while(t-->0) { StringBuilder res=new StringBuilder(); //res.append("Hello"+"\n"); int m=in.nextInt(); int n=in.nextInt(); int r=in.nextInt(); int c=in.nextInt(); String[] str=new String[m]; int b=0; int k; for(int i=0;i<m;i++) { str[i]=in.next(); } if(str[r-1].charAt(c-1)=='B') { println(0); } else{ int f=0; for(int i=0;i<n;i++) { if(str[r-1].charAt(i)=='B') { println(1); f=1; break; } } if(f==0) { for(int i=0;i<m;i++) { if(str[i].charAt(c-1)=='B') { println(1); f=1; break; } } if(f==0) { for(int i=0;i<m;i++) { for(int j=0;j<n;j++) { if(str[i].charAt(j)=='B') { println(2); f=1; break; } } if(f==1) {break;} } if(f==0) { println(-1); } } } } } } static int max(int a, int b) { if(a<b) return b; return a; } static void ruffleSort(int[] a) { int n=a.length; for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static < E > void print(E res) { System.out.print(res); } static < E > void println(E res) { System.out.println(res); } static int gcd(int a,int b) { if(b==0) { return a; } return gcd(b,a%b); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static int abs(int a) { if(a<0) return -1*a; return a; } static boolean isPrime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int [] readintarray(int n) { int res [] = new int [n]; for(int i = 0; i<n; i++)res[i] = nextInt(); return res; } long [] readlongarray(int n) { long res [] = new long [n]; for(int i = 0; i<n; i++)res[i] = nextLong(); return res; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
2e112e2b0f20e1262da5aa54228be92a
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; /** * * @author Carlos */ public class NotShading { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int t = scan.nextInt(); for(int i=0;i<t;i++){ int n = scan.nextInt(); int m = scan.nextInt(); int r = scan.nextInt(); int c = scan.nextInt(); String[] grid = new String[n]; for(int j=0;j<n;j++){ grid[j] = scan.next(); } System.out.println(solucion(grid, n, m, r, c)); } } public static int solucion(String[] grid, int n, int m, int r, int c){ if(grid[r-1].charAt(c-1) == 'B') return 0; for(int i=0;i<n;i++){ if(grid[i].charAt(c-1) == 'B') return 1; } for(int i=0;i<m;i++){ if(grid[r-1].charAt(i) == 'B') return 1; } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(grid[i].charAt(j) == 'B') return 2; } } return -1; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
c0d522f5015692e554398e3768111c4b
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class BinaryDecimal { public static void main(String[] args) { Scanner fs = new Scanner(System.in); int t = fs.nextInt(); while (t-- > 0) { int n = fs.nextInt(); int m = fs.nextInt(); int r = fs.nextInt(); int c = fs.nextInt(); int a[][] = new int[n][m]; int black = 0; for (int i = 0; i < n; i++) { String s = fs.next(); for (int j = 0; j < m; j++) { if (s.charAt(j) == 'B') { black++; a[i][j] = 1; } } } r--; c--; if (a[r][c] == 1) System.out.println(0); else if (black == 0) System.out.println(-1); else { boolean flag = false; for (int i = 0; i < m; i++) if (a[r][i] == 1) { flag = true; break; } if (!flag) { for (int i = 0; i < n; i++) if (a[i][c] == 1) { flag = true; break; } } if (flag) System.out.println(1); else System.out.println(2); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
5fec6df4b3eebd25d8d9b74ac412f317
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.util.Scanner; public class Solution extends CodeForces { public static void main(String[] args) { int t= I(); while (t-->0){ int n = I(); int m = I(); int r = I(); int c = I(); boolean flag = false; char[][] bw= new char[n][m]; for (int i = 0; i < n; i++) { String s = S(); for (int j = 0; j < m; j++) { bw[i][j] = s.charAt(j); if (bw[i][j] == 'B'){ flag = true; } } } System.out.println(solution(n,m,r,c,bw,flag)); } } private static int solution(int n, int m, int r, int c,char[][] bw,boolean flag) { if (flag==false){ return -1; } if (bw[r-1][c-1]=='B') return 0; for (int i = 0; i < n; i++) { if (bw[i][c-1]=='B'){ return 1; } } for (int i = 0; i < m; i++) { if (bw[r-1][i]=='B'){ return 1; } } return 2; } } class CodeForces { static FastReader sc=new FastReader(); static PrintWriter out=new PrintWriter(System.out); static long mod=1000000007; static long mod1=998244353; static int MAX=Integer.MAX_VALUE; static int MIN=Integer.MIN_VALUE; static long MAXL=Long.MAX_VALUE; static long MINL=Long.MIN_VALUE; public static class pair { int a; int b; public pair(int val,int index) { a=val; b=index; } } public static class myComp implements Comparator<pair> { //sort in ascending order. public int compare(CodeForces.pair p1, pair p2) { if(p1.a==p2.a) return 0; else if(p1.a<p2.a) return -1; else return 1; } //sort in descending order. // public int compare(pair p1,pair p2) // { // if(p1.a==p2.a) // return 0; // else if(p1.a<p2.a) // return 1; // else // return -1; // } } public static long fact(long n) { long fact=1; for(long i=2;i<=n;i++){ fact=((fact%mod)*(i%mod))%mod; } return fact; } public static long fact(int n) { long fact=1; for(int i=2;i<=n;i++){ fact=((fact%mod)*(i%mod))%mod; } return fact; } public static long kadane(long a[],int n) { long max_sum=Long.MIN_VALUE,max_end=0; for(int i=0;i<n;i++){ max_end+=a[i]; if(max_sum<max_end){max_sum=max_end;} if(max_end<0){max_end=0;} } return max_sum; } public static void DFS(ArrayList<Integer> arr[],int s,boolean visited[]) { visited[s]=true; for(int i:arr[s]){ if(!visited[i]){ DFS(arr,i,visited); } } } public static int BS(int a[],int x,int ii,int jj) { // int n=a.length; int mid=0; int i=ii,j=jj,in=0; while(i<=j) { mid=(i+j)/2; if(a[mid]<x){ in=mid+1; i=mid+1; } else j=mid-1; } return in; } public static int lower_bound(int arr[], int N, int X) { int mid; int low = 0; int high = N; while(low<high) { mid=low+(high-low)/2; if(X<=arr[mid]){ high=mid; } else{ low=mid+1; } } if(low<N && arr[low]<X){ low++; } out.println(arr[low]); return low; } public static ArrayList<Integer> primeSieve(int n) { ArrayList<Integer> arr=new ArrayList<>(); boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } for (int i = 2; i <= n; i++) { if (prime[i] == true) arr.add(i); } return arr; } // Fenwick / BinaryIndexed Tree USE IT - FenwickTree ft1=new FenwickTree(n); public static class FenwickTree { long farr[]; int n; public FenwickTree(int c) { n=c+1; farr=new long[n]; } // public void update_range(int l,int r,long p) // { // update(l,p); // update(r+1,(-1)*p); // } public void update(int x) { for(;x<=n;x+=x&(-x)) { farr[x]++; } } public long get(int x) { long ans=0; for(;x>0;x-=x&(-x)) { ans=ans+farr[x]; } return ans; } } //Disjoint Set Union public static class DSU { static int par[],rank[]; public DSU(int c) { par=new int[c+1]; rank=new int[c+1]; for(int i=0;i<=c;i++) { par[i]=i; rank[i]=0; } } public static int find(int a) { if(a==par[a]) return a; return par[a]=find(par[a]); } public static void union(int a,int b) { int a_rep=find(a),b_rep=find(b); if(a_rep==b_rep) return; if(rank[a_rep]<rank[b_rep]) par[a_rep]=b_rep; else if(rank[a_rep]>rank[b_rep]) par[b_rep]=a_rep; else { par[b_rep]=a_rep; rank[a_rep]++; } } } //SEGMENT TREE CODE // public static void segmentUpdate(int si,int ss,int se,int qs,int qe,long x) // { // if(ss>qe || se<qs)return; // if(qs<=ss && qe>=se) // { // seg[si][0]+=1L; // seg[si][1]+=x*x; // seg[si][2]+=2*x; // return; // } // int mid=(ss+se)/2; // segmentUpdate(2*si+1,ss,mid,qs,qe,x); // segmentUpdate(2*si+2,mid+1,se,qs,qe,x); // } // public static long segmentGet(int si,int ss,int se,int x,long f,long s,long t,long a[]) // { // if(ss==se && ss==x) // { // f+=seg[si][0]; // s+=seg[si][1]; // t+=seg[si][2]; // long ans=a[x]+(f*((long)x+1L)*((long)x+1L))+s+(t*((long)x+1L)); // return ans; // } // int mid=(ss+se)/2; // if(x>mid){ // return segmentGet(2*si+2,mid+1,se,x,f+seg[si][0],s+seg[si][1],t+seg[si][2],a); // }else{ // return segmentGet(2*si+1,ss,mid,x,f+seg[si][0],s+seg[si][1],t+seg[si][2],a); // } // } public static class myComp1 implements Comparator<CodeForces.pair1> { //sort in ascending order. public int compare(pair1 p1,pair1 p2) { if(p1.a==p2.a) return 0; else if(p1.a<p2.a) return -1; else return 1; } //sort in descending order. // public int compare(pair p1,pair p2) // { // if(p1.a==p2.a) // return 0; // else if(p1.a<p2.a) // return 1; // else // return -1; // } } public static class pair1 { long a; long b; public pair1(long val,long index) { a=val; b=index; } } public static ArrayList<CodeForces.pair1> mergeIntervals(ArrayList<CodeForces.pair1> arr) { //****************use this in main function-Collections.sort(arr,new myComp1()); ArrayList<CodeForces.pair1> a1=new ArrayList<>(); if(arr.size()<=1) return arr; a1.add(arr.get(0)); int i=1,j=0; while(i<arr.size()) { if(a1.get(j).b<arr.get(i).a) { a1.add(arr.get(i)); i++; j++; } else if(a1.get(j).b>arr.get(i).a && a1.get(j).b>=arr.get(i).b) { i++; } else if(a1.get(j).b>=arr.get(i).a) { long a=a1.get(j).a; long b=arr.get(i).b; a1.remove(j); a1.add(new CodeForces.pair1(a,b)); i++; } } return a1; } public static boolean palindrome(String s,int n) { for(int i=0;i<=n/2;i++){ if(s.charAt(i)!=s.charAt(n-i-1)){ return false; } } return true; } public static long gcd(long a,long b) { if(b==0) return a; else return gcd(b,a%b); } public static boolean prime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static boolean prime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static int gcd(int a,int b) { if(b==0) return a; else return gcd(b,a%b); } public static void printArray(long a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]+" "); } out.println(); } public static void printArray(int a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]+" "); } out.println(); } public static void printArray(char a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]+" "); } out.println(); } public static void printArray(boolean a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]+" "); } out.println(); } public static void printArray(int a[][]) { for(int i=0;i<a.length;i++){ for(int j=0;j<a[i].length;j++){ out.print(a[i][j]+" "); }out.println(); } } public static void printArray(char a[][]) { for(int i=0;i<a.length;i++){ for(int j=0;j<a[i].length;j++){ out.print(a[i][j]+" "); }out.println(); } } public static void printArray(ArrayList<Long> arr) { for(int i=0;i<arr.size();i++){ out.print(arr.get(i)+" "); } out.println(); } public static void printMapInt(HashMap<Integer,Integer> hm){ for(Map.Entry<Integer,Integer> e:hm.entrySet()){ out.println(e.getKey()+"->"+e.getValue()); }out.println(); } public static void printMapLong(HashMap<Long,Long> hm){ for(Map.Entry<Long,Long> e:hm.entrySet()){ out.println(e.getKey()+"->"+e.getValue()); }out.println(); } public static long pwr(long m,long n) { long res=1; m=m%mod; if(m==0) return 0; while(n>0) { if((n&1)!=0) { res=(res*m)%mod; } n=n>>1; m=(m*m)%mod; } return res; } public static void sort(int[] A) { int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i) { int tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } public static void sort(long[] A) { int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i) { long tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } public static int I(){return sc.I();} public static long L(){return sc.L();} public static String S(){return sc.S();} public static double D(){return sc.D();} } class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()){ try { st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } int I(){ return Integer.parseInt(next()); } long L(){ return Long.parseLong(next()); } double D(){ return Double.parseDouble(next()); } String S(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
9d377f3840af14ac9fee256b44a5a07b
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.HashMap; import java.util.Scanner; public class NotShading { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); for (int i = 0; i < t; i++) { int n = scanner.nextInt(), m = scanner.nextInt(), r = scanner.nextInt(), c = scanner.nextInt(); HashMap<Integer, HashMap<Integer, Integer>> map = new HashMap<>(); String outPut = ""; boolean isContainsBlack = false; for (int j = 0; j < n; j++) { String str = scanner.next(); map.put(j + 1, getMap(str)); } if (map.get(r).containsKey(c)) { System.out.println("0"); continue; } if (map.get(r).size() >= 1) { System.out.println("1"); continue; } for (Integer name : map.keySet()) { if(map.get(name).size() >= 1){ isContainsBlack = true; } if (map.get(name).containsKey(c)) { outPut = "1"; break; } } if (!outPut.equals("")) { System.out.println(outPut); continue; } System.out.println(isContainsBlack ? "2" : "-1"); } } static HashMap<Integer, Integer> getMap(String str) { HashMap<Integer, Integer> map = new HashMap<>(); for (int k = 0; k < str.length(); k++) { if (str.charAt(k) == 'B') map.put(k + 1, 1); } return map; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
7f195293f989c77115d33774333a44c7
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
/* Challenge 1: Newbie to CM in 1year (Dec 2021 - Nov 2022) 🔥 5* Codechef Challenge 2: CM to IM in 1 year (Dec 2022 - Nov 2023) 🔥🔥 6* Codechef Challenge 3: IM to GM in 1 year (Dec 2023 - Nov 2024) 🔥🔥🔥 7* Codechef Goal: Become better in CP! Key: Consistency and Discipline Desire: SDE @ Google USA */ import java.util.*; import java.io.*; import java.math.*; public class Coder { static StringBuffer str=new StringBuffer(); static int n, m, r, c; static char mat[][]; static int solve(){ if(mat[r][c]=='B') return 0; int ans=3; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(mat[i][j]=='B'){ if(i==r || j==c) ans=1; else ans=Math.min(ans, 2); } } } return ans==3?-1:ans; } public static void main(String[] args) throws java.lang.Exception { BufferedReader bf; PrintWriter pw; boolean lenv=false; if(lenv){ bf = new BufferedReader( new FileReader("input.txt")); pw=new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); }else{ bf = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new OutputStreamWriter(System.out)); } int t = Integer.parseInt(bf.readLine().trim()); while (t-- > 0) { String st[]=bf.readLine().trim().split("\\s+"); n=Integer.parseInt(st[0]); m=Integer.parseInt(st[1]); r=Integer.parseInt(st[2]); c=Integer.parseInt(st[3]); r--; c--; mat=new char[n][m]; for(int i=0;i<n;i++){ mat[i]=bf.readLine().trim().toCharArray(); } str.append(solve()).append("\n"); } pw.println(str); pw.flush(); // System.outin.print(str); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
a73f428e24bd896309ee51462621f5fe
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static class Pair implements Comparable < Pair > { int d; int i; Pair(int d, int i) { this.d = d; this.i = i; } public int compareTo(Pair o) { return this.d - o.d; } } public static class SegmentTree { long[] st; long[] lazy; int n; SegmentTree(long[] arr, int n) { this.n = n; st = new long[4 * n]; lazy = new long[4 * n]; construct(arr, 0, n - 1, 0); } public long construct(long[] arr, int si, int ei, int node) { if (si == ei) { st[node] = arr[si]; return arr[si]; } int mid = (si + ei) / 2; long left = construct(arr, si, mid, 2 * node + 1); long right = construct(arr, mid + 1, ei, 2 * node + 2); st[node] = left + right; return st[node]; } public long get(int l, int r) { return get(0, n - 1, l, r, 0); } public long get(int si, int ei, int l, int r, int node) { if (r < si || l > ei) return 0; if (lazy[node] != 0) { st[node] += lazy[node] * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (l <= si && r >= ei) return st[node]; int mid = (si + ei) / 2; return get(si, mid, l, r, 2 * node + 1) + get(mid + 1, ei, l, r, 2 * node + 2); } public void update(int index, int value) { update(0, n - 1, index, 0, value); } public void update(int si, int ei, int index, int node, int val) { if (si == ei) { st[node] = val; return; } int mid = (si + ei) / 2; if (index <= mid) { update(si, mid, index, 2 * node + 1, val); } else { update(mid + 1, ei, index, 2 * node + 2, val); } st[node] = st[2 * node + 1] + st[2 * node + 2]; } public void rangeUpdate(int l, int r, int val) { rangeUpdate(0, n - 1, l, r, 0, val); } public void rangeUpdate(int si, int ei, int l, int r, int node, int val) { if (r < si || l > ei) return; if (lazy[node] != 0) { st[node] += lazy[node] * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (l <= si && r >= ei) { st[node] += val * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += val; lazy[2 * node + 2] += val; } return; } int mid = (si + ei) / 2; rangeUpdate(si, mid, l, r, 2 * node + 1, val); rangeUpdate(mid + 1, ei, l, r, 2 * node + 2, val); st[node] = st[2 * node + 1] + st[2 * node + 2]; } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream( new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte)c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { try { System.setIn(new FileInputStream(new File("input.txt"))); System.setOut(new PrintStream(new File("output.txt"))); } catch (Exception e) { } } Scanner sc = new Scanner(System.in); int t = sc.nextInt(); StringBuilder sb = new StringBuilder(); while (t-- > 0) { int r = sc.nextInt(); int c = sc.nextInt(); int tr = sc.nextInt() - 1; int tc = sc.nextInt() - 1; int[] row = new int[r]; int[] col = new int[c]; String[] arr = new String[r]; boolean flag = false; for (int i = 0; i < r; i++) { String s = sc.next(); int b = 0; arr[i] = s; for (int j = 0; j < c; j++) { if (s.charAt(j) == 'B') { b += 1; col[j] += 1; flag = true; } } if (b > 0) flag = true; row[i] = b; } if (arr[tr].charAt(tc) == 'B') { sb.append("0"); } else if (row[tr] > 0 || col[tc] > 0) { sb.append("1"); } else { if (flag) sb.append("2"); else sb.append("-1"); } sb.append("\n"); } System.out.println(sb); } public static String Util(String s) { for (int i = s.length() - 1; i >= 1; i--) { int l = s.charAt(i - 1) - '0'; int r = s.charAt(i) - '0'; if (l + r >= 10) { return s.substring(0, i - 1) + (l + r) + s.substring(i + 1); } } int l = s.charAt(0) - '0'; int r = s.charAt(1) - '0'; return (l + r) + s.substring(2); } public static boolean isPos(int idx, long[] arr, long[] diff) { if (idx == 0) { for (int i = 0; i <= Math.min(arr[0], arr[1]); i++) { diff[idx] = i; arr[0] -= i; arr[1] -= i; if (isPos(idx + 1, arr, diff)) { return true; } arr[0] += i; arr[1] += i; } } else if (idx == 1) { if (arr[2] - arr[1] >= 0) { long k = arr[1]; diff[idx] = k; arr[1] = 0; arr[2] -= k; if (isPos(idx + 1, arr, diff)) { return true; } arr[1] = k; arr[2] += k; } else return false; } else { if (arr[2] == arr[0] && arr[1] == 0) { diff[2] = arr[2]; return true; } else { return false; } } return false; } public static boolean isPal(String s) { for (int i = 0; i < s.length(); i++) { if (s.charAt(i) != s.charAt(s.length() - 1 - i)) return false; } return true; } static int upperBound(ArrayList<Long> arr, long key) { int mid, N = arr.size(); // Initialise starting index and // ending index int low = 0; int high = N; // Till low is less than high while (low < high && low != N) { // Find the index of the middle element mid = low + (high - low) / 2; // If key is greater than or equal // to arr[mid], then find in // right subarray if (key >= arr.get(mid)) { low = mid + 1; } // If key is less than arr[mid] // then find in left subarray else { high = mid; } } // If key is greater than last element which is // array[n-1] then upper bound // does not exists in the array return low; } static int lowerBound(ArrayList<Long> array, long key) { // Initialize starting index and // ending index int low = 0, high = array.size(); int mid; // Till high does not crosses low while (low < high) { // Find the index of the middle element mid = low + (high - low) / 2; // If key is less than or equal // to array[mid], then find in // left subarray if (key <= array.get(mid)) { high = mid; } // If key is greater than array[mid], // then find in right subarray else { low = mid + 1; } } // If key is greater than last element which is // array[n-1] then lower bound // does not exists in the array if (low < array.size() && array.get(low) < key) { low++; } // Returning the lower_bound index return low; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
69cf445a59ecc783d00cee4b8cdffa5e
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; public class Main{ static void testCase(FastScanner sc) { int n = sc.nextInt(), m = sc.nextInt(), r = sc.nextInt() - 1, c = sc.nextInt() - 1; boolean black = false, one = false; char grid[][] = new char[n][m]; for(int i=0; i<n; i++) { grid[i] = sc.next().toCharArray(); for(int j=0; j<m; j++) { if(grid[i][j] == 'B' && !black) black = true; if(i==r){ if(grid[i][j]=='B' && !one) one = true; } if(j==c){ if(grid[i][j]=='B' && !one) one = true; } } } System.out.println(!black ? -1 : grid[r][c] == 'B' ? 0 : one ? 1 : 2); } public static void main(String[] args){ FastScanner sc = new FastScanner(); int t = sc.nextInt(); for(int tt=0; tt<t; tt++) { testCase(sc); } } static class FastScanner{ InputStreamReader is; BufferedReader br; StringTokenizer st; public FastScanner(){ try { br = new BufferedReader(new FileReader("input.txt")); PrintStream out = new PrintStream(new FileOutputStream("output.txt")); System.setOut(out); } catch (Exception e) { is = new InputStreamReader(System.in); br = new BufferedReader(is); } } String next(){ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readIntArray(int n){ int arr[]=new int[n]; for(int i=0;i<n;i++){ arr[i]=nextInt(); } return arr; } void printIntArray(int[] arr) { int n = arr.length; for(int i=0; i<n; i++) System.out.print(arr[i] + " "); System.out.println(); } int[][] readIntArrayTwo(int n,int m){ int arr[][]=new int[n][m]; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ arr[i][j]=nextInt(); } } return arr; } int[][] readIntArrayTwo(int n){ int arr[][]=new int[n][n]; for(int i=0;i<n;i++){ for(int j=0;j<n;j++){ arr[i][j]=nextInt(); } } return arr; } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e){ e.printStackTrace(); } return str; } void close() throws Exception{ is.close(); br.close(); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
f85646403b6ebe46f4ee838f7ece02c5
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class index { public static void main (String[] args) { FastScanner sc = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int T = sc.nextInt(); for(int t = 0; t<T; t++){ int N = sc.nextInt(), M = sc.nextInt(), R = sc.nextInt(), C = sc.nextInt(); char arr[][] = new char[N][M]; boolean b = false; for(int i = 0; i<N; i++){ String s = sc.next(); if(s.indexOf('B') != -1)b = true; arr[i] = s.toCharArray(); } if(arr[R - 1][C - 1] == 'B')out.println(0); else{ boolean flag = false; for(int i = 0; i<N; i++){ if(arr[i][C - 1] == 'B')flag = true; } for(int i = 0; i<M; i++){ if(arr[R - 1][i] == 'B')flag = true; } if(flag)out.println("1"); else if(!b)out.println(-1); else out.println(2); } } out.flush(); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) {} return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } } //NOTES // Arrays.sort(arr,(a,b)->a[0]-b[0]);
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
4ba5b3719bd698b4261fc2a3ba47c314
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class NotShading { public static void main(String[] args) { Scanner in = new Scanner(System.in); int round = in.nextInt(); for (int z = 0; z < round; z++) { int n = in.nextInt(), m = in.nextInt(); int r = in.nextInt(), c = in.nextInt(); int ans = 99; for (int i = 1; i <= n; i++) { char[] str = ("-" + in.next()).toCharArray(); for (int j = 1; j <= m; j++) { if (ans > 2 && str[j] == 'B') ans = 2; if (ans > 1 && (i == r || j == c) && str[j] == 'B') ans = 1; if (ans > 0 && (i == r && j == c) && str[j] == 'B') { ans = 0; break; } } } System.out.println(ans != 99 ? ans : -1); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
0994d404244291dd4b7273563afe0deb
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; public class Solution { public static void main(String args[]) throws IOException { InputStream is = null; BufferedReader br; PrintStream out; if (System.getProperty("ONLINE_JUDGE") == null) { is = new FileInputStream(new File("input.txt")); out = new PrintStream(new FileOutputStream("output.txt")); System.setOut(out); } else { is = System.in; } br = new BufferedReader(new InputStreamReader(is)); int testcases = Integer.parseInt(br.readLine().trim()); while (testcases-- > 0) { String line[] = br.readLine().split(" "); int row = Integer.parseInt(line[0]); int col = Integer.parseInt(line[1]); int r = Integer.parseInt(line[2]) - 1; int c = Integer.parseInt(line[3]) - 1; char matrix[][] = new char[row][col]; boolean haveBlack = false; boolean ok = false; for (int i = 0; i < row; i++) { String str = br.readLine(); for (int j = 0; j < col; j++) { matrix[i][j] = str.charAt(j); if (matrix[i][j] == 'B') { haveBlack = true; if (i == r || j == c) { ok = true; } } } } if (!haveBlack) { System.out.println(-1); } else if (matrix[r][c] == 'B') { System.out.println("0"); } else if (ok) { System.out.println("1"); } else { System.out.println(2); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
bc005c8fff7f0fa457143dd77a6cad07
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class A { public static void main(String[] args) { Scanner in = new Scanner(System.in); int round = in.nextInt(); for (int z = 0; z < round; z++) { int n = in.nextInt(), m = in.nextInt(); int r = in.nextInt(), c = in.nextInt(); int ans = 99; for (int i = 1; i <= n; i++) { char[] str = ("-" + in.next()).toCharArray(); for (int j = 1; j <= m; j++) { if (ans > 2 && str[j] == 'B') ans = 2; if (ans > 1 && (i == r || j == c) && str[j] == 'B') ans = 1; if (ans > 0 && (i == r && j == c) && str[j] == 'B') { ans = 0; break; } } } System.out.println(ans != 99 ? ans : -1); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
8a757abf899b1e5323cff0d6625df6e0
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class NotShading { public static int getAns(String[] strArr,int row, int col, int r, int c) { if(strArr[r-1].charAt(c-1) == 'B') { return 0; } else { for(int i1 = 0; i1 < col; i1++) { if(strArr[r-1].charAt(i1) == 'B') { return 1; } } for(int i1 = 0; i1 < row; i1++) { if(strArr[i1].charAt(c - 1) == 'B') { return 1; } } boolean bIsPresent = false; for(int i1 = 0; i1 < row ; i1++) { for(int i2 = 0; i2 < col; i2++) { if(strArr[i1].charAt(i2) == 'B') { bIsPresent = true; break; } } } if(!bIsPresent) { return -1; } else { return 2; } } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int testCases = sc.nextInt(); for(int i = 0; i < testCases; i++) { int row = sc.nextInt(); int col = sc.nextInt(); int r = sc.nextInt(); int c = sc.nextInt(); String[] strArr = new String[row]; for(int j = 0; j < row; j++) { strArr[j] = sc.next(); } int ans = getAns(strArr,row,col,r,c); System.out.println(ans); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
11ae929d8731870736e709d118264bf5
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class X { public static void main(String[] args) { Scanner s = new Scanner(System.in); int t=s.nextInt(); while(t>0) { int n=s.nextInt(); int m=s.nextInt(); int r=s.nextInt(); int c=s.nextInt(); char a[][]=new char[n][m]; int b=0; for(int i=0;i<n;i++){ String sq=s.next(); for(int j=0;j<m;j++){ a[i][j]= sq.charAt(j); if(a[i][j]=='B') b++; } } int pr=0, pc=0; if(a[r-1][c-1]=='B') System.out.println(0); else if(b!=0) { for(int i=0;i<m;i++) { if(a[r-1][i]=='B') { pr=1; break; } } for(int i=0;i<n;i++) { if(a[i][c-1]=='B') { pc=1; break; } } if(pr==1 || pc==1) System.out.println(1); else System.out.println(2); } else System.out.println(-1); t--; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
530c11b49aef50285a78fbc8129cc21d
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.text.DecimalFormat; import java.util.*; public class Codeforces { static String ab,b; static class Node { int val; Node left; Node right; public Node(int x) { // TODO Auto-generated constructor stub this.val=x; this.left=null; this.right=null; } } static class Pair<U, V> implements Comparable<Pair<U, V>> { public U x; public V y; public Pair(U x, V y) { this.x = x; this.y = y; } public int compareTo(Pair<U, V> o) { int value = ((Comparable<U>) x).compareTo(o.x); if (value != 0) return value; return ((Comparable<V>) y).compareTo(o.y); } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return x.equals(pair.x) && y.equals(pair.y); } public int hashCode() { return Objects.hash(x, y); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] nextArray(int n) { int arr[]=new int[n]; for(int i=0;i<n;i++) arr[i]=nextInt(); return arr; } } static String string; static int gcd(int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater return gcd(b, a % b); } static long gcd(long a, long b) { // Everything divides 0 for(long i=2;i<=b;i++) { if(a%i==0&&b%i==0) return i; } return 1; } static int fac(int n) { int c=1; for(int i=2;i<n;i++) if(n%i==0) c=i; return c; } static int lcm(int a,int b) { for(int i=Math.min(a, b);i<=a*b;i++) if(i%a==0&&i%b==0) return i; return 0; } static int maxHeight(char[][] ch,int i,int j,String[] arr) { int h=1; if(i==ch.length-1||j==0||j==ch[0].length-1) return 1; while(i+h<ch.length&&j-h>=0&&j+h<ch[0].length&&ch[i+h][j-h]=='*'&&ch[i+h][j+h]=='*') { String whole=arr[i+h]; //System.out.println(whole.substring(j-h,j+h+1)); if(whole.substring(j-h,j+h+1).replace("*","").length()>0) return h; h++; } return h; } static boolean all(BigInteger n) { BigInteger c=n; HashSet<Character> hs=new HashSet<>(); while((c+"").compareTo("0")>0) { String d=""+c; char ch=d.charAt(d.length()-1); if(d.length()==1) { c=new BigInteger("0"); } else c=new BigInteger(d.substring(0,d.length()-1)); if(hs.contains(ch)) continue; if(d.charAt(d.length()-1)=='0') continue; if(!(n.mod(new BigInteger(""+ch)).equals(new BigInteger("0")))) return false; hs.add(ch); } return true; } static int cal(long n,long k) { System.out.println(n+","+k); if(n==k) return 2; if(n<k) return 1; if(k==1) return 1+cal(n, k+1); if(k>=32) return 1+cal(n/k, k); return 1+Math.min(cal(n/k, k),cal(n, k+1)); } static Node buildTree(int i,int j,int[] arr) { if(i==j) { //System.out.print(arr[i]); return new Node(arr[i]); } int max=i; for(int k=i+1;k<=j;k++) { if(arr[max]<arr[k]) max=k; } Node root=new Node(arr[max]); //System.out.print(arr[max]); if(max>i) root.left=buildTree(i, max-1, arr); else { root.left=null; } if(max<j) root.right=buildTree(max+1, j, arr); else { root.right=null; } return root; } static int height(Node root,int val) { if(root==null) return Integer.MAX_VALUE-32; if(root.val==val) return 0; if((root.left==null&&root.right==null)) return Integer.MAX_VALUE-32; return Math.min(height(root.left, val), height(root.right, val))+1; } static void shuffle(int a[], int n) { for (int i = 0; i < n; i++) { // getting the random index int t = (int)Math.random() * a.length; // and swapping values a random index // with the current index int x = a[t]; a[t] = a[i]; a[i] = x; } } static void sort(int[] arr ) { shuffle(arr, arr.length); Arrays.sort(arr); } static boolean arraySortedInc(int arr[], int n) { // Array has one or no element if (n == 0 || n == 1) return true; for (int i = 1; i < n; i++) // Unsorted pair found if (arr[i - 1] > arr[i]) return false; // No unsorted pair found return true; } static boolean arraySortedDec(int arr[], int n) { // Array has one or no element if (n == 0 || n == 1) return true; for (int i = 1; i < n; i++) // Unsorted pair found if (arr[i - 1] > arr[i]) return false; // No unsorted pair found return true; } static int largestPower(int n, int p) { // Initialize result int x = 0; // Calculate x = n/p + n/(p^2) + n/(p^3) + .... while (n > 0) { n /= p; x += n; } return x; } // Utility function to do modular exponentiation. // It returns (x^y) % p static int power(int x, int y, int p) { int res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y % 2 == 1) { res = (res * x) % p; } // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // Returns n! % p static int modFact(int n, int p) { if (n >= p) { return 0; } int res = 1; // Use Sieve of Eratosthenes to find all primes // smaller than n boolean isPrime[] = new boolean[n + 1]; Arrays.fill(isPrime, true); for (int i = 2; i * i <= n; i++) { if (isPrime[i]) { for (int j = 2 * i; j <= n; j += i) { isPrime[j] = false; } } } // Consider all primes found by Sieve for (int i = 2; i <= n; i++) { if (isPrime[i]) { // Find the largest power of prime 'i' that divides n int k = largestPower(n, i); // Multiply result with (i^k) % p res = (res * power(i, k, p)) % p; } } return res; } static boolean[] seiveOfErathnos(int n2) { boolean isPrime[] = new boolean[n2 + 1]; Arrays.fill(isPrime, true); for (int i = 2; i * i <= n2; i++) { if (isPrime[i]) { for (int j = 2 * i; j <= n2; j += i) { isPrime[j] = false; } } } return isPrime; } static boolean[] seiveOfErathnos2(int n2,int[] ans) { boolean isPrime[] = new boolean[n2 + 1]; Arrays.fill(isPrime, true); for (int i = 2; i * i <= n2; i++) { if (isPrime[i]) { for (int j = 2 * i; j <= n2; j += i) { if(isPrime[j]) ans[i]++; isPrime[j] = false; } } } return isPrime; } static long helper(int[] arr,int i,int used,long[][] dp) { if(i==arr.length) return 3-used; if(dp[i][used]!=-1) return dp[i][used]; long sum=0,ans=Integer.MAX_VALUE; for(int j=i;j<arr.length;j++) { sum+=arr[j]; long n=(long) Math.ceil(Math.log10(sum)/Math.log10(2)); // System.out.println(sum+","+(1L<<n)); if(used<2||j==arr.length-1) ans=Math.min(ans,(1L<<n)-sum+helper(arr, j+1, used+1, dp)); } return dp[i][used]=ans; } static boolean canDefeat(long hc,long dc,long hm,long dm) { // System.out.println(hc+","+dc); long steps1=(long) Math.ceil(Double.valueOf(hm)/dc); long steps2=(long) Math.ceil(Double.valueOf(hc)/dm); return steps1<=steps2; } public static void main(String[] args)throws IOException { BufferedReader bReader=new BufferedReader(new InputStreamReader(System.in)); FastReader fs=new FastReader(); // int[] ans=new int[1000001]; int T=fs.nextInt(); // seiveOfErathnos2(1000000, ans); StringBuilder sb=new StringBuilder(); while(T-->0) { int n=fs.nextInt(),m=fs.nextInt(),r=fs.nextInt()-1,c=fs.nextInt()-1; char[][] arr=new char[n][m]; boolean containsRow=false,contains=false; for(int i=0;i<n;i++) { arr[i]=fs.nextLine().toCharArray(); for(int j=0;j<m;j++) { if(arr[i][j]=='B') { contains=true; if(i==r||j==c) containsRow=true; } } } if(arr[r][c]=='B') sb.append(0); else if(containsRow) sb.append(1); else if(contains) sb.append(2); else sb.append(-1); // sb.append(ans?"YES":"NO"); sb.append("\n"); // System.out.println(ans); } System.out.println(sb); } private static void qprint(int sx) { // TODO Auto-generated method stub System.out.println(sx); } private static void qprint(String sx) { // TODO Auto-generated method stub System.out.println(sx); } private static void qprint(int sx, int ex) { // TODO Auto-generated method stub System.out.println(sx+","+ex); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
f718c6d86ed2403f0218909b05c57296
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class temp { // Let's Go!! -------------> public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t =sc.nextInt(); while(t-- > 0 ) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt(); int c = sc.nextInt(); char arr[][] = new char[n][m]; for(int i = 0; i < n; i++) { arr[i] = sc.nextLine().toCharArray(); } int whitecnt =0; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { if(arr[i][j] == 'W') whitecnt++; } } if(arr[r-1][c-1] == 'B') { out.println(0); continue; } int row = 0; int col = 0; for(int i = 0; i < m; i++) { if(arr[r-1][i] == 'B') row++; } for(int i = 0; i < n; i++) { if(arr[i][c-1] == 'B') col++; } if(row != 0 || col != 0) { out.println(1); continue; }else if(whitecnt != n*m){ out.println(2); }else { out.println(-1); } } // -------END------- out.close(); } // <-----------------------Template ---------------------> // Pair Class && Sort by First Value(Asc)-----------> // static class pair<T> implements Comparable<pair>{ // T first, second; // pair(T first, T second) { // this.first = first; // this.second = second; // } // @Override // public int compareTo(pair o) { // return (Integer) this.first - (Integer) o.first; // } // } static class pair{ int first, second; pair(int first, int second) { this.first = first; this.second = second; } } // Ruffle Sort static void ruffleSort(int[] a) { //Shuffle int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { int oi=r.nextInt(n), temp=a[i]; a[i]=a[oi]; a[oi]=temp; } //then sort Arrays.sort(a); } // Fast I/O static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e){ e.printStackTrace(); } return str; } int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
33f3ba35fe265cce6eb76063fc8070b2
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
/* package codechef; // don't place package name! */ /* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codeforces { public static void main (String[] args) throws java.lang.Exception { try { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0) { int n=sc.nextInt(); int m=sc.nextInt(); int r=sc.nextInt(); int c=sc.nextInt(); char a[][]=new char[n][m]; int b=0; for(int i=0;i<n;i++){ String s=sc.next(); for(int j=0;j<m;j++){ a[i][j]= s.charAt(j); if(a[i][j]=='B') b++; } } int pr=0, pc=0; if(a[r-1][c-1]=='B') System.out.println(0); else if(b!=0) { for(int i=0;i<m;i++) { if(a[r-1][i]=='B') { pr=1; break; } } for(int i=0;i<n;i++) { if(a[i][c-1]=='B') { pc=1; break; } } if(pr==1 || pc==1) System.out.println(1); else System.out.println(2); } else System.out.println(-1); } } catch(Exception e){ return; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
4842814d3c30b4f0e505bf86743c97e5
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class _1627_A { public static void main(String[] args) { Scanner test = new Scanner(System.in); int t = test.nextInt(); while (t > 0) { int n = test.nextInt(); int m = test.nextInt(); int r = test.nextInt(); int c = test.nextInt(); char[][] mat=new char[n][m]; for(int i=0;i<n;i++){ String s=test.next(); for(int j=0;j<m;j++) { mat[i][j] = s.charAt(j); } } if(mat[r-1][c-1]=='B'){ System.out.println(0); } else{ if(checkRC(mat,n,m,r,c)){ System.out.println(1); } else if(checkWhole(mat,n,m)){ System.out.println(2); } else{ System.out.println(-1); } } t--; } } static boolean checkWhole(char[][] mat,int n,int m) { for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(mat[i][j]=='B'){ return true; } } } return false; } static boolean checkRC(char[][] mat,int n,int m,int r,int c){ for(int i=0;i<n;i++){ if(mat[i][c-1]=='B'){ return true; } } for(int i=0;i<m;i++){ if(mat[r-1][i]=='B'){ return true; } } return false; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
9ef73e8f171e432f19259a98a2929018
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.awt.Container; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileNotFoundException; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; public class Main { public static boolean check(char a[][]) { for (int i = 0; i <a.length; i++) { for (int j = 0; j<a[i].length; j++) { if(a[i][j]=='B') { return false; } } } return true; } public static boolean sameroworcol(char a[][],int x,int y) { for (int i = 0; i <a.length; i++) { for (int j = 0; j<a[i].length; j++) { if(a[i][j]=='B'&&i==x) { return true; } else if(a[i][j]=='B'&&j==y) { return true; } } } return false; } public static void main(String[] args) { FastScanner input = new FastScanner(); int tc = input.nextInt(); work: while (tc-- > 0) { int n = input.nextInt(); int m = input.nextInt(); int needx = input.nextInt()-1; int needy = input.nextInt()-1; char a[][] = new char[n][m]; for (int i = 0; i <n; i++) { a[i] = input.next().toCharArray(); } if(a[needx][needy]=='B') { System.out.println("0"); } else if(check(a)) { System.out.println("-1"); } else if(sameroworcol(a, needx, needy)) { System.out.println("1"); } else { System.out.println("2"); } } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
b38e4aa6a16b30d8da20eba506708395
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
//package com.company; import java.lang.reflect.Array; import java.util.Scanner; import java.util.Arrays; import java.lang.String; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t; t = sc.nextInt(); for(int hey=0; hey<t; hey++) { int n,m,r,c,bugi=0,chigi=0,flag=0; n = sc.nextInt(); m = sc.nextInt(); r = sc.nextInt(); c = sc.nextInt(); int [][] a = new int[n][m]; for(int i=0;i<n;i++) { String s = sc.next(); for(int j=0;j<m;j++) { //char s = sc.next().charAt(0); //char x = s.charAt(0); if(s.charAt(j)=='B')flag++; if(s.charAt(j)=='W')a[i][j]=1; else a[i][j]=0; } } if(flag==0) { System.out.println(-1); } else if(a[r-1][c-1]==0) { System.out.println(0); } else { flag=0; for(int i=0;i<n;i++) { if(a[i][c-1]==0) { flag++; break; } } for(int i=0;i<m;i++) { if(a[r-1][i]==0) { flag++; break; } } if(flag>0) System.out.println(1); else System.out.println(2); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
1b6c4721ccfdb79b2fb9787be7ae35e7
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; public class Main { static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream( new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[52]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte)c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws IOException { Reader s = new Reader(); int t=s.nextInt(); while(t-->0){ int r=s.nextInt(); int c=s.nextInt(); int tr=s.nextInt(); int tc=s.nextInt(); boolean ba[][]=new boolean [r][c]; boolean tb=false; for(int i=0;i<r;i++){ String st=s.readLine(); for(int j=0;j<c;j++){ if( st.charAt(j)=='W' ) ba[i][j]=false; else{ ba[i][j]=true; tb=true; } } } if(ba[tr-1][tc-1] )System.out.println("0"); else{ boolean rb=false; boolean cb=false; if(tb){ for(int i=0;i<r;i++){ if(ba[i][tc-1] ) rb=true; } for(int i=0;i<c;i++){ if(ba[tr-1][i] ) cb=true; } if(rb||cb) System.out.println(1); else System.out.println(2); } else System.out.println(-1); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
ab3636116f80074b45fa5b06a58ccd9e
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; public class cf1627a { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); StringTokenizer st; int t = Integer.parseInt(br.readLine()); while (t --> 0) { st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int r = Integer.parseInt(st.nextToken()) - 1; int c = Integer.parseInt(st.nextToken()) - 1; boolean[][] g = new boolean[n][m]; boolean none = true; for (int i = 0; i < n; i++) { String s = br.readLine(); for (int j = 0; j < m; j++) { g[i][j] = s.charAt(j) == 'B'; if (g[i][j]) { none = false; } } } if (g[r][c]) { pw.println("0"); } else if (none) { pw.println("-1"); } else { boolean good = false; for (int i = 0; i < n; i++) { if (g[i][c]) good = true; } for (int i = 0; i < m; i++) { if (g[r][i]) good = true; } if (good) pw.println("1"); else pw.println("2"); } } pw.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
d0daf8b103eacfaddb631ad23edf3446
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class code { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for (int k = 0; k < t; k++) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt(); int c = sc.nextInt(); char[][] mat = new char[n][m]; for (int i = 0; i < n; i++) { String temp = sc.next(); for (int j = 0; j < m; j++) { mat[i][j] = temp.charAt(j); } } System.out.println(fun(mat, r - 1, c - 1)); } } private static int fun ( char[][] mat,int r, int c){ if (mat[r][c] == 'B') return 0; else { for (int i = 0; i < mat[0].length; i++) { if (mat[r][i] == 'B') return 1; } for (int i = 0; i < mat.length; i++) { if (mat[i][c] == 'B') return 1; } } for (int i = 0; i < mat.length; i++) { for (int j = 0; j < mat[0].length; j++) { if(mat[i][j]=='B') return 2; } } return -1; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
efb031c1bc9076308c47821d5abdf9fc
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class NotShading { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t --> 0) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt(); int c = sc.nextInt(); boolean allWhite = true; sc.nextLine(); String[] rows = new String[n]; for (int i=0;i<n;++i) { rows[i] = sc.nextLine(); } if (rows[r-1].charAt(c-1) == 'B') { System.out.println(0); } else { if (rows[r-1].contains("B")) { System.out.println(1); } else { for (int i=0;i<n;++i) { if (rows[i].contains("B")) { allWhite = false; } if (rows[i].charAt(c-1) == 'B') { System.out.println(1); break; } else if (i == n-1 && allWhite) { System.out.println(-1); } else if (i == n-1) { System.out.println(2); } } } } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
fe45176af93d54651ea385cdb27c4095
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
//1627A //package com.ALevelProgram; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.StringTokenizer; public class NotShading { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st==null||!st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } float nextFloat() { return Float.parseFloat(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String temp =""; try { temp = br.readLine(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return temp; } } public int maxSteps(int m, int n, int x, int y, char[][] arr) { for(int i = 0 ;i< x ;i++) { //System.out.println("row - "+arr[i][n-1]); if(arr[i][n-1] == 'B') { return 1; } } for(int i = 0 ;i< y ;i++) { //System.out.println("column - "+arr[m-1][i]); if(arr[m-1][i] == 'B') { return 1; } } return 2; } public static void main(String[] args) { NotShading notShading = new NotShading(); FastReader fr = new FastReader(); int t = fr.nextInt(); ArrayList<Integer> result= new ArrayList<Integer>(); for(int i = 0 ; i<t; i++) { int r = fr.nextInt(); int c = fr.nextInt(); char[][] arr = new char[r][c]; int rs = fr.nextInt(); int cs = fr.nextInt(); int allWhite = 0; String temp; for(int j = 0; j<r ;j++) { temp = fr.nextLine(); for(int k = 0 ; k<temp.length() ;k++) { arr[j][k] = temp.charAt(k); if(arr[j][k] == 'W') allWhite++; } } // for(int j =0;j<r;j++) { // System.out.println(""); // for(int k = 0;k<c;k++) { // System.out.print(arr[j][k]+" "); // } // } // System.out.print(allWhite); if(allWhite == (r*c)) { result.add(-1); } else if(arr[rs-1][cs-1] == 'B') { result.add(0); } else { result.add(notShading.maxSteps(rs ,cs ,r ,c ,arr)); } } for(int i = 0 ; i<t ; i++) { System.out.println(result.get(i)); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
5ccbc418ed42ff679392ed1773549a4a
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class Main{ public static void main(String[] args) { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); StringBuilder sb = new StringBuilder(); while(t-- > 0){ int n = scn.nextInt(); int m = scn.nextInt(); int r = scn.nextInt() - 1; int c = scn.nextInt() - 1; scn.nextLine(); char[][] arr = new char[n][m]; boolean flag = false; for(int i = 0; i < n; i++){ String s = scn.nextLine(); for(int j = 0; j < m; j++){ arr[i][j] = s.charAt(j); if(arr[i][j] == 'B')flag = true; } } if(flag == false){ sb.append("-1\n"); continue; } if(arr[r][c] == 'B'){ sb.append("0\n"); continue; } flag = false; for(int i = 0; i < n; i++){ if(arr[i][c] == 'B'){ flag = true; break; } } for(int i = 0; i < m; i++){ if(arr[r][i] == 'B'){ flag = true; break; } } if(flag){ sb.append("1\n"); }else{ sb.append("2\n"); } } System.out.println(sb); scn.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
2b8432b91f734c7d755aff07173373b8
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; /** * * @Har_Har_Mahadev */ /** * Main , Solution , Remove Public */ public class A { public static void process() throws IOException { int n = sc.nextInt(), m = sc.nextInt(); int r = sc.nextInt(), c = sc.nextInt(); char[][] arr = new char[n][m]; for(int i = 0; i<n; i++)arr[i] = sc.next().toCharArray(); boolean flag = false; for(int i = 0; i<n; i++) { for(char e : arr[i]) { if(e == 'B')flag = true; } } if(!flag) { System.out.println(-1); return; } if(arr[r-1][c-1] == 'B') { System.out.println(0); return; } for(int i = 0; i<n; i++) { if(arr[i][c-1] == 'B') { System.out.println(1); return; } } for(int i = 0; i<m; i++) { if(arr[r-1][i] == 'B') { System.out.println(1); return; } } System.out.println(2); } //============================================================================= //--------------------------The End--------------------------------- //============================================================================= private static long INF = 2000000000000000000L, M = 1000000007, MM = 998244353; private static int N = 0; private static void google(int tt) { System.out.print("Case #" + (tt) + ": "); } static FastScanner sc; static FastWriter out; public static void main(String[] args) throws IOException { boolean oj = true; if (oj) { sc = new FastScanner(); out = new FastWriter(System.out); } else { sc = new FastScanner("input.txt"); out = new FastWriter("output.txt"); } long s = System.currentTimeMillis(); int t = 1; t = sc.nextInt(); int TTT = 1; while (t-- > 0) { // google(TTT++); process(); } out.flush(); // tr(System.currentTimeMillis()-s+"ms"); } private static boolean oj = System.getProperty("ONLINE_JUDGE") != null; private static void tr(Object... o) { if (!oj) System.err.println(Arrays.deepToString(o)); } static class Pair implements Comparable<Pair> { int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { return Integer.compare(this.x, o.x); } /* @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof Pair)) return false; Pair key = (Pair) o; return x == key.x && y == key.y; } @Override public int hashCode() { int result = x; result = 31 * result + y; return result; } */ } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long sqrt(long z) { long sqz = (long) Math.sqrt(z); while (sqz * 1L * sqz < z) { sqz++; } while (sqz * 1L * sqz > z) { sqz--; } return sqz; } static int log2(int N) { int result = (int) (Math.log(N) / Math.log(2)); return result; } public static long gcd(long a, long b) { if (a > b) a = (a + b) - (b = a); if (a == 0L) return b; return gcd(b % a, a); } public static long lcm(long a, long b) { return (a * b) / gcd(a, b); } public static int lower_bound(int[] arr, int x) { int low = 0, high = arr.length - 1, mid = -1; int ans = -1; while (low <= high) { mid = (low + high) / 2; if (arr[mid] > x) { high = mid - 1; } else { ans = mid; low = mid + 1; } } return ans; } public static int upper_bound(int[] arr, int x) { int low = 0, high = arr.length - 1, mid = -1; int ans = arr.length; while (low < high) { mid = (low + high) / 2; if (arr[mid] >= x) { ans = mid; high = mid - 1; } else { low = mid + 1; } } return ans; } static void ruffleSort(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } static void reverseArray(int[] a) { int n = a.length; int arr[] = new int[n]; for (int i = 0; i < n; i++) arr[i] = a[n - i - 1]; for (int i = 0; i < n; i++) a[i] = arr[i]; } static void reverseArray(long[] a) { int n = a.length; long arr[] = new long[n]; for (int i = 0; i < n; i++) arr[i] = a[n - i - 1]; for (int i = 0; i < n; i++) a[i] = arr[i]; } //custom multiset (replace with HashMap if needed) public static void push(TreeMap<Integer, Integer> map, int k, int v) { //map[k] += v; if (!map.containsKey(k)) map.put(k, v); else map.put(k, map.get(k) + v); } public static void pull(TreeMap<Integer, Integer> map, int k, int v) { //assumes map[k] >= v //map[k] -= v int lol = map.get(k); if (lol == v) map.remove(k); else map.put(k, lol - v); } // compress Big value to Time Limit public static int[] compress(int[] arr) { ArrayList<Integer> ls = new ArrayList<Integer>(); for (int x : arr) ls.add(x); Collections.sort(ls); HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); int boof = 1; //min value for (int x : ls) if (!map.containsKey(x)) map.put(x, boof++); int[] brr = new int[arr.length]; for (int i = 0; i < arr.length; i++) brr[i] = map.get(arr[i]); return brr; } // Fast Writer public static class FastWriter { private static final int BUF_SIZE = 1 << 13; private final byte[] buf = new byte[BUF_SIZE]; private final OutputStream out; private int ptr = 0; private FastWriter() { out = null; } public FastWriter(OutputStream os) { this.out = os; } public FastWriter(String path) { try { this.out = new FileOutputStream(path); } catch (FileNotFoundException e) { throw new RuntimeException("FastWriter"); } } public FastWriter write(byte b) { buf[ptr++] = b; if (ptr == BUF_SIZE) innerflush(); return this; } public FastWriter write(char c) { return write((byte) c); } public FastWriter write(char[] s) { for (char c : s) { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerflush(); } return this; } public FastWriter write(String s) { s.chars().forEach(c -> { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerflush(); }); return this; } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } public FastWriter write(int x) { if (x == Integer.MIN_VALUE) { return write((long) x); } if (ptr + 12 >= BUF_SIZE) innerflush(); if (x < 0) { write((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } private static int countDigits(long l) { if (l >= 1000000000000000000L) return 19; if (l >= 100000000000000000L) return 18; if (l >= 10000000000000000L) return 17; if (l >= 1000000000000000L) return 16; if (l >= 100000000000000L) return 15; if (l >= 10000000000000L) return 14; if (l >= 1000000000000L) return 13; if (l >= 100000000000L) return 12; if (l >= 10000000000L) return 11; if (l >= 1000000000L) return 10; if (l >= 100000000L) return 9; if (l >= 10000000L) return 8; if (l >= 1000000L) return 7; if (l >= 100000L) return 6; if (l >= 10000L) return 5; if (l >= 1000L) return 4; if (l >= 100L) return 3; if (l >= 10L) return 2; return 1; } public FastWriter write(long x) { if (x == Long.MIN_VALUE) { return write("" + x); } if (ptr + 21 >= BUF_SIZE) innerflush(); if (x < 0) { write((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } public FastWriter write(double x, int precision) { if (x < 0) { write('-'); x = -x; } x += Math.pow(10, -precision) / 2; // if(x < 0){ x = 0; } write((long) x).write("."); x -= (long) x; for (int i = 0; i < precision; i++) { x *= 10; write((char) ('0' + (int) x)); x -= (int) x; } return this; } public FastWriter writeln(char c) { return write(c).writeln(); } public FastWriter writeln(int x) { return write(x).writeln(); } public FastWriter writeln(long x) { return write(x).writeln(); } public FastWriter writeln(double x, int precision) { return write(x, precision).writeln(); } public FastWriter write(int... xs) { boolean first = true; for (int x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter write(long... xs) { boolean first = true; for (long x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter writeln() { return write((byte) '\n'); } public FastWriter writeln(int... xs) { return write(xs).writeln(); } public FastWriter writeln(long... xs) { return write(xs).writeln(); } public FastWriter writeln(char[] line) { return write(line).writeln(); } public FastWriter writeln(char[]... map) { for (char[] line : map) write(line).writeln(); return this; } public FastWriter writeln(String s) { return write(s).writeln(); } private void innerflush() { try { out.write(buf, 0, ptr); ptr = 0; } catch (IOException e) { throw new RuntimeException("innerflush"); } } public void flush() { innerflush(); try { out.flush(); } catch (IOException e) { throw new RuntimeException("flush"); } } public FastWriter print(byte b) { return write(b); } public FastWriter print(char c) { return write(c); } public FastWriter print(char[] s) { return write(s); } public FastWriter print(String s) { return write(s); } public FastWriter print(int x) { return write(x); } public FastWriter print(long x) { return write(x); } public FastWriter print(double x, int precision) { return write(x, precision); } public FastWriter println(char c) { return writeln(c); } public FastWriter println(int x) { return writeln(x); } public FastWriter println(long x) { return writeln(x); } public FastWriter println(double x, int precision) { return writeln(x, precision); } public FastWriter print(int... xs) { return write(xs); } public FastWriter print(long... xs) { return write(xs); } public FastWriter println(int... xs) { return writeln(xs); } public FastWriter println(long... xs) { return writeln(xs); } public FastWriter println(char[] line) { return writeln(line); } public FastWriter println(char[]... map) { return writeln(map); } public FastWriter println(String s) { return writeln(s); } public FastWriter println() { return writeln(); } } // Fast Inputs static class FastScanner { //I don't understand how this works lmao private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] readArray(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] readArrayLong(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public int[][] readArrayMatrix(int N, int M, int Index) { if (Index == 0) { int[][] res = new int[N][M]; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) res[i][j] = (int) nextLong(); } return res; } int[][] res = new int[N][M]; for (int i = 1; i <= N; i++) { for (int j = 1; j <= M; j++) res[i][j] = (int) nextLong(); } return res; } public long[][] readArrayMatrixLong(int N, int M, int Index) { if (Index == 0) { long[][] res = new long[N][M]; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) res[i][j] = nextLong(); } return res; } long[][] res = new long[N][M]; for (int i = 1; i <= N; i++) { for (int j = 1; j <= M; j++) res[i][j] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] readArrayDouble(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
02adda09e3a5bcaa17d4dc6ff61e99d3
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import javax.management.Query; import java.io.*; public class Contest1 { public static void main(String[] args) throws Exception { //Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int m=sc.nextInt(); int r=sc.nextInt()-1; int c=sc.nextInt()-1; boolean imp=true; boolean iszero=false; boolean isone=false; String s=""; for (int i = 0; i < n; i++) { s=sc.next(); if(s.contains("B")) imp=false; if(i==r&&s.charAt(c)=='B') iszero=true; if((i==r&&s.contains("B"))||s.charAt(c)=='B') isone=true; } if(imp) pw.println(-1); else if(iszero) pw.println(0); else if(isone) pw.println(1); else pw.println(2); } pw.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static long mod = 1000000007; static Random rn = new Random(); static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
da80366e8d3d6ccb563a27f59bacdc06
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.StringTokenizer; public class A_NotShading_800 { public static void main(String[] args) { MyScanner sc = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt()-1; int c = sc.nextInt()-1; char[][] C = new char[n][m]; for(int i = 0; i < n; i++) { C[i] = sc.next().toCharArray(); } int ans = Integer.MAX_VALUE; boolean flag = true; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { if(C[i][j] == 'B') { flag = false; ans = Math.min(ans, 2); if(i == r && j == c) { ans = Math.min(ans, 0); } else if(i == r || j == c) { ans = Math.min(ans, 1); } } } } if(flag) ans = -1; System.out.println(ans); } out.close(); } public static PrintWriter out; public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static class Pair { public int x,y; public Pair(int x, int y) { this.x = x; this.y = y; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
552d4eb3a73802c17e7014d156a576eb
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; /** * @author by guiwei * @Classname Main * @Description * @Date 2022/1/23 17:49 */ public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); int[] v = new int[t]; out: for (int i = 0; i < t; i++) { int count = 0; int a = scanner.nextInt(); int b = scanner.nextInt(); int c = scanner.nextInt(); int d = scanner.nextInt(); char[][] e = new char[a][b]; for (int j = 0; j < a; j++) { String s = scanner.next(); e[j] = s.toCharArray(); } if (e[c-1][d-1] == 'B'){ v[i] = 0; continue out; } for (int l = 0; l < b; l++) { if (e[c-1][l] == 'B'){ v[i] = 1; continue out; } } for (int l = 0; l < a; l++) { if (e[l][d-1] == 'B'){ v[i] = 1; continue out; } } for (int n = 0; n < a; n++) { for (int l = 0; l < b; l++) { if (e[n][l] == 'W'){ count++; } if (count == a*b){ v[i] = -1; continue out; } } } v[i] = 2; } for (int i = 0; i < t; i++) { System.out.println(v[i]); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
b74277d18f6106709d08febb317eab2c
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.PrintWriter; import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int tc = sc.nextInt(); while(tc-->0){ int n = sc.nextInt(), m = sc.nextInt(), r = sc.nextInt(), c = sc.nextInt(); r--; c--; char[][] arr = new char[n][m]; for(int i = 0; i<n; i++)arr[i] = sc.next().toCharArray(); if(arr[r][c] == 'B')pw.println(0); else{ boolean flag = false; for(char x: arr[r]){ if(x == 'B'){ flag = true; break; } } if(flag){ pw.println(1); continue; } for(int i = 0; i<n; i++){ if(arr[i][c] == 'B'){ flag = true; break; } } if(flag){ pw.println(1); continue; } here: for(char[] x: arr){ for(char z: x){ if(z == 'B'){ flag = true; break here; } } } if(flag)pw.println(2); else pw.println(-1); } } pw.flush(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
157f9b0bc36a894a770524097abe280f
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; public class A { public static void solution(BufferedReader reader, PrintWriter writer) throws IOException { In in = new In(reader); Out out = new Out(writer); int T = in.nextInt(); for (int t = 0; t < T; t++) { int n = in.nextInt(), m = in.nextInt(); int r = in.nextInt() - 1, c = in.nextInt() - 1; char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = in.next().toCharArray(); boolean[] b = new boolean[3]; for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) if(grid[i][j] == 'B') { int cnt = (i == r ? 1 : 0) + (j == c ? 1 : 0); b[cnt] = true; } int rst = -1; for(int i = 2; i >= 0; i--) if(b[i]) { rst = 2 - i; break; } out.println(rst); } } public static void main(String[] args) throws Exception { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); solution(reader, writer); writer.close(); } protected static class In { private BufferedReader reader; private StringTokenizer tokenizer = new StringTokenizer(""); public In(BufferedReader reader) { this.reader = reader; } public String next() throws IOException { while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(reader.readLine()); return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public int[] nextIntArray1(int n) throws IOException { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextInt(); return a; } public int[] nextIntArraySorted(int n) throws IOException { int[] a = nextIntArray(n); Random r = new Random(); for (int i = 0; i < n; i++) { int j = i + r.nextInt(n - i); int t = a[i]; a[i] = a[j]; a[j] = t; } Arrays.sort(a); return a; } public long[] nextLongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public long[] nextLongArray1(int n) throws IOException { long[] a = new long[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextLong(); return a; } public long[] nextLongArraySorted(int n) throws IOException { long[] a = nextLongArray(n); Random r = new Random(); for (int i = 0; i < n; i++) { int j = i + r.nextInt(n - i); long t = a[i]; a[i] = a[j]; a[j] = t; } Arrays.sort(a); return a; } } protected static class Out { private PrintWriter writer; private static boolean local = System .getProperty("ONLINE_JUDGE") == null; public Out(PrintWriter writer) { this.writer = writer; } public void print(char c) { writer.print(c); } public void print(int a) { writer.print(a); } public void printb(int a) { writer.print(a); writer.print(' '); } public void println(Object a) { writer.println(a); } public void println(Object[] os) { for (int i = 0; i < os.length; i++) { writer.print(os[i]); writer.print(' '); } writer.println(); } public void println(int[] a) { for (int i = 0; i < a.length; i++) { writer.print(a[i]); writer.print(' '); } writer.println(); } public void println(long[] a) { for (int i = 0; i < a.length; i++) { writer.print(a[i]); writer.print(' '); } writer.println(); } public void flush() { writer.flush(); } public static void db(Object... objects) { if (local) System.out.println(Arrays.deepToString(objects)); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 8
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
c934940898767865d600532e760267dd
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; import java.util.StringTokenizer; import java.math.*; public class NotShading { public static void main(String args[]) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); // Loop through n test cases for(int i=0; i < n; i++) { int rows,columns,r,c; Boolean isAlreadyBlack = false; Boolean oneRequired = false; Boolean blackSeen = false; st = new StringTokenizer(br.readLine()); rows = Integer.parseInt(st.nextToken()); columns = Integer.parseInt(st.nextToken()); r = Integer.parseInt(st.nextToken()); c = Integer.parseInt(st.nextToken()); for(int j=0; j < rows; j++) { st = new StringTokenizer(br.readLine()); String current = st.nextToken(); for(int k=0; k<columns; k++) { if(current.charAt(k) == 'B') { if(j+1==r && k+1==c) { isAlreadyBlack = true; break; } if(j+1 == r || k+1 == c) { oneRequired = true; continue; } blackSeen = true; } } } if(isAlreadyBlack) { System.out.println("0"); } else if(oneRequired) { System.out.println("1"); } else if(blackSeen) { System.out.println("2"); } else { System.out.println("-1"); } } } ///////////////////////////////////////////////////////////// // Template Functions ///////////////////////////////////////////////////////////// // Gets primes from 1..n public static ArrayList<Integer> getPrimes(int n) { ArrayList<Integer> primes = new ArrayList<Integer>(); primes.add(2); for(int i=3; i<n; i++) { boolean prime = true; for(int j : primes) { if(i%j == 0) { prime = false; break; } } if(prime) { primes.add(i); } } return primes; } public static int gcd(int n1, int n2) { if(n2 == 0) { return n1; } return gcd(n2, n1 % n2); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 17
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
8c44c9bb5c44f79f52fd727826362e2b
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
//https://codeforces.com/problemset/problem/1627/A import java.util.Scanner; public class Not_Shading { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int testcase = sc.nextInt(); while (testcase-- != 0) { int hang = sc.nextInt(), cot = sc.nextInt(), x = sc.nextInt(), y = sc.nextInt(); String str[] = new String[hang]; char s[][] = new char[hang][cot]; boolean has_black = false; for (int i = 0; i < hang; i++) { str[i] = sc.next(); if (str[i].contains("B")) has_black = true; s[i] = str[i].toCharArray(); } if (has_black) { has_black = false; if (s[x - 1][y - 1] == 'B') System.out.print(0); else { for (int i = 0; i < hang; i++) { if (i != x - 1 && s[i][y - 1] == 'B') { has_black = true; break; } } if (!has_black) { for (int i = 0; i < cot; i++) { if (i != y - 1 && s[x - 1][i] == 'B') { has_black = true; break; } } } if (has_black) System.out.print(1); else System.out.print(2); } } else System.out.print(-1); if (testcase > 0) System.out.println(); } sc.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 17
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
41cd34e8b12b0dcd19e268bab7c866f3
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class notShading { public static void p(Object o) { System.out.println(o); } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int testCases = sc.nextInt(); while (testCases --> 0) { int row = sc.nextInt(), column = sc.nextInt(); int rowTarget = sc.nextInt() - 1, columnTarget = sc.nextInt() - 1; int closestRow = Integer.MAX_VALUE, closestColumn = Integer.MAX_VALUE; boolean allWhite = true , gotYou = false; for (int i = 0; i < row; i++) { String temp = sc.next(); if (i == rowTarget && temp.charAt(columnTarget) == 'B') gotYou = true; if (temp.contains("B")) { allWhite = false; closestRow = Math.min(closestRow, Math.abs(i - rowTarget)); } for (int j = 0; j < column; j++) { if (temp.charAt(j) == 'B') closestColumn = Math.min(closestColumn, Math.abs(j - columnTarget)); } } if (gotYou) { p(0); } else if (allWhite) { p(-1); } else if (closestColumn == 0 || closestRow == 0) { p(1); } else { p(2); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 17
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
cfc49b2d32c356d3ca1b540109c19ef7
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.DataInputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; public class Main { private static void run() throws IOException { int n, m, r, c; n = in.nextInt(); m = in.nextInt(); r = in.nextInt() - 1; c = in.nextInt() - 1; char[][] s = new char[n][]; for (int i = 0; i < n; i++) { s[i] = in.next().toCharArray(); } if (s[r][c] == 'B') { out.println(0); return; } for (int i = 0; i < n; i++) { if (s[i][c] == 'B') { out.println(1); return; } } for (int i = 0; i < m; i++) { if (s[r][i] == 'B') { out.println(1); return; } } boolean flag = false; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (s[i][j] == 'B') { flag = true; } } } if (flag) { out.println(2); } else { out.println(-1); } } public static void main(String[] args) throws IOException { in = new Reader(); out = new PrintWriter(new OutputStreamWriter(System.out)); int t = in.nextInt(); for (int i = 0; i < t; i++) { run(); } out.flush(); in.close(); out.close(); } private static int gcd(int a, int b) { if (a == 0 || b == 0) return 0; while (b != 0) { int tmp; tmp = a % b; a = b; b = tmp; } return a; } static final long mod = 1000000007; static long pow_mod(long a, long b) { long result = 1; while (b != 0) { if ((b & 1) != 0) result = (result * a) % mod; a = (a * a) % mod; b >>= 1; } return result; } private static long add_mod(long... longs) { long ans = 0; for (long now : longs) { ans = (ans + now) % mod; if (ans < 0) ans += mod; } return ans; } private static long multiplied_mod(long... longs) { long ans = 1; for (long now : longs) { ans = (ans * now) % mod; } return ans; } @SuppressWarnings("FieldCanBeLocal") private static Reader in; private static PrintWriter out; private static int[] read_int_array(int len) throws IOException { int[] a = new int[len]; for (int i = 0; i < len; i++) { a[i] = in.nextInt(); } return a; } private static long[] read_long_array(int len) throws IOException { long[] a = new long[len]; for (int i = 0; i < len; i++) { a[i] = in.nextLong(); } return a; } private static void print_array(int[] array) { for (int now : array) { out.print(now); out.print(' '); } out.println(); } private static void print_array(long[] array) { for (long now : array) { out.print(now); out.print(' '); } out.println(); } static class Reader { private static final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { final byte[] buf = new byte[1024]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { break; } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextSign() throws IOException { byte c = read(); while ('+' != c && '-' != c) { c = read(); } return '+' == c ? 0 : 1; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() throws IOException { int b; // noinspection ALL while ((b = read()) != -1 && isSpaceChar(b)) { ; } return b; } public char nc() throws IOException { return (char) skip(); } public String next() throws IOException { int b = skip(); final StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { din.close(); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 17
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
6be57a1b3c78c80698d460449b61802d
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.nio.charset.StandardCharsets; import java.util.Scanner; public class CF1627A { public static void main(String[] args) { Scanner scanner = new Scanner(System.in, StandardCharsets.UTF_8); int t = scanner.nextInt(); for (int i = 0; i < t; i++) { int n = scanner.nextInt(); int m = scanner.nextInt(); int r = scanner.nextInt(); int c = scanner.nextInt(); char[][] gird = new char[n][m]; for (int j = 0; j < n; j++) { gird[j] = scanner.next().toCharArray(); } System.out.println(solve(n, m, r, c, gird)); } } private static String solve(int n, int m, int r, int c, char[][] grid) { // BFS if (grid[r - 1][c - 1] == 'B') { return "0"; } for (int i = 0; i < n; i++) { if (grid[i][c - 1] == 'B') { return "1"; } } for (int j = 0; j < m; j++) { if (grid[r - 1][j] == 'B') { return "1"; } } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (grid[i][j] == 'B') { return "2"; } } } return "-1"; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 17
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
fa8d56910a8de4332e39d27cf874549f
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.util.function.*; import java.io.*; // you can compare with output.txt and expected out public class Round766A { MyPrintWriter out; MyScanner in; // final static long FIXED_RANDOM; // static { // FIXED_RANDOM = System.currentTimeMillis(); // } final static String IMPOSSIBLE = "IMPOSSIBLE"; final static String POSSIBLE = "POSSIBLE"; final static String YES = "YES"; final static String NO = "NO"; private void initIO(boolean isFileIO) { if (System.getProperty("ONLINE_JUDGE") == null && isFileIO) { try{ in = new MyScanner(new FileInputStream("input.txt")); out = new MyPrintWriter(new FileOutputStream("output.txt")); } catch(FileNotFoundException e){ e.printStackTrace(); } } else{ in = new MyScanner(System.in); out = new MyPrintWriter(new BufferedOutputStream(System.out)); } } public static void main(String[] args){ // Scanner in = new Scanner(new BufferedReader(new InputStreamReader(System.in))); Round766A sol = new Round766A(); sol.run(); } private void run() { boolean isDebug = false; boolean isFileIO = true; boolean hasMultipleTests = true; initIO(isFileIO); int t = hasMultipleTests? in.nextInt() : 1; for (int i = 1; i <= t; ++i) { if(isDebug){ out.printf("Test %d\n", i); } getInput(); solve(); printOutput(); } in.close(); out.close(); } // use suitable one between matrix(2, n) or matrix(n, 2) for graph edges, pairs, ... int n, m, r, c; String[] a; void getInput() { n = in.nextInt(); m = in.nextInt(); r = in.nextInt()-1; c = in.nextInt()-1; a = in.nextStringArray(n); } void printOutput() { out.printlnAns(ans); } int ans; void solve(){ int cnt = 0; boolean existsSame = false; if(a[r].charAt(c) == 'B') { ans = 0; return; } for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { if(a[i].charAt(j) == 'B') { cnt++; if(i == r || j == c) existsSame = true; } } } if(cnt == 0) { ans = -1; } else { if(existsSame) ans = 1; else ans = 2; } } static class Pair implements Comparable<Pair>{ final static long FIXED_RANDOM = System.currentTimeMillis(); int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } @Override public int hashCode() { // http://xorshift.di.unimi.it/splitmix64.c long x = first; x <<= 32; x += second; x += FIXED_RANDOM; x += 0x9e3779b97f4a7c15l; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9l; x = (x ^ (x >> 27)) * 0x94d049bb133111ebl; return (int)(x ^ (x >> 31)); } @Override public boolean equals(Object obj) { // if (this == obj) // return true; // if (obj == null) // return false; // if (getClass() != obj.getClass()) // return false; Pair other = (Pair) obj; return first == other.first && second == other.second; } @Override public String toString() { return "[" + first + "," + second + "]"; } @Override public int compareTo(Pair o) { int cmp = Integer.compare(first, o.first); return cmp != 0? cmp: Integer.compare(second, o.second); } } public static class MyScanner { BufferedReader br; StringTokenizer st; // 32768? public MyScanner(InputStream is, int bufferSize) { br = new BufferedReader(new InputStreamReader(is), bufferSize); } public MyScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); // br = new BufferedReader(new InputStreamReader(System.in)); // br = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"))); } public void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[][] nextMatrix(int n, int m) { return nextMatrix(n, m, 0); } int[][] nextMatrix(int n, int m, int offset) { int[][] mat = new int[n][m]; for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { mat[i][j] = nextInt()+offset; } } return mat; } int[] nextIntArray(int len) { return nextIntArray(len, 0); } int[] nextIntArray(int len, int offset){ int[] a = new int[len]; for(int j=0; j<len; j++) a[j] = nextInt()+offset; return a; } long[] nextLongArray(int len) { return nextLongArray(len, 0); } long[] nextLongArray(int len, int offset){ long[] a = new long[len]; for(int j=0; j<len; j++) a[j] = nextLong()+offset; return a; } String[] nextStringArray(int len) { String[] s = new String[len]; for(int i=0; i<len; i++) s[i] = next(); return s; } } public static class MyPrintWriter extends PrintWriter{ public MyPrintWriter(OutputStream os) { super(os); } public void printlnAns(long ans) { println(ans); } public void printlnAns(int ans) { println(ans); } public void printlnAns(boolean ans) { if(ans) println(YES); else println(NO); } public void printAns(long[] arr){ if(arr != null && arr.length > 0){ print(arr[0]); for(int i=1; i<arr.length; i++){ print(" "); print(arr[i]); } } } public void printlnAns(long[] arr){ printAns(arr); println(); } public void printAns(int[] arr){ if(arr != null && arr.length > 0){ print(arr[0]); for(int i=1; i<arr.length; i++){ print(" "); print(arr[i]); } } } public void printlnAns(int[] arr){ printAns(arr); println(); } public <T> void printAns(ArrayList<T> arr){ if(arr != null && arr.size() > 0){ print(arr.get(0)); for(int i=1; i<arr.size(); i++){ print(" "); print(arr.get(i)); } } } public <T> void printlnAns(ArrayList<T> arr){ printAns(arr); println(); } public void printAns(int[] arr, int add){ if(arr != null && arr.length > 0){ print(arr[0]+add); for(int i=1; i<arr.length; i++){ print(" "); print(arr[i]+add); } } } public void printlnAns(int[] arr, int add){ printAns(arr, add); println(); } public void printAns(ArrayList<Integer> arr, int add) { if(arr != null && arr.size() > 0){ print(arr.get(0)+add); for(int i=1; i<arr.size(); i++){ print(" "); print(arr.get(i)+add); } } } public void printlnAns(ArrayList<Integer> arr, int add){ printAns(arr, add); println(); } public void printlnAnsSplit(long[] arr, int split){ if(arr != null){ for(int i=0; i<arr.length; i+=split){ print(arr[i]); for(int j=i+1; j<i+split; j++){ print(" "); print(arr[j]); } println(); } } } public void printlnAnsSplit(int[] arr, int split){ if(arr != null){ for(int i=0; i<arr.length; i+=split){ print(arr[i]); for(int j=i+1; j<i+split; j++){ print(" "); print(arr[j]); } println(); } } } public <T> void printlnAnsSplit(ArrayList<T> arr, int split){ if(arr != null && !arr.isEmpty()){ for(int i=0; i<arr.size(); i+=split){ print(arr.get(i)); for(int j=i+1; j<i+split; j++){ print(" "); print(arr.get(j)); } println(); } } } } static private void permutateAndSort(long[] a) { int n = a.length; Random R = new Random(System.currentTimeMillis()); for(int i=0; i<n; i++) { int t = R.nextInt(n-i); long temp = a[n-1-i]; a[n-1-i] = a[t]; a[t] = temp; } Arrays.sort(a); } static private void permutateAndSort(int[] a) { int n = a.length; Random R = new Random(System.currentTimeMillis()); for(int i=0; i<n; i++) { int t = R.nextInt(n-i); int temp = a[n-1-i]; a[n-1-i] = a[t]; a[t] = temp; } Arrays.sort(a); } static private int[][] constructChildren(int n, int[] parent, int parentRoot){ int[][] childrens = new int[n][]; int[] numChildren = new int[n]; for(int i=0; i<parent.length; i++) { if(parent[i] != parentRoot) numChildren[parent[i]]++; } for(int i=0; i<n; i++) { childrens[i] = new int[numChildren[i]]; } int[] idx = new int[n]; for(int i=0; i<parent.length; i++) { if(parent[i] != parentRoot) childrens[parent[i]][idx[parent[i]]++] = i; } return childrens; } static private int[][][] constructDirectedNeighborhood(int n, int[][] e){ int[] inDegree = new int[n]; int[] outDegree = new int[n]; for(int i=0; i<e.length; i++) { int u = e[i][0]; int v = e[i][1]; outDegree[u]++; inDegree[v]++; } int[][] inNeighbors = new int[n][]; int[][] outNeighbors = new int[n][]; for(int i=0; i<n; i++) { inNeighbors[i] = new int[inDegree[i]]; outNeighbors[i] = new int[outDegree[i]]; } for(int i=0; i<e.length; i++) { int u = e[i][0]; int v = e[i][1]; outNeighbors[u][--outDegree[u]] = v; inNeighbors[v][--inDegree[v]] = u; } return new int[][][] {inNeighbors, outNeighbors}; } static private int[][] constructNeighborhood(int n, int[][] e) { int[] degree = new int[n]; for(int i=0; i<e.length; i++) { int u = e[i][0]; int v = e[i][1]; degree[u]++; degree[v]++; } int[][] neighbors = new int[n][]; for(int i=0; i<n; i++) neighbors[i] = new int[degree[i]]; for(int i=0; i<e.length; i++) { int u = e[i][0]; int v = e[i][1]; neighbors[u][--degree[u]] = v; neighbors[v][--degree[v]] = u; } return neighbors; } static private void drawGraph(int[][] e) { makeDotUndirected(e); try { final Process process = new ProcessBuilder("dot", "-Tpng", "graph.dot") .redirectOutput(new File("graph.png")) .start(); } catch (IOException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } } static private void makeDotUndirected(int[][] e) { MyPrintWriter out2 = null; try { out2 = new MyPrintWriter(new FileOutputStream("graph.dot")); } catch (FileNotFoundException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } out2.println("strict graph {"); for(int i=0; i<e.length; i++){ out2.println(e[i][0] + "--" + e[i][1] + ";"); } out2.println("}"); out2.close(); } static private void makeDotDirected(int[][] e) { MyPrintWriter out2 = null; try { out2 = new MyPrintWriter(new FileOutputStream("graph.dot")); } catch (FileNotFoundException e1) { // TODO Auto-generated catch block e1.printStackTrace(); } out2.println("strict digraph {"); for(int i=0; i<e.length; i++){ out2.println(e[i][0] + "->" + e[i][1] + ";"); } out2.println("}"); out2.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 17
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
41bc963d29504e8a61c6d959c0d17bf6
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Arrays; import java.util.Scanner; import static java.lang.Math.min; public class Main { public static void main(String[] args) { Scanner scan=new Scanner(System.in); int testcase=scan.nextInt(); if(testcase>=1 && testcase<=100){ for(int t=1;t<=testcase;t++){ int row=scan.nextInt(); int col=scan.nextInt(); int brow=scan.nextInt(); int bcol=scan.nextInt(); brow--; bcol--; int mx=10; char[][] matrix = new char[row][col]; int counter=0; for (int i=0;i<row;i++){ String ten=scan.next(); for (int j=0;j<col;j++){ matrix[i][j]=ten.charAt(j); } } for(int i=0;i<row;i++){ for (int j=0;j<col;j++){ if(matrix[i][j]=='B'){ if(i==brow && j==bcol){ // System.out.println(0+" "+i+""+j+""+matrix[i][j]+" "); // System.out.println(0+" "+brow+" "+bcol); mx=min(0,mx); } else if(i==brow || j==bcol){ mx=min(1,mx); }else{ mx=min(2,mx); } } } } if(mx==10){ System.out.println(-1); }else { System.out.println(mx); } } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
57edafca97ed9e687aa24a224ff790e6
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import javax.management.MBeanRegistration; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.math.BigInteger; import java.util.*; import java.util.stream.Collectors; import java.util.stream.Stream; public class Main { //TODO: create char array input static final int MOD = 1000000007; static class Input { static BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in)); Input() throws IOException { } static int getInt() throws IOException { return Integer.parseInt(bufferedReader.readLine()); } static int[] getArray(int n) throws IOException { StringTokenizer stringTokenizer = new StringTokenizer(bufferedReader.readLine()); int[] ar = new int[n]; for (int i = 0; i < n; i++) { ar[i] = Integer.parseInt(stringTokenizer.nextToken()); } return ar; } static long[] getLongArray(int n) throws IOException { StringTokenizer stringTokenizer = new StringTokenizer(bufferedReader.readLine()); long[] ar = new long[n]; for (int i = 0; i < n; i++) { ar[i] = Long.parseLong(stringTokenizer.nextToken()); } return ar; } static String getString() throws IOException { return bufferedReader.readLine(); } static int[] getArrayDontKnowSize() throws IOException { StringTokenizer stringTokenizer = new StringTokenizer(bufferedReader.readLine()); List<Integer> array = new ArrayList<>(); while (stringTokenizer.hasMoreTokens()) { array.add(Integer.parseInt(stringTokenizer.nextToken())); } return array.stream().mapToInt(value -> value).toArray(); } } static long modPower(long x, int y) { long ans = 1; x = x % MOD; while (y > 0) { if (y % 2 == 1) ans = (ans * x) % MOD; y = y >> 1; x = (x * x) % MOD; } return ans; } static int upperBound(int[] ar, int x) { int mid, n = ar.length; int start = 0; int end = n; if (x < ar[0]) return 0; if (x > ar[n - 1]) return n; while (start < end) { mid = start + (end - start) / 2; if (x >= ar[mid]) { start = mid + 1; } else { end = mid; } } return start; } public static void main(String[] args) throws IOException { int t = Input.getInt(); while (t-- > 0) { int[] rnmrc = Input.getArray(4); int n = rnmrc[0]; int m = rnmrc[1]; int r = rnmrc[2]; int c = rnmrc[3]; String[] input = new String[n]; Set<Integer> br = new HashSet<>(); Set<Integer> bc = new HashSet<>(); for(int i = 0 ; i < n ; i++){ input[i] = Input.getString(); for(int j = 0; j < m ;j++){ char cell = input[i].charAt(j); if(cell == 'B'){ br.add(i+1); bc.add(j+1); } } } // System.out.println(br); // System.out.println(bc); if(br.size() == 0){ System.out.println(-1); continue; } if(br.contains(r) || bc.contains(c)){ if(input[r-1].charAt(c-1) == 'B') System.out.println(0); else System.out.println(1); }else System.out.println(2); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
39cab429291394c17617e944172075f5
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; import java.io.*; public class Solution{ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args){ FastReader in = new FastReader(); int t = in.nextInt(); while(t-->0){ int n = in.nextInt(); int m = in.nextInt(); int r = in.nextInt(); int c = in.nextInt(); String[] str = new String[n]; for(int i = 0;i<n;i++){ str[i] = in.next(); } int f=-1; for(int i=1;i<=n;i++){ if(f==0) continue; boolean cont= str[i-1].contains("B"); if(cont){ if(str[i-1].charAt(c-1)=='B' && r==i ) f = 0; else if(f!=0 && str[i-1].charAt(c-1)=='B') f=1; else if(f!=0 && r==i) f= 1; else if(f!=0 && f!=1){ f= 2; } } } System.out.println(f); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
2bb684247ac31b2cb744130850a16e85
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class Prob { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t = sc.nextInt(); for (int i = 0; i < t; i++) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt()-1; int c = sc.nextInt()-1; char[][]arr = new char[n][]; boolean bool = false; boolean ok = false; for (int j = 0; j < arr.length; j++) { arr[j] = sc.next().toCharArray(); } for (int j = 0; j < n; j++) { if(arr[r][c]=='B') { System.out.println(0); bool = true; break; } if(arr[j][c]=='B') { System.out.println(1); bool = true; break; } for (int j2 = 0; j2 < m; j2++) { if(arr[r][j2]=='B') { System.out.println(1); bool = true; break; } if(arr[j][j2]=='B') { ok=true; } } if(bool) { break; } } if(!bool) { if(ok) { System.out.println(2); } else { System.out.println(-1); } } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
55e0b11b50a12aec4ac55fd5e7124992
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; import java.io.*; public class Main{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for (int z = 0; z < t; z++) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt(); int c = sc.nextInt(); r--;c--; boolean flag = false; int blck_cnt = 0; char arr[][] = new char[n][m]; for(int i =0;i<n;i++) arr[i] = sc.next().toCharArray(); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (arr[i][j] == 'B') { if(i==r||j==c) flag = true; blck_cnt++; } } } if(blck_cnt==0) System.out.println(-1); else if(arr[r][c]=='B') System.out.println(0); else if(flag==true) System.out.println(1); else{ System.out.println(2); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
fe510eef9fcb313c59413b663b47cfaa
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Random; import java.util.StringTokenizer; /* */ public class DineshPagal { public static void main(String[] args) { FastScanner fs=new FastScanner(); PrintWriter out=new PrintWriter(System.out); int T=fs.nextInt(); for (int z = 0; z < T; z++) { int n = fs.nextInt(); int m = fs.nextInt(); int r = fs.nextInt(); int c = fs.nextInt(); r--;c--; boolean flag = false; int blck_cnt = 0; char arr[][] = new char[n][m]; for (int i = 0; i < n; i++) { arr[i] = fs.next().toCharArray(); } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (arr[i][j] == 'B') { if(i==r||j==c) flag = true; blck_cnt++; } } } if(blck_cnt==0) System.out.println(-1); else if(arr[r][c]=='B') System.out.println(0); else if(flag==true) System.out.println(1); else{ System.out.println(2); } } // for (int tt=0; tt<T; tt++) { // int n=fs.nextInt(); // char[] line=fs.next().toCharArray(); // if (n>2) { // System.out.println("NO"); // } // else if (n==2 && line[0]==line[1]){ // System.out.println("NO"); // } // else { // System.out.println("YES"); // } // } } static final Random random=new Random(); static final int mod=1_000_000_007; static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static long add(long a, long b) { return (a+b)%mod; } static long sub(long a, long b) { return ((a-b)%mod+mod)%mod; } static long mul(long a, long b) { return (a*b)%mod; } static long exp(long base, long exp) { if (exp==0) return 1; long half=exp(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials=new long[2_000_001]; static long[] invFactorials=new long[2_000_001]; static void precompFacts() { factorials[0]=invFactorials[0]=1; for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i); invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2); for (int i=invFactorials.length-2; i>=0; i--) invFactorials[i]=mul(invFactorials[i+1], i+1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k])); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
1356411e5ecf7bb5f43950806e77f3ae
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class D { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int t = scan.nextInt(); while ( t-- > 0 ) { int n = scan.nextInt(); int m = scan.nextInt(); int r = scan.nextInt(); int c = scan.nextInt(); String[] array = new String[n]; for ( int i = 0; i < n; ++i ) { array[i] = scan.next(); } char[][] list = new char[n][m]; boolean isTrue = true; for ( int i = 0; i < n; ++i ) { for ( int j = 0; j < m; ++j ) { list[i][j] = array[i].charAt(j); if ( list[i][j] == 'B' ) { isTrue = false; } } } if ( list[r - 1][c - 1] == 'B' ) { System.out.println(0); } else if ( m == 1 && !isTrue ) { System.out.println(1); } else if ( isTrue ) { System.out.println(-1); } else { if ( array[r - 1].contains("B") ) { System.out.println(1); } else { boolean isAns = true; for ( int i = 0; i < n; ++i ) { if ( list[i][c - 1] == 'B' ) { isAns = false; break; } } System.out.println( isAns ? 2 : 1 ); } } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
77314dea68727275e527d6839a0f71c2
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class D { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int t = scan.nextInt(); while ( t-- > 0 ) { int n = scan.nextInt(); int m = scan.nextInt(); int r = scan.nextInt(); int c = scan.nextInt(); String[] array = new String[n]; for ( int i = 0; i < n; ++i ) { array[i] = scan.next(); } char[][] list = new char[n][m]; boolean isTrue = true; for ( int i = 0; i < n; ++i ) { for ( int j = 0; j < m; ++j ) { list[i][j] = array[i].charAt(j); if ( list[i][j] == 'B' ) { isTrue = false; } } } int idx = 0; if ( list[r - 1][c - 1] == 'B' ) { System.out.println(0); } else if ( m == 1 && !isTrue ) { System.out.println(1); } else if ( isTrue ) { System.out.println(-1); } else { if ( array[r - 1].contains("B") ) { System.out.println(1); } else { boolean isAns = true; for ( int i = 0; i < n; ++i ) { if ( list[i][c - 1] == 'B' ) { isAns = false; break; } } System.out.println( isAns ? 2 : 1 ); } } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
6f29d7e9dcef312af50a9db1e217cc01
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
/****************************************************************************** Online Java Compiler. Code, Compile, Run and Debug java program online. Write your code in this editor and press "Run" button to execute it. *******************************************************************************/ import java.util.*; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); if(t>=0&&t<=100){ while(t>0) { int n = scanner.nextInt(); int m = scanner.nextInt(); int r = scanner.nextInt(); int c = scanner.nextInt(); int sum = 0; int p = 0; if(1<=n&&n<=50&&m>=1&&m<=50&&1<=r&&r<=n&&c>=1&&c<=m){ String str[] = new String[n]; for(int i = 1;i<=n;i++) { str[i-1]= scanner.next(); } int i = 0; int k = 3; while(i<n) { if(k==1||k==2||k==0) { break; } for(int j = 1;j<=m;j++) { if(str[i].charAt(j-1)=='B'&&str[r-1].charAt(c-1)=='W') { if(r-1==i||j-1==c-1) { k=1; System.out.println(k); break; } } if(str[r-1].charAt(c-1)=='B') { k=0; System.out.println(k); break; } if(str[i].charAt(j-1)=='W') { sum++; } if(str[i].charAt(c-1)=='W'&&str[r-1].charAt(j-1)=='W'&&str[r-1].charAt(c-1)=='W') { p++; } } i++; } if(sum==n*m) { System.out.println(-1); } else if(p==n*m) { System.out.println(2); } t--; } // TODO Auto-generated method stub } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
0fa85d8ceaa126b7113656a780581e0e
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
// https://codeforces.com/contest/1627/problem/A import java.util.*; import java.io.*; public class NotShading { static FastReader in = new FastReader(); static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out)); static StringBuilder sb = new StringBuilder(); public static void main(String args[]) throws IOException { //int t=1; int t = in.nextInt(); while (t>0) { solve(t); t--; } System.out.println(sb); } /********** code here ******************/ static void solve(int test) { String str[] = in.nextLine().split(" "); int n = integer(str[0]); int m = integer(str[1]); int r = integer(str[2]); int c = integer(str[3]); String ans = ""; String arr[] = new String[n]; boolean temp = false; for (int i=0; i<n; i++) { arr[i] = in.next(); if (arr[i].charAt(c-1)=='B') { temp = true; } } int count = 0; for (int j=0; j<arr.length; j++) { if (!arr[j].contains("B")) { count++; } } if (count==n) { ans = "-1\n"; } else if (arr[r-1].charAt(c-1)=='B') { ans = "0\n"; } else if (arr[r-1].contains("B") || temp) { ans = "1\n"; } else { ans = "2\n"; } sb.append(ans); } /***************************************/ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readintarray(int n) { int res[] = new int[n]; for (int i = 0; i < n; i++) res[i] = nextInt(); return res; } long[] readlongarray(int n) { long res[] = new long[n]; for (int i = 0; i < n; i++) res[i] = nextLong(); return res; } } static <E> void println(E res) { System.out.println(res); } static <E> void print(E res) { System.out.print(res); } static String string(int a) { return Integer.toString(a); } static String string(char a) { return Character.toString(a); } static int integer(String a) { return Integer.parseInt(a); } static int len(String a) { return a.length(); } static boolean even(int a) { return (a & 1) == 0 ? true : false; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
8f086c790d20d57ac13679627e3150df
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class Test { public static void main(String[] args) { int T; Scanner sc = new Scanner(System.in); T = sc.nextInt(); sc.nextLine(); for(int i = 0;i < T;i++) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt(); int c = sc.nextInt(); String[] arr = new String[n]; sc.nextLine(); for(int j = 0;j < n;j++) { arr[j] = sc.nextLine(); } int result = notShading(n, m, r, c, arr); System.out.println(result); } sc.close(); } public static int notShading(int rows, int cols, int r, int c, String arr[]) { int result = 100000; // Check if there exists a black cell already if(arr[r - 1].charAt(c - 1) == 'B') { return 0; } // Check if there exists a black cell in the same column for(int i = 0;i < rows;i++) { if(arr[i].charAt(c - 1) == 'B') { return 1; } } // Check if there exists a black cell in the same row for(int i = 0;i < cols;i++) { if(arr[r - 1].charAt(i) == 'B') { return 1; } } for(int i = 0;i < rows;i++) { for(int j = 0;j < cols;j++) { if(arr[i].charAt(j) == 'B') return 2; } } return result == 100000 ? -1 : result; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
a4e587a4a76718fd8da2783b6a77c7ed
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int testCases = Integer.parseInt(br.readLine()); while (testCases--!= 0) { StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int r = Integer.parseInt(st.nextToken()); int c = Integer.parseInt(st.nextToken()); int min = -1; for (int i = 1; i <= n; i++) { String chars = br.readLine(); for (int j = 1; j <= m; j++) { if (chars.substring(j - 1, j).equals("B")) { if (i == r && j == c) { min = 0; break; } else if (i == r || j == c) { min = 1; } else if (min != 1) { min = 2; } } } if (min == 0) { while (i++ < n) { br.readLine(); } } } pw.println(min); } pw.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
a9fbb1ed886328c23dfe8401c48965ac
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args){ Scanner scanner=new Scanner(System.in); int tests=scanner.nextInt(); for(int i=0;i<tests;i++){ int rows=Integer.parseInt(scanner.next()); int cols=Integer.parseInt(scanner.next()); int rowToBlack=Integer.parseInt(scanner.next()); int colToBlack=Integer.parseInt(scanner.next()); char[][] grid= new char[rows][cols]; boolean isBlackPresents=false; for(int j=0;j<rows;j++){ String rowChars = scanner.next(); isBlackPresents = isBlackPresents || rowChars.contains("B"); grid[j] = rowChars.toCharArray(); } if(!isBlackPresents){ System.out.println(-1); continue; } rowToBlack--; colToBlack--; if(grid[rowToBlack][colToBlack]=='B'){ System.out.println(0); continue; } boolean isRowContainsAnyBlack=false; for(int k=0;k<cols;k++) { if(grid[rowToBlack][k]=='B'){ isRowContainsAnyBlack=true; break; } } if(isRowContainsAnyBlack){ System.out.println(1); continue; } boolean isColsContainsAnyBlack=false; for(int k=0;k<rows;k++) { if(grid[k][colToBlack]=='B'){ isColsContainsAnyBlack=true; break; } } if(isColsContainsAnyBlack){ System.out.println(1); continue; } System.out.println(2); } } // int solve(char[][] grid,boolean[][] visited,int i,int j, int rows, int cols, int rowToBlack, int colToBlack,int steps){ // if(i==rows) return Integer.MAX_VALUE; // if(j==cols) return Integer.MAX_VALUE; // // visited[i][j] = true; // // if(grid[i][j]=='B'){ // if(i==rowToBlack || j==colToBlack){ // return steps; // } // } // // return solve(grid,visited,i+1,j,rows,cols,rowToBlack,colToBlack) || // solve(grid,visited,i,j+1,rows,cols,rowToBlack,colToBlack); // // } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
1359085c3165cb93adbac90b9bd0226d
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
// Problem: A. Not Shading // Contest: Codeforces - Codeforces Round #766 (Div. 2) // URL: https://codeforces.com/problemset/problem/1627/A // Memory Limit: 256 MB // Time Limit: 1000 ms // // Powered by CP Editor (https://cpeditor.org) import java.util.*; import java.io.*; public class Main { public static void main(String[]args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-- >0) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt(); int c = sc.nextInt(); sc.nextLine(); int ans=3; char[][]arr = new char[n][m]; for(int i=0 ; i < n ; i++) { String temp=sc.next(); for(int j=0;j<m;j++) { arr[i][j]=temp.charAt(j); if(arr[i][j]=='B') { if(i+1==r&&j+1==c) { ans=0; break; } else if(i+1==r||j+1==c) { ans=Math.min(1,ans); } else { ans=Math.min(ans,2); } } } } System.out.println(ans==3?"-1":ans); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
a84262bd2fa4f1418be72274a723439e
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class Basic { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for (int p=0;p<t;p++) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt()-1; int c = sc.nextInt()-1; char arr[][] = new char[n][m]; for (int i=0;i<n;i++) { String s = sc.next(); for (int j=0;j<m;j++) { arr[i][j] = s.charAt(j); } } func(arr, n, m, r , c); } } public static void func(char arr[][], int n, int m, int r, int c) { if (arr[r][c]=='B') { System.out.println(0); } else { for (int i=0;i<n;i++) { if (arr[i][c]=='B') { System.out.println(1); return; } } for (int i=0;i<m;i++) { if (arr[r][i]=='B') { System.out.println(1); return; } } for (int i=0;i<n;i++) { for (int j=0;j<m;j++) { if (arr[i][j]=='B') { System.out.println(2); return; } } } System.out.println(-1); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
68c7dac59428b8277033eacd2fb7aafe
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class CF6 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int tc = sc.nextInt(); while(tc>0){ tc--; int n=sc.nextInt(); int m=sc.nextInt(); int r=sc.nextInt(); int c=sc.nextInt(); int[][] mat = new int[n][m]; sc.nextLine(); for(int i=0;i<n;i++){ String tem2 = sc.nextLine(); for(int j=0;j<m;j++){ char temp = tem2.charAt(j); if(temp=='B'){ mat[i][j]=0; }else{ mat[i][j]=1; } } } if(mat[r-1][c-1]==0){ System.out.println(0); }else{ int found =0; for(int i=0;i<n;i++){ if(mat[i][c-1]==0){ found=1; } } if(found==0){ for(int i=0;i<m;i++){ if(mat[r-1][i]==0){ found=1; } } } if(found==1){ System.out.println(1); } if(found==0){ for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(mat[i][j]==0){ found=1; } } } if(found==1){ System.out.println(2); } if(found==0){ System.out.println(-1); } } } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
1199dcc53b11757b1de53aa856cefc57
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.*; public class NotShading { static int numRows; static int numCol; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int numTests = sc.nextInt(); for(int i = 0; i < numTests; i++) { numRows = sc.nextInt(); numCol = sc.nextInt(); char[][] graph = new char[numRows][numCol]; int rowVal = sc.nextInt() - 1; int colVal = sc.nextInt() - 1; boolean containsBlack = false; for(int j = 0; j < numRows; j++) { String input = sc.next(); if(input.contains("B")) { containsBlack = true; } graph[j] = input.toCharArray(); } int answer = getNumOperations(graph, rowVal, colVal, containsBlack); System.out.println(answer); } } public static int getNumOperations(char[][] graph, int rVal, int cVal, boolean containsBlack) { if(graph[rVal][cVal] == 'B') { return 0; } if(rowOrColContainsBlack(graph, rVal, cVal)) { return 1; } if(containsBlack) { return 2; } return -1; } public static boolean rowOrColContainsBlack(char[][] graph, int rVal, int cVal) { for(int i = 0; i <= numRows - 1; i++) { if(graph[i][cVal] == 'B') { return true; } } for(int i = 0; i <= numCol - 1; i++) { if(graph[rVal][i] == 'B') { return true; } } return false; } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
c67ba47bc874d764c1d89e5117e86224
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
/* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Ideone { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner( System.in ); int no = in.nextInt(); int[] n = new int[no]; int[] m = new int[no]; int[] r = new int[no]; int[] c = new int[no]; int k1 = 0; int k2 = 0; for(int i = 0;i<no;i++){ n[i] = in.nextInt(); m[i] = in.nextInt(); r[i] = in.nextInt(); c[i] = in.nextInt(); String[] mat = new String[n[i]]; for(int j = 0;j<n[i];j++){ mat[j] = in.next(); } if(mat[r[i]-1].charAt(c[i]-1)=='B'){ System.out.println("0"); } else{ for(int j = 0;j<n[i];j++){ if(mat[j].charAt(c[i]-1)=='B'){ k1++; } } for(int j = 0;j<m[i];j++){ if(mat[r[i]-1].charAt(j)=='B'){ k1++; } } if(k1>=1){ System.out.println("1"); } else{ for(int j = 0;j<n[i];j++){ for(int k = 0;k<m[i];k++){ if(mat[j].charAt(k)=='B'){ k2++; } } } if(k2>=1){ System.out.println("2"); } else{ System.out.println("-1"); } } } k1 = 0; k2 = 0; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
2c7a402569f3a05d4dac39806afe95ff
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class Not_Shading { public static void main(String[] args) { Scanner Sc = new Scanner(System.in); int test_cases = Sc.nextInt(); while(test_cases-- != 0) { int rows = Sc.nextInt(); int columns = Sc.nextInt(); int target_row = Sc.nextInt(); int target_column = Sc.nextInt(); int count = 0; boolean found = false; int white_count = 0; for(int row = 1; row <= rows; row++) { String s = Sc.next(); if(row == target_row) { for(int column = 0; column < columns ; column++) { if(s.charAt(column) == 'B') count = 1; if(s.charAt(column) == 'B' && column == target_column-1) { count = 2; break; } } } if(count == 2) { found = true; continue; } if(count == 1) continue; int k = 0; for(int i = 0; i<s.length(); i++) { if(s.charAt(i) == 'B' && i == target_column-1) count = 1; if(s.charAt(i) == 'W') k++; } if(k == s.length()) white_count++; } if(white_count == rows) System.out.println("-1"); else if(found) System.out.println("0"); else if(count == 1) System.out.println("1"); else System.out.println("2"); } Sc.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
3c68296ec8aafb90e2cf9f2f4df946fa
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class Not_Shading { public static void main(String[] args) { Scanner Sc = new Scanner(System.in); int test_cases = Sc.nextInt(); while(test_cases-- != 0) { int rows = Sc.nextInt(); int columns = Sc.nextInt(); int target_row = Sc.nextInt(); int target_column = Sc.nextInt(); int count = 0; boolean found = false; int white_count = 0; for(int row = 1; row <= rows; row++) { int k = 0; String s = Sc.next(); if(row == target_row) { for(int column = 0; column < columns ; column++) { if(s.charAt(column) == 'B') count = 1; if(s.charAt(column) == 'B' && column == target_column-1) { count = 2; break; } } } if(count == 2) { found = true; continue; } for(int i = 0; i<s.length(); i++) { if(s.charAt(i) == 'B' && i == target_column-1 && count != 2) count = 1; if(s.charAt(i) == 'W') k++; } if(k == s.length()) white_count++; } if(white_count == rows) System.out.println("-1"); else if(found) System.out.println("0"); else if(count == 1) System.out.println("1"); else System.out.println("2"); } Sc.close(); } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
09c6f4b1bec02dc25e07e2bd2d640a03
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.ArrayList; import java.util.HashSet; import java.util.List; import java.util.Scanner; import java.util.Set; //nmrc public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); sc.nextLine(); for (int q = 1; q <= t; q++) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt(); int c = sc.nextInt(); sc.nextLine(); List<int[]> b = new ArrayList<int[]>(); Set<Integer> row = new HashSet<Integer>(); Set<Integer> column = new HashSet<Integer>(); for (int i = 1; i <= n; i++) { String d = sc.next(); for (int j = 1; j <= m; j++) { char dj = d.charAt(j - 1); if (dj == ('B')) { row.add(i); column.add(j); int[] vec = new int[2]; vec[0] = i; vec[1] = j; b.add(vec); } } sc.nextLine(); } if (b.isEmpty()) System.out.println(-1); else { int flag = 2; for (int[] i : b) { if (i[0] == r && i[1] == c) { flag = 0; break; } if (i[0] == r || i[1] == c) flag = 1; } System.out.println(flag); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
1cd471bf5fb9dcf32260f84fd0d3bd70
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.HashMap; import java.util.Scanner; public class Main { public static void main(String[] args) { // TODO Auto-generated method stub Scanner s = new Scanner(System.in); int t = s.nextInt(); while(t-- > 0) { int n = s.nextInt(); int m = s.nextInt(); int r = s.nextInt(); int c = s.nextInt(); char[][] arr = new char[n+1][m+1]; HashMap<Integer,Integer> mapR = new HashMap<>(); HashMap<Integer,Integer> mapC = new HashMap<>(); for(int i = 1;i<=n;i++) { String st = s.next(); for(int j = 1;j<=m;j++) { arr[i][j] = st.charAt(j-1); if(arr[i][j]=='B') { mapR.put(i,1); mapC.put(j,1); } } } int ans = solve(arr,mapR,mapC,r,c); System.out.println(ans); } } private static int solve(char[][] arr, HashMap<Integer, Integer> mapR, HashMap<Integer, Integer> mapC, int r, int c) { if(mapR.size()==0 && mapC.size()==0) { return -1; } else if(arr[r][c]=='B') { return 0; } else if(mapR.containsKey(r)==true || mapC.containsKey(c)==true) { return 1; } else { return 2; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
28937d338ccf1085194f65f11d5f1292
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for(int i = 0; i < t; i++) { int n = sc.nextInt(); int m = sc.nextInt(); int r = sc.nextInt() - 1; int c = sc.nextInt() - 1; sc.nextLine(); boolean impossible = true; char[][] mat = new char[n][m]; for(int j = 0; j < n; j++) { String line = sc.nextLine(); for(int k = 0; k < m; k++) { if(line.charAt(k) == 'B') impossible = false; mat[j][k] = line.charAt(k); } } if(impossible) { System.out.println(-1); continue; } if(mat[r][c] == 'B') { System.out.println(0); continue; } boolean not = false; for(int j = 0; j < n; j++) { if(mat[j][c] == 'B') { System.out.println(1); not = true; break; } } if(!not) { for(int j = 0; j < m; j++) { if(mat[r][j] == 'B') { System.out.println(1); not = true; break; } } } if(!not) System.out.println(2); } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
da0bbc33084c8b2d2a3c3221cecc81c2
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.*; import java.util.*; import java.text.*; import java.math.*; import java.util.regex.*; import java.lang.*; public class Main{ public static PrintWriter out; public static FastReader in; public static void main(String[] args) { try { in=new FastReader(); out = new PrintWriter(new BufferedOutputStream(System.out)); int testCases=in.nextInt(); while(testCases-- > 0){ int n = in.nextInt(); int m = in.nextInt(); int r = in.nextInt(); int c = in.nextInt(); char[][] a = new char[n][m]; int x =-1,y=-1,res=0,count=0; boolean temp=false; for(int i=0;i<n;i++) { String s=in.next(); for(int j=0;j<m;j++) { a[i][j] =s.charAt(j); if(a[i][j]=='B') count++; } } if(count>0) { if(a[r-1][c-1]=='B') { System.out.println("0"); } else { for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { if(a[i][j]=='B') { if(i==(r-1)||j==(c-1)) { temp=true; break; } } } if(temp==true) break; } if(temp==true) System.out.println("1"); else System.out.println("2"); } } else { System.out.println("-1"); } } out.close(); } catch (Exception e) { out.println("Exception"); return; } } static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br=new BufferedReader(new InputStreamReader(System.in)); } String next(){ while(st==null || !st.hasMoreTokens()){ try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str=""; try { str=br.readLine().trim(); } catch (Exception e) { e.printStackTrace(); } return str; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
1b424b14dfeccb1f1a7f226adbbe1454
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
//package practice; import java.io.*; import java.util.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws IOException { FastReader fr=new FastReader(); int t=fr.nextInt(); while(t-->0) { int n=fr.nextInt(); int m=fr.nextInt(); int r=fr.nextInt(); int c=fr.nextInt(); int min=Integer.MAX_VALUE; boolean f=false; for(int i=1;i<=n;i++) { String str=fr.next(); for(int j=1;j<=m;j++) { if((i==r && j==c) && str.charAt(j-1)=='B') { min=Math.min(min, 0); } else if ((i==r || j==c) && str.charAt(j-1)=='B') { min=Math.min(min, 1); } else if(str.charAt(j-1)=='B')min=Math.min(min, 2); // System.out.println(s[i][j]); } } if(min!=Integer.MAX_VALUE){ System.out.println(min); } else { System.out.println(-1); } } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
03aa6ec7796394a55304856795318e71
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * Accomplished using the EduTools plugin by JetBrains https://plugins.jetbrains.com/plugin/10081-edutools * * To modify the template, go to Preferences -> Editor -> File and Code Templates -> Other */ public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static boolean alreadyBlack(List<String> cells, int r, int c) { return cells.get(r).charAt(c) == 'B'; } public static boolean allWhite(List<String> cells) { return !cells.stream().anyMatch(s -> s.contains("B")); } public static boolean rowOrColHasBlack(List<String> cells, int r, int c) { for(int i = 0; i < cells.size(); i++) { if(cells.get(i).charAt(c) == 'B') { return true; } } return cells.get(r).contains("B"); } public static void main(String[] args) { FastReader fr = new FastReader(); int test = fr.nextInt(); while(test > 0) { int n = fr.nextInt(), m = fr.nextInt(), r = fr.nextInt() - 1, c = fr.nextInt() - 1; List<String> cells = new ArrayList<>(n); for(int i = 0; i < n; i++) { cells.add(fr.nextLine()); } if(alreadyBlack(cells, r, c)) { System.out.println(0); } else if (allWhite(cells)) { System.out.println(-1); } else if(rowOrColHasBlack(cells, r, c)) { System.out.println(1); } else { System.out.println(2); } test--; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
4f885037f07bd46a4e8f56bcd9fe7ad1
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * Accomplished using the EduTools plugin by JetBrains https://plugins.jetbrains.com/plugin/10081-edutools * * To modify the template, go to Preferences -> Editor -> File and Code Templates -> Other */ public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static boolean alreadyBlack(List<String> cells, int r, int c) { return cells.get(r).charAt(c) == 'B'; } public static boolean allWhite(List<String> cells) { return !cells.stream().anyMatch(s -> s.contains("B")); } public static boolean rowOrColHasBlack(List<String> cells, int r, int c) { for(char ch: cells.get(r).toCharArray()) { if(ch == 'B') { return true; } } for(int i = 0; i < cells.size(); i++) { if(cells.get(i).charAt(c) == 'B') { return true; } } return false; } public static void main(String[] args) { FastReader fr = new FastReader(); int test = fr.nextInt(); while(test > 0) { int n = fr.nextInt(), m = fr.nextInt(), r = fr.nextInt() - 1, c = fr.nextInt() - 1; List<String> cells = new ArrayList<>(n); for(int i = 0; i < n; i++) { cells.add(fr.nextLine()); } if(alreadyBlack(cells, r, c)) { System.out.println(0); } else if (allWhite(cells)) { System.out.println(-1); } else if(rowOrColHasBlack(cells, r, c)) { System.out.println(1); } else { System.out.println(2); } test--; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
327e9cf46bca9749ca93a5ab3df5db85
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * Accomplished using the EduTools plugin by JetBrains https://plugins.jetbrains.com/plugin/10081-edutools * * To modify the template, go to Preferences -> Editor -> File and Code Templates -> Other */ public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static boolean alreadyBlack(List<String> cells, int r, int c) { return cells.get(r).charAt(c) == 'B'; } public static boolean allWhite(List<String> cells) { for(String row: cells) { for(char c: row.toCharArray()) { if(c == 'B') { return false; } } } return true; } public static boolean rowOrColHasBlack(List<String> cells, int r, int c) { for(char ch: cells.get(r).toCharArray()) { if(ch == 'B') { return true; } } for(int i = 0; i < cells.size(); i++) { if(cells.get(i).charAt(c) == 'B') { return true; } } return false; } public static void main(String[] args) { FastReader fr = new FastReader(); int test = fr.nextInt(); while(test > 0) { int n = fr.nextInt(), m = fr.nextInt(), r = fr.nextInt() - 1, c = fr.nextInt() - 1; List<String> cells = new ArrayList<>(n); for(int i = 0; i < n; i++) { cells.add(fr.nextLine()); } if(alreadyBlack(cells, r, c)) { System.out.println(0); } else if (allWhite(cells)) { System.out.println(-1); } else if(rowOrColHasBlack(cells, r, c)) { System.out.println(1); } else { System.out.println(2); } test--; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output
PASSED
7e386469eea0574c18406d260b23443a
train_109.jsonl
1642257300
There is a grid with $$$n$$$ rows and $$$m$$$ columns. Some cells are colored black, and the rest of the cells are colored white.In one operation, you can select some black cell and do exactly one of the following: color all cells in its row black, or color all cells in its column black. You are given two integers $$$r$$$ and $$$c$$$. Find the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black, or determine that it is impossible.
256 megabytes
import java.util.Scanner; public class shading { public static void main(String[] args) { Scanner scn = new Scanner(System.in); try{ int t = scn.nextInt(); while(t-- > 0){ int n = scn.nextInt(); int m = scn.nextInt(); int r = scn.nextInt(); int c = scn.nextInt(); char arr[][] = new char[n][m]; for (int i = 0; i < n; i++) { String str = scn.next(); for (int j = 0; j < m; j++) { arr[i][j] = str.charAt(j); } } int countB = 0; for(int i = 0;i<n;i++){ for(int j = 0;j<m;j++){ if(arr[i][j] == 'B'){ countB++; } } } if(countB == 0){ System.out.println("-1"); } else if(arr[r-1][c-1] == 'B'){ System.out.println("0"); } else{ boolean flag = false; for (int i = 0; i < m; i++) { if (arr[r - 1][i] == 'B' && i != c - 1) { System.out.println("1"); flag = true; break; } } if(flag == false) { for (int i = 0; i < n; i++) { if (arr[i][c - 1] == 'B' && i != r-1) { System.out.println("1"); flag = true; break; } } } if(flag == false){ System.out.println("2"); } } } } catch (Exception e){ return; } } }
Java
["9\n\n3 5 1 4\n\nWBWWW\n\nBBBWB\n\nWWBBB\n\n4 3 2 1\n\nBWW\n\nBBW\n\nWBB\n\nWWB\n\n2 3 2 2\n\nWWW\n\nWWW\n\n2 2 1 1\n\nWW\n\nWB\n\n5 9 5 9\n\nWWWWWWWWW\n\nWBWBWBBBW\n\nWBBBWWBWW\n\nWBWBWBBBW\n\nWWWWWWWWW\n\n1 1 1 1\n\nB\n\n1 1 1 1\n\nW\n\n1 2 1 1\n\nWB\n\n2 1 1 1\n\nW\n\nB"]
1 second
["1\n0\n-1\n2\n2\n0\n-1\n1\n1"]
NoteThe first test case is pictured below. We can take the black cell in row $$$1$$$ and column $$$2$$$, and make all cells in its row black. Therefore, the cell in row $$$1$$$ and column $$$4$$$ will become black. In the second test case, the cell in row $$$2$$$ and column $$$1$$$ is already black.In the third test case, it is impossible to make the cell in row $$$2$$$ and column $$$2$$$ black.The fourth test case is pictured below. We can take the black cell in row $$$2$$$ and column $$$2$$$ and make its column black. Then, we can take the black cell in row $$$1$$$ and column $$$2$$$ and make its row black. Therefore, the cell in row $$$1$$$ and column $$$1$$$ will become black.
Java 11
standard input
[ "constructive algorithms", "implementation" ]
4ca13794471831953f2737ca9d4ba853
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains four integers $$$n$$$, $$$m$$$, $$$r$$$, and $$$c$$$ ($$$1 \leq n, m \leq 50$$$; $$$1 \leq r \leq n$$$; $$$1 \leq c \leq m$$$) — the number of rows and the number of columns in the grid, and the row and column of the cell you need to turn black, respectively. Then $$$n$$$ lines follow, each containing $$$m$$$ characters. Each of these characters is either 'B' or 'W' — a black and a white cell, respectively.
800
For each test case, if it is impossible to make the cell in row $$$r$$$ and column $$$c$$$ black, output $$$-1$$$. Otherwise, output a single integer — the minimum number of operations required to make the cell in row $$$r$$$ and column $$$c$$$ black.
standard output