code
stringlengths 1
1.05M
| repo_name
stringlengths 6
83
| path
stringlengths 3
242
| language
stringclasses 222
values | license
stringclasses 20
values | size
int64 1
1.05M
|
|---|---|---|---|---|---|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 7: Exercise 2</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 7: Exercise 2</h1>
<h2>a.</h2>
<p>\( g(x) = k \) because RSS term is ignored and \( g(x) = k \) would minimize the area
under the curve of \( g^{(0)} \).</p>
<h2>b.</h2>
<p>\( g(x) \alpha x^2 \). \( g(x) \) would be quadratic to minimize the area under the curve
of its first derivative.</p>
<h2>c.</h2>
<p>\( g(x) \alpha x^3 \). \( g(x) \) would be cubic to minimize the area under the curve
of its second derivative. See Eqn 7.11.</p>
<h2>d.</h2>
<p>\( g(x) \alpha x^4 \). \( g(x) \) would be quartic to minimize the area under the curve
of its third derivative.</p>
<h2>e.</h2>
<p>The penalty term no longer matters. This is the formula for linear regression,
to choose g based on minimizing RSS.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/2.html
|
HTML
|
unknown
| 2,915
|
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<title></title>
<script src="data:application/x-javascript,%2F%2A%21%20jQuery%20v1%2E11%2E0%20%7C%20%28c%29%202005%2C%202014%20jQuery%20Foundation%2C%20Inc%2E%20%7C%20jquery%2Eorg%2Flicense%20%2A%2F%0A%21function%28a%2Cb%29%7B%22object%22%3D%3Dtypeof%20module%26%26%22object%22%3D%3Dtypeof%20module%2Eexports%3Fmodule%2Eexports%3Da%2Edocument%3Fb%28a%2C%210%29%3Afunction%28a%29%7Bif%28%21a%2Edocument%29throw%20new%20Error%28%22jQuery%20requires%20a%20window%20with%20a%20document%22%29%3Breturn%20b%28a%29%7D%3Ab%28a%29%7D%28%22undefined%22%21%3Dtypeof%20window%3Fwindow%3Athis%2Cfunction%28a%2Cb%29%7Bvar%20c%3D%5B%5D%2Cd%3Dc%2Eslice%2Ce%3Dc%2Econcat%2Cf%3Dc%2Epush%2Cg%3Dc%2EindexOf%2Ch%3D%7B%7D%2Ci%3Dh%2EtoString%2Cj%3Dh%2EhasOwnProperty%2Ck%3D%22%22%2Etrim%2Cl%3D%7B%7D%2Cm%3D%221%2E11%2E0%22%2Cn%3Dfunction%28a%2Cb%29%7Breturn%20new%20n%2Efn%2Einit%28a%2Cb%29%7D%2Co%3D%2F%5E%5B%5Cs%5CuFEFF%5CxA0%5D%2B%7C%5B%5Cs%5CuFEFF%5CxA0%5D%2B%24%2Fg%2Cp%3D%2F%5E%2Dms%2D%2F%2Cq%3D%2F%2D%28%5B%5Cda%2Dz%5D%29%2Fgi%2Cr%3Dfunction%28a%2Cb%29%7Breturn%20b%2EtoUpperCase%28%29%7D%3Bn%2Efn%3Dn%2Eprototype%3D%7Bjquery%3Am%2Cconstructor%3An%2Cselector%3A%22%22%2Clength%3A0%2CtoArray%3Afunction%28%29%7Breturn%20d%2Ecall%28this%29%7D%2Cget%3Afunction%28a%29%7Breturn%20null%21%3Da%3F0%3Ea%3Fthis%5Ba%2Bthis%2Elength%5D%3Athis%5Ba%5D%3Ad%2Ecall%28this%29%7D%2CpushStack%3Afunction%28a%29%7Bvar%20b%3Dn%2Emerge%28this%2Econstructor%28%29%2Ca%29%3Breturn%20b%2EprevObject%3Dthis%2Cb%2Econtext%3Dthis%2Econtext%2Cb%7D%2Ceach%3Afunction%28a%2Cb%29%7Breturn%20n%2Eeach%28this%2Ca%2Cb%29%7D%2Cmap%3Afunction%28a%29%7Breturn%20this%2EpushStack%28n%2Emap%28this%2Cfunction%28b%2Cc%29%7Breturn%20a%2Ecall%28b%2Cc%2Cb%29%7D%29%29%7D%2Cslice%3Afunction%28%29%7Breturn%20this%2EpushStack%28d%2Eapply%28this%2Carguments%29%29%7D%2Cfirst%3Afunction%28%29%7Breturn%20this%2Eeq%280%29%7D%2Clast%3Afunction%28%29%7Breturn%20this%2Eeq%28%2D1%29%7D%2Ceq%3Afunction%28a%29%7Bvar%20b%3Dthis%2Elength%2Cc%3D%2Ba%2B%280%3Ea%3Fb%3A0%29%3Breturn%20this%2EpushStack%28c%3E%3D0%26%26b%3Ec%3F%5Bthis%5Bc%5D%5D%3A%5B%5D%29%7D%2Cend%3Afunction%28%29%7Breturn%20this%2EprevObject%7C%7Cthis%2Econstructor%28null%29%7D%2Cpush%3Af%2Csort%3Ac%2Esort%2Csplice%3Ac%2Esplice%7D%2Cn%2Eextend%3Dn%2Efn%2Eextend%3Dfunction%28%29%7Bvar%20a%2Cb%2Cc%2Cd%2Ce%2Cf%2Cg%3Darguments%5B0%5D%7C%7C%7B%7D%2Ch%3D1%2Ci%3Darguments%2Elength%2Cj%3D%211%3Bfor%28%22boolean%22%3D%3Dtypeof%20g%26%26%28j%3Dg%2Cg%3Darguments%5Bh%5D%7C%7C%7B%7D%2Ch%2B%2B%29%2C%22object%22%3D%3Dtypeof%20g%7C%7Cn%2EisFunction%28g%29%7C%7C%28g%3D%7B%7D%29%2Ch%3D%3D%3Di%26%26%28g%3Dthis%2Ch%2D%2D%29%3Bi%3Eh%3Bh%2B%2B%29if%28null%21%3D%28e%3Darguments%5Bh%5D%29%29for%28d%20in%20e%29a%3Dg%5Bd%5D%2Cc%3De%5Bd%5D%2Cg%21%3D%3Dc%26%26%28j%26%26c%26%26%28n%2EisPlainObject%28c%29%7C%7C%28b%3Dn%2EisArray%28c%29%29%29%3F%28b%3F%28b%3D%211%2Cf%3Da%26%26n%2EisArray%28a%29%3Fa%3A%5B%5D%29%3Af%3Da%26%26n%2EisPlainObject%28a%29%3Fa%3A%7B%7D%2Cg%5Bd%5D%3Dn%2Eextend%28j%2Cf%2Cc%29%29%3Avoid%200%21%3D%3Dc%26%26%28g%5Bd%5D%3Dc%29%29%3Breturn%20g%7D%2Cn%2Eextend%28%7Bexpando%3A%22jQuery%22%2B%28m%2BMath%2Erandom%28%29%29%2Ereplace%28%2F%5CD%2Fg%2C%22%22%29%2CisReady%3A%210%2Cerror%3Afunction%28a%29%7Bthrow%20new%20Error%28a%29%7D%2Cnoop%3Afunction%28%29%7B%7D%2CisFunction%3Afunction%28a%29%7Breturn%22function%22%3D%3D%3Dn%2Etype%28a%29%7D%2CisArray%3AArray%2EisArray%7C%7Cfunction%28a%29%7Breturn%22array%22%3D%3D%3Dn%2Etype%28a%29%7D%2CisWindow%3Afunction%28a%29%7Breturn%20null%21%3Da%26%26a%3D%3Da%2Ewindow%7D%2CisNumeric%3Afunction%28a%29%7Breturn%20a%2DparseFloat%28a%29%3E%3D0%7D%2CisEmptyObject%3Afunction%28a%29%7Bvar%20b%3Bfor%28b%20in%20a%29return%211%3Breturn%210%7D%2CisPlainObject%3Afunction%28a%29%7Bvar%20b%3Bif%28%21a%7C%7C%22object%22%21%3D%3Dn%2Etype%28a%29%7C%7Ca%2EnodeType%7C%7Cn%2EisWindow%28a%29%29return%211%3Btry%7Bif%28a%2Econstructor%26%26%21j%2Ecall%28a%2C%22constructor%22%29%26%26%21j%2Ecall%28a%2Econstructor%2Eprototype%2C%22isPrototypeOf%22%29%29return%211%7Dcatch%28c%29%7Breturn%211%7Dif%28l%2EownLast%29for%28b%20in%20a%29return%20j%2Ecall%28a%2Cb%29%3Bfor%28b%20in%20a%29%3Breturn%20void%200%3D%3D%3Db%7C%7Cj%2Ecall%28a%2Cb%29%7D%2Ctype%3Afunction%28a%29%7Breturn%20null%3D%3Da%3Fa%2B%22%22%3A%22object%22%3D%3Dtypeof%20a%7C%7C%22function%22%3D%3Dtypeof%20a%3Fh%5Bi%2Ecall%28a%29%5D%7C%7C%22object%22%3Atypeof%20a%7D%2CglobalEval%3Afunction%28b%29%7Bb%26%26n%2Etrim%28b%29%26%26%28a%2EexecScript%7C%7Cfunction%28b%29%7Ba%2Eeval%2Ecall%28a%2Cb%29%7D%29%28b%29%7D%2CcamelCase%3Afunction%28a%29%7Breturn%20a%2Ereplace%28p%2C%22ms%2D%22%29%2Ereplace%28q%2Cr%29%7D%2CnodeName%3Afunction%28a%2Cb%29%7Breturn%20a%2EnodeName%26%26a%2EnodeName%2EtoLowerCase%28%29%3D%3D%3Db%2EtoLowerCase%28%29%7D%2Ceach%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%3D0%2Cf%3Da%2Elength%2Cg%3Ds%28a%29%3Bif%28c%29%7Bif%28g%29%7Bfor%28%3Bf%3Ee%3Be%2B%2B%29if%28d%3Db%2Eapply%28a%5Be%5D%2Cc%29%2Cd%3D%3D%3D%211%29break%7Delse%20for%28e%20in%20a%29if%28d%3Db%2Eapply%28a%5Be%5D%2Cc%29%2Cd%3D%3D%3D%211%29break%7Delse%20if%28g%29%7Bfor%28%3Bf%3Ee%3Be%2B%2B%29if%28d%3Db%2Ecall%28a%5Be%5D%2Ce%2Ca%5Be%5D%29%2Cd%3D%3D%3D%211%29break%7Delse%20for%28e%20in%20a%29if%28d%3Db%2Ecall%28a%5Be%5D%2Ce%2Ca%5Be%5D%29%2Cd%3D%3D%3D%211%29break%3Breturn%20a%7D%2Ctrim%3Ak%26%26%21k%2Ecall%28%22%5Cufeff%5Cxa0%22%29%3Ffunction%28a%29%7Breturn%20null%3D%3Da%3F%22%22%3Ak%2Ecall%28a%29%7D%3Afunction%28a%29%7Breturn%20null%3D%3Da%3F%22%22%3A%28a%2B%22%22%29%2Ereplace%28o%2C%22%22%29%7D%2CmakeArray%3Afunction%28a%2Cb%29%7Bvar%20c%3Db%7C%7C%5B%5D%3Breturn%20null%21%3Da%26%26%28s%28Object%28a%29%29%3Fn%2Emerge%28c%2C%22string%22%3D%3Dtypeof%20a%3F%5Ba%5D%3Aa%29%3Af%2Ecall%28c%2Ca%29%29%2Cc%7D%2CinArray%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%3Bif%28b%29%7Bif%28g%29return%20g%2Ecall%28b%2Ca%2Cc%29%3Bfor%28d%3Db%2Elength%2Cc%3Dc%3F0%3Ec%3FMath%2Emax%280%2Cd%2Bc%29%3Ac%3A0%3Bd%3Ec%3Bc%2B%2B%29if%28c%20in%20b%26%26b%5Bc%5D%3D%3D%3Da%29return%20c%7Dreturn%2D1%7D%2Cmerge%3Afunction%28a%2Cb%29%7Bvar%20c%3D%2Bb%2Elength%2Cd%3D0%2Ce%3Da%2Elength%3Bwhile%28c%3Ed%29a%5Be%2B%2B%5D%3Db%5Bd%2B%2B%5D%3Bif%28c%21%3D%3Dc%29while%28void%200%21%3D%3Db%5Bd%5D%29a%5Be%2B%2B%5D%3Db%5Bd%2B%2B%5D%3Breturn%20a%2Elength%3De%2Ca%7D%2Cgrep%3Afunction%28a%2Cb%2Cc%29%7Bfor%28var%20d%2Ce%3D%5B%5D%2Cf%3D0%2Cg%3Da%2Elength%2Ch%3D%21c%3Bg%3Ef%3Bf%2B%2B%29d%3D%21b%28a%5Bf%5D%2Cf%29%2Cd%21%3D%3Dh%26%26e%2Epush%28a%5Bf%5D%29%3Breturn%20e%7D%2Cmap%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%2Cf%3D0%2Cg%3Da%2Elength%2Ch%3Ds%28a%29%2Ci%3D%5B%5D%3Bif%28h%29for%28%3Bg%3Ef%3Bf%2B%2B%29d%3Db%28a%5Bf%5D%2Cf%2Cc%29%2Cnull%21%3Dd%26%26i%2Epush%28d%29%3Belse%20for%28f%20in%20a%29d%3Db%28a%5Bf%5D%2Cf%2Cc%29%2Cnull%21%3Dd%26%26i%2Epush%28d%29%3Breturn%20e%2Eapply%28%5B%5D%2Ci%29%7D%2Cguid%3A1%2Cproxy%3Afunction%28a%2Cb%29%7Bvar%20c%2Ce%2Cf%3Breturn%22string%22%3D%3Dtypeof%20b%26%26%28f%3Da%5Bb%5D%2Cb%3Da%2Ca%3Df%29%2Cn%2EisFunction%28a%29%3F%28c%3Dd%2Ecall%28arguments%2C2%29%2Ce%3Dfunction%28%29%7Breturn%20a%2Eapply%28b%7C%7Cthis%2Cc%2Econcat%28d%2Ecall%28arguments%29%29%29%7D%2Ce%2Eguid%3Da%2Eguid%3Da%2Eguid%7C%7Cn%2Eguid%2B%2B%2Ce%29%3Avoid%200%7D%2Cnow%3Afunction%28%29%7Breturn%2Bnew%20Date%7D%2Csupport%3Al%7D%29%2Cn%2Eeach%28%22Boolean%20Number%20String%20Function%20Array%20Date%20RegExp%20Object%20Error%22%2Esplit%28%22%20%22%29%2Cfunction%28a%2Cb%29%7Bh%5B%22%5Bobject%20%22%2Bb%2B%22%5D%22%5D%3Db%2EtoLowerCase%28%29%7D%29%3Bfunction%20s%28a%29%7Bvar%20b%3Da%2Elength%2Cc%3Dn%2Etype%28a%29%3Breturn%22function%22%3D%3D%3Dc%7C%7Cn%2EisWindow%28a%29%3F%211%3A1%3D%3D%3Da%2EnodeType%26%26b%3F%210%3A%22array%22%3D%3D%3Dc%7C%7C0%3D%3D%3Db%7C%7C%22number%22%3D%3Dtypeof%20b%26%26b%3E0%26%26b%2D1%20in%20a%7Dvar%20t%3Dfunction%28a%29%7Bvar%20b%2Cc%2Cd%2Ce%2Cf%2Cg%2Ch%2Ci%2Cj%2Ck%2Cl%2Cm%2Cn%2Co%2Cp%2Cq%2Cr%2Cs%3D%22sizzle%22%2B%2Dnew%20Date%2Ct%3Da%2Edocument%2Cu%3D0%2Cv%3D0%2Cw%3Deb%28%29%2Cx%3Deb%28%29%2Cy%3Deb%28%29%2Cz%3Dfunction%28a%2Cb%29%7Breturn%20a%3D%3D%3Db%26%26%28j%3D%210%29%2C0%7D%2CA%3D%22undefined%22%2CB%3D1%3C%3C31%2CC%3D%7B%7D%2EhasOwnProperty%2CD%3D%5B%5D%2CE%3DD%2Epop%2CF%3DD%2Epush%2CG%3DD%2Epush%2CH%3DD%2Eslice%2CI%3DD%2EindexOf%7C%7Cfunction%28a%29%7Bfor%28var%20b%3D0%2Cc%3Dthis%2Elength%3Bc%3Eb%3Bb%2B%2B%29if%28this%5Bb%5D%3D%3D%3Da%29return%20b%3Breturn%2D1%7D%2CJ%3D%22checked%7Cselected%7Casync%7Cautofocus%7Cautoplay%7Ccontrols%7Cdefer%7Cdisabled%7Chidden%7Cismap%7Cloop%7Cmultiple%7Copen%7Creadonly%7Crequired%7Cscoped%22%2CK%3D%22%5B%5C%5Cx20%5C%5Ct%5C%5Cr%5C%5Cn%5C%5Cf%5D%22%2CL%3D%22%28%3F%3A%5C%5C%5C%5C%2E%7C%5B%5C%5Cw%2D%5D%7C%5B%5E%5C%5Cx00%2D%5C%5Cxa0%5D%29%2B%22%2CM%3DL%2Ereplace%28%22w%22%2C%22w%23%22%29%2CN%3D%22%5C%5C%5B%22%2BK%2B%22%2A%28%22%2BL%2B%22%29%22%2BK%2B%22%2A%28%3F%3A%28%5B%2A%5E%24%7C%21%7E%5D%3F%3D%29%22%2BK%2B%22%2A%28%3F%3A%28%5B%27%5C%22%5D%29%28%28%3F%3A%5C%5C%5C%5C%2E%7C%5B%5E%5C%5C%5C%5C%5D%29%2A%3F%29%5C%5C3%7C%28%22%2BM%2B%22%29%7C%29%7C%29%22%2BK%2B%22%2A%5C%5C%5D%22%2CO%3D%22%3A%28%22%2BL%2B%22%29%28%3F%3A%5C%5C%28%28%28%5B%27%5C%22%5D%29%28%28%3F%3A%5C%5C%5C%5C%2E%7C%5B%5E%5C%5C%5C%5C%5D%29%2A%3F%29%5C%5C3%7C%28%28%3F%3A%5C%5C%5C%5C%2E%7C%5B%5E%5C%5C%5C%5C%28%29%5B%5C%5C%5D%5D%7C%22%2BN%2Ereplace%283%2C8%29%2B%22%29%2A%29%7C%2E%2A%29%5C%5C%29%7C%29%22%2CP%3Dnew%20RegExp%28%22%5E%22%2BK%2B%22%2B%7C%28%28%3F%3A%5E%7C%5B%5E%5C%5C%5C%5C%5D%29%28%3F%3A%5C%5C%5C%5C%2E%29%2A%29%22%2BK%2B%22%2B%24%22%2C%22g%22%29%2CQ%3Dnew%20RegExp%28%22%5E%22%2BK%2B%22%2A%2C%22%2BK%2B%22%2A%22%29%2CR%3Dnew%20RegExp%28%22%5E%22%2BK%2B%22%2A%28%5B%3E%2B%7E%5D%7C%22%2BK%2B%22%29%22%2BK%2B%22%2A%22%29%2CS%3Dnew%20RegExp%28%22%3D%22%2BK%2B%22%2A%28%5B%5E%5C%5C%5D%27%5C%22%5D%2A%3F%29%22%2BK%2B%22%2A%5C%5C%5D%22%2C%22g%22%29%2CT%3Dnew%20RegExp%28O%29%2CU%3Dnew%20RegExp%28%22%5E%22%2BM%2B%22%24%22%29%2CV%3D%7BID%3Anew%20RegExp%28%22%5E%23%28%22%2BL%2B%22%29%22%29%2CCLASS%3Anew%20RegExp%28%22%5E%5C%5C%2E%28%22%2BL%2B%22%29%22%29%2CTAG%3Anew%20RegExp%28%22%5E%28%22%2BL%2Ereplace%28%22w%22%2C%22w%2A%22%29%2B%22%29%22%29%2CATTR%3Anew%20RegExp%28%22%5E%22%2BN%29%2CPSEUDO%3Anew%20RegExp%28%22%5E%22%2BO%29%2CCHILD%3Anew%20RegExp%28%22%5E%3A%28only%7Cfirst%7Clast%7Cnth%7Cnth%2Dlast%29%2D%28child%7Cof%2Dtype%29%28%3F%3A%5C%5C%28%22%2BK%2B%22%2A%28even%7Codd%7C%28%28%5B%2B%2D%5D%7C%29%28%5C%5Cd%2A%29n%7C%29%22%2BK%2B%22%2A%28%3F%3A%28%5B%2B%2D%5D%7C%29%22%2BK%2B%22%2A%28%5C%5Cd%2B%29%7C%29%29%22%2BK%2B%22%2A%5C%5C%29%7C%29%22%2C%22i%22%29%2Cbool%3Anew%20RegExp%28%22%5E%28%3F%3A%22%2BJ%2B%22%29%24%22%2C%22i%22%29%2CneedsContext%3Anew%20RegExp%28%22%5E%22%2BK%2B%22%2A%5B%3E%2B%7E%5D%7C%3A%28even%7Codd%7Ceq%7Cgt%7Clt%7Cnth%7Cfirst%7Clast%29%28%3F%3A%5C%5C%28%22%2BK%2B%22%2A%28%28%3F%3A%2D%5C%5Cd%29%3F%5C%5Cd%2A%29%22%2BK%2B%22%2A%5C%5C%29%7C%29%28%3F%3D%5B%5E%2D%5D%7C%24%29%22%2C%22i%22%29%7D%2CW%3D%2F%5E%28%3F%3Ainput%7Cselect%7Ctextarea%7Cbutton%29%24%2Fi%2CX%3D%2F%5Eh%5Cd%24%2Fi%2CY%3D%2F%5E%5B%5E%7B%5D%2B%5C%7B%5Cs%2A%5C%5Bnative%20%5Cw%2F%2CZ%3D%2F%5E%28%3F%3A%23%28%5B%5Cw%2D%5D%2B%29%7C%28%5Cw%2B%29%7C%5C%2E%28%5B%5Cw%2D%5D%2B%29%29%24%2F%2C%24%3D%2F%5B%2B%7E%5D%2F%2C%5F%3D%2F%27%7C%5C%5C%2Fg%2Cab%3Dnew%20RegExp%28%22%5C%5C%5C%5C%28%5B%5C%5Cda%2Df%5D%7B1%2C6%7D%22%2BK%2B%22%3F%7C%28%22%2BK%2B%22%29%7C%2E%29%22%2C%22ig%22%29%2Cbb%3Dfunction%28a%2Cb%2Cc%29%7Bvar%20d%3D%220x%22%2Bb%2D65536%3Breturn%20d%21%3D%3Dd%7C%7Cc%3Fb%3A0%3Ed%3FString%2EfromCharCode%28d%2B65536%29%3AString%2EfromCharCode%28d%3E%3E10%7C55296%2C1023%26d%7C56320%29%7D%3Btry%7BG%2Eapply%28D%3DH%2Ecall%28t%2EchildNodes%29%2Ct%2EchildNodes%29%2CD%5Bt%2EchildNodes%2Elength%5D%2EnodeType%7Dcatch%28cb%29%7BG%3D%7Bapply%3AD%2Elength%3Ffunction%28a%2Cb%29%7BF%2Eapply%28a%2CH%2Ecall%28b%29%29%7D%3Afunction%28a%2Cb%29%7Bvar%20c%3Da%2Elength%2Cd%3D0%3Bwhile%28a%5Bc%2B%2B%5D%3Db%5Bd%2B%2B%5D%29%3Ba%2Elength%3Dc%2D1%7D%7D%7Dfunction%20db%28a%2Cb%2Cd%2Ce%29%7Bvar%20f%2Cg%2Ch%2Ci%2Cj%2Cm%2Cp%2Cq%2Cu%2Cv%3Bif%28%28b%3Fb%2EownerDocument%7C%7Cb%3At%29%21%3D%3Dl%26%26k%28b%29%2Cb%3Db%7C%7Cl%2Cd%3Dd%7C%7C%5B%5D%2C%21a%7C%7C%22string%22%21%3Dtypeof%20a%29return%20d%3Bif%281%21%3D%3D%28i%3Db%2EnodeType%29%26%269%21%3D%3Di%29return%5B%5D%3Bif%28n%26%26%21e%29%7Bif%28f%3DZ%2Eexec%28a%29%29if%28h%3Df%5B1%5D%29%7Bif%289%3D%3D%3Di%29%7Bif%28g%3Db%2EgetElementById%28h%29%2C%21g%7C%7C%21g%2EparentNode%29return%20d%3Bif%28g%2Eid%3D%3D%3Dh%29return%20d%2Epush%28g%29%2Cd%7Delse%20if%28b%2EownerDocument%26%26%28g%3Db%2EownerDocument%2EgetElementById%28h%29%29%26%26r%28b%2Cg%29%26%26g%2Eid%3D%3D%3Dh%29return%20d%2Epush%28g%29%2Cd%7Delse%7Bif%28f%5B2%5D%29return%20G%2Eapply%28d%2Cb%2EgetElementsByTagName%28a%29%29%2Cd%3Bif%28%28h%3Df%5B3%5D%29%26%26c%2EgetElementsByClassName%26%26b%2EgetElementsByClassName%29return%20G%2Eapply%28d%2Cb%2EgetElementsByClassName%28h%29%29%2Cd%7Dif%28c%2Eqsa%26%26%28%21o%7C%7C%21o%2Etest%28a%29%29%29%7Bif%28q%3Dp%3Ds%2Cu%3Db%2Cv%3D9%3D%3D%3Di%26%26a%2C1%3D%3D%3Di%26%26%22object%22%21%3D%3Db%2EnodeName%2EtoLowerCase%28%29%29%7Bm%3Dob%28a%29%2C%28p%3Db%2EgetAttribute%28%22id%22%29%29%3Fq%3Dp%2Ereplace%28%5F%2C%22%5C%5C%24%26%22%29%3Ab%2EsetAttribute%28%22id%22%2Cq%29%2Cq%3D%22%5Bid%3D%27%22%2Bq%2B%22%27%5D%20%22%2Cj%3Dm%2Elength%3Bwhile%28j%2D%2D%29m%5Bj%5D%3Dq%2Bpb%28m%5Bj%5D%29%3Bu%3D%24%2Etest%28a%29%26%26mb%28b%2EparentNode%29%7C%7Cb%2Cv%3Dm%2Ejoin%28%22%2C%22%29%7Dif%28v%29try%7Breturn%20G%2Eapply%28d%2Cu%2EquerySelectorAll%28v%29%29%2Cd%7Dcatch%28w%29%7B%7Dfinally%7Bp%7C%7Cb%2EremoveAttribute%28%22id%22%29%7D%7D%7Dreturn%20xb%28a%2Ereplace%28P%2C%22%241%22%29%2Cb%2Cd%2Ce%29%7Dfunction%20eb%28%29%7Bvar%20a%3D%5B%5D%3Bfunction%20b%28c%2Ce%29%7Breturn%20a%2Epush%28c%2B%22%20%22%29%3Ed%2EcacheLength%26%26delete%20b%5Ba%2Eshift%28%29%5D%2Cb%5Bc%2B%22%20%22%5D%3De%7Dreturn%20b%7Dfunction%20fb%28a%29%7Breturn%20a%5Bs%5D%3D%210%2Ca%7Dfunction%20gb%28a%29%7Bvar%20b%3Dl%2EcreateElement%28%22div%22%29%3Btry%7Breturn%21%21a%28b%29%7Dcatch%28c%29%7Breturn%211%7Dfinally%7Bb%2EparentNode%26%26b%2EparentNode%2EremoveChild%28b%29%2Cb%3Dnull%7D%7Dfunction%20hb%28a%2Cb%29%7Bvar%20c%3Da%2Esplit%28%22%7C%22%29%2Ce%3Da%2Elength%3Bwhile%28e%2D%2D%29d%2EattrHandle%5Bc%5Be%5D%5D%3Db%7Dfunction%20ib%28a%2Cb%29%7Bvar%20c%3Db%26%26a%2Cd%3Dc%26%261%3D%3D%3Da%2EnodeType%26%261%3D%3D%3Db%2EnodeType%26%26%28%7Eb%2EsourceIndex%7C%7CB%29%2D%28%7Ea%2EsourceIndex%7C%7CB%29%3Bif%28d%29return%20d%3Bif%28c%29while%28c%3Dc%2EnextSibling%29if%28c%3D%3D%3Db%29return%2D1%3Breturn%20a%3F1%3A%2D1%7Dfunction%20jb%28a%29%7Breturn%20function%28b%29%7Bvar%20c%3Db%2EnodeName%2EtoLowerCase%28%29%3Breturn%22input%22%3D%3D%3Dc%26%26b%2Etype%3D%3D%3Da%7D%7Dfunction%20kb%28a%29%7Breturn%20function%28b%29%7Bvar%20c%3Db%2EnodeName%2EtoLowerCase%28%29%3Breturn%28%22input%22%3D%3D%3Dc%7C%7C%22button%22%3D%3D%3Dc%29%26%26b%2Etype%3D%3D%3Da%7D%7Dfunction%20lb%28a%29%7Breturn%20fb%28function%28b%29%7Breturn%20b%3D%2Bb%2Cfb%28function%28c%2Cd%29%7Bvar%20e%2Cf%3Da%28%5B%5D%2Cc%2Elength%2Cb%29%2Cg%3Df%2Elength%3Bwhile%28g%2D%2D%29c%5Be%3Df%5Bg%5D%5D%26%26%28c%5Be%5D%3D%21%28d%5Be%5D%3Dc%5Be%5D%29%29%7D%29%7D%29%7Dfunction%20mb%28a%29%7Breturn%20a%26%26typeof%20a%2EgetElementsByTagName%21%3D%3DA%26%26a%7Dc%3Ddb%2Esupport%3D%7B%7D%2Cf%3Ddb%2EisXML%3Dfunction%28a%29%7Bvar%20b%3Da%26%26%28a%2EownerDocument%7C%7Ca%29%2EdocumentElement%3Breturn%20b%3F%22HTML%22%21%3D%3Db%2EnodeName%3A%211%7D%2Ck%3Ddb%2EsetDocument%3Dfunction%28a%29%7Bvar%20b%2Ce%3Da%3Fa%2EownerDocument%7C%7Ca%3At%2Cg%3De%2EdefaultView%3Breturn%20e%21%3D%3Dl%26%269%3D%3D%3De%2EnodeType%26%26e%2EdocumentElement%3F%28l%3De%2Cm%3De%2EdocumentElement%2Cn%3D%21f%28e%29%2Cg%26%26g%21%3D%3Dg%2Etop%26%26%28g%2EaddEventListener%3Fg%2EaddEventListener%28%22unload%22%2Cfunction%28%29%7Bk%28%29%7D%2C%211%29%3Ag%2EattachEvent%26%26g%2EattachEvent%28%22onunload%22%2Cfunction%28%29%7Bk%28%29%7D%29%29%2Cc%2Eattributes%3Dgb%28function%28a%29%7Breturn%20a%2EclassName%3D%22i%22%2C%21a%2EgetAttribute%28%22className%22%29%7D%29%2Cc%2EgetElementsByTagName%3Dgb%28function%28a%29%7Breturn%20a%2EappendChild%28e%2EcreateComment%28%22%22%29%29%2C%21a%2EgetElementsByTagName%28%22%2A%22%29%2Elength%7D%29%2Cc%2EgetElementsByClassName%3DY%2Etest%28e%2EgetElementsByClassName%29%26%26gb%28function%28a%29%7Breturn%20a%2EinnerHTML%3D%22%3Cdiv%20class%3D%27a%27%3E%3C%2Fdiv%3E%3Cdiv%20class%3D%27a%20i%27%3E%3C%2Fdiv%3E%22%2Ca%2EfirstChild%2EclassName%3D%22i%22%2C2%3D%3D%3Da%2EgetElementsByClassName%28%22i%22%29%2Elength%7D%29%2Cc%2EgetById%3Dgb%28function%28a%29%7Breturn%20m%2EappendChild%28a%29%2Eid%3Ds%2C%21e%2EgetElementsByName%7C%7C%21e%2EgetElementsByName%28s%29%2Elength%7D%29%2Cc%2EgetById%3F%28d%2Efind%2EID%3Dfunction%28a%2Cb%29%7Bif%28typeof%20b%2EgetElementById%21%3D%3DA%26%26n%29%7Bvar%20c%3Db%2EgetElementById%28a%29%3Breturn%20c%26%26c%2EparentNode%3F%5Bc%5D%3A%5B%5D%7D%7D%2Cd%2Efilter%2EID%3Dfunction%28a%29%7Bvar%20b%3Da%2Ereplace%28ab%2Cbb%29%3Breturn%20function%28a%29%7Breturn%20a%2EgetAttribute%28%22id%22%29%3D%3D%3Db%7D%7D%29%3A%28delete%20d%2Efind%2EID%2Cd%2Efilter%2EID%3Dfunction%28a%29%7Bvar%20b%3Da%2Ereplace%28ab%2Cbb%29%3Breturn%20function%28a%29%7Bvar%20c%3Dtypeof%20a%2EgetAttributeNode%21%3D%3DA%26%26a%2EgetAttributeNode%28%22id%22%29%3Breturn%20c%26%26c%2Evalue%3D%3D%3Db%7D%7D%29%2Cd%2Efind%2ETAG%3Dc%2EgetElementsByTagName%3Ffunction%28a%2Cb%29%7Breturn%20typeof%20b%2EgetElementsByTagName%21%3D%3DA%3Fb%2EgetElementsByTagName%28a%29%3Avoid%200%7D%3Afunction%28a%2Cb%29%7Bvar%20c%2Cd%3D%5B%5D%2Ce%3D0%2Cf%3Db%2EgetElementsByTagName%28a%29%3Bif%28%22%2A%22%3D%3D%3Da%29%7Bwhile%28c%3Df%5Be%2B%2B%5D%291%3D%3D%3Dc%2EnodeType%26%26d%2Epush%28c%29%3Breturn%20d%7Dreturn%20f%7D%2Cd%2Efind%2ECLASS%3Dc%2EgetElementsByClassName%26%26function%28a%2Cb%29%7Breturn%20typeof%20b%2EgetElementsByClassName%21%3D%3DA%26%26n%3Fb%2EgetElementsByClassName%28a%29%3Avoid%200%7D%2Cp%3D%5B%5D%2Co%3D%5B%5D%2C%28c%2Eqsa%3DY%2Etest%28e%2EquerySelectorAll%29%29%26%26%28gb%28function%28a%29%7Ba%2EinnerHTML%3D%22%3Cselect%20t%3D%27%27%3E%3Coption%20selected%3D%27%27%3E%3C%2Foption%3E%3C%2Fselect%3E%22%2Ca%2EquerySelectorAll%28%22%5Bt%5E%3D%27%27%5D%22%29%2Elength%26%26o%2Epush%28%22%5B%2A%5E%24%5D%3D%22%2BK%2B%22%2A%28%3F%3A%27%27%7C%5C%22%5C%22%29%22%29%2Ca%2EquerySelectorAll%28%22%5Bselected%5D%22%29%2Elength%7C%7Co%2Epush%28%22%5C%5C%5B%22%2BK%2B%22%2A%28%3F%3Avalue%7C%22%2BJ%2B%22%29%22%29%2Ca%2EquerySelectorAll%28%22%3Achecked%22%29%2Elength%7C%7Co%2Epush%28%22%3Achecked%22%29%7D%29%2Cgb%28function%28a%29%7Bvar%20b%3De%2EcreateElement%28%22input%22%29%3Bb%2EsetAttribute%28%22type%22%2C%22hidden%22%29%2Ca%2EappendChild%28b%29%2EsetAttribute%28%22name%22%2C%22D%22%29%2Ca%2EquerySelectorAll%28%22%5Bname%3Dd%5D%22%29%2Elength%26%26o%2Epush%28%22name%22%2BK%2B%22%2A%5B%2A%5E%24%7C%21%7E%5D%3F%3D%22%29%2Ca%2EquerySelectorAll%28%22%3Aenabled%22%29%2Elength%7C%7Co%2Epush%28%22%3Aenabled%22%2C%22%3Adisabled%22%29%2Ca%2EquerySelectorAll%28%22%2A%2C%3Ax%22%29%2Co%2Epush%28%22%2C%2E%2A%3A%22%29%7D%29%29%2C%28c%2EmatchesSelector%3DY%2Etest%28q%3Dm%2EwebkitMatchesSelector%7C%7Cm%2EmozMatchesSelector%7C%7Cm%2EoMatchesSelector%7C%7Cm%2EmsMatchesSelector%29%29%26%26gb%28function%28a%29%7Bc%2EdisconnectedMatch%3Dq%2Ecall%28a%2C%22div%22%29%2Cq%2Ecall%28a%2C%22%5Bs%21%3D%27%27%5D%3Ax%22%29%2Cp%2Epush%28%22%21%3D%22%2CO%29%7D%29%2Co%3Do%2Elength%26%26new%20RegExp%28o%2Ejoin%28%22%7C%22%29%29%2Cp%3Dp%2Elength%26%26new%20RegExp%28p%2Ejoin%28%22%7C%22%29%29%2Cb%3DY%2Etest%28m%2EcompareDocumentPosition%29%2Cr%3Db%7C%7CY%2Etest%28m%2Econtains%29%3Ffunction%28a%2Cb%29%7Bvar%20c%3D9%3D%3D%3Da%2EnodeType%3Fa%2EdocumentElement%3Aa%2Cd%3Db%26%26b%2EparentNode%3Breturn%20a%3D%3D%3Dd%7C%7C%21%28%21d%7C%7C1%21%3D%3Dd%2EnodeType%7C%7C%21%28c%2Econtains%3Fc%2Econtains%28d%29%3Aa%2EcompareDocumentPosition%26%2616%26a%2EcompareDocumentPosition%28d%29%29%29%7D%3Afunction%28a%2Cb%29%7Bif%28b%29while%28b%3Db%2EparentNode%29if%28b%3D%3D%3Da%29return%210%3Breturn%211%7D%2Cz%3Db%3Ffunction%28a%2Cb%29%7Bif%28a%3D%3D%3Db%29return%20j%3D%210%2C0%3Bvar%20d%3D%21a%2EcompareDocumentPosition%2D%21b%2EcompareDocumentPosition%3Breturn%20d%3Fd%3A%28d%3D%28a%2EownerDocument%7C%7Ca%29%3D%3D%3D%28b%2EownerDocument%7C%7Cb%29%3Fa%2EcompareDocumentPosition%28b%29%3A1%2C1%26d%7C%7C%21c%2EsortDetached%26%26b%2EcompareDocumentPosition%28a%29%3D%3D%3Dd%3Fa%3D%3D%3De%7C%7Ca%2EownerDocument%3D%3D%3Dt%26%26r%28t%2Ca%29%3F%2D1%3Ab%3D%3D%3De%7C%7Cb%2EownerDocument%3D%3D%3Dt%26%26r%28t%2Cb%29%3F1%3Ai%3FI%2Ecall%28i%2Ca%29%2DI%2Ecall%28i%2Cb%29%3A0%3A4%26d%3F%2D1%3A1%29%7D%3Afunction%28a%2Cb%29%7Bif%28a%3D%3D%3Db%29return%20j%3D%210%2C0%3Bvar%20c%2Cd%3D0%2Cf%3Da%2EparentNode%2Cg%3Db%2EparentNode%2Ch%3D%5Ba%5D%2Ck%3D%5Bb%5D%3Bif%28%21f%7C%7C%21g%29return%20a%3D%3D%3De%3F%2D1%3Ab%3D%3D%3De%3F1%3Af%3F%2D1%3Ag%3F1%3Ai%3FI%2Ecall%28i%2Ca%29%2DI%2Ecall%28i%2Cb%29%3A0%3Bif%28f%3D%3D%3Dg%29return%20ib%28a%2Cb%29%3Bc%3Da%3Bwhile%28c%3Dc%2EparentNode%29h%2Eunshift%28c%29%3Bc%3Db%3Bwhile%28c%3Dc%2EparentNode%29k%2Eunshift%28c%29%3Bwhile%28h%5Bd%5D%3D%3D%3Dk%5Bd%5D%29d%2B%2B%3Breturn%20d%3Fib%28h%5Bd%5D%2Ck%5Bd%5D%29%3Ah%5Bd%5D%3D%3D%3Dt%3F%2D1%3Ak%5Bd%5D%3D%3D%3Dt%3F1%3A0%7D%2Ce%29%3Al%7D%2Cdb%2Ematches%3Dfunction%28a%2Cb%29%7Breturn%20db%28a%2Cnull%2Cnull%2Cb%29%7D%2Cdb%2EmatchesSelector%3Dfunction%28a%2Cb%29%7Bif%28%28a%2EownerDocument%7C%7Ca%29%21%3D%3Dl%26%26k%28a%29%2Cb%3Db%2Ereplace%28S%2C%22%3D%27%241%27%5D%22%29%2C%21%28%21c%2EmatchesSelector%7C%7C%21n%7C%7Cp%26%26p%2Etest%28b%29%7C%7Co%26%26o%2Etest%28b%29%29%29try%7Bvar%20d%3Dq%2Ecall%28a%2Cb%29%3Bif%28d%7C%7Cc%2EdisconnectedMatch%7C%7Ca%2Edocument%26%2611%21%3D%3Da%2Edocument%2EnodeType%29return%20d%7Dcatch%28e%29%7B%7Dreturn%20db%28b%2Cl%2Cnull%2C%5Ba%5D%29%2Elength%3E0%7D%2Cdb%2Econtains%3Dfunction%28a%2Cb%29%7Breturn%28a%2EownerDocument%7C%7Ca%29%21%3D%3Dl%26%26k%28a%29%2Cr%28a%2Cb%29%7D%2Cdb%2Eattr%3Dfunction%28a%2Cb%29%7B%28a%2EownerDocument%7C%7Ca%29%21%3D%3Dl%26%26k%28a%29%3Bvar%20e%3Dd%2EattrHandle%5Bb%2EtoLowerCase%28%29%5D%2Cf%3De%26%26C%2Ecall%28d%2EattrHandle%2Cb%2EtoLowerCase%28%29%29%3Fe%28a%2Cb%2C%21n%29%3Avoid%200%3Breturn%20void%200%21%3D%3Df%3Ff%3Ac%2Eattributes%7C%7C%21n%3Fa%2EgetAttribute%28b%29%3A%28f%3Da%2EgetAttributeNode%28b%29%29%26%26f%2Especified%3Ff%2Evalue%3Anull%7D%2Cdb%2Eerror%3Dfunction%28a%29%7Bthrow%20new%20Error%28%22Syntax%20error%2C%20unrecognized%20expression%3A%20%22%2Ba%29%7D%2Cdb%2EuniqueSort%3Dfunction%28a%29%7Bvar%20b%2Cd%3D%5B%5D%2Ce%3D0%2Cf%3D0%3Bif%28j%3D%21c%2EdetectDuplicates%2Ci%3D%21c%2EsortStable%26%26a%2Eslice%280%29%2Ca%2Esort%28z%29%2Cj%29%7Bwhile%28b%3Da%5Bf%2B%2B%5D%29b%3D%3D%3Da%5Bf%5D%26%26%28e%3Dd%2Epush%28f%29%29%3Bwhile%28e%2D%2D%29a%2Esplice%28d%5Be%5D%2C1%29%7Dreturn%20i%3Dnull%2Ca%7D%2Ce%3Ddb%2EgetText%3Dfunction%28a%29%7Bvar%20b%2Cc%3D%22%22%2Cd%3D0%2Cf%3Da%2EnodeType%3Bif%28f%29%7Bif%281%3D%3D%3Df%7C%7C9%3D%3D%3Df%7C%7C11%3D%3D%3Df%29%7Bif%28%22string%22%3D%3Dtypeof%20a%2EtextContent%29return%20a%2EtextContent%3Bfor%28a%3Da%2EfirstChild%3Ba%3Ba%3Da%2EnextSibling%29c%2B%3De%28a%29%7Delse%20if%283%3D%3D%3Df%7C%7C4%3D%3D%3Df%29return%20a%2EnodeValue%7Delse%20while%28b%3Da%5Bd%2B%2B%5D%29c%2B%3De%28b%29%3Breturn%20c%7D%2Cd%3Ddb%2Eselectors%3D%7BcacheLength%3A50%2CcreatePseudo%3Afb%2Cmatch%3AV%2CattrHandle%3A%7B%7D%2Cfind%3A%7B%7D%2Crelative%3A%7B%22%3E%22%3A%7Bdir%3A%22parentNode%22%2Cfirst%3A%210%7D%2C%22%20%22%3A%7Bdir%3A%22parentNode%22%7D%2C%22%2B%22%3A%7Bdir%3A%22previousSibling%22%2Cfirst%3A%210%7D%2C%22%7E%22%3A%7Bdir%3A%22previousSibling%22%7D%7D%2CpreFilter%3A%7BATTR%3Afunction%28a%29%7Breturn%20a%5B1%5D%3Da%5B1%5D%2Ereplace%28ab%2Cbb%29%2Ca%5B3%5D%3D%28a%5B4%5D%7C%7Ca%5B5%5D%7C%7C%22%22%29%2Ereplace%28ab%2Cbb%29%2C%22%7E%3D%22%3D%3D%3Da%5B2%5D%26%26%28a%5B3%5D%3D%22%20%22%2Ba%5B3%5D%2B%22%20%22%29%2Ca%2Eslice%280%2C4%29%7D%2CCHILD%3Afunction%28a%29%7Breturn%20a%5B1%5D%3Da%5B1%5D%2EtoLowerCase%28%29%2C%22nth%22%3D%3D%3Da%5B1%5D%2Eslice%280%2C3%29%3F%28a%5B3%5D%7C%7Cdb%2Eerror%28a%5B0%5D%29%2Ca%5B4%5D%3D%2B%28a%5B4%5D%3Fa%5B5%5D%2B%28a%5B6%5D%7C%7C1%29%3A2%2A%28%22even%22%3D%3D%3Da%5B3%5D%7C%7C%22odd%22%3D%3D%3Da%5B3%5D%29%29%2Ca%5B5%5D%3D%2B%28a%5B7%5D%2Ba%5B8%5D%7C%7C%22odd%22%3D%3D%3Da%5B3%5D%29%29%3Aa%5B3%5D%26%26db%2Eerror%28a%5B0%5D%29%2Ca%7D%2CPSEUDO%3Afunction%28a%29%7Bvar%20b%2Cc%3D%21a%5B5%5D%26%26a%5B2%5D%3Breturn%20V%2ECHILD%2Etest%28a%5B0%5D%29%3Fnull%3A%28a%5B3%5D%26%26void%200%21%3D%3Da%5B4%5D%3Fa%5B2%5D%3Da%5B4%5D%3Ac%26%26T%2Etest%28c%29%26%26%28b%3Dob%28c%2C%210%29%29%26%26%28b%3Dc%2EindexOf%28%22%29%22%2Cc%2Elength%2Db%29%2Dc%2Elength%29%26%26%28a%5B0%5D%3Da%5B0%5D%2Eslice%280%2Cb%29%2Ca%5B2%5D%3Dc%2Eslice%280%2Cb%29%29%2Ca%2Eslice%280%2C3%29%29%7D%7D%2Cfilter%3A%7BTAG%3Afunction%28a%29%7Bvar%20b%3Da%2Ereplace%28ab%2Cbb%29%2EtoLowerCase%28%29%3Breturn%22%2A%22%3D%3D%3Da%3Ffunction%28%29%7Breturn%210%7D%3Afunction%28a%29%7Breturn%20a%2EnodeName%26%26a%2EnodeName%2EtoLowerCase%28%29%3D%3D%3Db%7D%7D%2CCLASS%3Afunction%28a%29%7Bvar%20b%3Dw%5Ba%2B%22%20%22%5D%3Breturn%20b%7C%7C%28b%3Dnew%20RegExp%28%22%28%5E%7C%22%2BK%2B%22%29%22%2Ba%2B%22%28%22%2BK%2B%22%7C%24%29%22%29%29%26%26w%28a%2Cfunction%28a%29%7Breturn%20b%2Etest%28%22string%22%3D%3Dtypeof%20a%2EclassName%26%26a%2EclassName%7C%7Ctypeof%20a%2EgetAttribute%21%3D%3DA%26%26a%2EgetAttribute%28%22class%22%29%7C%7C%22%22%29%7D%29%7D%2CATTR%3Afunction%28a%2Cb%2Cc%29%7Breturn%20function%28d%29%7Bvar%20e%3Ddb%2Eattr%28d%2Ca%29%3Breturn%20null%3D%3De%3F%22%21%3D%22%3D%3D%3Db%3Ab%3F%28e%2B%3D%22%22%2C%22%3D%22%3D%3D%3Db%3Fe%3D%3D%3Dc%3A%22%21%3D%22%3D%3D%3Db%3Fe%21%3D%3Dc%3A%22%5E%3D%22%3D%3D%3Db%3Fc%26%260%3D%3D%3De%2EindexOf%28c%29%3A%22%2A%3D%22%3D%3D%3Db%3Fc%26%26e%2EindexOf%28c%29%3E%2D1%3A%22%24%3D%22%3D%3D%3Db%3Fc%26%26e%2Eslice%28%2Dc%2Elength%29%3D%3D%3Dc%3A%22%7E%3D%22%3D%3D%3Db%3F%28%22%20%22%2Be%2B%22%20%22%29%2EindexOf%28c%29%3E%2D1%3A%22%7C%3D%22%3D%3D%3Db%3Fe%3D%3D%3Dc%7C%7Ce%2Eslice%280%2Cc%2Elength%2B1%29%3D%3D%3Dc%2B%22%2D%22%3A%211%29%3A%210%7D%7D%2CCHILD%3Afunction%28a%2Cb%2Cc%2Cd%2Ce%29%7Bvar%20f%3D%22nth%22%21%3D%3Da%2Eslice%280%2C3%29%2Cg%3D%22last%22%21%3D%3Da%2Eslice%28%2D4%29%2Ch%3D%22of%2Dtype%22%3D%3D%3Db%3Breturn%201%3D%3D%3Dd%26%260%3D%3D%3De%3Ffunction%28a%29%7Breturn%21%21a%2EparentNode%7D%3Afunction%28b%2Cc%2Ci%29%7Bvar%20j%2Ck%2Cl%2Cm%2Cn%2Co%2Cp%3Df%21%3D%3Dg%3F%22nextSibling%22%3A%22previousSibling%22%2Cq%3Db%2EparentNode%2Cr%3Dh%26%26b%2EnodeName%2EtoLowerCase%28%29%2Ct%3D%21i%26%26%21h%3Bif%28q%29%7Bif%28f%29%7Bwhile%28p%29%7Bl%3Db%3Bwhile%28l%3Dl%5Bp%5D%29if%28h%3Fl%2EnodeName%2EtoLowerCase%28%29%3D%3D%3Dr%3A1%3D%3D%3Dl%2EnodeType%29return%211%3Bo%3Dp%3D%22only%22%3D%3D%3Da%26%26%21o%26%26%22nextSibling%22%7Dreturn%210%7Dif%28o%3D%5Bg%3Fq%2EfirstChild%3Aq%2ElastChild%5D%2Cg%26%26t%29%7Bk%3Dq%5Bs%5D%7C%7C%28q%5Bs%5D%3D%7B%7D%29%2Cj%3Dk%5Ba%5D%7C%7C%5B%5D%2Cn%3Dj%5B0%5D%3D%3D%3Du%26%26j%5B1%5D%2Cm%3Dj%5B0%5D%3D%3D%3Du%26%26j%5B2%5D%2Cl%3Dn%26%26q%2EchildNodes%5Bn%5D%3Bwhile%28l%3D%2B%2Bn%26%26l%26%26l%5Bp%5D%7C%7C%28m%3Dn%3D0%29%7C%7Co%2Epop%28%29%29if%281%3D%3D%3Dl%2EnodeType%26%26%2B%2Bm%26%26l%3D%3D%3Db%29%7Bk%5Ba%5D%3D%5Bu%2Cn%2Cm%5D%3Bbreak%7D%7Delse%20if%28t%26%26%28j%3D%28b%5Bs%5D%7C%7C%28b%5Bs%5D%3D%7B%7D%29%29%5Ba%5D%29%26%26j%5B0%5D%3D%3D%3Du%29m%3Dj%5B1%5D%3Belse%20while%28l%3D%2B%2Bn%26%26l%26%26l%5Bp%5D%7C%7C%28m%3Dn%3D0%29%7C%7Co%2Epop%28%29%29if%28%28h%3Fl%2EnodeName%2EtoLowerCase%28%29%3D%3D%3Dr%3A1%3D%3D%3Dl%2EnodeType%29%26%26%2B%2Bm%26%26%28t%26%26%28%28l%5Bs%5D%7C%7C%28l%5Bs%5D%3D%7B%7D%29%29%5Ba%5D%3D%5Bu%2Cm%5D%29%2Cl%3D%3D%3Db%29%29break%3Breturn%20m%2D%3De%2Cm%3D%3D%3Dd%7C%7Cm%25d%3D%3D%3D0%26%26m%2Fd%3E%3D0%7D%7D%7D%2CPSEUDO%3Afunction%28a%2Cb%29%7Bvar%20c%2Ce%3Dd%2Epseudos%5Ba%5D%7C%7Cd%2EsetFilters%5Ba%2EtoLowerCase%28%29%5D%7C%7Cdb%2Eerror%28%22unsupported%20pseudo%3A%20%22%2Ba%29%3Breturn%20e%5Bs%5D%3Fe%28b%29%3Ae%2Elength%3E1%3F%28c%3D%5Ba%2Ca%2C%22%22%2Cb%5D%2Cd%2EsetFilters%2EhasOwnProperty%28a%2EtoLowerCase%28%29%29%3Ffb%28function%28a%2Cc%29%7Bvar%20d%2Cf%3De%28a%2Cb%29%2Cg%3Df%2Elength%3Bwhile%28g%2D%2D%29d%3DI%2Ecall%28a%2Cf%5Bg%5D%29%2Ca%5Bd%5D%3D%21%28c%5Bd%5D%3Df%5Bg%5D%29%7D%29%3Afunction%28a%29%7Breturn%20e%28a%2C0%2Cc%29%7D%29%3Ae%7D%7D%2Cpseudos%3A%7Bnot%3Afb%28function%28a%29%7Bvar%20b%3D%5B%5D%2Cc%3D%5B%5D%2Cd%3Dg%28a%2Ereplace%28P%2C%22%241%22%29%29%3Breturn%20d%5Bs%5D%3Ffb%28function%28a%2Cb%2Cc%2Ce%29%7Bvar%20f%2Cg%3Dd%28a%2Cnull%2Ce%2C%5B%5D%29%2Ch%3Da%2Elength%3Bwhile%28h%2D%2D%29%28f%3Dg%5Bh%5D%29%26%26%28a%5Bh%5D%3D%21%28b%5Bh%5D%3Df%29%29%7D%29%3Afunction%28a%2Ce%2Cf%29%7Breturn%20b%5B0%5D%3Da%2Cd%28b%2Cnull%2Cf%2Cc%29%2C%21c%2Epop%28%29%7D%7D%29%2Chas%3Afb%28function%28a%29%7Breturn%20function%28b%29%7Breturn%20db%28a%2Cb%29%2Elength%3E0%7D%7D%29%2Ccontains%3Afb%28function%28a%29%7Breturn%20function%28b%29%7Breturn%28b%2EtextContent%7C%7Cb%2EinnerText%7C%7Ce%28b%29%29%2EindexOf%28a%29%3E%2D1%7D%7D%29%2Clang%3Afb%28function%28a%29%7Breturn%20U%2Etest%28a%7C%7C%22%22%29%7C%7Cdb%2Eerror%28%22unsupported%20lang%3A%20%22%2Ba%29%2Ca%3Da%2Ereplace%28ab%2Cbb%29%2EtoLowerCase%28%29%2Cfunction%28b%29%7Bvar%20c%3Bdo%20if%28c%3Dn%3Fb%2Elang%3Ab%2EgetAttribute%28%22xml%3Alang%22%29%7C%7Cb%2EgetAttribute%28%22lang%22%29%29return%20c%3Dc%2EtoLowerCase%28%29%2Cc%3D%3D%3Da%7C%7C0%3D%3D%3Dc%2EindexOf%28a%2B%22%2D%22%29%3Bwhile%28%28b%3Db%2EparentNode%29%26%261%3D%3D%3Db%2EnodeType%29%3Breturn%211%7D%7D%29%2Ctarget%3Afunction%28b%29%7Bvar%20c%3Da%2Elocation%26%26a%2Elocation%2Ehash%3Breturn%20c%26%26c%2Eslice%281%29%3D%3D%3Db%2Eid%7D%2Croot%3Afunction%28a%29%7Breturn%20a%3D%3D%3Dm%7D%2Cfocus%3Afunction%28a%29%7Breturn%20a%3D%3D%3Dl%2EactiveElement%26%26%28%21l%2EhasFocus%7C%7Cl%2EhasFocus%28%29%29%26%26%21%21%28a%2Etype%7C%7Ca%2Ehref%7C%7C%7Ea%2EtabIndex%29%7D%2Cenabled%3Afunction%28a%29%7Breturn%20a%2Edisabled%3D%3D%3D%211%7D%2Cdisabled%3Afunction%28a%29%7Breturn%20a%2Edisabled%3D%3D%3D%210%7D%2Cchecked%3Afunction%28a%29%7Bvar%20b%3Da%2EnodeName%2EtoLowerCase%28%29%3Breturn%22input%22%3D%3D%3Db%26%26%21%21a%2Echecked%7C%7C%22option%22%3D%3D%3Db%26%26%21%21a%2Eselected%7D%2Cselected%3Afunction%28a%29%7Breturn%20a%2EparentNode%26%26a%2EparentNode%2EselectedIndex%2Ca%2Eselected%3D%3D%3D%210%7D%2Cempty%3Afunction%28a%29%7Bfor%28a%3Da%2EfirstChild%3Ba%3Ba%3Da%2EnextSibling%29if%28a%2EnodeType%3C6%29return%211%3Breturn%210%7D%2Cparent%3Afunction%28a%29%7Breturn%21d%2Epseudos%2Eempty%28a%29%7D%2Cheader%3Afunction%28a%29%7Breturn%20X%2Etest%28a%2EnodeName%29%7D%2Cinput%3Afunction%28a%29%7Breturn%20W%2Etest%28a%2EnodeName%29%7D%2Cbutton%3Afunction%28a%29%7Bvar%20b%3Da%2EnodeName%2EtoLowerCase%28%29%3Breturn%22input%22%3D%3D%3Db%26%26%22button%22%3D%3D%3Da%2Etype%7C%7C%22button%22%3D%3D%3Db%7D%2Ctext%3Afunction%28a%29%7Bvar%20b%3Breturn%22input%22%3D%3D%3Da%2EnodeName%2EtoLowerCase%28%29%26%26%22text%22%3D%3D%3Da%2Etype%26%26%28null%3D%3D%28b%3Da%2EgetAttribute%28%22type%22%29%29%7C%7C%22text%22%3D%3D%3Db%2EtoLowerCase%28%29%29%7D%2Cfirst%3Alb%28function%28%29%7Breturn%5B0%5D%7D%29%2Clast%3Alb%28function%28a%2Cb%29%7Breturn%5Bb%2D1%5D%7D%29%2Ceq%3Alb%28function%28a%2Cb%2Cc%29%7Breturn%5B0%3Ec%3Fc%2Bb%3Ac%5D%7D%29%2Ceven%3Alb%28function%28a%2Cb%29%7Bfor%28var%20c%3D0%3Bb%3Ec%3Bc%2B%3D2%29a%2Epush%28c%29%3Breturn%20a%7D%29%2Codd%3Alb%28function%28a%2Cb%29%7Bfor%28var%20c%3D1%3Bb%3Ec%3Bc%2B%3D2%29a%2Epush%28c%29%3Breturn%20a%7D%29%2Clt%3Alb%28function%28a%2Cb%2Cc%29%7Bfor%28var%20d%3D0%3Ec%3Fc%2Bb%3Ac%3B%2D%2Dd%3E%3D0%3B%29a%2Epush%28d%29%3Breturn%20a%7D%29%2Cgt%3Alb%28function%28a%2Cb%2Cc%29%7Bfor%28var%20d%3D0%3Ec%3Fc%2Bb%3Ac%3B%2B%2Bd%3Cb%3B%29a%2Epush%28d%29%3Breturn%20a%7D%29%7D%7D%2Cd%2Epseudos%2Enth%3Dd%2Epseudos%2Eeq%3Bfor%28b%20in%7Bradio%3A%210%2Ccheckbox%3A%210%2Cfile%3A%210%2Cpassword%3A%210%2Cimage%3A%210%7D%29d%2Epseudos%5Bb%5D%3Djb%28b%29%3Bfor%28b%20in%7Bsubmit%3A%210%2Creset%3A%210%7D%29d%2Epseudos%5Bb%5D%3Dkb%28b%29%3Bfunction%20nb%28%29%7B%7Dnb%2Eprototype%3Dd%2Efilters%3Dd%2Epseudos%2Cd%2EsetFilters%3Dnew%20nb%3Bfunction%20ob%28a%2Cb%29%7Bvar%20c%2Ce%2Cf%2Cg%2Ch%2Ci%2Cj%2Ck%3Dx%5Ba%2B%22%20%22%5D%3Bif%28k%29return%20b%3F0%3Ak%2Eslice%280%29%3Bh%3Da%2Ci%3D%5B%5D%2Cj%3Dd%2EpreFilter%3Bwhile%28h%29%7B%28%21c%7C%7C%28e%3DQ%2Eexec%28h%29%29%29%26%26%28e%26%26%28h%3Dh%2Eslice%28e%5B0%5D%2Elength%29%7C%7Ch%29%2Ci%2Epush%28f%3D%5B%5D%29%29%2Cc%3D%211%2C%28e%3DR%2Eexec%28h%29%29%26%26%28c%3De%2Eshift%28%29%2Cf%2Epush%28%7Bvalue%3Ac%2Ctype%3Ae%5B0%5D%2Ereplace%28P%2C%22%20%22%29%7D%29%2Ch%3Dh%2Eslice%28c%2Elength%29%29%3Bfor%28g%20in%20d%2Efilter%29%21%28e%3DV%5Bg%5D%2Eexec%28h%29%29%7C%7Cj%5Bg%5D%26%26%21%28e%3Dj%5Bg%5D%28e%29%29%7C%7C%28c%3De%2Eshift%28%29%2Cf%2Epush%28%7Bvalue%3Ac%2Ctype%3Ag%2Cmatches%3Ae%7D%29%2Ch%3Dh%2Eslice%28c%2Elength%29%29%3Bif%28%21c%29break%7Dreturn%20b%3Fh%2Elength%3Ah%3Fdb%2Eerror%28a%29%3Ax%28a%2Ci%29%2Eslice%280%29%7Dfunction%20pb%28a%29%7Bfor%28var%20b%3D0%2Cc%3Da%2Elength%2Cd%3D%22%22%3Bc%3Eb%3Bb%2B%2B%29d%2B%3Da%5Bb%5D%2Evalue%3Breturn%20d%7Dfunction%20qb%28a%2Cb%2Cc%29%7Bvar%20d%3Db%2Edir%2Ce%3Dc%26%26%22parentNode%22%3D%3D%3Dd%2Cf%3Dv%2B%2B%3Breturn%20b%2Efirst%3Ffunction%28b%2Cc%2Cf%29%7Bwhile%28b%3Db%5Bd%5D%29if%281%3D%3D%3Db%2EnodeType%7C%7Ce%29return%20a%28b%2Cc%2Cf%29%7D%3Afunction%28b%2Cc%2Cg%29%7Bvar%20h%2Ci%2Cj%3D%5Bu%2Cf%5D%3Bif%28g%29%7Bwhile%28b%3Db%5Bd%5D%29if%28%281%3D%3D%3Db%2EnodeType%7C%7Ce%29%26%26a%28b%2Cc%2Cg%29%29return%210%7Delse%20while%28b%3Db%5Bd%5D%29if%281%3D%3D%3Db%2EnodeType%7C%7Ce%29%7Bif%28i%3Db%5Bs%5D%7C%7C%28b%5Bs%5D%3D%7B%7D%29%2C%28h%3Di%5Bd%5D%29%26%26h%5B0%5D%3D%3D%3Du%26%26h%5B1%5D%3D%3D%3Df%29return%20j%5B2%5D%3Dh%5B2%5D%3Bif%28i%5Bd%5D%3Dj%2Cj%5B2%5D%3Da%28b%2Cc%2Cg%29%29return%210%7D%7D%7Dfunction%20rb%28a%29%7Breturn%20a%2Elength%3E1%3Ffunction%28b%2Cc%2Cd%29%7Bvar%20e%3Da%2Elength%3Bwhile%28e%2D%2D%29if%28%21a%5Be%5D%28b%2Cc%2Cd%29%29return%211%3Breturn%210%7D%3Aa%5B0%5D%7Dfunction%20sb%28a%2Cb%2Cc%2Cd%2Ce%29%7Bfor%28var%20f%2Cg%3D%5B%5D%2Ch%3D0%2Ci%3Da%2Elength%2Cj%3Dnull%21%3Db%3Bi%3Eh%3Bh%2B%2B%29%28f%3Da%5Bh%5D%29%26%26%28%21c%7C%7Cc%28f%2Cd%2Ce%29%29%26%26%28g%2Epush%28f%29%2Cj%26%26b%2Epush%28h%29%29%3Breturn%20g%7Dfunction%20tb%28a%2Cb%2Cc%2Cd%2Ce%2Cf%29%7Breturn%20d%26%26%21d%5Bs%5D%26%26%28d%3Dtb%28d%29%29%2Ce%26%26%21e%5Bs%5D%26%26%28e%3Dtb%28e%2Cf%29%29%2Cfb%28function%28f%2Cg%2Ch%2Ci%29%7Bvar%20j%2Ck%2Cl%2Cm%3D%5B%5D%2Cn%3D%5B%5D%2Co%3Dg%2Elength%2Cp%3Df%7C%7Cwb%28b%7C%7C%22%2A%22%2Ch%2EnodeType%3F%5Bh%5D%3Ah%2C%5B%5D%29%2Cq%3D%21a%7C%7C%21f%26%26b%3Fp%3Asb%28p%2Cm%2Ca%2Ch%2Ci%29%2Cr%3Dc%3Fe%7C%7C%28f%3Fa%3Ao%7C%7Cd%29%3F%5B%5D%3Ag%3Aq%3Bif%28c%26%26c%28q%2Cr%2Ch%2Ci%29%2Cd%29%7Bj%3Dsb%28r%2Cn%29%2Cd%28j%2C%5B%5D%2Ch%2Ci%29%2Ck%3Dj%2Elength%3Bwhile%28k%2D%2D%29%28l%3Dj%5Bk%5D%29%26%26%28r%5Bn%5Bk%5D%5D%3D%21%28q%5Bn%5Bk%5D%5D%3Dl%29%29%7Dif%28f%29%7Bif%28e%7C%7Ca%29%7Bif%28e%29%7Bj%3D%5B%5D%2Ck%3Dr%2Elength%3Bwhile%28k%2D%2D%29%28l%3Dr%5Bk%5D%29%26%26j%2Epush%28q%5Bk%5D%3Dl%29%3Be%28null%2Cr%3D%5B%5D%2Cj%2Ci%29%7Dk%3Dr%2Elength%3Bwhile%28k%2D%2D%29%28l%3Dr%5Bk%5D%29%26%26%28j%3De%3FI%2Ecall%28f%2Cl%29%3Am%5Bk%5D%29%3E%2D1%26%26%28f%5Bj%5D%3D%21%28g%5Bj%5D%3Dl%29%29%7D%7Delse%20r%3Dsb%28r%3D%3D%3Dg%3Fr%2Esplice%28o%2Cr%2Elength%29%3Ar%29%2Ce%3Fe%28null%2Cg%2Cr%2Ci%29%3AG%2Eapply%28g%2Cr%29%7D%29%7Dfunction%20ub%28a%29%7Bfor%28var%20b%2Cc%2Ce%2Cf%3Da%2Elength%2Cg%3Dd%2Erelative%5Ba%5B0%5D%2Etype%5D%2Ci%3Dg%7C%7Cd%2Erelative%5B%22%20%22%5D%2Cj%3Dg%3F1%3A0%2Ck%3Dqb%28function%28a%29%7Breturn%20a%3D%3D%3Db%7D%2Ci%2C%210%29%2Cl%3Dqb%28function%28a%29%7Breturn%20I%2Ecall%28b%2Ca%29%3E%2D1%7D%2Ci%2C%210%29%2Cm%3D%5Bfunction%28a%2Cc%2Cd%29%7Breturn%21g%26%26%28d%7C%7Cc%21%3D%3Dh%29%7C%7C%28%28b%3Dc%29%2EnodeType%3Fk%28a%2Cc%2Cd%29%3Al%28a%2Cc%2Cd%29%29%7D%5D%3Bf%3Ej%3Bj%2B%2B%29if%28c%3Dd%2Erelative%5Ba%5Bj%5D%2Etype%5D%29m%3D%5Bqb%28rb%28m%29%2Cc%29%5D%3Belse%7Bif%28c%3Dd%2Efilter%5Ba%5Bj%5D%2Etype%5D%2Eapply%28null%2Ca%5Bj%5D%2Ematches%29%2Cc%5Bs%5D%29%7Bfor%28e%3D%2B%2Bj%3Bf%3Ee%3Be%2B%2B%29if%28d%2Erelative%5Ba%5Be%5D%2Etype%5D%29break%3Breturn%20tb%28j%3E1%26%26rb%28m%29%2Cj%3E1%26%26pb%28a%2Eslice%280%2Cj%2D1%29%2Econcat%28%7Bvalue%3A%22%20%22%3D%3D%3Da%5Bj%2D2%5D%2Etype%3F%22%2A%22%3A%22%22%7D%29%29%2Ereplace%28P%2C%22%241%22%29%2Cc%2Ce%3Ej%26%26ub%28a%2Eslice%28j%2Ce%29%29%2Cf%3Ee%26%26ub%28a%3Da%2Eslice%28e%29%29%2Cf%3Ee%26%26pb%28a%29%29%7Dm%2Epush%28c%29%7Dreturn%20rb%28m%29%7Dfunction%20vb%28a%2Cb%29%7Bvar%20c%3Db%2Elength%3E0%2Ce%3Da%2Elength%3E0%2Cf%3Dfunction%28f%2Cg%2Ci%2Cj%2Ck%29%7Bvar%20m%2Cn%2Co%2Cp%3D0%2Cq%3D%220%22%2Cr%3Df%26%26%5B%5D%2Cs%3D%5B%5D%2Ct%3Dh%2Cv%3Df%7C%7Ce%26%26d%2Efind%2ETAG%28%22%2A%22%2Ck%29%2Cw%3Du%2B%3Dnull%3D%3Dt%3F1%3AMath%2Erandom%28%29%7C%7C%2E1%2Cx%3Dv%2Elength%3Bfor%28k%26%26%28h%3Dg%21%3D%3Dl%26%26g%29%3Bq%21%3D%3Dx%26%26null%21%3D%28m%3Dv%5Bq%5D%29%3Bq%2B%2B%29%7Bif%28e%26%26m%29%7Bn%3D0%3Bwhile%28o%3Da%5Bn%2B%2B%5D%29if%28o%28m%2Cg%2Ci%29%29%7Bj%2Epush%28m%29%3Bbreak%7Dk%26%26%28u%3Dw%29%7Dc%26%26%28%28m%3D%21o%26%26m%29%26%26p%2D%2D%2Cf%26%26r%2Epush%28m%29%29%7Dif%28p%2B%3Dq%2Cc%26%26q%21%3D%3Dp%29%7Bn%3D0%3Bwhile%28o%3Db%5Bn%2B%2B%5D%29o%28r%2Cs%2Cg%2Ci%29%3Bif%28f%29%7Bif%28p%3E0%29while%28q%2D%2D%29r%5Bq%5D%7C%7Cs%5Bq%5D%7C%7C%28s%5Bq%5D%3DE%2Ecall%28j%29%29%3Bs%3Dsb%28s%29%7DG%2Eapply%28j%2Cs%29%2Ck%26%26%21f%26%26s%2Elength%3E0%26%26p%2Bb%2Elength%3E1%26%26db%2EuniqueSort%28j%29%7Dreturn%20k%26%26%28u%3Dw%2Ch%3Dt%29%2Cr%7D%3Breturn%20c%3Ffb%28f%29%3Af%7Dg%3Ddb%2Ecompile%3Dfunction%28a%2Cb%29%7Bvar%20c%2Cd%3D%5B%5D%2Ce%3D%5B%5D%2Cf%3Dy%5Ba%2B%22%20%22%5D%3Bif%28%21f%29%7Bb%7C%7C%28b%3Dob%28a%29%29%2Cc%3Db%2Elength%3Bwhile%28c%2D%2D%29f%3Dub%28b%5Bc%5D%29%2Cf%5Bs%5D%3Fd%2Epush%28f%29%3Ae%2Epush%28f%29%3Bf%3Dy%28a%2Cvb%28e%2Cd%29%29%7Dreturn%20f%7D%3Bfunction%20wb%28a%2Cb%2Cc%29%7Bfor%28var%20d%3D0%2Ce%3Db%2Elength%3Be%3Ed%3Bd%2B%2B%29db%28a%2Cb%5Bd%5D%2Cc%29%3Breturn%20c%7Dfunction%20xb%28a%2Cb%2Ce%2Cf%29%7Bvar%20h%2Ci%2Cj%2Ck%2Cl%2Cm%3Dob%28a%29%3Bif%28%21f%26%261%3D%3D%3Dm%2Elength%29%7Bif%28i%3Dm%5B0%5D%3Dm%5B0%5D%2Eslice%280%29%2Ci%2Elength%3E2%26%26%22ID%22%3D%3D%3D%28j%3Di%5B0%5D%29%2Etype%26%26c%2EgetById%26%269%3D%3D%3Db%2EnodeType%26%26n%26%26d%2Erelative%5Bi%5B1%5D%2Etype%5D%29%7Bif%28b%3D%28d%2Efind%2EID%28j%2Ematches%5B0%5D%2Ereplace%28ab%2Cbb%29%2Cb%29%7C%7C%5B%5D%29%5B0%5D%2C%21b%29return%20e%3Ba%3Da%2Eslice%28i%2Eshift%28%29%2Evalue%2Elength%29%7Dh%3DV%2EneedsContext%2Etest%28a%29%3F0%3Ai%2Elength%3Bwhile%28h%2D%2D%29%7Bif%28j%3Di%5Bh%5D%2Cd%2Erelative%5Bk%3Dj%2Etype%5D%29break%3Bif%28%28l%3Dd%2Efind%5Bk%5D%29%26%26%28f%3Dl%28j%2Ematches%5B0%5D%2Ereplace%28ab%2Cbb%29%2C%24%2Etest%28i%5B0%5D%2Etype%29%26%26mb%28b%2EparentNode%29%7C%7Cb%29%29%29%7Bif%28i%2Esplice%28h%2C1%29%2Ca%3Df%2Elength%26%26pb%28i%29%2C%21a%29return%20G%2Eapply%28e%2Cf%29%2Ce%3Bbreak%7D%7D%7Dreturn%20g%28a%2Cm%29%28f%2Cb%2C%21n%2Ce%2C%24%2Etest%28a%29%26%26mb%28b%2EparentNode%29%7C%7Cb%29%2Ce%7Dreturn%20c%2EsortStable%3Ds%2Esplit%28%22%22%29%2Esort%28z%29%2Ejoin%28%22%22%29%3D%3D%3Ds%2Cc%2EdetectDuplicates%3D%21%21j%2Ck%28%29%2Cc%2EsortDetached%3Dgb%28function%28a%29%7Breturn%201%26a%2EcompareDocumentPosition%28l%2EcreateElement%28%22div%22%29%29%7D%29%2Cgb%28function%28a%29%7Breturn%20a%2EinnerHTML%3D%22%3Ca%20href%3D%27%23%27%3E%3C%2Fa%3E%22%2C%22%23%22%3D%3D%3Da%2EfirstChild%2EgetAttribute%28%22href%22%29%7D%29%7C%7Chb%28%22type%7Chref%7Cheight%7Cwidth%22%2Cfunction%28a%2Cb%2Cc%29%7Breturn%20c%3Fvoid%200%3Aa%2EgetAttribute%28b%2C%22type%22%3D%3D%3Db%2EtoLowerCase%28%29%3F1%3A2%29%7D%29%2Cc%2Eattributes%26%26gb%28function%28a%29%7Breturn%20a%2EinnerHTML%3D%22%3Cinput%2F%3E%22%2Ca%2EfirstChild%2EsetAttribute%28%22value%22%2C%22%22%29%2C%22%22%3D%3D%3Da%2EfirstChild%2EgetAttribute%28%22value%22%29%7D%29%7C%7Chb%28%22value%22%2Cfunction%28a%2Cb%2Cc%29%7Breturn%20c%7C%7C%22input%22%21%3D%3Da%2EnodeName%2EtoLowerCase%28%29%3Fvoid%200%3Aa%2EdefaultValue%7D%29%2Cgb%28function%28a%29%7Breturn%20null%3D%3Da%2EgetAttribute%28%22disabled%22%29%7D%29%7C%7Chb%28J%2Cfunction%28a%2Cb%2Cc%29%7Bvar%20d%3Breturn%20c%3Fvoid%200%3Aa%5Bb%5D%3D%3D%3D%210%3Fb%2EtoLowerCase%28%29%3A%28d%3Da%2EgetAttributeNode%28b%29%29%26%26d%2Especified%3Fd%2Evalue%3Anull%7D%29%2Cdb%7D%28a%29%3Bn%2Efind%3Dt%2Cn%2Eexpr%3Dt%2Eselectors%2Cn%2Eexpr%5B%22%3A%22%5D%3Dn%2Eexpr%2Epseudos%2Cn%2Eunique%3Dt%2EuniqueSort%2Cn%2Etext%3Dt%2EgetText%2Cn%2EisXMLDoc%3Dt%2EisXML%2Cn%2Econtains%3Dt%2Econtains%3Bvar%20u%3Dn%2Eexpr%2Ematch%2EneedsContext%2Cv%3D%2F%5E%3C%28%5Cw%2B%29%5Cs%2A%5C%2F%3F%3E%28%3F%3A%3C%5C%2F%5C1%3E%7C%29%24%2F%2Cw%3D%2F%5E%2E%5B%5E%3A%23%5C%5B%5C%2E%2C%5D%2A%24%2F%3Bfunction%20x%28a%2Cb%2Cc%29%7Bif%28n%2EisFunction%28b%29%29return%20n%2Egrep%28a%2Cfunction%28a%2Cd%29%7Breturn%21%21b%2Ecall%28a%2Cd%2Ca%29%21%3D%3Dc%7D%29%3Bif%28b%2EnodeType%29return%20n%2Egrep%28a%2Cfunction%28a%29%7Breturn%20a%3D%3D%3Db%21%3D%3Dc%7D%29%3Bif%28%22string%22%3D%3Dtypeof%20b%29%7Bif%28w%2Etest%28b%29%29return%20n%2Efilter%28b%2Ca%2Cc%29%3Bb%3Dn%2Efilter%28b%2Ca%29%7Dreturn%20n%2Egrep%28a%2Cfunction%28a%29%7Breturn%20n%2EinArray%28a%2Cb%29%3E%3D0%21%3D%3Dc%7D%29%7Dn%2Efilter%3Dfunction%28a%2Cb%2Cc%29%7Bvar%20d%3Db%5B0%5D%3Breturn%20c%26%26%28a%3D%22%3Anot%28%22%2Ba%2B%22%29%22%29%2C1%3D%3D%3Db%2Elength%26%261%3D%3D%3Dd%2EnodeType%3Fn%2Efind%2EmatchesSelector%28d%2Ca%29%3F%5Bd%5D%3A%5B%5D%3An%2Efind%2Ematches%28a%2Cn%2Egrep%28b%2Cfunction%28a%29%7Breturn%201%3D%3D%3Da%2EnodeType%7D%29%29%7D%2Cn%2Efn%2Eextend%28%7Bfind%3Afunction%28a%29%7Bvar%20b%2Cc%3D%5B%5D%2Cd%3Dthis%2Ce%3Dd%2Elength%3Bif%28%22string%22%21%3Dtypeof%20a%29return%20this%2EpushStack%28n%28a%29%2Efilter%28function%28%29%7Bfor%28b%3D0%3Be%3Eb%3Bb%2B%2B%29if%28n%2Econtains%28d%5Bb%5D%2Cthis%29%29return%210%7D%29%29%3Bfor%28b%3D0%3Be%3Eb%3Bb%2B%2B%29n%2Efind%28a%2Cd%5Bb%5D%2Cc%29%3Breturn%20c%3Dthis%2EpushStack%28e%3E1%3Fn%2Eunique%28c%29%3Ac%29%2Cc%2Eselector%3Dthis%2Eselector%3Fthis%2Eselector%2B%22%20%22%2Ba%3Aa%2Cc%7D%2Cfilter%3Afunction%28a%29%7Breturn%20this%2EpushStack%28x%28this%2Ca%7C%7C%5B%5D%2C%211%29%29%7D%2Cnot%3Afunction%28a%29%7Breturn%20this%2EpushStack%28x%28this%2Ca%7C%7C%5B%5D%2C%210%29%29%7D%2Cis%3Afunction%28a%29%7Breturn%21%21x%28this%2C%22string%22%3D%3Dtypeof%20a%26%26u%2Etest%28a%29%3Fn%28a%29%3Aa%7C%7C%5B%5D%2C%211%29%2Elength%7D%7D%29%3Bvar%20y%2Cz%3Da%2Edocument%2CA%3D%2F%5E%28%3F%3A%5Cs%2A%28%3C%5B%5Cw%5CW%5D%2B%3E%29%5B%5E%3E%5D%2A%7C%23%28%5B%5Cw%2D%5D%2A%29%29%24%2F%2CB%3Dn%2Efn%2Einit%3Dfunction%28a%2Cb%29%7Bvar%20c%2Cd%3Bif%28%21a%29return%20this%3Bif%28%22string%22%3D%3Dtypeof%20a%29%7Bif%28c%3D%22%3C%22%3D%3D%3Da%2EcharAt%280%29%26%26%22%3E%22%3D%3D%3Da%2EcharAt%28a%2Elength%2D1%29%26%26a%2Elength%3E%3D3%3F%5Bnull%2Ca%2Cnull%5D%3AA%2Eexec%28a%29%2C%21c%7C%7C%21c%5B1%5D%26%26b%29return%21b%7C%7Cb%2Ejquery%3F%28b%7C%7Cy%29%2Efind%28a%29%3Athis%2Econstructor%28b%29%2Efind%28a%29%3Bif%28c%5B1%5D%29%7Bif%28b%3Db%20instanceof%20n%3Fb%5B0%5D%3Ab%2Cn%2Emerge%28this%2Cn%2EparseHTML%28c%5B1%5D%2Cb%26%26b%2EnodeType%3Fb%2EownerDocument%7C%7Cb%3Az%2C%210%29%29%2Cv%2Etest%28c%5B1%5D%29%26%26n%2EisPlainObject%28b%29%29for%28c%20in%20b%29n%2EisFunction%28this%5Bc%5D%29%3Fthis%5Bc%5D%28b%5Bc%5D%29%3Athis%2Eattr%28c%2Cb%5Bc%5D%29%3Breturn%20this%7Dif%28d%3Dz%2EgetElementById%28c%5B2%5D%29%2Cd%26%26d%2EparentNode%29%7Bif%28d%2Eid%21%3D%3Dc%5B2%5D%29return%20y%2Efind%28a%29%3Bthis%2Elength%3D1%2Cthis%5B0%5D%3Dd%7Dreturn%20this%2Econtext%3Dz%2Cthis%2Eselector%3Da%2Cthis%7Dreturn%20a%2EnodeType%3F%28this%2Econtext%3Dthis%5B0%5D%3Da%2Cthis%2Elength%3D1%2Cthis%29%3An%2EisFunction%28a%29%3F%22undefined%22%21%3Dtypeof%20y%2Eready%3Fy%2Eready%28a%29%3Aa%28n%29%3A%28void%200%21%3D%3Da%2Eselector%26%26%28this%2Eselector%3Da%2Eselector%2Cthis%2Econtext%3Da%2Econtext%29%2Cn%2EmakeArray%28a%2Cthis%29%29%7D%3BB%2Eprototype%3Dn%2Efn%2Cy%3Dn%28z%29%3Bvar%20C%3D%2F%5E%28%3F%3Aparents%7Cprev%28%3F%3AUntil%7CAll%29%29%2F%2CD%3D%7Bchildren%3A%210%2Ccontents%3A%210%2Cnext%3A%210%2Cprev%3A%210%7D%3Bn%2Eextend%28%7Bdir%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%3D%5B%5D%2Ce%3Da%5Bb%5D%3Bwhile%28e%26%269%21%3D%3De%2EnodeType%26%26%28void%200%3D%3D%3Dc%7C%7C1%21%3D%3De%2EnodeType%7C%7C%21n%28e%29%2Eis%28c%29%29%291%3D%3D%3De%2EnodeType%26%26d%2Epush%28e%29%2Ce%3De%5Bb%5D%3Breturn%20d%7D%2Csibling%3Afunction%28a%2Cb%29%7Bfor%28var%20c%3D%5B%5D%3Ba%3Ba%3Da%2EnextSibling%291%3D%3D%3Da%2EnodeType%26%26a%21%3D%3Db%26%26c%2Epush%28a%29%3Breturn%20c%7D%7D%29%2Cn%2Efn%2Eextend%28%7Bhas%3Afunction%28a%29%7Bvar%20b%2Cc%3Dn%28a%2Cthis%29%2Cd%3Dc%2Elength%3Breturn%20this%2Efilter%28function%28%29%7Bfor%28b%3D0%3Bd%3Eb%3Bb%2B%2B%29if%28n%2Econtains%28this%2Cc%5Bb%5D%29%29return%210%7D%29%7D%2Cclosest%3Afunction%28a%2Cb%29%7Bfor%28var%20c%2Cd%3D0%2Ce%3Dthis%2Elength%2Cf%3D%5B%5D%2Cg%3Du%2Etest%28a%29%7C%7C%22string%22%21%3Dtypeof%20a%3Fn%28a%2Cb%7C%7Cthis%2Econtext%29%3A0%3Be%3Ed%3Bd%2B%2B%29for%28c%3Dthis%5Bd%5D%3Bc%26%26c%21%3D%3Db%3Bc%3Dc%2EparentNode%29if%28c%2EnodeType%3C11%26%26%28g%3Fg%2Eindex%28c%29%3E%2D1%3A1%3D%3D%3Dc%2EnodeType%26%26n%2Efind%2EmatchesSelector%28c%2Ca%29%29%29%7Bf%2Epush%28c%29%3Bbreak%7Dreturn%20this%2EpushStack%28f%2Elength%3E1%3Fn%2Eunique%28f%29%3Af%29%7D%2Cindex%3Afunction%28a%29%7Breturn%20a%3F%22string%22%3D%3Dtypeof%20a%3Fn%2EinArray%28this%5B0%5D%2Cn%28a%29%29%3An%2EinArray%28a%2Ejquery%3Fa%5B0%5D%3Aa%2Cthis%29%3Athis%5B0%5D%26%26this%5B0%5D%2EparentNode%3Fthis%2Efirst%28%29%2EprevAll%28%29%2Elength%3A%2D1%7D%2Cadd%3Afunction%28a%2Cb%29%7Breturn%20this%2EpushStack%28n%2Eunique%28n%2Emerge%28this%2Eget%28%29%2Cn%28a%2Cb%29%29%29%29%7D%2CaddBack%3Afunction%28a%29%7Breturn%20this%2Eadd%28null%3D%3Da%3Fthis%2EprevObject%3Athis%2EprevObject%2Efilter%28a%29%29%7D%7D%29%3Bfunction%20E%28a%2Cb%29%7Bdo%20a%3Da%5Bb%5D%3Bwhile%28a%26%261%21%3D%3Da%2EnodeType%29%3Breturn%20a%7Dn%2Eeach%28%7Bparent%3Afunction%28a%29%7Bvar%20b%3Da%2EparentNode%3Breturn%20b%26%2611%21%3D%3Db%2EnodeType%3Fb%3Anull%7D%2Cparents%3Afunction%28a%29%7Breturn%20n%2Edir%28a%2C%22parentNode%22%29%7D%2CparentsUntil%3Afunction%28a%2Cb%2Cc%29%7Breturn%20n%2Edir%28a%2C%22parentNode%22%2Cc%29%7D%2Cnext%3Afunction%28a%29%7Breturn%20E%28a%2C%22nextSibling%22%29%7D%2Cprev%3Afunction%28a%29%7Breturn%20E%28a%2C%22previousSibling%22%29%7D%2CnextAll%3Afunction%28a%29%7Breturn%20n%2Edir%28a%2C%22nextSibling%22%29%7D%2CprevAll%3Afunction%28a%29%7Breturn%20n%2Edir%28a%2C%22previousSibling%22%29%7D%2CnextUntil%3Afunction%28a%2Cb%2Cc%29%7Breturn%20n%2Edir%28a%2C%22nextSibling%22%2Cc%29%7D%2CprevUntil%3Afunction%28a%2Cb%2Cc%29%7Breturn%20n%2Edir%28a%2C%22previousSibling%22%2Cc%29%7D%2Csiblings%3Afunction%28a%29%7Breturn%20n%2Esibling%28%28a%2EparentNode%7C%7C%7B%7D%29%2EfirstChild%2Ca%29%7D%2Cchildren%3Afunction%28a%29%7Breturn%20n%2Esibling%28a%2EfirstChild%29%7D%2Ccontents%3Afunction%28a%29%7Breturn%20n%2EnodeName%28a%2C%22iframe%22%29%3Fa%2EcontentDocument%7C%7Ca%2EcontentWindow%2Edocument%3An%2Emerge%28%5B%5D%2Ca%2EchildNodes%29%7D%7D%2Cfunction%28a%2Cb%29%7Bn%2Efn%5Ba%5D%3Dfunction%28c%2Cd%29%7Bvar%20e%3Dn%2Emap%28this%2Cb%2Cc%29%3Breturn%22Until%22%21%3D%3Da%2Eslice%28%2D5%29%26%26%28d%3Dc%29%2Cd%26%26%22string%22%3D%3Dtypeof%20d%26%26%28e%3Dn%2Efilter%28d%2Ce%29%29%2Cthis%2Elength%3E1%26%26%28D%5Ba%5D%7C%7C%28e%3Dn%2Eunique%28e%29%29%2CC%2Etest%28a%29%26%26%28e%3De%2Ereverse%28%29%29%29%2Cthis%2EpushStack%28e%29%7D%7D%29%3Bvar%20F%3D%2F%5CS%2B%2Fg%2CG%3D%7B%7D%3Bfunction%20H%28a%29%7Bvar%20b%3DG%5Ba%5D%3D%7B%7D%3Breturn%20n%2Eeach%28a%2Ematch%28F%29%7C%7C%5B%5D%2Cfunction%28a%2Cc%29%7Bb%5Bc%5D%3D%210%7D%29%2Cb%7Dn%2ECallbacks%3Dfunction%28a%29%7Ba%3D%22string%22%3D%3Dtypeof%20a%3FG%5Ba%5D%7C%7CH%28a%29%3An%2Eextend%28%7B%7D%2Ca%29%3Bvar%20b%2Cc%2Cd%2Ce%2Cf%2Cg%2Ch%3D%5B%5D%2Ci%3D%21a%2Eonce%26%26%5B%5D%2Cj%3Dfunction%28l%29%7Bfor%28c%3Da%2Ememory%26%26l%2Cd%3D%210%2Cf%3Dg%7C%7C0%2Cg%3D0%2Ce%3Dh%2Elength%2Cb%3D%210%3Bh%26%26e%3Ef%3Bf%2B%2B%29if%28h%5Bf%5D%2Eapply%28l%5B0%5D%2Cl%5B1%5D%29%3D%3D%3D%211%26%26a%2EstopOnFalse%29%7Bc%3D%211%3Bbreak%7Db%3D%211%2Ch%26%26%28i%3Fi%2Elength%26%26j%28i%2Eshift%28%29%29%3Ac%3Fh%3D%5B%5D%3Ak%2Edisable%28%29%29%7D%2Ck%3D%7Badd%3Afunction%28%29%7Bif%28h%29%7Bvar%20d%3Dh%2Elength%3B%21function%20f%28b%29%7Bn%2Eeach%28b%2Cfunction%28b%2Cc%29%7Bvar%20d%3Dn%2Etype%28c%29%3B%22function%22%3D%3D%3Dd%3Fa%2Eunique%26%26k%2Ehas%28c%29%7C%7Ch%2Epush%28c%29%3Ac%26%26c%2Elength%26%26%22string%22%21%3D%3Dd%26%26f%28c%29%7D%29%7D%28arguments%29%2Cb%3Fe%3Dh%2Elength%3Ac%26%26%28g%3Dd%2Cj%28c%29%29%7Dreturn%20this%7D%2Cremove%3Afunction%28%29%7Breturn%20h%26%26n%2Eeach%28arguments%2Cfunction%28a%2Cc%29%7Bvar%20d%3Bwhile%28%28d%3Dn%2EinArray%28c%2Ch%2Cd%29%29%3E%2D1%29h%2Esplice%28d%2C1%29%2Cb%26%26%28e%3E%3Dd%26%26e%2D%2D%2Cf%3E%3Dd%26%26f%2D%2D%29%7D%29%2Cthis%7D%2Chas%3Afunction%28a%29%7Breturn%20a%3Fn%2EinArray%28a%2Ch%29%3E%2D1%3A%21%28%21h%7C%7C%21h%2Elength%29%7D%2Cempty%3Afunction%28%29%7Breturn%20h%3D%5B%5D%2Ce%3D0%2Cthis%7D%2Cdisable%3Afunction%28%29%7Breturn%20h%3Di%3Dc%3Dvoid%200%2Cthis%7D%2Cdisabled%3Afunction%28%29%7Breturn%21h%7D%2Clock%3Afunction%28%29%7Breturn%20i%3Dvoid%200%2Cc%7C%7Ck%2Edisable%28%29%2Cthis%7D%2Clocked%3Afunction%28%29%7Breturn%21i%7D%2CfireWith%3Afunction%28a%2Cc%29%7Breturn%21h%7C%7Cd%26%26%21i%7C%7C%28c%3Dc%7C%7C%5B%5D%2Cc%3D%5Ba%2Cc%2Eslice%3Fc%2Eslice%28%29%3Ac%5D%2Cb%3Fi%2Epush%28c%29%3Aj%28c%29%29%2Cthis%7D%2Cfire%3Afunction%28%29%7Breturn%20k%2EfireWith%28this%2Carguments%29%2Cthis%7D%2Cfired%3Afunction%28%29%7Breturn%21%21d%7D%7D%3Breturn%20k%7D%2Cn%2Eextend%28%7BDeferred%3Afunction%28a%29%7Bvar%20b%3D%5B%5B%22resolve%22%2C%22done%22%2Cn%2ECallbacks%28%22once%20memory%22%29%2C%22resolved%22%5D%2C%5B%22reject%22%2C%22fail%22%2Cn%2ECallbacks%28%22once%20memory%22%29%2C%22rejected%22%5D%2C%5B%22notify%22%2C%22progress%22%2Cn%2ECallbacks%28%22memory%22%29%5D%5D%2Cc%3D%22pending%22%2Cd%3D%7Bstate%3Afunction%28%29%7Breturn%20c%7D%2Calways%3Afunction%28%29%7Breturn%20e%2Edone%28arguments%29%2Efail%28arguments%29%2Cthis%7D%2Cthen%3Afunction%28%29%7Bvar%20a%3Darguments%3Breturn%20n%2EDeferred%28function%28c%29%7Bn%2Eeach%28b%2Cfunction%28b%2Cf%29%7Bvar%20g%3Dn%2EisFunction%28a%5Bb%5D%29%26%26a%5Bb%5D%3Be%5Bf%5B1%5D%5D%28function%28%29%7Bvar%20a%3Dg%26%26g%2Eapply%28this%2Carguments%29%3Ba%26%26n%2EisFunction%28a%2Epromise%29%3Fa%2Epromise%28%29%2Edone%28c%2Eresolve%29%2Efail%28c%2Ereject%29%2Eprogress%28c%2Enotify%29%3Ac%5Bf%5B0%5D%2B%22With%22%5D%28this%3D%3D%3Dd%3Fc%2Epromise%28%29%3Athis%2Cg%3F%5Ba%5D%3Aarguments%29%7D%29%7D%29%2Ca%3Dnull%7D%29%2Epromise%28%29%7D%2Cpromise%3Afunction%28a%29%7Breturn%20null%21%3Da%3Fn%2Eextend%28a%2Cd%29%3Ad%7D%7D%2Ce%3D%7B%7D%3Breturn%20d%2Epipe%3Dd%2Ethen%2Cn%2Eeach%28b%2Cfunction%28a%2Cf%29%7Bvar%20g%3Df%5B2%5D%2Ch%3Df%5B3%5D%3Bd%5Bf%5B1%5D%5D%3Dg%2Eadd%2Ch%26%26g%2Eadd%28function%28%29%7Bc%3Dh%7D%2Cb%5B1%5Ea%5D%5B2%5D%2Edisable%2Cb%5B2%5D%5B2%5D%2Elock%29%2Ce%5Bf%5B0%5D%5D%3Dfunction%28%29%7Breturn%20e%5Bf%5B0%5D%2B%22With%22%5D%28this%3D%3D%3De%3Fd%3Athis%2Carguments%29%2Cthis%7D%2Ce%5Bf%5B0%5D%2B%22With%22%5D%3Dg%2EfireWith%7D%29%2Cd%2Epromise%28e%29%2Ca%26%26a%2Ecall%28e%2Ce%29%2Ce%7D%2Cwhen%3Afunction%28a%29%7Bvar%20b%3D0%2Cc%3Dd%2Ecall%28arguments%29%2Ce%3Dc%2Elength%2Cf%3D1%21%3D%3De%7C%7Ca%26%26n%2EisFunction%28a%2Epromise%29%3Fe%3A0%2Cg%3D1%3D%3D%3Df%3Fa%3An%2EDeferred%28%29%2Ch%3Dfunction%28a%2Cb%2Cc%29%7Breturn%20function%28e%29%7Bb%5Ba%5D%3Dthis%2Cc%5Ba%5D%3Darguments%2Elength%3E1%3Fd%2Ecall%28arguments%29%3Ae%2Cc%3D%3D%3Di%3Fg%2EnotifyWith%28b%2Cc%29%3A%2D%2Df%7C%7Cg%2EresolveWith%28b%2Cc%29%7D%7D%2Ci%2Cj%2Ck%3Bif%28e%3E1%29for%28i%3Dnew%20Array%28e%29%2Cj%3Dnew%20Array%28e%29%2Ck%3Dnew%20Array%28e%29%3Be%3Eb%3Bb%2B%2B%29c%5Bb%5D%26%26n%2EisFunction%28c%5Bb%5D%2Epromise%29%3Fc%5Bb%5D%2Epromise%28%29%2Edone%28h%28b%2Ck%2Cc%29%29%2Efail%28g%2Ereject%29%2Eprogress%28h%28b%2Cj%2Ci%29%29%3A%2D%2Df%3Breturn%20f%7C%7Cg%2EresolveWith%28k%2Cc%29%2Cg%2Epromise%28%29%7D%7D%29%3Bvar%20I%3Bn%2Efn%2Eready%3Dfunction%28a%29%7Breturn%20n%2Eready%2Epromise%28%29%2Edone%28a%29%2Cthis%7D%2Cn%2Eextend%28%7BisReady%3A%211%2CreadyWait%3A1%2CholdReady%3Afunction%28a%29%7Ba%3Fn%2EreadyWait%2B%2B%3An%2Eready%28%210%29%7D%2Cready%3Afunction%28a%29%7Bif%28a%3D%3D%3D%210%3F%21%2D%2Dn%2EreadyWait%3A%21n%2EisReady%29%7Bif%28%21z%2Ebody%29return%20setTimeout%28n%2Eready%29%3Bn%2EisReady%3D%210%2Ca%21%3D%3D%210%26%26%2D%2Dn%2EreadyWait%3E0%7C%7C%28I%2EresolveWith%28z%2C%5Bn%5D%29%2Cn%2Efn%2Etrigger%26%26n%28z%29%2Etrigger%28%22ready%22%29%2Eoff%28%22ready%22%29%29%7D%7D%7D%29%3Bfunction%20J%28%29%7Bz%2EaddEventListener%3F%28z%2EremoveEventListener%28%22DOMContentLoaded%22%2CK%2C%211%29%2Ca%2EremoveEventListener%28%22load%22%2CK%2C%211%29%29%3A%28z%2EdetachEvent%28%22onreadystatechange%22%2CK%29%2Ca%2EdetachEvent%28%22onload%22%2CK%29%29%7Dfunction%20K%28%29%7B%28z%2EaddEventListener%7C%7C%22load%22%3D%3D%3Devent%2Etype%7C%7C%22complete%22%3D%3D%3Dz%2EreadyState%29%26%26%28J%28%29%2Cn%2Eready%28%29%29%7Dn%2Eready%2Epromise%3Dfunction%28b%29%7Bif%28%21I%29if%28I%3Dn%2EDeferred%28%29%2C%22complete%22%3D%3D%3Dz%2EreadyState%29setTimeout%28n%2Eready%29%3Belse%20if%28z%2EaddEventListener%29z%2EaddEventListener%28%22DOMContentLoaded%22%2CK%2C%211%29%2Ca%2EaddEventListener%28%22load%22%2CK%2C%211%29%3Belse%7Bz%2EattachEvent%28%22onreadystatechange%22%2CK%29%2Ca%2EattachEvent%28%22onload%22%2CK%29%3Bvar%20c%3D%211%3Btry%7Bc%3Dnull%3D%3Da%2EframeElement%26%26z%2EdocumentElement%7Dcatch%28d%29%7B%7Dc%26%26c%2EdoScroll%26%26%21function%20e%28%29%7Bif%28%21n%2EisReady%29%7Btry%7Bc%2EdoScroll%28%22left%22%29%7Dcatch%28a%29%7Breturn%20setTimeout%28e%2C50%29%7DJ%28%29%2Cn%2Eready%28%29%7D%7D%28%29%7Dreturn%20I%2Epromise%28b%29%7D%3Bvar%20L%3D%22undefined%22%2CM%3Bfor%28M%20in%20n%28l%29%29break%3Bl%2EownLast%3D%220%22%21%3D%3DM%2Cl%2EinlineBlockNeedsLayout%3D%211%2Cn%28function%28%29%7Bvar%20a%2Cb%2Cc%3Dz%2EgetElementsByTagName%28%22body%22%29%5B0%5D%3Bc%26%26%28a%3Dz%2EcreateElement%28%22div%22%29%2Ca%2Estyle%2EcssText%3D%22border%3A0%3Bwidth%3A0%3Bheight%3A0%3Bposition%3Aabsolute%3Btop%3A0%3Bleft%3A%2D9999px%3Bmargin%2Dtop%3A1px%22%2Cb%3Dz%2EcreateElement%28%22div%22%29%2Cc%2EappendChild%28a%29%2EappendChild%28b%29%2Ctypeof%20b%2Estyle%2Ezoom%21%3D%3DL%26%26%28b%2Estyle%2EcssText%3D%22border%3A0%3Bmargin%3A0%3Bwidth%3A1px%3Bpadding%3A1px%3Bdisplay%3Ainline%3Bzoom%3A1%22%2C%28l%2EinlineBlockNeedsLayout%3D3%3D%3D%3Db%2EoffsetWidth%29%26%26%28c%2Estyle%2Ezoom%3D1%29%29%2Cc%2EremoveChild%28a%29%2Ca%3Db%3Dnull%29%7D%29%2Cfunction%28%29%7Bvar%20a%3Dz%2EcreateElement%28%22div%22%29%3Bif%28null%3D%3Dl%2EdeleteExpando%29%7Bl%2EdeleteExpando%3D%210%3Btry%7Bdelete%20a%2Etest%7Dcatch%28b%29%7Bl%2EdeleteExpando%3D%211%7D%7Da%3Dnull%7D%28%29%2Cn%2EacceptData%3Dfunction%28a%29%7Bvar%20b%3Dn%2EnoData%5B%28a%2EnodeName%2B%22%20%22%29%2EtoLowerCase%28%29%5D%2Cc%3D%2Ba%2EnodeType%7C%7C1%3Breturn%201%21%3D%3Dc%26%269%21%3D%3Dc%3F%211%3A%21b%7C%7Cb%21%3D%3D%210%26%26a%2EgetAttribute%28%22classid%22%29%3D%3D%3Db%7D%3Bvar%20N%3D%2F%5E%28%3F%3A%5C%7B%5B%5Cw%5CW%5D%2A%5C%7D%7C%5C%5B%5B%5Cw%5CW%5D%2A%5C%5D%29%24%2F%2CO%3D%2F%28%5BA%2DZ%5D%29%2Fg%3Bfunction%20P%28a%2Cb%2Cc%29%7Bif%28void%200%3D%3D%3Dc%26%261%3D%3D%3Da%2EnodeType%29%7Bvar%20d%3D%22data%2D%22%2Bb%2Ereplace%28O%2C%22%2D%241%22%29%2EtoLowerCase%28%29%3Bif%28c%3Da%2EgetAttribute%28d%29%2C%22string%22%3D%3Dtypeof%20c%29%7Btry%7Bc%3D%22true%22%3D%3D%3Dc%3F%210%3A%22false%22%3D%3D%3Dc%3F%211%3A%22null%22%3D%3D%3Dc%3Fnull%3A%2Bc%2B%22%22%3D%3D%3Dc%3F%2Bc%3AN%2Etest%28c%29%3Fn%2EparseJSON%28c%29%3Ac%7Dcatch%28e%29%7B%7Dn%2Edata%28a%2Cb%2Cc%29%7Delse%20c%3Dvoid%200%7Dreturn%20c%7Dfunction%20Q%28a%29%7Bvar%20b%3Bfor%28b%20in%20a%29if%28%28%22data%22%21%3D%3Db%7C%7C%21n%2EisEmptyObject%28a%5Bb%5D%29%29%26%26%22toJSON%22%21%3D%3Db%29return%211%3Breturn%210%7Dfunction%20R%28a%2Cb%2Cd%2Ce%29%7Bif%28n%2EacceptData%28a%29%29%7Bvar%20f%2Cg%2Ch%3Dn%2Eexpando%2Ci%3Da%2EnodeType%2Cj%3Di%3Fn%2Ecache%3Aa%2Ck%3Di%3Fa%5Bh%5D%3Aa%5Bh%5D%26%26h%3Bif%28k%26%26j%5Bk%5D%26%26%28e%7C%7Cj%5Bk%5D%2Edata%29%7C%7Cvoid%200%21%3D%3Dd%7C%7C%22string%22%21%3Dtypeof%20b%29return%20k%7C%7C%28k%3Di%3Fa%5Bh%5D%3Dc%2Epop%28%29%7C%7Cn%2Eguid%2B%2B%3Ah%29%2Cj%5Bk%5D%7C%7C%28j%5Bk%5D%3Di%3F%7B%7D%3A%7BtoJSON%3An%2Enoop%7D%29%2C%28%22object%22%3D%3Dtypeof%20b%7C%7C%22function%22%3D%3Dtypeof%20b%29%26%26%28e%3Fj%5Bk%5D%3Dn%2Eextend%28j%5Bk%5D%2Cb%29%3Aj%5Bk%5D%2Edata%3Dn%2Eextend%28j%5Bk%5D%2Edata%2Cb%29%29%2Cg%3Dj%5Bk%5D%2Ce%7C%7C%28g%2Edata%7C%7C%28g%2Edata%3D%7B%7D%29%2Cg%3Dg%2Edata%29%2Cvoid%200%21%3D%3Dd%26%26%28g%5Bn%2EcamelCase%28b%29%5D%3Dd%29%2C%22string%22%3D%3Dtypeof%20b%3F%28f%3Dg%5Bb%5D%2Cnull%3D%3Df%26%26%28f%3Dg%5Bn%2EcamelCase%28b%29%5D%29%29%3Af%3Dg%2Cf%0A%7D%7Dfunction%20S%28a%2Cb%2Cc%29%7Bif%28n%2EacceptData%28a%29%29%7Bvar%20d%2Ce%2Cf%3Da%2EnodeType%2Cg%3Df%3Fn%2Ecache%3Aa%2Ch%3Df%3Fa%5Bn%2Eexpando%5D%3An%2Eexpando%3Bif%28g%5Bh%5D%29%7Bif%28b%26%26%28d%3Dc%3Fg%5Bh%5D%3Ag%5Bh%5D%2Edata%29%29%7Bn%2EisArray%28b%29%3Fb%3Db%2Econcat%28n%2Emap%28b%2Cn%2EcamelCase%29%29%3Ab%20in%20d%3Fb%3D%5Bb%5D%3A%28b%3Dn%2EcamelCase%28b%29%2Cb%3Db%20in%20d%3F%5Bb%5D%3Ab%2Esplit%28%22%20%22%29%29%2Ce%3Db%2Elength%3Bwhile%28e%2D%2D%29delete%20d%5Bb%5Be%5D%5D%3Bif%28c%3F%21Q%28d%29%3A%21n%2EisEmptyObject%28d%29%29return%7D%28c%7C%7C%28delete%20g%5Bh%5D%2Edata%2CQ%28g%5Bh%5D%29%29%29%26%26%28f%3Fn%2EcleanData%28%5Ba%5D%2C%210%29%3Al%2EdeleteExpando%7C%7Cg%21%3Dg%2Ewindow%3Fdelete%20g%5Bh%5D%3Ag%5Bh%5D%3Dnull%29%7D%7D%7Dn%2Eextend%28%7Bcache%3A%7B%7D%2CnoData%3A%7B%22applet%20%22%3A%210%2C%22embed%20%22%3A%210%2C%22object%20%22%3A%22clsid%3AD27CDB6E%2DAE6D%2D11cf%2D96B8%2D444553540000%22%7D%2ChasData%3Afunction%28a%29%7Breturn%20a%3Da%2EnodeType%3Fn%2Ecache%5Ba%5Bn%2Eexpando%5D%5D%3Aa%5Bn%2Eexpando%5D%2C%21%21a%26%26%21Q%28a%29%7D%2Cdata%3Afunction%28a%2Cb%2Cc%29%7Breturn%20R%28a%2Cb%2Cc%29%7D%2CremoveData%3Afunction%28a%2Cb%29%7Breturn%20S%28a%2Cb%29%7D%2C%5Fdata%3Afunction%28a%2Cb%2Cc%29%7Breturn%20R%28a%2Cb%2Cc%2C%210%29%7D%2C%5FremoveData%3Afunction%28a%2Cb%29%7Breturn%20S%28a%2Cb%2C%210%29%7D%7D%29%2Cn%2Efn%2Eextend%28%7Bdata%3Afunction%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%2Cf%3Dthis%5B0%5D%2Cg%3Df%26%26f%2Eattributes%3Bif%28void%200%3D%3D%3Da%29%7Bif%28this%2Elength%26%26%28e%3Dn%2Edata%28f%29%2C1%3D%3D%3Df%2EnodeType%26%26%21n%2E%5Fdata%28f%2C%22parsedAttrs%22%29%29%29%7Bc%3Dg%2Elength%3Bwhile%28c%2D%2D%29d%3Dg%5Bc%5D%2Ename%2C0%3D%3D%3Dd%2EindexOf%28%22data%2D%22%29%26%26%28d%3Dn%2EcamelCase%28d%2Eslice%285%29%29%2CP%28f%2Cd%2Ce%5Bd%5D%29%29%3Bn%2E%5Fdata%28f%2C%22parsedAttrs%22%2C%210%29%7Dreturn%20e%7Dreturn%22object%22%3D%3Dtypeof%20a%3Fthis%2Eeach%28function%28%29%7Bn%2Edata%28this%2Ca%29%7D%29%3Aarguments%2Elength%3E1%3Fthis%2Eeach%28function%28%29%7Bn%2Edata%28this%2Ca%2Cb%29%7D%29%3Af%3FP%28f%2Ca%2Cn%2Edata%28f%2Ca%29%29%3Avoid%200%7D%2CremoveData%3Afunction%28a%29%7Breturn%20this%2Eeach%28function%28%29%7Bn%2EremoveData%28this%2Ca%29%7D%29%7D%7D%29%2Cn%2Eextend%28%7Bqueue%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%3Breturn%20a%3F%28b%3D%28b%7C%7C%22fx%22%29%2B%22queue%22%2Cd%3Dn%2E%5Fdata%28a%2Cb%29%2Cc%26%26%28%21d%7C%7Cn%2EisArray%28c%29%3Fd%3Dn%2E%5Fdata%28a%2Cb%2Cn%2EmakeArray%28c%29%29%3Ad%2Epush%28c%29%29%2Cd%7C%7C%5B%5D%29%3Avoid%200%7D%2Cdequeue%3Afunction%28a%2Cb%29%7Bb%3Db%7C%7C%22fx%22%3Bvar%20c%3Dn%2Equeue%28a%2Cb%29%2Cd%3Dc%2Elength%2Ce%3Dc%2Eshift%28%29%2Cf%3Dn%2E%5FqueueHooks%28a%2Cb%29%2Cg%3Dfunction%28%29%7Bn%2Edequeue%28a%2Cb%29%7D%3B%22inprogress%22%3D%3D%3De%26%26%28e%3Dc%2Eshift%28%29%2Cd%2D%2D%29%2Ce%26%26%28%22fx%22%3D%3D%3Db%26%26c%2Eunshift%28%22inprogress%22%29%2Cdelete%20f%2Estop%2Ce%2Ecall%28a%2Cg%2Cf%29%29%2C%21d%26%26f%26%26f%2Eempty%2Efire%28%29%7D%2C%5FqueueHooks%3Afunction%28a%2Cb%29%7Bvar%20c%3Db%2B%22queueHooks%22%3Breturn%20n%2E%5Fdata%28a%2Cc%29%7C%7Cn%2E%5Fdata%28a%2Cc%2C%7Bempty%3An%2ECallbacks%28%22once%20memory%22%29%2Eadd%28function%28%29%7Bn%2E%5FremoveData%28a%2Cb%2B%22queue%22%29%2Cn%2E%5FremoveData%28a%2Cc%29%7D%29%7D%29%7D%7D%29%2Cn%2Efn%2Eextend%28%7Bqueue%3Afunction%28a%2Cb%29%7Bvar%20c%3D2%3Breturn%22string%22%21%3Dtypeof%20a%26%26%28b%3Da%2Ca%3D%22fx%22%2Cc%2D%2D%29%2Carguments%2Elength%3Cc%3Fn%2Equeue%28this%5B0%5D%2Ca%29%3Avoid%200%3D%3D%3Db%3Fthis%3Athis%2Eeach%28function%28%29%7Bvar%20c%3Dn%2Equeue%28this%2Ca%2Cb%29%3Bn%2E%5FqueueHooks%28this%2Ca%29%2C%22fx%22%3D%3D%3Da%26%26%22inprogress%22%21%3D%3Dc%5B0%5D%26%26n%2Edequeue%28this%2Ca%29%7D%29%7D%2Cdequeue%3Afunction%28a%29%7Breturn%20this%2Eeach%28function%28%29%7Bn%2Edequeue%28this%2Ca%29%7D%29%7D%2CclearQueue%3Afunction%28a%29%7Breturn%20this%2Equeue%28a%7C%7C%22fx%22%2C%5B%5D%29%7D%2Cpromise%3Afunction%28a%2Cb%29%7Bvar%20c%2Cd%3D1%2Ce%3Dn%2EDeferred%28%29%2Cf%3Dthis%2Cg%3Dthis%2Elength%2Ch%3Dfunction%28%29%7B%2D%2Dd%7C%7Ce%2EresolveWith%28f%2C%5Bf%5D%29%7D%3B%22string%22%21%3Dtypeof%20a%26%26%28b%3Da%2Ca%3Dvoid%200%29%2Ca%3Da%7C%7C%22fx%22%3Bwhile%28g%2D%2D%29c%3Dn%2E%5Fdata%28f%5Bg%5D%2Ca%2B%22queueHooks%22%29%2Cc%26%26c%2Eempty%26%26%28d%2B%2B%2Cc%2Eempty%2Eadd%28h%29%29%3Breturn%20h%28%29%2Ce%2Epromise%28b%29%7D%7D%29%3Bvar%20T%3D%2F%5B%2B%2D%5D%3F%28%3F%3A%5Cd%2A%5C%2E%7C%29%5Cd%2B%28%3F%3A%5BeE%5D%5B%2B%2D%5D%3F%5Cd%2B%7C%29%2F%2Esource%2CU%3D%5B%22Top%22%2C%22Right%22%2C%22Bottom%22%2C%22Left%22%5D%2CV%3Dfunction%28a%2Cb%29%7Breturn%20a%3Db%7C%7Ca%2C%22none%22%3D%3D%3Dn%2Ecss%28a%2C%22display%22%29%7C%7C%21n%2Econtains%28a%2EownerDocument%2Ca%29%7D%2CW%3Dn%2Eaccess%3Dfunction%28a%2Cb%2Cc%2Cd%2Ce%2Cf%2Cg%29%7Bvar%20h%3D0%2Ci%3Da%2Elength%2Cj%3Dnull%3D%3Dc%3Bif%28%22object%22%3D%3D%3Dn%2Etype%28c%29%29%7Be%3D%210%3Bfor%28h%20in%20c%29n%2Eaccess%28a%2Cb%2Ch%2Cc%5Bh%5D%2C%210%2Cf%2Cg%29%7Delse%20if%28void%200%21%3D%3Dd%26%26%28e%3D%210%2Cn%2EisFunction%28d%29%7C%7C%28g%3D%210%29%2Cj%26%26%28g%3F%28b%2Ecall%28a%2Cd%29%2Cb%3Dnull%29%3A%28j%3Db%2Cb%3Dfunction%28a%2Cb%2Cc%29%7Breturn%20j%2Ecall%28n%28a%29%2Cc%29%7D%29%29%2Cb%29%29for%28%3Bi%3Eh%3Bh%2B%2B%29b%28a%5Bh%5D%2Cc%2Cg%3Fd%3Ad%2Ecall%28a%5Bh%5D%2Ch%2Cb%28a%5Bh%5D%2Cc%29%29%29%3Breturn%20e%3Fa%3Aj%3Fb%2Ecall%28a%29%3Ai%3Fb%28a%5B0%5D%2Cc%29%3Af%7D%2CX%3D%2F%5E%28%3F%3Acheckbox%7Cradio%29%24%2Fi%3B%21function%28%29%7Bvar%20a%3Dz%2EcreateDocumentFragment%28%29%2Cb%3Dz%2EcreateElement%28%22div%22%29%2Cc%3Dz%2EcreateElement%28%22input%22%29%3Bif%28b%2EsetAttribute%28%22className%22%2C%22t%22%29%2Cb%2EinnerHTML%3D%22%20%20%3Clink%2F%3E%3Ctable%3E%3C%2Ftable%3E%3Ca%20href%3D%27%2Fa%27%3Ea%3C%2Fa%3E%22%2Cl%2EleadingWhitespace%3D3%3D%3D%3Db%2EfirstChild%2EnodeType%2Cl%2Etbody%3D%21b%2EgetElementsByTagName%28%22tbody%22%29%2Elength%2Cl%2EhtmlSerialize%3D%21%21b%2EgetElementsByTagName%28%22link%22%29%2Elength%2Cl%2Ehtml5Clone%3D%22%3C%3Anav%3E%3C%2F%3Anav%3E%22%21%3D%3Dz%2EcreateElement%28%22nav%22%29%2EcloneNode%28%210%29%2EouterHTML%2Cc%2Etype%3D%22checkbox%22%2Cc%2Echecked%3D%210%2Ca%2EappendChild%28c%29%2Cl%2EappendChecked%3Dc%2Echecked%2Cb%2EinnerHTML%3D%22%3Ctextarea%3Ex%3C%2Ftextarea%3E%22%2Cl%2EnoCloneChecked%3D%21%21b%2EcloneNode%28%210%29%2ElastChild%2EdefaultValue%2Ca%2EappendChild%28b%29%2Cb%2EinnerHTML%3D%22%3Cinput%20type%3D%27radio%27%20checked%3D%27checked%27%20name%3D%27t%27%2F%3E%22%2Cl%2EcheckClone%3Db%2EcloneNode%28%210%29%2EcloneNode%28%210%29%2ElastChild%2Echecked%2Cl%2EnoCloneEvent%3D%210%2Cb%2EattachEvent%26%26%28b%2EattachEvent%28%22onclick%22%2Cfunction%28%29%7Bl%2EnoCloneEvent%3D%211%7D%29%2Cb%2EcloneNode%28%210%29%2Eclick%28%29%29%2Cnull%3D%3Dl%2EdeleteExpando%29%7Bl%2EdeleteExpando%3D%210%3Btry%7Bdelete%20b%2Etest%7Dcatch%28d%29%7Bl%2EdeleteExpando%3D%211%7D%7Da%3Db%3Dc%3Dnull%7D%28%29%2Cfunction%28%29%7Bvar%20b%2Cc%2Cd%3Dz%2EcreateElement%28%22div%22%29%3Bfor%28b%20in%7Bsubmit%3A%210%2Cchange%3A%210%2Cfocusin%3A%210%7D%29c%3D%22on%22%2Bb%2C%28l%5Bb%2B%22Bubbles%22%5D%3Dc%20in%20a%29%7C%7C%28d%2EsetAttribute%28c%2C%22t%22%29%2Cl%5Bb%2B%22Bubbles%22%5D%3Dd%2Eattributes%5Bc%5D%2Eexpando%3D%3D%3D%211%29%3Bd%3Dnull%7D%28%29%3Bvar%20Y%3D%2F%5E%28%3F%3Ainput%7Cselect%7Ctextarea%29%24%2Fi%2CZ%3D%2F%5Ekey%2F%2C%24%3D%2F%5E%28%3F%3Amouse%7Ccontextmenu%29%7Cclick%2F%2C%5F%3D%2F%5E%28%3F%3Afocusinfocus%7Cfocusoutblur%29%24%2F%2Cab%3D%2F%5E%28%5B%5E%2E%5D%2A%29%28%3F%3A%5C%2E%28%2E%2B%29%7C%29%24%2F%3Bfunction%20bb%28%29%7Breturn%210%7Dfunction%20cb%28%29%7Breturn%211%7Dfunction%20db%28%29%7Btry%7Breturn%20z%2EactiveElement%7Dcatch%28a%29%7B%7D%7Dn%2Eevent%3D%7Bglobal%3A%7B%7D%2Cadd%3Afunction%28a%2Cb%2Cc%2Cd%2Ce%29%7Bvar%20f%2Cg%2Ch%2Ci%2Cj%2Ck%2Cl%2Cm%2Co%2Cp%2Cq%2Cr%3Dn%2E%5Fdata%28a%29%3Bif%28r%29%7Bc%2Ehandler%26%26%28i%3Dc%2Cc%3Di%2Ehandler%2Ce%3Di%2Eselector%29%2Cc%2Eguid%7C%7C%28c%2Eguid%3Dn%2Eguid%2B%2B%29%2C%28g%3Dr%2Eevents%29%7C%7C%28g%3Dr%2Eevents%3D%7B%7D%29%2C%28k%3Dr%2Ehandle%29%7C%7C%28k%3Dr%2Ehandle%3Dfunction%28a%29%7Breturn%20typeof%20n%3D%3D%3DL%7C%7Ca%26%26n%2Eevent%2Etriggered%3D%3D%3Da%2Etype%3Fvoid%200%3An%2Eevent%2Edispatch%2Eapply%28k%2Eelem%2Carguments%29%7D%2Ck%2Eelem%3Da%29%2Cb%3D%28b%7C%7C%22%22%29%2Ematch%28F%29%7C%7C%5B%22%22%5D%2Ch%3Db%2Elength%3Bwhile%28h%2D%2D%29f%3Dab%2Eexec%28b%5Bh%5D%29%7C%7C%5B%5D%2Co%3Dq%3Df%5B1%5D%2Cp%3D%28f%5B2%5D%7C%7C%22%22%29%2Esplit%28%22%2E%22%29%2Esort%28%29%2Co%26%26%28j%3Dn%2Eevent%2Especial%5Bo%5D%7C%7C%7B%7D%2Co%3D%28e%3Fj%2EdelegateType%3Aj%2EbindType%29%7C%7Co%2Cj%3Dn%2Eevent%2Especial%5Bo%5D%7C%7C%7B%7D%2Cl%3Dn%2Eextend%28%7Btype%3Ao%2CorigType%3Aq%2Cdata%3Ad%2Chandler%3Ac%2Cguid%3Ac%2Eguid%2Cselector%3Ae%2CneedsContext%3Ae%26%26n%2Eexpr%2Ematch%2EneedsContext%2Etest%28e%29%2Cnamespace%3Ap%2Ejoin%28%22%2E%22%29%7D%2Ci%29%2C%28m%3Dg%5Bo%5D%29%7C%7C%28m%3Dg%5Bo%5D%3D%5B%5D%2Cm%2EdelegateCount%3D0%2Cj%2Esetup%26%26j%2Esetup%2Ecall%28a%2Cd%2Cp%2Ck%29%21%3D%3D%211%7C%7C%28a%2EaddEventListener%3Fa%2EaddEventListener%28o%2Ck%2C%211%29%3Aa%2EattachEvent%26%26a%2EattachEvent%28%22on%22%2Bo%2Ck%29%29%29%2Cj%2Eadd%26%26%28j%2Eadd%2Ecall%28a%2Cl%29%2Cl%2Ehandler%2Eguid%7C%7C%28l%2Ehandler%2Eguid%3Dc%2Eguid%29%29%2Ce%3Fm%2Esplice%28m%2EdelegateCount%2B%2B%2C0%2Cl%29%3Am%2Epush%28l%29%2Cn%2Eevent%2Eglobal%5Bo%5D%3D%210%29%3Ba%3Dnull%7D%7D%2Cremove%3Afunction%28a%2Cb%2Cc%2Cd%2Ce%29%7Bvar%20f%2Cg%2Ch%2Ci%2Cj%2Ck%2Cl%2Cm%2Co%2Cp%2Cq%2Cr%3Dn%2EhasData%28a%29%26%26n%2E%5Fdata%28a%29%3Bif%28r%26%26%28k%3Dr%2Eevents%29%29%7Bb%3D%28b%7C%7C%22%22%29%2Ematch%28F%29%7C%7C%5B%22%22%5D%2Cj%3Db%2Elength%3Bwhile%28j%2D%2D%29if%28h%3Dab%2Eexec%28b%5Bj%5D%29%7C%7C%5B%5D%2Co%3Dq%3Dh%5B1%5D%2Cp%3D%28h%5B2%5D%7C%7C%22%22%29%2Esplit%28%22%2E%22%29%2Esort%28%29%2Co%29%7Bl%3Dn%2Eevent%2Especial%5Bo%5D%7C%7C%7B%7D%2Co%3D%28d%3Fl%2EdelegateType%3Al%2EbindType%29%7C%7Co%2Cm%3Dk%5Bo%5D%7C%7C%5B%5D%2Ch%3Dh%5B2%5D%26%26new%20RegExp%28%22%28%5E%7C%5C%5C%2E%29%22%2Bp%2Ejoin%28%22%5C%5C%2E%28%3F%3A%2E%2A%5C%5C%2E%7C%29%22%29%2B%22%28%5C%5C%2E%7C%24%29%22%29%2Ci%3Df%3Dm%2Elength%3Bwhile%28f%2D%2D%29g%3Dm%5Bf%5D%2C%21e%26%26q%21%3D%3Dg%2EorigType%7C%7Cc%26%26c%2Eguid%21%3D%3Dg%2Eguid%7C%7Ch%26%26%21h%2Etest%28g%2Enamespace%29%7C%7Cd%26%26d%21%3D%3Dg%2Eselector%26%26%28%22%2A%2A%22%21%3D%3Dd%7C%7C%21g%2Eselector%29%7C%7C%28m%2Esplice%28f%2C1%29%2Cg%2Eselector%26%26m%2EdelegateCount%2D%2D%2Cl%2Eremove%26%26l%2Eremove%2Ecall%28a%2Cg%29%29%3Bi%26%26%21m%2Elength%26%26%28l%2Eteardown%26%26l%2Eteardown%2Ecall%28a%2Cp%2Cr%2Ehandle%29%21%3D%3D%211%7C%7Cn%2EremoveEvent%28a%2Co%2Cr%2Ehandle%29%2Cdelete%20k%5Bo%5D%29%7Delse%20for%28o%20in%20k%29n%2Eevent%2Eremove%28a%2Co%2Bb%5Bj%5D%2Cc%2Cd%2C%210%29%3Bn%2EisEmptyObject%28k%29%26%26%28delete%20r%2Ehandle%2Cn%2E%5FremoveData%28a%2C%22events%22%29%29%7D%7D%2Ctrigger%3Afunction%28b%2Cc%2Cd%2Ce%29%7Bvar%20f%2Cg%2Ch%2Ci%2Ck%2Cl%2Cm%2Co%3D%5Bd%7C%7Cz%5D%2Cp%3Dj%2Ecall%28b%2C%22type%22%29%3Fb%2Etype%3Ab%2Cq%3Dj%2Ecall%28b%2C%22namespace%22%29%3Fb%2Enamespace%2Esplit%28%22%2E%22%29%3A%5B%5D%3Bif%28h%3Dl%3Dd%3Dd%7C%7Cz%2C3%21%3D%3Dd%2EnodeType%26%268%21%3D%3Dd%2EnodeType%26%26%21%5F%2Etest%28p%2Bn%2Eevent%2Etriggered%29%26%26%28p%2EindexOf%28%22%2E%22%29%3E%3D0%26%26%28q%3Dp%2Esplit%28%22%2E%22%29%2Cp%3Dq%2Eshift%28%29%2Cq%2Esort%28%29%29%2Cg%3Dp%2EindexOf%28%22%3A%22%29%3C0%26%26%22on%22%2Bp%2Cb%3Db%5Bn%2Eexpando%5D%3Fb%3Anew%20n%2EEvent%28p%2C%22object%22%3D%3Dtypeof%20b%26%26b%29%2Cb%2EisTrigger%3De%3F2%3A3%2Cb%2Enamespace%3Dq%2Ejoin%28%22%2E%22%29%2Cb%2Enamespace%5Fre%3Db%2Enamespace%3Fnew%20RegExp%28%22%28%5E%7C%5C%5C%2E%29%22%2Bq%2Ejoin%28%22%5C%5C%2E%28%3F%3A%2E%2A%5C%5C%2E%7C%29%22%29%2B%22%28%5C%5C%2E%7C%24%29%22%29%3Anull%2Cb%2Eresult%3Dvoid%200%2Cb%2Etarget%7C%7C%28b%2Etarget%3Dd%29%2Cc%3Dnull%3D%3Dc%3F%5Bb%5D%3An%2EmakeArray%28c%2C%5Bb%5D%29%2Ck%3Dn%2Eevent%2Especial%5Bp%5D%7C%7C%7B%7D%2Ce%7C%7C%21k%2Etrigger%7C%7Ck%2Etrigger%2Eapply%28d%2Cc%29%21%3D%3D%211%29%29%7Bif%28%21e%26%26%21k%2EnoBubble%26%26%21n%2EisWindow%28d%29%29%7Bfor%28i%3Dk%2EdelegateType%7C%7Cp%2C%5F%2Etest%28i%2Bp%29%7C%7C%28h%3Dh%2EparentNode%29%3Bh%3Bh%3Dh%2EparentNode%29o%2Epush%28h%29%2Cl%3Dh%3Bl%3D%3D%3D%28d%2EownerDocument%7C%7Cz%29%26%26o%2Epush%28l%2EdefaultView%7C%7Cl%2EparentWindow%7C%7Ca%29%7Dm%3D0%3Bwhile%28%28h%3Do%5Bm%2B%2B%5D%29%26%26%21b%2EisPropagationStopped%28%29%29b%2Etype%3Dm%3E1%3Fi%3Ak%2EbindType%7C%7Cp%2Cf%3D%28n%2E%5Fdata%28h%2C%22events%22%29%7C%7C%7B%7D%29%5Bb%2Etype%5D%26%26n%2E%5Fdata%28h%2C%22handle%22%29%2Cf%26%26f%2Eapply%28h%2Cc%29%2Cf%3Dg%26%26h%5Bg%5D%2Cf%26%26f%2Eapply%26%26n%2EacceptData%28h%29%26%26%28b%2Eresult%3Df%2Eapply%28h%2Cc%29%2Cb%2Eresult%3D%3D%3D%211%26%26b%2EpreventDefault%28%29%29%3Bif%28b%2Etype%3Dp%2C%21e%26%26%21b%2EisDefaultPrevented%28%29%26%26%28%21k%2E%5Fdefault%7C%7Ck%2E%5Fdefault%2Eapply%28o%2Epop%28%29%2Cc%29%3D%3D%3D%211%29%26%26n%2EacceptData%28d%29%26%26g%26%26d%5Bp%5D%26%26%21n%2EisWindow%28d%29%29%7Bl%3Dd%5Bg%5D%2Cl%26%26%28d%5Bg%5D%3Dnull%29%2Cn%2Eevent%2Etriggered%3Dp%3Btry%7Bd%5Bp%5D%28%29%7Dcatch%28r%29%7B%7Dn%2Eevent%2Etriggered%3Dvoid%200%2Cl%26%26%28d%5Bg%5D%3Dl%29%7Dreturn%20b%2Eresult%7D%7D%2Cdispatch%3Afunction%28a%29%7Ba%3Dn%2Eevent%2Efix%28a%29%3Bvar%20b%2Cc%2Ce%2Cf%2Cg%2Ch%3D%5B%5D%2Ci%3Dd%2Ecall%28arguments%29%2Cj%3D%28n%2E%5Fdata%28this%2C%22events%22%29%7C%7C%7B%7D%29%5Ba%2Etype%5D%7C%7C%5B%5D%2Ck%3Dn%2Eevent%2Especial%5Ba%2Etype%5D%7C%7C%7B%7D%3Bif%28i%5B0%5D%3Da%2Ca%2EdelegateTarget%3Dthis%2C%21k%2EpreDispatch%7C%7Ck%2EpreDispatch%2Ecall%28this%2Ca%29%21%3D%3D%211%29%7Bh%3Dn%2Eevent%2Ehandlers%2Ecall%28this%2Ca%2Cj%29%2Cb%3D0%3Bwhile%28%28f%3Dh%5Bb%2B%2B%5D%29%26%26%21a%2EisPropagationStopped%28%29%29%7Ba%2EcurrentTarget%3Df%2Eelem%2Cg%3D0%3Bwhile%28%28e%3Df%2Ehandlers%5Bg%2B%2B%5D%29%26%26%21a%2EisImmediatePropagationStopped%28%29%29%28%21a%2Enamespace%5Fre%7C%7Ca%2Enamespace%5Fre%2Etest%28e%2Enamespace%29%29%26%26%28a%2EhandleObj%3De%2Ca%2Edata%3De%2Edata%2Cc%3D%28%28n%2Eevent%2Especial%5Be%2EorigType%5D%7C%7C%7B%7D%29%2Ehandle%7C%7Ce%2Ehandler%29%2Eapply%28f%2Eelem%2Ci%29%2Cvoid%200%21%3D%3Dc%26%26%28a%2Eresult%3Dc%29%3D%3D%3D%211%26%26%28a%2EpreventDefault%28%29%2Ca%2EstopPropagation%28%29%29%29%7Dreturn%20k%2EpostDispatch%26%26k%2EpostDispatch%2Ecall%28this%2Ca%29%2Ca%2Eresult%7D%7D%2Chandlers%3Afunction%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%2Cf%2Cg%3D%5B%5D%2Ch%3Db%2EdelegateCount%2Ci%3Da%2Etarget%3Bif%28h%26%26i%2EnodeType%26%26%28%21a%2Ebutton%7C%7C%22click%22%21%3D%3Da%2Etype%29%29for%28%3Bi%21%3Dthis%3Bi%3Di%2EparentNode%7C%7Cthis%29if%281%3D%3D%3Di%2EnodeType%26%26%28i%2Edisabled%21%3D%3D%210%7C%7C%22click%22%21%3D%3Da%2Etype%29%29%7Bfor%28e%3D%5B%5D%2Cf%3D0%3Bh%3Ef%3Bf%2B%2B%29d%3Db%5Bf%5D%2Cc%3Dd%2Eselector%2B%22%20%22%2Cvoid%200%3D%3D%3De%5Bc%5D%26%26%28e%5Bc%5D%3Dd%2EneedsContext%3Fn%28c%2Cthis%29%2Eindex%28i%29%3E%3D0%3An%2Efind%28c%2Cthis%2Cnull%2C%5Bi%5D%29%2Elength%29%2Ce%5Bc%5D%26%26e%2Epush%28d%29%3Be%2Elength%26%26g%2Epush%28%7Belem%3Ai%2Chandlers%3Ae%7D%29%7Dreturn%20h%3Cb%2Elength%26%26g%2Epush%28%7Belem%3Athis%2Chandlers%3Ab%2Eslice%28h%29%7D%29%2Cg%7D%2Cfix%3Afunction%28a%29%7Bif%28a%5Bn%2Eexpando%5D%29return%20a%3Bvar%20b%2Cc%2Cd%2Ce%3Da%2Etype%2Cf%3Da%2Cg%3Dthis%2EfixHooks%5Be%5D%3Bg%7C%7C%28this%2EfixHooks%5Be%5D%3Dg%3D%24%2Etest%28e%29%3Fthis%2EmouseHooks%3AZ%2Etest%28e%29%3Fthis%2EkeyHooks%3A%7B%7D%29%2Cd%3Dg%2Eprops%3Fthis%2Eprops%2Econcat%28g%2Eprops%29%3Athis%2Eprops%2Ca%3Dnew%20n%2EEvent%28f%29%2Cb%3Dd%2Elength%3Bwhile%28b%2D%2D%29c%3Dd%5Bb%5D%2Ca%5Bc%5D%3Df%5Bc%5D%3Breturn%20a%2Etarget%7C%7C%28a%2Etarget%3Df%2EsrcElement%7C%7Cz%29%2C3%3D%3D%3Da%2Etarget%2EnodeType%26%26%28a%2Etarget%3Da%2Etarget%2EparentNode%29%2Ca%2EmetaKey%3D%21%21a%2EmetaKey%2Cg%2Efilter%3Fg%2Efilter%28a%2Cf%29%3Aa%7D%2Cprops%3A%22altKey%20bubbles%20cancelable%20ctrlKey%20currentTarget%20eventPhase%20metaKey%20relatedTarget%20shiftKey%20target%20timeStamp%20view%20which%22%2Esplit%28%22%20%22%29%2CfixHooks%3A%7B%7D%2CkeyHooks%3A%7Bprops%3A%22char%20charCode%20key%20keyCode%22%2Esplit%28%22%20%22%29%2Cfilter%3Afunction%28a%2Cb%29%7Breturn%20null%3D%3Da%2Ewhich%26%26%28a%2Ewhich%3Dnull%21%3Db%2EcharCode%3Fb%2EcharCode%3Ab%2EkeyCode%29%2Ca%7D%7D%2CmouseHooks%3A%7Bprops%3A%22button%20buttons%20clientX%20clientY%20fromElement%20offsetX%20offsetY%20pageX%20pageY%20screenX%20screenY%20toElement%22%2Esplit%28%22%20%22%29%2Cfilter%3Afunction%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%2Cf%3Db%2Ebutton%2Cg%3Db%2EfromElement%3Breturn%20null%3D%3Da%2EpageX%26%26null%21%3Db%2EclientX%26%26%28d%3Da%2Etarget%2EownerDocument%7C%7Cz%2Ce%3Dd%2EdocumentElement%2Cc%3Dd%2Ebody%2Ca%2EpageX%3Db%2EclientX%2B%28e%26%26e%2EscrollLeft%7C%7Cc%26%26c%2EscrollLeft%7C%7C0%29%2D%28e%26%26e%2EclientLeft%7C%7Cc%26%26c%2EclientLeft%7C%7C0%29%2Ca%2EpageY%3Db%2EclientY%2B%28e%26%26e%2EscrollTop%7C%7Cc%26%26c%2EscrollTop%7C%7C0%29%2D%28e%26%26e%2EclientTop%7C%7Cc%26%26c%2EclientTop%7C%7C0%29%29%2C%21a%2ErelatedTarget%26%26g%26%26%28a%2ErelatedTarget%3Dg%3D%3D%3Da%2Etarget%3Fb%2EtoElement%3Ag%29%2Ca%2Ewhich%7C%7Cvoid%200%3D%3D%3Df%7C%7C%28a%2Ewhich%3D1%26f%3F1%3A2%26f%3F3%3A4%26f%3F2%3A0%29%2Ca%7D%7D%2Cspecial%3A%7Bload%3A%7BnoBubble%3A%210%7D%2Cfocus%3A%7Btrigger%3Afunction%28%29%7Bif%28this%21%3D%3Ddb%28%29%26%26this%2Efocus%29try%7Breturn%20this%2Efocus%28%29%2C%211%7Dcatch%28a%29%7B%7D%7D%2CdelegateType%3A%22focusin%22%7D%2Cblur%3A%7Btrigger%3Afunction%28%29%7Breturn%20this%3D%3D%3Ddb%28%29%26%26this%2Eblur%3F%28this%2Eblur%28%29%2C%211%29%3Avoid%200%7D%2CdelegateType%3A%22focusout%22%7D%2Cclick%3A%7Btrigger%3Afunction%28%29%7Breturn%20n%2EnodeName%28this%2C%22input%22%29%26%26%22checkbox%22%3D%3D%3Dthis%2Etype%26%26this%2Eclick%3F%28this%2Eclick%28%29%2C%211%29%3Avoid%200%7D%2C%5Fdefault%3Afunction%28a%29%7Breturn%20n%2EnodeName%28a%2Etarget%2C%22a%22%29%7D%7D%2Cbeforeunload%3A%7BpostDispatch%3Afunction%28a%29%7Bvoid%200%21%3D%3Da%2Eresult%26%26%28a%2EoriginalEvent%2EreturnValue%3Da%2Eresult%29%7D%7D%7D%2Csimulate%3Afunction%28a%2Cb%2Cc%2Cd%29%7Bvar%20e%3Dn%2Eextend%28new%20n%2EEvent%2Cc%2C%7Btype%3Aa%2CisSimulated%3A%210%2CoriginalEvent%3A%7B%7D%7D%29%3Bd%3Fn%2Eevent%2Etrigger%28e%2Cnull%2Cb%29%3An%2Eevent%2Edispatch%2Ecall%28b%2Ce%29%2Ce%2EisDefaultPrevented%28%29%26%26c%2EpreventDefault%28%29%7D%7D%2Cn%2EremoveEvent%3Dz%2EremoveEventListener%3Ffunction%28a%2Cb%2Cc%29%7Ba%2EremoveEventListener%26%26a%2EremoveEventListener%28b%2Cc%2C%211%29%7D%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%3D%22on%22%2Bb%3Ba%2EdetachEvent%26%26%28typeof%20a%5Bd%5D%3D%3D%3DL%26%26%28a%5Bd%5D%3Dnull%29%2Ca%2EdetachEvent%28d%2Cc%29%29%7D%2Cn%2EEvent%3Dfunction%28a%2Cb%29%7Breturn%20this%20instanceof%20n%2EEvent%3F%28a%26%26a%2Etype%3F%28this%2EoriginalEvent%3Da%2Cthis%2Etype%3Da%2Etype%2Cthis%2EisDefaultPrevented%3Da%2EdefaultPrevented%7C%7Cvoid%200%3D%3D%3Da%2EdefaultPrevented%26%26%28a%2EreturnValue%3D%3D%3D%211%7C%7Ca%2EgetPreventDefault%26%26a%2EgetPreventDefault%28%29%29%3Fbb%3Acb%29%3Athis%2Etype%3Da%2Cb%26%26n%2Eextend%28this%2Cb%29%2Cthis%2EtimeStamp%3Da%26%26a%2EtimeStamp%7C%7Cn%2Enow%28%29%2Cvoid%28this%5Bn%2Eexpando%5D%3D%210%29%29%3Anew%20n%2EEvent%28a%2Cb%29%7D%2Cn%2EEvent%2Eprototype%3D%7BisDefaultPrevented%3Acb%2CisPropagationStopped%3Acb%2CisImmediatePropagationStopped%3Acb%2CpreventDefault%3Afunction%28%29%7Bvar%20a%3Dthis%2EoriginalEvent%3Bthis%2EisDefaultPrevented%3Dbb%2Ca%26%26%28a%2EpreventDefault%3Fa%2EpreventDefault%28%29%3Aa%2EreturnValue%3D%211%29%7D%2CstopPropagation%3Afunction%28%29%7Bvar%20a%3Dthis%2EoriginalEvent%3Bthis%2EisPropagationStopped%3Dbb%2Ca%26%26%28a%2EstopPropagation%26%26a%2EstopPropagation%28%29%2Ca%2EcancelBubble%3D%210%29%7D%2CstopImmediatePropagation%3Afunction%28%29%7Bthis%2EisImmediatePropagationStopped%3Dbb%2Cthis%2EstopPropagation%28%29%7D%7D%2Cn%2Eeach%28%7Bmouseenter%3A%22mouseover%22%2Cmouseleave%3A%22mouseout%22%7D%2Cfunction%28a%2Cb%29%7Bn%2Eevent%2Especial%5Ba%5D%3D%7BdelegateType%3Ab%2CbindType%3Ab%2Chandle%3Afunction%28a%29%7Bvar%20c%2Cd%3Dthis%2Ce%3Da%2ErelatedTarget%2Cf%3Da%2EhandleObj%3Breturn%28%21e%7C%7Ce%21%3D%3Dd%26%26%21n%2Econtains%28d%2Ce%29%29%26%26%28a%2Etype%3Df%2EorigType%2Cc%3Df%2Ehandler%2Eapply%28this%2Carguments%29%2Ca%2Etype%3Db%29%2Cc%7D%7D%7D%29%2Cl%2EsubmitBubbles%7C%7C%28n%2Eevent%2Especial%2Esubmit%3D%7Bsetup%3Afunction%28%29%7Breturn%20n%2EnodeName%28this%2C%22form%22%29%3F%211%3Avoid%20n%2Eevent%2Eadd%28this%2C%22click%2E%5Fsubmit%20keypress%2E%5Fsubmit%22%2Cfunction%28a%29%7Bvar%20b%3Da%2Etarget%2Cc%3Dn%2EnodeName%28b%2C%22input%22%29%7C%7Cn%2EnodeName%28b%2C%22button%22%29%3Fb%2Eform%3Avoid%200%3Bc%26%26%21n%2E%5Fdata%28c%2C%22submitBubbles%22%29%26%26%28n%2Eevent%2Eadd%28c%2C%22submit%2E%5Fsubmit%22%2Cfunction%28a%29%7Ba%2E%5Fsubmit%5Fbubble%3D%210%7D%29%2Cn%2E%5Fdata%28c%2C%22submitBubbles%22%2C%210%29%29%7D%29%7D%2CpostDispatch%3Afunction%28a%29%7Ba%2E%5Fsubmit%5Fbubble%26%26%28delete%20a%2E%5Fsubmit%5Fbubble%2Cthis%2EparentNode%26%26%21a%2EisTrigger%26%26n%2Eevent%2Esimulate%28%22submit%22%2Cthis%2EparentNode%2Ca%2C%210%29%29%7D%2Cteardown%3Afunction%28%29%7Breturn%20n%2EnodeName%28this%2C%22form%22%29%3F%211%3Avoid%20n%2Eevent%2Eremove%28this%2C%22%2E%5Fsubmit%22%29%7D%7D%29%2Cl%2EchangeBubbles%7C%7C%28n%2Eevent%2Especial%2Echange%3D%7Bsetup%3Afunction%28%29%7Breturn%20Y%2Etest%28this%2EnodeName%29%3F%28%28%22checkbox%22%3D%3D%3Dthis%2Etype%7C%7C%22radio%22%3D%3D%3Dthis%2Etype%29%26%26%28n%2Eevent%2Eadd%28this%2C%22propertychange%2E%5Fchange%22%2Cfunction%28a%29%7B%22checked%22%3D%3D%3Da%2EoriginalEvent%2EpropertyName%26%26%28this%2E%5Fjust%5Fchanged%3D%210%29%7D%29%2Cn%2Eevent%2Eadd%28this%2C%22click%2E%5Fchange%22%2Cfunction%28a%29%7Bthis%2E%5Fjust%5Fchanged%26%26%21a%2EisTrigger%26%26%28this%2E%5Fjust%5Fchanged%3D%211%29%2Cn%2Eevent%2Esimulate%28%22change%22%2Cthis%2Ca%2C%210%29%7D%29%29%2C%211%29%3Avoid%20n%2Eevent%2Eadd%28this%2C%22beforeactivate%2E%5Fchange%22%2Cfunction%28a%29%7Bvar%20b%3Da%2Etarget%3BY%2Etest%28b%2EnodeName%29%26%26%21n%2E%5Fdata%28b%2C%22changeBubbles%22%29%26%26%28n%2Eevent%2Eadd%28b%2C%22change%2E%5Fchange%22%2Cfunction%28a%29%7B%21this%2EparentNode%7C%7Ca%2EisSimulated%7C%7Ca%2EisTrigger%7C%7Cn%2Eevent%2Esimulate%28%22change%22%2Cthis%2EparentNode%2Ca%2C%210%29%7D%29%2Cn%2E%5Fdata%28b%2C%22changeBubbles%22%2C%210%29%29%7D%29%7D%2Chandle%3Afunction%28a%29%7Bvar%20b%3Da%2Etarget%3Breturn%20this%21%3D%3Db%7C%7Ca%2EisSimulated%7C%7Ca%2EisTrigger%7C%7C%22radio%22%21%3D%3Db%2Etype%26%26%22checkbox%22%21%3D%3Db%2Etype%3Fa%2EhandleObj%2Ehandler%2Eapply%28this%2Carguments%29%3Avoid%200%7D%2Cteardown%3Afunction%28%29%7Breturn%20n%2Eevent%2Eremove%28this%2C%22%2E%5Fchange%22%29%2C%21Y%2Etest%28this%2EnodeName%29%7D%7D%29%2Cl%2EfocusinBubbles%7C%7Cn%2Eeach%28%7Bfocus%3A%22focusin%22%2Cblur%3A%22focusout%22%7D%2Cfunction%28a%2Cb%29%7Bvar%20c%3Dfunction%28a%29%7Bn%2Eevent%2Esimulate%28b%2Ca%2Etarget%2Cn%2Eevent%2Efix%28a%29%2C%210%29%7D%3Bn%2Eevent%2Especial%5Bb%5D%3D%7Bsetup%3Afunction%28%29%7Bvar%20d%3Dthis%2EownerDocument%7C%7Cthis%2Ce%3Dn%2E%5Fdata%28d%2Cb%29%3Be%7C%7Cd%2EaddEventListener%28a%2Cc%2C%210%29%2Cn%2E%5Fdata%28d%2Cb%2C%28e%7C%7C0%29%2B1%29%7D%2Cteardown%3Afunction%28%29%7Bvar%20d%3Dthis%2EownerDocument%7C%7Cthis%2Ce%3Dn%2E%5Fdata%28d%2Cb%29%2D1%3Be%3Fn%2E%5Fdata%28d%2Cb%2Ce%29%3A%28d%2EremoveEventListener%28a%2Cc%2C%210%29%2Cn%2E%5FremoveData%28d%2Cb%29%29%7D%7D%7D%29%2Cn%2Efn%2Eextend%28%7Bon%3Afunction%28a%2Cb%2Cc%2Cd%2Ce%29%7Bvar%20f%2Cg%3Bif%28%22object%22%3D%3Dtypeof%20a%29%7B%22string%22%21%3Dtypeof%20b%26%26%28c%3Dc%7C%7Cb%2Cb%3Dvoid%200%29%3Bfor%28f%20in%20a%29this%2Eon%28f%2Cb%2Cc%2Ca%5Bf%5D%2Ce%29%3Breturn%20this%7Dif%28null%3D%3Dc%26%26null%3D%3Dd%3F%28d%3Db%2Cc%3Db%3Dvoid%200%29%3Anull%3D%3Dd%26%26%28%22string%22%3D%3Dtypeof%20b%3F%28d%3Dc%2Cc%3Dvoid%200%29%3A%28d%3Dc%2Cc%3Db%2Cb%3Dvoid%200%29%29%2Cd%3D%3D%3D%211%29d%3Dcb%3Belse%20if%28%21d%29return%20this%3Breturn%201%3D%3D%3De%26%26%28g%3Dd%2Cd%3Dfunction%28a%29%7Breturn%20n%28%29%2Eoff%28a%29%2Cg%2Eapply%28this%2Carguments%29%7D%2Cd%2Eguid%3Dg%2Eguid%7C%7C%28g%2Eguid%3Dn%2Eguid%2B%2B%29%29%2Cthis%2Eeach%28function%28%29%7Bn%2Eevent%2Eadd%28this%2Ca%2Cd%2Cc%2Cb%29%7D%29%7D%2Cone%3Afunction%28a%2Cb%2Cc%2Cd%29%7Breturn%20this%2Eon%28a%2Cb%2Cc%2Cd%2C1%29%7D%2Coff%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%3Bif%28a%26%26a%2EpreventDefault%26%26a%2EhandleObj%29return%20d%3Da%2EhandleObj%2Cn%28a%2EdelegateTarget%29%2Eoff%28d%2Enamespace%3Fd%2EorigType%2B%22%2E%22%2Bd%2Enamespace%3Ad%2EorigType%2Cd%2Eselector%2Cd%2Ehandler%29%2Cthis%3Bif%28%22object%22%3D%3Dtypeof%20a%29%7Bfor%28e%20in%20a%29this%2Eoff%28e%2Cb%2Ca%5Be%5D%29%3Breturn%20this%7Dreturn%28b%3D%3D%3D%211%7C%7C%22function%22%3D%3Dtypeof%20b%29%26%26%28c%3Db%2Cb%3Dvoid%200%29%2Cc%3D%3D%3D%211%26%26%28c%3Dcb%29%2Cthis%2Eeach%28function%28%29%7Bn%2Eevent%2Eremove%28this%2Ca%2Cc%2Cb%29%7D%29%7D%2Ctrigger%3Afunction%28a%2Cb%29%7Breturn%20this%2Eeach%28function%28%29%7Bn%2Eevent%2Etrigger%28a%2Cb%2Cthis%29%7D%29%7D%2CtriggerHandler%3Afunction%28a%2Cb%29%7Bvar%20c%3Dthis%5B0%5D%3Breturn%20c%3Fn%2Eevent%2Etrigger%28a%2Cb%2Cc%2C%210%29%3Avoid%200%7D%7D%29%3Bfunction%20eb%28a%29%7Bvar%20b%3Dfb%2Esplit%28%22%7C%22%29%2Cc%3Da%2EcreateDocumentFragment%28%29%3Bif%28c%2EcreateElement%29while%28b%2Elength%29c%2EcreateElement%28b%2Epop%28%29%29%3Breturn%20c%7Dvar%20fb%3D%22abbr%7Carticle%7Caside%7Caudio%7Cbdi%7Ccanvas%7Cdata%7Cdatalist%7Cdetails%7Cfigcaption%7Cfigure%7Cfooter%7Cheader%7Chgroup%7Cmark%7Cmeter%7Cnav%7Coutput%7Cprogress%7Csection%7Csummary%7Ctime%7Cvideo%22%2Cgb%3D%2F%20jQuery%5Cd%2B%3D%22%28%3F%3Anull%7C%5Cd%2B%29%22%2Fg%2Chb%3Dnew%20RegExp%28%22%3C%28%3F%3A%22%2Bfb%2B%22%29%5B%5C%5Cs%2F%3E%5D%22%2C%22i%22%29%2Cib%3D%2F%5E%5Cs%2B%2F%2Cjb%3D%2F%3C%28%3F%21area%7Cbr%7Ccol%7Cembed%7Chr%7Cimg%7Cinput%7Clink%7Cmeta%7Cparam%29%28%28%5B%5Cw%3A%5D%2B%29%5B%5E%3E%5D%2A%29%5C%2F%3E%2Fgi%2Ckb%3D%2F%3C%28%5B%5Cw%3A%5D%2B%29%2F%2Clb%3D%2F%3Ctbody%2Fi%2Cmb%3D%2F%3C%7C%26%23%3F%5Cw%2B%3B%2F%2Cnb%3D%2F%3C%28%3F%3Ascript%7Cstyle%7Clink%29%2Fi%2Cob%3D%2Fchecked%5Cs%2A%28%3F%3A%5B%5E%3D%5D%7C%3D%5Cs%2A%2Echecked%2E%29%2Fi%2Cpb%3D%2F%5E%24%7C%5C%2F%28%3F%3Ajava%7Cecma%29script%2Fi%2Cqb%3D%2F%5Etrue%5C%2F%28%2E%2A%29%2F%2Crb%3D%2F%5E%5Cs%2A%3C%21%28%3F%3A%5C%5BCDATA%5C%5B%7C%2D%2D%29%7C%28%3F%3A%5C%5D%5C%5D%7C%2D%2D%29%3E%5Cs%2A%24%2Fg%2Csb%3D%7Boption%3A%5B1%2C%22%3Cselect%20multiple%3D%27multiple%27%3E%22%2C%22%3C%2Fselect%3E%22%5D%2Clegend%3A%5B1%2C%22%3Cfieldset%3E%22%2C%22%3C%2Ffieldset%3E%22%5D%2Carea%3A%5B1%2C%22%3Cmap%3E%22%2C%22%3C%2Fmap%3E%22%5D%2Cparam%3A%5B1%2C%22%3Cobject%3E%22%2C%22%3C%2Fobject%3E%22%5D%2Cthead%3A%5B1%2C%22%3Ctable%3E%22%2C%22%3C%2Ftable%3E%22%5D%2Ctr%3A%5B2%2C%22%3Ctable%3E%3Ctbody%3E%22%2C%22%3C%2Ftbody%3E%3C%2Ftable%3E%22%5D%2Ccol%3A%5B2%2C%22%3Ctable%3E%3Ctbody%3E%3C%2Ftbody%3E%3Ccolgroup%3E%22%2C%22%3C%2Fcolgroup%3E%3C%2Ftable%3E%22%5D%2Ctd%3A%5B3%2C%22%3Ctable%3E%3Ctbody%3E%3Ctr%3E%22%2C%22%3C%2Ftr%3E%3C%2Ftbody%3E%3C%2Ftable%3E%22%5D%2C%5Fdefault%3Al%2EhtmlSerialize%3F%5B0%2C%22%22%2C%22%22%5D%3A%5B1%2C%22X%3Cdiv%3E%22%2C%22%3C%2Fdiv%3E%22%5D%7D%2Ctb%3Deb%28z%29%2Cub%3Dtb%2EappendChild%28z%2EcreateElement%28%22div%22%29%29%3Bsb%2Eoptgroup%3Dsb%2Eoption%2Csb%2Etbody%3Dsb%2Etfoot%3Dsb%2Ecolgroup%3Dsb%2Ecaption%3Dsb%2Ethead%2Csb%2Eth%3Dsb%2Etd%3Bfunction%20vb%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%3D0%2Cf%3Dtypeof%20a%2EgetElementsByTagName%21%3D%3DL%3Fa%2EgetElementsByTagName%28b%7C%7C%22%2A%22%29%3Atypeof%20a%2EquerySelectorAll%21%3D%3DL%3Fa%2EquerySelectorAll%28b%7C%7C%22%2A%22%29%3Avoid%200%3Bif%28%21f%29for%28f%3D%5B%5D%2Cc%3Da%2EchildNodes%7C%7Ca%3Bnull%21%3D%28d%3Dc%5Be%5D%29%3Be%2B%2B%29%21b%7C%7Cn%2EnodeName%28d%2Cb%29%3Ff%2Epush%28d%29%3An%2Emerge%28f%2Cvb%28d%2Cb%29%29%3Breturn%20void%200%3D%3D%3Db%7C%7Cb%26%26n%2EnodeName%28a%2Cb%29%3Fn%2Emerge%28%5Ba%5D%2Cf%29%3Af%7Dfunction%20wb%28a%29%7BX%2Etest%28a%2Etype%29%26%26%28a%2EdefaultChecked%3Da%2Echecked%29%7Dfunction%20xb%28a%2Cb%29%7Breturn%20n%2EnodeName%28a%2C%22table%22%29%26%26n%2EnodeName%2811%21%3D%3Db%2EnodeType%3Fb%3Ab%2EfirstChild%2C%22tr%22%29%3Fa%2EgetElementsByTagName%28%22tbody%22%29%5B0%5D%7C%7Ca%2EappendChild%28a%2EownerDocument%2EcreateElement%28%22tbody%22%29%29%3Aa%7Dfunction%20yb%28a%29%7Breturn%20a%2Etype%3D%28null%21%3D%3Dn%2Efind%2Eattr%28a%2C%22type%22%29%29%2B%22%2F%22%2Ba%2Etype%2Ca%7Dfunction%20zb%28a%29%7Bvar%20b%3Dqb%2Eexec%28a%2Etype%29%3Breturn%20b%3Fa%2Etype%3Db%5B1%5D%3Aa%2EremoveAttribute%28%22type%22%29%2Ca%7Dfunction%20Ab%28a%2Cb%29%7Bfor%28var%20c%2Cd%3D0%3Bnull%21%3D%28c%3Da%5Bd%5D%29%3Bd%2B%2B%29n%2E%5Fdata%28c%2C%22globalEval%22%2C%21b%7C%7Cn%2E%5Fdata%28b%5Bd%5D%2C%22globalEval%22%29%29%7Dfunction%20Bb%28a%2Cb%29%7Bif%281%3D%3D%3Db%2EnodeType%26%26n%2EhasData%28a%29%29%7Bvar%20c%2Cd%2Ce%2Cf%3Dn%2E%5Fdata%28a%29%2Cg%3Dn%2E%5Fdata%28b%2Cf%29%2Ch%3Df%2Eevents%3Bif%28h%29%7Bdelete%20g%2Ehandle%2Cg%2Eevents%3D%7B%7D%3Bfor%28c%20in%20h%29for%28d%3D0%2Ce%3Dh%5Bc%5D%2Elength%3Be%3Ed%3Bd%2B%2B%29n%2Eevent%2Eadd%28b%2Cc%2Ch%5Bc%5D%5Bd%5D%29%7Dg%2Edata%26%26%28g%2Edata%3Dn%2Eextend%28%7B%7D%2Cg%2Edata%29%29%7D%7Dfunction%20Cb%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%3Bif%281%3D%3D%3Db%2EnodeType%29%7Bif%28c%3Db%2EnodeName%2EtoLowerCase%28%29%2C%21l%2EnoCloneEvent%26%26b%5Bn%2Eexpando%5D%29%7Be%3Dn%2E%5Fdata%28b%29%3Bfor%28d%20in%20e%2Eevents%29n%2EremoveEvent%28b%2Cd%2Ce%2Ehandle%29%3Bb%2EremoveAttribute%28n%2Eexpando%29%7D%22script%22%3D%3D%3Dc%26%26b%2Etext%21%3D%3Da%2Etext%3F%28yb%28b%29%2Etext%3Da%2Etext%2Czb%28b%29%29%3A%22object%22%3D%3D%3Dc%3F%28b%2EparentNode%26%26%28b%2EouterHTML%3Da%2EouterHTML%29%2Cl%2Ehtml5Clone%26%26a%2EinnerHTML%26%26%21n%2Etrim%28b%2EinnerHTML%29%26%26%28b%2EinnerHTML%3Da%2EinnerHTML%29%29%3A%22input%22%3D%3D%3Dc%26%26X%2Etest%28a%2Etype%29%3F%28b%2EdefaultChecked%3Db%2Echecked%3Da%2Echecked%2Cb%2Evalue%21%3D%3Da%2Evalue%26%26%28b%2Evalue%3Da%2Evalue%29%29%3A%22option%22%3D%3D%3Dc%3Fb%2EdefaultSelected%3Db%2Eselected%3Da%2EdefaultSelected%3A%28%22input%22%3D%3D%3Dc%7C%7C%22textarea%22%3D%3D%3Dc%29%26%26%28b%2EdefaultValue%3Da%2EdefaultValue%29%7D%7Dn%2Eextend%28%7Bclone%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%2Cg%2Ch%2Ci%3Dn%2Econtains%28a%2EownerDocument%2Ca%29%3Bif%28l%2Ehtml5Clone%7C%7Cn%2EisXMLDoc%28a%29%7C%7C%21hb%2Etest%28%22%3C%22%2Ba%2EnodeName%2B%22%3E%22%29%3Ff%3Da%2EcloneNode%28%210%29%3A%28ub%2EinnerHTML%3Da%2EouterHTML%2Cub%2EremoveChild%28f%3Dub%2EfirstChild%29%29%2C%21%28l%2EnoCloneEvent%26%26l%2EnoCloneChecked%7C%7C1%21%3D%3Da%2EnodeType%26%2611%21%3D%3Da%2EnodeType%7C%7Cn%2EisXMLDoc%28a%29%29%29for%28d%3Dvb%28f%29%2Ch%3Dvb%28a%29%2Cg%3D0%3Bnull%21%3D%28e%3Dh%5Bg%5D%29%3B%2B%2Bg%29d%5Bg%5D%26%26Cb%28e%2Cd%5Bg%5D%29%3Bif%28b%29if%28c%29for%28h%3Dh%7C%7Cvb%28a%29%2Cd%3Dd%7C%7Cvb%28f%29%2Cg%3D0%3Bnull%21%3D%28e%3Dh%5Bg%5D%29%3Bg%2B%2B%29Bb%28e%2Cd%5Bg%5D%29%3Belse%20Bb%28a%2Cf%29%3Breturn%20d%3Dvb%28f%2C%22script%22%29%2Cd%2Elength%3E0%26%26Ab%28d%2C%21i%26%26vb%28a%2C%22script%22%29%29%2Cd%3Dh%3De%3Dnull%2Cf%7D%2CbuildFragment%3Afunction%28a%2Cb%2Cc%2Cd%29%7Bfor%28var%20e%2Cf%2Cg%2Ch%2Ci%2Cj%2Ck%2Cm%3Da%2Elength%2Co%3Deb%28b%29%2Cp%3D%5B%5D%2Cq%3D0%3Bm%3Eq%3Bq%2B%2B%29if%28f%3Da%5Bq%5D%2Cf%7C%7C0%3D%3D%3Df%29if%28%22object%22%3D%3D%3Dn%2Etype%28f%29%29n%2Emerge%28p%2Cf%2EnodeType%3F%5Bf%5D%3Af%29%3Belse%20if%28mb%2Etest%28f%29%29%7Bh%3Dh%7C%7Co%2EappendChild%28b%2EcreateElement%28%22div%22%29%29%2Ci%3D%28kb%2Eexec%28f%29%7C%7C%5B%22%22%2C%22%22%5D%29%5B1%5D%2EtoLowerCase%28%29%2Ck%3Dsb%5Bi%5D%7C%7Csb%2E%5Fdefault%2Ch%2EinnerHTML%3Dk%5B1%5D%2Bf%2Ereplace%28jb%2C%22%3C%241%3E%3C%2F%242%3E%22%29%2Bk%5B2%5D%2Ce%3Dk%5B0%5D%3Bwhile%28e%2D%2D%29h%3Dh%2ElastChild%3Bif%28%21l%2EleadingWhitespace%26%26ib%2Etest%28f%29%26%26p%2Epush%28b%2EcreateTextNode%28ib%2Eexec%28f%29%5B0%5D%29%29%2C%21l%2Etbody%29%7Bf%3D%22table%22%21%3D%3Di%7C%7Clb%2Etest%28f%29%3F%22%3Ctable%3E%22%21%3D%3Dk%5B1%5D%7C%7Clb%2Etest%28f%29%3F0%3Ah%3Ah%2EfirstChild%2Ce%3Df%26%26f%2EchildNodes%2Elength%3Bwhile%28e%2D%2D%29n%2EnodeName%28j%3Df%2EchildNodes%5Be%5D%2C%22tbody%22%29%26%26%21j%2EchildNodes%2Elength%26%26f%2EremoveChild%28j%29%7Dn%2Emerge%28p%2Ch%2EchildNodes%29%2Ch%2EtextContent%3D%22%22%3Bwhile%28h%2EfirstChild%29h%2EremoveChild%28h%2EfirstChild%29%3Bh%3Do%2ElastChild%7Delse%20p%2Epush%28b%2EcreateTextNode%28f%29%29%3Bh%26%26o%2EremoveChild%28h%29%2Cl%2EappendChecked%7C%7Cn%2Egrep%28vb%28p%2C%22input%22%29%2Cwb%29%2Cq%3D0%3Bwhile%28f%3Dp%5Bq%2B%2B%5D%29if%28%28%21d%7C%7C%2D1%3D%3D%3Dn%2EinArray%28f%2Cd%29%29%26%26%28g%3Dn%2Econtains%28f%2EownerDocument%2Cf%29%2Ch%3Dvb%28o%2EappendChild%28f%29%2C%22script%22%29%2Cg%26%26Ab%28h%29%2Cc%29%29%7Be%3D0%3Bwhile%28f%3Dh%5Be%2B%2B%5D%29pb%2Etest%28f%2Etype%7C%7C%22%22%29%26%26c%2Epush%28f%29%7Dreturn%20h%3Dnull%2Co%7D%2CcleanData%3Afunction%28a%2Cb%29%7Bfor%28var%20d%2Ce%2Cf%2Cg%2Ch%3D0%2Ci%3Dn%2Eexpando%2Cj%3Dn%2Ecache%2Ck%3Dl%2EdeleteExpando%2Cm%3Dn%2Eevent%2Especial%3Bnull%21%3D%28d%3Da%5Bh%5D%29%3Bh%2B%2B%29if%28%28b%7C%7Cn%2EacceptData%28d%29%29%26%26%28f%3Dd%5Bi%5D%2Cg%3Df%26%26j%5Bf%5D%29%29%7Bif%28g%2Eevents%29for%28e%20in%20g%2Eevents%29m%5Be%5D%3Fn%2Eevent%2Eremove%28d%2Ce%29%3An%2EremoveEvent%28d%2Ce%2Cg%2Ehandle%29%3Bj%5Bf%5D%26%26%28delete%20j%5Bf%5D%2Ck%3Fdelete%20d%5Bi%5D%3Atypeof%20d%2EremoveAttribute%21%3D%3DL%3Fd%2EremoveAttribute%28i%29%3Ad%5Bi%5D%3Dnull%2Cc%2Epush%28f%29%29%7D%7D%7D%29%2Cn%2Efn%2Eextend%28%7Btext%3Afunction%28a%29%7Breturn%20W%28this%2Cfunction%28a%29%7Breturn%20void%200%3D%3D%3Da%3Fn%2Etext%28this%29%3Athis%2Eempty%28%29%2Eappend%28%28this%5B0%5D%26%26this%5B0%5D%2EownerDocument%7C%7Cz%29%2EcreateTextNode%28a%29%29%7D%2Cnull%2Ca%2Carguments%2Elength%29%7D%2Cappend%3Afunction%28%29%7Breturn%20this%2EdomManip%28arguments%2Cfunction%28a%29%7Bif%281%3D%3D%3Dthis%2EnodeType%7C%7C11%3D%3D%3Dthis%2EnodeType%7C%7C9%3D%3D%3Dthis%2EnodeType%29%7Bvar%20b%3Dxb%28this%2Ca%29%3Bb%2EappendChild%28a%29%7D%7D%29%7D%2Cprepend%3Afunction%28%29%7Breturn%20this%2EdomManip%28arguments%2Cfunction%28a%29%7Bif%281%3D%3D%3Dthis%2EnodeType%7C%7C11%3D%3D%3Dthis%2EnodeType%7C%7C9%3D%3D%3Dthis%2EnodeType%29%7Bvar%20b%3Dxb%28this%2Ca%29%3Bb%2EinsertBefore%28a%2Cb%2EfirstChild%29%7D%7D%29%7D%2Cbefore%3Afunction%28%29%7Breturn%20this%2EdomManip%28arguments%2Cfunction%28a%29%7Bthis%2EparentNode%26%26this%2EparentNode%2EinsertBefore%28a%2Cthis%29%7D%29%7D%2Cafter%3Afunction%28%29%7Breturn%20this%2EdomManip%28arguments%2Cfunction%28a%29%7Bthis%2EparentNode%26%26this%2EparentNode%2EinsertBefore%28a%2Cthis%2EnextSibling%29%7D%29%7D%2Cremove%3Afunction%28a%2Cb%29%7Bfor%28var%20c%2Cd%3Da%3Fn%2Efilter%28a%2Cthis%29%3Athis%2Ce%3D0%3Bnull%21%3D%28c%3Dd%5Be%5D%29%3Be%2B%2B%29b%7C%7C1%21%3D%3Dc%2EnodeType%7C%7Cn%2EcleanData%28vb%28c%29%29%2Cc%2EparentNode%26%26%28b%26%26n%2Econtains%28c%2EownerDocument%2Cc%29%26%26Ab%28vb%28c%2C%22script%22%29%29%2Cc%2EparentNode%2EremoveChild%28c%29%29%3Breturn%20this%7D%2Cempty%3Afunction%28%29%7Bfor%28var%20a%2Cb%3D0%3Bnull%21%3D%28a%3Dthis%5Bb%5D%29%3Bb%2B%2B%29%7B1%3D%3D%3Da%2EnodeType%26%26n%2EcleanData%28vb%28a%2C%211%29%29%3Bwhile%28a%2EfirstChild%29a%2EremoveChild%28a%2EfirstChild%29%3Ba%2Eoptions%26%26n%2EnodeName%28a%2C%22select%22%29%26%26%28a%2Eoptions%2Elength%3D0%29%7Dreturn%20this%7D%2Cclone%3Afunction%28a%2Cb%29%7Breturn%20a%3Dnull%3D%3Da%3F%211%3Aa%2Cb%3Dnull%3D%3Db%3Fa%3Ab%2Cthis%2Emap%28function%28%29%7Breturn%20n%2Eclone%28this%2Ca%2Cb%29%7D%29%7D%2Chtml%3Afunction%28a%29%7Breturn%20W%28this%2Cfunction%28a%29%7Bvar%20b%3Dthis%5B0%5D%7C%7C%7B%7D%2Cc%3D0%2Cd%3Dthis%2Elength%3Bif%28void%200%3D%3D%3Da%29return%201%3D%3D%3Db%2EnodeType%3Fb%2EinnerHTML%2Ereplace%28gb%2C%22%22%29%3Avoid%200%3Bif%28%21%28%22string%22%21%3Dtypeof%20a%7C%7Cnb%2Etest%28a%29%7C%7C%21l%2EhtmlSerialize%26%26hb%2Etest%28a%29%7C%7C%21l%2EleadingWhitespace%26%26ib%2Etest%28a%29%7C%7Csb%5B%28kb%2Eexec%28a%29%7C%7C%5B%22%22%2C%22%22%5D%29%5B1%5D%2EtoLowerCase%28%29%5D%29%29%7Ba%3Da%2Ereplace%28jb%2C%22%3C%241%3E%3C%2F%242%3E%22%29%3Btry%7Bfor%28%3Bd%3Ec%3Bc%2B%2B%29b%3Dthis%5Bc%5D%7C%7C%7B%7D%2C1%3D%3D%3Db%2EnodeType%26%26%28n%2EcleanData%28vb%28b%2C%211%29%29%2Cb%2EinnerHTML%3Da%29%3Bb%3D0%7Dcatch%28e%29%7B%7D%7Db%26%26this%2Eempty%28%29%2Eappend%28a%29%7D%2Cnull%2Ca%2Carguments%2Elength%29%7D%2CreplaceWith%3Afunction%28%29%7Bvar%20a%3Darguments%5B0%5D%3Breturn%20this%2EdomManip%28arguments%2Cfunction%28b%29%7Ba%3Dthis%2EparentNode%2Cn%2EcleanData%28vb%28this%29%29%2Ca%26%26a%2EreplaceChild%28b%2Cthis%29%7D%29%2Ca%26%26%28a%2Elength%7C%7Ca%2EnodeType%29%3Fthis%3Athis%2Eremove%28%29%7D%2Cdetach%3Afunction%28a%29%7Breturn%20this%2Eremove%28a%2C%210%29%7D%2CdomManip%3Afunction%28a%2Cb%29%7Ba%3De%2Eapply%28%5B%5D%2Ca%29%3Bvar%20c%2Cd%2Cf%2Cg%2Ch%2Ci%2Cj%3D0%2Ck%3Dthis%2Elength%2Cm%3Dthis%2Co%3Dk%2D1%2Cp%3Da%5B0%5D%2Cq%3Dn%2EisFunction%28p%29%3Bif%28q%7C%7Ck%3E1%26%26%22string%22%3D%3Dtypeof%20p%26%26%21l%2EcheckClone%26%26ob%2Etest%28p%29%29return%20this%2Eeach%28function%28c%29%7Bvar%20d%3Dm%2Eeq%28c%29%3Bq%26%26%28a%5B0%5D%3Dp%2Ecall%28this%2Cc%2Cd%2Ehtml%28%29%29%29%2Cd%2EdomManip%28a%2Cb%29%7D%29%3Bif%28k%26%26%28i%3Dn%2EbuildFragment%28a%2Cthis%5B0%5D%2EownerDocument%2C%211%2Cthis%29%2Cc%3Di%2EfirstChild%2C1%3D%3D%3Di%2EchildNodes%2Elength%26%26%28i%3Dc%29%2Cc%29%29%7Bfor%28g%3Dn%2Emap%28vb%28i%2C%22script%22%29%2Cyb%29%2Cf%3Dg%2Elength%3Bk%3Ej%3Bj%2B%2B%29d%3Di%2Cj%21%3D%3Do%26%26%28d%3Dn%2Eclone%28d%2C%210%2C%210%29%2Cf%26%26n%2Emerge%28g%2Cvb%28d%2C%22script%22%29%29%29%2Cb%2Ecall%28this%5Bj%5D%2Cd%2Cj%29%3Bif%28f%29for%28h%3Dg%5Bg%2Elength%2D1%5D%2EownerDocument%2Cn%2Emap%28g%2Czb%29%2Cj%3D0%3Bf%3Ej%3Bj%2B%2B%29d%3Dg%5Bj%5D%2Cpb%2Etest%28d%2Etype%7C%7C%22%22%29%26%26%21n%2E%5Fdata%28d%2C%22globalEval%22%29%26%26n%2Econtains%28h%2Cd%29%26%26%28d%2Esrc%3Fn%2E%5FevalUrl%26%26n%2E%5FevalUrl%28d%2Esrc%29%3An%2EglobalEval%28%28d%2Etext%7C%7Cd%2EtextContent%7C%7Cd%2EinnerHTML%7C%7C%22%22%29%2Ereplace%28rb%2C%22%22%29%29%29%3Bi%3Dc%3Dnull%7Dreturn%20this%7D%7D%29%2Cn%2Eeach%28%7BappendTo%3A%22append%22%2CprependTo%3A%22prepend%22%2CinsertBefore%3A%22before%22%2CinsertAfter%3A%22after%22%2CreplaceAll%3A%22replaceWith%22%7D%2Cfunction%28a%2Cb%29%7Bn%2Efn%5Ba%5D%3Dfunction%28a%29%7Bfor%28var%20c%2Cd%3D0%2Ce%3D%5B%5D%2Cg%3Dn%28a%29%2Ch%3Dg%2Elength%2D1%3Bh%3E%3Dd%3Bd%2B%2B%29c%3Dd%3D%3D%3Dh%3Fthis%3Athis%2Eclone%28%210%29%2Cn%28g%5Bd%5D%29%5Bb%5D%28c%29%2Cf%2Eapply%28e%2Cc%2Eget%28%29%29%3Breturn%20this%2EpushStack%28e%29%7D%7D%29%3Bvar%20Db%2CEb%3D%7B%7D%3Bfunction%20Fb%28b%2Cc%29%7Bvar%20d%3Dn%28c%2EcreateElement%28b%29%29%2EappendTo%28c%2Ebody%29%2Ce%3Da%2EgetDefaultComputedStyle%3Fa%2EgetDefaultComputedStyle%28d%5B0%5D%29%2Edisplay%3An%2Ecss%28d%5B0%5D%2C%22display%22%29%3Breturn%20d%2Edetach%28%29%2Ce%7Dfunction%20Gb%28a%29%7Bvar%20b%3Dz%2Cc%3DEb%5Ba%5D%3Breturn%20c%7C%7C%28c%3DFb%28a%2Cb%29%2C%22none%22%21%3D%3Dc%26%26c%7C%7C%28Db%3D%28Db%7C%7Cn%28%22%3Ciframe%20frameborder%3D%270%27%20width%3D%270%27%20height%3D%270%27%2F%3E%22%29%29%2EappendTo%28b%2EdocumentElement%29%2Cb%3D%28Db%5B0%5D%2EcontentWindow%7C%7CDb%5B0%5D%2EcontentDocument%29%2Edocument%2Cb%2Ewrite%28%29%2Cb%2Eclose%28%29%2Cc%3DFb%28a%2Cb%29%2CDb%2Edetach%28%29%29%2CEb%5Ba%5D%3Dc%29%2Cc%7D%21function%28%29%7Bvar%20a%2Cb%2Cc%3Dz%2EcreateElement%28%22div%22%29%2Cd%3D%22%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%3Bdisplay%3Ablock%3Bpadding%3A0%3Bmargin%3A0%3Bborder%3A0%22%3Bc%2EinnerHTML%3D%22%20%20%3Clink%2F%3E%3Ctable%3E%3C%2Ftable%3E%3Ca%20href%3D%27%2Fa%27%3Ea%3C%2Fa%3E%3Cinput%20type%3D%27checkbox%27%2F%3E%22%2Ca%3Dc%2EgetElementsByTagName%28%22a%22%29%5B0%5D%2Ca%2Estyle%2EcssText%3D%22float%3Aleft%3Bopacity%3A%2E5%22%2Cl%2Eopacity%3D%2F%5E0%2E5%2F%2Etest%28a%2Estyle%2Eopacity%29%2Cl%2EcssFloat%3D%21%21a%2Estyle%2EcssFloat%2Cc%2Estyle%2EbackgroundClip%3D%22content%2Dbox%22%2Cc%2EcloneNode%28%210%29%2Estyle%2EbackgroundClip%3D%22%22%2Cl%2EclearCloneStyle%3D%22content%2Dbox%22%3D%3D%3Dc%2Estyle%2EbackgroundClip%2Ca%3Dc%3Dnull%2Cl%2EshrinkWrapBlocks%3Dfunction%28%29%7Bvar%20a%2Cc%2Ce%2Cf%3Bif%28null%3D%3Db%29%7Bif%28a%3Dz%2EgetElementsByTagName%28%22body%22%29%5B0%5D%2C%21a%29return%3Bf%3D%22border%3A0%3Bwidth%3A0%3Bheight%3A0%3Bposition%3Aabsolute%3Btop%3A0%3Bleft%3A%2D9999px%22%2Cc%3Dz%2EcreateElement%28%22div%22%29%2Ce%3Dz%2EcreateElement%28%22div%22%29%2Ca%2EappendChild%28c%29%2EappendChild%28e%29%2Cb%3D%211%2Ctypeof%20e%2Estyle%2Ezoom%21%3D%3DL%26%26%28e%2Estyle%2EcssText%3Dd%2B%22%3Bwidth%3A1px%3Bpadding%3A1px%3Bzoom%3A1%22%2Ce%2EinnerHTML%3D%22%3Cdiv%3E%3C%2Fdiv%3E%22%2Ce%2EfirstChild%2Estyle%2Ewidth%3D%225px%22%2Cb%3D3%21%3D%3De%2EoffsetWidth%29%2Ca%2EremoveChild%28c%29%2Ca%3Dc%3De%3Dnull%7Dreturn%20b%7D%7D%28%29%3Bvar%20Hb%3D%2F%5Emargin%2F%2CIb%3Dnew%20RegExp%28%22%5E%28%22%2BT%2B%22%29%28%3F%21px%29%5Ba%2Dz%25%5D%2B%24%22%2C%22i%22%29%2CJb%2CKb%2CLb%3D%2F%5E%28top%7Cright%7Cbottom%7Cleft%29%24%2F%3Ba%2EgetComputedStyle%3F%28Jb%3Dfunction%28a%29%7Breturn%20a%2EownerDocument%2EdefaultView%2EgetComputedStyle%28a%2Cnull%29%7D%2CKb%3Dfunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%2Cg%2Ch%3Da%2Estyle%3Breturn%20c%3Dc%7C%7CJb%28a%29%2Cg%3Dc%3Fc%2EgetPropertyValue%28b%29%7C%7Cc%5Bb%5D%3Avoid%200%2Cc%26%26%28%22%22%21%3D%3Dg%7C%7Cn%2Econtains%28a%2EownerDocument%2Ca%29%7C%7C%28g%3Dn%2Estyle%28a%2Cb%29%29%2CIb%2Etest%28g%29%26%26Hb%2Etest%28b%29%26%26%28d%3Dh%2Ewidth%2Ce%3Dh%2EminWidth%2Cf%3Dh%2EmaxWidth%2Ch%2EminWidth%3Dh%2EmaxWidth%3Dh%2Ewidth%3Dg%2Cg%3Dc%2Ewidth%2Ch%2Ewidth%3Dd%2Ch%2EminWidth%3De%2Ch%2EmaxWidth%3Df%29%29%2Cvoid%200%3D%3D%3Dg%3Fg%3Ag%2B%22%22%7D%29%3Az%2EdocumentElement%2EcurrentStyle%26%26%28Jb%3Dfunction%28a%29%7Breturn%20a%2EcurrentStyle%7D%2CKb%3Dfunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%2Cg%2Ch%3Da%2Estyle%3Breturn%20c%3Dc%7C%7CJb%28a%29%2Cg%3Dc%3Fc%5Bb%5D%3Avoid%200%2Cnull%3D%3Dg%26%26h%26%26h%5Bb%5D%26%26%28g%3Dh%5Bb%5D%29%2CIb%2Etest%28g%29%26%26%21Lb%2Etest%28b%29%26%26%28d%3Dh%2Eleft%2Ce%3Da%2EruntimeStyle%2Cf%3De%26%26e%2Eleft%2Cf%26%26%28e%2Eleft%3Da%2EcurrentStyle%2Eleft%29%2Ch%2Eleft%3D%22fontSize%22%3D%3D%3Db%3F%221em%22%3Ag%2Cg%3Dh%2EpixelLeft%2B%22px%22%2Ch%2Eleft%3Dd%2Cf%26%26%28e%2Eleft%3Df%29%29%2Cvoid%200%3D%3D%3Dg%3Fg%3Ag%2B%22%22%7C%7C%22auto%22%7D%29%3Bfunction%20Mb%28a%2Cb%29%7Breturn%7Bget%3Afunction%28%29%7Bvar%20c%3Da%28%29%3Bif%28null%21%3Dc%29return%20c%3Fvoid%20delete%20this%2Eget%3A%28this%2Eget%3Db%29%2Eapply%28this%2Carguments%29%7D%7D%7D%21function%28%29%7Bvar%20b%2Cc%2Cd%2Ce%2Cf%2Cg%2Ch%3Dz%2EcreateElement%28%22div%22%29%2Ci%3D%22border%3A0%3Bwidth%3A0%3Bheight%3A0%3Bposition%3Aabsolute%3Btop%3A0%3Bleft%3A%2D9999px%22%2Cj%3D%22%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%3Bdisplay%3Ablock%3Bpadding%3A0%3Bmargin%3A0%3Bborder%3A0%22%3Bh%2EinnerHTML%3D%22%20%20%3Clink%2F%3E%3Ctable%3E%3C%2Ftable%3E%3Ca%20href%3D%27%2Fa%27%3Ea%3C%2Fa%3E%3Cinput%20type%3D%27checkbox%27%2F%3E%22%2Cb%3Dh%2EgetElementsByTagName%28%22a%22%29%5B0%5D%2Cb%2Estyle%2EcssText%3D%22float%3Aleft%3Bopacity%3A%2E5%22%2Cl%2Eopacity%3D%2F%5E0%2E5%2F%2Etest%28b%2Estyle%2Eopacity%29%2Cl%2EcssFloat%3D%21%21b%2Estyle%2EcssFloat%2Ch%2Estyle%2EbackgroundClip%3D%22content%2Dbox%22%2Ch%2EcloneNode%28%210%29%2Estyle%2EbackgroundClip%3D%22%22%2Cl%2EclearCloneStyle%3D%22content%2Dbox%22%3D%3D%3Dh%2Estyle%2EbackgroundClip%2Cb%3Dh%3Dnull%2Cn%2Eextend%28l%2C%7BreliableHiddenOffsets%3Afunction%28%29%7Bif%28null%21%3Dc%29return%20c%3Bvar%20a%2Cb%2Cd%2Ce%3Dz%2EcreateElement%28%22div%22%29%2Cf%3Dz%2EgetElementsByTagName%28%22body%22%29%5B0%5D%3Bif%28f%29return%20e%2EsetAttribute%28%22className%22%2C%22t%22%29%2Ce%2EinnerHTML%3D%22%20%20%3Clink%2F%3E%3Ctable%3E%3C%2Ftable%3E%3Ca%20href%3D%27%2Fa%27%3Ea%3C%2Fa%3E%3Cinput%20type%3D%27checkbox%27%2F%3E%22%2Ca%3Dz%2EcreateElement%28%22div%22%29%2Ca%2Estyle%2EcssText%3Di%2Cf%2EappendChild%28a%29%2EappendChild%28e%29%2Ce%2EinnerHTML%3D%22%3Ctable%3E%3Ctr%3E%3Ctd%3E%3C%2Ftd%3E%3Ctd%3Et%3C%2Ftd%3E%3C%2Ftr%3E%3C%2Ftable%3E%22%2Cb%3De%2EgetElementsByTagName%28%22td%22%29%2Cb%5B0%5D%2Estyle%2EcssText%3D%22padding%3A0%3Bmargin%3A0%3Bborder%3A0%3Bdisplay%3Anone%22%2Cd%3D0%3D%3D%3Db%5B0%5D%2EoffsetHeight%2Cb%5B0%5D%2Estyle%2Edisplay%3D%22%22%2Cb%5B1%5D%2Estyle%2Edisplay%3D%22none%22%2Cc%3Dd%26%260%3D%3D%3Db%5B0%5D%2EoffsetHeight%2Cf%2EremoveChild%28a%29%2Ce%3Df%3Dnull%2Cc%7D%2CboxSizing%3Afunction%28%29%7Breturn%20null%3D%3Dd%26%26k%28%29%2Cd%7D%2CboxSizingReliable%3Afunction%28%29%7Breturn%20null%3D%3De%26%26k%28%29%2Ce%7D%2CpixelPosition%3Afunction%28%29%7Breturn%20null%3D%3Df%26%26k%28%29%2Cf%7D%2CreliableMarginRight%3Afunction%28%29%7Bvar%20b%2Cc%2Cd%2Ce%3Bif%28null%3D%3Dg%26%26a%2EgetComputedStyle%29%7Bif%28b%3Dz%2EgetElementsByTagName%28%22body%22%29%5B0%5D%2C%21b%29return%3Bc%3Dz%2EcreateElement%28%22div%22%29%2Cd%3Dz%2EcreateElement%28%22div%22%29%2Cc%2Estyle%2EcssText%3Di%2Cb%2EappendChild%28c%29%2EappendChild%28d%29%2Ce%3Dd%2EappendChild%28z%2EcreateElement%28%22div%22%29%29%2Ce%2Estyle%2EcssText%3Dd%2Estyle%2EcssText%3Dj%2Ce%2Estyle%2EmarginRight%3De%2Estyle%2Ewidth%3D%220%22%2Cd%2Estyle%2Ewidth%3D%221px%22%2Cg%3D%21parseFloat%28%28a%2EgetComputedStyle%28e%2Cnull%29%7C%7C%7B%7D%29%2EmarginRight%29%2Cb%2EremoveChild%28c%29%7Dreturn%20g%7D%7D%29%3Bfunction%20k%28%29%7Bvar%20b%2Cc%2Ch%3Dz%2EgetElementsByTagName%28%22body%22%29%5B0%5D%3Bh%26%26%28b%3Dz%2EcreateElement%28%22div%22%29%2Cc%3Dz%2EcreateElement%28%22div%22%29%2Cb%2Estyle%2EcssText%3Di%2Ch%2EappendChild%28b%29%2EappendChild%28c%29%2Cc%2Estyle%2EcssText%3D%22%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%3Bposition%3Aabsolute%3Bdisplay%3Ablock%3Bpadding%3A1px%3Bborder%3A1px%3Bwidth%3A4px%3Bmargin%2Dtop%3A1%25%3Btop%3A1%25%22%2Cn%2Eswap%28h%2Cnull%21%3Dh%2Estyle%2Ezoom%3F%7Bzoom%3A1%7D%3A%7B%7D%2Cfunction%28%29%7Bd%3D4%3D%3D%3Dc%2EoffsetWidth%7D%29%2Ce%3D%210%2Cf%3D%211%2Cg%3D%210%2Ca%2EgetComputedStyle%26%26%28f%3D%221%25%22%21%3D%3D%28a%2EgetComputedStyle%28c%2Cnull%29%7C%7C%7B%7D%29%2Etop%2Ce%3D%224px%22%3D%3D%3D%28a%2EgetComputedStyle%28c%2Cnull%29%7C%7C%7Bwidth%3A%224px%22%7D%29%2Ewidth%29%2Ch%2EremoveChild%28b%29%2Cc%3Dh%3Dnull%29%7D%7D%28%29%2Cn%2Eswap%3Dfunction%28a%2Cb%2Cc%2Cd%29%7Bvar%20e%2Cf%2Cg%3D%7B%7D%3Bfor%28f%20in%20b%29g%5Bf%5D%3Da%2Estyle%5Bf%5D%2Ca%2Estyle%5Bf%5D%3Db%5Bf%5D%3Be%3Dc%2Eapply%28a%2Cd%7C%7C%5B%5D%29%3Bfor%28f%20in%20b%29a%2Estyle%5Bf%5D%3Dg%5Bf%5D%3Breturn%20e%7D%3Bvar%20Nb%3D%2Falpha%5C%28%5B%5E%29%5D%2A%5C%29%2Fi%2COb%3D%2Fopacity%5Cs%2A%3D%5Cs%2A%28%5B%5E%29%5D%2A%29%2F%2CPb%3D%2F%5E%28none%7Ctable%28%3F%21%2Dc%5Bea%5D%29%2E%2B%29%2F%2CQb%3Dnew%20RegExp%28%22%5E%28%22%2BT%2B%22%29%28%2E%2A%29%24%22%2C%22i%22%29%2CRb%3Dnew%20RegExp%28%22%5E%28%5B%2B%2D%5D%29%3D%28%22%2BT%2B%22%29%22%2C%22i%22%29%2CSb%3D%7Bposition%3A%22absolute%22%2Cvisibility%3A%22hidden%22%2Cdisplay%3A%22block%22%7D%2CTb%3D%7BletterSpacing%3A0%2CfontWeight%3A400%7D%2CUb%3D%5B%22Webkit%22%2C%22O%22%2C%22Moz%22%2C%22ms%22%5D%3Bfunction%20Vb%28a%2Cb%29%7Bif%28b%20in%20a%29return%20b%3Bvar%20c%3Db%2EcharAt%280%29%2EtoUpperCase%28%29%2Bb%2Eslice%281%29%2Cd%3Db%2Ce%3DUb%2Elength%3Bwhile%28e%2D%2D%29if%28b%3DUb%5Be%5D%2Bc%2Cb%20in%20a%29return%20b%3Breturn%20d%7Dfunction%20Wb%28a%2Cb%29%7Bfor%28var%20c%2Cd%2Ce%2Cf%3D%5B%5D%2Cg%3D0%2Ch%3Da%2Elength%3Bh%3Eg%3Bg%2B%2B%29d%3Da%5Bg%5D%2Cd%2Estyle%26%26%28f%5Bg%5D%3Dn%2E%5Fdata%28d%2C%22olddisplay%22%29%2Cc%3Dd%2Estyle%2Edisplay%2Cb%3F%28f%5Bg%5D%7C%7C%22none%22%21%3D%3Dc%7C%7C%28d%2Estyle%2Edisplay%3D%22%22%29%2C%22%22%3D%3D%3Dd%2Estyle%2Edisplay%26%26V%28d%29%26%26%28f%5Bg%5D%3Dn%2E%5Fdata%28d%2C%22olddisplay%22%2CGb%28d%2EnodeName%29%29%29%29%3Af%5Bg%5D%7C%7C%28e%3DV%28d%29%2C%28c%26%26%22none%22%21%3D%3Dc%7C%7C%21e%29%26%26n%2E%5Fdata%28d%2C%22olddisplay%22%2Ce%3Fc%3An%2Ecss%28d%2C%22display%22%29%29%29%29%3Bfor%28g%3D0%3Bh%3Eg%3Bg%2B%2B%29d%3Da%5Bg%5D%2Cd%2Estyle%26%26%28b%26%26%22none%22%21%3D%3Dd%2Estyle%2Edisplay%26%26%22%22%21%3D%3Dd%2Estyle%2Edisplay%7C%7C%28d%2Estyle%2Edisplay%3Db%3Ff%5Bg%5D%7C%7C%22%22%3A%22none%22%29%29%3Breturn%20a%7Dfunction%20Xb%28a%2Cb%2Cc%29%7Bvar%20d%3DQb%2Eexec%28b%29%3Breturn%20d%3FMath%2Emax%280%2Cd%5B1%5D%2D%28c%7C%7C0%29%29%2B%28d%5B2%5D%7C%7C%22px%22%29%3Ab%7Dfunction%20Yb%28a%2Cb%2Cc%2Cd%2Ce%29%7Bfor%28var%20f%3Dc%3D%3D%3D%28d%3F%22border%22%3A%22content%22%29%3F4%3A%22width%22%3D%3D%3Db%3F1%3A0%2Cg%3D0%3B4%3Ef%3Bf%2B%3D2%29%22margin%22%3D%3D%3Dc%26%26%28g%2B%3Dn%2Ecss%28a%2Cc%2BU%5Bf%5D%2C%210%2Ce%29%29%2Cd%3F%28%22content%22%3D%3D%3Dc%26%26%28g%2D%3Dn%2Ecss%28a%2C%22padding%22%2BU%5Bf%5D%2C%210%2Ce%29%29%2C%22margin%22%21%3D%3Dc%26%26%28g%2D%3Dn%2Ecss%28a%2C%22border%22%2BU%5Bf%5D%2B%22Width%22%2C%210%2Ce%29%29%29%3A%28g%2B%3Dn%2Ecss%28a%2C%22padding%22%2BU%5Bf%5D%2C%210%2Ce%29%2C%22padding%22%21%3D%3Dc%26%26%28g%2B%3Dn%2Ecss%28a%2C%22border%22%2BU%5Bf%5D%2B%22Width%22%2C%210%2Ce%29%29%29%3Breturn%20g%7Dfunction%20Zb%28a%2Cb%2Cc%29%7Bvar%20d%3D%210%2Ce%3D%22width%22%3D%3D%3Db%3Fa%2EoffsetWidth%3Aa%2EoffsetHeight%2Cf%3DJb%28a%29%2Cg%3Dl%2EboxSizing%28%29%26%26%22border%2Dbox%22%3D%3D%3Dn%2Ecss%28a%2C%22boxSizing%22%2C%211%2Cf%29%3Bif%280%3E%3De%7C%7Cnull%3D%3De%29%7Bif%28e%3DKb%28a%2Cb%2Cf%29%2C%280%3Ee%7C%7Cnull%3D%3De%29%26%26%28e%3Da%2Estyle%5Bb%5D%29%2CIb%2Etest%28e%29%29return%20e%3Bd%3Dg%26%26%28l%2EboxSizingReliable%28%29%7C%7Ce%3D%3D%3Da%2Estyle%5Bb%5D%29%2Ce%3DparseFloat%28e%29%7C%7C0%7Dreturn%20e%2BYb%28a%2Cb%2Cc%7C%7C%28g%3F%22border%22%3A%22content%22%29%2Cd%2Cf%29%2B%22px%22%7Dn%2Eextend%28%7BcssHooks%3A%7Bopacity%3A%7Bget%3Afunction%28a%2Cb%29%7Bif%28b%29%7Bvar%20c%3DKb%28a%2C%22opacity%22%29%3Breturn%22%22%3D%3D%3Dc%3F%221%22%3Ac%7D%7D%7D%7D%2CcssNumber%3A%7BcolumnCount%3A%210%2CfillOpacity%3A%210%2CfontWeight%3A%210%2ClineHeight%3A%210%2Copacity%3A%210%2Corder%3A%210%2Corphans%3A%210%2Cwidows%3A%210%2CzIndex%3A%210%2Czoom%3A%210%7D%2CcssProps%3A%7B%22float%22%3Al%2EcssFloat%3F%22cssFloat%22%3A%22styleFloat%22%7D%2Cstyle%3Afunction%28a%2Cb%2Cc%2Cd%29%7Bif%28a%26%263%21%3D%3Da%2EnodeType%26%268%21%3D%3Da%2EnodeType%26%26a%2Estyle%29%7Bvar%20e%2Cf%2Cg%2Ch%3Dn%2EcamelCase%28b%29%2Ci%3Da%2Estyle%3Bif%28b%3Dn%2EcssProps%5Bh%5D%7C%7C%28n%2EcssProps%5Bh%5D%3DVb%28i%2Ch%29%29%2Cg%3Dn%2EcssHooks%5Bb%5D%7C%7Cn%2EcssHooks%5Bh%5D%2Cvoid%200%3D%3D%3Dc%29return%20g%26%26%22get%22in%20g%26%26void%200%21%3D%3D%28e%3Dg%2Eget%28a%2C%211%2Cd%29%29%3Fe%3Ai%5Bb%5D%3Bif%28f%3Dtypeof%20c%2C%22string%22%3D%3D%3Df%26%26%28e%3DRb%2Eexec%28c%29%29%26%26%28c%3D%28e%5B1%5D%2B1%29%2Ae%5B2%5D%2BparseFloat%28n%2Ecss%28a%2Cb%29%29%2Cf%3D%22number%22%29%2Cnull%21%3Dc%26%26c%3D%3D%3Dc%26%26%28%22number%22%21%3D%3Df%7C%7Cn%2EcssNumber%5Bh%5D%7C%7C%28c%2B%3D%22px%22%29%2Cl%2EclearCloneStyle%7C%7C%22%22%21%3D%3Dc%7C%7C0%21%3D%3Db%2EindexOf%28%22background%22%29%7C%7C%28i%5Bb%5D%3D%22inherit%22%29%2C%21%28g%26%26%22set%22in%20g%26%26void%200%3D%3D%3D%28c%3Dg%2Eset%28a%2Cc%2Cd%29%29%29%29%29try%7Bi%5Bb%5D%3D%22%22%2Ci%5Bb%5D%3Dc%7Dcatch%28j%29%7B%7D%7D%7D%2Ccss%3Afunction%28a%2Cb%2Cc%2Cd%29%7Bvar%20e%2Cf%2Cg%2Ch%3Dn%2EcamelCase%28b%29%3Breturn%20b%3Dn%2EcssProps%5Bh%5D%7C%7C%28n%2EcssProps%5Bh%5D%3DVb%28a%2Estyle%2Ch%29%29%2Cg%3Dn%2EcssHooks%5Bb%5D%7C%7Cn%2EcssHooks%5Bh%5D%2Cg%26%26%22get%22in%20g%26%26%28f%3Dg%2Eget%28a%2C%210%2Cc%29%29%2Cvoid%200%3D%3D%3Df%26%26%28f%3DKb%28a%2Cb%2Cd%29%29%2C%22normal%22%3D%3D%3Df%26%26b%20in%20Tb%26%26%28f%3DTb%5Bb%5D%29%2C%22%22%3D%3D%3Dc%7C%7Cc%3F%28e%3DparseFloat%28f%29%2Cc%3D%3D%3D%210%7C%7Cn%2EisNumeric%28e%29%3Fe%7C%7C0%3Af%29%3Af%7D%7D%29%2Cn%2Eeach%28%5B%22height%22%2C%22width%22%5D%2Cfunction%28a%2Cb%29%7Bn%2EcssHooks%5Bb%5D%3D%7Bget%3Afunction%28a%2Cc%2Cd%29%7Breturn%20c%3F0%3D%3D%3Da%2EoffsetWidth%26%26Pb%2Etest%28n%2Ecss%28a%2C%22display%22%29%29%3Fn%2Eswap%28a%2CSb%2Cfunction%28%29%7Breturn%20Zb%28a%2Cb%2Cd%29%7D%29%3AZb%28a%2Cb%2Cd%29%3Avoid%200%7D%2Cset%3Afunction%28a%2Cc%2Cd%29%7Bvar%20e%3Dd%26%26Jb%28a%29%3Breturn%20Xb%28a%2Cc%2Cd%3FYb%28a%2Cb%2Cd%2Cl%2EboxSizing%28%29%26%26%22border%2Dbox%22%3D%3D%3Dn%2Ecss%28a%2C%22boxSizing%22%2C%211%2Ce%29%2Ce%29%3A0%29%7D%7D%7D%29%2Cl%2Eopacity%7C%7C%28n%2EcssHooks%2Eopacity%3D%7Bget%3Afunction%28a%2Cb%29%7Breturn%20Ob%2Etest%28%28b%26%26a%2EcurrentStyle%3Fa%2EcurrentStyle%2Efilter%3Aa%2Estyle%2Efilter%29%7C%7C%22%22%29%3F%2E01%2AparseFloat%28RegExp%2E%241%29%2B%22%22%3Ab%3F%221%22%3A%22%22%7D%2Cset%3Afunction%28a%2Cb%29%7Bvar%20c%3Da%2Estyle%2Cd%3Da%2EcurrentStyle%2Ce%3Dn%2EisNumeric%28b%29%3F%22alpha%28opacity%3D%22%2B100%2Ab%2B%22%29%22%3A%22%22%2Cf%3Dd%26%26d%2Efilter%7C%7Cc%2Efilter%7C%7C%22%22%3Bc%2Ezoom%3D1%2C%28b%3E%3D1%7C%7C%22%22%3D%3D%3Db%29%26%26%22%22%3D%3D%3Dn%2Etrim%28f%2Ereplace%28Nb%2C%22%22%29%29%26%26c%2EremoveAttribute%26%26%28c%2EremoveAttribute%28%22filter%22%29%2C%22%22%3D%3D%3Db%7C%7Cd%26%26%21d%2Efilter%29%7C%7C%28c%2Efilter%3DNb%2Etest%28f%29%3Ff%2Ereplace%28Nb%2Ce%29%3Af%2B%22%20%22%2Be%29%7D%7D%29%2Cn%2EcssHooks%2EmarginRight%3DMb%28l%2EreliableMarginRight%2Cfunction%28a%2Cb%29%7Breturn%20b%3Fn%2Eswap%28a%2C%7Bdisplay%3A%22inline%2Dblock%22%7D%2CKb%2C%5Ba%2C%22marginRight%22%5D%29%3Avoid%200%7D%29%2Cn%2Eeach%28%7Bmargin%3A%22%22%2Cpadding%3A%22%22%2Cborder%3A%22Width%22%7D%2Cfunction%28a%2Cb%29%7Bn%2EcssHooks%5Ba%2Bb%5D%3D%7Bexpand%3Afunction%28c%29%7Bfor%28var%20d%3D0%2Ce%3D%7B%7D%2Cf%3D%22string%22%3D%3Dtypeof%20c%3Fc%2Esplit%28%22%20%22%29%3A%5Bc%5D%3B4%3Ed%3Bd%2B%2B%29e%5Ba%2BU%5Bd%5D%2Bb%5D%3Df%5Bd%5D%7C%7Cf%5Bd%2D2%5D%7C%7Cf%5B0%5D%3Breturn%20e%7D%7D%2CHb%2Etest%28a%29%7C%7C%28n%2EcssHooks%5Ba%2Bb%5D%2Eset%3DXb%29%7D%29%2Cn%2Efn%2Eextend%28%7Bcss%3Afunction%28a%2Cb%29%7Breturn%20W%28this%2Cfunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%3D%7B%7D%2Cg%3D0%3Bif%28n%2EisArray%28b%29%29%7Bfor%28d%3DJb%28a%29%2Ce%3Db%2Elength%3Be%3Eg%3Bg%2B%2B%29f%5Bb%5Bg%5D%5D%3Dn%2Ecss%28a%2Cb%5Bg%5D%2C%211%2Cd%29%3Breturn%20f%7Dreturn%20void%200%21%3D%3Dc%3Fn%2Estyle%28a%2Cb%2Cc%29%3An%2Ecss%28a%2Cb%29%0A%7D%2Ca%2Cb%2Carguments%2Elength%3E1%29%7D%2Cshow%3Afunction%28%29%7Breturn%20Wb%28this%2C%210%29%7D%2Chide%3Afunction%28%29%7Breturn%20Wb%28this%29%7D%2Ctoggle%3Afunction%28a%29%7Breturn%22boolean%22%3D%3Dtypeof%20a%3Fa%3Fthis%2Eshow%28%29%3Athis%2Ehide%28%29%3Athis%2Eeach%28function%28%29%7BV%28this%29%3Fn%28this%29%2Eshow%28%29%3An%28this%29%2Ehide%28%29%7D%29%7D%7D%29%3Bfunction%20%24b%28a%2Cb%2Cc%2Cd%2Ce%29%7Breturn%20new%20%24b%2Eprototype%2Einit%28a%2Cb%2Cc%2Cd%2Ce%29%7Dn%2ETween%3D%24b%2C%24b%2Eprototype%3D%7Bconstructor%3A%24b%2Cinit%3Afunction%28a%2Cb%2Cc%2Cd%2Ce%2Cf%29%7Bthis%2Eelem%3Da%2Cthis%2Eprop%3Dc%2Cthis%2Eeasing%3De%7C%7C%22swing%22%2Cthis%2Eoptions%3Db%2Cthis%2Estart%3Dthis%2Enow%3Dthis%2Ecur%28%29%2Cthis%2Eend%3Dd%2Cthis%2Eunit%3Df%7C%7C%28n%2EcssNumber%5Bc%5D%3F%22%22%3A%22px%22%29%7D%2Ccur%3Afunction%28%29%7Bvar%20a%3D%24b%2EpropHooks%5Bthis%2Eprop%5D%3Breturn%20a%26%26a%2Eget%3Fa%2Eget%28this%29%3A%24b%2EpropHooks%2E%5Fdefault%2Eget%28this%29%7D%2Crun%3Afunction%28a%29%7Bvar%20b%2Cc%3D%24b%2EpropHooks%5Bthis%2Eprop%5D%3Breturn%20this%2Epos%3Db%3Dthis%2Eoptions%2Eduration%3Fn%2Eeasing%5Bthis%2Eeasing%5D%28a%2Cthis%2Eoptions%2Eduration%2Aa%2C0%2C1%2Cthis%2Eoptions%2Eduration%29%3Aa%2Cthis%2Enow%3D%28this%2Eend%2Dthis%2Estart%29%2Ab%2Bthis%2Estart%2Cthis%2Eoptions%2Estep%26%26this%2Eoptions%2Estep%2Ecall%28this%2Eelem%2Cthis%2Enow%2Cthis%29%2Cc%26%26c%2Eset%3Fc%2Eset%28this%29%3A%24b%2EpropHooks%2E%5Fdefault%2Eset%28this%29%2Cthis%7D%7D%2C%24b%2Eprototype%2Einit%2Eprototype%3D%24b%2Eprototype%2C%24b%2EpropHooks%3D%7B%5Fdefault%3A%7Bget%3Afunction%28a%29%7Bvar%20b%3Breturn%20null%3D%3Da%2Eelem%5Ba%2Eprop%5D%7C%7Ca%2Eelem%2Estyle%26%26null%21%3Da%2Eelem%2Estyle%5Ba%2Eprop%5D%3F%28b%3Dn%2Ecss%28a%2Eelem%2Ca%2Eprop%2C%22%22%29%2Cb%26%26%22auto%22%21%3D%3Db%3Fb%3A0%29%3Aa%2Eelem%5Ba%2Eprop%5D%7D%2Cset%3Afunction%28a%29%7Bn%2Efx%2Estep%5Ba%2Eprop%5D%3Fn%2Efx%2Estep%5Ba%2Eprop%5D%28a%29%3Aa%2Eelem%2Estyle%26%26%28null%21%3Da%2Eelem%2Estyle%5Bn%2EcssProps%5Ba%2Eprop%5D%5D%7C%7Cn%2EcssHooks%5Ba%2Eprop%5D%29%3Fn%2Estyle%28a%2Eelem%2Ca%2Eprop%2Ca%2Enow%2Ba%2Eunit%29%3Aa%2Eelem%5Ba%2Eprop%5D%3Da%2Enow%7D%7D%7D%2C%24b%2EpropHooks%2EscrollTop%3D%24b%2EpropHooks%2EscrollLeft%3D%7Bset%3Afunction%28a%29%7Ba%2Eelem%2EnodeType%26%26a%2Eelem%2EparentNode%26%26%28a%2Eelem%5Ba%2Eprop%5D%3Da%2Enow%29%7D%7D%2Cn%2Eeasing%3D%7Blinear%3Afunction%28a%29%7Breturn%20a%7D%2Cswing%3Afunction%28a%29%7Breturn%2E5%2DMath%2Ecos%28a%2AMath%2EPI%29%2F2%7D%7D%2Cn%2Efx%3D%24b%2Eprototype%2Einit%2Cn%2Efx%2Estep%3D%7B%7D%3Bvar%20%5Fb%2Cac%2Cbc%3D%2F%5E%28%3F%3Atoggle%7Cshow%7Chide%29%24%2F%2Ccc%3Dnew%20RegExp%28%22%5E%28%3F%3A%28%5B%2B%2D%5D%29%3D%7C%29%28%22%2BT%2B%22%29%28%5Ba%2Dz%25%5D%2A%29%24%22%2C%22i%22%29%2Cdc%3D%2FqueueHooks%24%2F%2Cec%3D%5Bjc%5D%2Cfc%3D%7B%22%2A%22%3A%5Bfunction%28a%2Cb%29%7Bvar%20c%3Dthis%2EcreateTween%28a%2Cb%29%2Cd%3Dc%2Ecur%28%29%2Ce%3Dcc%2Eexec%28b%29%2Cf%3De%26%26e%5B3%5D%7C%7C%28n%2EcssNumber%5Ba%5D%3F%22%22%3A%22px%22%29%2Cg%3D%28n%2EcssNumber%5Ba%5D%7C%7C%22px%22%21%3D%3Df%26%26%2Bd%29%26%26cc%2Eexec%28n%2Ecss%28c%2Eelem%2Ca%29%29%2Ch%3D1%2Ci%3D20%3Bif%28g%26%26g%5B3%5D%21%3D%3Df%29%7Bf%3Df%7C%7Cg%5B3%5D%2Ce%3De%7C%7C%5B%5D%2Cg%3D%2Bd%7C%7C1%3Bdo%20h%3Dh%7C%7C%22%2E5%22%2Cg%2F%3Dh%2Cn%2Estyle%28c%2Eelem%2Ca%2Cg%2Bf%29%3Bwhile%28h%21%3D%3D%28h%3Dc%2Ecur%28%29%2Fd%29%26%261%21%3D%3Dh%26%26%2D%2Di%29%7Dreturn%20e%26%26%28g%3Dc%2Estart%3D%2Bg%7C%7C%2Bd%7C%7C0%2Cc%2Eunit%3Df%2Cc%2Eend%3De%5B1%5D%3Fg%2B%28e%5B1%5D%2B1%29%2Ae%5B2%5D%3A%2Be%5B2%5D%29%2Cc%7D%5D%7D%3Bfunction%20gc%28%29%7Breturn%20setTimeout%28function%28%29%7B%5Fb%3Dvoid%200%7D%29%2C%5Fb%3Dn%2Enow%28%29%7Dfunction%20hc%28a%2Cb%29%7Bvar%20c%2Cd%3D%7Bheight%3Aa%7D%2Ce%3D0%3Bfor%28b%3Db%3F1%3A0%3B4%3Ee%3Be%2B%3D2%2Db%29c%3DU%5Be%5D%2Cd%5B%22margin%22%2Bc%5D%3Dd%5B%22padding%22%2Bc%5D%3Da%3Breturn%20b%26%26%28d%2Eopacity%3Dd%2Ewidth%3Da%29%2Cd%7Dfunction%20ic%28a%2Cb%2Cc%29%7Bfor%28var%20d%2Ce%3D%28fc%5Bb%5D%7C%7C%5B%5D%29%2Econcat%28fc%5B%22%2A%22%5D%29%2Cf%3D0%2Cg%3De%2Elength%3Bg%3Ef%3Bf%2B%2B%29if%28d%3De%5Bf%5D%2Ecall%28c%2Cb%2Ca%29%29return%20d%7Dfunction%20jc%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%2Cg%2Ch%2Ci%2Cj%2Ck%2Cm%3Dthis%2Co%3D%7B%7D%2Cp%3Da%2Estyle%2Cq%3Da%2EnodeType%26%26V%28a%29%2Cr%3Dn%2E%5Fdata%28a%2C%22fxshow%22%29%3Bc%2Equeue%7C%7C%28h%3Dn%2E%5FqueueHooks%28a%2C%22fx%22%29%2Cnull%3D%3Dh%2Eunqueued%26%26%28h%2Eunqueued%3D0%2Ci%3Dh%2Eempty%2Efire%2Ch%2Eempty%2Efire%3Dfunction%28%29%7Bh%2Eunqueued%7C%7Ci%28%29%7D%29%2Ch%2Eunqueued%2B%2B%2Cm%2Ealways%28function%28%29%7Bm%2Ealways%28function%28%29%7Bh%2Eunqueued%2D%2D%2Cn%2Equeue%28a%2C%22fx%22%29%2Elength%7C%7Ch%2Eempty%2Efire%28%29%7D%29%7D%29%29%2C1%3D%3D%3Da%2EnodeType%26%26%28%22height%22in%20b%7C%7C%22width%22in%20b%29%26%26%28c%2Eoverflow%3D%5Bp%2Eoverflow%2Cp%2EoverflowX%2Cp%2EoverflowY%5D%2Cj%3Dn%2Ecss%28a%2C%22display%22%29%2Ck%3DGb%28a%2EnodeName%29%2C%22none%22%3D%3D%3Dj%26%26%28j%3Dk%29%2C%22inline%22%3D%3D%3Dj%26%26%22none%22%3D%3D%3Dn%2Ecss%28a%2C%22float%22%29%26%26%28l%2EinlineBlockNeedsLayout%26%26%22inline%22%21%3D%3Dk%3Fp%2Ezoom%3D1%3Ap%2Edisplay%3D%22inline%2Dblock%22%29%29%2Cc%2Eoverflow%26%26%28p%2Eoverflow%3D%22hidden%22%2Cl%2EshrinkWrapBlocks%28%29%7C%7Cm%2Ealways%28function%28%29%7Bp%2Eoverflow%3Dc%2Eoverflow%5B0%5D%2Cp%2EoverflowX%3Dc%2Eoverflow%5B1%5D%2Cp%2EoverflowY%3Dc%2Eoverflow%5B2%5D%7D%29%29%3Bfor%28d%20in%20b%29if%28e%3Db%5Bd%5D%2Cbc%2Eexec%28e%29%29%7Bif%28delete%20b%5Bd%5D%2Cf%3Df%7C%7C%22toggle%22%3D%3D%3De%2Ce%3D%3D%3D%28q%3F%22hide%22%3A%22show%22%29%29%7Bif%28%22show%22%21%3D%3De%7C%7C%21r%7C%7Cvoid%200%3D%3D%3Dr%5Bd%5D%29continue%3Bq%3D%210%7Do%5Bd%5D%3Dr%26%26r%5Bd%5D%7C%7Cn%2Estyle%28a%2Cd%29%7Dif%28%21n%2EisEmptyObject%28o%29%29%7Br%3F%22hidden%22in%20r%26%26%28q%3Dr%2Ehidden%29%3Ar%3Dn%2E%5Fdata%28a%2C%22fxshow%22%2C%7B%7D%29%2Cf%26%26%28r%2Ehidden%3D%21q%29%2Cq%3Fn%28a%29%2Eshow%28%29%3Am%2Edone%28function%28%29%7Bn%28a%29%2Ehide%28%29%7D%29%2Cm%2Edone%28function%28%29%7Bvar%20b%3Bn%2E%5FremoveData%28a%2C%22fxshow%22%29%3Bfor%28b%20in%20o%29n%2Estyle%28a%2Cb%2Co%5Bb%5D%29%7D%29%3Bfor%28d%20in%20o%29g%3Dic%28q%3Fr%5Bd%5D%3A0%2Cd%2Cm%29%2Cd%20in%20r%7C%7C%28r%5Bd%5D%3Dg%2Estart%2Cq%26%26%28g%2Eend%3Dg%2Estart%2Cg%2Estart%3D%22width%22%3D%3D%3Dd%7C%7C%22height%22%3D%3D%3Dd%3F1%3A0%29%29%7D%7Dfunction%20kc%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%2Cf%2Cg%3Bfor%28c%20in%20a%29if%28d%3Dn%2EcamelCase%28c%29%2Ce%3Db%5Bd%5D%2Cf%3Da%5Bc%5D%2Cn%2EisArray%28f%29%26%26%28e%3Df%5B1%5D%2Cf%3Da%5Bc%5D%3Df%5B0%5D%29%2Cc%21%3D%3Dd%26%26%28a%5Bd%5D%3Df%2Cdelete%20a%5Bc%5D%29%2Cg%3Dn%2EcssHooks%5Bd%5D%2Cg%26%26%22expand%22in%20g%29%7Bf%3Dg%2Eexpand%28f%29%2Cdelete%20a%5Bd%5D%3Bfor%28c%20in%20f%29c%20in%20a%7C%7C%28a%5Bc%5D%3Df%5Bc%5D%2Cb%5Bc%5D%3De%29%7Delse%20b%5Bd%5D%3De%7Dfunction%20lc%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%3D0%2Cg%3Dec%2Elength%2Ch%3Dn%2EDeferred%28%29%2Ealways%28function%28%29%7Bdelete%20i%2Eelem%7D%29%2Ci%3Dfunction%28%29%7Bif%28e%29return%211%3Bfor%28var%20b%3D%5Fb%7C%7Cgc%28%29%2Cc%3DMath%2Emax%280%2Cj%2EstartTime%2Bj%2Eduration%2Db%29%2Cd%3Dc%2Fj%2Eduration%7C%7C0%2Cf%3D1%2Dd%2Cg%3D0%2Ci%3Dj%2Etweens%2Elength%3Bi%3Eg%3Bg%2B%2B%29j%2Etweens%5Bg%5D%2Erun%28f%29%3Breturn%20h%2EnotifyWith%28a%2C%5Bj%2Cf%2Cc%5D%29%2C1%3Ef%26%26i%3Fc%3A%28h%2EresolveWith%28a%2C%5Bj%5D%29%2C%211%29%7D%2Cj%3Dh%2Epromise%28%7Belem%3Aa%2Cprops%3An%2Eextend%28%7B%7D%2Cb%29%2Copts%3An%2Eextend%28%210%2C%7BspecialEasing%3A%7B%7D%7D%2Cc%29%2CoriginalProperties%3Ab%2CoriginalOptions%3Ac%2CstartTime%3A%5Fb%7C%7Cgc%28%29%2Cduration%3Ac%2Eduration%2Ctweens%3A%5B%5D%2CcreateTween%3Afunction%28b%2Cc%29%7Bvar%20d%3Dn%2ETween%28a%2Cj%2Eopts%2Cb%2Cc%2Cj%2Eopts%2EspecialEasing%5Bb%5D%7C%7Cj%2Eopts%2Eeasing%29%3Breturn%20j%2Etweens%2Epush%28d%29%2Cd%7D%2Cstop%3Afunction%28b%29%7Bvar%20c%3D0%2Cd%3Db%3Fj%2Etweens%2Elength%3A0%3Bif%28e%29return%20this%3Bfor%28e%3D%210%3Bd%3Ec%3Bc%2B%2B%29j%2Etweens%5Bc%5D%2Erun%281%29%3Breturn%20b%3Fh%2EresolveWith%28a%2C%5Bj%2Cb%5D%29%3Ah%2ErejectWith%28a%2C%5Bj%2Cb%5D%29%2Cthis%7D%7D%29%2Ck%3Dj%2Eprops%3Bfor%28kc%28k%2Cj%2Eopts%2EspecialEasing%29%3Bg%3Ef%3Bf%2B%2B%29if%28d%3Dec%5Bf%5D%2Ecall%28j%2Ca%2Ck%2Cj%2Eopts%29%29return%20d%3Breturn%20n%2Emap%28k%2Cic%2Cj%29%2Cn%2EisFunction%28j%2Eopts%2Estart%29%26%26j%2Eopts%2Estart%2Ecall%28a%2Cj%29%2Cn%2Efx%2Etimer%28n%2Eextend%28i%2C%7Belem%3Aa%2Canim%3Aj%2Cqueue%3Aj%2Eopts%2Equeue%7D%29%29%2Cj%2Eprogress%28j%2Eopts%2Eprogress%29%2Edone%28j%2Eopts%2Edone%2Cj%2Eopts%2Ecomplete%29%2Efail%28j%2Eopts%2Efail%29%2Ealways%28j%2Eopts%2Ealways%29%7Dn%2EAnimation%3Dn%2Eextend%28lc%2C%7Btweener%3Afunction%28a%2Cb%29%7Bn%2EisFunction%28a%29%3F%28b%3Da%2Ca%3D%5B%22%2A%22%5D%29%3Aa%3Da%2Esplit%28%22%20%22%29%3Bfor%28var%20c%2Cd%3D0%2Ce%3Da%2Elength%3Be%3Ed%3Bd%2B%2B%29c%3Da%5Bd%5D%2Cfc%5Bc%5D%3Dfc%5Bc%5D%7C%7C%5B%5D%2Cfc%5Bc%5D%2Eunshift%28b%29%7D%2Cprefilter%3Afunction%28a%2Cb%29%7Bb%3Fec%2Eunshift%28a%29%3Aec%2Epush%28a%29%7D%7D%29%2Cn%2Espeed%3Dfunction%28a%2Cb%2Cc%29%7Bvar%20d%3Da%26%26%22object%22%3D%3Dtypeof%20a%3Fn%2Eextend%28%7B%7D%2Ca%29%3A%7Bcomplete%3Ac%7C%7C%21c%26%26b%7C%7Cn%2EisFunction%28a%29%26%26a%2Cduration%3Aa%2Ceasing%3Ac%26%26b%7C%7Cb%26%26%21n%2EisFunction%28b%29%26%26b%7D%3Breturn%20d%2Eduration%3Dn%2Efx%2Eoff%3F0%3A%22number%22%3D%3Dtypeof%20d%2Eduration%3Fd%2Eduration%3Ad%2Eduration%20in%20n%2Efx%2Espeeds%3Fn%2Efx%2Espeeds%5Bd%2Eduration%5D%3An%2Efx%2Espeeds%2E%5Fdefault%2C%28null%3D%3Dd%2Equeue%7C%7Cd%2Equeue%3D%3D%3D%210%29%26%26%28d%2Equeue%3D%22fx%22%29%2Cd%2Eold%3Dd%2Ecomplete%2Cd%2Ecomplete%3Dfunction%28%29%7Bn%2EisFunction%28d%2Eold%29%26%26d%2Eold%2Ecall%28this%29%2Cd%2Equeue%26%26n%2Edequeue%28this%2Cd%2Equeue%29%7D%2Cd%7D%2Cn%2Efn%2Eextend%28%7BfadeTo%3Afunction%28a%2Cb%2Cc%2Cd%29%7Breturn%20this%2Efilter%28V%29%2Ecss%28%22opacity%22%2C0%29%2Eshow%28%29%2Eend%28%29%2Eanimate%28%7Bopacity%3Ab%7D%2Ca%2Cc%2Cd%29%7D%2Canimate%3Afunction%28a%2Cb%2Cc%2Cd%29%7Bvar%20e%3Dn%2EisEmptyObject%28a%29%2Cf%3Dn%2Espeed%28b%2Cc%2Cd%29%2Cg%3Dfunction%28%29%7Bvar%20b%3Dlc%28this%2Cn%2Eextend%28%7B%7D%2Ca%29%2Cf%29%3B%28e%7C%7Cn%2E%5Fdata%28this%2C%22finish%22%29%29%26%26b%2Estop%28%210%29%7D%3Breturn%20g%2Efinish%3Dg%2Ce%7C%7Cf%2Equeue%3D%3D%3D%211%3Fthis%2Eeach%28g%29%3Athis%2Equeue%28f%2Equeue%2Cg%29%7D%2Cstop%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%3Dfunction%28a%29%7Bvar%20b%3Da%2Estop%3Bdelete%20a%2Estop%2Cb%28c%29%7D%3Breturn%22string%22%21%3Dtypeof%20a%26%26%28c%3Db%2Cb%3Da%2Ca%3Dvoid%200%29%2Cb%26%26a%21%3D%3D%211%26%26this%2Equeue%28a%7C%7C%22fx%22%2C%5B%5D%29%2Cthis%2Eeach%28function%28%29%7Bvar%20b%3D%210%2Ce%3Dnull%21%3Da%26%26a%2B%22queueHooks%22%2Cf%3Dn%2Etimers%2Cg%3Dn%2E%5Fdata%28this%29%3Bif%28e%29g%5Be%5D%26%26g%5Be%5D%2Estop%26%26d%28g%5Be%5D%29%3Belse%20for%28e%20in%20g%29g%5Be%5D%26%26g%5Be%5D%2Estop%26%26dc%2Etest%28e%29%26%26d%28g%5Be%5D%29%3Bfor%28e%3Df%2Elength%3Be%2D%2D%3B%29f%5Be%5D%2Eelem%21%3D%3Dthis%7C%7Cnull%21%3Da%26%26f%5Be%5D%2Equeue%21%3D%3Da%7C%7C%28f%5Be%5D%2Eanim%2Estop%28c%29%2Cb%3D%211%2Cf%2Esplice%28e%2C1%29%29%3B%28b%7C%7C%21c%29%26%26n%2Edequeue%28this%2Ca%29%7D%29%7D%2Cfinish%3Afunction%28a%29%7Breturn%20a%21%3D%3D%211%26%26%28a%3Da%7C%7C%22fx%22%29%2Cthis%2Eeach%28function%28%29%7Bvar%20b%2Cc%3Dn%2E%5Fdata%28this%29%2Cd%3Dc%5Ba%2B%22queue%22%5D%2Ce%3Dc%5Ba%2B%22queueHooks%22%5D%2Cf%3Dn%2Etimers%2Cg%3Dd%3Fd%2Elength%3A0%3Bfor%28c%2Efinish%3D%210%2Cn%2Equeue%28this%2Ca%2C%5B%5D%29%2Ce%26%26e%2Estop%26%26e%2Estop%2Ecall%28this%2C%210%29%2Cb%3Df%2Elength%3Bb%2D%2D%3B%29f%5Bb%5D%2Eelem%3D%3D%3Dthis%26%26f%5Bb%5D%2Equeue%3D%3D%3Da%26%26%28f%5Bb%5D%2Eanim%2Estop%28%210%29%2Cf%2Esplice%28b%2C1%29%29%3Bfor%28b%3D0%3Bg%3Eb%3Bb%2B%2B%29d%5Bb%5D%26%26d%5Bb%5D%2Efinish%26%26d%5Bb%5D%2Efinish%2Ecall%28this%29%3Bdelete%20c%2Efinish%7D%29%7D%7D%29%2Cn%2Eeach%28%5B%22toggle%22%2C%22show%22%2C%22hide%22%5D%2Cfunction%28a%2Cb%29%7Bvar%20c%3Dn%2Efn%5Bb%5D%3Bn%2Efn%5Bb%5D%3Dfunction%28a%2Cd%2Ce%29%7Breturn%20null%3D%3Da%7C%7C%22boolean%22%3D%3Dtypeof%20a%3Fc%2Eapply%28this%2Carguments%29%3Athis%2Eanimate%28hc%28b%2C%210%29%2Ca%2Cd%2Ce%29%7D%7D%29%2Cn%2Eeach%28%7BslideDown%3Ahc%28%22show%22%29%2CslideUp%3Ahc%28%22hide%22%29%2CslideToggle%3Ahc%28%22toggle%22%29%2CfadeIn%3A%7Bopacity%3A%22show%22%7D%2CfadeOut%3A%7Bopacity%3A%22hide%22%7D%2CfadeToggle%3A%7Bopacity%3A%22toggle%22%7D%7D%2Cfunction%28a%2Cb%29%7Bn%2Efn%5Ba%5D%3Dfunction%28a%2Cc%2Cd%29%7Breturn%20this%2Eanimate%28b%2Ca%2Cc%2Cd%29%7D%7D%29%2Cn%2Etimers%3D%5B%5D%2Cn%2Efx%2Etick%3Dfunction%28%29%7Bvar%20a%2Cb%3Dn%2Etimers%2Cc%3D0%3Bfor%28%5Fb%3Dn%2Enow%28%29%3Bc%3Cb%2Elength%3Bc%2B%2B%29a%3Db%5Bc%5D%2Ca%28%29%7C%7Cb%5Bc%5D%21%3D%3Da%7C%7Cb%2Esplice%28c%2D%2D%2C1%29%3Bb%2Elength%7C%7Cn%2Efx%2Estop%28%29%2C%5Fb%3Dvoid%200%7D%2Cn%2Efx%2Etimer%3Dfunction%28a%29%7Bn%2Etimers%2Epush%28a%29%2Ca%28%29%3Fn%2Efx%2Estart%28%29%3An%2Etimers%2Epop%28%29%7D%2Cn%2Efx%2Einterval%3D13%2Cn%2Efx%2Estart%3Dfunction%28%29%7Bac%7C%7C%28ac%3DsetInterval%28n%2Efx%2Etick%2Cn%2Efx%2Einterval%29%29%7D%2Cn%2Efx%2Estop%3Dfunction%28%29%7BclearInterval%28ac%29%2Cac%3Dnull%7D%2Cn%2Efx%2Espeeds%3D%7Bslow%3A600%2Cfast%3A200%2C%5Fdefault%3A400%7D%2Cn%2Efn%2Edelay%3Dfunction%28a%2Cb%29%7Breturn%20a%3Dn%2Efx%3Fn%2Efx%2Espeeds%5Ba%5D%7C%7Ca%3Aa%2Cb%3Db%7C%7C%22fx%22%2Cthis%2Equeue%28b%2Cfunction%28b%2Cc%29%7Bvar%20d%3DsetTimeout%28b%2Ca%29%3Bc%2Estop%3Dfunction%28%29%7BclearTimeout%28d%29%7D%7D%29%7D%2Cfunction%28%29%7Bvar%20a%2Cb%2Cc%2Cd%2Ce%3Dz%2EcreateElement%28%22div%22%29%3Be%2EsetAttribute%28%22className%22%2C%22t%22%29%2Ce%2EinnerHTML%3D%22%20%20%3Clink%2F%3E%3Ctable%3E%3C%2Ftable%3E%3Ca%20href%3D%27%2Fa%27%3Ea%3C%2Fa%3E%3Cinput%20type%3D%27checkbox%27%2F%3E%22%2Ca%3De%2EgetElementsByTagName%28%22a%22%29%5B0%5D%2Cc%3Dz%2EcreateElement%28%22select%22%29%2Cd%3Dc%2EappendChild%28z%2EcreateElement%28%22option%22%29%29%2Cb%3De%2EgetElementsByTagName%28%22input%22%29%5B0%5D%2Ca%2Estyle%2EcssText%3D%22top%3A1px%22%2Cl%2EgetSetAttribute%3D%22t%22%21%3D%3De%2EclassName%2Cl%2Estyle%3D%2Ftop%2F%2Etest%28a%2EgetAttribute%28%22style%22%29%29%2Cl%2EhrefNormalized%3D%22%2Fa%22%3D%3D%3Da%2EgetAttribute%28%22href%22%29%2Cl%2EcheckOn%3D%21%21b%2Evalue%2Cl%2EoptSelected%3Dd%2Eselected%2Cl%2Eenctype%3D%21%21z%2EcreateElement%28%22form%22%29%2Eenctype%2Cc%2Edisabled%3D%210%2Cl%2EoptDisabled%3D%21d%2Edisabled%2Cb%3Dz%2EcreateElement%28%22input%22%29%2Cb%2EsetAttribute%28%22value%22%2C%22%22%29%2Cl%2Einput%3D%22%22%3D%3D%3Db%2EgetAttribute%28%22value%22%29%2Cb%2Evalue%3D%22t%22%2Cb%2EsetAttribute%28%22type%22%2C%22radio%22%29%2Cl%2EradioValue%3D%22t%22%3D%3D%3Db%2Evalue%2Ca%3Db%3Dc%3Dd%3De%3Dnull%7D%28%29%3Bvar%20mc%3D%2F%5Cr%2Fg%3Bn%2Efn%2Eextend%28%7Bval%3Afunction%28a%29%7Bvar%20b%2Cc%2Cd%2Ce%3Dthis%5B0%5D%3B%7Bif%28arguments%2Elength%29return%20d%3Dn%2EisFunction%28a%29%2Cthis%2Eeach%28function%28c%29%7Bvar%20e%3B1%3D%3D%3Dthis%2EnodeType%26%26%28e%3Dd%3Fa%2Ecall%28this%2Cc%2Cn%28this%29%2Eval%28%29%29%3Aa%2Cnull%3D%3De%3Fe%3D%22%22%3A%22number%22%3D%3Dtypeof%20e%3Fe%2B%3D%22%22%3An%2EisArray%28e%29%26%26%28e%3Dn%2Emap%28e%2Cfunction%28a%29%7Breturn%20null%3D%3Da%3F%22%22%3Aa%2B%22%22%7D%29%29%2Cb%3Dn%2EvalHooks%5Bthis%2Etype%5D%7C%7Cn%2EvalHooks%5Bthis%2EnodeName%2EtoLowerCase%28%29%5D%2Cb%26%26%22set%22in%20b%26%26void%200%21%3D%3Db%2Eset%28this%2Ce%2C%22value%22%29%7C%7C%28this%2Evalue%3De%29%29%7D%29%3Bif%28e%29return%20b%3Dn%2EvalHooks%5Be%2Etype%5D%7C%7Cn%2EvalHooks%5Be%2EnodeName%2EtoLowerCase%28%29%5D%2Cb%26%26%22get%22in%20b%26%26void%200%21%3D%3D%28c%3Db%2Eget%28e%2C%22value%22%29%29%3Fc%3A%28c%3De%2Evalue%2C%22string%22%3D%3Dtypeof%20c%3Fc%2Ereplace%28mc%2C%22%22%29%3Anull%3D%3Dc%3F%22%22%3Ac%29%7D%7D%7D%29%2Cn%2Eextend%28%7BvalHooks%3A%7Boption%3A%7Bget%3Afunction%28a%29%7Bvar%20b%3Dn%2Efind%2Eattr%28a%2C%22value%22%29%3Breturn%20null%21%3Db%3Fb%3An%2Etext%28a%29%7D%7D%2Cselect%3A%7Bget%3Afunction%28a%29%7Bfor%28var%20b%2Cc%2Cd%3Da%2Eoptions%2Ce%3Da%2EselectedIndex%2Cf%3D%22select%2Done%22%3D%3D%3Da%2Etype%7C%7C0%3Ee%2Cg%3Df%3Fnull%3A%5B%5D%2Ch%3Df%3Fe%2B1%3Ad%2Elength%2Ci%3D0%3Ee%3Fh%3Af%3Fe%3A0%3Bh%3Ei%3Bi%2B%2B%29if%28c%3Dd%5Bi%5D%2C%21%28%21c%2Eselected%26%26i%21%3D%3De%7C%7C%28l%2EoptDisabled%3Fc%2Edisabled%3Anull%21%3D%3Dc%2EgetAttribute%28%22disabled%22%29%29%7C%7Cc%2EparentNode%2Edisabled%26%26n%2EnodeName%28c%2EparentNode%2C%22optgroup%22%29%29%29%7Bif%28b%3Dn%28c%29%2Eval%28%29%2Cf%29return%20b%3Bg%2Epush%28b%29%7Dreturn%20g%7D%2Cset%3Afunction%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%3Da%2Eoptions%2Cf%3Dn%2EmakeArray%28b%29%2Cg%3De%2Elength%3Bwhile%28g%2D%2D%29if%28d%3De%5Bg%5D%2Cn%2EinArray%28n%2EvalHooks%2Eoption%2Eget%28d%29%2Cf%29%3E%3D0%29try%7Bd%2Eselected%3Dc%3D%210%7Dcatch%28h%29%7Bd%2EscrollHeight%7Delse%20d%2Eselected%3D%211%3Breturn%20c%7C%7C%28a%2EselectedIndex%3D%2D1%29%2Ce%7D%7D%7D%7D%29%2Cn%2Eeach%28%5B%22radio%22%2C%22checkbox%22%5D%2Cfunction%28%29%7Bn%2EvalHooks%5Bthis%5D%3D%7Bset%3Afunction%28a%2Cb%29%7Breturn%20n%2EisArray%28b%29%3Fa%2Echecked%3Dn%2EinArray%28n%28a%29%2Eval%28%29%2Cb%29%3E%3D0%3Avoid%200%7D%7D%2Cl%2EcheckOn%7C%7C%28n%2EvalHooks%5Bthis%5D%2Eget%3Dfunction%28a%29%7Breturn%20null%3D%3D%3Da%2EgetAttribute%28%22value%22%29%3F%22on%22%3Aa%2Evalue%7D%29%7D%29%3Bvar%20nc%2Coc%2Cpc%3Dn%2Eexpr%2EattrHandle%2Cqc%3D%2F%5E%28%3F%3Achecked%7Cselected%29%24%2Fi%2Crc%3Dl%2EgetSetAttribute%2Csc%3Dl%2Einput%3Bn%2Efn%2Eextend%28%7Battr%3Afunction%28a%2Cb%29%7Breturn%20W%28this%2Cn%2Eattr%2Ca%2Cb%2Carguments%2Elength%3E1%29%7D%2CremoveAttr%3Afunction%28a%29%7Breturn%20this%2Eeach%28function%28%29%7Bn%2EremoveAttr%28this%2Ca%29%7D%29%7D%7D%29%2Cn%2Eextend%28%7Battr%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%3Da%2EnodeType%3Bif%28a%26%263%21%3D%3Df%26%268%21%3D%3Df%26%262%21%3D%3Df%29return%20typeof%20a%2EgetAttribute%3D%3D%3DL%3Fn%2Eprop%28a%2Cb%2Cc%29%3A%281%3D%3D%3Df%26%26n%2EisXMLDoc%28a%29%7C%7C%28b%3Db%2EtoLowerCase%28%29%2Cd%3Dn%2EattrHooks%5Bb%5D%7C%7C%28n%2Eexpr%2Ematch%2Ebool%2Etest%28b%29%3Foc%3Anc%29%29%2Cvoid%200%3D%3D%3Dc%3Fd%26%26%22get%22in%20d%26%26null%21%3D%3D%28e%3Dd%2Eget%28a%2Cb%29%29%3Fe%3A%28e%3Dn%2Efind%2Eattr%28a%2Cb%29%2Cnull%3D%3De%3Fvoid%200%3Ae%29%3Anull%21%3D%3Dc%3Fd%26%26%22set%22in%20d%26%26void%200%21%3D%3D%28e%3Dd%2Eset%28a%2Cc%2Cb%29%29%3Fe%3A%28a%2EsetAttribute%28b%2Cc%2B%22%22%29%2Cc%29%3Avoid%20n%2EremoveAttr%28a%2Cb%29%29%7D%2CremoveAttr%3Afunction%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%3D0%2Cf%3Db%26%26b%2Ematch%28F%29%3Bif%28f%26%261%3D%3D%3Da%2EnodeType%29while%28c%3Df%5Be%2B%2B%5D%29d%3Dn%2EpropFix%5Bc%5D%7C%7Cc%2Cn%2Eexpr%2Ematch%2Ebool%2Etest%28c%29%3Fsc%26%26rc%7C%7C%21qc%2Etest%28c%29%3Fa%5Bd%5D%3D%211%3Aa%5Bn%2EcamelCase%28%22default%2D%22%2Bc%29%5D%3Da%5Bd%5D%3D%211%3An%2Eattr%28a%2Cc%2C%22%22%29%2Ca%2EremoveAttribute%28rc%3Fc%3Ad%29%7D%2CattrHooks%3A%7Btype%3A%7Bset%3Afunction%28a%2Cb%29%7Bif%28%21l%2EradioValue%26%26%22radio%22%3D%3D%3Db%26%26n%2EnodeName%28a%2C%22input%22%29%29%7Bvar%20c%3Da%2Evalue%3Breturn%20a%2EsetAttribute%28%22type%22%2Cb%29%2Cc%26%26%28a%2Evalue%3Dc%29%2Cb%7D%7D%7D%7D%7D%29%2Coc%3D%7Bset%3Afunction%28a%2Cb%2Cc%29%7Breturn%20b%3D%3D%3D%211%3Fn%2EremoveAttr%28a%2Cc%29%3Asc%26%26rc%7C%7C%21qc%2Etest%28c%29%3Fa%2EsetAttribute%28%21rc%26%26n%2EpropFix%5Bc%5D%7C%7Cc%2Cc%29%3Aa%5Bn%2EcamelCase%28%22default%2D%22%2Bc%29%5D%3Da%5Bc%5D%3D%210%2Cc%7D%7D%2Cn%2Eeach%28n%2Eexpr%2Ematch%2Ebool%2Esource%2Ematch%28%2F%5Cw%2B%2Fg%29%2Cfunction%28a%2Cb%29%7Bvar%20c%3Dpc%5Bb%5D%7C%7Cn%2Efind%2Eattr%3Bpc%5Bb%5D%3Dsc%26%26rc%7C%7C%21qc%2Etest%28b%29%3Ffunction%28a%2Cb%2Cd%29%7Bvar%20e%2Cf%3Breturn%20d%7C%7C%28f%3Dpc%5Bb%5D%2Cpc%5Bb%5D%3De%2Ce%3Dnull%21%3Dc%28a%2Cb%2Cd%29%3Fb%2EtoLowerCase%28%29%3Anull%2Cpc%5Bb%5D%3Df%29%2Ce%7D%3Afunction%28a%2Cb%2Cc%29%7Breturn%20c%3Fvoid%200%3Aa%5Bn%2EcamelCase%28%22default%2D%22%2Bb%29%5D%3Fb%2EtoLowerCase%28%29%3Anull%7D%7D%29%2Csc%26%26rc%7C%7C%28n%2EattrHooks%2Evalue%3D%7Bset%3Afunction%28a%2Cb%2Cc%29%7Breturn%20n%2EnodeName%28a%2C%22input%22%29%3Fvoid%28a%2EdefaultValue%3Db%29%3Anc%26%26nc%2Eset%28a%2Cb%2Cc%29%7D%7D%29%2Crc%7C%7C%28nc%3D%7Bset%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%3Da%2EgetAttributeNode%28c%29%3Breturn%20d%7C%7Ca%2EsetAttributeNode%28d%3Da%2EownerDocument%2EcreateAttribute%28c%29%29%2Cd%2Evalue%3Db%2B%3D%22%22%2C%22value%22%3D%3D%3Dc%7C%7Cb%3D%3D%3Da%2EgetAttribute%28c%29%3Fb%3Avoid%200%7D%7D%2Cpc%2Eid%3Dpc%2Ename%3Dpc%2Ecoords%3Dfunction%28a%2Cb%2Cc%29%7Bvar%20d%3Breturn%20c%3Fvoid%200%3A%28d%3Da%2EgetAttributeNode%28b%29%29%26%26%22%22%21%3D%3Dd%2Evalue%3Fd%2Evalue%3Anull%7D%2Cn%2EvalHooks%2Ebutton%3D%7Bget%3Afunction%28a%2Cb%29%7Bvar%20c%3Da%2EgetAttributeNode%28b%29%3Breturn%20c%26%26c%2Especified%3Fc%2Evalue%3Avoid%200%7D%2Cset%3Anc%2Eset%7D%2Cn%2EattrHooks%2Econtenteditable%3D%7Bset%3Afunction%28a%2Cb%2Cc%29%7Bnc%2Eset%28a%2C%22%22%3D%3D%3Db%3F%211%3Ab%2Cc%29%7D%7D%2Cn%2Eeach%28%5B%22width%22%2C%22height%22%5D%2Cfunction%28a%2Cb%29%7Bn%2EattrHooks%5Bb%5D%3D%7Bset%3Afunction%28a%2Cc%29%7Breturn%22%22%3D%3D%3Dc%3F%28a%2EsetAttribute%28b%2C%22auto%22%29%2Cc%29%3Avoid%200%7D%7D%7D%29%29%2Cl%2Estyle%7C%7C%28n%2EattrHooks%2Estyle%3D%7Bget%3Afunction%28a%29%7Breturn%20a%2Estyle%2EcssText%7C%7Cvoid%200%7D%2Cset%3Afunction%28a%2Cb%29%7Breturn%20a%2Estyle%2EcssText%3Db%2B%22%22%7D%7D%29%3Bvar%20tc%3D%2F%5E%28%3F%3Ainput%7Cselect%7Ctextarea%7Cbutton%7Cobject%29%24%2Fi%2Cuc%3D%2F%5E%28%3F%3Aa%7Carea%29%24%2Fi%3Bn%2Efn%2Eextend%28%7Bprop%3Afunction%28a%2Cb%29%7Breturn%20W%28this%2Cn%2Eprop%2Ca%2Cb%2Carguments%2Elength%3E1%29%7D%2CremoveProp%3Afunction%28a%29%7Breturn%20a%3Dn%2EpropFix%5Ba%5D%7C%7Ca%2Cthis%2Eeach%28function%28%29%7Btry%7Bthis%5Ba%5D%3Dvoid%200%2Cdelete%20this%5Ba%5D%7Dcatch%28b%29%7B%7D%7D%29%7D%7D%29%2Cn%2Eextend%28%7BpropFix%3A%7B%22for%22%3A%22htmlFor%22%2C%22class%22%3A%22className%22%7D%2Cprop%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%2Cg%3Da%2EnodeType%3Bif%28a%26%263%21%3D%3Dg%26%268%21%3D%3Dg%26%262%21%3D%3Dg%29return%20f%3D1%21%3D%3Dg%7C%7C%21n%2EisXMLDoc%28a%29%2Cf%26%26%28b%3Dn%2EpropFix%5Bb%5D%7C%7Cb%2Ce%3Dn%2EpropHooks%5Bb%5D%29%2Cvoid%200%21%3D%3Dc%3Fe%26%26%22set%22in%20e%26%26void%200%21%3D%3D%28d%3De%2Eset%28a%2Cc%2Cb%29%29%3Fd%3Aa%5Bb%5D%3Dc%3Ae%26%26%22get%22in%20e%26%26null%21%3D%3D%28d%3De%2Eget%28a%2Cb%29%29%3Fd%3Aa%5Bb%5D%7D%2CpropHooks%3A%7BtabIndex%3A%7Bget%3Afunction%28a%29%7Bvar%20b%3Dn%2Efind%2Eattr%28a%2C%22tabindex%22%29%3Breturn%20b%3FparseInt%28b%2C10%29%3Atc%2Etest%28a%2EnodeName%29%7C%7Cuc%2Etest%28a%2EnodeName%29%26%26a%2Ehref%3F0%3A%2D1%7D%7D%7D%7D%29%2Cl%2EhrefNormalized%7C%7Cn%2Eeach%28%5B%22href%22%2C%22src%22%5D%2Cfunction%28a%2Cb%29%7Bn%2EpropHooks%5Bb%5D%3D%7Bget%3Afunction%28a%29%7Breturn%20a%2EgetAttribute%28b%2C4%29%7D%7D%7D%29%2Cl%2EoptSelected%7C%7C%28n%2EpropHooks%2Eselected%3D%7Bget%3Afunction%28a%29%7Bvar%20b%3Da%2EparentNode%3Breturn%20b%26%26%28b%2EselectedIndex%2Cb%2EparentNode%26%26b%2EparentNode%2EselectedIndex%29%2Cnull%7D%7D%29%2Cn%2Eeach%28%5B%22tabIndex%22%2C%22readOnly%22%2C%22maxLength%22%2C%22cellSpacing%22%2C%22cellPadding%22%2C%22rowSpan%22%2C%22colSpan%22%2C%22useMap%22%2C%22frameBorder%22%2C%22contentEditable%22%5D%2Cfunction%28%29%7Bn%2EpropFix%5Bthis%2EtoLowerCase%28%29%5D%3Dthis%7D%29%2Cl%2Eenctype%7C%7C%28n%2EpropFix%2Eenctype%3D%22encoding%22%29%3Bvar%20vc%3D%2F%5B%5Ct%5Cr%5Cn%5Cf%5D%2Fg%3Bn%2Efn%2Eextend%28%7BaddClass%3Afunction%28a%29%7Bvar%20b%2Cc%2Cd%2Ce%2Cf%2Cg%2Ch%3D0%2Ci%3Dthis%2Elength%2Cj%3D%22string%22%3D%3Dtypeof%20a%26%26a%3Bif%28n%2EisFunction%28a%29%29return%20this%2Eeach%28function%28b%29%7Bn%28this%29%2EaddClass%28a%2Ecall%28this%2Cb%2Cthis%2EclassName%29%29%7D%29%3Bif%28j%29for%28b%3D%28a%7C%7C%22%22%29%2Ematch%28F%29%7C%7C%5B%5D%3Bi%3Eh%3Bh%2B%2B%29if%28c%3Dthis%5Bh%5D%2Cd%3D1%3D%3D%3Dc%2EnodeType%26%26%28c%2EclassName%3F%28%22%20%22%2Bc%2EclassName%2B%22%20%22%29%2Ereplace%28vc%2C%22%20%22%29%3A%22%20%22%29%29%7Bf%3D0%3Bwhile%28e%3Db%5Bf%2B%2B%5D%29d%2EindexOf%28%22%20%22%2Be%2B%22%20%22%29%3C0%26%26%28d%2B%3De%2B%22%20%22%29%3Bg%3Dn%2Etrim%28d%29%2Cc%2EclassName%21%3D%3Dg%26%26%28c%2EclassName%3Dg%29%7Dreturn%20this%7D%2CremoveClass%3Afunction%28a%29%7Bvar%20b%2Cc%2Cd%2Ce%2Cf%2Cg%2Ch%3D0%2Ci%3Dthis%2Elength%2Cj%3D0%3D%3D%3Darguments%2Elength%7C%7C%22string%22%3D%3Dtypeof%20a%26%26a%3Bif%28n%2EisFunction%28a%29%29return%20this%2Eeach%28function%28b%29%7Bn%28this%29%2EremoveClass%28a%2Ecall%28this%2Cb%2Cthis%2EclassName%29%29%7D%29%3Bif%28j%29for%28b%3D%28a%7C%7C%22%22%29%2Ematch%28F%29%7C%7C%5B%5D%3Bi%3Eh%3Bh%2B%2B%29if%28c%3Dthis%5Bh%5D%2Cd%3D1%3D%3D%3Dc%2EnodeType%26%26%28c%2EclassName%3F%28%22%20%22%2Bc%2EclassName%2B%22%20%22%29%2Ereplace%28vc%2C%22%20%22%29%3A%22%22%29%29%7Bf%3D0%3Bwhile%28e%3Db%5Bf%2B%2B%5D%29while%28d%2EindexOf%28%22%20%22%2Be%2B%22%20%22%29%3E%3D0%29d%3Dd%2Ereplace%28%22%20%22%2Be%2B%22%20%22%2C%22%20%22%29%3Bg%3Da%3Fn%2Etrim%28d%29%3A%22%22%2Cc%2EclassName%21%3D%3Dg%26%26%28c%2EclassName%3Dg%29%7Dreturn%20this%7D%2CtoggleClass%3Afunction%28a%2Cb%29%7Bvar%20c%3Dtypeof%20a%3Breturn%22boolean%22%3D%3Dtypeof%20b%26%26%22string%22%3D%3D%3Dc%3Fb%3Fthis%2EaddClass%28a%29%3Athis%2EremoveClass%28a%29%3Athis%2Eeach%28n%2EisFunction%28a%29%3Ffunction%28c%29%7Bn%28this%29%2EtoggleClass%28a%2Ecall%28this%2Cc%2Cthis%2EclassName%2Cb%29%2Cb%29%7D%3Afunction%28%29%7Bif%28%22string%22%3D%3D%3Dc%29%7Bvar%20b%2Cd%3D0%2Ce%3Dn%28this%29%2Cf%3Da%2Ematch%28F%29%7C%7C%5B%5D%3Bwhile%28b%3Df%5Bd%2B%2B%5D%29e%2EhasClass%28b%29%3Fe%2EremoveClass%28b%29%3Ae%2EaddClass%28b%29%7Delse%28c%3D%3D%3DL%7C%7C%22boolean%22%3D%3D%3Dc%29%26%26%28this%2EclassName%26%26n%2E%5Fdata%28this%2C%22%5F%5FclassName%5F%5F%22%2Cthis%2EclassName%29%2Cthis%2EclassName%3Dthis%2EclassName%7C%7Ca%3D%3D%3D%211%3F%22%22%3An%2E%5Fdata%28this%2C%22%5F%5FclassName%5F%5F%22%29%7C%7C%22%22%29%7D%29%7D%2ChasClass%3Afunction%28a%29%7Bfor%28var%20b%3D%22%20%22%2Ba%2B%22%20%22%2Cc%3D0%2Cd%3Dthis%2Elength%3Bd%3Ec%3Bc%2B%2B%29if%281%3D%3D%3Dthis%5Bc%5D%2EnodeType%26%26%28%22%20%22%2Bthis%5Bc%5D%2EclassName%2B%22%20%22%29%2Ereplace%28vc%2C%22%20%22%29%2EindexOf%28b%29%3E%3D0%29return%210%3Breturn%211%7D%7D%29%2Cn%2Eeach%28%22blur%20focus%20focusin%20focusout%20load%20resize%20scroll%20unload%20click%20dblclick%20mousedown%20mouseup%20mousemove%20mouseover%20mouseout%20mouseenter%20mouseleave%20change%20select%20submit%20keydown%20keypress%20keyup%20error%20contextmenu%22%2Esplit%28%22%20%22%29%2Cfunction%28a%2Cb%29%7Bn%2Efn%5Bb%5D%3Dfunction%28a%2Cc%29%7Breturn%20arguments%2Elength%3E0%3Fthis%2Eon%28b%2Cnull%2Ca%2Cc%29%3Athis%2Etrigger%28b%29%7D%7D%29%2Cn%2Efn%2Eextend%28%7Bhover%3Afunction%28a%2Cb%29%7Breturn%20this%2Emouseenter%28a%29%2Emouseleave%28b%7C%7Ca%29%7D%2Cbind%3Afunction%28a%2Cb%2Cc%29%7Breturn%20this%2Eon%28a%2Cnull%2Cb%2Cc%29%7D%2Cunbind%3Afunction%28a%2Cb%29%7Breturn%20this%2Eoff%28a%2Cnull%2Cb%29%7D%2Cdelegate%3Afunction%28a%2Cb%2Cc%2Cd%29%7Breturn%20this%2Eon%28b%2Ca%2Cc%2Cd%29%7D%2Cundelegate%3Afunction%28a%2Cb%2Cc%29%7Breturn%201%3D%3D%3Darguments%2Elength%3Fthis%2Eoff%28a%2C%22%2A%2A%22%29%3Athis%2Eoff%28b%2Ca%7C%7C%22%2A%2A%22%2Cc%29%7D%7D%29%3Bvar%20wc%3Dn%2Enow%28%29%2Cxc%3D%2F%5C%3F%2F%2Cyc%3D%2F%28%2C%29%7C%28%5C%5B%7C%7B%29%7C%28%7D%7C%5D%29%7C%22%28%3F%3A%5B%5E%22%5C%5C%5Cr%5Cn%5D%7C%5C%5C%5B%22%5C%5C%5C%2Fbfnrt%5D%7C%5C%5Cu%5B%5Cda%2DfA%2DF%5D%7B4%7D%29%2A%22%5Cs%2A%3A%3F%7Ctrue%7Cfalse%7Cnull%7C%2D%3F%28%3F%210%5Cd%29%5Cd%2B%28%3F%3A%5C%2E%5Cd%2B%7C%29%28%3F%3A%5BeE%5D%5B%2B%2D%5D%3F%5Cd%2B%7C%29%2Fg%3Bn%2EparseJSON%3Dfunction%28b%29%7Bif%28a%2EJSON%26%26a%2EJSON%2Eparse%29return%20a%2EJSON%2Eparse%28b%2B%22%22%29%3Bvar%20c%2Cd%3Dnull%2Ce%3Dn%2Etrim%28b%2B%22%22%29%3Breturn%20e%26%26%21n%2Etrim%28e%2Ereplace%28yc%2Cfunction%28a%2Cb%2Ce%2Cf%29%7Breturn%20c%26%26b%26%26%28d%3D0%29%2C0%3D%3D%3Dd%3Fa%3A%28c%3De%7C%7Cb%2Cd%2B%3D%21f%2D%21e%2C%22%22%29%7D%29%29%3FFunction%28%22return%20%22%2Be%29%28%29%3An%2Eerror%28%22Invalid%20JSON%3A%20%22%2Bb%29%7D%2Cn%2EparseXML%3Dfunction%28b%29%7Bvar%20c%2Cd%3Bif%28%21b%7C%7C%22string%22%21%3Dtypeof%20b%29return%20null%3Btry%7Ba%2EDOMParser%3F%28d%3Dnew%20DOMParser%2Cc%3Dd%2EparseFromString%28b%2C%22text%2Fxml%22%29%29%3A%28c%3Dnew%20ActiveXObject%28%22Microsoft%2EXMLDOM%22%29%2Cc%2Easync%3D%22false%22%2Cc%2EloadXML%28b%29%29%7Dcatch%28e%29%7Bc%3Dvoid%200%7Dreturn%20c%26%26c%2EdocumentElement%26%26%21c%2EgetElementsByTagName%28%22parsererror%22%29%2Elength%7C%7Cn%2Eerror%28%22Invalid%20XML%3A%20%22%2Bb%29%2Cc%7D%3Bvar%20zc%2CAc%2CBc%3D%2F%23%2E%2A%24%2F%2CCc%3D%2F%28%5B%3F%26%5D%29%5F%3D%5B%5E%26%5D%2A%2F%2CDc%3D%2F%5E%28%2E%2A%3F%29%3A%5B%20%5Ct%5D%2A%28%5B%5E%5Cr%5Cn%5D%2A%29%5Cr%3F%24%2Fgm%2CEc%3D%2F%5E%28%3F%3Aabout%7Capp%7Capp%2Dstorage%7C%2E%2B%2Dextension%7Cfile%7Cres%7Cwidget%29%3A%24%2F%2CFc%3D%2F%5E%28%3F%3AGET%7CHEAD%29%24%2F%2CGc%3D%2F%5E%5C%2F%5C%2F%2F%2CHc%3D%2F%5E%28%5B%5Cw%2E%2B%2D%5D%2B%3A%29%28%3F%3A%5C%2F%5C%2F%28%3F%3A%5B%5E%5C%2F%3F%23%5D%2A%40%7C%29%28%5B%5E%5C%2F%3F%23%3A%5D%2A%29%28%3F%3A%3A%28%5Cd%2B%29%7C%29%7C%29%2F%2CIc%3D%7B%7D%2CJc%3D%7B%7D%2CKc%3D%22%2A%2F%22%2Econcat%28%22%2A%22%29%3Btry%7BAc%3Dlocation%2Ehref%7Dcatch%28Lc%29%7BAc%3Dz%2EcreateElement%28%22a%22%29%2CAc%2Ehref%3D%22%22%2CAc%3DAc%2Ehref%7Dzc%3DHc%2Eexec%28Ac%2EtoLowerCase%28%29%29%7C%7C%5B%5D%3Bfunction%20Mc%28a%29%7Breturn%20function%28b%2Cc%29%7B%22string%22%21%3Dtypeof%20b%26%26%28c%3Db%2Cb%3D%22%2A%22%29%3Bvar%20d%2Ce%3D0%2Cf%3Db%2EtoLowerCase%28%29%2Ematch%28F%29%7C%7C%5B%5D%3Bif%28n%2EisFunction%28c%29%29while%28d%3Df%5Be%2B%2B%5D%29%22%2B%22%3D%3D%3Dd%2EcharAt%280%29%3F%28d%3Dd%2Eslice%281%29%7C%7C%22%2A%22%2C%28a%5Bd%5D%3Da%5Bd%5D%7C%7C%5B%5D%29%2Eunshift%28c%29%29%3A%28a%5Bd%5D%3Da%5Bd%5D%7C%7C%5B%5D%29%2Epush%28c%29%7D%7Dfunction%20Nc%28a%2Cb%2Cc%2Cd%29%7Bvar%20e%3D%7B%7D%2Cf%3Da%3D%3D%3DJc%3Bfunction%20g%28h%29%7Bvar%20i%3Breturn%20e%5Bh%5D%3D%210%2Cn%2Eeach%28a%5Bh%5D%7C%7C%5B%5D%2Cfunction%28a%2Ch%29%7Bvar%20j%3Dh%28b%2Cc%2Cd%29%3Breturn%22string%22%21%3Dtypeof%20j%7C%7Cf%7C%7Ce%5Bj%5D%3Ff%3F%21%28i%3Dj%29%3Avoid%200%3A%28b%2EdataTypes%2Eunshift%28j%29%2Cg%28j%29%2C%211%29%7D%29%2Ci%7Dreturn%20g%28b%2EdataTypes%5B0%5D%29%7C%7C%21e%5B%22%2A%22%5D%26%26g%28%22%2A%22%29%7Dfunction%20Oc%28a%2Cb%29%7Bvar%20c%2Cd%2Ce%3Dn%2EajaxSettings%2EflatOptions%7C%7C%7B%7D%3Bfor%28d%20in%20b%29void%200%21%3D%3Db%5Bd%5D%26%26%28%28e%5Bd%5D%3Fa%3Ac%7C%7C%28c%3D%7B%7D%29%29%5Bd%5D%3Db%5Bd%5D%29%3Breturn%20c%26%26n%2Eextend%28%210%2Ca%2Cc%29%2Ca%7Dfunction%20Pc%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%2Cg%2Ch%3Da%2Econtents%2Ci%3Da%2EdataTypes%3Bwhile%28%22%2A%22%3D%3D%3Di%5B0%5D%29i%2Eshift%28%29%2Cvoid%200%3D%3D%3De%26%26%28e%3Da%2EmimeType%7C%7Cb%2EgetResponseHeader%28%22Content%2DType%22%29%29%3Bif%28e%29for%28g%20in%20h%29if%28h%5Bg%5D%26%26h%5Bg%5D%2Etest%28e%29%29%7Bi%2Eunshift%28g%29%3Bbreak%7Dif%28i%5B0%5Din%20c%29f%3Di%5B0%5D%3Belse%7Bfor%28g%20in%20c%29%7Bif%28%21i%5B0%5D%7C%7Ca%2Econverters%5Bg%2B%22%20%22%2Bi%5B0%5D%5D%29%7Bf%3Dg%3Bbreak%7Dd%7C%7C%28d%3Dg%29%7Df%3Df%7C%7Cd%7Dreturn%20f%3F%28f%21%3D%3Di%5B0%5D%26%26i%2Eunshift%28f%29%2Cc%5Bf%5D%29%3Avoid%200%7Dfunction%20Qc%28a%2Cb%2Cc%2Cd%29%7Bvar%20e%2Cf%2Cg%2Ch%2Ci%2Cj%3D%7B%7D%2Ck%3Da%2EdataTypes%2Eslice%28%29%3Bif%28k%5B1%5D%29for%28g%20in%20a%2Econverters%29j%5Bg%2EtoLowerCase%28%29%5D%3Da%2Econverters%5Bg%5D%3Bf%3Dk%2Eshift%28%29%3Bwhile%28f%29if%28a%2EresponseFields%5Bf%5D%26%26%28c%5Ba%2EresponseFields%5Bf%5D%5D%3Db%29%2C%21i%26%26d%26%26a%2EdataFilter%26%26%28b%3Da%2EdataFilter%28b%2Ca%2EdataType%29%29%2Ci%3Df%2Cf%3Dk%2Eshift%28%29%29if%28%22%2A%22%3D%3D%3Df%29f%3Di%3Belse%20if%28%22%2A%22%21%3D%3Di%26%26i%21%3D%3Df%29%7Bif%28g%3Dj%5Bi%2B%22%20%22%2Bf%5D%7C%7Cj%5B%22%2A%20%22%2Bf%5D%2C%21g%29for%28e%20in%20j%29if%28h%3De%2Esplit%28%22%20%22%29%2Ch%5B1%5D%3D%3D%3Df%26%26%28g%3Dj%5Bi%2B%22%20%22%2Bh%5B0%5D%5D%7C%7Cj%5B%22%2A%20%22%2Bh%5B0%5D%5D%29%29%7Bg%3D%3D%3D%210%3Fg%3Dj%5Be%5D%3Aj%5Be%5D%21%3D%3D%210%26%26%28f%3Dh%5B0%5D%2Ck%2Eunshift%28h%5B1%5D%29%29%3Bbreak%7Dif%28g%21%3D%3D%210%29if%28g%26%26a%5B%22throws%22%5D%29b%3Dg%28b%29%3Belse%20try%7Bb%3Dg%28b%29%7Dcatch%28l%29%7Breturn%7Bstate%3A%22parsererror%22%2Cerror%3Ag%3Fl%3A%22No%20conversion%20from%20%22%2Bi%2B%22%20to%20%22%2Bf%7D%7D%7Dreturn%7Bstate%3A%22success%22%2Cdata%3Ab%7D%7Dn%2Eextend%28%7Bactive%3A0%2ClastModified%3A%7B%7D%2Cetag%3A%7B%7D%2CajaxSettings%3A%7Burl%3AAc%2Ctype%3A%22GET%22%2CisLocal%3AEc%2Etest%28zc%5B1%5D%29%2Cglobal%3A%210%2CprocessData%3A%210%2Casync%3A%210%2CcontentType%3A%22application%2Fx%2Dwww%2Dform%2Durlencoded%3B%20charset%3DUTF%2D8%22%2Caccepts%3A%7B%22%2A%22%3AKc%2Ctext%3A%22text%2Fplain%22%2Chtml%3A%22text%2Fhtml%22%2Cxml%3A%22application%2Fxml%2C%20text%2Fxml%22%2Cjson%3A%22application%2Fjson%2C%20text%2Fjavascript%22%7D%2Ccontents%3A%7Bxml%3A%2Fxml%2F%2Chtml%3A%2Fhtml%2F%2Cjson%3A%2Fjson%2F%7D%2CresponseFields%3A%7Bxml%3A%22responseXML%22%2Ctext%3A%22responseText%22%2Cjson%3A%22responseJSON%22%7D%2Cconverters%3A%7B%22%2A%20text%22%3AString%2C%22text%20html%22%3A%210%2C%22text%20json%22%3An%2EparseJSON%2C%22text%20xml%22%3An%2EparseXML%7D%2CflatOptions%3A%7Burl%3A%210%2Ccontext%3A%210%7D%7D%2CajaxSetup%3Afunction%28a%2Cb%29%7Breturn%20b%3FOc%28Oc%28a%2Cn%2EajaxSettings%29%2Cb%29%3AOc%28n%2EajaxSettings%2Ca%29%7D%2CajaxPrefilter%3AMc%28Ic%29%2CajaxTransport%3AMc%28Jc%29%2Cajax%3Afunction%28a%2Cb%29%7B%22object%22%3D%3Dtypeof%20a%26%26%28b%3Da%2Ca%3Dvoid%200%29%2Cb%3Db%7C%7C%7B%7D%3Bvar%20c%2Cd%2Ce%2Cf%2Cg%2Ch%2Ci%2Cj%2Ck%3Dn%2EajaxSetup%28%7B%7D%2Cb%29%2Cl%3Dk%2Econtext%7C%7Ck%2Cm%3Dk%2Econtext%26%26%28l%2EnodeType%7C%7Cl%2Ejquery%29%3Fn%28l%29%3An%2Eevent%2Co%3Dn%2EDeferred%28%29%2Cp%3Dn%2ECallbacks%28%22once%20memory%22%29%2Cq%3Dk%2EstatusCode%7C%7C%7B%7D%2Cr%3D%7B%7D%2Cs%3D%7B%7D%2Ct%3D0%2Cu%3D%22canceled%22%2Cv%3D%7BreadyState%3A0%2CgetResponseHeader%3Afunction%28a%29%7Bvar%20b%3Bif%282%3D%3D%3Dt%29%7Bif%28%21j%29%7Bj%3D%7B%7D%3Bwhile%28b%3DDc%2Eexec%28f%29%29j%5Bb%5B1%5D%2EtoLowerCase%28%29%5D%3Db%5B2%5D%7Db%3Dj%5Ba%2EtoLowerCase%28%29%5D%7Dreturn%20null%3D%3Db%3Fnull%3Ab%7D%2CgetAllResponseHeaders%3Afunction%28%29%7Breturn%202%3D%3D%3Dt%3Ff%3Anull%7D%2CsetRequestHeader%3Afunction%28a%2Cb%29%7Bvar%20c%3Da%2EtoLowerCase%28%29%3Breturn%20t%7C%7C%28a%3Ds%5Bc%5D%3Ds%5Bc%5D%7C%7Ca%2Cr%5Ba%5D%3Db%29%2Cthis%7D%2CoverrideMimeType%3Afunction%28a%29%7Breturn%20t%7C%7C%28k%2EmimeType%3Da%29%2Cthis%7D%2CstatusCode%3Afunction%28a%29%7Bvar%20b%3Bif%28a%29if%282%3Et%29for%28b%20in%20a%29q%5Bb%5D%3D%5Bq%5Bb%5D%2Ca%5Bb%5D%5D%3Belse%20v%2Ealways%28a%5Bv%2Estatus%5D%29%3Breturn%20this%7D%2Cabort%3Afunction%28a%29%7Bvar%20b%3Da%7C%7Cu%3Breturn%20i%26%26i%2Eabort%28b%29%2Cx%280%2Cb%29%2Cthis%7D%7D%3Bif%28o%2Epromise%28v%29%2Ecomplete%3Dp%2Eadd%2Cv%2Esuccess%3Dv%2Edone%2Cv%2Eerror%3Dv%2Efail%2Ck%2Eurl%3D%28%28a%7C%7Ck%2Eurl%7C%7CAc%29%2B%22%22%29%2Ereplace%28Bc%2C%22%22%29%2Ereplace%28Gc%2Czc%5B1%5D%2B%22%2F%2F%22%29%2Ck%2Etype%3Db%2Emethod%7C%7Cb%2Etype%7C%7Ck%2Emethod%7C%7Ck%2Etype%2Ck%2EdataTypes%3Dn%2Etrim%28k%2EdataType%7C%7C%22%2A%22%29%2EtoLowerCase%28%29%2Ematch%28F%29%7C%7C%5B%22%22%5D%2Cnull%3D%3Dk%2EcrossDomain%26%26%28c%3DHc%2Eexec%28k%2Eurl%2EtoLowerCase%28%29%29%2Ck%2EcrossDomain%3D%21%28%21c%7C%7Cc%5B1%5D%3D%3D%3Dzc%5B1%5D%26%26c%5B2%5D%3D%3D%3Dzc%5B2%5D%26%26%28c%5B3%5D%7C%7C%28%22http%3A%22%3D%3D%3Dc%5B1%5D%3F%2280%22%3A%22443%22%29%29%3D%3D%3D%28zc%5B3%5D%7C%7C%28%22http%3A%22%3D%3D%3Dzc%5B1%5D%3F%2280%22%3A%22443%22%29%29%29%29%2Ck%2Edata%26%26k%2EprocessData%26%26%22string%22%21%3Dtypeof%20k%2Edata%26%26%28k%2Edata%3Dn%2Eparam%28k%2Edata%2Ck%2Etraditional%29%29%2CNc%28Ic%2Ck%2Cb%2Cv%29%2C2%3D%3D%3Dt%29return%20v%3Bh%3Dk%2Eglobal%2Ch%26%260%3D%3D%3Dn%2Eactive%2B%2B%26%26n%2Eevent%2Etrigger%28%22ajaxStart%22%29%2Ck%2Etype%3Dk%2Etype%2EtoUpperCase%28%29%2Ck%2EhasContent%3D%21Fc%2Etest%28k%2Etype%29%2Ce%3Dk%2Eurl%2Ck%2EhasContent%7C%7C%28k%2Edata%26%26%28e%3Dk%2Eurl%2B%3D%28xc%2Etest%28e%29%3F%22%26%22%3A%22%3F%22%29%2Bk%2Edata%2Cdelete%20k%2Edata%29%2Ck%2Ecache%3D%3D%3D%211%26%26%28k%2Eurl%3DCc%2Etest%28e%29%3Fe%2Ereplace%28Cc%2C%22%241%5F%3D%22%2Bwc%2B%2B%29%3Ae%2B%28xc%2Etest%28e%29%3F%22%26%22%3A%22%3F%22%29%2B%22%5F%3D%22%2Bwc%2B%2B%29%29%2Ck%2EifModified%26%26%28n%2ElastModified%5Be%5D%26%26v%2EsetRequestHeader%28%22If%2DModified%2DSince%22%2Cn%2ElastModified%5Be%5D%29%2Cn%2Eetag%5Be%5D%26%26v%2EsetRequestHeader%28%22If%2DNone%2DMatch%22%2Cn%2Eetag%5Be%5D%29%29%2C%28k%2Edata%26%26k%2EhasContent%26%26k%2EcontentType%21%3D%3D%211%7C%7Cb%2EcontentType%29%26%26v%2EsetRequestHeader%28%22Content%2DType%22%2Ck%2EcontentType%29%2Cv%2EsetRequestHeader%28%22Accept%22%2Ck%2EdataTypes%5B0%5D%26%26k%2Eaccepts%5Bk%2EdataTypes%5B0%5D%5D%3Fk%2Eaccepts%5Bk%2EdataTypes%5B0%5D%5D%2B%28%22%2A%22%21%3D%3Dk%2EdataTypes%5B0%5D%3F%22%2C%20%22%2BKc%2B%22%3B%20q%3D0%2E01%22%3A%22%22%29%3Ak%2Eaccepts%5B%22%2A%22%5D%29%3Bfor%28d%20in%20k%2Eheaders%29v%2EsetRequestHeader%28d%2Ck%2Eheaders%5Bd%5D%29%3Bif%28k%2EbeforeSend%26%26%28k%2EbeforeSend%2Ecall%28l%2Cv%2Ck%29%3D%3D%3D%211%7C%7C2%3D%3D%3Dt%29%29return%20v%2Eabort%28%29%3Bu%3D%22abort%22%3Bfor%28d%20in%7Bsuccess%3A1%2Cerror%3A1%2Ccomplete%3A1%7D%29v%5Bd%5D%28k%5Bd%5D%29%3Bif%28i%3DNc%28Jc%2Ck%2Cb%2Cv%29%29%7Bv%2EreadyState%3D1%2Ch%26%26m%2Etrigger%28%22ajaxSend%22%2C%5Bv%2Ck%5D%29%2Ck%2Easync%26%26k%2Etimeout%3E0%26%26%28g%3DsetTimeout%28function%28%29%7Bv%2Eabort%28%22timeout%22%29%7D%2Ck%2Etimeout%29%29%3Btry%7Bt%3D1%2Ci%2Esend%28r%2Cx%29%7Dcatch%28w%29%7Bif%28%21%282%3Et%29%29throw%20w%3Bx%28%2D1%2Cw%29%7D%7Delse%20x%28%2D1%2C%22No%20Transport%22%29%3Bfunction%20x%28a%2Cb%2Cc%2Cd%29%7Bvar%20j%2Cr%2Cs%2Cu%2Cw%2Cx%3Db%3B2%21%3D%3Dt%26%26%28t%3D2%2Cg%26%26clearTimeout%28g%29%2Ci%3Dvoid%200%2Cf%3Dd%7C%7C%22%22%2Cv%2EreadyState%3Da%3E0%3F4%3A0%2Cj%3Da%3E%3D200%26%26300%3Ea%7C%7C304%3D%3D%3Da%2Cc%26%26%28u%3DPc%28k%2Cv%2Cc%29%29%2Cu%3DQc%28k%2Cu%2Cv%2Cj%29%2Cj%3F%28k%2EifModified%26%26%28w%3Dv%2EgetResponseHeader%28%22Last%2DModified%22%29%2Cw%26%26%28n%2ElastModified%5Be%5D%3Dw%29%2Cw%3Dv%2EgetResponseHeader%28%22etag%22%29%2Cw%26%26%28n%2Eetag%5Be%5D%3Dw%29%29%2C204%3D%3D%3Da%7C%7C%22HEAD%22%3D%3D%3Dk%2Etype%3Fx%3D%22nocontent%22%3A304%3D%3D%3Da%3Fx%3D%22notmodified%22%3A%28x%3Du%2Estate%2Cr%3Du%2Edata%2Cs%3Du%2Eerror%2Cj%3D%21s%29%29%3A%28s%3Dx%2C%28a%7C%7C%21x%29%26%26%28x%3D%22error%22%2C0%3Ea%26%26%28a%3D0%29%29%29%2Cv%2Estatus%3Da%2Cv%2EstatusText%3D%28b%7C%7Cx%29%2B%22%22%2Cj%3Fo%2EresolveWith%28l%2C%5Br%2Cx%2Cv%5D%29%3Ao%2ErejectWith%28l%2C%5Bv%2Cx%2Cs%5D%29%2Cv%2EstatusCode%28q%29%2Cq%3Dvoid%200%2Ch%26%26m%2Etrigger%28j%3F%22ajaxSuccess%22%3A%22ajaxError%22%2C%5Bv%2Ck%2Cj%3Fr%3As%5D%29%2Cp%2EfireWith%28l%2C%5Bv%2Cx%5D%29%2Ch%26%26%28m%2Etrigger%28%22ajaxComplete%22%2C%5Bv%2Ck%5D%29%2C%2D%2Dn%2Eactive%7C%7Cn%2Eevent%2Etrigger%28%22ajaxStop%22%29%29%29%7Dreturn%20v%7D%2CgetJSON%3Afunction%28a%2Cb%2Cc%29%7Breturn%20n%2Eget%28a%2Cb%2Cc%2C%22json%22%29%7D%2CgetScript%3Afunction%28a%2Cb%29%7Breturn%20n%2Eget%28a%2Cvoid%200%2Cb%2C%22script%22%29%7D%7D%29%2Cn%2Eeach%28%5B%22get%22%2C%22post%22%5D%2Cfunction%28a%2Cb%29%7Bn%5Bb%5D%3Dfunction%28a%2Cc%2Cd%2Ce%29%7Breturn%20n%2EisFunction%28c%29%26%26%28e%3De%7C%7Cd%2Cd%3Dc%2Cc%3Dvoid%200%29%2Cn%2Eajax%28%7Burl%3Aa%2Ctype%3Ab%2CdataType%3Ae%2Cdata%3Ac%2Csuccess%3Ad%7D%29%7D%7D%29%2Cn%2Eeach%28%5B%22ajaxStart%22%2C%22ajaxStop%22%2C%22ajaxComplete%22%2C%22ajaxError%22%2C%22ajaxSuccess%22%2C%22ajaxSend%22%5D%2Cfunction%28a%2Cb%29%7Bn%2Efn%5Bb%5D%3Dfunction%28a%29%7Breturn%20this%2Eon%28b%2Ca%29%7D%7D%29%2Cn%2E%5FevalUrl%3Dfunction%28a%29%7Breturn%20n%2Eajax%28%7Burl%3Aa%2Ctype%3A%22GET%22%2CdataType%3A%22script%22%2Casync%3A%211%2Cglobal%3A%211%2C%22throws%22%3A%210%7D%29%7D%2Cn%2Efn%2Eextend%28%7BwrapAll%3Afunction%28a%29%7Bif%28n%2EisFunction%28a%29%29return%20this%2Eeach%28function%28b%29%7Bn%28this%29%2EwrapAll%28a%2Ecall%28this%2Cb%29%29%7D%29%3Bif%28this%5B0%5D%29%7Bvar%20b%3Dn%28a%2Cthis%5B0%5D%2EownerDocument%29%2Eeq%280%29%2Eclone%28%210%29%3Bthis%5B0%5D%2EparentNode%26%26b%2EinsertBefore%28this%5B0%5D%29%2Cb%2Emap%28function%28%29%7Bvar%20a%3Dthis%3Bwhile%28a%2EfirstChild%26%261%3D%3D%3Da%2EfirstChild%2EnodeType%29a%3Da%2EfirstChild%3Breturn%20a%7D%29%2Eappend%28this%29%7Dreturn%20this%7D%2CwrapInner%3Afunction%28a%29%7Breturn%20this%2Eeach%28n%2EisFunction%28a%29%3Ffunction%28b%29%7Bn%28this%29%2EwrapInner%28a%2Ecall%28this%2Cb%29%29%7D%3Afunction%28%29%7Bvar%20b%3Dn%28this%29%2Cc%3Db%2Econtents%28%29%3Bc%2Elength%3Fc%2EwrapAll%28a%29%3Ab%2Eappend%28a%29%7D%29%7D%2Cwrap%3Afunction%28a%29%7Bvar%20b%3Dn%2EisFunction%28a%29%3Breturn%20this%2Eeach%28function%28c%29%7Bn%28this%29%2EwrapAll%28b%3Fa%2Ecall%28this%2Cc%29%3Aa%29%7D%29%7D%2Cunwrap%3Afunction%28%29%7Breturn%20this%2Eparent%28%29%2Eeach%28function%28%29%7Bn%2EnodeName%28this%2C%22body%22%29%7C%7Cn%28this%29%2EreplaceWith%28this%2EchildNodes%29%7D%29%2Eend%28%29%7D%7D%29%2Cn%2Eexpr%2Efilters%2Ehidden%3Dfunction%28a%29%7Breturn%20a%2EoffsetWidth%3C%3D0%26%26a%2EoffsetHeight%3C%3D0%7C%7C%21l%2EreliableHiddenOffsets%28%29%26%26%22none%22%3D%3D%3D%28a%2Estyle%26%26a%2Estyle%2Edisplay%7C%7Cn%2Ecss%28a%2C%22display%22%29%29%7D%2Cn%2Eexpr%2Efilters%2Evisible%3Dfunction%28a%29%7Breturn%21n%2Eexpr%2Efilters%2Ehidden%28a%29%7D%3Bvar%20Rc%3D%2F%2520%2Fg%2CSc%3D%2F%5C%5B%5C%5D%24%2F%2CTc%3D%2F%5Cr%3F%5Cn%2Fg%2CUc%3D%2F%5E%28%3F%3Asubmit%7Cbutton%7Cimage%7Creset%7Cfile%29%24%2Fi%2CVc%3D%2F%5E%28%3F%3Ainput%7Cselect%7Ctextarea%7Ckeygen%29%2Fi%3Bfunction%20Wc%28a%2Cb%2Cc%2Cd%29%7Bvar%20e%3Bif%28n%2EisArray%28b%29%29n%2Eeach%28b%2Cfunction%28b%2Ce%29%7Bc%7C%7CSc%2Etest%28a%29%3Fd%28a%2Ce%29%3AWc%28a%2B%22%5B%22%2B%28%22object%22%3D%3Dtypeof%20e%3Fb%3A%22%22%29%2B%22%5D%22%2Ce%2Cc%2Cd%29%7D%29%3Belse%20if%28c%7C%7C%22object%22%21%3D%3Dn%2Etype%28b%29%29d%28a%2Cb%29%3Belse%20for%28e%20in%20b%29Wc%28a%2B%22%5B%22%2Be%2B%22%5D%22%2Cb%5Be%5D%2Cc%2Cd%29%7Dn%2Eparam%3Dfunction%28a%2Cb%29%7Bvar%20c%2Cd%3D%5B%5D%2Ce%3Dfunction%28a%2Cb%29%7Bb%3Dn%2EisFunction%28b%29%3Fb%28%29%3Anull%3D%3Db%3F%22%22%3Ab%2Cd%5Bd%2Elength%5D%3DencodeURIComponent%28a%29%2B%22%3D%22%2BencodeURIComponent%28b%29%7D%3Bif%28void%200%3D%3D%3Db%26%26%28b%3Dn%2EajaxSettings%26%26n%2EajaxSettings%2Etraditional%29%2Cn%2EisArray%28a%29%7C%7Ca%2Ejquery%26%26%21n%2EisPlainObject%28a%29%29n%2Eeach%28a%2Cfunction%28%29%7Be%28this%2Ename%2Cthis%2Evalue%29%7D%29%3Belse%20for%28c%20in%20a%29Wc%28c%2Ca%5Bc%5D%2Cb%2Ce%29%3Breturn%20d%2Ejoin%28%22%26%22%29%2Ereplace%28Rc%2C%22%2B%22%29%7D%2Cn%2Efn%2Eextend%28%7Bserialize%3Afunction%28%29%7Breturn%20n%2Eparam%28this%2EserializeArray%28%29%29%7D%2CserializeArray%3Afunction%28%29%7Breturn%20this%2Emap%28function%28%29%7Bvar%20a%3Dn%2Eprop%28this%2C%22elements%22%29%3Breturn%20a%3Fn%2EmakeArray%28a%29%3Athis%7D%29%2Efilter%28function%28%29%7Bvar%20a%3Dthis%2Etype%3Breturn%20this%2Ename%26%26%21n%28this%29%2Eis%28%22%3Adisabled%22%29%26%26Vc%2Etest%28this%2EnodeName%29%26%26%21Uc%2Etest%28a%29%26%26%28this%2Echecked%7C%7C%21X%2Etest%28a%29%29%7D%29%2Emap%28function%28a%2Cb%29%7Bvar%20c%3Dn%28this%29%2Eval%28%29%3Breturn%20null%3D%3Dc%3Fnull%3An%2EisArray%28c%29%3Fn%2Emap%28c%2Cfunction%28a%29%7Breturn%7Bname%3Ab%2Ename%2Cvalue%3Aa%2Ereplace%28Tc%2C%22%5Cr%5Cn%22%29%7D%7D%29%3A%7Bname%3Ab%2Ename%2Cvalue%3Ac%2Ereplace%28Tc%2C%22%5Cr%5Cn%22%29%7D%7D%29%2Eget%28%29%7D%7D%29%2Cn%2EajaxSettings%2Exhr%3Dvoid%200%21%3D%3Da%2EActiveXObject%3Ffunction%28%29%7Breturn%21this%2EisLocal%26%26%2F%5E%28get%7Cpost%7Chead%7Cput%7Cdelete%7Coptions%29%24%2Fi%2Etest%28this%2Etype%29%26%26%24c%28%29%7C%7C%5Fc%28%29%7D%3A%24c%3Bvar%20Xc%3D0%2CYc%3D%7B%7D%2CZc%3Dn%2EajaxSettings%2Exhr%28%29%3Ba%2EActiveXObject%26%26n%28a%29%2Eon%28%22unload%22%2Cfunction%28%29%7Bfor%28var%20a%20in%20Yc%29Yc%5Ba%5D%28void%200%2C%210%29%7D%29%2Cl%2Ecors%3D%21%21Zc%26%26%22withCredentials%22in%20Zc%2CZc%3Dl%2Eajax%3D%21%21Zc%2CZc%26%26n%2EajaxTransport%28function%28a%29%7Bif%28%21a%2EcrossDomain%7C%7Cl%2Ecors%29%7Bvar%20b%3Breturn%7Bsend%3Afunction%28c%2Cd%29%7Bvar%20e%2Cf%3Da%2Exhr%28%29%2Cg%3D%2B%2BXc%3Bif%28f%2Eopen%28a%2Etype%2Ca%2Eurl%2Ca%2Easync%2Ca%2Eusername%2Ca%2Epassword%29%2Ca%2ExhrFields%29for%28e%20in%20a%2ExhrFields%29f%5Be%5D%3Da%2ExhrFields%5Be%5D%3Ba%2EmimeType%26%26f%2EoverrideMimeType%26%26f%2EoverrideMimeType%28a%2EmimeType%29%2Ca%2EcrossDomain%7C%7Cc%5B%22X%2DRequested%2DWith%22%5D%7C%7C%28c%5B%22X%2DRequested%2DWith%22%5D%3D%22XMLHttpRequest%22%29%3Bfor%28e%20in%20c%29void%200%21%3D%3Dc%5Be%5D%26%26f%2EsetRequestHeader%28e%2Cc%5Be%5D%2B%22%22%29%3Bf%2Esend%28a%2EhasContent%26%26a%2Edata%7C%7Cnull%29%2Cb%3Dfunction%28c%2Ce%29%7Bvar%20h%2Ci%2Cj%3Bif%28b%26%26%28e%7C%7C4%3D%3D%3Df%2EreadyState%29%29if%28delete%20Yc%5Bg%5D%2Cb%3Dvoid%200%2Cf%2Eonreadystatechange%3Dn%2Enoop%2Ce%294%21%3D%3Df%2EreadyState%26%26f%2Eabort%28%29%3Belse%7Bj%3D%7B%7D%2Ch%3Df%2Estatus%2C%22string%22%3D%3Dtypeof%20f%2EresponseText%26%26%28j%2Etext%3Df%2EresponseText%29%3Btry%7Bi%3Df%2EstatusText%7Dcatch%28k%29%7Bi%3D%22%22%7Dh%7C%7C%21a%2EisLocal%7C%7Ca%2EcrossDomain%3F1223%3D%3D%3Dh%26%26%28h%3D204%29%3Ah%3Dj%2Etext%3F200%3A404%7Dj%26%26d%28h%2Ci%2Cj%2Cf%2EgetAllResponseHeaders%28%29%29%7D%2Ca%2Easync%3F4%3D%3D%3Df%2EreadyState%3FsetTimeout%28b%29%3Af%2Eonreadystatechange%3DYc%5Bg%5D%3Db%3Ab%28%29%7D%2Cabort%3Afunction%28%29%7Bb%26%26b%28void%200%2C%210%29%7D%7D%7D%7D%29%3Bfunction%20%24c%28%29%7Btry%7Breturn%20new%20a%2EXMLHttpRequest%7Dcatch%28b%29%7B%7D%7Dfunction%20%5Fc%28%29%7Btry%7Breturn%20new%20a%2EActiveXObject%28%22Microsoft%2EXMLHTTP%22%29%7Dcatch%28b%29%7B%7D%7Dn%2EajaxSetup%28%7Baccepts%3A%7Bscript%3A%22text%2Fjavascript%2C%20application%2Fjavascript%2C%20application%2Fecmascript%2C%20application%2Fx%2Decmascript%22%7D%2Ccontents%3A%7Bscript%3A%2F%28%3F%3Ajava%7Cecma%29script%2F%7D%2Cconverters%3A%7B%22text%20script%22%3Afunction%28a%29%7Breturn%20n%2EglobalEval%28a%29%2Ca%7D%7D%7D%29%2Cn%2EajaxPrefilter%28%22script%22%2Cfunction%28a%29%7Bvoid%200%3D%3D%3Da%2Ecache%26%26%28a%2Ecache%3D%211%29%2Ca%2EcrossDomain%26%26%28a%2Etype%3D%22GET%22%2Ca%2Eglobal%3D%211%29%7D%29%2Cn%2EajaxTransport%28%22script%22%2Cfunction%28a%29%7Bif%28a%2EcrossDomain%29%7Bvar%20b%2Cc%3Dz%2Ehead%7C%7Cn%28%22head%22%29%5B0%5D%7C%7Cz%2EdocumentElement%3Breturn%7Bsend%3Afunction%28d%2Ce%29%7Bb%3Dz%2EcreateElement%28%22script%22%29%2Cb%2Easync%3D%210%2Ca%2EscriptCharset%26%26%28b%2Echarset%3Da%2EscriptCharset%29%2Cb%2Esrc%3Da%2Eurl%2Cb%2Eonload%3Db%2Eonreadystatechange%3Dfunction%28a%2Cc%29%7B%28c%7C%7C%21b%2EreadyState%7C%7C%2Floaded%7Ccomplete%2F%2Etest%28b%2EreadyState%29%29%26%26%28b%2Eonload%3Db%2Eonreadystatechange%3Dnull%2Cb%2EparentNode%26%26b%2EparentNode%2EremoveChild%28b%29%2Cb%3Dnull%2Cc%7C%7Ce%28200%2C%22success%22%29%29%7D%2Cc%2EinsertBefore%28b%2Cc%2EfirstChild%29%7D%2Cabort%3Afunction%28%29%7Bb%26%26b%2Eonload%28void%200%2C%210%29%7D%7D%7D%7D%29%3Bvar%20ad%3D%5B%5D%2Cbd%3D%2F%28%3D%29%5C%3F%28%3F%3D%26%7C%24%29%7C%5C%3F%5C%3F%2F%3Bn%2EajaxSetup%28%7Bjsonp%3A%22callback%22%2CjsonpCallback%3Afunction%28%29%7Bvar%20a%3Dad%2Epop%28%29%7C%7Cn%2Eexpando%2B%22%5F%22%2Bwc%2B%2B%3Breturn%20this%5Ba%5D%3D%210%2Ca%7D%7D%29%2Cn%2EajaxPrefilter%28%22json%20jsonp%22%2Cfunction%28b%2Cc%2Cd%29%7Bvar%20e%2Cf%2Cg%2Ch%3Db%2Ejsonp%21%3D%3D%211%26%26%28bd%2Etest%28b%2Eurl%29%3F%22url%22%3A%22string%22%3D%3Dtypeof%20b%2Edata%26%26%21%28b%2EcontentType%7C%7C%22%22%29%2EindexOf%28%22application%2Fx%2Dwww%2Dform%2Durlencoded%22%29%26%26bd%2Etest%28b%2Edata%29%26%26%22data%22%29%3Breturn%20h%7C%7C%22jsonp%22%3D%3D%3Db%2EdataTypes%5B0%5D%3F%28e%3Db%2EjsonpCallback%3Dn%2EisFunction%28b%2EjsonpCallback%29%3Fb%2EjsonpCallback%28%29%3Ab%2EjsonpCallback%2Ch%3Fb%5Bh%5D%3Db%5Bh%5D%2Ereplace%28bd%2C%22%241%22%2Be%29%3Ab%2Ejsonp%21%3D%3D%211%26%26%28b%2Eurl%2B%3D%28xc%2Etest%28b%2Eurl%29%3F%22%26%22%3A%22%3F%22%29%2Bb%2Ejsonp%2B%22%3D%22%2Be%29%2Cb%2Econverters%5B%22script%20json%22%5D%3Dfunction%28%29%7Breturn%20g%7C%7Cn%2Eerror%28e%2B%22%20was%20not%20called%22%29%2Cg%5B0%5D%7D%2Cb%2EdataTypes%5B0%5D%3D%22json%22%2Cf%3Da%5Be%5D%2Ca%5Be%5D%3Dfunction%28%29%7Bg%3Darguments%7D%2Cd%2Ealways%28function%28%29%7Ba%5Be%5D%3Df%2Cb%5Be%5D%26%26%28b%2EjsonpCallback%3Dc%2EjsonpCallback%2Cad%2Epush%28e%29%29%2Cg%26%26n%2EisFunction%28f%29%26%26f%28g%5B0%5D%29%2Cg%3Df%3Dvoid%200%7D%29%2C%22script%22%29%3Avoid%200%7D%29%2Cn%2EparseHTML%3Dfunction%28a%2Cb%2Cc%29%7Bif%28%21a%7C%7C%22string%22%21%3Dtypeof%20a%29return%20null%3B%22boolean%22%3D%3Dtypeof%20b%26%26%28c%3Db%2Cb%3D%211%29%2Cb%3Db%7C%7Cz%3Bvar%20d%3Dv%2Eexec%28a%29%2Ce%3D%21c%26%26%5B%5D%3Breturn%20d%3F%5Bb%2EcreateElement%28d%5B1%5D%29%5D%3A%28d%3Dn%2EbuildFragment%28%5Ba%5D%2Cb%2Ce%29%2Ce%26%26e%2Elength%26%26n%28e%29%2Eremove%28%29%2Cn%2Emerge%28%5B%5D%2Cd%2EchildNodes%29%29%7D%3Bvar%20cd%3Dn%2Efn%2Eload%3Bn%2Efn%2Eload%3Dfunction%28a%2Cb%2Cc%29%7Bif%28%22string%22%21%3Dtypeof%20a%26%26cd%29return%20cd%2Eapply%28this%2Carguments%29%3Bvar%20d%2Ce%2Cf%2Cg%3Dthis%2Ch%3Da%2EindexOf%28%22%20%22%29%3Breturn%20h%3E%3D0%26%26%28d%3Da%2Eslice%28h%2Ca%2Elength%29%2Ca%3Da%2Eslice%280%2Ch%29%29%2Cn%2EisFunction%28b%29%3F%28c%3Db%2Cb%3Dvoid%200%29%3Ab%26%26%22object%22%3D%3Dtypeof%20b%26%26%28f%3D%22POST%22%29%2Cg%2Elength%3E0%26%26n%2Eajax%28%7Burl%3Aa%2Ctype%3Af%2CdataType%3A%22html%22%2Cdata%3Ab%7D%29%2Edone%28function%28a%29%7Be%3Darguments%2Cg%2Ehtml%28d%3Fn%28%22%3Cdiv%3E%22%29%2Eappend%28n%2EparseHTML%28a%29%29%2Efind%28d%29%3Aa%29%7D%29%2Ecomplete%28c%26%26function%28a%2Cb%29%7Bg%2Eeach%28c%2Ce%7C%7C%5Ba%2EresponseText%2Cb%2Ca%5D%29%7D%29%2Cthis%7D%2Cn%2Eexpr%2Efilters%2Eanimated%3Dfunction%28a%29%7Breturn%20n%2Egrep%28n%2Etimers%2Cfunction%28b%29%7Breturn%20a%3D%3D%3Db%2Eelem%7D%29%2Elength%7D%3Bvar%20dd%3Da%2Edocument%2EdocumentElement%3Bfunction%20ed%28a%29%7Breturn%20n%2EisWindow%28a%29%3Fa%3A9%3D%3D%3Da%2EnodeType%3Fa%2EdefaultView%7C%7Ca%2EparentWindow%3A%211%7Dn%2Eoffset%3D%7BsetOffset%3Afunction%28a%2Cb%2Cc%29%7Bvar%20d%2Ce%2Cf%2Cg%2Ch%2Ci%2Cj%2Ck%3Dn%2Ecss%28a%2C%22position%22%29%2Cl%3Dn%28a%29%2Cm%3D%7B%7D%3B%22static%22%3D%3D%3Dk%26%26%28a%2Estyle%2Eposition%3D%22relative%22%29%2Ch%3Dl%2Eoffset%28%29%2Cf%3Dn%2Ecss%28a%2C%22top%22%29%2Ci%3Dn%2Ecss%28a%2C%22left%22%29%2Cj%3D%28%22absolute%22%3D%3D%3Dk%7C%7C%22fixed%22%3D%3D%3Dk%29%26%26n%2EinArray%28%22auto%22%2C%5Bf%2Ci%5D%29%3E%2D1%2Cj%3F%28d%3Dl%2Eposition%28%29%2Cg%3Dd%2Etop%2Ce%3Dd%2Eleft%29%3A%28g%3DparseFloat%28f%29%7C%7C0%2Ce%3DparseFloat%28i%29%7C%7C0%29%2Cn%2EisFunction%28b%29%26%26%28b%3Db%2Ecall%28a%2Cc%2Ch%29%29%2Cnull%21%3Db%2Etop%26%26%28m%2Etop%3Db%2Etop%2Dh%2Etop%2Bg%29%2Cnull%21%3Db%2Eleft%26%26%28m%2Eleft%3Db%2Eleft%2Dh%2Eleft%2Be%29%2C%22using%22in%20b%3Fb%2Eusing%2Ecall%28a%2Cm%29%3Al%2Ecss%28m%29%7D%7D%2Cn%2Efn%2Eextend%28%7Boffset%3Afunction%28a%29%7Bif%28arguments%2Elength%29return%20void%200%3D%3D%3Da%3Fthis%3Athis%2Eeach%28function%28b%29%7Bn%2Eoffset%2EsetOffset%28this%2Ca%2Cb%29%7D%29%3Bvar%20b%2Cc%2Cd%3D%7Btop%3A0%2Cleft%3A0%7D%2Ce%3Dthis%5B0%5D%2Cf%3De%26%26e%2EownerDocument%3Bif%28f%29return%20b%3Df%2EdocumentElement%2Cn%2Econtains%28b%2Ce%29%3F%28typeof%20e%2EgetBoundingClientRect%21%3D%3DL%26%26%28d%3De%2EgetBoundingClientRect%28%29%29%2Cc%3Ded%28f%29%2C%7Btop%3Ad%2Etop%2B%28c%2EpageYOffset%7C%7Cb%2EscrollTop%29%2D%28b%2EclientTop%7C%7C0%29%2Cleft%3Ad%2Eleft%2B%28c%2EpageXOffset%7C%7Cb%2EscrollLeft%29%2D%28b%2EclientLeft%7C%7C0%29%7D%29%3Ad%7D%2Cposition%3Afunction%28%29%7Bif%28this%5B0%5D%29%7Bvar%20a%2Cb%2Cc%3D%7Btop%3A0%2Cleft%3A0%7D%2Cd%3Dthis%5B0%5D%3Breturn%22fixed%22%3D%3D%3Dn%2Ecss%28d%2C%22position%22%29%3Fb%3Dd%2EgetBoundingClientRect%28%29%3A%28a%3Dthis%2EoffsetParent%28%29%2Cb%3Dthis%2Eoffset%28%29%2Cn%2EnodeName%28a%5B0%5D%2C%22html%22%29%7C%7C%28c%3Da%2Eoffset%28%29%29%2Cc%2Etop%2B%3Dn%2Ecss%28a%5B0%5D%2C%22borderTopWidth%22%2C%210%29%2Cc%2Eleft%2B%3Dn%2Ecss%28a%5B0%5D%2C%22borderLeftWidth%22%2C%210%29%29%2C%7Btop%3Ab%2Etop%2Dc%2Etop%2Dn%2Ecss%28d%2C%22marginTop%22%2C%210%29%2Cleft%3Ab%2Eleft%2Dc%2Eleft%2Dn%2Ecss%28d%2C%22marginLeft%22%2C%210%29%7D%7D%7D%2CoffsetParent%3Afunction%28%29%7Breturn%20this%2Emap%28function%28%29%7Bvar%20a%3Dthis%2EoffsetParent%7C%7Cdd%3Bwhile%28a%26%26%21n%2EnodeName%28a%2C%22html%22%29%26%26%22static%22%3D%3D%3Dn%2Ecss%28a%2C%22position%22%29%29a%3Da%2EoffsetParent%3Breturn%20a%7C%7Cdd%7D%29%7D%7D%29%2Cn%2Eeach%28%7BscrollLeft%3A%22pageXOffset%22%2CscrollTop%3A%22pageYOffset%22%7D%2Cfunction%28a%2Cb%29%7Bvar%20c%3D%2FY%2F%2Etest%28b%29%3Bn%2Efn%5Ba%5D%3Dfunction%28d%29%7Breturn%20W%28this%2Cfunction%28a%2Cd%2Ce%29%7Bvar%20f%3Ded%28a%29%3Breturn%20void%200%3D%3D%3De%3Ff%3Fb%20in%20f%3Ff%5Bb%5D%3Af%2Edocument%2EdocumentElement%5Bd%5D%3Aa%5Bd%5D%3Avoid%28f%3Ff%2EscrollTo%28c%3Fn%28f%29%2EscrollLeft%28%29%3Ae%2Cc%3Fe%3An%28f%29%2EscrollTop%28%29%29%3Aa%5Bd%5D%3De%29%7D%2Ca%2Cd%2Carguments%2Elength%2Cnull%29%7D%7D%29%2Cn%2Eeach%28%5B%22top%22%2C%22left%22%5D%2Cfunction%28a%2Cb%29%7Bn%2EcssHooks%5Bb%5D%3DMb%28l%2EpixelPosition%2Cfunction%28a%2Cc%29%7Breturn%20c%3F%28c%3DKb%28a%2Cb%29%2CIb%2Etest%28c%29%3Fn%28a%29%2Eposition%28%29%5Bb%5D%2B%22px%22%3Ac%29%3Avoid%200%7D%29%7D%29%2Cn%2Eeach%28%7BHeight%3A%22height%22%2CWidth%3A%22width%22%7D%2Cfunction%28a%2Cb%29%7Bn%2Eeach%28%7Bpadding%3A%22inner%22%2Ba%2Ccontent%3Ab%2C%22%22%3A%22outer%22%2Ba%7D%2Cfunction%28c%2Cd%29%7Bn%2Efn%5Bd%5D%3Dfunction%28d%2Ce%29%7Bvar%20f%3Darguments%2Elength%26%26%28c%7C%7C%22boolean%22%21%3Dtypeof%20d%29%2Cg%3Dc%7C%7C%28d%3D%3D%3D%210%7C%7Ce%3D%3D%3D%210%3F%22margin%22%3A%22border%22%29%3Breturn%20W%28this%2Cfunction%28b%2Cc%2Cd%29%7Bvar%20e%3Breturn%20n%2EisWindow%28b%29%3Fb%2Edocument%2EdocumentElement%5B%22client%22%2Ba%5D%3A9%3D%3D%3Db%2EnodeType%3F%28e%3Db%2EdocumentElement%2CMath%2Emax%28b%2Ebody%5B%22scroll%22%2Ba%5D%2Ce%5B%22scroll%22%2Ba%5D%2Cb%2Ebody%5B%22offset%22%2Ba%5D%2Ce%5B%22offset%22%2Ba%5D%2Ce%5B%22client%22%2Ba%5D%29%29%3Avoid%200%3D%3D%3Dd%3Fn%2Ecss%28b%2Cc%2Cg%29%3An%2Estyle%28b%2Cc%2Cd%2Cg%29%7D%2Cb%2Cf%3Fd%3Avoid%200%2Cf%2Cnull%29%7D%7D%29%7D%29%2Cn%2Efn%2Esize%3Dfunction%28%29%7Breturn%20this%2Elength%7D%2Cn%2Efn%2EandSelf%3Dn%2Efn%2EaddBack%2C%22function%22%3D%3Dtypeof%20define%26%26define%2Eamd%26%26define%28%22jquery%22%2C%5B%5D%2Cfunction%28%29%7Breturn%20n%7D%29%3Bvar%20fd%3Da%2EjQuery%2Cgd%3Da%2E%24%3Breturn%20n%2EnoConflict%3Dfunction%28b%29%7Breturn%20a%2E%24%3D%3D%3Dn%26%26%28a%2E%24%3Dgd%29%2Cb%26%26a%2EjQuery%3D%3D%3Dn%26%26%28a%2EjQuery%3Dfd%29%2Cn%7D%2Ctypeof%20b%3D%3D%3DL%26%26%28a%2EjQuery%3Da%2E%24%3Dn%29%2Cn%7D%29%3B%0A"></script>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link href="data:text/css,%2F%2A%21%0A%20%2A%20Bootstrap%20v2%2E3%2E2%0A%20%2A%0A%20%2A%20Copyright%202013%20Twitter%2C%20Inc%0A%20%2A%20Licensed%20under%20the%20Apache%20License%20v2%2E0%0A%20%2A%20http%3A%2F%2Fwww%2Eapache%2Eorg%2Flicenses%2FLICENSE%2D2%2E0%0A%20%2A%0A%20%2A%20Designed%20and%20built%20with%20all%20the%20love%20in%20the%20world%20by%20%40mdo%20and%20%40fat%2E%0A%20%2A%2F%2Eclearfix%7B%2Azoom%3A1%7D%2Eclearfix%3Abefore%2C%2Eclearfix%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Eclearfix%3Aafter%7Bclear%3Aboth%7D%2Ehide%2Dtext%7Bfont%3A0%2F0%20a%3Bcolor%3Atransparent%3Btext%2Dshadow%3Anone%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%7D%2Einput%2Dblock%2Dlevel%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bmin%2Dheight%3A30px%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7Darticle%2Caside%2Cdetails%2Cfigcaption%2Cfigure%2Cfooter%2Cheader%2Chgroup%2Cnav%2Csection%7Bdisplay%3Ablock%7Daudio%2Ccanvas%2Cvideo%7Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3B%2Azoom%3A1%7Daudio%3Anot%28%5Bcontrols%5D%29%7Bdisplay%3Anone%7Dhtml%7Bfont%2Dsize%3A100%25%3B%2Dwebkit%2Dtext%2Dsize%2Dadjust%3A100%25%3B%2Dms%2Dtext%2Dsize%2Dadjust%3A100%25%7Da%3Afocus%7Boutline%3Athin%20dotted%20%23333%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7Da%3Ahover%2Ca%3Aactive%7Boutline%3A0%7Dsub%2Csup%7Bposition%3Arelative%3Bfont%2Dsize%3A75%25%3Bline%2Dheight%3A0%3Bvertical%2Dalign%3Abaseline%7Dsup%7Btop%3A%2D0%2E5em%7Dsub%7Bbottom%3A%2D0%2E25em%7Dimg%7Bwidth%3Aauto%5C9%3Bheight%3Aauto%3Bmax%2Dwidth%3A100%25%3Bvertical%2Dalign%3Amiddle%3Bborder%3A0%3B%2Dms%2Dinterpolation%2Dmode%3Abicubic%7D%23map%5Fcanvas%20img%2C%2Egoogle%2Dmaps%20img%7Bmax%2Dwidth%3Anone%7Dbutton%2Cinput%2Cselect%2Ctextarea%7Bmargin%3A0%3Bfont%2Dsize%3A100%25%3Bvertical%2Dalign%3Amiddle%7Dbutton%2Cinput%7B%2Aoverflow%3Avisible%3Bline%2Dheight%3Anormal%7Dbutton%3A%3A%2Dmoz%2Dfocus%2Dinner%2Cinput%3A%3A%2Dmoz%2Dfocus%2Dinner%7Bpadding%3A0%3Bborder%3A0%7Dbutton%2Chtml%20input%5Btype%3D%22button%22%5D%2Cinput%5Btype%3D%22reset%22%5D%2Cinput%5Btype%3D%22submit%22%5D%7Bcursor%3Apointer%3B%2Dwebkit%2Dappearance%3Abutton%7Dlabel%2Cselect%2Cbutton%2Cinput%5Btype%3D%22button%22%5D%2Cinput%5Btype%3D%22reset%22%5D%2Cinput%5Btype%3D%22submit%22%5D%2Cinput%5Btype%3D%22radio%22%5D%2Cinput%5Btype%3D%22checkbox%22%5D%7Bcursor%3Apointer%7Dinput%5Btype%3D%22search%22%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%3B%2Dwebkit%2Dappearance%3Atextfield%7Dinput%5Btype%3D%22search%22%5D%3A%3A%2Dwebkit%2Dsearch%2Ddecoration%2Cinput%5Btype%3D%22search%22%5D%3A%3A%2Dwebkit%2Dsearch%2Dcancel%2Dbutton%7B%2Dwebkit%2Dappearance%3Anone%7Dtextarea%7Boverflow%3Aauto%3Bvertical%2Dalign%3Atop%7D%40media%20print%7B%2A%7Bcolor%3A%23000%21important%3Btext%2Dshadow%3Anone%21important%3Bbackground%3Atransparent%21important%3Bbox%2Dshadow%3Anone%21important%7Da%2Ca%3Avisited%7Btext%2Ddecoration%3Aunderline%7Da%5Bhref%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28href%29%20%22%29%22%7Dabbr%5Btitle%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28title%29%20%22%29%22%7D%2Eir%20a%3Aafter%2Ca%5Bhref%5E%3D%22javascript%3A%22%5D%3Aafter%2Ca%5Bhref%5E%3D%22%23%22%5D%3Aafter%7Bcontent%3A%22%22%7Dpre%2Cblockquote%7Bborder%3A1px%20solid%20%23999%3Bpage%2Dbreak%2Dinside%3Aavoid%7Dthead%7Bdisplay%3Atable%2Dheader%2Dgroup%7Dtr%2Cimg%7Bpage%2Dbreak%2Dinside%3Aavoid%7Dimg%7Bmax%2Dwidth%3A100%25%21important%7D%40page%7Bmargin%3A%2E5cm%7Dp%2Ch2%2Ch3%7Borphans%3A3%3Bwidows%3A3%7Dh2%2Ch3%7Bpage%2Dbreak%2Dafter%3Aavoid%7D%7Dbody%7Bmargin%3A0%3Bfont%2Dfamily%3A%22Helvetica%20Neue%22%2CHelvetica%2CArial%2Csans%2Dserif%3Bfont%2Dsize%3A14px%3Bline%2Dheight%3A20px%3Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23fff%7Da%7Bcolor%3A%2308c%3Btext%2Ddecoration%3Anone%7Da%3Ahover%2Ca%3Afocus%7Bcolor%3A%23005580%3Btext%2Ddecoration%3Aunderline%7D%2Eimg%2Drounded%7B%2Dwebkit%2Dborder%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%3A6px%3Bborder%2Dradius%3A6px%7D%2Eimg%2Dpolaroid%7Bpadding%3A4px%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ccc%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C0%2E2%29%3B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%203px%20rgba%280%2C0%2C0%2C0%2E1%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%201px%203px%20rgba%280%2C0%2C0%2C0%2E1%29%3Bbox%2Dshadow%3A0%201px%203px%20rgba%280%2C0%2C0%2C0%2E1%29%7D%2Eimg%2Dcircle%7B%2Dwebkit%2Dborder%2Dradius%3A500px%3B%2Dmoz%2Dborder%2Dradius%3A500px%3Bborder%2Dradius%3A500px%7D%2Erow%7Bmargin%2Dleft%3A%2D20px%3B%2Azoom%3A1%7D%2Erow%3Abefore%2C%2Erow%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Erow%3Aafter%7Bclear%3Aboth%7D%5Bclass%2A%3D%22span%22%5D%7Bfloat%3Aleft%3Bmin%2Dheight%3A1px%3Bmargin%2Dleft%3A20px%7D%2Econtainer%2C%2Enavbar%2Dstatic%2Dtop%20%2Econtainer%2C%2Enavbar%2Dfixed%2Dtop%20%2Econtainer%2C%2Enavbar%2Dfixed%2Dbottom%20%2Econtainer%7Bwidth%3A940px%7D%2Espan12%7Bwidth%3A940px%7D%2Espan11%7Bwidth%3A860px%7D%2Espan10%7Bwidth%3A780px%7D%2Espan9%7Bwidth%3A700px%7D%2Espan8%7Bwidth%3A620px%7D%2Espan7%7Bwidth%3A540px%7D%2Espan6%7Bwidth%3A460px%7D%2Espan5%7Bwidth%3A380px%7D%2Espan4%7Bwidth%3A300px%7D%2Espan3%7Bwidth%3A220px%7D%2Espan2%7Bwidth%3A140px%7D%2Espan1%7Bwidth%3A60px%7D%2Eoffset12%7Bmargin%2Dleft%3A980px%7D%2Eoffset11%7Bmargin%2Dleft%3A900px%7D%2Eoffset10%7Bmargin%2Dleft%3A820px%7D%2Eoffset9%7Bmargin%2Dleft%3A740px%7D%2Eoffset8%7Bmargin%2Dleft%3A660px%7D%2Eoffset7%7Bmargin%2Dleft%3A580px%7D%2Eoffset6%7Bmargin%2Dleft%3A500px%7D%2Eoffset5%7Bmargin%2Dleft%3A420px%7D%2Eoffset4%7Bmargin%2Dleft%3A340px%7D%2Eoffset3%7Bmargin%2Dleft%3A260px%7D%2Eoffset2%7Bmargin%2Dleft%3A180px%7D%2Eoffset1%7Bmargin%2Dleft%3A100px%7D%2Erow%2Dfluid%7Bwidth%3A100%25%3B%2Azoom%3A1%7D%2Erow%2Dfluid%3Abefore%2C%2Erow%2Dfluid%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Erow%2Dfluid%3Aafter%7Bclear%3Aboth%7D%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%7Bdisplay%3Ablock%3Bfloat%3Aleft%3Bwidth%3A100%25%3Bmin%2Dheight%3A30px%3Bmargin%2Dleft%3A2%2E127659574468085%25%3B%2Amargin%2Dleft%3A2%2E074468085106383%25%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%7D%2Erow%2Dfluid%20%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%2B%5Bclass%2A%3D%22span%22%5D%7Bmargin%2Dleft%3A2%2E127659574468085%25%7D%2Erow%2Dfluid%20%2Espan12%7Bwidth%3A100%25%3B%2Awidth%3A99%2E94680851063829%25%7D%2Erow%2Dfluid%20%2Espan11%7Bwidth%3A91%2E48936170212765%25%3B%2Awidth%3A91%2E43617021276594%25%7D%2Erow%2Dfluid%20%2Espan10%7Bwidth%3A82%2E97872340425532%25%3B%2Awidth%3A82%2E92553191489361%25%7D%2Erow%2Dfluid%20%2Espan9%7Bwidth%3A74%2E46808510638297%25%3B%2Awidth%3A74%2E41489361702126%25%7D%2Erow%2Dfluid%20%2Espan8%7Bwidth%3A65%2E95744680851064%25%3B%2Awidth%3A65%2E90425531914893%25%7D%2Erow%2Dfluid%20%2Espan7%7Bwidth%3A57%2E44680851063829%25%3B%2Awidth%3A57%2E39361702127659%25%7D%2Erow%2Dfluid%20%2Espan6%7Bwidth%3A48%2E93617021276595%25%3B%2Awidth%3A48%2E88297872340425%25%7D%2Erow%2Dfluid%20%2Espan5%7Bwidth%3A40%2E42553191489362%25%3B%2Awidth%3A40%2E37234042553192%25%7D%2Erow%2Dfluid%20%2Espan4%7Bwidth%3A31%2E914893617021278%25%3B%2Awidth%3A31%2E861702127659576%25%7D%2Erow%2Dfluid%20%2Espan3%7Bwidth%3A23%2E404255319148934%25%3B%2Awidth%3A23%2E351063829787233%25%7D%2Erow%2Dfluid%20%2Espan2%7Bwidth%3A14%2E893617021276595%25%3B%2Awidth%3A14%2E840425531914894%25%7D%2Erow%2Dfluid%20%2Espan1%7Bwidth%3A6%2E382978723404255%25%3B%2Awidth%3A6%2E329787234042553%25%7D%2Erow%2Dfluid%20%2Eoffset12%7Bmargin%2Dleft%3A104%2E25531914893617%25%3B%2Amargin%2Dleft%3A104%2E14893617021275%25%7D%2Erow%2Dfluid%20%2Eoffset12%3Afirst%2Dchild%7Bmargin%2Dleft%3A102%2E12765957446808%25%3B%2Amargin%2Dleft%3A102%2E02127659574467%25%7D%2Erow%2Dfluid%20%2Eoffset11%7Bmargin%2Dleft%3A95%2E74468085106382%25%3B%2Amargin%2Dleft%3A95%2E6382978723404%25%7D%2Erow%2Dfluid%20%2Eoffset11%3Afirst%2Dchild%7Bmargin%2Dleft%3A93%2E61702127659574%25%3B%2Amargin%2Dleft%3A93%2E51063829787232%25%7D%2Erow%2Dfluid%20%2Eoffset10%7Bmargin%2Dleft%3A87%2E23404255319149%25%3B%2Amargin%2Dleft%3A87%2E12765957446807%25%7D%2Erow%2Dfluid%20%2Eoffset10%3Afirst%2Dchild%7Bmargin%2Dleft%3A85%2E1063829787234%25%3B%2Amargin%2Dleft%3A84%2E99999999999999%25%7D%2Erow%2Dfluid%20%2Eoffset9%7Bmargin%2Dleft%3A78%2E72340425531914%25%3B%2Amargin%2Dleft%3A78%2E61702127659572%25%7D%2Erow%2Dfluid%20%2Eoffset9%3Afirst%2Dchild%7Bmargin%2Dleft%3A76%2E59574468085106%25%3B%2Amargin%2Dleft%3A76%2E48936170212764%25%7D%2Erow%2Dfluid%20%2Eoffset8%7Bmargin%2Dleft%3A70%2E2127659574468%25%3B%2Amargin%2Dleft%3A70%2E10638297872339%25%7D%2Erow%2Dfluid%20%2Eoffset8%3Afirst%2Dchild%7Bmargin%2Dleft%3A68%2E08510638297872%25%3B%2Amargin%2Dleft%3A67%2E9787234042553%25%7D%2Erow%2Dfluid%20%2Eoffset7%7Bmargin%2Dleft%3A61%2E70212765957446%25%3B%2Amargin%2Dleft%3A61%2E59574468085106%25%7D%2Erow%2Dfluid%20%2Eoffset7%3Afirst%2Dchild%7Bmargin%2Dleft%3A59%2E574468085106375%25%3B%2Amargin%2Dleft%3A59%2E46808510638297%25%7D%2Erow%2Dfluid%20%2Eoffset6%7Bmargin%2Dleft%3A53%2E191489361702125%25%3B%2Amargin%2Dleft%3A53%2E085106382978715%25%7D%2Erow%2Dfluid%20%2Eoffset6%3Afirst%2Dchild%7Bmargin%2Dleft%3A51%2E063829787234035%25%3B%2Amargin%2Dleft%3A50%2E95744680851063%25%7D%2Erow%2Dfluid%20%2Eoffset5%7Bmargin%2Dleft%3A44%2E68085106382979%25%3B%2Amargin%2Dleft%3A44%2E57446808510638%25%7D%2Erow%2Dfluid%20%2Eoffset5%3Afirst%2Dchild%7Bmargin%2Dleft%3A42%2E5531914893617%25%3B%2Amargin%2Dleft%3A42%2E4468085106383%25%7D%2Erow%2Dfluid%20%2Eoffset4%7Bmargin%2Dleft%3A36%2E170212765957444%25%3B%2Amargin%2Dleft%3A36%2E06382978723405%25%7D%2Erow%2Dfluid%20%2Eoffset4%3Afirst%2Dchild%7Bmargin%2Dleft%3A34%2E04255319148936%25%3B%2Amargin%2Dleft%3A33%2E93617021276596%25%7D%2Erow%2Dfluid%20%2Eoffset3%7Bmargin%2Dleft%3A27%2E659574468085104%25%3B%2Amargin%2Dleft%3A27%2E5531914893617%25%7D%2Erow%2Dfluid%20%2Eoffset3%3Afirst%2Dchild%7Bmargin%2Dleft%3A25%2E53191489361702%25%3B%2Amargin%2Dleft%3A25%2E425531914893618%25%7D%2Erow%2Dfluid%20%2Eoffset2%7Bmargin%2Dleft%3A19%2E148936170212764%25%3B%2Amargin%2Dleft%3A19%2E04255319148936%25%7D%2Erow%2Dfluid%20%2Eoffset2%3Afirst%2Dchild%7Bmargin%2Dleft%3A17%2E02127659574468%25%3B%2Amargin%2Dleft%3A16%2E914893617021278%25%7D%2Erow%2Dfluid%20%2Eoffset1%7Bmargin%2Dleft%3A10%2E638297872340425%25%3B%2Amargin%2Dleft%3A10%2E53191489361702%25%7D%2Erow%2Dfluid%20%2Eoffset1%3Afirst%2Dchild%7Bmargin%2Dleft%3A8%2E51063829787234%25%3B%2Amargin%2Dleft%3A8%2E404255319148938%25%7D%5Bclass%2A%3D%22span%22%5D%2Ehide%2C%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%2Ehide%7Bdisplay%3Anone%7D%5Bclass%2A%3D%22span%22%5D%2Epull%2Dright%2C%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%2Epull%2Dright%7Bfloat%3Aright%7D%2Econtainer%7Bmargin%2Dright%3Aauto%3Bmargin%2Dleft%3Aauto%3B%2Azoom%3A1%7D%2Econtainer%3Abefore%2C%2Econtainer%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Econtainer%3Aafter%7Bclear%3Aboth%7D%2Econtainer%2Dfluid%7Bpadding%2Dright%3A20px%3Bpadding%2Dleft%3A20px%3B%2Azoom%3A1%7D%2Econtainer%2Dfluid%3Abefore%2C%2Econtainer%2Dfluid%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Econtainer%2Dfluid%3Aafter%7Bclear%3Aboth%7Dp%7Bmargin%3A0%200%2010px%7D%2Elead%7Bmargin%2Dbottom%3A20px%3Bfont%2Dsize%3A21px%3Bfont%2Dweight%3A200%3Bline%2Dheight%3A30px%7Dsmall%7Bfont%2Dsize%3A85%25%7Dstrong%7Bfont%2Dweight%3Abold%7Dem%7Bfont%2Dstyle%3Aitalic%7Dcite%7Bfont%2Dstyle%3Anormal%7D%2Emuted%7Bcolor%3A%23999%7Da%2Emuted%3Ahover%2Ca%2Emuted%3Afocus%7Bcolor%3A%23808080%7D%2Etext%2Dwarning%7Bcolor%3A%23c09853%7Da%2Etext%2Dwarning%3Ahover%2Ca%2Etext%2Dwarning%3Afocus%7Bcolor%3A%23a47e3c%7D%2Etext%2Derror%7Bcolor%3A%23b94a48%7Da%2Etext%2Derror%3Ahover%2Ca%2Etext%2Derror%3Afocus%7Bcolor%3A%23953b39%7D%2Etext%2Dinfo%7Bcolor%3A%233a87ad%7Da%2Etext%2Dinfo%3Ahover%2Ca%2Etext%2Dinfo%3Afocus%7Bcolor%3A%232d6987%7D%2Etext%2Dsuccess%7Bcolor%3A%23468847%7Da%2Etext%2Dsuccess%3Ahover%2Ca%2Etext%2Dsuccess%3Afocus%7Bcolor%3A%23356635%7D%2Etext%2Dleft%7Btext%2Dalign%3Aleft%7D%2Etext%2Dright%7Btext%2Dalign%3Aright%7D%2Etext%2Dcenter%7Btext%2Dalign%3Acenter%7Dh1%2Ch2%2Ch3%2Ch4%2Ch5%2Ch6%7Bmargin%3A10px%200%3Bfont%2Dfamily%3Ainherit%3Bfont%2Dweight%3Abold%3Bline%2Dheight%3A20px%3Bcolor%3Ainherit%3Btext%2Drendering%3Aoptimizelegibility%7Dh1%20small%2Ch2%20small%2Ch3%20small%2Ch4%20small%2Ch5%20small%2Ch6%20small%7Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A1%3Bcolor%3A%23999%7Dh1%2Ch2%2Ch3%7Bline%2Dheight%3A40px%7Dh1%7Bfont%2Dsize%3A38%2E5px%7Dh2%7Bfont%2Dsize%3A31%2E5px%7Dh3%7Bfont%2Dsize%3A24%2E5px%7Dh4%7Bfont%2Dsize%3A17%2E5px%7Dh5%7Bfont%2Dsize%3A14px%7Dh6%7Bfont%2Dsize%3A11%2E9px%7Dh1%20small%7Bfont%2Dsize%3A24%2E5px%7Dh2%20small%7Bfont%2Dsize%3A17%2E5px%7Dh3%20small%7Bfont%2Dsize%3A14px%7Dh4%20small%7Bfont%2Dsize%3A14px%7D%2Epage%2Dheader%7Bpadding%2Dbottom%3A9px%3Bmargin%3A20px%200%2030px%3Bborder%2Dbottom%3A1px%20solid%20%23eee%7Dul%2Col%7Bpadding%3A0%3Bmargin%3A0%200%2010px%2025px%7Dul%20ul%2Cul%20ol%2Col%20ol%2Col%20ul%7Bmargin%2Dbottom%3A0%7Dli%7Bline%2Dheight%3A20px%7Dul%2Eunstyled%2Col%2Eunstyled%7Bmargin%2Dleft%3A0%3Blist%2Dstyle%3Anone%7Dul%2Einline%2Col%2Einline%7Bmargin%2Dleft%3A0%3Blist%2Dstyle%3Anone%7Dul%2Einline%3Eli%2Col%2Einline%3Eli%7Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3Bpadding%2Dright%3A5px%3Bpadding%2Dleft%3A5px%3B%2Azoom%3A1%7Ddl%7Bmargin%2Dbottom%3A20px%7Ddt%2Cdd%7Bline%2Dheight%3A20px%7Ddt%7Bfont%2Dweight%3Abold%7Ddd%7Bmargin%2Dleft%3A10px%7D%2Edl%2Dhorizontal%7B%2Azoom%3A1%7D%2Edl%2Dhorizontal%3Abefore%2C%2Edl%2Dhorizontal%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Edl%2Dhorizontal%3Aafter%7Bclear%3Aboth%7D%2Edl%2Dhorizontal%20dt%7Bfloat%3Aleft%3Bwidth%3A160px%3Boverflow%3Ahidden%3Bclear%3Aleft%3Btext%2Dalign%3Aright%3Btext%2Doverflow%3Aellipsis%3Bwhite%2Dspace%3Anowrap%7D%2Edl%2Dhorizontal%20dd%7Bmargin%2Dleft%3A180px%7Dhr%7Bmargin%3A20px%200%3Bborder%3A0%3Bborder%2Dtop%3A1px%20solid%20%23eee%3Bborder%2Dbottom%3A1px%20solid%20%23fff%7Dabbr%5Btitle%5D%2Cabbr%5Bdata%2Doriginal%2Dtitle%5D%7Bcursor%3Ahelp%3Bborder%2Dbottom%3A1px%20dotted%20%23999%7Dabbr%2Einitialism%7Bfont%2Dsize%3A90%25%3Btext%2Dtransform%3Auppercase%7Dblockquote%7Bpadding%3A0%200%200%2015px%3Bmargin%3A0%200%2020px%3Bborder%2Dleft%3A5px%20solid%20%23eee%7Dblockquote%20p%7Bmargin%2Dbottom%3A0%3Bfont%2Dsize%3A17%2E5px%3Bfont%2Dweight%3A300%3Bline%2Dheight%3A1%2E25%7Dblockquote%20small%7Bdisplay%3Ablock%3Bline%2Dheight%3A20px%3Bcolor%3A%23999%7Dblockquote%20small%3Abefore%7Bcontent%3A%27%5C2014%20%5C00A0%27%7Dblockquote%2Epull%2Dright%7Bfloat%3Aright%3Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A0%3Bborder%2Dright%3A5px%20solid%20%23eee%3Bborder%2Dleft%3A0%7Dblockquote%2Epull%2Dright%20p%2Cblockquote%2Epull%2Dright%20small%7Btext%2Dalign%3Aright%7Dblockquote%2Epull%2Dright%20small%3Abefore%7Bcontent%3A%27%27%7Dblockquote%2Epull%2Dright%20small%3Aafter%7Bcontent%3A%27%5C00A0%20%5C2014%27%7Dq%3Abefore%2Cq%3Aafter%2Cblockquote%3Abefore%2Cblockquote%3Aafter%7Bcontent%3A%22%22%7Daddress%7Bdisplay%3Ablock%3Bmargin%2Dbottom%3A20px%3Bfont%2Dstyle%3Anormal%3Bline%2Dheight%3A20px%7Dcode%2Cpre%7Bpadding%3A0%203px%202px%3Bfont%2Dfamily%3Amonospace%3Bfont%2Dsize%3A12px%3Bcolor%3A%23333%3B%2Dwebkit%2Dborder%2Dradius%3A3px%3B%2Dmoz%2Dborder%2Dradius%3A3px%3Bborder%2Dradius%3A3px%7Dcode%7Bpadding%3A2px%204px%3Bcolor%3A%23d14%3Bwhite%2Dspace%3Anowrap%3Bbackground%2Dcolor%3A%23f7f7f9%3Bborder%3A1px%20solid%20%23e1e1e8%7Dpre%7Bdisplay%3Ablock%3Bpadding%3A9%2E5px%3Bmargin%3A0%200%2010px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A20px%3Bword%2Dbreak%3Abreak%2Dall%3Bword%2Dwrap%3Abreak%2Dword%3Bwhite%2Dspace%3Apre%3Bwhite%2Dspace%3Apre%2Dwrap%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%3A1px%20solid%20%23ccc%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C0%2E15%29%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7Dpre%2Eprettyprint%7Bmargin%2Dbottom%3A20px%7Dpre%20code%7Bpadding%3A0%3Bcolor%3Ainherit%3Bwhite%2Dspace%3Apre%3Bwhite%2Dspace%3Apre%2Dwrap%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%7D%2Epre%2Dscrollable%7Bmax%2Dheight%3A340px%3Boverflow%2Dy%3Ascroll%7Dform%7Bmargin%3A0%200%2020px%7Dfieldset%7Bpadding%3A0%3Bmargin%3A0%3Bborder%3A0%7Dlegend%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bpadding%3A0%3Bmargin%2Dbottom%3A20px%3Bfont%2Dsize%3A21px%3Bline%2Dheight%3A40px%3Bcolor%3A%23333%3Bborder%3A0%3Bborder%2Dbottom%3A1px%20solid%20%23e5e5e5%7Dlegend%20small%7Bfont%2Dsize%3A15px%3Bcolor%3A%23999%7Dlabel%2Cinput%2Cbutton%2Cselect%2Ctextarea%7Bfont%2Dsize%3A14px%3Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A20px%7Dinput%2Cbutton%2Cselect%2Ctextarea%7Bfont%2Dfamily%3A%22Helvetica%20Neue%22%2CHelvetica%2CArial%2Csans%2Dserif%7Dlabel%7Bdisplay%3Ablock%3Bmargin%2Dbottom%3A5px%7Dselect%2Ctextarea%2Cinput%5Btype%3D%22text%22%5D%2Cinput%5Btype%3D%22password%22%5D%2Cinput%5Btype%3D%22datetime%22%5D%2Cinput%5Btype%3D%22datetime%2Dlocal%22%5D%2Cinput%5Btype%3D%22date%22%5D%2Cinput%5Btype%3D%22month%22%5D%2Cinput%5Btype%3D%22time%22%5D%2Cinput%5Btype%3D%22week%22%5D%2Cinput%5Btype%3D%22number%22%5D%2Cinput%5Btype%3D%22email%22%5D%2Cinput%5Btype%3D%22url%22%5D%2Cinput%5Btype%3D%22search%22%5D%2Cinput%5Btype%3D%22tel%22%5D%2Cinput%5Btype%3D%22color%22%5D%2C%2Euneditable%2Dinput%7Bdisplay%3Ainline%2Dblock%3Bheight%3A20px%3Bpadding%3A4px%206px%3Bmargin%2Dbottom%3A10px%3Bfont%2Dsize%3A14px%3Bline%2Dheight%3A20px%3Bcolor%3A%23555%3Bvertical%2Dalign%3Amiddle%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7Dinput%2Ctextarea%2C%2Euneditable%2Dinput%7Bwidth%3A206px%7Dtextarea%7Bheight%3Aauto%7Dtextarea%2Cinput%5Btype%3D%22text%22%5D%2Cinput%5Btype%3D%22password%22%5D%2Cinput%5Btype%3D%22datetime%22%5D%2Cinput%5Btype%3D%22datetime%2Dlocal%22%5D%2Cinput%5Btype%3D%22date%22%5D%2Cinput%5Btype%3D%22month%22%5D%2Cinput%5Btype%3D%22time%22%5D%2Cinput%5Btype%3D%22week%22%5D%2Cinput%5Btype%3D%22number%22%5D%2Cinput%5Btype%3D%22email%22%5D%2Cinput%5Btype%3D%22url%22%5D%2Cinput%5Btype%3D%22search%22%5D%2Cinput%5Btype%3D%22tel%22%5D%2Cinput%5Btype%3D%22color%22%5D%2C%2Euneditable%2Dinput%7Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ccc%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3B%2Dwebkit%2Dtransition%3Aborder%20linear%20%2E2s%2Cbox%2Dshadow%20linear%20%2E2s%3B%2Dmoz%2Dtransition%3Aborder%20linear%20%2E2s%2Cbox%2Dshadow%20linear%20%2E2s%3B%2Do%2Dtransition%3Aborder%20linear%20%2E2s%2Cbox%2Dshadow%20linear%20%2E2s%3Btransition%3Aborder%20linear%20%2E2s%2Cbox%2Dshadow%20linear%20%2E2s%7Dtextarea%3Afocus%2Cinput%5Btype%3D%22text%22%5D%3Afocus%2Cinput%5Btype%3D%22password%22%5D%3Afocus%2Cinput%5Btype%3D%22datetime%22%5D%3Afocus%2Cinput%5Btype%3D%22datetime%2Dlocal%22%5D%3Afocus%2Cinput%5Btype%3D%22date%22%5D%3Afocus%2Cinput%5Btype%3D%22month%22%5D%3Afocus%2Cinput%5Btype%3D%22time%22%5D%3Afocus%2Cinput%5Btype%3D%22week%22%5D%3Afocus%2Cinput%5Btype%3D%22number%22%5D%3Afocus%2Cinput%5Btype%3D%22email%22%5D%3Afocus%2Cinput%5Btype%3D%22url%22%5D%3Afocus%2Cinput%5Btype%3D%22search%22%5D%3Afocus%2Cinput%5Btype%3D%22tel%22%5D%3Afocus%2Cinput%5Btype%3D%22color%22%5D%3Afocus%2C%2Euneditable%2Dinput%3Afocus%7Bborder%2Dcolor%3Argba%2882%2C168%2C236%2C0%2E8%29%3Boutline%3A0%3Boutline%3Athin%20dotted%20%5C9%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%208px%20rgba%2882%2C168%2C236%2C0%2E6%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%208px%20rgba%2882%2C168%2C236%2C0%2E6%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%208px%20rgba%2882%2C168%2C236%2C0%2E6%29%7Dinput%5Btype%3D%22radio%22%5D%2Cinput%5Btype%3D%22checkbox%22%5D%7Bmargin%3A4px%200%200%3Bmargin%2Dtop%3A1px%20%5C9%3B%2Amargin%2Dtop%3A0%3Bline%2Dheight%3Anormal%7Dinput%5Btype%3D%22file%22%5D%2Cinput%5Btype%3D%22image%22%5D%2Cinput%5Btype%3D%22submit%22%5D%2Cinput%5Btype%3D%22reset%22%5D%2Cinput%5Btype%3D%22button%22%5D%2Cinput%5Btype%3D%22radio%22%5D%2Cinput%5Btype%3D%22checkbox%22%5D%7Bwidth%3Aauto%7Dselect%2Cinput%5Btype%3D%22file%22%5D%7Bheight%3A30px%3B%2Amargin%2Dtop%3A4px%3Bline%2Dheight%3A30px%7Dselect%7Bwidth%3A220px%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ccc%7Dselect%5Bmultiple%5D%2Cselect%5Bsize%5D%7Bheight%3Aauto%7Dselect%3Afocus%2Cinput%5Btype%3D%22file%22%5D%3Afocus%2Cinput%5Btype%3D%22radio%22%5D%3Afocus%2Cinput%5Btype%3D%22checkbox%22%5D%3Afocus%7Boutline%3Athin%20dotted%20%23333%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7D%2Euneditable%2Dinput%2C%2Euneditable%2Dtextarea%7Bcolor%3A%23999%3Bcursor%3Anot%2Dallowed%3Bbackground%2Dcolor%3A%23fcfcfc%3Bborder%2Dcolor%3A%23ccc%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E025%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E025%29%3Bbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E025%29%7D%2Euneditable%2Dinput%7Boverflow%3Ahidden%3Bwhite%2Dspace%3Anowrap%7D%2Euneditable%2Dtextarea%7Bwidth%3Aauto%3Bheight%3Aauto%7Dinput%3A%2Dmoz%2Dplaceholder%2Ctextarea%3A%2Dmoz%2Dplaceholder%7Bcolor%3A%23999%7Dinput%3A%2Dms%2Dinput%2Dplaceholder%2Ctextarea%3A%2Dms%2Dinput%2Dplaceholder%7Bcolor%3A%23999%7Dinput%3A%3A%2Dwebkit%2Dinput%2Dplaceholder%2Ctextarea%3A%3A%2Dwebkit%2Dinput%2Dplaceholder%7Bcolor%3A%23999%7D%2Eradio%2C%2Echeckbox%7Bmin%2Dheight%3A20px%3Bpadding%2Dleft%3A20px%7D%2Eradio%20input%5Btype%3D%22radio%22%5D%2C%2Echeckbox%20input%5Btype%3D%22checkbox%22%5D%7Bfloat%3Aleft%3Bmargin%2Dleft%3A%2D20px%7D%2Econtrols%3E%2Eradio%3Afirst%2Dchild%2C%2Econtrols%3E%2Echeckbox%3Afirst%2Dchild%7Bpadding%2Dtop%3A5px%7D%2Eradio%2Einline%2C%2Echeckbox%2Einline%7Bdisplay%3Ainline%2Dblock%3Bpadding%2Dtop%3A5px%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Eradio%2Einline%2B%2Eradio%2Einline%2C%2Echeckbox%2Einline%2B%2Echeckbox%2Einline%7Bmargin%2Dleft%3A10px%7D%2Einput%2Dmini%7Bwidth%3A60px%7D%2Einput%2Dsmall%7Bwidth%3A90px%7D%2Einput%2Dmedium%7Bwidth%3A150px%7D%2Einput%2Dlarge%7Bwidth%3A210px%7D%2Einput%2Dxlarge%7Bwidth%3A270px%7D%2Einput%2Dxxlarge%7Bwidth%3A530px%7Dinput%5Bclass%2A%3D%22span%22%5D%2Cselect%5Bclass%2A%3D%22span%22%5D%2Ctextarea%5Bclass%2A%3D%22span%22%5D%2C%2Euneditable%2Dinput%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20input%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20select%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20textarea%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20%2Euneditable%2Dinput%5Bclass%2A%3D%22span%22%5D%7Bfloat%3Anone%3Bmargin%2Dleft%3A0%7D%2Einput%2Dappend%20input%5Bclass%2A%3D%22span%22%5D%2C%2Einput%2Dappend%20%2Euneditable%2Dinput%5Bclass%2A%3D%22span%22%5D%2C%2Einput%2Dprepend%20input%5Bclass%2A%3D%22span%22%5D%2C%2Einput%2Dprepend%20%2Euneditable%2Dinput%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20input%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20select%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20textarea%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20%2Euneditable%2Dinput%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20%2Einput%2Dprepend%20%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20%2Einput%2Dappend%20%5Bclass%2A%3D%22span%22%5D%7Bdisplay%3Ainline%2Dblock%7Dinput%2Ctextarea%2C%2Euneditable%2Dinput%7Bmargin%2Dleft%3A0%7D%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%2B%5Bclass%2A%3D%22span%22%5D%7Bmargin%2Dleft%3A20px%7Dinput%2Espan12%2Ctextarea%2Espan12%2C%2Euneditable%2Dinput%2Espan12%7Bwidth%3A926px%7Dinput%2Espan11%2Ctextarea%2Espan11%2C%2Euneditable%2Dinput%2Espan11%7Bwidth%3A846px%7Dinput%2Espan10%2Ctextarea%2Espan10%2C%2Euneditable%2Dinput%2Espan10%7Bwidth%3A766px%7Dinput%2Espan9%2Ctextarea%2Espan9%2C%2Euneditable%2Dinput%2Espan9%7Bwidth%3A686px%7Dinput%2Espan8%2Ctextarea%2Espan8%2C%2Euneditable%2Dinput%2Espan8%7Bwidth%3A606px%7Dinput%2Espan7%2Ctextarea%2Espan7%2C%2Euneditable%2Dinput%2Espan7%7Bwidth%3A526px%7Dinput%2Espan6%2Ctextarea%2Espan6%2C%2Euneditable%2Dinput%2Espan6%7Bwidth%3A446px%7Dinput%2Espan5%2Ctextarea%2Espan5%2C%2Euneditable%2Dinput%2Espan5%7Bwidth%3A366px%7Dinput%2Espan4%2Ctextarea%2Espan4%2C%2Euneditable%2Dinput%2Espan4%7Bwidth%3A286px%7Dinput%2Espan3%2Ctextarea%2Espan3%2C%2Euneditable%2Dinput%2Espan3%7Bwidth%3A206px%7Dinput%2Espan2%2Ctextarea%2Espan2%2C%2Euneditable%2Dinput%2Espan2%7Bwidth%3A126px%7Dinput%2Espan1%2Ctextarea%2Espan1%2C%2Euneditable%2Dinput%2Espan1%7Bwidth%3A46px%7D%2Econtrols%2Drow%7B%2Azoom%3A1%7D%2Econtrols%2Drow%3Abefore%2C%2Econtrols%2Drow%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Econtrols%2Drow%3Aafter%7Bclear%3Aboth%7D%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%7Bfloat%3Aleft%7D%2Econtrols%2Drow%20%2Echeckbox%5Bclass%2A%3D%22span%22%5D%2C%2Econtrols%2Drow%20%2Eradio%5Bclass%2A%3D%22span%22%5D%7Bpadding%2Dtop%3A5px%7Dinput%5Bdisabled%5D%2Cselect%5Bdisabled%5D%2Ctextarea%5Bdisabled%5D%2Cinput%5Breadonly%5D%2Cselect%5Breadonly%5D%2Ctextarea%5Breadonly%5D%7Bcursor%3Anot%2Dallowed%3Bbackground%2Dcolor%3A%23eee%7Dinput%5Btype%3D%22radio%22%5D%5Bdisabled%5D%2Cinput%5Btype%3D%22checkbox%22%5D%5Bdisabled%5D%2Cinput%5Btype%3D%22radio%22%5D%5Breadonly%5D%2Cinput%5Btype%3D%22checkbox%22%5D%5Breadonly%5D%7Bbackground%2Dcolor%3Atransparent%7D%2Econtrol%2Dgroup%2Ewarning%20%2Econtrol%2Dlabel%2C%2Econtrol%2Dgroup%2Ewarning%20%2Ehelp%2Dblock%2C%2Econtrol%2Dgroup%2Ewarning%20%2Ehelp%2Dinline%7Bcolor%3A%23c09853%7D%2Econtrol%2Dgroup%2Ewarning%20%2Echeckbox%2C%2Econtrol%2Dgroup%2Ewarning%20%2Eradio%2C%2Econtrol%2Dgroup%2Ewarning%20input%2C%2Econtrol%2Dgroup%2Ewarning%20select%2C%2Econtrol%2Dgroup%2Ewarning%20textarea%7Bcolor%3A%23c09853%7D%2Econtrol%2Dgroup%2Ewarning%20input%2C%2Econtrol%2Dgroup%2Ewarning%20select%2C%2Econtrol%2Dgroup%2Ewarning%20textarea%7Bborder%2Dcolor%3A%23c09853%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%7D%2Econtrol%2Dgroup%2Ewarning%20input%3Afocus%2C%2Econtrol%2Dgroup%2Ewarning%20select%3Afocus%2C%2Econtrol%2Dgroup%2Ewarning%20textarea%3Afocus%7Bborder%2Dcolor%3A%23a47e3c%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23dbc59e%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23dbc59e%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23dbc59e%7D%2Econtrol%2Dgroup%2Ewarning%20%2Einput%2Dprepend%20%2Eadd%2Don%2C%2Econtrol%2Dgroup%2Ewarning%20%2Einput%2Dappend%20%2Eadd%2Don%7Bcolor%3A%23c09853%3Bbackground%2Dcolor%3A%23fcf8e3%3Bborder%2Dcolor%3A%23c09853%7D%2Econtrol%2Dgroup%2Eerror%20%2Econtrol%2Dlabel%2C%2Econtrol%2Dgroup%2Eerror%20%2Ehelp%2Dblock%2C%2Econtrol%2Dgroup%2Eerror%20%2Ehelp%2Dinline%7Bcolor%3A%23b94a48%7D%2Econtrol%2Dgroup%2Eerror%20%2Echeckbox%2C%2Econtrol%2Dgroup%2Eerror%20%2Eradio%2C%2Econtrol%2Dgroup%2Eerror%20input%2C%2Econtrol%2Dgroup%2Eerror%20select%2C%2Econtrol%2Dgroup%2Eerror%20textarea%7Bcolor%3A%23b94a48%7D%2Econtrol%2Dgroup%2Eerror%20input%2C%2Econtrol%2Dgroup%2Eerror%20select%2C%2Econtrol%2Dgroup%2Eerror%20textarea%7Bborder%2Dcolor%3A%23b94a48%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%7D%2Econtrol%2Dgroup%2Eerror%20input%3Afocus%2C%2Econtrol%2Dgroup%2Eerror%20select%3Afocus%2C%2Econtrol%2Dgroup%2Eerror%20textarea%3Afocus%7Bborder%2Dcolor%3A%23953b39%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23d59392%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23d59392%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%23d59392%7D%2Econtrol%2Dgroup%2Eerror%20%2Einput%2Dprepend%20%2Eadd%2Don%2C%2Econtrol%2Dgroup%2Eerror%20%2Einput%2Dappend%20%2Eadd%2Don%7Bcolor%3A%23b94a48%3Bbackground%2Dcolor%3A%23f2dede%3Bborder%2Dcolor%3A%23b94a48%7D%2Econtrol%2Dgroup%2Esuccess%20%2Econtrol%2Dlabel%2C%2Econtrol%2Dgroup%2Esuccess%20%2Ehelp%2Dblock%2C%2Econtrol%2Dgroup%2Esuccess%20%2Ehelp%2Dinline%7Bcolor%3A%23468847%7D%2Econtrol%2Dgroup%2Esuccess%20%2Echeckbox%2C%2Econtrol%2Dgroup%2Esuccess%20%2Eradio%2C%2Econtrol%2Dgroup%2Esuccess%20input%2C%2Econtrol%2Dgroup%2Esuccess%20select%2C%2Econtrol%2Dgroup%2Esuccess%20textarea%7Bcolor%3A%23468847%7D%2Econtrol%2Dgroup%2Esuccess%20input%2C%2Econtrol%2Dgroup%2Esuccess%20select%2C%2Econtrol%2Dgroup%2Esuccess%20textarea%7Bborder%2Dcolor%3A%23468847%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%7D%2Econtrol%2Dgroup%2Esuccess%20input%3Afocus%2C%2Econtrol%2Dgroup%2Esuccess%20select%3Afocus%2C%2Econtrol%2Dgroup%2Esuccess%20textarea%3Afocus%7Bborder%2Dcolor%3A%23356635%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%237aba7b%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%237aba7b%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%237aba7b%7D%2Econtrol%2Dgroup%2Esuccess%20%2Einput%2Dprepend%20%2Eadd%2Don%2C%2Econtrol%2Dgroup%2Esuccess%20%2Einput%2Dappend%20%2Eadd%2Don%7Bcolor%3A%23468847%3Bbackground%2Dcolor%3A%23dff0d8%3Bborder%2Dcolor%3A%23468847%7D%2Econtrol%2Dgroup%2Einfo%20%2Econtrol%2Dlabel%2C%2Econtrol%2Dgroup%2Einfo%20%2Ehelp%2Dblock%2C%2Econtrol%2Dgroup%2Einfo%20%2Ehelp%2Dinline%7Bcolor%3A%233a87ad%7D%2Econtrol%2Dgroup%2Einfo%20%2Echeckbox%2C%2Econtrol%2Dgroup%2Einfo%20%2Eradio%2C%2Econtrol%2Dgroup%2Einfo%20input%2C%2Econtrol%2Dgroup%2Einfo%20select%2C%2Econtrol%2Dgroup%2Einfo%20textarea%7Bcolor%3A%233a87ad%7D%2Econtrol%2Dgroup%2Einfo%20input%2C%2Econtrol%2Dgroup%2Einfo%20select%2C%2Econtrol%2Dgroup%2Einfo%20textarea%7Bborder%2Dcolor%3A%233a87ad%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%7D%2Econtrol%2Dgroup%2Einfo%20input%3Afocus%2C%2Econtrol%2Dgroup%2Einfo%20select%3Afocus%2C%2Econtrol%2Dgroup%2Einfo%20textarea%3Afocus%7Bborder%2Dcolor%3A%232d6987%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%237ab5d3%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%237ab5d3%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E075%29%2C0%200%206px%20%237ab5d3%7D%2Econtrol%2Dgroup%2Einfo%20%2Einput%2Dprepend%20%2Eadd%2Don%2C%2Econtrol%2Dgroup%2Einfo%20%2Einput%2Dappend%20%2Eadd%2Don%7Bcolor%3A%233a87ad%3Bbackground%2Dcolor%3A%23d9edf7%3Bborder%2Dcolor%3A%233a87ad%7Dinput%3Afocus%3Ainvalid%2Ctextarea%3Afocus%3Ainvalid%2Cselect%3Afocus%3Ainvalid%7Bcolor%3A%23b94a48%3Bborder%2Dcolor%3A%23ee5f5b%7Dinput%3Afocus%3Ainvalid%3Afocus%2Ctextarea%3Afocus%3Ainvalid%3Afocus%2Cselect%3Afocus%3Ainvalid%3Afocus%7Bborder%2Dcolor%3A%23e9322d%3B%2Dwebkit%2Dbox%2Dshadow%3A0%200%206px%20%23f8b9b7%3B%2Dmoz%2Dbox%2Dshadow%3A0%200%206px%20%23f8b9b7%3Bbox%2Dshadow%3A0%200%206px%20%23f8b9b7%7D%2Eform%2Dactions%7Bpadding%3A19px%2020px%2020px%3Bmargin%2Dtop%3A20px%3Bmargin%2Dbottom%3A20px%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dtop%3A1px%20solid%20%23e5e5e5%3B%2Azoom%3A1%7D%2Eform%2Dactions%3Abefore%2C%2Eform%2Dactions%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Eform%2Dactions%3Aafter%7Bclear%3Aboth%7D%2Ehelp%2Dblock%2C%2Ehelp%2Dinline%7Bcolor%3A%23595959%7D%2Ehelp%2Dblock%7Bdisplay%3Ablock%3Bmargin%2Dbottom%3A10px%7D%2Ehelp%2Dinline%7Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3Bpadding%2Dleft%3A5px%3Bvertical%2Dalign%3Amiddle%3B%2Azoom%3A1%7D%2Einput%2Dappend%2C%2Einput%2Dprepend%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dbottom%3A10px%3Bfont%2Dsize%3A0%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Amiddle%7D%2Einput%2Dappend%20input%2C%2Einput%2Dprepend%20input%2C%2Einput%2Dappend%20select%2C%2Einput%2Dprepend%20select%2C%2Einput%2Dappend%20%2Euneditable%2Dinput%2C%2Einput%2Dprepend%20%2Euneditable%2Dinput%2C%2Einput%2Dappend%20%2Edropdown%2Dmenu%2C%2Einput%2Dprepend%20%2Edropdown%2Dmenu%2C%2Einput%2Dappend%20%2Epopover%2C%2Einput%2Dprepend%20%2Epopover%7Bfont%2Dsize%3A14px%7D%2Einput%2Dappend%20input%2C%2Einput%2Dprepend%20input%2C%2Einput%2Dappend%20select%2C%2Einput%2Dprepend%20select%2C%2Einput%2Dappend%20%2Euneditable%2Dinput%2C%2Einput%2Dprepend%20%2Euneditable%2Dinput%7Bposition%3Arelative%3Bmargin%2Dbottom%3A0%3B%2Amargin%2Dleft%3A0%3Bvertical%2Dalign%3Atop%3B%2Dwebkit%2Dborder%2Dradius%3A0%204px%204px%200%3B%2Dmoz%2Dborder%2Dradius%3A0%204px%204px%200%3Bborder%2Dradius%3A0%204px%204px%200%7D%2Einput%2Dappend%20input%3Afocus%2C%2Einput%2Dprepend%20input%3Afocus%2C%2Einput%2Dappend%20select%3Afocus%2C%2Einput%2Dprepend%20select%3Afocus%2C%2Einput%2Dappend%20%2Euneditable%2Dinput%3Afocus%2C%2Einput%2Dprepend%20%2Euneditable%2Dinput%3Afocus%7Bz%2Dindex%3A2%7D%2Einput%2Dappend%20%2Eadd%2Don%2C%2Einput%2Dprepend%20%2Eadd%2Don%7Bdisplay%3Ainline%2Dblock%3Bwidth%3Aauto%3Bheight%3A20px%3Bmin%2Dwidth%3A16px%3Bpadding%3A4px%205px%3Bfont%2Dsize%3A14px%3Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A20px%3Btext%2Dalign%3Acenter%3Btext%2Dshadow%3A0%201px%200%20%23fff%3Bbackground%2Dcolor%3A%23eee%3Bborder%3A1px%20solid%20%23ccc%7D%2Einput%2Dappend%20%2Eadd%2Don%2C%2Einput%2Dprepend%20%2Eadd%2Don%2C%2Einput%2Dappend%20%2Ebtn%2C%2Einput%2Dprepend%20%2Ebtn%2C%2Einput%2Dappend%20%2Ebtn%2Dgroup%3E%2Edropdown%2Dtoggle%2C%2Einput%2Dprepend%20%2Ebtn%2Dgroup%3E%2Edropdown%2Dtoggle%7Bvertical%2Dalign%3Atop%3B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Einput%2Dappend%20%2Eactive%2C%2Einput%2Dprepend%20%2Eactive%7Bbackground%2Dcolor%3A%23a9dba9%3Bborder%2Dcolor%3A%2346a546%7D%2Einput%2Dprepend%20%2Eadd%2Don%2C%2Einput%2Dprepend%20%2Ebtn%7Bmargin%2Dright%3A%2D1px%7D%2Einput%2Dprepend%20%2Eadd%2Don%3Afirst%2Dchild%2C%2Einput%2Dprepend%20%2Ebtn%3Afirst%2Dchild%7B%2Dwebkit%2Dborder%2Dradius%3A4px%200%200%204px%3B%2Dmoz%2Dborder%2Dradius%3A4px%200%200%204px%3Bborder%2Dradius%3A4px%200%200%204px%7D%2Einput%2Dappend%20input%2C%2Einput%2Dappend%20select%2C%2Einput%2Dappend%20%2Euneditable%2Dinput%7B%2Dwebkit%2Dborder%2Dradius%3A4px%200%200%204px%3B%2Dmoz%2Dborder%2Dradius%3A4px%200%200%204px%3Bborder%2Dradius%3A4px%200%200%204px%7D%2Einput%2Dappend%20input%2B%2Ebtn%2Dgroup%20%2Ebtn%3Alast%2Dchild%2C%2Einput%2Dappend%20select%2B%2Ebtn%2Dgroup%20%2Ebtn%3Alast%2Dchild%2C%2Einput%2Dappend%20%2Euneditable%2Dinput%2B%2Ebtn%2Dgroup%20%2Ebtn%3Alast%2Dchild%7B%2Dwebkit%2Dborder%2Dradius%3A0%204px%204px%200%3B%2Dmoz%2Dborder%2Dradius%3A0%204px%204px%200%3Bborder%2Dradius%3A0%204px%204px%200%7D%2Einput%2Dappend%20%2Eadd%2Don%2C%2Einput%2Dappend%20%2Ebtn%2C%2Einput%2Dappend%20%2Ebtn%2Dgroup%7Bmargin%2Dleft%3A%2D1px%7D%2Einput%2Dappend%20%2Eadd%2Don%3Alast%2Dchild%2C%2Einput%2Dappend%20%2Ebtn%3Alast%2Dchild%2C%2Einput%2Dappend%20%2Ebtn%2Dgroup%3Alast%2Dchild%3E%2Edropdown%2Dtoggle%7B%2Dwebkit%2Dborder%2Dradius%3A0%204px%204px%200%3B%2Dmoz%2Dborder%2Dradius%3A0%204px%204px%200%3Bborder%2Dradius%3A0%204px%204px%200%7D%2Einput%2Dprepend%2Einput%2Dappend%20input%2C%2Einput%2Dprepend%2Einput%2Dappend%20select%2C%2Einput%2Dprepend%2Einput%2Dappend%20%2Euneditable%2Dinput%7B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Einput%2Dprepend%2Einput%2Dappend%20input%2B%2Ebtn%2Dgroup%20%2Ebtn%2C%2Einput%2Dprepend%2Einput%2Dappend%20select%2B%2Ebtn%2Dgroup%20%2Ebtn%2C%2Einput%2Dprepend%2Einput%2Dappend%20%2Euneditable%2Dinput%2B%2Ebtn%2Dgroup%20%2Ebtn%7B%2Dwebkit%2Dborder%2Dradius%3A0%204px%204px%200%3B%2Dmoz%2Dborder%2Dradius%3A0%204px%204px%200%3Bborder%2Dradius%3A0%204px%204px%200%7D%2Einput%2Dprepend%2Einput%2Dappend%20%2Eadd%2Don%3Afirst%2Dchild%2C%2Einput%2Dprepend%2Einput%2Dappend%20%2Ebtn%3Afirst%2Dchild%7Bmargin%2Dright%3A%2D1px%3B%2Dwebkit%2Dborder%2Dradius%3A4px%200%200%204px%3B%2Dmoz%2Dborder%2Dradius%3A4px%200%200%204px%3Bborder%2Dradius%3A4px%200%200%204px%7D%2Einput%2Dprepend%2Einput%2Dappend%20%2Eadd%2Don%3Alast%2Dchild%2C%2Einput%2Dprepend%2Einput%2Dappend%20%2Ebtn%3Alast%2Dchild%7Bmargin%2Dleft%3A%2D1px%3B%2Dwebkit%2Dborder%2Dradius%3A0%204px%204px%200%3B%2Dmoz%2Dborder%2Dradius%3A0%204px%204px%200%3Bborder%2Dradius%3A0%204px%204px%200%7D%2Einput%2Dprepend%2Einput%2Dappend%20%2Ebtn%2Dgroup%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%7Dinput%2Esearch%2Dquery%7Bpadding%2Dright%3A14px%3Bpadding%2Dright%3A4px%20%5C9%3Bpadding%2Dleft%3A14px%3Bpadding%2Dleft%3A4px%20%5C9%3Bmargin%2Dbottom%3A0%3B%2Dwebkit%2Dborder%2Dradius%3A15px%3B%2Dmoz%2Dborder%2Dradius%3A15px%3Bborder%2Dradius%3A15px%7D%2Eform%2Dsearch%20%2Einput%2Dappend%20%2Esearch%2Dquery%2C%2Eform%2Dsearch%20%2Einput%2Dprepend%20%2Esearch%2Dquery%7B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Eform%2Dsearch%20%2Einput%2Dappend%20%2Esearch%2Dquery%7B%2Dwebkit%2Dborder%2Dradius%3A14px%200%200%2014px%3B%2Dmoz%2Dborder%2Dradius%3A14px%200%200%2014px%3Bborder%2Dradius%3A14px%200%200%2014px%7D%2Eform%2Dsearch%20%2Einput%2Dappend%20%2Ebtn%7B%2Dwebkit%2Dborder%2Dradius%3A0%2014px%2014px%200%3B%2Dmoz%2Dborder%2Dradius%3A0%2014px%2014px%200%3Bborder%2Dradius%3A0%2014px%2014px%200%7D%2Eform%2Dsearch%20%2Einput%2Dprepend%20%2Esearch%2Dquery%7B%2Dwebkit%2Dborder%2Dradius%3A0%2014px%2014px%200%3B%2Dmoz%2Dborder%2Dradius%3A0%2014px%2014px%200%3Bborder%2Dradius%3A0%2014px%2014px%200%7D%2Eform%2Dsearch%20%2Einput%2Dprepend%20%2Ebtn%7B%2Dwebkit%2Dborder%2Dradius%3A14px%200%200%2014px%3B%2Dmoz%2Dborder%2Dradius%3A14px%200%200%2014px%3Bborder%2Dradius%3A14px%200%200%2014px%7D%2Eform%2Dsearch%20input%2C%2Eform%2Dinline%20input%2C%2Eform%2Dhorizontal%20input%2C%2Eform%2Dsearch%20textarea%2C%2Eform%2Dinline%20textarea%2C%2Eform%2Dhorizontal%20textarea%2C%2Eform%2Dsearch%20select%2C%2Eform%2Dinline%20select%2C%2Eform%2Dhorizontal%20select%2C%2Eform%2Dsearch%20%2Ehelp%2Dinline%2C%2Eform%2Dinline%20%2Ehelp%2Dinline%2C%2Eform%2Dhorizontal%20%2Ehelp%2Dinline%2C%2Eform%2Dsearch%20%2Euneditable%2Dinput%2C%2Eform%2Dinline%20%2Euneditable%2Dinput%2C%2Eform%2Dhorizontal%20%2Euneditable%2Dinput%2C%2Eform%2Dsearch%20%2Einput%2Dprepend%2C%2Eform%2Dinline%20%2Einput%2Dprepend%2C%2Eform%2Dhorizontal%20%2Einput%2Dprepend%2C%2Eform%2Dsearch%20%2Einput%2Dappend%2C%2Eform%2Dinline%20%2Einput%2Dappend%2C%2Eform%2Dhorizontal%20%2Einput%2Dappend%7Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%3B%2Azoom%3A1%7D%2Eform%2Dsearch%20%2Ehide%2C%2Eform%2Dinline%20%2Ehide%2C%2Eform%2Dhorizontal%20%2Ehide%7Bdisplay%3Anone%7D%2Eform%2Dsearch%20label%2C%2Eform%2Dinline%20label%2C%2Eform%2Dsearch%20%2Ebtn%2Dgroup%2C%2Eform%2Dinline%20%2Ebtn%2Dgroup%7Bdisplay%3Ainline%2Dblock%7D%2Eform%2Dsearch%20%2Einput%2Dappend%2C%2Eform%2Dinline%20%2Einput%2Dappend%2C%2Eform%2Dsearch%20%2Einput%2Dprepend%2C%2Eform%2Dinline%20%2Einput%2Dprepend%7Bmargin%2Dbottom%3A0%7D%2Eform%2Dsearch%20%2Eradio%2C%2Eform%2Dsearch%20%2Echeckbox%2C%2Eform%2Dinline%20%2Eradio%2C%2Eform%2Dinline%20%2Echeckbox%7Bpadding%2Dleft%3A0%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dsearch%20%2Eradio%20input%5Btype%3D%22radio%22%5D%2C%2Eform%2Dsearch%20%2Echeckbox%20input%5Btype%3D%22checkbox%22%5D%2C%2Eform%2Dinline%20%2Eradio%20input%5Btype%3D%22radio%22%5D%2C%2Eform%2Dinline%20%2Echeckbox%20input%5Btype%3D%22checkbox%22%5D%7Bfloat%3Aleft%3Bmargin%2Dright%3A3px%3Bmargin%2Dleft%3A0%7D%2Econtrol%2Dgroup%7Bmargin%2Dbottom%3A10px%7Dlegend%2B%2Econtrol%2Dgroup%7Bmargin%2Dtop%3A20px%3B%2Dwebkit%2Dmargin%2Dtop%2Dcollapse%3Aseparate%7D%2Eform%2Dhorizontal%20%2Econtrol%2Dgroup%7Bmargin%2Dbottom%3A20px%3B%2Azoom%3A1%7D%2Eform%2Dhorizontal%20%2Econtrol%2Dgroup%3Abefore%2C%2Eform%2Dhorizontal%20%2Econtrol%2Dgroup%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Eform%2Dhorizontal%20%2Econtrol%2Dgroup%3Aafter%7Bclear%3Aboth%7D%2Eform%2Dhorizontal%20%2Econtrol%2Dlabel%7Bfloat%3Aleft%3Bwidth%3A160px%3Bpadding%2Dtop%3A5px%3Btext%2Dalign%3Aright%7D%2Eform%2Dhorizontal%20%2Econtrols%7B%2Adisplay%3Ainline%2Dblock%3B%2Apadding%2Dleft%3A20px%3Bmargin%2Dleft%3A180px%3B%2Amargin%2Dleft%3A0%7D%2Eform%2Dhorizontal%20%2Econtrols%3Afirst%2Dchild%7B%2Apadding%2Dleft%3A180px%7D%2Eform%2Dhorizontal%20%2Ehelp%2Dblock%7Bmargin%2Dbottom%3A0%7D%2Eform%2Dhorizontal%20input%2B%2Ehelp%2Dblock%2C%2Eform%2Dhorizontal%20select%2B%2Ehelp%2Dblock%2C%2Eform%2Dhorizontal%20textarea%2B%2Ehelp%2Dblock%2C%2Eform%2Dhorizontal%20%2Euneditable%2Dinput%2B%2Ehelp%2Dblock%2C%2Eform%2Dhorizontal%20%2Einput%2Dprepend%2B%2Ehelp%2Dblock%2C%2Eform%2Dhorizontal%20%2Einput%2Dappend%2B%2Ehelp%2Dblock%7Bmargin%2Dtop%3A10px%7D%2Eform%2Dhorizontal%20%2Eform%2Dactions%7Bpadding%2Dleft%3A180px%7Dtable%7Bmax%2Dwidth%3A100%25%3Bbackground%2Dcolor%3Atransparent%3Bborder%2Dcollapse%3Acollapse%3Bborder%2Dspacing%3A0%7D%2Etable%7Bwidth%3A100%25%3Bmargin%2Dbottom%3A20px%7D%2Etable%20th%2C%2Etable%20td%7Bpadding%3A8px%3Bline%2Dheight%3A20px%3Bvertical%2Dalign%3Atop%3Bborder%2Dtop%3A1px%20solid%20%23ddd%7D%2Etable%20th%7Bfont%2Dweight%3Abold%7D%2Etable%20thead%20th%7Bvertical%2Dalign%3Abottom%7D%2Etable%20caption%2Bthead%20tr%3Afirst%2Dchild%20th%2C%2Etable%20caption%2Bthead%20tr%3Afirst%2Dchild%20td%2C%2Etable%20colgroup%2Bthead%20tr%3Afirst%2Dchild%20th%2C%2Etable%20colgroup%2Bthead%20tr%3Afirst%2Dchild%20td%2C%2Etable%20thead%3Afirst%2Dchild%20tr%3Afirst%2Dchild%20th%2C%2Etable%20thead%3Afirst%2Dchild%20tr%3Afirst%2Dchild%20td%7Bborder%2Dtop%3A0%7D%2Etable%20tbody%2Btbody%7Bborder%2Dtop%3A2px%20solid%20%23ddd%7D%2Etable%20%2Etable%7Bbackground%2Dcolor%3A%23fff%7D%2Etable%2Dcondensed%20th%2C%2Etable%2Dcondensed%20td%7Bpadding%3A4px%205px%7D%2Etable%2Dbordered%7Bborder%3A1px%20solid%20%23ddd%3Bborder%2Dcollapse%3Aseparate%3B%2Aborder%2Dcollapse%3Acollapse%3Bborder%2Dleft%3A0%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7D%2Etable%2Dbordered%20th%2C%2Etable%2Dbordered%20td%7Bborder%2Dleft%3A1px%20solid%20%23ddd%7D%2Etable%2Dbordered%20caption%2Bthead%20tr%3Afirst%2Dchild%20th%2C%2Etable%2Dbordered%20caption%2Btbody%20tr%3Afirst%2Dchild%20th%2C%2Etable%2Dbordered%20caption%2Btbody%20tr%3Afirst%2Dchild%20td%2C%2Etable%2Dbordered%20colgroup%2Bthead%20tr%3Afirst%2Dchild%20th%2C%2Etable%2Dbordered%20colgroup%2Btbody%20tr%3Afirst%2Dchild%20th%2C%2Etable%2Dbordered%20colgroup%2Btbody%20tr%3Afirst%2Dchild%20td%2C%2Etable%2Dbordered%20thead%3Afirst%2Dchild%20tr%3Afirst%2Dchild%20th%2C%2Etable%2Dbordered%20tbody%3Afirst%2Dchild%20tr%3Afirst%2Dchild%20th%2C%2Etable%2Dbordered%20tbody%3Afirst%2Dchild%20tr%3Afirst%2Dchild%20td%7Bborder%2Dtop%3A0%7D%2Etable%2Dbordered%20thead%3Afirst%2Dchild%20tr%3Afirst%2Dchild%3Eth%3Afirst%2Dchild%2C%2Etable%2Dbordered%20tbody%3Afirst%2Dchild%20tr%3Afirst%2Dchild%3Etd%3Afirst%2Dchild%2C%2Etable%2Dbordered%20tbody%3Afirst%2Dchild%20tr%3Afirst%2Dchild%3Eth%3Afirst%2Dchild%7B%2Dwebkit%2Dborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopleft%3A4px%7D%2Etable%2Dbordered%20thead%3Afirst%2Dchild%20tr%3Afirst%2Dchild%3Eth%3Alast%2Dchild%2C%2Etable%2Dbordered%20tbody%3Afirst%2Dchild%20tr%3Afirst%2Dchild%3Etd%3Alast%2Dchild%2C%2Etable%2Dbordered%20tbody%3Afirst%2Dchild%20tr%3Afirst%2Dchild%3Eth%3Alast%2Dchild%7B%2Dwebkit%2Dborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dright%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopright%3A4px%7D%2Etable%2Dbordered%20thead%3Alast%2Dchild%20tr%3Alast%2Dchild%3Eth%3Afirst%2Dchild%2C%2Etable%2Dbordered%20tbody%3Alast%2Dchild%20tr%3Alast%2Dchild%3Etd%3Afirst%2Dchild%2C%2Etable%2Dbordered%20tbody%3Alast%2Dchild%20tr%3Alast%2Dchild%3Eth%3Afirst%2Dchild%2C%2Etable%2Dbordered%20tfoot%3Alast%2Dchild%20tr%3Alast%2Dchild%3Etd%3Afirst%2Dchild%2C%2Etable%2Dbordered%20tfoot%3Alast%2Dchild%20tr%3Alast%2Dchild%3Eth%3Afirst%2Dchild%7B%2Dwebkit%2Dborder%2Dbottom%2Dleft%2Dradius%3A4px%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomleft%3A4px%7D%2Etable%2Dbordered%20thead%3Alast%2Dchild%20tr%3Alast%2Dchild%3Eth%3Alast%2Dchild%2C%2Etable%2Dbordered%20tbody%3Alast%2Dchild%20tr%3Alast%2Dchild%3Etd%3Alast%2Dchild%2C%2Etable%2Dbordered%20tbody%3Alast%2Dchild%20tr%3Alast%2Dchild%3Eth%3Alast%2Dchild%2C%2Etable%2Dbordered%20tfoot%3Alast%2Dchild%20tr%3Alast%2Dchild%3Etd%3Alast%2Dchild%2C%2Etable%2Dbordered%20tfoot%3Alast%2Dchild%20tr%3Alast%2Dchild%3Eth%3Alast%2Dchild%7B%2Dwebkit%2Dborder%2Dbottom%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomright%3A4px%7D%2Etable%2Dbordered%20tfoot%2Btbody%3Alast%2Dchild%20tr%3Alast%2Dchild%20td%3Afirst%2Dchild%7B%2Dwebkit%2Dborder%2Dbottom%2Dleft%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%2Dbottomleft%3A0%7D%2Etable%2Dbordered%20tfoot%2Btbody%3Alast%2Dchild%20tr%3Alast%2Dchild%20td%3Alast%2Dchild%7B%2Dwebkit%2Dborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%2Dbottomright%3A0%7D%2Etable%2Dbordered%20caption%2Bthead%20tr%3Afirst%2Dchild%20th%3Afirst%2Dchild%2C%2Etable%2Dbordered%20caption%2Btbody%20tr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Etable%2Dbordered%20colgroup%2Bthead%20tr%3Afirst%2Dchild%20th%3Afirst%2Dchild%2C%2Etable%2Dbordered%20colgroup%2Btbody%20tr%3Afirst%2Dchild%20td%3Afirst%2Dchild%7B%2Dwebkit%2Dborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopleft%3A4px%7D%2Etable%2Dbordered%20caption%2Bthead%20tr%3Afirst%2Dchild%20th%3Alast%2Dchild%2C%2Etable%2Dbordered%20caption%2Btbody%20tr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Etable%2Dbordered%20colgroup%2Bthead%20tr%3Afirst%2Dchild%20th%3Alast%2Dchild%2C%2Etable%2Dbordered%20colgroup%2Btbody%20tr%3Afirst%2Dchild%20td%3Alast%2Dchild%7B%2Dwebkit%2Dborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dright%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopright%3A4px%7D%2Etable%2Dstriped%20tbody%3Etr%3Anth%2Dchild%28odd%29%3Etd%2C%2Etable%2Dstriped%20tbody%3Etr%3Anth%2Dchild%28odd%29%3Eth%7Bbackground%2Dcolor%3A%23f9f9f9%7D%2Etable%2Dhover%20tbody%20tr%3Ahover%3Etd%2C%2Etable%2Dhover%20tbody%20tr%3Ahover%3Eth%7Bbackground%2Dcolor%3A%23f5f5f5%7Dtable%20td%5Bclass%2A%3D%22span%22%5D%2Ctable%20th%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20table%20td%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20table%20th%5Bclass%2A%3D%22span%22%5D%7Bdisplay%3Atable%2Dcell%3Bfloat%3Anone%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan1%2C%2Etable%20th%2Espan1%7Bfloat%3Anone%3Bwidth%3A44px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan2%2C%2Etable%20th%2Espan2%7Bfloat%3Anone%3Bwidth%3A124px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan3%2C%2Etable%20th%2Espan3%7Bfloat%3Anone%3Bwidth%3A204px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan4%2C%2Etable%20th%2Espan4%7Bfloat%3Anone%3Bwidth%3A284px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan5%2C%2Etable%20th%2Espan5%7Bfloat%3Anone%3Bwidth%3A364px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan6%2C%2Etable%20th%2Espan6%7Bfloat%3Anone%3Bwidth%3A444px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan7%2C%2Etable%20th%2Espan7%7Bfloat%3Anone%3Bwidth%3A524px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan8%2C%2Etable%20th%2Espan8%7Bfloat%3Anone%3Bwidth%3A604px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan9%2C%2Etable%20th%2Espan9%7Bfloat%3Anone%3Bwidth%3A684px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan10%2C%2Etable%20th%2Espan10%7Bfloat%3Anone%3Bwidth%3A764px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan11%2C%2Etable%20th%2Espan11%7Bfloat%3Anone%3Bwidth%3A844px%3Bmargin%2Dleft%3A0%7D%2Etable%20td%2Espan12%2C%2Etable%20th%2Espan12%7Bfloat%3Anone%3Bwidth%3A924px%3Bmargin%2Dleft%3A0%7D%2Etable%20tbody%20tr%2Esuccess%3Etd%7Bbackground%2Dcolor%3A%23dff0d8%7D%2Etable%20tbody%20tr%2Eerror%3Etd%7Bbackground%2Dcolor%3A%23f2dede%7D%2Etable%20tbody%20tr%2Ewarning%3Etd%7Bbackground%2Dcolor%3A%23fcf8e3%7D%2Etable%20tbody%20tr%2Einfo%3Etd%7Bbackground%2Dcolor%3A%23d9edf7%7D%2Etable%2Dhover%20tbody%20tr%2Esuccess%3Ahover%3Etd%7Bbackground%2Dcolor%3A%23d0e9c6%7D%2Etable%2Dhover%20tbody%20tr%2Eerror%3Ahover%3Etd%7Bbackground%2Dcolor%3A%23ebcccc%7D%2Etable%2Dhover%20tbody%20tr%2Ewarning%3Ahover%3Etd%7Bbackground%2Dcolor%3A%23faf2cc%7D%2Etable%2Dhover%20tbody%20tr%2Einfo%3Ahover%3Etd%7Bbackground%2Dcolor%3A%23c4e3f3%7D%5Bclass%5E%3D%22icon%2D%22%5D%2C%5Bclass%2A%3D%22%20icon%2D%22%5D%7Bdisplay%3Ainline%2Dblock%3Bwidth%3A14px%3Bheight%3A14px%3Bmargin%2Dtop%3A1px%3B%2Amargin%2Dright%3A%2E3em%3Bline%2Dheight%3A14px%3Bvertical%2Dalign%3Atext%2Dtop%3Bbackground%2Dimage%3Aurl%28data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAAdUAAACfCAQAAAAFBIvCAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAMaFJREFUeNrtfW1sXEW6pleytF7JurZEJHxuHHcn%2FqA7dn%2FRjsc4jW0w%2BZhrPGbZONmAsw4TPMtoMySIDCASCAxiLG1u5KDMDaMg0pMRF7jXEr6rMPHeH0wgWWA2cycdPgYUrFECAby%2Frh237p%2F9U%2Fu%2Bp7r6nG6fU%2FVWpzsxS71Hidv2c%2BrUqfM%2BVW%2B9x%2FVUVZUxY8aWnVl11rzF7GPe%2BWEm96PCI0MscNiaxBIUuD5r2roMF5%2B2%2BpZVg0xXCg8tc8ZuxzNWnXG8635Omv6j72%2FWGPxj6Mf4Sbt%2BTMUAGxWje%2F%2FgLQnG%2BvFIOCVf6O%2BdTbLCo3f2Qr%2FisjZFV7LVLMSicIa8GYKsncVZAv4PMiutKFmz67AC8ECg77Em4fNBuy%2BatgKkBo61M2tY44Fo4BvfjdgtGWGN76ofs9dBwAfU6Dw%2BUPiVjCdcwaObSss7KPh9hiMAm1F6hJb%2FlICHOjTD%2FSVtP25mom50SyoYwK%2By5mzLOUrJ2NoroUTe7kmn%2FVl1MVmRqKxaXpygKB5dWVlFrb5mQOydwB7i0J6ubFjh7npdh1XXdKUdEAmoj3W5Db4m4QE1LVCapO1XgH2D%2FkB08JF83SNM9ZhZf5I9%2B7Rz8J%2FI3IIfrMb5LHcjByu%2BUvGUKxQ%2FkcaLYdZ40f8JWOkw%2BA4iEBtlYSmddP1HFw%2FdKtShd1YQrncW61ZeqsIAcmYleEIEKAhx1ry8ND6aFh%2F8V9VHtiPdBPGObFcRVTzQgcz40RO7WEpW0ba3k2z3i6zBvlL9xO4ka%2F1EVnLTSa%2Buo%2BmkNzrwWDyPcz4lWOAxAp2%2BTrKORXoPGvm6d5aKpzt50u4573rAOfhP1CUXfpbjl36l4XWpysmXBCr6PbGqqsTnSRvReJFj4Xl9rvYfHFko%2FqPrb9YYEpV1CsKxTiSrXhisap%2F%2BC%2B6uu%2F8CZVz1iWlY7fGdnKxd2eM7WS2lcof2ANfjrBHRsoomvoE%2BuiF%2FpXpsCFnJYVZIVk7UsM85PYeLXYofPYf9H42YsMdtUq%2FMTd79Ho4bf2S7Gq9PVRxDC6lKG1VpVBV9cvFXGr6oVycSFZ%2FauXWquCnKooTpFvcfy0YiWVX%2BI%2FD8UOPXvp%2BE5%2Bom3JHt0IXP6MxS5U%2FAqovYd3l62%2BltAxkkq6q7T7LR3xT%2Bcz8gICtekEZU28Hq3d9JkEXhcfclufMmmZusgqh%2B5ww%2B7k3Vwcd9XbHh1JbiELt3Fu67QYbvmRs%2FCg5by%2Fr3TnRlZXhu7ijl5o6qlZ%2BrQrpkGp3PTVTZFKpwyqWabnH%2Fce5T6T%2Ba%2BNhiV5b7vOiQWG1XNvGNzngqewJWX%2BO7%2BPupIVbDas6n8HPju1ZMXmrvkcJ%2FhQ1Ya89RaqlV9P%2Bu0DacBdfrcx5rlPXMqW5%2B%2FVv8cfLHuP4t%2F6ZgDdhPFR8DGRmRoMk6R6Yc9MgU65TdN%2BKH32y1gyJruJn9x3%2BQ4%2B1zUvkZZYoyqq52HfJR1T3OUca8Ss9VrVhgoR1nngEaUXl%2BEwnEj%2B5Lg7fIsNx%2FsEWwXdT%2BI%2FD8UOO75zqXdKad2WS2XFS9L3XHH%2FH3m9r4nePnO%2F7Ys%2Fk6qErLYy0lJ6agZeeN%2FwwccYGT1QoEPwJqvCIveWiGhaw0jqw4olppFhqa8b%2FC%2BdTSMfJ8SlX%2Fp%2B918A8%2Bor5fxP%2FNTuvM3TtoeHe%2FThlVC9NKslFVNwNc6blq86mEHcyuYlSiOqOvmLPKAkLhPzbxCP6j62%2B9f0qwwjHOiiWI80kKVVktH0mD79lpNHuEPZ9yx6Q3iKpAKUiIS%2BdKK4ZmEpg0z1gZ%2FjhD12TDPydq2A6DMfTF%2FCCSlRZO0fLXPJsLM9o5%2FJ%2BS1UU8jHffrIaAVo2H93qXRX3g%2FV5fZeaqtAxwpeeqH3Trtr4z%2Boo5qyzjqus%2FuvixZ5JszVn3T9bAuDz2jM54qngC1XyGupJhFtiO%2BapVZZeFqvBG9bLT64cJ8zEW2juBk3sMRUbTMA9ggQX%2FxuNExVKRpvwrklXWFA5ZaUTl2d%2FRNOseP4pZYB18QoGHvnMyyNx5aXCbSf9x47s%2BV9Vv%2FQ2nBFacueFU%2BfxH298aemcj%2BAollosRz0QwI9ygM56qmBNbdKZpA5nYorobKAtV1yzEXc4xMjWQ2Xzu%2BE7FzK0BZnfYN3ezIOaa7cYL%2BL91Kw6%2BwooX2cJdqES1Yl3fwkumIJzZeGJX6gvVmzcdfOOV0JL6h1jjlZuVAa78e1Xd1scYiWP5mRhHlc9%2F9PFYhwhrwqz%2BfBOLKP8AaClJVcxhKRb%2FbHAgM5D5bBD67tR1UFX8XUSS8JcpqS8QN340V4kWuHQHNRnlvBhKfbH7Vr8H6fkKWPUwq6eGeuYgy1ZNqcPGOz6%2BR9SZ1V7of6CvfPi4Z0Y6zuSjamFa6bv2XhUpNzRDI2ruGXdyLNC1U%2FVs9fxHH4912DsxkOnMds9tPgd%2FPNEpvw99qvKrPL3r8FZaC3Vl26BE558ratV5h5brrxqrSjZWe2oL%2FbGSS62BPrSGWgP31eFR1ZYP7%2F23Jv5tWjqelgG%2BMe9VoU1C5X6i5fIfCh7GYRjtwIM65C%2FhnJc6S%2F9XnldPHdKgJoWtn6q6WQa0qq4yZuwG%2BY%2FxN2PGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyYseVnpcgqGjNm7EYTNd1MEGK0kaUITo7BMiNUZj1D6RBgIRmWfxAO%2FFpHr1Vl6qOHh2WCxTJWwxWpzzycMW1rU6TJ5QMexTRpz5cqLpp7Tvw4WJlhBGp%2BBo7p79qA4m5Bmngs%2F5fXJWZFOsN86VmYRFb3agsKnuuswqLabGc2wig6q2t%2BjKX3TfZN4tc1P6Y0CV1XT7c%2Buvjor4tXpcgXo5daH5QVaUf8fJhRy0f8ShZltOdLW1lj1bW5cG1qRVxmL77HjjgmvE9R%2FzPNIBmL4pz2%2FS4zGXS56nQyJ70tVuA43%2FnhhXCDWLVTsHLHWSNKIav78VHwuOp%2FIIMipCx1YtdARq2zGvoUS986vnXcXu35aXmpqlsfXTwuQ3eviwCdg68rVx9cjSm%2F72K8qp0Ka69yLaEXBOWD7i5NogZ0pBfagNRNqJFxxsqEFfWPwLL%2B09uwHqe3jaYjJJ1eWCSe0SKcjaeJvbvxVmCVVIo0mRsZbeHSfvd3JVC1cDG3mnyFKyZVeNRZBYmKOKvFKsJysjg6o%2BzmrAAX9OBrN1HQg9KAVKq66wPik8r6uPCT1iQBH4jbAtCO9c7Gmb8KgVM%2BfqdTH%2Fyu9bWEasxz4a06Nd5xLnewJl9aLgT0WD2Vqon8Ot6IYncG62CUwRrSIF%2FgCGtkgnsnosow2zrYZMcO3HPU%2FiPwqxhxq40cvmkhMjI00%2FaV%2FG5xiVySOYQtkapLVRdU5HNTVb3sG3VWD28VlUA7vFWus3rbPl76oT28l06y2%2FaVj6ru%2BnC8vD4Cb%2FWFUMG%2FT4XH2hcKkKBASfsT6vpA4Buj1ydHk5BqNakbb68qVa4%2BFe7kXqsqkWWbd4sS5D7Nq8qnh9fhq6ASUbCGlDUMzYSvyueGPCTnI541tkrS2bvxqGrS9jZl7inw218N%2Fe75%2B2RdsdMygrCWQjrAh6pe8igqsjo4SsrB0VkV1VPprIau8tLvS92Xk%2BgMXVU0X8ZyaqQIe9z14TWS14fjYceRL%2B1585dWnQL%2FP5PsR790%2F%2BRHvwQRrA%2FU9YliQHhQVZ%2FkNwJPM6d8qumNqgkP%2F0mw8lE1zh7dUfyzR3fECSoZKDuzd6IZZrcwKtdQ8FVVjzwQWaTGlIj%2F8bZ2hrK8%2FmKhznTC9jV7MiHrLH2pir3s0qaWj5Q6KQe3zmoyT2uZzqoVE5InEAzWijBJLnFcKMQlb2pRH8sWpuLEltWH42E86rbr1I2LlGV43EFndIv7J6NbZDvXuNsHHvmrqvpgcshjZLvsG56mlmoIoIpQuUZV3SSUF1VlSr1JNtlU%2FLPJJlp9qqruehS%2F3vUolXr3DHZmdah6zyC%2Fm3sGfdu%2F353R5d2ebHiTzlX1GloX7%2Bisiscu11nlsp9izM7nFX8lu4aOEJeoD253wLdAkNfHqb%2B4Uzne1nzFunMl2j7LFl%2F1byOn%2FJ452FykRVV%2B%2FwUv3dqB93QSKHKdW71RtRSqWnUDmQP7T287sJ%2FL6B3bIU1yVbtd284wVNPqYwVwRMWR1T8ALqz12mMbzupQde2xzeesGEaAsoCZ%2B7I7D5y8HqqKTF%2B5qaqrs4r5U97TYn24Ui%2BMSl%2FL5w4rGd%2FUaKUyJBf1YbWjaZALrVXVx6m%2FuFM5Pr%2BN0IR9NxOqNnLKB6m1enX53u354H7lm700rf1vxKgKMUqcrYAU0Qq1jF6xzJjjwH6jGB6jaR4AQ964gTXA%2FzUUPFDv2r6dcu8vxEe%2BHv9Z62vgq7WUlzWibUsKgIsTMuWnqp7OqjUswt%2FeP%2FExJx8CD9Nqw5NRlPrAcBdU67668PbGCiq8837RST9I1ded8qspOrT6urVcqfn5%2B%2Bj4So%2BqOjPn0bQXVUcVbylY8MQuzMOLvLHqKgJ%2Faotc974YP33f44mOxUd%2BQXtZI8ZXERIvM6rq6ay2vyHKvOOP%2BD3f70P2ZwTFdQkq1P71dV%2F18N6uK6tRZeuDNcJ3rzr4ys9V6Ybqy0upij9VnFeLGzFqXMfGUzUvHTyrAXo3UF7W8PeqPBMsU6QUvxVqiFVVOPzcEKrq6Kx2LIoyh1%2FG74dfFt%2F7adrru4qu7qseXp%2BqpdYHE1IDGTUeXnak9k5sPkfXuV36Z4X%2B9Xf2vHMO%2BW4LelR1Tz2KPy8Pk9Pb%2FXrGsmM%2B2v4Gzp8YYrYjN9a7Y2eS5mu%2F%2Ft6bVJ1VlwJqkPepKi1UPRVd3fro43V1fa%2BjPt2o2k7QrQ3Z%2BA4dnVsNXeKUBzolL1%2BbDK7rU%2Fd6XTZELtRtroeDrMTsRDdVxowZM2bMmDFjxowZM2bMmDFjxowZM2bMmDFjxowZM2bMmDFjxowZM2bMmDFjBeb6o%2By0Pt5KEzRo61BQha4rq6dBmzsnnUdfrlhLodptTKuFmDVJLn0sd0ZGdafebSRTli2lRY0tO8OVCkMzSS0VYAfPQuvfUp3VeDG%2BiNKTVLFK3ZU7aM6KnDijC0TqWfiqSo2CGxdvO7TnwP7e2RBZwpo1jB9Nss3n5Eu3rMmwTX%2BdtTuaqr4lULqUjgBkOUvuaJT4gG7ntEQYW3qvxWdWaOgsrn8SpSdDAxm6CnAhXk3WKLNXSzKqWKU%2BVVGCxCXi9rBegxCbcDgJy73WXiOQzpbYhBUUKy5Al9TxZ%2BpD6nolyZQaBC1QcgsKloK4S79Y%2F4gKvIWCpm7TwRa3Pr271z2L1ZTe0ajwxWVTFnZSl9cVo5JMl3qq8r3WNSU5VVFTIKKhAlyMV5HVq9nKS9X2J9xomXApF8O0Ckq3lHKYaKHfDZ7unU0wykYMos4oZh1fpFI18QcvyS8vpwJH7%2BQrGPOqi%2FX%2Bo7EOtngJHDEi6L%2F%2Bs6hlU%2FD6CzWFkAqt1jpU9fZmf77wPSuKNxTJURXJp6cCXIyXk7WyVEWioaCnc%2FzgvKzvcsbf3lmuczj6G5UcJoZr7ez5%2B7b%2FraojcFPVijWdBE3gs1SqYquqRNyKW05noTVR0lxzxxrtADVQQkBb8QA4yaiRVjGqFKqipK%2BsJvamNFdzeR5bmse%2BCp930lWAvfEyslaWqrbu7DcFwcI3lIBq78TU0NTQ3olkXn5ZZrftQ6mrX4LAaDthLszH6iaGTa4KaZ0gHqcWFMJVlqq6Gha6AapXcHpzA2A%2B9y%2FWIqTUJ0%2FySZ324drbsueLHBt5BYmKm4AEFqw6G89CemT1w%2FuTtfJUjRf0n3HCo%2B%2BdPdC5iq1iBzqFgrAi%2FL26%2BW2rL74B0S0vUNwd91fBRFHzx7TNkOL%2FNcnu%2Fh83n6q6Ghb6qhf6AW3lAmD0F0j9pR0lQZ3a81a10iHJSLzUm9e%2FpRIXtfdACCJRo7YAeuPFHN6LfOvfklTWB7%2F%2BLe%2BzKk9V%2FV66%2B9KmNvy6qa37EiHI7otDd4QCa9F8aKImBUhkNY5MRVngeRKRjifZxqM3n6olvSrTPEMnQK1sAIyEG5liIXcATLtXVxooBCX40ttDEN%2FmjzQUr4MXg4Hm%2B6O5M1y7%2BhSTD4SzpPvQeOGt9Pq3vM8qjaq9s6e3UUa80qgahTzx6W2nt4UfjhK6g9DfgxxnP9%2BJzB7D%2B6ikuB8SXrEPKUSKfYZ731WOqtaYHXyNUQitm8%2FVPUMnQK18AIwZdXcATLvXglGwRa89kT%2F%2BeCvWeKUNIr7b%2Fpdn%2Fd3kUxHVC%2B9P1NKoauvk14gNLtTBZnFqW%2F3om1ngo8BHzaT9Q8Ps4eeEk20%2BB3vo%2FD0prRSwxlqvJdmdv6dQCbuMB%2FoqR9Xm3F3rB8CVyAAvlwC4OANMFwHUzQB3gbokPzh%2F%2FPFNuSlcxK%2BrEeSjELUYLyOqN1WHZmQ3Jza0EBtcEGgx7wp2AkmSGGaURUlymJjHPZB%2FvTH4d%2FbcXPJXS9YenlZaBcRIEBNL%2FJxn%2FlqJg82hnSQGbaTkeLeLydIgJQWcyw1%2F3Rlgan3UVHVUHIGB9lFKWq%2FoKkg%2BKlHdeGtMRlS%2FEMAf7955hpNV1RTFfwKhLYYpkcO0DmK%2BrmlBqNnzfHFgwb9GrQUbJ8GfH9QrCZjh5zReUbZ5C7R4i85IKZIe7iPEdF6tlT9AXV4ZYEHVUupTiqpxGahqZ55COsVyPGjMhsoZUhVuEYUC1cp61BaU31DOpsspEafyWxUrlW4L6tJN2VgB%2Fkghh6a0uX8w5o3nSQ%2F3gYmUcgacyw2v73NLz6HVpxRV41Iy8MtUCVj9ZwDGtNqzRf0TY8aMGTNmzJgxY8aMGTNmzJgxY8aMGTNmzJgxY8aMGTNmzJgxY8ZujsFqucCyqMe0eRbGjEmI2nhR%2FHG6FDdmTYPuyzRFFsxGn7Euw%2FqXMzQ8LucGaZThkjub4WXQkmmasrIxYyU5%2Bbrm7ksJ6coR7obNoDIUgX%2FNSo1DlOxuxtV32QT8D%2FgMRcKk%2BWOQRvmKgrSGoRNgjuA1djarJcu%2FXfgzuKpUq%2Fx57MRgjX6dmqhhorKyW1sW20ofqz5LDw%2F327dsPDLvLTS%2FWYrnS%2BJoZ1GwrvZM08R4nFand95Qtux%2B0ckDH00N9c6mvpCPkbgwbCAzmsaF1mHFiklUiBnIgGh3SqwTbbyorOjBqK2ZFHhJTaTVuaW4fJ2rVTd4y4ZTvbN%2BMp0C35UdP4prB1cxaw%2Bl%2FL0TQzNd2eM7Wa2VblPeAZe60pFBF%2B0fZbpYyll6%2BDgsJ4J4iTwNEms3SxV4kZ2D3sJd1vkks6V4viSOdhYF67RnmFQjd%2FuTO2%2FwH8n98sJACwjIeqFfVtDa923hbnyiHUjWte%2FLaB3l2FpnLV5UQW6rry2HDCmD4JavQB40nVsq1Dl4S%2BPFxovn1sGysmoFPsUaISwHAaxWdMs6Zfmw1A%2BXwnESbjglb2gUssrpU4QoMuhcUYfLXulhaWfp4fEa7bhGl7gzgLN2s1RVRBlWuGySUcjqhaesV6Vj3e0ZJZJV4OWqZY5xqTSf0p3Cui%2FtvlW%2BEA2lJIZf5p9RFSHC5LQ%2BvLX4EcnVdNd86SDXLMibAkc8FnTfQ%2FelwVvUeFRYbWZ87AO3PKnET9qhr01U2QJ8KHc6zNzjX1jaFQik0%2F5qN3ewtLN08bzlEyC7CkFY382mqnDZJIkaXnhaq1Kx7vakkdXB62qseJTuFObWYPAzFD0R4l6xD%2FEcf2xssSvLl2W7H1HiG9k4HGc4VguHkSv%2BOU3L7wHrL6OqwAeejwCWb%2BgxNHNunWIUmwyhHut0WNncjRfbc4r9yfzXdkXAbCtAXIySZbgcLOUst2PRruI8pyiGwmn1SFZZqnKXpVHDC08VN6Nh3e1JqZE%2BUSVk1SNqVdWGs3w7DEiv2FtiyMLB7rnOrMcjysrG4aEZHKvzAixX6XM3TlQZMQR%2B3dTpbRAmx7uyeycgXK2W45%2B%2BtwuSYu1CS0oSvm845SW3IQ%2BYhYAklapRl5uoz2o6qYcvplJYKSRTeaoW3rN%2FDOSNp%2BsQUrCFRFVnX0T7g%2Bi7psZKz1zR%2FeoStapq306uqNaWU1U7frc%2FtvdPibxomHNz%2FRdk4fXGo32TDjbOKFQNPBbN1V%2BeNMnv3BJiNfj11BbWIKNeTguq9vhOjCU4UWVqRrw3dG%2FnpO5NedvTqepgKWedW6eHL6bS0MzH99x8qrrvwT8G8sbTqUrB5uV13Eenuv3jTO%2FlnZWOF94vfz2jQ1TcoGhkymlmSLrU%2BGPHnoH55tniRzT2jCy87vjz4fWOsmCSRNWew3sneP2jykdfcC81%2BOKJQG0gK9ckalbUSKi8ijPVYQ8ihZAqxakcLOUsoftIv0rSta8PyLiFVF5ReaqibyZJw4kXnkpVGlZ3Vx%2Bn%2FcNM52VNuPh%2BA4%2Fx1zN0oqK9kxCPHLK7QanjNvTO2sFyzN13yaTKNpyNstW%2F7b8g0PKdXDBIwEwlTKoaWDXqkmOoocbnk0CgSEjDgwRai7p8Tlbcyys3V02rwx57%2FK2mqB4XY2ln6eKF4Cq8zuqkyLhVmqrcN2nDiReeGqvQsXqKiPpk9SAqzAw%2FFa9ndOTHWPWR7Tju9cydT6mwWM0I7rA67%2FRdMvzJjV3ZcF6wuCsr8sc%2BwfgTuEGU6NtW2ptF7Xvi5uELkwK0REIuyCaoHi%2FF0s7Sw%2BM1Np%2BDqUHjcnhZI9yVFvd54Sn0o2NLURR0yKrzsqbgfq0AzvC2%2F63q9YzHxSEg7Jk7tkN9HsqD7p0YyHRme%2BY2n4MkTqf8HFZzagv%2BuQF3dXCYWil6xYH9fPotlHcP7Gcrbh7eTVZqxi8fZCtVj72wlLMEyn7Nr8Tb6sUdsmmNl%2FM6X2l4mqMLd7XqaHGfg3I%2Bqemngy3NeKvrvKwput%2Fdt9p50MZSBD0hIOyW08gdBsOsOgX4DopKL2zMFMpJa4fUDsNWQLlu5d0VNxfvNDc14%2Bc4q1r12AtL0UrmKP6cVXiaevGNMXedKV7qoFyf1KOeBvZ6yKrzsqaoY4IGqKkyZszYjeh2qiuHNmbMmDFjxowZM2bMmDFjxowZM2bMmDFjxowZM2bMmDFjxowZM2bMmLEym65O7%2FcNb59Dlp1cnvWvuA8FoEYxnda02A2oVVr3SlbMmlyuNM3p9MYZTaf3%2B4YXZ3EZMXp7JrOdWZ36VAp%2FoyzwEUhYfkStC3XBXMGdZ%2FT3fXj%2BPr0rWbHAAuhkTt7Mrobvb5ETbA24WrRYK0al01sani9qw%2F8rU34yL2pW7vK5OPNKG7tyXq3b7%2Bges9SJXQMZSn1Kxe%2BdoOkq2488o%2B0yGtSwJqNK3aPrpWoUBU%2B19k1A4tGvBCMw4BPgpU%2FfW4n6U4nK97ewh4ZY00JeBg11evllhR6QXKfXwbudXYXvnf1kE67f%2FGQTLrClly%2BEoNR4WEUKomYndtHrT7tftKaTHYtIiiR76CUQO5VrGOd0jzfegd9tvIPFkXzy%2BgidZHthoQbeirVeo9QfhcebFqLajkWnhjUcyoum0UJyXVe3%2Bqw9qF%2B5mtHDU0G8E7uGZij4MAggIB6F2W8eVdc1xxdxfwssH%2BsfX1zXbP8CdXqdy6p1eh28%2B5Dju7K49g7Xb%2BKaPRxZaeX3zn58D6eICg8SMCusPVaM1fK19pTyhQCoSpfYqguz3S%2ByBpvejQ%2B91HpN1tBc9xh6QxTlTMP%2FscNbVfUROhd8awUqXjgitpBcV9maXA0uqO9YVGpYgTULzlNrvUYZi3VcHZQx54MgrZ6XcSeO9m2%2FEsSjL%2FEHUb%2BdlFXYlaMqq0HJvUROWteuP1%2BoGlsUI4wNy400%2Fjq9Dl4canzCFRY1nUwQykf5rYEMEnx8AKmtwsO4wkJXezZbdVFGqb%2B4A7UuMYq0JHFGyA7tObTHAodJSGcpXPeY1Q7N4J41sOofPkPDfyPHw3X2WAHcWqHpJBGfIyo8yAYZHgPfkKtzUsl2uTFUagQ%2BSri6bRgRPiqnq%2BPGI4miKK7pCsnpW0amaMRz16n1NfUc1SpqUcq8liaahugm1%2F0mUOqI47vniptMrtNbGt5RlOGqMSr81BCrhyCvmjukGp%2B0FY9YfdNJlc6wwFsFUYQ%2F3nEQqFG9Wg1I6B7z%2B%2BT33ZmV1Qfx1p5WtopFc0KSBLxD1Fo5vulKVEu2ywurogaX23R1gZ2KGXChq8u3uuoLL6lP7%2ByxHbQsLmuhEFVkiXODT0hNZx0RND0tKe8r2L%2Fo%2FZNoMsF%2FuU6vg3f3L3J8V9ZRbj23DkdJVfkBO5OYJ6oSjweEaiys1Bl28O5m8cez%2Fs8G7Zlwv2WPrKj6JBP14LrHVgxHVBxZ8XNCWh%2FET4cxcOdqOgT8mJuocvyxHY4ibqlUVVNDZ5ycGnILx3Zlp4akQezbmLEYmcKYRugSQyvVliOLW0qWuPJUZf0ndjkt1DMHCUTubajTu9R1%2FXV6Hbz7kOMTtpg%2Fzt0wu5UglG%2FL%2F%2FcJotLq4w5o1XgR8Kt1iVn10AwmkxC37qcdi7tflDU01z1mtdDAMDeH%2F2vXnFXVB%2FAwh7ddEEQ61PjmguSHHM9qsWR30C8XHiue2lCooUdVVvPkU47nPPmUXDKoHXWmu2F0tGMa1V4IelncUrLEhW1D1CvU0je0Arz%2BvCOL4wYsfPqBOr3FaRaZTq%2BDd%2Fe6KnwUXnPg3G3lfJRYPu6WktCqj1793TGBXJcYI4HB0825lAkmmKSPJad7LDLAuFWIqj6ID92OLghjMAGPNYF62COqCm%2FrZ4X2TuCj108rqalRyuyTrRCS7yCCrhCVA6IG8xHFLM7My5fFLSVLXPm00u5bU19g%2FXmKqyub%2BmL3rblfOYrrNJ3e0vAio1Wp8iuH586OYXCSfbJJrbjo6B5b800sQqqPLt5OdBHxnODHd6oFSJcE2wRqlOa8rIUH%2FKxFiQy675z6EoWeTNLNEt%2BADDBEWCipa4%2Fatae2uJQLhU5vF1Wn93uGF2dxdXoKUuged2vVp1J4JxDWdRpa4Fua8x7Z3jMnn6V63Xl5srjXkyWuPFWFjmhOW7mm6K71dHq%2Ff3gx4yBjl2P9q%2FVdRgvdr9VCqCJdAWFbSha3mKz6RNW9W2PGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkzZsyYMWPGjBkzVgaDZXN7TCsYM1ZICw1dWVC6QQmPPvtzn72m%2F6DGlfrg%2FDNqWUZc2dpzuOL3PW0xqhwm1PqMVtkZlcJBHsm8P2tcK13GNnkOD%2B%2FvvpO%2BHbsxisPqZ3TdT0lXFzf2Ye9sfDEIq%2BytySDoqfXOxj4kXWUMnTfI2tidv1evSQi8FGU%2F3qbRAUwjleD%2FPh18x%2F%2B98wrtj9KtsQi0Dl3a0gpwsU01Ta0CVY1kSfqyoDYx7f3UoPtlHse8f1m9R%2FDw%2Fu67aO1PoG6H1DPn1a1SOl4QFddrXydZdXVxI%2Bzh53D1IwoQ4kq%2Fh5%2BLqB0y1nilmfHrbD7X%2F09qqq4F2cz1D9hjWZ2y6aaDrJ0hldqhK%2FBzWi%2F87eze1wtEkX3P4TKeoAZBHINZDW2ZlK4AiHASrmMPI8Y8J3i7z1NLeJafYOWmKldbLGV8kY824rdC%2F0gp47aka2qVyNlwmbtEvlUoMnF6eIeoOenV0skqdHFhmS8s6hEKDBIdWlu%2Frwkwzz797NOop9acFxXzf4yBhXhOKWbvxIP7w0Bx1aiHzdH%2BRlXVnb%2BXdxwYKLcXuGE7y4scE%2FAPPtJ8VIYXY3wC1HcHMqDG9xK1ZWlUXSrmIV9clVcFBBkPR3sKjw2n6F2BrF7Q2wWdBd2F38laNczU7bh0fJGPNs5vWUjIzsjr339h6b0Ov6zb%2Fv5PQL897auEuMQLbXleYWvkvxO6uPFF%2FC6%2BqNLFdfSL7nrgrgccXSPZpbmgaFd2%2FCjr7jrULJUd4zYeyfVBk%2BvfiUrnwo3vRmGcFuLeXAsI4oJ3qfhX1%2FSmZXg%2BdqE85%2Bs%2FfP2HttQmaV8WvnGGeusMz%2FCUyV0LZbJSX8Q3CKkRfCYgYxoqj2sV1oA0ZtTxyCxKIKtVl%2FjcGV%2FEaJP4XDEWQaSE7u7oGvmVv%2Fm1pfe6dVy3%2FS2JTFzPnF7n6n4S1FC5aHLDySp0cWEwr4NmVOriOg%2FfTVX5xTsWcdQ%2BtWV0i3W5TdnPWcPWQRE%2BhhiOgOGr%2FikuFCz5oDvJpu9DAtpiHXfbakUHKfjUV7DivsUfzw2FxkbTq0D%2BczSNomUUojZe5LVROW9JfTTIeDz7k9Uu1UI%2FopZC1cLfq%2BsjiJokkRXlSHjsBi54OSyVzGEhrlIIVOhwZxRkNbr%2FiaX3%2BnhCt%2F1lio6P%2FAKyLkw3A0ClKu%2BeChVBc2R1dHQDjwUeU%2BviVlVh4IsHUlV8lo9JCXgYR7YH34MkVK78w%2Bv98a2frJvCG%2BudFSNfnPlJRvdNwoz2X1j1QGb1b%2FfZwlGwSUTN%2Bn9Jsr5JP3z3JY6%2F96Uk23Icf%2BqPFwmlnrkZe5yfifTMRdTbTsS43Bt33pXzsnEYHXHpP9UD7eniRJ3YvX2tfQdvlS9g06OqQ1SxaQmdrPE8Uf1Se1x5WcfpxweK7xRGwZryURVKa2j7yvuc7a9eP1VzOtlFh%2F18HV3c1vxWA%2FIAFSlafEjdanNX9uHnAguRfOlIJ3981O5vkYL78j1kfIPfvGoggyPi%2BVTn%2Fw7aJZ9P4cgJVwj64SGgTiMex3fMMVtpf7xIKL3wU1a9%2Bdzmc6z6hZ%2FaWz3UyYiKgakY4zefs%2BeVMf8HyLO%2Bhf9UXUEgR9Tmj5vssv0zwJWlqkNUGNe7%2BWxSvd2VQ1Y5Uf0cXFYj3Jug8E4H3tOPavzLhzG1L%2B5zjmwAolKVz8kLJV5zMZOujm5V1WrGD6So%2BCy9eH3%2FhWaXtH9X9nxKdUvYGHf%2Bnq1wlO390OdTvbNtLPA8nII3Fg881gaP3%2F8KiIcEyLuv%2FxCdhdVbB8NSPCaUgKJw%2FQf3P7gf7wbJJ9vvLLDQmQWJ745czTsO7O%2FMBhbKNapiSCTkM8cjuBFRkzQDXOy44hn4X4HvpwcZ1z7IL6d5d%2BNPug2nckQNOakf7wSXF1lVRF3q4JgJzonD%2BqSiQHPK5ehd2cG%2FKydVYUx92%2FsMaIOacsxVsRXd3%2BcnN7o6urpzVXxrGylI%2BoBAp%2FThiPFo306%2BcR2eI3%2Fom8%2B1wTiM73mty63gWLLHz8WxI%2Fa2E3f92Qq0MSGV7Z2JxhdSJzfi52bIdePXkxu7sjCK%2Bb6%2F3XAWpCFXiLrDllcrTm3ZcLZco6qgmi2HaW9EJM8Ao%2BPyZ%2FrZoMuFJZ0l77zDkPhtyu1WgF2UzLGcmXLhdyqyylrefb%2F5eZsrE0y7Ck6%2B5G%2FndalqBdp9znh0h%2FSVk6KDKWxTn%2B90dXH1qNp4sfvS6W2gTgd5S8xVqgWgT25EYoNoZn3ra7w%2BzjYa3g%2BddcBmVO8l%2FpD4w8B7h%2FYUpiA88ZCuuAeS%2BtsObWoDvKRGzR9jwm1VvhvDr6vsCKH5Y9%2FyO7B3FYrtOJ6CQGRHuUZVQbX8Jo%2BpgiDJ5xrq0cs9bvBx1TVdaVC8iAj5fad6Duo6uWvivLaR3S28xMqTuwnOmmwqJ1Wbj3rjYXirV4W11A5G1mRaurh6VO2%2BBE5Sk3Mrkogjq%2Fn4HiB3A87AemdpOrewTUIHhMBx%2BL%2BedI36TdAN%2FGwjkKhe1idHmd%2BjjCpe2nTbe42c2NU9p3JF%2FbnqUpO6bp0OUfkkYWRKbMQwMiWfrlTail6KhNTdATzTfmenP9ZP82YqVdde88Y%2F%2FJw6rL1OooqelK4rm2%2B2W%2BBQvlXSc5J851GTu1InXedW8xotTClIDZ1Lv%2BSQng1tWcvVbrVcsb80fVmp61bTRL0LzmjJzfhS8Km66jtnogXVLan7JxCFM2HXoeZNqAxErWijfQcftDFjxowZM2bMmDFjxowZM2bMmDFjxowZM2bMmDFjxowZM2bMmDFjxoz9%2F2u4KsiaNO1gTOYkgWLZCarynNZV6uyy6zRcFwRkdJzX1iee%2F64%2BhRBIyIR81S6W3CtZKy%2BHR53neZrO8zLFT0NXdhn%2BH9PyuTN2Gx0sqydraWHlz8rYyAyt9KVXs7%2BJjBQLTzbfr0X0PUh2BQokTLBsuXhJvoED6LqNFxsvhph9BYoOXl3o2vjRBNN4jJlcMxzU6Azmya41r%2BcgsAakBv9R0VQdJkfnOUHUeV6O%2BLav%2Bv9p5JV9T9zzWzXescZ3caU0LHMMSkrX1kkubXlF1F7rEyWIzRaWJ1YI8UJ%2BvWSB16%2BJzg594yoW%2Fmr3rSqHCX6ZyHUDwY9U5a5rhvWhGVxmhkvQrMwqtq5ZXZvA853ZX3YnSRLZ1suo5rrhFOt%2F9umRqTbSWAaaCJdv%2F%2Bcnn2omdQbN7Mmnbv9nGAX66FQFXZ1v7QXyhNqM%2FsY5lA6rqfNcKr53VkjTlr98EMwJxT6M%2FjryNUUQRvgnSgQNv4nLHP3JnWDutsQDqSHr8kGmr5jYw%2BquIMkKxNnnZX7Ax187qszwETXn17HPiqka%2B4zguOmVi21fJv5P97%2FGGatWadrF3es8FX0iq%2BmdjbrwsGhXOdZYsTb20EsYH1DGow1HhSLrxq2jP7nzL8H3lOVPr17Y9wTraH9Dpkjh2NBM%2BxusY98TqxesacIIzFAYpapq3%2BP%2FKX37%2B9BRnVHVpo2JI3RNHqcInWe%2BsDn%2FDMbUeEd3l4Lvyh7ZfmQ7X%2BVKK98RCFLhu7K4PPz1Hx7rO7YDZQeijBLbDN7CNS9RAXOlLzW6sk5b8gPJIRO0YSuETolQz2Ir%2FNG6kulJxn20%2B9LgLYO3dF%2FicZMYVT2WTUvcyp7ZBlnH3A%2F%2BNW5vnuEqysfa7naX3na3Yo7KintduOKkfJQMfglaBY0YH6h7Lej%2Fj4j6vhK464GHXoj9m%2F9GVnZpz7UzkJlZYY3ZAtL8mPSrPR42boyt%2BGRTO5wtn820XjuwH3XqqqpeDf588L89%2BvNfyHcrsPoii474yuBpf90mNKHzbJMjtHeCk2nt%2B3J8VxaW9IecM1X4JNv9IkoH7H6RiudPQF1%2BB3QYG87iUkpWs6lNSL93EDrMppO87NVAP%2F8F%2Fj7rT6XL6T%2FodmRyurIfdFOnKiTtJgh%2BMT6J2hPAqB2r5NbdWn1eBfkFbs1MKPTGXcJmKqomniroUZ6SYd9JFMrH8NDqnYR8lIwz1Cqwl4v3T42i6j%2BNqqz655HB%2F3L%2FP7Yq8bazNIhHeXpb5GsvdORrl4JRA5bPz5a1z%2FZXQ79DEtlLumsv3fp4p7w113z55FPOKmAWks%2FPuc6zmFGxBtzCBOKmRRm%2BdxaUmxqceZIKbwuR2EurWQMfcVT4Yqr64xPfJNkPzvPPLS9QdKpzHVpO7ptLzhzbUb65Kj6nid2i7Ind5VWZQLvQjyJKUTuixM%2FCuSa8CopMeBfSOytU4wsvK7%2F02k%2Fd6LWfysMWPui7DwwGKFSym%2F4%2FxLdEXk4qqSfCcPbvt%2FaN%2FiRJpLb1V9aQ9RfUVxp%2B0ws9%2FOZKfNB%2FAdRfifNVVGXBxDfWsFARYP8OO0NZamvgPRzfc99VW6vlbd%2BZLbz6xjuwfTuzMnz3pY13FLaAHG%2BrHjEeg3CRMBUegsZ%2BPobwMNsf3%2FVtErf1CkBK73LHn%2FNj2bc0og7NnNgF4j9xf8UO91zVGVVV6UlWPzKF5Y9MqQSCHC%2FGK9Co6oS%2BPAwWvdyHXlT129sNpT90qWodXBLQSnKjuAPc0oDcf6eYQirBmLP%2Bjj1r%2F238qAy%2F%2FljvLG59Yb%2FeAams1ZK5SWH5oWTscNe39uNs8Wwfe1zv%2BjZ2OJSkUrWq6oWfuretstKymRLkuX9mpTG5Bd1GfNWPwjvkZfM9XETC3xoLLESlOs%2BIj6Jy8Zh4UZBU4peOkip8e262iVMKOX7gPfx905W%2ByUd%2BESVq%2BzpEhalqrTzT4Z6rOqOqak8ljP7wCu8kVDghav%2Fs09t2bdvlfCdPpInQl4fBwrninrF6XHZzSXZg%2F8iUE6jKqGqNtS2hXpskLYDOXqyg6EcMj1GvoXvbbZ%2BlvmCN0lT7miPbY4vWnq3juJ2ffG7iLt%2BqTo4k3vceTwvH1sT7yRGrmkpVVr%2Fh7Mq8m3QsHt%2Fpj9394mrGZ7Yt94X%2B%2B23vrYHwTla2o%2FMMhJ0Wesz%2BOs8cn8CXKNPOmSp8MVXVeJA9j1mx1msq%2FIP7%2BXSrDc4YTbP%2Bzwb3TsjlTt1EVc9oS5mr8iDYnlgo5YiEUnbxIX%2BxI0JfHgaXHKtjv3jvj4BSnae3jR%2FFuYmMqm%2B2jR9FNURnGj6QGT%2F6ZpukqQNYUYeoUenLlHxAiyLT1aFNkZej7Mh2ZUPXPvTSbdceTyRIGePeI11ZlLUMrkk93MGOKV%2FAHOvrYKmHg2v4CKmmKgqSOmHYfz4hE1iz58shm6pX1l7d9BqGd9KSG5y2bCfoPDv4dndnScDTdKQFHl%2FbBT9KaJSfYIOPI0U6ZmR4PaKWNld1PIOG0tIZ9swA29OL4mQyphFkaRm%2B1xafy4KMYyNoHMKsYzTt3%2FsABtQQPxs8tOfQHki6pOC7RllvtPtWcL9O8Z4OO4Tdt0pcEfvAIPa2ic%2F%2FGj6EYAsoiojpdLgze9s%2B4qaKweM7OxZxhrpGsYmHeN00kFljqwfjCIm1U78kd78uoL2FhZdk3dBhKmujq%2FN8o%2FBRFtUsv%2B0rePGSuf1zGV6PqEvfq9LmqvwZUF7c6e5ugE%2FWrgNMNW2tSdt3bD8tLsqy09vS90o4HwsWp0bUAcPqhdULFP1CLi06MoUBwMiU3SHQzurMBS9ByiNi1dtfbSXMScQonA%2BU4iR8vFBaW6%2F3paAxvUese17nGSMata7y8sRvPtcz1%2FVt6HcPPyfHY3iso7db%2FF6VOleVay%2BXHmAnPf%2Bw0H7Wpcbq%2BgZX0igV9WdRj7aqYmaPdjdVjnrJ6E3%2BM7WRqcYr2I2RS%2Bc6zxjRNHxH8R0QQxB0qvkEQcsrS%2FT%2Fyqj6FntAqcrQxpYLsVsw%2BDXt8P2x%2FwdFm3wBeW40TQAAAABJRU5ErkJggg%3D%3D%29%3Bbackground%2Dposition%3A14px%2014px%3Bbackground%2Drepeat%3Ano%2Drepeat%7D%2Eicon%2Dwhite%2C%2Enav%2Dpills%3E%2Eactive%3Ea%3E%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Enav%2Dpills%3E%2Eactive%3Ea%3E%5Bclass%2A%3D%22%20icon%2D%22%5D%2C%2Enav%2Dlist%3E%2Eactive%3Ea%3E%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Enav%2Dlist%3E%2Eactive%3Ea%3E%5Bclass%2A%3D%22%20icon%2D%22%5D%2C%2Enavbar%2Dinverse%20%2Enav%3E%2Eactive%3Ea%3E%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Enavbar%2Dinverse%20%2Enav%3E%2Eactive%3Ea%3E%5Bclass%2A%3D%22%20icon%2D%22%5D%2C%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%3E%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%3E%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%3E%5Bclass%2A%3D%22%20icon%2D%22%5D%2C%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%3E%5Bclass%2A%3D%22%20icon%2D%22%5D%2C%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3E%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3E%5Bclass%2A%3D%22%20icon%2D%22%5D%2C%2Edropdown%2Dsubmenu%3Ahover%3Ea%3E%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Edropdown%2Dsubmenu%3Afocus%3Ea%3E%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Edropdown%2Dsubmenu%3Ahover%3Ea%3E%5Bclass%2A%3D%22%20icon%2D%22%5D%2C%2Edropdown%2Dsubmenu%3Afocus%3Ea%3E%5Bclass%2A%3D%22%20icon%2D%22%5D%7Bbackground%2Dimage%3Aurl%28data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAAdUAAACfCAMAAACY07N7AAAC2VBMVEX%2F%2F%2F8AAAAAAAD5%2Bfn%2F%2F%2F8AAAD%2F%2F%2F%2F9%2Ff1tbW0AAAD%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8AAAAAAAD%2F%2F%2F%2Fw8PD%2B%2Fv729vYAAAD8%2FPwAAAAAAAD%2F%2F%2F%2F%2F%2F%2F%2Fa2toAAADCwsL09PT%2F%2F%2F%2F%2F%2F%2F%2F09PT39%2Ff%2F%2F%2F8AAAAAAACzs7P9%2Ff0AAADi4uKwsLD%2F%2F%2F%2F%2F%2F%2F%2F7%2B%2Fvn5%2Bf%2B%2Fv7%2F%2F%2F8AAADt7e0AAADPz88AAAD9%2Ff329vbt7e37%2B%2Fvn5%2Bf6%2Bvrh4eGSkpL%2B%2Fv7%2B%2Fv7BwcGYmJh0dHTh4eHQ0NAAAADz8%2FO7u7uhoaGAgID9%2Ff3U1NRiYmL%2F%2F%2F%2FV1dX4%2BPjc3Nz6%2Bvr7%2B%2Fvp6en7%2B%2Fv9%2Ff39%2Ff3R0dHy8vL8%2FPz4%2BPjr6%2Bv8%2FPy2trbGxsbl5eXu7u719fX9%2Ff1lZWVnZ2fw8PC2trbg4OD39%2Ff6%2Bvrp6enl5eX6%2Bvr4%2BPjLy8v%2F%2F%2F%2BEhITx8fF4eHj39%2Ffd3d35%2BfnIyMjS0tLs7Oz6%2Bvre3t7i4uLm5ubz8%2FObm5uoqKilpaXc3Nzu7u7%2F%2F%2F%2Fx8fHJycnw8PD%2F%2F%2F%2F%2F%2F%2F%2Fe3t7Gxsa8vLzr6%2BvW1tbQ0NDi4uL5%2Bfn09PTi4uLs7Oz19fW0tLT%2F%2F%2F%2F9%2Ff37%2B%2Fv8%2FPz6%2Bvrm5uYAAADk5OT8%2FPz39%2FewsLCZmZn9%2Ff3s7Oz8%2FPzBwcHp6en%2F%2F%2F%2Fa2trw8PDw8PD19fXx8fH%2B%2Fv74%2BPj%2B%2Fv6Ojo7i4uL7%2B%2Fv5%2Bfnc3Nz%2F%2F%2F%2Fy8vL6%2Bvqfn5%2Ft7e339%2Ff29vbo6Ojz8%2FP6%2Bvr19fX19fWmpqbLy8v6%2Bvr4%2BPjT09Pr6%2Bv6%2Bvrr6%2Buqqqrz8%2FPt7e2ioqLPz8%2Fa2trW1taioqLr6%2Bvi4uL5%2BflVVVXNzc3%2F%2F%2F%2FW1tbj4%2BPh4eHq6ur8%2FPz%2F%2F%2F%2F29vb7%2B%2Fvz8%2FP09PTMzMz%2F%2F%2F%2F%2F%2F%2F%2F5%2Bfn19fX%2F%2F%2F%2Fy8vL9%2Ff0AAADZ2dn8%2FPz7%2B%2Fv8%2FPzp6em%2Fv7%2F7%2B%2Fvq6urp6en%2B%2Fv7%2F%2F%2F%2F4ck%2FmAAAA8nRSTlMAGgDUzwIP8SMQ759fCgUvqfDGFeIYA78fbxNTt98%2FhsV%2FBhdD4Q1rRI%2Bvwo3ATxJTD18IoKWasozTETbQ4D40IX5hC6dAMR7RXydvEsRuotKLkZCATYahkzOxQlFqmbZwJiUhFWy1wyJYcXI7gB2XIEFbgjxgiWFtfTSFMy8wSYgEqFBDTSE2KCpnSyZZUaZHRFAsDuWBYJJ7AVZQpC0Z6njBKWjdN4dlMV30iN8bV7%2BzJJeHMRiDYsR6U9yVYxdP2c1dj8CKFZZVFjtaaTxOI9cMKQk4NnBW4PKUOmiNI%2FkwWoQYUdQOSk6GvkUURFSM3n71h14AAB4tSURBVHhe7J2HfyPHmaa%2FYicCDTQCQRAkQWgABpMcDSkOw3CGM5o8Gk2QRjlZOVjBsizbcs5pndb22r7d23ybc7zbdDnnnHPO%2Bd6%2F4FjdIGu6vmp280CtbF%2B%2Fkkn%2Fnip%2BaPSDDqA%2BFOm7J3ncIoDi0NAQkY3d2IaJSws2NNZZnCouduhAsrgf7o4BYy59O4fvn3ROJQKoREkBGKqYytAJCCEQWh220I81TPFIozLaNiCMH4PJr47WIooL1C1isUUsFSwpkMqPAMARDUIFjLcYpj5tGbmqw%2BP6bhz49jZwbZ9S9k8Kd20QQLDdzFbdIz%2FJJ0OFyJFaI6mOcZ6HGOzAGxdi0tN8JL063CmJwi9FviX34m4FUrlxl0PgaBgIbrXJJfVp08yTrbq2tt99bINtCj9p%2F2TiZMMigCzYGa0WxwBgrEjxCBUici56obyLjsF%2B%2Fez8KGLwUdxVJuq9HZcpljX16lgjlaeg8hTpmUVNqubcUjzNKnBbGIBbJS6pT8nMo5ilAms3kxsAbElvsP0DqP2Ttt9KsEYIoBELpWxWDyHMocSDdUiCYMYDvJmAl5sUE%2BcDgiaiLMd6FrTJUmskFaTyEah8JPZsiru8WGL8ouLpx2rfqshkVQix%2Bz%2FOoyRIte64GalXsb5%2FJFX7J4UfxsVI3EUcMyrVrbqAtbVVB1x96q39f4Yo0goYpBJ6EmhWa31nx3WrUmskFaTyJah8iVSofNrqY2umHOeNsyIQ457ksUTnlP0dq4NfVyuLrpTKLlHy0sUp1UASq%2F2Txr2ASAiiwJvNYrVzBLjUbJ4BjlS0qbdE%2F%2FStUgAExAMyWG2jI2EFDd3qujNsWcPOesxquY6d1OOSmiMbId4YCTT%2BBEq0xDjRKACM8mO1HwF2mYm%2BDnRdrRRht5hUmRPHAeD4CdL3jwBEBQ3OheC84VE%2FXi2L1Q9fB14kOgFc%2F%2BzeVgmgJKuVTnzsPSh2iFoncY82uVrw14aH1%2FxCNVbszO4heYa0vDPk30uc%2F%2BOxv2LgBAAGdjSM8R548OvqoxHiUl0bYWyX7R8h1P5J22%2BHUIlAxXSl5FYDeZS67hHgTO%2F%2F2aoPbWy12r9JqFVifFsqsLYGbGtlJyq%2BV2TuBRrA3WTgs%2FAY70S30519XFebg19X3520%2BbakctBO2j%2BZ%2BNt23qsdwduyWCWnjjB1h%2FZvdWkqhPxKVhi3gMamh2Ilhn304xeIaTVJpVlsTp9FLRt3F9DPgvtmX1czbf4FSeXghcT9k4WXLYxtg8oYrLJRKZNTC7XWa7R%2Fq1RDCDfq7RltpDwixPTcjIdii1R87MYnptUktdKYn6Pz89ZSJj6l6k8NcA%2Bc9bqavvmF6jbdHqwW0vYP5%2Fq9dLGo7qVTrY5OXKnXr0yM7m3V%2BFzIAs4S0crEckCmBDOedY1UCmI3%2BtN0LjUucan0yDOycjD8PZk4VJDCB3%2B%2FqmmtSqlc68g2dUYKlLJ%2FUrgzMl73Gu3xESfFqorzwO0OsXiI4kmrCe%2FSRoQ4T3slOK2ea0qa001Tgci0E2TiQkVk5tHooO9XnYJDWcP3TzovT4xOL5dJixDqXz29gHhGRZTRIRogzT2l5mk6b8F%2BG5KhtyB5%2Fj%2B2mie3mie3mlvNk1vNk1vNk1vNk1vNrZbouy65VR8%2BsST3UJbGpopjJYZdoNsFXGOptDrpfAn9LGWvU5xaLJFvmr9Ycu3kzstYuiHrUuaUFsfGFg%2FyQOFa%2BHaCIAeHMNTnPgA%2FwSrnrg3UPPD%2B1R8AHnwQ%2BIEUq7xONv4w%2Brk7ex2vBhRhng9ks%2BoyGAXU6XYrROTzXnTg4PrRW3EAIQQI8tueVn3I%2BGarnNuoz4%2BOztdZ%2F%2Bpl4KWXgMspVnmdbHwWIgxm91XHA7JxiJ1A64jHvJg0WS0CmBqzWf3NLSG2NmGTnopCOm8l8RZKpNsDSbG0l1UfUXyjVcZLqE8EoGCirj1cC%2F20Eq3yOgjrML6wwHgLFoWxUGHzicx1iB4CQJy7Iee7S4biAw4QUM9k1XhodzE%2B1yRqzo2zk3YXkPZaZODoEJl48avVU5pVQQjFJltVUgHfZJX9N%2FDDuJ3Cerdr%2FasvA5icBPByolVeB6yO5B2go%2FOXdzpJLuAVVseuGOv0%2F2M%2Bce6EnO0uIRO3elPbciars9UyhSlXZ%2FkJvoVSCS3OaeNRCTi%2F59j7UGFc0J7XVSWVad2hpv5VEO9fPQXgwx8GcMr4CRybTHWg6ijungJOuRo%2Fhp%2BgMD%2BBw4Y6Xb3OrOSG1BTPdKxCJZNVfJn6%2BbKhTnMcGG9yTv%2B5Zrb6CQT4LLtQEAkBIRKtFgR2IgpZrDa8aEzvX60AQBAAQIVi6bdzEa9jA7aso3FnGph2NA58ncJ8HTBsz5%2FQ69QkD1OM9TmNju7yYsqxmtFqI46fo36eg8HSzwM%2Fb7L3fR6RkYPwfTdzQVBtOklWuT1ulfevCiH0%2FtV7sZt7zd1ovM5F4KKqozgBpHMA6BB1AIDNb0yuGOvIVPAk8YT1BztW3fq5rXMb9fZjcexEEwEHpjPw%2BLjxDPwH2xHgvIIPMy5EBqtCiBSr6f2rswAaQjQAzCbsFVYn2NwMVB3FCWD1AeC9RO8FADb%2FmZ6az7fzcf15%2BWr7BzhWnYnV5irr1gPtWCX9swSbQHOrXN5qck61ByTgfPY9DzUC%2Fs6GICfsbVXCFKtp%2FatL%2FY9pHQKAJUOZyUnwOnNzYR3GhWAcKmDzHbU9GfpsvfcpPsh11ZhNZXVTG5qbt6hJ8l%2FOT%2FeITPyjX6l9kG8mqe0cwGp6%2F%2BrdAHCd6Lr%2BewKopNbh3Gx1kDoET%2FHBrqvGzCmrc6QlGFFA480k3jxdZpsJEoCgeE8lhfdQQ2JocjKj1fT%2B1RoAvJ%2Fo%2FQBQS7fK63CeZjW9TsOrM14dHW%2Br%2Ban6vF3qZbJKyurBpGnQQpicNDY0E4aAXnQC73%2BNh3XZsv5V1ow6RzQnv4%2FyMjJZ6nDO64jMdaZHJxgvUHnZND%2Bh%2FuguHdXmU0KEUF8PPpES0esZG5pJDAkxdDPOk%2FdC5Mmt5smt5smt5smt5lbz5Fbz5Fbz5Fbz5FZzq%2BYGw13usyHXNjcHKKrHZwuvpKWLinmDsECGlAwdND5R2vIg39VWq0atfV5Y14fs2ryIktVqjbUepmUW9zI2CUyes9AlnvJZtEfiaAEL%2B7OabBqJQ619rSnT4jwKiCHaRaD08MdFvVDnWhVXWpm9jFYrEf5AwoYQz1INNQZ7QG91GJfJkH%2BGBzSyghWyJoUAhJi0SIXRAaw292W1eSBWE4uI3YAIGAOYVsWl1sGsvhLhY3FahN6SqXLs0xZKxud5QurmeQee0xGIRnrRD%2FVGFE6iJKIQj0gdYsjI1RCzKhErnWrVj3Hy0Y3OwCDaqx2Ya92%2FVeBYhK8DbLplAbcC7MT2vh%2FEMZPVyhraZAjgMGRe9S2RQiWJg519D%2BoMnPi4e1n1oReZJXLHKtJqNUFrNaZ1EKuzIswstzp%2B6dK44Vm%2B3Ah%2BCmiZ9%2FsDxFNBnX6%2FrTYVHuwMvJBmdcFs1YdmtYp7yLVRdEFUSNBaiGsdwKqKxq0vAF%2BwuNVTn%2B68buH7uQqxdRYnXWL5XXxtYKtChfHEgcHPwKEeSixPJO3BZHVdt1oQc64NwEZM3zqpxPn6%2Bpth9fiLwIvHmdUOwswaVDTPb%2BB%2BYnkYP3dwx2rmu6XWQZyBhdgogHj5XYTChhCm%2BoWqZtXttn4EYW7Wpy%2Beqbi%2FXshk1dqy9mMVH9ja%2BgCY1YcsIcQW0DGp%2BGkcJpYbeGlfVktAaXCrzYM5A6%2FQ3lZpJWE7C9UYr0wBP4kwSh%2BTKrmSmsWqNdwctrhV0Q%2B3ipMnway6eF7usjYe4lZbpRpeIBbge%2FZlVZnI0nyXOjD4PTCHu8hk26tvh6gQ5ypKH5MacSWVW63G9VnDTriYLnNRhEyLdWSaWzLX8AU5%2Fkn98zpXwW6X1Mj%2F0NkCFhKOym0emVgYbKXag74HNtchGGyPTmyH2VbZ1adLVbykpGpW41xKJalV34qd30KwjkxjS2YX4WLXFfY%2BFmEakz3SYpt%2BH7lSXWFHJVud%2BvfXanNAqzxpj1vQpSpeLmQ7VUmpUivrTw9EmDJlyty25SD6oVHD404zqTQiMaOF3R%2FS%2BIboZ6Mw4PrDB3UGFpRchxTkSX3cwePQd0ZW2P8ZNHkvRJ7cap7cap7cam41T241T241T241T241t%2Bq2aOAs0rdVcquuXawYFrpdTF6%2Fl6eDJUqOu0SDxvdpH8mtus8eR9HUnQ3ftK4vANslPSdxisOlKcjZ8uc6jI9Ryzy%2FWKEuq%2BUn9KOHW5VA%2BVASn%2BrQAcR2wy%2FJvAWwoYjyuD4vFDnwTdi33ZhV1z55ybJYx0B9sw2UDOvrRqK0dAHcZ16C2xp2T1ywntO4d3aCcJXPH696M4EPm0s1aQWkISRQPpTEgcUWGQKAkLknBtIRlFbGm6yUokyeHDJyGLT6QKRVTcPJS8P6Wq%2F1ibnlNg4b1tcFwHR3jOunn8KmEGLkhG3fMeJofPR8yQcWXX1%2BuTAa%2BMAFTWpBAKLAtALSEBIoH0riAIrdwa1KEVA2OAfMQyZ5csjM14llHX2tahqOX2PLSr0%2F6kkwrK9r6ts%2BFcKaq1eZix7h%2BAnG%2B4uZr%2Bl8oUK%2B3p3hLiJURVhkjyANgQzUOJTEIWN3BrUqRSgbBs5KKcrlySHOE1tXIq1qGl8V1MPh0KJlWF%2FX0AVYQjuk9xuvb7CGTzB%2BP6w6UL1D4wsoLrLttrEbW7cRjpGR8iFXcaMl3x3UKmxlw8BZKUWZPF6IS%2BVauVSVNjDWHQMu8PWBI6u1%2BEFc%2FaTBNQE7Um3Gf3RrZMIbLzgaf6cHKTV%2Bgr%2BgrF4w2iAj5UNrGmeWpga2GmXNzHkpjbKXsc22v5HUutIAsDbEpao8gCg%2FxtcHJsn19XV%2F7kGE4VafkvVtMF5oEp0ul3QezHhSKvTXYfSpJ%2FY6BSylSKd86A7FjZaqzwxsNXqEOxI4K2WmI2InI3z7fTLGDx93KHxLY5ZKvQ3IbDYN6wMDgLa%2Brnf5i16C1Y%2BMb9cHGJdp%2BpwHMxsFAkjTGg3qUgkYlo7MlA85ihssWZMFZ1Cr1rA6TgycWzVTFcP2%2B4lSh50hoqfkWxopleddFoD6nGl9YAD6%2BrptrB2SuE6xNNClubLjdtFgfDtmHqworrRG72x0qQSEokzUOJTEw7daI71B75akTyXVwFkpTrlVrjVZ6hDRZZy8ZJZKzkUPjTNkWh%2FYsJL%2BxzzIeLfH8Z3YyZ0D8eS2ZSAUlUD5UBIH2qfPD%2F7ORvpUUg2clTJTocK33%2FzOpi91iFqwfvCaQ%2BYEM43H1FjKerzN01UPqJ4O4nj1XAMyjXOrA%2FHktmUgFJVE%2BZBELueNyeVmQk8mZW7dJ2nI5VIljwaZP0Z5uFZzU34kdYiubY2cdygpwbRylLoeb7MwKkSB7ZjVaSEzvToYT25bFkK1IXPKh0LkcD7dowNIVNkx8ugLO%2FY4TddqbsqPpA6R06TvvORxEnDeCzFo8l6IPLnVPLnVPLnV3Gqe3Gqe3Gqe3Gqe3Gpu1dzf%2B5Zx1ShxcPUHT2uqktR9uN%2F4ST9UWThIq65taI95S7gaAsyddTWPzc%2FCB85JnHT3ZdVuUULel2C1UsTCYK8at0XAUMsNrdqm9pi9uQd4%2B5kPq569Prk%2BgOISkaEPeXS%2BDns%2FfJzXJ2oplMnGAoC1fVlV28%2FkGVX529x750BW5YcvgEox7EYrAYAQrL835ICJW09Xq09b5vkNGPi5kYl5jbPHVVmrjQMfqpWI9SE%2FQvTIRB0lnQdEgZlXarw%2BLRVBaTZ4o3opu9XOVQALCVK9%2BaqxkjcTDGT12RqKQBG1Z4eIDgMAEevvlVyGc2%2FYKRScYc8033pmHIxbq1crgZWxPrm4qwyc%2F1CN9D7kCnwfldtxTOPRRxc4j3biuOLqyKOEmGy0apCptTJa7RYRxnTc3yvlFYxWpdRBrDZnPIQvjuYQUQ0QgkgIredTchnOo5PRGufWZH3Y%2BVmPceDUZ12Ac1ld5zt%2FBF1G60MOqkA1CLxZjdPVlo01zkOpM%2BU4b9kpa5oxGyf7%2FGQ2qz5UCyrLyoaSp1V6KKVtKfvirkNEDWCH1khlL74u8Trnl3oTTqXIOXBnbw0mTgSdQ6bXg4zeh7wePrZX0%2FjVsF%2BS8UhqoPEppFhlNkaEAKA3cJJtvi3oYCfWY4a73BUu1Q%2Bri8JBWj0UjbP%2BXsllOPfCRtc7PJ3L%2B8RKMXsd8%2BOKKzgngMmqJ4TWh1xBtSq%2FHtL4j1uyC4vxUiRV449ZKVa5DfNBecmDjHcpjh9FYyM81VSHg5S7XHZXPJBVMe9J2JgXQ0Rvi8ZZf2%2FIARO3Xd93bc5hd4rmOkIYuSASOienWisBf7J2F%2Bl9yMF8oTAfHNHrHHGGq8MOMY5Qqs6D4SqApHUDlY1Uq803IPNGM46xOb3S60F9JIHd5Wa7K%2B5vjcj8B%2Bdbxei9SbE1FPb3yrD%2B3r14ESgmzR%2BUE93xaQC1u8q8D1neA4%2FxOmO%2FUHAqBo67AmKcnMK4B0qIspFqlVY3AGysanRzTgJrppx2l8vvige7W7pmeTPAjGddG%2Br394L19751nJzCFeDpsrEPucjmZ%2BdK%2BIxFhjAbKVZpxYK1osO56MGDlLtcdlc8sFVn%2BHQABKdl735Cf%2B9bwtUQwOBB1g%2BGiYfZSLVKFxuXyBwn5S6X3RUPbpWcJgkx1JS9%2Bwn9vW8lZ82xB1%2BfiU4ZEOYNCqablDXqLlfXGuz1M3kvRJ7vZKt5cqu51Ty51Ty51Ty51Ty51Ty51dxqntyqe5W%2BrZP3A3dhd4g6NrpkSqc7BibV%2FgjtM4twDXRsjIyxYXMI9dUcn7Lk1VdfVd%2FexFSAA18nOXs%2F8GGrhoUF1KzDxOyVbAAvMKv34RNkSGdxbGyxY%2Bb%2F%2Bs84xFKCefnoFoCUngEebT3LoppfjM265ZZb1Lc3Ma94IgbcItsUxlPWSWZWk%2Fty8fyMBXgzzzN5lSkAaH%2BNDdTwx2jM1aC7iDCLrpE%2F0XLZ86kBNZd4mvuwiv5f%2FAwt2sb5yGrV9d3kA8b3GfUN9Yus0YdvTzrn6ySbrZYAWEJYAEqs6tGjkDG8iBrjj8Mj1oh1N71g8xZ6dTLg%2FHvvk1w75Ot13JexOUCoMNvFViQVFzJYnZubU9%2F44svmAyb6ptNCFWHM%2FVvvT9p%2BkdFqtE4y36DIqi%2BtHo6a%2FGp6X64AgNtuAwBBsawB3tnpf6e%2F6Ih%2BE8DCC9p1%2BAjaaABAFUdM%2FE%2F9Zcm1C8%2FHPw5UiMUF4GY8VoWY96zXZfuIQLWQwSoA9S198WX3BqRAH8AN7TBadAv8L36%2Fhp28lO1YbTDbKuaO1cgq%2FKFIJ1yXrwGrrLLzrHX661PsRbfUbQKsTBfWu%2FHRNoAfs9Dl%2FI87KxZ7HWwCm8o1270Zr6vB6T8ddRkqqZmtmhdf5qsJTmktOoVJQCw7hl3%2F09jJV7JZ%2FWAJKsUUq%2FrfgG4AwFNP8fV%2Bj27nttvkV%2F1Qsi4egcwXY%2FzyjxKssFqLVB7Edae%2B9gBQb17Hgzfz49v8d%2FAXiUKuUkLjV4FfbaBkasYDipUYhdj9h7T8QhHe2%2F820TrtzyqX2kjSyhYX7QHmXf%2Bz6KfRzGS1UT4FlXtSra6ryevJ%2Fbp0224ols96zxchU9c3bwrX7wSA10llro7umXcA9TNd1Odi3Jf8E%2BTHOLk1fMZpt53PoObqUtsA2kpryrFakVJPFivqHjijVSa1Ol2VWolpZVKJkqwGHqI8SZmsfrADFXzRZJWvnyyDaoH166afgXuHEMY7wzfvhVUA6N2Mz1i4f0KIiadgndH4kY9b6HU1fh%2FaPXr8ceq1tcWwi965ZQDL57xilmM1%2BszJb9b023sPO9Hu9uqA36n4QDum7gLkbipUgQvEtTKpBCTcqI6KMN4ns1ktPwqVapNb5Vqj62q1wPqB0626dv%2Fm52mHLeiOBypyRHvqbUwtLEyhPezEeRXAn22hGuMdeB%2BLtvpjHjqx%2BqdXZfXK6ul20rHK%2B2%2FDjxTFhIwKwLoiZEbJ2Nb%2BOFvnVH3TtUYbzy35ScveVvCJbFZbUMGXs7yzKURWC0OsHzjdqn18a1rMzwvWDP2xBsZ7D7GVyclZnnzyHe94cnLZ0Xhh8vfwR1%2FU1s4%2BiSj880rLTYrelzeXsxyr0lpAFIyyNd1hXuS6XEeYepmvc6q%2B6c%2BBVYLSKqVyTc9ls3ofVKxeyjrJrBeC9c2mWD0%2B3CQKAmJpPrNVJlisDlFveWJiuUfE%2BGv4B804ryCWCsXSmBfzjf3%2Fbiku1Y2k8pzZ8ABv4wwNFBGlwF4HTYFtDuFks1qDyvNp6yRzq6pvlm%2Fe6ip7uzTs7NFlTGKkTNmzIgKNBCIWbXg6oGA6bclrngJbG9gYZ2VUiNEVh96sCCmdwYQnMCpUmJtC4YB7IRz67kneC5Ent5ont5ont5ont5pbzZNbzZNbzZNbzZNbXZhaiIPcagtRii5ljQsYJy%2B4rnn3dlGkNzH4KFomHIbz0liR9T8fKF%2BcmlqUnMcdA7qUKXt0xNqAbZgeWu3%2FwFfRz4%2BQKa2rLUOTAYoV0%2FK0tg1qceFu7SzMi58i4Ul2i6a9VUzYIWiimdnqm7%2Fu8amv3XPna5LzHEFjck6C9P7kvZrRhICBhVZFNPYw%2BnmYWNzSGH7lGjR6yrhW47OwJbfxLOm53%2FspZhX4w8AFcXTDcJh1pn7jDRAL3viNqY7RKv2TqQVe5tYwOuX9z%2BncsvYz%2FzOFww%2FPSs7iAk%2F0KKYbt%2Fajm1pCP0uZXgUgwHZdGxiSdW6gnxts5%2Fr%2F9Ff%2BwB%2BCA7ZpMLRwNq2IW%2BywqeBDXzVY%2FSMQBfpbv%2FZ3WDPhYvHO5burxFK9e%2FnO4qJOS%2FBBf%2B7P%2FwWM6WUgU6vo02WqfN3jCBu5d%2FGix3jiusrec%2FTxbz7WUFzlhJTUlTbSO25W2xFtr2brSSTg%2BIkTx%2FtWzZNKLQDbSiXWjLyOMK%2FzVXf7WdCOyVP18w%2Fz1xZukXX%2F0m3%2F6JeuxvmreHq1FBXSy5dWn8ar2km1dm4d9Ff%2F2l%2F%2FG3FMnVrYx%2FLpIhFfl1iueofDGvfGCwA4x11BcJeJg4jNP4a2Q80XiwCOkZ41yDSItzPxjht6dyjcezdlsirIsmDbsKwhQdRRkzrxS1UUbvWVCL%2FC%2Fwh6FOtd%2BjF5hlaE%2BJtHYbD6Q%2F%2Fqf20w7lBZCtmaVXg2VFQmB7doVu85VhinHwr%2B7t%2FTrJ56w5GgIDFb91iueodanMvV7oQQ0DmqZaJym3HzSrizuE5E3y%2F5rLlnt%2F5YpusqOW%2BX8O1ONqtEw8MWYA0Py3vg96pJ7yUVy020ejnCl%2BNUHvtRjp%2Fgloj%2B%2FjceZvZcImr%2Bw18z2f7W534GeELhJ4Cf%2Bdy3iIhZnZtdKkvQjOPuk6slIvrU5zWrHiLwyHF4cX78EZKBxpU9nbcFkahqvAG0ulPhPmoYpFbntyYCfl0VMqB4ehvARo%2B41e2fMViVp195Et75RAbAzjwjTpLV7g7vUkL31H0GS%2FTP%2F8UvnY3zf2kdiYp5hvm%2F9csNIVYUXhGi8cu%2FZbJKn4kah30vRmvv8UHf%2Bjef%2B7cg4usVU6nI1ysulihlHWONl4hKOn8SmHrwg6rzV5NaCJqKsOuqlncB79LZUZkf%2FuHwG8USnn5h29LqhNjNhPZw5zYsZTXtryysCCuilpTBLP37%2F%2FAfrfPxG%2Ff%2FdLF29SVPXk%2F4%2FE9949efIC1P%2FPo3PmWy2mtDpjYTo3dhHfRf%2Fut%2FQ50MDaKLfL3iCJs5kZHXKpWazh%2BHHNgUV8bxuEGqAinXVbZKZ%2BoZODz9WoC0mnheP4T%2FvjKydbatWf3ts%2FXoKl4%2F%2B9vah0tDrRZapFuC%2F6n%2F%2BTAukpbgQ7WvQAJtvufT538R3yQt38Qvfp58j1ml5Vtl%2FncQg2VRAP2f2de2JhRj6xIPyk%2BeNHN8iZxjkqdK5fufd3Pv%2Bx5YzRI4Gi%2FxmrzONs8vC9q8GTvnJ0avTE5eGZ04H38dXdsagWVhZOtaDAsxJ67cALAZkJ4f916GBNr8mRr7vIdMsx4ekXNCZPwlEgjTK02it2Dd41NL9o0416Sy96vsuiqDqgIpZ2yQECOOMyLEEJJn0YqYUwsZx%2BMUi46pcXRjeHiDmnxIPpasxvg98BiMOrPFBOcT%2Fc5tymrV5azf%2F%2BzVVd%2FywfN2o3HseY2Pc6nckp5MZ2z%2BG0M2K1tGzVNXHGeF9pM59ZiDd1YzvDG1QQnrDI9OlN9EvjzN%2B6vLwiQ1Zf8XKHOE%2Bo2hoP9bDhzQAAAAIAjbqGIC%2Bpezh55hRi4VlKhdsUuh7scAAAAASUVORK5CYII%3D%29%7D%2Eicon%2Dglass%7Bbackground%2Dposition%3A0%200%7D%2Eicon%2Dmusic%7Bbackground%2Dposition%3A%2D24px%200%7D%2Eicon%2Dsearch%7Bbackground%2Dposition%3A%2D48px%200%7D%2Eicon%2Denvelope%7Bbackground%2Dposition%3A%2D72px%200%7D%2Eicon%2Dheart%7Bbackground%2Dposition%3A%2D96px%200%7D%2Eicon%2Dstar%7Bbackground%2Dposition%3A%2D120px%200%7D%2Eicon%2Dstar%2Dempty%7Bbackground%2Dposition%3A%2D144px%200%7D%2Eicon%2Duser%7Bbackground%2Dposition%3A%2D168px%200%7D%2Eicon%2Dfilm%7Bbackground%2Dposition%3A%2D192px%200%7D%2Eicon%2Dth%2Dlarge%7Bbackground%2Dposition%3A%2D216px%200%7D%2Eicon%2Dth%7Bbackground%2Dposition%3A%2D240px%200%7D%2Eicon%2Dth%2Dlist%7Bbackground%2Dposition%3A%2D264px%200%7D%2Eicon%2Dok%7Bbackground%2Dposition%3A%2D288px%200%7D%2Eicon%2Dremove%7Bbackground%2Dposition%3A%2D312px%200%7D%2Eicon%2Dzoom%2Din%7Bbackground%2Dposition%3A%2D336px%200%7D%2Eicon%2Dzoom%2Dout%7Bbackground%2Dposition%3A%2D360px%200%7D%2Eicon%2Doff%7Bbackground%2Dposition%3A%2D384px%200%7D%2Eicon%2Dsignal%7Bbackground%2Dposition%3A%2D408px%200%7D%2Eicon%2Dcog%7Bbackground%2Dposition%3A%2D432px%200%7D%2Eicon%2Dtrash%7Bbackground%2Dposition%3A%2D456px%200%7D%2Eicon%2Dhome%7Bbackground%2Dposition%3A0%20%2D24px%7D%2Eicon%2Dfile%7Bbackground%2Dposition%3A%2D24px%20%2D24px%7D%2Eicon%2Dtime%7Bbackground%2Dposition%3A%2D48px%20%2D24px%7D%2Eicon%2Droad%7Bbackground%2Dposition%3A%2D72px%20%2D24px%7D%2Eicon%2Ddownload%2Dalt%7Bbackground%2Dposition%3A%2D96px%20%2D24px%7D%2Eicon%2Ddownload%7Bbackground%2Dposition%3A%2D120px%20%2D24px%7D%2Eicon%2Dupload%7Bbackground%2Dposition%3A%2D144px%20%2D24px%7D%2Eicon%2Dinbox%7Bbackground%2Dposition%3A%2D168px%20%2D24px%7D%2Eicon%2Dplay%2Dcircle%7Bbackground%2Dposition%3A%2D192px%20%2D24px%7D%2Eicon%2Drepeat%7Bbackground%2Dposition%3A%2D216px%20%2D24px%7D%2Eicon%2Drefresh%7Bbackground%2Dposition%3A%2D240px%20%2D24px%7D%2Eicon%2Dlist%2Dalt%7Bbackground%2Dposition%3A%2D264px%20%2D24px%7D%2Eicon%2Dlock%7Bbackground%2Dposition%3A%2D287px%20%2D24px%7D%2Eicon%2Dflag%7Bbackground%2Dposition%3A%2D312px%20%2D24px%7D%2Eicon%2Dheadphones%7Bbackground%2Dposition%3A%2D336px%20%2D24px%7D%2Eicon%2Dvolume%2Doff%7Bbackground%2Dposition%3A%2D360px%20%2D24px%7D%2Eicon%2Dvolume%2Ddown%7Bbackground%2Dposition%3A%2D384px%20%2D24px%7D%2Eicon%2Dvolume%2Dup%7Bbackground%2Dposition%3A%2D408px%20%2D24px%7D%2Eicon%2Dqrcode%7Bbackground%2Dposition%3A%2D432px%20%2D24px%7D%2Eicon%2Dbarcode%7Bbackground%2Dposition%3A%2D456px%20%2D24px%7D%2Eicon%2Dtag%7Bbackground%2Dposition%3A0%20%2D48px%7D%2Eicon%2Dtags%7Bbackground%2Dposition%3A%2D25px%20%2D48px%7D%2Eicon%2Dbook%7Bbackground%2Dposition%3A%2D48px%20%2D48px%7D%2Eicon%2Dbookmark%7Bbackground%2Dposition%3A%2D72px%20%2D48px%7D%2Eicon%2Dprint%7Bbackground%2Dposition%3A%2D96px%20%2D48px%7D%2Eicon%2Dcamera%7Bbackground%2Dposition%3A%2D120px%20%2D48px%7D%2Eicon%2Dfont%7Bbackground%2Dposition%3A%2D144px%20%2D48px%7D%2Eicon%2Dbold%7Bbackground%2Dposition%3A%2D167px%20%2D48px%7D%2Eicon%2Ditalic%7Bbackground%2Dposition%3A%2D192px%20%2D48px%7D%2Eicon%2Dtext%2Dheight%7Bbackground%2Dposition%3A%2D216px%20%2D48px%7D%2Eicon%2Dtext%2Dwidth%7Bbackground%2Dposition%3A%2D240px%20%2D48px%7D%2Eicon%2Dalign%2Dleft%7Bbackground%2Dposition%3A%2D264px%20%2D48px%7D%2Eicon%2Dalign%2Dcenter%7Bbackground%2Dposition%3A%2D288px%20%2D48px%7D%2Eicon%2Dalign%2Dright%7Bbackground%2Dposition%3A%2D312px%20%2D48px%7D%2Eicon%2Dalign%2Djustify%7Bbackground%2Dposition%3A%2D336px%20%2D48px%7D%2Eicon%2Dlist%7Bbackground%2Dposition%3A%2D360px%20%2D48px%7D%2Eicon%2Dindent%2Dleft%7Bbackground%2Dposition%3A%2D384px%20%2D48px%7D%2Eicon%2Dindent%2Dright%7Bbackground%2Dposition%3A%2D408px%20%2D48px%7D%2Eicon%2Dfacetime%2Dvideo%7Bbackground%2Dposition%3A%2D432px%20%2D48px%7D%2Eicon%2Dpicture%7Bbackground%2Dposition%3A%2D456px%20%2D48px%7D%2Eicon%2Dpencil%7Bbackground%2Dposition%3A0%20%2D72px%7D%2Eicon%2Dmap%2Dmarker%7Bbackground%2Dposition%3A%2D24px%20%2D72px%7D%2Eicon%2Dadjust%7Bbackground%2Dposition%3A%2D48px%20%2D72px%7D%2Eicon%2Dtint%7Bbackground%2Dposition%3A%2D72px%20%2D72px%7D%2Eicon%2Dedit%7Bbackground%2Dposition%3A%2D96px%20%2D72px%7D%2Eicon%2Dshare%7Bbackground%2Dposition%3A%2D120px%20%2D72px%7D%2Eicon%2Dcheck%7Bbackground%2Dposition%3A%2D144px%20%2D72px%7D%2Eicon%2Dmove%7Bbackground%2Dposition%3A%2D168px%20%2D72px%7D%2Eicon%2Dstep%2Dbackward%7Bbackground%2Dposition%3A%2D192px%20%2D72px%7D%2Eicon%2Dfast%2Dbackward%7Bbackground%2Dposition%3A%2D216px%20%2D72px%7D%2Eicon%2Dbackward%7Bbackground%2Dposition%3A%2D240px%20%2D72px%7D%2Eicon%2Dplay%7Bbackground%2Dposition%3A%2D264px%20%2D72px%7D%2Eicon%2Dpause%7Bbackground%2Dposition%3A%2D288px%20%2D72px%7D%2Eicon%2Dstop%7Bbackground%2Dposition%3A%2D312px%20%2D72px%7D%2Eicon%2Dforward%7Bbackground%2Dposition%3A%2D336px%20%2D72px%7D%2Eicon%2Dfast%2Dforward%7Bbackground%2Dposition%3A%2D360px%20%2D72px%7D%2Eicon%2Dstep%2Dforward%7Bbackground%2Dposition%3A%2D384px%20%2D72px%7D%2Eicon%2Deject%7Bbackground%2Dposition%3A%2D408px%20%2D72px%7D%2Eicon%2Dchevron%2Dleft%7Bbackground%2Dposition%3A%2D432px%20%2D72px%7D%2Eicon%2Dchevron%2Dright%7Bbackground%2Dposition%3A%2D456px%20%2D72px%7D%2Eicon%2Dplus%2Dsign%7Bbackground%2Dposition%3A0%20%2D96px%7D%2Eicon%2Dminus%2Dsign%7Bbackground%2Dposition%3A%2D24px%20%2D96px%7D%2Eicon%2Dremove%2Dsign%7Bbackground%2Dposition%3A%2D48px%20%2D96px%7D%2Eicon%2Dok%2Dsign%7Bbackground%2Dposition%3A%2D72px%20%2D96px%7D%2Eicon%2Dquestion%2Dsign%7Bbackground%2Dposition%3A%2D96px%20%2D96px%7D%2Eicon%2Dinfo%2Dsign%7Bbackground%2Dposition%3A%2D120px%20%2D96px%7D%2Eicon%2Dscreenshot%7Bbackground%2Dposition%3A%2D144px%20%2D96px%7D%2Eicon%2Dremove%2Dcircle%7Bbackground%2Dposition%3A%2D168px%20%2D96px%7D%2Eicon%2Dok%2Dcircle%7Bbackground%2Dposition%3A%2D192px%20%2D96px%7D%2Eicon%2Dban%2Dcircle%7Bbackground%2Dposition%3A%2D216px%20%2D96px%7D%2Eicon%2Darrow%2Dleft%7Bbackground%2Dposition%3A%2D240px%20%2D96px%7D%2Eicon%2Darrow%2Dright%7Bbackground%2Dposition%3A%2D264px%20%2D96px%7D%2Eicon%2Darrow%2Dup%7Bbackground%2Dposition%3A%2D289px%20%2D96px%7D%2Eicon%2Darrow%2Ddown%7Bbackground%2Dposition%3A%2D312px%20%2D96px%7D%2Eicon%2Dshare%2Dalt%7Bbackground%2Dposition%3A%2D336px%20%2D96px%7D%2Eicon%2Dresize%2Dfull%7Bbackground%2Dposition%3A%2D360px%20%2D96px%7D%2Eicon%2Dresize%2Dsmall%7Bbackground%2Dposition%3A%2D384px%20%2D96px%7D%2Eicon%2Dplus%7Bbackground%2Dposition%3A%2D408px%20%2D96px%7D%2Eicon%2Dminus%7Bbackground%2Dposition%3A%2D433px%20%2D96px%7D%2Eicon%2Dasterisk%7Bbackground%2Dposition%3A%2D456px%20%2D96px%7D%2Eicon%2Dexclamation%2Dsign%7Bbackground%2Dposition%3A0%20%2D120px%7D%2Eicon%2Dgift%7Bbackground%2Dposition%3A%2D24px%20%2D120px%7D%2Eicon%2Dleaf%7Bbackground%2Dposition%3A%2D48px%20%2D120px%7D%2Eicon%2Dfire%7Bbackground%2Dposition%3A%2D72px%20%2D120px%7D%2Eicon%2Deye%2Dopen%7Bbackground%2Dposition%3A%2D96px%20%2D120px%7D%2Eicon%2Deye%2Dclose%7Bbackground%2Dposition%3A%2D120px%20%2D120px%7D%2Eicon%2Dwarning%2Dsign%7Bbackground%2Dposition%3A%2D144px%20%2D120px%7D%2Eicon%2Dplane%7Bbackground%2Dposition%3A%2D168px%20%2D120px%7D%2Eicon%2Dcalendar%7Bbackground%2Dposition%3A%2D192px%20%2D120px%7D%2Eicon%2Drandom%7Bwidth%3A16px%3Bbackground%2Dposition%3A%2D216px%20%2D120px%7D%2Eicon%2Dcomment%7Bbackground%2Dposition%3A%2D240px%20%2D120px%7D%2Eicon%2Dmagnet%7Bbackground%2Dposition%3A%2D264px%20%2D120px%7D%2Eicon%2Dchevron%2Dup%7Bbackground%2Dposition%3A%2D288px%20%2D120px%7D%2Eicon%2Dchevron%2Ddown%7Bbackground%2Dposition%3A%2D313px%20%2D119px%7D%2Eicon%2Dretweet%7Bbackground%2Dposition%3A%2D336px%20%2D120px%7D%2Eicon%2Dshopping%2Dcart%7Bbackground%2Dposition%3A%2D360px%20%2D120px%7D%2Eicon%2Dfolder%2Dclose%7Bwidth%3A16px%3Bbackground%2Dposition%3A%2D384px%20%2D120px%7D%2Eicon%2Dfolder%2Dopen%7Bwidth%3A16px%3Bbackground%2Dposition%3A%2D408px%20%2D120px%7D%2Eicon%2Dresize%2Dvertical%7Bbackground%2Dposition%3A%2D432px%20%2D119px%7D%2Eicon%2Dresize%2Dhorizontal%7Bbackground%2Dposition%3A%2D456px%20%2D118px%7D%2Eicon%2Dhdd%7Bbackground%2Dposition%3A0%20%2D144px%7D%2Eicon%2Dbullhorn%7Bbackground%2Dposition%3A%2D24px%20%2D144px%7D%2Eicon%2Dbell%7Bbackground%2Dposition%3A%2D48px%20%2D144px%7D%2Eicon%2Dcertificate%7Bbackground%2Dposition%3A%2D72px%20%2D144px%7D%2Eicon%2Dthumbs%2Dup%7Bbackground%2Dposition%3A%2D96px%20%2D144px%7D%2Eicon%2Dthumbs%2Ddown%7Bbackground%2Dposition%3A%2D120px%20%2D144px%7D%2Eicon%2Dhand%2Dright%7Bbackground%2Dposition%3A%2D144px%20%2D144px%7D%2Eicon%2Dhand%2Dleft%7Bbackground%2Dposition%3A%2D168px%20%2D144px%7D%2Eicon%2Dhand%2Dup%7Bbackground%2Dposition%3A%2D192px%20%2D144px%7D%2Eicon%2Dhand%2Ddown%7Bbackground%2Dposition%3A%2D216px%20%2D144px%7D%2Eicon%2Dcircle%2Darrow%2Dright%7Bbackground%2Dposition%3A%2D240px%20%2D144px%7D%2Eicon%2Dcircle%2Darrow%2Dleft%7Bbackground%2Dposition%3A%2D264px%20%2D144px%7D%2Eicon%2Dcircle%2Darrow%2Dup%7Bbackground%2Dposition%3A%2D288px%20%2D144px%7D%2Eicon%2Dcircle%2Darrow%2Ddown%7Bbackground%2Dposition%3A%2D312px%20%2D144px%7D%2Eicon%2Dglobe%7Bbackground%2Dposition%3A%2D336px%20%2D144px%7D%2Eicon%2Dwrench%7Bbackground%2Dposition%3A%2D360px%20%2D144px%7D%2Eicon%2Dtasks%7Bbackground%2Dposition%3A%2D384px%20%2D144px%7D%2Eicon%2Dfilter%7Bbackground%2Dposition%3A%2D408px%20%2D144px%7D%2Eicon%2Dbriefcase%7Bbackground%2Dposition%3A%2D432px%20%2D144px%7D%2Eicon%2Dfullscreen%7Bbackground%2Dposition%3A%2D456px%20%2D144px%7D%2Edropup%2C%2Edropdown%7Bposition%3Arelative%7D%2Edropdown%2Dtoggle%7B%2Amargin%2Dbottom%3A%2D3px%7D%2Edropdown%2Dtoggle%3Aactive%2C%2Eopen%20%2Edropdown%2Dtoggle%7Boutline%3A0%7D%2Ecaret%7Bdisplay%3Ainline%2Dblock%3Bwidth%3A0%3Bheight%3A0%3Bvertical%2Dalign%3Atop%3Bborder%2Dtop%3A4px%20solid%20%23000%3Bborder%2Dright%3A4px%20solid%20transparent%3Bborder%2Dleft%3A4px%20solid%20transparent%3Bcontent%3A%22%22%7D%2Edropdown%20%2Ecaret%7Bmargin%2Dtop%3A8px%3Bmargin%2Dleft%3A2px%7D%2Edropdown%2Dmenu%7Bposition%3Aabsolute%3Btop%3A100%25%3Bleft%3A0%3Bz%2Dindex%3A1000%3Bdisplay%3Anone%3Bfloat%3Aleft%3Bmin%2Dwidth%3A160px%3Bpadding%3A5px%200%3Bmargin%3A2px%200%200%3Blist%2Dstyle%3Anone%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ccc%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C0%2E2%29%3B%2Aborder%2Dright%2Dwidth%3A2px%3B%2Aborder%2Dbottom%2Dwidth%3A2px%3B%2Dwebkit%2Dborder%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%3A6px%3Bborder%2Dradius%3A6px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C0%2E2%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C0%2E2%29%3Bbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C0%2E2%29%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3B%2Dmoz%2Dbackground%2Dclip%3Apadding%3Bbackground%2Dclip%3Apadding%2Dbox%7D%2Edropdown%2Dmenu%2Epull%2Dright%7Bright%3A0%3Bleft%3Aauto%7D%2Edropdown%2Dmenu%20%2Edivider%7B%2Awidth%3A100%25%3Bheight%3A1px%3Bmargin%3A9px%201px%3B%2Amargin%3A%2D5px%200%205px%3Boverflow%3Ahidden%3Bbackground%2Dcolor%3A%23e5e5e5%3Bborder%2Dbottom%3A1px%20solid%20%23fff%7D%2Edropdown%2Dmenu%3Eli%3Ea%7Bdisplay%3Ablock%3Bpadding%3A3px%2020px%3Bclear%3Aboth%3Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A20px%3Bcolor%3A%23333%3Bwhite%2Dspace%3Anowrap%7D%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%2C%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%2C%2Edropdown%2Dsubmenu%3Ahover%3Ea%2C%2Edropdown%2Dsubmenu%3Afocus%3Ea%7Bcolor%3A%23fff%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%230081c2%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%2308c%2C%230077b3%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%2308c%29%2Cto%28%230077b3%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%2308c%2C%230077b3%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%2308c%2C%230077b3%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%2308c%2C%230077b3%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff0088cc%27%2CendColorstr%3D%27%23ff0077b3%27%2CGradientType%3D0%29%7D%2Edropdown%2Dmenu%3E%2Eactive%3Ea%2C%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Ahover%2C%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23fff%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%230081c2%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%2308c%2C%230077b3%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%2308c%29%2Cto%28%230077b3%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%2308c%2C%230077b3%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%2308c%2C%230077b3%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%2308c%2C%230077b3%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Boutline%3A0%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff0088cc%27%2CendColorstr%3D%27%23ff0077b3%27%2CGradientType%3D0%29%7D%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23999%7D%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%7Btext%2Ddecoration%3Anone%3Bcursor%3Adefault%3Bbackground%2Dcolor%3Atransparent%3Bbackground%2Dimage%3Anone%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Eopen%7B%2Az%2Dindex%3A1000%7D%2Eopen%3E%2Edropdown%2Dmenu%7Bdisplay%3Ablock%7D%2Edropdown%2Dbackdrop%7Bposition%3Afixed%3Btop%3A0%3Bright%3A0%3Bbottom%3A0%3Bleft%3A0%3Bz%2Dindex%3A990%7D%2Epull%2Dright%3E%2Edropdown%2Dmenu%7Bright%3A0%3Bleft%3Aauto%7D%2Edropup%20%2Ecaret%2C%2Enavbar%2Dfixed%2Dbottom%20%2Edropdown%20%2Ecaret%7Bborder%2Dtop%3A0%3Bborder%2Dbottom%3A4px%20solid%20%23000%3Bcontent%3A%22%22%7D%2Edropup%20%2Edropdown%2Dmenu%2C%2Enavbar%2Dfixed%2Dbottom%20%2Edropdown%20%2Edropdown%2Dmenu%7Btop%3Aauto%3Bbottom%3A100%25%3Bmargin%2Dbottom%3A1px%7D%2Edropdown%2Dsubmenu%7Bposition%3Arelative%7D%2Edropdown%2Dsubmenu%3E%2Edropdown%2Dmenu%7Btop%3A0%3Bleft%3A100%25%3Bmargin%2Dtop%3A%2D6px%3Bmargin%2Dleft%3A%2D1px%3B%2Dwebkit%2Dborder%2Dradius%3A0%206px%206px%206px%3B%2Dmoz%2Dborder%2Dradius%3A0%206px%206px%206px%3Bborder%2Dradius%3A0%206px%206px%206px%7D%2Edropdown%2Dsubmenu%3Ahover%3E%2Edropdown%2Dmenu%7Bdisplay%3Ablock%7D%2Edropup%20%2Edropdown%2Dsubmenu%3E%2Edropdown%2Dmenu%7Btop%3Aauto%3Bbottom%3A0%3Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A%2D2px%3B%2Dwebkit%2Dborder%2Dradius%3A5px%205px%205px%200%3B%2Dmoz%2Dborder%2Dradius%3A5px%205px%205px%200%3Bborder%2Dradius%3A5px%205px%205px%200%7D%2Edropdown%2Dsubmenu%3Ea%3Aafter%7Bdisplay%3Ablock%3Bfloat%3Aright%3Bwidth%3A0%3Bheight%3A0%3Bmargin%2Dtop%3A5px%3Bmargin%2Dright%3A%2D10px%3Bborder%2Dcolor%3Atransparent%3Bborder%2Dleft%2Dcolor%3A%23ccc%3Bborder%2Dstyle%3Asolid%3Bborder%2Dwidth%3A5px%200%205px%205px%3Bcontent%3A%22%20%22%7D%2Edropdown%2Dsubmenu%3Ahover%3Ea%3Aafter%7Bborder%2Dleft%2Dcolor%3A%23fff%7D%2Edropdown%2Dsubmenu%2Epull%2Dleft%7Bfloat%3Anone%7D%2Edropdown%2Dsubmenu%2Epull%2Dleft%3E%2Edropdown%2Dmenu%7Bleft%3A%2D100%25%3Bmargin%2Dleft%3A10px%3B%2Dwebkit%2Dborder%2Dradius%3A6px%200%206px%206px%3B%2Dmoz%2Dborder%2Dradius%3A6px%200%206px%206px%3Bborder%2Dradius%3A6px%200%206px%206px%7D%2Edropdown%20%2Edropdown%2Dmenu%20%2Enav%2Dheader%7Bpadding%2Dright%3A20px%3Bpadding%2Dleft%3A20px%7D%2Etypeahead%7Bz%2Dindex%3A1051%3Bmargin%2Dtop%3A2px%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7D%2Ewell%7Bmin%2Dheight%3A20px%3Bpadding%3A19px%3Bmargin%2Dbottom%3A20px%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%3A1px%20solid%20%23e3e3e3%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E05%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E05%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C0%2E05%29%7D%2Ewell%20blockquote%7Bborder%2Dcolor%3A%23ddd%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E15%29%7D%2Ewell%2Dlarge%7Bpadding%3A24px%3B%2Dwebkit%2Dborder%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%3A6px%3Bborder%2Dradius%3A6px%7D%2Ewell%2Dsmall%7Bpadding%3A9px%3B%2Dwebkit%2Dborder%2Dradius%3A3px%3B%2Dmoz%2Dborder%2Dradius%3A3px%3Bborder%2Dradius%3A3px%7D%2Efade%7Bopacity%3A0%3B%2Dwebkit%2Dtransition%3Aopacity%20%2E15s%20linear%3B%2Dmoz%2Dtransition%3Aopacity%20%2E15s%20linear%3B%2Do%2Dtransition%3Aopacity%20%2E15s%20linear%3Btransition%3Aopacity%20%2E15s%20linear%7D%2Efade%2Ein%7Bopacity%3A1%7D%2Ecollapse%7Bposition%3Arelative%3Bheight%3A0%3Boverflow%3Ahidden%3B%2Dwebkit%2Dtransition%3Aheight%20%2E35s%20ease%3B%2Dmoz%2Dtransition%3Aheight%20%2E35s%20ease%3B%2Do%2Dtransition%3Aheight%20%2E35s%20ease%3Btransition%3Aheight%20%2E35s%20ease%7D%2Ecollapse%2Ein%7Bheight%3Aauto%7D%2Eclose%7Bfloat%3Aright%3Bfont%2Dsize%3A20px%3Bfont%2Dweight%3Abold%3Bline%2Dheight%3A20px%3Bcolor%3A%23000%3Btext%2Dshadow%3A0%201px%200%20%23fff%3Bopacity%3A%2E2%3Bfilter%3Aalpha%28opacity%3D20%29%7D%2Eclose%3Ahover%2C%2Eclose%3Afocus%7Bcolor%3A%23000%3Btext%2Ddecoration%3Anone%3Bcursor%3Apointer%3Bopacity%3A%2E4%3Bfilter%3Aalpha%28opacity%3D40%29%7Dbutton%2Eclose%7Bpadding%3A0%3Bcursor%3Apointer%3Bbackground%3Atransparent%3Bborder%3A0%3B%2Dwebkit%2Dappearance%3Anone%7D%2Ebtn%7Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3Bpadding%3A4px%2012px%3Bmargin%2Dbottom%3A0%3B%2Amargin%2Dleft%3A%2E3em%3Bfont%2Dsize%3A14px%3Bline%2Dheight%3A20px%3Bcolor%3A%23333%3Btext%2Dalign%3Acenter%3Btext%2Dshadow%3A0%201px%201px%20rgba%28255%2C255%2C255%2C0%2E75%29%3Bvertical%2Dalign%3Amiddle%3Bcursor%3Apointer%3Bbackground%2Dcolor%3A%23f5f5f5%3B%2Abackground%2Dcolor%3A%23e6e6e6%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23fff%2C%23e6e6e6%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23fff%29%2Cto%28%23e6e6e6%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23fff%2C%23e6e6e6%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23fff%2C%23e6e6e6%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23fff%2C%23e6e6e6%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%3A1px%20solid%20%23ccc%3B%2Aborder%3A0%3Bborder%2Dcolor%3A%23e6e6e6%20%23e6e6e6%20%23bfbfbf%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bborder%2Dbottom%2Dcolor%3A%23b3b3b3%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ffffffff%27%2CendColorstr%3D%27%23ffe6e6e6%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%3B%2Azoom%3A1%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E2%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E2%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3Bbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E2%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%7D%2Ebtn%3Ahover%2C%2Ebtn%3Afocus%2C%2Ebtn%3Aactive%2C%2Ebtn%2Eactive%2C%2Ebtn%2Edisabled%2C%2Ebtn%5Bdisabled%5D%7Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23e6e6e6%3B%2Abackground%2Dcolor%3A%23d9d9d9%7D%2Ebtn%3Aactive%2C%2Ebtn%2Eactive%7Bbackground%2Dcolor%3A%23ccc%20%5C9%7D%2Ebtn%3Afirst%2Dchild%7B%2Amargin%2Dleft%3A0%7D%2Ebtn%3Ahover%2C%2Ebtn%3Afocus%7Bcolor%3A%23333%3Btext%2Ddecoration%3Anone%3Bbackground%2Dposition%3A0%20%2D15px%3B%2Dwebkit%2Dtransition%3Abackground%2Dposition%20%2E1s%20linear%3B%2Dmoz%2Dtransition%3Abackground%2Dposition%20%2E1s%20linear%3B%2Do%2Dtransition%3Abackground%2Dposition%20%2E1s%20linear%3Btransition%3Abackground%2Dposition%20%2E1s%20linear%7D%2Ebtn%3Afocus%7Boutline%3Athin%20dotted%20%23333%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7D%2Ebtn%2Eactive%2C%2Ebtn%3Aactive%7Bbackground%2Dimage%3Anone%3Boutline%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%202px%204px%20rgba%280%2C0%2C0%2C0%2E15%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%202px%204px%20rgba%280%2C0%2C0%2C0%2E15%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3Bbox%2Dshadow%3Ainset%200%202px%204px%20rgba%280%2C0%2C0%2C0%2E15%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%7D%2Ebtn%2Edisabled%2C%2Ebtn%5Bdisabled%5D%7Bcursor%3Adefault%3Bbackground%2Dimage%3Anone%3Bopacity%3A%2E65%3Bfilter%3Aalpha%28opacity%3D65%29%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3B%2Dmoz%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Ebtn%2Dlarge%7Bpadding%3A11px%2019px%3Bfont%2Dsize%3A17%2E5px%3B%2Dwebkit%2Dborder%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%3A6px%3Bborder%2Dradius%3A6px%7D%2Ebtn%2Dlarge%20%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Ebtn%2Dlarge%20%5Bclass%2A%3D%22%20icon%2D%22%5D%7Bmargin%2Dtop%3A4px%7D%2Ebtn%2Dsmall%7Bpadding%3A2px%2010px%3Bfont%2Dsize%3A11%2E9px%3B%2Dwebkit%2Dborder%2Dradius%3A3px%3B%2Dmoz%2Dborder%2Dradius%3A3px%3Bborder%2Dradius%3A3px%7D%2Ebtn%2Dsmall%20%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Ebtn%2Dsmall%20%5Bclass%2A%3D%22%20icon%2D%22%5D%7Bmargin%2Dtop%3A0%7D%2Ebtn%2Dmini%20%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Ebtn%2Dmini%20%5Bclass%2A%3D%22%20icon%2D%22%5D%7Bmargin%2Dtop%3A%2D1px%7D%2Ebtn%2Dmini%7Bpadding%3A0%206px%3Bfont%2Dsize%3A10%2E5px%3B%2Dwebkit%2Dborder%2Dradius%3A3px%3B%2Dmoz%2Dborder%2Dradius%3A3px%3Bborder%2Dradius%3A3px%7D%2Ebtn%2Dblock%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bpadding%2Dright%3A0%3Bpadding%2Dleft%3A0%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%2Ebtn%2Dblock%2B%2Ebtn%2Dblock%7Bmargin%2Dtop%3A5px%7Dinput%5Btype%3D%22submit%22%5D%2Ebtn%2Dblock%2Cinput%5Btype%3D%22reset%22%5D%2Ebtn%2Dblock%2Cinput%5Btype%3D%22button%22%5D%2Ebtn%2Dblock%7Bwidth%3A100%25%7D%2Ebtn%2Dprimary%2Eactive%2C%2Ebtn%2Dwarning%2Eactive%2C%2Ebtn%2Ddanger%2Eactive%2C%2Ebtn%2Dsuccess%2Eactive%2C%2Ebtn%2Dinfo%2Eactive%2C%2Ebtn%2Dinverse%2Eactive%7Bcolor%3Argba%28255%2C255%2C255%2C0%2E75%29%7D%2Ebtn%2Dprimary%7Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%23006dcc%3B%2Abackground%2Dcolor%3A%2304c%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%2308c%2C%2304c%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%2308c%29%2Cto%28%2304c%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%2308c%2C%2304c%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%2308c%2C%2304c%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%2308c%2C%2304c%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%2304c%20%2304c%20%23002a80%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff0088cc%27%2CendColorstr%3D%27%23ff0044cc%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Ebtn%2Dprimary%3Ahover%2C%2Ebtn%2Dprimary%3Afocus%2C%2Ebtn%2Dprimary%3Aactive%2C%2Ebtn%2Dprimary%2Eactive%2C%2Ebtn%2Dprimary%2Edisabled%2C%2Ebtn%2Dprimary%5Bdisabled%5D%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%2304c%3B%2Abackground%2Dcolor%3A%23003bb3%7D%2Ebtn%2Dprimary%3Aactive%2C%2Ebtn%2Dprimary%2Eactive%7Bbackground%2Dcolor%3A%23039%20%5C9%7D%2Ebtn%2Dwarning%7Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%23faa732%3B%2Abackground%2Dcolor%3A%23f89406%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23fbb450%2C%23f89406%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23fbb450%29%2Cto%28%23f89406%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23fbb450%2C%23f89406%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23fbb450%2C%23f89406%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23fbb450%2C%23f89406%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%23f89406%20%23f89406%20%23ad6704%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23fffbb450%27%2CendColorstr%3D%27%23fff89406%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Ebtn%2Dwarning%3Ahover%2C%2Ebtn%2Dwarning%3Afocus%2C%2Ebtn%2Dwarning%3Aactive%2C%2Ebtn%2Dwarning%2Eactive%2C%2Ebtn%2Dwarning%2Edisabled%2C%2Ebtn%2Dwarning%5Bdisabled%5D%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23f89406%3B%2Abackground%2Dcolor%3A%23df8505%7D%2Ebtn%2Dwarning%3Aactive%2C%2Ebtn%2Dwarning%2Eactive%7Bbackground%2Dcolor%3A%23c67605%20%5C9%7D%2Ebtn%2Ddanger%7Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%23da4f49%3B%2Abackground%2Dcolor%3A%23bd362f%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23ee5f5b%2C%23bd362f%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23ee5f5b%29%2Cto%28%23bd362f%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23ee5f5b%2C%23bd362f%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23ee5f5b%2C%23bd362f%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23ee5f5b%2C%23bd362f%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%23bd362f%20%23bd362f%20%23802420%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ffee5f5b%27%2CendColorstr%3D%27%23ffbd362f%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Ebtn%2Ddanger%3Ahover%2C%2Ebtn%2Ddanger%3Afocus%2C%2Ebtn%2Ddanger%3Aactive%2C%2Ebtn%2Ddanger%2Eactive%2C%2Ebtn%2Ddanger%2Edisabled%2C%2Ebtn%2Ddanger%5Bdisabled%5D%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23bd362f%3B%2Abackground%2Dcolor%3A%23a9302a%7D%2Ebtn%2Ddanger%3Aactive%2C%2Ebtn%2Ddanger%2Eactive%7Bbackground%2Dcolor%3A%23942a25%20%5C9%7D%2Ebtn%2Dsuccess%7Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%235bb75b%3B%2Abackground%2Dcolor%3A%2351a351%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%2362c462%2C%2351a351%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%2362c462%29%2Cto%28%2351a351%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%2362c462%2C%2351a351%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%2362c462%2C%2351a351%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%2362c462%2C%2351a351%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%2351a351%20%2351a351%20%23387038%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff62c462%27%2CendColorstr%3D%27%23ff51a351%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Ebtn%2Dsuccess%3Ahover%2C%2Ebtn%2Dsuccess%3Afocus%2C%2Ebtn%2Dsuccess%3Aactive%2C%2Ebtn%2Dsuccess%2Eactive%2C%2Ebtn%2Dsuccess%2Edisabled%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%2351a351%3B%2Abackground%2Dcolor%3A%23499249%7D%2Ebtn%2Dsuccess%3Aactive%2C%2Ebtn%2Dsuccess%2Eactive%7Bbackground%2Dcolor%3A%23408140%20%5C9%7D%2Ebtn%2Dinfo%7Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%2349afcd%3B%2Abackground%2Dcolor%3A%232f96b4%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%235bc0de%2C%232f96b4%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%235bc0de%29%2Cto%28%232f96b4%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%235bc0de%2C%232f96b4%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%235bc0de%2C%232f96b4%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%235bc0de%2C%232f96b4%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%232f96b4%20%232f96b4%20%231f6377%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff5bc0de%27%2CendColorstr%3D%27%23ff2f96b4%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Ebtn%2Dinfo%3Ahover%2C%2Ebtn%2Dinfo%3Afocus%2C%2Ebtn%2Dinfo%3Aactive%2C%2Ebtn%2Dinfo%2Eactive%2C%2Ebtn%2Dinfo%2Edisabled%2C%2Ebtn%2Dinfo%5Bdisabled%5D%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%232f96b4%3B%2Abackground%2Dcolor%3A%232a85a0%7D%2Ebtn%2Dinfo%3Aactive%2C%2Ebtn%2Dinfo%2Eactive%7Bbackground%2Dcolor%3A%2324748c%20%5C9%7D%2Ebtn%2Dinverse%7Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%23363636%3B%2Abackground%2Dcolor%3A%23222%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23444%2C%23222%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23444%29%2Cto%28%23222%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23444%2C%23222%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23444%2C%23222%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23444%2C%23222%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%23222%20%23222%20%23000%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff444444%27%2CendColorstr%3D%27%23ff222222%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Ebtn%2Dinverse%3Ahover%2C%2Ebtn%2Dinverse%3Afocus%2C%2Ebtn%2Dinverse%3Aactive%2C%2Ebtn%2Dinverse%2Eactive%2C%2Ebtn%2Dinverse%2Edisabled%2C%2Ebtn%2Dinverse%5Bdisabled%5D%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23222%3B%2Abackground%2Dcolor%3A%23151515%7D%2Ebtn%2Dinverse%3Aactive%2C%2Ebtn%2Dinverse%2Eactive%7Bbackground%2Dcolor%3A%23080808%20%5C9%7Dbutton%2Ebtn%2Cinput%5Btype%3D%22submit%22%5D%2Ebtn%7B%2Apadding%2Dtop%3A3px%3B%2Apadding%2Dbottom%3A3px%7Dbutton%2Ebtn%3A%3A%2Dmoz%2Dfocus%2Dinner%2Cinput%5Btype%3D%22submit%22%5D%2Ebtn%3A%3A%2Dmoz%2Dfocus%2Dinner%7Bpadding%3A0%3Bborder%3A0%7Dbutton%2Ebtn%2Ebtn%2Dlarge%2Cinput%5Btype%3D%22submit%22%5D%2Ebtn%2Ebtn%2Dlarge%7B%2Apadding%2Dtop%3A7px%3B%2Apadding%2Dbottom%3A7px%7Dbutton%2Ebtn%2Ebtn%2Dsmall%2Cinput%5Btype%3D%22submit%22%5D%2Ebtn%2Ebtn%2Dsmall%7B%2Apadding%2Dtop%3A3px%3B%2Apadding%2Dbottom%3A3px%7Dbutton%2Ebtn%2Ebtn%2Dmini%2Cinput%5Btype%3D%22submit%22%5D%2Ebtn%2Ebtn%2Dmini%7B%2Apadding%2Dtop%3A1px%3B%2Apadding%2Dbottom%3A1px%7D%2Ebtn%2Dlink%2C%2Ebtn%2Dlink%3Aactive%2C%2Ebtn%2Dlink%5Bdisabled%5D%7Bbackground%2Dcolor%3Atransparent%3Bbackground%2Dimage%3Anone%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3B%2Dmoz%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Ebtn%2Dlink%7Bcolor%3A%2308c%3Bcursor%3Apointer%3Bborder%2Dcolor%3Atransparent%3B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Ebtn%2Dlink%3Ahover%2C%2Ebtn%2Dlink%3Afocus%7Bcolor%3A%23005580%3Btext%2Ddecoration%3Aunderline%3Bbackground%2Dcolor%3Atransparent%7D%2Ebtn%2Dlink%5Bdisabled%5D%3Ahover%2C%2Ebtn%2Dlink%5Bdisabled%5D%3Afocus%7Bcolor%3A%23333%3Btext%2Ddecoration%3Anone%7D%2Ebtn%2Dgroup%7Bposition%3Arelative%3Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3B%2Amargin%2Dleft%3A%2E3em%3Bfont%2Dsize%3A0%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Amiddle%3B%2Azoom%3A1%7D%2Ebtn%2Dgroup%3Afirst%2Dchild%7B%2Amargin%2Dleft%3A0%7D%2Ebtn%2Dgroup%2B%2Ebtn%2Dgroup%7Bmargin%2Dleft%3A5px%7D%2Ebtn%2Dtoolbar%7Bmargin%2Dtop%3A10px%3Bmargin%2Dbottom%3A10px%3Bfont%2Dsize%3A0%7D%2Ebtn%2Dtoolbar%3E%2Ebtn%2B%2Ebtn%2C%2Ebtn%2Dtoolbar%3E%2Ebtn%2Dgroup%2B%2Ebtn%2C%2Ebtn%2Dtoolbar%3E%2Ebtn%2B%2Ebtn%2Dgroup%7Bmargin%2Dleft%3A5px%7D%2Ebtn%2Dgroup%3E%2Ebtn%7Bposition%3Arelative%3B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2B%2Ebtn%7Bmargin%2Dleft%3A%2D1px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2C%2Ebtn%2Dgroup%3E%2Edropdown%2Dmenu%2C%2Ebtn%2Dgroup%3E%2Epopover%7Bfont%2Dsize%3A14px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dmini%7Bfont%2Dsize%3A10%2E5px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dsmall%7Bfont%2Dsize%3A11%2E9px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dlarge%7Bfont%2Dsize%3A17%2E5px%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%3B%2Dwebkit%2Dborder%2Dbottom%2Dleft%2Dradius%3A4px%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%3B%2Dwebkit%2Dborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomleft%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopleft%3A4px%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Alast%2Dchild%2C%2Ebtn%2Dgroup%3E%2Edropdown%2Dtoggle%7B%2Dwebkit%2Dborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dright%2Dradius%3A4px%3B%2Dwebkit%2Dborder%2Dbottom%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopright%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomright%3A4px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Elarge%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%3B%2Dwebkit%2Dborder%2Dbottom%2Dleft%2Dradius%3A6px%3Bborder%2Dbottom%2Dleft%2Dradius%3A6px%3B%2Dwebkit%2Dborder%2Dtop%2Dleft%2Dradius%3A6px%3Bborder%2Dtop%2Dleft%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomleft%3A6px%3B%2Dmoz%2Dborder%2Dradius%2Dtopleft%3A6px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Elarge%3Alast%2Dchild%2C%2Ebtn%2Dgroup%3E%2Elarge%2Edropdown%2Dtoggle%7B%2Dwebkit%2Dborder%2Dtop%2Dright%2Dradius%3A6px%3Bborder%2Dtop%2Dright%2Dradius%3A6px%3B%2Dwebkit%2Dborder%2Dbottom%2Dright%2Dradius%3A6px%3Bborder%2Dbottom%2Dright%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%2Dtopright%3A6px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomright%3A6px%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Ahover%2C%2Ebtn%2Dgroup%3E%2Ebtn%3Afocus%2C%2Ebtn%2Dgroup%3E%2Ebtn%3Aactive%2C%2Ebtn%2Dgroup%3E%2Ebtn%2Eactive%7Bz%2Dindex%3A2%7D%2Ebtn%2Dgroup%20%2Edropdown%2Dtoggle%3Aactive%2C%2Ebtn%2Dgroup%2Eopen%20%2Edropdown%2Dtoggle%7Boutline%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2B%2Edropdown%2Dtoggle%7B%2Apadding%2Dtop%3A5px%3Bpadding%2Dright%3A8px%3B%2Apadding%2Dbottom%3A5px%3Bpadding%2Dleft%3A8px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%201px%200%200%20rgba%28255%2C255%2C255%2C0%2E125%29%2Cinset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E2%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%201px%200%200%20rgba%28255%2C255%2C255%2C0%2E125%29%2Cinset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E2%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3Bbox%2Dshadow%3Ainset%201px%200%200%20rgba%28255%2C255%2C255%2C0%2E125%29%2Cinset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E2%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dmini%2B%2Edropdown%2Dtoggle%7B%2Apadding%2Dtop%3A2px%3Bpadding%2Dright%3A5px%3B%2Apadding%2Dbottom%3A2px%3Bpadding%2Dleft%3A5px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dsmall%2B%2Edropdown%2Dtoggle%7B%2Apadding%2Dtop%3A5px%3B%2Apadding%2Dbottom%3A4px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dlarge%2B%2Edropdown%2Dtoggle%7B%2Apadding%2Dtop%3A7px%3Bpadding%2Dright%3A12px%3B%2Apadding%2Dbottom%3A7px%3Bpadding%2Dleft%3A12px%7D%2Ebtn%2Dgroup%2Eopen%20%2Edropdown%2Dtoggle%7Bbackground%2Dimage%3Anone%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%202px%204px%20rgba%280%2C0%2C0%2C0%2E15%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%202px%204px%20rgba%280%2C0%2C0%2C0%2E15%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3Bbox%2Dshadow%3Ainset%200%202px%204px%20rgba%280%2C0%2C0%2C0%2E15%29%2C0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%7D%2Ebtn%2Dgroup%2Eopen%20%2Ebtn%2Edropdown%2Dtoggle%7Bbackground%2Dcolor%3A%23e6e6e6%7D%2Ebtn%2Dgroup%2Eopen%20%2Ebtn%2Dprimary%2Edropdown%2Dtoggle%7Bbackground%2Dcolor%3A%2304c%7D%2Ebtn%2Dgroup%2Eopen%20%2Ebtn%2Dwarning%2Edropdown%2Dtoggle%7Bbackground%2Dcolor%3A%23f89406%7D%2Ebtn%2Dgroup%2Eopen%20%2Ebtn%2Ddanger%2Edropdown%2Dtoggle%7Bbackground%2Dcolor%3A%23bd362f%7D%2Ebtn%2Dgroup%2Eopen%20%2Ebtn%2Dsuccess%2Edropdown%2Dtoggle%7Bbackground%2Dcolor%3A%2351a351%7D%2Ebtn%2Dgroup%2Eopen%20%2Ebtn%2Dinfo%2Edropdown%2Dtoggle%7Bbackground%2Dcolor%3A%232f96b4%7D%2Ebtn%2Dgroup%2Eopen%20%2Ebtn%2Dinverse%2Edropdown%2Dtoggle%7Bbackground%2Dcolor%3A%23222%7D%2Ebtn%20%2Ecaret%7Bmargin%2Dtop%3A8px%3Bmargin%2Dleft%3A0%7D%2Ebtn%2Dlarge%20%2Ecaret%7Bmargin%2Dtop%3A6px%7D%2Ebtn%2Dlarge%20%2Ecaret%7Bborder%2Dtop%2Dwidth%3A5px%3Bborder%2Dright%2Dwidth%3A5px%3Bborder%2Dleft%2Dwidth%3A5px%7D%2Ebtn%2Dmini%20%2Ecaret%2C%2Ebtn%2Dsmall%20%2Ecaret%7Bmargin%2Dtop%3A8px%7D%2Edropup%20%2Ebtn%2Dlarge%20%2Ecaret%7Bborder%2Dbottom%2Dwidth%3A5px%7D%2Ebtn%2Dprimary%20%2Ecaret%2C%2Ebtn%2Dwarning%20%2Ecaret%2C%2Ebtn%2Ddanger%20%2Ecaret%2C%2Ebtn%2Dinfo%20%2Ecaret%2C%2Ebtn%2Dsuccess%20%2Ecaret%2C%2Ebtn%2Dinverse%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23fff%3Bborder%2Dbottom%2Dcolor%3A%23fff%7D%2Ebtn%2Dgroup%2Dvertical%7Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3B%2Azoom%3A1%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%7Bdisplay%3Ablock%3Bfloat%3Anone%3Bmax%2Dwidth%3A100%25%3B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2B%2Ebtn%7Bmargin%2Dtop%3A%2D1px%3Bmargin%2Dleft%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Afirst%2Dchild%7B%2Dwebkit%2Dborder%2Dradius%3A4px%204px%200%200%3B%2Dmoz%2Dborder%2Dradius%3A4px%204px%200%200%3Bborder%2Dradius%3A4px%204px%200%200%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Alast%2Dchild%7B%2Dwebkit%2Dborder%2Dradius%3A0%200%204px%204px%3B%2Dmoz%2Dborder%2Dradius%3A0%200%204px%204px%3Bborder%2Dradius%3A0%200%204px%204px%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dlarge%3Afirst%2Dchild%7B%2Dwebkit%2Dborder%2Dradius%3A6px%206px%200%200%3B%2Dmoz%2Dborder%2Dradius%3A6px%206px%200%200%3Bborder%2Dradius%3A6px%206px%200%200%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dlarge%3Alast%2Dchild%7B%2Dwebkit%2Dborder%2Dradius%3A0%200%206px%206px%3B%2Dmoz%2Dborder%2Dradius%3A0%200%206px%206px%3Bborder%2Dradius%3A0%200%206px%206px%7D%2Ealert%7Bpadding%3A8px%2035px%208px%2014px%3Bmargin%2Dbottom%3A20px%3Btext%2Dshadow%3A0%201px%200%20rgba%28255%2C255%2C255%2C0%2E5%29%3Bbackground%2Dcolor%3A%23fcf8e3%3Bborder%3A1px%20solid%20%23fbeed5%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7D%2Ealert%2C%2Ealert%20h4%7Bcolor%3A%23c09853%7D%2Ealert%20h4%7Bmargin%3A0%7D%2Ealert%20%2Eclose%7Bposition%3Arelative%3Btop%3A%2D2px%3Bright%3A%2D21px%3Bline%2Dheight%3A20px%7D%2Ealert%2Dsuccess%7Bcolor%3A%23468847%3Bbackground%2Dcolor%3A%23dff0d8%3Bborder%2Dcolor%3A%23d6e9c6%7D%2Ealert%2Dsuccess%20h4%7Bcolor%3A%23468847%7D%2Ealert%2Ddanger%2C%2Ealert%2Derror%7Bcolor%3A%23b94a48%3Bbackground%2Dcolor%3A%23f2dede%3Bborder%2Dcolor%3A%23eed3d7%7D%2Ealert%2Ddanger%20h4%2C%2Ealert%2Derror%20h4%7Bcolor%3A%23b94a48%7D%2Ealert%2Dinfo%7Bcolor%3A%233a87ad%3Bbackground%2Dcolor%3A%23d9edf7%3Bborder%2Dcolor%3A%23bce8f1%7D%2Ealert%2Dinfo%20h4%7Bcolor%3A%233a87ad%7D%2Ealert%2Dblock%7Bpadding%2Dtop%3A14px%3Bpadding%2Dbottom%3A14px%7D%2Ealert%2Dblock%3Ep%2C%2Ealert%2Dblock%3Eul%7Bmargin%2Dbottom%3A0%7D%2Ealert%2Dblock%20p%2Bp%7Bmargin%2Dtop%3A5px%7D%2Enav%7Bmargin%2Dbottom%3A20px%3Bmargin%2Dleft%3A0%3Blist%2Dstyle%3Anone%7D%2Enav%3Eli%3Ea%7Bdisplay%3Ablock%7D%2Enav%3Eli%3Ea%3Ahover%2C%2Enav%3Eli%3Ea%3Afocus%7Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23eee%7D%2Enav%3Eli%3Ea%3Eimg%7Bmax%2Dwidth%3Anone%7D%2Enav%3E%2Epull%2Dright%7Bfloat%3Aright%7D%2Enav%2Dheader%7Bdisplay%3Ablock%3Bpadding%3A3px%2015px%3Bfont%2Dsize%3A11px%3Bfont%2Dweight%3Abold%3Bline%2Dheight%3A20px%3Bcolor%3A%23999%3Btext%2Dshadow%3A0%201px%200%20rgba%28255%2C255%2C255%2C0%2E5%29%3Btext%2Dtransform%3Auppercase%7D%2Enav%20li%2B%2Enav%2Dheader%7Bmargin%2Dtop%3A9px%7D%2Enav%2Dlist%7Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A15px%3Bmargin%2Dbottom%3A0%7D%2Enav%2Dlist%3Eli%3Ea%2C%2Enav%2Dlist%20%2Enav%2Dheader%7Bmargin%2Dright%3A%2D15px%3Bmargin%2Dleft%3A%2D15px%3Btext%2Dshadow%3A0%201px%200%20rgba%28255%2C255%2C255%2C0%2E5%29%7D%2Enav%2Dlist%3Eli%3Ea%7Bpadding%3A3px%2015px%7D%2Enav%2Dlist%3E%2Eactive%3Ea%2C%2Enav%2Dlist%3E%2Eactive%3Ea%3Ahover%2C%2Enav%2Dlist%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E2%29%3Bbackground%2Dcolor%3A%2308c%7D%2Enav%2Dlist%20%5Bclass%5E%3D%22icon%2D%22%5D%2C%2Enav%2Dlist%20%5Bclass%2A%3D%22%20icon%2D%22%5D%7Bmargin%2Dright%3A2px%7D%2Enav%2Dlist%20%2Edivider%7B%2Awidth%3A100%25%3Bheight%3A1px%3Bmargin%3A9px%201px%3B%2Amargin%3A%2D5px%200%205px%3Boverflow%3Ahidden%3Bbackground%2Dcolor%3A%23e5e5e5%3Bborder%2Dbottom%3A1px%20solid%20%23fff%7D%2Enav%2Dtabs%2C%2Enav%2Dpills%7B%2Azoom%3A1%7D%2Enav%2Dtabs%3Abefore%2C%2Enav%2Dpills%3Abefore%2C%2Enav%2Dtabs%3Aafter%2C%2Enav%2Dpills%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Enav%2Dtabs%3Aafter%2C%2Enav%2Dpills%3Aafter%7Bclear%3Aboth%7D%2Enav%2Dtabs%3Eli%2C%2Enav%2Dpills%3Eli%7Bfloat%3Aleft%7D%2Enav%2Dtabs%3Eli%3Ea%2C%2Enav%2Dpills%3Eli%3Ea%7Bpadding%2Dright%3A12px%3Bpadding%2Dleft%3A12px%3Bmargin%2Dright%3A2px%3Bline%2Dheight%3A14px%7D%2Enav%2Dtabs%7Bborder%2Dbottom%3A1px%20solid%20%23ddd%7D%2Enav%2Dtabs%3Eli%7Bmargin%2Dbottom%3A%2D1px%7D%2Enav%2Dtabs%3Eli%3Ea%7Bpadding%2Dtop%3A8px%3Bpadding%2Dbottom%3A8px%3Bline%2Dheight%3A20px%3Bborder%3A1px%20solid%20transparent%3B%2Dwebkit%2Dborder%2Dradius%3A4px%204px%200%200%3B%2Dmoz%2Dborder%2Dradius%3A4px%204px%200%200%3Bborder%2Dradius%3A4px%204px%200%200%7D%2Enav%2Dtabs%3Eli%3Ea%3Ahover%2C%2Enav%2Dtabs%3Eli%3Ea%3Afocus%7Bborder%2Dcolor%3A%23eee%20%23eee%20%23ddd%7D%2Enav%2Dtabs%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%3E%2Eactive%3Ea%3Ahover%2C%2Enav%2Dtabs%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23555%3Bcursor%3Adefault%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%3Bborder%2Dbottom%2Dcolor%3Atransparent%7D%2Enav%2Dpills%3Eli%3Ea%7Bpadding%2Dtop%3A8px%3Bpadding%2Dbottom%3A8px%3Bmargin%2Dtop%3A2px%3Bmargin%2Dbottom%3A2px%3B%2Dwebkit%2Dborder%2Dradius%3A5px%3B%2Dmoz%2Dborder%2Dradius%3A5px%3Bborder%2Dradius%3A5px%7D%2Enav%2Dpills%3E%2Eactive%3Ea%2C%2Enav%2Dpills%3E%2Eactive%3Ea%3Ahover%2C%2Enav%2Dpills%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%2308c%7D%2Enav%2Dstacked%3Eli%7Bfloat%3Anone%7D%2Enav%2Dstacked%3Eli%3Ea%7Bmargin%2Dright%3A0%7D%2Enav%2Dtabs%2Enav%2Dstacked%7Bborder%2Dbottom%3A0%7D%2Enav%2Dtabs%2Enav%2Dstacked%3Eli%3Ea%7Bborder%3A1px%20solid%20%23ddd%3B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Enav%2Dtabs%2Enav%2Dstacked%3Eli%3Afirst%2Dchild%3Ea%7B%2Dwebkit%2Dborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dright%2Dradius%3A4px%3B%2Dwebkit%2Dborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopright%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopleft%3A4px%7D%2Enav%2Dtabs%2Enav%2Dstacked%3Eli%3Alast%2Dchild%3Ea%7B%2Dwebkit%2Dborder%2Dbottom%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A4px%3B%2Dwebkit%2Dborder%2Dbottom%2Dleft%2Dradius%3A4px%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomright%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomleft%3A4px%7D%2Enav%2Dtabs%2Enav%2Dstacked%3Eli%3Ea%3Ahover%2C%2Enav%2Dtabs%2Enav%2Dstacked%3Eli%3Ea%3Afocus%7Bz%2Dindex%3A2%3Bborder%2Dcolor%3A%23ddd%7D%2Enav%2Dpills%2Enav%2Dstacked%3Eli%3Ea%7Bmargin%2Dbottom%3A3px%7D%2Enav%2Dpills%2Enav%2Dstacked%3Eli%3Alast%2Dchild%3Ea%7Bmargin%2Dbottom%3A1px%7D%2Enav%2Dtabs%20%2Edropdown%2Dmenu%7B%2Dwebkit%2Dborder%2Dradius%3A0%200%206px%206px%3B%2Dmoz%2Dborder%2Dradius%3A0%200%206px%206px%3Bborder%2Dradius%3A0%200%206px%206px%7D%2Enav%2Dpills%20%2Edropdown%2Dmenu%7B%2Dwebkit%2Dborder%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%3A6px%3Bborder%2Dradius%3A6px%7D%2Enav%20%2Edropdown%2Dtoggle%20%2Ecaret%7Bmargin%2Dtop%3A6px%3Bborder%2Dtop%2Dcolor%3A%2308c%3Bborder%2Dbottom%2Dcolor%3A%2308c%7D%2Enav%20%2Edropdown%2Dtoggle%3Ahover%20%2Ecaret%2C%2Enav%20%2Edropdown%2Dtoggle%3Afocus%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23005580%3Bborder%2Dbottom%2Dcolor%3A%23005580%7D%2Enav%2Dtabs%20%2Edropdown%2Dtoggle%20%2Ecaret%7Bmargin%2Dtop%3A8px%7D%2Enav%20%2Eactive%20%2Edropdown%2Dtoggle%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23fff%3Bborder%2Dbottom%2Dcolor%3A%23fff%7D%2Enav%2Dtabs%20%2Eactive%20%2Edropdown%2Dtoggle%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23555%3Bborder%2Dbottom%2Dcolor%3A%23555%7D%2Enav%3E%2Edropdown%2Eactive%3Ea%3Ahover%2C%2Enav%3E%2Edropdown%2Eactive%3Ea%3Afocus%7Bcursor%3Apointer%7D%2Enav%2Dtabs%20%2Eopen%20%2Edropdown%2Dtoggle%2C%2Enav%2Dpills%20%2Eopen%20%2Edropdown%2Dtoggle%2C%2Enav%3Eli%2Edropdown%2Eopen%2Eactive%3Ea%3Ahover%2C%2Enav%3Eli%2Edropdown%2Eopen%2Eactive%3Ea%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23999%3Bborder%2Dcolor%3A%23999%7D%2Enav%20li%2Edropdown%2Eopen%20%2Ecaret%2C%2Enav%20li%2Edropdown%2Eopen%2Eactive%20%2Ecaret%2C%2Enav%20li%2Edropdown%2Eopen%20a%3Ahover%20%2Ecaret%2C%2Enav%20li%2Edropdown%2Eopen%20a%3Afocus%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23fff%3Bborder%2Dbottom%2Dcolor%3A%23fff%3Bopacity%3A1%3Bfilter%3Aalpha%28opacity%3D100%29%7D%2Etabs%2Dstacked%20%2Eopen%3Ea%3Ahover%2C%2Etabs%2Dstacked%20%2Eopen%3Ea%3Afocus%7Bborder%2Dcolor%3A%23999%7D%2Etabbable%7B%2Azoom%3A1%7D%2Etabbable%3Abefore%2C%2Etabbable%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Etabbable%3Aafter%7Bclear%3Aboth%7D%2Etab%2Dcontent%7Boverflow%3Aauto%7D%2Etabs%2Dbelow%3E%2Enav%2Dtabs%2C%2Etabs%2Dright%3E%2Enav%2Dtabs%2C%2Etabs%2Dleft%3E%2Enav%2Dtabs%7Bborder%2Dbottom%3A0%7D%2Etab%2Dcontent%3E%2Etab%2Dpane%2C%2Epill%2Dcontent%3E%2Epill%2Dpane%7Bdisplay%3Anone%7D%2Etab%2Dcontent%3E%2Eactive%2C%2Epill%2Dcontent%3E%2Eactive%7Bdisplay%3Ablock%7D%2Etabs%2Dbelow%3E%2Enav%2Dtabs%7Bborder%2Dtop%3A1px%20solid%20%23ddd%7D%2Etabs%2Dbelow%3E%2Enav%2Dtabs%3Eli%7Bmargin%2Dtop%3A%2D1px%3Bmargin%2Dbottom%3A0%7D%2Etabs%2Dbelow%3E%2Enav%2Dtabs%3Eli%3Ea%7B%2Dwebkit%2Dborder%2Dradius%3A0%200%204px%204px%3B%2Dmoz%2Dborder%2Dradius%3A0%200%204px%204px%3Bborder%2Dradius%3A0%200%204px%204px%7D%2Etabs%2Dbelow%3E%2Enav%2Dtabs%3Eli%3Ea%3Ahover%2C%2Etabs%2Dbelow%3E%2Enav%2Dtabs%3Eli%3Ea%3Afocus%7Bborder%2Dtop%2Dcolor%3A%23ddd%3Bborder%2Dbottom%2Dcolor%3Atransparent%7D%2Etabs%2Dbelow%3E%2Enav%2Dtabs%3E%2Eactive%3Ea%2C%2Etabs%2Dbelow%3E%2Enav%2Dtabs%3E%2Eactive%3Ea%3Ahover%2C%2Etabs%2Dbelow%3E%2Enav%2Dtabs%3E%2Eactive%3Ea%3Afocus%7Bborder%2Dcolor%3Atransparent%20%23ddd%20%23ddd%20%23ddd%7D%2Etabs%2Dleft%3E%2Enav%2Dtabs%3Eli%2C%2Etabs%2Dright%3E%2Enav%2Dtabs%3Eli%7Bfloat%3Anone%7D%2Etabs%2Dleft%3E%2Enav%2Dtabs%3Eli%3Ea%2C%2Etabs%2Dright%3E%2Enav%2Dtabs%3Eli%3Ea%7Bmin%2Dwidth%3A74px%3Bmargin%2Dright%3A0%3Bmargin%2Dbottom%3A3px%7D%2Etabs%2Dleft%3E%2Enav%2Dtabs%7Bfloat%3Aleft%3Bmargin%2Dright%3A19px%3Bborder%2Dright%3A1px%20solid%20%23ddd%7D%2Etabs%2Dleft%3E%2Enav%2Dtabs%3Eli%3Ea%7Bmargin%2Dright%3A%2D1px%3B%2Dwebkit%2Dborder%2Dradius%3A4px%200%200%204px%3B%2Dmoz%2Dborder%2Dradius%3A4px%200%200%204px%3Bborder%2Dradius%3A4px%200%200%204px%7D%2Etabs%2Dleft%3E%2Enav%2Dtabs%3Eli%3Ea%3Ahover%2C%2Etabs%2Dleft%3E%2Enav%2Dtabs%3Eli%3Ea%3Afocus%7Bborder%2Dcolor%3A%23eee%20%23ddd%20%23eee%20%23eee%7D%2Etabs%2Dleft%3E%2Enav%2Dtabs%20%2Eactive%3Ea%2C%2Etabs%2Dleft%3E%2Enav%2Dtabs%20%2Eactive%3Ea%3Ahover%2C%2Etabs%2Dleft%3E%2Enav%2Dtabs%20%2Eactive%3Ea%3Afocus%7Bborder%2Dcolor%3A%23ddd%20transparent%20%23ddd%20%23ddd%3B%2Aborder%2Dright%2Dcolor%3A%23fff%7D%2Etabs%2Dright%3E%2Enav%2Dtabs%7Bfloat%3Aright%3Bmargin%2Dleft%3A19px%3Bborder%2Dleft%3A1px%20solid%20%23ddd%7D%2Etabs%2Dright%3E%2Enav%2Dtabs%3Eli%3Ea%7Bmargin%2Dleft%3A%2D1px%3B%2Dwebkit%2Dborder%2Dradius%3A0%204px%204px%200%3B%2Dmoz%2Dborder%2Dradius%3A0%204px%204px%200%3Bborder%2Dradius%3A0%204px%204px%200%7D%2Etabs%2Dright%3E%2Enav%2Dtabs%3Eli%3Ea%3Ahover%2C%2Etabs%2Dright%3E%2Enav%2Dtabs%3Eli%3Ea%3Afocus%7Bborder%2Dcolor%3A%23eee%20%23eee%20%23eee%20%23ddd%7D%2Etabs%2Dright%3E%2Enav%2Dtabs%20%2Eactive%3Ea%2C%2Etabs%2Dright%3E%2Enav%2Dtabs%20%2Eactive%3Ea%3Ahover%2C%2Etabs%2Dright%3E%2Enav%2Dtabs%20%2Eactive%3Ea%3Afocus%7Bborder%2Dcolor%3A%23ddd%20%23ddd%20%23ddd%20transparent%3B%2Aborder%2Dleft%2Dcolor%3A%23fff%7D%2Enav%3E%2Edisabled%3Ea%7Bcolor%3A%23999%7D%2Enav%3E%2Edisabled%3Ea%3Ahover%2C%2Enav%3E%2Edisabled%3Ea%3Afocus%7Btext%2Ddecoration%3Anone%3Bcursor%3Adefault%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%7B%2Aposition%3Arelative%3B%2Az%2Dindex%3A2%3Bmargin%2Dbottom%3A20px%3Boverflow%3Avisible%7D%2Enavbar%2Dinner%7Bmin%2Dheight%3A40px%3Bpadding%2Dright%3A20px%3Bpadding%2Dleft%3A20px%3Bbackground%2Dcolor%3A%23fafafa%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23fff%2C%23f2f2f2%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23fff%29%2Cto%28%23f2f2f2%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23fff%2C%23f2f2f2%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23fff%2C%23f2f2f2%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23fff%2C%23f2f2f2%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%3A1px%20solid%20%23d4d4d4%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ffffffff%27%2CendColorstr%3D%27%23fff2f2f2%27%2CGradientType%3D0%29%3B%2Azoom%3A1%3B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%204px%20rgba%280%2C0%2C0%2C0%2E065%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%201px%204px%20rgba%280%2C0%2C0%2C0%2E065%29%3Bbox%2Dshadow%3A0%201px%204px%20rgba%280%2C0%2C0%2C0%2E065%29%7D%2Enavbar%2Dinner%3Abefore%2C%2Enavbar%2Dinner%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Enavbar%2Dinner%3Aafter%7Bclear%3Aboth%7D%2Enavbar%20%2Econtainer%7Bwidth%3Aauto%7D%2Enav%2Dcollapse%2Ecollapse%7Bheight%3Aauto%3Boverflow%3Avisible%7D%2Enavbar%20%2Ebrand%7Bdisplay%3Ablock%3Bfloat%3Aleft%3Bpadding%3A10px%2020px%2010px%3Bmargin%2Dleft%3A%2D20px%3Bfont%2Dsize%3A20px%3Bfont%2Dweight%3A200%3Bcolor%3A%23777%3Btext%2Dshadow%3A0%201px%200%20%23fff%7D%2Enavbar%20%2Ebrand%3Ahover%2C%2Enavbar%20%2Ebrand%3Afocus%7Btext%2Ddecoration%3Anone%7D%2Enavbar%2Dtext%7Bmargin%2Dbottom%3A0%3Bline%2Dheight%3A40px%3Bcolor%3A%23777%7D%2Enavbar%2Dlink%7Bcolor%3A%23777%7D%2Enavbar%2Dlink%3Ahover%2C%2Enavbar%2Dlink%3Afocus%7Bcolor%3A%23333%7D%2Enavbar%20%2Edivider%2Dvertical%7Bheight%3A40px%3Bmargin%3A0%209px%3Bborder%2Dright%3A1px%20solid%20%23fff%3Bborder%2Dleft%3A1px%20solid%20%23f2f2f2%7D%2Enavbar%20%2Ebtn%2C%2Enavbar%20%2Ebtn%2Dgroup%7Bmargin%2Dtop%3A5px%7D%2Enavbar%20%2Ebtn%2Dgroup%20%2Ebtn%2C%2Enavbar%20%2Einput%2Dprepend%20%2Ebtn%2C%2Enavbar%20%2Einput%2Dappend%20%2Ebtn%2C%2Enavbar%20%2Einput%2Dprepend%20%2Ebtn%2Dgroup%2C%2Enavbar%20%2Einput%2Dappend%20%2Ebtn%2Dgroup%7Bmargin%2Dtop%3A0%7D%2Enavbar%2Dform%7Bmargin%2Dbottom%3A0%3B%2Azoom%3A1%7D%2Enavbar%2Dform%3Abefore%2C%2Enavbar%2Dform%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Enavbar%2Dform%3Aafter%7Bclear%3Aboth%7D%2Enavbar%2Dform%20input%2C%2Enavbar%2Dform%20select%2C%2Enavbar%2Dform%20%2Eradio%2C%2Enavbar%2Dform%20%2Echeckbox%7Bmargin%2Dtop%3A5px%7D%2Enavbar%2Dform%20input%2C%2Enavbar%2Dform%20select%2C%2Enavbar%2Dform%20%2Ebtn%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dbottom%3A0%7D%2Enavbar%2Dform%20input%5Btype%3D%22image%22%5D%2C%2Enavbar%2Dform%20input%5Btype%3D%22checkbox%22%5D%2C%2Enavbar%2Dform%20input%5Btype%3D%22radio%22%5D%7Bmargin%2Dtop%3A3px%7D%2Enavbar%2Dform%20%2Einput%2Dappend%2C%2Enavbar%2Dform%20%2Einput%2Dprepend%7Bmargin%2Dtop%3A5px%3Bwhite%2Dspace%3Anowrap%7D%2Enavbar%2Dform%20%2Einput%2Dappend%20input%2C%2Enavbar%2Dform%20%2Einput%2Dprepend%20input%7Bmargin%2Dtop%3A0%7D%2Enavbar%2Dsearch%7Bposition%3Arelative%3Bfloat%3Aleft%3Bmargin%2Dtop%3A5px%3Bmargin%2Dbottom%3A0%7D%2Enavbar%2Dsearch%20%2Esearch%2Dquery%7Bpadding%3A4px%2014px%3Bmargin%2Dbottom%3A0%3Bfont%2Dfamily%3A%22Helvetica%20Neue%22%2CHelvetica%2CArial%2Csans%2Dserif%3Bfont%2Dsize%3A13px%3Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A1%3B%2Dwebkit%2Dborder%2Dradius%3A15px%3B%2Dmoz%2Dborder%2Dradius%3A15px%3Bborder%2Dradius%3A15px%7D%2Enavbar%2Dstatic%2Dtop%7Bposition%3Astatic%3Bmargin%2Dbottom%3A0%7D%2Enavbar%2Dstatic%2Dtop%20%2Enavbar%2Dinner%7B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Enavbar%2Dfixed%2Dtop%2C%2Enavbar%2Dfixed%2Dbottom%7Bposition%3Afixed%3Bright%3A0%3Bleft%3A0%3Bz%2Dindex%3A1030%3Bmargin%2Dbottom%3A0%7D%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dinner%2C%2Enavbar%2Dstatic%2Dtop%20%2Enavbar%2Dinner%7Bborder%2Dwidth%3A0%200%201px%7D%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dinner%7Bborder%2Dwidth%3A1px%200%200%7D%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dinner%2C%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dinner%7Bpadding%2Dright%3A0%3Bpadding%2Dleft%3A0%3B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%7D%2Enavbar%2Dstatic%2Dtop%20%2Econtainer%2C%2Enavbar%2Dfixed%2Dtop%20%2Econtainer%2C%2Enavbar%2Dfixed%2Dbottom%20%2Econtainer%7Bwidth%3A940px%7D%2Enavbar%2Dfixed%2Dtop%7Btop%3A0%7D%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dinner%2C%2Enavbar%2Dstatic%2Dtop%20%2Enavbar%2Dinner%7B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%2010px%20rgba%280%2C0%2C0%2C0%2E1%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%201px%2010px%20rgba%280%2C0%2C0%2C0%2E1%29%3Bbox%2Dshadow%3A0%201px%2010px%20rgba%280%2C0%2C0%2C0%2E1%29%7D%2Enavbar%2Dfixed%2Dbottom%7Bbottom%3A0%7D%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dinner%7B%2Dwebkit%2Dbox%2Dshadow%3A0%20%2D1px%2010px%20rgba%280%2C0%2C0%2C0%2E1%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%20%2D1px%2010px%20rgba%280%2C0%2C0%2C0%2E1%29%3Bbox%2Dshadow%3A0%20%2D1px%2010px%20rgba%280%2C0%2C0%2C0%2E1%29%7D%2Enavbar%20%2Enav%7Bposition%3Arelative%3Bleft%3A0%3Bdisplay%3Ablock%3Bfloat%3Aleft%3Bmargin%3A0%2010px%200%200%7D%2Enavbar%20%2Enav%2Epull%2Dright%7Bfloat%3Aright%3Bmargin%2Dright%3A0%7D%2Enavbar%20%2Enav%3Eli%7Bfloat%3Aleft%7D%2Enavbar%20%2Enav%3Eli%3Ea%7Bfloat%3Anone%3Bpadding%3A10px%2015px%2010px%3Bcolor%3A%23777%3Btext%2Ddecoration%3Anone%3Btext%2Dshadow%3A0%201px%200%20%23fff%7D%2Enavbar%20%2Enav%20%2Edropdown%2Dtoggle%20%2Ecaret%7Bmargin%2Dtop%3A8px%7D%2Enavbar%20%2Enav%3Eli%3Ea%3Afocus%2C%2Enavbar%20%2Enav%3Eli%3Ea%3Ahover%7Bcolor%3A%23333%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%20%2Enav%3E%2Eactive%3Ea%2C%2Enavbar%20%2Enav%3E%2Eactive%3Ea%3Ahover%2C%2Enavbar%20%2Enav%3E%2Eactive%3Ea%3Afocus%7Bcolor%3A%23555%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23e5e5e5%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%203px%208px%20rgba%280%2C0%2C0%2C0%2E125%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%203px%208px%20rgba%280%2C0%2C0%2C0%2E125%29%3Bbox%2Dshadow%3Ainset%200%203px%208px%20rgba%280%2C0%2C0%2C0%2E125%29%7D%2Enavbar%20%2Ebtn%2Dnavbar%7Bdisplay%3Anone%3Bfloat%3Aright%3Bpadding%3A7px%2010px%3Bmargin%2Dright%3A5px%3Bmargin%2Dleft%3A5px%3Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%23ededed%3B%2Abackground%2Dcolor%3A%23e5e5e5%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23f2f2f2%2C%23e5e5e5%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23f2f2f2%29%2Cto%28%23e5e5e5%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23f2f2f2%2C%23e5e5e5%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23f2f2f2%2C%23e5e5e5%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23f2f2f2%2C%23e5e5e5%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%23e5e5e5%20%23e5e5e5%20%23bfbfbf%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23fff2f2f2%27%2CendColorstr%3D%27%23ffe5e5e5%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E075%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E075%29%7D%2Enavbar%20%2Ebtn%2Dnavbar%3Ahover%2C%2Enavbar%20%2Ebtn%2Dnavbar%3Afocus%2C%2Enavbar%20%2Ebtn%2Dnavbar%3Aactive%2C%2Enavbar%20%2Ebtn%2Dnavbar%2Eactive%2C%2Enavbar%20%2Ebtn%2Dnavbar%2Edisabled%2C%2Enavbar%20%2Ebtn%2Dnavbar%5Bdisabled%5D%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23e5e5e5%3B%2Abackground%2Dcolor%3A%23d9d9d9%7D%2Enavbar%20%2Ebtn%2Dnavbar%3Aactive%2C%2Enavbar%20%2Ebtn%2Dnavbar%2Eactive%7Bbackground%2Dcolor%3A%23ccc%20%5C9%7D%2Enavbar%20%2Ebtn%2Dnavbar%20%2Eicon%2Dbar%7Bdisplay%3Ablock%3Bwidth%3A18px%3Bheight%3A2px%3Bbackground%2Dcolor%3A%23f5f5f5%3B%2Dwebkit%2Dborder%2Dradius%3A1px%3B%2Dmoz%2Dborder%2Dradius%3A1px%3Bborder%2Dradius%3A1px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%201px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbox%2Dshadow%3A0%201px%200%20rgba%280%2C0%2C0%2C0%2E25%29%7D%2Ebtn%2Dnavbar%20%2Eicon%2Dbar%2B%2Eicon%2Dbar%7Bmargin%2Dtop%3A3px%7D%2Enavbar%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%3Abefore%7Bposition%3Aabsolute%3Btop%3A%2D7px%3Bleft%3A9px%3Bdisplay%3Ainline%2Dblock%3Bborder%2Dright%3A7px%20solid%20transparent%3Bborder%2Dbottom%3A7px%20solid%20%23ccc%3Bborder%2Dleft%3A7px%20solid%20transparent%3Bborder%2Dbottom%2Dcolor%3Argba%280%2C0%2C0%2C0%2E2%29%3Bcontent%3A%27%27%7D%2Enavbar%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%3Aafter%7Bposition%3Aabsolute%3Btop%3A%2D6px%3Bleft%3A10px%3Bdisplay%3Ainline%2Dblock%3Bborder%2Dright%3A6px%20solid%20transparent%3Bborder%2Dbottom%3A6px%20solid%20%23fff%3Bborder%2Dleft%3A6px%20solid%20transparent%3Bcontent%3A%27%27%7D%2Enavbar%2Dfixed%2Dbottom%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%3Abefore%7Btop%3Aauto%3Bbottom%3A%2D7px%3Bborder%2Dtop%3A7px%20solid%20%23ccc%3Bborder%2Dbottom%3A0%3Bborder%2Dtop%2Dcolor%3Argba%280%2C0%2C0%2C0%2E2%29%7D%2Enavbar%2Dfixed%2Dbottom%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%3Aafter%7Btop%3Aauto%3Bbottom%3A%2D6px%3Bborder%2Dtop%3A6px%20solid%20%23fff%3Bborder%2Dbottom%3A0%7D%2Enavbar%20%2Enav%20li%2Edropdown%3Ea%3Ahover%20%2Ecaret%2C%2Enavbar%20%2Enav%20li%2Edropdown%3Ea%3Afocus%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23333%3Bborder%2Dbottom%2Dcolor%3A%23333%7D%2Enavbar%20%2Enav%20li%2Edropdown%2Eopen%3E%2Edropdown%2Dtoggle%2C%2Enavbar%20%2Enav%20li%2Edropdown%2Eactive%3E%2Edropdown%2Dtoggle%2C%2Enavbar%20%2Enav%20li%2Edropdown%2Eopen%2Eactive%3E%2Edropdown%2Dtoggle%7Bcolor%3A%23555%3Bbackground%2Dcolor%3A%23e5e5e5%7D%2Enavbar%20%2Enav%20li%2Edropdown%3E%2Edropdown%2Dtoggle%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23777%3Bborder%2Dbottom%2Dcolor%3A%23777%7D%2Enavbar%20%2Enav%20li%2Edropdown%2Eopen%3E%2Edropdown%2Dtoggle%20%2Ecaret%2C%2Enavbar%20%2Enav%20li%2Edropdown%2Eactive%3E%2Edropdown%2Dtoggle%20%2Ecaret%2C%2Enavbar%20%2Enav%20li%2Edropdown%2Eopen%2Eactive%3E%2Edropdown%2Dtoggle%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23555%3Bborder%2Dbottom%2Dcolor%3A%23555%7D%2Enavbar%20%2Epull%2Dright%3Eli%3E%2Edropdown%2Dmenu%2C%2Enavbar%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%2Epull%2Dright%7Bright%3A0%3Bleft%3Aauto%7D%2Enavbar%20%2Epull%2Dright%3Eli%3E%2Edropdown%2Dmenu%3Abefore%2C%2Enavbar%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%2Epull%2Dright%3Abefore%7Bright%3A12px%3Bleft%3Aauto%7D%2Enavbar%20%2Epull%2Dright%3Eli%3E%2Edropdown%2Dmenu%3Aafter%2C%2Enavbar%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%2Epull%2Dright%3Aafter%7Bright%3A13px%3Bleft%3Aauto%7D%2Enavbar%20%2Epull%2Dright%3Eli%3E%2Edropdown%2Dmenu%20%2Edropdown%2Dmenu%2C%2Enavbar%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%2Epull%2Dright%20%2Edropdown%2Dmenu%7Bright%3A100%25%3Bleft%3Aauto%3Bmargin%2Dright%3A%2D1px%3Bmargin%2Dleft%3A0%3B%2Dwebkit%2Dborder%2Dradius%3A6px%200%206px%206px%3B%2Dmoz%2Dborder%2Dradius%3A6px%200%206px%206px%3Bborder%2Dradius%3A6px%200%206px%206px%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dinner%7Bbackground%2Dcolor%3A%231b1b1b%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23222%2C%23111%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23222%29%2Cto%28%23111%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23222%2C%23111%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23222%2C%23111%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23222%2C%23111%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%23252525%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff222222%27%2CendColorstr%3D%27%23ff111111%27%2CGradientType%3D0%29%7D%2Enavbar%2Dinverse%20%2Ebrand%2C%2Enavbar%2Dinverse%20%2Enav%3Eli%3Ea%7Bcolor%3A%23999%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%7D%2Enavbar%2Dinverse%20%2Ebrand%3Ahover%2C%2Enavbar%2Dinverse%20%2Enav%3Eli%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Ebrand%3Afocus%2C%2Enavbar%2Dinverse%20%2Enav%3Eli%3Ea%3Afocus%7Bcolor%3A%23fff%7D%2Enavbar%2Dinverse%20%2Ebrand%7Bcolor%3A%23999%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtext%7Bcolor%3A%23999%7D%2Enavbar%2Dinverse%20%2Enav%3Eli%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enav%3Eli%3Ea%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Dinverse%20%2Enav%20%2Eactive%3Ea%2C%2Enavbar%2Dinverse%20%2Enav%20%2Eactive%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enav%20%2Eactive%3Ea%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23111%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dlink%7Bcolor%3A%23999%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dlink%3Ahover%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dlink%3Afocus%7Bcolor%3A%23fff%7D%2Enavbar%2Dinverse%20%2Edivider%2Dvertical%7Bborder%2Dright%2Dcolor%3A%23222%3Bborder%2Dleft%2Dcolor%3A%23111%7D%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%2Eopen%3E%2Edropdown%2Dtoggle%2C%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%2Eactive%3E%2Edropdown%2Dtoggle%2C%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%2Eopen%2Eactive%3E%2Edropdown%2Dtoggle%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23111%7D%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%3Ea%3Ahover%20%2Ecaret%2C%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%3Ea%3Afocus%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23fff%3Bborder%2Dbottom%2Dcolor%3A%23fff%7D%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%3E%2Edropdown%2Dtoggle%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23999%3Bborder%2Dbottom%2Dcolor%3A%23999%7D%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%2Eopen%3E%2Edropdown%2Dtoggle%20%2Ecaret%2C%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%2Eactive%3E%2Edropdown%2Dtoggle%20%2Ecaret%2C%2Enavbar%2Dinverse%20%2Enav%20li%2Edropdown%2Eopen%2Eactive%3E%2Edropdown%2Dtoggle%20%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23fff%3Bborder%2Dbottom%2Dcolor%3A%23fff%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dsearch%20%2Esearch%2Dquery%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23515151%3Bborder%2Dcolor%3A%23111%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E15%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E15%29%3Bbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E15%29%3B%2Dwebkit%2Dtransition%3Anone%3B%2Dmoz%2Dtransition%3Anone%3B%2Do%2Dtransition%3Anone%3Btransition%3Anone%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dsearch%20%2Esearch%2Dquery%3A%2Dmoz%2Dplaceholder%7Bcolor%3A%23ccc%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dsearch%20%2Esearch%2Dquery%3A%2Dms%2Dinput%2Dplaceholder%7Bcolor%3A%23ccc%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dsearch%20%2Esearch%2Dquery%3A%3A%2Dwebkit%2Dinput%2Dplaceholder%7Bcolor%3A%23ccc%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dsearch%20%2Esearch%2Dquery%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dsearch%20%2Esearch%2Dquery%2Efocused%7Bpadding%3A5px%2015px%3Bcolor%3A%23333%3Btext%2Dshadow%3A0%201px%200%20%23fff%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A0%3Boutline%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3A0%200%203px%20rgba%280%2C0%2C0%2C0%2E15%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%200%203px%20rgba%280%2C0%2C0%2C0%2E15%29%3Bbox%2Dshadow%3A0%200%203px%20rgba%280%2C0%2C0%2C0%2E15%29%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%7Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%230e0e0e%3B%2Abackground%2Dcolor%3A%23040404%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23151515%2C%23040404%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23151515%29%2Cto%28%23040404%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23151515%2C%23040404%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23151515%2C%23040404%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23151515%2C%23040404%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bborder%2Dcolor%3A%23040404%20%23040404%20%23000%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E1%29%20rgba%280%2C0%2C0%2C0%2E25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff151515%27%2CendColorstr%3D%27%23ff040404%27%2CGradientType%3D0%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%3Ahover%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%3Afocus%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%3Aactive%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%2Eactive%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%2Edisabled%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%5Bdisabled%5D%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23040404%3B%2Abackground%2Dcolor%3A%23000%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%3Aactive%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dnavbar%2Eactive%7Bbackground%2Dcolor%3A%23000%20%5C9%7D%2Ebreadcrumb%7Bpadding%3A8px%2015px%3Bmargin%3A0%200%2020px%3Blist%2Dstyle%3Anone%3Bbackground%2Dcolor%3A%23f5f5f5%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7D%2Ebreadcrumb%3Eli%7Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3Btext%2Dshadow%3A0%201px%200%20%23fff%3B%2Azoom%3A1%7D%2Ebreadcrumb%3Eli%3E%2Edivider%7Bpadding%3A0%205px%3Bcolor%3A%23ccc%7D%2Ebreadcrumb%3E%2Eactive%7Bcolor%3A%23999%7D%2Epagination%7Bmargin%3A20px%200%7D%2Epagination%20ul%7Bdisplay%3Ainline%2Dblock%3B%2Adisplay%3Ainline%3Bmargin%2Dbottom%3A0%3Bmargin%2Dleft%3A0%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%3B%2Azoom%3A1%3B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%3Bbox%2Dshadow%3A0%201px%202px%20rgba%280%2C0%2C0%2C0%2E05%29%7D%2Epagination%20ul%3Eli%7Bdisplay%3Ainline%7D%2Epagination%20ul%3Eli%3Ea%2C%2Epagination%20ul%3Eli%3Espan%7Bfloat%3Aleft%3Bpadding%3A4px%2012px%3Bline%2Dheight%3A20px%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%3Bborder%2Dleft%2Dwidth%3A0%7D%2Epagination%20ul%3Eli%3Ea%3Ahover%2C%2Epagination%20ul%3Eli%3Ea%3Afocus%2C%2Epagination%20ul%3E%2Eactive%3Ea%2C%2Epagination%20ul%3E%2Eactive%3Espan%7Bbackground%2Dcolor%3A%23f5f5f5%7D%2Epagination%20ul%3E%2Eactive%3Ea%2C%2Epagination%20ul%3E%2Eactive%3Espan%7Bcolor%3A%23999%3Bcursor%3Adefault%7D%2Epagination%20ul%3E%2Edisabled%3Espan%2C%2Epagination%20ul%3E%2Edisabled%3Ea%2C%2Epagination%20ul%3E%2Edisabled%3Ea%3Ahover%2C%2Epagination%20ul%3E%2Edisabled%3Ea%3Afocus%7Bcolor%3A%23999%3Bcursor%3Adefault%3Bbackground%2Dcolor%3Atransparent%7D%2Epagination%20ul%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%20ul%3Eli%3Afirst%2Dchild%3Espan%7Bborder%2Dleft%2Dwidth%3A1px%3B%2Dwebkit%2Dborder%2Dbottom%2Dleft%2Dradius%3A4px%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%3B%2Dwebkit%2Dborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomleft%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopleft%3A4px%7D%2Epagination%20ul%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%20ul%3Eli%3Alast%2Dchild%3Espan%7B%2Dwebkit%2Dborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dtop%2Dright%2Dradius%3A4px%3B%2Dwebkit%2Dborder%2Dbottom%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dtopright%3A4px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomright%3A4px%7D%2Epagination%2Dcentered%7Btext%2Dalign%3Acenter%7D%2Epagination%2Dright%7Btext%2Dalign%3Aright%7D%2Epagination%2Dlarge%20ul%3Eli%3Ea%2C%2Epagination%2Dlarge%20ul%3Eli%3Espan%7Bpadding%3A11px%2019px%3Bfont%2Dsize%3A17%2E5px%7D%2Epagination%2Dlarge%20ul%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%2Dlarge%20ul%3Eli%3Afirst%2Dchild%3Espan%7B%2Dwebkit%2Dborder%2Dbottom%2Dleft%2Dradius%3A6px%3Bborder%2Dbottom%2Dleft%2Dradius%3A6px%3B%2Dwebkit%2Dborder%2Dtop%2Dleft%2Dradius%3A6px%3Bborder%2Dtop%2Dleft%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomleft%3A6px%3B%2Dmoz%2Dborder%2Dradius%2Dtopleft%3A6px%7D%2Epagination%2Dlarge%20ul%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%2Dlarge%20ul%3Eli%3Alast%2Dchild%3Espan%7B%2Dwebkit%2Dborder%2Dtop%2Dright%2Dradius%3A6px%3Bborder%2Dtop%2Dright%2Dradius%3A6px%3B%2Dwebkit%2Dborder%2Dbottom%2Dright%2Dradius%3A6px%3Bborder%2Dbottom%2Dright%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%2Dtopright%3A6px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomright%3A6px%7D%2Epagination%2Dmini%20ul%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%2Dsmall%20ul%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%2Dmini%20ul%3Eli%3Afirst%2Dchild%3Espan%2C%2Epagination%2Dsmall%20ul%3Eli%3Afirst%2Dchild%3Espan%7B%2Dwebkit%2Dborder%2Dbottom%2Dleft%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%3B%2Dwebkit%2Dborder%2Dtop%2Dleft%2Dradius%3A3px%3Bborder%2Dtop%2Dleft%2Dradius%3A3px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomleft%3A3px%3B%2Dmoz%2Dborder%2Dradius%2Dtopleft%3A3px%7D%2Epagination%2Dmini%20ul%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%2Dsmall%20ul%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%2Dmini%20ul%3Eli%3Alast%2Dchild%3Espan%2C%2Epagination%2Dsmall%20ul%3Eli%3Alast%2Dchild%3Espan%7B%2Dwebkit%2Dborder%2Dtop%2Dright%2Dradius%3A3px%3Bborder%2Dtop%2Dright%2Dradius%3A3px%3B%2Dwebkit%2Dborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dright%2Dradius%3A3px%3B%2Dmoz%2Dborder%2Dradius%2Dtopright%3A3px%3B%2Dmoz%2Dborder%2Dradius%2Dbottomright%3A3px%7D%2Epagination%2Dsmall%20ul%3Eli%3Ea%2C%2Epagination%2Dsmall%20ul%3Eli%3Espan%7Bpadding%3A2px%2010px%3Bfont%2Dsize%3A11%2E9px%7D%2Epagination%2Dmini%20ul%3Eli%3Ea%2C%2Epagination%2Dmini%20ul%3Eli%3Espan%7Bpadding%3A0%206px%3Bfont%2Dsize%3A10%2E5px%7D%2Epager%7Bmargin%3A20px%200%3Btext%2Dalign%3Acenter%3Blist%2Dstyle%3Anone%3B%2Azoom%3A1%7D%2Epager%3Abefore%2C%2Epager%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Epager%3Aafter%7Bclear%3Aboth%7D%2Epager%20li%7Bdisplay%3Ainline%7D%2Epager%20li%3Ea%2C%2Epager%20li%3Espan%7Bdisplay%3Ainline%2Dblock%3Bpadding%3A5px%2014px%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%3B%2Dwebkit%2Dborder%2Dradius%3A15px%3B%2Dmoz%2Dborder%2Dradius%3A15px%3Bborder%2Dradius%3A15px%7D%2Epager%20li%3Ea%3Ahover%2C%2Epager%20li%3Ea%3Afocus%7Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23f5f5f5%7D%2Epager%20%2Enext%3Ea%2C%2Epager%20%2Enext%3Espan%7Bfloat%3Aright%7D%2Epager%20%2Eprevious%3Ea%2C%2Epager%20%2Eprevious%3Espan%7Bfloat%3Aleft%7D%2Epager%20%2Edisabled%3Ea%2C%2Epager%20%2Edisabled%3Ea%3Ahover%2C%2Epager%20%2Edisabled%3Ea%3Afocus%2C%2Epager%20%2Edisabled%3Espan%7Bcolor%3A%23999%3Bcursor%3Adefault%3Bbackground%2Dcolor%3A%23fff%7D%2Emodal%2Dbackdrop%7Bposition%3Afixed%3Btop%3A0%3Bright%3A0%3Bbottom%3A0%3Bleft%3A0%3Bz%2Dindex%3A1040%3Bbackground%2Dcolor%3A%23000%7D%2Emodal%2Dbackdrop%2Efade%7Bopacity%3A0%7D%2Emodal%2Dbackdrop%2C%2Emodal%2Dbackdrop%2Efade%2Ein%7Bopacity%3A%2E8%3Bfilter%3Aalpha%28opacity%3D80%29%7D%2Emodal%7Bposition%3Afixed%3Btop%3A10%25%3Bleft%3A50%25%3Bz%2Dindex%3A1050%3Bwidth%3A560px%3Bmargin%2Dleft%3A%2D280px%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23999%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C0%2E3%29%3B%2Aborder%3A1px%20solid%20%23999%3B%2Dwebkit%2Dborder%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%3A6px%3Bborder%2Dradius%3A6px%3Boutline%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3A0%203px%207px%20rgba%280%2C0%2C0%2C0%2E3%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%203px%207px%20rgba%280%2C0%2C0%2C0%2E3%29%3Bbox%2Dshadow%3A0%203px%207px%20rgba%280%2C0%2C0%2C0%2E3%29%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3B%2Dmoz%2Dbackground%2Dclip%3Apadding%2Dbox%3Bbackground%2Dclip%3Apadding%2Dbox%7D%2Emodal%2Efade%7Btop%3A%2D25%25%3B%2Dwebkit%2Dtransition%3Aopacity%20%2E3s%20linear%2Ctop%20%2E3s%20ease%2Dout%3B%2Dmoz%2Dtransition%3Aopacity%20%2E3s%20linear%2Ctop%20%2E3s%20ease%2Dout%3B%2Do%2Dtransition%3Aopacity%20%2E3s%20linear%2Ctop%20%2E3s%20ease%2Dout%3Btransition%3Aopacity%20%2E3s%20linear%2Ctop%20%2E3s%20ease%2Dout%7D%2Emodal%2Efade%2Ein%7Btop%3A10%25%7D%2Emodal%2Dheader%7Bpadding%3A9px%2015px%3Bborder%2Dbottom%3A1px%20solid%20%23eee%7D%2Emodal%2Dheader%20%2Eclose%7Bmargin%2Dtop%3A2px%7D%2Emodal%2Dheader%20h3%7Bmargin%3A0%3Bline%2Dheight%3A30px%7D%2Emodal%2Dbody%7Bposition%3Arelative%3Bmax%2Dheight%3A400px%3Bpadding%3A15px%3Boverflow%2Dy%3Aauto%7D%2Emodal%2Dform%7Bmargin%2Dbottom%3A0%7D%2Emodal%2Dfooter%7Bpadding%3A14px%2015px%2015px%3Bmargin%2Dbottom%3A0%3Btext%2Dalign%3Aright%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dtop%3A1px%20solid%20%23ddd%3B%2Dwebkit%2Dborder%2Dradius%3A0%200%206px%206px%3B%2Dmoz%2Dborder%2Dradius%3A0%200%206px%206px%3Bborder%2Dradius%3A0%200%206px%206px%3B%2Azoom%3A1%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%200%20%23fff%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%200%20%23fff%3Bbox%2Dshadow%3Ainset%200%201px%200%20%23fff%7D%2Emodal%2Dfooter%3Abefore%2C%2Emodal%2Dfooter%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Emodal%2Dfooter%3Aafter%7Bclear%3Aboth%7D%2Emodal%2Dfooter%20%2Ebtn%2B%2Ebtn%7Bmargin%2Dbottom%3A0%3Bmargin%2Dleft%3A5px%7D%2Emodal%2Dfooter%20%2Ebtn%2Dgroup%20%2Ebtn%2B%2Ebtn%7Bmargin%2Dleft%3A%2D1px%7D%2Emodal%2Dfooter%20%2Ebtn%2Dblock%2B%2Ebtn%2Dblock%7Bmargin%2Dleft%3A0%7D%2Etooltip%7Bposition%3Aabsolute%3Bz%2Dindex%3A1030%3Bdisplay%3Ablock%3Bfont%2Dsize%3A11px%3Bline%2Dheight%3A1%2E4%3Bopacity%3A0%3Bfilter%3Aalpha%28opacity%3D0%29%3Bvisibility%3Avisible%7D%2Etooltip%2Ein%7Bopacity%3A%2E8%3Bfilter%3Aalpha%28opacity%3D80%29%7D%2Etooltip%2Etop%7Bpadding%3A5px%200%3Bmargin%2Dtop%3A%2D3px%7D%2Etooltip%2Eright%7Bpadding%3A0%205px%3Bmargin%2Dleft%3A3px%7D%2Etooltip%2Ebottom%7Bpadding%3A5px%200%3Bmargin%2Dtop%3A3px%7D%2Etooltip%2Eleft%7Bpadding%3A0%205px%3Bmargin%2Dleft%3A%2D3px%7D%2Etooltip%2Dinner%7Bmax%2Dwidth%3A200px%3Bpadding%3A8px%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23000%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7D%2Etooltip%2Darrow%7Bposition%3Aabsolute%3Bwidth%3A0%3Bheight%3A0%3Bborder%2Dcolor%3Atransparent%3Bborder%2Dstyle%3Asolid%7D%2Etooltip%2Etop%20%2Etooltip%2Darrow%7Bbottom%3A0%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D5px%3Bborder%2Dtop%2Dcolor%3A%23000%3Bborder%2Dwidth%3A5px%205px%200%7D%2Etooltip%2Eright%20%2Etooltip%2Darrow%7Btop%3A50%25%3Bleft%3A0%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dright%2Dcolor%3A%23000%3Bborder%2Dwidth%3A5px%205px%205px%200%7D%2Etooltip%2Eleft%20%2Etooltip%2Darrow%7Btop%3A50%25%3Bright%3A0%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dleft%2Dcolor%3A%23000%3Bborder%2Dwidth%3A5px%200%205px%205px%7D%2Etooltip%2Ebottom%20%2Etooltip%2Darrow%7Btop%3A0%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D5px%3Bborder%2Dbottom%2Dcolor%3A%23000%3Bborder%2Dwidth%3A0%205px%205px%7D%2Epopover%7Bposition%3Aabsolute%3Btop%3A0%3Bleft%3A0%3Bz%2Dindex%3A1010%3Bdisplay%3Anone%3Bmax%2Dwidth%3A276px%3Bpadding%3A1px%3Btext%2Dalign%3Aleft%3Bwhite%2Dspace%3Anormal%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ccc%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C0%2E2%29%3B%2Dwebkit%2Dborder%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%3A6px%3Bborder%2Dradius%3A6px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C0%2E2%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C0%2E2%29%3Bbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C0%2E2%29%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3B%2Dmoz%2Dbackground%2Dclip%3Apadding%3Bbackground%2Dclip%3Apadding%2Dbox%7D%2Epopover%2Etop%7Bmargin%2Dtop%3A%2D10px%7D%2Epopover%2Eright%7Bmargin%2Dleft%3A10px%7D%2Epopover%2Ebottom%7Bmargin%2Dtop%3A10px%7D%2Epopover%2Eleft%7Bmargin%2Dleft%3A%2D10px%7D%2Epopover%2Dtitle%7Bpadding%3A8px%2014px%3Bmargin%3A0%3Bfont%2Dsize%3A14px%3Bfont%2Dweight%3Anormal%3Bline%2Dheight%3A18px%3Bbackground%2Dcolor%3A%23f7f7f7%3Bborder%2Dbottom%3A1px%20solid%20%23ebebeb%3B%2Dwebkit%2Dborder%2Dradius%3A5px%205px%200%200%3B%2Dmoz%2Dborder%2Dradius%3A5px%205px%200%200%3Bborder%2Dradius%3A5px%205px%200%200%7D%2Epopover%2Dtitle%3Aempty%7Bdisplay%3Anone%7D%2Epopover%2Dcontent%7Bpadding%3A9px%2014px%7D%2Epopover%20%2Earrow%2C%2Epopover%20%2Earrow%3Aafter%7Bposition%3Aabsolute%3Bdisplay%3Ablock%3Bwidth%3A0%3Bheight%3A0%3Bborder%2Dcolor%3Atransparent%3Bborder%2Dstyle%3Asolid%7D%2Epopover%20%2Earrow%7Bborder%2Dwidth%3A11px%7D%2Epopover%20%2Earrow%3Aafter%7Bborder%2Dwidth%3A10px%3Bcontent%3A%22%22%7D%2Epopover%2Etop%20%2Earrow%7Bbottom%3A%2D11px%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D11px%3Bborder%2Dtop%2Dcolor%3A%23999%3Bborder%2Dtop%2Dcolor%3Argba%280%2C0%2C0%2C0%2E25%29%3Bborder%2Dbottom%2Dwidth%3A0%7D%2Epopover%2Etop%20%2Earrow%3Aafter%7Bbottom%3A1px%3Bmargin%2Dleft%3A%2D10px%3Bborder%2Dtop%2Dcolor%3A%23fff%3Bborder%2Dbottom%2Dwidth%3A0%7D%2Epopover%2Eright%20%2Earrow%7Btop%3A50%25%3Bleft%3A%2D11px%3Bmargin%2Dtop%3A%2D11px%3Bborder%2Dright%2Dcolor%3A%23999%3Bborder%2Dright%2Dcolor%3Argba%280%2C0%2C0%2C0%2E25%29%3Bborder%2Dleft%2Dwidth%3A0%7D%2Epopover%2Eright%20%2Earrow%3Aafter%7Bbottom%3A%2D10px%3Bleft%3A1px%3Bborder%2Dright%2Dcolor%3A%23fff%3Bborder%2Dleft%2Dwidth%3A0%7D%2Epopover%2Ebottom%20%2Earrow%7Btop%3A%2D11px%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D11px%3Bborder%2Dbottom%2Dcolor%3A%23999%3Bborder%2Dbottom%2Dcolor%3Argba%280%2C0%2C0%2C0%2E25%29%3Bborder%2Dtop%2Dwidth%3A0%7D%2Epopover%2Ebottom%20%2Earrow%3Aafter%7Btop%3A1px%3Bmargin%2Dleft%3A%2D10px%3Bborder%2Dbottom%2Dcolor%3A%23fff%3Bborder%2Dtop%2Dwidth%3A0%7D%2Epopover%2Eleft%20%2Earrow%7Btop%3A50%25%3Bright%3A%2D11px%3Bmargin%2Dtop%3A%2D11px%3Bborder%2Dleft%2Dcolor%3A%23999%3Bborder%2Dleft%2Dcolor%3Argba%280%2C0%2C0%2C0%2E25%29%3Bborder%2Dright%2Dwidth%3A0%7D%2Epopover%2Eleft%20%2Earrow%3Aafter%7Bright%3A1px%3Bbottom%3A%2D10px%3Bborder%2Dleft%2Dcolor%3A%23fff%3Bborder%2Dright%2Dwidth%3A0%7D%2Ethumbnails%7Bmargin%2Dleft%3A%2D20px%3Blist%2Dstyle%3Anone%3B%2Azoom%3A1%7D%2Ethumbnails%3Abefore%2C%2Ethumbnails%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Ethumbnails%3Aafter%7Bclear%3Aboth%7D%2Erow%2Dfluid%20%2Ethumbnails%7Bmargin%2Dleft%3A0%7D%2Ethumbnails%3Eli%7Bfloat%3Aleft%3Bmargin%2Dbottom%3A20px%3Bmargin%2Dleft%3A20px%7D%2Ethumbnail%7Bdisplay%3Ablock%3Bpadding%3A4px%3Bline%2Dheight%3A20px%3Bborder%3A1px%20solid%20%23ddd%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%203px%20rgba%280%2C0%2C0%2C0%2E055%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%201px%203px%20rgba%280%2C0%2C0%2C0%2E055%29%3Bbox%2Dshadow%3A0%201px%203px%20rgba%280%2C0%2C0%2C0%2E055%29%3B%2Dwebkit%2Dtransition%3Aall%20%2E2s%20ease%2Din%2Dout%3B%2Dmoz%2Dtransition%3Aall%20%2E2s%20ease%2Din%2Dout%3B%2Do%2Dtransition%3Aall%20%2E2s%20ease%2Din%2Dout%3Btransition%3Aall%20%2E2s%20ease%2Din%2Dout%7Da%2Ethumbnail%3Ahover%2Ca%2Ethumbnail%3Afocus%7Bborder%2Dcolor%3A%2308c%3B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%204px%20rgba%280%2C105%2C214%2C0%2E25%29%3B%2Dmoz%2Dbox%2Dshadow%3A0%201px%204px%20rgba%280%2C105%2C214%2C0%2E25%29%3Bbox%2Dshadow%3A0%201px%204px%20rgba%280%2C105%2C214%2C0%2E25%29%7D%2Ethumbnail%3Eimg%7Bdisplay%3Ablock%3Bmax%2Dwidth%3A100%25%3Bmargin%2Dright%3Aauto%3Bmargin%2Dleft%3Aauto%7D%2Ethumbnail%20%2Ecaption%7Bpadding%3A9px%3Bcolor%3A%23555%7D%2Emedia%2C%2Emedia%2Dbody%7Boverflow%3Ahidden%3B%2Aoverflow%3Avisible%3Bzoom%3A1%7D%2Emedia%2C%2Emedia%20%2Emedia%7Bmargin%2Dtop%3A15px%7D%2Emedia%3Afirst%2Dchild%7Bmargin%2Dtop%3A0%7D%2Emedia%2Dobject%7Bdisplay%3Ablock%7D%2Emedia%2Dheading%7Bmargin%3A0%200%205px%7D%2Emedia%3E%2Epull%2Dleft%7Bmargin%2Dright%3A10px%7D%2Emedia%3E%2Epull%2Dright%7Bmargin%2Dleft%3A10px%7D%2Emedia%2Dlist%7Bmargin%2Dleft%3A0%3Blist%2Dstyle%3Anone%7D%2Elabel%2C%2Ebadge%7Bdisplay%3Ainline%2Dblock%3Bpadding%3A2px%204px%3Bfont%2Dsize%3A11%2E844px%3Bfont%2Dweight%3Abold%3Bline%2Dheight%3A14px%3Bcolor%3A%23fff%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Abaseline%3Bbackground%2Dcolor%3A%23999%7D%2Elabel%7B%2Dwebkit%2Dborder%2Dradius%3A3px%3B%2Dmoz%2Dborder%2Dradius%3A3px%3Bborder%2Dradius%3A3px%7D%2Ebadge%7Bpadding%2Dright%3A9px%3Bpadding%2Dleft%3A9px%3B%2Dwebkit%2Dborder%2Dradius%3A9px%3B%2Dmoz%2Dborder%2Dradius%3A9px%3Bborder%2Dradius%3A9px%7D%2Elabel%3Aempty%2C%2Ebadge%3Aempty%7Bdisplay%3Anone%7Da%2Elabel%3Ahover%2Ca%2Elabel%3Afocus%2Ca%2Ebadge%3Ahover%2Ca%2Ebadge%3Afocus%7Bcolor%3A%23fff%3Btext%2Ddecoration%3Anone%3Bcursor%3Apointer%7D%2Elabel%2Dimportant%2C%2Ebadge%2Dimportant%7Bbackground%2Dcolor%3A%23b94a48%7D%2Elabel%2Dimportant%5Bhref%5D%2C%2Ebadge%2Dimportant%5Bhref%5D%7Bbackground%2Dcolor%3A%23953b39%7D%2Elabel%2Dwarning%2C%2Ebadge%2Dwarning%7Bbackground%2Dcolor%3A%23f89406%7D%2Elabel%2Dwarning%5Bhref%5D%2C%2Ebadge%2Dwarning%5Bhref%5D%7Bbackground%2Dcolor%3A%23c67605%7D%2Elabel%2Dsuccess%2C%2Ebadge%2Dsuccess%7Bbackground%2Dcolor%3A%23468847%7D%2Elabel%2Dsuccess%5Bhref%5D%2C%2Ebadge%2Dsuccess%5Bhref%5D%7Bbackground%2Dcolor%3A%23356635%7D%2Elabel%2Dinfo%2C%2Ebadge%2Dinfo%7Bbackground%2Dcolor%3A%233a87ad%7D%2Elabel%2Dinfo%5Bhref%5D%2C%2Ebadge%2Dinfo%5Bhref%5D%7Bbackground%2Dcolor%3A%232d6987%7D%2Elabel%2Dinverse%2C%2Ebadge%2Dinverse%7Bbackground%2Dcolor%3A%23333%7D%2Elabel%2Dinverse%5Bhref%5D%2C%2Ebadge%2Dinverse%5Bhref%5D%7Bbackground%2Dcolor%3A%231a1a1a%7D%2Ebtn%20%2Elabel%2C%2Ebtn%20%2Ebadge%7Bposition%3Arelative%3Btop%3A%2D1px%7D%2Ebtn%2Dmini%20%2Elabel%2C%2Ebtn%2Dmini%20%2Ebadge%7Btop%3A0%7D%40%2Dwebkit%2Dkeyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%40%2Dmoz%2Dkeyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%40%2Dms%2Dkeyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%40%2Do%2Dkeyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A0%200%7Dto%7Bbackground%2Dposition%3A40px%200%7D%7D%40keyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%2Eprogress%7Bheight%3A20px%3Bmargin%2Dbottom%3A20px%3Boverflow%3Ahidden%3Bbackground%2Dcolor%3A%23f7f7f7%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23f5f5f5%2C%23f9f9f9%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23f5f5f5%29%2Cto%28%23f9f9f9%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23f5f5f5%2C%23f9f9f9%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23f5f5f5%2C%23f9f9f9%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23f5f5f5%2C%23f9f9f9%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23fff5f5f5%27%2CendColorstr%3D%27%23fff9f9f9%27%2CGradientType%3D0%29%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E1%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E1%29%3Bbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C0%2E1%29%7D%2Eprogress%20%2Ebar%7Bfloat%3Aleft%3Bwidth%3A0%3Bheight%3A100%25%3Bfont%2Dsize%3A12px%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Btext%2Dshadow%3A0%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E25%29%3Bbackground%2Dcolor%3A%230e90d2%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23149bdf%2C%230480be%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23149bdf%29%2Cto%28%230480be%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23149bdf%2C%230480be%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23149bdf%2C%230480be%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23149bdf%2C%230480be%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff149bdf%27%2CendColorstr%3D%27%23ff0480be%27%2CGradientType%3D0%29%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E15%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E15%29%3Bbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E15%29%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%3B%2Dwebkit%2Dtransition%3Awidth%20%2E6s%20ease%3B%2Dmoz%2Dtransition%3Awidth%20%2E6s%20ease%3B%2Do%2Dtransition%3Awidth%20%2E6s%20ease%3Btransition%3Awidth%20%2E6s%20ease%7D%2Eprogress%20%2Ebar%2B%2Ebar%7B%2Dwebkit%2Dbox%2Dshadow%3Ainset%201px%200%200%20rgba%280%2C0%2C0%2C0%2E15%29%2Cinset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E15%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%201px%200%200%20rgba%280%2C0%2C0%2C0%2E15%29%2Cinset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E15%29%3Bbox%2Dshadow%3Ainset%201px%200%200%20rgba%280%2C0%2C0%2C0%2E15%29%2Cinset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C0%2E15%29%7D%2Eprogress%2Dstriped%20%2Ebar%7Bbackground%2Dcolor%3A%23149bdf%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%20100%25%2C100%25%200%2Ccolor%2Dstop%280%2E25%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E25%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Ctransparent%29%2Cto%28transparent%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3B%2Dwebkit%2Dbackground%2Dsize%3A40px%2040px%3B%2Dmoz%2Dbackground%2Dsize%3A40px%2040px%3B%2Do%2Dbackground%2Dsize%3A40px%2040px%3Bbackground%2Dsize%3A40px%2040px%7D%2Eprogress%2Eactive%20%2Ebar%7B%2Dwebkit%2Danimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%3B%2Dmoz%2Danimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%3B%2Dms%2Danimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%3B%2Do%2Danimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%3Banimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%7D%2Eprogress%2Ddanger%20%2Ebar%2C%2Eprogress%20%2Ebar%2Ddanger%7Bbackground%2Dcolor%3A%23dd514c%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23ee5f5b%2C%23c43c35%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23ee5f5b%29%2Cto%28%23c43c35%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23ee5f5b%2C%23c43c35%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23ee5f5b%2C%23c43c35%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23ee5f5b%2C%23c43c35%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ffee5f5b%27%2CendColorstr%3D%27%23ffc43c35%27%2CGradientType%3D0%29%7D%2Eprogress%2Ddanger%2Eprogress%2Dstriped%20%2Ebar%2C%2Eprogress%2Dstriped%20%2Ebar%2Ddanger%7Bbackground%2Dcolor%3A%23ee5f5b%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%20100%25%2C100%25%200%2Ccolor%2Dstop%280%2E25%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E25%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Ctransparent%29%2Cto%28transparent%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%7D%2Eprogress%2Dsuccess%20%2Ebar%2C%2Eprogress%20%2Ebar%2Dsuccess%7Bbackground%2Dcolor%3A%235eb95e%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%2362c462%2C%2357a957%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%2362c462%29%2Cto%28%2357a957%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%2362c462%2C%2357a957%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%2362c462%2C%2357a957%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%2362c462%2C%2357a957%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff62c462%27%2CendColorstr%3D%27%23ff57a957%27%2CGradientType%3D0%29%7D%2Eprogress%2Dsuccess%2Eprogress%2Dstriped%20%2Ebar%2C%2Eprogress%2Dstriped%20%2Ebar%2Dsuccess%7Bbackground%2Dcolor%3A%2362c462%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%20100%25%2C100%25%200%2Ccolor%2Dstop%280%2E25%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E25%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Ctransparent%29%2Cto%28transparent%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%7D%2Eprogress%2Dinfo%20%2Ebar%2C%2Eprogress%20%2Ebar%2Dinfo%7Bbackground%2Dcolor%3A%234bb1cf%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%235bc0de%2C%23339bb9%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%235bc0de%29%2Cto%28%23339bb9%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%235bc0de%2C%23339bb9%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%235bc0de%2C%23339bb9%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%235bc0de%2C%23339bb9%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23ff5bc0de%27%2CendColorstr%3D%27%23ff339bb9%27%2CGradientType%3D0%29%7D%2Eprogress%2Dinfo%2Eprogress%2Dstriped%20%2Ebar%2C%2Eprogress%2Dstriped%20%2Ebar%2Dinfo%7Bbackground%2Dcolor%3A%235bc0de%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%20100%25%2C100%25%200%2Ccolor%2Dstop%280%2E25%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E25%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Ctransparent%29%2Cto%28transparent%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%7D%2Eprogress%2Dwarning%20%2Ebar%2C%2Eprogress%20%2Ebar%2Dwarning%7Bbackground%2Dcolor%3A%23faa732%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%28top%2C%23fbb450%2C%23f89406%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%200%2C0%20100%25%2Cfrom%28%23fbb450%29%2Cto%28%23f89406%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28top%2C%23fbb450%2C%23f89406%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28top%2C%23fbb450%2C%23f89406%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20bottom%2C%23fbb450%2C%23f89406%29%3Bbackground%2Drepeat%3Arepeat%2Dx%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%23fffbb450%27%2CendColorstr%3D%27%23fff89406%27%2CGradientType%3D0%29%7D%2Eprogress%2Dwarning%2Eprogress%2Dstriped%20%2Ebar%2C%2Eprogress%2Dstriped%20%2Ebar%2Dwarning%7Bbackground%2Dcolor%3A%23fbb450%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2C0%20100%25%2C100%25%200%2Ccolor%2Dstop%280%2E25%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E25%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Ctransparent%29%2Ccolor%2Dstop%280%2E5%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Crgba%28255%2C255%2C255%2C0%2E15%29%29%2Ccolor%2Dstop%280%2E75%2Ctransparent%29%2Cto%28transparent%29%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Dmoz%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C0%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C0%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%7D%2Eaccordion%7Bmargin%2Dbottom%3A20px%7D%2Eaccordion%2Dgroup%7Bmargin%2Dbottom%3A2px%3Bborder%3A1px%20solid%20%23e5e5e5%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7D%2Eaccordion%2Dheading%7Bborder%2Dbottom%3A0%7D%2Eaccordion%2Dheading%20%2Eaccordion%2Dtoggle%7Bdisplay%3Ablock%3Bpadding%3A8px%2015px%7D%2Eaccordion%2Dtoggle%7Bcursor%3Apointer%7D%2Eaccordion%2Dinner%7Bpadding%3A9px%2015px%3Bborder%2Dtop%3A1px%20solid%20%23e5e5e5%7D%2Ecarousel%7Bposition%3Arelative%3Bmargin%2Dbottom%3A20px%3Bline%2Dheight%3A1%7D%2Ecarousel%2Dinner%7Bposition%3Arelative%3Bwidth%3A100%25%3Boverflow%3Ahidden%7D%2Ecarousel%2Dinner%3E%2Eitem%7Bposition%3Arelative%3Bdisplay%3Anone%3B%2Dwebkit%2Dtransition%3A%2E6s%20ease%2Din%2Dout%20left%3B%2Dmoz%2Dtransition%3A%2E6s%20ease%2Din%2Dout%20left%3B%2Do%2Dtransition%3A%2E6s%20ease%2Din%2Dout%20left%3Btransition%3A%2E6s%20ease%2Din%2Dout%20left%7D%2Ecarousel%2Dinner%3E%2Eitem%3Eimg%2C%2Ecarousel%2Dinner%3E%2Eitem%3Ea%3Eimg%7Bdisplay%3Ablock%3Bline%2Dheight%3A1%7D%2Ecarousel%2Dinner%3E%2Eactive%2C%2Ecarousel%2Dinner%3E%2Enext%2C%2Ecarousel%2Dinner%3E%2Eprev%7Bdisplay%3Ablock%7D%2Ecarousel%2Dinner%3E%2Eactive%7Bleft%3A0%7D%2Ecarousel%2Dinner%3E%2Enext%2C%2Ecarousel%2Dinner%3E%2Eprev%7Bposition%3Aabsolute%3Btop%3A0%3Bwidth%3A100%25%7D%2Ecarousel%2Dinner%3E%2Enext%7Bleft%3A100%25%7D%2Ecarousel%2Dinner%3E%2Eprev%7Bleft%3A%2D100%25%7D%2Ecarousel%2Dinner%3E%2Enext%2Eleft%2C%2Ecarousel%2Dinner%3E%2Eprev%2Eright%7Bleft%3A0%7D%2Ecarousel%2Dinner%3E%2Eactive%2Eleft%7Bleft%3A%2D100%25%7D%2Ecarousel%2Dinner%3E%2Eactive%2Eright%7Bleft%3A100%25%7D%2Ecarousel%2Dcontrol%7Bposition%3Aabsolute%3Btop%3A40%25%3Bleft%3A15px%3Bwidth%3A40px%3Bheight%3A40px%3Bmargin%2Dtop%3A%2D20px%3Bfont%2Dsize%3A60px%3Bfont%2Dweight%3A100%3Bline%2Dheight%3A30px%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Bbackground%3A%23222%3Bborder%3A3px%20solid%20%23fff%3B%2Dwebkit%2Dborder%2Dradius%3A23px%3B%2Dmoz%2Dborder%2Dradius%3A23px%3Bborder%2Dradius%3A23px%3Bopacity%3A%2E5%3Bfilter%3Aalpha%28opacity%3D50%29%7D%2Ecarousel%2Dcontrol%2Eright%7Bright%3A15px%3Bleft%3Aauto%7D%2Ecarousel%2Dcontrol%3Ahover%2C%2Ecarousel%2Dcontrol%3Afocus%7Bcolor%3A%23fff%3Btext%2Ddecoration%3Anone%3Bopacity%3A%2E9%3Bfilter%3Aalpha%28opacity%3D90%29%7D%2Ecarousel%2Dindicators%7Bposition%3Aabsolute%3Btop%3A15px%3Bright%3A15px%3Bz%2Dindex%3A5%3Bmargin%3A0%3Blist%2Dstyle%3Anone%7D%2Ecarousel%2Dindicators%20li%7Bdisplay%3Ablock%3Bfloat%3Aleft%3Bwidth%3A10px%3Bheight%3A10px%3Bmargin%2Dleft%3A5px%3Btext%2Dindent%3A%2D999px%3Bbackground%2Dcolor%3A%23ccc%3Bbackground%2Dcolor%3Argba%28255%2C255%2C255%2C0%2E25%29%3Bborder%2Dradius%3A5px%7D%2Ecarousel%2Dindicators%20%2Eactive%7Bbackground%2Dcolor%3A%23fff%7D%2Ecarousel%2Dcaption%7Bposition%3Aabsolute%3Bright%3A0%3Bbottom%3A0%3Bleft%3A0%3Bpadding%3A15px%3Bbackground%3A%23333%3Bbackground%3Argba%280%2C0%2C0%2C0%2E75%29%7D%2Ecarousel%2Dcaption%20h4%2C%2Ecarousel%2Dcaption%20p%7Bline%2Dheight%3A20px%3Bcolor%3A%23fff%7D%2Ecarousel%2Dcaption%20h4%7Bmargin%3A0%200%205px%7D%2Ecarousel%2Dcaption%20p%7Bmargin%2Dbottom%3A0%7D%2Ehero%2Dunit%7Bpadding%3A60px%3Bmargin%2Dbottom%3A30px%3Bfont%2Dsize%3A18px%3Bfont%2Dweight%3A200%3Bline%2Dheight%3A30px%3Bcolor%3Ainherit%3Bbackground%2Dcolor%3A%23eee%3B%2Dwebkit%2Dborder%2Dradius%3A6px%3B%2Dmoz%2Dborder%2Dradius%3A6px%3Bborder%2Dradius%3A6px%7D%2Ehero%2Dunit%20h1%7Bmargin%2Dbottom%3A0%3Bfont%2Dsize%3A60px%3Bline%2Dheight%3A1%3Bletter%2Dspacing%3A%2D1px%3Bcolor%3Ainherit%7D%2Ehero%2Dunit%20li%7Bline%2Dheight%3A30px%7D%2Epull%2Dright%7Bfloat%3Aright%7D%2Epull%2Dleft%7Bfloat%3Aleft%7D%2Ehide%7Bdisplay%3Anone%7D%2Eshow%7Bdisplay%3Ablock%7D%2Einvisible%7Bvisibility%3Ahidden%7D%2Eaffix%7Bposition%3Afixed%7D%0A" rel="stylesheet" />
<link href="data:text/css,%2F%2A%21%0A%20%2A%20Bootstrap%20Responsive%20v2%2E3%2E2%0A%20%2A%0A%20%2A%20Copyright%202013%20Twitter%2C%20Inc%0A%20%2A%20Licensed%20under%20the%20Apache%20License%20v2%2E0%0A%20%2A%20http%3A%2F%2Fwww%2Eapache%2Eorg%2Flicenses%2FLICENSE%2D2%2E0%0A%20%2A%0A%20%2A%20Designed%20and%20built%20with%20all%20the%20love%20in%20the%20world%20by%20%40mdo%20and%20%40fat%2E%0A%20%2A%2F%2Eclearfix%7B%2Azoom%3A1%7D%2Eclearfix%3Abefore%2C%2Eclearfix%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Eclearfix%3Aafter%7Bclear%3Aboth%7D%2Ehide%2Dtext%7Bfont%3A0%2F0%20a%3Bcolor%3Atransparent%3Btext%2Dshadow%3Anone%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%7D%2Einput%2Dblock%2Dlevel%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bmin%2Dheight%3A30px%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%40%2Dms%2Dviewport%7Bwidth%3Adevice%2Dwidth%7D%2Ehidden%7Bdisplay%3Anone%3Bvisibility%3Ahidden%7D%2Evisible%2Dphone%7Bdisplay%3Anone%21important%7D%2Evisible%2Dtablet%7Bdisplay%3Anone%21important%7D%2Ehidden%2Ddesktop%7Bdisplay%3Anone%21important%7D%2Evisible%2Ddesktop%7Bdisplay%3Ainherit%21important%7D%40media%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A979px%29%7B%2Ehidden%2Ddesktop%7Bdisplay%3Ainherit%21important%7D%2Evisible%2Ddesktop%7Bdisplay%3Anone%21important%7D%2Evisible%2Dtablet%7Bdisplay%3Ainherit%21important%7D%2Ehidden%2Dtablet%7Bdisplay%3Anone%21important%7D%7D%40media%28max%2Dwidth%3A767px%29%7B%2Ehidden%2Ddesktop%7Bdisplay%3Ainherit%21important%7D%2Evisible%2Ddesktop%7Bdisplay%3Anone%21important%7D%2Evisible%2Dphone%7Bdisplay%3Ainherit%21important%7D%2Ehidden%2Dphone%7Bdisplay%3Anone%21important%7D%7D%2Evisible%2Dprint%7Bdisplay%3Anone%21important%7D%40media%20print%7B%2Evisible%2Dprint%7Bdisplay%3Ainherit%21important%7D%2Ehidden%2Dprint%7Bdisplay%3Anone%21important%7D%7D%40media%28min%2Dwidth%3A1200px%29%7B%2Erow%7Bmargin%2Dleft%3A%2D30px%3B%2Azoom%3A1%7D%2Erow%3Abefore%2C%2Erow%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Erow%3Aafter%7Bclear%3Aboth%7D%5Bclass%2A%3D%22span%22%5D%7Bfloat%3Aleft%3Bmin%2Dheight%3A1px%3Bmargin%2Dleft%3A30px%7D%2Econtainer%2C%2Enavbar%2Dstatic%2Dtop%20%2Econtainer%2C%2Enavbar%2Dfixed%2Dtop%20%2Econtainer%2C%2Enavbar%2Dfixed%2Dbottom%20%2Econtainer%7Bwidth%3A1170px%7D%2Espan12%7Bwidth%3A1170px%7D%2Espan11%7Bwidth%3A1070px%7D%2Espan10%7Bwidth%3A970px%7D%2Espan9%7Bwidth%3A870px%7D%2Espan8%7Bwidth%3A770px%7D%2Espan7%7Bwidth%3A670px%7D%2Espan6%7Bwidth%3A570px%7D%2Espan5%7Bwidth%3A470px%7D%2Espan4%7Bwidth%3A370px%7D%2Espan3%7Bwidth%3A270px%7D%2Espan2%7Bwidth%3A170px%7D%2Espan1%7Bwidth%3A70px%7D%2Eoffset12%7Bmargin%2Dleft%3A1230px%7D%2Eoffset11%7Bmargin%2Dleft%3A1130px%7D%2Eoffset10%7Bmargin%2Dleft%3A1030px%7D%2Eoffset9%7Bmargin%2Dleft%3A930px%7D%2Eoffset8%7Bmargin%2Dleft%3A830px%7D%2Eoffset7%7Bmargin%2Dleft%3A730px%7D%2Eoffset6%7Bmargin%2Dleft%3A630px%7D%2Eoffset5%7Bmargin%2Dleft%3A530px%7D%2Eoffset4%7Bmargin%2Dleft%3A430px%7D%2Eoffset3%7Bmargin%2Dleft%3A330px%7D%2Eoffset2%7Bmargin%2Dleft%3A230px%7D%2Eoffset1%7Bmargin%2Dleft%3A130px%7D%2Erow%2Dfluid%7Bwidth%3A100%25%3B%2Azoom%3A1%7D%2Erow%2Dfluid%3Abefore%2C%2Erow%2Dfluid%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Erow%2Dfluid%3Aafter%7Bclear%3Aboth%7D%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%7Bdisplay%3Ablock%3Bfloat%3Aleft%3Bwidth%3A100%25%3Bmin%2Dheight%3A30px%3Bmargin%2Dleft%3A2%2E564102564102564%25%3B%2Amargin%2Dleft%3A2%2E5109110747408616%25%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%7D%2Erow%2Dfluid%20%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%2B%5Bclass%2A%3D%22span%22%5D%7Bmargin%2Dleft%3A2%2E564102564102564%25%7D%2Erow%2Dfluid%20%2Espan12%7Bwidth%3A100%25%3B%2Awidth%3A99%2E94680851063829%25%7D%2Erow%2Dfluid%20%2Espan11%7Bwidth%3A91%2E45299145299145%25%3B%2Awidth%3A91%2E39979996362975%25%7D%2Erow%2Dfluid%20%2Espan10%7Bwidth%3A82%2E90598290598291%25%3B%2Awidth%3A82%2E8527914166212%25%7D%2Erow%2Dfluid%20%2Espan9%7Bwidth%3A74%2E35897435897436%25%3B%2Awidth%3A74%2E30578286961266%25%7D%2Erow%2Dfluid%20%2Espan8%7Bwidth%3A65%2E81196581196582%25%3B%2Awidth%3A65%2E75877432260411%25%7D%2Erow%2Dfluid%20%2Espan7%7Bwidth%3A57%2E26495726495726%25%3B%2Awidth%3A57%2E21176577559556%25%7D%2Erow%2Dfluid%20%2Espan6%7Bwidth%3A48%2E717948717948715%25%3B%2Awidth%3A48%2E664757228587014%25%7D%2Erow%2Dfluid%20%2Espan5%7Bwidth%3A40%2E17094017094017%25%3B%2Awidth%3A40%2E11774868157847%25%7D%2Erow%2Dfluid%20%2Espan4%7Bwidth%3A31%2E623931623931625%25%3B%2Awidth%3A31%2E570740134569924%25%7D%2Erow%2Dfluid%20%2Espan3%7Bwidth%3A23%2E076923076923077%25%3B%2Awidth%3A23%2E023731587561375%25%7D%2Erow%2Dfluid%20%2Espan2%7Bwidth%3A14%2E52991452991453%25%3B%2Awidth%3A14%2E476723040552828%25%7D%2Erow%2Dfluid%20%2Espan1%7Bwidth%3A5%2E982905982905983%25%3B%2Awidth%3A5%2E929714493544281%25%7D%2Erow%2Dfluid%20%2Eoffset12%7Bmargin%2Dleft%3A105%2E12820512820512%25%3B%2Amargin%2Dleft%3A105%2E02182214948171%25%7D%2Erow%2Dfluid%20%2Eoffset12%3Afirst%2Dchild%7Bmargin%2Dleft%3A102%2E56410256410257%25%3B%2Amargin%2Dleft%3A102%2E45771958537915%25%7D%2Erow%2Dfluid%20%2Eoffset11%7Bmargin%2Dleft%3A96%2E58119658119658%25%3B%2Amargin%2Dleft%3A96%2E47481360247316%25%7D%2Erow%2Dfluid%20%2Eoffset11%3Afirst%2Dchild%7Bmargin%2Dleft%3A94%2E01709401709402%25%3B%2Amargin%2Dleft%3A93%2E91071103837061%25%7D%2Erow%2Dfluid%20%2Eoffset10%7Bmargin%2Dleft%3A88%2E03418803418803%25%3B%2Amargin%2Dleft%3A87%2E92780505546462%25%7D%2Erow%2Dfluid%20%2Eoffset10%3Afirst%2Dchild%7Bmargin%2Dleft%3A85%2E47008547008548%25%3B%2Amargin%2Dleft%3A85%2E36370249136206%25%7D%2Erow%2Dfluid%20%2Eoffset9%7Bmargin%2Dleft%3A79%2E48717948717949%25%3B%2Amargin%2Dleft%3A79%2E38079650845607%25%7D%2Erow%2Dfluid%20%2Eoffset9%3Afirst%2Dchild%7Bmargin%2Dleft%3A76%2E92307692307693%25%3B%2Amargin%2Dleft%3A76%2E81669394435352%25%7D%2Erow%2Dfluid%20%2Eoffset8%7Bmargin%2Dleft%3A70%2E94017094017094%25%3B%2Amargin%2Dleft%3A70%2E83378796144753%25%7D%2Erow%2Dfluid%20%2Eoffset8%3Afirst%2Dchild%7Bmargin%2Dleft%3A68%2E37606837606839%25%3B%2Amargin%2Dleft%3A68%2E26968539734497%25%7D%2Erow%2Dfluid%20%2Eoffset7%7Bmargin%2Dleft%3A62%2E393162393162385%25%3B%2Amargin%2Dleft%3A62%2E28677941443899%25%7D%2Erow%2Dfluid%20%2Eoffset7%3Afirst%2Dchild%7Bmargin%2Dleft%3A59%2E82905982905982%25%3B%2Amargin%2Dleft%3A59%2E72267685033642%25%7D%2Erow%2Dfluid%20%2Eoffset6%7Bmargin%2Dleft%3A53%2E84615384615384%25%3B%2Amargin%2Dleft%3A53%2E739770867430444%25%7D%2Erow%2Dfluid%20%2Eoffset6%3Afirst%2Dchild%7Bmargin%2Dleft%3A51%2E28205128205128%25%3B%2Amargin%2Dleft%3A51%2E175668303327875%25%7D%2Erow%2Dfluid%20%2Eoffset5%7Bmargin%2Dleft%3A45%2E299145299145295%25%3B%2Amargin%2Dleft%3A45%2E1927623204219%25%7D%2Erow%2Dfluid%20%2Eoffset5%3Afirst%2Dchild%7Bmargin%2Dleft%3A42%2E73504273504273%25%3B%2Amargin%2Dleft%3A42%2E62865975631933%25%7D%2Erow%2Dfluid%20%2Eoffset4%7Bmargin%2Dleft%3A36%2E75213675213675%25%3B%2Amargin%2Dleft%3A36%2E645753773413354%25%7D%2Erow%2Dfluid%20%2Eoffset4%3Afirst%2Dchild%7Bmargin%2Dleft%3A34%2E18803418803419%25%3B%2Amargin%2Dleft%3A34%2E081651209310785%25%7D%2Erow%2Dfluid%20%2Eoffset3%7Bmargin%2Dleft%3A28%2E205128205128204%25%3B%2Amargin%2Dleft%3A28%2E0987452264048%25%7D%2Erow%2Dfluid%20%2Eoffset3%3Afirst%2Dchild%7Bmargin%2Dleft%3A25%2E641025641025642%25%3B%2Amargin%2Dleft%3A25%2E53464266230224%25%7D%2Erow%2Dfluid%20%2Eoffset2%7Bmargin%2Dleft%3A19%2E65811965811966%25%3B%2Amargin%2Dleft%3A19%2E551736679396257%25%7D%2Erow%2Dfluid%20%2Eoffset2%3Afirst%2Dchild%7Bmargin%2Dleft%3A17%2E094017094017094%25%3B%2Amargin%2Dleft%3A16%2E98763411529369%25%7D%2Erow%2Dfluid%20%2Eoffset1%7Bmargin%2Dleft%3A11%2E11111111111111%25%3B%2Amargin%2Dleft%3A11%2E004728132387708%25%7D%2Erow%2Dfluid%20%2Eoffset1%3Afirst%2Dchild%7Bmargin%2Dleft%3A8%2E547008547008547%25%3B%2Amargin%2Dleft%3A8%2E440625568285142%25%7Dinput%2Ctextarea%2C%2Euneditable%2Dinput%7Bmargin%2Dleft%3A0%7D%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%2B%5Bclass%2A%3D%22span%22%5D%7Bmargin%2Dleft%3A30px%7Dinput%2Espan12%2Ctextarea%2Espan12%2C%2Euneditable%2Dinput%2Espan12%7Bwidth%3A1156px%7Dinput%2Espan11%2Ctextarea%2Espan11%2C%2Euneditable%2Dinput%2Espan11%7Bwidth%3A1056px%7Dinput%2Espan10%2Ctextarea%2Espan10%2C%2Euneditable%2Dinput%2Espan10%7Bwidth%3A956px%7Dinput%2Espan9%2Ctextarea%2Espan9%2C%2Euneditable%2Dinput%2Espan9%7Bwidth%3A856px%7Dinput%2Espan8%2Ctextarea%2Espan8%2C%2Euneditable%2Dinput%2Espan8%7Bwidth%3A756px%7Dinput%2Espan7%2Ctextarea%2Espan7%2C%2Euneditable%2Dinput%2Espan7%7Bwidth%3A656px%7Dinput%2Espan6%2Ctextarea%2Espan6%2C%2Euneditable%2Dinput%2Espan6%7Bwidth%3A556px%7Dinput%2Espan5%2Ctextarea%2Espan5%2C%2Euneditable%2Dinput%2Espan5%7Bwidth%3A456px%7Dinput%2Espan4%2Ctextarea%2Espan4%2C%2Euneditable%2Dinput%2Espan4%7Bwidth%3A356px%7Dinput%2Espan3%2Ctextarea%2Espan3%2C%2Euneditable%2Dinput%2Espan3%7Bwidth%3A256px%7Dinput%2Espan2%2Ctextarea%2Espan2%2C%2Euneditable%2Dinput%2Espan2%7Bwidth%3A156px%7Dinput%2Espan1%2Ctextarea%2Espan1%2C%2Euneditable%2Dinput%2Espan1%7Bwidth%3A56px%7D%2Ethumbnails%7Bmargin%2Dleft%3A%2D30px%7D%2Ethumbnails%3Eli%7Bmargin%2Dleft%3A30px%7D%2Erow%2Dfluid%20%2Ethumbnails%7Bmargin%2Dleft%3A0%7D%7D%40media%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A979px%29%7B%2Erow%7Bmargin%2Dleft%3A%2D20px%3B%2Azoom%3A1%7D%2Erow%3Abefore%2C%2Erow%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Erow%3Aafter%7Bclear%3Aboth%7D%5Bclass%2A%3D%22span%22%5D%7Bfloat%3Aleft%3Bmin%2Dheight%3A1px%3Bmargin%2Dleft%3A20px%7D%2Econtainer%2C%2Enavbar%2Dstatic%2Dtop%20%2Econtainer%2C%2Enavbar%2Dfixed%2Dtop%20%2Econtainer%2C%2Enavbar%2Dfixed%2Dbottom%20%2Econtainer%7Bwidth%3A724px%7D%2Espan12%7Bwidth%3A724px%7D%2Espan11%7Bwidth%3A662px%7D%2Espan10%7Bwidth%3A600px%7D%2Espan9%7Bwidth%3A538px%7D%2Espan8%7Bwidth%3A476px%7D%2Espan7%7Bwidth%3A414px%7D%2Espan6%7Bwidth%3A352px%7D%2Espan5%7Bwidth%3A290px%7D%2Espan4%7Bwidth%3A228px%7D%2Espan3%7Bwidth%3A166px%7D%2Espan2%7Bwidth%3A104px%7D%2Espan1%7Bwidth%3A42px%7D%2Eoffset12%7Bmargin%2Dleft%3A764px%7D%2Eoffset11%7Bmargin%2Dleft%3A702px%7D%2Eoffset10%7Bmargin%2Dleft%3A640px%7D%2Eoffset9%7Bmargin%2Dleft%3A578px%7D%2Eoffset8%7Bmargin%2Dleft%3A516px%7D%2Eoffset7%7Bmargin%2Dleft%3A454px%7D%2Eoffset6%7Bmargin%2Dleft%3A392px%7D%2Eoffset5%7Bmargin%2Dleft%3A330px%7D%2Eoffset4%7Bmargin%2Dleft%3A268px%7D%2Eoffset3%7Bmargin%2Dleft%3A206px%7D%2Eoffset2%7Bmargin%2Dleft%3A144px%7D%2Eoffset1%7Bmargin%2Dleft%3A82px%7D%2Erow%2Dfluid%7Bwidth%3A100%25%3B%2Azoom%3A1%7D%2Erow%2Dfluid%3Abefore%2C%2Erow%2Dfluid%3Aafter%7Bdisplay%3Atable%3Bline%2Dheight%3A0%3Bcontent%3A%22%22%7D%2Erow%2Dfluid%3Aafter%7Bclear%3Aboth%7D%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%7Bdisplay%3Ablock%3Bfloat%3Aleft%3Bwidth%3A100%25%3Bmin%2Dheight%3A30px%3Bmargin%2Dleft%3A2%2E7624309392265194%25%3B%2Amargin%2Dleft%3A2%2E709239449864817%25%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%7D%2Erow%2Dfluid%20%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%2B%5Bclass%2A%3D%22span%22%5D%7Bmargin%2Dleft%3A2%2E7624309392265194%25%7D%2Erow%2Dfluid%20%2Espan12%7Bwidth%3A100%25%3B%2Awidth%3A99%2E94680851063829%25%7D%2Erow%2Dfluid%20%2Espan11%7Bwidth%3A91%2E43646408839778%25%3B%2Awidth%3A91%2E38327259903608%25%7D%2Erow%2Dfluid%20%2Espan10%7Bwidth%3A82%2E87292817679558%25%3B%2Awidth%3A82%2E81973668743387%25%7D%2Erow%2Dfluid%20%2Espan9%7Bwidth%3A74%2E30939226519337%25%3B%2Awidth%3A74%2E25620077583166%25%7D%2Erow%2Dfluid%20%2Espan8%7Bwidth%3A65%2E74585635359117%25%3B%2Awidth%3A65%2E69266486422946%25%7D%2Erow%2Dfluid%20%2Espan7%7Bwidth%3A57%2E18232044198895%25%3B%2Awidth%3A57%2E12912895262725%25%7D%2Erow%2Dfluid%20%2Espan6%7Bwidth%3A48%2E61878453038674%25%3B%2Awidth%3A48%2E56559304102504%25%7D%2Erow%2Dfluid%20%2Espan5%7Bwidth%3A40%2E05524861878453%25%3B%2Awidth%3A40%2E00205712942283%25%7D%2Erow%2Dfluid%20%2Espan4%7Bwidth%3A31%2E491712707182323%25%3B%2Awidth%3A31%2E43852121782062%25%7D%2Erow%2Dfluid%20%2Espan3%7Bwidth%3A22%2E92817679558011%25%3B%2Awidth%3A22%2E87498530621841%25%7D%2Erow%2Dfluid%20%2Espan2%7Bwidth%3A14%2E3646408839779%25%3B%2Awidth%3A14%2E311449394616199%25%7D%2Erow%2Dfluid%20%2Espan1%7Bwidth%3A5%2E801104972375691%25%3B%2Awidth%3A5%2E747913483013988%25%7D%2Erow%2Dfluid%20%2Eoffset12%7Bmargin%2Dleft%3A105%2E52486187845304%25%3B%2Amargin%2Dleft%3A105%2E41847889972962%25%7D%2Erow%2Dfluid%20%2Eoffset12%3Afirst%2Dchild%7Bmargin%2Dleft%3A102%2E76243093922652%25%3B%2Amargin%2Dleft%3A102%2E6560479605031%25%7D%2Erow%2Dfluid%20%2Eoffset11%7Bmargin%2Dleft%3A96%2E96132596685082%25%3B%2Amargin%2Dleft%3A96%2E8549429881274%25%7D%2Erow%2Dfluid%20%2Eoffset11%3Afirst%2Dchild%7Bmargin%2Dleft%3A94%2E1988950276243%25%3B%2Amargin%2Dleft%3A94%2E09251204890089%25%7D%2Erow%2Dfluid%20%2Eoffset10%7Bmargin%2Dleft%3A88%2E39779005524862%25%3B%2Amargin%2Dleft%3A88%2E2914070765252%25%7D%2Erow%2Dfluid%20%2Eoffset10%3Afirst%2Dchild%7Bmargin%2Dleft%3A85%2E6353591160221%25%3B%2Amargin%2Dleft%3A85%2E52897613729868%25%7D%2Erow%2Dfluid%20%2Eoffset9%7Bmargin%2Dleft%3A79%2E8342541436464%25%3B%2Amargin%2Dleft%3A79%2E72787116492299%25%7D%2Erow%2Dfluid%20%2Eoffset9%3Afirst%2Dchild%7Bmargin%2Dleft%3A77%2E07182320441989%25%3B%2Amargin%2Dleft%3A76%2E96544022569647%25%7D%2Erow%2Dfluid%20%2Eoffset8%7Bmargin%2Dleft%3A71%2E2707182320442%25%3B%2Amargin%2Dleft%3A71%2E16433525332079%25%7D%2Erow%2Dfluid%20%2Eoffset8%3Afirst%2Dchild%7Bmargin%2Dleft%3A68%2E50828729281768%25%3B%2Amargin%2Dleft%3A68%2E40190431409427%25%7D%2Erow%2Dfluid%20%2Eoffset7%7Bmargin%2Dleft%3A62%2E70718232044199%25%3B%2Amargin%2Dleft%3A62%2E600799341718584%25%7D%2Erow%2Dfluid%20%2Eoffset7%3Afirst%2Dchild%7Bmargin%2Dleft%3A59%2E94475138121547%25%3B%2Amargin%2Dleft%3A59%2E838368402492065%25%7D%2Erow%2Dfluid%20%2Eoffset6%7Bmargin%2Dleft%3A54%2E14364640883978%25%3B%2Amargin%2Dleft%3A54%2E037263430116376%25%7D%2Erow%2Dfluid%20%2Eoffset6%3Afirst%2Dchild%7Bmargin%2Dleft%3A51%2E38121546961326%25%3B%2Amargin%2Dleft%3A51%2E27483249088986%25%7D%2Erow%2Dfluid%20%2Eoffset5%7Bmargin%2Dleft%3A45%2E58011049723757%25%3B%2Amargin%2Dleft%3A45%2E47372751851417%25%7D%2Erow%2Dfluid%20%2Eoffset5%3Afirst%2Dchild%7Bmargin%2Dleft%3A42%2E81767955801105%25%3B%2Amargin%2Dleft%3A42%2E71129657928765%25%7D%2Erow%2Dfluid%20%2Eoffset4%7Bmargin%2Dleft%3A37%2E01657458563536%25%3B%2Amargin%2Dleft%3A36%2E91019160691196%25%7D%2Erow%2Dfluid%20%2Eoffset4%3Afirst%2Dchild%7Bmargin%2Dleft%3A34%2E25414364640884%25%3B%2Amargin%2Dleft%3A34%2E14776066768544%25%7D%2Erow%2Dfluid%20%2Eoffset3%7Bmargin%2Dleft%3A28%2E45303867403315%25%3B%2Amargin%2Dleft%3A28%2E346655695309746%25%7D%2Erow%2Dfluid%20%2Eoffset3%3Afirst%2Dchild%7Bmargin%2Dleft%3A25%2E69060773480663%25%3B%2Amargin%2Dleft%3A25%2E584224756083227%25%7D%2Erow%2Dfluid%20%2Eoffset2%7Bmargin%2Dleft%3A19%2E88950276243094%25%3B%2Amargin%2Dleft%3A19%2E783119783707537%25%7D%2Erow%2Dfluid%20%2Eoffset2%3Afirst%2Dchild%7Bmargin%2Dleft%3A17%2E12707182320442%25%3B%2Amargin%2Dleft%3A17%2E02068884448102%25%7D%2Erow%2Dfluid%20%2Eoffset1%7Bmargin%2Dleft%3A11%2E32596685082873%25%3B%2Amargin%2Dleft%3A11%2E219583872105325%25%7D%2Erow%2Dfluid%20%2Eoffset1%3Afirst%2Dchild%7Bmargin%2Dleft%3A8%2E56353591160221%25%3B%2Amargin%2Dleft%3A8%2E457152932878806%25%7Dinput%2Ctextarea%2C%2Euneditable%2Dinput%7Bmargin%2Dleft%3A0%7D%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%2B%5Bclass%2A%3D%22span%22%5D%7Bmargin%2Dleft%3A20px%7Dinput%2Espan12%2Ctextarea%2Espan12%2C%2Euneditable%2Dinput%2Espan12%7Bwidth%3A710px%7Dinput%2Espan11%2Ctextarea%2Espan11%2C%2Euneditable%2Dinput%2Espan11%7Bwidth%3A648px%7Dinput%2Espan10%2Ctextarea%2Espan10%2C%2Euneditable%2Dinput%2Espan10%7Bwidth%3A586px%7Dinput%2Espan9%2Ctextarea%2Espan9%2C%2Euneditable%2Dinput%2Espan9%7Bwidth%3A524px%7Dinput%2Espan8%2Ctextarea%2Espan8%2C%2Euneditable%2Dinput%2Espan8%7Bwidth%3A462px%7Dinput%2Espan7%2Ctextarea%2Espan7%2C%2Euneditable%2Dinput%2Espan7%7Bwidth%3A400px%7Dinput%2Espan6%2Ctextarea%2Espan6%2C%2Euneditable%2Dinput%2Espan6%7Bwidth%3A338px%7Dinput%2Espan5%2Ctextarea%2Espan5%2C%2Euneditable%2Dinput%2Espan5%7Bwidth%3A276px%7Dinput%2Espan4%2Ctextarea%2Espan4%2C%2Euneditable%2Dinput%2Espan4%7Bwidth%3A214px%7Dinput%2Espan3%2Ctextarea%2Espan3%2C%2Euneditable%2Dinput%2Espan3%7Bwidth%3A152px%7Dinput%2Espan2%2Ctextarea%2Espan2%2C%2Euneditable%2Dinput%2Espan2%7Bwidth%3A90px%7Dinput%2Espan1%2Ctextarea%2Espan1%2C%2Euneditable%2Dinput%2Espan1%7Bwidth%3A28px%7D%7D%40media%28max%2Dwidth%3A767px%29%7Bbody%7Bpadding%2Dright%3A20px%3Bpadding%2Dleft%3A20px%7D%2Enavbar%2Dfixed%2Dtop%2C%2Enavbar%2Dfixed%2Dbottom%2C%2Enavbar%2Dstatic%2Dtop%7Bmargin%2Dright%3A%2D20px%3Bmargin%2Dleft%3A%2D20px%7D%2Econtainer%2Dfluid%7Bpadding%3A0%7D%2Edl%2Dhorizontal%20dt%7Bfloat%3Anone%3Bwidth%3Aauto%3Bclear%3Anone%3Btext%2Dalign%3Aleft%7D%2Edl%2Dhorizontal%20dd%7Bmargin%2Dleft%3A0%7D%2Econtainer%7Bwidth%3Aauto%7D%2Erow%2Dfluid%7Bwidth%3A100%25%7D%2Erow%2C%2Ethumbnails%7Bmargin%2Dleft%3A0%7D%2Ethumbnails%3Eli%7Bfloat%3Anone%3Bmargin%2Dleft%3A0%7D%5Bclass%2A%3D%22span%22%5D%2C%2Euneditable%2Dinput%5Bclass%2A%3D%22span%22%5D%2C%2Erow%2Dfluid%20%5Bclass%2A%3D%22span%22%5D%7Bdisplay%3Ablock%3Bfloat%3Anone%3Bwidth%3A100%25%3Bmargin%2Dleft%3A0%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%2Espan12%2C%2Erow%2Dfluid%20%2Espan12%7Bwidth%3A100%25%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%2Erow%2Dfluid%20%5Bclass%2A%3D%22offset%22%5D%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%7D%2Einput%2Dlarge%2C%2Einput%2Dxlarge%2C%2Einput%2Dxxlarge%2Cinput%5Bclass%2A%3D%22span%22%5D%2Cselect%5Bclass%2A%3D%22span%22%5D%2Ctextarea%5Bclass%2A%3D%22span%22%5D%2C%2Euneditable%2Dinput%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bmin%2Dheight%3A30px%3B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%2Einput%2Dprepend%20input%2C%2Einput%2Dappend%20input%2C%2Einput%2Dprepend%20input%5Bclass%2A%3D%22span%22%5D%2C%2Einput%2Dappend%20input%5Bclass%2A%3D%22span%22%5D%7Bdisplay%3Ainline%2Dblock%3Bwidth%3Aauto%7D%2Econtrols%2Drow%20%5Bclass%2A%3D%22span%22%5D%2B%5Bclass%2A%3D%22span%22%5D%7Bmargin%2Dleft%3A0%7D%2Emodal%7Bposition%3Afixed%3Btop%3A20px%3Bright%3A20px%3Bleft%3A20px%3Bwidth%3Aauto%3Bmargin%3A0%7D%2Emodal%2Efade%7Btop%3A%2D100px%7D%2Emodal%2Efade%2Ein%7Btop%3A20px%7D%7D%40media%28max%2Dwidth%3A480px%29%7B%2Enav%2Dcollapse%7B%2Dwebkit%2Dtransform%3Atranslate3d%280%2C0%2C0%29%7D%2Epage%2Dheader%20h1%20small%7Bdisplay%3Ablock%3Bline%2Dheight%3A20px%7Dinput%5Btype%3D%22checkbox%22%5D%2Cinput%5Btype%3D%22radio%22%5D%7Bborder%3A1px%20solid%20%23ccc%7D%2Eform%2Dhorizontal%20%2Econtrol%2Dlabel%7Bfloat%3Anone%3Bwidth%3Aauto%3Bpadding%2Dtop%3A0%3Btext%2Dalign%3Aleft%7D%2Eform%2Dhorizontal%20%2Econtrols%7Bmargin%2Dleft%3A0%7D%2Eform%2Dhorizontal%20%2Econtrol%2Dlist%7Bpadding%2Dtop%3A0%7D%2Eform%2Dhorizontal%20%2Eform%2Dactions%7Bpadding%2Dright%3A10px%3Bpadding%2Dleft%3A10px%7D%2Emedia%20%2Epull%2Dleft%2C%2Emedia%20%2Epull%2Dright%7Bdisplay%3Ablock%3Bfloat%3Anone%3Bmargin%2Dbottom%3A10px%7D%2Emedia%2Dobject%7Bmargin%2Dright%3A0%3Bmargin%2Dleft%3A0%7D%2Emodal%7Btop%3A10px%3Bright%3A10px%3Bleft%3A10px%7D%2Emodal%2Dheader%20%2Eclose%7Bpadding%3A10px%3Bmargin%3A%2D10px%7D%2Ecarousel%2Dcaption%7Bposition%3Astatic%7D%7D%40media%28max%2Dwidth%3A979px%29%7Bbody%7Bpadding%2Dtop%3A0%7D%2Enavbar%2Dfixed%2Dtop%2C%2Enavbar%2Dfixed%2Dbottom%7Bposition%3Astatic%7D%2Enavbar%2Dfixed%2Dtop%7Bmargin%2Dbottom%3A20px%7D%2Enavbar%2Dfixed%2Dbottom%7Bmargin%2Dtop%3A20px%7D%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dinner%2C%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dinner%7Bpadding%3A5px%7D%2Enavbar%20%2Econtainer%7Bwidth%3Aauto%3Bpadding%3A0%7D%2Enavbar%20%2Ebrand%7Bpadding%2Dright%3A10px%3Bpadding%2Dleft%3A10px%3Bmargin%3A0%200%200%20%2D5px%7D%2Enav%2Dcollapse%7Bclear%3Aboth%7D%2Enav%2Dcollapse%20%2Enav%7Bfloat%3Anone%3Bmargin%3A0%200%2010px%7D%2Enav%2Dcollapse%20%2Enav%3Eli%7Bfloat%3Anone%7D%2Enav%2Dcollapse%20%2Enav%3Eli%3Ea%7Bmargin%2Dbottom%3A2px%7D%2Enav%2Dcollapse%20%2Enav%3E%2Edivider%2Dvertical%7Bdisplay%3Anone%7D%2Enav%2Dcollapse%20%2Enav%20%2Enav%2Dheader%7Bcolor%3A%23777%3Btext%2Dshadow%3Anone%7D%2Enav%2Dcollapse%20%2Enav%3Eli%3Ea%2C%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%20a%7Bpadding%3A9px%2015px%3Bfont%2Dweight%3Abold%3Bcolor%3A%23777%3B%2Dwebkit%2Dborder%2Dradius%3A3px%3B%2Dmoz%2Dborder%2Dradius%3A3px%3Bborder%2Dradius%3A3px%7D%2Enav%2Dcollapse%20%2Ebtn%7Bpadding%3A4px%2010px%204px%3Bfont%2Dweight%3Anormal%3B%2Dwebkit%2Dborder%2Dradius%3A4px%3B%2Dmoz%2Dborder%2Dradius%3A4px%3Bborder%2Dradius%3A4px%7D%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%20li%2Bli%20a%7Bmargin%2Dbottom%3A2px%7D%2Enav%2Dcollapse%20%2Enav%3Eli%3Ea%3Ahover%2C%2Enav%2Dcollapse%20%2Enav%3Eli%3Ea%3Afocus%2C%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%20a%3Ahover%2C%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%20a%3Afocus%7Bbackground%2Dcolor%3A%23f2f2f2%7D%2Enavbar%2Dinverse%20%2Enav%2Dcollapse%20%2Enav%3Eli%3Ea%2C%2Enavbar%2Dinverse%20%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%20a%7Bcolor%3A%23999%7D%2Enavbar%2Dinverse%20%2Enav%2Dcollapse%20%2Enav%3Eli%3Ea%3Ahover%2C%2Enavbar%2Dinverse%20%2Enav%2Dcollapse%20%2Enav%3Eli%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%20a%3Ahover%2C%2Enavbar%2Dinverse%20%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%20a%3Afocus%7Bbackground%2Dcolor%3A%23111%7D%2Enav%2Dcollapse%2Ein%20%2Ebtn%2Dgroup%7Bpadding%3A0%3Bmargin%2Dtop%3A5px%7D%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%7Bposition%3Astatic%3Btop%3Aauto%3Bleft%3Aauto%3Bdisplay%3Anone%3Bfloat%3Anone%3Bmax%2Dwidth%3Anone%3Bpadding%3A0%3Bmargin%3A0%2015px%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%3B%2Dwebkit%2Dborder%2Dradius%3A0%3B%2Dmoz%2Dborder%2Dradius%3A0%3Bborder%2Dradius%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3B%2Dmoz%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Enav%2Dcollapse%20%2Eopen%3E%2Edropdown%2Dmenu%7Bdisplay%3Ablock%7D%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%3Abefore%2C%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%3Aafter%7Bdisplay%3Anone%7D%2Enav%2Dcollapse%20%2Edropdown%2Dmenu%20%2Edivider%7Bdisplay%3Anone%7D%2Enav%2Dcollapse%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%3Abefore%2C%2Enav%2Dcollapse%20%2Enav%3Eli%3E%2Edropdown%2Dmenu%3Aafter%7Bdisplay%3Anone%7D%2Enav%2Dcollapse%20%2Enavbar%2Dform%2C%2Enav%2Dcollapse%20%2Enavbar%2Dsearch%7Bfloat%3Anone%3Bpadding%3A10px%2015px%3Bmargin%3A10px%200%3Bborder%2Dtop%3A1px%20solid%20%23f2f2f2%3Bborder%2Dbottom%3A1px%20solid%20%23f2f2f2%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%3B%2Dmoz%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%3Bbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C0%2E1%29%7D%2Enavbar%2Dinverse%20%2Enav%2Dcollapse%20%2Enavbar%2Dform%2C%2Enavbar%2Dinverse%20%2Enav%2Dcollapse%20%2Enavbar%2Dsearch%7Bborder%2Dtop%2Dcolor%3A%23111%3Bborder%2Dbottom%2Dcolor%3A%23111%7D%2Enavbar%20%2Enav%2Dcollapse%20%2Enav%2Epull%2Dright%7Bfloat%3Anone%3Bmargin%2Dleft%3A0%7D%2Enav%2Dcollapse%2C%2Enav%2Dcollapse%2Ecollapse%7Bheight%3A0%3Boverflow%3Ahidden%7D%2Enavbar%20%2Ebtn%2Dnavbar%7Bdisplay%3Ablock%7D%2Enavbar%2Dstatic%20%2Enavbar%2Dinner%7Bpadding%2Dright%3A10px%3Bpadding%2Dleft%3A10px%7D%7D%40media%28min%2Dwidth%3A980px%29%7B%2Enav%2Dcollapse%2Ecollapse%7Bheight%3Aauto%21important%3Boverflow%3Avisible%21important%7D%7D%0A" rel="stylesheet" />
<script src="data:application/x-javascript,%2F%2A%21%0A%2A%20Bootstrap%2Ejs%20by%20%40fat%20%26%20%40mdo%0A%2A%20Copyright%202013%20Twitter%2C%20Inc%2E%0A%2A%20http%3A%2F%2Fwww%2Eapache%2Eorg%2Flicenses%2FLICENSE%2D2%2E0%2Etxt%0A%2A%2F%0A%21function%28e%29%7B%22use%20strict%22%3Be%28function%28%29%7Be%2Esupport%2Etransition%3Dfunction%28%29%7Bvar%20e%3Dfunction%28%29%7Bvar%20e%3Ddocument%2EcreateElement%28%22bootstrap%22%29%2Ct%3D%7BWebkitTransition%3A%22webkitTransitionEnd%22%2CMozTransition%3A%22transitionend%22%2COTransition%3A%22oTransitionEnd%20otransitionend%22%2Ctransition%3A%22transitionend%22%7D%2Cn%3Bfor%28n%20in%20t%29if%28e%2Estyle%5Bn%5D%21%3D%3Dundefined%29return%20t%5Bn%5D%7D%28%29%3Breturn%20e%26%26%7Bend%3Ae%7D%7D%28%29%7D%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3D%27%5Bdata%2Ddismiss%3D%22alert%22%5D%27%2Cn%3Dfunction%28n%29%7Be%28n%29%2Eon%28%22click%22%2Ct%2Cthis%2Eclose%29%7D%3Bn%2Eprototype%2Eclose%3Dfunction%28t%29%7Bfunction%20s%28%29%7Bi%2Etrigger%28%22closed%22%29%2Eremove%28%29%7Dvar%20n%3De%28this%29%2Cr%3Dn%2Eattr%28%22data%2Dtarget%22%29%2Ci%3Br%7C%7C%28r%3Dn%2Eattr%28%22href%22%29%2Cr%3Dr%26%26r%2Ereplace%28%2F%2E%2A%28%3F%3D%23%5B%5E%5Cs%5D%2A%24%29%2F%2C%22%22%29%29%2Ci%3De%28r%29%2Ct%26%26t%2EpreventDefault%28%29%2Ci%2Elength%7C%7C%28i%3Dn%2EhasClass%28%22alert%22%29%3Fn%3An%2Eparent%28%29%29%2Ci%2Etrigger%28t%3De%2EEvent%28%22close%22%29%29%3Bif%28t%2EisDefaultPrevented%28%29%29return%3Bi%2EremoveClass%28%22in%22%29%2Ce%2Esupport%2Etransition%26%26i%2EhasClass%28%22fade%22%29%3Fi%2Eon%28e%2Esupport%2Etransition%2Eend%2Cs%29%3As%28%29%7D%3Bvar%20r%3De%2Efn%2Ealert%3Be%2Efn%2Ealert%3Dfunction%28t%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22alert%22%29%3Bi%7C%7Cr%2Edata%28%22alert%22%2Ci%3Dnew%20n%28this%29%29%2Ctypeof%20t%3D%3D%22string%22%26%26i%5Bt%5D%2Ecall%28r%29%7D%29%7D%2Ce%2Efn%2Ealert%2EConstructor%3Dn%2Ce%2Efn%2Ealert%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Ealert%3Dr%2Cthis%7D%2Ce%28document%29%2Eon%28%22click%2Ealert%2Edata%2Dapi%22%2Ct%2Cn%2Eprototype%2Eclose%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28t%2Cn%29%7Bthis%2E%24element%3De%28t%29%2Cthis%2Eoptions%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Ebutton%2Edefaults%2Cn%29%7D%3Bt%2Eprototype%2EsetState%3Dfunction%28e%29%7Bvar%20t%3D%22disabled%22%2Cn%3Dthis%2E%24element%2Cr%3Dn%2Edata%28%29%2Ci%3Dn%2Eis%28%22input%22%29%3F%22val%22%3A%22html%22%3Be%2B%3D%22Text%22%2Cr%2EresetText%7C%7Cn%2Edata%28%22resetText%22%2Cn%5Bi%5D%28%29%29%2Cn%5Bi%5D%28r%5Be%5D%7C%7Cthis%2Eoptions%5Be%5D%29%2CsetTimeout%28function%28%29%7Be%3D%3D%22loadingText%22%3Fn%2EaddClass%28t%29%2Eattr%28t%2Ct%29%3An%2EremoveClass%28t%29%2EremoveAttr%28t%29%7D%2C0%29%7D%2Ct%2Eprototype%2Etoggle%3Dfunction%28%29%7Bvar%20e%3Dthis%2E%24element%2Eclosest%28%27%5Bdata%2Dtoggle%3D%22buttons%2Dradio%22%5D%27%29%3Be%26%26e%2Efind%28%22%2Eactive%22%29%2EremoveClass%28%22active%22%29%2Cthis%2E%24element%2EtoggleClass%28%22active%22%29%7D%3Bvar%20n%3De%2Efn%2Ebutton%3Be%2Efn%2Ebutton%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22button%22%29%2Cs%3Dtypeof%20n%3D%3D%22object%22%26%26n%3Bi%7C%7Cr%2Edata%28%22button%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Cn%3D%3D%22toggle%22%3Fi%2Etoggle%28%29%3An%26%26i%2EsetState%28n%29%7D%29%7D%2Ce%2Efn%2Ebutton%2Edefaults%3D%7BloadingText%3A%22loading%2E%2E%2E%22%7D%2Ce%2Efn%2Ebutton%2EConstructor%3Dt%2Ce%2Efn%2Ebutton%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Ebutton%3Dn%2Cthis%7D%2Ce%28document%29%2Eon%28%22click%2Ebutton%2Edata%2Dapi%22%2C%22%5Bdata%2Dtoggle%5E%3Dbutton%5D%22%2Cfunction%28t%29%7Bvar%20n%3De%28t%2Etarget%29%3Bn%2EhasClass%28%22btn%22%29%7C%7C%28n%3Dn%2Eclosest%28%22%2Ebtn%22%29%29%2Cn%2Ebutton%28%22toggle%22%29%7D%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28t%2Cn%29%7Bthis%2E%24element%3De%28t%29%2Cthis%2E%24indicators%3Dthis%2E%24element%2Efind%28%22%2Ecarousel%2Dindicators%22%29%2Cthis%2Eoptions%3Dn%2Cthis%2Eoptions%2Epause%3D%3D%22hover%22%26%26this%2E%24element%2Eon%28%22mouseenter%22%2Ce%2Eproxy%28this%2Epause%2Cthis%29%29%2Eon%28%22mouseleave%22%2Ce%2Eproxy%28this%2Ecycle%2Cthis%29%29%7D%3Bt%2Eprototype%3D%7Bcycle%3Afunction%28t%29%7Breturn%20t%7C%7C%28this%2Epaused%3D%211%29%2Cthis%2Einterval%26%26clearInterval%28this%2Einterval%29%2Cthis%2Eoptions%2Einterval%26%26%21this%2Epaused%26%26%28this%2Einterval%3DsetInterval%28e%2Eproxy%28this%2Enext%2Cthis%29%2Cthis%2Eoptions%2Einterval%29%29%2Cthis%7D%2CgetActiveIndex%3Afunction%28%29%7Breturn%20this%2E%24active%3Dthis%2E%24element%2Efind%28%22%2Eitem%2Eactive%22%29%2Cthis%2E%24items%3Dthis%2E%24active%2Eparent%28%29%2Echildren%28%29%2Cthis%2E%24items%2Eindex%28this%2E%24active%29%7D%2Cto%3Afunction%28t%29%7Bvar%20n%3Dthis%2EgetActiveIndex%28%29%2Cr%3Dthis%3Bif%28t%3Ethis%2E%24items%2Elength%2D1%7C%7Ct%3C0%29return%3Breturn%20this%2Esliding%3Fthis%2E%24element%2Eone%28%22slid%22%2Cfunction%28%29%7Br%2Eto%28t%29%7D%29%3An%3D%3Dt%3Fthis%2Epause%28%29%2Ecycle%28%29%3Athis%2Eslide%28t%3En%3F%22next%22%3A%22prev%22%2Ce%28this%2E%24items%5Bt%5D%29%29%7D%2Cpause%3Afunction%28t%29%7Breturn%20t%7C%7C%28this%2Epaused%3D%210%29%2Cthis%2E%24element%2Efind%28%22%2Enext%2C%20%2Eprev%22%29%2Elength%26%26e%2Esupport%2Etransition%2Eend%26%26%28this%2E%24element%2Etrigger%28e%2Esupport%2Etransition%2Eend%29%2Cthis%2Ecycle%28%210%29%29%2CclearInterval%28this%2Einterval%29%2Cthis%2Einterval%3Dnull%2Cthis%7D%2Cnext%3Afunction%28%29%7Bif%28this%2Esliding%29return%3Breturn%20this%2Eslide%28%22next%22%29%7D%2Cprev%3Afunction%28%29%7Bif%28this%2Esliding%29return%3Breturn%20this%2Eslide%28%22prev%22%29%7D%2Cslide%3Afunction%28t%2Cn%29%7Bvar%20r%3Dthis%2E%24element%2Efind%28%22%2Eitem%2Eactive%22%29%2Ci%3Dn%7C%7Cr%5Bt%5D%28%29%2Cs%3Dthis%2Einterval%2Co%3Dt%3D%3D%22next%22%3F%22left%22%3A%22right%22%2Cu%3Dt%3D%3D%22next%22%3F%22first%22%3A%22last%22%2Ca%3Dthis%2Cf%3Bthis%2Esliding%3D%210%2Cs%26%26this%2Epause%28%29%2Ci%3Di%2Elength%3Fi%3Athis%2E%24element%2Efind%28%22%2Eitem%22%29%5Bu%5D%28%29%2Cf%3De%2EEvent%28%22slide%22%2C%7BrelatedTarget%3Ai%5B0%5D%2Cdirection%3Ao%7D%29%3Bif%28i%2EhasClass%28%22active%22%29%29return%3Bthis%2E%24indicators%2Elength%26%26%28this%2E%24indicators%2Efind%28%22%2Eactive%22%29%2EremoveClass%28%22active%22%29%2Cthis%2E%24element%2Eone%28%22slid%22%2Cfunction%28%29%7Bvar%20t%3De%28a%2E%24indicators%2Echildren%28%29%5Ba%2EgetActiveIndex%28%29%5D%29%3Bt%26%26t%2EaddClass%28%22active%22%29%7D%29%29%3Bif%28e%2Esupport%2Etransition%26%26this%2E%24element%2EhasClass%28%22slide%22%29%29%7Bthis%2E%24element%2Etrigger%28f%29%3Bif%28f%2EisDefaultPrevented%28%29%29return%3Bi%2EaddClass%28t%29%2Ci%5B0%5D%2EoffsetWidth%2Cr%2EaddClass%28o%29%2Ci%2EaddClass%28o%29%2Cthis%2E%24element%2Eone%28e%2Esupport%2Etransition%2Eend%2Cfunction%28%29%7Bi%2EremoveClass%28%5Bt%2Co%5D%2Ejoin%28%22%20%22%29%29%2EaddClass%28%22active%22%29%2Cr%2EremoveClass%28%5B%22active%22%2Co%5D%2Ejoin%28%22%20%22%29%29%2Ca%2Esliding%3D%211%2CsetTimeout%28function%28%29%7Ba%2E%24element%2Etrigger%28%22slid%22%29%7D%2C0%29%7D%29%7Delse%7Bthis%2E%24element%2Etrigger%28f%29%3Bif%28f%2EisDefaultPrevented%28%29%29return%3Br%2EremoveClass%28%22active%22%29%2Ci%2EaddClass%28%22active%22%29%2Cthis%2Esliding%3D%211%2Cthis%2E%24element%2Etrigger%28%22slid%22%29%7Dreturn%20s%26%26this%2Ecycle%28%29%2Cthis%7D%7D%3Bvar%20n%3De%2Efn%2Ecarousel%3Be%2Efn%2Ecarousel%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22carousel%22%29%2Cs%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Ecarousel%2Edefaults%2Ctypeof%20n%3D%3D%22object%22%26%26n%29%2Co%3Dtypeof%20n%3D%3D%22string%22%3Fn%3As%2Eslide%3Bi%7C%7Cr%2Edata%28%22carousel%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Ctypeof%20n%3D%3D%22number%22%3Fi%2Eto%28n%29%3Ao%3Fi%5Bo%5D%28%29%3As%2Einterval%26%26i%2Epause%28%29%2Ecycle%28%29%7D%29%7D%2Ce%2Efn%2Ecarousel%2Edefaults%3D%7Binterval%3A5e3%2Cpause%3A%22hover%22%7D%2Ce%2Efn%2Ecarousel%2EConstructor%3Dt%2Ce%2Efn%2Ecarousel%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Ecarousel%3Dn%2Cthis%7D%2Ce%28document%29%2Eon%28%22click%2Ecarousel%2Edata%2Dapi%22%2C%22%5Bdata%2Dslide%5D%2C%20%5Bdata%2Dslide%2Dto%5D%22%2Cfunction%28t%29%7Bvar%20n%3De%28this%29%2Cr%2Ci%3De%28n%2Eattr%28%22data%2Dtarget%22%29%7C%7C%28r%3Dn%2Eattr%28%22href%22%29%29%26%26r%2Ereplace%28%2F%2E%2A%28%3F%3D%23%5B%5E%5Cs%5D%2B%24%29%2F%2C%22%22%29%29%2Cs%3De%2Eextend%28%7B%7D%2Ci%2Edata%28%29%2Cn%2Edata%28%29%29%2Co%3Bi%2Ecarousel%28s%29%2C%28o%3Dn%2Eattr%28%22data%2Dslide%2Dto%22%29%29%26%26i%2Edata%28%22carousel%22%29%2Epause%28%29%2Eto%28o%29%2Ecycle%28%29%2Ct%2EpreventDefault%28%29%7D%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28t%2Cn%29%7Bthis%2E%24element%3De%28t%29%2Cthis%2Eoptions%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Ecollapse%2Edefaults%2Cn%29%2Cthis%2Eoptions%2Eparent%26%26%28this%2E%24parent%3De%28this%2Eoptions%2Eparent%29%29%2Cthis%2Eoptions%2Etoggle%26%26this%2Etoggle%28%29%7D%3Bt%2Eprototype%3D%7Bconstructor%3At%2Cdimension%3Afunction%28%29%7Bvar%20e%3Dthis%2E%24element%2EhasClass%28%22width%22%29%3Breturn%20e%3F%22width%22%3A%22height%22%7D%2Cshow%3Afunction%28%29%7Bvar%20t%2Cn%2Cr%2Ci%3Bif%28this%2Etransitioning%7C%7Cthis%2E%24element%2EhasClass%28%22in%22%29%29return%3Bt%3Dthis%2Edimension%28%29%2Cn%3De%2EcamelCase%28%5B%22scroll%22%2Ct%5D%2Ejoin%28%22%2D%22%29%29%2Cr%3Dthis%2E%24parent%26%26this%2E%24parent%2Efind%28%22%3E%20%2Eaccordion%2Dgroup%20%3E%20%2Ein%22%29%3Bif%28r%26%26r%2Elength%29%7Bi%3Dr%2Edata%28%22collapse%22%29%3Bif%28i%26%26i%2Etransitioning%29return%3Br%2Ecollapse%28%22hide%22%29%2Ci%7C%7Cr%2Edata%28%22collapse%22%2Cnull%29%7Dthis%2E%24element%5Bt%5D%280%29%2Cthis%2Etransition%28%22addClass%22%2Ce%2EEvent%28%22show%22%29%2C%22shown%22%29%2Ce%2Esupport%2Etransition%26%26this%2E%24element%5Bt%5D%28this%2E%24element%5B0%5D%5Bn%5D%29%7D%2Chide%3Afunction%28%29%7Bvar%20t%3Bif%28this%2Etransitioning%7C%7C%21this%2E%24element%2EhasClass%28%22in%22%29%29return%3Bt%3Dthis%2Edimension%28%29%2Cthis%2Ereset%28this%2E%24element%5Bt%5D%28%29%29%2Cthis%2Etransition%28%22removeClass%22%2Ce%2EEvent%28%22hide%22%29%2C%22hidden%22%29%2Cthis%2E%24element%5Bt%5D%280%29%7D%2Creset%3Afunction%28e%29%7Bvar%20t%3Dthis%2Edimension%28%29%3Breturn%20this%2E%24element%2EremoveClass%28%22collapse%22%29%5Bt%5D%28e%7C%7C%22auto%22%29%5B0%5D%2EoffsetWidth%2Cthis%2E%24element%5Be%21%3D%3Dnull%3F%22addClass%22%3A%22removeClass%22%5D%28%22collapse%22%29%2Cthis%7D%2Ctransition%3Afunction%28t%2Cn%2Cr%29%7Bvar%20i%3Dthis%2Cs%3Dfunction%28%29%7Bn%2Etype%3D%3D%22show%22%26%26i%2Ereset%28%29%2Ci%2Etransitioning%3D0%2Ci%2E%24element%2Etrigger%28r%29%7D%3Bthis%2E%24element%2Etrigger%28n%29%3Bif%28n%2EisDefaultPrevented%28%29%29return%3Bthis%2Etransitioning%3D1%2Cthis%2E%24element%5Bt%5D%28%22in%22%29%2Ce%2Esupport%2Etransition%26%26this%2E%24element%2EhasClass%28%22collapse%22%29%3Fthis%2E%24element%2Eone%28e%2Esupport%2Etransition%2Eend%2Cs%29%3As%28%29%7D%2Ctoggle%3Afunction%28%29%7Bthis%5Bthis%2E%24element%2EhasClass%28%22in%22%29%3F%22hide%22%3A%22show%22%5D%28%29%7D%7D%3Bvar%20n%3De%2Efn%2Ecollapse%3Be%2Efn%2Ecollapse%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22collapse%22%29%2Cs%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Ecollapse%2Edefaults%2Cr%2Edata%28%29%2Ctypeof%20n%3D%3D%22object%22%26%26n%29%3Bi%7C%7Cr%2Edata%28%22collapse%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Ctypeof%20n%3D%3D%22string%22%26%26i%5Bn%5D%28%29%7D%29%7D%2Ce%2Efn%2Ecollapse%2Edefaults%3D%7Btoggle%3A%210%7D%2Ce%2Efn%2Ecollapse%2EConstructor%3Dt%2Ce%2Efn%2Ecollapse%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Ecollapse%3Dn%2Cthis%7D%2Ce%28document%29%2Eon%28%22click%2Ecollapse%2Edata%2Dapi%22%2C%22%5Bdata%2Dtoggle%3Dcollapse%5D%22%2Cfunction%28t%29%7Bvar%20n%3De%28this%29%2Cr%2Ci%3Dn%2Eattr%28%22data%2Dtarget%22%29%7C%7Ct%2EpreventDefault%28%29%7C%7C%28r%3Dn%2Eattr%28%22href%22%29%29%26%26r%2Ereplace%28%2F%2E%2A%28%3F%3D%23%5B%5E%5Cs%5D%2B%24%29%2F%2C%22%22%29%2Cs%3De%28i%29%2Edata%28%22collapse%22%29%3F%22toggle%22%3An%2Edata%28%29%3Bn%5Be%28i%29%2EhasClass%28%22in%22%29%3F%22addClass%22%3A%22removeClass%22%5D%28%22collapsed%22%29%2Ce%28i%29%2Ecollapse%28s%29%7D%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bfunction%20r%28%29%7Be%28%22%2Edropdown%2Dbackdrop%22%29%2Eremove%28%29%2Ce%28t%29%2Eeach%28function%28%29%7Bi%28e%28this%29%29%2EremoveClass%28%22open%22%29%7D%29%7Dfunction%20i%28t%29%7Bvar%20n%3Dt%2Eattr%28%22data%2Dtarget%22%29%2Cr%3Bn%7C%7C%28n%3Dt%2Eattr%28%22href%22%29%2Cn%3Dn%26%26%2F%23%2F%2Etest%28n%29%26%26n%2Ereplace%28%2F%2E%2A%28%3F%3D%23%5B%5E%5Cs%5D%2A%24%29%2F%2C%22%22%29%29%2Cr%3Dn%26%26e%28n%29%3Bif%28%21r%7C%7C%21r%2Elength%29r%3Dt%2Eparent%28%29%3Breturn%20r%7Dvar%20t%3D%22%5Bdata%2Dtoggle%3Ddropdown%5D%22%2Cn%3Dfunction%28t%29%7Bvar%20n%3De%28t%29%2Eon%28%22click%2Edropdown%2Edata%2Dapi%22%2Cthis%2Etoggle%29%3Be%28%22html%22%29%2Eon%28%22click%2Edropdown%2Edata%2Dapi%22%2Cfunction%28%29%7Bn%2Eparent%28%29%2EremoveClass%28%22open%22%29%7D%29%7D%3Bn%2Eprototype%3D%7Bconstructor%3An%2Ctoggle%3Afunction%28t%29%7Bvar%20n%3De%28this%29%2Cs%2Co%3Bif%28n%2Eis%28%22%2Edisabled%2C%20%3Adisabled%22%29%29return%3Breturn%20s%3Di%28n%29%2Co%3Ds%2EhasClass%28%22open%22%29%2Cr%28%29%2Co%7C%7C%28%22ontouchstart%22in%20document%2EdocumentElement%26%26e%28%27%3Cdiv%20class%3D%22dropdown%2Dbackdrop%22%2F%3E%27%29%2EinsertBefore%28e%28this%29%29%2Eon%28%22click%22%2Cr%29%2Cs%2EtoggleClass%28%22open%22%29%29%2Cn%2Efocus%28%29%2C%211%7D%2Ckeydown%3Afunction%28n%29%7Bvar%20r%2Cs%2Co%2Cu%2Ca%2Cf%3Bif%28%21%2F%2838%7C40%7C27%29%2F%2Etest%28n%2EkeyCode%29%29return%3Br%3De%28this%29%2Cn%2EpreventDefault%28%29%2Cn%2EstopPropagation%28%29%3Bif%28r%2Eis%28%22%2Edisabled%2C%20%3Adisabled%22%29%29return%3Bu%3Di%28r%29%2Ca%3Du%2EhasClass%28%22open%22%29%3Bif%28%21a%7C%7Ca%26%26n%2EkeyCode%3D%3D27%29return%20n%2Ewhich%3D%3D27%26%26u%2Efind%28t%29%2Efocus%28%29%2Cr%2Eclick%28%29%3Bs%3De%28%22%5Brole%3Dmenu%5D%20li%3Anot%28%2Edivider%29%3Avisible%20a%22%2Cu%29%3Bif%28%21s%2Elength%29return%3Bf%3Ds%2Eindex%28s%2Efilter%28%22%3Afocus%22%29%29%2Cn%2EkeyCode%3D%3D38%26%26f%3E0%26%26f%2D%2D%2Cn%2EkeyCode%3D%3D40%26%26f%3Cs%2Elength%2D1%26%26f%2B%2B%2C%7Ef%7C%7C%28f%3D0%29%2Cs%2Eeq%28f%29%2Efocus%28%29%7D%7D%3Bvar%20s%3De%2Efn%2Edropdown%3Be%2Efn%2Edropdown%3Dfunction%28t%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22dropdown%22%29%3Bi%7C%7Cr%2Edata%28%22dropdown%22%2Ci%3Dnew%20n%28this%29%29%2Ctypeof%20t%3D%3D%22string%22%26%26i%5Bt%5D%2Ecall%28r%29%7D%29%7D%2Ce%2Efn%2Edropdown%2EConstructor%3Dn%2Ce%2Efn%2Edropdown%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Edropdown%3Ds%2Cthis%7D%2Ce%28document%29%2Eon%28%22click%2Edropdown%2Edata%2Dapi%22%2Cr%29%2Eon%28%22click%2Edropdown%2Edata%2Dapi%22%2C%22%2Edropdown%20form%22%2Cfunction%28e%29%7Be%2EstopPropagation%28%29%7D%29%2Eon%28%22click%2Edropdown%2Edata%2Dapi%22%2Ct%2Cn%2Eprototype%2Etoggle%29%2Eon%28%22keydown%2Edropdown%2Edata%2Dapi%22%2Ct%2B%22%2C%20%5Brole%3Dmenu%5D%22%2Cn%2Eprototype%2Ekeydown%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28t%2Cn%29%7Bthis%2Eoptions%3Dn%2Cthis%2E%24element%3De%28t%29%2Edelegate%28%27%5Bdata%2Ddismiss%3D%22modal%22%5D%27%2C%22click%2Edismiss%2Emodal%22%2Ce%2Eproxy%28this%2Ehide%2Cthis%29%29%2Cthis%2Eoptions%2Eremote%26%26this%2E%24element%2Efind%28%22%2Emodal%2Dbody%22%29%2Eload%28this%2Eoptions%2Eremote%29%7D%3Bt%2Eprototype%3D%7Bconstructor%3At%2Ctoggle%3Afunction%28%29%7Breturn%20this%5Bthis%2EisShown%3F%22hide%22%3A%22show%22%5D%28%29%7D%2Cshow%3Afunction%28%29%7Bvar%20t%3Dthis%2Cn%3De%2EEvent%28%22show%22%29%3Bthis%2E%24element%2Etrigger%28n%29%3Bif%28this%2EisShown%7C%7Cn%2EisDefaultPrevented%28%29%29return%3Bthis%2EisShown%3D%210%2Cthis%2Eescape%28%29%2Cthis%2Ebackdrop%28function%28%29%7Bvar%20n%3De%2Esupport%2Etransition%26%26t%2E%24element%2EhasClass%28%22fade%22%29%3Bt%2E%24element%2Eparent%28%29%2Elength%7C%7Ct%2E%24element%2EappendTo%28document%2Ebody%29%2Ct%2E%24element%2Eshow%28%29%2Cn%26%26t%2E%24element%5B0%5D%2EoffsetWidth%2Ct%2E%24element%2EaddClass%28%22in%22%29%2Eattr%28%22aria%2Dhidden%22%2C%211%29%2Ct%2EenforceFocus%28%29%2Cn%3Ft%2E%24element%2Eone%28e%2Esupport%2Etransition%2Eend%2Cfunction%28%29%7Bt%2E%24element%2Efocus%28%29%2Etrigger%28%22shown%22%29%7D%29%3At%2E%24element%2Efocus%28%29%2Etrigger%28%22shown%22%29%7D%29%7D%2Chide%3Afunction%28t%29%7Bt%26%26t%2EpreventDefault%28%29%3Bvar%20n%3Dthis%3Bt%3De%2EEvent%28%22hide%22%29%2Cthis%2E%24element%2Etrigger%28t%29%3Bif%28%21this%2EisShown%7C%7Ct%2EisDefaultPrevented%28%29%29return%3Bthis%2EisShown%3D%211%2Cthis%2Eescape%28%29%2Ce%28document%29%2Eoff%28%22focusin%2Emodal%22%29%2Cthis%2E%24element%2EremoveClass%28%22in%22%29%2Eattr%28%22aria%2Dhidden%22%2C%210%29%2Ce%2Esupport%2Etransition%26%26this%2E%24element%2EhasClass%28%22fade%22%29%3Fthis%2EhideWithTransition%28%29%3Athis%2EhideModal%28%29%7D%2CenforceFocus%3Afunction%28%29%7Bvar%20t%3Dthis%3Be%28document%29%2Eon%28%22focusin%2Emodal%22%2Cfunction%28e%29%7Bt%2E%24element%5B0%5D%21%3D%3De%2Etarget%26%26%21t%2E%24element%2Ehas%28e%2Etarget%29%2Elength%26%26t%2E%24element%2Efocus%28%29%7D%29%7D%2Cescape%3Afunction%28%29%7Bvar%20e%3Dthis%3Bthis%2EisShown%26%26this%2Eoptions%2Ekeyboard%3Fthis%2E%24element%2Eon%28%22keyup%2Edismiss%2Emodal%22%2Cfunction%28t%29%7Bt%2Ewhich%3D%3D27%26%26e%2Ehide%28%29%7D%29%3Athis%2EisShown%7C%7Cthis%2E%24element%2Eoff%28%22keyup%2Edismiss%2Emodal%22%29%7D%2ChideWithTransition%3Afunction%28%29%7Bvar%20t%3Dthis%2Cn%3DsetTimeout%28function%28%29%7Bt%2E%24element%2Eoff%28e%2Esupport%2Etransition%2Eend%29%2Ct%2EhideModal%28%29%7D%2C500%29%3Bthis%2E%24element%2Eone%28e%2Esupport%2Etransition%2Eend%2Cfunction%28%29%7BclearTimeout%28n%29%2Ct%2EhideModal%28%29%7D%29%7D%2ChideModal%3Afunction%28%29%7Bvar%20e%3Dthis%3Bthis%2E%24element%2Ehide%28%29%2Cthis%2Ebackdrop%28function%28%29%7Be%2EremoveBackdrop%28%29%2Ce%2E%24element%2Etrigger%28%22hidden%22%29%7D%29%7D%2CremoveBackdrop%3Afunction%28%29%7Bthis%2E%24backdrop%26%26this%2E%24backdrop%2Eremove%28%29%2Cthis%2E%24backdrop%3Dnull%7D%2Cbackdrop%3Afunction%28t%29%7Bvar%20n%3Dthis%2Cr%3Dthis%2E%24element%2EhasClass%28%22fade%22%29%3F%22fade%22%3A%22%22%3Bif%28this%2EisShown%26%26this%2Eoptions%2Ebackdrop%29%7Bvar%20i%3De%2Esupport%2Etransition%26%26r%3Bthis%2E%24backdrop%3De%28%27%3Cdiv%20class%3D%22modal%2Dbackdrop%20%27%2Br%2B%27%22%20%2F%3E%27%29%2EappendTo%28document%2Ebody%29%2Cthis%2E%24backdrop%2Eclick%28this%2Eoptions%2Ebackdrop%3D%3D%22static%22%3Fe%2Eproxy%28this%2E%24element%5B0%5D%2Efocus%2Cthis%2E%24element%5B0%5D%29%3Ae%2Eproxy%28this%2Ehide%2Cthis%29%29%2Ci%26%26this%2E%24backdrop%5B0%5D%2EoffsetWidth%2Cthis%2E%24backdrop%2EaddClass%28%22in%22%29%3Bif%28%21t%29return%3Bi%3Fthis%2E%24backdrop%2Eone%28e%2Esupport%2Etransition%2Eend%2Ct%29%3At%28%29%7Delse%21this%2EisShown%26%26this%2E%24backdrop%3F%28this%2E%24backdrop%2EremoveClass%28%22in%22%29%2Ce%2Esupport%2Etransition%26%26this%2E%24element%2EhasClass%28%22fade%22%29%3Fthis%2E%24backdrop%2Eone%28e%2Esupport%2Etransition%2Eend%2Ct%29%3At%28%29%29%3At%26%26t%28%29%7D%7D%3Bvar%20n%3De%2Efn%2Emodal%3Be%2Efn%2Emodal%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22modal%22%29%2Cs%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Emodal%2Edefaults%2Cr%2Edata%28%29%2Ctypeof%20n%3D%3D%22object%22%26%26n%29%3Bi%7C%7Cr%2Edata%28%22modal%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Ctypeof%20n%3D%3D%22string%22%3Fi%5Bn%5D%28%29%3As%2Eshow%26%26i%2Eshow%28%29%7D%29%7D%2Ce%2Efn%2Emodal%2Edefaults%3D%7Bbackdrop%3A%210%2Ckeyboard%3A%210%2Cshow%3A%210%7D%2Ce%2Efn%2Emodal%2EConstructor%3Dt%2Ce%2Efn%2Emodal%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Emodal%3Dn%2Cthis%7D%2Ce%28document%29%2Eon%28%22click%2Emodal%2Edata%2Dapi%22%2C%27%5Bdata%2Dtoggle%3D%22modal%22%5D%27%2Cfunction%28t%29%7Bvar%20n%3De%28this%29%2Cr%3Dn%2Eattr%28%22href%22%29%2Ci%3De%28n%2Eattr%28%22data%2Dtarget%22%29%7C%7Cr%26%26r%2Ereplace%28%2F%2E%2A%28%3F%3D%23%5B%5E%5Cs%5D%2B%24%29%2F%2C%22%22%29%29%2Cs%3Di%2Edata%28%22modal%22%29%3F%22toggle%22%3Ae%2Eextend%28%7Bremote%3A%21%2F%23%2F%2Etest%28r%29%26%26r%7D%2Ci%2Edata%28%29%2Cn%2Edata%28%29%29%3Bt%2EpreventDefault%28%29%2Ci%2Emodal%28s%29%2Eone%28%22hide%22%2Cfunction%28%29%7Bn%2Efocus%28%29%7D%29%7D%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28e%2Ct%29%7Bthis%2Einit%28%22tooltip%22%2Ce%2Ct%29%7D%3Bt%2Eprototype%3D%7Bconstructor%3At%2Cinit%3Afunction%28t%2Cn%2Cr%29%7Bvar%20i%2Cs%2Co%2Cu%2Ca%3Bthis%2Etype%3Dt%2Cthis%2E%24element%3De%28n%29%2Cthis%2Eoptions%3Dthis%2EgetOptions%28r%29%2Cthis%2Eenabled%3D%210%2Co%3Dthis%2Eoptions%2Etrigger%2Esplit%28%22%20%22%29%3Bfor%28a%3Do%2Elength%3Ba%2D%2D%3B%29u%3Do%5Ba%5D%2Cu%3D%3D%22click%22%3Fthis%2E%24element%2Eon%28%22click%2E%22%2Bthis%2Etype%2Cthis%2Eoptions%2Eselector%2Ce%2Eproxy%28this%2Etoggle%2Cthis%29%29%3Au%21%3D%22manual%22%26%26%28i%3Du%3D%3D%22hover%22%3F%22mouseenter%22%3A%22focus%22%2Cs%3Du%3D%3D%22hover%22%3F%22mouseleave%22%3A%22blur%22%2Cthis%2E%24element%2Eon%28i%2B%22%2E%22%2Bthis%2Etype%2Cthis%2Eoptions%2Eselector%2Ce%2Eproxy%28this%2Eenter%2Cthis%29%29%2Cthis%2E%24element%2Eon%28s%2B%22%2E%22%2Bthis%2Etype%2Cthis%2Eoptions%2Eselector%2Ce%2Eproxy%28this%2Eleave%2Cthis%29%29%29%3Bthis%2Eoptions%2Eselector%3Fthis%2E%5Foptions%3De%2Eextend%28%7B%7D%2Cthis%2Eoptions%2C%7Btrigger%3A%22manual%22%2Cselector%3A%22%22%7D%29%3Athis%2EfixTitle%28%29%7D%2CgetOptions%3Afunction%28t%29%7Breturn%20t%3De%2Eextend%28%7B%7D%2Ce%2Efn%5Bthis%2Etype%5D%2Edefaults%2Cthis%2E%24element%2Edata%28%29%2Ct%29%2Ct%2Edelay%26%26typeof%20t%2Edelay%3D%3D%22number%22%26%26%28t%2Edelay%3D%7Bshow%3At%2Edelay%2Chide%3At%2Edelay%7D%29%2Ct%7D%2Center%3Afunction%28t%29%7Bvar%20n%3De%2Efn%5Bthis%2Etype%5D%2Edefaults%2Cr%3D%7B%7D%2Ci%3Bthis%2E%5Foptions%26%26e%2Eeach%28this%2E%5Foptions%2Cfunction%28e%2Ct%29%7Bn%5Be%5D%21%3Dt%26%26%28r%5Be%5D%3Dt%29%7D%2Cthis%29%2Ci%3De%28t%2EcurrentTarget%29%5Bthis%2Etype%5D%28r%29%2Edata%28this%2Etype%29%3Bif%28%21i%2Eoptions%2Edelay%7C%7C%21i%2Eoptions%2Edelay%2Eshow%29return%20i%2Eshow%28%29%3BclearTimeout%28this%2Etimeout%29%2Ci%2EhoverState%3D%22in%22%2Cthis%2Etimeout%3DsetTimeout%28function%28%29%7Bi%2EhoverState%3D%3D%22in%22%26%26i%2Eshow%28%29%7D%2Ci%2Eoptions%2Edelay%2Eshow%29%7D%2Cleave%3Afunction%28t%29%7Bvar%20n%3De%28t%2EcurrentTarget%29%5Bthis%2Etype%5D%28this%2E%5Foptions%29%2Edata%28this%2Etype%29%3Bthis%2Etimeout%26%26clearTimeout%28this%2Etimeout%29%3Bif%28%21n%2Eoptions%2Edelay%7C%7C%21n%2Eoptions%2Edelay%2Ehide%29return%20n%2Ehide%28%29%3Bn%2EhoverState%3D%22out%22%2Cthis%2Etimeout%3DsetTimeout%28function%28%29%7Bn%2EhoverState%3D%3D%22out%22%26%26n%2Ehide%28%29%7D%2Cn%2Eoptions%2Edelay%2Ehide%29%7D%2Cshow%3Afunction%28%29%7Bvar%20t%2Cn%2Cr%2Ci%2Cs%2Co%2Cu%3De%2EEvent%28%22show%22%29%3Bif%28this%2EhasContent%28%29%26%26this%2Eenabled%29%7Bthis%2E%24element%2Etrigger%28u%29%3Bif%28u%2EisDefaultPrevented%28%29%29return%3Bt%3Dthis%2Etip%28%29%2Cthis%2EsetContent%28%29%2Cthis%2Eoptions%2Eanimation%26%26t%2EaddClass%28%22fade%22%29%2Cs%3Dtypeof%20this%2Eoptions%2Eplacement%3D%3D%22function%22%3Fthis%2Eoptions%2Eplacement%2Ecall%28this%2Ct%5B0%5D%2Cthis%2E%24element%5B0%5D%29%3Athis%2Eoptions%2Eplacement%2Ct%2Edetach%28%29%2Ecss%28%7Btop%3A0%2Cleft%3A0%2Cdisplay%3A%22block%22%7D%29%2Cthis%2Eoptions%2Econtainer%3Ft%2EappendTo%28this%2Eoptions%2Econtainer%29%3At%2EinsertAfter%28this%2E%24element%29%2Cn%3Dthis%2EgetPosition%28%29%2Cr%3Dt%5B0%5D%2EoffsetWidth%2Ci%3Dt%5B0%5D%2EoffsetHeight%3Bswitch%28s%29%7Bcase%22bottom%22%3Ao%3D%7Btop%3An%2Etop%2Bn%2Eheight%2Cleft%3An%2Eleft%2Bn%2Ewidth%2F2%2Dr%2F2%7D%3Bbreak%3Bcase%22top%22%3Ao%3D%7Btop%3An%2Etop%2Di%2Cleft%3An%2Eleft%2Bn%2Ewidth%2F2%2Dr%2F2%7D%3Bbreak%3Bcase%22left%22%3Ao%3D%7Btop%3An%2Etop%2Bn%2Eheight%2F2%2Di%2F2%2Cleft%3An%2Eleft%2Dr%7D%3Bbreak%3Bcase%22right%22%3Ao%3D%7Btop%3An%2Etop%2Bn%2Eheight%2F2%2Di%2F2%2Cleft%3An%2Eleft%2Bn%2Ewidth%7D%7Dthis%2EapplyPlacement%28o%2Cs%29%2Cthis%2E%24element%2Etrigger%28%22shown%22%29%7D%7D%2CapplyPlacement%3Afunction%28e%2Ct%29%7Bvar%20n%3Dthis%2Etip%28%29%2Cr%3Dn%5B0%5D%2EoffsetWidth%2Ci%3Dn%5B0%5D%2EoffsetHeight%2Cs%2Co%2Cu%2Ca%3Bn%2Eoffset%28e%29%2EaddClass%28t%29%2EaddClass%28%22in%22%29%2Cs%3Dn%5B0%5D%2EoffsetWidth%2Co%3Dn%5B0%5D%2EoffsetHeight%2Ct%3D%3D%22top%22%26%26o%21%3Di%26%26%28e%2Etop%3De%2Etop%2Bi%2Do%2Ca%3D%210%29%2Ct%3D%3D%22bottom%22%7C%7Ct%3D%3D%22top%22%3F%28u%3D0%2Ce%2Eleft%3C0%26%26%28u%3De%2Eleft%2A%2D2%2Ce%2Eleft%3D0%2Cn%2Eoffset%28e%29%2Cs%3Dn%5B0%5D%2EoffsetWidth%2Co%3Dn%5B0%5D%2EoffsetHeight%29%2Cthis%2EreplaceArrow%28u%2Dr%2Bs%2Cs%2C%22left%22%29%29%3Athis%2EreplaceArrow%28o%2Di%2Co%2C%22top%22%29%2Ca%26%26n%2Eoffset%28e%29%7D%2CreplaceArrow%3Afunction%28e%2Ct%2Cn%29%7Bthis%2Earrow%28%29%2Ecss%28n%2Ce%3F50%2A%281%2De%2Ft%29%2B%22%25%22%3A%22%22%29%7D%2CsetContent%3Afunction%28%29%7Bvar%20e%3Dthis%2Etip%28%29%2Ct%3Dthis%2EgetTitle%28%29%3Be%2Efind%28%22%2Etooltip%2Dinner%22%29%5Bthis%2Eoptions%2Ehtml%3F%22html%22%3A%22text%22%5D%28t%29%2Ce%2EremoveClass%28%22fade%20in%20top%20bottom%20left%20right%22%29%7D%2Chide%3Afunction%28%29%7Bfunction%20i%28%29%7Bvar%20t%3DsetTimeout%28function%28%29%7Bn%2Eoff%28e%2Esupport%2Etransition%2Eend%29%2Edetach%28%29%7D%2C500%29%3Bn%2Eone%28e%2Esupport%2Etransition%2Eend%2Cfunction%28%29%7BclearTimeout%28t%29%2Cn%2Edetach%28%29%7D%29%7Dvar%20t%3Dthis%2Cn%3Dthis%2Etip%28%29%2Cr%3De%2EEvent%28%22hide%22%29%3Bthis%2E%24element%2Etrigger%28r%29%3Bif%28r%2EisDefaultPrevented%28%29%29return%3Breturn%20n%2EremoveClass%28%22in%22%29%2Ce%2Esupport%2Etransition%26%26this%2E%24tip%2EhasClass%28%22fade%22%29%3Fi%28%29%3An%2Edetach%28%29%2Cthis%2E%24element%2Etrigger%28%22hidden%22%29%2Cthis%7D%2CfixTitle%3Afunction%28%29%7Bvar%20e%3Dthis%2E%24element%3B%28e%2Eattr%28%22title%22%29%7C%7Ctypeof%20e%2Eattr%28%22data%2Doriginal%2Dtitle%22%29%21%3D%22string%22%29%26%26e%2Eattr%28%22data%2Doriginal%2Dtitle%22%2Ce%2Eattr%28%22title%22%29%7C%7C%22%22%29%2Eattr%28%22title%22%2C%22%22%29%7D%2ChasContent%3Afunction%28%29%7Breturn%20this%2EgetTitle%28%29%7D%2CgetPosition%3Afunction%28%29%7Bvar%20t%3Dthis%2E%24element%5B0%5D%3Breturn%20e%2Eextend%28%7B%7D%2Ctypeof%20t%2EgetBoundingClientRect%3D%3D%22function%22%3Ft%2EgetBoundingClientRect%28%29%3A%7Bwidth%3At%2EoffsetWidth%2Cheight%3At%2EoffsetHeight%7D%2Cthis%2E%24element%2Eoffset%28%29%29%7D%2CgetTitle%3Afunction%28%29%7Bvar%20e%2Ct%3Dthis%2E%24element%2Cn%3Dthis%2Eoptions%3Breturn%20e%3Dt%2Eattr%28%22data%2Doriginal%2Dtitle%22%29%7C%7C%28typeof%20n%2Etitle%3D%3D%22function%22%3Fn%2Etitle%2Ecall%28t%5B0%5D%29%3An%2Etitle%29%2Ce%7D%2Ctip%3Afunction%28%29%7Breturn%20this%2E%24tip%3Dthis%2E%24tip%7C%7Ce%28this%2Eoptions%2Etemplate%29%7D%2Carrow%3Afunction%28%29%7Breturn%20this%2E%24arrow%3Dthis%2E%24arrow%7C%7Cthis%2Etip%28%29%2Efind%28%22%2Etooltip%2Darrow%22%29%7D%2Cvalidate%3Afunction%28%29%7Bthis%2E%24element%5B0%5D%2EparentNode%7C%7C%28this%2Ehide%28%29%2Cthis%2E%24element%3Dnull%2Cthis%2Eoptions%3Dnull%29%7D%2Cenable%3Afunction%28%29%7Bthis%2Eenabled%3D%210%7D%2Cdisable%3Afunction%28%29%7Bthis%2Eenabled%3D%211%7D%2CtoggleEnabled%3Afunction%28%29%7Bthis%2Eenabled%3D%21this%2Eenabled%7D%2Ctoggle%3Afunction%28t%29%7Bvar%20n%3Dt%3Fe%28t%2EcurrentTarget%29%5Bthis%2Etype%5D%28this%2E%5Foptions%29%2Edata%28this%2Etype%29%3Athis%3Bn%2Etip%28%29%2EhasClass%28%22in%22%29%3Fn%2Ehide%28%29%3An%2Eshow%28%29%7D%2Cdestroy%3Afunction%28%29%7Bthis%2Ehide%28%29%2E%24element%2Eoff%28%22%2E%22%2Bthis%2Etype%29%2EremoveData%28this%2Etype%29%7D%7D%3Bvar%20n%3De%2Efn%2Etooltip%3Be%2Efn%2Etooltip%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22tooltip%22%29%2Cs%3Dtypeof%20n%3D%3D%22object%22%26%26n%3Bi%7C%7Cr%2Edata%28%22tooltip%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Ctypeof%20n%3D%3D%22string%22%26%26i%5Bn%5D%28%29%7D%29%7D%2Ce%2Efn%2Etooltip%2EConstructor%3Dt%2Ce%2Efn%2Etooltip%2Edefaults%3D%7Banimation%3A%210%2Cplacement%3A%22top%22%2Cselector%3A%211%2Ctemplate%3A%27%3Cdiv%20class%3D%22tooltip%22%3E%3Cdiv%20class%3D%22tooltip%2Darrow%22%3E%3C%2Fdiv%3E%3Cdiv%20class%3D%22tooltip%2Dinner%22%3E%3C%2Fdiv%3E%3C%2Fdiv%3E%27%2Ctrigger%3A%22hover%20focus%22%2Ctitle%3A%22%22%2Cdelay%3A0%2Chtml%3A%211%2Ccontainer%3A%211%7D%2Ce%2Efn%2Etooltip%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Etooltip%3Dn%2Cthis%7D%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28e%2Ct%29%7Bthis%2Einit%28%22popover%22%2Ce%2Ct%29%7D%3Bt%2Eprototype%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Etooltip%2EConstructor%2Eprototype%2C%7Bconstructor%3At%2CsetContent%3Afunction%28%29%7Bvar%20e%3Dthis%2Etip%28%29%2Ct%3Dthis%2EgetTitle%28%29%2Cn%3Dthis%2EgetContent%28%29%3Be%2Efind%28%22%2Epopover%2Dtitle%22%29%5Bthis%2Eoptions%2Ehtml%3F%22html%22%3A%22text%22%5D%28t%29%2Ce%2Efind%28%22%2Epopover%2Dcontent%22%29%5Bthis%2Eoptions%2Ehtml%3F%22html%22%3A%22text%22%5D%28n%29%2Ce%2EremoveClass%28%22fade%20top%20bottom%20left%20right%20in%22%29%7D%2ChasContent%3Afunction%28%29%7Breturn%20this%2EgetTitle%28%29%7C%7Cthis%2EgetContent%28%29%7D%2CgetContent%3Afunction%28%29%7Bvar%20e%2Ct%3Dthis%2E%24element%2Cn%3Dthis%2Eoptions%3Breturn%20e%3D%28typeof%20n%2Econtent%3D%3D%22function%22%3Fn%2Econtent%2Ecall%28t%5B0%5D%29%3An%2Econtent%29%7C%7Ct%2Eattr%28%22data%2Dcontent%22%29%2Ce%7D%2Ctip%3Afunction%28%29%7Breturn%20this%2E%24tip%7C%7C%28this%2E%24tip%3De%28this%2Eoptions%2Etemplate%29%29%2Cthis%2E%24tip%7D%2Cdestroy%3Afunction%28%29%7Bthis%2Ehide%28%29%2E%24element%2Eoff%28%22%2E%22%2Bthis%2Etype%29%2EremoveData%28this%2Etype%29%7D%7D%29%3Bvar%20n%3De%2Efn%2Epopover%3Be%2Efn%2Epopover%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22popover%22%29%2Cs%3Dtypeof%20n%3D%3D%22object%22%26%26n%3Bi%7C%7Cr%2Edata%28%22popover%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Ctypeof%20n%3D%3D%22string%22%26%26i%5Bn%5D%28%29%7D%29%7D%2Ce%2Efn%2Epopover%2EConstructor%3Dt%2Ce%2Efn%2Epopover%2Edefaults%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Etooltip%2Edefaults%2C%7Bplacement%3A%22right%22%2Ctrigger%3A%22click%22%2Ccontent%3A%22%22%2Ctemplate%3A%27%3Cdiv%20class%3D%22popover%22%3E%3Cdiv%20class%3D%22arrow%22%3E%3C%2Fdiv%3E%3Ch3%20class%3D%22popover%2Dtitle%22%3E%3C%2Fh3%3E%3Cdiv%20class%3D%22popover%2Dcontent%22%3E%3C%2Fdiv%3E%3C%2Fdiv%3E%27%7D%29%2Ce%2Efn%2Epopover%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Epopover%3Dn%2Cthis%7D%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bfunction%20t%28t%2Cn%29%7Bvar%20r%3De%2Eproxy%28this%2Eprocess%2Cthis%29%2Ci%3De%28t%29%2Eis%28%22body%22%29%3Fe%28window%29%3Ae%28t%29%2Cs%3Bthis%2Eoptions%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Escrollspy%2Edefaults%2Cn%29%2Cthis%2E%24scrollElement%3Di%2Eon%28%22scroll%2Escroll%2Dspy%2Edata%2Dapi%22%2Cr%29%2Cthis%2Eselector%3D%28this%2Eoptions%2Etarget%7C%7C%28s%3De%28t%29%2Eattr%28%22href%22%29%29%26%26s%2Ereplace%28%2F%2E%2A%28%3F%3D%23%5B%5E%5Cs%5D%2B%24%29%2F%2C%22%22%29%7C%7C%22%22%29%2B%22%20%2Enav%20li%20%3E%20a%22%2Cthis%2E%24body%3De%28%22body%22%29%2Cthis%2Erefresh%28%29%2Cthis%2Eprocess%28%29%7Dt%2Eprototype%3D%7Bconstructor%3At%2Crefresh%3Afunction%28%29%7Bvar%20t%3Dthis%2Cn%3Bthis%2Eoffsets%3De%28%5B%5D%29%2Cthis%2Etargets%3De%28%5B%5D%29%2Cn%3Dthis%2E%24body%2Efind%28this%2Eselector%29%2Emap%28function%28%29%7Bvar%20n%3De%28this%29%2Cr%3Dn%2Edata%28%22target%22%29%7C%7Cn%2Eattr%28%22href%22%29%2Ci%3D%2F%5E%23%5Cw%2F%2Etest%28r%29%26%26e%28r%29%3Breturn%20i%26%26i%2Elength%26%26%5B%5Bi%2Eposition%28%29%2Etop%2B%28%21e%2EisWindow%28t%2E%24scrollElement%2Eget%280%29%29%26%26t%2E%24scrollElement%2EscrollTop%28%29%29%2Cr%5D%5D%7C%7Cnull%7D%29%2Esort%28function%28e%2Ct%29%7Breturn%20e%5B0%5D%2Dt%5B0%5D%7D%29%2Eeach%28function%28%29%7Bt%2Eoffsets%2Epush%28this%5B0%5D%29%2Ct%2Etargets%2Epush%28this%5B1%5D%29%7D%29%7D%2Cprocess%3Afunction%28%29%7Bvar%20e%3Dthis%2E%24scrollElement%2EscrollTop%28%29%2Bthis%2Eoptions%2Eoffset%2Ct%3Dthis%2E%24scrollElement%5B0%5D%2EscrollHeight%7C%7Cthis%2E%24body%5B0%5D%2EscrollHeight%2Cn%3Dt%2Dthis%2E%24scrollElement%2Eheight%28%29%2Cr%3Dthis%2Eoffsets%2Ci%3Dthis%2Etargets%2Cs%3Dthis%2EactiveTarget%2Co%3Bif%28e%3E%3Dn%29return%20s%21%3D%28o%3Di%2Elast%28%29%5B0%5D%29%26%26this%2Eactivate%28o%29%3Bfor%28o%3Dr%2Elength%3Bo%2D%2D%3B%29s%21%3Di%5Bo%5D%26%26e%3E%3Dr%5Bo%5D%26%26%28%21r%5Bo%2B1%5D%7C%7Ce%3C%3Dr%5Bo%2B1%5D%29%26%26this%2Eactivate%28i%5Bo%5D%29%7D%2Cactivate%3Afunction%28t%29%7Bvar%20n%2Cr%3Bthis%2EactiveTarget%3Dt%2Ce%28this%2Eselector%29%2Eparent%28%22%2Eactive%22%29%2EremoveClass%28%22active%22%29%2Cr%3Dthis%2Eselector%2B%27%5Bdata%2Dtarget%3D%22%27%2Bt%2B%27%22%5D%2C%27%2Bthis%2Eselector%2B%27%5Bhref%3D%22%27%2Bt%2B%27%22%5D%27%2Cn%3De%28r%29%2Eparent%28%22li%22%29%2EaddClass%28%22active%22%29%2Cn%2Eparent%28%22%2Edropdown%2Dmenu%22%29%2Elength%26%26%28n%3Dn%2Eclosest%28%22li%2Edropdown%22%29%2EaddClass%28%22active%22%29%29%2Cn%2Etrigger%28%22activate%22%29%7D%7D%3Bvar%20n%3De%2Efn%2Escrollspy%3Be%2Efn%2Escrollspy%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22scrollspy%22%29%2Cs%3Dtypeof%20n%3D%3D%22object%22%26%26n%3Bi%7C%7Cr%2Edata%28%22scrollspy%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Ctypeof%20n%3D%3D%22string%22%26%26i%5Bn%5D%28%29%7D%29%7D%2Ce%2Efn%2Escrollspy%2EConstructor%3Dt%2Ce%2Efn%2Escrollspy%2Edefaults%3D%7Boffset%3A10%7D%2Ce%2Efn%2Escrollspy%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Escrollspy%3Dn%2Cthis%7D%2Ce%28window%29%2Eon%28%22load%22%2Cfunction%28%29%7Be%28%27%5Bdata%2Dspy%3D%22scroll%22%5D%27%29%2Eeach%28function%28%29%7Bvar%20t%3De%28this%29%3Bt%2Escrollspy%28t%2Edata%28%29%29%7D%29%7D%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28t%29%7Bthis%2Eelement%3De%28t%29%7D%3Bt%2Eprototype%3D%7Bconstructor%3At%2Cshow%3Afunction%28%29%7Bvar%20t%3Dthis%2Eelement%2Cn%3Dt%2Eclosest%28%22ul%3Anot%28%2Edropdown%2Dmenu%29%22%29%2Cr%3Dt%2Eattr%28%22data%2Dtarget%22%29%2Ci%2Cs%2Co%3Br%7C%7C%28r%3Dt%2Eattr%28%22href%22%29%2Cr%3Dr%26%26r%2Ereplace%28%2F%2E%2A%28%3F%3D%23%5B%5E%5Cs%5D%2A%24%29%2F%2C%22%22%29%29%3Bif%28t%2Eparent%28%22li%22%29%2EhasClass%28%22active%22%29%29return%3Bi%3Dn%2Efind%28%22%2Eactive%3Alast%20a%22%29%5B0%5D%2Co%3De%2EEvent%28%22show%22%2C%7BrelatedTarget%3Ai%7D%29%2Ct%2Etrigger%28o%29%3Bif%28o%2EisDefaultPrevented%28%29%29return%3Bs%3De%28r%29%2Cthis%2Eactivate%28t%2Eparent%28%22li%22%29%2Cn%29%2Cthis%2Eactivate%28s%2Cs%2Eparent%28%29%2Cfunction%28%29%7Bt%2Etrigger%28%7Btype%3A%22shown%22%2CrelatedTarget%3Ai%7D%29%7D%29%7D%2Cactivate%3Afunction%28t%2Cn%2Cr%29%7Bfunction%20o%28%29%7Bi%2EremoveClass%28%22active%22%29%2Efind%28%22%3E%20%2Edropdown%2Dmenu%20%3E%20%2Eactive%22%29%2EremoveClass%28%22active%22%29%2Ct%2EaddClass%28%22active%22%29%2Cs%3F%28t%5B0%5D%2EoffsetWidth%2Ct%2EaddClass%28%22in%22%29%29%3At%2EremoveClass%28%22fade%22%29%2Ct%2Eparent%28%22%2Edropdown%2Dmenu%22%29%26%26t%2Eclosest%28%22li%2Edropdown%22%29%2EaddClass%28%22active%22%29%2Cr%26%26r%28%29%7Dvar%20i%3Dn%2Efind%28%22%3E%20%2Eactive%22%29%2Cs%3Dr%26%26e%2Esupport%2Etransition%26%26i%2EhasClass%28%22fade%22%29%3Bs%3Fi%2Eone%28e%2Esupport%2Etransition%2Eend%2Co%29%3Ao%28%29%2Ci%2EremoveClass%28%22in%22%29%7D%7D%3Bvar%20n%3De%2Efn%2Etab%3Be%2Efn%2Etab%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22tab%22%29%3Bi%7C%7Cr%2Edata%28%22tab%22%2Ci%3Dnew%20t%28this%29%29%2Ctypeof%20n%3D%3D%22string%22%26%26i%5Bn%5D%28%29%7D%29%7D%2Ce%2Efn%2Etab%2EConstructor%3Dt%2Ce%2Efn%2Etab%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Etab%3Dn%2Cthis%7D%2Ce%28document%29%2Eon%28%22click%2Etab%2Edata%2Dapi%22%2C%27%5Bdata%2Dtoggle%3D%22tab%22%5D%2C%20%5Bdata%2Dtoggle%3D%22pill%22%5D%27%2Cfunction%28t%29%7Bt%2EpreventDefault%28%29%2Ce%28this%29%2Etab%28%22show%22%29%7D%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28t%2Cn%29%7Bthis%2E%24element%3De%28t%29%2Cthis%2Eoptions%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Etypeahead%2Edefaults%2Cn%29%2Cthis%2Ematcher%3Dthis%2Eoptions%2Ematcher%7C%7Cthis%2Ematcher%2Cthis%2Esorter%3Dthis%2Eoptions%2Esorter%7C%7Cthis%2Esorter%2Cthis%2Ehighlighter%3Dthis%2Eoptions%2Ehighlighter%7C%7Cthis%2Ehighlighter%2Cthis%2Eupdater%3Dthis%2Eoptions%2Eupdater%7C%7Cthis%2Eupdater%2Cthis%2Esource%3Dthis%2Eoptions%2Esource%2Cthis%2E%24menu%3De%28this%2Eoptions%2Emenu%29%2Cthis%2Eshown%3D%211%2Cthis%2Elisten%28%29%7D%3Bt%2Eprototype%3D%7Bconstructor%3At%2Cselect%3Afunction%28%29%7Bvar%20e%3Dthis%2E%24menu%2Efind%28%22%2Eactive%22%29%2Eattr%28%22data%2Dvalue%22%29%3Breturn%20this%2E%24element%2Eval%28this%2Eupdater%28e%29%29%2Echange%28%29%2Cthis%2Ehide%28%29%7D%2Cupdater%3Afunction%28e%29%7Breturn%20e%7D%2Cshow%3Afunction%28%29%7Bvar%20t%3De%2Eextend%28%7B%7D%2Cthis%2E%24element%2Eposition%28%29%2C%7Bheight%3Athis%2E%24element%5B0%5D%2EoffsetHeight%7D%29%3Breturn%20this%2E%24menu%2EinsertAfter%28this%2E%24element%29%2Ecss%28%7Btop%3At%2Etop%2Bt%2Eheight%2Cleft%3At%2Eleft%7D%29%2Eshow%28%29%2Cthis%2Eshown%3D%210%2Cthis%7D%2Chide%3Afunction%28%29%7Breturn%20this%2E%24menu%2Ehide%28%29%2Cthis%2Eshown%3D%211%2Cthis%7D%2Clookup%3Afunction%28t%29%7Bvar%20n%3Breturn%20this%2Equery%3Dthis%2E%24element%2Eval%28%29%2C%21this%2Equery%7C%7Cthis%2Equery%2Elength%3Cthis%2Eoptions%2EminLength%3Fthis%2Eshown%3Fthis%2Ehide%28%29%3Athis%3A%28n%3De%2EisFunction%28this%2Esource%29%3Fthis%2Esource%28this%2Equery%2Ce%2Eproxy%28this%2Eprocess%2Cthis%29%29%3Athis%2Esource%2Cn%3Fthis%2Eprocess%28n%29%3Athis%29%7D%2Cprocess%3Afunction%28t%29%7Bvar%20n%3Dthis%3Breturn%20t%3De%2Egrep%28t%2Cfunction%28e%29%7Breturn%20n%2Ematcher%28e%29%7D%29%2Ct%3Dthis%2Esorter%28t%29%2Ct%2Elength%3Fthis%2Erender%28t%2Eslice%280%2Cthis%2Eoptions%2Eitems%29%29%2Eshow%28%29%3Athis%2Eshown%3Fthis%2Ehide%28%29%3Athis%7D%2Cmatcher%3Afunction%28e%29%7Breturn%7Ee%2EtoLowerCase%28%29%2EindexOf%28this%2Equery%2EtoLowerCase%28%29%29%7D%2Csorter%3Afunction%28e%29%7Bvar%20t%3D%5B%5D%2Cn%3D%5B%5D%2Cr%3D%5B%5D%2Ci%3Bwhile%28i%3De%2Eshift%28%29%29i%2EtoLowerCase%28%29%2EindexOf%28this%2Equery%2EtoLowerCase%28%29%29%3F%7Ei%2EindexOf%28this%2Equery%29%3Fn%2Epush%28i%29%3Ar%2Epush%28i%29%3At%2Epush%28i%29%3Breturn%20t%2Econcat%28n%2Cr%29%7D%2Chighlighter%3Afunction%28e%29%7Bvar%20t%3Dthis%2Equery%2Ereplace%28%2F%5B%5C%2D%5C%5B%5C%5D%7B%7D%28%29%2A%2B%3F%2E%2C%5C%5C%5C%5E%24%7C%23%5Cs%5D%2Fg%2C%22%5C%5C%24%26%22%29%3Breturn%20e%2Ereplace%28new%20RegExp%28%22%28%22%2Bt%2B%22%29%22%2C%22ig%22%29%2Cfunction%28e%2Ct%29%7Breturn%22%3Cstrong%3E%22%2Bt%2B%22%3C%2Fstrong%3E%22%7D%29%7D%2Crender%3Afunction%28t%29%7Bvar%20n%3Dthis%3Breturn%20t%3De%28t%29%2Emap%28function%28t%2Cr%29%7Breturn%20t%3De%28n%2Eoptions%2Eitem%29%2Eattr%28%22data%2Dvalue%22%2Cr%29%2Ct%2Efind%28%22a%22%29%2Ehtml%28n%2Ehighlighter%28r%29%29%2Ct%5B0%5D%7D%29%2Ct%2Efirst%28%29%2EaddClass%28%22active%22%29%2Cthis%2E%24menu%2Ehtml%28t%29%2Cthis%7D%2Cnext%3Afunction%28t%29%7Bvar%20n%3Dthis%2E%24menu%2Efind%28%22%2Eactive%22%29%2EremoveClass%28%22active%22%29%2Cr%3Dn%2Enext%28%29%3Br%2Elength%7C%7C%28r%3De%28this%2E%24menu%2Efind%28%22li%22%29%5B0%5D%29%29%2Cr%2EaddClass%28%22active%22%29%7D%2Cprev%3Afunction%28e%29%7Bvar%20t%3Dthis%2E%24menu%2Efind%28%22%2Eactive%22%29%2EremoveClass%28%22active%22%29%2Cn%3Dt%2Eprev%28%29%3Bn%2Elength%7C%7C%28n%3Dthis%2E%24menu%2Efind%28%22li%22%29%2Elast%28%29%29%2Cn%2EaddClass%28%22active%22%29%7D%2Clisten%3Afunction%28%29%7Bthis%2E%24element%2Eon%28%22focus%22%2Ce%2Eproxy%28this%2Efocus%2Cthis%29%29%2Eon%28%22blur%22%2Ce%2Eproxy%28this%2Eblur%2Cthis%29%29%2Eon%28%22keypress%22%2Ce%2Eproxy%28this%2Ekeypress%2Cthis%29%29%2Eon%28%22keyup%22%2Ce%2Eproxy%28this%2Ekeyup%2Cthis%29%29%2Cthis%2EeventSupported%28%22keydown%22%29%26%26this%2E%24element%2Eon%28%22keydown%22%2Ce%2Eproxy%28this%2Ekeydown%2Cthis%29%29%2Cthis%2E%24menu%2Eon%28%22click%22%2Ce%2Eproxy%28this%2Eclick%2Cthis%29%29%2Eon%28%22mouseenter%22%2C%22li%22%2Ce%2Eproxy%28this%2Emouseenter%2Cthis%29%29%2Eon%28%22mouseleave%22%2C%22li%22%2Ce%2Eproxy%28this%2Emouseleave%2Cthis%29%29%7D%2CeventSupported%3Afunction%28e%29%7Bvar%20t%3De%20in%20this%2E%24element%3Breturn%20t%7C%7C%28this%2E%24element%2EsetAttribute%28e%2C%22return%3B%22%29%2Ct%3Dtypeof%20this%2E%24element%5Be%5D%3D%3D%22function%22%29%2Ct%7D%2Cmove%3Afunction%28e%29%7Bif%28%21this%2Eshown%29return%3Bswitch%28e%2EkeyCode%29%7Bcase%209%3Acase%2013%3Acase%2027%3Ae%2EpreventDefault%28%29%3Bbreak%3Bcase%2038%3Ae%2EpreventDefault%28%29%2Cthis%2Eprev%28%29%3Bbreak%3Bcase%2040%3Ae%2EpreventDefault%28%29%2Cthis%2Enext%28%29%7De%2EstopPropagation%28%29%7D%2Ckeydown%3Afunction%28t%29%7Bthis%2EsuppressKeyPressRepeat%3D%7Ee%2EinArray%28t%2EkeyCode%2C%5B40%2C38%2C9%2C13%2C27%5D%29%2Cthis%2Emove%28t%29%7D%2Ckeypress%3Afunction%28e%29%7Bif%28this%2EsuppressKeyPressRepeat%29return%3Bthis%2Emove%28e%29%7D%2Ckeyup%3Afunction%28e%29%7Bswitch%28e%2EkeyCode%29%7Bcase%2040%3Acase%2038%3Acase%2016%3Acase%2017%3Acase%2018%3Abreak%3Bcase%209%3Acase%2013%3Aif%28%21this%2Eshown%29return%3Bthis%2Eselect%28%29%3Bbreak%3Bcase%2027%3Aif%28%21this%2Eshown%29return%3Bthis%2Ehide%28%29%3Bbreak%3Bdefault%3Athis%2Elookup%28%29%7De%2EstopPropagation%28%29%2Ce%2EpreventDefault%28%29%7D%2Cfocus%3Afunction%28e%29%7Bthis%2Efocused%3D%210%7D%2Cblur%3Afunction%28e%29%7Bthis%2Efocused%3D%211%2C%21this%2Emousedover%26%26this%2Eshown%26%26this%2Ehide%28%29%7D%2Cclick%3Afunction%28e%29%7Be%2EstopPropagation%28%29%2Ce%2EpreventDefault%28%29%2Cthis%2Eselect%28%29%2Cthis%2E%24element%2Efocus%28%29%7D%2Cmouseenter%3Afunction%28t%29%7Bthis%2Emousedover%3D%210%2Cthis%2E%24menu%2Efind%28%22%2Eactive%22%29%2EremoveClass%28%22active%22%29%2Ce%28t%2EcurrentTarget%29%2EaddClass%28%22active%22%29%7D%2Cmouseleave%3Afunction%28e%29%7Bthis%2Emousedover%3D%211%2C%21this%2Efocused%26%26this%2Eshown%26%26this%2Ehide%28%29%7D%7D%3Bvar%20n%3De%2Efn%2Etypeahead%3Be%2Efn%2Etypeahead%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22typeahead%22%29%2Cs%3Dtypeof%20n%3D%3D%22object%22%26%26n%3Bi%7C%7Cr%2Edata%28%22typeahead%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Ctypeof%20n%3D%3D%22string%22%26%26i%5Bn%5D%28%29%7D%29%7D%2Ce%2Efn%2Etypeahead%2Edefaults%3D%7Bsource%3A%5B%5D%2Citems%3A8%2Cmenu%3A%27%3Cul%20class%3D%22typeahead%20dropdown%2Dmenu%22%3E%3C%2Ful%3E%27%2Citem%3A%27%3Cli%3E%3Ca%20href%3D%22%23%22%3E%3C%2Fa%3E%3C%2Fli%3E%27%2CminLength%3A1%7D%2Ce%2Efn%2Etypeahead%2EConstructor%3Dt%2Ce%2Efn%2Etypeahead%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Etypeahead%3Dn%2Cthis%7D%2Ce%28document%29%2Eon%28%22focus%2Etypeahead%2Edata%2Dapi%22%2C%27%5Bdata%2Dprovide%3D%22typeahead%22%5D%27%2Cfunction%28t%29%7Bvar%20n%3De%28this%29%3Bif%28n%2Edata%28%22typeahead%22%29%29return%3Bn%2Etypeahead%28n%2Edata%28%29%29%7D%29%7D%28window%2EjQuery%29%2C%21function%28e%29%7B%22use%20strict%22%3Bvar%20t%3Dfunction%28t%2Cn%29%7Bthis%2Eoptions%3De%2Eextend%28%7B%7D%2Ce%2Efn%2Eaffix%2Edefaults%2Cn%29%2Cthis%2E%24window%3De%28window%29%2Eon%28%22scroll%2Eaffix%2Edata%2Dapi%22%2Ce%2Eproxy%28this%2EcheckPosition%2Cthis%29%29%2Eon%28%22click%2Eaffix%2Edata%2Dapi%22%2Ce%2Eproxy%28function%28%29%7BsetTimeout%28e%2Eproxy%28this%2EcheckPosition%2Cthis%29%2C1%29%7D%2Cthis%29%29%2Cthis%2E%24element%3De%28t%29%2Cthis%2EcheckPosition%28%29%7D%3Bt%2Eprototype%2EcheckPosition%3Dfunction%28%29%7Bif%28%21this%2E%24element%2Eis%28%22%3Avisible%22%29%29return%3Bvar%20t%3De%28document%29%2Eheight%28%29%2Cn%3Dthis%2E%24window%2EscrollTop%28%29%2Cr%3Dthis%2E%24element%2Eoffset%28%29%2Ci%3Dthis%2Eoptions%2Eoffset%2Cs%3Di%2Ebottom%2Co%3Di%2Etop%2Cu%3D%22affix%20affix%2Dtop%20affix%2Dbottom%22%2Ca%3Btypeof%20i%21%3D%22object%22%26%26%28s%3Do%3Di%29%2Ctypeof%20o%3D%3D%22function%22%26%26%28o%3Di%2Etop%28%29%29%2Ctypeof%20s%3D%3D%22function%22%26%26%28s%3Di%2Ebottom%28%29%29%2Ca%3Dthis%2Eunpin%21%3Dnull%26%26n%2Bthis%2Eunpin%3C%3Dr%2Etop%3F%211%3As%21%3Dnull%26%26r%2Etop%2Bthis%2E%24element%2Eheight%28%29%3E%3Dt%2Ds%3F%22bottom%22%3Ao%21%3Dnull%26%26n%3C%3Do%3F%22top%22%3A%211%3Bif%28this%2Eaffixed%3D%3D%3Da%29return%3Bthis%2Eaffixed%3Da%2Cthis%2Eunpin%3Da%3D%3D%22bottom%22%3Fr%2Etop%2Dn%3Anull%2Cthis%2E%24element%2EremoveClass%28u%29%2EaddClass%28%22affix%22%2B%28a%3F%22%2D%22%2Ba%3A%22%22%29%29%7D%3Bvar%20n%3De%2Efn%2Eaffix%3Be%2Efn%2Eaffix%3Dfunction%28n%29%7Breturn%20this%2Eeach%28function%28%29%7Bvar%20r%3De%28this%29%2Ci%3Dr%2Edata%28%22affix%22%29%2Cs%3Dtypeof%20n%3D%3D%22object%22%26%26n%3Bi%7C%7Cr%2Edata%28%22affix%22%2Ci%3Dnew%20t%28this%2Cs%29%29%2Ctypeof%20n%3D%3D%22string%22%26%26i%5Bn%5D%28%29%7D%29%7D%2Ce%2Efn%2Eaffix%2EConstructor%3Dt%2Ce%2Efn%2Eaffix%2Edefaults%3D%7Boffset%3A0%7D%2Ce%2Efn%2Eaffix%2EnoConflict%3Dfunction%28%29%7Breturn%20e%2Efn%2Eaffix%3Dn%2Cthis%7D%2Ce%28window%29%2Eon%28%22load%22%2Cfunction%28%29%7Be%28%27%5Bdata%2Dspy%3D%22affix%22%5D%27%29%2Eeach%28function%28%29%7Bvar%20t%3De%28this%29%2Cn%3Dt%2Edata%28%29%3Bn%2Eoffset%3Dn%2Eoffset%7C%7C%7B%7D%2Cn%2EoffsetBottom%26%26%28n%2Eoffset%2Ebottom%3Dn%2EoffsetBottom%29%2Cn%2EoffsetTop%26%26%28n%2Eoffset%2Etop%3Dn%2EoffsetTop%29%2Ct%2Eaffix%28n%29%7D%29%7D%29%7D%28window%2EjQuery%29%3B"></script>
<style type="text/css">code{white-space: pre;}</style>
<link href="data:text/css,pre%20%2Eoperator%2C%0Apre%20%2Eparen%20%7B%0A%20color%3A%20rgb%28104%2C%20118%2C%20135%29%0A%7D%0A%0Apre%20%2Eliteral%20%7B%0A%20color%3A%20%23990073%0A%7D%0A%0Apre%20%2Enumber%20%7B%0A%20color%3A%20%23099%3B%0A%7D%0A%0Apre%20%2Ecomment%20%7B%0A%20color%3A%20%23998%3B%0A%20font%2Dstyle%3A%20italic%0A%7D%0A%0Apre%20%2Ekeyword%20%7B%0A%20color%3A%20%23900%3B%0A%20font%2Dweight%3A%20bold%0A%7D%0A%0Apre%20%2Eidentifier%20%7B%0A%20color%3A%20rgb%280%2C%200%2C%200%29%3B%0A%7D%0A%0Apre%20%2Estring%20%7B%0A%20color%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" type="text/css" />
<script src="data:application/x-javascript,%0Avar%20hljs%3Dnew%20function%28%29%7Bfunction%20m%28p%29%7Breturn%20p%2Ereplace%28%2F%26%2Fgm%2C%22%26amp%3B%22%29%2Ereplace%28%2F%3C%2Fgm%2C%22%26lt%3B%22%29%7Dfunction%20f%28r%2Cq%2Cp%29%7Breturn%20RegExp%28q%2C%22m%22%2B%28r%2EcI%3F%22i%22%3A%22%22%29%2B%28p%3F%22g%22%3A%22%22%29%29%7Dfunction%20b%28r%29%7Bfor%28var%20p%3D0%3Bp%3Cr%2EchildNodes%2Elength%3Bp%2B%2B%29%7Bvar%20q%3Dr%2EchildNodes%5Bp%5D%3Bif%28q%2EnodeName%3D%3D%22CODE%22%29%7Breturn%20q%7Dif%28%21%28q%2EnodeType%3D%3D3%26%26q%2EnodeValue%2Ematch%28%2F%5Cs%2B%2F%29%29%29%7Bbreak%7D%7D%7Dfunction%20h%28t%2Cs%29%7Bvar%20p%3D%22%22%3Bfor%28var%20r%3D0%3Br%3Ct%2EchildNodes%2Elength%3Br%2B%2B%29%7Bif%28t%2EchildNodes%5Br%5D%2EnodeType%3D%3D3%29%7Bvar%20q%3Dt%2EchildNodes%5Br%5D%2EnodeValue%3Bif%28s%29%7Bq%3Dq%2Ereplace%28%2F%5Cn%2Fg%2C%22%22%29%7Dp%2B%3Dq%7Delse%7Bif%28t%2EchildNodes%5Br%5D%2EnodeName%3D%3D%22BR%22%29%7Bp%2B%3D%22%5Cn%22%7Delse%7Bp%2B%3Dh%28t%2EchildNodes%5Br%5D%29%7D%7D%7Dif%28%2FMSIE%20%5B678%5D%2F%2Etest%28navigator%2EuserAgent%29%29%7Bp%3Dp%2Ereplace%28%2F%5Cr%2Fg%2C%22%5Cn%22%29%7Dreturn%20p%7Dfunction%20a%28s%29%7Bvar%20r%3Ds%2EclassName%2Esplit%28%2F%5Cs%2B%2F%29%3Br%3Dr%2Econcat%28s%2EparentNode%2EclassName%2Esplit%28%2F%5Cs%2B%2F%29%29%3Bfor%28var%20q%3D0%3Bq%3Cr%2Elength%3Bq%2B%2B%29%7Bvar%20p%3Dr%5Bq%5D%2Ereplace%28%2F%5Elanguage%2D%2F%2C%22%22%29%3Bif%28e%5Bp%5D%29%7Breturn%20p%7D%7D%7Dfunction%20c%28q%29%7Bvar%20p%3D%5B%5D%3B%28function%28s%2Ct%29%7Bfor%28var%20r%3D0%3Br%3Cs%2EchildNodes%2Elength%3Br%2B%2B%29%7Bif%28s%2EchildNodes%5Br%5D%2EnodeType%3D%3D3%29%7Bt%2B%3Ds%2EchildNodes%5Br%5D%2EnodeValue%2Elength%7Delse%7Bif%28s%2EchildNodes%5Br%5D%2EnodeName%3D%3D%22BR%22%29%7Bt%2B%3D1%7Delse%7Bif%28s%2EchildNodes%5Br%5D%2EnodeType%3D%3D1%29%7Bp%2Epush%28%7Bevent%3A%22start%22%2Coffset%3At%2Cnode%3As%2EchildNodes%5Br%5D%7D%29%3Bt%3Darguments%2Ecallee%28s%2EchildNodes%5Br%5D%2Ct%29%3Bp%2Epush%28%7Bevent%3A%22stop%22%2Coffset%3At%2Cnode%3As%2EchildNodes%5Br%5D%7D%29%7D%7D%7D%7Dreturn%20t%7D%29%28q%2C0%29%3Breturn%20p%7Dfunction%20k%28y%2Cw%2Cx%29%7Bvar%20q%3D0%3Bvar%20z%3D%22%22%3Bvar%20s%3D%5B%5D%3Bfunction%20u%28%29%7Bif%28y%2Elength%26%26w%2Elength%29%7Bif%28y%5B0%5D%2Eoffset%21%3Dw%5B0%5D%2Eoffset%29%7Breturn%28y%5B0%5D%2Eoffset%3Cw%5B0%5D%2Eoffset%29%3Fy%3Aw%7Delse%7Breturn%20w%5B0%5D%2Eevent%3D%3D%22start%22%3Fy%3Aw%7D%7Delse%7Breturn%20y%2Elength%3Fy%3Aw%7D%7Dfunction%20t%28D%29%7Bvar%20A%3D%22%3C%22%2BD%2EnodeName%2EtoLowerCase%28%29%3Bfor%28var%20B%3D0%3BB%3CD%2Eattributes%2Elength%3BB%2B%2B%29%7Bvar%20C%3DD%2Eattributes%5BB%5D%3BA%2B%3D%22%20%22%2BC%2EnodeName%2EtoLowerCase%28%29%3Bif%28C%2Evalue%21%3D%3Dundefined%26%26C%2Evalue%21%3D%3Dfalse%26%26C%2Evalue%21%3D%3Dnull%29%7BA%2B%3D%27%3D%22%27%2Bm%28C%2Evalue%29%2B%27%22%27%7D%7Dreturn%20A%2B%22%3E%22%7Dwhile%28y%2Elength%7C%7Cw%2Elength%29%7Bvar%20v%3Du%28%29%2Esplice%280%2C1%29%5B0%5D%3Bz%2B%3Dm%28x%2Esubstr%28q%2Cv%2Eoffset%2Dq%29%29%3Bq%3Dv%2Eoffset%3Bif%28v%2Eevent%3D%3D%22start%22%29%7Bz%2B%3Dt%28v%2Enode%29%3Bs%2Epush%28v%2Enode%29%7Delse%7Bif%28v%2Eevent%3D%3D%22stop%22%29%7Bvar%20p%2Cr%3Ds%2Elength%3Bdo%7Br%2D%2D%3Bp%3Ds%5Br%5D%3Bz%2B%3D%28%22%3C%2F%22%2Bp%2EnodeName%2EtoLowerCase%28%29%2B%22%3E%22%29%7Dwhile%28p%21%3Dv%2Enode%29%3Bs%2Esplice%28r%2C1%29%3Bwhile%28r%3Cs%2Elength%29%7Bz%2B%3Dt%28s%5Br%5D%29%3Br%2B%2B%7D%7D%7D%7Dreturn%20z%2Bm%28x%2Esubstr%28q%29%29%7Dfunction%20j%28%29%7Bfunction%20q%28x%2Cy%2Cv%29%7Bif%28x%2Ecompiled%29%7Breturn%7Dvar%20u%3Bvar%20s%3D%5B%5D%3Bif%28x%2Ek%29%7Bx%2ElR%3Df%28y%2Cx%2El%7C%7Chljs%2EIR%2Ctrue%29%3Bfor%28var%20w%20in%20x%2Ek%29%7Bif%28%21x%2Ek%2EhasOwnProperty%28w%29%29%7Bcontinue%7Dif%28x%2Ek%5Bw%5D%20instanceof%20Object%29%7Bu%3Dx%2Ek%5Bw%5D%7Delse%7Bu%3Dx%2Ek%3Bw%3D%22keyword%22%7Dfor%28var%20r%20in%20u%29%7Bif%28%21u%2EhasOwnProperty%28r%29%29%7Bcontinue%7Dx%2Ek%5Br%5D%3D%5Bw%2Cu%5Br%5D%5D%3Bs%2Epush%28r%29%7D%7D%7Dif%28%21v%29%7Bif%28x%2EbWK%29%7Bx%2Eb%3D%22%5C%5Cb%28%22%2Bs%2Ejoin%28%22%7C%22%29%2B%22%29%5C%5Cs%22%7Dx%2EbR%3Df%28y%2Cx%2Eb%3Fx%2Eb%3A%22%5C%5CB%7C%5C%5Cb%22%29%3Bif%28%21x%2Ee%26%26%21x%2EeW%29%7Bx%2Ee%3D%22%5C%5CB%7C%5C%5Cb%22%7Dif%28x%2Ee%29%7Bx%2EeR%3Df%28y%2Cx%2Ee%29%7D%7Dif%28x%2Ei%29%7Bx%2EiR%3Df%28y%2Cx%2Ei%29%7Dif%28x%2Er%3D%3D%3Dundefined%29%7Bx%2Er%3D1%7Dif%28%21x%2Ec%29%7Bx%2Ec%3D%5B%5D%7Dx%2Ecompiled%3Dtrue%3Bfor%28var%20t%3D0%3Bt%3Cx%2Ec%2Elength%3Bt%2B%2B%29%7Bif%28x%2Ec%5Bt%5D%3D%3D%22self%22%29%7Bx%2Ec%5Bt%5D%3Dx%7Dq%28x%2Ec%5Bt%5D%2Cy%2Cfalse%29%7Dif%28x%2Estarts%29%7Bq%28x%2Estarts%2Cy%2Cfalse%29%7D%7Dfor%28var%20p%20in%20e%29%7Bif%28%21e%2EhasOwnProperty%28p%29%29%7Bcontinue%7Dq%28e%5Bp%5D%2EdM%2Ce%5Bp%5D%2Ctrue%29%7D%7Dfunction%20d%28B%2CC%29%7Bif%28%21j%2Ecalled%29%7Bj%28%29%3Bj%2Ecalled%3Dtrue%7Dfunction%20q%28r%2CM%29%7Bfor%28var%20L%3D0%3BL%3CM%2Ec%2Elength%3BL%2B%2B%29%7Bif%28%28M%2Ec%5BL%5D%2EbR%2Eexec%28r%29%7C%7C%5Bnull%5D%29%5B0%5D%3D%3Dr%29%7Breturn%20M%2Ec%5BL%5D%7D%7D%7Dfunction%20v%28L%2Cr%29%7Bif%28D%5BL%5D%2Ee%26%26D%5BL%5D%2EeR%2Etest%28r%29%29%7Breturn%201%7Dif%28D%5BL%5D%2EeW%29%7Bvar%20M%3Dv%28L%2D1%2Cr%29%3Breturn%20M%3FM%2B1%3A0%7Dreturn%200%7Dfunction%20w%28r%2CL%29%7Breturn%20L%2Ei%26%26L%2EiR%2Etest%28r%29%7Dfunction%20K%28N%2CO%29%7Bvar%20M%3D%5B%5D%3Bfor%28var%20L%3D0%3BL%3CN%2Ec%2Elength%3BL%2B%2B%29%7BM%2Epush%28N%2Ec%5BL%5D%2Eb%29%7Dvar%20r%3DD%2Elength%2D1%3Bdo%7Bif%28D%5Br%5D%2Ee%29%7BM%2Epush%28D%5Br%5D%2Ee%29%7Dr%2D%2D%7Dwhile%28D%5Br%2B1%5D%2EeW%29%3Bif%28N%2Ei%29%7BM%2Epush%28N%2Ei%29%7Dreturn%20f%28O%2CM%2Ejoin%28%22%7C%22%29%2Ctrue%29%7Dfunction%20p%28M%2CL%29%7Bvar%20N%3DD%5BD%2Elength%2D1%5D%3Bif%28%21N%2Et%29%7BN%2Et%3DK%28N%2CE%29%7DN%2Et%2ElastIndex%3DL%3Bvar%20r%3DN%2Et%2Eexec%28M%29%3Breturn%20r%3F%5BM%2Esubstr%28L%2Cr%2Eindex%2DL%29%2Cr%5B0%5D%2Cfalse%5D%3A%5BM%2Esubstr%28L%29%2C%22%22%2Ctrue%5D%7Dfunction%20z%28N%2Cr%29%7Bvar%20L%3DE%2EcI%3Fr%5B0%5D%2EtoLowerCase%28%29%3Ar%5B0%5D%3Bvar%20M%3DN%2Ek%5BL%5D%3Bif%28M%26%26M%20instanceof%20Array%29%7Breturn%20M%7Dreturn%20false%7Dfunction%20F%28L%2CP%29%7BL%3Dm%28L%29%3Bif%28%21P%2Ek%29%7Breturn%20L%7Dvar%20r%3D%22%22%3Bvar%20O%3D0%3BP%2ElR%2ElastIndex%3D0%3Bvar%20M%3DP%2ElR%2Eexec%28L%29%3Bwhile%28M%29%7Br%2B%3DL%2Esubstr%28O%2CM%2Eindex%2DO%29%3Bvar%20N%3Dz%28P%2CM%29%3Bif%28N%29%7Bx%2B%3DN%5B1%5D%3Br%2B%3D%27%3Cspan%20class%3D%22%27%2BN%5B0%5D%2B%27%22%3E%27%2BM%5B0%5D%2B%22%3C%2Fspan%3E%22%7Delse%7Br%2B%3DM%5B0%5D%7DO%3DP%2ElR%2ElastIndex%3BM%3DP%2ElR%2Eexec%28L%29%7Dreturn%20r%2BL%2Esubstr%28O%2CL%2Elength%2DO%29%7Dfunction%20J%28L%2CM%29%7Bif%28M%2EsL%26%26e%5BM%2EsL%5D%29%7Bvar%20r%3Dd%28M%2EsL%2CL%29%3Bx%2B%3Dr%2Ekeyword%5Fcount%3Breturn%20r%2Evalue%7Delse%7Breturn%20F%28L%2CM%29%7D%7Dfunction%20I%28M%2Cr%29%7Bvar%20L%3DM%2EcN%3F%27%3Cspan%20class%3D%22%27%2BM%2EcN%2B%27%22%3E%27%3A%22%22%3Bif%28M%2ErB%29%7By%2B%3DL%3BM%2Ebuffer%3D%22%22%7Delse%7Bif%28M%2EeB%29%7By%2B%3Dm%28r%29%2BL%3BM%2Ebuffer%3D%22%22%7Delse%7By%2B%3DL%3BM%2Ebuffer%3Dr%7D%7DD%2Epush%28M%29%3BA%2B%3DM%2Er%7Dfunction%20G%28N%2CM%2CQ%29%7Bvar%20R%3DD%5BD%2Elength%2D1%5D%3Bif%28Q%29%7By%2B%3DJ%28R%2Ebuffer%2BN%2CR%29%3Breturn%20false%7Dvar%20P%3Dq%28M%2CR%29%3Bif%28P%29%7By%2B%3DJ%28R%2Ebuffer%2BN%2CR%29%3BI%28P%2CM%29%3Breturn%20P%2ErB%7Dvar%20L%3Dv%28D%2Elength%2D1%2CM%29%3Bif%28L%29%7Bvar%20O%3DR%2EcN%3F%22%3C%2Fspan%3E%22%3A%22%22%3Bif%28R%2ErE%29%7By%2B%3DJ%28R%2Ebuffer%2BN%2CR%29%2BO%7Delse%7Bif%28R%2EeE%29%7By%2B%3DJ%28R%2Ebuffer%2BN%2CR%29%2BO%2Bm%28M%29%7Delse%7By%2B%3DJ%28R%2Ebuffer%2BN%2BM%2CR%29%2BO%7D%7Dwhile%28L%3E1%29%7BO%3DD%5BD%2Elength%2D2%5D%2EcN%3F%22%3C%2Fspan%3E%22%3A%22%22%3By%2B%3DO%3BL%2D%2D%3BD%2Elength%2D%2D%7Dvar%20r%3DD%5BD%2Elength%2D1%5D%3BD%2Elength%2D%2D%3BD%5BD%2Elength%2D1%5D%2Ebuffer%3D%22%22%3Bif%28r%2Estarts%29%7BI%28r%2Estarts%2C%22%22%29%7Dreturn%20R%2ErE%7Dif%28w%28M%2CR%29%29%7Bthrow%22Illegal%22%7D%7Dvar%20E%3De%5BB%5D%3Bvar%20D%3D%5BE%2EdM%5D%3Bvar%20A%3D0%3Bvar%20x%3D0%3Bvar%20y%3D%22%22%3Btry%7Bvar%20s%2Cu%3D0%3BE%2EdM%2Ebuffer%3D%22%22%3Bdo%7Bs%3Dp%28C%2Cu%29%3Bvar%20t%3DG%28s%5B0%5D%2Cs%5B1%5D%2Cs%5B2%5D%29%3Bu%2B%3Ds%5B0%5D%2Elength%3Bif%28%21t%29%7Bu%2B%3Ds%5B1%5D%2Elength%7D%7Dwhile%28%21s%5B2%5D%29%3Bif%28D%2Elength%3E1%29%7Bthrow%22Illegal%22%7Dreturn%7Br%3AA%2Ckeyword%5Fcount%3Ax%2Cvalue%3Ay%7D%7Dcatch%28H%29%7Bif%28H%3D%3D%22Illegal%22%29%7Breturn%7Br%3A0%2Ckeyword%5Fcount%3A0%2Cvalue%3Am%28C%29%7D%7Delse%7Bthrow%20H%7D%7D%7Dfunction%20g%28t%29%7Bvar%20p%3D%7Bkeyword%5Fcount%3A0%2Cr%3A0%2Cvalue%3Am%28t%29%7D%3Bvar%20r%3Dp%3Bfor%28var%20q%20in%20e%29%7Bif%28%21e%2EhasOwnProperty%28q%29%29%7Bcontinue%7Dvar%20s%3Dd%28q%2Ct%29%3Bs%2Elanguage%3Dq%3Bif%28s%2Ekeyword%5Fcount%2Bs%2Er%3Er%2Ekeyword%5Fcount%2Br%2Er%29%7Br%3Ds%7Dif%28s%2Ekeyword%5Fcount%2Bs%2Er%3Ep%2Ekeyword%5Fcount%2Bp%2Er%29%7Br%3Dp%3Bp%3Ds%7D%7Dif%28r%2Elanguage%29%7Bp%2Esecond%5Fbest%3Dr%7Dreturn%20p%7Dfunction%20i%28r%2Cq%2Cp%29%7Bif%28q%29%7Br%3Dr%2Ereplace%28%2F%5E%28%28%3C%5B%5E%3E%5D%2B%3E%7C%5Ct%29%2B%29%2Fgm%2Cfunction%28t%2Cw%2Cv%2Cu%29%7Breturn%20w%2Ereplace%28%2F%5Ct%2Fg%2Cq%29%7D%29%7Dif%28p%29%7Br%3Dr%2Ereplace%28%2F%5Cn%2Fg%2C%22%3Cbr%3E%22%29%7Dreturn%20r%7Dfunction%20n%28t%2Cw%2Cr%29%7Bvar%20x%3Dh%28t%2Cr%29%3Bvar%20v%3Da%28t%29%3Bvar%20y%2Cs%3Bif%28v%29%7By%3Dd%28v%2Cx%29%7Delse%7Breturn%7Dvar%20q%3Dc%28t%29%3Bif%28q%2Elength%29%7Bs%3Ddocument%2EcreateElement%28%22pre%22%29%3Bs%2EinnerHTML%3Dy%2Evalue%3By%2Evalue%3Dk%28q%2Cc%28s%29%2Cx%29%7Dy%2Evalue%3Di%28y%2Evalue%2Cw%2Cr%29%3Bvar%20u%3Dt%2EclassName%3Bif%28%21u%2Ematch%28%22%28%5C%5Cs%7C%5E%29%28language%2D%29%3F%22%2Bv%2B%22%28%5C%5Cs%7C%24%29%22%29%29%7Bu%3Du%3F%28u%2B%22%20%22%2Bv%29%3Av%7Dif%28%2FMSIE%20%5B678%5D%2F%2Etest%28navigator%2EuserAgent%29%26%26t%2EtagName%3D%3D%22CODE%22%26%26t%2EparentNode%2EtagName%3D%3D%22PRE%22%29%7Bs%3Dt%2EparentNode%3Bvar%20p%3Ddocument%2EcreateElement%28%22div%22%29%3Bp%2EinnerHTML%3D%22%3Cpre%3E%3Ccode%3E%22%2By%2Evalue%2B%22%3C%2Fcode%3E%3C%2Fpre%3E%22%3Bt%3Dp%2EfirstChild%2EfirstChild%3Bp%2EfirstChild%2EcN%3Ds%2EcN%3Bs%2EparentNode%2EreplaceChild%28p%2EfirstChild%2Cs%29%7Delse%7Bt%2EinnerHTML%3Dy%2Evalue%7Dt%2EclassName%3Du%3Bt%2Eresult%3D%7Blanguage%3Av%2Ckw%3Ay%2Ekeyword%5Fcount%2Cre%3Ay%2Er%7D%3Bif%28y%2Esecond%5Fbest%29%7Bt%2Esecond%5Fbest%3D%7Blanguage%3Ay%2Esecond%5Fbest%2Elanguage%2Ckw%3Ay%2Esecond%5Fbest%2Ekeyword%5Fcount%2Cre%3Ay%2Esecond%5Fbest%2Er%7D%7D%7Dfunction%20o%28%29%7Bif%28o%2Ecalled%29%7Breturn%7Do%2Ecalled%3Dtrue%3Bvar%20r%3Ddocument%2EgetElementsByTagName%28%22pre%22%29%3Bfor%28var%20p%3D0%3Bp%3Cr%2Elength%3Bp%2B%2B%29%7Bvar%20q%3Db%28r%5Bp%5D%29%3Bif%28q%29%7Bn%28q%2Chljs%2EtabReplace%29%7D%7D%7Dfunction%20l%28%29%7Bif%28window%2EaddEventListener%29%7Bwindow%2EaddEventListener%28%22DOMContentLoaded%22%2Co%2Cfalse%29%3Bwindow%2EaddEventListener%28%22load%22%2Co%2Cfalse%29%7Delse%7Bif%28window%2EattachEvent%29%7Bwindow%2EattachEvent%28%22onload%22%2Co%29%7Delse%7Bwindow%2Eonload%3Do%7D%7D%7Dvar%20e%3D%7B%7D%3Bthis%2ELANGUAGES%3De%3Bthis%2Ehighlight%3Dd%3Bthis%2EhighlightAuto%3Dg%3Bthis%2EfixMarkup%3Di%3Bthis%2EhighlightBlock%3Dn%3Bthis%2EinitHighlighting%3Do%3Bthis%2EinitHighlightingOnLoad%3Dl%3Bthis%2EIR%3D%22%5Ba%2DzA%2DZ%5D%5Ba%2DzA%2DZ0%2D9%5F%5D%2A%22%3Bthis%2EUIR%3D%22%5Ba%2DzA%2DZ%5F%5D%5Ba%2DzA%2DZ0%2D9%5F%5D%2A%22%3Bthis%2ENR%3D%22%5C%5Cb%5C%5Cd%2B%28%5C%5C%2E%5C%5Cd%2B%29%3F%22%3Bthis%2ECNR%3D%22%5C%5Cb%280%5BxX%5D%5Ba%2DfA%2DF0%2D9%5D%2B%7C%28%5C%5Cd%2B%28%5C%5C%2E%5C%5Cd%2A%29%3F%7C%5C%5C%2E%5C%5Cd%2B%29%28%5BeE%5D%5B%2D%2B%5D%3F%5C%5Cd%2B%29%3F%29%22%3Bthis%2EBNR%3D%22%5C%5Cb%280b%5B01%5D%2B%29%22%3Bthis%2ERSR%3D%22%21%7C%21%3D%7C%21%3D%3D%7C%25%7C%25%3D%7C%26%7C%26%26%7C%26%3D%7C%5C%5C%2A%7C%5C%5C%2A%3D%7C%5C%5C%2B%7C%5C%5C%2B%3D%7C%2C%7C%5C%5C%2E%7C%2D%7C%2D%3D%7C%2F%7C%2F%3D%7C%3A%7C%3B%7C%3C%7C%3C%3C%7C%3C%3C%3D%7C%3C%3D%7C%3D%7C%3D%3D%7C%3D%3D%3D%7C%3E%7C%3E%3D%7C%3E%3E%7C%3E%3E%3D%7C%3E%3E%3E%7C%3E%3E%3E%3D%7C%5C%5C%3F%7C%5C%5C%5B%7C%5C%5C%7B%7C%5C%5C%28%7C%5C%5C%5E%7C%5C%5C%5E%3D%7C%5C%5C%7C%7C%5C%5C%7C%3D%7C%5C%5C%7C%5C%5C%7C%7C%7E%22%3Bthis%2EER%3D%22%28%3F%21%5B%5C%5Cs%5C%5CS%5D%29%22%3Bthis%2EBE%3D%7Bb%3A%22%5C%5C%5C%5C%2E%22%2Cr%3A0%7D%3Bthis%2EASM%3D%7BcN%3A%22string%22%2Cb%3A%22%27%22%2Ce%3A%22%27%22%2Ci%3A%22%5C%5Cn%22%2Cc%3A%5Bthis%2EBE%5D%2Cr%3A0%7D%3Bthis%2EQSM%3D%7BcN%3A%22string%22%2Cb%3A%27%22%27%2Ce%3A%27%22%27%2Ci%3A%22%5C%5Cn%22%2Cc%3A%5Bthis%2EBE%5D%2Cr%3A0%7D%3Bthis%2ECLCM%3D%7BcN%3A%22comment%22%2Cb%3A%22%2F%2F%22%2Ce%3A%22%24%22%7D%3Bthis%2ECBLCLM%3D%7BcN%3A%22comment%22%2Cb%3A%22%2F%5C%5C%2A%22%2Ce%3A%22%5C%5C%2A%2F%22%7D%3Bthis%2EHCM%3D%7BcN%3A%22comment%22%2Cb%3A%22%23%22%2Ce%3A%22%24%22%7D%3Bthis%2ENM%3D%7BcN%3A%22number%22%2Cb%3Athis%2ENR%2Cr%3A0%7D%3Bthis%2ECNM%3D%7BcN%3A%22number%22%2Cb%3Athis%2ECNR%2Cr%3A0%7D%3Bthis%2EBNM%3D%7BcN%3A%22number%22%2Cb%3Athis%2EBNR%2Cr%3A0%7D%3Bthis%2Einherit%3Dfunction%28r%2Cs%29%7Bvar%20p%3D%7B%7D%3Bfor%28var%20q%20in%20r%29%7Bp%5Bq%5D%3Dr%5Bq%5D%7Dif%28s%29%7Bfor%28var%20q%20in%20s%29%7Bp%5Bq%5D%3Ds%5Bq%5D%7D%7Dreturn%20p%7D%7D%28%29%3Bhljs%2ELANGUAGES%2Ecpp%3Dfunction%28%29%7Bvar%20a%3D%7Bkeyword%3A%7B%22false%22%3A1%2C%22int%22%3A1%2C%22float%22%3A1%2C%22while%22%3A1%2C%22private%22%3A1%2C%22char%22%3A1%2C%22catch%22%3A1%2C%22export%22%3A1%2Cvirtual%3A1%2Coperator%3A2%2Csizeof%3A2%2Cdynamic%5Fcast%3A2%2Ctypedef%3A2%2Cconst%5Fcast%3A2%2C%22const%22%3A1%2Cstruct%3A1%2C%22for%22%3A1%2Cstatic%5Fcast%3A2%2Cunion%3A1%2Cnamespace%3A1%2Cunsigned%3A1%2C%22long%22%3A1%2C%22throw%22%3A1%2C%22volatile%22%3A2%2C%22static%22%3A1%2C%22protected%22%3A1%2Cbool%3A1%2Ctemplate%3A1%2Cmutable%3A1%2C%22if%22%3A1%2C%22public%22%3A1%2Cfriend%3A2%2C%22do%22%3A1%2C%22return%22%3A1%2C%22goto%22%3A1%2Cauto%3A1%2C%22void%22%3A2%2C%22enum%22%3A1%2C%22else%22%3A1%2C%22break%22%3A1%2C%22new%22%3A1%2Cextern%3A1%2Cusing%3A1%2C%22true%22%3A1%2C%22class%22%3A1%2Casm%3A1%2C%22case%22%3A1%2Ctypeid%3A1%2C%22short%22%3A1%2Creinterpret%5Fcast%3A2%2C%22default%22%3A1%2C%22double%22%3A1%2Cregister%3A1%2Cexplicit%3A1%2Csigned%3A1%2Ctypename%3A1%2C%22try%22%3A1%2C%22this%22%3A1%2C%22switch%22%3A1%2C%22continue%22%3A1%2Cwchar%5Ft%3A1%2Cinline%3A1%2C%22delete%22%3A1%2Calignof%3A1%2Cchar16%5Ft%3A1%2Cchar32%5Ft%3A1%2Cconstexpr%3A1%2Cdecltype%3A1%2Cnoexcept%3A1%2Cnullptr%3A1%2Cstatic%5Fassert%3A1%2Cthread%5Flocal%3A1%2Crestrict%3A1%2C%5FBool%3A1%2Ccomplex%3A1%7D%2Cbuilt%5Fin%3A%7Bstd%3A1%2Cstring%3A1%2Ccin%3A1%2Ccout%3A1%2Ccerr%3A1%2Cclog%3A1%2Cstringstream%3A1%2Cistringstream%3A1%2Costringstream%3A1%2Cauto%5Fptr%3A1%2Cdeque%3A1%2Clist%3A1%2Cqueue%3A1%2Cstack%3A1%2Cvector%3A1%2Cmap%3A1%2Cset%3A1%2Cbitset%3A1%2Cmultiset%3A1%2Cmultimap%3A1%2Cunordered%5Fset%3A1%2Cunordered%5Fmap%3A1%2Cunordered%5Fmultiset%3A1%2Cunordered%5Fmultimap%3A1%2Carray%3A1%2Cshared%5Fptr%3A1%7D%7D%3Breturn%7BdM%3A%7Bk%3Aa%2Ci%3A%22%3C%2F%22%2Cc%3A%5Bhljs%2ECLCM%2Chljs%2ECBLCLM%2Chljs%2EQSM%2C%7BcN%3A%22string%22%2Cb%3A%22%27%5C%5C%5C%5C%3F%2E%22%2Ce%3A%22%27%22%2Ci%3A%22%2E%22%7D%2C%7BcN%3A%22number%22%2Cb%3A%22%5C%5Cb%28%5C%5Cd%2B%28%5C%5C%2E%5C%5Cd%2A%29%3F%7C%5C%5C%2E%5C%5Cd%2B%29%28u%7CU%7Cl%7CL%7Cul%7CUL%7Cf%7CF%29%22%7D%2Chljs%2ECNM%2C%7BcN%3A%22preprocessor%22%2Cb%3A%22%23%22%2Ce%3A%22%24%22%7D%2C%7BcN%3A%22stl%5Fcontainer%22%2Cb%3A%22%5C%5Cb%28deque%7Clist%7Cqueue%7Cstack%7Cvector%7Cmap%7Cset%7Cbitset%7Cmultiset%7Cmultimap%7Cunordered%5Fmap%7Cunordered%5Fset%7Cunordered%5Fmultiset%7Cunordered%5Fmultimap%7Carray%29%5C%5Cs%2A%3C%22%2Ce%3A%22%3E%22%2Ck%3Aa%2Cr%3A10%2Cc%3A%5B%22self%22%5D%7D%5D%7D%7D%7D%28%29%3Bhljs%2ELANGUAGES%2Er%3D%7BdM%3A%7Bc%3A%5Bhljs%2EHCM%2C%7BcN%3A%22number%22%2Cb%3A%22%5C%5Cb0%5BxX%5D%5B0%2D9a%2DfA%2DF%5D%2B%5BLi%5D%3F%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A0%7D%2C%7BcN%3A%22number%22%2Cb%3A%22%5C%5Cb%5C%5Cd%2B%28%3F%3A%5BeE%5D%5B%2B%5C%5C%2D%5D%3F%5C%5Cd%2A%29%3FL%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A0%7D%2C%7BcN%3A%22number%22%2Cb%3A%22%5C%5Cb%5C%5Cd%2B%5C%5C%2E%28%3F%21%5C%5Cd%29%28%3F%3Ai%5C%5Cb%29%3F%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A1%7D%2C%7BcN%3A%22number%22%2Cb%3A%22%5C%5Cb%5C%5Cd%2B%28%3F%3A%5C%5C%2E%5C%5Cd%2A%29%3F%28%3F%3A%5BeE%5D%5B%2B%5C%5C%2D%5D%3F%5C%5Cd%2A%29%3Fi%3F%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A0%7D%2C%7BcN%3A%22number%22%2Cb%3A%22%5C%5C%2E%5C%5Cd%2B%28%3F%3A%5BeE%5D%5B%2B%5C%5C%2D%5D%3F%5C%5Cd%2A%29%3Fi%3F%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A1%7D%2C%7BcN%3A%22keyword%22%2Cb%3A%22%28%3F%3AtryCatch%7Clibrary%7CsetGeneric%7CsetGroupGeneric%29%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A10%7D%2C%7BcN%3A%22keyword%22%2Cb%3A%22%5C%5C%2E%5C%5C%2E%5C%5C%2E%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A10%7D%2C%7BcN%3A%22keyword%22%2Cb%3A%22%5C%5C%2E%5C%5C%2E%5C%5Cd%2B%28%3F%21%5B%5C%5Cw%2E%5D%29%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A10%7D%2C%7BcN%3A%22keyword%22%2Cb%3A%22%5C%5Cb%28%3F%3Afunction%29%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A2%7D%2C%7BcN%3A%22keyword%22%2Cb%3A%22%28%3F%3Aif%7Cin%7Cbreak%7Cnext%7Crepeat%7Celse%7Cfor%7Creturn%7Cswitch%7Cwhile%7Ctry%7Cstop%7Cwarning%7Crequire%7Cattach%7Cdetach%7Csource%7CsetMethod%7CsetClass%29%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A1%7D%2C%7BcN%3A%22literal%22%2Cb%3A%22%28%3F%3ANA%7CNA%5Finteger%5F%7CNA%5Freal%5F%7CNA%5Fcharacter%5F%7CNA%5Fcomplex%5F%29%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A10%7D%2C%7BcN%3A%22literal%22%2Cb%3A%22%28%3F%3ANULL%7CTRUE%7CFALSE%7CT%7CF%7CInf%7CNaN%29%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A1%7D%2C%7BcN%3A%22identifier%22%2Cb%3A%22%5Ba%2DzA%2DZ%2E%5D%5Ba%2DzA%2DZ0%2D9%2E%5F%5D%2A%5C%5Cb%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A0%7D%2C%7BcN%3A%22operator%22%2Cb%3A%22%3C%5C%5C%2D%28%3F%21%5C%5Cs%2A%5C%5Cd%29%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A2%7D%2C%7BcN%3A%22operator%22%2Cb%3A%22%5C%5C%2D%3E%7C%3C%5C%5C%2D%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A1%7D%2C%7BcN%3A%22operator%22%2Cb%3A%22%25%25%7C%7E%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%7D%2C%7BcN%3A%22operator%22%2Cb%3A%22%3E%3D%7C%3C%3D%7C%3D%3D%7C%21%3D%7C%5C%5C%7C%5C%5C%7C%7C%26%26%7C%3D%7C%5C%5C%2B%7C%5C%5C%2D%7C%5C%5C%2A%7C%2F%7C%5C%5C%5E%7C%3E%7C%3C%7C%21%7C%26%7C%5C%5C%7C%7C%5C%5C%24%7C%3A%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A0%7D%2C%7BcN%3A%22operator%22%2Cb%3A%22%25%22%2Ce%3A%22%25%22%2Ci%3A%22%5C%5Cn%22%2Cr%3A1%7D%2C%7BcN%3A%22identifier%22%2Cb%3A%22%60%22%2Ce%3A%22%60%22%2Cr%3A0%7D%2C%7BcN%3A%22string%22%2Cb%3A%27%22%27%2Ce%3A%27%22%27%2Cc%3A%5Bhljs%2EBE%5D%2Cr%3A0%7D%2C%7BcN%3A%22string%22%2Cb%3A%22%27%22%2Ce%3A%22%27%22%2Cc%3A%5Bhljs%2EBE%5D%2Cr%3A0%7D%2C%7BcN%3A%22paren%22%2Cb%3A%22%5B%5B%28%7B%5C%5C%5D%29%7D%5D%22%2Ce%3Ahljs%2EIMMEDIATE%5FRE%2Cr%3A0%7D%5D%7D%7D%3B%0Ahljs%2EinitHighlightingOnLoad%28%29%3B%0A%0A"></script>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs && document.readyState && document.readyState === "complete") {
window.setTimeout(function() {
hljs.initHighlighting();
}, 0);
}
</script>
</head>
<body>
<style type="text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
</style>
<div class="container-fluid main-container">
<div id="chapter-7-exercise-3" class="section level1">
<h1>Chapter 7: Exercise 3</h1>
<pre class="r"><code>x = -2:2
y = 1 + x + -2 * (x-1)^2 * I(x>1)
plot(x, y)</code></pre>
<p><img src="" title="plot of chunk unnamed-chunk-1" alt="plot of chunk unnamed-chunk-1" width="672" /></p>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
$(document).ready(function () {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/3.html
|
HTML
|
unknown
| 486,767
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 7: Exercise 4</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 7: Exercise 4</h1>
<pre><code class="r">x = -2:2
y = c(1 + 0 + 0, # x = -2
1 + 0 + 0, # x = -1
1 + 1 + 0, # x = 0
1 + (1-0) + 0, # x = 1
1 + (1-1) + 0 # x =2
)
plot(x,y)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-1"/> </p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/4.html
|
HTML
|
unknown
| 26,667
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 7: Exercise 5</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 7: Exercise 5</h1>
<h2>a</h2>
<p>We'd expect \( \hat{g_2} \) to have the smaller training RSS because it will be a
higher order polynomial due to the order of the derivative penalty function.</p>
<h2>b</h2>
<p>We'd expect \( \hat{g_1} \) to have the smaller test RSS because \( \hat{g_2} \) could
overfit with the extra degree of freedom.</p>
<h2>c</h2>
<p>Trick question. \( \hat{g_1} = \hat{g_2} \) when \( \lambda = 0 \).</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/5.html
|
HTML
|
unknown
| 2,639
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 7: Exercise 6</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 7: Exercise 6</h1>
<h3>a</h3>
<p>Load \( Wage \) dataset. Keep an array of all cross-validation errors. We are performing K-fold cross validation with \( K=10 \).</p>
<pre><code class="r">set.seed(1)
library(ISLR)
library(boot)
all.deltas = rep(NA, 10)
for (i in 1:10) {
glm.fit = glm(wage~poly(age, i), data=Wage)
all.deltas[i] = cv.glm(Wage, glm.fit, K=10)$delta[2]
}
plot(1:10, all.deltas, xlab="Degree", ylab="CV error", type="l", pch=20, lwd=2, ylim=c(1590, 1700))
min.point = min(all.deltas)
sd.points = sd(all.deltas)
abline(h=min.point + 0.2 * sd.points, col="red", lty="dashed")
abline(h=min.point - 0.2 * sd.points, col="red", lty="dashed")
legend("topright", "0.2-standard deviation lines", lty="dashed", col="red")
</code></pre>
<p><img src="" alt="plot of chunk 6a"/> </p>
<p>The cv-plot with standard deviation lines show that \( d=3 \) is the smallest degree giving reasonably small cross-validation error.</p>
<p>We now find best degree using Anova.</p>
<pre><code class="r">fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
</code></pre>
<pre><code>## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.76 <2e-16 ***
## 3 2996 4777674 1 15756 9.90 0.0017 **
## 4 2995 4771604 1 6070 3.81 0.0509 .
## 5 2994 4770322 1 1283 0.81 0.3694
## 6 2993 4766389 1 3932 2.47 0.1161
## 7 2992 4763834 1 2555 1.61 0.2052
## 8 2991 4763707 1 127 0.08 0.7779
## 9 2990 4756703 1 7004 4.40 0.0360 *
## 10 2989 4756701 1 3 0.00 0.9675
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
<p>Anova shows that all polynomials above degree \( 3 \) are insignificant at \( 1% \) significance level.</p>
<p>We now plot the polynomial prediction on the data</p>
<pre><code class="r">plot(wage~age, data=Wage, col="darkgrey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.fit = lm(wage~poly(age, 3), data=Wage)
lm.pred = predict(lm.fit, data.frame(age=age.grid))
lines(age.grid, lm.pred, col="blue", lwd=2)
</code></pre>
<p><img src="" alt="plot of chunk 6aa"/> </p>
<h3>b</h3>
<p>We use cut points of up to 10.</p>
<pre><code class="r">all.cvs = rep(NA, 10)
for (i in 2:10) {
Wage$age.cut = cut(Wage$age, i)
lm.fit = glm(wage~age.cut, data=Wage)
all.cvs[i] = cv.glm(Wage, lm.fit, K=10)$delta[2]
}
plot(2:10, all.cvs[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)
</code></pre>
<p><img src="" alt="plot of chunk 6b"/> </p>
<p>The cross validation shows that test error is minimum for \( k=8 \) cuts.</p>
<p>We now train the entire data with step function using \( 8 \) cuts and plot it.</p>
<pre><code class="r">lm.fit = glm(wage~cut(age, 8), data=Wage)
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.pred = predict(lm.fit, data.frame(age=age.grid))
plot(wage~age, data=Wage, col="darkgrey")
lines(age.grid, lm.pred, col="red", lwd=2)
</code></pre>
<p><img src="" alt="plot of chunk 6bb"/> </p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/6.html
|
HTML
|
unknown
| 386,731
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 7: Exercise 7</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 7: Exercise 7</h1>
<pre><code class="r">library(ISLR)
set.seed(1)
</code></pre>
<pre><code class="r">summary(Wage$maritl)
</code></pre>
<pre><code>## 1. Never Married 2. Married 3. Widowed 4. Divorced
## 648 2074 19 204
## 5. Separated
## 55
</code></pre>
<pre><code class="r">summary(Wage$jobclass)
</code></pre>
<pre><code>## 1. Industrial 2. Information
## 1544 1456
</code></pre>
<pre><code class="r">par(mfrow = c(1, 2))
plot(Wage$maritl, Wage$wage)
plot(Wage$jobclass, Wage$wage)
</code></pre>
<p><img src="" alt="plot of chunk 7.1"/> </p>
<p>It appears a married couple makes more money on average than other groups. It
also appears that Informational jobs are higher-wage than Industrial jobs on
average.</p>
<h2>Polynomial and Step functions</h2>
<pre><code class="r">fit = lm(wage ~ maritl, data = Wage)
deviance(fit)
</code></pre>
<pre><code>## [1] 4858941
</code></pre>
<pre><code class="r">fit = lm(wage ~ jobclass, data = Wage)
deviance(fit)
</code></pre>
<pre><code>## [1] 4998547
</code></pre>
<pre><code class="r">fit = lm(wage ~ maritl + jobclass, data = Wage)
deviance(fit)
</code></pre>
<pre><code>## [1] 4654752
</code></pre>
<h2>Splines</h2>
<p>Unable to fit splines on categorical variables.</p>
<h2>GAMs</h2>
<pre><code class="r">library(gam)
</code></pre>
<pre><code>## Loading required package: splines Loaded gam 1.09
</code></pre>
<pre><code class="r">fit = gam(wage ~ maritl + jobclass + s(age, 4), data = Wage)
deviance(fit)
</code></pre>
<pre><code>## [1] 4476501
</code></pre>
<p>Without more advanced techniques, we cannot fit splines to categorical
variables (factors). <code>maritl</code> and <code>jobclass</code> do add statistically significant
improvements to the previously discussed models.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/7.html
|
HTML
|
unknown
| 57,185
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 7: Exercise 8</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 7: Exercise 8</h1>
<pre><code class="r">library(ISLR)
set.seed(1)
pairs(Auto)
</code></pre>
<p><img src="" alt="plot of chunk 8.1"/> </p>
<p>mpg appears inversely proportional to cylinders, displacement, horsepower,
weight.</p>
<h2>Polynomial</h2>
<pre><code class="r">rss = rep(NA, 10)
fits = list()
for (d in 1:10) {
fits[[d]] = lm(mpg ~ poly(displacement, d), data = Auto)
rss[d] = deviance(fits[[d]])
}
rss
</code></pre>
<pre><code>## [1] 8379 7412 7392 7392 7381 7271 7090 6917 6738 6610
</code></pre>
<pre><code class="r">anova(fits[[1]], fits[[2]], fits[[3]], fits[[4]])
</code></pre>
<pre><code>## Analysis of Variance Table
##
## Model 1: mpg ~ poly(displacement, d)
## Model 2: mpg ~ poly(displacement, d)
## Model 3: mpg ~ poly(displacement, d)
## Model 4: mpg ~ poly(displacement, d)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 390 8379
## 2 389 7412 1 967 50.61 5.5e-12 ***
## 3 388 7392 1 20 1.04 0.31
## 4 387 7392 1 1 0.03 0.86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
<p>Training RSS decreases over time. Quadratic polynomic sufficient from
ANOVA-perspective.</p>
<pre><code class="r">library(glmnet)
</code></pre>
<pre><code>## Loading required package: Matrix Loading required package: lattice Loaded
## glmnet 1.9-5
</code></pre>
<pre><code class="r">library(boot)
</code></pre>
<pre><code>## Attaching package: 'boot'
##
## The following object is masked from 'package:lattice':
##
## melanoma
</code></pre>
<pre><code class="r">cv.errs = rep(NA, 15)
for (d in 1:15) {
fit = glm(mpg ~ poly(displacement, d), data = Auto)
cv.errs[d] = cv.glm(Auto, fit, K = 10)$delta[2]
}
which.min(cv.errs)
</code></pre>
<pre><code>## [1] 11
</code></pre>
<pre><code class="r">cv.errs
</code></pre>
<pre><code>## [1] 21.50 19.06 19.10 19.41 19.60 19.18 18.80 18.20 17.82 17.75 17.69
## [12] 17.90 18.20 18.02 17.91
</code></pre>
<p>Surprisingly, cross-validation selected a 10th-degree polynomial.</p>
<h2>Step functions</h2>
<pre><code class="r">cv.errs = rep(NA, 10)
for (c in 2:10) {
Auto$dis.cut = cut(Auto$displacement, c)
fit = glm(mpg ~ dis.cut, data = Auto)
cv.errs[c] = cv.glm(Auto, fit, K = 10)$delta[2]
}
which.min(cv.errs)
</code></pre>
<pre><code>## [1] 9
</code></pre>
<pre><code class="r">cv.errs
</code></pre>
<pre><code>## [1] NA 36.41 24.42 24.23 22.46 22.00 21.42 19.80 18.21 19.08
</code></pre>
<h2>Splines</h2>
<pre><code class="r">library(splines)
cv.errs = rep(NA, 10)
for (df in 3:10) {
fit = glm(mpg ~ ns(displacement, df = df), data = Auto)
cv.errs[df] = cv.glm(Auto, fit, K = 10)$delta[2]
}
which.min(cv.errs)
</code></pre>
<pre><code>## [1] 9
</code></pre>
<pre><code class="r">cv.errs
</code></pre>
<pre><code>## [1] NA NA 19.08 19.30 19.28 18.47 18.05 18.33 17.63 17.82
</code></pre>
<h2>GAMs</h2>
<pre><code class="r">library(gam)
</code></pre>
<pre><code>## Loaded gam 1.09
</code></pre>
<pre><code class="r">fit = gam(mpg ~ s(displacement, 4) + s(horsepower, 4), data = Auto)
summary(fit)
</code></pre>
<pre><code>##
## Call: gam(formula = mpg ~ s(displacement, 4) + s(horsepower, 4), data = Auto)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -11.298 -2.159 -0.439 2.125 17.095
##
## (Dispersion Parameter for gaussian family taken to be 15.35)
##
## Null Deviance: 23819 on 391 degrees of freedom
## Residual Deviance: 5881 on 383 degrees of freedom
## AIC: 2194
##
## Number of Local Scoring Iterations: 2
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## s(displacement, 4) 1 15255 15255 993.5 < 2e-16 ***
## s(horsepower, 4) 1 1038 1038 67.6 3.1e-15 ***
## Residuals 383 5881 15
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## s(displacement, 4) 3 13.6 1.9e-08 ***
## s(horsepower, 4) 3 15.6 1.3e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/8.html
|
HTML
|
unknown
| 166,830
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Chapter 6: Exercise 9</title>
<base target="_blank"/>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
}
pre code {
display: block; padding: 0.5em;
}
code.r {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 6: Exercise 9</h1>
<p>Load the Boston dataset</p>
<pre><code class="r">set.seed(1)
library(MASS)
attach(Boston)
</code></pre>
<h3>a</h3>
<pre><code class="r">lm.fit = lm(nox ~ poly(dis, 3), data = Boston)
summary(lm.fit)
</code></pre>
<pre><code>##
## Call:
## lm(formula = nox ~ poly(dis, 3), data = Boston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.12113 -0.04062 -0.00974 0.02338 0.19490
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.55470 0.00276 201.02 < 2e-16 ***
## poly(dis, 3)1 -2.00310 0.06207 -32.27 < 2e-16 ***
## poly(dis, 3)2 0.85633 0.06207 13.80 < 2e-16 ***
## poly(dis, 3)3 -0.31805 0.06207 -5.12 4.3e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0621 on 502 degrees of freedom
## Multiple R-squared: 0.715, Adjusted R-squared: 0.713
## F-statistic: 419 on 3 and 502 DF, p-value: <2e-16
</code></pre>
<pre><code class="r">dislim = range(dis)
dis.grid = seq(from = dislim[1], to = dislim[2], by = 0.1)
lm.pred = predict(lm.fit, list(dis = dis.grid))
plot(nox ~ dis, data = Boston, col = "darkgrey")
lines(dis.grid, lm.pred, col = "red", lwd = 2)
</code></pre>
<p><img src="" alt="plot of chunk 9a"/> </p>
<p>Summary shows that all polynomial terms are significant while predicting nox using dis. Plot shows a smooth curve fitting the data fairly well.</p>
<h3>b</h3>
<p>We plot polynomials of degrees 1 to 10 and save train RSS.</p>
<pre><code class="r">all.rss = rep(NA, 10)
for (i in 1:10) {
lm.fit = lm(nox ~ poly(dis, i), data = Boston)
all.rss[i] = sum(lm.fit$residuals^2)
}
all.rss
</code></pre>
<pre><code>## [1] 2.769 2.035 1.934 1.933 1.915 1.878 1.849 1.836 1.833 1.832
</code></pre>
<p>As expected, train RSS monotonically decreases with degree of polynomial. </p>
<h3>c</h3>
<p>We use a 10-fold cross validation to pick the best polynomial degree.</p>
<pre><code class="r">library(boot)
all.deltas = rep(NA, 10)
for (i in 1:10) {
glm.fit = glm(nox ~ poly(dis, i), data = Boston)
all.deltas[i] = cv.glm(Boston, glm.fit, K = 10)$delta[2]
}
plot(1:10, all.deltas, xlab = "Degree", ylab = "CV error", type = "l", pch = 20,
lwd = 2)
</code></pre>
<p><img src="" alt="plot of chunk 9c"/> </p>
<p>A 10-fold CV shows that the CV error reduces as we increase degree from 1 to 3, stay almost constant till degree 5, and the starts increasing for higher degrees. We pick 4 as the best polynomial degree.</p>
<h3>d</h3>
<p>We see that dis has limits of about 1 and 13 respectively. We split this range in roughly equal 4 intervals and establish knots at \( [4, 7, 11] \). Note: bs function in R expects either df or knots argument. If both are specified, knots are ignored.</p>
<pre><code class="r">library(splines)
sp.fit = lm(nox ~ bs(dis, df = 4, knots = c(4, 7, 11)), data = Boston)
summary(sp.fit)
</code></pre>
<pre><code>##
## Call:
## lm(formula = nox ~ bs(dis, df = 4, knots = c(4, 7, 11)), data = Boston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1246 -0.0403 -0.0087 0.0247 0.1929
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7393 0.0133 55.54 < 2e-16
## bs(dis, df = 4, knots = c(4, 7, 11))1 -0.0886 0.0250 -3.54 0.00044
## bs(dis, df = 4, knots = c(4, 7, 11))2 -0.3134 0.0168 -18.66 < 2e-16
## bs(dis, df = 4, knots = c(4, 7, 11))3 -0.2662 0.0315 -8.46 3.0e-16
## bs(dis, df = 4, knots = c(4, 7, 11))4 -0.3980 0.0465 -8.56 < 2e-16
## bs(dis, df = 4, knots = c(4, 7, 11))5 -0.2568 0.0900 -2.85 0.00451
## bs(dis, df = 4, knots = c(4, 7, 11))6 -0.3293 0.0633 -5.20 2.9e-07
##
## (Intercept) ***
## bs(dis, df = 4, knots = c(4, 7, 11))1 ***
## bs(dis, df = 4, knots = c(4, 7, 11))2 ***
## bs(dis, df = 4, knots = c(4, 7, 11))3 ***
## bs(dis, df = 4, knots = c(4, 7, 11))4 ***
## bs(dis, df = 4, knots = c(4, 7, 11))5 **
## bs(dis, df = 4, knots = c(4, 7, 11))6 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0619 on 499 degrees of freedom
## Multiple R-squared: 0.718, Adjusted R-squared: 0.715
## F-statistic: 212 on 6 and 499 DF, p-value: <2e-16
</code></pre>
<pre><code class="r">sp.pred = predict(sp.fit, list(dis = dis.grid))
plot(nox ~ dis, data = Boston, col = "darkgrey")
lines(dis.grid, sp.pred, col = "red", lwd = 2)
</code></pre>
<p><img src="" alt="plot of chunk 9d"/> </p>
<p>The summary shows that all terms in spline fit are significant. Plot shows that the spline fits data well except at the extreme values of \( dis \), (especially \( dis > 10 \)). </p>
<h3>e</h3>
<p>We fit regression splines with dfs between 3 and 16. </p>
<pre><code class="r">all.cv = rep(NA, 16)
for (i in 3:16) {
lm.fit = lm(nox ~ bs(dis, df = i), data = Boston)
all.cv[i] = sum(lm.fit$residuals^2)
}
all.cv[-c(1, 2)]
</code></pre>
<pre><code>## [1] 1.934 1.923 1.840 1.834 1.830 1.817 1.826 1.793 1.797 1.789 1.782
## [12] 1.782 1.783 1.784
</code></pre>
<p>Train RSS monotonically decreases till df=14 and then slightly increases for df=15 and df=16.</p>
<h3>f</h3>
<p>Finally, we use a 10-fold cross validation to find best df. We try all integer values of df between 3 and 16.</p>
<pre><code class="r">all.cv = rep(NA, 16)
for (i in 3:16) {
lm.fit = glm(nox ~ bs(dis, df = i), data = Boston)
all.cv[i] = cv.glm(Boston, lm.fit, K = 10)$delta[2]
}
</code></pre>
<pre><code>## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
## Warning: some 'x' values beyond boundary knots may cause ill-conditioned bases
</code></pre>
<pre><code class="r">plot(3:16, all.cv[-c(1, 2)], lwd = 2, type = "l", xlab = "df", ylab = "CV error")
</code></pre>
<p><img src="" alt="plot of chunk 9f"/> </p>
<p>CV error is more jumpy in this case, but attains minimum at df=10. We pick \( 10 \) as the optimal degrees of freedom.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/9.html
|
HTML
|
unknown
| 156,526
|
# Chapter 7 Lab: Non-linear Modeling
library(ISLR)
attach(Wage)
# Polynomial Regression and Step Functions
fit=lm(wage~poly(age,4),data=Wage)
coef(summary(fit))
fit2=lm(wage~poly(age,4,raw=T),data=Wage)
coef(summary(fit2))
fit2a=lm(wage~age+I(age^2)+I(age^3)+I(age^4),data=Wage)
coef(fit2a)
fit2b=lm(wage~cbind(age,age^2,age^3,age^4),data=Wage)
agelims=range(age)
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit,newdata=list(age=age.grid),se=TRUE)
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)
par(mfrow=c(1,2),mar=c(4.5,4.5,1,1),oma=c(0,0,4,0))
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Degree-4 Polynomial",outer=T)
lines(age.grid,preds$fit,lwd=2,col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)
preds2=predict(fit2,newdata=list(age=age.grid),se=TRUE)
max(abs(preds$fit-preds2$fit))
fit.1=lm(wage~age,data=Wage)
fit.2=lm(wage~poly(age,2),data=Wage)
fit.3=lm(wage~poly(age,3),data=Wage)
fit.4=lm(wage~poly(age,4),data=Wage)
fit.5=lm(wage~poly(age,5),data=Wage)
anova(fit.1,fit.2,fit.3,fit.4,fit.5)
coef(summary(fit.5))
(-11.983)^2
fit.1=lm(wage~education+age,data=Wage)
fit.2=lm(wage~education+poly(age,2),data=Wage)
fit.3=lm(wage~education+poly(age,3),data=Wage)
anova(fit.1,fit.2,fit.3)
fit=glm(I(wage>250)~poly(age,4),data=Wage,family=binomial)
preds=predict(fit,newdata=list(age=age.grid),se=T)
pfit=exp(preds$fit)/(1+exp(preds$fit))
se.bands.logit = cbind(preds$fit+2*preds$se.fit, preds$fit-2*preds$se.fit)
se.bands = exp(se.bands.logit)/(1+exp(se.bands.logit))
preds=predict(fit,newdata=list(age=age.grid),type="response",se=T)
plot(age,I(wage>250),xlim=agelims,type="n",ylim=c(0,.2))
points(jitter(age), I((wage>250)/5),cex=.5,pch="|",col="darkgrey")
lines(age.grid,pfit,lwd=2, col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)
table(cut(age,4))
fit=lm(wage~cut(age,4),data=Wage)
coef(summary(fit))
# Splines
library(splines)
fit=lm(wage~bs(age,knots=c(25,40,60)),data=Wage)
pred=predict(fit,newdata=list(age=age.grid),se=T)
plot(age,wage,col="gray")
lines(age.grid,pred$fit,lwd=2)
lines(age.grid,pred$fit+2*pred$se,lty="dashed")
lines(age.grid,pred$fit-2*pred$se,lty="dashed")
dim(bs(age,knots=c(25,40,60)))
dim(bs(age,df=6))
attr(bs(age,df=6),"knots")
fit2=lm(wage~ns(age,df=4),data=Wage)
pred2=predict(fit2,newdata=list(age=age.grid),se=T)
lines(age.grid, pred2$fit,col="red",lwd=2)
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Smoothing Spline")
fit=smooth.spline(age,wage,df=16)
fit2=smooth.spline(age,wage,cv=TRUE)
fit2$df
lines(fit,col="red",lwd=2)
lines(fit2,col="blue",lwd=2)
legend("topright",legend=c("16 DF","6.8 DF"),col=c("red","blue"),lty=1,lwd=2,cex=.8)
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Local Regression")
fit=loess(wage~age,span=.2,data=Wage)
fit2=loess(wage~age,span=.5,data=Wage)
lines(age.grid,predict(fit,data.frame(age=age.grid)),col="red",lwd=2)
lines(age.grid,predict(fit2,data.frame(age=age.grid)),col="blue",lwd=2)
legend("topright",legend=c("Span=0.2","Span=0.5"),col=c("red","blue"),lty=1,lwd=2,cex=.8)
# GAMs
gam1=lm(wage~ns(year,4)+ns(age,5)+education,data=Wage)
library(gam)
gam.m3=gam(wage~s(year,4)+s(age,5)+education,data=Wage)
par(mfrow=c(1,3))
plot(gam.m3, se=TRUE,col="blue")
plot.gam(gam1, se=TRUE, col="red")
gam.m1=gam(wage~s(age,5)+education,data=Wage)
gam.m2=gam(wage~year+s(age,5)+education,data=Wage)
anova(gam.m1,gam.m2,gam.m3,test="F")
summary(gam.m3)
preds=predict(gam.m2,newdata=Wage)
gam.lo=gam(wage~s(year,df=4)+lo(age,span=0.7)+education,data=Wage)
plot.gam(gam.lo, se=TRUE, col="green")
gam.lo.i=gam(wage~lo(year,age,span=0.5)+education,data=Wage)
library(akima)
plot(gam.lo.i)
gam.lr=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage)
par(mfrow=c(1,3))
plot(gam.lr,se=T,col="green")
table(education,I(wage>250))
gam.lr.s=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage,subset=(education!="1. < HS Grad"))
plot(gam.lr.s,se=T,col="green")
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch7/lab.R
|
R
|
unknown
| 3,959
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 8: Exercise 1</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 8: Exercise 1</h1>
<pre><code class="r">par(xpd = NA)
plot(NA, NA, type = "n", xlim = c(0, 100), ylim = c(0, 100), xlab = "X", ylab = "Y")
# t1: x = 40; (40, 0) (40, 100)
lines(x = c(40, 40), y = c(0, 100))
text(x = 40, y = 108, labels = c("t1"), col = "red")
# t2: y = 75; (0, 75) (40, 75)
lines(x = c(0, 40), y = c(75, 75))
text(x = -8, y = 75, labels = c("t2"), col = "red")
# t3: x = 75; (75,0) (75, 100)
lines(x = c(75, 75), y = c(0, 100))
text(x = 75, y = 108, labels = c("t3"), col = "red")
# t4: x = 20; (20,0) (20, 75)
lines(x = c(20, 20), y = c(0, 75))
text(x = 20, y = 80, labels = c("t4"), col = "red")
# t5: y=25; (75,25) (100,25)
lines(x = c(75, 100), y = c(25, 25))
text(x = 70, y = 25, labels = c("t5"), col = "red")
text(x = (40 + 75)/2, y = 50, labels = c("R1"))
text(x = 20, y = (100 + 75)/2, labels = c("R2"))
text(x = (75 + 100)/2, y = (100 + 25)/2, labels = c("R3"))
text(x = (75 + 100)/2, y = 25/2, labels = c("R4"))
text(x = 30, y = 75/2, labels = c("R5"))
text(x = 10, y = 75/2, labels = c("R6"))
</code></pre>
<p><img src="" alt="plot of chunk 1"/> </p>
<pre><code> [ X<40 ]
| |
[Y<75] [X<75]
| | | |
[X<20] R2 R1 [Y<25]
| | | |
R6 R5 R4 R3
</code></pre>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/1.html
|
HTML
|
unknown
| 32,825
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Chapter 8: Exercise 10</title>
<base target="_blank"/>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
}
pre code {
display: block; padding: 0.5em;
}
code.r {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 8: Exercise 10</h1>
<h3>a</h3>
<pre><code class="r">library(ISLR)
sum(is.na(Hitters$Salary))
</code></pre>
<pre><code>## [1] 59
</code></pre>
<pre><code class="r">Hitters = Hitters[-which(is.na(Hitters$Salary)), ]
sum(is.na(Hitters$Salary))
</code></pre>
<pre><code>## [1] 0
</code></pre>
<pre><code class="r">Hitters$Salary = log(Hitters$Salary)
</code></pre>
<h3>b</h3>
<pre><code class="r">train = 1:200
Hitters.train = Hitters[train, ]
Hitters.test = Hitters[-train, ]
</code></pre>
<h3>c</h3>
<pre><code class="r">library(gbm)
</code></pre>
<pre><code>## Loading required package: survival
## Loading required package: splines
## Loading required package: lattice
## Loading required package: parallel
## Loaded gbm 2.1
</code></pre>
<pre><code class="r">set.seed(103)
pows = seq(-10, -0.2, by = 0.1)
lambdas = 10^pows
length.lambdas = length(lambdas)
train.errors = rep(NA, length.lambdas)
test.errors = rep(NA, length.lambdas)
for (i in 1:length.lambdas) {
boost.hitters = gbm(Salary ~ ., data = Hitters.train, distribution = "gaussian",
n.trees = 1000, shrinkage = lambdas[i])
train.pred = predict(boost.hitters, Hitters.train, n.trees = 1000)
test.pred = predict(boost.hitters, Hitters.test, n.trees = 1000)
train.errors[i] = mean((Hitters.train$Salary - train.pred)^2)
test.errors[i] = mean((Hitters.test$Salary - test.pred)^2)
}
plot(lambdas, train.errors, type = "b", xlab = "Shrinkage", ylab = "Train MSE",
col = "blue", pch = 20)
</code></pre>
<p><img src="" alt="plot of chunk 10c"/> </p>
<h3>d</h3>
<pre><code class="r">plot(lambdas, test.errors, type = "b", xlab = "Shrinkage", ylab = "Test MSE",
col = "red", pch = 20)
</code></pre>
<p><img src="" alt="plot of chunk 10d"/> </p>
<pre><code class="r">min(test.errors)
</code></pre>
<pre><code>## [1] 0.2561
</code></pre>
<pre><code class="r">lambdas[which.min(test.errors)]
</code></pre>
<pre><code>## [1] 0.05012
</code></pre>
<p>Minimum test error is obtained at \( \lambda = 0.05 \).</p>
<h3>e</h3>
<pre><code class="r">lm.fit = lm(Salary ~ ., data = Hitters.train)
lm.pred = predict(lm.fit, Hitters.test)
mean((Hitters.test$Salary - lm.pred)^2)
</code></pre>
<pre><code>## [1] 0.4918
</code></pre>
<pre><code class="r">library(glmnet)
</code></pre>
<pre><code>## Loading required package: Matrix
## Loaded glmnet 1.9-5
</code></pre>
<pre><code class="r">set.seed(134)
x = model.matrix(Salary ~ ., data = Hitters.train)
y = Hitters.train$Salary
x.test = model.matrix(Salary ~ ., data = Hitters.test)
lasso.fit = glmnet(x, y, alpha = 1)
lasso.pred = predict(lasso.fit, s = 0.01, newx = x.test)
mean((Hitters.test$Salary - lasso.pred)^2)
</code></pre>
<pre><code>## [1] 0.4701
</code></pre>
<p>Both linear model and regularization like Lasso have higher test MSE than boosting.</p>
<h3>f</h3>
<pre><code class="r">boost.best = gbm(Salary ~ ., data = Hitters.train, distribution = "gaussian",
n.trees = 1000, shrinkage = lambdas[which.min(test.errors)])
summary(boost.best)
</code></pre>
<p><img src="" alt="plot of chunk 10f"/> </p>
<pre><code>## var rel.inf
## CAtBat CAtBat 22.7563
## CWalks CWalks 10.4280
## CHits CHits 8.6198
## PutOuts PutOuts 6.6159
## Years Years 6.4612
## Walks Walks 6.2331
## CRBI CRBI 6.0927
## CHmRun CHmRun 5.1076
## RBI RBI 4.5322
## CRuns CRuns 4.4728
## Assists Assists 3.8367
## HmRun HmRun 3.1554
## Hits Hits 3.1229
## AtBat AtBat 2.4339
## Errors Errors 2.4324
## Runs Runs 2.1425
## Division Division 0.7042
## NewLeague NewLeague 0.6675
## League League 0.1849
</code></pre>
<p>\( \tt{CAtBat} \), \( \tt{CRBI} \) and \( \tt{CWalks} \) are three most important variables in that order.</p>
<h3>g</h3>
<pre><code class="r">library(randomForest)
</code></pre>
<pre><code>## randomForest 4.6-7
## Type rfNews() to see new features/changes/bug fixes.
</code></pre>
<pre><code class="r">set.seed(21)
rf.hitters = randomForest(Salary ~ ., data = Hitters.train, ntree = 500, mtry = 19)
rf.pred = predict(rf.hitters, Hitters.test)
mean((Hitters.test$Salary - rf.pred)^2)
</code></pre>
<pre><code>## [1] 0.2298
</code></pre>
<p>Test MSE for bagging is about \( 0.23 \), which is slightly lower than the best test MSE for boosting.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/10.html
|
HTML
|
unknown
| 54,086
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Chapter 8: Exercise 11</title>
<base target="_blank"/>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
}
pre code {
display: block; padding: 0.5em;
}
code.r {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 8: Exercise 11</h1>
<h3>a</h3>
<pre><code class="r">library(ISLR)
train = 1:1000
Caravan$Purchase = ifelse(Caravan$Purchase == "Yes", 1, 0)
Caravan.train = Caravan[train, ]
Caravan.test = Caravan[-train, ]
</code></pre>
<h3>b</h3>
<pre><code class="r">library(gbm)
</code></pre>
<pre><code>## Loading required package: survival
## Loading required package: splines
## Loading required package: lattice
## Loading required package: parallel
## Loaded gbm 2.1
</code></pre>
<pre><code class="r">set.seed(342)
boost.caravan = gbm(Purchase ~ ., data = Caravan.train, n.trees = 1000, shrinkage = 0.01,
distribution = "bernoulli")
</code></pre>
<pre><code>## Warning: variable 50: PVRAAUT has no variation.
## Warning: variable 71: AVRAAUT has no variation.
</code></pre>
<pre><code class="r">summary(boost.caravan)
</code></pre>
<p><img src="" alt="plot of chunk 11b"/> </p>
<pre><code>## var rel.inf
## PPERSAUT PPERSAUT 15.15534
## MKOOPKLA MKOOPKLA 9.23500
## MOPLHOOG MOPLHOOG 8.67017
## MBERMIDD MBERMIDD 5.39404
## MGODGE MGODGE 5.03048
## PBRAND PBRAND 4.83740
## MINK3045 MINK3045 3.94305
## ABRAND ABRAND 3.69693
## MOSTYPE MOSTYPE 3.38769
## PWAPART PWAPART 2.51970
## MGODPR MGODPR 2.43689
## MSKC MSKC 2.34595
## MAUT2 MAUT2 2.30973
## MFWEKIND MFWEKIND 2.27960
## MBERARBG MBERARBG 2.08245
## MSKA MSKA 1.90021
## PBYSTAND PBYSTAND 1.69482
## MGODOV MGODOV 1.61148
## MAUT1 MAUT1 1.59879
## MBERHOOG MBERHOOG 1.56791
## MINK7512 MINK7512 1.36255
## MSKB1 MSKB1 1.35071
## MINKGEM MINKGEM 1.34913
## MRELGE MRELGE 1.28204
## MAUT0 MAUT0 1.19930
## MHHUUR MHHUUR 1.19159
## MFGEKIND MFGEKIND 0.84203
## MRELOV MRELOV 0.78555
## MZPART MZPART 0.72191
## MINK4575 MINK4575 0.70936
## MSKB2 MSKB2 0.66694
## APERSAUT APERSAUT 0.64645
## MGODRK MGODRK 0.62381
## MSKD MSKD 0.58168
## MINKM30 MINKM30 0.54393
## PMOTSCO PMOTSCO 0.52709
## MOPLMIDD MOPLMIDD 0.52092
## MGEMOMV MGEMOMV 0.44231
## MZFONDS MZFONDS 0.43038
## PLEVEN PLEVEN 0.39902
## MHKOOP MHKOOP 0.37672
## MBERARBO MBERARBO 0.36653
## MBERBOER MBERBOER 0.35290
## MINK123M MINK123M 0.33559
## MGEMLEEF MGEMLEEF 0.24938
## MFALLEEN MFALLEEN 0.14899
## MOSHOOFD MOSHOOFD 0.13265
## MOPLLAAG MOPLLAAG 0.05655
## MBERZELF MBERZELF 0.05589
## MAANTHUI MAANTHUI 0.05048
## MRELSA MRELSA 0.00000
## PWABEDR PWABEDR 0.00000
## PWALAND PWALAND 0.00000
## PBESAUT PBESAUT 0.00000
## PVRAAUT PVRAAUT 0.00000
## PAANHANG PAANHANG 0.00000
## PTRACTOR PTRACTOR 0.00000
## PWERKT PWERKT 0.00000
## PBROM PBROM 0.00000
## PPERSONG PPERSONG 0.00000
## PGEZONG PGEZONG 0.00000
## PWAOREG PWAOREG 0.00000
## PZEILPL PZEILPL 0.00000
## PPLEZIER PPLEZIER 0.00000
## PFIETS PFIETS 0.00000
## PINBOED PINBOED 0.00000
## AWAPART AWAPART 0.00000
## AWABEDR AWABEDR 0.00000
## AWALAND AWALAND 0.00000
## ABESAUT ABESAUT 0.00000
## AMOTSCO AMOTSCO 0.00000
## AVRAAUT AVRAAUT 0.00000
## AAANHANG AAANHANG 0.00000
## ATRACTOR ATRACTOR 0.00000
## AWERKT AWERKT 0.00000
## ABROM ABROM 0.00000
## ALEVEN ALEVEN 0.00000
## APERSONG APERSONG 0.00000
## AGEZONG AGEZONG 0.00000
## AWAOREG AWAOREG 0.00000
## AZEILPL AZEILPL 0.00000
## APLEZIER APLEZIER 0.00000
## AFIETS AFIETS 0.00000
## AINBOED AINBOED 0.00000
## ABYSTAND ABYSTAND 0.00000
</code></pre>
<p>\( \tt{PPERSAUT} \), \( \tt{MKOOPKLA} \) and \( \tt{MOPLHOOG} \) are three most important variables in that order.</p>
<h3>c</h3>
<pre><code class="r">boost.prob = predict(boost.caravan, Caravan.test, n.trees = 1000, type = "response")
boost.pred = ifelse(boost.prob > 0.2, 1, 0)
table(Caravan.test$Purchase, boost.pred)
</code></pre>
<pre><code>## boost.pred
## 0 1
## 0 4396 137
## 1 255 34
</code></pre>
<pre><code class="r">34/(137 + 34)
</code></pre>
<pre><code>## [1] 0.1988
</code></pre>
<p>About \( 20 \)% of people predicted to make purchase actually end up making one.</p>
<pre><code class="r">lm.caravan = glm(Purchase ~ ., data = Caravan.train, family = binomial)
</code></pre>
<pre><code>## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
</code></pre>
<pre><code class="r">lm.prob = predict(lm.caravan, Caravan.test, type = "response")
</code></pre>
<pre><code>## Warning: prediction from a rank-deficient fit may be misleading
</code></pre>
<pre><code class="r">lm.pred = ifelse(lm.prob > 0.2, 1, 0)
table(Caravan.test$Purchase, lm.pred)
</code></pre>
<pre><code>## lm.pred
## 0 1
## 0 4183 350
## 1 231 58
</code></pre>
<pre><code class="r">58/(350 + 58)
</code></pre>
<pre><code>## [1] 0.1422
</code></pre>
<p>About \( 14 \)% of people predicted to make purchase using logistic regression actually end up making one. This is lower than boosting.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/11.html
|
HTML
|
unknown
| 32,432
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 8: Exercise 12</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 8: Exercise 12</h1>
<p>In this exercise I chose to examine the <code>Weekly</code> stock market data from the ISLR
package.</p>
<pre><code class="r">set.seed(1)
library(ISLR)
summary(Weekly)
</code></pre>
<pre><code>## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.195 Min. :-18.195 Min. :-18.195
## 1st Qu.:1995 1st Qu.: -1.154 1st Qu.: -1.154 1st Qu.: -1.158
## Median :2000 Median : 0.241 Median : 0.241 Median : 0.241
## Mean :2000 Mean : 0.151 Mean : 0.151 Mean : 0.147
## 3rd Qu.:2005 3rd Qu.: 1.405 3rd Qu.: 1.409 3rd Qu.: 1.409
## Max. :2010 Max. : 12.026 Max. : 12.026 Max. : 12.026
## Lag4 Lag5 Volume Today
## Min. :-18.195 Min. :-18.195 Min. :0.087 Min. :-18.195
## 1st Qu.: -1.158 1st Qu.: -1.166 1st Qu.:0.332 1st Qu.: -1.154
## Median : 0.238 Median : 0.234 Median :1.003 Median : 0.241
## Mean : 0.146 Mean : 0.140 Mean :1.575 Mean : 0.150
## 3rd Qu.: 1.409 3rd Qu.: 1.405 3rd Qu.:2.054 3rd Qu.: 1.405
## Max. : 12.026 Max. : 12.026 Max. :9.328 Max. : 12.026
## Direction
## Down:484
## Up :605
##
##
##
##
</code></pre>
<pre><code class="r">train = sample(nrow(Weekly), 2/3 * nrow(Weekly))
test = -train
</code></pre>
<h2>Logistic regression</h2>
<pre><code class="r">glm.fit = glm(Direction ~ . - Year - Today, data = Weekly[train, ], family = "binomial")
glm.probs = predict(glm.fit, newdata = Weekly[test, ], type = "response")
glm.pred = rep("Down", length(glm.probs))
glm.pred[glm.probs > 0.5] = "Up"
table(glm.pred, Weekly$Direction[test])
</code></pre>
<pre><code>##
## glm.pred Down Up
## Down 3 2
## Up 176 182
</code></pre>
<pre><code class="r">mean(glm.pred != Weekly$Direction[test])
</code></pre>
<pre><code>## [1] 0.4904
</code></pre>
<h2>Boosting</h2>
<pre><code class="r">library(gbm)
</code></pre>
<pre><code>## Warning: package 'gbm' was built under R version 3.0.2
</code></pre>
<pre><code>## Loading required package: survival Loading required package: splines
## Loading required package: lattice Loading required package: parallel
## Loaded gbm 2.1
</code></pre>
<pre><code class="r">Weekly$BinomialDirection = ifelse(Weekly$Direction == "Up", 1, 0)
boost.weekly = gbm(BinomialDirection ~ . - Year - Today - Direction, data = Weekly[train,
], distribution = "bernoulli", n.trees = 5000)
yhat.boost = predict(boost.weekly, newdata = Weekly[test, ], n.trees = 5000)
yhat.pred = rep(0, length(yhat.boost))
yhat.pred[yhat.boost > 0.5] = 1
table(yhat.pred, Weekly$BinomialDirection[test])
</code></pre>
<pre><code>##
## yhat.pred 0 1
## 0 142 135
## 1 37 49
</code></pre>
<pre><code class="r">mean(yhat.pred != Weekly$BinomialDirection[test])
</code></pre>
<pre><code>## [1] 0.4738
</code></pre>
<h2>Bagging</h2>
<pre><code class="r">Weekly = Weekly[, !(names(Weekly) %in% c("BinomialDirection"))]
library(randomForest)
</code></pre>
<pre><code>## Warning: package 'randomForest' was built under R version 3.0.2
</code></pre>
<pre><code>## randomForest 4.6-7 Type rfNews() to see new features/changes/bug fixes.
</code></pre>
<pre><code class="r">bag.weekly = randomForest(Direction ~ . - Year - Today, data = Weekly, subset = train,
mtry = 6)
yhat.bag = predict(bag.weekly, newdata = Weekly[test, ])
table(yhat.bag, Weekly$Direction[test])
</code></pre>
<pre><code>##
## yhat.bag Down Up
## Down 56 53
## Up 123 131
</code></pre>
<pre><code class="r">mean(yhat.bag != Weekly$Direction[test])
</code></pre>
<pre><code>## [1] 0.4848
</code></pre>
<h2>Random forests</h2>
<pre><code class="r">rf.weekly = randomForest(Direction ~ . - Year - Today, data = Weekly, subset = train,
mtry = 2)
yhat.bag = predict(rf.weekly, newdata = Weekly[test, ])
table(yhat.bag, Weekly$Direction[test])
</code></pre>
<pre><code>##
## yhat.bag Down Up
## Down 43 45
## Up 136 139
</code></pre>
<pre><code class="r">mean(yhat.bag != Weekly$Direction[test])
</code></pre>
<pre><code>## [1] 0.4986
</code></pre>
<h2>Best performance summary</h2>
<p>Boosting resulted in the lowest validation set test error rate.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/12.html
|
HTML
|
unknown
| 17,488
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 8: Exercise 2</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 8: Exercise 2</h1>
<p>Based on Algorithm 8.2, the first stump will consist of a split on a single
variable. By induction, the residuals of that first fit will result in a second
stump fit to a another distinct, single variable. (* This is my intuition, not
sure if my proof is rigorous enough to support that claim).</p>
<p>\( f(X) = \sum_{j=1}^{p} f_j(X_j) \)</p>
<p>0) \( \hat{f}(x) = 0, r_i = y_i \)</p>
<p>1) a) \( \hat{f}^1(x) = \beta_{1_1} I(X_1 < t_1) + \beta_{0_1} \)</p>
<p>1) b) \( \hat{f}(x) = \lambda\hat{f}^1(x) \)</p>
<p>1) c) \( r_i = y_i - \lambda\hat{f}^1(x_i) \)</p>
<p>To maximize the fit to the residuals, another distinct stump must be fit in the
next and subsequent iterations will each fit \( X_j \)-distinct stumps. The
following is the jth iteration, where \( b=j \):</p>
<p>j) a) \( \hat{f}^j(x) = \beta_{1_j} I(X_j < t_j) + \beta_{0_j} \)</p>
<p>j) b) \( \hat{f}(x) = \lambda\hat{f}^1(X_1) + \dots + \hat{f}^j(X_j) + \dots +
\hat{f}^{p-1}(X_{p-1}) + \hat{f}^p(X_p) \)</p>
<p>Since each iteration's fit is a distinct variable stump, there are only \( p \)
fits based on “j) b)”.</p>
<p>\[ f(X) = \sum_{j=1}^{p} f_j(X_j) \]</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/2.html
|
HTML
|
unknown
| 3,376
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 8: Exercise 3</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 8: Exercise 3</h1>
<pre><code class="r">p = seq(0, 1, 0.01)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
class.err = 1 - pmax(p, 1 - p)
matplot(p, cbind(gini, entropy, class.err), col = c("red", "green", "blue"))
</code></pre>
<p><img src="" alt="plot of chunk 3"/> </p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/3.html
|
HTML
|
unknown
| 67,217
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 8: Exercise 4</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 8: Exercise 4</h1>
<h2>a</h2>
<pre><code> [X1 < 1]
| |
[X2 < 1] 5
| |
[X1 < 0] 15
| |
3 [X2<0]
| |
10 0
</code></pre>
<h2>b</h2>
<pre><code class="r">par(xpd = NA)
plot(NA, NA, type = "n", xlim = c(-2, 2), ylim = c(-3, 3), xlab = "X1", ylab = "X2")
# X2 < 1
lines(x = c(-2, 2), y = c(1, 1))
# X1 < 1 with X2 < 1
lines(x = c(1, 1), y = c(-3, 1))
text(x = (-2 + 1)/2, y = -1, labels = c(-1.8))
text(x = 1.5, y = -1, labels = c(0.63))
# X2 < 2 with X2 >= 1
lines(x = c(-2, 2), y = c(2, 2))
text(x = 0, y = 2.5, labels = c(2.49))
# X1 < 0 with X2<2 and X2>=1
lines(x = c(0, 0), y = c(1, 2))
text(x = -1, y = 1.5, labels = c(-1.06))
text(x = 1, y = 1.5, labels = c(0.21))
</code></pre>
<p><img src="" alt="plot of chunk 4b"/> </p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/4.html
|
HTML
|
unknown
| 29,144
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 8: Exercise 5</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 8: Exercise 5</h1>
<pre><code class="r">p = c(0.1, 0.15, 0.2, 0.2, 0.55, 0.6, 0.6, 0.65, 0.7, 0.75)
</code></pre>
<h2>Majority approach</h2>
<pre><code class="r">sum(p >= 0.5) > sum(p < 0.5)
</code></pre>
<pre><code>## [1] TRUE
</code></pre>
<p>The number of red predictions is greater than the number of green predictions
based on a 50% threshold, thus RED.</p>
<h2>Average approach</h2>
<pre><code class="r">mean(p)
</code></pre>
<pre><code>## [1] 0.45
</code></pre>
<p>The average of the probabilities is less than the 50% threshold, thus GREEN.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/5.html
|
HTML
|
unknown
| 13,570
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 8: Exercise 6</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<h1>Chapter 8: Exercise 6</h1>
<h3>Provide a detailed explanation of the algorithm that is used to fit a regression tree.</h3>
<p>Read section 8.1.1, including Algorithm 8.1.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/6.html
|
HTML
|
unknown
| 2,211
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Chapter 8: Exercise 7</title>
<base target="_blank"/>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
}
pre code {
display: block; padding: 0.5em;
}
code.r {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 8: Exercise 7</h1>
<p>We will try a range of \( \tt{ntree} \) from 1 to 500 and \( \tt{mtry} \) taking typical values of \( p \), \( p/2 \), \( \sqrt{p} \). For Boston data, \( p = 13 \). We use an alternate call to \( \tt{randomForest} \) which takes \( \tt{xtest} \) and \( \tt{ytest} \) as additional arguments and computes test MSE on-the-fly. Test MSE of all tree sizes can be obtained by accessing \( \tt{mse} \) list member of \( \tt{test} \) list member of the model.</p>
<pre><code class="r">library(MASS)
library(randomForest)
</code></pre>
<pre><code>## randomForest 4.6-7
## Type rfNews() to see new features/changes/bug fixes.
</code></pre>
<pre><code class="r">set.seed(1101)
# Construct the train and test matrices
train = sample(dim(Boston)[1], dim(Boston)[1]/2)
X.train = Boston[train, -14]
X.test = Boston[-train, -14]
Y.train = Boston[train, 14]
Y.test = Boston[-train, 14]
p = dim(Boston)[2] - 1
p.2 = p/2
p.sq = sqrt(p)
rf.boston.p = randomForest(X.train, Y.train, xtest = X.test, ytest = Y.test,
mtry = p, ntree = 500)
rf.boston.p.2 = randomForest(X.train, Y.train, xtest = X.test, ytest = Y.test,
mtry = p.2, ntree = 500)
rf.boston.p.sq = randomForest(X.train, Y.train, xtest = X.test, ytest = Y.test,
mtry = p.sq, ntree = 500)
plot(1:500, rf.boston.p$test$mse, col = "green", type = "l", xlab = "Number of Trees",
ylab = "Test MSE", ylim = c(10, 19))
lines(1:500, rf.boston.p.2$test$mse, col = "red", type = "l")
lines(1:500, rf.boston.p.sq$test$mse, col = "blue", type = "l")
legend("topright", c("m=p", "m=p/2", "m=sqrt(p)"), col = c("green", "red", "blue"),
cex = 1, lty = 1)
</code></pre>
<p><img src="" alt="plot of chunk 9a"/> </p>
<p>The plot shows that test MSE for single tree is quite high (around 18). It is reduced by adding more trees to the model and stabilizes around a few hundred trees. Test MSE for including all variables at split is slightly higher (around 11) as compared to both using half or square-root number of variables (both slightly less than 10). </p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/7.html
|
HTML
|
unknown
| 37,595
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Chapter 8: Exercise 8</title>
<base target="_blank"/>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
}
pre code {
display: block; padding: 0.5em;
}
code.r {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 8: Exercise 8</h1>
<h3>a</h3>
<pre><code class="r">library(ISLR)
attach(Carseats)
set.seed(1)
train = sample(dim(Carseats)[1], dim(Carseats)[1]/2)
Carseats.train = Carseats[train, ]
Carseats.test = Carseats[-train, ]
</code></pre>
<h3>b</h3>
<pre><code class="r">library(tree)
tree.carseats = tree(Sales ~ ., data = Carseats.train)
summary(tree.carseats)
</code></pre>
<pre><code>##
## Regression tree:
## tree(formula = Sales ~ ., data = Carseats.train)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Advertising" "Income"
## [6] "CompPrice"
## Number of terminal nodes: 18
## Residual mean deviance: 2.36 = 429 / 182
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4.260 -1.040 0.102 0.000 0.930 3.910
</code></pre>
<pre><code class="r">plot(tree.carseats)
text(tree.carseats, pretty = 0)
</code></pre>
<p><img src="" alt="plot of chunk b8"/> </p>
<pre><code class="r">pred.carseats = predict(tree.carseats, Carseats.test)
mean((Carseats.test$Sales - pred.carseats)^2)
</code></pre>
<pre><code>## [1] 4.149
</code></pre>
<p>The test MSE is about \( 4.15 \).</p>
<h3>c</h3>
<pre><code class="r">cv.carseats = cv.tree(tree.carseats, FUN = prune.tree)
par(mfrow = c(1, 2))
plot(cv.carseats$size, cv.carseats$dev, type = "b")
plot(cv.carseats$k, cv.carseats$dev, type = "b")
</code></pre>
<p><img src="" alt="plot of chunk 8c"/> </p>
<pre><code class="r">
# Best size = 9
pruned.carseats = prune.tree(tree.carseats, best = 9)
par(mfrow = c(1, 1))
plot(pruned.carseats)
text(pruned.carseats, pretty = 0)
</code></pre>
<p><img src="" alt="plot of chunk 8c"/> </p>
<pre><code class="r">pred.pruned = predict(pruned.carseats, Carseats.test)
mean((Carseats.test$Sales - pred.pruned)^2)
</code></pre>
<pre><code>## [1] 4.993
</code></pre>
<p>Pruning the tree in this case increases the test MSE to \( 4.99 \).</p>
<h3>d</h3>
<pre><code class="r">library(randomForest)
</code></pre>
<pre><code>## randomForest 4.6-7
## Type rfNews() to see new features/changes/bug fixes.
</code></pre>
<pre><code class="r">bag.carseats = randomForest(Sales ~ ., data = Carseats.train, mtry = 10, ntree = 500,
importance = T)
bag.pred = predict(bag.carseats, Carseats.test)
mean((Carseats.test$Sales - bag.pred)^2)
</code></pre>
<pre><code>## [1] 2.586
</code></pre>
<pre><code class="r">importance(bag.carseats)
</code></pre>
<pre><code>## %IncMSE IncNodePurity
## CompPrice 13.8790 131.095
## Income 5.6042 77.033
## Advertising 14.1720 129.218
## Population 0.6071 65.196
## Price 53.6119 506.604
## ShelveLoc 44.0311 323.189
## Age 20.1751 189.269
## Education 1.4244 41.811
## Urban -1.9640 8.124
## US 5.6989 14.307
</code></pre>
<p>Bagging improves the test MSE to \( 2.58 \). We also see that \( \tt{Price} \), \( \tt{ShelveLoc} \) and \( \tt{Age} \) are three most important predictors of \( \tt{Sale} \).</p>
<h3>e</h3>
<pre><code class="r">rf.carseats = randomForest(Sales ~ ., data = Carseats.train, mtry = 5, ntree = 500,
importance = T)
rf.pred = predict(rf.carseats, Carseats.test)
mean((Carseats.test$Sales - rf.pred)^2)
</code></pre>
<pre><code>## [1] 2.87
</code></pre>
<pre><code class="r">importance(rf.carseats)
</code></pre>
<pre><code>## %IncMSE IncNodePurity
## CompPrice 11.2746 126.64
## Income 4.4397 101.63
## Advertising 12.9346 137.96
## Population 0.2725 78.78
## Price 49.2418 449.52
## ShelveLoc 38.8406 283.46
## Age 19.1329 195.14
## Education 1.9818 54.26
## Urban -2.2083 11.35
## US 6.6487 26.71
</code></pre>
<p>In this case, random forest worsens the MSE on test set to \( 2.87 \). Changing \( m \) varies test MSE between \( 2.6 \) to \( 3 \). We again see that \( \tt{Price} \), \( \tt{ShelveLoc} \) and \( \tt{Age} \) are three most important predictors of \( \tt{Sale} \).</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/8.html
|
HTML
|
unknown
| 50,736
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Chapter 8: Exercise 9</title>
<base target="_blank"/>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
}
pre code {
display: block; padding: 0.5em;
}
code.r {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 8: Exercise 9</h1>
<h3>a</h3>
<pre><code class="r">library(ISLR)
attach(OJ)
set.seed(1013)
train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]
</code></pre>
<h3>b</h3>
<pre><code class="r">library(tree)
oj.tree = tree(Purchase ~ ., data = OJ.train)
summary(oj.tree)
</code></pre>
<pre><code>##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff"
## Number of terminal nodes: 7
## Residual mean deviance: 0.752 = 596 / 793
## Misclassification error rate: 0.155 = 124 / 800
</code></pre>
<p>The tree only uses two variables: \( \tt{LoyalCH} \) and \( \tt{PriceDiff} \). It has \( 7 \) terminal nodes. Training error rate (misclassification error) for the tree is \( 0.155 \).</p>
<h3>c</h3>
<pre><code class="r">oj.tree
</code></pre>
<pre><code>## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1000 CH ( 0.60 0.40 )
## 2) LoyalCH < 0.5036 359 400 MM ( 0.28 0.72 )
## 4) LoyalCH < 0.276142 170 100 MM ( 0.11 0.89 ) *
## 5) LoyalCH > 0.276142 189 300 MM ( 0.42 0.58 )
## 10) PriceDiff < 0.05 79 80 MM ( 0.19 0.81 ) *
## 11) PriceDiff > 0.05 110 100 CH ( 0.59 0.41 ) *
## 3) LoyalCH > 0.5036 441 300 CH ( 0.87 0.13 )
## 6) LoyalCH < 0.764572 186 200 CH ( 0.75 0.25 )
## 12) PriceDiff < -0.165 29 30 MM ( 0.28 0.72 ) *
## 13) PriceDiff > -0.165 157 100 CH ( 0.83 0.17 )
## 26) PriceDiff < 0.265 82 100 CH ( 0.73 0.27 ) *
## 27) PriceDiff > 0.265 75 30 CH ( 0.95 0.05 ) *
## 7) LoyalCH > 0.764572 255 90 CH ( 0.96 0.04 ) *
</code></pre>
<p>Let's pick terminal node labeled “10)”. The splitting variable at this node is \( \tt{PriceDiff} \). The splitting value of this node is \( 0.05 \). There are \( 79 \) points in the subtree below this node. The deviance for all points contained in region below this node is \( 80 \). A * in the line denotes that this is in fact a terminal node. The prediction at this node is \( \tt{Sales} \) = \( \tt{MM} \). About \( 19 \)% points in this node have \( \tt{CH} \) as value of \( \tt{Sales} \). Remaining \( 81 \)% points have \( \tt{MM} \) as value of \( \tt{Sales} \).</p>
<h3>d</h3>
<pre><code class="r">plot(oj.tree)
text(oj.tree, pretty = 0)
</code></pre>
<p><img src="" alt="plot of chunk 9d"/> </p>
<p>\( \tt{LoyalCH} \) is the most important variable of the tree, in fact top 3 nodes contain \( \tt{LoyalCH} \). If \( \tt{LoyalCH} < 0.27 \), the tree predicts \( \tt{MM} \). If \( \tt{LoyalCH} > 0.76 \), the tree predicts \( \tt{CH} \). For intermediate values of \( \tt{LoyalCH} \), the decision also depends on the value of \( \tt{PriceDiff} \).</p>
<h3>e</h3>
<pre><code class="r">oj.pred = predict(oj.tree, OJ.test, type = "class")
table(OJ.test$Purchase, oj.pred)
</code></pre>
<pre><code>## oj.pred
## CH MM
## CH 152 19
## MM 32 67
</code></pre>
<h3>f</h3>
<pre><code class="r">cv.oj = cv.tree(oj.tree, FUN = prune.tree)
</code></pre>
<h3>g</h3>
<pre><code class="r">plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree Size", ylab = "Deviance")
</code></pre>
<p><img src="" alt="plot of chunk 9g"/> </p>
<h3>h</h3>
<p>Size of 6 gives lowest cross-validation error.</p>
<h3>i</h3>
<pre><code class="r">oj.pruned = prune.tree(oj.tree, best = 6)
</code></pre>
<h3>j</h3>
<pre><code class="r">summary(oj.pruned)
</code></pre>
<pre><code>##
## Classification tree:
## snip.tree(tree = oj.tree, nodes = 13L)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff"
## Number of terminal nodes: 6
## Residual mean deviance: 0.769 = 610 / 794
## Misclassification error rate: 0.155 = 124 / 800
</code></pre>
<p>Misclassification error of pruned tree is exactly same as that of original tree — \( 0.155 \).</p>
<h3>k</h3>
<pre><code class="r">pred.unpruned = predict(oj.tree, OJ.test, type = "class")
misclass.unpruned = sum(OJ.test$Purchase != pred.unpruned)
misclass.unpruned/length(pred.unpruned)
</code></pre>
<pre><code>## [1] 0.1889
</code></pre>
<pre><code class="r">pred.pruned = predict(oj.pruned, OJ.test, type = "class")
misclass.pruned = sum(OJ.test$Purchase != pred.pruned)
misclass.pruned/length(pred.pruned)
</code></pre>
<pre><code>## [1] 0.1889
</code></pre>
<p>Pruned and unpruned trees have same test error rate of \( 0.189 \).</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/9.html
|
HTML
|
unknown
| 33,651
|
# Chapter 8 Lab: Decision Trees
# Fitting Classification Trees
library(tree)
library(ISLR)
attach(Carseats)
High=ifelse(Sales<=8,"No","Yes")
Carseats=data.frame(Carseats,High)
tree.carseats=tree(High~.-Sales,Carseats)
summary(tree.carseats)
plot(tree.carseats)
text(tree.carseats,pretty=0)
tree.carseats
set.seed(2)
train=sample(1:nrow(Carseats), 200)
Carseats.test=Carseats[-train,]
High.test=High[-train]
tree.carseats=tree(High~.-Sales,Carseats,subset=train)
tree.pred=predict(tree.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
(86+57)/200
set.seed(3)
cv.carseats=cv.tree(tree.carseats,FUN=prune.misclass)
names(cv.carseats)
cv.carseats
par(mfrow=c(1,2))
plot(cv.carseats$size,cv.carseats$dev,type="b")
plot(cv.carseats$k,cv.carseats$dev,type="b")
prune.carseats=prune.misclass(tree.carseats,best=9)
plot(prune.carseats)
text(prune.carseats,pretty=0)
tree.pred=predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
(94+60)/200
prune.carseats=prune.misclass(tree.carseats,best=15)
plot(prune.carseats)
text(prune.carseats,pretty=0)
tree.pred=predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
(86+62)/200
# Fitting Regression Trees
library(MASS)
set.seed(1)
train = sample(1:nrow(Boston), nrow(Boston)/2)
tree.boston=tree(medv~.,Boston,subset=train)
summary(tree.boston)
plot(tree.boston)
text(tree.boston,pretty=0)
cv.boston=cv.tree(tree.boston)
plot(cv.boston$size,cv.boston$dev,type='b')
prune.boston=prune.tree(tree.boston,best=5)
plot(prune.boston)
text(prune.boston,pretty=0)
yhat=predict(tree.boston,newdata=Boston[-train,])
boston.test=Boston[-train,"medv"]
plot(yhat,boston.test)
abline(0,1)
mean((yhat-boston.test)^2)
# Bagging and Random Forests
library(randomForest)
set.seed(1)
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,importance=TRUE)
bag.boston
yhat.bag = predict(bag.boston,newdata=Boston[-train,])
plot(yhat.bag, boston.test)
abline(0,1)
mean((yhat.bag-boston.test)^2)
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=25)
yhat.bag = predict(bag.boston,newdata=Boston[-train,])
mean((yhat.bag-boston.test)^2)
set.seed(1)
rf.boston=randomForest(medv~.,data=Boston,subset=train,mtry=6,importance=TRUE)
yhat.rf = predict(rf.boston,newdata=Boston[-train,])
mean((yhat.rf-boston.test)^2)
importance(rf.boston)
varImpPlot(rf.boston)
# Boosting
library(gbm)
set.seed(1)
boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=5000,interaction.depth=4)
summary(boost.boston)
par(mfrow=c(1,2))
plot(boost.boston,i="rm")
plot(boost.boston,i="lstat")
yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)
mean((yhat.boost-boston.test)^2)
boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=5000,interaction.depth=4,shrinkage=0.2,verbose=F)
yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)
mean((yhat.boost-boston.test)^2)
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch8/lab.R
|
R
|
unknown
| 2,932
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 9: Exercise 1</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Chapter 9: Exercise 1</h1>
<pre><code class="r">x1 = -10:10
x2 = 1 + 3 * x1
plot(x1, x2, type = "l", col = "red")
text(c(0), c(-20), "greater than 0", col = "red")
text(c(0), c(20), "less than 0", col = "red")
lines(x1, 1 - x1/2)
text(c(0), c(-15), "less than 0")
text(c(0), c(15), "greater than 0")
</code></pre>
<p><img src="" alt="plot of chunk 1"/> </p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/1.html
|
HTML
|
unknown
| 44,545
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 9: Exercise 2</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 9: Exercise 2</h1>
<p>\( (1+X_1)^2 + (2-X_2)^2 = 4 \) is a circle with radius 2 and center (-1, 2).</p>
<h2>a</h2>
<pre><code class="r">radius = 2
plot(NA, NA, type = "n", xlim = c(-4, 2), ylim = c(-1, 5), asp = 1, xlab = "X1",
ylab = "X2")
symbols(c(-1), c(2), circles = c(radius), add = TRUE, inches = FALSE)
</code></pre>
<p><img src="" alt="plot of chunk 2a"/> </p>
<h2>b</h2>
<pre><code class="r">radius = 2
plot(NA, NA, type = "n", xlim = c(-4, 2), ylim = c(-1, 5), asp = 1, xlab = "X1",
ylab = "X2")
symbols(c(-1), c(2), circles = c(radius), add = TRUE, inches = FALSE)
text(c(-1), c(2), "< 4")
text(c(-4), c(2), "> 4")
</code></pre>
<p><img src="" alt="plot of chunk 2b"/> </p>
<h2>c</h2>
<p>To restate the boundary, outside the circle is blue, inside and on is red.</p>
<pre><code class="r">radius = 2
plot(c(0, -1, 2, 3), c(0, 1, 2, 8), col = c("blue", "red", "blue", "blue"),
type = "p", asp = 1, xlab = "X1", ylab = "X2")
symbols(c(-1), c(2), circles = c(radius), add = TRUE, inches = FALSE)
</code></pre>
<p><img src="" alt="plot of chunk 2c"/> </p>
<h2>d</h2>
<p>The decision boundary is a sum of quadratic terms when expanded.</p>
<p>\[
(1+X_1)^2 + (2-X_2)^2 > 4 \\
1 + 2 X_1 + X_1^2 + 4 - 4 X_2 + X_2^2 > 4 \\
5 + 2 X_1 - 4 X_2 + X_1^2 + X_2^2 > 4
\]</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/2.html
|
HTML
|
unknown
| 74,664
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 9: Exercise 3</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 9: Exercise 3</h1>
<h2>a</h2>
<pre><code class="r">x1 = c(3, 2, 4, 1, 2, 4, 4)
x2 = c(4, 2, 4, 4, 1, 3, 1)
colors = c("red", "red", "red", "red", "blue", "blue", "blue")
plot(x1, x2, col = colors, xlim = c(0, 5), ylim = c(0, 5))
</code></pre>
<p><img src="" alt="plot of chunk 3a"/> </p>
<h2>b</h2>
<p>The maximal margin classifier has to be in between observations #2, #3 and #5, #6.</p>
<p>\[
(2,2), (4,4) \\
(2,1), (4,3) \\
=> (2,1.5), (4,3.5) \\
b = (3.5 - 1.5) / (4 - 2) = 1 \\
a = X_2 - X_1 = 1.5 - 2 = -0.5
\]</p>
<pre><code class="r">plot(x1, x2, col = colors, xlim = c(0, 5), ylim = c(0, 5))
abline(-0.5, 1)
</code></pre>
<p><img src="" alt="plot of chunk 3b"/> </p>
<h2>c</h2>
<p>\( 0.5 - X_1 + X_2 > 0 \)</p>
<h2>d</h2>
<pre><code class="r">plot(x1, x2, col = colors, xlim = c(0, 5), ylim = c(0, 5))
abline(-0.5, 1)
abline(-1, 1, lty = 2)
abline(0, 1, lty = 2)
</code></pre>
<p><img src="" alt="plot of chunk 3d"/> </p>
<h2>e</h2>
<pre><code class="r">plot(x1, x2, col = colors, xlim = c(0, 5), ylim = c(0, 5))
abline(-0.5, 1)
arrows(2, 1, 2, 1.5)
arrows(2, 2, 2, 1.5)
arrows(4, 4, 4, 3.5)
arrows(4, 3, 4, 3.5)
</code></pre>
<p><img src="" alt="plot of chunk 3e"/> </p>
<h2>f</h2>
<p>A slight movement of observation #7 (4,1) blue would not have an effect on the
maximal margin hyperplane since its movement would be outside of the margin.</p>
<h2>g</h2>
<pre><code class="r">plot(x1, x2, col = colors, xlim = c(0, 5), ylim = c(0, 5))
abline(-0.8, 1)
</code></pre>
<p><img src="" alt="plot of chunk 3g"/> </p>
<p>\( -0.8 - X_1 + X_2 > 0 \) </p>
<h2>h</h2>
<pre><code class="r">plot(x1, x2, col = colors, xlim = c(0, 5), ylim = c(0, 5))
points(c(4), c(2), col = c("red"))
</code></pre>
<p><img src="" alt="plot of chunk 3h"/> </p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/3.html
|
HTML
|
unknown
| 133,356
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 9: Exercise 4</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 9: Exercise 4</h1>
<p>We create a random initial dataset which lies along the parabola \( y = 3*x^2 + 4 \). We then separate the two classes by translating them along Y-axis.</p>
<pre><code class="r">set.seed(131)
x = rnorm(100)
y = 3 * x^2 + 4 + rnorm(100)
train = sample(100, 50)
y[train] = y[train] + 3
y[-train] = y[-train] - 3
# Plot using different colors
plot(x[train], y[train], pch="+", lwd=4, col="red", ylim=c(-4, 20), xlab="X", ylab="Y")
points(x[-train], y[-train], pch="o", lwd=4, col="blue")
</code></pre>
<p><img src="" alt="plot of chunk 4a"/> </p>
<p>The plot clearly shows non-linear separation. We now create both train and test dataframes by taking half of positive and negative classes and creating a new <code>z</code> vector of 0 and 1 for classes. </p>
<pre><code class="r">set.seed(315)
z = rep(0, 100)
z[train] = 1
# Take 25 observations each from train and -train
final.train = c(sample(train, 25), sample(setdiff(1:100, train), 25))
data.train = data.frame(x=x[final.train], y=y[final.train], z=as.factor(z[final.train]))
data.test = data.frame(x=x[-final.train], y=y[-final.train], z=as.factor(z[-final.train]))
library(e1071)
</code></pre>
<pre><code>## Loading required package: class
</code></pre>
<pre><code class="r">svm.linear = svm(z~., data=data.train, kernel="linear", cost=10)
plot(svm.linear, data.train)
</code></pre>
<p><img src="" alt="plot of chunk 4b"/> </p>
<pre><code class="r">table(z[final.train], predict(svm.linear, data.train))
</code></pre>
<pre><code>##
## 0 1
## 0 20 5
## 1 5 20
</code></pre>
<p>The plot shows the linear boundary. The classifier makes \( 10 \) classification errors on train data.</p>
<p>Next, we train an SVM with polynomial kernel</p>
<pre><code class="r">set.seed(32545)
svm.poly = svm(z~., data=data.train, kernel="polynomial", cost=10)
plot(svm.poly, data.train)
</code></pre>
<p><img src="" alt="plot of chunk 4c"/> </p>
<pre><code class="r">table(z[final.train], predict(svm.poly, data.train))
</code></pre>
<pre><code>##
## 0 1
## 0 13 12
## 1 3 22
</code></pre>
<p>This is a default polynomial kernel with degree 3. It makes \( 15 \) errors on train data.</p>
<p>Finally, we train an SVM with radial basis kernel with gamma of 1.</p>
<pre><code class="r">set.seed(996)
svm.radial = svm(z~., data=data.train, kernel="radial", gamma=1, cost=10)
plot(svm.radial, data.train)
</code></pre>
<p><img src="" alt="plot of chunk 4d"/> </p>
<pre><code class="r">table(z[final.train], predict(svm.radial, data.train))
</code></pre>
<pre><code>##
## 0 1
## 0 25 0
## 1 0 25
</code></pre>
<p>This classifier perfectly classifies train data!.</p>
<p>Here are how the test errors look like.</p>
<pre><code class="r">plot(svm.linear, data.test)
</code></pre>
<p><img src="" alt="plot of chunk 4e"/> </p>
<pre><code class="r">plot(svm.poly, data.test)
</code></pre>
<p><img src="" alt="plot of chunk 4e"/> </p>
<pre><code class="r">plot(svm.radial, data.test)
</code></pre>
<p><img src="" alt="plot of chunk 4e"/> </p>
<pre><code class="r">table(z[-final.train], predict(svm.linear, data.test))
</code></pre>
<pre><code>##
## 0 1
## 0 21 4
## 1 2 23
</code></pre>
<pre><code class="r">table(z[-final.train], predict(svm.poly, data.test))
</code></pre>
<pre><code>##
## 0 1
## 0 16 9
## 1 5 20
</code></pre>
<pre><code class="r">table(z[-final.train], predict(svm.radial, data.test))
</code></pre>
<pre><code>##
## 0 1
## 0 25 0
## 1 0 25
</code></pre>
<p>The tables show that linear, polynomial and radial basis kernels classify 6, 14, and 0 test points incorrectly respectively. Radial basis kernel is the best and has a zero test misclassification error. </p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/4.html
|
HTML
|
unknown
| 430,241
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Chapter 9: Exercise 5</title>
<base target="_blank"/>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
}
pre code {
display: block; padding: 0.5em;
}
code.r {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 9: Exercise 5</h1>
<h3>a</h3>
<pre><code class="r">set.seed(421)
x1 = runif(500) - 0.5
x2 = runif(500) - 0.5
y = 1 * (x1^2 - x2^2 > 0)
</code></pre>
<h3>b</h3>
<pre><code class="r">plot(x1[y == 0], x2[y == 0], col = "red", xlab = "X1", ylab = "X2", pch = "+")
points(x1[y == 1], x2[y == 1], col = "blue", pch = 4)
</code></pre>
<p><img src="" alt="plot of chunk 5b"/> </p>
<p>The plot clearly shows non-linear decision boundary.</p>
<h3>c</h3>
<pre><code class="r">lm.fit = glm(y ~ x1 + x2, family = binomial)
summary(lm.fit)
</code></pre>
<pre><code>##
## Call:
## glm(formula = y ~ x1 + x2, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.28 -1.23 1.09 1.13 1.17
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1200 0.0897 1.34 0.18
## x1 -0.1688 0.3085 -0.55 0.58
## x2 -0.0820 0.3148 -0.26 0.79
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 691.35 on 499 degrees of freedom
## Residual deviance: 690.99 on 497 degrees of freedom
## AIC: 697
##
## Number of Fisher Scoring iterations: 3
</code></pre>
<p>Both variables are insignificant for predicting \( y \).</p>
<h3>d</h3>
<pre><code class="r">data = data.frame(x1 = x1, x2 = x2, y = y)
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.52, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
</code></pre>
<p><img src="" alt="plot of chunk 5d"/> </p>
<p>With the given model and a probability threshold of 0.5, all points are classified to single class and no decision boundary can be shown. Hence we shift the probability threshold to 0.52 to show a meaningful decision boundary. This boundary is linear as seen in the figure.</p>
<h3>e</h3>
<p>We use squares, product interaction terms to fit the model.</p>
<pre><code class="r">lm.fit = glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), data = data, family = binomial)
</code></pre>
<pre><code>## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
</code></pre>
<h3>f</h3>
<pre><code class="r">lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.5, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
</code></pre>
<p><img src="" alt="plot of chunk 5f"/> </p>
<p>This non-linear decision boundary closely resembles the true decision boundary.</p>
<h3>g</h3>
<pre><code class="r">library(e1071)
</code></pre>
<pre><code>## Loading required package: class
</code></pre>
<pre><code class="r">svm.fit = svm(as.factor(y) ~ x1 + x2, data, kernel = "linear", cost = 0.1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
</code></pre>
<p><img src="" alt="plot of chunk 5g"/> </p>
<p>A linear kernel, even with low cost fails to find non-linear decision boundary and classifies all points to a single class.</p>
<h3>h</h3>
<pre><code class="r">svm.fit = svm(as.factor(y) ~ x1 + x2, data, gamma = 1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
</code></pre>
<p><img src="" alt="plot of chunk 5h"/> </p>
<p>Again, the non-linear decision boundary on predicted labels closely resembles the true decision boundary.</p>
<h3>i</h3>
<p>This experiment enforces the idea that SVMs with non-linear kernel are extremely powerful in finding non-linear boundary. Both, logistic regression with non-interactions and SVMs with linear kernels fail to find the decision boundary. Adding interaction terms to logistic regression seems to give them same power as radial-basis kernels. However, there is some manual efforts and tuning involved in picking right interaction terms. This effort can become prohibitive with large number of features. Radial basis kernels, on the other hand, only require tuning of one parameter - gamma - which can be easily done using cross-validation.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/5.html
|
HTML
|
unknown
| 164,614
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Chapter 9: Exercise 6</title>
<base target="_blank"/>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
}
pre code {
display: block; padding: 0.5em;
}
code.r {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 9: Exercise 6</h1>
<h3>a</h3>
<p>We randomly generate 1000 points and scatter them across line \( x = y \) with wide margin. We also create noisy points along the line \( 5x -4y - 50 = 0 \). These points make the classes barely separable and also shift the maximum margin classifier.</p>
<pre><code class="r">set.seed(3154)
# Class one
x.one = runif(500, 0, 90)
y.one = runif(500, x.one + 10, 100)
x.one.noise = runif(50, 20, 80)
y.one.noise = 5/4 * (x.one.noise - 10) + 0.1
# Class zero
x.zero = runif(500, 10, 100)
y.zero = runif(500, 0, x.zero - 10)
x.zero.noise = runif(50, 20, 80)
y.zero.noise = 5/4 * (x.zero.noise - 10) - 0.1
# Combine all
class.one = seq(1, 550)
x = c(x.one, x.one.noise, x.zero, x.zero.noise)
y = c(y.one, y.one.noise, y.zero, y.zero.noise)
plot(x[class.one], y[class.one], col = "blue", pch = "+", ylim = c(0, 100))
points(x[-class.one], y[-class.one], col = "red", pch = 4)
</code></pre>
<p><img src="" alt="plot of chunk 6a"/> </p>
<p>The plot shows that classes are barely separable. The noisy points create a fictitious boundary \( 5x - 4y - 50 = 0 \).</p>
<h3>b</h3>
<p>We create a z variable according to classes.</p>
<pre><code class="r">library(e1071)
</code></pre>
<pre><code>## Loading required package: class
</code></pre>
<pre><code class="r">set.seed(555)
z = rep(0, 1100)
z[class.one] = 1
data = data.frame(x = x, y = y, z = z)
tune.out = tune(svm, as.factor(z) ~ ., data = data, kernel = "linear", ranges = list(cost = c(0.01,
0.1, 1, 5, 10, 100, 1000, 10000)))
summary(tune.out)
</code></pre>
<pre><code>##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 10000
##
## - best performance: 0
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-02 0.05636 0.02260
## 2 1e-01 0.04636 0.01841
## 3 1e+00 0.04545 0.01868
## 4 5e+00 0.05000 0.02153
## 5 1e+01 0.04818 0.02102
## 6 1e+02 0.04727 0.02134
## 7 1e+03 0.02364 0.02019
## 8 1e+04 0.00000 0.00000
</code></pre>
<pre><code class="r">data.frame(cost = tune.out$performances$cost, misclass = tune.out$performances$error *
1100)
</code></pre>
<pre><code>## cost misclass
## 1 1e-02 62
## 2 1e-01 51
## 3 1e+00 50
## 4 5e+00 55
## 5 1e+01 53
## 6 1e+02 52
## 7 1e+03 26
## 8 1e+04 0
</code></pre>
<p>The table above shows train-misclassification error for all costs. A cost of 10000 seems to classify all points correctly. This also corresponds to a cross-validation error of 0.</p>
<h3>c</h3>
<p>We now generate a random test-set of same size. This test-set satisfies the true decision boundary \( x = y \). </p>
<pre><code class="r">set.seed(1111)
x.test = runif(1000, 0, 100)
class.one = sample(1000, 500)
y.test = rep(NA, 1000)
# Set y > x for class.one
for (i in class.one) {
y.test[i] = runif(1, x.test[i], 100)
}
# set y < x for class.zero
for (i in setdiff(1:1000, class.one)) {
y.test[i] = runif(1, 0, x.test[i])
}
plot(x.test[class.one], y.test[class.one], col = "blue", pch = "+")
points(x.test[-class.one], y.test[-class.one], col = "red", pch = 4)
</code></pre>
<p><img src="" alt="plot of chunk 6c"/> </p>
<p>We now make same predictions using all linear svms with all costs used in previous part. </p>
<pre><code class="r">set.seed(30012)
z.test = rep(0, 1000)
z.test[class.one] = 1
all.costs = c(0.01, 0.1, 1, 5, 10, 100, 1000, 10000)
test.errors = rep(NA, 8)
data.test = data.frame(x = x.test, y = y.test, z = z.test)
for (i in 1:length(all.costs)) {
svm.fit = svm(as.factor(z) ~ ., data = data, kernel = "linear", cost = all.costs[i])
svm.predict = predict(svm.fit, data.test)
test.errors[i] = sum(svm.predict != data.test$z)
}
data.frame(cost = all.costs, `test misclass` = test.errors)
</code></pre>
<pre><code>## cost test.misclass
## 1 1e-02 57
## 2 1e-01 17
## 3 1e+00 5
## 4 5e+00 1
## 5 1e+01 0
## 6 1e+02 204
## 7 1e+03 227
## 8 1e+04 227
</code></pre>
<p>\( \tt{cost} = 10 \) seems to be performing better on test data, making the least number of classification errors. This is much smaller than optimal value of 10000 for training data.</p>
<h3>d</h3>
<p>We again see an overfitting phenomenon for linear kernel. A large cost tries to fit correctly classify noisy-points and hence overfits the train data. A small cost, however, makes a few errors on the noisy test points and performs better on test data.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/6.html
|
HTML
|
unknown
| 133,816
|
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Chapter 9: Exercise 8</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<h1>Chapter 9: Exercise 8</h1>
<h3>a</h3>
<pre><code class="r">library(ISLR)
set.seed(9004)
train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]
</code></pre>
<h3>b</h3>
<pre><code class="r">library(e1071)
</code></pre>
<pre><code>## Warning: package 'e1071' was built under R version 3.0.2
</code></pre>
<pre><code>## Loading required package: class
</code></pre>
<pre><code class="r">svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = 0.01)
summary(svm.linear)
</code></pre>
<pre><code>##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "linear",
## cost = 0.01)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 0.01
## gamma: 0.05556
##
## Number of Support Vectors: 432
##
## ( 217 215 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
</code></pre>
<p>Support vector classifier creates 432 support vectors out of 800 training points. Out of these, 217 belong to level \( \tt{CH} \) and remaining 215 belong to level \( \tt{MM} \).</p>
<h3>c</h3>
<pre><code class="r">train.pred = predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
</code></pre>
<pre><code>## train.pred
## CH MM
## CH 439 53
## MM 82 226
</code></pre>
<pre><code class="r">(82 + 53)/(439 + 53 + 82 + 226)
</code></pre>
<pre><code>## [1] 0.1688
</code></pre>
<pre><code class="r">test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
</code></pre>
<pre><code>## test.pred
## CH MM
## CH 142 19
## MM 29 80
</code></pre>
<pre><code class="r">(19 + 29)/(142 + 19 + 29 + 80)
</code></pre>
<pre><code>## [1] 0.1778
</code></pre>
<p>The training error rate is \( 16.9 \)% and test error rate is about \( 17.8 \)%.</p>
<h3>d</h3>
<pre><code class="r">set.seed(1554)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "linear", ranges = list(cost = 10^seq(-2,
1, by = 0.25)))
summary(tune.out)
</code></pre>
<pre><code>##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 0.3162
##
## - best performance: 0.1687
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000 0.1688 0.03692
## 2 0.01778 0.1688 0.03398
## 3 0.03162 0.1713 0.03230
## 4 0.05623 0.1725 0.03162
## 5 0.10000 0.1700 0.03291
## 6 0.17783 0.1712 0.03336
## 7 0.31623 0.1687 0.03499
## 8 0.56234 0.1700 0.03129
## 9 1.00000 0.1687 0.03398
## 10 1.77828 0.1688 0.03241
## 11 3.16228 0.1688 0.03294
## 12 5.62341 0.1713 0.03121
## 13 10.00000 0.1713 0.03283
</code></pre>
<p>Tuning shows that optimal cost is 0.3162</p>
<h3>e</h3>
<pre><code class="r">svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = tune.out$best.parameters$cost)
train.pred = predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
</code></pre>
<pre><code>## train.pred
## CH MM
## CH 435 57
## MM 71 237
</code></pre>
<pre><code class="r">(57 + 71)/(435 + 57 + 71 + 237)
</code></pre>
<pre><code>## [1] 0.16
</code></pre>
<pre><code class="r">test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
</code></pre>
<pre><code>## test.pred
## CH MM
## CH 141 20
## MM 29 80
</code></pre>
<pre><code class="r">(29 + 20)/(141 + 20 + 29 + 80)
</code></pre>
<pre><code>## [1] 0.1815
</code></pre>
<p>The training error decreases to \( 16 \)% but test error slightly increases to \( 18.1 \)% by using best cost.</p>
<h3>f</h3>
<pre><code class="r">set.seed(410)
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial")
summary(svm.radial)
</code></pre>
<pre><code>##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "radial")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
## gamma: 0.05556
##
## Number of Support Vectors: 367
##
## ( 184 183 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
</code></pre>
<pre><code class="r">train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
</code></pre>
<pre><code>## train.pred
## CH MM
## CH 452 40
## MM 78 230
</code></pre>
<pre><code class="r">(40 + 78)/(452 + 40 + 78 + 230)
</code></pre>
<pre><code>## [1] 0.1475
</code></pre>
<pre><code class="r">test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
</code></pre>
<pre><code>## test.pred
## CH MM
## CH 146 15
## MM 27 82
</code></pre>
<pre><code class="r">(27 + 15)/(146 + 15 + 27 + 82)
</code></pre>
<pre><code>## [1] 0.1556
</code></pre>
<p>The radial basis kernel with default gamma creates 367 support vectors, out of which, 184 belong to level \( \tt{CH} \) and remaining 183 belong to level \( \tt{MM} \). The classifier has a training error of \( 14.7 \)% and a test error of \( 15.6 \)% which is a slight improvement over linear kernel. We now use cross validation to find optimal gamma.</p>
<pre><code class="r">set.seed(755)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(cost = 10^seq(-2,
1, by = 0.25)))
summary(tune.out)
</code></pre>
<pre><code>##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 0.5623
##
## - best performance: 0.165
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000 0.3850 0.06258
## 2 0.01778 0.3850 0.06258
## 3 0.03162 0.3762 0.06908
## 4 0.05623 0.2100 0.03855
## 5 0.10000 0.1862 0.03143
## 6 0.17783 0.1837 0.03230
## 7 0.31623 0.1712 0.03438
## 8 0.56234 0.1650 0.03764
## 9 1.00000 0.1750 0.03584
## 10 1.77828 0.1738 0.04059
## 11 3.16228 0.1763 0.03748
## 12 5.62341 0.1763 0.03839
## 13 10.00000 0.1738 0.03459
</code></pre>
<pre><code class="r">svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial", cost = tune.out$best.parameters$cost)
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
</code></pre>
<pre><code>## train.pred
## CH MM
## CH 452 40
## MM 77 231
</code></pre>
<pre><code class="r">(77 + 40)/(452 + 40 + 77 + 231)
</code></pre>
<pre><code>## [1] 0.1462
</code></pre>
<pre><code class="r">test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
</code></pre>
<pre><code>## test.pred
## CH MM
## CH 146 15
## MM 28 81
</code></pre>
<pre><code class="r">(28 + 15)/(146 + 15 + 28 + 81)
</code></pre>
<pre><code>## [1] 0.1593
</code></pre>
<p>Tuning slightly decreases training error to \( 14.6 \)% and slightly increases test error to \( 16 \)% which is still better than linear kernel.</p>
<h3>g</h3>
<pre><code class="r">set.seed(8112)
svm.poly = svm(Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2)
summary(svm.poly)
</code></pre>
<pre><code>##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "poly",
## degree = 2)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: polynomial
## cost: 1
## degree: 2
## gamma: 0.05556
## coef.0: 0
##
## Number of Support Vectors: 452
##
## ( 232 220 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
</code></pre>
<pre><code class="r">train.pred = predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
</code></pre>
<pre><code>## train.pred
## CH MM
## CH 460 32
## MM 105 203
</code></pre>
<pre><code class="r">(32 + 105)/(460 + 32 + 105 + 203)
</code></pre>
<pre><code>## [1] 0.1713
</code></pre>
<pre><code class="r">test.pred = predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
</code></pre>
<pre><code>## test.pred
## CH MM
## CH 149 12
## MM 37 72
</code></pre>
<pre><code class="r">(12 + 37)/(149 + 12 + 37 + 72)
</code></pre>
<pre><code>## [1] 0.1815
</code></pre>
<p>Summary shows that polynomial kernel produces 452 support vectors, out of which, 232 belong to level \( \tt{CH} \) and remaining 220 belong to level \( \tt{MM} \). This kernel produces a train error of \( 17.1 \)% and a test error of \( 18.1 \)% which are slightly higher than the errors produces by radial kernel but lower than the errors produced by linear kernel.</p>
<pre><code class="r">set.seed(322)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2,
ranges = list(cost = 10^seq(-2, 1, by = 0.25)))
summary(tune.out)
</code></pre>
<pre><code>##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 5.623
##
## - best performance: 0.1837
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000 0.3850 0.05426
## 2 0.01778 0.3675 0.05076
## 3 0.03162 0.3575 0.05177
## 4 0.05623 0.3425 0.04937
## 5 0.10000 0.3150 0.05231
## 6 0.17783 0.2487 0.03929
## 7 0.31623 0.2088 0.05684
## 8 0.56234 0.2088 0.05653
## 9 1.00000 0.2000 0.06095
## 10 1.77828 0.1938 0.04497
## 11 3.16228 0.1862 0.04185
## 12 5.62341 0.1837 0.03336
## 13 10.00000 0.1837 0.04042
</code></pre>
<pre><code class="r">svm.poly = svm(Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2, cost = tune.out$best.parameters$cost)
train.pred = predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
</code></pre>
<pre><code>## train.pred
## CH MM
## CH 455 37
## MM 84 224
</code></pre>
<pre><code class="r">(37 + 84)/(455 + 37 + 84 + 224)
</code></pre>
<pre><code>## [1] 0.1512
</code></pre>
<pre><code class="r">test.pred = predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
</code></pre>
<pre><code>## test.pred
## CH MM
## CH 148 13
## MM 34 75
</code></pre>
<pre><code class="r">(13 + 34)/(148 + 13 + 34 + 75)
</code></pre>
<pre><code>## [1] 0.1741
</code></pre>
<p>Tuning reduces the training error to \( 15.12 \)% and test error to \( 17.4 \)% which is worse than radial kernel but slightly better than linear kernel.</p>
<h3>h</h3>
<p>Overall, radial basis kernel seems to be producing minimum misclassification error on both train and test data.</p>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/8.html
|
HTML
|
unknown
| 23,683
|
## Online course quiz question: 9.R
## Explanation: Logistic regression is similar to SVM with a linear kernel.
library(MASS)
svm_error <- function() {
# 1) generate a random training sample to train on + fit
# build training set
x0 = mvrnorm(50,rep(0,10),diag(10))
x1 = mvrnorm(50,rep(c(1,0),c(5,5)),diag(10))
train = rbind(x0,x1)
classes = rep(c(0,1),c(50,50))
dat=data.frame(train,classes=as.factor(classes))
# fit
# svmfit=svm(classes~.,data=dat,kernel="linear")
svmfit = glm(classes~., data=dat, family="binomial")
# 2) evaluate the number of mistakes we make on a large test set = 1000 samples
test_x0 = mvrnorm(500,rep(0,10),diag(10))
test_x1 = mvrnorm(500,rep(c(1,0),c(5,5)),diag(10))
test = rbind(test_x0,test_x1)
test_classes = rep(c(0,1),c(500,500))
test_dat = data.frame(test,test_classes=as.factor(test_classes))
fit = predict(svmfit,test_dat)
fit = ifelse(fit < 0.5, 0, 1)
error = sum(fit != test_dat$test_classes)/1000
return(error)
}
# 3) repeat (1-2) many times and averaging the error rate for each trial
errors = replicate(1000, svm_error())
print(mean(errors))
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/9.R
|
R
|
unknown
| 1,128
|
set.seed(1)
x = matrix(rnorm(20*2), ncol=2)
y=c(rep(-1, 10), rep(1, 10))
x[y == 1, ]=x[y == 1, ] + 1
plot(x, col=(3-y))
# Train svm
dat=data.frame(x=x, y=as.factor(y))
library(e1071)
svmfit = svm(y~., data=dat, kernel="linear", cost=10, scale=F)
plot(svmfit, dat)
svmfit$index
summary(svmfit)
# Tune svm
set.seed(1)
tune.out = tune(svm, y~., data=dat, kernel="linear",
ranges=list(cost=c(0.001 , 0.01, 0.1, 1,5,10,100)))
summary(tune.out)
bestmod = tune.out$best.model
summary(bestmod)
# Predict
xtest = matrix(rnorm(20*2), ncol=2)
ytest = sample(c(-1, 1), 20, replace=T)
xtest[ytest == 1, ] = xtest[ytest == 1, ] + 1
testdat = data.frame(x=xtest, y=as.factor(ytest))
ypred = predict(bestmod, testdat)
table(predict=ypred, truth=testdat$y)
# Create linearly separable classes and plot them
x[y==1 ,]= x[y==1 ,]+0.5
plot(x, col =(y+5) /2, pch =19)
# Train svm with very large value of cost to create separating hyperplane
dat=data.frame(x=x, y=as.factor(y))
svmfit = svm(y~., data=dat, kernel="linear", cost=1e5)
summary(svmfit)
plot(svmfit, dat)
# Full support vector machines with radial basis kernels
# Generate Data
set.seed (1)
x = matrix(rnorm(200*2), ncol=2)
x[1:100, ] = x[1:100, ] + 2
x[101:150, ] = x[101:150, ] - 2
y = c(rep(1, 150), rep(2, 50))
dat = data.frame(x=x, y=as.factor(y))
plot(x, col=y)
train = sample(200, 100)
svmfit = svm(y~., data=dat[train, ], kernel="radial", gamma=1, cost=1)
plot(svmfit, dat[train, ])
summary(svmfit)
# Cross validation using SVM
set.seed(1)
tune.out = tune(svm, y~., data=dat[train, ], kernel="radial",
range=data.frame(cost=c(0.1, 1, 10, 100, 100), gamma=c(0.5, 1, 2, 3, 4)))
summary(tune.out)
tune.pred = predict(tune.out$best.model, dat[-train, ])
table(dat[-train, "y"], tune.pred)
# Generate ROC curve
library(ROCR)
rocplot = function(pred, truth, ...) {
predob = prediction(pred, truth)
perf = performance(predob, "tpr", "fpr")
plot(perf, ...)
}
svmfit.opt = svm(y~., data=dat[train ,], kernel ="radial", gamma=2, cost=1, decision.values=T)
fitted = attributes(predict(svmfit.opt, dat[train, ], decision.values=T))$decision.values
par(mfrow=c(1, 2))
rocplot(fitted, dat[train, "y"], main="Training data")
# Plot by increasing lamdba
svmfit.flex = svm(y~., data=dat[train, ], kernel="radial", gamma=50, cost=1, decision.values=T)
fitted = attributes(predict(svmfit.flex, dat[train, ], decision.values=T))$decision.values
rocplot(fitted, dat[train, "y"], col="red", add=T)
# Make same plots on test data
fitted = attributes(predict(svmfit.opt, dat[-train, ], decision.values=T))$decision.values
rocplot(fitted, dat[-train, "y"], main="Test Data")
fitted = attributes(predict(svmfit.flex, dat[-train, ], decision.values=T))$decision.values
rocplot(fitted, dat[-train, "y"], col="red", add=T)
# SVM with multiple classes
set.seed(1)
x = rbind(x, matrix(rnorm(50*2), ncol=2))
y = c(y, rep(0, 50))
x[y==0, 2] = x[y==0, 2] + 2
dat=data.frame(x=x, y=as.factor(y))
par(mfrow=c(1, 1))
plot(x, col=(y+1))
svmfit = svm(y~., data=dat, kernel="radial", cost=10, gamma=1)
plot(svmfit, dat)
# SVM on gene expression data
library(ISLR)
names(Khan)
dim(Khan$xtrain)
dim(Khan$xtest)
length(Khan$ytrain)
length(Khan$ytest)
table(Khan$ytrain)
table(Khan$ytest)
dat = data.frame(x=Khan$xtrain, y=as.factor(Khan$ytrain))
out = svm(y~., data=dat, kernel="linear", cost=10)
summary(out)
table(out$fitted, dat$y)
dat.test = data.frame(x=Khan$xtest, y=as.factor(Khan$ytest))
pred = predict(out, dat.test)
table(pred, dat.test$y)
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/Lab_chapter9.R
|
R
|
unknown
| 3,507
|
n.samples = 300
y = sample(c(0, 1), n.samples, replace=T)
x = matrix(rep(0, n.samples * 10), ncol=10)
for (i in 1:n.samples) {
if (y[i] == 0)
x[i, ] = rnorm(10)
else
x[i, ] = rnorm(10, mean=c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0))
}
total.0 = seq(1, n.samples)[y == 0]
total.1 = seq(1, n.samples)[y == 1]
train.0 = sample(total.0, 50)
train.1 = sample(total.1, 50)
train = c(train.0, train.1)
library(e1071)
dat = data.frame(x=x, y=as.factor(y))
svm.fit = svm(y~., data=dat[train, ], kernel="linear")
svm.pred = predict(svm.fit, dat[-train, ])
mean(dat[-train, "y"] != svm.pred)
glm.fit = glm(y~., dat[train, ], family=binomial)
glm.prob = predict(glm.fit, dat[-train, ], type="response")
glm.pred = ifelse(glm.prob > 0.5, 1, 0)
sum(dat[-train, "y"] != glm.pred)
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/R_exercise_video.R
|
R
|
unknown
| 772
|
# Chapter 9 Lab: Support Vector Machines
# Support Vector Classifier
set.seed(1)
x=matrix(rnorm(20*2), ncol=2)
y=c(rep(-1,10), rep(1,10))
x[y==1,]=x[y==1,] + 1
plot(x, col=(3-y))
dat=data.frame(x=x, y=as.factor(y))
library(e1071)
svmfit=svm(y~., data=dat, kernel="linear", cost=10,scale=FALSE)
plot(svmfit, dat)
svmfit$index
summary(svmfit)
svmfit=svm(y~., data=dat, kernel="linear", cost=0.1,scale=FALSE)
plot(svmfit, dat)
svmfit$index
set.seed(1)
tune.out=tune(svm,y~.,data=dat,kernel="linear",ranges=list(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
summary(tune.out)
bestmod=tune.out$best.model
summary(bestmod)
xtest=matrix(rnorm(20*2), ncol=2)
ytest=sample(c(-1,1), 20, rep=TRUE)
xtest[ytest==1,]=xtest[ytest==1,] + 1
testdat=data.frame(x=xtest, y=as.factor(ytest))
ypred=predict(bestmod,testdat)
table(predict=ypred, truth=testdat$y)
svmfit=svm(y~., data=dat, kernel="linear", cost=.01,scale=FALSE)
ypred=predict(svmfit,testdat)
table(predict=ypred, truth=testdat$y)
x[y==1,]=x[y==1,]+0.5
plot(x, col=(y+5)/2, pch=19)
dat=data.frame(x=x,y=as.factor(y))
svmfit=svm(y~., data=dat, kernel="linear", cost=1e5)
summary(svmfit)
plot(svmfit, dat)
svmfit=svm(y~., data=dat, kernel="linear", cost=1)
summary(svmfit)
plot(svmfit,dat)
# Support Vector Machine
set.seed(1)
x=matrix(rnorm(200*2), ncol=2)
x[1:100,]=x[1:100,]+2
x[101:150,]=x[101:150,]-2
y=c(rep(1,150),rep(2,50))
dat=data.frame(x=x,y=as.factor(y))
plot(x, col=y)
train=sample(200,100)
svmfit=svm(y~., data=dat[train,], kernel="radial", gamma=1, cost=1)
plot(svmfit, dat[train,])
summary(svmfit)
svmfit=svm(y~., data=dat[train,], kernel="radial",gamma=1,cost=1e5)
plot(svmfit,dat[train,])
set.seed(1)
tune.out=tune(svm, y~., data=dat[train,], kernel="radial", ranges=list(cost=c(0.1,1,10,100,1000),gamma=c(0.5,1,2,3,4)))
summary(tune.out)
table(true=dat[-train,"y"], pred=predict(tune.out$best.model,newx=dat[-train,]))
# ROC Curves
library(ROCR)
rocplot=function(pred, truth, ...){
predob = prediction(pred, truth)
perf = performance(predob, "tpr", "fpr")
plot(perf,...)}
svmfit.opt=svm(y~., data=dat[train,], kernel="radial",gamma=2, cost=1,decision.values=T)
fitted=attributes(predict(svmfit.opt,dat[train,],decision.values=TRUE))$decision.values
par(mfrow=c(1,2))
rocplot(fitted,dat[train,"y"],main="Training Data")
svmfit.flex=svm(y~., data=dat[train,], kernel="radial",gamma=50, cost=1, decision.values=T)
fitted=attributes(predict(svmfit.flex,dat[train,],decision.values=T))$decision.values
rocplot(fitted,dat[train,"y"],add=T,col="red")
fitted=attributes(predict(svmfit.opt,dat[-train,],decision.values=T))$decision.values
rocplot(fitted,dat[-train,"y"],main="Test Data")
fitted=attributes(predict(svmfit.flex,dat[-train,],decision.values=T))$decision.values
rocplot(fitted,dat[-train,"y"],add=T,col="red")
# SVM with Multiple Classes
set.seed(1)
x=rbind(x, matrix(rnorm(50*2), ncol=2))
y=c(y, rep(0,50))
x[y==0,2]=x[y==0,2]+2
dat=data.frame(x=x, y=as.factor(y))
par(mfrow=c(1,1))
plot(x,col=(y+1))
svmfit=svm(y~., data=dat, kernel="radial", cost=10, gamma=1)
plot(svmfit, dat)
# Application to Gene Expression Data
library(ISLR)
names(Khan)
dim(Khan$xtrain)
dim(Khan$xtest)
length(Khan$ytrain)
length(Khan$ytest)
table(Khan$ytrain)
table(Khan$ytest)
dat=data.frame(x=Khan$xtrain, y=as.factor(Khan$ytrain))
out=svm(y~., data=dat, kernel="linear",cost=10)
summary(out)
table(out$fitted, dat$y)
dat.te=data.frame(x=Khan$xtest, y=as.factor(Khan$ytest))
pred.te=predict(out, newdata=dat.te)
table(pred.te, dat.te$y)
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/ch9/lab.R
|
R
|
unknown
| 3,494
|
<html>
<body>
<h3><i>An Introduction to Statistical Learning</i> Unofficial Solutions</h3>
<p>
<a href="https://github.com/asadoughi/stat-learning">Fork the solutions!</a><br />
<a href="https://twitter.com/princehonest">Twitter me @princehonest</a><br />
<a href="http://www.statlearning.com">Official book website</a><br />
</p>
<p>
Check out Github <a href="https://github.com/asadoughi/stat-learning/issues?state=open">issues</a> and <a href="https://github.com/asadoughi/stat-learning/">repo</a> for the latest updates.
</p>
<script>
exercise_count = [10, 15, 13, 9, 11, 12, 12, 8, 11];
for (var chapter = 2; chapter <= 10; chapter++) {
for (var exercise = 1; exercise <= exercise_count[chapter-2]; exercise++) {
link = "ch" + chapter + "/" + exercise + ".html";
if (chapter == 2) {
if (exercise < 8)
link = "https://raw.githubusercontent.com/asadoughi/stat-learning/master/ch2/answers";
else
link = "https://raw.githubusercontent.com/asadoughi/stat-learning/master/ch2/applied.R";
} else if (chapter == 3) {
if (exercise < 7)
link = "https://raw.githubusercontent.com/asadoughi/stat-learning/master/ch3/answers";
else
link = "ch3/applied.html";
}
document.write("<a href='" + link + "'>Chapter " + chapter + " Exercise " + exercise + "</a>");
document.write("<br />");
}
document.write("<br />");
}
</script>
</body>
</html>
|
2301_76574743/tjjm-R
|
统计学习导论_基于R应用习题答案/index.html
|
HTML
|
unknown
| 1,516
|
#include "Com_Util.h"
#include <INTRINS.H>
void Com_Util_Delay1ms(u16 count)
{
u8 i,j;
while (count>0)
{
count--;
_nop_();
i=2;
j=199;
do
{
while(--j);
} while (--i);
}
}
|
2301_77966824/51-microcontroller-learning
|
2024/10/1019-数码管-模块化编程/src/Com/Com_Util.c
|
C
|
unknown
| 198
|
#ifndef _INT_DIGITALTUBE_H__
#define _INT_DIGITALTUBE_H__
#include "Com_Util.h"
#define SGM_ED P36
#define LED_ED P34
void Int_DigitalTube_Init();
void Int_DigitalTube_DisplayNum(u32 num);
void Int_DeigitalTUbe_Refresh();
#endif // 1
|
2301_77966824/51-microcontroller-learning
|
2024/10/1019-数码管-模块化编程/src/Int/Int_DigitalTube.h
|
C
|
unknown
| 237
|
#include <Int_digitalTube.h>
void main()
{
Int_DigitalTube_Init();
Int_DigitalTube_DisplayNum(1314520);
while(1)
{
Int_DeigitalTUbe_Refresh();
}
}
|
2301_77966824/51-microcontroller-learning
|
2024/10/1019-数码管-模块化编程/src/main.c
|
C
|
unknown
| 156
|
#!/usr/bin/env python
#coding=utf-8
# stcflash Copyright (C) 2013 laborer (laborer@126.com)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import time
import logging
import sys
import serial
import os.path
import binascii
import struct
import argparse
PROTOCOL_89 = "89"
PROTOCOL_12C5A = "12c5a"
PROTOCOL_12C52 = "12c52"
PROTOCOL_12Cx052 = "12cx052"
PROTOCOL_8 = "8"
PROTOCOL_15 = '15'
PROTOSET_89 = [PROTOCOL_89]
PROTOSET_12 = [PROTOCOL_12C5A, PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_12B = [PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_8 = [PROTOCOL_8]
PROTOSET_15 = [PROTOCOL_15]
PROTOSET_PARITY = [PROTOCOL_12C5A, PROTOCOL_12C52]
class Programmer:
def __init__(self, conn, protocol=None):
self.conn = conn
self.protocol = protocol
self.conn.timeout = 0.05
if self.protocol in PROTOSET_PARITY:
self.conn.parity = serial.PARITY_EVEN
else:
self.conn.parity = serial.PARITY_NONE
self.chkmode = 0
def __conn_read(self, size):
buf = bytearray()
while len(buf) < size:
s = bytearray(self.conn.read(size - len(buf)))
buf += s
logging.debug("recv: " + " ".join(["%02X" % i for i in s]))
if len(s) == 0:
raise IOError()
return list(buf)
def __conn_write(self, s):
logging.debug("send: " + " ".join(["%02X" % i for i in s]))
self.conn.write(bytearray(s))
def __conn_baudrate(self, baud, flush=True):
logging.debug("baud: %d" % baud)
if flush:
if self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
self.conn.flush()
time.sleep(0.2)
self.conn.baudrate = baud
def __model_database(self, model):
modelmap = {0xE0: ("12", 1, {(0x00, 0x1F): ("C54", ""),
(0x60, 0x7F): ("C54", "AD"),
(0x80, 0x9F): ("LE54", ""),
(0xE0, 0xFF): ("LE54", "AD"),
}),
0xE1: ("12", 1, {(0x00, 0x1F): ("C52", ""),
(0x20, 0x3F): ("C52", "PWM"),
(0x60, 0x7F): ("C52", "AD"),
(0x80, 0x9F): ("LE52", ""),
(0xA0, 0xBF): ("LE52", "PWM"),
(0xE0, 0xFF): ("LE52", "AD"),
}),
0xE2: ("11", 1, {(0x00, 0x1F): ("F", ""),
(0x20, 0x3F): ("F", "E"),
(0x70, 0x7F): ("F", ""),
(0x80, 0x9F): ("L", ""),
(0xA0, 0xBF): ("L", "E"),
(0xF0, 0xFF): ("L", ""),
}),
0xE6: ("12", 1, {(0x00, 0x1F): ("C56", ""),
(0x60, 0x7F): ("C56", "AD"),
(0x80, 0x9F): ("LE56", ""),
(0xE0, 0xFF): ("LE56", "AD"),
}),
0xD1: ("12", 2, {(0x20, 0x3F): ("C5A", "CCP"),
(0x40, 0x5F): ("C5A", "AD"),
(0x60, 0x7F): ("C5A", "S2"),
(0xA0, 0xBF): ("LE5A", "CCP"),
(0xC0, 0xDF): ("LE5A", "AD"),
(0xE0, 0xFF): ("LE5A", "S2"),
}),
0xD2: ("10", 1, {(0x00, 0x0F): ("F", ""),
(0x60, 0x6F): ("F", "XE"),
(0x70, 0x7F): ("F", "X"),
(0xA0, 0xAF): ("L", ""),
(0xE0, 0xEF): ("L", "XE"),
(0xF0, 0xFF): ("L", "X"),
}),
0xD3: ("11", 2, {(0x00, 0x1F): ("F", ""),
(0x40, 0x5F): ("F", "X"),
(0x60, 0x7F): ("F", "XE"),
(0xA0, 0xBF): ("L", ""),
(0xC0, 0xDF): ("L", "X"),
(0xE0, 0xFF): ("L", "XE"),
}),
0xF0: ("89", 4, {(0x00, 0x10): ("C5", "RC"),
(0x20, 0x30): ("C5", "RC"), #STC90C5xRC
}),
0xF1: ("89", 4, {(0x00, 0x10): ("C5", "RD+"),
(0x20, 0x30): ("C5", "RD+"), #STC90C5xRD+
}),
0xF2: ("12", 1, {(0x00, 0x0F): ("C", "052"),
(0x10, 0x1F): ("C", "052AD"),
(0x20, 0x2F): ("LE", "052"),
(0x30, 0x3F): ("LE", "052AD"),
}),
0xF2A0: ("15W", 1, {(0xA0, 0xA5): ("1", ""), #STC15W1系列
}),
0xF400: ("15F", 8, {(0x00, 0x07): ("2K", "S2"), #STC15F2K系列
}),
0xF407: ("15F", 60, {(0x07, 0x08): ("2K", "S2"), #STC15F2K系列
}),
0xF408: ("15F", 61, {(0x08, 0x09): ("2K", "S2"), #STC15F2K系列
}),
0xF400: ("15F", 4, {(0x09, 0x0C): ("4", "AD"), #STC15FAD系列
}),
0xF410: ("15F", 8, {(0x10, 0x17): ("1K", "AS"), #STC15F1KAS系列
}),
0xF417: ("15F", 60, {(0x17, 0x18): ("1K", "AS"), #STC15F1KAS系列
}),
0xF418: ("15F", 61, {(0x18, 0x19): ("1K", "AS"), #STC15F1KAS系列
}),
0xF420: ("15F", 8, {(0x20, 0x27): ("1K", "S"), #STC15F1KS系列
}),
0xF427: ("15F", 60, {(0x27, 0x28): ("1K", "S"), #STC15F1KS系列
}),
0xF440: ("15F", 8, {(0x40, 0x47): ("1K", "S2"), #STC15F1KS2系列
}),
0xF447: ("15F", 60, {(0x47, 0x48): ("1K", "S2"), #STC15F1KS2系列
}),
0xF448: ("15F", 61, {(0x48, 0x49): ("1K", "S2"), #STC15F1KS2系列
}),
0xF44C: ("15F", 13, {(0x4C, 0x4D): ("4", "AD"),
}),
0xF450: ("15F", 8, {(0x50, 0x57): ("1K", "AS"), #STC15F1KAS系列
}),
0xF457: ("15F", 60, {(0x57, 0x58): ("1K", "AS"), #STC15F1KAS系列
}),
0xF458: ("15F", 61, {(0x58, 0x59): ("1K", "AS"), #STC15F1KAS系列
}),
0xF460: ("15F", 8, {(0x60, 0x67): ("1K", "S"), #STC15F1KS系列
}),
0xF467: ("15F", 60, {(0x67, 0x68): ("1K", "S"), #STC15F1KS系列
}),
0xF468: ("15F", 61, {(0x68, 0x69): ("1K", "S"), #STC15F1KS系列
}),
0xF480: ("15L", 8, {(0x80, 0x87): ("2K", "S2"), #STC15L2KS2系列
}),
0xF487: ("15L", 60, {(0x87, 0x88): ("2K", "S2"), #STC15L2KS2系列
}),
0xF488: ("15L", 61, {(0x88, 0x89): ("2K", "S2"), #STC15L2KS2系列
}),
0xF489: ("15L", 5, {(0x89, 0x8C): ("4", "AD"), #STC15L4AD系列
}),
0xF490: ("15L", 8, {(0x90, 0x97): ("2K", "AS"), #STC15L2KAS系列
}),
0xF497: ("15L", 60, {(0x97, 0x98): ("2K", "AS"), #STC15L2KAS系列
}),
0xF498: ("15L", 61, {(0x98, 0x99): ("2K", "AS"), #STC15L2KAS系列
}),
0xF4A0: ("15L", 8, {(0xA0, 0xA7): ("2K", "S"), #STC15L2KS系列
}),
0xF4A7: ("15L", 60, {(0xA7, 0xA8): ("2K", "S"), #STC15L2KS系列
}),
0xF4A8: ("15L", 61, {(0xA8, 0xA9): ("2K", "S"), #STC15L2KS系列
}),
0xF4C0: ("15L", 8, {(0xC0, 0xC7): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C7: ("15L", 60, {(0xC7, 0xC8): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C8: ("15L", 61, {(0xC8, 0xC9): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4CC: ("15L", 13, {(0xCC, 0xCD): ("4", "AD"),
}),
0xF4D0: ("15L", 8, {(0xD0, 0xD7): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D7: ("15L", 60, {(0xD7, 0xD8): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D8: ("15L", 61, {(0xD8, 0xD9): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4E0: ("15L", 8, {(0xE0, 0xE7): ("1K", "S"), #STC15L1KS系列
}),
0xF4E7: ("15L", 60, {(0xE7, 0xE8): ("1K", "S"), #STC15L1KS系列
}),
0xF4E8: ("15L", 61, {(0xE8, 0xE9): ("1K", "S"), #STC15L1KS系列
}),
0xF500: ("15W", 1, {(0x00, 0x04): ("1", "SW"), #STC15W1SW系列
}),
0xF507: ("15W", 1, {(0x07, 0x0B): ("1", "S"), #STC15W1S系列
}),
0xF510: ("15W", 1, {(0x10, 0x14): ("2", "S"), #STC15W2S系列
}),
0xF514: ("15W", 8, {(0x14, 0x17): ("1K", "S"), #STC15W1KS系列
}),
0xF518: ("15W", 4, {(0x18, 0x1A): ("4", "S"), #STC15W4S系列
}),
0xF51A: ("15W", 4, {(0x1A, 0x1C): ("4", "S"), #STC15W4S系列
}),
0xF51C: ("15W", 4, {(0x1C, 0x1F): ("4", "AS"), #STC15W4AS系列
}),
0xF51F: ("15W", 10, {(0x19, 0x20): ("4", "AS"), #STC15W4AS系列
}),
0xF520: ("15W", 12, {(0x20, 0x21): ("4", "AS"), #STC15W4AS系列
}),
0xF522: ("15W", 16, {(0x22, 0x23): ("4K", "S4"), #STC15W4KS4系列
}),
0xF523: ("15W",24, {(0x23, 0x24): ("4K", "S4"), #STC15W4KS4系列
}),
0xF524: ("15W", 32, {(0x24, 0x25): ("4K", "S4"), #STC15W4KS4系列
}),
0xF525: ("15W", 40, {(0x25, 0x26): ("4K", "S4"), #STC15W4KS4系列
}),
0xF526: ("15W", 48, {(0x26, 0x27): ("4K", "S4"), #STC15W4KS4系列
}),
0xF527: ("15W", 56, {(0x27, 0x28): ("4K", "S4"), #STC15W4KS4系列
}),
0xF529: ("15W", 1, {(0x29, 0x2B): ("4", "A4"), #STC15W4AS系列
}),
0xF52C: ("15W", 8, {(0x2C, 0x2E): ("1K", "PWM"), #STC15W1KPWM系列
}),
0xF52E: ("15W", 20, {(0x2E, 0x2F): ("1K", "S"), #STC15W1KS系列
}),
0xF52F: ("15W", 32, {(0x2F, 0x30): ("2K", "S2"), #STC15W2KS2系列
}),
0xF530: ("15W", 48, {(0x30, 0x31): ("2K", "S2"), #STC15W2KS2系列
}),
0xF531: ("15W", 32, {(0x31, 0x32): ("2K", "S2"), #STC15W2KS2系列
}),
0xF533: ("15W", 20, {(0x33, 0x34): ("1K", "S2"), #STC15W1KS2系列
}),
0xF534: ("15W", 32, {(0x34, 0x35): ("1K", "S2"), #STC15W1KS2系列
}),
0xF535: ("15W", 48, {(0x35, 0x36): ("1K", "S2"), #STC15W1KS2系列
}),
0xF544: ("15W", 5, {(0x44, 0x45): ("", "SW"), #STC15SW系列
}),
0xF554: ("15W", 5, {(0x54, 0x55): ("2", "S"), #STC15W2S系列
}),
0xF557: ("15W", 29, {(0x57, 0x58): ("1K", "S"), #STC15W1KS系列
}),
0xF55C: ("15W", 13, {(0x5C, 0x5D): ("4", "S"), #STC15W4S系列
}),
0xF568: ("15W", 58, {(0x68, 0x69): ("4K", "S4"), #STC15W4KS4系列
}),
0xF569: ("15W", 61, {(0x69, 0x6A): ("4K", "S4"), #STC15W4KS4系列
}),
0xF56C: ("15W", 58, {(0x6C, 0x6D): ("4K", "S4-Student"), #STC15W4KS4系列
}),
0xF57E: ("15U", 8, {(0x7E, 0x85): ("4K", "S4"), #STC15U4KS4系列
}),
0xF600: ("15H", 8, {(0x00, 0x08): ("4K", "S4"), #STC154K系列
}),
0xF620: ("8A", 8, {(0x20, 0x28): ("8K", "S4A12"), #STC8A8K系列
}),
0xF628: ("8A", 60, {(0x28, 0x29): ("8K", "S4A12"), #STC8A8K系列
}),
0xF630: ("8F", 8, {(0x30, 0x38): ("2K", "S4"), #STC8F2K系列
}),
0xF638: ("8F", 60, {(0x38, 0x39): ("2K", "S4"), #STC8F2K系列
}),
0xF640: ("8F", 8, {(0x40, 0x48): ("2K", "S2"), #STC8F2K系列
}),
0xF648: ("8F", 60, {(0x48, 0x49): ("2K", "S2"), #STC8F2K系列
}),
0xF650: ("8A", 8, {(0x50, 0x58): ("4K", "S2A12"), #STC8A4K系列
}),
0xF658: ("8A", 60, {(0x58, 0x59): ("4K", "S2A12"), #STC8A4K系列
}),
0xF660: ("8F", 2, {(0x60, 0x66): ("1K", "S2"), #STC8F1K系列
}),
0xF666: ("8F", 17, {(0x66, 0x67): ("1K", "S2"), #STC8F1K系列
}),
0xF670: ("8F", 2, {(0x70, 0x76): ("1K", ""), #STC8F1K系列
}),
0xF676: ("8F", 17, {(0x76, 0x77): ("1K", ""), #STC8F1K系列
}),
0xF700: ("8C", 2, {(0x00, 0x06): ("1K", ""), #STC8C系列
}),
0xF730: ("8H", 2, {(0x30, 0x36): ("1K", ""), #STC8H1K系列
}),
0xF736: ("8H", 17, {(0x36, 0x37): ("1K", ""), #STC8H1K系列
}),
0xF740: ("8H", 8, {(0x40, 0x42): ("3K", "S4"), #STC8H3K系列
}),
0xF742: ("8H", 60, {(0x42, 0x43): ("3K", "S4"), #STC8H3K系列
}),
0xF743: ("8H", 64, {(0x43, 0x44): ("3K", "S4"), #STC8H3K系列
}),
0xF748: ("8H", 16, {(0x48, 0x4A): ("3K", "S2"), #STC8H3K系列
}),
0xF74A: ("8H", 60, {(0x4A, 0x4B): ("3K", "S2"), #STC8H3K系列
}),
0xF74B: ("8H", 64, {(0x4B, 0x4C): ("3K", "S2"), #STC8H3K系列
}),
0xF750: ("8G", 2, {(0x50, 0x56): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF756: ("8G", 17, {(0x56, 0x57): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF760: ("8G", 16, {(0x60, 0x62): ("2K", "S4"), #STC8G2K系列
}),
0xF762: ("8G", 60, {(0x62, 0x63): ("2K", "S4"), #STC8G2K系列
}),
0xF763: ("8G", 64, {(0x63, 0x64): ("2K", "S4"), #STC8G2K系列
}),
0xF768: ("8G", 16, {(0x68, 0x6A): ("2K", "S2"), #STC8G2K系列
}),
0xF76A: ("8G", 60, {(0x6A, 0x6B): ("2K", "S2"), #STC8G2K系列
}),
0xF76B: ("8G", 64, {(0x6B, 0x6C): ("2K", "S2"), #STC8G2K系列
}),
0xF770: ("8G", 2, {(0x70, 0x76): ("1K", "T"), #STC8G2K系列
}),
0xF776: ("8G", 17, {(0x76, 0x77): ("1K", "T"), #STC8G2K系列
}),
0xF780: ("8H", 16, {(0x80, 0x82): ("8K", "U"), #STC8H8K系列
}),
0xF782: ("8H", 60, {(0x82, 0x83): ("8K", "U"), #STC8H8K系列
}),
0xF783: ("8H", 64, {(0x83, 0x84): ("8K", "U"), #STC8H8K系列
}),
0xF790: ("8G", 2, {(0x90, 0x96): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF796: ("8G", 17, {(0x96, 0x97): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF7A0: ("8G", 2, {(0xA0, 0xA6): ("1K", "-8PIN"), #STC8G1K系列
}),
0xF7A6: ("8G", 17, {(0xA6, 0xA7): ("1K", "-8PIN"), #STC8G1K系列
}),
}
iapmcu = ((0xD1, 0x3F), (0xD1, 0x5F), (0xD1, 0x7F), (0xF4, 0x4D), (0xF4, 0x99), (0xF4, 0xD9), (0xF5, 0x58),
(0xD2, 0x7E), (0xD2, 0xFE), (0xF4, 0x09), (0xF4, 0x59), (0xF4, 0xA9), (0xF4, 0xE9), (0xF5, 0x5D),
(0xD3, 0x5F), (0xD3, 0xDF), (0xF4, 0x19), (0xF4, 0x69), (0xF4, 0xC9), (0xF5, 0x45), (0xF5, 0x62),
(0xE2, 0x76), (0xE2, 0xF6), (0xF4, 0x49), (0xF4, 0x89), (0xF4, 0xCD), (0xF5, 0x55), (0xF5, 0x69),
(0xF5, 0x6A), (0xF5, 0x6D),
)
try:
model = tuple(model)
if self.model[0] in [0xF4, 0xF5, 0xF6, 0xF7]:
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
elif self.model[0] == 0xF2 and self.model[1] in range(0xA0, 0xA6):
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
self.protocol = PROTOCOL_15
else:
prefix, romratio, fixmap = modelmap[model[0]]
if model[0] in (0xF0, 0xF1) and 0x20 <= model[1] <= 0x30:
prefix = "90"
for key, value in fixmap.items():
if key[0] <= model[1] <= key[1]:
break
else:
raise KeyError()
infix, postfix = value
romsize = romratio * (model[1] - key[0])
try:
romsize = {(0xF0, 0x03): 13}[model]
except KeyError:
pass
if model[0] in (0xF0, 0xF1):
romfix = str(model[1] - key[0])
elif model[0] in (0xF2,):
romfix = str(romsize)
else:
romfix = "%02d" % romsize
name = "IAP" if model in iapmcu else "STC"
name += prefix + infix + romfix + postfix
return (name, romsize)
except KeyError:
return ("Unknown %02X %02X" % model, None)
def recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def first_recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
time.sleep(0.02) #加上20ms延时,增大接收成功率
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def send(self, cmd, dat):
buf = [0x46, 0xB9, 0x6A]
n = 1 + 2 + 1 + len(dat) + self.chkmode + 1
buf += [n >> 8, n & 0xFF, cmd]
buf += dat
chksum = sum(buf[2:])
if self.chkmode > 1:
buf += [(chksum >> 8) & 0xFF]
buf += [chksum & 0xFF, 0x16]
self.__conn_write(buf)
def detect(self):
for i in range(500):
try:
if self.protocol in [PROTOCOL_89,PROTOCOL_12C52,PROTOCOL_12Cx052,PROTOCOL_12C5A]:
self.__conn_write([0x7F,0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
else:
self.__conn_write([0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
break
except IOError:
pass
else:
raise IOError()
self.info = dat[16:]
self.version = "%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[1])
self.model = self.info[3:5]
self.name, self.romsize = self.__model_database(self.model)
logging.info("Model ID: %02X %02X" % tuple(self.model))
logging.info("Model name: %s" % self.name)
logging.info("ROM size: %s" % self.romsize)
if self.protocol is None:
try:
self.protocol = {0xF0: PROTOCOL_89, #STC89/90C5xRC
0xF1: PROTOCOL_89, #STC89/90C5xRD+
0xF2: PROTOCOL_12Cx052, #STC12Cx052
0xD1: PROTOCOL_12C5A, #STC12C5Ax
0xD2: PROTOCOL_12C5A, #STC10Fx
0xE1: PROTOCOL_12C52, #STC12C52x
0xE2: PROTOCOL_12C5A, #STC11Fx
0xE6: PROTOCOL_12C52, #STC12C56x
0xF4: PROTOCOL_15, #STC15系列
0xF5: PROTOCOL_15, #STC15系列
0xF6: PROTOCOL_8, #STC8系列
0xF7: PROTOCOL_8, #STC8系列
}[self.model[0]]
except KeyError:
pass
if self.protocol in PROTOSET_8:
self.fosc = (dat[0]*0x1000000 +dat[1]*0x10000+dat[2]*0x100) /1000000
self.internal_vol = (dat[34]*256+dat[35])
self.wakeup_fosc = (dat[22]*256+dat[23]) /1000
self.test_year = str(hex(dat[36])).replace("0x",'')
self.test_month = str(hex(dat[37])).replace("0x",'')
self.test_day = str(hex(dat[38])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
if dat[10] == 191:
self.det_low_vol = 2.2
else:
self.det_low_vol = (191 - dat[10])*0.3 + 2.1
elif self.protocol in PROTOSET_15:
self.fosc = (dat[7]*0x1000000 +dat[8]*0x10000+dat[9]*0x100) /1000000
self.wakeup_fosc = (dat[0]*256+dat[1]) /1000
self.internal_vol = (dat[34]*256+dat[35])
self.test_year = str(hex(dat[41])).replace("0x",'')
self.test_month = str(hex(dat[42])).replace("0x",'')
self.test_day = str(hex(dat[43])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
else:
self.fosc = (float(sum(dat[0:16:2]) * 256 + sum(dat[1:16:2])) / 8
* self.conn.baudrate / 580974)
if self.protocol in PROTOSET_PARITY or self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.chkmode = 2
self.conn.parity = serial.PARITY_EVEN
else:
self.chkmode = 1
self.conn.parity = serial.PARITY_NONE
if self.protocol is not None:
del self.info[-self.chkmode:]
logging.info("Protocol ID: %s" % self.protocol)
logging.info("Checksum mode: %d" % self.chkmode)
logging.info("UART Parity: %s"
% {serial.PARITY_NONE: "NONE",
serial.PARITY_EVEN: "EVEN",
}[self.conn.parity])
for i in range(0, len(self.info), 16):
logging.info("Info string [%d]: %s"
% (i // 16,
" ".join(["%02X" % j for j in self.info[i:i+16]])))
def print_info(self):
print("系统时钟频率: %.3fMHz" % self.fosc)
if self.protocol in PROTOSET_8:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("低压检测电压: %.1f V" %self.det_low_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
if self.protocol in PROTOSET_15:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
print("单片机型号: %s" % self.name)
print("固件版本号: %s" % self.version)
if self.romsize is not None:
print("程序空间: %dKB" % self.romsize)
if self.protocol == PROTOCOL_89:
switches = [( 2, 0x80, "Reset stops "),
( 2, 0x40, "Internal XRAM"),
( 2, 0x20, "Normal ALE pin"),
( 2, 0x10, "Full gain oscillator"),
( 2, 0x08, "Not erase data EEPROM"),
( 2, 0x04, "Download regardless of P1"),
( 2, 0x01, "12T mode")]
elif self.protocol == PROTOCOL_12C5A:
switches = [( 6, 0x40, "Disable reset2 low level detect"),
( 6, 0x01, "Reset pin not use as I/O port"),
( 7, 0x80, "Disable long power-on-reset latency"),
( 7, 0x40, "Oscillator high gain"),
( 7, 0x02, "External system clock source"),
( 8, 0x20, "WDT disable after power-on-reset"),
( 8, 0x04, "WDT count in idle mode"),
(10, 0x02, "Not erase data EEPROM"),
(10, 0x01, "Download regardless of P1")]
print(" WDT prescal: %d" % 2**((self.info[8] & 0x07) + 1))
elif self.protocol in PROTOSET_12B:
switches = [(8, 0x02, "Not erase data EEPROM")]
else:
switches = []
for pos, bit, desc in switches:
print(" [%c] %s" % ("X" if self.info[pos] & bit else " ", desc))
def handshake(self):
baud0 = self.conn.baudrate
if self.protocol in PROTOSET_8:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(24.0 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(24.0 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value = 0x7B
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value = 0xB0
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value = 0x5A
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value = 0x35
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value = 0x7B
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value = 0x5A
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value = 0x1A
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value = 0x12
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value = 0x5A
else:
foc_value = 0x6B
baudstr = [0x00, 0x00, Timer1_value >> 8, Timer1_value & 0xff, 0x01, foc_value, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
elif self.protocol in PROTOSET_15:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(22.1184 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(22.1184 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value_1 = 0x40
foc_value_2 = 0x9F
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value_1 = 0x40
foc_value_2 = 0xDC
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value_1 = 0x40
foc_value_2 = 0x79
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value_1 = 0x40
foc_value_2 = 0x4F
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value_1 = 0x80
foc_value_2 = 0xA2
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value_1 = 0x80
foc_value_2 = 0x7D
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value_1 = 0x40
foc_value_2 = 0x31
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value_1 = 0xC0
foc_value_2 = 0x9f
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value_1 = 0xC0
foc_value_2 = 0x7B
baudstr = [0x6d, 0x40, Timer1_value >> 8, Timer1_value & 0xff, foc_value_1,foc_value_2, 0x81]
#baudstr = [0x6b, 0x40, 0xff,0xf4, 0x40,0x92, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
else:
for baud in [115200, 57600, 38400, 28800, 19200,
14400, 9600, 4800, 2400, 1200]:
t = self.fosc * 1000000 / baud / 32
if self.protocol not in PROTOSET_89:
t *= 2
if abs(round(t) - t) / t > 0.03:
continue
if self.protocol in PROTOSET_89:
tcfg = 0x10000 - int(t + 0.5)
else:
if t > 0xFF:
continue
tcfg = 0xC000 + 0x100 - int(t + 0.5)
baudstr = [tcfg >> 8,
tcfg & 0xFF,
0xFF - (tcfg >> 8),
min((256 - (tcfg & 0xFF)) * 2, 0xFE),
int(baud0 / 60)]
logging.info("Test baudrate %d (accuracy %0.4f) using config %s"
% (baud,
abs(round(t) - t) / t,
" ".join(["%02X" % i for i in baudstr])))
if self.protocol in PROTOSET_89:
freqlist = (40, 20, 10, 5)
else:
freqlist = (30, 24, 20, 12, 6, 3, 2, 1)
for twait in range(0, len(freqlist)):
if self.fosc > freqlist[twait]:
break
logging.info("Waiting time config %02X" % (0x80 + twait))
self.send(0x8F, baudstr + [0x80 + twait])
try:
self.__conn_baudrate(baud)
cmd, dat = self.recv()
break
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
else:
raise IOError()
logging.info("Change baudrate to %d" % baud)
self.send(0x8E, baudstr)
self.__conn_baudrate(baud)
self.baudrate = baud
cmd, dat = self.recv()
def erase(self):
if self.protocol in PROTOSET_89:
self.send(0x84, [0x01, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33])
cmd, dat = self.recv(10)
assert cmd == 0x80
elif self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0x05, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
self.send(0x03, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
for i in range(7):
dat[i] = hex(dat[i])
dat[i] = str(dat[i])
dat[i] = dat[i].replace("0x",'')
if len(dat[i]) == 1:
dat_value = list(dat[i])
dat_value.insert(0, '0')
dat[i] = ''.join(dat_value)
serial_number = ""
for i in dat:
serial_number = serial_number +str(i)
self.serial_number = str(serial_number)
print("\r")
sys.stdout.write("芯片出厂序列号: ")
sys.stdout.write(self.serial_number.upper())
sys.stdout.flush()
print("\r")
else:
self.send(0x84, ([0x00, 0x00, self.romsize * 4,
0x00, 0x00, self.romsize * 4]
+ [0x00] * 12
+ [i for i in range(0x80, 0x0D, -1)]))
cmd, dat = self.recv(10)
if dat:
logging.info("Serial number: "
+ " ".join(["%02X" % j for j in dat]))
def flash(self, code):
code = list(code) + [0xff] * (511 - (len(code) - 1) % 512)
for i in range(0, len(code), 128):
logging.info("Flash code region (%04X, %04X)" % (i, i + 127))
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
flag_test = 1
addr = [i >> 8, i & 0xFF, 0x5A, 0xA5]
if flag_test == 1:
self.send(0x22, addr + code[i:i+128])
flag_test = 10
else:
self.send(0x02, addr + code[i:i+128])
else:
addr = [0, 0, i >> 8, i & 0xFF, 0, 128]
self.send(0x00, addr + code[i:i+128])
cmd, dat = self.recv()
#assert dat[0] == sum(code[i:i+128]) % 256
yield (i + 128.0) / len(code)
def options(self, **kwargs):
erase_eeprom = kwargs.get("erase_eeprom", None)
dat = []
fosc = list(bytearray(struct.pack(">I", int(self.fosc * 1000000))))
if self.protocol == PROTOCOL_89:
if erase_eeprom is not None:
self.info[2] &= 0xF7
self.info[2] |= 0x00 if erase_eeprom else 0x08
dat = self.info[2:3] + [0xFF]*3
elif self.protocol == PROTOCOL_12C5A:
if erase_eeprom is not None:
self.info[10] &= 0xFD
self.info[10] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:9] + [0xFF]*5 + self.info[10:11]
+ [0xFF]*6 + fosc)
elif self.protocol in PROTOSET_12B:
if erase_eeprom is not None:
self.info[8] &= 0xFD
self.info[8] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:11] + fosc + self.info[12:16] + [0xFF]*4
+ self.info[8:9] + [0xFF]*7 + fosc + [0xFF]*3)
elif erase_eeprom is not None:
logging.info("Modifying options is not supported for this target")
return False
if dat:
self.send(0x8D, dat)
cmd, dat = self.recv()
return True
def terminate(self):
logging.info("Send termination command")
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0xFF, [])
else:
self.send(0x82, [])
self.conn.flush()
time.sleep(0.2)
def unknown_packet_1(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (50 00 00 36 01 ...)")
self.send(0x50, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8F and not dat
def unknown_packet_2(self):
if self.protocol not in PROTOSET_PARITY and self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
for i in range(5):
logging.info("Send unknown packet (80 00 00 36 01 ...)")
self.send(0x80, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x80 and not dat
def unknown_packet_3(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (69 00 00 36 01 ...)")
self.send(0x69, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8D and not dat
def autoisp(conn, baud, magic):
if not magic:
return
bak = conn.baudrate
conn.baudrate = baud
conn.write(bytearray(ord(i) for i in magic))
conn.flush()
time.sleep(0.5)
conn.baudrate = bak
def program(prog, code, erase_eeprom=None):
sys.stdout.write("检测目标...")
sys.stdout.flush()
prog.detect()
print("完成")
prog.print_info()
if prog.protocol is None:
raise IOError("未知目标")
if code is None:
return
prog.unknown_packet_1()
sys.stdout.write("切换至最高波特率: ")
sys.stdout.flush()
prog.handshake()
print("%d bps"% prog.baudrate)
prog.unknown_packet_2()
sys.stdout.write("开始擦除芯片...")
sys.stdout.flush()
time_start = time.time()
prog.erase()
print("擦除完成")
print("代码长度: %d bytes" % len(code))
# print("Programming: ", end="", flush=True)
sys.stdout.write("正在下载用户代码...")
sys.stdout.flush()
oldbar = 0
for progress in prog.flash(code):
bar = int(progress * 25)
sys.stdout.write("#" * (bar - oldbar))
sys.stdout.flush()
oldbar = bar
print(" 完成")
prog.unknown_packet_3()
sys.stdout.write("设置选项...")
sys.stdout.flush()
if prog.options(erase_eeprom=erase_eeprom):
print("设置完成")
else:
print("设置失败")
prog.terminate()
time_end = time.time()
print("耗时: %.3fs"% (time_end-time_start))
# Convert Intel HEX code to binary format
def hex2bin(code):
buf = bytearray()
base = 0
line = 0
for rec in code.splitlines():
# Calculate the line number of the current record
line += 1
try:
# bytes(...) is to support python<=2.6
# bytearray(...) is to support python<=2.7
n = bytearray(binascii.a2b_hex(bytes(rec[1:3])))[0]
dat = bytearray(binascii.a2b_hex(bytes(rec[1:n*2+11])))
except:
raise Exception("Line %d: Invalid format" % line)
if rec[0] != ord(":"):
raise Exception("Line %d: Missing start code \":\"" % line)
if sum(dat) & 0xFF != 0:
raise Exception("Line %d: Incorrect checksum" % line)
if dat[3] == 0: # Data record
addr = base + (dat[1] << 8) + dat[2]
# Allocate memory space and fill it with 0xFF
buf[len(buf):] = [0xFF] * (addr + n - len(buf))
# Copy data to the buffer
buf[addr:addr+n] = dat[4:-1]
elif dat[3] == 1: # EOF record
if n != 0:
raise Exception("Line %d: Incorrect data length" % line)
elif dat[3] == 2: # Extended segment address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 4
elif dat[3] == 4: # Extended linear address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 16
else:
raise Exception("Line %d: Unsupported record type" % line)
return buf
def stc_type_map(type, value):
if type == 0xF6:
if value in range(0x01,0x09):
return 0xF600
elif value in range(0x21,0x29):
return 0xF620
elif value == 0x29:
return 0xF628
elif value in range(0x31,0x39):
return 0xF630
elif value == 0x39:
return 0xF638
elif value in range(0x41,0x49):
return 0xF640
elif value == 0x49:
return 0xF648
elif value in range(0x51,0x59):
return 0xF650
elif value == 0x59:
return 0xF658
elif value in range(0x61,0x67):
return 0xF660
elif value == 0x67:
return 0xF666
elif value in range(0x71,0x77):
return 0xF670
elif value == 0x77:
return 0xF676
if type == 0xF7:
if value in range(0x01,0x07):
return 0xF700
elif value in range(0x31,0x37):
return 0xF730
elif value == 0x37:
return 0xF736
elif value in range(0x41,0x43):
return 0xF740
elif value == 0x43:
return 0xF742
elif value == 0x44:
return 0xF743
elif value in range(0x49,0x4B):
return 0xF748
elif value == 0x4B:
return 0xF74A
elif value == 0x4C:
return 0xF74B
elif value in range(0x51,0x57):
return 0xF750
elif value == 0x57:
return 0xF756
elif value in range(0x61,0x63):
return 0xF760
elif value == 0x63:
return 0xF762
elif value == 0x64:
return 0xF763
elif value in range(0x69,0x6B):
return 0xF768
elif value == 0x6B:
return 0xF76A
elif value == 0x6C:
return 0xF76B
elif value in range(0x71,0x77):
return 0xF770
elif value == 0x77:
return 0xF776
elif value in range(0x81,0x83):
return 0xF780
elif value == 0x83:
return 0xF782
elif value == 0x84:
return 0xF783
elif value in range(0x91,0x97):
return 0xF790
elif value == 0x97:
return 0xF796
elif value in range(0xA1,0xA7):
return 0xF7A0
elif value == 0xA7:
return 0xF7A6
if type == 0xF4:
if value in range(0x01,0x08):
return 0xF400
elif value == 0x08:
return 0xF407
elif value == 0x09:
return 0xF408
elif value in range(0x0A,0x0D):
return 0xF409
elif value in range(0x11,0x18):
return 0xF410
elif value == 0x18:
return 0xF417
elif value == 0x19:
return 0xF418
elif value in range(0x21,0x28):
return 0xF420
elif value == 0x28:
return 0xF427
elif value == 0x29:
return 0xF428
elif value in range(0x41,0x48):
return 0xF440
elif value == 0x48:
return 0xF447
elif value == 0x49:
return 0xF448
elif value == 0x4D:
return 0xF44C
elif value in range(0x51,0x57):
return 0xF450
elif value == 0x58:
return 0xF457
elif value == 0x59:
return 0xF458
elif value in range(0x61,0x68):
return 0xF460
elif value == 0x68:
return 0xF467
elif value == 0x69:
return 0xF468
elif value in range(0x81,0x88):
return 0xF480
elif value == 0x88:
return 0xF487
elif value == 0x89:
return 0xF488
elif value in range(0x8A,0x8D):
return 0xF489
elif value in range(0x91,0x98):
return 0xF490
elif value == 0x98:
return 0xF497
elif value == 0x99:
return 0xF498
elif value in range(0xA1,0xA8):
return 0xF4A0
elif value == 0xA8:
return 0xF4A7
elif value == 0xA9:
return 0xF4A8
elif value in range(0xC1,0xC8):
return 0xF4C0
elif value == 0xC8:
return 0xF4C7
elif value == 0xC9:
return 0xF4C8
elif value == 0xCD:
return 0xF4CC
elif value in range(0xD1,0xD8):
return 0xF4D0
elif value == 0xD8:
return 0xF4D7
elif value == 0xD9:
return 0xF4D8
elif value in range(0xE1,0xE8):
return 0xF4E0
elif value == 0xE8:
return 0xF4E7
elif value == 0xE9:
return 0xF4E8
if type == 0xF5:
if value in range(0x01,0x05):
return 0xF500
elif value in range(0x08,0x0C):
return 0xF507
elif value in range(0x11,15):
return 0xF510
elif value in range(0x15,0x18):
return 0xF514
elif value in range(0x19,0x1B):
return 0xF518
elif value in range(0x1B,0x1D):
return 0xF51A
elif value in range(0x1D,0x20):
return 0xF51C
elif value == 0x20:
return 0xF51F
elif value == 0x21:
return 0xF520
elif value == 0x23:
return 0xF522
elif value == 0x24:
return 0xF523
elif value == 0x25:
return 0xF524
elif value == 0x26:
return 0xF525
elif value == 0x27:
return 0xF526
elif value == 0x28:
return 0xF527
elif value in range(0x2A,0x2C):
return 0xF529
elif value in range(0x2D,0x2F):
return 0xF52C
elif value == 0x2F:
return 0xF52E
elif value == 0x30:
return 0xF52F
elif value == 0x31:
return 0xF530
elif value == 0x32:
return 0xF531
elif value == 0x34:
return 0xF533
elif value == 0x35:
return 0xF534
elif value == 0x36:
return 0xF535
elif value == 0x45:
return 0xF544
elif value == 0x55:
return 0xF554
elif value == 0x58:
return 0xF557
elif value == 0x5D:
return 0xF55C
elif value == 0x69:
return 0xF568
elif value == 0x6A:
return 0xF569
elif value == 0x6D:
return 0xF56C
elif value in range(0x7F,0x86):
return 0xF57E
if type == 0xF2:
if value in range(0xA0,0xA6):
return 0xF2A0
def main():
if sys.platform == "win32":
port = "COM3"
elif sys.platform == "darwin":
port = "/dev/tty.usbserial"
else:
port = "/dev/ttyUSB0"
parser = argparse.ArgumentParser(
description=("Stcflash, a command line programmer for "
+ "STC 8051 microcontroller.\n"
+ "https://github.com/laborer/stcflash"))
parser.add_argument("image",
help="code image (bin/hex)",
type=argparse.FileType("rb"), nargs='?')
parser.add_argument("-p", "--port",
help="serial port device (default: %s)" % port,
default=port)
parser.add_argument("-l", "--lowbaud",
help="initial baud rate (default: 2400)",
type=int,
default=2400)
parser.add_argument("-hb", "--highbaud",
help="initial baud rate (default: 115200)",
type=int,
default=115200)
parser.add_argument("-r", "--protocol",
help="protocol to use for programming",
choices=["89", "12c5a", "12c52", "12cx052", "8", "15", "auto"],
default="auto")
parser.add_argument("-a", "--aispbaud",
help="baud rate for AutoISP (default: 4800)",
type=int,
default=4800)
parser.add_argument("-m", "--aispmagic",
help="magic word for AutoISP")
parser.add_argument("-v", "--verbose",
help="be verbose",
default=0,
action="count")
parser.add_argument("-e", "--erase_eeprom",
help=("erase data eeprom during next download"
+"(experimental)"),
action="store_true")
parser.add_argument("-ne", "--not_erase_eeprom",
help=("do not erase data eeprom next download"
+"(experimental)"),
action="store_true")
opts = parser.parse_args()
opts.loglevel = (logging.CRITICAL,
logging.INFO,
logging.DEBUG)[min(2, opts.verbose)]
opts.protocol = {'89': PROTOCOL_89,
'12c5a': PROTOCOL_12C5A,
'12c52': PROTOCOL_12C52,
'12cx052': PROTOCOL_12Cx052,
'8': PROTOCOL_8,
'15': PROTOCOL_15,
'auto': None}[opts.protocol]
if not opts.erase_eeprom and not opts.not_erase_eeprom:
opts.erase_eeprom = None
logging.basicConfig(format=("%(levelname)s: "
+ "[%(relativeCreated)d] "
+ "%(message)s"),
level=opts.loglevel)
if opts.image:
code = bytearray(opts.image.read())
opts.image.close()
if os.path.splitext(opts.image.name)[1] in (".hex", ".ihx"):
code = hex2bin(code)
else:
code = None
print("通信端口:%s 最低波特率:%d bps" % (opts.port, opts.lowbaud))
global highbaud_pre
highbaud_pre = opts.highbaud
with serial.Serial(port=opts.port,
baudrate=opts.lowbaud,
parity=serial.PARITY_NONE) as conn:
if opts.aispmagic:
autoisp(conn, opts.aispbaud, opts.aispmagic)
program(Programmer(conn, opts.protocol), code, opts.erase_eeprom)
if __name__ == "__main__":
main()
|
2301_77966824/51-microcontroller-learning
|
2024/10/1019-数码管-模块化编程/tools/stcflash.py
|
Python
|
unknown
| 57,810
|
#!/usr/bin/env python
#coding=utf-8
# stcflash Copyright (C) 2013 laborer (laborer@126.com)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import time
import logging
import sys
import serial
import os.path
import binascii
import struct
import argparse
PROTOCOL_89 = "89"
PROTOCOL_12C5A = "12c5a"
PROTOCOL_12C52 = "12c52"
PROTOCOL_12Cx052 = "12cx052"
PROTOCOL_8 = "8"
PROTOCOL_15 = '15'
PROTOSET_89 = [PROTOCOL_89]
PROTOSET_12 = [PROTOCOL_12C5A, PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_12B = [PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_8 = [PROTOCOL_8]
PROTOSET_15 = [PROTOCOL_15]
PROTOSET_PARITY = [PROTOCOL_12C5A, PROTOCOL_12C52]
class Programmer:
def __init__(self, conn, protocol=None):
self.conn = conn
self.protocol = protocol
self.conn.timeout = 0.05
if self.protocol in PROTOSET_PARITY:
self.conn.parity = serial.PARITY_EVEN
else:
self.conn.parity = serial.PARITY_NONE
self.chkmode = 0
def __conn_read(self, size):
buf = bytearray()
while len(buf) < size:
s = bytearray(self.conn.read(size - len(buf)))
buf += s
logging.debug("recv: " + " ".join(["%02X" % i for i in s]))
if len(s) == 0:
raise IOError()
return list(buf)
def __conn_write(self, s):
logging.debug("send: " + " ".join(["%02X" % i for i in s]))
self.conn.write(bytearray(s))
def __conn_baudrate(self, baud, flush=True):
logging.debug("baud: %d" % baud)
if flush:
if self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
self.conn.flush()
time.sleep(0.2)
self.conn.baudrate = baud
def __model_database(self, model):
modelmap = {0xE0: ("12", 1, {(0x00, 0x1F): ("C54", ""),
(0x60, 0x7F): ("C54", "AD"),
(0x80, 0x9F): ("LE54", ""),
(0xE0, 0xFF): ("LE54", "AD"),
}),
0xE1: ("12", 1, {(0x00, 0x1F): ("C52", ""),
(0x20, 0x3F): ("C52", "PWM"),
(0x60, 0x7F): ("C52", "AD"),
(0x80, 0x9F): ("LE52", ""),
(0xA0, 0xBF): ("LE52", "PWM"),
(0xE0, 0xFF): ("LE52", "AD"),
}),
0xE2: ("11", 1, {(0x00, 0x1F): ("F", ""),
(0x20, 0x3F): ("F", "E"),
(0x70, 0x7F): ("F", ""),
(0x80, 0x9F): ("L", ""),
(0xA0, 0xBF): ("L", "E"),
(0xF0, 0xFF): ("L", ""),
}),
0xE6: ("12", 1, {(0x00, 0x1F): ("C56", ""),
(0x60, 0x7F): ("C56", "AD"),
(0x80, 0x9F): ("LE56", ""),
(0xE0, 0xFF): ("LE56", "AD"),
}),
0xD1: ("12", 2, {(0x20, 0x3F): ("C5A", "CCP"),
(0x40, 0x5F): ("C5A", "AD"),
(0x60, 0x7F): ("C5A", "S2"),
(0xA0, 0xBF): ("LE5A", "CCP"),
(0xC0, 0xDF): ("LE5A", "AD"),
(0xE0, 0xFF): ("LE5A", "S2"),
}),
0xD2: ("10", 1, {(0x00, 0x0F): ("F", ""),
(0x60, 0x6F): ("F", "XE"),
(0x70, 0x7F): ("F", "X"),
(0xA0, 0xAF): ("L", ""),
(0xE0, 0xEF): ("L", "XE"),
(0xF0, 0xFF): ("L", "X"),
}),
0xD3: ("11", 2, {(0x00, 0x1F): ("F", ""),
(0x40, 0x5F): ("F", "X"),
(0x60, 0x7F): ("F", "XE"),
(0xA0, 0xBF): ("L", ""),
(0xC0, 0xDF): ("L", "X"),
(0xE0, 0xFF): ("L", "XE"),
}),
0xF0: ("89", 4, {(0x00, 0x10): ("C5", "RC"),
(0x20, 0x30): ("C5", "RC"), #STC90C5xRC
}),
0xF1: ("89", 4, {(0x00, 0x10): ("C5", "RD+"),
(0x20, 0x30): ("C5", "RD+"), #STC90C5xRD+
}),
0xF2: ("12", 1, {(0x00, 0x0F): ("C", "052"),
(0x10, 0x1F): ("C", "052AD"),
(0x20, 0x2F): ("LE", "052"),
(0x30, 0x3F): ("LE", "052AD"),
}),
0xF2A0: ("15W", 1, {(0xA0, 0xA5): ("1", ""), #STC15W1系列
}),
0xF400: ("15F", 8, {(0x00, 0x07): ("2K", "S2"), #STC15F2K系列
}),
0xF407: ("15F", 60, {(0x07, 0x08): ("2K", "S2"), #STC15F2K系列
}),
0xF408: ("15F", 61, {(0x08, 0x09): ("2K", "S2"), #STC15F2K系列
}),
0xF400: ("15F", 4, {(0x09, 0x0C): ("4", "AD"), #STC15FAD系列
}),
0xF410: ("15F", 8, {(0x10, 0x17): ("1K", "AS"), #STC15F1KAS系列
}),
0xF417: ("15F", 60, {(0x17, 0x18): ("1K", "AS"), #STC15F1KAS系列
}),
0xF418: ("15F", 61, {(0x18, 0x19): ("1K", "AS"), #STC15F1KAS系列
}),
0xF420: ("15F", 8, {(0x20, 0x27): ("1K", "S"), #STC15F1KS系列
}),
0xF427: ("15F", 60, {(0x27, 0x28): ("1K", "S"), #STC15F1KS系列
}),
0xF440: ("15F", 8, {(0x40, 0x47): ("1K", "S2"), #STC15F1KS2系列
}),
0xF447: ("15F", 60, {(0x47, 0x48): ("1K", "S2"), #STC15F1KS2系列
}),
0xF448: ("15F", 61, {(0x48, 0x49): ("1K", "S2"), #STC15F1KS2系列
}),
0xF44C: ("15F", 13, {(0x4C, 0x4D): ("4", "AD"),
}),
0xF450: ("15F", 8, {(0x50, 0x57): ("1K", "AS"), #STC15F1KAS系列
}),
0xF457: ("15F", 60, {(0x57, 0x58): ("1K", "AS"), #STC15F1KAS系列
}),
0xF458: ("15F", 61, {(0x58, 0x59): ("1K", "AS"), #STC15F1KAS系列
}),
0xF460: ("15F", 8, {(0x60, 0x67): ("1K", "S"), #STC15F1KS系列
}),
0xF467: ("15F", 60, {(0x67, 0x68): ("1K", "S"), #STC15F1KS系列
}),
0xF468: ("15F", 61, {(0x68, 0x69): ("1K", "S"), #STC15F1KS系列
}),
0xF480: ("15L", 8, {(0x80, 0x87): ("2K", "S2"), #STC15L2KS2系列
}),
0xF487: ("15L", 60, {(0x87, 0x88): ("2K", "S2"), #STC15L2KS2系列
}),
0xF488: ("15L", 61, {(0x88, 0x89): ("2K", "S2"), #STC15L2KS2系列
}),
0xF489: ("15L", 5, {(0x89, 0x8C): ("4", "AD"), #STC15L4AD系列
}),
0xF490: ("15L", 8, {(0x90, 0x97): ("2K", "AS"), #STC15L2KAS系列
}),
0xF497: ("15L", 60, {(0x97, 0x98): ("2K", "AS"), #STC15L2KAS系列
}),
0xF498: ("15L", 61, {(0x98, 0x99): ("2K", "AS"), #STC15L2KAS系列
}),
0xF4A0: ("15L", 8, {(0xA0, 0xA7): ("2K", "S"), #STC15L2KS系列
}),
0xF4A7: ("15L", 60, {(0xA7, 0xA8): ("2K", "S"), #STC15L2KS系列
}),
0xF4A8: ("15L", 61, {(0xA8, 0xA9): ("2K", "S"), #STC15L2KS系列
}),
0xF4C0: ("15L", 8, {(0xC0, 0xC7): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C7: ("15L", 60, {(0xC7, 0xC8): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C8: ("15L", 61, {(0xC8, 0xC9): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4CC: ("15L", 13, {(0xCC, 0xCD): ("4", "AD"),
}),
0xF4D0: ("15L", 8, {(0xD0, 0xD7): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D7: ("15L", 60, {(0xD7, 0xD8): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D8: ("15L", 61, {(0xD8, 0xD9): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4E0: ("15L", 8, {(0xE0, 0xE7): ("1K", "S"), #STC15L1KS系列
}),
0xF4E7: ("15L", 60, {(0xE7, 0xE8): ("1K", "S"), #STC15L1KS系列
}),
0xF4E8: ("15L", 61, {(0xE8, 0xE9): ("1K", "S"), #STC15L1KS系列
}),
0xF500: ("15W", 1, {(0x00, 0x04): ("1", "SW"), #STC15W1SW系列
}),
0xF507: ("15W", 1, {(0x07, 0x0B): ("1", "S"), #STC15W1S系列
}),
0xF510: ("15W", 1, {(0x10, 0x14): ("2", "S"), #STC15W2S系列
}),
0xF514: ("15W", 8, {(0x14, 0x17): ("1K", "S"), #STC15W1KS系列
}),
0xF518: ("15W", 4, {(0x18, 0x1A): ("4", "S"), #STC15W4S系列
}),
0xF51A: ("15W", 4, {(0x1A, 0x1C): ("4", "S"), #STC15W4S系列
}),
0xF51C: ("15W", 4, {(0x1C, 0x1F): ("4", "AS"), #STC15W4AS系列
}),
0xF51F: ("15W", 10, {(0x19, 0x20): ("4", "AS"), #STC15W4AS系列
}),
0xF520: ("15W", 12, {(0x20, 0x21): ("4", "AS"), #STC15W4AS系列
}),
0xF522: ("15W", 16, {(0x22, 0x23): ("4K", "S4"), #STC15W4KS4系列
}),
0xF523: ("15W",24, {(0x23, 0x24): ("4K", "S4"), #STC15W4KS4系列
}),
0xF524: ("15W", 32, {(0x24, 0x25): ("4K", "S4"), #STC15W4KS4系列
}),
0xF525: ("15W", 40, {(0x25, 0x26): ("4K", "S4"), #STC15W4KS4系列
}),
0xF526: ("15W", 48, {(0x26, 0x27): ("4K", "S4"), #STC15W4KS4系列
}),
0xF527: ("15W", 56, {(0x27, 0x28): ("4K", "S4"), #STC15W4KS4系列
}),
0xF529: ("15W", 1, {(0x29, 0x2B): ("4", "A4"), #STC15W4AS系列
}),
0xF52C: ("15W", 8, {(0x2C, 0x2E): ("1K", "PWM"), #STC15W1KPWM系列
}),
0xF52E: ("15W", 20, {(0x2E, 0x2F): ("1K", "S"), #STC15W1KS系列
}),
0xF52F: ("15W", 32, {(0x2F, 0x30): ("2K", "S2"), #STC15W2KS2系列
}),
0xF530: ("15W", 48, {(0x30, 0x31): ("2K", "S2"), #STC15W2KS2系列
}),
0xF531: ("15W", 32, {(0x31, 0x32): ("2K", "S2"), #STC15W2KS2系列
}),
0xF533: ("15W", 20, {(0x33, 0x34): ("1K", "S2"), #STC15W1KS2系列
}),
0xF534: ("15W", 32, {(0x34, 0x35): ("1K", "S2"), #STC15W1KS2系列
}),
0xF535: ("15W", 48, {(0x35, 0x36): ("1K", "S2"), #STC15W1KS2系列
}),
0xF544: ("15W", 5, {(0x44, 0x45): ("", "SW"), #STC15SW系列
}),
0xF554: ("15W", 5, {(0x54, 0x55): ("2", "S"), #STC15W2S系列
}),
0xF557: ("15W", 29, {(0x57, 0x58): ("1K", "S"), #STC15W1KS系列
}),
0xF55C: ("15W", 13, {(0x5C, 0x5D): ("4", "S"), #STC15W4S系列
}),
0xF568: ("15W", 58, {(0x68, 0x69): ("4K", "S4"), #STC15W4KS4系列
}),
0xF569: ("15W", 61, {(0x69, 0x6A): ("4K", "S4"), #STC15W4KS4系列
}),
0xF56C: ("15W", 58, {(0x6C, 0x6D): ("4K", "S4-Student"), #STC15W4KS4系列
}),
0xF57E: ("15U", 8, {(0x7E, 0x85): ("4K", "S4"), #STC15U4KS4系列
}),
0xF600: ("15H", 8, {(0x00, 0x08): ("4K", "S4"), #STC154K系列
}),
0xF620: ("8A", 8, {(0x20, 0x28): ("8K", "S4A12"), #STC8A8K系列
}),
0xF628: ("8A", 60, {(0x28, 0x29): ("8K", "S4A12"), #STC8A8K系列
}),
0xF630: ("8F", 8, {(0x30, 0x38): ("2K", "S4"), #STC8F2K系列
}),
0xF638: ("8F", 60, {(0x38, 0x39): ("2K", "S4"), #STC8F2K系列
}),
0xF640: ("8F", 8, {(0x40, 0x48): ("2K", "S2"), #STC8F2K系列
}),
0xF648: ("8F", 60, {(0x48, 0x49): ("2K", "S2"), #STC8F2K系列
}),
0xF650: ("8A", 8, {(0x50, 0x58): ("4K", "S2A12"), #STC8A4K系列
}),
0xF658: ("8A", 60, {(0x58, 0x59): ("4K", "S2A12"), #STC8A4K系列
}),
0xF660: ("8F", 2, {(0x60, 0x66): ("1K", "S2"), #STC8F1K系列
}),
0xF666: ("8F", 17, {(0x66, 0x67): ("1K", "S2"), #STC8F1K系列
}),
0xF670: ("8F", 2, {(0x70, 0x76): ("1K", ""), #STC8F1K系列
}),
0xF676: ("8F", 17, {(0x76, 0x77): ("1K", ""), #STC8F1K系列
}),
0xF700: ("8C", 2, {(0x00, 0x06): ("1K", ""), #STC8C系列
}),
0xF730: ("8H", 2, {(0x30, 0x36): ("1K", ""), #STC8H1K系列
}),
0xF736: ("8H", 17, {(0x36, 0x37): ("1K", ""), #STC8H1K系列
}),
0xF740: ("8H", 8, {(0x40, 0x42): ("3K", "S4"), #STC8H3K系列
}),
0xF742: ("8H", 60, {(0x42, 0x43): ("3K", "S4"), #STC8H3K系列
}),
0xF743: ("8H", 64, {(0x43, 0x44): ("3K", "S4"), #STC8H3K系列
}),
0xF748: ("8H", 16, {(0x48, 0x4A): ("3K", "S2"), #STC8H3K系列
}),
0xF74A: ("8H", 60, {(0x4A, 0x4B): ("3K", "S2"), #STC8H3K系列
}),
0xF74B: ("8H", 64, {(0x4B, 0x4C): ("3K", "S2"), #STC8H3K系列
}),
0xF750: ("8G", 2, {(0x50, 0x56): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF756: ("8G", 17, {(0x56, 0x57): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF760: ("8G", 16, {(0x60, 0x62): ("2K", "S4"), #STC8G2K系列
}),
0xF762: ("8G", 60, {(0x62, 0x63): ("2K", "S4"), #STC8G2K系列
}),
0xF763: ("8G", 64, {(0x63, 0x64): ("2K", "S4"), #STC8G2K系列
}),
0xF768: ("8G", 16, {(0x68, 0x6A): ("2K", "S2"), #STC8G2K系列
}),
0xF76A: ("8G", 60, {(0x6A, 0x6B): ("2K", "S2"), #STC8G2K系列
}),
0xF76B: ("8G", 64, {(0x6B, 0x6C): ("2K", "S2"), #STC8G2K系列
}),
0xF770: ("8G", 2, {(0x70, 0x76): ("1K", "T"), #STC8G2K系列
}),
0xF776: ("8G", 17, {(0x76, 0x77): ("1K", "T"), #STC8G2K系列
}),
0xF780: ("8H", 16, {(0x80, 0x82): ("8K", "U"), #STC8H8K系列
}),
0xF782: ("8H", 60, {(0x82, 0x83): ("8K", "U"), #STC8H8K系列
}),
0xF783: ("8H", 64, {(0x83, 0x84): ("8K", "U"), #STC8H8K系列
}),
0xF790: ("8G", 2, {(0x90, 0x96): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF796: ("8G", 17, {(0x96, 0x97): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF7A0: ("8G", 2, {(0xA0, 0xA6): ("1K", "-8PIN"), #STC8G1K系列
}),
0xF7A6: ("8G", 17, {(0xA6, 0xA7): ("1K", "-8PIN"), #STC8G1K系列
}),
}
iapmcu = ((0xD1, 0x3F), (0xD1, 0x5F), (0xD1, 0x7F), (0xF4, 0x4D), (0xF4, 0x99), (0xF4, 0xD9), (0xF5, 0x58),
(0xD2, 0x7E), (0xD2, 0xFE), (0xF4, 0x09), (0xF4, 0x59), (0xF4, 0xA9), (0xF4, 0xE9), (0xF5, 0x5D),
(0xD3, 0x5F), (0xD3, 0xDF), (0xF4, 0x19), (0xF4, 0x69), (0xF4, 0xC9), (0xF5, 0x45), (0xF5, 0x62),
(0xE2, 0x76), (0xE2, 0xF6), (0xF4, 0x49), (0xF4, 0x89), (0xF4, 0xCD), (0xF5, 0x55), (0xF5, 0x69),
(0xF5, 0x6A), (0xF5, 0x6D),
)
try:
model = tuple(model)
if self.model[0] in [0xF4, 0xF5, 0xF6, 0xF7]:
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
elif self.model[0] == 0xF2 and self.model[1] in range(0xA0, 0xA6):
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
self.protocol = PROTOCOL_15
else:
prefix, romratio, fixmap = modelmap[model[0]]
if model[0] in (0xF0, 0xF1) and 0x20 <= model[1] <= 0x30:
prefix = "90"
for key, value in fixmap.items():
if key[0] <= model[1] <= key[1]:
break
else:
raise KeyError()
infix, postfix = value
romsize = romratio * (model[1] - key[0])
try:
romsize = {(0xF0, 0x03): 13}[model]
except KeyError:
pass
if model[0] in (0xF0, 0xF1):
romfix = str(model[1] - key[0])
elif model[0] in (0xF2,):
romfix = str(romsize)
else:
romfix = "%02d" % romsize
name = "IAP" if model in iapmcu else "STC"
name += prefix + infix + romfix + postfix
return (name, romsize)
except KeyError:
return ("Unknown %02X %02X" % model, None)
def recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def first_recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
time.sleep(0.02) #加上20ms延时,增大接收成功率
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def send(self, cmd, dat):
buf = [0x46, 0xB9, 0x6A]
n = 1 + 2 + 1 + len(dat) + self.chkmode + 1
buf += [n >> 8, n & 0xFF, cmd]
buf += dat
chksum = sum(buf[2:])
if self.chkmode > 1:
buf += [(chksum >> 8) & 0xFF]
buf += [chksum & 0xFF, 0x16]
self.__conn_write(buf)
def detect(self):
for i in range(500):
try:
if self.protocol in [PROTOCOL_89,PROTOCOL_12C52,PROTOCOL_12Cx052,PROTOCOL_12C5A]:
self.__conn_write([0x7F,0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
else:
self.__conn_write([0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
break
except IOError:
pass
else:
raise IOError()
self.info = dat[16:]
self.version = "%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[1])
self.model = self.info[3:5]
self.name, self.romsize = self.__model_database(self.model)
logging.info("Model ID: %02X %02X" % tuple(self.model))
logging.info("Model name: %s" % self.name)
logging.info("ROM size: %s" % self.romsize)
if self.protocol is None:
try:
self.protocol = {0xF0: PROTOCOL_89, #STC89/90C5xRC
0xF1: PROTOCOL_89, #STC89/90C5xRD+
0xF2: PROTOCOL_12Cx052, #STC12Cx052
0xD1: PROTOCOL_12C5A, #STC12C5Ax
0xD2: PROTOCOL_12C5A, #STC10Fx
0xE1: PROTOCOL_12C52, #STC12C52x
0xE2: PROTOCOL_12C5A, #STC11Fx
0xE6: PROTOCOL_12C52, #STC12C56x
0xF4: PROTOCOL_15, #STC15系列
0xF5: PROTOCOL_15, #STC15系列
0xF6: PROTOCOL_8, #STC8系列
0xF7: PROTOCOL_8, #STC8系列
}[self.model[0]]
except KeyError:
pass
if self.protocol in PROTOSET_8:
self.fosc = (dat[0]*0x1000000 +dat[1]*0x10000+dat[2]*0x100) /1000000
self.internal_vol = (dat[34]*256+dat[35])
self.wakeup_fosc = (dat[22]*256+dat[23]) /1000
self.test_year = str(hex(dat[36])).replace("0x",'')
self.test_month = str(hex(dat[37])).replace("0x",'')
self.test_day = str(hex(dat[38])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
if dat[10] == 191:
self.det_low_vol = 2.2
else:
self.det_low_vol = (191 - dat[10])*0.3 + 2.1
elif self.protocol in PROTOSET_15:
self.fosc = (dat[7]*0x1000000 +dat[8]*0x10000+dat[9]*0x100) /1000000
self.wakeup_fosc = (dat[0]*256+dat[1]) /1000
self.internal_vol = (dat[34]*256+dat[35])
self.test_year = str(hex(dat[41])).replace("0x",'')
self.test_month = str(hex(dat[42])).replace("0x",'')
self.test_day = str(hex(dat[43])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
else:
self.fosc = (float(sum(dat[0:16:2]) * 256 + sum(dat[1:16:2])) / 8
* self.conn.baudrate / 580974)
if self.protocol in PROTOSET_PARITY or self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.chkmode = 2
self.conn.parity = serial.PARITY_EVEN
else:
self.chkmode = 1
self.conn.parity = serial.PARITY_NONE
if self.protocol is not None:
del self.info[-self.chkmode:]
logging.info("Protocol ID: %s" % self.protocol)
logging.info("Checksum mode: %d" % self.chkmode)
logging.info("UART Parity: %s"
% {serial.PARITY_NONE: "NONE",
serial.PARITY_EVEN: "EVEN",
}[self.conn.parity])
for i in range(0, len(self.info), 16):
logging.info("Info string [%d]: %s"
% (i // 16,
" ".join(["%02X" % j for j in self.info[i:i+16]])))
def print_info(self):
print("系统时钟频率: %.3fMHz" % self.fosc)
if self.protocol in PROTOSET_8:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("低压检测电压: %.1f V" %self.det_low_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
if self.protocol in PROTOSET_15:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
print("单片机型号: %s" % self.name)
print("固件版本号: %s" % self.version)
if self.romsize is not None:
print("程序空间: %dKB" % self.romsize)
if self.protocol == PROTOCOL_89:
switches = [( 2, 0x80, "Reset stops "),
( 2, 0x40, "Internal XRAM"),
( 2, 0x20, "Normal ALE pin"),
( 2, 0x10, "Full gain oscillator"),
( 2, 0x08, "Not erase data EEPROM"),
( 2, 0x04, "Download regardless of P1"),
( 2, 0x01, "12T mode")]
elif self.protocol == PROTOCOL_12C5A:
switches = [( 6, 0x40, "Disable reset2 low level detect"),
( 6, 0x01, "Reset pin not use as I/O port"),
( 7, 0x80, "Disable long power-on-reset latency"),
( 7, 0x40, "Oscillator high gain"),
( 7, 0x02, "External system clock source"),
( 8, 0x20, "WDT disable after power-on-reset"),
( 8, 0x04, "WDT count in idle mode"),
(10, 0x02, "Not erase data EEPROM"),
(10, 0x01, "Download regardless of P1")]
print(" WDT prescal: %d" % 2**((self.info[8] & 0x07) + 1))
elif self.protocol in PROTOSET_12B:
switches = [(8, 0x02, "Not erase data EEPROM")]
else:
switches = []
for pos, bit, desc in switches:
print(" [%c] %s" % ("X" if self.info[pos] & bit else " ", desc))
def handshake(self):
baud0 = self.conn.baudrate
if self.protocol in PROTOSET_8:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(24.0 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(24.0 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value = 0x7B
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value = 0xB0
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value = 0x5A
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value = 0x35
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value = 0x7B
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value = 0x5A
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value = 0x1A
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value = 0x12
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value = 0x5A
else:
foc_value = 0x6B
baudstr = [0x00, 0x00, Timer1_value >> 8, Timer1_value & 0xff, 0x01, foc_value, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
elif self.protocol in PROTOSET_15:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(22.1184 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(22.1184 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value_1 = 0x40
foc_value_2 = 0x9F
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value_1 = 0x40
foc_value_2 = 0xDC
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value_1 = 0x40
foc_value_2 = 0x79
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value_1 = 0x40
foc_value_2 = 0x4F
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value_1 = 0x80
foc_value_2 = 0xA2
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value_1 = 0x80
foc_value_2 = 0x7D
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value_1 = 0x40
foc_value_2 = 0x31
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value_1 = 0xC0
foc_value_2 = 0x9f
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value_1 = 0xC0
foc_value_2 = 0x7B
baudstr = [0x6d, 0x40, Timer1_value >> 8, Timer1_value & 0xff, foc_value_1,foc_value_2, 0x81]
#baudstr = [0x6b, 0x40, 0xff,0xf4, 0x40,0x92, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
else:
for baud in [115200, 57600, 38400, 28800, 19200,
14400, 9600, 4800, 2400, 1200]:
t = self.fosc * 1000000 / baud / 32
if self.protocol not in PROTOSET_89:
t *= 2
if abs(round(t) - t) / t > 0.03:
continue
if self.protocol in PROTOSET_89:
tcfg = 0x10000 - int(t + 0.5)
else:
if t > 0xFF:
continue
tcfg = 0xC000 + 0x100 - int(t + 0.5)
baudstr = [tcfg >> 8,
tcfg & 0xFF,
0xFF - (tcfg >> 8),
min((256 - (tcfg & 0xFF)) * 2, 0xFE),
int(baud0 / 60)]
logging.info("Test baudrate %d (accuracy %0.4f) using config %s"
% (baud,
abs(round(t) - t) / t,
" ".join(["%02X" % i for i in baudstr])))
if self.protocol in PROTOSET_89:
freqlist = (40, 20, 10, 5)
else:
freqlist = (30, 24, 20, 12, 6, 3, 2, 1)
for twait in range(0, len(freqlist)):
if self.fosc > freqlist[twait]:
break
logging.info("Waiting time config %02X" % (0x80 + twait))
self.send(0x8F, baudstr + [0x80 + twait])
try:
self.__conn_baudrate(baud)
cmd, dat = self.recv()
break
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
else:
raise IOError()
logging.info("Change baudrate to %d" % baud)
self.send(0x8E, baudstr)
self.__conn_baudrate(baud)
self.baudrate = baud
cmd, dat = self.recv()
def erase(self):
if self.protocol in PROTOSET_89:
self.send(0x84, [0x01, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33])
cmd, dat = self.recv(10)
assert cmd == 0x80
elif self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0x05, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
self.send(0x03, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
for i in range(7):
dat[i] = hex(dat[i])
dat[i] = str(dat[i])
dat[i] = dat[i].replace("0x",'')
if len(dat[i]) == 1:
dat_value = list(dat[i])
dat_value.insert(0, '0')
dat[i] = ''.join(dat_value)
serial_number = ""
for i in dat:
serial_number = serial_number +str(i)
self.serial_number = str(serial_number)
print("\r")
sys.stdout.write("芯片出厂序列号: ")
sys.stdout.write(self.serial_number.upper())
sys.stdout.flush()
print("\r")
else:
self.send(0x84, ([0x00, 0x00, self.romsize * 4,
0x00, 0x00, self.romsize * 4]
+ [0x00] * 12
+ [i for i in range(0x80, 0x0D, -1)]))
cmd, dat = self.recv(10)
if dat:
logging.info("Serial number: "
+ " ".join(["%02X" % j for j in dat]))
def flash(self, code):
code = list(code) + [0xff] * (511 - (len(code) - 1) % 512)
for i in range(0, len(code), 128):
logging.info("Flash code region (%04X, %04X)" % (i, i + 127))
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
flag_test = 1
addr = [i >> 8, i & 0xFF, 0x5A, 0xA5]
if flag_test == 1:
self.send(0x22, addr + code[i:i+128])
flag_test = 10
else:
self.send(0x02, addr + code[i:i+128])
else:
addr = [0, 0, i >> 8, i & 0xFF, 0, 128]
self.send(0x00, addr + code[i:i+128])
cmd, dat = self.recv()
#assert dat[0] == sum(code[i:i+128]) % 256
yield (i + 128.0) / len(code)
def options(self, **kwargs):
erase_eeprom = kwargs.get("erase_eeprom", None)
dat = []
fosc = list(bytearray(struct.pack(">I", int(self.fosc * 1000000))))
if self.protocol == PROTOCOL_89:
if erase_eeprom is not None:
self.info[2] &= 0xF7
self.info[2] |= 0x00 if erase_eeprom else 0x08
dat = self.info[2:3] + [0xFF]*3
elif self.protocol == PROTOCOL_12C5A:
if erase_eeprom is not None:
self.info[10] &= 0xFD
self.info[10] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:9] + [0xFF]*5 + self.info[10:11]
+ [0xFF]*6 + fosc)
elif self.protocol in PROTOSET_12B:
if erase_eeprom is not None:
self.info[8] &= 0xFD
self.info[8] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:11] + fosc + self.info[12:16] + [0xFF]*4
+ self.info[8:9] + [0xFF]*7 + fosc + [0xFF]*3)
elif erase_eeprom is not None:
logging.info("Modifying options is not supported for this target")
return False
if dat:
self.send(0x8D, dat)
cmd, dat = self.recv()
return True
def terminate(self):
logging.info("Send termination command")
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0xFF, [])
else:
self.send(0x82, [])
self.conn.flush()
time.sleep(0.2)
def unknown_packet_1(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (50 00 00 36 01 ...)")
self.send(0x50, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8F and not dat
def unknown_packet_2(self):
if self.protocol not in PROTOSET_PARITY and self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
for i in range(5):
logging.info("Send unknown packet (80 00 00 36 01 ...)")
self.send(0x80, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x80 and not dat
def unknown_packet_3(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (69 00 00 36 01 ...)")
self.send(0x69, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8D and not dat
def autoisp(conn, baud, magic):
if not magic:
return
bak = conn.baudrate
conn.baudrate = baud
conn.write(bytearray(ord(i) for i in magic))
conn.flush()
time.sleep(0.5)
conn.baudrate = bak
def program(prog, code, erase_eeprom=None):
sys.stdout.write("检测目标...")
sys.stdout.flush()
prog.detect()
print("完成")
prog.print_info()
if prog.protocol is None:
raise IOError("未知目标")
if code is None:
return
prog.unknown_packet_1()
sys.stdout.write("切换至最高波特率: ")
sys.stdout.flush()
prog.handshake()
print("%d bps"% prog.baudrate)
prog.unknown_packet_2()
sys.stdout.write("开始擦除芯片...")
sys.stdout.flush()
time_start = time.time()
prog.erase()
print("擦除完成")
print("代码长度: %d bytes" % len(code))
# print("Programming: ", end="", flush=True)
sys.stdout.write("正在下载用户代码...")
sys.stdout.flush()
oldbar = 0
for progress in prog.flash(code):
bar = int(progress * 25)
sys.stdout.write("#" * (bar - oldbar))
sys.stdout.flush()
oldbar = bar
print(" 完成")
prog.unknown_packet_3()
sys.stdout.write("设置选项...")
sys.stdout.flush()
if prog.options(erase_eeprom=erase_eeprom):
print("设置完成")
else:
print("设置失败")
prog.terminate()
time_end = time.time()
print("耗时: %.3fs"% (time_end-time_start))
# Convert Intel HEX code to binary format
def hex2bin(code):
buf = bytearray()
base = 0
line = 0
for rec in code.splitlines():
# Calculate the line number of the current record
line += 1
try:
# bytes(...) is to support python<=2.6
# bytearray(...) is to support python<=2.7
n = bytearray(binascii.a2b_hex(bytes(rec[1:3])))[0]
dat = bytearray(binascii.a2b_hex(bytes(rec[1:n*2+11])))
except:
raise Exception("Line %d: Invalid format" % line)
if rec[0] != ord(":"):
raise Exception("Line %d: Missing start code \":\"" % line)
if sum(dat) & 0xFF != 0:
raise Exception("Line %d: Incorrect checksum" % line)
if dat[3] == 0: # Data record
addr = base + (dat[1] << 8) + dat[2]
# Allocate memory space and fill it with 0xFF
buf[len(buf):] = [0xFF] * (addr + n - len(buf))
# Copy data to the buffer
buf[addr:addr+n] = dat[4:-1]
elif dat[3] == 1: # EOF record
if n != 0:
raise Exception("Line %d: Incorrect data length" % line)
elif dat[3] == 2: # Extended segment address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 4
elif dat[3] == 4: # Extended linear address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 16
else:
raise Exception("Line %d: Unsupported record type" % line)
return buf
def stc_type_map(type, value):
if type == 0xF6:
if value in range(0x01,0x09):
return 0xF600
elif value in range(0x21,0x29):
return 0xF620
elif value == 0x29:
return 0xF628
elif value in range(0x31,0x39):
return 0xF630
elif value == 0x39:
return 0xF638
elif value in range(0x41,0x49):
return 0xF640
elif value == 0x49:
return 0xF648
elif value in range(0x51,0x59):
return 0xF650
elif value == 0x59:
return 0xF658
elif value in range(0x61,0x67):
return 0xF660
elif value == 0x67:
return 0xF666
elif value in range(0x71,0x77):
return 0xF670
elif value == 0x77:
return 0xF676
if type == 0xF7:
if value in range(0x01,0x07):
return 0xF700
elif value in range(0x31,0x37):
return 0xF730
elif value == 0x37:
return 0xF736
elif value in range(0x41,0x43):
return 0xF740
elif value == 0x43:
return 0xF742
elif value == 0x44:
return 0xF743
elif value in range(0x49,0x4B):
return 0xF748
elif value == 0x4B:
return 0xF74A
elif value == 0x4C:
return 0xF74B
elif value in range(0x51,0x57):
return 0xF750
elif value == 0x57:
return 0xF756
elif value in range(0x61,0x63):
return 0xF760
elif value == 0x63:
return 0xF762
elif value == 0x64:
return 0xF763
elif value in range(0x69,0x6B):
return 0xF768
elif value == 0x6B:
return 0xF76A
elif value == 0x6C:
return 0xF76B
elif value in range(0x71,0x77):
return 0xF770
elif value == 0x77:
return 0xF776
elif value in range(0x81,0x83):
return 0xF780
elif value == 0x83:
return 0xF782
elif value == 0x84:
return 0xF783
elif value in range(0x91,0x97):
return 0xF790
elif value == 0x97:
return 0xF796
elif value in range(0xA1,0xA7):
return 0xF7A0
elif value == 0xA7:
return 0xF7A6
if type == 0xF4:
if value in range(0x01,0x08):
return 0xF400
elif value == 0x08:
return 0xF407
elif value == 0x09:
return 0xF408
elif value in range(0x0A,0x0D):
return 0xF409
elif value in range(0x11,0x18):
return 0xF410
elif value == 0x18:
return 0xF417
elif value == 0x19:
return 0xF418
elif value in range(0x21,0x28):
return 0xF420
elif value == 0x28:
return 0xF427
elif value == 0x29:
return 0xF428
elif value in range(0x41,0x48):
return 0xF440
elif value == 0x48:
return 0xF447
elif value == 0x49:
return 0xF448
elif value == 0x4D:
return 0xF44C
elif value in range(0x51,0x57):
return 0xF450
elif value == 0x58:
return 0xF457
elif value == 0x59:
return 0xF458
elif value in range(0x61,0x68):
return 0xF460
elif value == 0x68:
return 0xF467
elif value == 0x69:
return 0xF468
elif value in range(0x81,0x88):
return 0xF480
elif value == 0x88:
return 0xF487
elif value == 0x89:
return 0xF488
elif value in range(0x8A,0x8D):
return 0xF489
elif value in range(0x91,0x98):
return 0xF490
elif value == 0x98:
return 0xF497
elif value == 0x99:
return 0xF498
elif value in range(0xA1,0xA8):
return 0xF4A0
elif value == 0xA8:
return 0xF4A7
elif value == 0xA9:
return 0xF4A8
elif value in range(0xC1,0xC8):
return 0xF4C0
elif value == 0xC8:
return 0xF4C7
elif value == 0xC9:
return 0xF4C8
elif value == 0xCD:
return 0xF4CC
elif value in range(0xD1,0xD8):
return 0xF4D0
elif value == 0xD8:
return 0xF4D7
elif value == 0xD9:
return 0xF4D8
elif value in range(0xE1,0xE8):
return 0xF4E0
elif value == 0xE8:
return 0xF4E7
elif value == 0xE9:
return 0xF4E8
if type == 0xF5:
if value in range(0x01,0x05):
return 0xF500
elif value in range(0x08,0x0C):
return 0xF507
elif value in range(0x11,15):
return 0xF510
elif value in range(0x15,0x18):
return 0xF514
elif value in range(0x19,0x1B):
return 0xF518
elif value in range(0x1B,0x1D):
return 0xF51A
elif value in range(0x1D,0x20):
return 0xF51C
elif value == 0x20:
return 0xF51F
elif value == 0x21:
return 0xF520
elif value == 0x23:
return 0xF522
elif value == 0x24:
return 0xF523
elif value == 0x25:
return 0xF524
elif value == 0x26:
return 0xF525
elif value == 0x27:
return 0xF526
elif value == 0x28:
return 0xF527
elif value in range(0x2A,0x2C):
return 0xF529
elif value in range(0x2D,0x2F):
return 0xF52C
elif value == 0x2F:
return 0xF52E
elif value == 0x30:
return 0xF52F
elif value == 0x31:
return 0xF530
elif value == 0x32:
return 0xF531
elif value == 0x34:
return 0xF533
elif value == 0x35:
return 0xF534
elif value == 0x36:
return 0xF535
elif value == 0x45:
return 0xF544
elif value == 0x55:
return 0xF554
elif value == 0x58:
return 0xF557
elif value == 0x5D:
return 0xF55C
elif value == 0x69:
return 0xF568
elif value == 0x6A:
return 0xF569
elif value == 0x6D:
return 0xF56C
elif value in range(0x7F,0x86):
return 0xF57E
if type == 0xF2:
if value in range(0xA0,0xA6):
return 0xF2A0
def main():
if sys.platform == "win32":
port = "COM3"
elif sys.platform == "darwin":
port = "/dev/tty.usbserial"
else:
port = "/dev/ttyUSB0"
parser = argparse.ArgumentParser(
description=("Stcflash, a command line programmer for "
+ "STC 8051 microcontroller.\n"
+ "https://github.com/laborer/stcflash"))
parser.add_argument("image",
help="code image (bin/hex)",
type=argparse.FileType("rb"), nargs='?')
parser.add_argument("-p", "--port",
help="serial port device (default: %s)" % port,
default=port)
parser.add_argument("-l", "--lowbaud",
help="initial baud rate (default: 2400)",
type=int,
default=2400)
parser.add_argument("-hb", "--highbaud",
help="initial baud rate (default: 115200)",
type=int,
default=115200)
parser.add_argument("-r", "--protocol",
help="protocol to use for programming",
choices=["89", "12c5a", "12c52", "12cx052", "8", "15", "auto"],
default="auto")
parser.add_argument("-a", "--aispbaud",
help="baud rate for AutoISP (default: 4800)",
type=int,
default=4800)
parser.add_argument("-m", "--aispmagic",
help="magic word for AutoISP")
parser.add_argument("-v", "--verbose",
help="be verbose",
default=0,
action="count")
parser.add_argument("-e", "--erase_eeprom",
help=("erase data eeprom during next download"
+"(experimental)"),
action="store_true")
parser.add_argument("-ne", "--not_erase_eeprom",
help=("do not erase data eeprom next download"
+"(experimental)"),
action="store_true")
opts = parser.parse_args()
opts.loglevel = (logging.CRITICAL,
logging.INFO,
logging.DEBUG)[min(2, opts.verbose)]
opts.protocol = {'89': PROTOCOL_89,
'12c5a': PROTOCOL_12C5A,
'12c52': PROTOCOL_12C52,
'12cx052': PROTOCOL_12Cx052,
'8': PROTOCOL_8,
'15': PROTOCOL_15,
'auto': None}[opts.protocol]
if not opts.erase_eeprom and not opts.not_erase_eeprom:
opts.erase_eeprom = None
logging.basicConfig(format=("%(levelname)s: "
+ "[%(relativeCreated)d] "
+ "%(message)s"),
level=opts.loglevel)
if opts.image:
code = bytearray(opts.image.read())
opts.image.close()
if os.path.splitext(opts.image.name)[1] in (".hex", ".ihx"):
code = hex2bin(code)
else:
code = None
print("通信端口:%s 最低波特率:%d bps" % (opts.port, opts.lowbaud))
global highbaud_pre
highbaud_pre = opts.highbaud
with serial.Serial(port=opts.port,
baudrate=opts.lowbaud,
parity=serial.PARITY_NONE) as conn:
if opts.aispmagic:
autoisp(conn, opts.aispbaud, opts.aispmagic)
program(Programmer(conn, opts.protocol), code, opts.erase_eeprom)
if __name__ == "__main__":
main()
|
2301_77966824/51-microcontroller-learning
|
2024/10/20241015数码管/tools/stcflash.py
|
Python
|
unknown
| 57,810
|
#include<STC89C5xRC.H>
#include<INTRINS.H>
void Delay100ms(void) //@11.0592MHz
{
unsigned char data i, j;
i = 180;
j = 73;
do
{
while (--j);
} while (--i);
}
void main()
{
unsigned char tmp=0x01;
while(1)
{
P0=~tmp;
Delay100ms();
tmp <<=1;
if(tmp==0x00)
{
tmp=0x01;
}
}
}
|
2301_77966824/51-microcontroller-learning
|
2024/10/24241016_01_HelloWorld-eide/HelloWorld-eide/src/main.c
|
C
|
unknown
| 305
|
#!/usr/bin/env python
#coding=utf-8
# stcflash Copyright (C) 2013 laborer (laborer@126.com)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import time
import logging
import sys
import serial
import os.path
import binascii
import struct
import argparse
PROTOCOL_89 = "89"
PROTOCOL_12C5A = "12c5a"
PROTOCOL_12C52 = "12c52"
PROTOCOL_12Cx052 = "12cx052"
PROTOCOL_8 = "8"
PROTOCOL_15 = '15'
PROTOSET_89 = [PROTOCOL_89]
PROTOSET_12 = [PROTOCOL_12C5A, PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_12B = [PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_8 = [PROTOCOL_8]
PROTOSET_15 = [PROTOCOL_15]
PROTOSET_PARITY = [PROTOCOL_12C5A, PROTOCOL_12C52]
class Programmer:
def __init__(self, conn, protocol=None):
self.conn = conn
self.protocol = protocol
self.conn.timeout = 0.05
if self.protocol in PROTOSET_PARITY:
self.conn.parity = serial.PARITY_EVEN
else:
self.conn.parity = serial.PARITY_NONE
self.chkmode = 0
def __conn_read(self, size):
buf = bytearray()
while len(buf) < size:
s = bytearray(self.conn.read(size - len(buf)))
buf += s
logging.debug("recv: " + " ".join(["%02X" % i for i in s]))
if len(s) == 0:
raise IOError()
return list(buf)
def __conn_write(self, s):
logging.debug("send: " + " ".join(["%02X" % i for i in s]))
self.conn.write(bytearray(s))
def __conn_baudrate(self, baud, flush=True):
logging.debug("baud: %d" % baud)
if flush:
if self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
self.conn.flush()
time.sleep(0.2)
self.conn.baudrate = baud
def __model_database(self, model):
modelmap = {0xE0: ("12", 1, {(0x00, 0x1F): ("C54", ""),
(0x60, 0x7F): ("C54", "AD"),
(0x80, 0x9F): ("LE54", ""),
(0xE0, 0xFF): ("LE54", "AD"),
}),
0xE1: ("12", 1, {(0x00, 0x1F): ("C52", ""),
(0x20, 0x3F): ("C52", "PWM"),
(0x60, 0x7F): ("C52", "AD"),
(0x80, 0x9F): ("LE52", ""),
(0xA0, 0xBF): ("LE52", "PWM"),
(0xE0, 0xFF): ("LE52", "AD"),
}),
0xE2: ("11", 1, {(0x00, 0x1F): ("F", ""),
(0x20, 0x3F): ("F", "E"),
(0x70, 0x7F): ("F", ""),
(0x80, 0x9F): ("L", ""),
(0xA0, 0xBF): ("L", "E"),
(0xF0, 0xFF): ("L", ""),
}),
0xE6: ("12", 1, {(0x00, 0x1F): ("C56", ""),
(0x60, 0x7F): ("C56", "AD"),
(0x80, 0x9F): ("LE56", ""),
(0xE0, 0xFF): ("LE56", "AD"),
}),
0xD1: ("12", 2, {(0x20, 0x3F): ("C5A", "CCP"),
(0x40, 0x5F): ("C5A", "AD"),
(0x60, 0x7F): ("C5A", "S2"),
(0xA0, 0xBF): ("LE5A", "CCP"),
(0xC0, 0xDF): ("LE5A", "AD"),
(0xE0, 0xFF): ("LE5A", "S2"),
}),
0xD2: ("10", 1, {(0x00, 0x0F): ("F", ""),
(0x60, 0x6F): ("F", "XE"),
(0x70, 0x7F): ("F", "X"),
(0xA0, 0xAF): ("L", ""),
(0xE0, 0xEF): ("L", "XE"),
(0xF0, 0xFF): ("L", "X"),
}),
0xD3: ("11", 2, {(0x00, 0x1F): ("F", ""),
(0x40, 0x5F): ("F", "X"),
(0x60, 0x7F): ("F", "XE"),
(0xA0, 0xBF): ("L", ""),
(0xC0, 0xDF): ("L", "X"),
(0xE0, 0xFF): ("L", "XE"),
}),
0xF0: ("89", 4, {(0x00, 0x10): ("C5", "RC"),
(0x20, 0x30): ("C5", "RC"), #STC90C5xRC
}),
0xF1: ("89", 4, {(0x00, 0x10): ("C5", "RD+"),
(0x20, 0x30): ("C5", "RD+"), #STC90C5xRD+
}),
0xF2: ("12", 1, {(0x00, 0x0F): ("C", "052"),
(0x10, 0x1F): ("C", "052AD"),
(0x20, 0x2F): ("LE", "052"),
(0x30, 0x3F): ("LE", "052AD"),
}),
0xF2A0: ("15W", 1, {(0xA0, 0xA5): ("1", ""), #STC15W1系列
}),
0xF400: ("15F", 8, {(0x00, 0x07): ("2K", "S2"), #STC15F2K系列
}),
0xF407: ("15F", 60, {(0x07, 0x08): ("2K", "S2"), #STC15F2K系列
}),
0xF408: ("15F", 61, {(0x08, 0x09): ("2K", "S2"), #STC15F2K系列
}),
0xF400: ("15F", 4, {(0x09, 0x0C): ("4", "AD"), #STC15FAD系列
}),
0xF410: ("15F", 8, {(0x10, 0x17): ("1K", "AS"), #STC15F1KAS系列
}),
0xF417: ("15F", 60, {(0x17, 0x18): ("1K", "AS"), #STC15F1KAS系列
}),
0xF418: ("15F", 61, {(0x18, 0x19): ("1K", "AS"), #STC15F1KAS系列
}),
0xF420: ("15F", 8, {(0x20, 0x27): ("1K", "S"), #STC15F1KS系列
}),
0xF427: ("15F", 60, {(0x27, 0x28): ("1K", "S"), #STC15F1KS系列
}),
0xF440: ("15F", 8, {(0x40, 0x47): ("1K", "S2"), #STC15F1KS2系列
}),
0xF447: ("15F", 60, {(0x47, 0x48): ("1K", "S2"), #STC15F1KS2系列
}),
0xF448: ("15F", 61, {(0x48, 0x49): ("1K", "S2"), #STC15F1KS2系列
}),
0xF44C: ("15F", 13, {(0x4C, 0x4D): ("4", "AD"),
}),
0xF450: ("15F", 8, {(0x50, 0x57): ("1K", "AS"), #STC15F1KAS系列
}),
0xF457: ("15F", 60, {(0x57, 0x58): ("1K", "AS"), #STC15F1KAS系列
}),
0xF458: ("15F", 61, {(0x58, 0x59): ("1K", "AS"), #STC15F1KAS系列
}),
0xF460: ("15F", 8, {(0x60, 0x67): ("1K", "S"), #STC15F1KS系列
}),
0xF467: ("15F", 60, {(0x67, 0x68): ("1K", "S"), #STC15F1KS系列
}),
0xF468: ("15F", 61, {(0x68, 0x69): ("1K", "S"), #STC15F1KS系列
}),
0xF480: ("15L", 8, {(0x80, 0x87): ("2K", "S2"), #STC15L2KS2系列
}),
0xF487: ("15L", 60, {(0x87, 0x88): ("2K", "S2"), #STC15L2KS2系列
}),
0xF488: ("15L", 61, {(0x88, 0x89): ("2K", "S2"), #STC15L2KS2系列
}),
0xF489: ("15L", 5, {(0x89, 0x8C): ("4", "AD"), #STC15L4AD系列
}),
0xF490: ("15L", 8, {(0x90, 0x97): ("2K", "AS"), #STC15L2KAS系列
}),
0xF497: ("15L", 60, {(0x97, 0x98): ("2K", "AS"), #STC15L2KAS系列
}),
0xF498: ("15L", 61, {(0x98, 0x99): ("2K", "AS"), #STC15L2KAS系列
}),
0xF4A0: ("15L", 8, {(0xA0, 0xA7): ("2K", "S"), #STC15L2KS系列
}),
0xF4A7: ("15L", 60, {(0xA7, 0xA8): ("2K", "S"), #STC15L2KS系列
}),
0xF4A8: ("15L", 61, {(0xA8, 0xA9): ("2K", "S"), #STC15L2KS系列
}),
0xF4C0: ("15L", 8, {(0xC0, 0xC7): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C7: ("15L", 60, {(0xC7, 0xC8): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C8: ("15L", 61, {(0xC8, 0xC9): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4CC: ("15L", 13, {(0xCC, 0xCD): ("4", "AD"),
}),
0xF4D0: ("15L", 8, {(0xD0, 0xD7): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D7: ("15L", 60, {(0xD7, 0xD8): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D8: ("15L", 61, {(0xD8, 0xD9): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4E0: ("15L", 8, {(0xE0, 0xE7): ("1K", "S"), #STC15L1KS系列
}),
0xF4E7: ("15L", 60, {(0xE7, 0xE8): ("1K", "S"), #STC15L1KS系列
}),
0xF4E8: ("15L", 61, {(0xE8, 0xE9): ("1K", "S"), #STC15L1KS系列
}),
0xF500: ("15W", 1, {(0x00, 0x04): ("1", "SW"), #STC15W1SW系列
}),
0xF507: ("15W", 1, {(0x07, 0x0B): ("1", "S"), #STC15W1S系列
}),
0xF510: ("15W", 1, {(0x10, 0x14): ("2", "S"), #STC15W2S系列
}),
0xF514: ("15W", 8, {(0x14, 0x17): ("1K", "S"), #STC15W1KS系列
}),
0xF518: ("15W", 4, {(0x18, 0x1A): ("4", "S"), #STC15W4S系列
}),
0xF51A: ("15W", 4, {(0x1A, 0x1C): ("4", "S"), #STC15W4S系列
}),
0xF51C: ("15W", 4, {(0x1C, 0x1F): ("4", "AS"), #STC15W4AS系列
}),
0xF51F: ("15W", 10, {(0x19, 0x20): ("4", "AS"), #STC15W4AS系列
}),
0xF520: ("15W", 12, {(0x20, 0x21): ("4", "AS"), #STC15W4AS系列
}),
0xF522: ("15W", 16, {(0x22, 0x23): ("4K", "S4"), #STC15W4KS4系列
}),
0xF523: ("15W",24, {(0x23, 0x24): ("4K", "S4"), #STC15W4KS4系列
}),
0xF524: ("15W", 32, {(0x24, 0x25): ("4K", "S4"), #STC15W4KS4系列
}),
0xF525: ("15W", 40, {(0x25, 0x26): ("4K", "S4"), #STC15W4KS4系列
}),
0xF526: ("15W", 48, {(0x26, 0x27): ("4K", "S4"), #STC15W4KS4系列
}),
0xF527: ("15W", 56, {(0x27, 0x28): ("4K", "S4"), #STC15W4KS4系列
}),
0xF529: ("15W", 1, {(0x29, 0x2B): ("4", "A4"), #STC15W4AS系列
}),
0xF52C: ("15W", 8, {(0x2C, 0x2E): ("1K", "PWM"), #STC15W1KPWM系列
}),
0xF52E: ("15W", 20, {(0x2E, 0x2F): ("1K", "S"), #STC15W1KS系列
}),
0xF52F: ("15W", 32, {(0x2F, 0x30): ("2K", "S2"), #STC15W2KS2系列
}),
0xF530: ("15W", 48, {(0x30, 0x31): ("2K", "S2"), #STC15W2KS2系列
}),
0xF531: ("15W", 32, {(0x31, 0x32): ("2K", "S2"), #STC15W2KS2系列
}),
0xF533: ("15W", 20, {(0x33, 0x34): ("1K", "S2"), #STC15W1KS2系列
}),
0xF534: ("15W", 32, {(0x34, 0x35): ("1K", "S2"), #STC15W1KS2系列
}),
0xF535: ("15W", 48, {(0x35, 0x36): ("1K", "S2"), #STC15W1KS2系列
}),
0xF544: ("15W", 5, {(0x44, 0x45): ("", "SW"), #STC15SW系列
}),
0xF554: ("15W", 5, {(0x54, 0x55): ("2", "S"), #STC15W2S系列
}),
0xF557: ("15W", 29, {(0x57, 0x58): ("1K", "S"), #STC15W1KS系列
}),
0xF55C: ("15W", 13, {(0x5C, 0x5D): ("4", "S"), #STC15W4S系列
}),
0xF568: ("15W", 58, {(0x68, 0x69): ("4K", "S4"), #STC15W4KS4系列
}),
0xF569: ("15W", 61, {(0x69, 0x6A): ("4K", "S4"), #STC15W4KS4系列
}),
0xF56C: ("15W", 58, {(0x6C, 0x6D): ("4K", "S4-Student"), #STC15W4KS4系列
}),
0xF57E: ("15U", 8, {(0x7E, 0x85): ("4K", "S4"), #STC15U4KS4系列
}),
0xF600: ("15H", 8, {(0x00, 0x08): ("4K", "S4"), #STC154K系列
}),
0xF620: ("8A", 8, {(0x20, 0x28): ("8K", "S4A12"), #STC8A8K系列
}),
0xF628: ("8A", 60, {(0x28, 0x29): ("8K", "S4A12"), #STC8A8K系列
}),
0xF630: ("8F", 8, {(0x30, 0x38): ("2K", "S4"), #STC8F2K系列
}),
0xF638: ("8F", 60, {(0x38, 0x39): ("2K", "S4"), #STC8F2K系列
}),
0xF640: ("8F", 8, {(0x40, 0x48): ("2K", "S2"), #STC8F2K系列
}),
0xF648: ("8F", 60, {(0x48, 0x49): ("2K", "S2"), #STC8F2K系列
}),
0xF650: ("8A", 8, {(0x50, 0x58): ("4K", "S2A12"), #STC8A4K系列
}),
0xF658: ("8A", 60, {(0x58, 0x59): ("4K", "S2A12"), #STC8A4K系列
}),
0xF660: ("8F", 2, {(0x60, 0x66): ("1K", "S2"), #STC8F1K系列
}),
0xF666: ("8F", 17, {(0x66, 0x67): ("1K", "S2"), #STC8F1K系列
}),
0xF670: ("8F", 2, {(0x70, 0x76): ("1K", ""), #STC8F1K系列
}),
0xF676: ("8F", 17, {(0x76, 0x77): ("1K", ""), #STC8F1K系列
}),
0xF700: ("8C", 2, {(0x00, 0x06): ("1K", ""), #STC8C系列
}),
0xF730: ("8H", 2, {(0x30, 0x36): ("1K", ""), #STC8H1K系列
}),
0xF736: ("8H", 17, {(0x36, 0x37): ("1K", ""), #STC8H1K系列
}),
0xF740: ("8H", 8, {(0x40, 0x42): ("3K", "S4"), #STC8H3K系列
}),
0xF742: ("8H", 60, {(0x42, 0x43): ("3K", "S4"), #STC8H3K系列
}),
0xF743: ("8H", 64, {(0x43, 0x44): ("3K", "S4"), #STC8H3K系列
}),
0xF748: ("8H", 16, {(0x48, 0x4A): ("3K", "S2"), #STC8H3K系列
}),
0xF74A: ("8H", 60, {(0x4A, 0x4B): ("3K", "S2"), #STC8H3K系列
}),
0xF74B: ("8H", 64, {(0x4B, 0x4C): ("3K", "S2"), #STC8H3K系列
}),
0xF750: ("8G", 2, {(0x50, 0x56): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF756: ("8G", 17, {(0x56, 0x57): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF760: ("8G", 16, {(0x60, 0x62): ("2K", "S4"), #STC8G2K系列
}),
0xF762: ("8G", 60, {(0x62, 0x63): ("2K", "S4"), #STC8G2K系列
}),
0xF763: ("8G", 64, {(0x63, 0x64): ("2K", "S4"), #STC8G2K系列
}),
0xF768: ("8G", 16, {(0x68, 0x6A): ("2K", "S2"), #STC8G2K系列
}),
0xF76A: ("8G", 60, {(0x6A, 0x6B): ("2K", "S2"), #STC8G2K系列
}),
0xF76B: ("8G", 64, {(0x6B, 0x6C): ("2K", "S2"), #STC8G2K系列
}),
0xF770: ("8G", 2, {(0x70, 0x76): ("1K", "T"), #STC8G2K系列
}),
0xF776: ("8G", 17, {(0x76, 0x77): ("1K", "T"), #STC8G2K系列
}),
0xF780: ("8H", 16, {(0x80, 0x82): ("8K", "U"), #STC8H8K系列
}),
0xF782: ("8H", 60, {(0x82, 0x83): ("8K", "U"), #STC8H8K系列
}),
0xF783: ("8H", 64, {(0x83, 0x84): ("8K", "U"), #STC8H8K系列
}),
0xF790: ("8G", 2, {(0x90, 0x96): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF796: ("8G", 17, {(0x96, 0x97): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF7A0: ("8G", 2, {(0xA0, 0xA6): ("1K", "-8PIN"), #STC8G1K系列
}),
0xF7A6: ("8G", 17, {(0xA6, 0xA7): ("1K", "-8PIN"), #STC8G1K系列
}),
}
iapmcu = ((0xD1, 0x3F), (0xD1, 0x5F), (0xD1, 0x7F), (0xF4, 0x4D), (0xF4, 0x99), (0xF4, 0xD9), (0xF5, 0x58),
(0xD2, 0x7E), (0xD2, 0xFE), (0xF4, 0x09), (0xF4, 0x59), (0xF4, 0xA9), (0xF4, 0xE9), (0xF5, 0x5D),
(0xD3, 0x5F), (0xD3, 0xDF), (0xF4, 0x19), (0xF4, 0x69), (0xF4, 0xC9), (0xF5, 0x45), (0xF5, 0x62),
(0xE2, 0x76), (0xE2, 0xF6), (0xF4, 0x49), (0xF4, 0x89), (0xF4, 0xCD), (0xF5, 0x55), (0xF5, 0x69),
(0xF5, 0x6A), (0xF5, 0x6D),
)
try:
model = tuple(model)
if self.model[0] in [0xF4, 0xF5, 0xF6, 0xF7]:
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
elif self.model[0] == 0xF2 and self.model[1] in range(0xA0, 0xA6):
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
self.protocol = PROTOCOL_15
else:
prefix, romratio, fixmap = modelmap[model[0]]
if model[0] in (0xF0, 0xF1) and 0x20 <= model[1] <= 0x30:
prefix = "90"
for key, value in fixmap.items():
if key[0] <= model[1] <= key[1]:
break
else:
raise KeyError()
infix, postfix = value
romsize = romratio * (model[1] - key[0])
try:
romsize = {(0xF0, 0x03): 13}[model]
except KeyError:
pass
if model[0] in (0xF0, 0xF1):
romfix = str(model[1] - key[0])
elif model[0] in (0xF2,):
romfix = str(romsize)
else:
romfix = "%02d" % romsize
name = "IAP" if model in iapmcu else "STC"
name += prefix + infix + romfix + postfix
return (name, romsize)
except KeyError:
return ("Unknown %02X %02X" % model, None)
def recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def first_recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
time.sleep(0.02) #加上20ms延时,增大接收成功率
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def send(self, cmd, dat):
buf = [0x46, 0xB9, 0x6A]
n = 1 + 2 + 1 + len(dat) + self.chkmode + 1
buf += [n >> 8, n & 0xFF, cmd]
buf += dat
chksum = sum(buf[2:])
if self.chkmode > 1:
buf += [(chksum >> 8) & 0xFF]
buf += [chksum & 0xFF, 0x16]
self.__conn_write(buf)
def detect(self):
for i in range(500):
try:
if self.protocol in [PROTOCOL_89,PROTOCOL_12C52,PROTOCOL_12Cx052,PROTOCOL_12C5A]:
self.__conn_write([0x7F,0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
else:
self.__conn_write([0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
break
except IOError:
pass
else:
raise IOError()
self.info = dat[16:]
self.version = "%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[1])
self.model = self.info[3:5]
self.name, self.romsize = self.__model_database(self.model)
logging.info("Model ID: %02X %02X" % tuple(self.model))
logging.info("Model name: %s" % self.name)
logging.info("ROM size: %s" % self.romsize)
if self.protocol is None:
try:
self.protocol = {0xF0: PROTOCOL_89, #STC89/90C5xRC
0xF1: PROTOCOL_89, #STC89/90C5xRD+
0xF2: PROTOCOL_12Cx052, #STC12Cx052
0xD1: PROTOCOL_12C5A, #STC12C5Ax
0xD2: PROTOCOL_12C5A, #STC10Fx
0xE1: PROTOCOL_12C52, #STC12C52x
0xE2: PROTOCOL_12C5A, #STC11Fx
0xE6: PROTOCOL_12C52, #STC12C56x
0xF4: PROTOCOL_15, #STC15系列
0xF5: PROTOCOL_15, #STC15系列
0xF6: PROTOCOL_8, #STC8系列
0xF7: PROTOCOL_8, #STC8系列
}[self.model[0]]
except KeyError:
pass
if self.protocol in PROTOSET_8:
self.fosc = (dat[0]*0x1000000 +dat[1]*0x10000+dat[2]*0x100) /1000000
self.internal_vol = (dat[34]*256+dat[35])
self.wakeup_fosc = (dat[22]*256+dat[23]) /1000
self.test_year = str(hex(dat[36])).replace("0x",'')
self.test_month = str(hex(dat[37])).replace("0x",'')
self.test_day = str(hex(dat[38])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
if dat[10] == 191:
self.det_low_vol = 2.2
else:
self.det_low_vol = (191 - dat[10])*0.3 + 2.1
elif self.protocol in PROTOSET_15:
self.fosc = (dat[7]*0x1000000 +dat[8]*0x10000+dat[9]*0x100) /1000000
self.wakeup_fosc = (dat[0]*256+dat[1]) /1000
self.internal_vol = (dat[34]*256+dat[35])
self.test_year = str(hex(dat[41])).replace("0x",'')
self.test_month = str(hex(dat[42])).replace("0x",'')
self.test_day = str(hex(dat[43])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
else:
self.fosc = (float(sum(dat[0:16:2]) * 256 + sum(dat[1:16:2])) / 8
* self.conn.baudrate / 580974)
if self.protocol in PROTOSET_PARITY or self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.chkmode = 2
self.conn.parity = serial.PARITY_EVEN
else:
self.chkmode = 1
self.conn.parity = serial.PARITY_NONE
if self.protocol is not None:
del self.info[-self.chkmode:]
logging.info("Protocol ID: %s" % self.protocol)
logging.info("Checksum mode: %d" % self.chkmode)
logging.info("UART Parity: %s"
% {serial.PARITY_NONE: "NONE",
serial.PARITY_EVEN: "EVEN",
}[self.conn.parity])
for i in range(0, len(self.info), 16):
logging.info("Info string [%d]: %s"
% (i // 16,
" ".join(["%02X" % j for j in self.info[i:i+16]])))
def print_info(self):
print("系统时钟频率: %.3fMHz" % self.fosc)
if self.protocol in PROTOSET_8:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("低压检测电压: %.1f V" %self.det_low_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
if self.protocol in PROTOSET_15:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
print("单片机型号: %s" % self.name)
print("固件版本号: %s" % self.version)
if self.romsize is not None:
print("程序空间: %dKB" % self.romsize)
if self.protocol == PROTOCOL_89:
switches = [( 2, 0x80, "Reset stops "),
( 2, 0x40, "Internal XRAM"),
( 2, 0x20, "Normal ALE pin"),
( 2, 0x10, "Full gain oscillator"),
( 2, 0x08, "Not erase data EEPROM"),
( 2, 0x04, "Download regardless of P1"),
( 2, 0x01, "12T mode")]
elif self.protocol == PROTOCOL_12C5A:
switches = [( 6, 0x40, "Disable reset2 low level detect"),
( 6, 0x01, "Reset pin not use as I/O port"),
( 7, 0x80, "Disable long power-on-reset latency"),
( 7, 0x40, "Oscillator high gain"),
( 7, 0x02, "External system clock source"),
( 8, 0x20, "WDT disable after power-on-reset"),
( 8, 0x04, "WDT count in idle mode"),
(10, 0x02, "Not erase data EEPROM"),
(10, 0x01, "Download regardless of P1")]
print(" WDT prescal: %d" % 2**((self.info[8] & 0x07) + 1))
elif self.protocol in PROTOSET_12B:
switches = [(8, 0x02, "Not erase data EEPROM")]
else:
switches = []
for pos, bit, desc in switches:
print(" [%c] %s" % ("X" if self.info[pos] & bit else " ", desc))
def handshake(self):
baud0 = self.conn.baudrate
if self.protocol in PROTOSET_8:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(24.0 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(24.0 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value = 0x7B
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value = 0xB0
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value = 0x5A
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value = 0x35
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value = 0x7B
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value = 0x5A
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value = 0x1A
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value = 0x12
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value = 0x5A
else:
foc_value = 0x6B
baudstr = [0x00, 0x00, Timer1_value >> 8, Timer1_value & 0xff, 0x01, foc_value, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
elif self.protocol in PROTOSET_15:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(22.1184 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(22.1184 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value_1 = 0x40
foc_value_2 = 0x9F
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value_1 = 0x40
foc_value_2 = 0xDC
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value_1 = 0x40
foc_value_2 = 0x79
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value_1 = 0x40
foc_value_2 = 0x4F
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value_1 = 0x80
foc_value_2 = 0xA2
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value_1 = 0x80
foc_value_2 = 0x7D
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value_1 = 0x40
foc_value_2 = 0x31
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value_1 = 0xC0
foc_value_2 = 0x9f
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value_1 = 0xC0
foc_value_2 = 0x7B
baudstr = [0x6d, 0x40, Timer1_value >> 8, Timer1_value & 0xff, foc_value_1,foc_value_2, 0x81]
#baudstr = [0x6b, 0x40, 0xff,0xf4, 0x40,0x92, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
else:
for baud in [115200, 57600, 38400, 28800, 19200,
14400, 9600, 4800, 2400, 1200]:
t = self.fosc * 1000000 / baud / 32
if self.protocol not in PROTOSET_89:
t *= 2
if abs(round(t) - t) / t > 0.03:
continue
if self.protocol in PROTOSET_89:
tcfg = 0x10000 - int(t + 0.5)
else:
if t > 0xFF:
continue
tcfg = 0xC000 + 0x100 - int(t + 0.5)
baudstr = [tcfg >> 8,
tcfg & 0xFF,
0xFF - (tcfg >> 8),
min((256 - (tcfg & 0xFF)) * 2, 0xFE),
int(baud0 / 60)]
logging.info("Test baudrate %d (accuracy %0.4f) using config %s"
% (baud,
abs(round(t) - t) / t,
" ".join(["%02X" % i for i in baudstr])))
if self.protocol in PROTOSET_89:
freqlist = (40, 20, 10, 5)
else:
freqlist = (30, 24, 20, 12, 6, 3, 2, 1)
for twait in range(0, len(freqlist)):
if self.fosc > freqlist[twait]:
break
logging.info("Waiting time config %02X" % (0x80 + twait))
self.send(0x8F, baudstr + [0x80 + twait])
try:
self.__conn_baudrate(baud)
cmd, dat = self.recv()
break
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
else:
raise IOError()
logging.info("Change baudrate to %d" % baud)
self.send(0x8E, baudstr)
self.__conn_baudrate(baud)
self.baudrate = baud
cmd, dat = self.recv()
def erase(self):
if self.protocol in PROTOSET_89:
self.send(0x84, [0x01, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33])
cmd, dat = self.recv(10)
assert cmd == 0x80
elif self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0x05, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
self.send(0x03, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
for i in range(7):
dat[i] = hex(dat[i])
dat[i] = str(dat[i])
dat[i] = dat[i].replace("0x",'')
if len(dat[i]) == 1:
dat_value = list(dat[i])
dat_value.insert(0, '0')
dat[i] = ''.join(dat_value)
serial_number = ""
for i in dat:
serial_number = serial_number +str(i)
self.serial_number = str(serial_number)
print("\r")
sys.stdout.write("芯片出厂序列号: ")
sys.stdout.write(self.serial_number.upper())
sys.stdout.flush()
print("\r")
else:
self.send(0x84, ([0x00, 0x00, self.romsize * 4,
0x00, 0x00, self.romsize * 4]
+ [0x00] * 12
+ [i for i in range(0x80, 0x0D, -1)]))
cmd, dat = self.recv(10)
if dat:
logging.info("Serial number: "
+ " ".join(["%02X" % j for j in dat]))
def flash(self, code):
code = list(code) + [0xff] * (511 - (len(code) - 1) % 512)
for i in range(0, len(code), 128):
logging.info("Flash code region (%04X, %04X)" % (i, i + 127))
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
flag_test = 1
addr = [i >> 8, i & 0xFF, 0x5A, 0xA5]
if flag_test == 1:
self.send(0x22, addr + code[i:i+128])
flag_test = 10
else:
self.send(0x02, addr + code[i:i+128])
else:
addr = [0, 0, i >> 8, i & 0xFF, 0, 128]
self.send(0x00, addr + code[i:i+128])
cmd, dat = self.recv()
#assert dat[0] == sum(code[i:i+128]) % 256
yield (i + 128.0) / len(code)
def options(self, **kwargs):
erase_eeprom = kwargs.get("erase_eeprom", None)
dat = []
fosc = list(bytearray(struct.pack(">I", int(self.fosc * 1000000))))
if self.protocol == PROTOCOL_89:
if erase_eeprom is not None:
self.info[2] &= 0xF7
self.info[2] |= 0x00 if erase_eeprom else 0x08
dat = self.info[2:3] + [0xFF]*3
elif self.protocol == PROTOCOL_12C5A:
if erase_eeprom is not None:
self.info[10] &= 0xFD
self.info[10] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:9] + [0xFF]*5 + self.info[10:11]
+ [0xFF]*6 + fosc)
elif self.protocol in PROTOSET_12B:
if erase_eeprom is not None:
self.info[8] &= 0xFD
self.info[8] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:11] + fosc + self.info[12:16] + [0xFF]*4
+ self.info[8:9] + [0xFF]*7 + fosc + [0xFF]*3)
elif erase_eeprom is not None:
logging.info("Modifying options is not supported for this target")
return False
if dat:
self.send(0x8D, dat)
cmd, dat = self.recv()
return True
def terminate(self):
logging.info("Send termination command")
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0xFF, [])
else:
self.send(0x82, [])
self.conn.flush()
time.sleep(0.2)
def unknown_packet_1(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (50 00 00 36 01 ...)")
self.send(0x50, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8F and not dat
def unknown_packet_2(self):
if self.protocol not in PROTOSET_PARITY and self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
for i in range(5):
logging.info("Send unknown packet (80 00 00 36 01 ...)")
self.send(0x80, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x80 and not dat
def unknown_packet_3(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (69 00 00 36 01 ...)")
self.send(0x69, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8D and not dat
def autoisp(conn, baud, magic):
if not magic:
return
bak = conn.baudrate
conn.baudrate = baud
conn.write(bytearray(ord(i) for i in magic))
conn.flush()
time.sleep(0.5)
conn.baudrate = bak
def program(prog, code, erase_eeprom=None):
sys.stdout.write("检测目标...")
sys.stdout.flush()
prog.detect()
print("完成")
prog.print_info()
if prog.protocol is None:
raise IOError("未知目标")
if code is None:
return
prog.unknown_packet_1()
sys.stdout.write("切换至最高波特率: ")
sys.stdout.flush()
prog.handshake()
print("%d bps"% prog.baudrate)
prog.unknown_packet_2()
sys.stdout.write("开始擦除芯片...")
sys.stdout.flush()
time_start = time.time()
prog.erase()
print("擦除完成")
print("代码长度: %d bytes" % len(code))
# print("Programming: ", end="", flush=True)
sys.stdout.write("正在下载用户代码...")
sys.stdout.flush()
oldbar = 0
for progress in prog.flash(code):
bar = int(progress * 25)
sys.stdout.write("#" * (bar - oldbar))
sys.stdout.flush()
oldbar = bar
print(" 完成")
prog.unknown_packet_3()
sys.stdout.write("设置选项...")
sys.stdout.flush()
if prog.options(erase_eeprom=erase_eeprom):
print("设置完成")
else:
print("设置失败")
prog.terminate()
time_end = time.time()
print("耗时: %.3fs"% (time_end-time_start))
# Convert Intel HEX code to binary format
def hex2bin(code):
buf = bytearray()
base = 0
line = 0
for rec in code.splitlines():
# Calculate the line number of the current record
line += 1
try:
# bytes(...) is to support python<=2.6
# bytearray(...) is to support python<=2.7
n = bytearray(binascii.a2b_hex(bytes(rec[1:3])))[0]
dat = bytearray(binascii.a2b_hex(bytes(rec[1:n*2+11])))
except:
raise Exception("Line %d: Invalid format" % line)
if rec[0] != ord(":"):
raise Exception("Line %d: Missing start code \":\"" % line)
if sum(dat) & 0xFF != 0:
raise Exception("Line %d: Incorrect checksum" % line)
if dat[3] == 0: # Data record
addr = base + (dat[1] << 8) + dat[2]
# Allocate memory space and fill it with 0xFF
buf[len(buf):] = [0xFF] * (addr + n - len(buf))
# Copy data to the buffer
buf[addr:addr+n] = dat[4:-1]
elif dat[3] == 1: # EOF record
if n != 0:
raise Exception("Line %d: Incorrect data length" % line)
elif dat[3] == 2: # Extended segment address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 4
elif dat[3] == 4: # Extended linear address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 16
else:
raise Exception("Line %d: Unsupported record type" % line)
return buf
def stc_type_map(type, value):
if type == 0xF6:
if value in range(0x01,0x09):
return 0xF600
elif value in range(0x21,0x29):
return 0xF620
elif value == 0x29:
return 0xF628
elif value in range(0x31,0x39):
return 0xF630
elif value == 0x39:
return 0xF638
elif value in range(0x41,0x49):
return 0xF640
elif value == 0x49:
return 0xF648
elif value in range(0x51,0x59):
return 0xF650
elif value == 0x59:
return 0xF658
elif value in range(0x61,0x67):
return 0xF660
elif value == 0x67:
return 0xF666
elif value in range(0x71,0x77):
return 0xF670
elif value == 0x77:
return 0xF676
if type == 0xF7:
if value in range(0x01,0x07):
return 0xF700
elif value in range(0x31,0x37):
return 0xF730
elif value == 0x37:
return 0xF736
elif value in range(0x41,0x43):
return 0xF740
elif value == 0x43:
return 0xF742
elif value == 0x44:
return 0xF743
elif value in range(0x49,0x4B):
return 0xF748
elif value == 0x4B:
return 0xF74A
elif value == 0x4C:
return 0xF74B
elif value in range(0x51,0x57):
return 0xF750
elif value == 0x57:
return 0xF756
elif value in range(0x61,0x63):
return 0xF760
elif value == 0x63:
return 0xF762
elif value == 0x64:
return 0xF763
elif value in range(0x69,0x6B):
return 0xF768
elif value == 0x6B:
return 0xF76A
elif value == 0x6C:
return 0xF76B
elif value in range(0x71,0x77):
return 0xF770
elif value == 0x77:
return 0xF776
elif value in range(0x81,0x83):
return 0xF780
elif value == 0x83:
return 0xF782
elif value == 0x84:
return 0xF783
elif value in range(0x91,0x97):
return 0xF790
elif value == 0x97:
return 0xF796
elif value in range(0xA1,0xA7):
return 0xF7A0
elif value == 0xA7:
return 0xF7A6
if type == 0xF4:
if value in range(0x01,0x08):
return 0xF400
elif value == 0x08:
return 0xF407
elif value == 0x09:
return 0xF408
elif value in range(0x0A,0x0D):
return 0xF409
elif value in range(0x11,0x18):
return 0xF410
elif value == 0x18:
return 0xF417
elif value == 0x19:
return 0xF418
elif value in range(0x21,0x28):
return 0xF420
elif value == 0x28:
return 0xF427
elif value == 0x29:
return 0xF428
elif value in range(0x41,0x48):
return 0xF440
elif value == 0x48:
return 0xF447
elif value == 0x49:
return 0xF448
elif value == 0x4D:
return 0xF44C
elif value in range(0x51,0x57):
return 0xF450
elif value == 0x58:
return 0xF457
elif value == 0x59:
return 0xF458
elif value in range(0x61,0x68):
return 0xF460
elif value == 0x68:
return 0xF467
elif value == 0x69:
return 0xF468
elif value in range(0x81,0x88):
return 0xF480
elif value == 0x88:
return 0xF487
elif value == 0x89:
return 0xF488
elif value in range(0x8A,0x8D):
return 0xF489
elif value in range(0x91,0x98):
return 0xF490
elif value == 0x98:
return 0xF497
elif value == 0x99:
return 0xF498
elif value in range(0xA1,0xA8):
return 0xF4A0
elif value == 0xA8:
return 0xF4A7
elif value == 0xA9:
return 0xF4A8
elif value in range(0xC1,0xC8):
return 0xF4C0
elif value == 0xC8:
return 0xF4C7
elif value == 0xC9:
return 0xF4C8
elif value == 0xCD:
return 0xF4CC
elif value in range(0xD1,0xD8):
return 0xF4D0
elif value == 0xD8:
return 0xF4D7
elif value == 0xD9:
return 0xF4D8
elif value in range(0xE1,0xE8):
return 0xF4E0
elif value == 0xE8:
return 0xF4E7
elif value == 0xE9:
return 0xF4E8
if type == 0xF5:
if value in range(0x01,0x05):
return 0xF500
elif value in range(0x08,0x0C):
return 0xF507
elif value in range(0x11,15):
return 0xF510
elif value in range(0x15,0x18):
return 0xF514
elif value in range(0x19,0x1B):
return 0xF518
elif value in range(0x1B,0x1D):
return 0xF51A
elif value in range(0x1D,0x20):
return 0xF51C
elif value == 0x20:
return 0xF51F
elif value == 0x21:
return 0xF520
elif value == 0x23:
return 0xF522
elif value == 0x24:
return 0xF523
elif value == 0x25:
return 0xF524
elif value == 0x26:
return 0xF525
elif value == 0x27:
return 0xF526
elif value == 0x28:
return 0xF527
elif value in range(0x2A,0x2C):
return 0xF529
elif value in range(0x2D,0x2F):
return 0xF52C
elif value == 0x2F:
return 0xF52E
elif value == 0x30:
return 0xF52F
elif value == 0x31:
return 0xF530
elif value == 0x32:
return 0xF531
elif value == 0x34:
return 0xF533
elif value == 0x35:
return 0xF534
elif value == 0x36:
return 0xF535
elif value == 0x45:
return 0xF544
elif value == 0x55:
return 0xF554
elif value == 0x58:
return 0xF557
elif value == 0x5D:
return 0xF55C
elif value == 0x69:
return 0xF568
elif value == 0x6A:
return 0xF569
elif value == 0x6D:
return 0xF56C
elif value in range(0x7F,0x86):
return 0xF57E
if type == 0xF2:
if value in range(0xA0,0xA6):
return 0xF2A0
def main():
if sys.platform == "win32":
port = "COM3"
elif sys.platform == "darwin":
port = "/dev/tty.usbserial"
else:
port = "/dev/ttyUSB0"
parser = argparse.ArgumentParser(
description=("Stcflash, a command line programmer for "
+ "STC 8051 microcontroller.\n"
+ "https://github.com/laborer/stcflash"))
parser.add_argument("image",
help="code image (bin/hex)",
type=argparse.FileType("rb"), nargs='?')
parser.add_argument("-p", "--port",
help="serial port device (default: %s)" % port,
default=port)
parser.add_argument("-l", "--lowbaud",
help="initial baud rate (default: 2400)",
type=int,
default=2400)
parser.add_argument("-hb", "--highbaud",
help="initial baud rate (default: 115200)",
type=int,
default=115200)
parser.add_argument("-r", "--protocol",
help="protocol to use for programming",
choices=["89", "12c5a", "12c52", "12cx052", "8", "15", "auto"],
default="auto")
parser.add_argument("-a", "--aispbaud",
help="baud rate for AutoISP (default: 4800)",
type=int,
default=4800)
parser.add_argument("-m", "--aispmagic",
help="magic word for AutoISP")
parser.add_argument("-v", "--verbose",
help="be verbose",
default=0,
action="count")
parser.add_argument("-e", "--erase_eeprom",
help=("erase data eeprom during next download"
+"(experimental)"),
action="store_true")
parser.add_argument("-ne", "--not_erase_eeprom",
help=("do not erase data eeprom next download"
+"(experimental)"),
action="store_true")
opts = parser.parse_args()
opts.loglevel = (logging.CRITICAL,
logging.INFO,
logging.DEBUG)[min(2, opts.verbose)]
opts.protocol = {'89': PROTOCOL_89,
'12c5a': PROTOCOL_12C5A,
'12c52': PROTOCOL_12C52,
'12cx052': PROTOCOL_12Cx052,
'8': PROTOCOL_8,
'15': PROTOCOL_15,
'auto': None}[opts.protocol]
if not opts.erase_eeprom and not opts.not_erase_eeprom:
opts.erase_eeprom = None
logging.basicConfig(format=("%(levelname)s: "
+ "[%(relativeCreated)d] "
+ "%(message)s"),
level=opts.loglevel)
if opts.image:
code = bytearray(opts.image.read())
opts.image.close()
if os.path.splitext(opts.image.name)[1] in (".hex", ".ihx"):
code = hex2bin(code)
else:
code = None
print("通信端口:%s 最低波特率:%d bps" % (opts.port, opts.lowbaud))
global highbaud_pre
highbaud_pre = opts.highbaud
with serial.Serial(port=opts.port,
baudrate=opts.lowbaud,
parity=serial.PARITY_NONE) as conn:
if opts.aispmagic:
autoisp(conn, opts.aispbaud, opts.aispmagic)
program(Programmer(conn, opts.protocol), code, opts.erase_eeprom)
if __name__ == "__main__":
main()
|
2301_77966824/51-microcontroller-learning
|
2024/10/24241016_01_HelloWorld-eide/HelloWorld-eide/tools/stcflash.py
|
Python
|
unknown
| 57,810
|
#include "Com_Util.h"
#include <INTRINS.H>
void Com_Util_Delay1ms(u16 count)
{
u8 i,j;
while (count>0)
{
count--;
_nop_();
i=2;
j=199;
do
{
while(--j);
} while (--i);
}
}
|
2301_77966824/51-microcontroller-learning
|
2024/10/Hello-template/src/Com/Com_Util.c
|
C
|
unknown
| 198
|
#include <Int_digitalTube.h>
void main()
{
while(1)
{
}
}
|
2301_77966824/51-microcontroller-learning
|
2024/10/Hello-template/src/main.c
|
C
|
unknown
| 60
|
#!/usr/bin/env python
#coding=utf-8
# stcflash Copyright (C) 2013 laborer (laborer@126.com)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import time
import logging
import sys
import serial
import os.path
import binascii
import struct
import argparse
PROTOCOL_89 = "89"
PROTOCOL_12C5A = "12c5a"
PROTOCOL_12C52 = "12c52"
PROTOCOL_12Cx052 = "12cx052"
PROTOCOL_8 = "8"
PROTOCOL_15 = '15'
PROTOSET_89 = [PROTOCOL_89]
PROTOSET_12 = [PROTOCOL_12C5A, PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_12B = [PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_8 = [PROTOCOL_8]
PROTOSET_15 = [PROTOCOL_15]
PROTOSET_PARITY = [PROTOCOL_12C5A, PROTOCOL_12C52]
class Programmer:
def __init__(self, conn, protocol=None):
self.conn = conn
self.protocol = protocol
self.conn.timeout = 0.05
if self.protocol in PROTOSET_PARITY:
self.conn.parity = serial.PARITY_EVEN
else:
self.conn.parity = serial.PARITY_NONE
self.chkmode = 0
def __conn_read(self, size):
buf = bytearray()
while len(buf) < size:
s = bytearray(self.conn.read(size - len(buf)))
buf += s
logging.debug("recv: " + " ".join(["%02X" % i for i in s]))
if len(s) == 0:
raise IOError()
return list(buf)
def __conn_write(self, s):
logging.debug("send: " + " ".join(["%02X" % i for i in s]))
self.conn.write(bytearray(s))
def __conn_baudrate(self, baud, flush=True):
logging.debug("baud: %d" % baud)
if flush:
if self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
self.conn.flush()
time.sleep(0.2)
self.conn.baudrate = baud
def __model_database(self, model):
modelmap = {0xE0: ("12", 1, {(0x00, 0x1F): ("C54", ""),
(0x60, 0x7F): ("C54", "AD"),
(0x80, 0x9F): ("LE54", ""),
(0xE0, 0xFF): ("LE54", "AD"),
}),
0xE1: ("12", 1, {(0x00, 0x1F): ("C52", ""),
(0x20, 0x3F): ("C52", "PWM"),
(0x60, 0x7F): ("C52", "AD"),
(0x80, 0x9F): ("LE52", ""),
(0xA0, 0xBF): ("LE52", "PWM"),
(0xE0, 0xFF): ("LE52", "AD"),
}),
0xE2: ("11", 1, {(0x00, 0x1F): ("F", ""),
(0x20, 0x3F): ("F", "E"),
(0x70, 0x7F): ("F", ""),
(0x80, 0x9F): ("L", ""),
(0xA0, 0xBF): ("L", "E"),
(0xF0, 0xFF): ("L", ""),
}),
0xE6: ("12", 1, {(0x00, 0x1F): ("C56", ""),
(0x60, 0x7F): ("C56", "AD"),
(0x80, 0x9F): ("LE56", ""),
(0xE0, 0xFF): ("LE56", "AD"),
}),
0xD1: ("12", 2, {(0x20, 0x3F): ("C5A", "CCP"),
(0x40, 0x5F): ("C5A", "AD"),
(0x60, 0x7F): ("C5A", "S2"),
(0xA0, 0xBF): ("LE5A", "CCP"),
(0xC0, 0xDF): ("LE5A", "AD"),
(0xE0, 0xFF): ("LE5A", "S2"),
}),
0xD2: ("10", 1, {(0x00, 0x0F): ("F", ""),
(0x60, 0x6F): ("F", "XE"),
(0x70, 0x7F): ("F", "X"),
(0xA0, 0xAF): ("L", ""),
(0xE0, 0xEF): ("L", "XE"),
(0xF0, 0xFF): ("L", "X"),
}),
0xD3: ("11", 2, {(0x00, 0x1F): ("F", ""),
(0x40, 0x5F): ("F", "X"),
(0x60, 0x7F): ("F", "XE"),
(0xA0, 0xBF): ("L", ""),
(0xC0, 0xDF): ("L", "X"),
(0xE0, 0xFF): ("L", "XE"),
}),
0xF0: ("89", 4, {(0x00, 0x10): ("C5", "RC"),
(0x20, 0x30): ("C5", "RC"), #STC90C5xRC
}),
0xF1: ("89", 4, {(0x00, 0x10): ("C5", "RD+"),
(0x20, 0x30): ("C5", "RD+"), #STC90C5xRD+
}),
0xF2: ("12", 1, {(0x00, 0x0F): ("C", "052"),
(0x10, 0x1F): ("C", "052AD"),
(0x20, 0x2F): ("LE", "052"),
(0x30, 0x3F): ("LE", "052AD"),
}),
0xF2A0: ("15W", 1, {(0xA0, 0xA5): ("1", ""), #STC15W1系列
}),
0xF400: ("15F", 8, {(0x00, 0x07): ("2K", "S2"), #STC15F2K系列
}),
0xF407: ("15F", 60, {(0x07, 0x08): ("2K", "S2"), #STC15F2K系列
}),
0xF408: ("15F", 61, {(0x08, 0x09): ("2K", "S2"), #STC15F2K系列
}),
0xF400: ("15F", 4, {(0x09, 0x0C): ("4", "AD"), #STC15FAD系列
}),
0xF410: ("15F", 8, {(0x10, 0x17): ("1K", "AS"), #STC15F1KAS系列
}),
0xF417: ("15F", 60, {(0x17, 0x18): ("1K", "AS"), #STC15F1KAS系列
}),
0xF418: ("15F", 61, {(0x18, 0x19): ("1K", "AS"), #STC15F1KAS系列
}),
0xF420: ("15F", 8, {(0x20, 0x27): ("1K", "S"), #STC15F1KS系列
}),
0xF427: ("15F", 60, {(0x27, 0x28): ("1K", "S"), #STC15F1KS系列
}),
0xF440: ("15F", 8, {(0x40, 0x47): ("1K", "S2"), #STC15F1KS2系列
}),
0xF447: ("15F", 60, {(0x47, 0x48): ("1K", "S2"), #STC15F1KS2系列
}),
0xF448: ("15F", 61, {(0x48, 0x49): ("1K", "S2"), #STC15F1KS2系列
}),
0xF44C: ("15F", 13, {(0x4C, 0x4D): ("4", "AD"),
}),
0xF450: ("15F", 8, {(0x50, 0x57): ("1K", "AS"), #STC15F1KAS系列
}),
0xF457: ("15F", 60, {(0x57, 0x58): ("1K", "AS"), #STC15F1KAS系列
}),
0xF458: ("15F", 61, {(0x58, 0x59): ("1K", "AS"), #STC15F1KAS系列
}),
0xF460: ("15F", 8, {(0x60, 0x67): ("1K", "S"), #STC15F1KS系列
}),
0xF467: ("15F", 60, {(0x67, 0x68): ("1K", "S"), #STC15F1KS系列
}),
0xF468: ("15F", 61, {(0x68, 0x69): ("1K", "S"), #STC15F1KS系列
}),
0xF480: ("15L", 8, {(0x80, 0x87): ("2K", "S2"), #STC15L2KS2系列
}),
0xF487: ("15L", 60, {(0x87, 0x88): ("2K", "S2"), #STC15L2KS2系列
}),
0xF488: ("15L", 61, {(0x88, 0x89): ("2K", "S2"), #STC15L2KS2系列
}),
0xF489: ("15L", 5, {(0x89, 0x8C): ("4", "AD"), #STC15L4AD系列
}),
0xF490: ("15L", 8, {(0x90, 0x97): ("2K", "AS"), #STC15L2KAS系列
}),
0xF497: ("15L", 60, {(0x97, 0x98): ("2K", "AS"), #STC15L2KAS系列
}),
0xF498: ("15L", 61, {(0x98, 0x99): ("2K", "AS"), #STC15L2KAS系列
}),
0xF4A0: ("15L", 8, {(0xA0, 0xA7): ("2K", "S"), #STC15L2KS系列
}),
0xF4A7: ("15L", 60, {(0xA7, 0xA8): ("2K", "S"), #STC15L2KS系列
}),
0xF4A8: ("15L", 61, {(0xA8, 0xA9): ("2K", "S"), #STC15L2KS系列
}),
0xF4C0: ("15L", 8, {(0xC0, 0xC7): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C7: ("15L", 60, {(0xC7, 0xC8): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C8: ("15L", 61, {(0xC8, 0xC9): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4CC: ("15L", 13, {(0xCC, 0xCD): ("4", "AD"),
}),
0xF4D0: ("15L", 8, {(0xD0, 0xD7): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D7: ("15L", 60, {(0xD7, 0xD8): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D8: ("15L", 61, {(0xD8, 0xD9): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4E0: ("15L", 8, {(0xE0, 0xE7): ("1K", "S"), #STC15L1KS系列
}),
0xF4E7: ("15L", 60, {(0xE7, 0xE8): ("1K", "S"), #STC15L1KS系列
}),
0xF4E8: ("15L", 61, {(0xE8, 0xE9): ("1K", "S"), #STC15L1KS系列
}),
0xF500: ("15W", 1, {(0x00, 0x04): ("1", "SW"), #STC15W1SW系列
}),
0xF507: ("15W", 1, {(0x07, 0x0B): ("1", "S"), #STC15W1S系列
}),
0xF510: ("15W", 1, {(0x10, 0x14): ("2", "S"), #STC15W2S系列
}),
0xF514: ("15W", 8, {(0x14, 0x17): ("1K", "S"), #STC15W1KS系列
}),
0xF518: ("15W", 4, {(0x18, 0x1A): ("4", "S"), #STC15W4S系列
}),
0xF51A: ("15W", 4, {(0x1A, 0x1C): ("4", "S"), #STC15W4S系列
}),
0xF51C: ("15W", 4, {(0x1C, 0x1F): ("4", "AS"), #STC15W4AS系列
}),
0xF51F: ("15W", 10, {(0x19, 0x20): ("4", "AS"), #STC15W4AS系列
}),
0xF520: ("15W", 12, {(0x20, 0x21): ("4", "AS"), #STC15W4AS系列
}),
0xF522: ("15W", 16, {(0x22, 0x23): ("4K", "S4"), #STC15W4KS4系列
}),
0xF523: ("15W",24, {(0x23, 0x24): ("4K", "S4"), #STC15W4KS4系列
}),
0xF524: ("15W", 32, {(0x24, 0x25): ("4K", "S4"), #STC15W4KS4系列
}),
0xF525: ("15W", 40, {(0x25, 0x26): ("4K", "S4"), #STC15W4KS4系列
}),
0xF526: ("15W", 48, {(0x26, 0x27): ("4K", "S4"), #STC15W4KS4系列
}),
0xF527: ("15W", 56, {(0x27, 0x28): ("4K", "S4"), #STC15W4KS4系列
}),
0xF529: ("15W", 1, {(0x29, 0x2B): ("4", "A4"), #STC15W4AS系列
}),
0xF52C: ("15W", 8, {(0x2C, 0x2E): ("1K", "PWM"), #STC15W1KPWM系列
}),
0xF52E: ("15W", 20, {(0x2E, 0x2F): ("1K", "S"), #STC15W1KS系列
}),
0xF52F: ("15W", 32, {(0x2F, 0x30): ("2K", "S2"), #STC15W2KS2系列
}),
0xF530: ("15W", 48, {(0x30, 0x31): ("2K", "S2"), #STC15W2KS2系列
}),
0xF531: ("15W", 32, {(0x31, 0x32): ("2K", "S2"), #STC15W2KS2系列
}),
0xF533: ("15W", 20, {(0x33, 0x34): ("1K", "S2"), #STC15W1KS2系列
}),
0xF534: ("15W", 32, {(0x34, 0x35): ("1K", "S2"), #STC15W1KS2系列
}),
0xF535: ("15W", 48, {(0x35, 0x36): ("1K", "S2"), #STC15W1KS2系列
}),
0xF544: ("15W", 5, {(0x44, 0x45): ("", "SW"), #STC15SW系列
}),
0xF554: ("15W", 5, {(0x54, 0x55): ("2", "S"), #STC15W2S系列
}),
0xF557: ("15W", 29, {(0x57, 0x58): ("1K", "S"), #STC15W1KS系列
}),
0xF55C: ("15W", 13, {(0x5C, 0x5D): ("4", "S"), #STC15W4S系列
}),
0xF568: ("15W", 58, {(0x68, 0x69): ("4K", "S4"), #STC15W4KS4系列
}),
0xF569: ("15W", 61, {(0x69, 0x6A): ("4K", "S4"), #STC15W4KS4系列
}),
0xF56C: ("15W", 58, {(0x6C, 0x6D): ("4K", "S4-Student"), #STC15W4KS4系列
}),
0xF57E: ("15U", 8, {(0x7E, 0x85): ("4K", "S4"), #STC15U4KS4系列
}),
0xF600: ("15H", 8, {(0x00, 0x08): ("4K", "S4"), #STC154K系列
}),
0xF620: ("8A", 8, {(0x20, 0x28): ("8K", "S4A12"), #STC8A8K系列
}),
0xF628: ("8A", 60, {(0x28, 0x29): ("8K", "S4A12"), #STC8A8K系列
}),
0xF630: ("8F", 8, {(0x30, 0x38): ("2K", "S4"), #STC8F2K系列
}),
0xF638: ("8F", 60, {(0x38, 0x39): ("2K", "S4"), #STC8F2K系列
}),
0xF640: ("8F", 8, {(0x40, 0x48): ("2K", "S2"), #STC8F2K系列
}),
0xF648: ("8F", 60, {(0x48, 0x49): ("2K", "S2"), #STC8F2K系列
}),
0xF650: ("8A", 8, {(0x50, 0x58): ("4K", "S2A12"), #STC8A4K系列
}),
0xF658: ("8A", 60, {(0x58, 0x59): ("4K", "S2A12"), #STC8A4K系列
}),
0xF660: ("8F", 2, {(0x60, 0x66): ("1K", "S2"), #STC8F1K系列
}),
0xF666: ("8F", 17, {(0x66, 0x67): ("1K", "S2"), #STC8F1K系列
}),
0xF670: ("8F", 2, {(0x70, 0x76): ("1K", ""), #STC8F1K系列
}),
0xF676: ("8F", 17, {(0x76, 0x77): ("1K", ""), #STC8F1K系列
}),
0xF700: ("8C", 2, {(0x00, 0x06): ("1K", ""), #STC8C系列
}),
0xF730: ("8H", 2, {(0x30, 0x36): ("1K", ""), #STC8H1K系列
}),
0xF736: ("8H", 17, {(0x36, 0x37): ("1K", ""), #STC8H1K系列
}),
0xF740: ("8H", 8, {(0x40, 0x42): ("3K", "S4"), #STC8H3K系列
}),
0xF742: ("8H", 60, {(0x42, 0x43): ("3K", "S4"), #STC8H3K系列
}),
0xF743: ("8H", 64, {(0x43, 0x44): ("3K", "S4"), #STC8H3K系列
}),
0xF748: ("8H", 16, {(0x48, 0x4A): ("3K", "S2"), #STC8H3K系列
}),
0xF74A: ("8H", 60, {(0x4A, 0x4B): ("3K", "S2"), #STC8H3K系列
}),
0xF74B: ("8H", 64, {(0x4B, 0x4C): ("3K", "S2"), #STC8H3K系列
}),
0xF750: ("8G", 2, {(0x50, 0x56): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF756: ("8G", 17, {(0x56, 0x57): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF760: ("8G", 16, {(0x60, 0x62): ("2K", "S4"), #STC8G2K系列
}),
0xF762: ("8G", 60, {(0x62, 0x63): ("2K", "S4"), #STC8G2K系列
}),
0xF763: ("8G", 64, {(0x63, 0x64): ("2K", "S4"), #STC8G2K系列
}),
0xF768: ("8G", 16, {(0x68, 0x6A): ("2K", "S2"), #STC8G2K系列
}),
0xF76A: ("8G", 60, {(0x6A, 0x6B): ("2K", "S2"), #STC8G2K系列
}),
0xF76B: ("8G", 64, {(0x6B, 0x6C): ("2K", "S2"), #STC8G2K系列
}),
0xF770: ("8G", 2, {(0x70, 0x76): ("1K", "T"), #STC8G2K系列
}),
0xF776: ("8G", 17, {(0x76, 0x77): ("1K", "T"), #STC8G2K系列
}),
0xF780: ("8H", 16, {(0x80, 0x82): ("8K", "U"), #STC8H8K系列
}),
0xF782: ("8H", 60, {(0x82, 0x83): ("8K", "U"), #STC8H8K系列
}),
0xF783: ("8H", 64, {(0x83, 0x84): ("8K", "U"), #STC8H8K系列
}),
0xF790: ("8G", 2, {(0x90, 0x96): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF796: ("8G", 17, {(0x96, 0x97): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF7A0: ("8G", 2, {(0xA0, 0xA6): ("1K", "-8PIN"), #STC8G1K系列
}),
0xF7A6: ("8G", 17, {(0xA6, 0xA7): ("1K", "-8PIN"), #STC8G1K系列
}),
}
iapmcu = ((0xD1, 0x3F), (0xD1, 0x5F), (0xD1, 0x7F), (0xF4, 0x4D), (0xF4, 0x99), (0xF4, 0xD9), (0xF5, 0x58),
(0xD2, 0x7E), (0xD2, 0xFE), (0xF4, 0x09), (0xF4, 0x59), (0xF4, 0xA9), (0xF4, 0xE9), (0xF5, 0x5D),
(0xD3, 0x5F), (0xD3, 0xDF), (0xF4, 0x19), (0xF4, 0x69), (0xF4, 0xC9), (0xF5, 0x45), (0xF5, 0x62),
(0xE2, 0x76), (0xE2, 0xF6), (0xF4, 0x49), (0xF4, 0x89), (0xF4, 0xCD), (0xF5, 0x55), (0xF5, 0x69),
(0xF5, 0x6A), (0xF5, 0x6D),
)
try:
model = tuple(model)
if self.model[0] in [0xF4, 0xF5, 0xF6, 0xF7]:
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
elif self.model[0] == 0xF2 and self.model[1] in range(0xA0, 0xA6):
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
self.protocol = PROTOCOL_15
else:
prefix, romratio, fixmap = modelmap[model[0]]
if model[0] in (0xF0, 0xF1) and 0x20 <= model[1] <= 0x30:
prefix = "90"
for key, value in fixmap.items():
if key[0] <= model[1] <= key[1]:
break
else:
raise KeyError()
infix, postfix = value
romsize = romratio * (model[1] - key[0])
try:
romsize = {(0xF0, 0x03): 13}[model]
except KeyError:
pass
if model[0] in (0xF0, 0xF1):
romfix = str(model[1] - key[0])
elif model[0] in (0xF2,):
romfix = str(romsize)
else:
romfix = "%02d" % romsize
name = "IAP" if model in iapmcu else "STC"
name += prefix + infix + romfix + postfix
return (name, romsize)
except KeyError:
return ("Unknown %02X %02X" % model, None)
def recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def first_recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
time.sleep(0.02) #加上20ms延时,增大接收成功率
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def send(self, cmd, dat):
buf = [0x46, 0xB9, 0x6A]
n = 1 + 2 + 1 + len(dat) + self.chkmode + 1
buf += [n >> 8, n & 0xFF, cmd]
buf += dat
chksum = sum(buf[2:])
if self.chkmode > 1:
buf += [(chksum >> 8) & 0xFF]
buf += [chksum & 0xFF, 0x16]
self.__conn_write(buf)
def detect(self):
for i in range(500):
try:
if self.protocol in [PROTOCOL_89,PROTOCOL_12C52,PROTOCOL_12Cx052,PROTOCOL_12C5A]:
self.__conn_write([0x7F,0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
else:
self.__conn_write([0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
break
except IOError:
pass
else:
raise IOError()
self.info = dat[16:]
self.version = "%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[1])
self.model = self.info[3:5]
self.name, self.romsize = self.__model_database(self.model)
logging.info("Model ID: %02X %02X" % tuple(self.model))
logging.info("Model name: %s" % self.name)
logging.info("ROM size: %s" % self.romsize)
if self.protocol is None:
try:
self.protocol = {0xF0: PROTOCOL_89, #STC89/90C5xRC
0xF1: PROTOCOL_89, #STC89/90C5xRD+
0xF2: PROTOCOL_12Cx052, #STC12Cx052
0xD1: PROTOCOL_12C5A, #STC12C5Ax
0xD2: PROTOCOL_12C5A, #STC10Fx
0xE1: PROTOCOL_12C52, #STC12C52x
0xE2: PROTOCOL_12C5A, #STC11Fx
0xE6: PROTOCOL_12C52, #STC12C56x
0xF4: PROTOCOL_15, #STC15系列
0xF5: PROTOCOL_15, #STC15系列
0xF6: PROTOCOL_8, #STC8系列
0xF7: PROTOCOL_8, #STC8系列
}[self.model[0]]
except KeyError:
pass
if self.protocol in PROTOSET_8:
self.fosc = (dat[0]*0x1000000 +dat[1]*0x10000+dat[2]*0x100) /1000000
self.internal_vol = (dat[34]*256+dat[35])
self.wakeup_fosc = (dat[22]*256+dat[23]) /1000
self.test_year = str(hex(dat[36])).replace("0x",'')
self.test_month = str(hex(dat[37])).replace("0x",'')
self.test_day = str(hex(dat[38])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
if dat[10] == 191:
self.det_low_vol = 2.2
else:
self.det_low_vol = (191 - dat[10])*0.3 + 2.1
elif self.protocol in PROTOSET_15:
self.fosc = (dat[7]*0x1000000 +dat[8]*0x10000+dat[9]*0x100) /1000000
self.wakeup_fosc = (dat[0]*256+dat[1]) /1000
self.internal_vol = (dat[34]*256+dat[35])
self.test_year = str(hex(dat[41])).replace("0x",'')
self.test_month = str(hex(dat[42])).replace("0x",'')
self.test_day = str(hex(dat[43])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
else:
self.fosc = (float(sum(dat[0:16:2]) * 256 + sum(dat[1:16:2])) / 8
* self.conn.baudrate / 580974)
if self.protocol in PROTOSET_PARITY or self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.chkmode = 2
self.conn.parity = serial.PARITY_EVEN
else:
self.chkmode = 1
self.conn.parity = serial.PARITY_NONE
if self.protocol is not None:
del self.info[-self.chkmode:]
logging.info("Protocol ID: %s" % self.protocol)
logging.info("Checksum mode: %d" % self.chkmode)
logging.info("UART Parity: %s"
% {serial.PARITY_NONE: "NONE",
serial.PARITY_EVEN: "EVEN",
}[self.conn.parity])
for i in range(0, len(self.info), 16):
logging.info("Info string [%d]: %s"
% (i // 16,
" ".join(["%02X" % j for j in self.info[i:i+16]])))
def print_info(self):
print("系统时钟频率: %.3fMHz" % self.fosc)
if self.protocol in PROTOSET_8:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("低压检测电压: %.1f V" %self.det_low_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
if self.protocol in PROTOSET_15:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
print("单片机型号: %s" % self.name)
print("固件版本号: %s" % self.version)
if self.romsize is not None:
print("程序空间: %dKB" % self.romsize)
if self.protocol == PROTOCOL_89:
switches = [( 2, 0x80, "Reset stops "),
( 2, 0x40, "Internal XRAM"),
( 2, 0x20, "Normal ALE pin"),
( 2, 0x10, "Full gain oscillator"),
( 2, 0x08, "Not erase data EEPROM"),
( 2, 0x04, "Download regardless of P1"),
( 2, 0x01, "12T mode")]
elif self.protocol == PROTOCOL_12C5A:
switches = [( 6, 0x40, "Disable reset2 low level detect"),
( 6, 0x01, "Reset pin not use as I/O port"),
( 7, 0x80, "Disable long power-on-reset latency"),
( 7, 0x40, "Oscillator high gain"),
( 7, 0x02, "External system clock source"),
( 8, 0x20, "WDT disable after power-on-reset"),
( 8, 0x04, "WDT count in idle mode"),
(10, 0x02, "Not erase data EEPROM"),
(10, 0x01, "Download regardless of P1")]
print(" WDT prescal: %d" % 2**((self.info[8] & 0x07) + 1))
elif self.protocol in PROTOSET_12B:
switches = [(8, 0x02, "Not erase data EEPROM")]
else:
switches = []
for pos, bit, desc in switches:
print(" [%c] %s" % ("X" if self.info[pos] & bit else " ", desc))
def handshake(self):
baud0 = self.conn.baudrate
if self.protocol in PROTOSET_8:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(24.0 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(24.0 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value = 0x7B
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value = 0xB0
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value = 0x5A
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value = 0x35
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value = 0x7B
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value = 0x5A
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value = 0x1A
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value = 0x12
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value = 0x5A
else:
foc_value = 0x6B
baudstr = [0x00, 0x00, Timer1_value >> 8, Timer1_value & 0xff, 0x01, foc_value, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
elif self.protocol in PROTOSET_15:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(22.1184 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(22.1184 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value_1 = 0x40
foc_value_2 = 0x9F
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value_1 = 0x40
foc_value_2 = 0xDC
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value_1 = 0x40
foc_value_2 = 0x79
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value_1 = 0x40
foc_value_2 = 0x4F
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value_1 = 0x80
foc_value_2 = 0xA2
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value_1 = 0x80
foc_value_2 = 0x7D
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value_1 = 0x40
foc_value_2 = 0x31
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value_1 = 0xC0
foc_value_2 = 0x9f
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value_1 = 0xC0
foc_value_2 = 0x7B
baudstr = [0x6d, 0x40, Timer1_value >> 8, Timer1_value & 0xff, foc_value_1,foc_value_2, 0x81]
#baudstr = [0x6b, 0x40, 0xff,0xf4, 0x40,0x92, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
else:
for baud in [115200, 57600, 38400, 28800, 19200,
14400, 9600, 4800, 2400, 1200]:
t = self.fosc * 1000000 / baud / 32
if self.protocol not in PROTOSET_89:
t *= 2
if abs(round(t) - t) / t > 0.03:
continue
if self.protocol in PROTOSET_89:
tcfg = 0x10000 - int(t + 0.5)
else:
if t > 0xFF:
continue
tcfg = 0xC000 + 0x100 - int(t + 0.5)
baudstr = [tcfg >> 8,
tcfg & 0xFF,
0xFF - (tcfg >> 8),
min((256 - (tcfg & 0xFF)) * 2, 0xFE),
int(baud0 / 60)]
logging.info("Test baudrate %d (accuracy %0.4f) using config %s"
% (baud,
abs(round(t) - t) / t,
" ".join(["%02X" % i for i in baudstr])))
if self.protocol in PROTOSET_89:
freqlist = (40, 20, 10, 5)
else:
freqlist = (30, 24, 20, 12, 6, 3, 2, 1)
for twait in range(0, len(freqlist)):
if self.fosc > freqlist[twait]:
break
logging.info("Waiting time config %02X" % (0x80 + twait))
self.send(0x8F, baudstr + [0x80 + twait])
try:
self.__conn_baudrate(baud)
cmd, dat = self.recv()
break
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
else:
raise IOError()
logging.info("Change baudrate to %d" % baud)
self.send(0x8E, baudstr)
self.__conn_baudrate(baud)
self.baudrate = baud
cmd, dat = self.recv()
def erase(self):
if self.protocol in PROTOSET_89:
self.send(0x84, [0x01, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33])
cmd, dat = self.recv(10)
assert cmd == 0x80
elif self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0x05, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
self.send(0x03, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
for i in range(7):
dat[i] = hex(dat[i])
dat[i] = str(dat[i])
dat[i] = dat[i].replace("0x",'')
if len(dat[i]) == 1:
dat_value = list(dat[i])
dat_value.insert(0, '0')
dat[i] = ''.join(dat_value)
serial_number = ""
for i in dat:
serial_number = serial_number +str(i)
self.serial_number = str(serial_number)
print("\r")
sys.stdout.write("芯片出厂序列号: ")
sys.stdout.write(self.serial_number.upper())
sys.stdout.flush()
print("\r")
else:
self.send(0x84, ([0x00, 0x00, self.romsize * 4,
0x00, 0x00, self.romsize * 4]
+ [0x00] * 12
+ [i for i in range(0x80, 0x0D, -1)]))
cmd, dat = self.recv(10)
if dat:
logging.info("Serial number: "
+ " ".join(["%02X" % j for j in dat]))
def flash(self, code):
code = list(code) + [0xff] * (511 - (len(code) - 1) % 512)
for i in range(0, len(code), 128):
logging.info("Flash code region (%04X, %04X)" % (i, i + 127))
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
flag_test = 1
addr = [i >> 8, i & 0xFF, 0x5A, 0xA5]
if flag_test == 1:
self.send(0x22, addr + code[i:i+128])
flag_test = 10
else:
self.send(0x02, addr + code[i:i+128])
else:
addr = [0, 0, i >> 8, i & 0xFF, 0, 128]
self.send(0x00, addr + code[i:i+128])
cmd, dat = self.recv()
#assert dat[0] == sum(code[i:i+128]) % 256
yield (i + 128.0) / len(code)
def options(self, **kwargs):
erase_eeprom = kwargs.get("erase_eeprom", None)
dat = []
fosc = list(bytearray(struct.pack(">I", int(self.fosc * 1000000))))
if self.protocol == PROTOCOL_89:
if erase_eeprom is not None:
self.info[2] &= 0xF7
self.info[2] |= 0x00 if erase_eeprom else 0x08
dat = self.info[2:3] + [0xFF]*3
elif self.protocol == PROTOCOL_12C5A:
if erase_eeprom is not None:
self.info[10] &= 0xFD
self.info[10] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:9] + [0xFF]*5 + self.info[10:11]
+ [0xFF]*6 + fosc)
elif self.protocol in PROTOSET_12B:
if erase_eeprom is not None:
self.info[8] &= 0xFD
self.info[8] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:11] + fosc + self.info[12:16] + [0xFF]*4
+ self.info[8:9] + [0xFF]*7 + fosc + [0xFF]*3)
elif erase_eeprom is not None:
logging.info("Modifying options is not supported for this target")
return False
if dat:
self.send(0x8D, dat)
cmd, dat = self.recv()
return True
def terminate(self):
logging.info("Send termination command")
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0xFF, [])
else:
self.send(0x82, [])
self.conn.flush()
time.sleep(0.2)
def unknown_packet_1(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (50 00 00 36 01 ...)")
self.send(0x50, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8F and not dat
def unknown_packet_2(self):
if self.protocol not in PROTOSET_PARITY and self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
for i in range(5):
logging.info("Send unknown packet (80 00 00 36 01 ...)")
self.send(0x80, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x80 and not dat
def unknown_packet_3(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (69 00 00 36 01 ...)")
self.send(0x69, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8D and not dat
def autoisp(conn, baud, magic):
if not magic:
return
bak = conn.baudrate
conn.baudrate = baud
conn.write(bytearray(ord(i) for i in magic))
conn.flush()
time.sleep(0.5)
conn.baudrate = bak
def program(prog, code, erase_eeprom=None):
sys.stdout.write("检测目标...")
sys.stdout.flush()
prog.detect()
print("完成")
prog.print_info()
if prog.protocol is None:
raise IOError("未知目标")
if code is None:
return
prog.unknown_packet_1()
sys.stdout.write("切换至最高波特率: ")
sys.stdout.flush()
prog.handshake()
print("%d bps"% prog.baudrate)
prog.unknown_packet_2()
sys.stdout.write("开始擦除芯片...")
sys.stdout.flush()
time_start = time.time()
prog.erase()
print("擦除完成")
print("代码长度: %d bytes" % len(code))
# print("Programming: ", end="", flush=True)
sys.stdout.write("正在下载用户代码...")
sys.stdout.flush()
oldbar = 0
for progress in prog.flash(code):
bar = int(progress * 25)
sys.stdout.write("#" * (bar - oldbar))
sys.stdout.flush()
oldbar = bar
print(" 完成")
prog.unknown_packet_3()
sys.stdout.write("设置选项...")
sys.stdout.flush()
if prog.options(erase_eeprom=erase_eeprom):
print("设置完成")
else:
print("设置失败")
prog.terminate()
time_end = time.time()
print("耗时: %.3fs"% (time_end-time_start))
# Convert Intel HEX code to binary format
def hex2bin(code):
buf = bytearray()
base = 0
line = 0
for rec in code.splitlines():
# Calculate the line number of the current record
line += 1
try:
# bytes(...) is to support python<=2.6
# bytearray(...) is to support python<=2.7
n = bytearray(binascii.a2b_hex(bytes(rec[1:3])))[0]
dat = bytearray(binascii.a2b_hex(bytes(rec[1:n*2+11])))
except:
raise Exception("Line %d: Invalid format" % line)
if rec[0] != ord(":"):
raise Exception("Line %d: Missing start code \":\"" % line)
if sum(dat) & 0xFF != 0:
raise Exception("Line %d: Incorrect checksum" % line)
if dat[3] == 0: # Data record
addr = base + (dat[1] << 8) + dat[2]
# Allocate memory space and fill it with 0xFF
buf[len(buf):] = [0xFF] * (addr + n - len(buf))
# Copy data to the buffer
buf[addr:addr+n] = dat[4:-1]
elif dat[3] == 1: # EOF record
if n != 0:
raise Exception("Line %d: Incorrect data length" % line)
elif dat[3] == 2: # Extended segment address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 4
elif dat[3] == 4: # Extended linear address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 16
else:
raise Exception("Line %d: Unsupported record type" % line)
return buf
def stc_type_map(type, value):
if type == 0xF6:
if value in range(0x01,0x09):
return 0xF600
elif value in range(0x21,0x29):
return 0xF620
elif value == 0x29:
return 0xF628
elif value in range(0x31,0x39):
return 0xF630
elif value == 0x39:
return 0xF638
elif value in range(0x41,0x49):
return 0xF640
elif value == 0x49:
return 0xF648
elif value in range(0x51,0x59):
return 0xF650
elif value == 0x59:
return 0xF658
elif value in range(0x61,0x67):
return 0xF660
elif value == 0x67:
return 0xF666
elif value in range(0x71,0x77):
return 0xF670
elif value == 0x77:
return 0xF676
if type == 0xF7:
if value in range(0x01,0x07):
return 0xF700
elif value in range(0x31,0x37):
return 0xF730
elif value == 0x37:
return 0xF736
elif value in range(0x41,0x43):
return 0xF740
elif value == 0x43:
return 0xF742
elif value == 0x44:
return 0xF743
elif value in range(0x49,0x4B):
return 0xF748
elif value == 0x4B:
return 0xF74A
elif value == 0x4C:
return 0xF74B
elif value in range(0x51,0x57):
return 0xF750
elif value == 0x57:
return 0xF756
elif value in range(0x61,0x63):
return 0xF760
elif value == 0x63:
return 0xF762
elif value == 0x64:
return 0xF763
elif value in range(0x69,0x6B):
return 0xF768
elif value == 0x6B:
return 0xF76A
elif value == 0x6C:
return 0xF76B
elif value in range(0x71,0x77):
return 0xF770
elif value == 0x77:
return 0xF776
elif value in range(0x81,0x83):
return 0xF780
elif value == 0x83:
return 0xF782
elif value == 0x84:
return 0xF783
elif value in range(0x91,0x97):
return 0xF790
elif value == 0x97:
return 0xF796
elif value in range(0xA1,0xA7):
return 0xF7A0
elif value == 0xA7:
return 0xF7A6
if type == 0xF4:
if value in range(0x01,0x08):
return 0xF400
elif value == 0x08:
return 0xF407
elif value == 0x09:
return 0xF408
elif value in range(0x0A,0x0D):
return 0xF409
elif value in range(0x11,0x18):
return 0xF410
elif value == 0x18:
return 0xF417
elif value == 0x19:
return 0xF418
elif value in range(0x21,0x28):
return 0xF420
elif value == 0x28:
return 0xF427
elif value == 0x29:
return 0xF428
elif value in range(0x41,0x48):
return 0xF440
elif value == 0x48:
return 0xF447
elif value == 0x49:
return 0xF448
elif value == 0x4D:
return 0xF44C
elif value in range(0x51,0x57):
return 0xF450
elif value == 0x58:
return 0xF457
elif value == 0x59:
return 0xF458
elif value in range(0x61,0x68):
return 0xF460
elif value == 0x68:
return 0xF467
elif value == 0x69:
return 0xF468
elif value in range(0x81,0x88):
return 0xF480
elif value == 0x88:
return 0xF487
elif value == 0x89:
return 0xF488
elif value in range(0x8A,0x8D):
return 0xF489
elif value in range(0x91,0x98):
return 0xF490
elif value == 0x98:
return 0xF497
elif value == 0x99:
return 0xF498
elif value in range(0xA1,0xA8):
return 0xF4A0
elif value == 0xA8:
return 0xF4A7
elif value == 0xA9:
return 0xF4A8
elif value in range(0xC1,0xC8):
return 0xF4C0
elif value == 0xC8:
return 0xF4C7
elif value == 0xC9:
return 0xF4C8
elif value == 0xCD:
return 0xF4CC
elif value in range(0xD1,0xD8):
return 0xF4D0
elif value == 0xD8:
return 0xF4D7
elif value == 0xD9:
return 0xF4D8
elif value in range(0xE1,0xE8):
return 0xF4E0
elif value == 0xE8:
return 0xF4E7
elif value == 0xE9:
return 0xF4E8
if type == 0xF5:
if value in range(0x01,0x05):
return 0xF500
elif value in range(0x08,0x0C):
return 0xF507
elif value in range(0x11,15):
return 0xF510
elif value in range(0x15,0x18):
return 0xF514
elif value in range(0x19,0x1B):
return 0xF518
elif value in range(0x1B,0x1D):
return 0xF51A
elif value in range(0x1D,0x20):
return 0xF51C
elif value == 0x20:
return 0xF51F
elif value == 0x21:
return 0xF520
elif value == 0x23:
return 0xF522
elif value == 0x24:
return 0xF523
elif value == 0x25:
return 0xF524
elif value == 0x26:
return 0xF525
elif value == 0x27:
return 0xF526
elif value == 0x28:
return 0xF527
elif value in range(0x2A,0x2C):
return 0xF529
elif value in range(0x2D,0x2F):
return 0xF52C
elif value == 0x2F:
return 0xF52E
elif value == 0x30:
return 0xF52F
elif value == 0x31:
return 0xF530
elif value == 0x32:
return 0xF531
elif value == 0x34:
return 0xF533
elif value == 0x35:
return 0xF534
elif value == 0x36:
return 0xF535
elif value == 0x45:
return 0xF544
elif value == 0x55:
return 0xF554
elif value == 0x58:
return 0xF557
elif value == 0x5D:
return 0xF55C
elif value == 0x69:
return 0xF568
elif value == 0x6A:
return 0xF569
elif value == 0x6D:
return 0xF56C
elif value in range(0x7F,0x86):
return 0xF57E
if type == 0xF2:
if value in range(0xA0,0xA6):
return 0xF2A0
def main():
if sys.platform == "win32":
port = "COM3"
elif sys.platform == "darwin":
port = "/dev/tty.usbserial"
else:
port = "/dev/ttyUSB0"
parser = argparse.ArgumentParser(
description=("Stcflash, a command line programmer for "
+ "STC 8051 microcontroller.\n"
+ "https://github.com/laborer/stcflash"))
parser.add_argument("image",
help="code image (bin/hex)",
type=argparse.FileType("rb"), nargs='?')
parser.add_argument("-p", "--port",
help="serial port device (default: %s)" % port,
default=port)
parser.add_argument("-l", "--lowbaud",
help="initial baud rate (default: 2400)",
type=int,
default=2400)
parser.add_argument("-hb", "--highbaud",
help="initial baud rate (default: 115200)",
type=int,
default=115200)
parser.add_argument("-r", "--protocol",
help="protocol to use for programming",
choices=["89", "12c5a", "12c52", "12cx052", "8", "15", "auto"],
default="auto")
parser.add_argument("-a", "--aispbaud",
help="baud rate for AutoISP (default: 4800)",
type=int,
default=4800)
parser.add_argument("-m", "--aispmagic",
help="magic word for AutoISP")
parser.add_argument("-v", "--verbose",
help="be verbose",
default=0,
action="count")
parser.add_argument("-e", "--erase_eeprom",
help=("erase data eeprom during next download"
+"(experimental)"),
action="store_true")
parser.add_argument("-ne", "--not_erase_eeprom",
help=("do not erase data eeprom next download"
+"(experimental)"),
action="store_true")
opts = parser.parse_args()
opts.loglevel = (logging.CRITICAL,
logging.INFO,
logging.DEBUG)[min(2, opts.verbose)]
opts.protocol = {'89': PROTOCOL_89,
'12c5a': PROTOCOL_12C5A,
'12c52': PROTOCOL_12C52,
'12cx052': PROTOCOL_12Cx052,
'8': PROTOCOL_8,
'15': PROTOCOL_15,
'auto': None}[opts.protocol]
if not opts.erase_eeprom and not opts.not_erase_eeprom:
opts.erase_eeprom = None
logging.basicConfig(format=("%(levelname)s: "
+ "[%(relativeCreated)d] "
+ "%(message)s"),
level=opts.loglevel)
if opts.image:
code = bytearray(opts.image.read())
opts.image.close()
if os.path.splitext(opts.image.name)[1] in (".hex", ".ihx"):
code = hex2bin(code)
else:
code = None
print("通信端口:%s 最低波特率:%d bps" % (opts.port, opts.lowbaud))
global highbaud_pre
highbaud_pre = opts.highbaud
with serial.Serial(port=opts.port,
baudrate=opts.lowbaud,
parity=serial.PARITY_NONE) as conn:
if opts.aispmagic:
autoisp(conn, opts.aispbaud, opts.aispmagic)
program(Programmer(conn, opts.protocol), code, opts.erase_eeprom)
if __name__ == "__main__":
main()
|
2301_77966824/51-microcontroller-learning
|
2024/10/Hello-template/tools/stcflash.py
|
Python
|
unknown
| 57,810
|
#include "Com_Util.h"
#include <INTRINS.H>
void Com_Util_Delay1ms(u16 count)
{
u8 i,j;
while (count>0)
{
count--;
_nop_();
i=2;
j=199;
do
{
while(--j);
} while (--i);
}
}
|
2301_77966824/51-microcontroller-learning
|
2024/template/src/Com/Com_Util.c
|
C
|
unknown
| 198
|
#include <Int_digitalTube.h>
void main()
{
while(1)
{
}
}
|
2301_77966824/51-microcontroller-learning
|
2024/template/src/main.c
|
C
|
unknown
| 60
|
#!/usr/bin/env python
#coding=utf-8
# stcflash Copyright (C) 2013 laborer (laborer@126.com)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import time
import logging
import sys
import serial
import os.path
import binascii
import struct
import argparse
PROTOCOL_89 = "89"
PROTOCOL_12C5A = "12c5a"
PROTOCOL_12C52 = "12c52"
PROTOCOL_12Cx052 = "12cx052"
PROTOCOL_8 = "8"
PROTOCOL_15 = '15'
PROTOSET_89 = [PROTOCOL_89]
PROTOSET_12 = [PROTOCOL_12C5A, PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_12B = [PROTOCOL_12C52, PROTOCOL_12Cx052]
PROTOSET_8 = [PROTOCOL_8]
PROTOSET_15 = [PROTOCOL_15]
PROTOSET_PARITY = [PROTOCOL_12C5A, PROTOCOL_12C52]
class Programmer:
def __init__(self, conn, protocol=None):
self.conn = conn
self.protocol = protocol
self.conn.timeout = 0.05
if self.protocol in PROTOSET_PARITY:
self.conn.parity = serial.PARITY_EVEN
else:
self.conn.parity = serial.PARITY_NONE
self.chkmode = 0
def __conn_read(self, size):
buf = bytearray()
while len(buf) < size:
s = bytearray(self.conn.read(size - len(buf)))
buf += s
logging.debug("recv: " + " ".join(["%02X" % i for i in s]))
if len(s) == 0:
raise IOError()
return list(buf)
def __conn_write(self, s):
logging.debug("send: " + " ".join(["%02X" % i for i in s]))
self.conn.write(bytearray(s))
def __conn_baudrate(self, baud, flush=True):
logging.debug("baud: %d" % baud)
if flush:
if self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
self.conn.flush()
time.sleep(0.2)
self.conn.baudrate = baud
def __model_database(self, model):
modelmap = {0xE0: ("12", 1, {(0x00, 0x1F): ("C54", ""),
(0x60, 0x7F): ("C54", "AD"),
(0x80, 0x9F): ("LE54", ""),
(0xE0, 0xFF): ("LE54", "AD"),
}),
0xE1: ("12", 1, {(0x00, 0x1F): ("C52", ""),
(0x20, 0x3F): ("C52", "PWM"),
(0x60, 0x7F): ("C52", "AD"),
(0x80, 0x9F): ("LE52", ""),
(0xA0, 0xBF): ("LE52", "PWM"),
(0xE0, 0xFF): ("LE52", "AD"),
}),
0xE2: ("11", 1, {(0x00, 0x1F): ("F", ""),
(0x20, 0x3F): ("F", "E"),
(0x70, 0x7F): ("F", ""),
(0x80, 0x9F): ("L", ""),
(0xA0, 0xBF): ("L", "E"),
(0xF0, 0xFF): ("L", ""),
}),
0xE6: ("12", 1, {(0x00, 0x1F): ("C56", ""),
(0x60, 0x7F): ("C56", "AD"),
(0x80, 0x9F): ("LE56", ""),
(0xE0, 0xFF): ("LE56", "AD"),
}),
0xD1: ("12", 2, {(0x20, 0x3F): ("C5A", "CCP"),
(0x40, 0x5F): ("C5A", "AD"),
(0x60, 0x7F): ("C5A", "S2"),
(0xA0, 0xBF): ("LE5A", "CCP"),
(0xC0, 0xDF): ("LE5A", "AD"),
(0xE0, 0xFF): ("LE5A", "S2"),
}),
0xD2: ("10", 1, {(0x00, 0x0F): ("F", ""),
(0x60, 0x6F): ("F", "XE"),
(0x70, 0x7F): ("F", "X"),
(0xA0, 0xAF): ("L", ""),
(0xE0, 0xEF): ("L", "XE"),
(0xF0, 0xFF): ("L", "X"),
}),
0xD3: ("11", 2, {(0x00, 0x1F): ("F", ""),
(0x40, 0x5F): ("F", "X"),
(0x60, 0x7F): ("F", "XE"),
(0xA0, 0xBF): ("L", ""),
(0xC0, 0xDF): ("L", "X"),
(0xE0, 0xFF): ("L", "XE"),
}),
0xF0: ("89", 4, {(0x00, 0x10): ("C5", "RC"),
(0x20, 0x30): ("C5", "RC"), #STC90C5xRC
}),
0xF1: ("89", 4, {(0x00, 0x10): ("C5", "RD+"),
(0x20, 0x30): ("C5", "RD+"), #STC90C5xRD+
}),
0xF2: ("12", 1, {(0x00, 0x0F): ("C", "052"),
(0x10, 0x1F): ("C", "052AD"),
(0x20, 0x2F): ("LE", "052"),
(0x30, 0x3F): ("LE", "052AD"),
}),
0xF2A0: ("15W", 1, {(0xA0, 0xA5): ("1", ""), #STC15W1系列
}),
0xF400: ("15F", 8, {(0x00, 0x07): ("2K", "S2"), #STC15F2K系列
}),
0xF407: ("15F", 60, {(0x07, 0x08): ("2K", "S2"), #STC15F2K系列
}),
0xF408: ("15F", 61, {(0x08, 0x09): ("2K", "S2"), #STC15F2K系列
}),
0xF400: ("15F", 4, {(0x09, 0x0C): ("4", "AD"), #STC15FAD系列
}),
0xF410: ("15F", 8, {(0x10, 0x17): ("1K", "AS"), #STC15F1KAS系列
}),
0xF417: ("15F", 60, {(0x17, 0x18): ("1K", "AS"), #STC15F1KAS系列
}),
0xF418: ("15F", 61, {(0x18, 0x19): ("1K", "AS"), #STC15F1KAS系列
}),
0xF420: ("15F", 8, {(0x20, 0x27): ("1K", "S"), #STC15F1KS系列
}),
0xF427: ("15F", 60, {(0x27, 0x28): ("1K", "S"), #STC15F1KS系列
}),
0xF440: ("15F", 8, {(0x40, 0x47): ("1K", "S2"), #STC15F1KS2系列
}),
0xF447: ("15F", 60, {(0x47, 0x48): ("1K", "S2"), #STC15F1KS2系列
}),
0xF448: ("15F", 61, {(0x48, 0x49): ("1K", "S2"), #STC15F1KS2系列
}),
0xF44C: ("15F", 13, {(0x4C, 0x4D): ("4", "AD"),
}),
0xF450: ("15F", 8, {(0x50, 0x57): ("1K", "AS"), #STC15F1KAS系列
}),
0xF457: ("15F", 60, {(0x57, 0x58): ("1K", "AS"), #STC15F1KAS系列
}),
0xF458: ("15F", 61, {(0x58, 0x59): ("1K", "AS"), #STC15F1KAS系列
}),
0xF460: ("15F", 8, {(0x60, 0x67): ("1K", "S"), #STC15F1KS系列
}),
0xF467: ("15F", 60, {(0x67, 0x68): ("1K", "S"), #STC15F1KS系列
}),
0xF468: ("15F", 61, {(0x68, 0x69): ("1K", "S"), #STC15F1KS系列
}),
0xF480: ("15L", 8, {(0x80, 0x87): ("2K", "S2"), #STC15L2KS2系列
}),
0xF487: ("15L", 60, {(0x87, 0x88): ("2K", "S2"), #STC15L2KS2系列
}),
0xF488: ("15L", 61, {(0x88, 0x89): ("2K", "S2"), #STC15L2KS2系列
}),
0xF489: ("15L", 5, {(0x89, 0x8C): ("4", "AD"), #STC15L4AD系列
}),
0xF490: ("15L", 8, {(0x90, 0x97): ("2K", "AS"), #STC15L2KAS系列
}),
0xF497: ("15L", 60, {(0x97, 0x98): ("2K", "AS"), #STC15L2KAS系列
}),
0xF498: ("15L", 61, {(0x98, 0x99): ("2K", "AS"), #STC15L2KAS系列
}),
0xF4A0: ("15L", 8, {(0xA0, 0xA7): ("2K", "S"), #STC15L2KS系列
}),
0xF4A7: ("15L", 60, {(0xA7, 0xA8): ("2K", "S"), #STC15L2KS系列
}),
0xF4A8: ("15L", 61, {(0xA8, 0xA9): ("2K", "S"), #STC15L2KS系列
}),
0xF4C0: ("15L", 8, {(0xC0, 0xC7): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C7: ("15L", 60, {(0xC7, 0xC8): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4C8: ("15L", 61, {(0xC8, 0xC9): ("1K", "S2"), #STC15L1KS2系列
}),
0xF4CC: ("15L", 13, {(0xCC, 0xCD): ("4", "AD"),
}),
0xF4D0: ("15L", 8, {(0xD0, 0xD7): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D7: ("15L", 60, {(0xD7, 0xD8): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4D8: ("15L", 61, {(0xD8, 0xD9): ("1K", "AS"), #STC15L1KS2系列
}),
0xF4E0: ("15L", 8, {(0xE0, 0xE7): ("1K", "S"), #STC15L1KS系列
}),
0xF4E7: ("15L", 60, {(0xE7, 0xE8): ("1K", "S"), #STC15L1KS系列
}),
0xF4E8: ("15L", 61, {(0xE8, 0xE9): ("1K", "S"), #STC15L1KS系列
}),
0xF500: ("15W", 1, {(0x00, 0x04): ("1", "SW"), #STC15W1SW系列
}),
0xF507: ("15W", 1, {(0x07, 0x0B): ("1", "S"), #STC15W1S系列
}),
0xF510: ("15W", 1, {(0x10, 0x14): ("2", "S"), #STC15W2S系列
}),
0xF514: ("15W", 8, {(0x14, 0x17): ("1K", "S"), #STC15W1KS系列
}),
0xF518: ("15W", 4, {(0x18, 0x1A): ("4", "S"), #STC15W4S系列
}),
0xF51A: ("15W", 4, {(0x1A, 0x1C): ("4", "S"), #STC15W4S系列
}),
0xF51C: ("15W", 4, {(0x1C, 0x1F): ("4", "AS"), #STC15W4AS系列
}),
0xF51F: ("15W", 10, {(0x19, 0x20): ("4", "AS"), #STC15W4AS系列
}),
0xF520: ("15W", 12, {(0x20, 0x21): ("4", "AS"), #STC15W4AS系列
}),
0xF522: ("15W", 16, {(0x22, 0x23): ("4K", "S4"), #STC15W4KS4系列
}),
0xF523: ("15W",24, {(0x23, 0x24): ("4K", "S4"), #STC15W4KS4系列
}),
0xF524: ("15W", 32, {(0x24, 0x25): ("4K", "S4"), #STC15W4KS4系列
}),
0xF525: ("15W", 40, {(0x25, 0x26): ("4K", "S4"), #STC15W4KS4系列
}),
0xF526: ("15W", 48, {(0x26, 0x27): ("4K", "S4"), #STC15W4KS4系列
}),
0xF527: ("15W", 56, {(0x27, 0x28): ("4K", "S4"), #STC15W4KS4系列
}),
0xF529: ("15W", 1, {(0x29, 0x2B): ("4", "A4"), #STC15W4AS系列
}),
0xF52C: ("15W", 8, {(0x2C, 0x2E): ("1K", "PWM"), #STC15W1KPWM系列
}),
0xF52E: ("15W", 20, {(0x2E, 0x2F): ("1K", "S"), #STC15W1KS系列
}),
0xF52F: ("15W", 32, {(0x2F, 0x30): ("2K", "S2"), #STC15W2KS2系列
}),
0xF530: ("15W", 48, {(0x30, 0x31): ("2K", "S2"), #STC15W2KS2系列
}),
0xF531: ("15W", 32, {(0x31, 0x32): ("2K", "S2"), #STC15W2KS2系列
}),
0xF533: ("15W", 20, {(0x33, 0x34): ("1K", "S2"), #STC15W1KS2系列
}),
0xF534: ("15W", 32, {(0x34, 0x35): ("1K", "S2"), #STC15W1KS2系列
}),
0xF535: ("15W", 48, {(0x35, 0x36): ("1K", "S2"), #STC15W1KS2系列
}),
0xF544: ("15W", 5, {(0x44, 0x45): ("", "SW"), #STC15SW系列
}),
0xF554: ("15W", 5, {(0x54, 0x55): ("2", "S"), #STC15W2S系列
}),
0xF557: ("15W", 29, {(0x57, 0x58): ("1K", "S"), #STC15W1KS系列
}),
0xF55C: ("15W", 13, {(0x5C, 0x5D): ("4", "S"), #STC15W4S系列
}),
0xF568: ("15W", 58, {(0x68, 0x69): ("4K", "S4"), #STC15W4KS4系列
}),
0xF569: ("15W", 61, {(0x69, 0x6A): ("4K", "S4"), #STC15W4KS4系列
}),
0xF56C: ("15W", 58, {(0x6C, 0x6D): ("4K", "S4-Student"), #STC15W4KS4系列
}),
0xF57E: ("15U", 8, {(0x7E, 0x85): ("4K", "S4"), #STC15U4KS4系列
}),
0xF600: ("15H", 8, {(0x00, 0x08): ("4K", "S4"), #STC154K系列
}),
0xF620: ("8A", 8, {(0x20, 0x28): ("8K", "S4A12"), #STC8A8K系列
}),
0xF628: ("8A", 60, {(0x28, 0x29): ("8K", "S4A12"), #STC8A8K系列
}),
0xF630: ("8F", 8, {(0x30, 0x38): ("2K", "S4"), #STC8F2K系列
}),
0xF638: ("8F", 60, {(0x38, 0x39): ("2K", "S4"), #STC8F2K系列
}),
0xF640: ("8F", 8, {(0x40, 0x48): ("2K", "S2"), #STC8F2K系列
}),
0xF648: ("8F", 60, {(0x48, 0x49): ("2K", "S2"), #STC8F2K系列
}),
0xF650: ("8A", 8, {(0x50, 0x58): ("4K", "S2A12"), #STC8A4K系列
}),
0xF658: ("8A", 60, {(0x58, 0x59): ("4K", "S2A12"), #STC8A4K系列
}),
0xF660: ("8F", 2, {(0x60, 0x66): ("1K", "S2"), #STC8F1K系列
}),
0xF666: ("8F", 17, {(0x66, 0x67): ("1K", "S2"), #STC8F1K系列
}),
0xF670: ("8F", 2, {(0x70, 0x76): ("1K", ""), #STC8F1K系列
}),
0xF676: ("8F", 17, {(0x76, 0x77): ("1K", ""), #STC8F1K系列
}),
0xF700: ("8C", 2, {(0x00, 0x06): ("1K", ""), #STC8C系列
}),
0xF730: ("8H", 2, {(0x30, 0x36): ("1K", ""), #STC8H1K系列
}),
0xF736: ("8H", 17, {(0x36, 0x37): ("1K", ""), #STC8H1K系列
}),
0xF740: ("8H", 8, {(0x40, 0x42): ("3K", "S4"), #STC8H3K系列
}),
0xF742: ("8H", 60, {(0x42, 0x43): ("3K", "S4"), #STC8H3K系列
}),
0xF743: ("8H", 64, {(0x43, 0x44): ("3K", "S4"), #STC8H3K系列
}),
0xF748: ("8H", 16, {(0x48, 0x4A): ("3K", "S2"), #STC8H3K系列
}),
0xF74A: ("8H", 60, {(0x4A, 0x4B): ("3K", "S2"), #STC8H3K系列
}),
0xF74B: ("8H", 64, {(0x4B, 0x4C): ("3K", "S2"), #STC8H3K系列
}),
0xF750: ("8G", 2, {(0x50, 0x56): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF756: ("8G", 17, {(0x56, 0x57): ("1K", "-20/16pin"), #STC8G1K系列
}),
0xF760: ("8G", 16, {(0x60, 0x62): ("2K", "S4"), #STC8G2K系列
}),
0xF762: ("8G", 60, {(0x62, 0x63): ("2K", "S4"), #STC8G2K系列
}),
0xF763: ("8G", 64, {(0x63, 0x64): ("2K", "S4"), #STC8G2K系列
}),
0xF768: ("8G", 16, {(0x68, 0x6A): ("2K", "S2"), #STC8G2K系列
}),
0xF76A: ("8G", 60, {(0x6A, 0x6B): ("2K", "S2"), #STC8G2K系列
}),
0xF76B: ("8G", 64, {(0x6B, 0x6C): ("2K", "S2"), #STC8G2K系列
}),
0xF770: ("8G", 2, {(0x70, 0x76): ("1K", "T"), #STC8G2K系列
}),
0xF776: ("8G", 17, {(0x76, 0x77): ("1K", "T"), #STC8G2K系列
}),
0xF780: ("8H", 16, {(0x80, 0x82): ("8K", "U"), #STC8H8K系列
}),
0xF782: ("8H", 60, {(0x82, 0x83): ("8K", "U"), #STC8H8K系列
}),
0xF783: ("8H", 64, {(0x83, 0x84): ("8K", "U"), #STC8H8K系列
}),
0xF790: ("8G", 2, {(0x90, 0x96): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF796: ("8G", 17, {(0x96, 0x97): ("1K", "A-8PIN"), #STC8G1K系列
}),
0xF7A0: ("8G", 2, {(0xA0, 0xA6): ("1K", "-8PIN"), #STC8G1K系列
}),
0xF7A6: ("8G", 17, {(0xA6, 0xA7): ("1K", "-8PIN"), #STC8G1K系列
}),
}
iapmcu = ((0xD1, 0x3F), (0xD1, 0x5F), (0xD1, 0x7F), (0xF4, 0x4D), (0xF4, 0x99), (0xF4, 0xD9), (0xF5, 0x58),
(0xD2, 0x7E), (0xD2, 0xFE), (0xF4, 0x09), (0xF4, 0x59), (0xF4, 0xA9), (0xF4, 0xE9), (0xF5, 0x5D),
(0xD3, 0x5F), (0xD3, 0xDF), (0xF4, 0x19), (0xF4, 0x69), (0xF4, 0xC9), (0xF5, 0x45), (0xF5, 0x62),
(0xE2, 0x76), (0xE2, 0xF6), (0xF4, 0x49), (0xF4, 0x89), (0xF4, 0xCD), (0xF5, 0x55), (0xF5, 0x69),
(0xF5, 0x6A), (0xF5, 0x6D),
)
try:
model = tuple(model)
if self.model[0] in [0xF4, 0xF5, 0xF6, 0xF7]:
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
elif self.model[0] == 0xF2 and self.model[1] in range(0xA0, 0xA6):
prefix, romratio, fixmap = modelmap[stc_type_map(model[0],model[1])]
self.protocol = PROTOCOL_15
else:
prefix, romratio, fixmap = modelmap[model[0]]
if model[0] in (0xF0, 0xF1) and 0x20 <= model[1] <= 0x30:
prefix = "90"
for key, value in fixmap.items():
if key[0] <= model[1] <= key[1]:
break
else:
raise KeyError()
infix, postfix = value
romsize = romratio * (model[1] - key[0])
try:
romsize = {(0xF0, 0x03): 13}[model]
except KeyError:
pass
if model[0] in (0xF0, 0xF1):
romfix = str(model[1] - key[0])
elif model[0] in (0xF2,):
romfix = str(romsize)
else:
romfix = "%02d" % romsize
name = "IAP" if model in iapmcu else "STC"
name += prefix + infix + romfix + postfix
return (name, romsize)
except KeyError:
return ("Unknown %02X %02X" % model, None)
def recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def first_recv(self, timeout = 1, start = [0x46, 0xB9, 0x68]):
timeout += time.time()
while time.time() < timeout:
try:
if self.__conn_read(len(start)) == start:
time.sleep(0.02) #加上20ms延时,增大接收成功率
break
except IOError:
continue
else:
logging.debug("recv(..): Timeout")
raise IOError()
chksum = start[-1]
s = self.__conn_read(2)
n = s[0] * 256 + s[1]
if n > 64:
logging.debug("recv(..): Incorrect packet size")
raise IOError()
chksum += sum(s)
s = self.__conn_read(n - 3)
if s[n - 4] != 0x16:
logging.debug("recv(..): Missing terminal symbol")
raise IOError()
chksum += sum(s[:-(1+self.chkmode)])
if self.chkmode > 0 and chksum & 0xFF != s[-2]:
logging.debug("recv(..): Incorrect checksum[0]")
raise IOError()
elif self.chkmode > 1 and (chksum >> 8) & 0xFF != s[-3]:
logging.debug("recv(..): Incorrect checksum[1]")
raise IOError()
return (s[0], s[1:-(1+self.chkmode)])
def send(self, cmd, dat):
buf = [0x46, 0xB9, 0x6A]
n = 1 + 2 + 1 + len(dat) + self.chkmode + 1
buf += [n >> 8, n & 0xFF, cmd]
buf += dat
chksum = sum(buf[2:])
if self.chkmode > 1:
buf += [(chksum >> 8) & 0xFF]
buf += [chksum & 0xFF, 0x16]
self.__conn_write(buf)
def detect(self):
for i in range(500):
try:
if self.protocol in [PROTOCOL_89,PROTOCOL_12C52,PROTOCOL_12Cx052,PROTOCOL_12C5A]:
self.__conn_write([0x7F,0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
else:
self.__conn_write([0x7F])
cmd, dat = self.first_recv(0.03, [0x68])
break
except IOError:
pass
else:
raise IOError()
self.info = dat[16:]
self.version = "%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[1])
self.model = self.info[3:5]
self.name, self.romsize = self.__model_database(self.model)
logging.info("Model ID: %02X %02X" % tuple(self.model))
logging.info("Model name: %s" % self.name)
logging.info("ROM size: %s" % self.romsize)
if self.protocol is None:
try:
self.protocol = {0xF0: PROTOCOL_89, #STC89/90C5xRC
0xF1: PROTOCOL_89, #STC89/90C5xRD+
0xF2: PROTOCOL_12Cx052, #STC12Cx052
0xD1: PROTOCOL_12C5A, #STC12C5Ax
0xD2: PROTOCOL_12C5A, #STC10Fx
0xE1: PROTOCOL_12C52, #STC12C52x
0xE2: PROTOCOL_12C5A, #STC11Fx
0xE6: PROTOCOL_12C52, #STC12C56x
0xF4: PROTOCOL_15, #STC15系列
0xF5: PROTOCOL_15, #STC15系列
0xF6: PROTOCOL_8, #STC8系列
0xF7: PROTOCOL_8, #STC8系列
}[self.model[0]]
except KeyError:
pass
if self.protocol in PROTOSET_8:
self.fosc = (dat[0]*0x1000000 +dat[1]*0x10000+dat[2]*0x100) /1000000
self.internal_vol = (dat[34]*256+dat[35])
self.wakeup_fosc = (dat[22]*256+dat[23]) /1000
self.test_year = str(hex(dat[36])).replace("0x",'')
self.test_month = str(hex(dat[37])).replace("0x",'')
self.test_day = str(hex(dat[38])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
if dat[10] == 191:
self.det_low_vol = 2.2
else:
self.det_low_vol = (191 - dat[10])*0.3 + 2.1
elif self.protocol in PROTOSET_15:
self.fosc = (dat[7]*0x1000000 +dat[8]*0x10000+dat[9]*0x100) /1000000
self.wakeup_fosc = (dat[0]*256+dat[1]) /1000
self.internal_vol = (dat[34]*256+dat[35])
self.test_year = str(hex(dat[41])).replace("0x",'')
self.test_month = str(hex(dat[42])).replace("0x",'')
self.test_day = str(hex(dat[43])).replace("0x",'')
self.version = "%d.%d.%d%c" % (self.info[0] >> 4,
self.info[0] & 0x0F,
self.info[5],
self.info[1])
else:
self.fosc = (float(sum(dat[0:16:2]) * 256 + sum(dat[1:16:2])) / 8
* self.conn.baudrate / 580974)
if self.protocol in PROTOSET_PARITY or self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.chkmode = 2
self.conn.parity = serial.PARITY_EVEN
else:
self.chkmode = 1
self.conn.parity = serial.PARITY_NONE
if self.protocol is not None:
del self.info[-self.chkmode:]
logging.info("Protocol ID: %s" % self.protocol)
logging.info("Checksum mode: %d" % self.chkmode)
logging.info("UART Parity: %s"
% {serial.PARITY_NONE: "NONE",
serial.PARITY_EVEN: "EVEN",
}[self.conn.parity])
for i in range(0, len(self.info), 16):
logging.info("Info string [%d]: %s"
% (i // 16,
" ".join(["%02X" % j for j in self.info[i:i+16]])))
def print_info(self):
print("系统时钟频率: %.3fMHz" % self.fosc)
if self.protocol in PROTOSET_8:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("低压检测电压: %.1f V" %self.det_low_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
if self.protocol in PROTOSET_15:
print("掉电唤醒定时器频率: %.3fKHz" % self.wakeup_fosc)
print("内部参考电压: %d mV" %self.internal_vol)
print("内部安排测试时间: 20%s年%s月%s日" %(self.test_year,self.test_month,self.test_day))
print("单片机型号: %s" % self.name)
print("固件版本号: %s" % self.version)
if self.romsize is not None:
print("程序空间: %dKB" % self.romsize)
if self.protocol == PROTOCOL_89:
switches = [( 2, 0x80, "Reset stops "),
( 2, 0x40, "Internal XRAM"),
( 2, 0x20, "Normal ALE pin"),
( 2, 0x10, "Full gain oscillator"),
( 2, 0x08, "Not erase data EEPROM"),
( 2, 0x04, "Download regardless of P1"),
( 2, 0x01, "12T mode")]
elif self.protocol == PROTOCOL_12C5A:
switches = [( 6, 0x40, "Disable reset2 low level detect"),
( 6, 0x01, "Reset pin not use as I/O port"),
( 7, 0x80, "Disable long power-on-reset latency"),
( 7, 0x40, "Oscillator high gain"),
( 7, 0x02, "External system clock source"),
( 8, 0x20, "WDT disable after power-on-reset"),
( 8, 0x04, "WDT count in idle mode"),
(10, 0x02, "Not erase data EEPROM"),
(10, 0x01, "Download regardless of P1")]
print(" WDT prescal: %d" % 2**((self.info[8] & 0x07) + 1))
elif self.protocol in PROTOSET_12B:
switches = [(8, 0x02, "Not erase data EEPROM")]
else:
switches = []
for pos, bit, desc in switches:
print(" [%c] %s" % ("X" if self.info[pos] & bit else " ", desc))
def handshake(self):
baud0 = self.conn.baudrate
if self.protocol in PROTOSET_8:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(24.0 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(24.0 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value = 0x7B
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value = 0xB0
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value = 0x5A
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value = 0x35
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value = 0x7B
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value = 0x5A
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value = 0x1A
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value = 0x12
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value = 0x5A
else:
foc_value = 0x6B
baudstr = [0x00, 0x00, Timer1_value >> 8, Timer1_value & 0xff, 0x01, foc_value, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
elif self.protocol in PROTOSET_15:
baud = 115200 #若没指定波特率,默认为115200
if highbaud_pre != 115200:
baud = highbaud_pre
#支持460800以内的任意波特率
#典型波特率:460800、230400、115200、57600、38400、28800、19200、14400、9600、4800
if baud in range(460801):
#定时器1重载值计算微调,可能由于目标芯片的差异性需要微调
if baud in [300000,350000]:
Timer1_value = int(65536.2 - float(22.1184 * 1000000 / 4 / baud))
else:
Timer1_value = int(65536.5 - float(22.1184 * 1000000 / 4 / baud))
if self.fosc < 24.5 and self.fosc > 23.5: #24M
foc_value_1 = 0x40
foc_value_2 = 0x9F
elif self.fosc < 27.5 and self.fosc > 26.5: #27M
foc_value_1 = 0x40
foc_value_2 = 0xDC
elif self.fosc < 22.7 and self.fosc > 21.7: #22.1184M
foc_value_1 = 0x40
foc_value_2 = 0x79
elif self.fosc < 20.5 and self.fosc > 19.5: #20M
foc_value_1 = 0x40
foc_value_2 = 0x4F
elif self.fosc < 12.3 and self.fosc > 11.7: #12M
foc_value_1 = 0x80
foc_value_2 = 0xA2
elif self.fosc < 11.4 and self.fosc > 10.8: #11.0592M
foc_value_1 = 0x80
foc_value_2 = 0x7D
elif self.fosc < 18.8 and self.fosc > 18.0: #18.432M
foc_value_1 = 0x40
foc_value_2 = 0x31
elif self.fosc < 6.3 and self.fosc > 5.7:#6M
foc_value_1 = 0xC0
foc_value_2 = 0x9f
elif self.fosc < 5.9 and self.fosc > 5.0: #5.5296M
foc_value_1 = 0xC0
foc_value_2 = 0x7B
baudstr = [0x6d, 0x40, Timer1_value >> 8, Timer1_value & 0xff, foc_value_1,foc_value_2, 0x81]
#baudstr = [0x6b, 0x40, 0xff,0xf4, 0x40,0x92, 0x81]
self.send(0x01, baudstr )
try:
cmd, dat = self.recv()
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
logging.info("Change baudrate to %d" % baud)
self.__conn_baudrate(baud)
self.baudrate = baud
else:
for baud in [115200, 57600, 38400, 28800, 19200,
14400, 9600, 4800, 2400, 1200]:
t = self.fosc * 1000000 / baud / 32
if self.protocol not in PROTOSET_89:
t *= 2
if abs(round(t) - t) / t > 0.03:
continue
if self.protocol in PROTOSET_89:
tcfg = 0x10000 - int(t + 0.5)
else:
if t > 0xFF:
continue
tcfg = 0xC000 + 0x100 - int(t + 0.5)
baudstr = [tcfg >> 8,
tcfg & 0xFF,
0xFF - (tcfg >> 8),
min((256 - (tcfg & 0xFF)) * 2, 0xFE),
int(baud0 / 60)]
logging.info("Test baudrate %d (accuracy %0.4f) using config %s"
% (baud,
abs(round(t) - t) / t,
" ".join(["%02X" % i for i in baudstr])))
if self.protocol in PROTOSET_89:
freqlist = (40, 20, 10, 5)
else:
freqlist = (30, 24, 20, 12, 6, 3, 2, 1)
for twait in range(0, len(freqlist)):
if self.fosc > freqlist[twait]:
break
logging.info("Waiting time config %02X" % (0x80 + twait))
self.send(0x8F, baudstr + [0x80 + twait])
try:
self.__conn_baudrate(baud)
cmd, dat = self.recv()
break
except Exception:
logging.info("Cannot use baudrate %d" % baud)
time.sleep(0.2)
self.conn.flushInput()
finally:
self.__conn_baudrate(baud0, False)
else:
raise IOError()
logging.info("Change baudrate to %d" % baud)
self.send(0x8E, baudstr)
self.__conn_baudrate(baud)
self.baudrate = baud
cmd, dat = self.recv()
def erase(self):
if self.protocol in PROTOSET_89:
self.send(0x84, [0x01, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33])
cmd, dat = self.recv(10)
assert cmd == 0x80
elif self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0x05, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
self.send(0x03, [0x00, 0x00, 0x5A, 0xA5])
cmd, dat = self.recv(10)
for i in range(7):
dat[i] = hex(dat[i])
dat[i] = str(dat[i])
dat[i] = dat[i].replace("0x",'')
if len(dat[i]) == 1:
dat_value = list(dat[i])
dat_value.insert(0, '0')
dat[i] = ''.join(dat_value)
serial_number = ""
for i in dat:
serial_number = serial_number +str(i)
self.serial_number = str(serial_number)
print("\r")
sys.stdout.write("芯片出厂序列号: ")
sys.stdout.write(self.serial_number.upper())
sys.stdout.flush()
print("\r")
else:
self.send(0x84, ([0x00, 0x00, self.romsize * 4,
0x00, 0x00, self.romsize * 4]
+ [0x00] * 12
+ [i for i in range(0x80, 0x0D, -1)]))
cmd, dat = self.recv(10)
if dat:
logging.info("Serial number: "
+ " ".join(["%02X" % j for j in dat]))
def flash(self, code):
code = list(code) + [0xff] * (511 - (len(code) - 1) % 512)
for i in range(0, len(code), 128):
logging.info("Flash code region (%04X, %04X)" % (i, i + 127))
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
flag_test = 1
addr = [i >> 8, i & 0xFF, 0x5A, 0xA5]
if flag_test == 1:
self.send(0x22, addr + code[i:i+128])
flag_test = 10
else:
self.send(0x02, addr + code[i:i+128])
else:
addr = [0, 0, i >> 8, i & 0xFF, 0, 128]
self.send(0x00, addr + code[i:i+128])
cmd, dat = self.recv()
#assert dat[0] == sum(code[i:i+128]) % 256
yield (i + 128.0) / len(code)
def options(self, **kwargs):
erase_eeprom = kwargs.get("erase_eeprom", None)
dat = []
fosc = list(bytearray(struct.pack(">I", int(self.fosc * 1000000))))
if self.protocol == PROTOCOL_89:
if erase_eeprom is not None:
self.info[2] &= 0xF7
self.info[2] |= 0x00 if erase_eeprom else 0x08
dat = self.info[2:3] + [0xFF]*3
elif self.protocol == PROTOCOL_12C5A:
if erase_eeprom is not None:
self.info[10] &= 0xFD
self.info[10] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:9] + [0xFF]*5 + self.info[10:11]
+ [0xFF]*6 + fosc)
elif self.protocol in PROTOSET_12B:
if erase_eeprom is not None:
self.info[8] &= 0xFD
self.info[8] |= 0x00 if erase_eeprom else 0x02
dat = (self.info[6:11] + fosc + self.info[12:16] + [0xFF]*4
+ self.info[8:9] + [0xFF]*7 + fosc + [0xFF]*3)
elif erase_eeprom is not None:
logging.info("Modifying options is not supported for this target")
return False
if dat:
self.send(0x8D, dat)
cmd, dat = self.recv()
return True
def terminate(self):
logging.info("Send termination command")
if self.protocol in PROTOSET_8 or self.protocol in PROTOSET_15:
self.send(0xFF, [])
else:
self.send(0x82, [])
self.conn.flush()
time.sleep(0.2)
def unknown_packet_1(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (50 00 00 36 01 ...)")
self.send(0x50, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8F and not dat
def unknown_packet_2(self):
if self.protocol not in PROTOSET_PARITY and self.protocol not in PROTOSET_8 and self.protocol not in PROTOSET_15:
for i in range(5):
logging.info("Send unknown packet (80 00 00 36 01 ...)")
self.send(0x80, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x80 and not dat
def unknown_packet_3(self):
if self.protocol in PROTOSET_PARITY:
logging.info("Send unknown packet (69 00 00 36 01 ...)")
self.send(0x69, [0x00, 0x00, 0x36, 0x01] + self.model)
cmd, dat = self.recv()
assert cmd == 0x8D and not dat
def autoisp(conn, baud, magic):
if not magic:
return
bak = conn.baudrate
conn.baudrate = baud
conn.write(bytearray(ord(i) for i in magic))
conn.flush()
time.sleep(0.5)
conn.baudrate = bak
def program(prog, code, erase_eeprom=None):
sys.stdout.write("检测目标...")
sys.stdout.flush()
prog.detect()
print("完成")
prog.print_info()
if prog.protocol is None:
raise IOError("未知目标")
if code is None:
return
prog.unknown_packet_1()
sys.stdout.write("切换至最高波特率: ")
sys.stdout.flush()
prog.handshake()
print("%d bps"% prog.baudrate)
prog.unknown_packet_2()
sys.stdout.write("开始擦除芯片...")
sys.stdout.flush()
time_start = time.time()
prog.erase()
print("擦除完成")
print("代码长度: %d bytes" % len(code))
# print("Programming: ", end="", flush=True)
sys.stdout.write("正在下载用户代码...")
sys.stdout.flush()
oldbar = 0
for progress in prog.flash(code):
bar = int(progress * 25)
sys.stdout.write("#" * (bar - oldbar))
sys.stdout.flush()
oldbar = bar
print(" 完成")
prog.unknown_packet_3()
sys.stdout.write("设置选项...")
sys.stdout.flush()
if prog.options(erase_eeprom=erase_eeprom):
print("设置完成")
else:
print("设置失败")
prog.terminate()
time_end = time.time()
print("耗时: %.3fs"% (time_end-time_start))
# Convert Intel HEX code to binary format
def hex2bin(code):
buf = bytearray()
base = 0
line = 0
for rec in code.splitlines():
# Calculate the line number of the current record
line += 1
try:
# bytes(...) is to support python<=2.6
# bytearray(...) is to support python<=2.7
n = bytearray(binascii.a2b_hex(bytes(rec[1:3])))[0]
dat = bytearray(binascii.a2b_hex(bytes(rec[1:n*2+11])))
except:
raise Exception("Line %d: Invalid format" % line)
if rec[0] != ord(":"):
raise Exception("Line %d: Missing start code \":\"" % line)
if sum(dat) & 0xFF != 0:
raise Exception("Line %d: Incorrect checksum" % line)
if dat[3] == 0: # Data record
addr = base + (dat[1] << 8) + dat[2]
# Allocate memory space and fill it with 0xFF
buf[len(buf):] = [0xFF] * (addr + n - len(buf))
# Copy data to the buffer
buf[addr:addr+n] = dat[4:-1]
elif dat[3] == 1: # EOF record
if n != 0:
raise Exception("Line %d: Incorrect data length" % line)
elif dat[3] == 2: # Extended segment address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 4
elif dat[3] == 4: # Extended linear address record
if n != 2:
raise Exception("Line %d: Incorrect data length" % line)
base = ((dat[4] << 8) + dat[5]) << 16
else:
raise Exception("Line %d: Unsupported record type" % line)
return buf
def stc_type_map(type, value):
if type == 0xF6:
if value in range(0x01,0x09):
return 0xF600
elif value in range(0x21,0x29):
return 0xF620
elif value == 0x29:
return 0xF628
elif value in range(0x31,0x39):
return 0xF630
elif value == 0x39:
return 0xF638
elif value in range(0x41,0x49):
return 0xF640
elif value == 0x49:
return 0xF648
elif value in range(0x51,0x59):
return 0xF650
elif value == 0x59:
return 0xF658
elif value in range(0x61,0x67):
return 0xF660
elif value == 0x67:
return 0xF666
elif value in range(0x71,0x77):
return 0xF670
elif value == 0x77:
return 0xF676
if type == 0xF7:
if value in range(0x01,0x07):
return 0xF700
elif value in range(0x31,0x37):
return 0xF730
elif value == 0x37:
return 0xF736
elif value in range(0x41,0x43):
return 0xF740
elif value == 0x43:
return 0xF742
elif value == 0x44:
return 0xF743
elif value in range(0x49,0x4B):
return 0xF748
elif value == 0x4B:
return 0xF74A
elif value == 0x4C:
return 0xF74B
elif value in range(0x51,0x57):
return 0xF750
elif value == 0x57:
return 0xF756
elif value in range(0x61,0x63):
return 0xF760
elif value == 0x63:
return 0xF762
elif value == 0x64:
return 0xF763
elif value in range(0x69,0x6B):
return 0xF768
elif value == 0x6B:
return 0xF76A
elif value == 0x6C:
return 0xF76B
elif value in range(0x71,0x77):
return 0xF770
elif value == 0x77:
return 0xF776
elif value in range(0x81,0x83):
return 0xF780
elif value == 0x83:
return 0xF782
elif value == 0x84:
return 0xF783
elif value in range(0x91,0x97):
return 0xF790
elif value == 0x97:
return 0xF796
elif value in range(0xA1,0xA7):
return 0xF7A0
elif value == 0xA7:
return 0xF7A6
if type == 0xF4:
if value in range(0x01,0x08):
return 0xF400
elif value == 0x08:
return 0xF407
elif value == 0x09:
return 0xF408
elif value in range(0x0A,0x0D):
return 0xF409
elif value in range(0x11,0x18):
return 0xF410
elif value == 0x18:
return 0xF417
elif value == 0x19:
return 0xF418
elif value in range(0x21,0x28):
return 0xF420
elif value == 0x28:
return 0xF427
elif value == 0x29:
return 0xF428
elif value in range(0x41,0x48):
return 0xF440
elif value == 0x48:
return 0xF447
elif value == 0x49:
return 0xF448
elif value == 0x4D:
return 0xF44C
elif value in range(0x51,0x57):
return 0xF450
elif value == 0x58:
return 0xF457
elif value == 0x59:
return 0xF458
elif value in range(0x61,0x68):
return 0xF460
elif value == 0x68:
return 0xF467
elif value == 0x69:
return 0xF468
elif value in range(0x81,0x88):
return 0xF480
elif value == 0x88:
return 0xF487
elif value == 0x89:
return 0xF488
elif value in range(0x8A,0x8D):
return 0xF489
elif value in range(0x91,0x98):
return 0xF490
elif value == 0x98:
return 0xF497
elif value == 0x99:
return 0xF498
elif value in range(0xA1,0xA8):
return 0xF4A0
elif value == 0xA8:
return 0xF4A7
elif value == 0xA9:
return 0xF4A8
elif value in range(0xC1,0xC8):
return 0xF4C0
elif value == 0xC8:
return 0xF4C7
elif value == 0xC9:
return 0xF4C8
elif value == 0xCD:
return 0xF4CC
elif value in range(0xD1,0xD8):
return 0xF4D0
elif value == 0xD8:
return 0xF4D7
elif value == 0xD9:
return 0xF4D8
elif value in range(0xE1,0xE8):
return 0xF4E0
elif value == 0xE8:
return 0xF4E7
elif value == 0xE9:
return 0xF4E8
if type == 0xF5:
if value in range(0x01,0x05):
return 0xF500
elif value in range(0x08,0x0C):
return 0xF507
elif value in range(0x11,15):
return 0xF510
elif value in range(0x15,0x18):
return 0xF514
elif value in range(0x19,0x1B):
return 0xF518
elif value in range(0x1B,0x1D):
return 0xF51A
elif value in range(0x1D,0x20):
return 0xF51C
elif value == 0x20:
return 0xF51F
elif value == 0x21:
return 0xF520
elif value == 0x23:
return 0xF522
elif value == 0x24:
return 0xF523
elif value == 0x25:
return 0xF524
elif value == 0x26:
return 0xF525
elif value == 0x27:
return 0xF526
elif value == 0x28:
return 0xF527
elif value in range(0x2A,0x2C):
return 0xF529
elif value in range(0x2D,0x2F):
return 0xF52C
elif value == 0x2F:
return 0xF52E
elif value == 0x30:
return 0xF52F
elif value == 0x31:
return 0xF530
elif value == 0x32:
return 0xF531
elif value == 0x34:
return 0xF533
elif value == 0x35:
return 0xF534
elif value == 0x36:
return 0xF535
elif value == 0x45:
return 0xF544
elif value == 0x55:
return 0xF554
elif value == 0x58:
return 0xF557
elif value == 0x5D:
return 0xF55C
elif value == 0x69:
return 0xF568
elif value == 0x6A:
return 0xF569
elif value == 0x6D:
return 0xF56C
elif value in range(0x7F,0x86):
return 0xF57E
if type == 0xF2:
if value in range(0xA0,0xA6):
return 0xF2A0
def main():
if sys.platform == "win32":
port = "COM3"
elif sys.platform == "darwin":
port = "/dev/tty.usbserial"
else:
port = "/dev/ttyUSB0"
parser = argparse.ArgumentParser(
description=("Stcflash, a command line programmer for "
+ "STC 8051 microcontroller.\n"
+ "https://github.com/laborer/stcflash"))
parser.add_argument("image",
help="code image (bin/hex)",
type=argparse.FileType("rb"), nargs='?')
parser.add_argument("-p", "--port",
help="serial port device (default: %s)" % port,
default=port)
parser.add_argument("-l", "--lowbaud",
help="initial baud rate (default: 2400)",
type=int,
default=2400)
parser.add_argument("-hb", "--highbaud",
help="initial baud rate (default: 115200)",
type=int,
default=115200)
parser.add_argument("-r", "--protocol",
help="protocol to use for programming",
choices=["89", "12c5a", "12c52", "12cx052", "8", "15", "auto"],
default="auto")
parser.add_argument("-a", "--aispbaud",
help="baud rate for AutoISP (default: 4800)",
type=int,
default=4800)
parser.add_argument("-m", "--aispmagic",
help="magic word for AutoISP")
parser.add_argument("-v", "--verbose",
help="be verbose",
default=0,
action="count")
parser.add_argument("-e", "--erase_eeprom",
help=("erase data eeprom during next download"
+"(experimental)"),
action="store_true")
parser.add_argument("-ne", "--not_erase_eeprom",
help=("do not erase data eeprom next download"
+"(experimental)"),
action="store_true")
opts = parser.parse_args()
opts.loglevel = (logging.CRITICAL,
logging.INFO,
logging.DEBUG)[min(2, opts.verbose)]
opts.protocol = {'89': PROTOCOL_89,
'12c5a': PROTOCOL_12C5A,
'12c52': PROTOCOL_12C52,
'12cx052': PROTOCOL_12Cx052,
'8': PROTOCOL_8,
'15': PROTOCOL_15,
'auto': None}[opts.protocol]
if not opts.erase_eeprom and not opts.not_erase_eeprom:
opts.erase_eeprom = None
logging.basicConfig(format=("%(levelname)s: "
+ "[%(relativeCreated)d] "
+ "%(message)s"),
level=opts.loglevel)
if opts.image:
code = bytearray(opts.image.read())
opts.image.close()
if os.path.splitext(opts.image.name)[1] in (".hex", ".ihx"):
code = hex2bin(code)
else:
code = None
print("通信端口:%s 最低波特率:%d bps" % (opts.port, opts.lowbaud))
global highbaud_pre
highbaud_pre = opts.highbaud
with serial.Serial(port=opts.port,
baudrate=opts.lowbaud,
parity=serial.PARITY_NONE) as conn:
if opts.aispmagic:
autoisp(conn, opts.aispbaud, opts.aispmagic)
program(Programmer(conn, opts.protocol), code, opts.erase_eeprom)
if __name__ == "__main__":
main()
|
2301_77966824/51-microcontroller-learning
|
2024/template/tools/stcflash.py
|
Python
|
unknown
| 57,810
|
$NOMOD51
;------------------------------------------------------------------------------
; This file is part of the C51 Compiler package
; Copyright (c) 1988-2005 Keil Elektronik GmbH and Keil Software, Inc.
; Version 8.01
;
; *** <<< Use Configuration Wizard in Context Menu >>> ***
;------------------------------------------------------------------------------
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;
; To link the modified STARTUP.OBJ file to your application use the following
; Lx51 invocation:
;
; Lx51 your object file list, STARTUP.OBJ controls
;
;------------------------------------------------------------------------------
;
; User-defined <h> Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; <o> IDATALEN: IDATA memory size <0x0-0x100>
; <i> Note: The absolute start-address of IDATA memory is always 0
; <i> The IDATA space overlaps physically the DATA and BIT areas.
IDATALEN EQU 80H
;
; <o> XDATASTART: XDATA memory start address <0x0-0xFFFF>
; <i> The absolute start address of XDATA memory
XDATASTART EQU 0
;
; <o> XDATALEN: XDATA memory size <0x0-0xFFFF>
; <i> The length of XDATA memory in bytes.
XDATALEN EQU 0
;
; <o> PDATASTART: PDATA memory start address <0x0-0xFFFF>
; <i> The absolute start address of PDATA memory
PDATASTART EQU 0H
;
; <o> PDATALEN: PDATA memory size <0x0-0xFF>
; <i> The length of PDATA memory in bytes.
PDATALEN EQU 0H
;
;</h>
;------------------------------------------------------------------------------
;
;<h> Reentrant Stack Initialization
;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; <h> Stack Space for reentrant functions in the SMALL model.
; <q> IBPSTACK: Enable SMALL model reentrant stack
; <i> Stack space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
; <o> IBPSTACKTOP: End address of SMALL model stack <0x0-0xFF>
; <i> Set the top of the stack to the highest location.
IBPSTACKTOP EQU 0xFF +1 ; default 0FFH+1
; </h>
;
; <h> Stack Space for reentrant functions in the LARGE model.
; <q> XBPSTACK: Enable LARGE model reentrant stack
; <i> Stack space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
; <o> XBPSTACKTOP: End address of LARGE model stack <0x0-0xFFFF>
; <i> Set the top of the stack to the highest location.
XBPSTACKTOP EQU 0xFFFF +1 ; default 0FFFFH+1
; </h>
;
; <h> Stack Space for reentrant functions in the COMPACT model.
; <q> PBPSTACK: Enable COMPACT model reentrant stack
; <i> Stack space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
;
; <o> PBPSTACKTOP: End address of COMPACT model stack <0x0-0xFFFF>
; <i> Set the top of the stack to the highest location.
PBPSTACKTOP EQU 0xFF +1 ; default 0FFH+1
; </h>
;</h>
;------------------------------------------------------------------------------
;
; Memory Page for Using the Compact Model with 64 KByte xdata RAM
; <e>Compact Model Page Definition
;
; <i>Define the XDATA page used for PDATA variables.
; <i>PPAGE must conform with the PPAGE set in the linker invocation.
;
; Enable pdata memory page initalization
PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
;
; <o> PPAGE number <0x0-0xFF>
; <i> uppermost 256-byte address of the page used for PDATA variables.
PPAGE EQU 0
;
; <o> SFR address which supplies uppermost address byte <0x0-0xFF>
; <i> most 8051 variants use P2 as uppermost address byte
PPAGE_SFR DATA 0A0H
;
; </e>
;------------------------------------------------------------------------------
; Standard SFR Symbols
ACC DATA 0E0H
B DATA 0F0H
SP DATA 81H
DPL DATA 82H
DPH DATA 83H
NAME ?C_STARTUP
?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA
RSEG ?STACK
DS 1
EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP
CSEG AT 0
?C_STARTUP: LJMP STARTUP1
RSEG ?C_C51STARTUP
STARTUP1:
IF IDATALEN <> 0
MOV R0,#IDATALEN - 1
CLR A
IDATALOOP: MOV @R0,A
DJNZ R0,IDATALOOP
ENDIF
IF XDATALEN <> 0
MOV DPTR,#XDATASTART
MOV R7,#LOW (XDATALEN)
IF (LOW (XDATALEN)) <> 0
MOV R6,#(HIGH (XDATALEN)) +1
ELSE
MOV R6,#HIGH (XDATALEN)
ENDIF
CLR A
XDATALOOP: MOVX @DPTR,A
INC DPTR
DJNZ R7,XDATALOOP
DJNZ R6,XDATALOOP
ENDIF
IF PPAGEENABLE <> 0
MOV PPAGE_SFR,#PPAGE
ENDIF
IF PDATALEN <> 0
MOV R0,#LOW (PDATASTART)
MOV R7,#LOW (PDATALEN)
CLR A
PDATALOOP: MOVX @R0,A
INC R0
DJNZ R7,PDATALOOP
ENDIF
IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)
MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF
IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)
MOV ?C_XBP,#HIGH XBPSTACKTOP
MOV ?C_XBP+1,#LOW XBPSTACKTOP
ENDIF
IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)
MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF
MOV SP,#?STACK-1
; This code is required if you use L51_BANK.A51 with Banking Mode 4
;<h> Code Banking
; <q> Select Bank 0 for L51_BANK.A51 Mode 4
#if 0
; <i> Initialize bank mechanism to code bank 0 when using L51_BANK.A51 with Banking Mode 4.
EXTRN CODE (?B_SWITCH0)
CALL ?B_SWITCH0 ; init bank mechanism to code bank 0
#endif
;</h>
LJMP ?C_START
END
|
2301_77966824/51-microcontroller-learning
|
HolleWorld/STARTUP.A51
|
Assembly
|
unknown
| 6,178
|
$NOMOD51
;------------------------------------------------------------------------------
; This file is part of the C51 Compiler package
; Copyright (c) 1988-2005 Keil Elektronik GmbH and Keil Software, Inc.
; Version 8.01
;
; *** <<< Use Configuration Wizard in Context Menu >>> ***
;------------------------------------------------------------------------------
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;
; To link the modified STARTUP.OBJ file to your application use the following
; Lx51 invocation:
;
; Lx51 your object file list, STARTUP.OBJ controls
;
;------------------------------------------------------------------------------
;
; User-defined <h> Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; <o> IDATALEN: IDATA memory size <0x0-0x100>
; <i> Note: The absolute start-address of IDATA memory is always 0
; <i> The IDATA space overlaps physically the DATA and BIT areas.
IDATALEN EQU 80H
;
; <o> XDATASTART: XDATA memory start address <0x0-0xFFFF>
; <i> The absolute start address of XDATA memory
XDATASTART EQU 0
;
; <o> XDATALEN: XDATA memory size <0x0-0xFFFF>
; <i> The length of XDATA memory in bytes.
XDATALEN EQU 0
;
; <o> PDATASTART: PDATA memory start address <0x0-0xFFFF>
; <i> The absolute start address of PDATA memory
PDATASTART EQU 0H
;
; <o> PDATALEN: PDATA memory size <0x0-0xFF>
; <i> The length of PDATA memory in bytes.
PDATALEN EQU 0H
;
;</h>
;------------------------------------------------------------------------------
;
;<h> Reentrant Stack Initialization
;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; <h> Stack Space for reentrant functions in the SMALL model.
; <q> IBPSTACK: Enable SMALL model reentrant stack
; <i> Stack space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
; <o> IBPSTACKTOP: End address of SMALL model stack <0x0-0xFF>
; <i> Set the top of the stack to the highest location.
IBPSTACKTOP EQU 0xFF +1 ; default 0FFH+1
; </h>
;
; <h> Stack Space for reentrant functions in the LARGE model.
; <q> XBPSTACK: Enable LARGE model reentrant stack
; <i> Stack space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
; <o> XBPSTACKTOP: End address of LARGE model stack <0x0-0xFFFF>
; <i> Set the top of the stack to the highest location.
XBPSTACKTOP EQU 0xFFFF +1 ; default 0FFFFH+1
; </h>
;
; <h> Stack Space for reentrant functions in the COMPACT model.
; <q> PBPSTACK: Enable COMPACT model reentrant stack
; <i> Stack space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
;
; <o> PBPSTACKTOP: End address of COMPACT model stack <0x0-0xFFFF>
; <i> Set the top of the stack to the highest location.
PBPSTACKTOP EQU 0xFF +1 ; default 0FFH+1
; </h>
;</h>
;------------------------------------------------------------------------------
;
; Memory Page for Using the Compact Model with 64 KByte xdata RAM
; <e>Compact Model Page Definition
;
; <i>Define the XDATA page used for PDATA variables.
; <i>PPAGE must conform with the PPAGE set in the linker invocation.
;
; Enable pdata memory page initalization
PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
;
; <o> PPAGE number <0x0-0xFF>
; <i> uppermost 256-byte address of the page used for PDATA variables.
PPAGE EQU 0
;
; <o> SFR address which supplies uppermost address byte <0x0-0xFF>
; <i> most 8051 variants use P2 as uppermost address byte
PPAGE_SFR DATA 0A0H
;
; </e>
;------------------------------------------------------------------------------
; Standard SFR Symbols
ACC DATA 0E0H
B DATA 0F0H
SP DATA 81H
DPL DATA 82H
DPH DATA 83H
NAME ?C_STARTUP
?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA
RSEG ?STACK
DS 1
EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP
CSEG AT 0
?C_STARTUP: LJMP STARTUP1
RSEG ?C_C51STARTUP
STARTUP1:
IF IDATALEN <> 0
MOV R0,#IDATALEN - 1
CLR A
IDATALOOP: MOV @R0,A
DJNZ R0,IDATALOOP
ENDIF
IF XDATALEN <> 0
MOV DPTR,#XDATASTART
MOV R7,#LOW (XDATALEN)
IF (LOW (XDATALEN)) <> 0
MOV R6,#(HIGH (XDATALEN)) +1
ELSE
MOV R6,#HIGH (XDATALEN)
ENDIF
CLR A
XDATALOOP: MOVX @DPTR,A
INC DPTR
DJNZ R7,XDATALOOP
DJNZ R6,XDATALOOP
ENDIF
IF PPAGEENABLE <> 0
MOV PPAGE_SFR,#PPAGE
ENDIF
IF PDATALEN <> 0
MOV R0,#LOW (PDATASTART)
MOV R7,#LOW (PDATALEN)
CLR A
PDATALOOP: MOVX @R0,A
INC R0
DJNZ R7,PDATALOOP
ENDIF
IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)
MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF
IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)
MOV ?C_XBP,#HIGH XBPSTACKTOP
MOV ?C_XBP+1,#LOW XBPSTACKTOP
ENDIF
IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)
MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF
MOV SP,#?STACK-1
; This code is required if you use L51_BANK.A51 with Banking Mode 4
;<h> Code Banking
; <q> Select Bank 0 for L51_BANK.A51 Mode 4
#if 0
; <i> Initialize bank mechanism to code bank 0 when using L51_BANK.A51 with Banking Mode 4.
EXTRN CODE (?B_SWITCH0)
CALL ?B_SWITCH0 ; init bank mechanism to code bank 0
#endif
;</h>
LJMP ?C_START
END
|
2301_77966824/51-microcontroller-learning
|
流水灯/STARTUP.A51
|
Assembly
|
unknown
| 6,178
|
#include<STC89C5xRC.H>
#include<INTRINS.H>
void Delay100ms(void) //@11.0592MHz
{
unsigned char data i, j;
i = 180;
j = 73;
do
{
while (--j);
} while (--i);
}
void main()
{
unsigned char tmp=0x01;
while(1)
{
P0=~tmp;
Delay100ms();
tmp <<=1;
if(tmp==0x00)
{
tmp=0x01;
}
}
}
|
2301_77966824/51-microcontroller-learning
|
流水灯/main.c
|
C
|
unknown
| 305
|
$NOMOD51
;------------------------------------------------------------------------------
; This file is part of the C51 Compiler package
; Copyright (c) 1988-2005 Keil Elektronik GmbH and Keil Software, Inc.
; Version 8.01
;
; *** <<< Use Configuration Wizard in Context Menu >>> ***
;------------------------------------------------------------------------------
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;
; To link the modified STARTUP.OBJ file to your application use the following
; Lx51 invocation:
;
; Lx51 your object file list, STARTUP.OBJ controls
;
;------------------------------------------------------------------------------
;
; User-defined <h> Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; <o> IDATALEN: IDATA memory size <0x0-0x100>
; <i> Note: The absolute start-address of IDATA memory is always 0
; <i> The IDATA space overlaps physically the DATA and BIT areas.
IDATALEN EQU 80H
;
; <o> XDATASTART: XDATA memory start address <0x0-0xFFFF>
; <i> The absolute start address of XDATA memory
XDATASTART EQU 0
;
; <o> XDATALEN: XDATA memory size <0x0-0xFFFF>
; <i> The length of XDATA memory in bytes.
XDATALEN EQU 0
;
; <o> PDATASTART: PDATA memory start address <0x0-0xFFFF>
; <i> The absolute start address of PDATA memory
PDATASTART EQU 0H
;
; <o> PDATALEN: PDATA memory size <0x0-0xFF>
; <i> The length of PDATA memory in bytes.
PDATALEN EQU 0H
;
;</h>
;------------------------------------------------------------------------------
;
;<h> Reentrant Stack Initialization
;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; <h> Stack Space for reentrant functions in the SMALL model.
; <q> IBPSTACK: Enable SMALL model reentrant stack
; <i> Stack space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
; <o> IBPSTACKTOP: End address of SMALL model stack <0x0-0xFF>
; <i> Set the top of the stack to the highest location.
IBPSTACKTOP EQU 0xFF +1 ; default 0FFH+1
; </h>
;
; <h> Stack Space for reentrant functions in the LARGE model.
; <q> XBPSTACK: Enable LARGE model reentrant stack
; <i> Stack space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
; <o> XBPSTACKTOP: End address of LARGE model stack <0x0-0xFFFF>
; <i> Set the top of the stack to the highest location.
XBPSTACKTOP EQU 0xFFFF +1 ; default 0FFFFH+1
; </h>
;
; <h> Stack Space for reentrant functions in the COMPACT model.
; <q> PBPSTACK: Enable COMPACT model reentrant stack
; <i> Stack space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
;
; <o> PBPSTACKTOP: End address of COMPACT model stack <0x0-0xFFFF>
; <i> Set the top of the stack to the highest location.
PBPSTACKTOP EQU 0xFF +1 ; default 0FFH+1
; </h>
;</h>
;------------------------------------------------------------------------------
;
; Memory Page for Using the Compact Model with 64 KByte xdata RAM
; <e>Compact Model Page Definition
;
; <i>Define the XDATA page used for PDATA variables.
; <i>PPAGE must conform with the PPAGE set in the linker invocation.
;
; Enable pdata memory page initalization
PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
;
; <o> PPAGE number <0x0-0xFF>
; <i> uppermost 256-byte address of the page used for PDATA variables.
PPAGE EQU 0
;
; <o> SFR address which supplies uppermost address byte <0x0-0xFF>
; <i> most 8051 variants use P2 as uppermost address byte
PPAGE_SFR DATA 0A0H
;
; </e>
;------------------------------------------------------------------------------
; Standard SFR Symbols
ACC DATA 0E0H
B DATA 0F0H
SP DATA 81H
DPL DATA 82H
DPH DATA 83H
NAME ?C_STARTUP
?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA
RSEG ?STACK
DS 1
EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP
CSEG AT 0
?C_STARTUP: LJMP STARTUP1
RSEG ?C_C51STARTUP
STARTUP1:
IF IDATALEN <> 0
MOV R0,#IDATALEN - 1
CLR A
IDATALOOP: MOV @R0,A
DJNZ R0,IDATALOOP
ENDIF
IF XDATALEN <> 0
MOV DPTR,#XDATASTART
MOV R7,#LOW (XDATALEN)
IF (LOW (XDATALEN)) <> 0
MOV R6,#(HIGH (XDATALEN)) +1
ELSE
MOV R6,#HIGH (XDATALEN)
ENDIF
CLR A
XDATALOOP: MOVX @DPTR,A
INC DPTR
DJNZ R7,XDATALOOP
DJNZ R6,XDATALOOP
ENDIF
IF PPAGEENABLE <> 0
MOV PPAGE_SFR,#PPAGE
ENDIF
IF PDATALEN <> 0
MOV R0,#LOW (PDATASTART)
MOV R7,#LOW (PDATALEN)
CLR A
PDATALOOP: MOVX @R0,A
INC R0
DJNZ R7,PDATALOOP
ENDIF
IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)
MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF
IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)
MOV ?C_XBP,#HIGH XBPSTACKTOP
MOV ?C_XBP+1,#LOW XBPSTACKTOP
ENDIF
IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)
MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF
MOV SP,#?STACK-1
; This code is required if you use L51_BANK.A51 with Banking Mode 4
;<h> Code Banking
; <q> Select Bank 0 for L51_BANK.A51 Mode 4
#if 0
; <i> Initialize bank mechanism to code bank 0 when using L51_BANK.A51 with Banking Mode 4.
EXTRN CODE (?B_SWITCH0)
CALL ?B_SWITCH0 ; init bank mechanism to code bank 0
#endif
;</h>
LJMP ?C_START
END
|
2301_77966824/51-microcontroller-learning
|
闪烁LED/STARTUP.A51
|
Assembly
|
unknown
| 6,178
|
#include<STC89C5xRC.H>
#include<INTRINS.H>
void Delay500ms(void) //@11.0592MHz
{
unsigned char data i, j, k;
_nop_();
i = 4;
j = 129;
k = 119;
do
{
do
{
while (--k);
} while (--j);
} while (--i);
}
void main()
{
while(1)
{
P00 = ~P00;
Delay500ms();
}
}
|
2301_77966824/51-microcontroller-learning
|
闪烁LED/main.c
|
C
|
unknown
| 280
|
#include <stdio.h>
#include <time.h>
int main() {
// Get the rime information
time_t rawtime;
struct tm *timeinfo;
time(&rawtime);
timeinfo = localtime(&rawtime);
// Translate time information to strings
char buffer[80];
strftime(buffer, 80, "%Y-%m-%d %H:%M:%S", timeinfo);
// Print the strings
printf("Now Time is: %s\n", buffer);
return 0;
}
|
2301_78305256/3121006433
|
time.c
|
C
|
unknown
| 404
|
t=0:pi/20:2*pi; %定义参数t[0,2pi],每隔pi/100标注一个。
[x,y,z]= cylinder(2+sin(t),30); %将x,y,z定义为花瓶型并绘图(cylinder本身为圆柱,这里将表面调整了)
subplot(2,2,1); %创建一个可以画四个图的子图,这里画其中第一个
mesh(x,y,z); %mesh为绘制网格曲面图的函数
subplot(2,2,2); %画第二个图
[x,y,z]=sphere; %将x,y,z定义为球形并绘图
mesh(x,y,z);
subplot(2,1,2); %画第三个图
[x,y,z]=peaks(30); %将x,y,z定义为多峰型并绘图
mesh(x,y,z);
|
2301_77966824/some-learning-about-matlab
|
2023/2023_01_18/2023_01_18_01.m
|
MATLAB
|
unknown
| 673
|
x = 0:0.5:4;
y = x*2;
plot(x,y)
|
2301_77966824/some-learning-about-matlab
|
2024/2024_03_04.m
|
MATLAB
|
unknown
| 31
|
pi
format longE
pi
format shortE
|
2301_77966824/some-learning-about-matlab
|
2024/2024_05/2024_05_21/2024_05_21_01/m2024_05_21_01.m
|
Objective-C
|
unknown
| 32
|
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>重庆大学文渊阁读书协会 - 赛博文学自留地</title>
<style>
:root {
--neon-cyan: #00ffff;
--neon-pink: #ff006e;
--neon-purple: #8b00ff;
--deep-black: #0a0a0a;
--glass-white: rgba(255, 255, 255, 0.05);
--glass-border: rgba(255, 255, 255, 0.1);
}
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
html {
scroll-behavior: smooth;
}
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'PingFang SC', sans-serif;
background: var(--deep-black);
color: #fff;
overflow-x: hidden;
cursor: none;
}
/* 自定义光标样式 */
.cursor {
position: fixed;
width: 20px;
height: 20px;
border: 2px solid var(--neon-cyan);
border-radius: 50%;
pointer-events: none;
z-index: 9999;
mix-blend-mode: difference;
transition: transform 0.2s ease;
}
.cursor-follower {
position: fixed;
width: 40px;
height: 40px;
background: radial-gradient(circle, rgba(0, 255, 255, 0.2) 0%, transparent 70%);
border-radius: 50%;
pointer-events: none;
z-index: 9998;
transition: transform 0.3s ease;
}
.cursor.hover {
transform: scale(1.5);
background-color: var(--neon-pink);
border-color: var(--neon-pink);
}
.cursor-follower.hover {
transform: scale(1.2);
background: radial-gradient(circle, rgba(255, 0, 110, 0.3) 0%, transparent 70%);
}
.cursor.click {
transform: scale(0.8);
background-color: var(--neon-purple);
border-color: var(--neon-purple);
}
#matrix-rain {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
z-index: -1;
opacity: 0.3;
}
/* 导航栏样式 */
.navbar {
position: fixed;
top: 0;
left: 0;
width: 100%;
background: rgba(10, 10, 10, 0.9);
backdrop-filter: blur(10px);
border-bottom: 1px solid var(--glass-border);
z-index: 1000;
padding: 15px 0;
transition: all 0.3s ease;
}
.navbar-container {
max-width: 1200px;
margin: 0 auto;
display: flex;
justify-content: space-between;
align-items: center;
padding: 0 20px;
}
.navbar-brand {
font-size: 1.5rem;
font-weight: 700;
background: linear-gradient(90deg, var(--neon-cyan), var(--neon-pink));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-decoration: none;
}
.navbar-nav {
display: flex;
list-style: none;
gap: 30px;
}
.navbar-nav a {
color: rgba(255, 255, 255, 0.8);
text-decoration: none;
font-weight: 500;
transition: all 0.3s ease;
position: relative;
padding: 5px 0;
}
.navbar-nav a:hover {
color: var(--neon-cyan);
}
.navbar-nav a::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 0;
height: 2px;
background: var(--neon-cyan);
transition: width 0.3s ease;
}
.navbar-nav a:hover::after {
width: 100%;
}
/* 主内容区域 */
.hero {
height: 100vh;
display: flex;
align-items: center;
justify-content: center;
position: relative;
overflow: hidden;
}
.hero::before {
content: '';
position: absolute;
inset: 0;
background: radial-gradient(circle at center, transparent 0%, rgba(0, 0, 0, 0.8) 100%);
z-index: 1;
}
.hero-content {
text-align: center;
z-index: 2;
position: relative;
}
.main-title {
font-size: 12vw;
font-weight: 900;
background: linear-gradient(45deg, var(--neon-cyan), var(--neon-pink), var(--neon-purple));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
animation: title-pulse 3s ease-in-out infinite;
}
@keyframes title-pulse {
0%, 100% {
transform: scale(1);
}
50% {
transform: scale(1.02);
}
}
.subtitle {
font-size: 1.2rem;
color: rgba(255, 255, 255, 0.8);
font-weight: 300;
letter-spacing: 0.2em;
text-transform: uppercase;
opacity: 0;
animation: fade-in-up 1s ease-out 0.5s forwards;
}
@keyframes fade-in-up {
from {
opacity: 0;
transform: translateY(30px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.philosophy-section {
padding: 100px 20px;
background: linear-gradient(180deg, rgba(0, 0, 0, 0.9) 0%, rgba(0, 0, 0, 0.5) 100%);
}
.philosophy-text {
max-width: 800px;
margin: 0 auto;
font-size: 1.2rem;
line-height: 2;
text-align: center;
color: rgba(255, 255, 255, 0.9);
}
.activities-showcase {
padding: 80px 20px;
}
.section-title {
font-size: 2.5rem;
font-weight: 700;
text-align: center;
margin-bottom: 50px;
background: linear-gradient(90deg, var(--neon-cyan), var(--neon-pink));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.activity-grid {
display: grid;
gap: 30px;
max-width: 1200px;
margin: 0 auto;
}
.activity-card {
background: var(--glass-white);
border: 1px solid var(--glass-border);
border-radius: 20px;
padding: 30px;
position: relative;
overflow: hidden;
transition: all 0.3s ease;
}
.activity-card:hover {
transform: translateY(-8px);
box-shadow: 0 20px 40px rgba(0, 255, 255, 0.2);
border-color: var(--neon-cyan);
}
.card-number {
position: absolute;
top: 15px;
right: 20px;
font-size: 3rem;
font-weight: 900;
color: rgba(255, 255, 255, 0.1);
}
.card-title {
font-size: 1.5rem;
margin-bottom: 15px;
color: var(--neon-cyan);
}
.card-description {
font-size: 1rem;
line-height: 1.8;
color: rgba(255, 255, 255, 0.8);
margin-bottom: 20px;
}
.card-link {
display: inline-block;
color: var(--neon-pink);
text-decoration: none;
font-weight: 500;
transition: all 0.3s ease;
}
.card-link:hover {
text-shadow: 0 0 8px var(--neon-pink);
}
.departments-section {
padding: 80px 20px;
background: linear-gradient(135deg, var(--deep-black) 0%, #2a2a2a 100%);
}
.dept-container {
display: flex;
flex-wrap: wrap;
justify-content: center;
gap: 40px;
}
.dept-item {
width: 280px;
height: 280px;
position: relative;
transform-style: preserve-3d;
transition: transform 0.6s ease;
cursor: pointer;
}
.dept-item:hover {
transform: rotateY(180deg);
}
.dept-front, .dept-back {
position: absolute;
width: 100%;
height: 100%;
backface-visibility: hidden;
border-radius: 20px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
padding: 25px;
background: var(--glass-white);
border: 1px solid var(--glass-border);
}
.dept-back {
transform: rotateY(180deg);
background: linear-gradient(135deg, var(--neon-cyan), var(--neon-purple));
border: none;
}
.dept-icon {
font-size: 2.5rem;
margin-bottom: 15px;
}
.dept-name {
font-size: 1.4rem;
font-weight: 600;
color: var(--neon-cyan);
}
.dept-back .dept-name {
color: #fff;
margin-bottom: 15px;
}
.dept-desc {
color: rgba(255, 255, 255, 0.9);
text-align: center;
line-height: 1.6;
}
.learn-more-btn {
margin-top: 15px;
background: none;
border: none;
color: white;
cursor: pointer;
font-size: 1rem;
font-weight: 500;
transition: all 0.3s ease;
padding: 8px 16px;
border-radius: 20px;
border: 1px solid rgba(255, 255, 255, 0.3);
}
.learn-more-btn:hover {
background: rgba(255, 255, 255, 0.1);
text-shadow: 0 0 8px white;
}
/* 部门详情页样式 */
.dept-detail-page {
display: none;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(0, 0, 0, 0.9);
z-index: 2000;
overflow-y: auto;
padding: 20px;
}
.dept-detail-content {
max-width: 1000px;
margin: 80px auto;
background: var(--deep-black);
border-radius: 20px;
overflow: hidden;
box-shadow: 0 0 50px rgba(0, 255, 255, 0.3);
border: 1px solid var(--neon-cyan);
}
.dept-detail-header {
height: 300px;
position: relative;
overflow: hidden;
}
.dept-detail-image {
width: 100%;
height: 100%;
object-fit: cover;
filter: brightness(0.7);
}
.dept-detail-overlay {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: linear-gradient(to bottom, transparent 0%, rgba(0, 0, 0, 0.8) 100%);
display: flex;
align-items: flex-end;
padding: 30px;
}
.dept-detail-title {
font-size: 3rem;
font-weight: 900;
background: linear-gradient(90deg, var(--neon-cyan), var(--neon-pink));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 10px;
}
.dept-detail-body {
padding: 40px;
}
.dept-detail-description {
font-size: 1.2rem;
line-height: 1.8;
margin-bottom: 30px;
color: rgba(255, 255, 255, 0.9);
}
.dept-detail-features {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
margin-bottom: 40px;
}
.feature-item {
background: var(--glass-white);
border: 1px solid var(--glass-border);
border-radius: 10px;
padding: 20px;
transition: all 0.3s ease;
}
.feature-item:hover {
border-color: var(--neon-cyan);
transform: translateY(-5px);
}
.feature-title {
font-size: 1.2rem;
color: var(--neon-cyan);
margin-bottom: 10px;
}
.feature-desc {
color: rgba(255, 255, 255, 0.8);
line-height: 1.6;
}
.close-detail {
position: absolute;
top: 20px;
right: 20px;
width: 40px;
height: 40px;
background: rgba(0, 0, 0, 0.5);
border: 1px solid var(--neon-cyan);
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
color: var(--neon-cyan);
font-size: 1.5rem;
cursor: pointer;
transition: all 0.3s ease;
z-index: 10;
}
.close-detail:hover {
background: var(--neon-cyan);
color: var(--deep-black);
}
.join-cta {
padding: 100px 20px;
text-align: center;
background: radial-gradient(circle at center, rgba(0, 255, 255, 0.1) 0%, transparent 70%);
}
.cta-title {
font-size: 2.8rem;
font-weight: 900;
margin-bottom: 20px;
background: linear-gradient(45deg, var(--neon-cyan), var(--neon-pink));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
animation: glitch-text 2s infinite;
}
@keyframes glitch-text {
0%, 100% {
text-shadow: none;
}
25% {
text-shadow: -2px 0 var(--neon-pink), 2px 0 var(--neon-cyan);
}
75% {
text-shadow: 2px 0 var(--neon-pink), -2px 0 var(--neon-cyan);
}
}
.cta-subtitle {
font-size: 1.2rem;
color: rgba(255, 255, 255, 0.8);
margin-bottom: 40px;
letter-spacing: 0.1em;
line-height: 1.6;
}
.join-button {
display: inline-block;
padding: 16px 50px;
background: linear-gradient(45deg, var(--neon-cyan), var(--neon-purple));
color: #fff;
text-decoration: none;
border-radius: 50px;
font-size: 1.1rem;
font-weight: 600;
transition: all 0.3s ease;
box-shadow: 0 10px 30px rgba(0, 255, 255, 0.3);
}
.join-button:hover {
transform: translateY(-3px);
box-shadow: 0 15px 40px rgba(0, 255, 255, 0.5);
}
.wechat-info {
margin-top: 30px;
font-size: 1rem;
color: rgba(255, 255, 255, 0.6);
}
.wechat-id {
display: inline-block;
margin-top: 10px;
padding: 8px 16px;
border: 1px solid var(--neon-cyan);
border-radius: 30px;
color: var(--neon-cyan);
transition: all 0.3s ease;
}
.wechat-id:hover {
background: var(--neon-cyan);
color: var(--deep-black);
}
/* 滚动动画 */
.fade-in {
opacity: 0;
transform: translateY(30px);
transition: all 0.8s ease;
}
.fade-in.visible {
opacity: 1;
transform: translateY(0);
}
/* 小屏优化 */
@media (min-width: 600px) {
.activity-grid {
grid-template-columns: repeat(2, 1fr);
}
.main-title {
font-size: 5rem;
}
}
/* 移动设备优化 */
@media (max-width: 768px) {
.cursor, .cursor-follower {
display: none; /* 在移动设备上隐藏光标 */
}
body {
cursor: auto;
}
.main-title {
font-size: 3.5rem;
}
.section-title {
font-size: 2rem;
}
.dept-item {
width: 250px;
height: 250px;
}
.cta-title {
font-size: 2rem;
}
.join-button {
padding: 14px 40px;
font-size: 1rem;
}
.activity-grid {
grid-template-columns: 1fr;
}
.navbar-nav {
gap: 15px;
}
.navbar-nav a {
font-size: 0.9rem;
}
.dept-detail-title {
font-size: 2rem;
}
.dept-detail-body {
padding: 20px;
}
.dept-detail-features {
grid-template-columns: 1fr;
}
}
</style>
</head>
<body>
<!-- 自定义光标 -->
<div class="cursor"></div>
<div class="cursor-follower"></div>
<!-- 导航栏 -->
<nav class="navbar">
<div class="navbar-container">
<a href="#" class="navbar-brand">文渊阁</a>
<ul class="navbar-nav">
<li><a href="#home">首页</a></li>
<li><a href="#philosophy">理念</a></li>
<li><a href="#activities">活动</a></li>
<li><a href="#departments">部门</a></li>
<li><a href="#join">加入我们</a></li>
</ul>
</div>
</nav>
<!-- 矩阵雨背景 -->
<canvas id="matrix-rain"></canvas>
<!-- 主内容区域 -->
<section class="hero" id="home">
<div class="hero-content">
<h1 class="main-title">文渊阁</h1>
<p class="subtitle">赛博空间的哲学栖息地</p>
</div>
</section>
<section class="philosophy-section" id="philosophy">
<div class="philosophy-text fade-in">
当纸质书成为生活的不必要品,碎片化的信息构成了人与人交往的互联世界,
线下小规模的读书协会存在是否还有意义?当经费不足以支撑我们精神梦想的时候,
我们的社团成为了这样的一个赛博社团——一群"小众"的学生,通过大众的科技聚集在一起,
重建精神家园的收容所。
</div>
</section>
<section class="activities-showcase" id="activities">
<h2 class="section-title fade-in">RECENT ACTIVITIES</h2>
<div class="activity-grid">
<div class="activity-card fade-in">
<div class="card-number">02</div>
<h3 class="card-title">博雅·读书·生活系列活动(二)</h3>
<p class="card-description">在赛博朋克的世界里,我们寻找着人文与科技的平衡点。让阅读成为生活的防火墙,抵御信息的洪流。</p>
<a href="https://mp.weixin.qq.com/s/ZMoOvZ2y837wuklNwUXABQ" class="card-link" target="_blank">点此查看活动详情 →</a>
</div>
<div class="activity-card fade-in">
<div class="card-number">01</div>
<h3 class="card-title">博雅·读书·生活系列活动(一)</h3>
<p class="card-description">当二进制遇见诗经,当算法碰撞哲学。在这里,我们用代码编译诗意,用数据流传承文明。</p>
<a href="https://mp.weixin.qq.com/s/o3Ty5l7M5iFOn6yUCw2sPQ" class="card-link" target="_blank">点此查看活动详情 →</a>
</div>
</div>
</section>
<section class="departments-section" id="departments">
<h2 class="section-title fade-in">DEPARTMENTS</h2>
<div class="dept-container">
<div class="dept-item fade-in" data-dept="propaganda">
<div class="dept-front">
<div class="dept-icon">📡</div>
<h3 class="dept-name">宣传部</h3>
</div>
<div class="dept-back">
<h3 class="dept-name">宣传部</h3>
<p class="dept-desc">在信息的海洋中,我们是灯塔的守护者。用创意的代码,编译思想的火花。</p>
<button class="learn-more-btn">了解更多 →</button>
</div>
</div>
<div class="dept-item fade-in" data-dept="organization">
<div class="dept-front">
<div class="dept-icon">⚙️</div>
<h3 class="dept-name">组织部</h3>
</div>
<div class="dept-back">
<h3 class="dept-name">组织部</h3>
<p class="dept-desc">协调虚拟与现实的接口,管理人文与科技的融合。让每一次活动都成为一次思想的升级。</p>
<button class="learn-more-btn">了解更多 →</button>
</div>
</div>
<div class="dept-item fade-in" data-dept="learning">
<div class="dept-front">
<div class="dept-icon">🔮</div>
<h3 class="dept-name">学习部</h3>
</div>
<div class="dept-back">
<h3 class="dept-name">学习部</h3>
<p class="dept-desc">在知识的矩阵中探索,让每一本书都成为通往新世界的端口。构建思维的神经网络。</p>
<button class="learn-more-btn">了解更多 →</button>
</div>
</div>
</div>
</section>
<!-- 部门详情页 -->
<div id="propaganda-detail" class="dept-detail-page">
<div class="dept-detail-content">
<div class="dept-detail-header">
<img src="" alt="宣传部" class="dept-detail-image" id="propaganda-image">
<div class="dept-detail-overlay">
<div>
<h2 class="dept-detail-title">宣传部</h2>
<p class="subtitle">信息海洋中的灯塔守护者</p>
</div>
</div>
<div class="close-detail">×</div>
</div>
<div class="dept-detail-body">
<p class="dept-detail-description">
我们热衷于传播知识、扩散梦想,让热爱在校园发光。在信息的洪流中,我们搭建起思想的桥梁,用创意的代码编译思想的火花,让每一个声音都能被听见,每一个梦想都能被看见。
</p>
<div class="dept-detail-features">
<div class="feature-item">
<h3 class="feature-title">创意设计</h3>
<p class="feature-desc">运用赛博美学设计海报、视频和数字内容,让每一次宣传都成为视觉盛宴。</p>
</div>
<div class="feature-item">
<h3 class="feature-title">数字传播</h3>
<p class="feature-desc">通过社交媒体、公众号等数字渠道,将知识与思想传播到校园的每一个角落。</p>
</div>
<div class="feature-item">
<h3 class="feature-title">活动记录</h3>
<p class="feature-desc">用镜头和文字记录每一次活动的精彩瞬间,构建文渊阁的数字记忆库。</p>
</div>
</div>
</div>
</div>
</div>
<div id="organization-detail" class="dept-detail-page">
<div class="dept-detail-content">
<div class="dept-detail-header">
<img src="" alt="组织部" class="dept-detail-image" id="organization-image">
<div class="dept-detail-overlay">
<div>
<h2 class="dept-detail-title">组织部</h2>
<p class="subtitle">梦想与行动的构建者</p>
</div>
</div>
<div class="close-detail">×</div>
</div>
<div class="dept-detail-body">
<p class="dept-detail-description">
我们擅长构建梦想并付诸行动,不浪费点滴青春时光。作为文渊阁的架构师,我们协调虚拟与现实的接口,管理人文与科技的融合,让每一次活动都成为一次思想的升级。
</p>
<div class="dept-detail-features">
<div class="feature-item">
<h3 class="feature-title">活动策划</h3>
<p class="feature-desc">从概念到执行,我们设计并组织富有创意的读书活动与文化交流项目。</p>
</div>
<div class="feature-item">
<h3 class="feature-title">团队协调</h3>
<p class="feature-desc">协调各部门工作,确保每一次活动都能高效、顺利地开展。</p>
</div>
<div class="feature-item">
<h3 class="feature-title">资源管理</h3>
<p class="feature-desc">管理社团资源,优化配置,让有限的资源发挥最大的价值。</p>
</div>
</div>
</div>
</div>
</div>
<div id="learning-detail" class="dept-detail-page">
<div class="dept-detail-content">
<div class="dept-detail-header">
<img src="" alt="学习部" class="dept-detail-image" id="learning-image">
<div class="dept-detail-overlay">
<div>
<h2 class="dept-detail-title">学习部</h2>
<p class="subtitle">知识的求索者</p>
</div>
</div>
<div class="close-detail">×</div>
</div>
<div class="dept-detail-body">
<p class="dept-detail-description">
我们是知识的求索者,搭建虚拟和现实之间的桥梁。在知识的矩阵中探索,让每一本书都成为通往新世界的端口,构建思维的神经网络,让阅读成为连接过去与未来的纽带。
</p>
<div class="dept-detail-features">
<div class="feature-item">
<h3 class="feature-title">读书会组织</h3>
<p class="feature-desc">策划并主持各类主题读书会,促进思想交流与知识共享。</p>
</div>
<div class="feature-item">
<h3 class="feature-title">知识分享</h3>
<p class="feature-desc">整理并分享阅读心得、书单推荐,构建文渊阁的知识库。</p>
</div>
<div class="feature-item">
<h3 class="feature-title">学习资源</h3>
<p class="feature-desc">收集整理优质学习资源,为成员提供丰富的阅读与学习材料。</p>
</div>
</div>
</div>
</div>
</div>
<section class="join-cta" id="join">
<h2 class="cta-title fade-in">JOIN THE RESISTANCE</h2>
<p class="cta-subtitle fade-in">
发现我们<br>
找到我们<br>
加入我们
</p>
<!-- QQ 群链接(新标签打开) -->
<a href="https://qun.qq.com/universal-share/share?ac=1&authKey=9Nxuvkk0DC7JrmXXHfN59qwCWHJXnGl9pXV5meYmu319hATTYfrMEsL3LTFZgiED&busi_data=eyJncm91cENvZGUiOiI3NjE2MTEyNjMiLCJ0b2tlbiI6IjlUN2lyeWp5OThOSjVZdy8vUHZGM1RQSk1tVDZES0EyZ2owUlBSNE01bzZLaGNQMWlDak1TQURnZEcrL3JQRzkiLCJ1aW4iOiIxOTY5NTg5MDAxIn0%3D&data=tPSLk8XoipFVVZCr6aycTPs0LypmxqN-55DSr0K9_xKRynp6xOHTmwQ50Ve3vqEaK_KRFgojjtKdvibDme5Ucg&svctype=4&tempid=h5_group_info"
class="join-button fade-in" target="_blank">2025 纳新 QQ 群:761611263</a>
<div class="wechat-info fade-in">
<p>关注我们的意识传输节点</p>
<span class="wechat-id">官微:重大文渊阁</span>
</div>
</section>
<script>
// 页面加载时设置本地图片
window.addEventListener('load', function() {
// 设置本地图片路径
document.getElementById('propaganda-image').src = './宣传部图片.jpg';
document.getElementById('organization-image').src = './组织部图片.jpg';
document.getElementById('learning-image').src = './学习部图片.jpg';
});
// 光标逻辑
const cursor = document.querySelector('.cursor');
const cursorFollower = document.querySelector('.cursor-follower');
// 鼠标移动事件
document.addEventListener('mousemove', e => {
cursor.style.left = e.clientX + 'px';
cursor.style.top = e.clientY + 'px';
setTimeout(() => {
cursorFollower.style.left = e.clientX + 'px';
cursorFollower.style.top = e.clientY + 'px';
}, 100);
});
// 鼠标悬停效果
const hoverElements = document.querySelectorAll('a, button, .activity-card, .dept-item, .join-button, .feature-item');
hoverElements.forEach(element => {
element.addEventListener('mouseenter', () => {
cursor.classList.add('hover');
cursorFollower.classList.add('hover');
});
element.addEventListener('mouseleave', () => {
cursor.classList.remove('hover');
cursorFollower.classList.remove('hover');
});
});
// 鼠标点击效果
document.addEventListener('mousedown', () => {
cursor.classList.add('click');
});
document.addEventListener('mouseup', () => {
cursor.classList.remove('click');
});
// 矩阵雨效果
const canvas = document.getElementById('matrix-rain');
const ctx = canvas.getContext('2d');
function resizeCanvas() {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
}
resizeCanvas();
window.addEventListener('resize', resizeCanvas);
const matrix = "ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789@#$%^&*()*&^%+-/~{[|`]}";
const matrixArray = matrix.split("");
const fontSize = 10;
const columns = canvas.width / fontSize;
const drops = [];
for (let x = 0; x < columns; x++) {
drops[x] = 1;
}
function drawMatrix() {
ctx.fillStyle = 'rgba(0, 0, 0, 0.04)';
ctx.fillRect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = '#00ff41';
ctx.font = fontSize + 'px monospace';
for (let i = 0; i < drops.length; i++) {
const text = matrixArray[Math.floor(Math.random() * matrixArray.length)];
ctx.fillText(text, i * fontSize, drops[i] * fontSize);
if (drops[i] * fontSize > canvas.height && Math.random() > 0.975) {
drops[i] = 0;
}
drops[i]++;
}
}
setInterval(drawMatrix, 35);
// 滚动动画
const observer = new IntersectionObserver(entries => {
entries.forEach(e => {
if (e.isIntersecting) {
e.target.classList.add('visible');
}
});
}, {
threshold: 0.1,
rootMargin: '0px 0px -100px 0px'
});
document.querySelectorAll('.fade-in').forEach(el => {
observer.observe(el);
});
// 导航栏滚动效果
window.addEventListener('scroll', function() {
const navbar = document.querySelector('.navbar');
if (window.scrollY > 100) {
navbar.style.background = 'rgba(10, 10, 10, 0.95)';
} else {
navbar.style.background = 'rgba(10, 10, 10, 0.9)';
}
});
// 部门详情页功能
const deptItems = document.querySelectorAll('.dept-item');
const learnMoreBtns = document.querySelectorAll('.learn-more-btn');
const detailPages = document.querySelectorAll('.dept-detail-page');
const closeButtons = document.querySelectorAll('.close-detail');
// 为"了解更多"按钮添加点击事件
learnMoreBtns.forEach(btn => {
btn.addEventListener('click', (e) => {
e.stopPropagation(); // 防止事件冒泡
const deptItem = btn.closest('.dept-item');
const deptType = deptItem.getAttribute('data-dept');
const detailPage = document.getElementById(`${deptType}-detail`);
// 显示对应的详情页
detailPage.style.display = 'block';
document.body.style.overflow = 'hidden';
});
});
// 为部门卡片本身添加点击事件(点击卡片任意位置翻转)
deptItems.forEach(item => {
item.addEventListener('click', (e) => {
// 只有当点击的不是"了解更多"按钮时才翻转卡片
if (!e.target.classList.contains('learn-more-btn')) {
item.classList.toggle('flipped');
if (item.style.transform === 'rotateY(180deg)') {
item.style.transform = 'rotateY(0deg)';
} else {
item.style.transform = 'rotateY(180deg)';
}
}
});
});
closeButtons.forEach(button => {
button.addEventListener('click', () => {
detailPages.forEach(page => {
page.style.display = 'none';
});
document.body.style.overflow = 'auto';
});
});
// 点击详情页背景关闭
detailPages.forEach(page => {
page.addEventListener('click', (e) => {
if (e.target === page) {
page.style.display = 'none';
document.body.style.overflow = 'auto';
}
});
});
</script>
</body>
</html>
|
2301_78337374/wenyuange
|
文渊阁25纳新-1014.html
|
HTML
|
unknown
| 36,746
|
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import os
import logging
from config import config
from utils.session_manager import SessionManager
from utils.image_processor import ImageProcessor
from utils.gemini_client import GeminiClient
from utils.error_handler import setup_error_handlers
from utils.rate_limiter import RateLimiter
def create_app(config_name=None):
"""创建Flask应用实例"""
app = Flask(__name__)
# 加载配置
config_name = config_name or os.environ.get('FLASK_ENV', 'default')
app.config.from_object(config[config_name])
config[config_name].init_app(app)
# 初始化CORS
CORS(app, origins=app.config['CORS_ORIGINS'])
# 设置日志
if not app.debug:
logging.basicConfig(level=logging.INFO)
# 初始化组件
session_manager = SessionManager(app.config['REDIS_URL'], app.config['SESSION_TIMEOUT'])
image_processor = ImageProcessor(app.config['UPLOAD_FOLDER'], app.config['ALLOWED_EXTENSIONS'])
gemini_client = GeminiClient(app.config['GEMINI_API_KEY'], app.config['GEMINI_MODEL'])
rate_limiter = RateLimiter(app.config['API_RATE_LIMIT'])
# 注册错误处理器
setup_error_handlers(app)
# 注册蓝图
from routes.api import create_api_blueprint
api_bp = create_api_blueprint(session_manager, image_processor, gemini_client, rate_limiter)
app.register_blueprint(api_bp, url_prefix='/api/v1')
# 健康检查端点
@app.route('/health')
def health_check():
return jsonify({
'status': 'healthy',
'service': 'image-generation-proxy',
'version': '1.0.0'
})
# 根路径
@app.route('/')
def index():
return jsonify({
'message': '图生图转接API服务',
'version': '1.0.0',
'endpoints': {
'health': '/health',
'api_docs': '/api/v1/docs',
'generate': '/api/v1/generate',
'session': '/api/v1/session'
}
})
return app
if __name__ == '__main__':
app = create_app()
app.run(host='0.0.0.0', port=5000, debug=True)
|
2301_78526554/tosto
|
app.py
|
Python
|
unknown
| 2,221
|
#!/bin/bash
# 图生图API自动部署脚本
# 适用于Ubuntu/Debian系统
set -e
echo "🚀 开始自动部署图生图API服务..."
# 检测系统
if [[ -f /etc/os-release ]]; then
. /etc/os-release
OS=$NAME
VER=$VERSION_ID
else
echo "❌ 无法检测系统版本"
exit 1
fi
echo "检测到系统: $OS $VER"
# 更新系统
echo "📦 更新系统包..."
if [[ $OS == *"Ubuntu"* ]] || [[ $OS == *"Debian"* ]]; then
sudo apt update && sudo apt upgrade -y
sudo apt install -y python3 python3-pip python3-venv nginx git curl
elif [[ $OS == *"CentOS"* ]] || [[ $OS == *"Red Hat"* ]]; then
sudo dnf update -y
sudo dnf install -y python3 python3-pip nginx git curl
else
echo "❌ 不支持的系统: $OS"
exit 1
fi
# 创建用户和目录
echo "👤 创建服务用户..."
sudo useradd -r -s /bin/false imageapi || true
sudo mkdir -p /opt/image-gen-api
sudo chown imageapi:imageapi /opt/image-gen-api
# 切换到项目目录
cd /opt/image-gen-api
# 如果是从git克隆,取消注释下面的行
# git clone https://github.com/your-repo/image-gen-api.git .
echo "📁 请确保项目文件已上传到 /opt/image-gen-api"
echo "按任意键继续..."
read -n 1
# 创建虚拟环境
echo "🐍 创建Python虚拟环境..."
sudo -u imageapi python3 -m venv venv
sudo -u imageapi ./venv/bin/pip install --upgrade pip
# 安装依赖
echo "📦 安装Python依赖..."
sudo -u imageapi ./venv/bin/pip install -r requirements.txt
# 配置环境变量
echo "⚙️ 配置环境变量..."
if [[ ! -f .env ]]; then
sudo -u imageapi cp .env.production .env
echo "请编辑 /opt/image-gen-api/.env 文件,填入您的Gemini API密钥"
echo "GEMINI_API_KEY=your_api_key_here"
echo "按任意键继续..."
read -n 1
fi
# 创建日志目录
sudo -u imageapi mkdir -p logs uploads
# 生成systemd服务文件
echo "🔧 配置systemd服务..."
cat > /tmp/image-gen-api.service << EOF
[Unit]
Description=图生图转接API服务
After=network.target
[Service]
Type=simple
User=imageapi
Group=imageapi
WorkingDirectory=/opt/image-gen-api
Environment=PATH=/opt/image-gen-api/venv/bin
ExecStart=/opt/image-gen-api/venv/bin/python -m gunicorn -w 4 -b 127.0.0.1:5000 --timeout 120 app:create_app()
Restart=always
RestartSec=10
[Install]
WantedBy=multi-user.target
EOF
sudo mv /tmp/image-gen-api.service /etc/systemd/system/
sudo systemctl daemon-reload
sudo systemctl enable image-gen-api
# 配置Nginx
echo "🌐 配置Nginx..."
cat > /tmp/image-gen-api-nginx << EOF
server {
listen 80;
server_name _;
client_max_body_size 20M;
location / {
proxy_pass http://127.0.0.1:5000;
proxy_set_header Host \$host;
proxy_set_header X-Real-IP \$remote_addr;
proxy_set_header X-Forwarded-For \$proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto \$scheme;
proxy_connect_timeout 60s;
proxy_send_timeout 60s;
proxy_read_timeout 60s;
}
access_log /var/log/nginx/image-gen-api.access.log;
error_log /var/log/nginx/image-gen-api.error.log;
}
EOF
sudo mv /tmp/image-gen-api-nginx /etc/nginx/sites-available/image-gen-api
sudo ln -sf /etc/nginx/sites-available/image-gen-api /etc/nginx/sites-enabled/
sudo rm -f /etc/nginx/sites-enabled/default
# 测试Nginx配置
sudo nginx -t
# 启动服务
echo "🚀 启动服务..."
sudo systemctl start image-gen-api
sudo systemctl reload nginx
# 检查服务状态
echo "📊 检查服务状态..."
sleep 3
sudo systemctl status image-gen-api --no-pager
# 测试API
echo "🔍 测试API..."
sleep 2
if curl -f http://localhost/health > /dev/null 2>&1; then
echo "✅ API服务正常运行"
else
echo "❌ API服务可能有问题,请检查日志"
sudo journalctl -u image-gen-api --no-pager -n 20
fi
# 配置防火墙
echo "🔒 配置防火墙..."
if command -v ufw > /dev/null; then
sudo ufw allow 80
sudo ufw allow 443
sudo ufw --force enable
elif command -v firewall-cmd > /dev/null; then
sudo firewall-cmd --permanent --add-service=http
sudo firewall-cmd --permanent --add-service=https
sudo firewall-cmd --reload
fi
echo ""
echo "🎉 部署完成!"
echo "================================"
echo "服务状态: sudo systemctl status image-gen-api"
echo "查看日志: sudo journalctl -u image-gen-api -f"
echo "重启服务: sudo systemctl restart image-gen-api"
echo "API地址: http://your-server-ip/"
echo "API文档: http://your-server-ip/api/v1/docs"
echo ""
echo "⚠️ 重要提醒:"
echo "1. 请确保已在 /opt/image-gen-api/.env 中配置正确的API密钥"
echo "2. 如需HTTPS,请配置SSL证书"
echo "3. 建议设置域名解析"
echo "================================"
|
2301_78526554/tosto
|
auto_deploy.sh
|
Shell
|
unknown
| 4,739
|
import os
from dotenv import load_dotenv
load_dotenv()
class Config:
"""应用配置类"""
# Flask基础配置
SECRET_KEY = os.environ.get('SECRET_KEY') or 'dev-secret-key-change-in-production'
DEBUG = os.environ.get('FLASK_DEBUG', 'False').lower() == 'true'
# Gemini API配置
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
GEMINI_MODEL = "gemini-2.0-flash-preview-image-generation"
# Redis配置
REDIS_URL = os.environ.get('REDIS_URL', 'redis://localhost:6379/0')
# 文件上传配置
MAX_CONTENT_LENGTH = int(os.environ.get('MAX_CONTENT_LENGTH', 16777216)) # 16MB
UPLOAD_FOLDER = os.environ.get('UPLOAD_FOLDER', 'uploads')
ALLOWED_EXTENSIONS = set(os.environ.get('ALLOWED_EXTENSIONS', 'png,jpg,jpeg,gif,webp').split(','))
# API配置
API_RATE_LIMIT = int(os.environ.get('API_RATE_LIMIT', 100))
SESSION_TIMEOUT = int(os.environ.get('SESSION_TIMEOUT', 3600))
# CORS配置
CORS_ORIGINS = ["*"] # 生产环境中应该限制具体域名
@staticmethod
def init_app(app):
"""初始化应用配置"""
# 创建上传目录
upload_path = os.path.join(os.getcwd(), Config.UPLOAD_FOLDER)
if not os.path.exists(upload_path):
os.makedirs(upload_path)
class DevelopmentConfig(Config):
"""开发环境配置"""
DEBUG = True
class ProductionConfig(Config):
"""生产环境配置"""
DEBUG = False
config = {
'development': DevelopmentConfig,
'production': ProductionConfig,
'default': DevelopmentConfig
}
|
2301_78526554/tosto
|
config.py
|
Python
|
unknown
| 1,588
|
#!/usr/bin/env python3
"""
持久化部署脚本
支持Windows服务、Linux systemd服务等方式
"""
import os
import sys
import platform
import subprocess
import shutil
from pathlib import Path
def create_windows_service():
"""创建Windows服务配置"""
service_script = """
import win32serviceutil
import win32service
import win32event
import servicemanager
import socket
import sys
import os
from pathlib import Path
# 添加项目路径到Python路径
project_path = Path(__file__).parent
sys.path.insert(0, str(project_path))
from app import create_app
class ImageGenAPIService(win32serviceutil.ServiceFramework):
_svc_name_ = "ImageGenAPI"
_svc_display_name_ = "图生图转接API服务"
_svc_description_ = "基于Gemini 2.0 Flash的图片生成和编辑API服务"
def __init__(self, args):
win32serviceutil.ServiceFramework.__init__(self, args)
self.hWaitStop = win32event.CreateEvent(None, 0, 0, None)
socket.setdefaulttimeout(60)
def SvcStop(self):
self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
win32event.SetEvent(self.hWaitStop)
def SvcDoRun(self):
servicemanager.LogMsg(servicemanager.EVENTLOG_INFORMATION_TYPE,
servicemanager.PYS_SERVICE_STARTED,
(self._svc_name_, ''))
self.main()
def main(self):
try:
# 切换到项目目录
os.chdir(str(project_path))
# 创建Flask应用
app = create_app()
# 启动服务
app.run(host='0.0.0.0', port=5000, debug=False)
except Exception as e:
servicemanager.LogErrorMsg(f"服务启动失败: {e}")
if __name__ == '__main__':
win32serviceutil.HandleCommandLine(ImageGenAPIService)
"""
with open('windows_service.py', 'w', encoding='utf-8') as f:
f.write(service_script)
print("✅ Windows服务脚本已创建: windows_service.py")
print("安装服务命令: python windows_service.py install")
print("启动服务命令: python windows_service.py start")
print("停止服务命令: python windows_service.py stop")
print("卸载服务命令: python windows_service.py remove")
def create_systemd_service():
"""创建Linux systemd服务配置"""
current_dir = os.getcwd()
python_path = sys.executable
service_content = f"""[Unit]
Description=图生图转接API服务
After=network.target
[Service]
Type=simple
User=www-data
Group=www-data
WorkingDirectory={current_dir}
Environment=PATH={os.path.dirname(python_path)}
ExecStart={python_path} -m gunicorn -w 4 -b 0.0.0.0:5000 --timeout 120 app:create_app()
Restart=always
RestartSec=10
[Install]
WantedBy=multi-user.target
"""
service_file = 'image-gen-api.service'
with open(service_file, 'w', encoding='utf-8') as f:
f.write(service_content)
print(f"✅ Systemd服务文件已创建: {service_file}")
print("安装步骤:")
print(f"1. sudo cp {service_file} /etc/systemd/system/")
print("2. sudo systemctl daemon-reload")
print("3. sudo systemctl enable image-gen-api")
print("4. sudo systemctl start image-gen-api")
print("5. sudo systemctl status image-gen-api")
def create_nginx_config():
"""创建Nginx反向代理配置"""
nginx_config = """server {
listen 80;
server_name your-domain.com; # 替换为您的域名
# 限制请求大小
client_max_body_size 20M;
# API代理
location / {
proxy_pass http://127.0.0.1:5000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
# 超时设置
proxy_connect_timeout 60s;
proxy_send_timeout 60s;
proxy_read_timeout 60s;
}
# 静态文件
location /static/ {
alias /path/to/your/static/files/;
expires 1y;
add_header Cache-Control "public, immutable";
}
# 日志
access_log /var/log/nginx/image-gen-api.access.log;
error_log /var/log/nginx/image-gen-api.error.log;
}
# HTTPS配置 (可选)
server {
listen 443 ssl;
server_name your-domain.com;
ssl_certificate /path/to/your/certificate.crt;
ssl_certificate_key /path/to/your/private.key;
client_max_body_size 20M;
location / {
proxy_pass http://127.0.0.1:5000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_connect_timeout 60s;
proxy_send_timeout 60s;
proxy_read_timeout 60s;
}
access_log /var/log/nginx/image-gen-api-ssl.access.log;
error_log /var/log/nginx/image-gen-api-ssl.error.log;
}
"""
with open('nginx.conf', 'w', encoding='utf-8') as f:
f.write(nginx_config)
print("✅ Nginx配置文件已创建: nginx.conf")
print("配置步骤:")
print("1. 编辑nginx.conf,替换域名和路径")
print("2. sudo cp nginx.conf /etc/nginx/sites-available/image-gen-api")
print("3. sudo ln -s /etc/nginx/sites-available/image-gen-api /etc/nginx/sites-enabled/")
print("4. sudo nginx -t")
print("5. sudo systemctl reload nginx")
def create_supervisor_config():
"""创建Supervisor配置"""
current_dir = os.getcwd()
python_path = sys.executable
supervisor_config = f"""[program:image-gen-api]
command={python_path} -m gunicorn -w 4 -b 127.0.0.1:5000 --timeout 120 app:create_app()
directory={current_dir}
user=www-data
autostart=true
autorestart=true
redirect_stderr=true
stdout_logfile=/var/log/supervisor/image-gen-api.log
stdout_logfile_maxbytes=10MB
stdout_logfile_backups=5
environment=PATH="{os.path.dirname(python_path)}"
"""
with open('supervisor.conf', 'w', encoding='utf-8') as f:
f.write(supervisor_config)
print("✅ Supervisor配置文件已创建: supervisor.conf")
print("配置步骤:")
print("1. sudo cp supervisor.conf /etc/supervisor/conf.d/image-gen-api.conf")
print("2. sudo supervisorctl reread")
print("3. sudo supervisorctl update")
print("4. sudo supervisorctl start image-gen-api")
print("5. sudo supervisorctl status image-gen-api")
def create_pm2_config():
"""创建PM2配置"""
pm2_config = {
"name": "image-gen-api",
"script": "run.py",
"interpreter": "python3",
"instances": 1,
"exec_mode": "fork",
"watch": False,
"max_memory_restart": "500M",
"env": {
"FLASK_ENV": "production"
},
"log_file": "./logs/app.log",
"out_file": "./logs/out.log",
"error_file": "./logs/error.log",
"log_date_format": "YYYY-MM-DD HH:mm:ss Z"
}
import json
with open('ecosystem.config.json', 'w', encoding='utf-8') as f:
json.dump(pm2_config, f, indent=2, ensure_ascii=False)
# 创建日志目录
os.makedirs('logs', exist_ok=True)
print("✅ PM2配置文件已创建: ecosystem.config.json")
print("使用步骤:")
print("1. npm install -g pm2")
print("2. pm2 start ecosystem.config.json")
print("3. pm2 save")
print("4. pm2 startup")
def create_production_run_script():
"""创建生产环境运行脚本"""
if platform.system() == "Windows":
script_content = """@echo off
echo 启动生产环境服务...
REM 检查.env文件
if not exist .env (
echo 错误: .env文件不存在,请先配置环境变量
pause
exit /b 1
)
REM 创建日志目录
if not exist logs mkdir logs
REM 启动服务
echo 启动图生图转接API服务 (生产模式)...
python -m gunicorn -w 4 -b 0.0.0.0:5000 --timeout 120 --access-logfile logs/access.log --error-logfile logs/error.log app:create_app()
pause
"""
with open('start_production.bat', 'w', encoding='utf-8') as f:
f.write(script_content)
print("✅ Windows生产环境脚本已创建: start_production.bat")
else:
script_content = """#!/bin/bash
echo "启动生产环境服务..."
# 检查.env文件
if [ ! -f .env ]; then
echo "错误: .env文件不存在,请先配置环境变量"
exit 1
fi
# 创建日志目录
mkdir -p logs
# 启动服务
echo "启动图生图转接API服务 (生产模式)..."
python3 -m gunicorn -w 4 -b 0.0.0.0:5000 --timeout 120 \\
--access-logfile logs/access.log \\
--error-logfile logs/error.log \\
--pid logs/gunicorn.pid \\
--daemon \\
app:create_app()
echo "服务已在后台启动"
echo "PID文件: logs/gunicorn.pid"
echo "访问日志: logs/access.log"
echo "错误日志: logs/error.log"
echo ""
echo "停止服务: kill \$(cat logs/gunicorn.pid)"
"""
with open('start_production.sh', 'w', encoding='utf-8') as f:
f.write(script_content)
os.chmod('start_production.sh', 0o755)
print("✅ Linux生产环境脚本已创建: start_production.sh")
def main():
"""主函数"""
print("🚀 图生图API持久化部署配置生成器")
print("=" * 50)
system = platform.system()
print(f"检测到系统: {system}")
print()
# 创建生产环境运行脚本
create_production_run_script()
print()
if system == "Windows":
print("Windows部署选项:")
print("1. Windows服务 (推荐)")
create_windows_service()
print()
print("2. PM2 (需要Node.js)")
create_pm2_config()
print()
elif system == "Linux":
print("Linux部署选项:")
print("1. Systemd服务 (推荐)")
create_systemd_service()
print()
print("2. Supervisor")
create_supervisor_config()
print()
print("3. PM2 (需要Node.js)")
create_pm2_config()
print()
print("4. Nginx反向代理配置")
create_nginx_config()
print()
print("📋 部署建议:")
print("1. 生产环境建议使用Gunicorn + Nginx")
print("2. 确保.env文件中的配置适合生产环境")
print("3. 定期备份日志文件")
print("4. 监控服务状态和资源使用")
print("5. 设置防火墙规则")
if __name__ == "__main__":
main()
|
2301_78526554/tosto
|
deploy.py
|
Python
|
unknown
| 10,485
|
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>图生图API客户端示例</title>
<style>
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
max-width: 1200px;
margin: 0 auto;
padding: 20px;
background-color: #f5f5f5;
}
.container {
background: white;
border-radius: 10px;
padding: 30px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
h1 {
color: #333;
text-align: center;
margin-bottom: 30px;
}
.form-group {
margin-bottom: 20px;
}
label {
display: block;
margin-bottom: 5px;
font-weight: bold;
color: #555;
}
input[type="text"], textarea, input[type="file"] {
width: 100%;
padding: 10px;
border: 1px solid #ddd;
border-radius: 5px;
font-size: 16px;
}
textarea {
height: 100px;
resize: vertical;
}
button {
background-color: #007bff;
color: white;
padding: 12px 24px;
border: none;
border-radius: 5px;
cursor: pointer;
font-size: 16px;
margin-right: 10px;
}
button:hover {
background-color: #0056b3;
}
button:disabled {
background-color: #ccc;
cursor: not-allowed;
}
.result {
margin-top: 30px;
padding: 20px;
border-radius: 5px;
background-color: #f8f9fa;
}
.error {
background-color: #f8d7da;
color: #721c24;
border: 1px solid #f5c6cb;
}
.success {
background-color: #d4edda;
color: #155724;
border: 1px solid #c3e6cb;
}
.image-container {
text-align: center;
margin: 20px 0;
}
.generated-image {
max-width: 100%;
max-height: 500px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.session-info {
background-color: #e7f3ff;
padding: 15px;
border-radius: 5px;
margin-bottom: 20px;
}
.loading {
text-align: center;
padding: 20px;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: 0 auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
</head>
<body>
<div class="container">
<h1>🎨 图生图API客户端示例</h1>
<div class="session-info" id="sessionInfo">
<strong>会话状态:</strong> <span id="sessionStatus">未创建</span>
<button onclick="createSession()">创建新会话</button>
</div>
<div class="form-group">
<label for="prompt">文本提示:</label>
<textarea id="prompt" placeholder="请输入您想要生成或编辑图片的描述...">生成一只可爱的小猫咪,坐在花园里</textarea>
</div>
<div class="form-group">
<label for="imageFile">上传图片 (可选,用于图片编辑):</label>
<input type="file" id="imageFile" accept="image/*" onchange="previewImage()">
</div>
<div class="image-container" id="previewContainer" style="display: none;">
<h3>预览图片:</h3>
<img id="previewImage" class="generated-image">
</div>
<div class="form-group">
<button onclick="generateImage()" id="generateBtn">🎨 生成/编辑图片</button>
<button onclick="clearResults()">🗑️ 清除结果</button>
</div>
<div id="loading" class="loading" style="display: none;">
<div class="spinner"></div>
<p>正在生成图片,请稍候...</p>
</div>
<div id="result" class="result" style="display: none;"></div>
</div>
<script>
let currentSessionId = null;
const API_BASE = 'http://localhost:5000/api/v1';
// 创建会话
async function createSession() {
try {
const response = await fetch(`${API_BASE}/session`, {
method: 'POST'
});
const data = await response.json();
if (data.success) {
currentSessionId = data.data.session_id;
document.getElementById('sessionStatus').textContent = `已创建 (${currentSessionId.substring(0, 8)}...)`;
showResult('会话创建成功!', 'success');
} else {
showResult('会话创建失败: ' + data.message, 'error');
}
} catch (error) {
showResult('会话创建失败: ' + error.message, 'error');
}
}
// 预览上传的图片
function previewImage() {
const file = document.getElementById('imageFile').files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(e) {
document.getElementById('previewImage').src = e.target.result;
document.getElementById('previewContainer').style.display = 'block';
};
reader.readAsDataURL(file);
} else {
document.getElementById('previewContainer').style.display = 'none';
}
}
// 生成图片
async function generateImage() {
const prompt = document.getElementById('prompt').value.trim();
if (!prompt) {
showResult('请输入文本提示', 'error');
return;
}
const generateBtn = document.getElementById('generateBtn');
generateBtn.disabled = true;
document.getElementById('loading').style.display = 'block';
document.getElementById('result').style.display = 'none';
try {
const formData = new FormData();
formData.append('prompt', prompt);
if (currentSessionId) {
formData.append('session_id', currentSessionId);
}
const imageFile = document.getElementById('imageFile').files[0];
if (imageFile) {
formData.append('image', imageFile);
}
const response = await fetch(`${API_BASE}/generate`, {
method: 'POST',
body: formData
});
const data = await response.json();
if (data.success) {
currentSessionId = data.data.session_id;
document.getElementById('sessionStatus').textContent = `已创建 (${currentSessionId.substring(0, 8)}...)`;
let resultHtml = '<h3>✅ 生成成功!</h3>';
if (data.data.text) {
resultHtml += `<p><strong>AI响应:</strong> ${data.data.text}</p>`;
}
if (data.data.image) {
resultHtml += `
<div class="image-container">
<h4>生成的图片:</h4>
<img src="${data.data.image}" class="generated-image" alt="生成的图片">
<br><br>
<button onclick="downloadImage('${data.data.image}')">📥 下载图片</button>
</div>
`;
}
showResult(resultHtml, 'success');
} else {
showResult('生成失败: ' + data.message, 'error');
}
} catch (error) {
showResult('生成失败: ' + error.message, 'error');
} finally {
generateBtn.disabled = false;
document.getElementById('loading').style.display = 'none';
}
}
// 下载图片
function downloadImage(base64Data) {
const link = document.createElement('a');
link.href = base64Data;
link.download = `generated_image_${Date.now()}.png`;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
// 显示结果
function showResult(message, type) {
const resultDiv = document.getElementById('result');
resultDiv.innerHTML = message;
resultDiv.className = `result ${type}`;
resultDiv.style.display = 'block';
}
// 清除结果
function clearResults() {
document.getElementById('result').style.display = 'none';
document.getElementById('previewContainer').style.display = 'none';
document.getElementById('imageFile').value = '';
}
// 页面加载时自动创建会话
window.onload = function() {
createSession();
};
</script>
</body>
</html>
|
2301_78526554/tosto
|
example_client.html
|
HTML
|
unknown
| 9,873
|
#!/usr/bin/env python3
"""
服务管理脚本
用于启动、停止、重启和监控服务
"""
import os
import sys
import signal
import time
import psutil
import argparse
import subprocess
from pathlib import Path
class ServiceManager:
def __init__(self):
self.project_dir = Path(__file__).parent
self.pid_file = self.project_dir / "logs" / "gunicorn.pid"
self.log_dir = self.project_dir / "logs"
# 确保日志目录存在
self.log_dir.mkdir(exist_ok=True)
def is_running(self):
"""检查服务是否运行"""
if not self.pid_file.exists():
return False
try:
with open(self.pid_file, 'r') as f:
pid = int(f.read().strip())
# 检查进程是否存在
return psutil.pid_exists(pid)
except (ValueError, FileNotFoundError):
return False
def get_pid(self):
"""获取服务PID"""
if not self.pid_file.exists():
return None
try:
with open(self.pid_file, 'r') as f:
return int(f.read().strip())
except (ValueError, FileNotFoundError):
return None
def start(self, workers=4, port=5000, daemon=True):
"""启动服务"""
if self.is_running():
print("❌ 服务已在运行中")
return False
print("🚀 启动服务...")
# 检查环境配置
if not (self.project_dir / ".env").exists():
print("❌ .env文件不存在,请先配置环境变量")
return False
# 构建启动命令
cmd = [
sys.executable, "-m", "gunicorn",
"-w", str(workers),
"-b", f"0.0.0.0:{port}",
"--timeout", "120",
"--access-logfile", str(self.log_dir / "access.log"),
"--error-logfile", str(self.log_dir / "error.log"),
"--pid", str(self.pid_file),
"app:create_app()"
]
if daemon:
cmd.append("--daemon")
try:
# 切换到项目目录
os.chdir(self.project_dir)
# 启动服务
subprocess.run(cmd, check=True)
if daemon:
# 等待一下确保服务启动
time.sleep(2)
if self.is_running():
print("✅ 服务启动成功")
print(f"PID: {self.get_pid()}")
print(f"访问地址: http://localhost:{port}")
return True
else:
print("❌ 服务启动失败")
return False
else:
print("✅ 服务已启动(前台模式)")
return True
except subprocess.CalledProcessError as e:
print(f"❌ 启动失败: {e}")
return False
def stop(self):
"""停止服务"""
if not self.is_running():
print("❌ 服务未运行")
return False
pid = self.get_pid()
if not pid:
print("❌ 无法获取服务PID")
return False
print(f"🛑 停止服务 (PID: {pid})...")
try:
# 发送SIGTERM信号
os.kill(pid, signal.SIGTERM)
# 等待进程结束
for _ in range(10):
if not psutil.pid_exists(pid):
break
time.sleep(1)
# 如果还没结束,强制杀死
if psutil.pid_exists(pid):
print("强制停止服务...")
os.kill(pid, signal.SIGKILL)
time.sleep(1)
# 清理PID文件
if self.pid_file.exists():
self.pid_file.unlink()
print("✅ 服务已停止")
return True
except ProcessLookupError:
print("✅ 服务已停止")
if self.pid_file.exists():
self.pid_file.unlink()
return True
except Exception as e:
print(f"❌ 停止失败: {e}")
return False
def restart(self, workers=4, port=5000):
"""重启服务"""
print("🔄 重启服务...")
self.stop()
time.sleep(2)
return self.start(workers, port)
def status(self):
"""查看服务状态"""
print("📊 服务状态:")
if self.is_running():
pid = self.get_pid()
try:
process = psutil.Process(pid)
print(f"✅ 服务运行中")
print(f"PID: {pid}")
print(f"启动时间: {time.ctime(process.create_time())}")
print(f"CPU使用率: {process.cpu_percent():.1f}%")
print(f"内存使用: {process.memory_info().rss / 1024 / 1024:.1f} MB")
print(f"线程数: {process.num_threads()}")
# 检查端口
connections = process.connections()
for conn in connections:
if conn.status == 'LISTEN':
print(f"监听端口: {conn.laddr.port}")
except psutil.NoSuchProcess:
print("❌ 进程不存在")
else:
print("❌ 服务未运行")
# 检查日志文件
print("\n📝 日志文件:")
for log_file in ["access.log", "error.log", "app.log"]:
log_path = self.log_dir / log_file
if log_path.exists():
size = log_path.stat().st_size / 1024 / 1024
print(f" {log_file}: {size:.1f} MB")
else:
print(f" {log_file}: 不存在")
def logs(self, log_type="error", lines=50):
"""查看日志"""
log_file = self.log_dir / f"{log_type}.log"
if not log_file.exists():
print(f"❌ 日志文件不存在: {log_file}")
return
print(f"📝 {log_type}日志 (最后{lines}行):")
print("-" * 50)
try:
# 使用tail命令或Python实现
if os.name == 'posix': # Linux/macOS
subprocess.run(['tail', '-n', str(lines), str(log_file)])
else: # Windows
with open(log_file, 'r', encoding='utf-8') as f:
lines_list = f.readlines()
for line in lines_list[-lines:]:
print(line.rstrip())
except Exception as e:
print(f"❌ 读取日志失败: {e}")
def health_check(self):
"""健康检查"""
import requests
print("🔍 健康检查...")
try:
response = requests.get("http://localhost:5000/health", timeout=10)
if response.status_code == 200:
data = response.json()
print("✅ 服务健康")
print(f"状态: {data.get('status')}")
print(f"版本: {data.get('version')}")
else:
print(f"❌ 健康检查失败: HTTP {response.status_code}")
except requests.exceptions.RequestException as e:
print(f"❌ 健康检查失败: {e}")
def main():
parser = argparse.ArgumentParser(description="图生图API服务管理")
parser.add_argument('action', choices=['start', 'stop', 'restart', 'status', 'logs', 'health'],
help='操作类型')
parser.add_argument('-w', '--workers', type=int, default=4, help='工作进程数')
parser.add_argument('-p', '--port', type=int, default=5000, help='端口号')
parser.add_argument('--foreground', action='store_true', help='前台运行')
parser.add_argument('--log-type', choices=['access', 'error', 'app'], default='error',
help='日志类型')
parser.add_argument('--lines', type=int, default=50, help='显示日志行数')
args = parser.parse_args()
manager = ServiceManager()
if args.action == 'start':
manager.start(args.workers, args.port, not args.foreground)
elif args.action == 'stop':
manager.stop()
elif args.action == 'restart':
manager.restart(args.workers, args.port)
elif args.action == 'status':
manager.status()
elif args.action == 'logs':
manager.logs(args.log_type, args.lines)
elif args.action == 'health':
manager.health_check()
if __name__ == "__main__":
main()
|
2301_78526554/tosto
|
manage.py
|
Python
|
unknown
| 8,782
|
# 路由包
|
2301_78526554/tosto
|
routes/__init__.py
|
Python
|
unknown
| 12
|
from flask import Blueprint, request, jsonify, send_file
from werkzeug.utils import secure_filename
import os
import logging
from utils.error_handler import APIError
from typing import Optional
def create_api_blueprint(session_manager, image_processor, gemini_client, rate_limiter):
"""创建API蓝图"""
api = Blueprint('api', __name__)
def check_rate_limit():
"""检查速率限制"""
allowed, remaining = rate_limiter.is_allowed()
if not allowed:
reset_time = rate_limiter.get_reset_time()
raise APIError(
message=f"请求频率过高,请在 {reset_time} 后重试",
status_code=429,
error_code="RATE_LIMIT_EXCEEDED"
)
return remaining
@api.route('/docs')
def api_docs():
"""API文档"""
return jsonify({
'title': '图生图转接API文档',
'version': '1.0.0',
'description': '基于Gemini 2.0 Flash的图片生成和编辑API',
'endpoints': {
'POST /generate': {
'description': '生成或编辑图片',
'parameters': {
'prompt': '文本提示(必需)',
'image': '输入图片(可选,base64或文件上传)',
'session_id': '会话ID(可选,用于多轮对话)'
},
'response': {
'success': '是否成功',
'data': {
'image': '生成的图片(base64)',
'text': 'AI响应文本',
'session_id': '会话ID'
},
'message': '响应消息'
}
},
'POST /session': {
'description': '创建新会话',
'response': {
'success': True,
'data': {'session_id': '会话ID'}
}
},
'GET /session/{session_id}': {
'description': '获取会话信息',
'response': {
'success': True,
'data': '会话数据'
}
},
'DELETE /session/{session_id}': {
'description': '删除会话',
'response': {
'success': True,
'message': '会话已删除'
}
}
},
'examples': {
'text_to_image': {
'request': {
'prompt': '生成一只可爱的小猫咪'
}
},
'image_editing': {
'request': {
'prompt': '将这只猫咪的背景改为花园',
'image': '...'
}
}
}
})
@api.route('/generate', methods=['POST'])
def generate_image():
"""生成或编辑图片"""
try:
# 检查速率限制
remaining_requests = check_rate_limit()
# 获取请求数据
data = request.get_json() if request.is_json else {}
# 获取参数
prompt = data.get('prompt') or request.form.get('prompt')
session_id = data.get('session_id') or request.form.get('session_id')
if not prompt:
raise APIError("缺少必需参数: prompt", 400, "MISSING_PROMPT")
# 处理会话
if session_id:
session_data = session_manager.get_session(session_id)
if not session_data:
raise APIError("会话不存在或已过期", 404, "SESSION_NOT_FOUND")
conversation_history = session_data.get('conversation_history', [])
else:
session_id = session_manager.create_session()
conversation_history = []
# 处理图片输入
input_image_path = None
input_image_base64 = None
# 检查base64图片
if 'image' in data and data['image']:
input_image_base64 = data['image']
# 验证并保存图片
temp_path, error = image_processor.process_base64_image(input_image_base64)
if error:
raise APIError(f"图片处理失败: {error}", 400, "IMAGE_PROCESSING_ERROR")
input_image_path = temp_path
# 检查文件上传
elif 'image' in request.files:
file = request.files['image']
temp_path, error = image_processor.process_uploaded_file(file)
if error:
raise APIError(f"文件上传失败: {error}", 400, "FILE_UPLOAD_ERROR")
input_image_path = temp_path
# 转换为base64用于存储
input_image_base64 = image_processor.image_to_base64(temp_path)
# 调用Gemini API
if input_image_path:
# 图片编辑
output_image_base64, ai_response, error = gemini_client.edit_image_with_base64(
input_image_base64, prompt, conversation_history
)
else:
# 文本生成图片
output_image_base64, ai_response, error = gemini_client.generate_image_from_text(
prompt, conversation_history
)
# 清理临时文件
if input_image_path:
image_processor.cleanup_file(input_image_path)
if error:
raise APIError(f"图片生成失败: {error}", 502, "GENERATION_ERROR")
# 更新会话
session_manager.add_to_conversation(
session_id, prompt, ai_response or "图片已生成",
input_image_base64, output_image_base64
)
# 构建响应
response_data = {
'success': True,
'data': {
'image': output_image_base64,
'text': ai_response,
'session_id': session_id
},
'message': '图片生成成功'
}
# 添加速率限制头
response = jsonify(response_data)
response.headers['X-RateLimit-Remaining'] = str(remaining_requests - 1)
response.headers['X-RateLimit-Reset'] = str(rate_limiter.get_reset_time())
return response
except APIError as e:
return jsonify(e.to_dict()), e.status_code
except Exception as e:
logging.error(f"生成图片时发生错误: {e}")
return jsonify({
'success': False,
'error': 'INTERNAL_ERROR',
'message': '服务器内部错误',
'status_code': 500
}), 500
@api.route('/session', methods=['POST'])
def create_session():
"""创建新会话"""
try:
session_id = session_manager.create_session()
return jsonify({
'success': True,
'data': {
'session_id': session_id
},
'message': '会话创建成功'
})
except Exception as e:
logging.error(f"创建会话时发生错误: {e}")
return jsonify({
'success': False,
'error': 'INTERNAL_ERROR',
'message': '创建会话失败',
'status_code': 500
}), 500
@api.route('/session/<session_id>', methods=['GET'])
def get_session(session_id):
"""获取会话信息"""
try:
session_data = session_manager.get_session(session_id)
if not session_data:
raise APIError("会话不存在或已过期", 404, "SESSION_NOT_FOUND")
# 移除敏感信息
safe_session_data = {
'session_id': session_data['session_id'],
'created_at': session_data['created_at'],
'last_activity': session_data['last_activity'],
'conversation_count': len(session_data.get('conversation_history', []))
}
return jsonify({
'success': True,
'data': safe_session_data,
'message': '获取会话信息成功'
})
except APIError as e:
return jsonify(e.to_dict()), e.status_code
except Exception as e:
logging.error(f"获取会话时发生错误: {e}")
return jsonify({
'success': False,
'error': 'INTERNAL_ERROR',
'message': '获取会话失败',
'status_code': 500
}), 500
@api.route('/session/<session_id>/history', methods=['GET'])
def get_conversation_history(session_id):
"""获取对话历史"""
try:
limit = request.args.get('limit', 10, type=int)
history = session_manager.get_conversation_history(session_id, limit)
if history is None:
raise APIError("会话不存在或已过期", 404, "SESSION_NOT_FOUND")
# 处理历史记录,移除base64图片数据以减少响应大小
safe_history = []
for entry in history:
safe_entry = {
'timestamp': entry['timestamp'],
'user_input': entry['user_input'],
'ai_response': entry['ai_response'],
'has_input_image': bool(entry.get('input_image')),
'has_output_image': bool(entry.get('output_image'))
}
safe_history.append(safe_entry)
return jsonify({
'success': True,
'data': {
'history': safe_history,
'total_count': len(safe_history)
},
'message': '获取对话历史成功'
})
except APIError as e:
return jsonify(e.to_dict()), e.status_code
except Exception as e:
logging.error(f"获取对话历史时发生错误: {e}")
return jsonify({
'success': False,
'error': 'INTERNAL_ERROR',
'message': '获取对话历史失败',
'status_code': 500
}), 500
@api.route('/session/<session_id>', methods=['DELETE'])
def delete_session(session_id):
"""删除会话"""
try:
success = session_manager.delete_session(session_id)
if not success:
raise APIError("会话不存在", 404, "SESSION_NOT_FOUND")
return jsonify({
'success': True,
'message': '会话删除成功'
})
except APIError as e:
return jsonify(e.to_dict()), e.status_code
except Exception as e:
logging.error(f"删除会话时发生错误: {e}")
return jsonify({
'success': False,
'error': 'INTERNAL_ERROR',
'message': '删除会话失败',
'status_code': 500
}), 500
return api
|
2301_78526554/tosto
|
routes/api.py
|
Python
|
unknown
| 11,833
|
#!/usr/bin/env python3
"""
图生图转接API服务启动脚本
"""
import os
import sys
from app import create_app
def main():
"""主函数"""
# 检查环境变量
if not os.environ.get('GEMINI_API_KEY'):
print("错误: 请设置GEMINI_API_KEY环境变量")
print("请复制.env.example为.env并填入您的API密钥")
sys.exit(1)
# 创建应用
app = create_app()
# 获取配置
host = os.environ.get('HOST', '0.0.0.0')
port = int(os.environ.get('PORT', 5000))
debug = os.environ.get('FLASK_DEBUG', 'False').lower() == 'true'
print(f"启动图生图转接API服务...")
print(f"服务地址: http://{host}:{port}")
print(f"API文档: http://{host}:{port}/api/v1/docs")
print(f"健康检查: http://{host}:{port}/health")
# 启动服务
app.run(host=host, port=port, debug=debug)
if __name__ == '__main__':
main()
|
2301_78526554/tosto
|
run.py
|
Python
|
unknown
| 927
|
@echo off
echo 启动图生图转接API服务...
REM 检查Python是否安装
python --version >nul 2>&1
if errorlevel 1 (
echo 错误: 未找到Python,请先安装Python 3.8+
pause
exit /b 1
)
REM 检查.env文件是否存在
if not exist .env (
echo 警告: .env文件不存在,请复制.env.example为.env并配置API密钥
echo 正在复制.env.example为.env...
copy .env.example .env
echo 请编辑.env文件,填入您的Gemini API密钥后重新运行此脚本
pause
exit /b 1
)
REM 检查是否已安装依赖
if not exist venv (
echo 创建虚拟环境...
python -m venv venv
)
REM 激活虚拟环境
call venv\Scripts\activate.bat
REM 安装依赖
echo 安装依赖包...
pip install -r requirements.txt
REM 创建上传目录
if not exist uploads mkdir uploads
REM 启动服务
echo.
echo ========================================
echo 图生图转接API服务启动中...
echo 服务地址: http://localhost:5000
echo API文档: http://localhost:5000/api/v1/docs
echo 健康检查: http://localhost:5000/health
echo 前端示例: example_client.html
echo ========================================
echo.
echo 按 Ctrl+C 停止服务
echo.
python run.py
pause
|
2301_78526554/tosto
|
start.bat
|
Batchfile
|
unknown
| 1,227
|
#!/bin/bash
echo "启动图生图转接API服务..."
# 检查Python是否安装
if ! command -v python3 &> /dev/null; then
echo "错误: 未找到Python3,请先安装Python 3.8+"
exit 1
fi
# 检查.env文件是否存在
if [ ! -f .env ]; then
echo "警告: .env文件不存在,请复制.env.example为.env并配置API密钥"
echo "正在复制.env.example为.env..."
cp .env.example .env
echo "请编辑.env文件,填入您的Gemini API密钥后重新运行此脚本"
exit 1
fi
# 检查是否已创建虚拟环境
if [ ! -d "venv" ]; then
echo "创建虚拟环境..."
python3 -m venv venv
fi
# 激活虚拟环境
source venv/bin/activate
# 安装依赖
echo "安装依赖包..."
pip install -r requirements.txt
# 创建上传目录
mkdir -p uploads
# 启动服务
echo ""
echo "========================================"
echo "图生图转接API服务启动中..."
echo "服务地址: http://localhost:5000"
echo "API文档: http://localhost:5000/api/v1/docs"
echo "健康检查: http://localhost:5000/health"
echo "前端示例: example_client.html"
echo "========================================"
echo ""
echo "按 Ctrl+C 停止服务"
echo ""
python3 run.py
|
2301_78526554/tosto
|
start.sh
|
Shell
|
unknown
| 1,211
|
@echo off
echo 启动生产环境服务...
REM 检查.env文件
if not exist .env (
echo 错误: .env文件不存在,请先配置环境变量
pause
exit /b 1
)
REM 创建日志目录
if not exist logs mkdir logs
REM 启动服务
echo 启动图生图转接API服务 (生产模式)...
python -m gunicorn -w 4 -b 0.0.0.0:5000 --timeout 120 --access-logfile logs/access.log --error-logfile logs/error.log app:create_app()
pause
|
2301_78526554/tosto
|
start_production.bat
|
Batchfile
|
unknown
| 460
|
# 工具类包
|
2301_78526554/tosto
|
utils/__init__.py
|
Python
|
unknown
| 15
|
from flask import jsonify, request
import logging
import traceback
def setup_error_handlers(app):
"""设置错误处理器"""
@app.errorhandler(400)
def bad_request(error):
return jsonify({
'error': 'Bad Request',
'message': '请求参数错误',
'status_code': 400
}), 400
@app.errorhandler(401)
def unauthorized(error):
return jsonify({
'error': 'Unauthorized',
'message': '未授权访问',
'status_code': 401
}), 401
@app.errorhandler(403)
def forbidden(error):
return jsonify({
'error': 'Forbidden',
'message': '禁止访问',
'status_code': 403
}), 403
@app.errorhandler(404)
def not_found(error):
return jsonify({
'error': 'Not Found',
'message': '请求的资源不存在',
'status_code': 404
}), 404
@app.errorhandler(413)
def request_entity_too_large(error):
return jsonify({
'error': 'Request Entity Too Large',
'message': '上传文件过大',
'status_code': 413
}), 413
@app.errorhandler(429)
def rate_limit_exceeded(error):
return jsonify({
'error': 'Rate Limit Exceeded',
'message': '请求频率过高,请稍后再试',
'status_code': 429
}), 429
@app.errorhandler(500)
def internal_server_error(error):
logging.error(f"Internal Server Error: {error}")
logging.error(f"Request: {request.method} {request.url}")
logging.error(f"Traceback: {traceback.format_exc()}")
return jsonify({
'error': 'Internal Server Error',
'message': '服务器内部错误',
'status_code': 500
}), 500
@app.errorhandler(502)
def bad_gateway(error):
return jsonify({
'error': 'Bad Gateway',
'message': '上游服务错误',
'status_code': 502
}), 502
@app.errorhandler(503)
def service_unavailable(error):
return jsonify({
'error': 'Service Unavailable',
'message': '服务暂时不可用',
'status_code': 503
}), 503
@app.errorhandler(Exception)
def handle_exception(error):
"""处理未捕获的异常"""
logging.error(f"Unhandled Exception: {error}")
logging.error(f"Request: {request.method} {request.url}")
logging.error(f"Traceback: {traceback.format_exc()}")
return jsonify({
'error': 'Internal Server Error',
'message': '服务器内部错误',
'status_code': 500
}), 500
class APIError(Exception):
"""自定义API错误"""
def __init__(self, message: str, status_code: int = 400, error_code: str = None):
super().__init__(message)
self.message = message
self.status_code = status_code
self.error_code = error_code
def to_dict(self):
return {
'error': self.error_code or 'API Error',
'message': self.message,
'status_code': self.status_code
}
|
2301_78526554/tosto
|
utils/error_handler.py
|
Python
|
unknown
| 3,281
|
import google.generativeai as genai
from google.generativeai import types
from PIL import Image
from io import BytesIO
import base64
from typing import Dict, List, Optional, Tuple, Union
import logging
class GeminiClient:
"""Gemini API客户端"""
def __init__(self, api_key: str, model_name: str = "gemini-2.0-flash-preview-image-generation"):
"""
初始化Gemini客户端
Args:
api_key: Gemini API密钥
model_name: 模型名称
"""
if not api_key:
raise ValueError("Gemini API密钥不能为空")
self.api_key = api_key
self.model_name = model_name
# 配置API
genai.configure(api_key=api_key)
try:
self.client = genai.Client()
# 测试连接
self._test_connection()
except Exception as e:
logging.error(f"初始化Gemini客户端失败: {e}")
raise
def _test_connection(self):
"""测试API连接"""
try:
# 简单的测试请求
response = self.client.models.generate_content(
model=self.model_name,
contents=["测试连接"],
config=types.GenerateContentConfig(
response_modalities=['TEXT']
)
)
logging.info("Gemini API连接测试成功")
except Exception as e:
logging.error(f"Gemini API连接测试失败: {e}")
raise
def generate_image_from_text(self, prompt: str, conversation_history: List[Dict] = None) -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""
根据文本提示生成图片
Args:
prompt: 文本提示
conversation_history: 对话历史
Returns:
(生成的图片base64, 响应文本, 错误信息)
"""
try:
# 构建内容
contents = []
# 添加对话历史上下文
if conversation_history:
for entry in conversation_history[-3:]: # 只取最近3轮对话
if entry.get('user_input'):
contents.append(entry['user_input'])
if entry.get('ai_response'):
contents.append(entry['ai_response'])
# 添加当前提示
contents.append(prompt)
# 调用API
response = self.client.models.generate_content(
model=self.model_name,
contents=contents,
config=types.GenerateContentConfig(
response_modalities=['TEXT', 'IMAGE']
)
)
return self._process_response(response)
except Exception as e:
error_msg = f"生成图片失败: {str(e)}"
logging.error(error_msg)
return None, None, error_msg
def edit_image_with_text(self, image_path: str, prompt: str, conversation_history: List[Dict] = None) -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""
根据文本提示编辑图片
Args:
image_path: 输入图片路径
prompt: 编辑提示
conversation_history: 对话历史
Returns:
(生成的图片base64, 响应文本, 错误信息)
"""
try:
# 加载图片
image = Image.open(image_path)
# 构建内容
contents = []
# 添加对话历史上下文
if conversation_history:
for entry in conversation_history[-3:]: # 只取最近3轮对话
if entry.get('user_input'):
contents.append(entry['user_input'])
if entry.get('ai_response'):
contents.append(entry['ai_response'])
# 添加当前提示和图片
contents.extend([prompt, image])
# 调用API
response = self.client.models.generate_content(
model=self.model_name,
contents=contents,
config=types.GenerateContentConfig(
response_modalities=['TEXT', 'IMAGE']
)
)
return self._process_response(response)
except Exception as e:
error_msg = f"编辑图片失败: {str(e)}"
logging.error(error_msg)
return None, None, error_msg
def edit_image_with_base64(self, base64_image: str, prompt: str, conversation_history: List[Dict] = None) -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""
根据base64图片和文本提示编辑图片
Args:
base64_image: base64编码的图片
prompt: 编辑提示
conversation_history: 对话历史
Returns:
(生成的图片base64, 响应文本, 错误信息)
"""
try:
# 处理base64图片
if base64_image.startswith('data:image/'):
base64_image = base64_image.split(',', 1)[1]
# 解码图片
image_bytes = base64.b64decode(base64_image)
image = Image.open(BytesIO(image_bytes))
# 构建内容
contents = []
# 添加对话历史上下文
if conversation_history:
for entry in conversation_history[-3:]: # 只取最近3轮对话
if entry.get('user_input'):
contents.append(entry['user_input'])
if entry.get('ai_response'):
contents.append(entry['ai_response'])
# 添加当前提示和图片
contents.extend([prompt, image])
# 调用API
response = self.client.models.generate_content(
model=self.model_name,
contents=contents,
config=types.GenerateContentConfig(
response_modalities=['TEXT', 'IMAGE']
)
)
return self._process_response(response)
except Exception as e:
error_msg = f"编辑图片失败: {str(e)}"
logging.error(error_msg)
return None, None, error_msg
def _process_response(self, response) -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""
处理API响应
Args:
response: Gemini API响应
Returns:
(生成的图片base64, 响应文本, 错误信息)
"""
try:
if not response.candidates:
return None, None, "API返回空响应"
candidate = response.candidates[0]
if not candidate.content or not candidate.content.parts:
return None, None, "响应中没有内容"
text_response = None
image_base64 = None
# 处理响应部分
for part in candidate.content.parts:
if part.text is not None:
text_response = part.text
elif part.inline_data is not None:
# 将图片数据转换为base64
image_data = part.inline_data.data
mime_type = part.inline_data.mime_type
image_base64 = f"data:{mime_type};base64,{base64.b64encode(image_data).decode('utf-8')}"
if not text_response and not image_base64:
return None, None, "响应中没有有效内容"
return image_base64, text_response, None
except Exception as e:
error_msg = f"处理响应失败: {str(e)}"
logging.error(error_msg)
return None, None, error_msg
|
2301_78526554/tosto
|
utils/gemini_client.py
|
Python
|
unknown
| 8,216
|
import os
import base64
import uuid
from io import BytesIO
from PIL import Image
from typing import Optional, Tuple, Union
import mimetypes
class ImageProcessor:
"""图片处理器"""
def __init__(self, upload_folder: str, allowed_extensions: set):
"""
初始化图片处理器
Args:
upload_folder: 上传文件夹路径
allowed_extensions: 允许的文件扩展名
"""
self.upload_folder = upload_folder
self.allowed_extensions = allowed_extensions
# 确保上传目录存在
if not os.path.exists(upload_folder):
os.makedirs(upload_folder)
def is_allowed_file(self, filename: str) -> bool:
"""检查文件扩展名是否允许"""
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in self.allowed_extensions
def validate_image(self, image_data: Union[str, bytes]) -> Tuple[bool, str]:
"""
验证图片数据
Args:
image_data: 图片数据(base64字符串或字节)
Returns:
(是否有效, 错误信息)
"""
try:
if isinstance(image_data, str):
# 处理base64数据
if image_data.startswith('data:image/'):
# 移除data URL前缀
image_data = image_data.split(',', 1)[1]
# 解码base64
image_bytes = base64.b64decode(image_data)
else:
image_bytes = image_data
# 尝试打开图片
image = Image.open(BytesIO(image_bytes))
image.verify() # 验证图片完整性
# 检查图片尺寸
if image.size[0] > 4096 or image.size[1] > 4096:
return False, "图片尺寸过大,最大支持4096x4096像素"
# 检查文件大小(16MB限制)
if len(image_bytes) > 16 * 1024 * 1024:
return False, "图片文件过大,最大支持16MB"
return True, ""
except Exception as e:
return False, f"图片格式无效: {str(e)}"
def process_base64_image(self, base64_data: str) -> Tuple[Optional[str], Optional[str]]:
"""
处理base64图片数据
Args:
base64_data: base64编码的图片数据
Returns:
(保存的文件路径, 错误信息)
"""
try:
# 验证图片
is_valid, error_msg = self.validate_image(base64_data)
if not is_valid:
return None, error_msg
# 处理data URL
if base64_data.startswith('data:image/'):
header, base64_data = base64_data.split(',', 1)
# 从header中提取文件类型
mime_type = header.split(';')[0].split(':')[1]
extension = mimetypes.guess_extension(mime_type)
if not extension:
extension = '.png'
else:
extension = '.png' # 默认扩展名
# 解码图片
image_bytes = base64.b64decode(base64_data)
# 生成唯一文件名
filename = f"{uuid.uuid4()}{extension}"
filepath = os.path.join(self.upload_folder, filename)
# 保存文件
with open(filepath, 'wb') as f:
f.write(image_bytes)
return filepath, None
except Exception as e:
return None, f"处理图片失败: {str(e)}"
def process_uploaded_file(self, file) -> Tuple[Optional[str], Optional[str]]:
"""
处理上传的文件
Args:
file: Flask上传的文件对象
Returns:
(保存的文件路径, 错误信息)
"""
try:
if not file or file.filename == '':
return None, "未选择文件"
if not self.is_allowed_file(file.filename):
return None, f"不支持的文件类型,支持的格式: {', '.join(self.allowed_extensions)}"
# 读取文件数据
file_data = file.read()
# 验证图片
is_valid, error_msg = self.validate_image(file_data)
if not is_valid:
return None, error_msg
# 生成唯一文件名
extension = '.' + file.filename.rsplit('.', 1)[1].lower()
filename = f"{uuid.uuid4()}{extension}"
filepath = os.path.join(self.upload_folder, filename)
# 保存文件
with open(filepath, 'wb') as f:
f.write(file_data)
return filepath, None
except Exception as e:
return None, f"处理上传文件失败: {str(e)}"
def image_to_base64(self, image_path: str) -> Optional[str]:
"""
将图片文件转换为base64字符串
Args:
image_path: 图片文件路径
Returns:
base64编码的图片数据
"""
try:
with open(image_path, 'rb') as f:
image_data = f.read()
# 获取MIME类型
mime_type, _ = mimetypes.guess_type(image_path)
if not mime_type:
mime_type = 'image/png'
# 编码为base64
base64_data = base64.b64encode(image_data).decode('utf-8')
# 返回data URL格式
return f"data:{mime_type};base64,{base64_data}"
except Exception as e:
print(f"转换图片为base64失败: {e}")
return None
def cleanup_file(self, filepath: str) -> bool:
"""
清理临时文件
Args:
filepath: 文件路径
Returns:
是否成功删除
"""
try:
if os.path.exists(filepath):
os.remove(filepath)
return True
return False
except Exception as e:
print(f"删除文件失败: {e}")
return False
|
2301_78526554/tosto
|
utils/image_processor.py
|
Python
|
unknown
| 6,489
|
import time
from collections import defaultdict
from typing import Dict
from flask import request
import threading
class RateLimiter:
"""API速率限制器"""
def __init__(self, max_requests_per_hour: int = 100):
"""
初始化速率限制器
Args:
max_requests_per_hour: 每小时最大请求数
"""
self.max_requests_per_hour = max_requests_per_hour
self.requests: Dict[str, list] = defaultdict(list)
self.lock = threading.Lock()
def is_allowed(self, client_id: str = None) -> tuple[bool, int]:
"""
检查是否允许请求
Args:
client_id: 客户端ID,如果为None则使用IP地址
Returns:
(是否允许, 剩余请求数)
"""
if client_id is None:
client_id = self._get_client_id()
current_time = time.time()
hour_ago = current_time - 3600 # 一小时前
with self.lock:
# 清理过期的请求记录
self.requests[client_id] = [
req_time for req_time in self.requests[client_id]
if req_time > hour_ago
]
# 检查是否超过限制
if len(self.requests[client_id]) >= self.max_requests_per_hour:
remaining = 0
return False, remaining
# 记录当前请求
self.requests[client_id].append(current_time)
remaining = self.max_requests_per_hour - len(self.requests[client_id])
return True, remaining
def get_reset_time(self, client_id: str = None) -> int:
"""
获取速率限制重置时间
Args:
client_id: 客户端ID
Returns:
重置时间戳
"""
if client_id is None:
client_id = self._get_client_id()
with self.lock:
if not self.requests[client_id]:
return int(time.time())
# 返回最早请求的一小时后
earliest_request = min(self.requests[client_id])
return int(earliest_request + 3600)
def _get_client_id(self) -> str:
"""获取客户端ID(使用IP地址)"""
return request.environ.get('HTTP_X_FORWARDED_FOR', request.remote_addr)
def cleanup_expired_records(self):
"""清理过期的请求记录"""
current_time = time.time()
hour_ago = current_time - 3600
with self.lock:
for client_id in list(self.requests.keys()):
self.requests[client_id] = [
req_time for req_time in self.requests[client_id]
if req_time > hour_ago
]
# 如果没有记录,删除该客户端
if not self.requests[client_id]:
del self.requests[client_id]
|
2301_78526554/tosto
|
utils/rate_limiter.py
|
Python
|
unknown
| 3,044
|
import redis
import json
import uuid
from datetime import datetime, timedelta
from typing import Dict, List, Optional
class SessionManager:
"""会话管理器,用于支持多轮对话"""
def __init__(self, redis_url: str, session_timeout: int = 3600):
"""
初始化会话管理器
Args:
redis_url: Redis连接URL
session_timeout: 会话超时时间(秒)
"""
try:
self.redis_client = redis.from_url(redis_url)
self.redis_client.ping() # 测试连接
except Exception as e:
print(f"Redis连接失败,使用内存存储: {e}")
self.redis_client = None
self._memory_store = {}
self.session_timeout = session_timeout
def create_session(self) -> str:
"""创建新会话"""
session_id = str(uuid.uuid4())
session_data = {
'session_id': session_id,
'created_at': datetime.now().isoformat(),
'last_activity': datetime.now().isoformat(),
'conversation_history': [],
'context': {}
}
self._store_session(session_id, session_data)
return session_id
def get_session(self, session_id: str) -> Optional[Dict]:
"""获取会话数据"""
if not session_id:
return None
session_data = self._get_session(session_id)
if not session_data:
return None
# 检查会话是否过期
last_activity = datetime.fromisoformat(session_data['last_activity'])
if datetime.now() - last_activity > timedelta(seconds=self.session_timeout):
self.delete_session(session_id)
return None
return session_data
def update_session(self, session_id: str, data: Dict) -> bool:
"""更新会话数据"""
session_data = self.get_session(session_id)
if not session_data:
return False
session_data.update(data)
session_data['last_activity'] = datetime.now().isoformat()
self._store_session(session_id, session_data)
return True
def add_to_conversation(self, session_id: str, user_input: str, ai_response: str,
input_image: Optional[str] = None, output_image: Optional[str] = None) -> bool:
"""添加对话记录到会话"""
session_data = self.get_session(session_id)
if not session_data:
return False
conversation_entry = {
'timestamp': datetime.now().isoformat(),
'user_input': user_input,
'ai_response': ai_response,
'input_image': input_image,
'output_image': output_image
}
session_data['conversation_history'].append(conversation_entry)
session_data['last_activity'] = datetime.now().isoformat()
self._store_session(session_id, session_data)
return True
def get_conversation_history(self, session_id: str, limit: int = 10) -> List[Dict]:
"""获取对话历史"""
session_data = self.get_session(session_id)
if not session_data:
return []
history = session_data.get('conversation_history', [])
return history[-limit:] if limit > 0 else history
def delete_session(self, session_id: str) -> bool:
"""删除会话"""
try:
if self.redis_client:
self.redis_client.delete(f"session:{session_id}")
else:
self._memory_store.pop(session_id, None)
return True
except Exception as e:
print(f"删除会话失败: {e}")
return False
def _store_session(self, session_id: str, data: Dict):
"""存储会话数据"""
try:
if self.redis_client:
self.redis_client.setex(
f"session:{session_id}",
self.session_timeout,
json.dumps(data, ensure_ascii=False)
)
else:
self._memory_store[session_id] = data
except Exception as e:
print(f"存储会话失败: {e}")
def _get_session(self, session_id: str) -> Optional[Dict]:
"""获取会话数据"""
try:
if self.redis_client:
data = self.redis_client.get(f"session:{session_id}")
return json.loads(data) if data else None
else:
return self._memory_store.get(session_id)
except Exception as e:
print(f"获取会话失败: {e}")
return None
|
2301_78526554/tosto
|
utils/session_manager.py
|
Python
|
unknown
| 4,773
|
import win32serviceutil
import win32service
import win32event
import servicemanager
import socket
import sys
import os
from pathlib import Path
# 添加项目路径到Python路径
project_path = Path(__file__).parent
sys.path.insert(0, str(project_path))
from app import create_app
class ImageGenAPIService(win32serviceutil.ServiceFramework):
_svc_name_ = "ImageGenAPI"
_svc_display_name_ = "图生图转接API服务"
_svc_description_ = "基于Gemini 2.0 Flash的图片生成和编辑API服务"
def __init__(self, args):
win32serviceutil.ServiceFramework.__init__(self, args)
self.hWaitStop = win32event.CreateEvent(None, 0, 0, None)
socket.setdefaulttimeout(60)
def SvcStop(self):
self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
win32event.SetEvent(self.hWaitStop)
def SvcDoRun(self):
servicemanager.LogMsg(servicemanager.EVENTLOG_INFORMATION_TYPE,
servicemanager.PYS_SERVICE_STARTED,
(self._svc_name_, ''))
self.main()
def main(self):
try:
# 切换到项目目录
os.chdir(str(project_path))
# 创建Flask应用
app = create_app()
# 启动服务
app.run(host='0.0.0.0', port=5000, debug=False)
except Exception as e:
servicemanager.LogErrorMsg(f"服务启动失败: {e}")
if __name__ == '__main__':
win32serviceutil.HandleCommandLine(ImageGenAPIService)
|
2301_78526554/tosto
|
windows_service.py
|
Python
|
unknown
| 1,613
|
import difflib
import sys
import os
import re
import cProfile
import io
import pstats
def calculate_similarity(original_text, plagiarized_text):
differ = difflib.SequenceMatcher(None, original_text, plagiarized_text)
return differ.ratio() * 100
def check_file_paths(original_file_path, plagiarized_file_path):
try:
# 检查文件路径格式是否符合要求
orig_pattern = re.compile(r'^\.\/test\/orig\.txt$')
plagiarized_pattern = re.compile(r'^\.\/test\/orig_0\.8_.+\.txt$')
if not orig_pattern.match(original_file_path):
raise ValueError("Invalid original file path.")
if not plagiarized_pattern.match(plagiarized_file_path):
raise ValueError("Invalid plagiarized file path.")
except ValueError as ve:
print("Invalid file path:", str(ve))
return False
return True
def main():
# 检查命令行参数,一共四个,多了少了都不行。
if len(sys.argv) != 4:
print("Usage: python main.py <original_file> <plagiarized_file> <answer_file>")
return
original_file_path = sys.argv[1]
plagiarized_file_path = sys.argv[2]
answer_file_path = sys.argv[3]
# 检查文件路径是否有效
if not check_file_paths(original_file_path, plagiarized_file_path):
return
# 处理文件
with open(original_file_path, 'r', encoding='utf-8') as original_file:
original_text = original_file.read()
with open(plagiarized_file_path, 'r', encoding='utf-8') as plagiarized_file:
plagiarized_text = plagiarized_file.read()
# 开始性能分析
pr = cProfile.Profile()
pr.enable()
# 计算相似度
similarity_percentage = calculate_similarity(original_text, plagiarized_text)
# 结束性能分析
pr.disable()
# 将性能分析结果写入文件
with open('cprofile_output.profile', 'w', encoding='utf-8') as profile_file:
s = io.StringIO()
sortby = 'cumulative'
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
profile_file.write(s.getvalue())
# 写入答案文件
with open(answer_file_path, 'w', encoding='utf-8') as answer_file:
answer_file.write("重复率:{:.2f}%".format(similarity_percentage))
if __name__ == "__main__":
main()
|
2301_78305256/PaperContentSimilarityDetection
|
main.py
|
Python
|
unknown
| 2,337
|
import platform
import sys
import cpuinfo
import psutil
def get_system_environment():
# 获取操作系统信息
os_name = platform.system()
os_version = platform.release()
# 获取Python版本信息
python_version = sys.version
# 获取CPU信息
cpu_info = cpuinfo.get_cpu_info()
cpu_architecture = cpu_info.get('arch')
# 获取内存信息
total_memory = psutil.virtual_memory().total
# 打印系统环境信息
print("操作系统:", os_name)
print("操作系统版本:", os_version)
print("Python版本:", python_version)
print("CPU架构:", cpu_architecture)
print("内存总量:", total_memory, "bytes")
if __name__ == "__main__":
get_system_environment()
|
2301_78305256/PaperContentSimilarityDetection
|
system.py
|
Python
|
unknown
| 747
|
import math
import numpy as np
import matplotlib.pyplot as plt
from itertools import permutations, combinations
from collections import Counter
import scipy.stats as stats
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def trigonometry():
print("=== 三角函数 ===")
# 基本三角函数
x = np.linspace(-2*np.pi, 2*np.pi, 400)
y_sin = np.sin(x)
y_cos = np.cos(x)
y_tan = np.tan(x)
# 三角恒等式验证
angle = np.pi/4 # 45度
identity1 = np.sin(angle)**2 + np.cos(angle)**2
identity2 = np.sin(2*angle) - 2*np.sin(angle)*np.cos(angle)
print(f"恒等式验证:")
print(f" sin²({angle:.2f}) + cos²({angle:.2f}) = {identity1:.6f} (应为1)")
print(f" sin(2×{angle:.2f}) - 2sin({angle:.2f})cos({angle:.2f}) = {identity2:.6f} (应为0)")
# 可视化
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# 基本三角函数
axes[0, 0].plot(x, y_sin, 'r-', label='y = sin(x)')
axes[0, 0].set_title('正弦函数')
axes[0, 0].grid(True)
axes[0, 0].legend()
axes[0, 1].plot(x, y_cos, 'b-', label='y = cos(x)')
axes[0, 1].set_title('余弦函数')
axes[0, 1].grid(True)
axes[0, 1].legend()
# 正切函数(排除奇点)
x_tan = x[np.abs(np.cos(x)) > 0.01] # 排除cos(x)接近0的点
y_tan_filtered = np.tan(x_tan)
axes[1, 0].plot(x_tan, y_tan_filtered, 'g-', label='y = tan(x)')
axes[1, 0].set_ylim(-5, 5)
axes[1, 0].set_title('正切函数')
axes[1, 0].grid(True)
axes[1, 0].legend()
# 单位圆
theta = np.linspace(0, 2*np.pi, 100)
x_circle = np.cos(theta)
y_circle = np.sin(theta)
angle_show = np.pi/3 # 60度
x_point = np.cos(angle_show)
y_point = np.sin(angle_show)
axes[1, 1].plot(x_circle, y_circle, 'k-', linewidth=2)
axes[1, 1].plot([0, x_point], [0, y_point], 'r-', linewidth=2)
axes[1, 1].plot(x_point, y_point, 'ro', markersize=8)
axes[1, 1].text(x_point+0.1, y_point+0.1, f'({x_point:.2f}, {y_point:.2f})')
axes[1, 1].axhline(0, color='black', linewidth=0.5)
axes[1, 1].axvline(0, color='black', linewidth=0.5)
axes[1, 1].set_xlim(-1.5, 1.5)
axes[1, 1].set_ylim(-1.5, 1.5)
axes[1, 1].set_aspect('equal')
axes[1, 1].set_title('单位圆')
axes[1, 1].grid(True)
plt.tight_layout()
plt.show()
trigonometry()
|
2301_78992106/juniorAndHighSchoolMath
|
三角函数.py
|
Python
|
unknown
| 2,656
|
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def inequalities_and_complex():
print("=== 不等式与复数 ===")
# 不等式求解
x = sp.Symbol('x')
inequality1 = 2*x + 3 > 7
inequality2 = x**2 - 4 <= 0
print(f"不等式 {inequality1}")
solution1 = sp.solve(inequality1, x)
print(f"解集: {solution1}")
print(f"\n不等式 {inequality2}")
solution2 = sp.solve(inequality2, x)
print(f"解集: {solution2}")
# 复数运算
z1 = 2 + 3j
z2 = 1 - 2j
print(f"\n复数 z1 = {z1}")
print(f"复数 z2 = {z2}")
print(f"加法: z1 + z2 = {z1 + z2}")
print(f"乘法: z1 × z2 = {z1 * z2}")
print(f"除法: z1 ÷ z2 = {z1 / z2}")
print(f"模: |z1| = {abs(z1):.2f}")
print(f"辐角: arg(z1) = {np.angle(z1):.2f} rad")
# 复平面可视化
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# 不等式解集可视化
x_vals = np.linspace(-3, 3, 400)
y_vals = x_vals**2 - 4
ax1.plot(x_vals, y_vals, 'b-', label='y = x² - 4')
ax1.fill_between(x_vals, y_vals, -5, where=(y_vals <= 0), alpha=0.3, color='red')
ax1.axhline(0, color='black', linewidth=0.5)
ax1.axvline(0, color='black', linewidth=0.5)
ax1.set_title('不等式 x² - 4 ≤ 0 的解集')
ax1.grid(True)
ax1.legend()
# 复平面
complex_points = [z1, z2, z1 + z2, z1 * z2]
colors = ['red', 'blue', 'green', 'purple']
labels = ['z1', 'z2', 'z1+z2', 'z1×z2']
for point, color, label in zip(complex_points, colors, labels):
ax2.plot(point.real, point.imag, 'o', color=color, label=label, markersize=8)
ax2.axhline(0, color='black', linewidth=0.5)
ax2.axvline(0, color='black', linewidth=0.5)
ax2.set_xlim(-3, 6)
ax2.set_ylim(-4, 4)
ax2.set_aspect('equal')
ax2.set_title('复平面')
ax2.grid(True)
ax2.legend()
plt.tight_layout()
plt.show()
inequalities_and_complex()
|
2301_78992106/juniorAndHighSchoolMath
|
不等式与复数.py
|
Python
|
unknown
| 2,306
|
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def sets_and_functions():
print("=== 集合与函数 ===")
# 集合运算
A = {1, 2, 3, 4, 5}
B = {3, 4, 5, 6, 7}
print(f"集合 A: {A}")
print(f"集合 B: {B}")
print(f"并集 A∪B: {A | B}")
print(f"交集 A∩B: {A & B}")
print(f"差集 A-B: {A - B}")
print(f"对称差集 AΔB: {A ^ B}")
# 函数定义与运算
x = sp.Symbol('x')
f = 2*x + 3
g = x**2 - 1
print(f"\n函数 f(x) = {f}")
print(f"函数 g(x) = {g}")
print(f"复合函数 f(g(x)) = {f.subs(x, g)}")
print(f"复合函数 g(f(x)) = {g.subs(x, f)}")
def exponential_log_functions():
print("\n=== 指数函数与对数函数 ===")
# 定义x范围
x = np.linspace(-2, 2, 400)
# 指数函数
y_exp = 2**x
y_exp_e = np.exp(x)
# 对数函数
x_log = np.linspace(0.1, 4, 400)
y_log2 = np.log2(x_log)
y_ln = np.log(x_log)
# 绘制图形
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# 指数函数
axes[0, 0].plot(x, y_exp, 'r-', label='y = 2^x')
axes[0, 0].set_title('指数函数 y = 2^x')
axes[0, 0].grid(True)
axes[0, 0].legend()
axes[0, 1].plot(x, y_exp_e, 'b-', label='y = e^x')
axes[0, 1].set_title('自然指数函数 y = e^x')
axes[0, 1].grid(True)
axes[0, 1].legend()
# 对数函数
axes[1, 0].plot(x_log, y_log2, 'g-', label='y = log₂x')
axes[1, 0].set_title('对数函数 y = log₂x')
axes[1, 0].grid(True)
axes[1, 0].legend()
axes[1, 1].plot(x_log, y_ln, 'm-', label='y = ln x')
axes[1, 1].set_title('自然对数函数 y = ln x')
axes[1, 1].grid(True)
axes[1, 1].legend()
plt.tight_layout()
plt.show()
sets_and_functions()
exponential_log_functions()
|
2301_78992106/juniorAndHighSchoolMath
|
代数部分-集合与函数.py
|
Python
|
unknown
| 2,179
|
import math
import numpy as np
import matplotlib.pyplot as plt
from itertools import permutations, combinations
from collections import Counter
import scipy.stats as stats
from mpl_toolkits.mplot3d import Axes3D
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def solid_geometry_and_vectors():
print("=== 立体几何与向量 ===")
# 向量运算
v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])
print(f"向量 v1 = {v1}")
print(f"向量 v2 = {v2}")
print(f"向量加法: v1 + v2 = {v1 + v2}")
print(f"向量点积: v1 · v2 = {np.dot(v1, v2)}")
print(f"向量叉积: v1 × v2 = {np.cross(v1, v2)}")
print(f"向量模长: |v1| = {np.linalg.norm(v1):.2f}")
# 空间几何可视化
fig = plt.figure(figsize=(15, 5))
# 1. 向量
ax1 = fig.add_subplot(131, projection='3d')
# 绘制向量
ax1.quiver(0, 0, 0, v1[0], v1[1], v1[2], color='r', arrow_length_ratio=0.1, label='v1')
ax1.quiver(0, 0, 0, v2[0], v2[1], v2[2], color='b', arrow_length_ratio=0.1, label='v2')
ax1.quiver(0, 0, 0, v1[0]+v2[0], v1[1]+v2[1], v1[2]+v2[2], color='g', arrow_length_ratio=0.1, label='v1+v2')
ax1.set_xlim([0, 6])
ax1.set_ylim([0, 8])
ax1.set_zlim([0, 10])
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_zlabel('Z')
ax1.legend()
ax1.set_title('向量运算')
# 2. 平面
ax2 = fig.add_subplot(132, projection='3d')
# 平面方程: 2x + 3y + 4z = 12
xx, yy = np.meshgrid(range(-2, 3), range(-2, 3))
zz = (12 - 2*xx - 3*yy) / 4
ax2.plot_surface(xx, yy, zz, alpha=0.7, color='cyan')
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
ax2.set_zlabel('Z')
ax2.set_title('平面: 2x + 3y + 4z = 12')
# 3. 球体
ax3 = fig.add_subplot(133, projection='3d')
u = np.linspace(0, 2 * np.pi, 30)
v = np.linspace(0, np.pi, 30)
x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))
ax3.plot_surface(x, y, z, color='lightcoral', alpha=0.7)
ax3.set_xlabel('X')
ax3.set_ylabel('Y')
ax3.set_zlabel('Z')
ax3.set_title('球体')
plt.tight_layout()
plt.show()
solid_geometry_and_vectors()
|
2301_78992106/juniorAndHighSchoolMath
|
几何部分-立体几何与向量.py
|
Python
|
unknown
| 2,532
|
import math
import numpy as np
import matplotlib.pyplot as plt
from itertools import permutations, combinations
from collections import Counter
import scipy.stats as stats
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def analytic_geometry():
print("=== 解析几何 ===")
# 直线方程
def line_equation(point1, point2):
"""计算两点确定的直线方程"""
x1, y1 = point1
x2, y2 = point2
if x2 == x1: # 垂直线
return f"x = {x1}"
else:
k = (y2 - y1) / (x2 - x1)
b = y1 - k * x1
return f"y = {k:.2f}x + {b:.2f}"
# 圆方程
def circle_equation(center, radius):
"""圆的方程"""
h, k = center
return f"(x - {h})² + (y - {k})² = {radius}²"
# 示例
point_A = (1, 2)
point_B = (3, 4)
circle_center = (0, 0)
circle_r = 3
line_eq = line_equation(point_A, point_B)
circle_eq = circle_equation(circle_center, circle_r)
print(f"点A{point_A}和点B{point_B}确定的直线: {line_eq}")
print(f"圆心{circle_center}半径{circle_r}的圆: {circle_eq}")
# 可视化
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# 直线
x_line = np.linspace(0, 4, 100)
y_line = (x_line - 1) + 2 # y = x + 1
ax1.plot(x_line, y_line, 'b-', linewidth=2, label=line_eq)
ax1.plot([point_A[0], point_B[0]], [point_A[1], point_B[1]], 'ro', markersize=8)
ax1.text(point_A[0], point_A[1], ' A', fontsize=12)
ax1.text(point_B[0], point_B[1], ' B', fontsize=12)
ax1.set_xlim(0, 4)
ax1.set_ylim(0, 5)
ax1.grid(True)
ax1.set_aspect('equal')
ax1.legend()
ax1.set_title('直线')
# 圆
theta = np.linspace(0, 2*np.pi, 100)
x_circle = circle_center[0] + circle_r * np.cos(theta)
y_circle = circle_center[1] + circle_r * np.sin(theta)
ax2.plot(x_circle, y_circle, 'r-', linewidth=2, label=circle_eq)
ax2.plot(circle_center[0], circle_center[1], 'go', markersize=8)
ax2.text(circle_center[0], circle_center[1], ' 圆心', fontsize=12)
ax2.set_xlim(-4, 4)
ax2.set_ylim(-4, 4)
ax2.grid(True)
ax2.set_aspect('equal')
ax2.legend()
ax2.set_title('圆')
plt.tight_layout()
plt.show()
analytic_geometry()
|
2301_78992106/juniorAndHighSchoolMath
|
几何部分-解析几何.py
|
Python
|
unknown
| 2,591
|
import matplotlib.pyplot as plt
import numpy as np
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def function_visualization():
# 定义x范围
x = np.linspace(-5, 5 ,400)
# 定义不同函数
y_linear = 2 * x + 1
y_quadratic = x**2 - 4 # 二次函数
y_exponential = 2**x # 指数函数
y_trigonometric = np.sin(x) # 正弦型函数
# 绘制图像
plt.figure(figsize=(12,8))
plt.subplot(2,2,1)
plt.plot(x, y_linear, 'r-', label = 'y = 2x + 1')
plt.title('一次函数')
plt.grid(True)
plt.legend()
plt.subplot(2,2,2)
plt.plot(x, y_quadratic, 'g-', label = 'y = x² - 4')
plt.title('二次函数')
plt.grid(True)
plt.legend()
plt.subplot(2,2,3)
plt.plot(x, y_exponential, 'b-', label='y = 2^x')
plt.title('指数函数')
plt.grid('指数函数')
plt.grid(True)
plt.legend()
plt.subplot(2,2,4)
plt.plot(x, y_trigonometric, 'h-', label='y = sin(x)')
plt.title('正弦型函数')
plt.grid('正弦型函数')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
function_visualization()
|
2301_78992106/juniorAndHighSchoolMath
|
函数可视化.py
|
Python
|
unknown
| 1,384
|
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def plane_geometry():
# 创建图形和坐标轴
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
# 圆形
circle = patches.Circle((0, 0), radius=1, fill=False, edgecolor='blue', linewidth=2)
axes[0, 0].add_patch(circle)
axes[0, 0].set_xlim(-1.5, 1.5)
axes[0, 0].set_ylim(-1.5, 1.5)
axes[0, 0].set_aspect('equal')
axes[0, 0].set_title(f'圆形 (半径=1)\n面积={np.pi:.2f}, 周长={2*np.pi:.2f}')
axes[0, 0].grid(True)
# 矩形
rectangle = patches.Rectangle((0, 0), 3, 2, fill=False, edgecolor='red', linewidth=2)
axes[0, 1].add_patch(rectangle)
axes[0, 1].set_xlim(-0.5, 3.5)
axes[0, 1].set_ylim(-0.5, 2.5)
axes[0, 1].set_aspect('equal')
axes[0, 1].set_title(f'矩形 (3×2)\n面积=6, 周长=10')
axes[0, 1].grid(True)
# 三角形
triangle = patches.Polygon([[0, 0], [3, 0], [1.5, 2]], fill=False, edgecolor='green', linewidth=2)
axes[0, 2].add_patch(triangle)
axes[0, 2].set_xlim(-0.5, 3.5)
axes[0, 2].set_ylim(-0.5, 2.5)
axes[0, 2].set_aspect('equal')
axes[0, 2].set_title('三角形')
axes[0, 2].grid(True)
# 多边形
hexagon = patches.RegularPolygon((0, 0), 6, radius=1, orientation=0,
fill=False, edgecolor='purple', linewidth=2)
axes[1, 0].add_patch(hexagon)
axes[1, 0].set_xlim(-1.5, 1.5)
axes[1, 0].set_ylim(-1.5, 1.5)
axes[1, 0].set_aspect('equal')
axes[1, 0].set_title('正六边形')
axes[1, 0].grid(True)
# 椭圆
ellipse = patches.Ellipse((0, 0), 3, 2, fill=False, edgecolor='orange', linewidth=2)
axes[1, 1].add_patch(ellipse)
axes[1, 1].set_xlim(-2, 2)
axes[1, 1].set_ylim(-1.5, 1.5)
axes[1, 1].set_aspect('equal')
axes[1, 1].set_title('椭圆')
axes[1, 1].grid(True)
# 隐藏最后一个子图
axes[1, 2].axis('off')
plt.tight_layout()
plt.show()
plane_geometry()
|
2301_78992106/juniorAndHighSchoolMath
|
图像与几何1-平面图形计算与可视化.py
|
Python
|
unknown
| 2,329
|
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def solid_geometry_fixed():
fig = plt.figure(figsize=(15, 5))
# 方法1: 使用plot_surface绘制立方体
ax1 = fig.add_subplot(131, projection='3d')
# 定义立方体的六个面
# 底面 (z=0)
x_bottom = np.array([[0, 1], [0, 1]])
y_bottom = np.array([[0, 0], [1, 1]])
z_bottom = np.array([[0, 0], [0, 0]])
# 顶面 (z=1)
x_top = np.array([[0, 1], [0, 1]])
y_top = np.array([[0, 0], [1, 1]])
z_top = np.array([[1, 1], [1, 1]])
# 前面 (y=0)
x_front = np.array([[0, 1], [0, 1]])
y_front = np.array([[0, 0], [0, 0]])
z_front = np.array([[0, 0], [1, 1]])
# 后面 (y=1)
x_back = np.array([[0, 1], [0, 1]])
y_back = np.array([[1, 1], [1, 1]])
z_back = np.array([[0, 0], [1, 1]])
# 左面 (x=0)
x_left = np.array([[0, 0], [0, 0]])
y_left = np.array([[0, 1], [0, 1]])
z_left = np.array([[0, 0], [1, 1]])
# 右面 (x=1)
x_right = np.array([[1, 1], [1, 1]])
y_right = np.array([[0, 1], [0, 1]])
z_right = np.array([[0, 0], [1, 1]])
# 绘制所有面
ax1.plot_surface(x_bottom, y_bottom, z_bottom, alpha=0.7, color='blue')
ax1.plot_surface(x_top, y_top, z_top, alpha=0.7, color='blue')
ax1.plot_surface(x_front, y_front, z_front, alpha=0.7, color='red')
ax1.plot_surface(x_back, y_back, z_back, alpha=0.7, color='red')
ax1.plot_surface(x_left, y_left, z_left, alpha=0.7, color='green')
ax1.plot_surface(x_right, y_right, z_right, alpha=0.7, color='green')
ax1.set_title('立方体')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_zlabel('Z')
ax1.set_xlim(0, 1)
ax1.set_ylim(0, 1)
ax1.set_zlim(0, 1)
# 方法2: 使用voxels绘制立方体(更简单的方法)
ax2 = fig.add_subplot(132, projection='3d')
# 创建一个3D数组表示立方体
cube = np.ones((2, 2, 2), dtype=bool)
# 使用voxels绘制
ax2.voxels(cube, alpha=0.7, edgecolor='k')
ax2.set_title('立方体 (voxels方法)')
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
ax2.set_zlabel('Z')
# 球体
ax3 = fig.add_subplot(133, projection='3d')
u = np.linspace(0, 2 * np.pi, 30)
v = np.linspace(0, np.pi, 30)
x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))
ax3.plot_surface(x, y, z, color='lightblue', alpha=0.7)
ax3.set_title('球体')
ax3.set_xlabel('X')
ax3.set_ylabel('Y')
ax3.set_zlabel('Z')
plt.tight_layout()
plt.show()
solid_geometry_fixed()
|
2301_78992106/juniorAndHighSchoolMath
|
图像与几何2-立体图形可视化.py
|
Python
|
unknown
| 3,026
|
import matplotlib.pyplot as plt
import numpy as np
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def coordinate_geometry():
# 创建图形
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# 笛卡尔坐标系
x = np.linspace(-5, 5, 100)
y1 = 2*x + 1
y2 = -0.5*x + 3
axes[0].plot(x, y1, 'b-', label='y = 2x + 1')
axes[0].plot(x, y2, 'r-', label='y = -0.5x + 3')
# 找到交点
A = np.array([[2, -1], [0.5, 1]])
B = np.array([-1, 3])
intersection = np.linalg.solve(A, B)
axes[0].plot(intersection[0], intersection[1], 'ro', markersize=8)
axes[0].text(intersection[0]+0.2, intersection[1], f'({intersection[0]:.1f}, {intersection[1]:.1f})')
axes[0].set_xlim(-5, 5)
axes[0].set_ylim(-5, 5)
axes[0].axhline(0, color='black', linewidth=0.5)
axes[0].axvline(0, color='black', linewidth=0.5)
axes[0].grid(True)
axes[0].set_title('笛卡尔坐标系与直线交点')
axes[0].legend()
# 极坐标系
ax_polar = fig.add_subplot(122, projection='polar')
theta = np.linspace(0, 2*np.pi, 100)
r = 2 * np.sin(3*theta) # 三叶玫瑰线
ax_polar.plot(theta, r, 'g-')
ax_polar.set_title('极坐标系: 三叶玫瑰线 r = 2sin(3θ)')
ax_polar.grid(True)
plt.tight_layout()
plt.show()
coordinate_geometry()
|
2301_78992106/juniorAndHighSchoolMath
|
图像与几何3-坐标系与几何证明.py
|
Python
|
unknown
| 1,586
|
import numpy as np
import matplotlib.pyplot as plt
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def word_problems():
# 问题1: 行程问题
def distance_problem():
# 两车从A、B两地同时出发,相向而行
speed_a = 60 # 车A速度 km/h
speed_b = 80 # 车B速度 km/h
distance_ab = 300 # A、B两地距离 km
# 计算相遇时间
meeting_time = distance_ab / (speed_a + speed_b)
# 计算相遇地点
meeting_point_a = speed_a * meeting_time
meeting_point_b = speed_b * meeting_time
print(f"行程问题:")
print(f" 两车在 {meeting_time:.2f} 小时后相遇")
print(f" 相遇点距离A地 {meeting_point_a:.2f} km")
print(f" 相遇点距离B地 {meeting_point_b:.2f} km")
# 可视化
time_points = np.linspace(0, meeting_time * 1.2, 100)
position_a = speed_a * time_points
position_b = distance_ab - speed_b * time_points
plt.figure(figsize=(10, 4))
plt.plot(time_points, position_a, 'b-', label='车A位置')
plt.plot(time_points, position_b, 'r-', label='车B位置')
plt.axhline(y=meeting_point_a, color='gray', linestyle='--', alpha=0.7)
plt.axvline(x=meeting_time, color='gray', linestyle='--', alpha=0.7)
plt.plot(meeting_time, meeting_point_a, 'go', markersize=8, label='相遇点')
plt.xlabel('时间 (小时)')
plt.ylabel('距离A地 (km)')
plt.title('两车相遇问题')
plt.legend()
plt.grid(True)
plt.show()
# 问题2: 混合问题
def mixture_problem():
# 有两种浓度的盐水,需要混合得到特定浓度的盐水
concentration1 = 0.15 # 15%的盐水
concentration2 = 0.40 # 40%的盐水
target_concentration = 0.25 # 目标浓度25%
total_amount = 100 # 总重量100kg
# 设需要第一种盐水x kg,第二种盐水y kg
# x + y = 100
# 0.15x + 0.40y = 0.25 * 100
# 构建方程组
A = np.array([[1, 1], [0.15, 0.40]])
B = np.array([total_amount, target_concentration * total_amount])
solution = np.linalg.solve(A, B)
print(f"\n混合问题:")
print(f" 需要 {solution[0]:.2f} kg 的 {concentration1*100}% 盐水")
print(f" 需要 {solution[1]:.2f} kg 的 {concentration2*100}% 盐水")
print(f" 混合后得到 {total_amount} kg 的 {target_concentration*100}% 盐水")
distance_problem()
mixture_problem()
word_problems()
|
2301_78992106/juniorAndHighSchoolMath
|
实际应用与数学建模-应用题求解1.py
|
Python
|
unknown
| 2,911
|
import math
import numpy as np
import matplotlib.pyplot as plt
from itertools import permutations, combinations
from collections import Counter
import scipy.stats as stats
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def calculus_basics():
print("=== 微积分基础 ===")
# 导数
x = sp.Symbol('x')
f = x**3 - 3*x**2 + 2*x + 1
f_prime = sp.diff(f, x)
f_double_prime = sp.diff(f, x, 2)
print(f"函数 f(x) = {f}")
print(f"一阶导数 f'(x) = {f_prime}")
print(f"二阶导数 f''(x) = {f_double_prime}")
# 在特定点的导数值
x0 = 2
f_prime_at_x0 = f_prime.subs(x, x0)
print(f"在 x={x0} 处的导数值: {f_prime_at_x0}")
# 积分
indefinite_integral = sp.integrate(f, x)
definite_integral = sp.integrate(f, (x, 0, 2))
print(f"\n不定积分 ∫f(x)dx = {indefinite_integral} + C")
print(f"定积分 ∫₀²f(x)dx = {definite_integral}")
# 可视化
x_vals = np.linspace(-1, 3, 400)
# 将符号表达式转换为数值函数
f_lambdified = sp.lambdify(x, f, 'numpy')
f_prime_lambdified = sp.lambdify(x, f_prime, 'numpy')
y_vals = f_lambdified(x_vals)
y_prime_vals = f_prime_lambdified(x_vals)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# 函数和导数
ax1.plot(x_vals, y_vals, 'b-', label=f'f(x) = {sp.latex(f)}', linewidth=2)
ax1.plot(x_vals, y_prime_vals, 'r-', label=f"f'(x) = {sp.latex(f_prime)}", linewidth=2)
ax1.axhline(0, color='black', linewidth=0.5)
ax1.axvline(0, color='black', linewidth=0.5)
ax1.grid(True)
ax1.legend()
ax1.set_title('函数及其导数')
# 积分面积
x_integral = np.linspace(0, 2, 100)
y_integral = f_lambdified(x_integral)
ax2.plot(x_vals, y_vals, 'b-', label=f'f(x)', linewidth=2)
ax2.fill_between(x_integral, y_integral, alpha=0.3, color='green', label='积分面积')
ax2.axhline(0, color='black', linewidth=0.5)
ax2.axvline(0, color='black', linewidth=0.5)
ax2.grid(True)
ax2.legend()
ax2.set_title(f'定积分 ∫₀²f(x)dx = {definite_integral:.2f}')
plt.tight_layout()
plt.show()
calculus_basics()
|
2301_78992106/juniorAndHighSchoolMath
|
微积分基础.py
|
Python
|
unknown
| 2,470
|
import math
import numpy as np
import matplotlib.pyplot as plt
from itertools import permutations, combinations
from collections import Counter
import scipy.stats as stats
# 设置中文字体
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def combinatorics_and_probability():
print("=== 排列组合与概率统计 ===")
# 1. 排列组合基础
print("\n1. 排列组合基础")
items = ['A', 'B', 'C', 'D']
# 排列
print("排列 P(4, 2):")
perms = list(permutations(items, 2))
for i, perm in enumerate(perms[:8], 1):
print(f" {i}. {perm}")
print(f" 总排列数: {len(perms)}")
print(f" 公式验证: P(4,2) = 4!/(4-2)! = {math.perm(4, 2)}")
# 组合
print("\n组合 C(4, 2):")
combs = list(combinations(items, 2))
for i, comb in enumerate(combs):
print(f" {i+1}. {comb}")
print(f" 总组合数: {len(combs)}")
print(f" 公式验证: C(4,2) = 4!/(2!×(4-2)!) = {math.comb(4, 2)}")
# 2. 概率计算
print("\n2. 概率计算")
def binomial_probability(n, k, p):
"""二项分布概率"""
comb = math.comb(n, k)
return comb * (p ** k) * ((1 - p) ** (n - k))
# 掷硬币概率
n_coin = 10
p_head = 0.5
print(f"掷硬币{n_coin}次概率分布:")
probabilities = []
for k in range(n_coin + 1):
prob = binomial_probability(n_coin, k, p_head)
probabilities.append(prob)
print(f" 正面出现{k}次: {prob:.4f} ({prob*100:.2f}%)")
# 3. 生日悖论
print("\n3. 生日悖论")
def birthday_probability(n):
"""计算n个人中至少两人生日相同的概率"""
if n > 365:
return 1.0
prob_no_match = 1.0
for i in range(n):
prob_no_match *= (365 - i) / 365
return 1 - prob_no_match
for n in [23, 30, 40, 50]:
prob = birthday_probability(n)
print(f" {n}人中至少两人生日相同的概率: {prob:.4f} ({prob*100:.2f}%)")
# 4. 统计描述
print("\n4. 统计描述分析")
# 生成模拟数据(身高数据)
np.random.seed(42) # 设置随机种子保证结果可重现
data = np.random.normal(170, 10, 1000) # 均值170,标准差10
print(f"数据统计描述 (1000个样本):")
print(f" 均值: {np.mean(data):.2f}")
print(f" 中位数: {np.median(data):.2f}")
# 修复众数计算
try:
# 方法1: 使用scipy.stats.mode
mode_result = stats.mode(data)
# 不同版本的scipy返回格式不同,需要兼容处理
if hasattr(mode_result, 'mode'):
mode_value = mode_result.mode[0] if hasattr(mode_result.mode, '__getitem__') else mode_result.mode
else:
mode_value = mode_result[0]
print(f" 众数: {mode_value:.2f}")
except:
# 方法2: 手动计算众数
hist, bin_edges = np.histogram(data, bins=30)
max_bin_index = np.argmax(hist)
mode_value = (bin_edges[max_bin_index] + bin_edges[max_bin_index + 1]) / 2
print(f" 众数(近似): {mode_value:.2f}")
print(f" 标准差: {np.std(data):.2f}")
print(f" 方差: {np.var(data):.2f}")
print(f" 极差: {np.ptp(data):.2f}")
print(f" 四分位距: {np.percentile(data, 75) - np.percentile(data, 25):.2f}")
# 5. 条件概率和贝叶斯定理
print("\n5. 条件概率与贝叶斯定理")
# 疾病检测例子
prevalence = 0.01 # 疾病患病率 1%
sensitivity = 0.95 # 检测灵敏度 95%
specificity = 0.90 # 检测特异度 90%
# 计算检测阳性的情况下真正患病的概率
p_disease = prevalence
p_positive_given_disease = sensitivity
p_positive_given_no_disease = 1 - specificity
p_positive = (p_disease * p_positive_given_disease +
(1 - p_disease) * p_positive_given_no_disease)
p_disease_given_positive = (p_disease * p_positive_given_disease) / p_positive
print(f"疾病检测贝叶斯分析:")
print(f" 患病率: {p_disease:.3f}")
print(f" 检测灵敏度: {sensitivity:.3f}")
print(f" 检测特异度: {specificity:.3f}")
print(f" 检测阳性时真正患病的概率: {p_disease_given_positive:.3f}")
# 可视化
visualize_probability_stats(probabilities, data, n_coin)
def visualize_probability_stats(probabilities, data, n_coin):
"""可视化概率统计结果"""
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
# 1. 二项分布
k_values = range(n_coin + 1)
axes[0, 0].bar(k_values, probabilities, alpha=0.7, color='skyblue', edgecolor='black')
axes[0, 0].set_xlabel('成功次数 (k)')
axes[0, 0].set_ylabel('概率')
axes[0, 0].set_title('二项分布 B(10, 0.5)')
axes[0, 0].grid(True, alpha=0.3)
# 添加概率值标签
for k, prob in zip(k_values, probabilities):
if prob > 0.05: # 只显示概率较大的标签
axes[0, 0].text(k, prob + 0.01, f'{prob:.3f}',
ha='center', va='bottom', fontsize=8)
# 2. 生日悖论
n_people = range(1, 61)
birthday_probs = [birthday_probability(n) for n in n_people]
axes[0, 1].plot(n_people, birthday_probs, 'r-', linewidth=2)
axes[0, 1].axhline(y=0.5, color='gray', linestyle='--', alpha=0.7)
axes[0, 1].axvline(x=23, color='gray', linestyle='--', alpha=0.7)
axes[0, 1].set_xlabel('人数')
axes[0, 1].set_ylabel('概率')
axes[0, 1].set_title('生日悖论')
axes[0, 1].grid(True, alpha=0.3)
axes[0, 1].text(23, 0.5, '23人 → 50%', ha='right', va='bottom')
# 3. 数据直方图
axes[0, 2].hist(data, bins=30, density=True, alpha=0.7, color='lightgreen', edgecolor='black')
axes[0, 2].set_xlabel('身高 (cm)')
axes[0, 2].set_ylabel('密度')
axes[0, 2].set_title('身高数据分布')
axes[0, 2].grid(True, alpha=0.3)
# 添加正态分布曲线
x = np.linspace(data.min(), data.max(), 100)
pdf = stats.norm.pdf(x, data.mean(), data.std())
axes[0, 2].plot(x, pdf, 'r-', linewidth=2, label='正态分布拟合')
axes[0, 2].legend()
# 4. 箱线图
axes[1, 0].boxplot(data, vert=True, patch_artist=True)
axes[1, 0].set_title('数据箱线图')
axes[1, 0].set_ylabel('身高 (cm)')
axes[1, 0].grid(True, alpha=0.3)
# 5. 累积分布函数
data_sorted = np.sort(data)
cdf = np.arange(1, len(data) + 1) / len(data)
axes[1, 1].plot(data_sorted, cdf, 'b-', linewidth=2)
axes[1, 1].set_xlabel('身高 (cm)')
axes[1, 1].set_ylabel('累积概率')
axes[1, 1].set_title('累积分布函数 (CDF)')
axes[1, 1].grid(True, alpha=0.3)
# 6. QQ图(正态性检验)
stats.probplot(data, dist="norm", plot=axes[1, 2])
axes[1, 2].set_title('QQ图 - 正态性检验')
plt.tight_layout()
plt.show()
def advanced_probability_examples():
"""高级概率例子"""
print("\n=== 高级概率例子 ===")
# 1. 蒙提霍尔问题
print("\n1. 蒙提霍尔问题 (三门问题)")
def monty_hall_simulation(n_trials=10000):
stay_wins = 0
switch_wins = 0
for _ in range(n_trials):
# 随机放置汽车
doors = [0, 0, 0] # 0代表山羊,1代表汽车
car_position = np.random.randint(0, 3)
doors[car_position] = 1
# 玩家随机选择一扇门
player_choice = np.random.randint(0, 3)
# 主持人打开一扇有山羊的门(不是玩家选择的,也不是有汽车的)
host_choices = [i for i in range(3) if i != player_choice and doors[i] == 0]
host_choice = np.random.choice(host_choices)
# 计算坚持和换门的获胜次数
if doors[player_choice] == 1:
stay_wins += 1
# 换到另一扇未打开的门
switch_choice = [i for i in range(3) if i != player_choice and i != host_choice][0]
if doors[switch_choice] == 1:
switch_wins += 1
return stay_wins / n_trials, switch_wins / n_trials
stay_prob, switch_prob = monty_hall_simulation(10000)
print(f" 坚持原选择的获胜概率: {stay_prob:.4f}")
print(f" 换门的获胜概率: {switch_prob:.4f}")
print(f" 理论值: 坚持=1/3≈0.333, 换门=2/3≈0.667")
# 2. 泊松分布
print("\n2. 泊松分布例子")
def poisson_probability(lambd, k):
"""泊松分布概率"""
return (lambd ** k * math.exp(-lambd)) / math.factorial(k)
# 模拟商店每小时顾客数
lambd = 5 # 平均每小时5个顾客
print(f"平均每小时{lambd}个顾客的概率分布:")
for k in range(10):
prob = poisson_probability(lambd, k)
print(f" {k}个顾客: {prob:.4f}")
# 3. 几何分布
print("\n3. 几何分布例子")
def geometric_probability(p, k):
"""几何分布概率"""
return (1 - p) ** (k - 1) * p
# 抛硬币直到出现正面
p_head = 0.5
print(f"抛硬币直到出现正面的概率分布:")
for k in range(1, 6):
prob = geometric_probability(p_head, k)
print(f" 第{k}次出现正面: {prob:.4f}")
def birthday_probability(n):
"""计算n个人中至少两人生日相同的概率"""
if n > 365:
return 1.0
prob_no_match = 1.0
for i in range(n):
prob_no_match *= (365 - i) / 365
return 1 - prob_no_match
def practical_applications():
"""实际应用案例"""
print("\n=== 实际应用案例 ===")
# 1. 彩票中奖概率
print("\n1. 双色球中奖概率计算")
def lottery_probability():
# 双色球规则: 33选6 + 16选1
total_red = math.comb(33, 6)
total_blue = 16
total_combinations = total_red * total_blue
print(f"总组合数: {total_combinations:,}")
print("各奖项中奖概率:")
# 一等奖: 6+1
prob_1st = 1 / total_combinations
print(f" 一等奖: 1/{total_combinations:,} ≈ {prob_1st:.10f}")
# 二等奖: 6+0
prob_2nd = (math.comb(6, 6) * math.comb(27, 0) * 15) / total_combinations
print(f" 二等奖: {prob_2nd:.8f}")
# 三等奖: 5+1
prob_3rd = (math.comb(6, 5) * math.comb(27, 1) * 1) / total_combinations
print(f" 三等奖: {prob_3rd:.8f}")
lottery_probability()
# 2. 产品质量检验
print("\n2. 产品质量检验抽样方案")
def quality_control():
n_samples = 50 # 抽样数量
defect_rate = 0.02 # 缺陷率
acceptance_number = 1 # 可接受缺陷数
# 计算接受概率
prob_accept = 0
for k in range(acceptance_number + 1):
prob = binomial_probability(n_samples, k, defect_rate)
prob_accept += prob
print(f"抽样方案: n={n_samples}, c={acceptance_number}")
print(f"缺陷率: {defect_rate*100}%")
print(f"接受概率: {prob_accept:.4f}")
# 绘制OC曲线
defect_rates = np.linspace(0, 0.1, 100)
accept_probs = []
for p in defect_rates:
prob_acc = 0
for k in range(acceptance_number + 1):
prob_acc += binomial_probability(n_samples, k, p)
accept_probs.append(prob_acc)
plt.figure(figsize=(10, 6))
plt.plot(defect_rates, accept_probs, 'b-', linewidth=2)
plt.axvline(x=defect_rate, color='r', linestyle='--', label=f'当前缺陷率 ({defect_rate*100}%)')
plt.xlabel('缺陷率')
plt.ylabel('接受概率')
plt.title('操作特性曲线 (OC曲线)')
plt.grid(True, alpha=0.3)
plt.legend()
plt.show()
quality_control()
def binomial_probability(n, k, p):
"""二项分布概率"""
comb = math.comb(n, k)
return comb * (p ** k) * ((1 - p) ** (n - k))
# 运行所有函数
if __name__ == "__main__":
combinatorics_and_probability()
advanced_probability_examples()
practical_applications()
|
2301_78992106/juniorAndHighSchoolMath
|
排列组合和概率统计.py
|
Python
|
unknown
| 12,864
|
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def sequences_and_series():
print("=== 数列与级数 ===")
# 等差数列
def arithmetic_sequence(a1, d, n):
return [a1 + i * d for i in range(n)]
# 等比数列
def geometric_sequence(a1, r, n):
return [a1 * (r ** i) for i in range(n)]
# 斐波那契数列
def fibonacci_sequence(n):
fib = [0, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib[:n]
# 示例
arith_seq = arithmetic_sequence(2, 3, 10)
geo_seq = geometric_sequence(2, 3, 10)
fib_seq = fibonacci_sequence(15)
print(f"等差数列 (首项2, 公差3): {arith_seq}")
print(f"等比数列 (首项2, 公比3): {geo_seq}")
print(f"斐波那契数列: {fib_seq}")
# 数列求和
arith_sum = sum(arith_seq)
geo_sum = sum(geo_seq)
print(f"\n等差数列和: {arith_sum}")
print(f"等比数列和: {geo_sum}")
# 数列极限
def sequence_limit(sequence_func, n_terms=1000):
terms = [sequence_func(n) for n in range(1, n_terms + 1)]
return terms[-1]
# 示例: 1/n 的极限
limit_seq = sequence_limit(lambda n: 1/n)
print(f"数列 1/n 的极限近似值: {limit_seq}")
# 可视化数列
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.plot(range(1, 11), arith_seq, 'bo-')
plt.title('等差数列')
plt.grid(True)
plt.subplot(1, 3, 2)
plt.plot(range(1, 11), geo_seq, 'ro-')
plt.title('等比数列')
plt.grid(True)
plt.subplot(1, 3, 3)
plt.plot(range(1, 16), fib_seq, 'go-')
plt.title('斐波那契数列')
plt.grid(True)
plt.tight_layout()
plt.show()
sequences_and_series()
|
2301_78992106/juniorAndHighSchoolMath
|
数列.py
|
Python
|
unknown
| 2,129
|
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
import math
from itertools import permutations, combinations
from scipy import stats
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def sequences_and_induction():
print("=== 数列与数学归纳法 ===")
# 数学归纳法示例:证明 1 + 2 + 3 + ... + n = n(n+1)/2
def sum_formula(n):
"""直接计算和"""
return n * (n + 1) // 2
def sum_sequential(n):
"""顺序计算和"""
return sum(range(1, n + 1))
# 验证基础情况
print("数学归纳法验证:")
print("基础情况 (n=1):")
print(f" 左边: 1 = 1")
print(f" 右边: 1×(1+1)/2 = {sum_formula(1)}")
print(f" 验证: {1 == sum_formula(1)}")
# 验证归纳步骤
print("\n归纳步骤 (假设n=k成立,证明n=k+1成立):")
k = 5 # 示例
assumed_sum = sum_formula(k) # 归纳假设
next_sum_sequential = sum_sequential(k + 1)
next_sum_formula = sum_formula(k + 1)
print(f" 假设 1+2+...+{k} = {k}({k}+1)/2 = {assumed_sum}")
print(f" 那么 1+2+...+{k}+{k+1} = {assumed_sum} + {k+1} = {assumed_sum + k + 1}")
print(f" 公式计算: ({k+1})({k+1}+1)/2 = {next_sum_formula}")
print(f" 验证: {assumed_sum + k + 1 == next_sum_formula}")
# 数列极限
def sequence_convergence(sequence_func, n_terms=20):
"""研究数列的收敛性"""
terms = [sequence_func(n) for n in range(1, n_terms + 1)]
return terms
# 收敛数列示例: a_n = 1 + 1/n
convergent_seq = sequence_convergence(lambda n: 1 + 1/n)
# 发散数列示例: a_n = n
divergent_seq = sequence_convergence(lambda n: n)
# 可视化
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(range(1, 21), convergent_seq, 'bo-', label='aₙ = 1 + 1/n')
plt.axhline(y=1, color='r', linestyle='--', label='极限值 = 1')
plt.title('收敛数列')
plt.xlabel('n')
plt.ylabel('aₙ')
plt.grid(True)
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(range(1, 21), divergent_seq, 'ro-', label='aₙ = n')
plt.title('发散数列')
plt.xlabel('n')
plt.ylabel('aₙ')
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
# 验证多个n值
print(f"\n公式验证 (前10个自然数):")
for n in range(1, 11):
formula_result = sum_formula(n)
sequential_result = sum_sequential(n)
print(f" n={n}: 公式={formula_result}, 计算={sequential_result}, 正确={formula_result == sequential_result}")
sequences_and_induction()
|
2301_78992106/juniorAndHighSchoolMath
|
数列与数学归纳法.py
|
Python
|
unknown
| 2,936
|
import sympy as sp
import numpy as np
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def equation_solving():
x = sp.Symbol('x')
y = sp.Symbol('y')
equation = 2 * x + 5 - 13
solution = sp.solve(equation, x)
print(f"方程2x + 5 -13的解: x = {solution[0]}")
# 一元二次方程
equation2 = x**2 - 5*x +6
solution2 = sp.solve(equation2, x)
print(f"方程x² - 5x + 6 = 0的解: {solution2}")
#方程组
eq1 = 2 * x + 3 *y - 7
eq2 = 4 * x - y -3
solution3 = sp.solve((eq1, eq2), (x, y))
print(f"方程组解:{solution3}" )
equation_solving()
|
2301_78992106/juniorAndHighSchoolMath
|
方程求解.py
|
Python
|
unknown
| 823
|
import math
import fractions
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def rational_number_demo():
f1 = fractions.Fraction(3,4)
f2 = fractions.Fraction(2,5)
print(f"分数1:{f1}")
print(f"分数2:{f2}")
print(f"加法: {f1} + {f2} = {f1 + f2}")
print(f"减法:{f1} - {f2} = {f1 - f2}")
print(f"乘法: {f1} * {f2} = {f1 * f2}")
print(f"除法: {f1} / {f2} = {f1 / f2}")
# 实数运算
print(f"\nΠ的近似值: {math.pi}")
print(f"e的近似值: {math.e}" )
print(f"根号2的近似值:{math.sqrt(2)}" )
rational_number_demo()
|
2301_78992106/juniorAndHighSchoolMath
|
有理数与实数运算.py
|
Python
|
unknown
| 804
|
import random
import matplotlib.pyplot as plt
import numpy as np
from collections import Counter
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def probability_demo():
# 模拟抛硬币
def coin_toss_simulation(n_tosses):
results = [random.choice(['正面', '反面']) for _ in range(n_tosses)]
return results
# 模拟掷骰子
def dice_roll_simulation(n_rolls):
results = [random.randint(1, 6) for _ in range(n_rolls)]
return results
# 创建图形
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# 抛硬币实验
coin_results = coin_toss_simulation(1000)
coin_counts = Counter(coin_results)
axes[0].bar(coin_counts.keys(), coin_counts.values(), color=['skyblue', 'lightcoral'])
axes[0].set_title('抛硬币实验 (1000次)')
axes[0].set_ylabel('频数')
# 计算理论概率和实际频率
theoretical_prob = 0.5
actual_freq_heads = coin_counts['正面'] / 1000
actual_freq_tails = coin_counts['反面'] / 1000
print(f"抛硬币实验:")
print(f" 正面理论概率: {theoretical_prob:.3f}, 实际频率: {actual_freq_heads:.3f}")
print(f" 反面理论概率: {theoretical_prob:.3f}, 实际频率: {actual_freq_tails:.3f}")
# 掷骰子实验
dice_results = dice_roll_simulation(1000)
dice_counts = Counter(dice_results)
# 按骰子点数排序
dice_points = sorted(dice_counts.keys())
dice_frequencies = [dice_counts[point] for point in dice_points]
axes[1].bar(dice_points, dice_frequencies, color='lightgreen', edgecolor='black')
axes[1].set_title('掷骰子实验 (1000次)')
axes[1].set_xlabel('骰子点数')
axes[1].set_ylabel('频数')
# 计算理论概率和实际频率
theoretical_prob_dice = 1/6
print(f"\n掷骰子实验:")
for point in dice_points:
actual_freq = dice_counts[point] / 1000
print(f" 点数{point}: 理论概率 {theoretical_prob_dice:.3f}, 实际频率 {actual_freq:.3f}")
plt.tight_layout()
plt.show()
probability_demo()
|
2301_78992106/juniorAndHighSchoolMath
|
概率基础.py
|
Python
|
unknown
| 2,353
|
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def mathematical_modeling():
# 示例1: 人口增长模型
def population_growth_model():
# 生成模拟数据
years = np.arange(2000, 2021)
# 使用指数增长模型: P(t) = P0 * e^(rt)
base_population = 1000
growth_rate = 0.02
population = base_population * np.exp(growth_rate * (years - 2000))
# 添加一些随机噪声
np.random.seed(42)
population_noisy = population + np.random.normal(0, 50, len(years))
# 定义指数模型函数
def exp_model(t, P0, r):
return P0 * np.exp(r * (t - 2000))
# 拟合模型
popt, pcov = curve_fit(exp_model, years, population_noisy, p0=[1000, 0.02])
# 预测未来人口
future_years = np.arange(2000, 2031)
predicted_population = exp_model(future_years, *popt)
# 可视化
plt.figure(figsize=(10, 6))
plt.scatter(years, population_noisy, color='blue', label='实际数据')
plt.plot(future_years, predicted_population, 'r-', label=f'拟合模型: P(t) = {popt[0]:.1f} * e^({popt[1]:.3f}t)')
plt.axvline(x=2020, color='gray', linestyle='--', alpha=0.7, label='当前年份')
plt.xlabel('年份')
plt.ylabel('人口')
plt.title('人口增长模型')
plt.legend()
plt.grid(True)
plt.show()
print(f"人口增长模型参数:")
print(f" 初始人口 P0 = {popt[0]:.2f}")
print(f" 增长率 r = {popt[1]:.4f}")
print(f" 2030年预测人口: {exp_model(2030, *popt):.0f}")
# 示例2: 抛物线运动模型
def projectile_motion():
# 初始条件
v0 = 50 # 初始速度 m/s
angle = 45 # 发射角度 度
g = 9.8 # 重力加速度 m/s²
# 转换为弧度
theta = np.radians(angle)
# 计算飞行时间
t_total = 2 * v0 * np.sin(theta) / g
# 生成时间点
t = np.linspace(0, t_total, 100)
# 计算位置
x = v0 * np.cos(theta) * t
y = v0 * np.sin(theta) * t - 0.5 * g * t**2
# 可视化
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'b-', linewidth=2)
plt.xlabel('水平距离 (m)')
plt.ylabel('高度 (m)')
plt.title('抛物线运动模型')
plt.grid(True)
# 标记关键点
max_height = (v0 * np.sin(theta))**2 / (2 * g)
max_range = v0**2 * np.sin(2*theta) / g
plt.axhline(y=max_height, color='r', linestyle='--', alpha=0.7, label=f'最大高度: {max_height:.1f}m')
plt.axvline(x=max_range, color='g', linestyle='--', alpha=0.7, label=f'最大射程: {max_range:.1f}m')
plt.legend()
plt.show()
print(f"\n抛物线运动模型:")
print(f" 最大高度: {max_height:.2f} m")
print(f" 最大射程: {max_range:.2f} m")
print(f" 飞行时间: {t_total:.2f} s")
population_growth_model()
projectile_motion()
mathematical_modeling()
|
2301_78992106/juniorAndHighSchoolMath
|
简单数学建模.py
|
Python
|
unknown
| 3,556
|
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def set_chinese_font():
"""设置中文字体"""
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
set_chinese_font()
def statistics_demo():
# 生成模拟数据
np.random.seed(42)
data = {
'数学': np.random.normal(75, 10, 100),
'语文': np.random.normal(80, 8, 100),
'英语': np.random.normal(78, 12, 100)
}
df = pd.DataFrame(data)
# 创建统计图表
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# 直方图
axes[0, 0].hist(df['数学'], bins=15, alpha=0.7, color='skyblue', edgecolor='black')
axes[0, 0].set_title('数学成绩分布')
axes[0, 0].set_xlabel('分数')
axes[0, 0].set_ylabel('频数')
# 箱线图
box_data = [df['数学'], df['语文'], df['英语']]
axes[0, 1].boxplot(box_data, labels=['数学', '语文', '英语'])
axes[0, 1].set_title('各科成绩箱线图')
axes[0, 1].set_ylabel('分数')
# 散点图
axes[1, 0].scatter(df['数学'], df['英语'], alpha=0.7, color='green')
axes[1, 0].set_title('数学与英语成绩关系')
axes[1, 0].set_xlabel('数学成绩')
axes[1, 0].set_ylabel('英语成绩')
# 饼图 - 成绩等级分布
math_grades = pd.cut(df['数学'], bins=[0, 60, 70, 80, 90, 100],
labels=['不及格', '及格', '中等', '良好', '优秀'])
grade_counts = math_grades.value_counts()
axes[1, 1].pie(grade_counts.values, labels=grade_counts.index, autopct='%1.1f%%')
axes[1, 1].set_title('数学成绩等级分布')
plt.tight_layout()
plt.show()
# 输出基本统计量
print("各科成绩统计描述:")
print(df.describe())
statistics_demo()
|
2301_78992106/juniorAndHighSchoolMath
|
统计与概率-数据收集与统计图表.py
|
Python
|
unknown
| 1,959
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
农产品市场价格管理平台
前后端一体化Web应用
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional, Dict, Any
import os
import json
import pandas as pd
from datetime import datetime, timedelta
import asyncio
import threading
import time
import logging
from pathlib import Path
# 配置日志
logger = logging.getLogger(__name__)
# 导入自定义模块
from core.data_manager import get_data_manager
from core.crawler import get_crawler
from core.report_crawler import get_report_crawler
from core.report_analyzer import ReportAnalyzer
from core.scheduler import get_scheduler
from core.config import config
# 创建FastAPI应用
app = FastAPI(
title="农产品市场价格管理平台",
description="前后端一体化的市场价格数据管理系统",
version="2.0.0"
)
# 添加CORS中间件
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 全局变量
data_manager = get_data_manager()
crawler = get_crawler()
report_crawler = get_report_crawler()
scheduler = get_scheduler()
report_analyzer = ReportAnalyzer(data_manager)
# 数据模型
class CrawlConfig(BaseModel):
enabled: bool = True
interval_minutes: int = 30
provinces: List[str] = []
class SearchQuery(BaseModel):
province: Optional[str] = None
variety: Optional[str] = None
market: Optional[str] = None
date_from: Optional[str] = None
date_to: Optional[str] = None
limit: int = 100
# 静态文件服务
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/", response_class=HTMLResponse)
async def root():
"""主页"""
return FileResponse("static/index.html")
@app.get("/api/health")
async def health_check():
"""健康检查"""
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"version": "2.0.0"
}
@app.get("/api/stats")
async def get_stats():
"""获取系统统计信息"""
try:
stats = data_manager.get_statistics()
crawler_status = crawler.get_status()
scheduler_status = scheduler.get_status()
return {
"success": True,
"data": {
"data_stats": stats,
"crawler_status": crawler_status,
"scheduler_status": scheduler_status
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/search")
async def search_data(query: SearchQuery):
"""搜索数据"""
try:
results = data_manager.search_data(
province=query.province,
variety=query.variety,
market=query.market,
date_from=query.date_from,
date_to=query.date_to,
limit=query.limit
)
return {
"success": True,
"count": len(results),
"data": results
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/data/latest")
async def get_latest_data(limit: int = 50):
"""获取最新数据"""
try:
results = data_manager.get_latest_data(limit)
return {
"success": True,
"count": len(results),
"data": results
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/data/provinces")
async def get_provinces():
"""获取省份列表"""
try:
provinces = data_manager.get_provinces()
return {
"success": True,
"data": provinces
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/data/varieties")
async def get_varieties():
"""获取品种列表"""
try:
varieties = data_manager.get_varieties()
return {
"success": True,
"data": varieties
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/data/markets")
async def get_markets():
"""获取市场列表"""
try:
markets = data_manager.get_markets()
return {
"success": True,
"data": markets
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/crawler/start")
async def start_crawler(background_tasks: BackgroundTasks):
"""启动爬虫"""
try:
background_tasks.add_task(crawler.start_crawling)
return {"success": True, "message": "爬虫已启动"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/crawler/stop")
async def stop_crawler():
"""停止爬虫"""
try:
crawler.stop_crawling()
return {"success": True, "message": "爬虫已停止"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/crawler/status")
async def get_crawler_status():
"""获取爬虫状态"""
try:
status = crawler.get_status()
return {"success": True, "data": status}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/crawler/config")
async def update_crawler_config(config: CrawlConfig):
"""更新爬虫配置"""
try:
crawler.update_config(config.model_dump())
return {"success": True, "message": "配置已更新"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# 报告爬虫API接口
@app.post("/api/report-crawler/start")
async def start_report_crawler(background_tasks: BackgroundTasks):
"""启动报告爬虫"""
try:
background_tasks.add_task(report_crawler.start_crawling)
return {"success": True, "message": "报告爬虫已启动"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/report-crawler/stop")
async def stop_report_crawler():
"""停止报告爬虫"""
try:
report_crawler.stop_crawling()
return {"success": True, "message": "报告爬虫已停止"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/report-crawler/status")
async def get_report_crawler_status():
"""获取报告爬虫状态"""
try:
status = report_crawler.get_status()
return {"success": True, "data": status}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/report-crawler/crawl-once")
async def crawl_reports_once(background_tasks: BackgroundTasks, full_crawl: bool = True):
"""执行一次报告爬取
Args:
full_crawl: 是否进行完整爬取(所有页面)
"""
try:
# 临时设置爬取模式
original_config = report_crawler.config.get('full_crawl', True)
report_crawler.config['full_crawl'] = full_crawl
background_tasks.add_task(report_crawler.crawl_once)
# 恢复原始配置
report_crawler.config['full_crawl'] = original_config
crawl_mode = "完整爬取" if full_crawl else "快速爬取"
return {"success": True, "message": f"开始执行单次报告爬取({crawl_mode})"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/reports/latest")
async def get_latest_reports(limit: int = 20, page: int = 1, report_type: str = "all"):
"""获取最新报告
Args:
limit: 每页数量
page: 页码
report_type: 报告类型 (all, daily, monthly, yearly)
"""
try:
reports_file = data_manager.data_dir / "analysis_reports.csv"
if not reports_file.exists():
return {
"success": True,
"count": 0,
"data": [],
"total": 0,
"page": page,
"total_pages": 0,
"report_type": report_type
}
import pandas as pd
df = pd.read_csv(reports_file, encoding='utf-8-sig')
if df.empty:
return {
"success": True,
"count": 0,
"data": [],
"total": 0,
"page": page,
"total_pages": 0,
"report_type": report_type
}
# 清理数据
df = df.fillna('')
# 根据报告类型过滤
if report_type != "all":
if report_type == "daily":
df = df[df['报告类型'] == '农产品批发市场价格日报']
elif report_type == "monthly":
df = df[df['报告类型'] == '农业分析报告']
elif report_type == "yearly":
# 目前没有年报,预留接口
df = df[df['报告类型'].str.contains('年报', na=False)]
# 按爬取时间排序
if '爬取时间' in df.columns:
df = df.sort_values('爬取时间', ascending=False)
# 计算分页
total_records = len(df)
total_pages = (total_records + limit - 1) // limit
start_idx = (page - 1) * limit
end_idx = start_idx + limit
# 获取当前页数据
page_df = df.iloc[start_idx:end_idx]
# 转换为字典并清理数值
records = page_df.to_dict('records')
return {
"success": True,
"count": len(records),
"data": records,
"total": total_records,
"page": page,
"total_pages": total_pages,
"limit": limit,
"report_type": report_type
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/reports/stats")
async def get_report_stats():
"""获取报告统计信息"""
try:
reports_file = data_manager.data_dir / "analysis_reports.csv"
if not reports_file.exists():
return {
"total": 0,
"daily_count": 0,
"monthly_count": 0,
"yearly_count": 0,
"types": []
}
import pandas as pd
df = pd.read_csv(reports_file, encoding='utf-8-sig')
if df.empty:
return {
"total": 0,
"daily_count": 0,
"monthly_count": 0,
"yearly_count": 0,
"types": []
}
# 统计各类型报告数量
daily_count = len(df[df['报告类型'] == '农产品批发市场价格日报'])
monthly_count = len(df[df['报告类型'] == '农业分析报告'])
yearly_count = len(df[df['报告类型'].str.contains('年报', na=False)])
# 获取所有报告类型
types = df['报告类型'].value_counts().to_dict()
return {
"total": len(df),
"daily_count": daily_count,
"monthly_count": monthly_count,
"yearly_count": yearly_count,
"types": types
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/reports/export")
async def export_reports():
"""导出报告数据"""
try:
reports_file = data_manager.data_dir / "analysis_reports.csv"
if not reports_file.exists():
raise HTTPException(status_code=404, detail="报告文件不存在")
return FileResponse(
reports_file,
media_type='application/octet-stream',
filename=f"analysis_reports_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/export/csv")
async def export_csv(
province: Optional[str] = None,
variety: Optional[str] = None,
market: Optional[str] = None,
date_from: Optional[str] = None,
date_to: Optional[str] = None
):
"""导出CSV文件"""
try:
file_path = data_manager.export_csv(
province=province,
variety=variety,
market=market,
date_from=date_from,
date_to=date_to
)
return FileResponse(
file_path,
media_type='application/octet-stream',
filename=f"market_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/dashboard/trends")
async def get_dashboard_trends(days: int = 30):
"""获取仪表板趋势数据"""
try:
# 获取价格数据趋势
price_trends = await get_price_trends(days)
# 获取报告数据趋势
report_trends = await get_report_trends()
# 获取关键指标
key_metrics = await get_key_metrics()
return {
"success": True,
"data": {
"price_trends": price_trends,
"report_trends": report_trends,
"key_metrics": key_metrics,
"last_update": datetime.now().isoformat(),
"time_range": f"{days}天"
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
async def get_price_trends(days: int = 30):
"""获取价格趋势数据"""
try:
# 从CSV文件获取指定天数的价格数据
csv_file = data_manager.data_dir / "market_prices.csv"
import pandas as pd
real_data = []
if csv_file.exists():
df = pd.read_csv(csv_file, encoding='utf-8-sig')
if not df.empty:
# 清理数据
df = df.fillna(0)
# 按日期分组计算平均价格
if '交易日期' in df.columns and '平均价' in df.columns:
df['交易日期'] = pd.to_datetime(df['交易日期'], errors='coerce')
df = df.dropna(subset=['交易日期'])
# 获取指定天数的数据
recent_date = df['交易日期'].max()
start_date = recent_date - pd.Timedelta(days=days)
recent_df = df[df['交易日期'] >= start_date]
# 按日期分组计算平均价格
daily_avg = recent_df.groupby('交易日期')['平均价'].mean().reset_index()
daily_avg = daily_avg.sort_values('交易日期')
for _, row in daily_avg.iterrows():
real_data.append({
'交易日期': row['交易日期'].strftime('%Y-%m-%d'),
'平均价': float(row['平均价'])
})
# 只返回真实数据,不生成模拟数据
return real_data
except Exception as e:
logger.error(f"获取价格趋势失败: {e}")
return []
async def get_report_trends():
"""获取报告趋势数据"""
try:
# 从CSV文件获取报告数据
reports_file = data_manager.data_dir / "analysis_reports.csv"
if not reports_file.exists():
return []
import pandas as pd
df = pd.read_csv(reports_file, encoding='utf-8-sig')
if df.empty:
return []
# 按报告类型统计
type_counts = df['报告类型'].value_counts().to_dict()
# 按日期统计报告数量
if '爬取时间' in df.columns:
df['爬取时间'] = pd.to_datetime(df['爬取时间'], errors='coerce')
df = df.dropna(subset=['爬取时间'])
df['日期'] = df['爬取时间'].dt.date
daily_counts = df.groupby('日期').size().reset_index(name='报告数量')
daily_counts['日期'] = daily_counts['日期'].astype(str)
return {
"type_distribution": type_counts,
"daily_counts": daily_counts.to_dict('records')
}
return {"type_distribution": type_counts, "daily_counts": []}
except Exception as e:
logger.error(f"获取报告趋势失败: {e}")
return {}
async def get_key_metrics():
"""获取关键指标"""
try:
metrics = {}
# 价格指标
csv_file = data_manager.data_dir / "market_prices.csv"
if csv_file.exists():
import pandas as pd
df = pd.read_csv(csv_file, encoding='utf-8-sig')
if not df.empty:
df = df.fillna(0)
# 计算价格指标
if '平均价' in df.columns:
metrics['avg_price'] = float(df['平均价'].mean())
metrics['max_price'] = float(df['平均价'].max())
metrics['min_price'] = float(df['平均价'].min())
# 计算价格变化趋势
if '交易日期' in df.columns and '平均价' in df.columns:
df['交易日期'] = pd.to_datetime(df['交易日期'], errors='coerce')
df = df.dropna(subset=['交易日期'])
df = df.sort_values('交易日期')
if len(df) >= 2:
recent_price = df.iloc[-1]['平均价']
previous_price = df.iloc[-2]['平均价']
if previous_price > 0:
price_change = ((recent_price - previous_price) / previous_price) * 100
metrics['price_change_percent'] = round(price_change, 2)
# 报告指标
reports_file = data_manager.data_dir / "analysis_reports.csv"
if reports_file.exists():
import pandas as pd
df = pd.read_csv(reports_file, encoding='utf-8-sig')
if not df.empty:
metrics['total_reports'] = len(df)
metrics['report_types'] = df['报告类型'].nunique() if '报告类型' in df.columns else 0
return metrics
except Exception as e:
logger.error(f"获取关键指标失败: {e}")
return {}
@app.get("/api/dashboard/data")
async def get_dashboard_data():
"""获取仪表盘数据"""
try:
dashboard_data = report_analyzer.get_dashboard_data()
return dashboard_data
except Exception as e:
logger.error(f"获取仪表盘数据失败: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/dashboard/trends")
async def get_trends_data(category: str = "all"):
"""获取趋势数据
Args:
category: 数据类别 (all, price_index, vegetables, fruits, meat, aquatic)
"""
try:
dashboard_data = report_analyzer.get_dashboard_data()
if not dashboard_data.get("success"):
return dashboard_data
trends_data = dashboard_data["data"]
if category == "all":
return {"success": True, "data": trends_data}
elif category == "price_index":
return {"success": True, "data": {"price_index_trend": trends_data.get("price_index_trend", [])}}
elif category in ["vegetables", "fruits", "meat", "aquatic"]:
category_trends = trends_data.get("category_price_trends", {})
return {"success": True, "data": {category: category_trends.get(category, [])}}
else:
return {"success": False, "error": "无效的数据类别"}
except Exception as e:
logger.error(f"获取趋势数据失败: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.on_event("startup")
async def startup_event():
"""应用启动事件"""
print("🚀 农产品市场价格管理平台启动中...")
# 初始化数据管理器
data_manager.initialize()
# 启动调度器
scheduler.start()
print("✅ 平台启动完成!")
print(f"📊 管理界面: http://localhost:8000")
print(f"📖 API文档: http://localhost:8000/docs")
@app.on_event("shutdown")
async def shutdown_event():
"""应用关闭事件"""
print("🛑 平台正在关闭...")
# 停止爬虫
crawler.stop_crawling()
# 停止调度器
scheduler.stop()
print("✅ 平台已安全关闭")
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"app:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="info"
)
|
2301_78526554/agricultural-platform
|
app.py
|
Python
|
unknown
| 20,850
|
# 核心模块
|
2301_78526554/agricultural-platform
|
core/__init__.py
|
Python
|
unknown
| 15
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
配置管理模块
"""
import os
import json
from pathlib import Path
from typing import Dict, Any, List
class Config:
"""配置管理类"""
def __init__(self, config_file: str = "config.json"):
self.config_file = config_file
self.config = self.load_config()
def load_config(self) -> Dict[str, Any]:
"""加载配置文件"""
default_config = {
"app": {
"name": "农产品市场价格管理平台",
"version": "2.0.0",
"debug": False
},
"server": {
"host": "0.0.0.0",
"port": 8000,
"workers": 1
},
"data": {
"csv_dir": "data",
"backup_dir": "backups",
"max_records": 100000,
"cleanup_days": 30
},
"crawler": {
"enabled": True,
"interval_minutes": 30,
"timeout_seconds": 30,
"retry_times": 3,
"concurrent_requests": 5,
"provinces": [
{"name": "北京", "code": "110000"},
{"name": "天津", "code": "120000"},
{"name": "河北", "code": "130000"},
{"name": "山西", "code": "140000"},
{"name": "内蒙古", "code": "150000"},
{"name": "辽宁", "code": "210000"},
{"name": "吉林", "code": "220000"},
{"name": "黑龙江", "code": "230000"},
{"name": "上海", "code": "310000"},
{"name": "江苏", "code": "320000"},
{"name": "浙江", "code": "330000"},
{"name": "安徽", "code": "340000"},
{"name": "福建", "code": "350000"},
{"name": "江西", "code": "360000"},
{"name": "山东", "code": "370000"},
{"name": "河南", "code": "410000"},
{"name": "湖北", "code": "420000"},
{"name": "湖南", "code": "430000"},
{"name": "广东", "code": "440000"},
{"name": "广西", "code": "450000"},
{"name": "海南", "code": "460000"},
{"name": "重庆", "code": "500000"},
{"name": "四川", "code": "510000"},
{"name": "贵州", "code": "520000"},
{"name": "云南", "code": "530000"},
{"name": "西藏", "code": "540000"},
{"name": "陕西", "code": "610000"},
{"name": "甘肃", "code": "620000"},
{"name": "青海", "code": "630000"},
{"name": "宁夏", "code": "640000"},
{"name": "新疆", "code": "650000"}
]
},
"report_crawler": {
"enabled": True,
"full_crawl": True, # 是否进行完整爬取(所有页面)
"max_reports_per_type": 1000, # 每种类型最大爬取数量
"interval_hours": 6, # 爬取间隔(小时)
"timeout_seconds": 30,
"retry_times": 3,
"page_delay_seconds": 2 # 页面间延迟
},
"api": {
"base_url": "https://pfsc.agri.cn/pfsc/api",
"headers": {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36",
"Accept": "application/json, text/plain, */*",
"Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8"
}
}
}
if os.path.exists(self.config_file):
try:
with open(self.config_file, 'r', encoding='utf-8') as f:
user_config = json.load(f)
# 合并配置
self._merge_config(default_config, user_config)
except Exception as e:
print(f"加载配置文件失败: {e}")
return default_config
def _merge_config(self, default: Dict, user: Dict):
"""递归合并配置"""
for key, value in user.items():
if key in default:
if isinstance(default[key], dict) and isinstance(value, dict):
self._merge_config(default[key], value)
else:
default[key] = value
else:
default[key] = value
def save_config(self):
"""保存配置到文件"""
try:
with open(self.config_file, 'w', encoding='utf-8') as f:
json.dump(self.config, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"保存配置文件失败: {e}")
def get(self, key: str, default=None):
"""获取配置值"""
keys = key.split('.')
value = self.config
for k in keys:
if isinstance(value, dict) and k in value:
value = value[k]
else:
return default
return value
def set(self, key: str, value: Any):
"""设置配置值"""
keys = key.split('.')
config = self.config
for k in keys[:-1]:
if k not in config:
config[k] = {}
config = config[k]
config[keys[-1]] = value
def get_provinces(self) -> List[Dict[str, str]]:
"""获取省份列表"""
return self.get('crawler.provinces', [])
def get_api_config(self) -> Dict[str, Any]:
"""获取API配置"""
return self.get('api', {})
def get_crawler_config(self) -> Dict[str, Any]:
"""获取爬虫配置"""
return self.get('crawler', {})
def get_data_config(self) -> Dict[str, Any]:
"""获取数据配置"""
return self.get('data', {})
def get_report_crawler_config(self) -> Dict[str, Any]:
"""获取报告爬虫配置"""
return self.get('report_crawler', {})
# 全局配置实例
config = Config()
|
2301_78526554/agricultural-platform
|
core/config.py
|
Python
|
unknown
| 6,326
|