code
stringlengths
1
1.05M
repo_name
stringlengths
6
83
path
stringlengths
3
242
language
stringclasses
222 values
license
stringclasses
20 values
size
int64
1
1.05M
# Loss functions import torch import torch.nn as nn import numpy as np from utils.general import bbox_iou from utils.torch_utils import is_parallel def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps class BCEBlurWithLogitsLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=0.05): super(BCEBlurWithLogitsLoss, self).__init__() self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() self.alpha = alpha def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred = torch.sigmoid(pred) # prob from logits dx = pred - true # reduce only missing label effects # dx = (pred - true).abs() # reduce missing label and false label effects alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) loss *= alpha_factor return loss.mean() class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class QFocalLoss(nn.Module): # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(QFocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred_prob = torch.sigmoid(pred) # prob from logits alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = torch.abs(true - pred_prob) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class WingLoss(nn.Module): def __init__(self, w=10, e=2): super(WingLoss, self).__init__() # https://arxiv.org/pdf/1711.06753v4.pdf Figure 5 self.w = w self.e = e self.C = self.w - self.w * np.log(1 + self.w / self.e) def forward(self, x, t, sigma=1): weight = torch.ones_like(t) weight[torch.where(t==-1)] = 0 diff = weight * (x - t) abs_diff = diff.abs() flag = (abs_diff.data < self.w).float() y = flag * self.w * torch.log(1 + abs_diff / self.e) + (1 - flag) * (abs_diff - self.C) return y.sum() class KPTLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=1.0): super(KPTLoss, self).__init__() self.loss_fcn = WingLoss()#nn.SmoothL1Loss(reduction='sum') self.alpha = alpha def forward(self, pred, truel, mask): loss = self.loss_fcn(pred*mask, truel*mask) return loss / (torch.sum(mask) + 10e-14) class ComputeLoss: # Compute losses def __init__(self, model, autobalance=False, kpt_label=False): super(ComputeLoss, self).__init__() self.kpt_label = kpt_label device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) BCE_kptv = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) self.kptloss = KPTLoss() # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets # Focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance for k in 'na', 'nc', 'nl', 'anchors', 'nkpt': setattr(self, k, getattr(det, k)) def __call__(self, p, targets): # predictions, targets, model device = targets.device lcls, lbox, lobj, lkpt, lkptv = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) tcls, tbox, tkpt, indices, anchors = self.build_targets(p, targets) # targets # Losses for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros_like(pi[..., 0], device=device) # target obj n = b.shape[0] # number of targets if n: ps = pi[b, a, gj, gi] # prediction subset corresponding to targets # Regression pxy = ps[:, :2].sigmoid() * 2. - 0.5 pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) lbox += (1.0 - iou).mean() # iou loss if self.kpt_label: #Direct kpt prediction pkpt_x = ps[:, 5+self.nc::3] * 2. - 0.5 pkpt_y = ps[:, 6+self.nc::3] * 2. - 0.5 pkpt_score = ps[:, 7+self.nc::3] #mask kpt_mask = (tkpt[i][:, 0::2] != 0) lkptv += self.BCEcls(pkpt_score, kpt_mask.float()) #l2 distance based loss lkpt += (self.kptloss(tkpt[i][:,0::2], pkpt_x, kpt_mask) + self.kptloss(tkpt[i][:,1::2], pkpt_y, kpt_mask)) / 2 #lkpt += (((pkpt-tkpt[i])*kpt_mask)**2).mean() #Try to make this loss based on distance instead of ordinary difference #oks based loss #d = (pkpt_x-tkpt[i][:,0::2])**2 + (pkpt_y-tkpt[i][:,1::2])**2 #s = torch.prod(tbox[i][:,-2:], dim=1, keepdim=True) #kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0))/torch.sum(kpt_mask != 0) #lkpt += kpt_loss_factor*((1 - torch.exp(-d/(s*(4*sigmas**2)+1e-9)))*kpt_mask).mean() # Objectness tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio # Classification if self.nc > 1: # cls loss (only if multiple classes) t = torch.full_like(ps[:, 5:5+self.nc], self.cn, device=device) # targets t[range(n), tcls[i]] = self.cp lcls += self.BCEcls(ps[:, 5:5+self.nc], t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] obji = self.BCEobj(pi[..., 4], tobj) lobj += obji * self.balance[i] # obj loss if self.autobalance: self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() if self.autobalance: self.balance = [x / self.balance[self.ssi] for x in self.balance] lbox *= self.hyp['box'] lobj *= self.hyp['obj'] lcls *= self.hyp['cls'] lkptv *= self.hyp['cls'] lkpt *= self.hyp['kpt'] bs = tobj.shape[0] # batch size loss = lbox + lobj + lcls + lkpt + lkptv return loss * bs, torch.cat((lbox, lobj, lcls, lkpt, lkptv, loss)).detach() def build_targets(self, p, targets): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) na, nt = self.na, targets.shape[0] # number of anchors, targets tcls, tbox, tkpt, indices, anch = [], [], [], [], [] if self.kpt_label: gain = torch.ones(self.kpt_label*2+7, device=targets.device).long() # normalized to gridspace gain else: gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(self.nl): anchors = self.anchors[i] if self.kpt_label: gain[2:self.kpt_label*2+6] = torch.tensor(p[i].shape)[(self.kpt_label+2)*[3, 2]] # xyxy gain else: gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, -1].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box if self.kpt_label: for kpt in range(self.nkpt): t[:, 6+2*kpt: 6+2*(kpt+1)][t[:,6+2*kpt: 6+2*(kpt+1)] !=0] -= gij[t[:,6+2*kpt: 6+2*(kpt+1)] !=0] tkpt.append(t[:, 6:-1]) anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, tkpt, indices, anch
2301_81045437/yolov7_plate
utils/loss.py
Python
unknown
12,603
# Model validation metrics from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch from . import general def fitness(x): # Model fitness as a weighted combination of metrics w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] return (x[:, :4] * w).sum(1) def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, nx1 or nx10). conf: Objectness value from 0-1 (nparray). pred_cls: Predicted object classes (nparray). target_cls: True object classes (nparray). plot: Plot precision-recall curve at mAP@0.5 save_dir: Plot save directory # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) nc = unique_classes.shape[0] # number of classes, number of detections # Create Precision-Recall curve and compute AP for each class px, py = np.linspace(0, 1, 1000), [] # for plotting ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) for ci, c in enumerate(unique_classes): i = pred_cls == c n_l = (target_cls == c).sum() # number of labels n_p = i.sum() # number of predictions if n_p == 0 or n_l == 0: continue else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_l + 1e-16) # recall curve r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) if plot and j == 0: py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 # Compute F1 (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + 1e-16) if plot: plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names) plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1') plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision') plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall') i = f1.mean(0).argmax() # max F1 index return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32') def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves # Arguments recall: The recall curve (list) precision: The precision curve (list) # Returns Average precision, precision curve, recall curve """ # Append sentinel values to beginning and end mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01])) mpre = np.concatenate(([1.], precision, [0.])) # Compute the precision envelope mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap, mpre, mrec class ConfusionMatrix: # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix def __init__(self, nc, conf=0.25, iou_thres=0.45): self.matrix = np.zeros((nc + 1, nc + 1)) self.nc = nc # number of classes self.conf = conf self.iou_thres = iou_thres def process_batch(self, detections, labels): """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: None, updates confusion matrix accordingly """ detections = detections[detections[:, 4] > self.conf] gt_classes = labels[:, 0].int() detection_classes = detections[:, 5].int() iou = general.box_iou(labels[:, 1:], detections[:, :4]) x = torch.where(iou > self.iou_thres) if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] else: matches = np.zeros((0, 3)) n = matches.shape[0] > 0 m0, m1, _ = matches.transpose().astype(np.int16) for i, gc in enumerate(gt_classes): j = m0 == i if n and sum(j) == 1: self.matrix[detection_classes[m1[j]], gc] += 1 # correct else: self.matrix[self.nc, gc] += 1 # background FP if n: for i, dc in enumerate(detection_classes): if not any(m1 == i): self.matrix[dc, self.nc] += 1 # background FN def matrix(self): return self.matrix def plot(self, save_dir='', names=()): try: import seaborn as sn array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) fig = plt.figure(figsize=(12, 9), tight_layout=True) sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True, xticklabels=names + ['background FP'] if labels else "auto", yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1)) fig.axes[0].set_xlabel('True') fig.axes[0].set_ylabel('Predicted') fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) except Exception as e: pass def print(self): for i in range(self.nc + 1): print(' '.join(map(str, self.matrix[i]))) # Plots ---------------------------------------------------------------------------------------------------------------- def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()): # Precision-recall curve fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) py = np.stack(py, axis=1) if 0 < len(names) < 21: # display per-class legend if < 21 classes for i, y in enumerate(py.T): ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) else: ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.set_xlim(0, 1) ax.set_ylim(0, 1) plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") fig.savefig(Path(save_dir), dpi=250) def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'): # Metric-confidence curve fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) if 0 < len(names) < 21: # display per-class legend if < 21 classes for i, y in enumerate(py): ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) else: ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) y = py.mean(0) ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xlim(0, 1) ax.set_ylim(0, 1) plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") fig.savefig(Path(save_dir), dpi=250)
2301_81045437/yolov7_plate
utils/metrics.py
Python
unknown
8,969
# Plotting utils import glob import math import os import random from copy import copy from pathlib import Path import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import torch import yaml from PIL import Image, ImageDraw, ImageFont from utils.general import xywh2xyxy, xyxy2xywh from utils.metrics import fitness # Settings matplotlib.rc('font', **{'size': 11}) matplotlib.use('Agg') # for writing to files only class Colors: # Ultralytics color palette https://ultralytics.com/ def __init__(self): self.palette = [self.hex2rgb(c) for c in matplotlib.colors.TABLEAU_COLORS.values()] self.n = len(self.palette) def __call__(self, i, bgr=False): c = self.palette[int(i) % self.n] return (c[2], c[1], c[0]) if bgr else c @staticmethod def hex2rgb(h): # rgb order (PIL) return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) colors = Colors() # create instance for 'from utils.plots import colors' def hist2d(x, y, n=100): # 2d histogram used in labels.png and evolve.png xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) return np.log(hist[xidx, yidx]) def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): from scipy.signal import butter, filtfilt # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy def butter_lowpass(cutoff, fs, order): nyq = 0.5 * fs normal_cutoff = cutoff / nyq return butter(order, normal_cutoff, btype='low', analog=False) b, a = butter_lowpass(cutoff, fs, order=order) return filtfilt(b, a, data) # forward-backward filter def plot_one_box(x, im, color=None, label=None, line_thickness=3, kpt_label=False, kpts=None, steps=2, orig_shape=None): # Plots one bounding box on image 'im' using OpenCV assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.' tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(im, c1, c2, (255,0,0), thickness=tl*1//3, lineType=cv2.LINE_AA) if label: if len(label.split(' ')) > 1: label = label.split(' ')[-1] tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 6, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 6, [225, 255, 255], thickness=tf//2, lineType=cv2.LINE_AA) if kpt_label: plot_skeleton_kpts(im, kpts, steps, orig_shape=orig_shape) def plot_skeleton_kpts(im, kpts, steps, orig_shape=None): #Plot the skeleton and keypointsfor coco datatset palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255], [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255], [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102], [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]]) radius = 2 num_kpts = len(kpts) // steps for kid in range(num_kpts): r, g, b = palette[kid] x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1] if not (x_coord % 640 == 0 or y_coord % 640 == 0): if steps == 3: conf = kpts[steps * kid + 2] if conf < 0.5: continue cv2.circle(im, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1) def plot_one_box_PIL(box, im, color=None, label=None, line_thickness=None): # Plots one bounding box on image 'im' using PIL im = Image.fromarray(im) draw = ImageDraw.Draw(im) line_thickness = line_thickness or max(int(min(im.size) / 200), 2) draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot if label: fontsize = max(round(max(im.size) / 40), 12) font = ImageFont.truetype("Arial.ttf", fontsize) txt_width, txt_height = font.getsize(label) #draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color)) draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font) return np.asarray(im) def plot_wh_methods(): # from utils.plots import *; plot_wh_methods() # Compares the two methods for width-height anchor multiplication # https://github.com/ultralytics/yolov3/issues/168 x = np.arange(-4.0, 4.0, .1) ya = np.exp(x) yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 fig = plt.figure(figsize=(6, 3), tight_layout=True) plt.plot(x, ya, '.-', label='YOLOv3') plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2') plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6') plt.xlim(left=-4, right=4) plt.ylim(bottom=0, top=6) plt.xlabel('input') plt.ylabel('output') plt.grid() plt.legend() fig.savefig('comparison.png', dpi=200) def output_to_target(output): # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] targets = [] for i, o in enumerate(output): kpts = o[:,6:] o = o[:,:6] for index, (*box, conf, cls) in enumerate(o.cpu().numpy()): targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.cpu().numpy()[index])]) return np.array(targets) def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16, kpt_label=True, steps=2, orig_shape=None): # Plot image grid with labels if isinstance(images, torch.Tensor): images = images.cpu().float().numpy() if isinstance(targets, torch.Tensor): targets = targets.cpu().numpy() # un-normalise if np.max(images[0]) <= 1: images *= 255 tl = 3 # line thickness tf = max(tl - 1, 1) # font thickness bs, _, h, w = images.shape # batch size, _, height, width bs = min(bs, max_subplots) # limit plot images ns = np.ceil(bs ** 0.5) # number of subplots (square) # Check if we should resize scale_factor = max_size / max(h, w) if scale_factor < 1: h = math.ceil(scale_factor * h) w = math.ceil(scale_factor * w) mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init for i, img in enumerate(images): if i == max_subplots: # if last batch has fewer images than we expect break block_x = int(w * (i // ns)) block_y = int(h * (i % ns)) img = img.transpose(1, 2, 0) if scale_factor < 1: img = cv2.resize(img, (w, h)) mosaic[block_y:block_y + h, block_x:block_x + w, :] = img if len(targets) > 0: image_targets = targets[targets[:, 0] == i] boxes = xywh2xyxy(image_targets[:, 2:6]).T classes = image_targets[:, 1].astype('int') labels = image_targets.shape[1] == kpt_label*2+6 if kpt_label else image_targets.shape[1] == 6 # labels if no conf column conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred) if kpt_label: if conf is None: kpts = image_targets[:, 6:].T #kpts for GT else: kpts = image_targets[:, 7:].T #kpts for prediction else: kpts = None if boxes.shape[1]: if boxes.max() <= 1.01: # if normalized with tolerance 0.01 boxes[[0, 2]] *= w # scale to pixels boxes[[1, 3]] *= h elif scale_factor < 1: # absolute coords need scale if image scales boxes *= scale_factor boxes[[0, 2]] += block_x boxes[[1, 3]] += block_y if kpt_label and kpts.shape[1]: if kpts.max()<1.01: kpts[list(range(0,len(kpts),steps))] *=w # scale to pixels kpts[list(range(1,len(kpts),steps))] *= h elif scale_factor < 1 : kpts[list(range(0, len(kpts), steps))] *= scale_factor kpts[list(range(1, len(kpts), steps))] *= scale_factor kpts[list(range(0, len(kpts), steps))] += block_x kpts[list(range(1, len(kpts), steps))] += block_y for j, box in enumerate(boxes.T): cls = int(classes[j]) color = colors(cls) cls = names[cls] if names else cls if labels or conf[j] > 0.1: # 0.25 conf thresh label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j]) if kpt_label: plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl, kpt_label=kpt_label, kpts=kpts[:,j], steps=steps, orig_shape=orig_shape) else: plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl, kpt_label=kpt_label, orig_shape=orig_shape) #cv2.imwrite(Path(paths[i]).name.split('.')[0] + "_box_{}.".format(j) + Path(paths[i]).name.split('.')[1], mosaic[:,:,::-1]) # used for debugging the dataloader pipeline # Draw image filename labels if paths: label = Path(paths[i]).name[:40] # trim to 40 char t_size = cv2.getTextSize(label, 0, fontScale=tl / 6, thickness=tf)[0] cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 6, [220, 220, 220], thickness=tf, lineType=cv2.LINE_AA) # Image border cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) if fname: r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA) #padH = int(orig_shape[1][1][1]) #padW = int(orig_shape[1][1][0]) #mosaic = mosaic[padH: -1-padH, padW:-1-padW,:] #cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save Image.fromarray(mosaic).save(fname) # PIL save return mosaic def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): # Plot LR simulating training for full epochs optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals y = [] for _ in range(epochs): scheduler.step() y.append(optimizer.param_groups[0]['lr']) plt.plot(y, '.-', label='LR') plt.xlabel('epoch') plt.ylabel('LR') plt.grid() plt.xlim(0, epochs) plt.ylim(0) plt.savefig(Path(save_dir) / 'LR.png', dpi=200) plt.close() def plot_test_txt(): # from utils.plots import *; plot_test() # Plot test.txt histograms x = np.loadtxt('test.txt', dtype=np.float32) box = xyxy2xywh(x[:, :4]) cx, cy = box[:, 0], box[:, 1] fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) ax.set_aspect('equal') plt.savefig('hist2d.png', dpi=300) fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) ax[0].hist(cx, bins=600) ax[1].hist(cy, bins=600) plt.savefig('hist1d.png', dpi=200) def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() # Plot targets.txt histograms x = np.loadtxt('targets.txt', dtype=np.float32).T s = ['x targets', 'y targets', 'width targets', 'height targets'] fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) ax = ax.ravel() for i in range(4): ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) ax[i].legend() ax[i].set_title(s[i]) plt.savefig('targets.jpg', dpi=200) def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt() # Plot study.txt generated by test.py fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) # ax = ax.ravel() fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: for f in sorted(Path(path).glob('study*.txt')): y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T x = np.arange(y.shape[1]) if x is None else np.array(x) s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] # for i in range(7): # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) # ax[i].set_title(s[i]) j = y[3].argmax() + 1 ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8, label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') ax2.grid(alpha=0.2) ax2.set_yticks(np.arange(20, 60, 5)) ax2.set_xlim(0, 57) ax2.set_ylim(30, 55) ax2.set_xlabel('GPU Speed (ms/img)') ax2.set_ylabel('COCO AP val') ax2.legend(loc='lower right') plt.savefig(str(Path(path).name) + '.png', dpi=300) def plot_labels(labels, names=(), save_dir=Path(''), loggers=None): # plot dataset labels print('Plotting labels... ') c, b, kpts = labels[:, 0], labels[:, 1:5].transpose(), labels[:, 5:].transpose() # classes, boxes nc = int(c.max() + 1) # number of classes x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) # seaborn correlogram sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) plt.close() # matplotlib labels matplotlib.use('svg') # faster ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) ax[0].set_ylabel('instances') if 0 < len(names) < 30: ax[0].set_xticks(range(len(names))) ax[0].set_xticklabels(names, rotation=90, fontsize=10) else: ax[0].set_xlabel('classes') sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) # rectangles labels[:, 1:3] = 0.5 # center labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) for cls, *box in labels[:1000, :5]: ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot ax[1].imshow(img) ax[1].axis('off') for a in [0, 1, 2, 3]: for s in ['top', 'right', 'left', 'bottom']: ax[a].spines[s].set_visible(False) plt.savefig(save_dir / 'labels.jpg', dpi=200) matplotlib.use('Agg') plt.close() # loggers for k, v in loggers.items() or {}: if k == 'wandb' and v: v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False) def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution() # Plot hyperparameter evolution results in evolve.txt with open(yaml_file) as f: hyp = yaml.safe_load(f) x = np.loadtxt('evolve.txt', ndmin=2) f = fitness(x) # weights = (f - f.min()) ** 2 # for weighted results plt.figure(figsize=(10, 12), tight_layout=True) matplotlib.rc('font', **{'size': 8}) for i, (k, v) in enumerate(hyp.items()): y = x[:, i + 7] # mu = (y * weights).sum() / weights.sum() # best weighted result mu = y[f.argmax()] # best single result plt.subplot(6, 5, i + 1) plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none') plt.plot(mu, f.max(), 'k+', markersize=15) plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters if i % 5 != 0: plt.yticks([]) print('%15s: %.3g' % (k, mu)) plt.savefig('evolve.png', dpi=200) print('\nPlot saved as evolve.png') def profile_idetection(start=0, stop=0, labels=(), save_dir=''): # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] files = list(Path(save_dir).glob('frames*.txt')) for fi, f in enumerate(files): try: results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows n = results.shape[1] # number of rows x = np.arange(start, min(stop, n) if stop else n) results = results[:, x] t = (results[0] - results[0].min()) # set t0=0s results[0] = x for i, a in enumerate(ax): if i < len(results): label = labels[fi] if len(labels) else f.stem.replace('frames_', '') a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) a.set_title(s[i]) a.set_xlabel('time (s)') # if fi == len(files) - 1: # a.set_ylim(bottom=0) for side in ['top', 'right']: a.spines[side].set_visible(False) else: a.remove() except Exception as e: print('Warning: Plotting error for %s; %s' % (f, e)) ax[1].legend() plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay() # Plot training 'results*.txt', overlaying train and val losses s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) ax = ax.ravel() for i in range(5): for j in [i, i + 5]: y = results[j, x] ax[i].plot(x, y, marker='.', label=s[j]) # y_smooth = butter_lowpass_filtfilt(y) # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) ax[i].set_title(t[i]) ax[i].legend() ax[i].set_ylabel(f) if i == 0 else None # add filename fig.savefig(f.replace('.txt', '.png'), dpi=200) def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp') fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) ax = ax.ravel() s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall', 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] if bucket: # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] files = ['results%g.txt' % x for x in id] c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id) os.system(c) else: files = list(Path(save_dir).glob('results*.txt')) assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir) for fi, f in enumerate(files): try: results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) for i in range(10): y = results[i, x] if i in [0, 1, 2, 5, 6, 7]: y[y == 0] = np.nan # don't show zero loss values # y /= y[0] # normalize label = labels[fi] if len(labels) else f.stem ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8) ax[i].set_title(s[i]) # if i in [5, 6, 7]: # share train and val loss y axes # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) except Exception as e: print('Warning: Plotting error for %s; %s' % (f, e)) ax[1].legend() fig.savefig(Path(save_dir) / 'results.png', dpi=200)
2301_81045437/yolov7_plate
utils/plots.py
Python
unknown
21,564
# PyTorch utils import datetime import logging import math import os import platform import subprocess import time from contextlib import contextmanager from copy import deepcopy from pathlib import Path import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torchvision try: import thop # for FLOPS computation except ImportError: thop = None logger = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): """ Decorator to make all processes in distributed training wait for each local_master to do something. """ if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def init_torch_seeds(seed=0): # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html torch.manual_seed(seed) if seed == 0: # slower, more reproducible cudnn.benchmark, cudnn.deterministic = False, True else: # faster, less reproducible cudnn.benchmark, cudnn.deterministic = True, False def date_modified(path=__file__): # return human-readable file modification date, i.e. '2021-3-26' t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime) return f'{t.year}-{t.month}-{t.day}' def git_describe(path=Path(__file__).parent): # path must be a directory # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe s = f'git -C {path} describe --tags --long --always' try: return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1] except subprocess.CalledProcessError as e: return '' # not a git repository def select_device(device='', batch_size=None): # device = 'cpu' or '0' or '0,1,2,3' s = f'YOLOv5 � {git_describe() or date_modified()} torch {torch.__version__} ' # string cpu = device.lower() == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability cuda = not cpu and torch.cuda.is_available() if cuda: n = torch.cuda.device_count() if n > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * len(s) for i, d in enumerate(device.split(',') if device else range(n)): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB else: s += 'CPU\n' logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): # pytorch-accurate time if torch.cuda.is_available(): torch.cuda.synchronize() return time.time() def profile(x, ops, n=100, device=None): # profile a pytorch module or list of modules. Example usage: # x = torch.randn(16, 3, 640, 640) # input # m1 = lambda x: x * torch.sigmoid(x) # m2 = nn.SiLU() # profile(x, [m1, m2], n=100) # profile speed over 100 iterations device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') x = x.to(device) x.requires_grad = True print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") for m in ops if isinstance(ops, list) else [ops]: m = m.to(device) if hasattr(m, 'to') else m # device m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward try: flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS except: flops = 0 for _ in range(n): t[0] = time_synchronized() y = m(x) t[1] = time_synchronized() try: _ = y.sum().backward() t[2] = time_synchronized() except: # no backward method t[2] = float('nan') dtf += (t[1] - t[0]) * 1000 / n # ms per op forward dtb += (t[2] - t[1]) * 1000 / n # ms per op backward s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}') def is_parallel(model): return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) def intersect_dicts(da, db, exclude=()): # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} def initialize_weights(model): for m in model.modules(): t = type(m) if t is nn.Conv2d: pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: m.inplace = True def find_modules(model, mclass=nn.Conv2d): # Finds layer indices matching module class 'mclass' return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] def sparsity(model): # Return global model sparsity a, b = 0., 0. for p in model.parameters(): a += p.numel() b += (p == 0).sum() return b / a def prune(model, amount=0.3): # Prune model to requested global sparsity import torch.nn.utils.prune as prune print('Pruning model... ', end='') for name, m in model.named_modules(): if isinstance(m, nn.Conv2d): prune.l1_unstructured(m, name='weight', amount=amount) # prune prune.remove(m, 'weight') # make permanent print(' %.3g global sparsity' % sparsity(model)) def fuse_conv_and_bn(conv, bn): # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ fusedconv = nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True).requires_grad_(False).to(conv.weight.device) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) # prepare spatial bias b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def model_info(model, verbose=False, img_size=640): # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients if verbose: print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) try: # FLOPS from thop import profile stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS except (ImportError, Exception): fs = '' logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") def load_classifier(name='resnet101', n=2): # Loads a pretrained model reshaped to n-class output model = torchvision.models.__dict__[name](pretrained=True) # ResNet model properties # input_size = [3, 224, 224] # input_space = 'RGB' # input_range = [0, 1] # mean = [0.485, 0.456, 0.406] # std = [0.229, 0.224, 0.225] # Reshape output to n classes filters = model.fc.weight.shape[1] model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) model.fc.out_features = n return model def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) # scales img(bs,3,y,x) by ratio constrained to gs-multiple if ratio == 1.0: return img else: h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize if not same_shape: # pad/crop img h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean def copy_attr(a, b, include=(), exclude=()): # Copy attributes from b to a, options to only include [...] and to exclude [...] for k, v in b.__dict__.items(): if (len(include) and k not in include) or k.startswith('_') or k in exclude: continue else: setattr(a, k, v) class ModelEMA: """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage A smoothed version of the weights is necessary for some training schemes to perform well. This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers. """ def __init__(self, model, decay=0.9999, updates=0): # Create EMA self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA # if next(model.parameters()).device.type != 'cpu': # self.ema.half() # FP16 EMA self.updates = updates # number of EMA updates self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) for p in self.ema.parameters(): p.requires_grad_(False) def update(self, model): # Update EMA parameters with torch.no_grad(): self.updates += 1 d = self.decay(self.updates) msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict for k, v in self.ema.state_dict().items(): if v.dtype.is_floating_point: v *= d v += (1. - d) * msd[k].detach() def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): # Update EMA attributes copy_attr(self.ema, model, include, exclude)
2301_81045437/yolov7_plate
utils/torch_utils.py
Python
unknown
12,430
# init
2301_81045437/yolov7_plate
utils/wandb_logging/__init__.py
Python
unknown
6
import argparse import yaml from wandb_utils import WandbLogger WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' def create_dataset_artifact(opt): with open(opt.data) as f: data = yaml.safe_load(f) # data dict logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project') opt = parser.parse_args() opt.resume = False # Explicitly disallow resume check for dataset upload job create_dataset_artifact(opt)
2301_81045437/yolov7_plate
utils/wandb_logging/log_dataset.py
Python
unknown
800
import json import sys from pathlib import Path import torch import yaml from tqdm import tqdm sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path from utils.datasets import LoadImagesAndLabels from utils.datasets import img2label_paths from utils.general import colorstr, xywh2xyxy, check_dataset try: import wandb from wandb import init, finish except ImportError: wandb = None WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX): return from_string[len(prefix):] def check_wandb_config_file(data_config_file): wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path if Path(wandb_config).is_file(): return wandb_config return data_config_file def get_run_info(run_path): run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX)) run_id = run_path.stem project = run_path.parent.stem model_artifact_name = 'run_' + run_id + '_model' return run_id, project, model_artifact_name def check_wandb_resume(opt): process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None if isinstance(opt.resume, str): if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): if opt.global_rank not in [-1, 0]: # For resuming DDP runs run_id, project, model_artifact_name = get_run_info(opt.resume) api = wandb.Api() artifact = api.artifact(project + '/' + model_artifact_name + ':latest') modeldir = artifact.download() opt.weights = str(Path(modeldir) / "last.pt") return True return None def process_wandb_config_ddp_mode(opt): with open(opt.data) as f: data_dict = yaml.safe_load(f) # data dict train_dir, val_dir = None, None if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX): api = wandb.Api() train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias) train_dir = train_artifact.download() train_path = Path(train_dir) / 'data/images/' data_dict['train'] = str(train_path) if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX): api = wandb.Api() val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias) val_dir = val_artifact.download() val_path = Path(val_dir) / 'data/images/' data_dict['val'] = str(val_path) if train_dir or val_dir: ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml') with open(ddp_data_path, 'w') as f: yaml.safe_dump(data_dict, f) opt.data = ddp_data_path class WandbLogger(): def __init__(self, opt, name, run_id, data_dict, job_type='Training'): # Pre-training routine -- self.job_type = job_type self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call if isinstance(opt.resume, str): # checks resume from artifact if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): run_id, project, model_artifact_name = get_run_info(opt.resume) model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name assert wandb, 'install wandb to resume wandb runs' # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config self.wandb_run = wandb.init(id=run_id, project=project, resume='allow') opt.resume = model_artifact_name elif self.wandb: self.wandb_run = wandb.init(config=opt, resume="allow", project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem, name=name, job_type=job_type, id=run_id) if not wandb.run else wandb.run if self.wandb_run: if self.job_type == 'Training': if not opt.resume: wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict # Info useful for resuming from artifacts self.wandb_run.config.opt = vars(opt) self.wandb_run.config.data_dict = wandb_data_dict self.data_dict = self.setup_training(opt, data_dict) if self.job_type == 'Dataset Creation': self.data_dict = self.check_and_upload_dataset(opt) else: prefix = colorstr('wandb: ') print(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)") def check_and_upload_dataset(self, opt): assert wandb, 'Install wandb to upload dataset' check_dataset(self.data_dict) config_path = self.log_dataset_artifact(opt.data, opt.single_cls, 'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem) print("Created dataset config file ", config_path) with open(config_path) as f: wandb_data_dict = yaml.safe_load(f) return wandb_data_dict def setup_training(self, opt, data_dict): self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants self.bbox_interval = opt.bbox_interval if isinstance(opt.resume, str): modeldir, _ = self.download_model_artifact(opt) if modeldir: self.weights = Path(modeldir) / "last.pt" config = self.wandb_run.config opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str( self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \ config.opt['hyp'] data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'), opt.artifact_alias) self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'), opt.artifact_alias) self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None if self.train_artifact_path is not None: train_path = Path(self.train_artifact_path) / 'data/images/' data_dict['train'] = str(train_path) if self.val_artifact_path is not None: val_path = Path(self.val_artifact_path) / 'data/images/' data_dict['val'] = str(val_path) self.val_table = self.val_artifact.get("val") self.map_val_table_path() if self.val_artifact is not None: self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"]) if opt.bbox_interval == -1: self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 return data_dict def download_dataset_artifact(self, path, alias): if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX): dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'" datadir = dataset_artifact.download() return datadir, dataset_artifact return None, None def download_model_artifact(self, opt): if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest") assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist' modeldir = model_artifact.download() epochs_trained = model_artifact.metadata.get('epochs_trained') total_epochs = model_artifact.metadata.get('total_epochs') assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % ( total_epochs) return modeldir, model_artifact return None, None def log_model(self, path, opt, epoch, fitness_score, best_model=False): model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={ 'original_url': str(path), 'epochs_trained': epoch + 1, 'save period': opt.save_period, 'project': opt.project, 'total_epochs': opt.epochs, 'fitness_score': fitness_score }) model_artifact.add_file(str(path / 'last.pt'), name='last.pt') wandb.log_artifact(model_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else '']) print("Saving model artifact on epoch ", epoch + 1) def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False): with open(data_file) as f: data = yaml.safe_load(f) # data dict nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names']) names = {k: v for k, v in enumerate(names)} # to index dictionary self.train_artifact = self.create_dataset_table(LoadImagesAndLabels( data['train'], rect=True, batch_size=1), names, name='train') if data.get('train') else None self.val_artifact = self.create_dataset_table(LoadImagesAndLabels( data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None if data.get('train'): data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train') if data.get('val'): data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val') path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path data.pop('download', None) with open(path, 'w') as f: yaml.safe_dump(data, f) if self.job_type == 'Training': # builds correct artifact pipeline graph self.wandb_run.use_artifact(self.val_artifact) self.wandb_run.use_artifact(self.train_artifact) self.val_artifact.wait() self.val_table = self.val_artifact.get('val') self.map_val_table_path() else: self.wandb_run.log_artifact(self.train_artifact) self.wandb_run.log_artifact(self.val_artifact) return path def map_val_table_path(self): self.val_table_map = {} print("Mapping dataset") for i, data in enumerate(tqdm(self.val_table.data)): self.val_table_map[data[3]] = data[0] def create_dataset_table(self, dataset, class_to_id, name='dataset'): # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging artifact = wandb.Artifact(name=name, type="dataset") img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None img_files = tqdm(dataset.img_files) if not img_files else img_files for img_file in img_files: if Path(img_file).is_dir(): artifact.add_dir(img_file, name='data/images') labels_path = 'labels'.join(dataset.path.rsplit('images', 1)) artifact.add_dir(labels_path, name='data/labels') else: artifact.add_file(img_file, name='data/images/' + Path(img_file).name) label_file = Path(img2label_paths([img_file])[0]) artifact.add_file(str(label_file), name='data/labels/' + label_file.name) if label_file.exists() else None table = wandb.Table(columns=["id", "train_image", "Classes", "name"]) class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()]) for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)): box_data, img_classes = [], {} for cls, *xywh in labels[:, 1:].tolist(): cls = int(cls) box_data.append({"position": {"middle": [xywh[0], xywh[1]], "width": xywh[2], "height": xywh[3]}, "class_id": cls, "box_caption": "%s" % (class_to_id[cls])}) img_classes[cls] = class_to_id[cls] boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes), Path(paths).name) artifact.add(table, name) return artifact def log_training_progress(self, predn, path, names): if self.val_table and self.result_table: class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()]) box_data = [] total_conf = 0 for *xyxy, conf, cls in predn.tolist(): if conf >= 0.25: box_data.append( {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": {"class_score": conf}, "domain": "pixel"}) total_conf = total_conf + conf boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space id = self.val_table_map[Path(path).name] self.result_table.add_data(self.current_epoch, id, wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set), total_conf / max(1, len(box_data)) ) def log(self, log_dict): if self.wandb_run: for key, value in log_dict.items(): self.log_dict[key] = value def end_epoch(self, best_result=False): if self.wandb_run: wandb.log(self.log_dict) self.log_dict = {} if self.result_artifact: train_results = wandb.JoinedTable(self.val_table, self.result_table, "id") self.result_artifact.add(train_results, 'result') wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch), ('best' if best_result else '')]) self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"]) self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") def finish_run(self): if self.wandb_run: if self.log_dict: wandb.log(self.log_dict) wandb.run.finish()
2301_81045437/yolov7_plate
utils/wandb_logging/wandb_utils.py
Python
unknown
16,011
<!doctype html> <meta charset="utf-8"> <title>登录 / 借阅系统</title> <style> body{font-family:Arial,Helvetica,sans-serif;font-size:14px} table{border-collapse:collapse;margin-top:6px} td,th{border:1px solid #999;padding:4px 8px} button{margin:0 2px;padding:2px 6px} .hide{display:none} input[type=text],input[type=number]{width:120px;margin-right:4px} </style> <form id="f"> <input name="u" placeholder="用户名" required> <input name="p" type="password" placeholder="密码" required> <button type="submit" id="btn">登录</button> </form> <a href="#" id="toggle">切换注册</a> <div id="info" class="hide"> 欢迎 <span id="username"></span>(ID:<span id="uid"></span>) 权限:<span id="perm"></span> </div> <!-- 管理员 --> <div id="adminPanel" class="hide"> <h3>管理员操作</h3> <div> <input id="newTitle" placeholder="书名"> <input id="newAuthor" placeholder="作者"> <button onclick="addBook()">添加书籍</button> </div> <div style="margin-top:4px"> <input id="updBookId" type="number" placeholder="书籍ID"> <input id="updStockValue" type="number" placeholder="新库存"> <button onclick="updStock()">修改库存</button> </div> </div> <h3>全部书籍</h3> <table id="bookTable"> <thead> <tr><th>ID</th><th>书名</th><th>作者</th><th>库存</th><th>操作</th></tr> </thead> <tbody></tbody> </table> <h3 id="borrowTitle" class="hide">借阅记录</h3> <table id="borrowTable" class="hide"> <thead> <tr> <th>借阅ID</th><th>书名</th><th>作者</th><th>用户名</th> <th>借阅日期</th><th>归还日期</th><th>操作</th> </tr> </thead> <tbody></tbody> </table> <script> const base = 'http://192.168.232.129:8080'; const shortDate = str => str ? str.split('T')[0] : ''; async function get(url){return fetch(url).then(r=>r.json())} async function post(url){return fetch(url,{method:'POST'}).then(r=>r.text())} let isLogin = 1, curUser = null; toggle.onclick=()=>{ isLogin=!isLogin; btn.textContent=isLogin?'登录':'注册'; toggle.textContent=isLogin?'切换注册':'切换登录'; }; f.onsubmit=async e=>{ e.preventDefault(); const {u,p}=f; if(isLogin){ const loginTxt=await post(`${base}/users/loginByName/?username=${u.value}&userpassword=${p.value}`); if(loginTxt!=='Login successful'){alert(loginTxt);return;} curUser=await get(`${base}/users/byName/?username=${u.value}`); }else{ const regTxt=await post(`${base}/users/?username=${u.value}&userpassword=${p.value}&permission=normal`); alert(regTxt); if(regTxt!=='User registered successfully')return; curUser=await get(`${base}/users/byName/?username=${u.value}`); } username.textContent=curUser.username; uid.textContent=curUser.id; perm.textContent=curUser.permission; info.classList.remove('hide'); if(curUser.permission==='admin') adminPanel.classList.remove('hide'); await refreshAll(); f.reset(); }; async function refreshAll(){ await loadBooks(); await loadBorrowRecords(); } async function loadBooks(){ const books=await get(`${base}/books/all`); const tbody=bookTable.querySelector('tbody'); tbody.innerHTML=''; books.forEach(b=>{ const canBorrow=+b.stock>0; tbody.insertAdjacentHTML('beforeend', `<tr> <td>${b.id}</td><td>${b.title}</td><td>${b.author}</td><td>${b.stock}</td> <td> ${curUser ? `<button onclick="borrow(${b.id})" ${canBorrow?'':'disabled'}>借书</button>` : ''} </td> </tr>`); }); } async function loadBorrowRecords(){ let records; if(curUser.permission==='admin'){ records=await get(`${base}/borrow-records`); }else{ records=await get(`${base}/borrow-records/byUserId/?user_id=${curUser.id}`); } const tbody=borrowTable.querySelector('tbody'); tbody.innerHTML=''; for(const r of records){ const [book,user]=await Promise.all([ get(`${base}/books/byId/?id=${r.book_id}`), get(`${base}/users/byId/?id=${r.user_id}`) ]); const canReturn=curUser.permission==='admin' || r.user_id===curUser.id; const returned=r.return_date && r.return_date!=='null'; tbody.insertAdjacentHTML('beforeend', `<tr> <td>${r.id}</td><td>${book.title}</td><td>${book.author}</td><td>${user.username}</td> <td>${shortDate(r.borrow_date)}</td> <td>${returned?shortDate(r.return_date):'未归还'}</td> <td> ${canReturn && !returned ? `<button onclick="returnBook(${r.id})">还书</button>` : ''} </td> </tr>`); } borrowTitle.classList.remove('hide'); borrowTable.classList.remove('hide'); } async function borrow(bookId){ const txt=await post(`${base}/borrow-records/borrow?user_id=${curUser.id}&book_id=${bookId}`); alert(txt); await refreshAll(); } async function returnBook(recordId){ const txt=await post(`${base}/borrow-records/return?record_id=${recordId}`); alert(txt); await refreshAll(); } async function addBook(){ const title=newTitle.value.trim(),author=newAuthor.value.trim(); if(!title||!author){alert('请输入书名和作者');return;} const txt=await post(`${base}/books?title=${encodeURIComponent(title)}&author=${encodeURIComponent(author)}`); alert(txt); newTitle.value=''; newAuthor.value=''; await refreshAll(); } async function updStock(){ const bookId=updBookId.value,stock=updStockValue.value; if(!bookId||stock===''){alert('请输入书籍ID和新库存');return;} const txt=await post(`${base}/books/updateStock/?book_id=${bookId}&new_stock=${stock}`); alert(txt); updBookId.value=''; updStock.value=''; await refreshAll(); } loadBooks(); </script>
2301_79626091/JIT-Cangjie-examples
hanzongao/web/index.html
HTML
apache-2.0
5,699
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Document</title> <link rel="stylesheet" href="./main.css"> </head> <body> <h1>Coffee Order</h1> <ul id="orders"> <!-- <li class="order" id="1"> <p> Name: <span class="name">John</span> <input type="text" class="name nonedit"> </p> <p> Drink: <span class="drink">Coffee</span> <input type="text" class="drink nonedit"> </p> <button data-id="1" class="delete-order">Delete</button> <button class="edit-order">Edit</button> <button class="save-edit nonedit">Save</button> <button class="cancel-edit nonedit">Cancel</button> </li> <li class="order" id="2"> <p> Name: <span class="name">Emily</span> <input type="text" class="name nonedit"> </p> <p> Drink: <span class="drink">Mocha</span> <input type="text" class="drink nonedit"> </p> <button data-id="2" class="delete-order">Delete</button> <button class="edit-order">Edit</button> <button class="save-edit nonedit">Save</button> <button class="cancel-edit nonedit">Cancel</button> </li> --> </ul> <h4>Add a Coffee Order</h4> <p>name: <input type="text" id="name"></p> <p>drink: <input type="text" id="drink"></p> <button id="add-order">Add!</button> <script src="./jquery-3.5.1.js"></script> <script src="./script.js"></script> </body> </html>
2301_79626091/JIT-Cangjie-examples
songqvlv/CoffeeOrder/src/public/index.html
HTML
apache-2.0
1,811
* { padding: 0; margin: 10px; } #orders { list-style-type: none; margin: 0; } #orders .order { background-color: #c4c4c4; padding: 5px; } #orders .nonedit { display: none; } #orders .edit { display: none; } button { padding: 5px 10px; }
2301_79626091/JIT-Cangjie-examples
songqvlv/CoffeeOrder/src/public/main.css
CSS
apache-2.0
277
$(function () { let $name = $('#name') let $drink = $('#drink') let $orders = $('#orders') function addOrder(order) { $orders.append(`<li class="order" id="${order.id}"> <p> Name: <span class="name">${order.name}</span> <input type="text" class="name nonedit"> </p> <p> Drink: <span class="drink">${order.drink}</span> <input type="text" class="drink nonedit"> </p> <!--<button data-id="${order.id}" class="delete-order">Delete</button> <button data-id="${order.id}" class="edit-order">Edit</button> <button data-id="${order.id}" class="save-edit nonedit">Save</button> <button data-id="${order.id}" class="cancel-edit nonedit">Cancel</button>--> </li>`) } $.ajax({ url: '/orders', type: 'GET', dataType: 'json', success: function (data) { console.log(data) //let orders = JSON.parse(data)这里的data已经是js对象了,而且是个对象数组 $.each(data, function (index, order) { addOrder(order) }) }, error: function () { alert('error in GET') } }) $('#add-order').on('click', function () { if($name.val() === '' || $drink.val() === ''){ alert('Please input name and drink') return } $.ajax({ url: '/orders', type: 'POST', dataType: 'json', //服务器返回的数据类型 contentType: 'application/json', //发送的数据类型 data: JSON.stringify({ name: $name.val(), drink: $drink.val() }), success: function (data) { console.log(data) addOrder(data) }, error: function () { alert('error in POST') } }) //清空输入框 $name.val('') $drink.val('') }) /* $orders.delegate('.delete-order', 'click', function () { $li = $(this).closest('.order') $.ajax({ url: `/orders/${$li.attr('id')}`, type: 'DELETE', success: function () { $li.slideUp(300, function () { $li.remove() // 从DOM中移除元素,slideUp()不会移除而是添加了display:none }) }, error: function () { alert('error in DELETE') } }) }) $orders.delegate('.edit-order', 'click', function () { $li = $(this).closest('.order') $li.find('input.name').val($li.find('span.name').text()) $li.find('input.drink').val($li.find('span.drink').text()) $li.find('span,.edit-order').addClass('edit') $li.find('.nonedit').removeClass('nonedit') }) $orders.delegate('.cancel-edit', 'click', function () { $li = $(this).closest('.order') $li.find('span,.edit-order').removeClass('edit') $li.find('input,.save-edit,.cancel-edit').addClass('nonedit') }) $orders.delegate('.save-edit', 'click', function () { $li = $(this).closest('.order') $.ajax({ url: `/orders/${$li.attr('id')}`, type: 'PUT', dataType: 'json', contentType: 'application/json', data: JSON.stringify({ name: $li.find('input.name').val(), drink: $li.find('input.drink').val() }), success: function () { $li.find('span.name').text($li.find('input.name').val()) $li.find('span.drink').text($li.find('input.drink').val()) $li.find('span,.edit-order').removeClass('edit') $li.find('input,.save-edit,.cancel-edit').addClass('nonedit') }, error: function () { alert('error in PUT') } }) })*/ })
2301_79626091/JIT-Cangjie-examples
songqvlv/CoffeeOrder/src/public/script.js
JavaScript
apache-2.0
4,073
import os from pathlib import Path import argparse def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("--fix", default=False, help="将文件的换行符转换为 LF", action="store_true") parser.add_argument("--build", default=False, help = "生成 Dialog 列表和帮助列表", action="store_true") parser.add_argument("--sort", default=False, help = "对列表标签重新排序", action="store_true") parser.add_argument("--check", default=False, help = "检查是否包含重复的模型或插件", action="store_true") return parser.parse_args() def get_content(file: str) -> list: content = [] if not os.path.exists(file): print(f"{file} 未找到") return content with open(file, "r", encoding = "utf8") as f: # content = f.readlines() content = f.read().split("\n") return content def write_content(content: list, path: str) -> None: if len(content) == 0: return with open(path, "w", encoding="utf8", newline="\n") as f: for item in content: f.write(item + "\n") def build_extension_list(input_file: str, output_file: str) -> None: ori_content = get_content(input_file) content = [] for line in ori_content: if line == "": continue if len(line.split()) < 5: print(f"{input_file} 出现元素缺失, 缺失元素的内容为: {line}") return point = line.split()[0] name = line.split()[2].split("/").pop() status = line.split()[4] text = f"{point} {name} {status}" content.append(text) write_content(content, output_file) def build_sd_webui_extension_desc(input_file: str, output_file: str) -> None: ori_content = get_content(input_file) content = [] content.append("Stable Diffusion WebUI 插件说明:") content.append("注:") content.append("1、有些插件因为年久失修,可能会出现兼容性问题。具体介绍请通过链接查看项目的说明") content.append("2、在名称右上角标 * 的为安装时默认勾选的插件") count = 0 for line in ori_content: if line == "": continue if len(line.split()) < 7: print(f"{input_file} 出现元素缺失, 缺失元素的内容为: {line}") return count += 1 link = line.split()[2] ext_name = link.split("/").pop() status = "*" if line.split()[4] == "ON" else "" desc = line.split()[6] text = f"\n{count}、{ext_name}{status}\n描述:{desc}\n链接:{link}" content.append(text) write_content(content, output_file) def build_comfyui_extension_desc(input_file_1: str, input_file_2: str, output_file: str) -> None: ori_content_1 = get_content(input_file_1) ori_content_2 = get_content(input_file_2) content = [] content.append("ComfyUI 插件 / 自定义节点说明:") content.append("注:") content.append("1、有些插件因为年久失修,可能会出现兼容性问题。具体介绍请通过链接查看项目的说明") content.append("2、在名称右上角标 * 的为安装时默认勾选的插件") # 插件 content.append("\n插件:") count = 0 for line in ori_content_1: if line == "": continue if len(line.split()) < 7: print(f"{input_file_1} 出现元素缺失, 缺失元素的内容为: {line}") return count += 1 link = line.split()[2] ext_name = link.split("/").pop() status = "*" if line.split()[4] == "ON" else "" desc = line.split()[6] text = f"\n{count}、{ext_name}{status}\n描述:{desc}\n链接:{link}" content.append(text) # 自定义节点 content.append("\n自定义节点:") count = 0 for line in ori_content_2: if line == "": continue if len(line.split()) < 5: print(f"{input_file_2} 出现元素缺失, 缺失元素的内容为: {line}") return count += 1 link = line.split()[2] ext_name = link.split("/").pop() status = "*" if line.split()[4] == "ON" else "" desc = line.split()[6] text = f"\n{count}、{ext_name}{status}\n描述:{desc}\n链接:{link}" content.append(text) write_content(content, output_file) def build_invokeai_custom_node_desc(input_file: str, output_file: str) ->None: ori_content = get_content(input_file) content = [] content.append("InvokeAI 自定义节点说明:") content.append("注:") content.append("1、有些插件因为年久失修,可能会出现兼容性问题。具体介绍请通过链接查看项目的说明") content.append("2、在名称右上角标 * 的为安装时默认勾选的插件") count = 0 for line in ori_content: if line == "": continue if len(line.split()) < 7: print(f"{input_file} 出现元素缺失, 缺失元素的内容为: {line}") return count += 1 link = line.split()[2] ext_name = link.split("/").pop() status = "*" if line.split()[4] == "ON" else "" desc = line.split()[6] text = f"\n{count}、{ext_name}{status}\n描述:{desc}\n链接:{link}" content.append(text) write_content(content, output_file) def build_model_list(input_file: str, output_file: str) -> None: ori_content = get_content(input_file) content = [] for line in ori_content: if line == "": continue point = line.split()[0] name = line.split()[-2] status = line.split()[-1] text = f"{point} {name} {status}" content.append(text) write_content(content, output_file) def sort_point(head_point: str, file: str) -> None: ori_content = get_content(file) content = [] count = 0 for line in ori_content: if line == "": continue count += 1 line = line.split() line[0] = f"{head_point}{count}" text = " ".join(line) content.append(text) write_content(content, file) def dos2unix(input_file: str) -> None: with open(input_file, "r", encoding="utf8") as file: content = file.read() content = content.replace("\r\n", "\n") with open(input_file, "w", encoding="utf8", newline="\n") as file: file.write(content) def get_all_file(directory): import os file_list = [] for dirname, _, filenames in os.walk(directory): for filename in filenames: file_list.append(os.path.join(dirname, filename)) return file_list def detect_uplicate(list_type: str,file: str) -> None: content = get_content(file) if list_type == "model": list_column = 2 elif list_type == "extension": list_column = 2 point_1 = 0 point_2 = 0 for i in content: point_1 += 1 point_2 = 0 for j in content: point_2 += 1 if i == j: continue if point_1 > point_2: continue if len(i.split()) >= list_column and len(j.split()) >= list_column and i.split()[list_column] == j.split()[list_column]: print(f"{file} 存在重复{'模型' if list_type == 'model' else '插件'}, 在 {i.split()[0]} 和 {j.split()[0]}") print(f"重复内容: {i.split()[list_column]}") if __name__ == "__main__": root_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(root_path) print(f"脚本路径: {root_path}") args = get_args() if args.sort: print("排序头标签") sort_point("__term_sd_task_pre_model_", "install/sd_webui/sd_webui_hf_model.sh") sort_point("__term_sd_task_pre_model_", "install/sd_webui/sd_webui_ms_model.sh") sort_point("__term_sd_task_pre_model_", "install/comfyui/comfyui_hf_model.sh") sort_point("__term_sd_task_pre_model_", "install/comfyui/comfyui_ms_model.sh") sort_point("__term_sd_task_pre_model_", "install/fooocus/fooocus_hf_model.sh") sort_point("__term_sd_task_pre_model_", "install/fooocus/fooocus_ms_model.sh") sort_point("__term_sd_task_pre_model_", "install/invokeai/invokeai_hf_model.sh") sort_point("__term_sd_task_pre_model_", "install/invokeai/invokeai_ms_model.sh") sort_point("__term_sd_task_pre_model_", "install/lora_scripts/lora_scripts_hf_model.sh") sort_point("__term_sd_task_pre_model_", "install/lora_scripts/lora_scripts_ms_model.sh") sort_point("__term_sd_task_pre_model_", "install/kohya_ss/kohya_ss_hf_model.sh") sort_point("__term_sd_task_pre_model_", "install/kohya_ss/kohya_ss_ms_model.sh") sort_point("__term_sd_task_pre_ext_", "install/sd_webui/sd_webui_extension.sh") sort_point("__term_sd_task_pre_ext_", "install/comfyui/comfyui_custom_node.sh") sort_point("__term_sd_task_pre_ext_", "install/comfyui/comfyui_extension.sh") sort_point("__term_sd_task_pre_ext_", "install/invokeai/invokeai_custom_node.sh") if args.build: print("构建 Dialog 列表") build_extension_list("install/sd_webui/sd_webui_extension.sh", "install/sd_webui/dialog_sd_webui_extension.sh") build_extension_list("install/comfyui/comfyui_custom_node.sh", "install/comfyui/dialog_comfyui_custom_node.sh") build_extension_list("install/comfyui/comfyui_extension.sh", "install/comfyui/dialog_comfyui_extension.sh") build_extension_list("install/invokeai/invokeai_custom_node.sh", "install/invokeai/dialog_invokeai_custom_node.sh") build_sd_webui_extension_desc("install/sd_webui/sd_webui_extension.sh", "help/sd_webui_extension_description.md") build_comfyui_extension_desc("install/comfyui/comfyui_extension.sh", "install/comfyui/comfyui_custom_node.sh", "help/comfyui_extension_description.md") build_invokeai_custom_node_desc("install/invokeai/invokeai_custom_node.sh", "help/invokeai_custom_node_description.md") build_model_list("install/sd_webui/sd_webui_hf_model.sh", "install/sd_webui/dialog_sd_webui_hf_model.sh") build_model_list("install/sd_webui/sd_webui_ms_model.sh", "install/sd_webui/dialog_sd_webui_ms_model.sh") build_model_list("install/comfyui/comfyui_hf_model.sh", "install/comfyui/dialog_comfyui_hf_model.sh") build_model_list("install/comfyui/comfyui_ms_model.sh", "install/comfyui/dialog_comfyui_ms_model.sh") build_model_list("install/fooocus/fooocus_hf_model.sh", "install/fooocus/dialog_fooocus_hf_model.sh") build_model_list("install/fooocus/fooocus_ms_model.sh", "install/fooocus/dialog_fooocus_ms_model.sh") build_model_list("install/invokeai/invokeai_hf_model.sh", "install/invokeai/dialog_invokeai_hf_model.sh") build_model_list("install/invokeai/invokeai_ms_model.sh", "install/invokeai/dialog_invokeai_ms_model.sh") build_model_list("install/lora_scripts/lora_scripts_hf_model.sh", "install/lora_scripts/dialog_lora_scripts_hf_model.sh") build_model_list("install/lora_scripts/lora_scripts_ms_model.sh", "install/lora_scripts/dialog_lora_scripts_ms_model.sh") build_model_list("install/kohya_ss/kohya_ss_hf_model.sh", "install/kohya_ss/dialog_kohya_ss_hf_model.sh") build_model_list("install/kohya_ss/kohya_ss_ms_model.sh", "install/kohya_ss/dialog_kohya_ss_ms_model.sh") if args.fix: print("将所有文件的换行符转换为 LF") file_list = [] for dir in ["extra", "config", "help", "install", "modules", "task", "python_modules"]: file_list += get_all_file(dir) for file in file_list: dos2unix(file) dos2unix("term-sd.sh") dos2unix("build.sh") dos2unix("README.md") if args.sort: print("查找重复模型 / 插件列表") detect_uplicate("model", "install/sd_webui/sd_webui_hf_model.sh") detect_uplicate("model", "install/sd_webui/sd_webui_ms_model.sh") detect_uplicate("model", "install/comfyui/comfyui_hf_model.sh") detect_uplicate("model", "install/comfyui/comfyui_ms_model.sh") detect_uplicate("model", "install/fooocus/fooocus_hf_model.sh") detect_uplicate("model", "install/fooocus/fooocus_ms_model.sh") detect_uplicate("model", "install/invokeai/invokeai_hf_model.sh") detect_uplicate("model", "install/invokeai/invokeai_ms_model.sh") detect_uplicate("model", "install/lora_scripts/lora_scripts_hf_model.sh") detect_uplicate("model", "install/lora_scripts/lora_scripts_ms_model.sh") detect_uplicate("model", "install/kohya_ss/kohya_ss_hf_model.sh") detect_uplicate("model", "install/kohya_ss/kohya_ss_ms_model.sh") detect_uplicate("extension", "install/sd_webui/sd_webui_extension.sh") detect_uplicate("extension", "install/comfyui/comfyui_custom_node.sh") detect_uplicate("extension", "install/comfyui/comfyui_extension.sh") detect_uplicate("extension", "install/invokeai/invokeai_custom_node.sh")
2301_81996401/term-sd
build.py
Python
agpl-3.0
13,244
#!/bin/bash # 该脚本用于生成 Dialog 界面所需的选项 # 生成插件列表 build_list() { local point local name local describe local count=1 local flag=0 local input_file=$1 local output_file=$2 while true; do point=$(cat ${input_file} | awk 'NR=='${count}' {print $1}') name=$(cat ${input_file} | awk 'NR=='${count}' {print $3}' | awk -F '/' '{print $NF}') describe=$(cat ${input_file} | awk 'NR=='${count}' {print $5}') if [[ -z "${point}" ]]; then break else if [[ -z "$(echo ${point} | grep __term_sd_task_sys)" ]]; then echo "${point} ${name} ${describe}" >> "${output_file}" fi fi count=$(( count + 1 )) done } # 生成模型列表 build_list_for_model() { local input_file=$1 local output_file=$2 cat "${input_file}" | awk '{if ($NF!="") {print $1 " " $(NF-1) " " $NF} }' >> "${output_file}" } # 生成 Dialog 列表 build_dialog_list() { local start_time=$(date +'%Y-%m-%d %H:%M:%S') local start_time_seconds=$(date --date="${start_time}" +%s) local input_file=$1 local output_file=$2 local end_time local end_time_seconds local time_span if [[ -f "${output_file}" ]]; then rm -f "${output_file}" fi echo ":: 生成 ${output_file} 中" build_list "${input_file}" "${output_file}" end_time=$(date +'%Y-%m-%d %H:%M:%S') end_time_seconds=$(date --date="${end_time}" +%s) time_span=$(( end_time_seconds - start_time_seconds )) # 计算相隔时间 echo ":: 完成, 用时: ${time_span} sec" } # 生成 SD WebUI 插件说明 build_dialog_list_sd_webui() { local start_time=$(date +'%Y-%m-%d %H:%M:%S') local start_time_seconds=$(date --date="${start_time}" +%s) local input_file=$1 local output_file=$2 local cache_file="task/dialog_cache.sh" local flag=0 local count=1 local end_time local end_time_seconds local time_span if [[ -f "${output_file}" ]]; then rm -f "${output_file}" fi echo ":: 生成 ${output_file} 中" echo "Stable Diffusion WebUI 插件说明:" >> "${output_file}" echo "注:" >> "${output_file}" echo "1、有些插件因为年久失修,可能会出现兼容性问题。具体介绍请通过链接查看项目的说明" >> "${output_file}" echo "2、在名称右上角标 * 的为安装时默认勾选的插件" >> "${output_file}" while true; do extension_url=$(cat "${input_file}" | awk 'NR=='${count}' {print $3}') extension_name=$(cat "${input_file}" | awk 'NR=='${count}' {print $3}' | awk -F '/' '{print $NF}') extension_description=$(cat "${input_file}" | awk 'NR=='${count}' {print $7}') list_head=$(cat "${input_file}" | awk 'NR=='${count}' {print $1}') normal_install_info=$([ "$(cat "${input_file}" | awk 'NR=='${count}' {print $5}')" = "ON" ] && echo "*") if [[ -z "${list_head}" ]]; then break else if [[ -z "$(grep __term_sd_task_sys <<< ${list_head})" ]]; then echo "" >> "${output_file}" echo "${count}、${extension_name}${normal_install_info}" >> "${output_file}" echo "描述:${extension_description}" >> "${output_file}" echo "链接:${extension_url}" >> "${output_file}" fi fi count=$(( count + 1 )) done end_time=$(date +'%Y-%m-%d %H:%M:%S') end_time_seconds=$(date --date="${end_time}" +%s) time_span=$(( end_time_seconds - start_time_seconds )) # 计算相隔时间 echo ":: 完成, 用时: ${time_span} sec" } # 生成 ComfyUI 扩展说明 build_dialog_list_comfyui() { local start_time=$(date +'%Y-%m-%d %H:%M:%S') local start_time_seconds=$(date --date="${start_time}" +%s) local input_file_1=$1 local input_file_2=$2 local output_file=$3 local count=1 local end_time local end_time_seconds local time_span if [[ -f "${output_file}" ]]; then rm -f "${output_file}" fi echo ":: 生成 ${output_file} 中" echo "ComfyUI 插件 / 自定义节点说明:" >> "${output_file}" echo "注:" >> "${output_file}" echo "1、有些插件因为年久失修,可能会出现兼容性问题。具体介绍请通过链接查看项目的说明" >> "${output_file}" echo "2、在名称右上角标 * 的为安装时默认勾选的插件" >> "${output_file}" echo "" >> "${output_file}" echo "插件:" >> "${output_file}" while true; do extension_url=$(cat "${input_file_1}" | awk 'NR=='${count}' {print $3}') extension_name=$(cat "${input_file_1}" | awk 'NR=='${count}' {print $3}' | awk -F '/' '{print $NF}') extension_description=$(cat "${input_file_1}" | awk 'NR=='${count}' {print $7}') list_head=$(cat "${input_file_1}" | awk 'NR=='${count}' {print $1}') normal_install_info=$([ "$(cat "${input_file_1}" | awk 'NR=='${count}' {print $5}')" = "ON" ] && echo "*") if [[ -z "${list_head}" ]]; then break else if [ -z "$(echo "${list_head}" | grep __term_sd_task_sys)" ]; then echo "" >> "${output_file}" echo "${count}、${extension_name}${normal_install_info}" >> "${output_file}" echo "描述:${extension_description}" >> "${output_file}" echo "链接:${extension_url}" >> "${output_file}" fi fi count=$(( count + 1 )) done echo "" >> "${output_file}" echo "自定义节点:" >> "${output_file}" count=1 while true; do extension_url=$(cat "${input_file_2}" | awk 'NR=='${count}' {print $3}') extension_name=$(cat "${input_file_2}" | awk 'NR=='${count}' {print $3}' | awk -F '/' '{print $NF}') extension_description=$(cat "${input_file_2}" | awk 'NR=='${count}' {print $7}') list_head=$(cat "${input_file_2}" | awk 'NR=='${count}' {print $1}') normal_install_info=$([ "$(cat "${input_file_2}" | awk 'NR=='${count}' {print $5}')" = "ON" ] && echo "*") if [[ -z "${list_head}" ]]; then break else if [[ -z "$(echo "${list_head}" | grep __term_sd_task_sys)" ]]; then echo "" >> "${output_file}" echo "$count、${extension_name}${normal_install_info}" >> "${output_file}" echo "描述:${extension_description}" >> "${output_file}" echo "链接:${extension_url}" >> "${output_file}" fi fi count=$(( count + 1 )) done end_time=$(date +'%Y-%m-%d %H:%M:%S') end_time_seconds=$(date --date="${end_time}" +%s) time_span=$(( end_time_seconds - start_time_seconds )) # 计算相隔时间 echo ":: 完成, 用时: ${time_span} sec" } # 生成 InvokeAI 自定义节点说明 build_dialog_list_invokeai() { local start_time=$(date +'%Y-%m-%d %H:%M:%S') local start_time_seconds=$(date --date="${start_time}" +%s) local input_file=$1 local output_file=$2 local cache_file="task/dialog_cache.sh" local flag=0 local count=1 local end_time local end_time_seconds local time_span if [[ -f "${output_file}" ]]; then rm -f "${output_file}" fi echo ":: 生成 ${output_file} 中" echo "InvokeAI 自定义节点说明:" >> "${output_file}" echo "注:" >> "${output_file}" echo "1、有些插件因为年久失修,可能会出现兼容性问题。具体介绍请通过链接查看项目的说明" >> "${output_file}" echo "2、在名称右上角标 * 的为安装时默认勾选的插件" >> "${output_file}" while true; do extension_url=$(cat "${input_file}" | awk 'NR=='${count}' {print $3}') extension_name=$(cat "${input_file}" | awk 'NR=='${count}' {print $3}' | awk -F '/' '{print $NF}') extension_description=$(cat "${input_file}" | awk 'NR=='${count}' {print $7}') list_head=$(cat "${input_file}" | awk 'NR=='${count}' {print $1}') normal_install_info=$([ "$(cat "${input_file}" | awk 'NR=='${count}' {print $5}')" = "ON" ] && echo "*") if [[ -z "${list_head}" ]]; then break else if [[ -z "$(grep __term_sd_task_sys <<< ${list_head})" ]]; then echo "" >> "${output_file}" echo "${count}、${extension_name}${normal_install_info}" >> "${output_file}" echo "描述:${extension_description}" >> "${output_file}" echo "链接:${extension_url}" >> "${output_file}" fi fi count=$(( count + 1 )) done end_time=$(date +'%Y-%m-%d %H:%M:%S') end_time_seconds=$(date --date="${end_time}" +%s) time_span=$(( end_time_seconds - start_time_seconds )) # 计算相隔时间 echo ":: 完成, 用时: ${time_span} sec" } # 生成模型选择列表 build_dialog_list_model() { local start_time=$(date +'%Y-%m-%d %H:%M:%S') local start_time_seconds=$(date --date="${start_time}" +%s) local input_file=$1 local output_file=$2 local end_time local end_time_seconds local time_span if [[ -f "${output_file}" ]]; then rm -f "${output_file}" fi echo ":: 生成 ${output_file} 中" build_list_for_model "${input_file}" "${output_file}" end_time=$(date +'%Y-%m-%d %H:%M:%S') end_time_seconds=$(date --date="${end_time}" +%s) time_span=$(( end_time_seconds - start_time_seconds )) # 计算相隔时间 echo ":: 完成, 用时: ${time_span} sec" } # 从列表截取命令 get_task_cmd() { local task_cmd_sign local task_cmd task_cmd_sign=$(echo $@ | awk '{print $1}') task_cmd=$(echo $@ | awk '{sub("'$task_cmd_sign' ","")}1') echo "${task_cmd}" } # 重排序标签 sort_head_point() { local cmd_sum local cmd_point local input_file=$2 local input_file_name=$(basename "${input_file}") local start_time=$(date +'%Y-%m-%d %H:%M:%S') local start_time_seconds=$(date --date="${start_time}" +%s) local head_point=$1 local end_time local end_time_seconds local time_span echo ":: 生成 ${input_file} 中" mv "${input_file}" task/ cmd_sum=$(( $(cat "task/${input_file_name}" | wc -l) + 1)) # 统计命令行数 for (( cmd_point=1; cmd_point <= cmd_sum; cmd_point++ )); do install_cmd=$(get_task_cmd $(cat "task/${input_file_name}" | awk 'NR=='${cmd_point}'{print $0}')) if [[ ! -z "${install_cmd}" ]]; then echo "${head_point}${cmd_point} ${install_cmd}" >> "${input_file}" fi done rm "task/${input_file_name}" end_time=$(date +'%Y-%m-%d %H:%M:%S') end_time_seconds=$(date --date="${end_time}" +%s) time_span=$(( end_time_seconds - start_time_seconds )) # 计算相隔时间 echo ":: 完成, 用时: ${time_span} sec" } # 链接查重 detect_uplicate() { local list_type=$1 local file_path=$2 local cmd_sum=$(( $(cat "${file_path}" | wc -l) + 1)) # 统计命令行数 local start_time=$(date +'%Y-%m-%d %H:%M:%S') local start_time_seconds=$(date --date="${start_time}" +%s) local end_time local end_time_seconds local time_span local flag=0 local install_cmd_1 local install_cmd_2 if [[ "${list_type}" == "model" ]]; then list_column=3 type_name="模型链接" elif [[ "${list_type}" == "extension" ]]; then list_column=4 type_name="扩展链接" fi echo ":: 检测 $file_path 中重复的${type_name}中" for ((i = 1; i <= cmd_sum; i++)); do if [[ "${list_type}" == "model" ]]; then install_cmd_1=$(cat "${file_path}" | awk 'NR=='${i}' { print $3 }') elif [[ "${list_type}" == "extension" ]]; then install_cmd_1=$(cat "${file_path}" | awk 'NR=='${i}' { print $4 }') fi for (( j = i; j <= cmd_sum; j++ )); do [[ "${i}" = "${j}" ]] && continue if [[ "${list_type}" == "model" ]]; then install_cmd_2=$(cat "${file_path}" | awk 'NR=='${j}'{print $3}') elif [[ "${list_type}" = "extension" ]]; then install_cmd_2=$(cat "${file_path}" | awk 'NR=='${j}'{print $4}') fi if [[ "${install_cmd_1}" == "${install_cmd_2}" ]]; then echo ":: 检测到重复${type_name}, 出现在第 ${i} 行和第 ${j} 行" flag=1 fi done done end_time=$(date +'%Y-%m-%d %H:%M:%S') end_time_seconds=$(date --date="${end_time}" +%s) time_span=$(( end_time_seconds - start_time_seconds )) # 计算相隔时间 if [[ "${flag}" == 0 ]]; then echo ":: 无重复${type_name}" else echo ":: 出现重复${type_name}, 待解决" fi echo ":: 完成, 用时: ${time_span} sec" } ############################# if [[ ! -d "modules" ]] || [[ ! -d "install" ]] || [[ ! -d "task" ]] || [[ ! -d "help" ]]; then echo ":: 目录错误" exit 1 elif [[ ! "$(dirname "$0")" = "." ]]; then echo ":: 目录错误" exit 1 fi if [[ ! -z "$@" ]]; then echo "----------build----------" start_time_sum=$(date +'%Y-%m-%d %H:%M:%S') start_time_seconds_sum=$(date --date="$start_time_sum" +%s) for n in $@ ;do case "${n}" in --fix) echo ":: 格式转换" list=$(find extra config help install modules task python_modules) for i in ${list}; do if [[ -f "${i}" ]]; then dos2unix "${i}" fi done dos2unix term-sd.sh dos2unix build.sh dos2unix README.md ;; --build) echo ":: 构建列表" build_dialog_list install/sd_webui/sd_webui_extension.sh install/sd_webui/dialog_sd_webui_extension.sh build_dialog_list install/comfyui/comfyui_custom_node.sh install/comfyui/dialog_comfyui_custom_node.sh build_dialog_list install/comfyui/comfyui_extension.sh install/comfyui/dialog_comfyui_extension.sh build_dialog_list install/invokeai/invokeai_custom_node.sh install/invokeai/dialog_invokeai_custom_node.sh build_dialog_list_sd_webui install/sd_webui/sd_webui_extension.sh help/sd_webui_extension_description.md build_dialog_list_comfyui install/comfyui/comfyui_extension.sh install/comfyui/comfyui_custom_node.sh help/comfyui_extension_description.md build_dialog_list_invokeai install/invokeai/invokeai_custom_node.sh help/invokeai_custom_node_description.md build_dialog_list_model install/sd_webui/sd_webui_hf_model.sh install/sd_webui/dialog_sd_webui_hf_model.sh build_dialog_list_model install/sd_webui/sd_webui_ms_model.sh install/sd_webui/dialog_sd_webui_ms_model.sh build_dialog_list_model install/comfyui/comfyui_hf_model.sh install/comfyui/dialog_comfyui_hf_model.sh build_dialog_list_model install/comfyui/comfyui_ms_model.sh install/comfyui/dialog_comfyui_ms_model.sh build_dialog_list_model install/fooocus/fooocus_hf_model.sh install/fooocus/dialog_fooocus_hf_model.sh build_dialog_list_model install/fooocus/fooocus_ms_model.sh install/fooocus/dialog_fooocus_ms_model.sh build_dialog_list_model install/invokeai/invokeai_hf_model.sh install/invokeai/dialog_invokeai_hf_model.sh build_dialog_list_model install/invokeai/invokeai_ms_model.sh install/invokeai/dialog_invokeai_ms_model.sh build_dialog_list_model install/lora_scripts/lora_scripts_hf_model.sh install/lora_scripts/dialog_lora_scripts_hf_model.sh build_dialog_list_model install/lora_scripts/lora_scripts_ms_model.sh install/lora_scripts/dialog_lora_scripts_ms_model.sh build_dialog_list_model install/kohya_ss/kohya_ss_hf_model.sh install/kohya_ss/dialog_kohya_ss_hf_model.sh build_dialog_list_model install/kohya_ss/kohya_ss_ms_model.sh install/kohya_ss/dialog_kohya_ss_ms_model.sh ;; --sort) echo ":: 头标签排序" sort_head_point __term_sd_task_pre_model_ install/sd_webui/sd_webui_hf_model.sh sort_head_point __term_sd_task_pre_model_ install/sd_webui/sd_webui_ms_model.sh sort_head_point __term_sd_task_pre_model_ install/comfyui/comfyui_hf_model.sh sort_head_point __term_sd_task_pre_model_ install/comfyui/comfyui_ms_model.sh sort_head_point __term_sd_task_pre_model_ install/fooocus/fooocus_hf_model.sh sort_head_point __term_sd_task_pre_model_ install/fooocus/fooocus_ms_model.sh sort_head_point __term_sd_task_pre_model_ install/invokeai/invokeai_hf_model.sh sort_head_point __term_sd_task_pre_model_ install/invokeai/invokeai_ms_model.sh sort_head_point __term_sd_task_pre_model_ install/lora_scripts/lora_scripts_hf_model.sh sort_head_point __term_sd_task_pre_model_ install/lora_scripts/lora_scripts_ms_model.sh sort_head_point __term_sd_task_pre_model_ install/kohya_ss/kohya_ss_hf_model.sh sort_head_point __term_sd_task_pre_model_ install/kohya_ss/kohya_ss_ms_model.sh sort_head_point __term_sd_task_pre_ext_ install/sd_webui/sd_webui_extension.sh sort_head_point __term_sd_task_pre_ext_ install/comfyui/comfyui_custom_node.sh sort_head_point __term_sd_task_pre_ext_ install/comfyui/comfyui_extension.sh sort_head_point __term_sd_task_pre_ext_ install/invokeai/invokeai_custom_node.sh ;; --check) echo ":: 重复链接检测" detect_uplicate model install/sd_webui/sd_webui_hf_model.sh detect_uplicate model install/sd_webui/sd_webui_ms_model.sh detect_uplicate model install/comfyui/comfyui_hf_model.sh detect_uplicate model install/comfyui/comfyui_ms_model.sh detect_uplicate model install/fooocus/fooocus_hf_model.sh detect_uplicate model install/fooocus/fooocus_ms_model.sh detect_uplicate model install/invokeai/invokeai_hf_model.sh detect_uplicate model install/invokeai/invokeai_ms_model.sh detect_uplicate model install/lora_scripts/lora_scripts_hf_model.sh detect_uplicate model install/lora_scripts/lora_scripts_ms_model.sh detect_uplicate model install/kohya_ss/kohya_ss_hf_model.sh detect_uplicate model install/kohya_ss/kohya_ss_ms_model.sh detect_uplicate extension install/sd_webui/sd_webui_extension.sh detect_uplicate extension install/comfyui/comfyui_custom_node.sh detect_uplicate extension install/comfyui/comfyui_extension.sh detect_uplicate extension install/invokeai/invokeai_custom_node.sh ;; *) echo ":: 未知参数: \"${n}\"" ;; esac done echo "----------done----------" end_time_sum=$(date +'%Y-%m-%d %H:%M:%S') end_time_seconds_sum=$(date --date="${end_time_sum}" +%s) time_span_sum=$(( end_time_seconds_sum - start_time_seconds_sum )) # 计算相隔时间 echo ":: 总共用时: ${time_span_sum} sec" else echo ":: 使用:" echo "build.sh [--fix] [--build] [--sort] [--check]" echo ":: 未指定操作" fi
2301_81996401/term-sd
build.sh
Shell
agpl-3.0
19,736
#!/bin/bash . "${START_PATH}"/term-sd/modules/term_sd_python_cmd.sh . "${START_PATH}"/term-sd/modules/term_sd_git.sh term_sd_echo "开始清理缓存中" if [[ -d "${SD_WEBUI_ROOT_PATH}" ]]; then term_sd_echo "清理 Stable-Diffusion—WebUI 缓存中" git -C "${SD_WEBUI_ROOT_PATH}" gc for i in "${SD_WEBUI_ROOT_PATH}"/repositories/* do if is_git_repo "${i}"; then term_sd_echo "清理 $(basename "${i}") 组件缓存中" git -C "${i}" gc fi done term_sd_echo "清理 Stable-Diffusion—WebUI 插件缓存中" for i in "${SD_WEBUI_ROOT_PATH}"/extensions/*; do if is_git_repo "${i}"; then term_sd_echo "清理 $(basename "${i}") 插件缓存中" git -C "${i}" gc fi done term_sd_echo "清理 Stable-Diffusion—WebUI 缓存完成" fi if [[ -d "${COMFYUI_ROOT_PATH}" ]]; then term_sd_echo "清理 ComfyUI 缓存中" git -C "${COMFYUI_ROOT_PATH}" gc term_sd_echo "清理 ComfyUI 插件缓存中" for i in "${COMFYUI_ROOT_PATH}"/web/extensions/*; do if is_git_repo "${i}"; then term_sd_echo "清理 $(basename "${i}") 插件缓存中" git -C "${i}" gc fi done term_sd_echo "清理 ComfyUI 自定义节点缓存中" for i in "${COMFYUI_ROOT_PATH}"/custom_nodes/*; do if is_git_repo "${i}"; then term_sd_echo "清理 $(basename "${i}") 自定义节点缓存中" git -C "${i}" gc fi done term_sd_echo "清理 ComfyUI 缓存完成" fi if [[ -d "${FOOOCUS_ROOT_PATH}" ]]; then term_sd_echo "清理 Fooocus 缓存中" git -C "${FOOOCUS_ROOT_PATH}" gc term_sd_echo "清理 Fooocus 缓存完成" fi if [[ -d "${LORA_SCRIPTS_ROOT_PATH}" ]]; then term_sd_echo "清理 lora-scrips 缓存中" git -C "${LORA_SCRIPTS_ROOT_PATH}" gc term_sd_echo "清理 lora-scrips 缓存完成" fi if [[ -d "${KOHYA_SS_ROOT_PATH}" ]]; then term_sd_echo "清理 kohya_ss 缓存中" git -C "${KOHYA_SS_ROOT_PATH}" gc term_sd_echo "清理 kohya_ss 缓存完成" fi term_sd_echo "清理 Term-SD 缓存中" git -C "${START_PATH}"/term-sd gc term_sd_echo "清理 Term-SD 缓存完成" term_sd_echo "清理 Pip 缓存中" term_sd_pip cache purge term_sd_uv cache clean term_sd_echo "清理 Pip 缓存完成" term_sd_echo "缓存清理结束"
2301_81996401/term-sd
extra/clean-cache.sh
Shell
agpl-3.0
2,380
#!/bin/bash . "${START_PATH}"/term-sd/modules/install_prepare.sh . "${START_PATH}"/term-sd/modules/get_modelscope_model.sh . "${START_PATH}"/term-sd/modules/term_sd_git.sh . "${START_PATH}"/term-sd/modules/term_sd_task_manager.sh . "${START_PATH}"/term-sd/modules/term_sd_manager.sh . "${START_PATH}"/term-sd/modules/term_sd_proxy.sh . "${START_PATH}"/term-sd/modules/term_sd_try.sh if [[ ! -d "${COMFYUI_ROOT_PATH}" ]]; then term_sd_echo "未安装 ComfyUI" else rm -f "${START_PATH}/term-sd/task/comfyui_install_extension.sh" download_mirror_select # 下载镜像源选择 # 插件选择 COMFYUI_EXTENSION_INSTALL_LIST=$(dialog --erase-on-exit --notags \ --title "ComfyUI 安装" \ --backtitle "ComfyUI 插件安装选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要安装的 ComfyUI 插件" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}/term-sd/install/comfyui/dialog_comfyui_extension.sh" | awk '{print $1 " " $2 " OFF"}') \ 3>&1 1>&2 2>&3) # 自定义节点选择 COMFYUI_CUSTOM_NODE_INSTALL_LIST=$(dialog --erase-on-exit --notags \ --title "ComfyUI 安装" \ --backtitle "ComfyUI 自定义节点安装选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要安装的 ComfyUI 自定义节点" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}/term-sd/install/comfyui/dialog_comfyui_custom_node.sh" | awk '{print $1 " " $2 " OFF"}') \ 3>&1 1>&2 2>&3) if is_use_modelscope_src; then comfyui_custom_node_model_list_file="comfyui_custom_node_ms_model.sh" else comfyui_custom_node_model_list_file="comfyui_custom_node_hf_model.sh" fi term_sd_echo "生成模型选择列表中" # 查找插件对应模型的编号 for i in ${COMFYUI_CUSTOM_NODE_INSTALL_LIST}; do comfyui_custom_node_model_list="${comfyui_custom_node_model_list} $(cat "${START_PATH}"/term-sd/install/comfyui/${comfyui_custom_node_model_list_file} | grep -w ${i} | awk 'NR==1{if ($NF!="") {print $1 " " $(NF-1) " " $NF} }' | awk '{sub($NF,"OFF")}1')" done # 模型选择 COMFYUI_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "ComfyUI 安装" \ --backtitle "ComfyUI 模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 ComfyUI 扩展模型" \ $(get_dialog_size_menu) \ "_null_" "=====扩展模型选择=====" OFF \ ${comfyui_custom_node_model_list} \ 3>&1 1>&2 2>&3) # 安装确认 if term_sd_install_confirm "是否安装 ComfyUI 插件 / 自定义节点 ?"; then term_sd_echo "生成任务队列" touch "${START_PATH}/term-sd/task/comfyui_install_extension.sh" # 插件 if [[ ! -z "${COMFYUI_EXTENSION_INSTALL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"安装插件中\"" >> "${START_PATH}/term-sd/task/comfyui_install_extension.sh" for i in ${COMFYUI_EXTENSION_INSTALL_LIST} ;do cat "${START_PATH}/term-sd/install/comfyui/comfyui_extension.sh" | grep -w ${i} | awk '{sub(" ON "," ") ; sub(" OFF "," ")}1' >> "${START_PATH}/term-sd/task/comfyui_install_extension.sh" # 插件 done fi term_sd_add_blank_line "${START_PATH}"/term-sd/task/comfyui_install_extension.sh # 自定义节点 if [[ ! -z "${COMFYUI_CUSTOM_NODE_INSTALL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"安装自定义节点中\"" >> "${START_PATH}/term-sd/task/comfyui_install_extension.sh" for i in $COMFYUI_CUSTOM_NODE_INSTALL_LIST ;do cat "${START_PATH}/term-sd/install/comfyui/comfyui_custom_node.sh" | grep -w ${i} | awk '{sub(" ON "," ") ; sub(" OFF "," ")}1' >> "${START_PATH}/term-sd/task/comfyui_install_extension.sh" # 插件 done fi # 扩展的模型 if [[ ! -z "${COMFYUI_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"安装自定义节点中\"" >> "${START_PATH}/term-sd/task/comfyui_install_extension.sh" if is_use_modelscope_src; then for i in ${COMFYUI_DOWNLOAD_MODEL_LIST} ;do echo "__term_sd_task_sys term_sd_tmp_disable_proxy" >> "${START_PATH}/term-sd/task/comfyui_install_extension.sh" cat "${START_PATH}/term-sd/install/comfyui/comfyui_custom_node_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/comfyui_install_extension.sh" # 自定义节点所需的模型 done else for i in $COMFYUI_DOWNLOAD_MODEL_LIST ;do cat "${START_PATH}/term-sd/install/comfyui/comfyui_custom_node_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/comfyui_install_extension.sh" # 自定义节点所需的模型 done fi fi term_sd_echo "任务队列生成完成" term_sd_echo "开始下载 ComfyUI 插件 / 自定义节点" cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/comfyui_install_extension.sh" | wc -l) + 1 )) # 统计命令行数 for ((cmd_point=1;cmd_point<=cmd_sum;cmd_point++)) do term_sd_echo "ComfyUI 安装进度: [$cmd_point/$cmd_sum]" term_sd_exec_cmd "${START_PATH}/term-sd/task/comfyui_install_extension.sh" ${cmd_point} done term_sd_tmp_enable_proxy # 恢复代理 term_sd_echo "ComfyUI 插件 / 自定义节点下载结束" rm -f "${START_PATH}/term-sd/task/comfyui_install_extension.sh" # 删除任务文件 else term_sd_echo "取消下载 ComfyUI 插件 / 自定义节点" fi fi
2301_81996401/term-sd
extra/download-comfyui-extension.sh
Shell
agpl-3.0
5,770
#!/bin/bash . "${START_PATH}"/term-sd/modules/term_sd_try.sh . "${START_PATH}"/term-sd/modules/term_sd_manager.sh # 下载源选择 download_hanamizuki_resource_select() { while true; do term_sd_echo "请选择绘世启动器下载源" term_sd_echo "1、Github 源 (速度可能比较慢)" term_sd_echo "2、Gitee 源" term_sd_echo "3、退出" case "$(term_sd_read)" in 1) term_sd_echo "选择 Github 源" download_hanamizuki_resource="https://github.com/licyk/term-sd/releases/download/archive/hanamizuki.exe" return 0 ;; 2) term_sd_echo "选择 Gitee 源" download_hanamizuki_resource="https://gitee.com/licyk/term-sd/releases/download/archive/hanamizuki.exe" return 0 ;; 3) return 1 ;; *) term_sd_echo "输入有误, 请重试" ;; esac done } # 绘世启动器下载 download_hanamizuki() { aria2_download ${download_hanamizuki_resource} term-sd/task "绘世.exe" if [[ "$?" == 0 ]]; then install_hanamizuki "$SD_WEBUI_ROOT_PATH" "Stable-Diffusion-WebUI" install_hanamizuki "$COMFYUI_ROOT_PATH" "ComfyUI" install_hanamizuki "$FOOOCUS_ROOT_PATH" "Fooocus" install_hanamizuki "$LORA_SCRIPTS_ROOT_PATH" "lora-scripts" rm -f "term-sd/task/绘世.exe" else term_sd_echo "下载失败" fi } # 将绘世启动器复制到 AI 软件目录中 install_hanamizuki() { local install_path=$1 local sd_name=$2 if [[ -d "${install_path}" ]]; then if [[ -f "${install_path}"/*绘世*.exe ]] \ || [[ -f "${install_path}"/A*.exe ]] \ || [[ -f "${install_path}"/*启动器.exe ]]; then term_sd_echo "绘世启动器已存在于 ${sd_name} 文件夹中" else term_sd_echo "将绘世启动器复制到 ${sd_name} 文件夹: ${install_path}" cp -f "term-sd/task/绘世.exe" "${install_path}" fi else term_sd_echo "${sd_name} 未安装" fi } ############################# if is_windows_platform; then if download_hanamizuki_resource_select; then download_hanamizuki else term_sd_echo "取消下载绘世启动器" fi else term_sd_echo "检测到系统不是 Windows 系统, 无法使用绘世启动器" fi
2301_81996401/term-sd
extra/download-hanamizuki.sh
Shell
agpl-3.0
2,498
#!/bin/bash . "${START_PATH}"/term-sd/modules/install_prepare.sh . "${START_PATH}"/term-sd/modules/get_modelscope_model.sh . "${START_PATH}"/term-sd/modules/term_sd_git.sh . "${START_PATH}"/term-sd/modules/term_sd_task_manager.sh . "${START_PATH}"/term-sd/modules/term_sd_manager.sh . "${START_PATH}"/term-sd/modules/term_sd_proxy.sh . "${START_PATH}"/term-sd/modules/term_sd_try.sh if [[ ! -d "${INVOKEAI_ROOT_PATH}" ]]; then term_sd_echo "未安装 InvokeAI" else # 删除 InvokeAI 自定义节点安装任务文件 rm -f "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" download_mirror_select # 下载镜像源选择 # 自定义节点选择 INVOKEAI_INSTALL_CUSTOM_NODE_LIST=$(dialog --erase-on-exit --notags \ --title "InvokeAI 安装" \ --backtitle "InvokeAI 自定义节点安装选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要安装的 InvokeAI 自定义节点" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}/term-sd/install/invokeai/dialog_invokeai_custom_node.sh" | awk '{print $1 " " $2 " OFF"}') \ 3>&1 1>&2 2>&3) # 自定义节点模型列表选择 if is_use_modelscope_src; then invokeai_custom_node_model_list_file="invokeai_custom_node_ms_model.sh" else invokeai_custom_node_model_list_file="invokeai_custom_node_hf_model.sh" fi term_sd_echo "生成模型选择列表中" # 查找自定义节点对应模型的编号 for i in ${INVOKEAI_INSTALL_CUSTOM_NODE_LIST}; do model_list="${model_list} $(cat "${START_PATH}"/term-sd/install/invokeai/${invokeai_custom_node_model_list_file} | grep -w ${i} | awk 'NR==1{if ($NF!="") {print $1 " " $(NF-1) " " $NF} }' | awk '{sub($NF,"OFF")}1')" done # 模型选择 INVOKEAI_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "InvokeAI 安装" \ --backtitle "InvokeAI 自定义节点模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 InvokeAI 自定义节点模型" \ $(get_dialog_size_menu) \ "_null_" "=====自定义节点模型选择=====" OFF \ ${model_list} \ 3>&1 1>&2 2>&3) # 安装确认 if term_sd_install_confirm "是否安装 InvokeAI 自定义节点 ?"; then term_sd_echo "生成任务队列" touch "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" # 自定义节点 if [[ ! -z "${INVOKEAI_INSTALL_CUSTOM_NODE_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载自定义节点中\"" >> "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" for i in ${INVOKEAI_INSTALL_CUSTOM_NODE_LIST}; do cat "${START_PATH}/term-sd/install/invokeai/invokeai_custom_node.sh" | grep -w ${i} | awk '{sub(" ON "," ") ; sub(" OFF "," ")}1' >> "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" # 自定义节点 done fi # 自定义节点模型 if [[ ! -z "${INVOKEAI_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载模型中\"" >> "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" if is_use_modelscope_src; then echo "__term_sd_task_sys term_sd_tmp_disable_proxy" >> "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" for i in ${INVOKEAI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/invokeai/invokeai_custom_node_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" # 自定义节点所需的模型 done else for i in ${INVOKEAI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/invokeai/invokeai_custom_node_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" # 自定义节点所需的模型 done fi fi term_sd_echo "任务队列生成完成" term_sd_echo "开始下载 InvokeAI 自定义节点" cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" | wc -l) + 1 )) # 统计命令行数 for (( cmd_point=1; cmd_point<=cmd_sum; cmd_point++ )); do term_sd_echo "InvokeAI 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" "${cmd_point}" done term_sd_tmp_enable_proxy # 恢复代理 term_sd_echo "InvokeAI 自定义节点下载结束" rm -f "${START_PATH}/term-sd/task/invokeai_install_custom_node.sh" # 删除任务文件 else term_sd_echo "取消下载 InvokeAI 自定义节点" fi fi
2301_81996401/term-sd
extra/download-invokeai-extension.sh
Shell
agpl-3.0
4,827
#!/bin/bash # 加载模块 . "${START_PATH}"/term-sd/modules/term_sd_manager.sh . "${START_PATH}"/term-sd/modules/term_sd_task_manager.sh . "${START_PATH}"/term-sd/modules/get_modelscope_model.sh . "${START_PATH}"/term-sd/modules/install_prepare.sh . "${START_PATH}"/term-sd/modules/term_sd_proxy.sh . "${START_PATH}"/term-sd/modules/term_sd_try.sh # ai软件选择 sd_model_download_select() { local dialog_arg local file_manager_select while true; do dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "Term-SD 模型下载" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择需要下载模型的 AI 软件" \ $(get_dialog_size_menu) \ "1" "> Stable-Diffusion-WebUI" \ "2" "> ComfyUI" \ "3" "> InvokeAI" \ "4" "> Fooocus" \ "5" "> lora-scripts" \ "6" "> kohya_ss" \ "7" "> 退出" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) file_manager_select="stable-diffusion-webui" ;; 2) file_manager_select="ComfyUI" ;; 3) file_manager_select="InvokeAI" ;; 4) file_manager_select="Fooocus" ;; 5) file_manager_select="lora-scripts" ;; 6) file_manager_select="kohya_ss" ;; 7) break ;; *) break ;; esac if is_sd_folder_exist "${file_manager_select}"; then model_download_interface "${file_manager_select}" break else dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "Term-SD 模型下载" \ --ok-label "确认" \ --msgbox "${file_manager_select} 未安装" \ $(get_dialog_size) fi done } # 模型选择和下载 model_download_interface() { local dialog_arg local cmd_sum local cmd_point local install_cmd local name=$@ download_mirror_select # 下载镜像源选择 dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "${name} 模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 ${name} 模型" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}"/term-sd/install/$(get_model_list_file_path ${name} dialog) | awk '{print $1 " " $2 " OFF"}') \ 3>&1 1>&2 2>&3) if term_sd_install_confirm "是否下载 ${name} 模型 ?"; then term_sd_echo "生成任务队列" rm -f "${START_PATH}/term-sd/task/model_download.sh" # 删除上次未清除的任务列表 # 代理 if is_use_modelscope_src; then echo "__term_sd_task_sys term_sd_tmp_disable_proxy" >> "${START_PATH}/term-sd/task/model_download.sh" fi # 模型 for i in ${dialog_arg}; do cat "${START_PATH}"/term-sd/install/"$(get_model_list_file_path ${name})" | grep -w ${i} >> "${START_PATH}/term-sd/task/model_download.sh" done term_sd_echo "任务队列生成完成" term_sd_echo "开始下载 ${name} 模型" cmd_sum=$(cat "${START_PATH}/term-sd/task/model_download.sh" | wc -l) for (( cmd_point=1; cmd_point<=cmd_sum; cmd_point++ )); do term_sd_echo "${name} 模型下载进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/model_download.sh" "${cmd_point}" done rm -f "${START_PATH}/term-sd/task/model_download.sh" # 删除任务文件 term_sd_echo "${name} 模型下载结束" else term_sd_echo "取消下载模型" fi } # 获取模型列表路径 get_model_list_file_path() { local sd_name local download_source_name local name=$1 local type=$2 case ${name} in stable-diffusion-webui) sd_name="sd_webui" ;; ComfyUI) sd_name="comfyui" ;; InvokeAI) sd_name="invokeai" ;; Fooocus) sd_name="fooocus" ;; lora-scripts) sd_name="lora_scripts" ;; kohya_ss) sd_name="kohya_ss" ;; esac if is_use_modelscope_src; then download_source_name="ms" else download_source_name="hf" fi if [[ "${type}" == "dialog" ]]; then echo "${sd_name}/dialog_${sd_name}_${download_source_name}_model.sh" else echo "${sd_name}/${sd_name}_${download_source_name}_model.sh" fi } # 检测文件夹存在 is_sd_folder_exist() { case $@ in stable-diffusion-webui) [[ -d "${SD_WEBUI_ROOT_PATH}" ]] && return 0 || return 1 ;; ComfyUI) [[ -d "${COMFYUI_ROOT_PATH}" ]] && return 0 || return 1 ;; InvokeAI) [[ -d "${INVOKEAI_ROOT_PATH}" ]] && return 0 || return 1 ;; Fooocus) [[ -d "${FOOOCUS_ROOT_PATH}" ]] && return 0 || return 1 ;; lora-scripts) [[ -d "${LORA_SCRIPTS_ROOT_PATH}" ]] && return 0 || return 1 ;; kohya_ss) [[ -d "${KOHYA_SS_ROOT_PATH}" ]] && return 0 || return 1 ;; esac } ############################# sd_model_download_select
2301_81996401/term-sd
extra/download-model.sh
Shell
agpl-3.0
5,645
#!/bin/bash . "${START_PATH}"/term-sd/modules/install_prepare.sh . "${START_PATH}"/term-sd/modules/get_modelscope_model.sh . "${START_PATH}"/term-sd/modules/term_sd_git.sh . "${START_PATH}"/term-sd/modules/term_sd_task_manager.sh . "${START_PATH}"/term-sd/modules/term_sd_manager.sh . "${START_PATH}"/term-sd/modules/term_sd_proxy.sh . "${START_PATH}"/term-sd/modules/term_sd_try.sh if [[ ! -d "${SD_WEBUI_ROOT_PATH}" ]]; then term_sd_echo "未安装 Stable-Diffusion-WebUI" else # 删除 SD WebUI 插件安装任务文件 rm -f "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" download_mirror_select # 下载镜像源选择 # 插件选择 SD_WEBUI_INSTALL_EXTENSION_LIST=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 安装" \ --backtitle "Stable-Diffusion-WebUI 插件安装选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要安装的 Stable-Diffusion-WebUI 插件" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}/term-sd/install/sd_webui/dialog_sd_webui_extension.sh" | awk '{print $1 " " $2 " OFF"}') \ 3>&1 1>&2 2>&3) # 插件模型列表选择 if is_use_modelscope_src; then sd_webui_extension_model_list_file="sd_webui_extension_ms_model.sh" else sd_webui_extension_model_list_file="sd_webui_extension_hf_model.sh" fi term_sd_echo "生成模型选择列表中" # 查找插件对应模型的编号 for i in ${SD_WEBUI_INSTALL_EXTENSION_LIST}; do sd_webui_extension_model_list="${sd_webui_extension_model_list} $(cat "${START_PATH}"/term-sd/install/sd_webui/${sd_webui_extension_model_list_file} | grep -w ${i} | awk 'NR==1{if ($NF!="") {print $1 " " $(NF-1) " " $NF} }' | awk '{sub($NF,"OFF")}1')" done # 模型选择 SD_WEBUI_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 安装" \ --backtitle "Stable-Diffusion-WebUI 插件模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 Stable-Diffusion-WebUI 插件模型" \ $(get_dialog_size_menu) \ "_null_" "=====插件模型选择=====" OFF \ ${sd_webui_extension_model_list} \ 3>&1 1>&2 2>&3) # 安装确认 if term_sd_install_confirm "是否安装 Stable-Diffusion-WebUI 插件 ?"; then term_sd_echo "生成任务队列" touch "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" # 插件 if [[ ! -z "${SD_WEBUI_INSTALL_EXTENSION_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载插件中\"" >> "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" for i in ${SD_WEBUI_INSTALL_EXTENSION_LIST}; do cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_extension.sh" | grep -w ${i} | awk '{sub(" ON "," ") ; sub(" OFF "," ")}1' >> "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" # 插件 done fi # 插件模型 if [[ ! -z "${SD_WEBUI_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载模型中\"" >> "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" if is_use_modelscope_src; then echo "__term_sd_task_sys term_sd_tmp_disable_proxy" >> "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" for i in ${SD_WEBUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_extension_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" # 插件所需的模型 done else for i in ${SD_WEBUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_extension_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" # 插件所需的模型 done fi fi term_sd_echo "任务队列生成完成" term_sd_echo "开始下载 Stable-Diffusion-WebUI 插件" cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" | wc -l) + 1 )) # 统计命令行数 for (( cmd_point=1; cmd_point<=cmd_sum; cmd_point++ )); do term_sd_echo "Stable-Diffusion-WebUI 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" "${cmd_point}" done term_sd_tmp_enable_proxy # 恢复代理 term_sd_echo "Stable-Diffusion-WebUI 插件下载结束" rm -f "${START_PATH}/term-sd/task/sd_webui_install_extension.sh" # 删除任务文件 else term_sd_echo "取消下载 Stable-Diffusion-WebUI 插件" fi fi
2301_81996401/term-sd
extra/download-sd-webui-extension.sh
Shell
agpl-3.0
4,833
#!/bin/bash # 主界面 term_sd_file_manager() { local dialog_arg local file_manager_select while true; do dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "Term-SD 备份选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择需要备份的软件\n当前备份文件存储目录: ${START_PATH}/term-sd/backup" \ $(get_dialog_size_menu) \ "0" "> 帮助" \ "1" "> Stable-Diffusion-WebUI 数据管理" \ "2" "> ComfyUI 数据管理" \ "3" "> InvokeAI 数据管理" \ "4" "> Fooocus 数据管理" \ "5" "> lora-scripts 数据管理" \ "6" "> kohya_ss 数据管理" \ "7" "> 退出" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 0) dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "Term-SD 帮助选项" \ --ok-label "确认" \ --msgbox "$(term_sd_file_manager_help)" \ $(get_dialog_size) continue ;; 1) file_manager_select="stable-diffusion-webui" ;; 2) file_manager_select="ComfyUI" ;; 3) file_manager_select="InvokeAI" ;; 4) file_manager_select="Fooocus" ;; 5) file_manager_select="lora-scripts" ;; 6) file_manager_select="kohya_ss" ;; 7) break ;; *) break ;; esac if is_sd_folder_exist "${file_manager_select}"; then data_backup_manager "${file_manager_select}" else dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "Term-SD 备份选项" \ --ok-label "确认" \ --msgbox "${file_manager_select} 未安装" \ $(get_dialog_size) fi done } # 管理界面 data_backup_manager() { local start_time local dialog_arg local name=$@ while true; do dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "${name} 备份选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择要进行的操作" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 备份 ${name} 数据" \ "2" "> 恢复 ${name} 数据" \ "3" "> 删除 ${name} 数据备份" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_echo "是否备份 ${name} 数据 (yes/no) ?" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in y|yes|YES|Y) start_time=$(date +%s) term_sd_echo "开始备份 ${name} 数据" term_sd_data_backup ${name} dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${name} 备份选项" \ --ok-label "确认" \ --msgbox "备份 ${name} 数据完成, $(term_sd_file_operate_time $start_time)" \ $(get_dialog_size) ;; *) term_sd_echo "取消操作" ;; esac ;; 2) term_sd_echo "是否恢复 ${name} 数据 (yes/no) ?" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in y|yes|YES|Y) if [ -d "term-sd/backup/${name}" ]; then start_time=$(date +%s) term_sd_echo "开始恢复 ${name} 数据" term_sd_data_restore ${name} dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${name} 备份选项" \ --ok-label "确认" \ --msgbox "恢复 ${name} 数据完成, $(term_sd_file_operate_time ${start_time})" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${name} 备份选项" \ --ok-label "确认" \ --msgbox "${name} 未备份" \ $(get_dialog_size) fi ;; *) term_sd_echo "取消操作" ;; esac ;; 3) term_sd_echo "是否删除 ${name} 数据备份 (yes/no) s?" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in y|yes|YES|Y) if [ -d "term-sd/backup/${name}" ]; then start_time=$(date +%s) term_sd_echo "开始删除 ${name} 数据备份" rm -rf term-sd/backup/${name} dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${name} 备份选项" \ --ok-label "确认" \ --msgbox "删除 ${name} 数据备份完成, $(term_sd_file_operate_time ${start_time})" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${name} 备份选项" \ --ok-label "确认" \ --msgbox "${name} 未备份" \ $(get_dialog_size) fi ;; *) term_sd_echo "取消操作" ;; esac ;; *) break ;; esac done } # 帮助 term_sd_file_manager_help() { cat<<EOF 该备份脚本会在 Term-SD 目录生成 "term-sd/backup" 文件夹,用于储存备份数据 以下为脚本备份的数据: Stable-Diffusion-WebUI ├── cache.json 模型 Hash 缓存 ├── config.json WebUI 设置 ├── embeddings Embedding 模型目录 ├── extensions WebUI 插件目录 ├── models 模型路径 ├── outputs 图片保存路径 ├── params.txt 上次生图参数 ├── ui-config.json 界面设置 └── styles.csv 提示词预设 ComfyUI ├── custom_nodes 自定义节点路径 ├── models 模型路径 ├── output 图片保存路径 ├──web └── extensions 插件路径(少见) └──user └──default └──workflows 工作流保存路径 InvokeAI └── invokeai 模型,图片,配置文件路径 Fooocus ├── config.txt Fooocus 设置 ├── models 模型目录 └── outputs 图片保存路径 lora-scripts ├── config │ └── autosave 训练参数保存路径 ├── logs 日志路径 ├── output 模型保存路径 ├── sd-models 训练底模路径 └── train 训练集路径 kohya_ss ├── output 模型保存路径 ├── models 训练底模路径 └── train 训练集路径 EOF } # 检测文件夹存在 is_sd_folder_exist() { case "$@" in stable-diffusion-webui) [ -d "${SD_WEBUI_ROOT_PATH}" ] && return 0 || return 1 ;; ComfyUI) [ -d "${COMFYUI_ROOT_PATH}" ] && return 0 || return 1 ;; InvokeAI) [ -d "${INVOKEAI_ROOT_PATH}" ] && return 0 || return 1 ;; Fooocus) [ -d "${FOOOCUS_ROOT_PATH}" ] && return 0 || return 1 ;; lora-scripts) [ -d "${LORA_SCRIPTS_ROOT_PATH}" ] && return 0 || return 1 ;; kohya_ss) [ -d "${KOHYA_SS_ROOT_PATH}" ] && return 0 || return 1 ;; esac } # 备份选择 term_sd_data_backup() { case "$@" in stable-diffusion-webui) sd_webui_data_backup ;; ComfyUI) comfyui_data_backup ;; InvokeAI) invokeai_data_backup ;; Fooocus) fooocus_data_backup ;; lora-scripts) lora_scripts_data_backup ;; kohya_ss) kohya_ss_data_backup ;; esac } # 恢复数据选择 term_sd_data_restore() { case "$@" in stable-diffusion-webui) sd_webui_data_restore ;; ComfyUI) comfyui_data_restore ;; InvokeAI) invokeai_data_restore ;; Fooocus) fooocus_data_restore ;; lora-scripts) lora_scripts_data_restore ;; kohya_ss) kohya_ss_data_restore ;; esac } # 时间统计 term_sd_file_operate_time() { local start_time=$@ local end_time=$(date +%s) local time_span time_span=$((end_time - start_time)) echo "用时: ${time_span} sec" } # SD WebUI sd_webui_data_backup() { term_sd_mkdir "${START_PATH}"/term-sd/backup/stable-diffusion-webui cp -rf "${SD_WEBUI_ROOT_PATH}"/embeddings "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ cp -rf "${SD_WEBUI_ROOT_PATH}"/models "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ cp -rf "${SD_WEBUI_ROOT_PATH}"/outputs "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ cp -rf "${SD_WEBUI_ROOT_PATH}"/extensions "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ cp -f "${SD_WEBUI_ROOT_PATH}"/cache.json "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ cp -f "${SD_WEBUI_ROOT_PATH}"/config.json "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ cp -f "${SD_WEBUI_ROOT_PATH}"/ui-config.json "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ cp -f "${SD_WEBUI_ROOT_PATH}"/params.txt "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ cp -f "${SD_WEBUI_ROOT_PATH}"/styles.csv "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ } sd_webui_data_restore() { cp -rf "${START_PATH}"/term-sd/backup/stable-diffusion-webui/embeddings "${SD_WEBUI_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/stable-diffusion-webui/models "${SD_WEBUI_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/stable-diffusion-webui/outputs "${SD_WEBUI_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/stable-diffusion-webui/extensions "${SD_WEBUI_ROOT_PATH}"/ cp -f "${START_PATH}"/term-sd/backup/stable-diffusion-webui/cache.json "${SD_WEBUI_ROOT_PATH}"/ cp -f "${START_PATH}"/term-sd/backup/stable-diffusion-webui/config.json "${SD_WEBUI_ROOT_PATH}"/ cp -f "${START_PATH}"/term-sd/backup/stable-diffusion-webui/ui-config.json "${SD_WEBUI_ROOT_PATH}"/ cp -f "${START_PATH}"/term-sd/backup/stable-diffusion-webui/params.txt "${SD_WEBUI_ROOT_PATH}"/ cp -f "${START_PATH}"/term-sd/backup/stable-diffusion-webui/styles.csv "${SD_WEBUI_ROOT_PATH}"/ } # ComfyUI comfyui_data_backup() { term_sd_mkdir "${START_PATH}"/term-sd/backup/ComfyUI cp -rf "${COMFYUI_ROOT_PATH}"/custom_nodes "${START_PATH}"/term-sd/backup/ComfyUI/ cp -rf "${COMFYUI_ROOT_PATH}"/models "${START_PATH}"/term-sd/backup/ComfyUI/ cp -rf "${COMFYUI_ROOT_PATH}"/output "${START_PATH}"/term-sd/backup/ComfyUI/ cp -rf "${COMFYUI_ROOT_PATH}"/web/extensions "${START_PATH}"/term-sd/backup/ComfyUI/ cp -rf "${COMFYUI_ROOT_PATH}"/user/default/workflows "${START_PATH}"/term-sd/backup/ComfyUI/ [[ -f "${COMFYUI_ROOT_PATH}/extra_model_paths.yaml" ]] && cp -f "${COMFYUI_ROOT_PATH}"/extra_model_paths.yaml "${START_PATH}"/term-sd/backup/ComfyUI/ rm -rf "${START_PATH}"/term-sd/backup/ComfyUI/web/extensions/core rm -f "${START_PATH}"/term-sd/backup/ComfyUI/web/extensions/logging.js.example } comfyui_data_restore() { cp -rf "${START_PATH}"/term-sd/backup/ComfyUI/custom_nodes "${COMFYUI_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/ComfyUI/models "${COMFYUI_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/ComfyUI/output "${COMFYUI_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/ComfyUI/web/extensions "${COMFYUI_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/ComfyUI/user/default/workflows "${COMFYUI_ROOT_PATH}" [ -f "${START_PATH}/term-sd/backup/ComfyUI/extra_model_paths.yaml" ] && cp -f "${START_PATH}"/term-sd/backup/ComfyUI/extra_model_paths.yaml "${COMFYUI_ROOT_PATH}"/ } # InvokeAI invokeai_data_backup() { term_sd_mkdir "${START_PATH}"term-sd/backup/InvokeAI cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/autoimport "${START_PATH}"/term-sd/backup/InvokeAI/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/configs "${START_PATH}"/term-sd/backup/InvokeAI/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/databases "${START_PATH}"/term-sd/backup/InvokeAI/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/nodes "${START_PATH}"/term-sd/backup/InvokeAI/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/outputs "${START_PATH}"/term-sd/backup/InvokeAI/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/text-inversion-output "${START_PATH}"/term-sd/backup/InvokeAI/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/text-inversion-training-data "${START_PATH}"/term-sd/backup/InvokeAI/ cp -f "${INVOKEAI_ROOT_PATH}"/invokeai/invokeai.yaml "${START_PATH}"/term-sd/backup/InvokeAI/ term_sd_mkdir "${START_PATH}"/term-sd/backup/InvokeAI/models cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/models/any "${START_PATH}"/term-sd/backup/InvokeAI/models/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/models/core "${START_PATH}"/term-sd/backup/InvokeAI/models/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1 "${START_PATH}"/term-sd/backup/InvokeAI/models/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2 "${START_PATH}"/term-sd/backup/InvokeAI/models/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl "${START_PATH}"/term-sd/backup/InvokeAI/models/ cp -rf "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner "${START_PATH}"/term-sd/backup/InvokeAI/models/ } invokeai_data_restore() { cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/autoimport "${INVOKEAI_ROOT_PATH}"/invokeai/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/configs "${INVOKEAI_ROOT_PATH}"/invokeai/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/databases "${INVOKEAI_ROOT_PATH}"/invokeai/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/nodes "${INVOKEAI_ROOT_PATH}"/invokeai cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/outputs "${INVOKEAI_ROOT_PATH}"/invokeai/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/text-inversion-output "${INVOKEAI_ROOT_PATH}"/invokeai/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/text-inversion-training-data "${INVOKEAI_ROOT_PATH}"/invokeai/ cp -f "${START_PATH}"/term-sd/backup/InvokeAI/invokeai.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/ term_sd_mkdir "${INVOKEAI_ROOT_PATH}"/invokeai/models cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/models/any "${INVOKEAI_ROOT_PATH}"/invokeai/models/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/models/core "${INVOKEAI_ROOT_PATH}"/invokeai/models/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/models/sd-1 "${INVOKEAI_ROOT_PATH}"/invokeai/models/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/models/sd-2 "${INVOKEAI_ROOT_PATH}"/invokeai/models/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/models/sdxl "${INVOKEAI_ROOT_PATH}"/invokeai/models/ cp -rf "${START_PATH}"/term-sd/backup/InvokeAI/models/sdxl-refiner "${INVOKEAI_ROOT_PATH}"/invokeai/models/ } # Fooocus fooocus_data_backup() { term_sd_mkdir "${START_PATH}"term-sd/backup/Fooocus cp -rf "${FOOOCUS_ROOT_PATH}"/models "${START_PATH}"term-sd/backup/Fooocus/ cp -rf "${FOOOCUS_ROOT_PATH}"/outputs "${START_PATH}"term-sd/backup/Fooocus/ cp -f "${FOOOCUS_ROOT_PATH}"/config.txt "${START_PATH}"term-sd/backup/Fooocus/ } fooocus_data_restore() { cp -rf "${START_PATH}"/term-sd/backup/Fooocus/models "${FOOOCUS_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/Fooocus/outputs "${FOOOCUS_ROOT_PATH}"/ cp -f "${START_PATH}"/term-sd/backup/Fooocus/config.txt "${FOOOCUS_ROOT_PATH}"/ } # lora-scripts lora_scripts_data_backup() { term_sd_mkdir "${START_PATH}"term-sd/backup/lora-scripts cp -rf "${LORA_SCRIPTS_ROOT_PATH}"/config/autosave "${START_PATH}"term-sd/backup/lora-scripts/ cp -rf "${LORA_SCRIPTS_ROOT_PATH}"/logs "${START_PATH}"term-sd/backup/lora-scripts/ cp -rf "${LORA_SCRIPTS_ROOT_PATH}"/output "${START_PATH}"term-sd/backup/lora-scripts/ cp -rf "${LORA_SCRIPTS_ROOT_PATH}"/sd-models "${START_PATH}"term-sd/backup/lora-scripts/ cp -rf "${LORA_SCRIPTS_ROOT_PATH}"/train "${START_PATH}"term-sd/backup/lora-scripts/ } lora_scripts_data_restore() { cp -rf "${START_PATH}"/term-sd/backup/lora-scripts/config/autosave "${LORA_SCRIPTS_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/lora-scripts/logs "${LORA_SCRIPTS_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/lora-scripts/output "${LORA_SCRIPTS_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/lora-scripts/sd-models "${LORA_SCRIPTS_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/lora-scripts/train "${LORA_SCRIPTS_ROOT_PATH}"/ } # kohya_ss kohya_ss_data_backup() { term_sd_mkdir "${START_PATH}"term-sd/backup/kohya_ss cp -rf "${KOHYA_SS_ROOT_PATH}"/output "${START_PATH}"/term-sd/backup/kohya_ss/ cp -rf "${KOHYA_SS_ROOT_PATH}"/train "${START_PATH}"/term-sd/backup/kohya_ss/ cp -rf "${KOHYA_SS_ROOT_PATH}"/models "${START_PATH}"/term-sd/backup/kohya_ss/ } kohya_ss_data_restore() { cp -rf "${START_PATH}"/term-sd/backup/kohya_ss/output "${KOHYA_SS_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/kohya_ss/train "${KOHYA_SS_ROOT_PATH}"/ cp -rf "${START_PATH}"/term-sd/backup/kohya_ss/models "${KOHYA_SS_ROOT_PATH}"/ } ################################################# if [[ -d "${START_PATH}/term-sd/backup" ]]; then term_sd_echo "备份数据文件夹路径: ${START_PATH}/term-sd/backup" else term_sd_echo "创建备份数据文件夹中, 路径: ${START_PATH}/term-sd/backup" term_sd_mkdir "${START_PATH}/term-sd/backup" fi term_sd_file_manager
2301_81996401/term-sd
extra/file-backup.sh
Shell
agpl-3.0
19,390
#!/bin/bash # 没啥用的脚本 term_sd_echo "当前可用扩展脚本列表" term_sd_print_line ls -lrh "${START_PATH}/term-sd/extra" --time-style=+"%Y-%m-%d" | awk 'NR>=2 {print " "$7}' | awk -F '.sh' '{print $1}' term_sd_print_line term_sd_echo "提示: 使用 \"--extra\" 启动参数启动扩展脚本选项界面, 或者使用 \"--extra 脚本名\" 直接启动指定的扩展脚本"
2301_81996401/term-sd
extra/list.sh
Shell
agpl-3.0
392
__term_sd_task_sys term_sd_mkdir "${COMFYUI_PARENT_PATH}" __term_sd_task_sys cd "${COMFYUI_PARENT_PATH}" __term_sd_task_sys term_sd_tmp_enable_proxy __term_sd_task_pre_core git_clone_repository https://github.com/comfyanonymous/ComfyUI "${COMFYUI_PARENT_PATH}" "${COMFYUI_FOLDER}" __term_sd_task_sys term_sd_tmp_disable_proxy # 临时取消代理, 避免一些不必要的网络减速 __term_sd_task_sys is_sd_repo_exist "${COMFYUI_ROOT_PATH}" __term_sd_task_pre_core create_venv "${COMFYUI_ROOT_PATH}" __term_sd_task_sys enter_venv "${COMFYUI_ROOT_PATH}" __term_sd_task_pre_core install_pytorch # 安装 PyTorch __term_sd_task_pre_core install_python_package -r "${COMFYUI_ROOT_PATH}"/requirements.txt __term_sd_task_pre_core set_comfyui_normal_config
2301_81996401/term-sd
install/comfyui/comfyui_core.sh
Shell
agpl-3.0
753
__term_sd_task_pre_ext_1 git_clone_repository https://github.com/Fannovel16/comfyui_controlnet_aux "${COMFYUI_ROOT_PATH}"/custom_nodes ON # ComfyUI的ControlNet辅助预处理器 __term_sd_task_pre_ext_2 git_clone_repository https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 视频生成节点 __term_sd_task_pre_ext_3 git_clone_repository https://github.com/cubiq/ComfyUI_IPAdapter_plus "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 添加ip-adapt支持 __term_sd_task_pre_ext_4 git_clone_repository https://github.com/ltdrdata/ComfyUI-Impact-Pack "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 通过检测器、细节器、升频器、管道等方便地增强图像 __term_sd_task_pre_ext_5 git_clone_repository https://github.com/kijai/ComfyUI-Marigold "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 深度图生成节点 __term_sd_task_pre_ext_6 git_clone_repository https://github.com/pythongosssss/ComfyUI-WD14-Tagger "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 图片标签反推 __term_sd_task_pre_ext_7 git_clone_repository https://github.com/huchenlei/ComfyUI-layerdiffusion "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # LayerDiffusion节点 __term_sd_task_pre_ext_8 git_clone_repository https://github.com/huchenlei/ComfyUI_DanTagGen "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用Danboou风格对tag进行润色,使出图效果更好,内容更丰富 __term_sd_task_pre_ext_9 git_clone_repository https://github.com/gameltb/Comfyui-StableSR "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 图片放大 __term_sd_task_pre_ext_10 git_clone_repository https://github.com/KohakuBlueleaf/z-tipo-extension "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用danbooru-tag和自然语言对提示词进行润色,增强模型的出图效果 __term_sd_task_pre_ext_11 git_clone_repository https://github.com/WASasquatch/was-node-suite-comfyui "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 适用于ComfyUI的广泛节点套件,包含190多个新节点 __term_sd_task_pre_ext_12 git_clone_repository https://github.com/BlenderNeko/ComfyUI_Cutoff "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 解决tag污染 __term_sd_task_pre_ext_13 git_clone_repository https://github.com/BlenderNeko/ComfyUI_TiledKSampler "${COMFYUI_ROOT_PATH}"/custom_nodes ON # ComfyUI的平铺采样器 __term_sd_task_pre_ext_14 git_clone_repository https://github.com/BlenderNeko/ComfyUI_ADV_CLIP_emb "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 高级剪辑文本编码,可让您选择解释提示权重的方式 __term_sd_task_pre_ext_15 git_clone_repository https://github.com/BlenderNeko/ComfyUI_Noise "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 噪声控制 __term_sd_task_pre_ext_16 git_clone_repository https://github.com/Davemane42/ComfyUI_Dave_CustomNode "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 图片区域控制 __term_sd_task_pre_ext_17 git_clone_repository https://github.com/Comfy-Org/ComfyUI-Manager "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 自定义节点管理器 __term_sd_task_pre_ext_18 git_clone_repository https://github.com/Zuellni/ComfyUI-Custom-Nodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI的自定义节点 __term_sd_task_pre_ext_19 git_clone_repository https://github.com/pythongosssss/ComfyUI-Custom-Scripts "${COMFYUI_ROOT_PATH}"/custom_nodes ON # ComfyUI的增强功能 __term_sd_task_pre_ext_20 git_clone_repository https://github.com/xXAdonesXx/NodeGPT "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用GPT辅助生图 __term_sd_task_pre_ext_21 git_clone_repository https://github.com/Derfuu/Derfuu_ComfyUI_ModdedNodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 方程式节点 __term_sd_task_pre_ext_22 git_clone_repository https://github.com/lilly1987/ComfyUI_node_Lilly "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 通配符文本工具 __term_sd_task_pre_ext_23 git_clone_repository https://github.com/hnmr293/ComfyUI-nodes-hnmr "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 包含X/Y/Z-plotX/Y/Z,合并,潜在可视化,采样等节点 __term_sd_task_pre_ext_24 git_clone_repository https://github.com/diontimmer/ComfyUI-Vextra-Nodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 包含像素排序,交换颜色模式,拼合颜色等节点 __term_sd_task_pre_ext_25 git_clone_repository https://github.com/omar92/ComfyUI-QualityOfLifeSuit_Omar92 "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 包含GPT辅助标签生成,字符串操作,latentTools等节点 __term_sd_task_pre_ext_26 git_clone_repository https://github.com/Fannovel16/FN16-ComfyUI-nodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI自定义节点集合 __term_sd_task_pre_ext_27 git_clone_repository https://github.com/BadCafeCode/masquerade-nodes-comfyui "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI掩码相关节点 __term_sd_task_pre_ext_28 git_clone_repository https://github.com/EllangoK/ComfyUI-post-processing-nodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI的后处理节点集合,可实现各种酷炫的图像效果 __term_sd_task_pre_ext_29 git_clone_repository https://github.com/LEv145/images-grid-comfy-plugin "${COMFYUI_ROOT_PATH}"/custom_nodes ON # XYZPlot图生成 __term_sd_task_pre_ext_30 git_clone_repository https://github.com/biegert/ComfyUI-CLIPSeg "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 利用CLIPSeg模型根据文本提示为图像修复任务生成蒙版 __term_sd_task_pre_ext_31 git_clone_repository https://github.com/Jcd1230/rembg-comfyui-node "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 背景去除 __term_sd_task_pre_ext_32 git_clone_repository https://github.com/TinyTerra/ComfyUI_tinyterraNodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI的自定义节点 __term_sd_task_pre_ext_33 git_clone_repository https://github.com/guoyk93/yk-node-suite-comfyui "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI的自定义节点 __term_sd_task_pre_ext_34 git_clone_repository https://github.com/comfyanonymous/ComfyUI_experiments "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI的一些实验性自定义节点 __term_sd_task_pre_ext_35 git_clone_repository https://github.com/gamert/ComfyUI_tagger "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 图片tag反推 __term_sd_task_pre_ext_36 git_clone_repository https://github.com/YinBailiang/MergeBlockWeighted_fo_ComfyUI "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 权重合并 __term_sd_task_pre_ext_37 git_clone_repository https://github.com/Kaharos94/ComfyUI-Saveaswebp "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 将生成的图片保存为webp格式 __term_sd_task_pre_ext_38 git_clone_repository https://github.com/trojblue/trNodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 通过蒙版混合两个图像 __term_sd_task_pre_ext_39 git_clone_repository https://github.com/city96/ComfyUI_NetDist "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 在多个本地GPU/联网机器上运行ComfyUI工作流程 __term_sd_task_pre_ext_40 git_clone_repository https://github.com/SLAPaper/ComfyUI-Image-Selector "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 从批处理中选择一个或多个图像 __term_sd_task_pre_ext_41 git_clone_repository https://github.com/strimmlarn/ComfyUI-Strimmlarns-Aesthetic-Score "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 图片美学评分 __term_sd_task_pre_ext_42 git_clone_repository https://github.com/ssitu/ComfyUI_UltimateSDUpscale "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 图片放大 __term_sd_task_pre_ext_43 git_clone_repository https://github.com/space-nuko/ComfyUI-Disco-Diffusion "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # DiscoDiffusion模块 __term_sd_task_pre_ext_44 git_clone_repository https://github.com/Bikecicle/ComfyUI-Waveform-Extensions "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 包括姿势,翻译等节点 __term_sd_task_pre_ext_45 git_clone_repository https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 提示词翻译节点 __term_sd_task_pre_ext_46 git_clone_repository https://github.com/AIGODLIKE/AIGODLIKE-COMFYUI-TRANSLATION "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI的翻译扩展 __term_sd_task_pre_ext_47 git_clone_repository https://github.com/Stability-AI/stability-ComfyUI-nodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # Stability-AI自定义节点支持 __term_sd_task_pre_ext_48 git_clone_repository https://github.com/hustille/ComfyUI_Fooocus_KSampler "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加fooocus噪声生成器支持 __term_sd_task_pre_ext_49 git_clone_repository https://github.com/WASasquatch/FreeU_Advanced "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 生图加速 __term_sd_task_pre_ext_50 git_clone_repository https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加ControlNet-LLLite支持 __term_sd_task_pre_ext_51 git_clone_repository https://github.com/Acly/comfyui-tooling-nodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用ComfyUI作为外部工具后端的节点 __term_sd_task_pre_ext_52 git_clone_repository https://github.com/jags111/efficiency-nodes-comfyui "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 自定义节点的集合,可帮助简化工作流程并减少节点总数 __term_sd_task_pre_ext_53 git_clone_repository https://github.com/laksjdjf/cd-tuner_negpip-ComfyUI "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 解决tag的强污染,效果比cutoff好 __term_sd_task_pre_ext_54 git_clone_repository https://github.com/yolain/ComfyUI-Easy-Use "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 自定义节点集合 __term_sd_task_pre_ext_55 git_clone_repository https://github.com/twri/sdxl_prompt_styler "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # SDXL提示词风格预设节点 __term_sd_task_pre_ext_56 git_clone_repository https://github.com/11cafe/comfyui-workspace-manager "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 工作流管理器 __term_sd_task_pre_ext_57 git_clone_repository https://github.com/talesofai/comfyui-browser "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 查看和管理ComfyUI的所有输出文件/工作流,并且添加收藏方便随时调用 __term_sd_task_pre_ext_58 git_clone_repository https://github.com/chrisgoringe/cg-use-everywhere "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 节点整理工具 __term_sd_task_pre_ext_59 git_clone_repository https://github.com/ltdrdata/ComfyUI-Inspire-Pack "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 整合多功能的节点 __term_sd_task_pre_ext_60 git_clone_repository https://github.com/mcmonkeyprojects/sd-dynamic-thresholding "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 解决使用更高的CFGScale而出现颜色问题 __term_sd_task_pre_ext_61 git_clone_repository https://github.com/rgthree/rgthree-comfy "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 节点管道工具 __term_sd_task_pre_ext_62 git_clone_repository https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes "${COMFYUI_ROOT_PATH}"/custom_nodes ON # ComfyUI自定义节点合集 __term_sd_task_pre_ext_63 git_clone_repository https://github.com/FizzleDorf/ComfyUI_FizzNodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 视频制作节点 __term_sd_task_pre_ext_64 git_clone_repository https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet "${COMFYUI_ROOT_PATH}"/custom_nodes ON # Controlnet节点,包含各种Controlnet调节选项 __term_sd_task_pre_ext_65 git_clone_repository https://github.com/WASasquatch/PowerNoiseSuite "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 噪声生成节点 __term_sd_task_pre_ext_66 git_clone_repository https://github.com/crystian/ComfyUI-Crystools "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 资源监视器 __term_sd_task_pre_ext_67 git_clone_repository https://github.com/chflame163/ComfyUI_LayerStyle "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 图层和蒙版合成节点 __term_sd_task_pre_ext_68 git_clone_repository https://github.com/Nuked88/ComfyUI-N-Sidebar "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 节点快捷收藏整理工具 __term_sd_task_pre_ext_69 git_clone_repository https://github.com/brianfitzgerald/style_aligned_comfy "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用StyleAligned保持多张图片一致性 __term_sd_task_pre_ext_70 git_clone_repository https://github.com/flowtyone/ComfyUI-Flowty-TripoSR "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加TripoSR支持 __term_sd_task_pre_ext_71 git_clone_repository https://github.com/city96/ComfyUI_ExtraModels "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加DiT,PixArt,HunYuanDiT,MiaoBi模型的支持 __term_sd_task_pre_ext_72 git_clone_repository https://github.com/kijai/ComfyUI-SUPIR "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加DiT,PixArt,T5和一些自定义VAE模型的支持 __term_sd_task_pre_ext_73 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-YoloWorld-EfficientSAM "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 对象检测与分割 __term_sd_task_pre_ext_74 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-PixArt-alpha-Diffusers "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加PixArt-α模型支持 __term_sd_task_pre_ext_75 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 对象蒙版生成 __term_sd_task_pre_ext_76 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-DepthFM "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 深度图生成 __term_sd_task_pre_ext_77 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-APISR "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 图像放大 __term_sd_task_pre_ext_78 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-ArtGallery "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 可视化风格提示词预设选择 __term_sd_task_pre_ext_79 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-BRIA_AI-RMBG "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 图片背景移除 __term_sd_task_pre_ext_80 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-I2VGenXL "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加I2VGenXL的支持 __term_sd_task_pre_ext_81 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-SegMoE "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加SegMoE的支持 __term_sd_task_pre_ext_82 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-AnyText "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加AnyText的支持 __term_sd_task_pre_ext_83 git_clone_repository https://github.com/Clybius/ComfyUI-Extra-Samplers "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加额外的采样器 __term_sd_task_pre_ext_84 git_clone_repository https://github.com/blepping/ComfyUI-sonar "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加sonar采样器 __term_sd_task_pre_ext_85 git_clone_repository https://github.com/ssitu/ComfyUI_restart_sampling "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加restart采样器 __term_sd_task_pre_ext_86 git_clone_repository https://github.com/kijai/ComfyUI-Diffusers-X-Adapter "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加x-adapter支持 __term_sd_task_pre_ext_87 git_clone_repository https://github.com/nullquant/ComfyUI-BrushNet "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加brushnet支持,用于精准重绘 __term_sd_task_pre_ext_88 git_clone_repository https://github.com/kijai/ComfyUI-BrushNet-Wrapper "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加brushnet支持,用于精准重绘 __term_sd_task_pre_ext_89 git_clone_repository https://github.com/Koishi-Star/Euler-Smea-Dyn-Sampler "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加Eular-SMEA-Dy采样算法 __term_sd_task_pre_ext_90 git_clone_repository https://github.com/blepping/ComfyUI-bleh "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 改进hypertile和deepshrink节点,提供更好的生成预览算法 __term_sd_task_pre_ext_91 git_clone_repository https://github.com/dfl/comfyui-tcd-scheduler "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加TCD采样器 __term_sd_task_pre_ext_92 git_clone_repository https://github.com/huchenlei/ComfyUI-IC-Light-Native "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加ic-light支持 __term_sd_task_pre_ext_93 git_clone_repository https://github.com/Acly/comfyui-inpaint-nodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加fooocus的重绘模型支持 __term_sd_task_pre_ext_94 git_clone_repository https://github.com/comfyanonymous/ComfyUI_TensorRT "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加TensorRT加速 __term_sd_task_pre_ext_95 git_clone_repository https://github.com/Haoming02/comfyui-diffusion-cg "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 在潜空间张量范围执行颜色分级,改进出图的效果 __term_sd_task_pre_ext_96 git_clone_repository https://github.com/Haoming02/comfyui-floodgate "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 节点控制 __term_sd_task_pre_ext_97 git_clone_repository https://github.com/Haoming02/comfyui-resharpen "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 为主体生成用于修复的蒙版,使背景与主体融合更融洽 __term_sd_task_pre_ext_98 git_clone_repository https://github.com/Haoming02/comfyui-menu-anchor "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 界面按钮位置修改 __term_sd_task_pre_ext_99 git_clone_repository https://github.com/Haoming02/comfyui-tab-handler "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 将tab按键的行为修改成聚焦文本区域 __term_sd_task_pre_ext_100 git_clone_repository https://github.com/Haoming02/comfyui-clear-screen "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 清理控制台输出 __term_sd_task_pre_ext_101 git_clone_repository https://github.com/Haoming02/comfyui-node-beautify "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 节点美化 __term_sd_task_pre_ext_102 git_clone_repository https://github.com/Haoming02/comfyui-prompt-format "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 提示词格式化工具 __term_sd_task_pre_ext_103 git_clone_repository https://github.com/huchenlei/ComfyUI_omost "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加omost模型支持 __term_sd_task_pre_ext_104 git_clone_repository https://github.com/TheMistoAI/ComfyUI-Anyline "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加anyline预处理器 __term_sd_task_pre_ext_105 git_clone_repository https://github.com/shiimizu/ComfyUI-TiledDiffusion "${COMFYUI_ROOT_PATH}"/custom_nodes ON # TiledDiffusion分块放大工具 __term_sd_task_pre_ext_106 git_clone_repository https://github.com/kijai/ComfyUI-DynamiCrafterWrapper "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ToonCrafter节点 __term_sd_task_pre_ext_107 git_clone_repository https://github.com/thisjam/comfyui-sixgod_prompt "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 提示词辅助工具 __term_sd_task_pre_ext_108 git_clone_repository https://github.com/huchenlei/ComfyUI_densediffusion "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用DenseDiffusion进行分区控制 __term_sd_task_pre_ext_109 git_clone_repository https://github.com/huchenlei/omost_region_editor "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # omost区域提示词编辑器 __term_sd_task_pre_ext_110 git_clone_repository https://github.com/huchenlei/ComfyUI-openpose-editor "${COMFYUI_ROOT_PATH}"/custom_nodes ON # openpose编辑器 __term_sd_task_pre_ext_111 git_clone_repository https://github.com/kijai/ComfyUI-IC-Light "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加lc-light支持 __term_sd_task_pre_ext_112 git_clone_repository https://github.com/kijai/ComfyUI-KJNodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 自定义节点集合 __term_sd_task_pre_ext_113 git_clone_repository https://github.com/cubiq/ComfyUI_essentials "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 自定义节点集合 __term_sd_task_pre_ext_114 git_clone_repository https://github.com/licyk/ComfyUI-Restart-Sampler "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 为ComfyUI添加Restart采样算法 __term_sd_task_pre_ext_115 git_clone_repository https://github.com/licyk/ComfyUI-TCD-Sampler "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 为ComfyUI添加TCD采样算法 __term_sd_task_pre_ext_116 git_clone_repository https://github.com/chrisgoringe/cg-noise "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加变异种子支持 __term_sd_task_pre_ext_117 git_clone_repository https://github.com/googincheng/ComfyUX "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 优化ComfyUI界面,使整理节点更方便 __term_sd_task_pre_ext_118 git_clone_repository https://github.com/ZHO-ZHO-ZHO/ComfyUI-UltraEdit-ZHO "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加UltraEdit支持 __term_sd_task_pre_ext_119 git_clone_repository https://github.com/weilin9999/WeiLin-ComfyUI-prompt-all-in-one "${COMFYUI_ROOT_PATH}"/custom_nodes ON # Prompt-all-in-one-app项目的修改版本,能够在ComfyUI中创建节点使用tag功能 __term_sd_task_pre_ext_120 git_clone_repository https://github.com/city96/ComfyUI-GGUF "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 为ComfyUI添加gguf格式模型的支持 __term_sd_task_pre_ext_121 git_clone_repository https://github.com/XLabs-AI/x-flux-comfyui "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加xlabs的controlnet模型支持 __term_sd_task_pre_ext_122 git_clone_repository https://github.com/MakkiShizu/ComfyUI-Prompt-Wildcards "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加提示词通配符支持 __term_sd_task_pre_ext_123 git_clone_repository https://github.com/chrisgoringe/cg-controller "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加类似invokeai的节点整理控制 __term_sd_task_pre_ext_124 git_clone_repository https://github.com/Clybius/ComfyUI-Latent-Modifiers "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 在Latent部分应用滤镜,调整出图效果 __term_sd_task_pre_ext_125 git_clone_repository https://github.com/BennyKok/comfyui-deploy "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 将ComfyUI工作流生成API __term_sd_task_pre_ext_126 git_clone_repository https://github.com/licyk/ComfyUI-HakuImg "${COMFYUI_ROOT_PATH}"/custom_nodes ON # 图像处理工具 __term_sd_task_pre_ext_127 git_clone_repository https://github.com/Repeerc/ComfyUI-flash-attention-rdna3-win-zluda "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 为Windows下的ZLUDA添加FlashAttension支持 __term_sd_task_pre_ext_128 git_clone_repository https://github.com/AIGODLIKE/ComfyUI-BlenderAI-node "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 为blender添加comfyui支持 __term_sd_task_pre_ext_129 git_clone_repository https://github.com/florestefano1975/comfyui-portrait-master "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用滑块调整描述人物的提示词 __term_sd_task_pre_ext_130 git_clone_repository https://github.com/Extraltodeus/sigmas_tools_and_the_golden_scheduler "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 调整调度器 __term_sd_task_pre_ext_131 git_clone_repository https://github.com/ssitu/ComfyUI_fabric "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 基于注意力的参考图像调节 __term_sd_task_pre_ext_132 git_clone_repository https://github.com/Ttl/ComfyUi_NNLatentUpscale "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用小型神经网络快速放大潜空间图像 __term_sd_task_pre_ext_133 git_clone_repository https://github.com/badjeff/comfyui_lora_tag_loader "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用提示词调用LoRA模型 __term_sd_task_pre_ext_134 git_clone_repository https://github.com/diStyApps/ComfyUI-disty-Flow "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 提供便捷的ComfyUI界面 __term_sd_task_pre_ext_135 git_clone_repository https://github.com/kijai/ComfyUI-FluxTrainer "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 在ComfyUI训练FLUX模型 __term_sd_task_pre_ext_136 git_clone_repository https://github.com/MoonHugo/ComfyUI-BiRefNet-Hugo "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加BiRefNet支持,用于移除背景 __term_sd_task_pre_ext_137 git_clone_repository https://github.com/weilin9999/WeiLin-Comfyui-Tools "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # ComfyUI提示词工具 __term_sd_task_pre_ext_138 git_clone_repository https://github.com/chengzeyi/Comfy-WaveSpeed "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 加速ComfyUI推理速度 __term_sd_task_pre_ext_139 git_clone_repository https://github.com/welltop-cn/ComfyUI-TeaCache "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 使用TeaCache加速ComfyUI推理速度 __term_sd_task_pre_ext_140 git_clone_repository https://github.com/AIGODLIKE/AIGODLIKE-ComfyUI-Studio "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 提供快捷模型管理 __term_sd_task_pre_ext_141 git_clone_repository https://github.com/pydn/ComfyUI-to-Python-Extension "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 将工作流转换为Python库进行调用 __term_sd_task_pre_ext_142 git_clone_repository https://github.com/kijai/ComfyUI-FramePackWrapper "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加FramePack支持 __term_sd_task_pre_ext_143 git_clone_repository https://github.com/tzwm/comfyui-profiler "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 统计各个节点的运行时间 __term_sd_task_pre_ext_144 git_clone_repository https://github.com/KohakuBlueleaf/HDM-ext "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 添加HDM模型加载器 __term_sd_task_pre_ext_145 git_clone_repository https://github.com/QuangLe97/ComfyUI-rgthree-comfy "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 自定义节点集合,并提供进度条显示 __term_sd_task_pre_ext_146 git_clone_repository https://github.com/Firetheft/ComfyUI_Civitai_Gallery "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 将Civitai中的图片参数导入到工作流中 __term_sd_task_pre_ext_147 git_clone_repository https://github.com/ramyma/A8R8_ComfyUI_nodes "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 提供分区绘制 __term_sd_task_pre_ext_148 git_clone_repository https://github.com/laksjdjf/cgem156-ComfyUI "${COMFYUI_ROOT_PATH}"/custom_nodes OFF # 提供分区绘制等节点
2301_81996401/term-sd
install/comfyui/comfyui_custom_node.sh
Shell
agpl-3.0
25,449
__term_sd_task_pre_ext_1 term_sd_echo "下载 ControlNet 模型中" # ControlNet(25.93g) ON __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11e_sd15_ip2p_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11e_sd15_shuffle_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11f1e_sd15_tile_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11f1p_sd15_depth_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_canny_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_inpaint_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_lineart_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_mlsd_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_normalbae_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_openpose_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_scribble_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_seg_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_softedge_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15s2_lineart_anime_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v1p_sd15_brightness.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v1p_sd15_illumination.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v1p_sd15_qrcode_monster.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/sd_control_collection/resolve/main/xinsir-controlnet-union-sdxl-1.0-promax.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r101_fpn_dl.torchscript "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/LayerNorm/DensePose-TorchScript-with-hint-image __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r50_fpn_dl.torchscript "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/LayerNorm/DensePose-TorchScript-with-hint-image __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/LiheYoung/Depth-Anything/checkpoints/depth_anything_vitl14.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/LiheYoung/Depth-Anything/checkpoints __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/LiheYoung/Depth-Anything/checkpoints_metric_depth __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/bdsqlsz/qinglong_controlnet-lllite/Annotators/7_model.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/bdsqlsz/qinglong_controlnet-lllite/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/bdsqlsz/qinglong_controlnet-lllite/Annotators/UNet.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/bdsqlsz/qinglong_controlnet-lllite/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/dhkim2810/MobileSAM/mobile_sam.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/DWPose-TorchScript-BatchSize5/rtmpose-m_ap10k_256_bs5.torchscript.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/UnJIT-DWPose/dw-ll_ucoco.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/UnJIT-DWPose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/UnJIT-DWPose/rtmpose-m_ap10k_256.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/UnJIT-DWPose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/yolo-nas-fp16 __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/yolo-nas-fp16 __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/yolo-nas-fp16 __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/hr16/yolox-onnx/yolox_l.torchscript.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/yolox-onnx __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/150_16_swin_l_oneformer_coco_100ep.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/250_16_swin_l_oneformer_ade20k_160k.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/ControlNetHED.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/ZoeD_M12_N.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/body_pose_model.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/dpt_hybrid-midas-501f0c75.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/dw-ll_ucoco_384.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/erika.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/facenet.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/hand_pose_model.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/latest_net_G.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/mlsd_large_512_fp32.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/netG.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/res101.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/scannet.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/sk_model.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/sk_model2.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/table5_pidinet.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/upernet_global_small.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/lllyasviel/Annotators/yolox_l.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/skytnt/anime-seg/isnetis.ckpt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/skytnt/anime-seg __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/yzd-v/DWPose/dw-ll_ucoco_384.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/yzd-v/DWPose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/comfyui_controlnet_aux/yzd-v/DWPose/yolox_l.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/yzd-v/DWPose __term_sd_task_pre_ext_2 term_sd_echo "下载 Animatediff 模型中" # AnimateDiff(1.67g) OFF __term_sd_task_pre_ext_2 aria2_download https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_mm.ckpt "${COMFYUI_ROOT_PATH}"/models/animatediff_models __term_sd_task_pre_ext_3 term_sd_echo "下载 IP-Adapter 模型中" # IP-Adapter(9.63g) ON __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sd15.pth "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sd15_light.pth "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sd15_plus.pth "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sd15_vit-G.safetensors "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sdxl.safetensors "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter-plus_sdxl_vit-h.safetensors "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/clip_vision/clip_g.pth "${COMFYUI_ROOT_PATH}"/models/clip_vision __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/clip_vision/clip_h.pth "${COMFYUI_ROOT_PATH}"/models/clip_vision __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/clip_vision/clip_vitl.pth "${COMFYUI_ROOT_PATH}"/models/clip_vision __term_sd_task_pre_ext_4 term_sd_echo "下载 ComfyUI-Impact-Pack 模型中" # ComfyUI-Impact-Pack(750m) ON __term_sd_task_pre_ext_4 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Impact-Pack/face_yolov8m.pt "${COMFYUI_ROOT_PATH}"/models/ultralytics/bbox __term_sd_task_pre_ext_4 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Impact-Pack/mmdet_anime-face_yolov3.pth "${COMFYUI_ROOT_PATH}"/models/ultralytics/bbox __term_sd_task_pre_ext_4 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Impact-Pack/sam_vit_b_01ec64.pth "${COMFYUI_ROOT_PATH}"/models/sams __term_sd_task_pre_ext_4 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Impact-Pack/hand_yolov8s.pt "${COMFYUI_ROOT_PATH}"/models/ultralytics/bbox __term_sd_task_pre_ext_4 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Impact-Pack/person_yolov8m-seg.pt "${COMFYUI_ROOT_PATH}"/models/ultralytics/segm __term_sd_task_pre_ext_5 term_sd_echo "下载 ComfyUI-Marigold 模型中" # ComfyUI-Marigold(5.15g) OFF __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/model_index.json "${COMFYUI_ROOT_PATH}"/diffusers __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/scheduler/scheduler_config.json "${COMFYUI_ROOT_PATH}"/diffusers/scheduler __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/text_encoder/config.json "${COMFYUI_ROOT_PATH}"/diffusers/text_encoder __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/text_encoder/model.safetensors "${COMFYUI_ROOT_PATH}"/diffusers/text_encoder __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/tokenizer/merges.txt "${COMFYUI_ROOT_PATH}"/diffusers/tokenizer __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/tokenizer/special_tokens_map.json "${COMFYUI_ROOT_PATH}"/diffusers/tokenizer __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/tokenizer/tokenizer_config.json "${COMFYUI_ROOT_PATH}"/diffusers/tokenizer __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/tokenizer/vocab.json "${COMFYUI_ROOT_PATH}"/diffusers/tokenizer __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/unet/config.json "${COMFYUI_ROOT_PATH}"/diffusers/unet __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/unet/diffusion_pytorch_model.safetensors "${COMFYUI_ROOT_PATH}"/diffusers/unet __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/vae/config.json "${COMFYUI_ROOT_PATH}"/diffusers/vae __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-Marigold/vae/diffusion_pytorch_model.safetensors "${COMFYUI_ROOT_PATH}"/diffusers/vae __term_sd_task_pre_ext_6 term_sd_echo "下载 ComfyUI-WD14-Tagger 模型中" # ComfyUI-WD14-Tagger(3.09g) ON __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-convnext-tagger-v2.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-convnext-tagger-v2.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-convnext-tagger.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-convnext-tagger.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-convnextv2-tagger-v2.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-convnextv2-tagger-v2.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-moat-tagger-v2.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-moat-tagger-v2.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-vit-tagger-v2.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-v1-4-vit-tagger-v2.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-convnext-tagger-v3.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-convnext-tagger-v3.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-swinv2-tagger-v3.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-swinv2-tagger-v3.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-vit-tagger-v3.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/ComfyUI-WD14-Tagger/wd-vit-tagger-v3.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_7 term_sd_echo "下载 ComfyUI-layerdiffusion 模型" # LayerDiffusion(10.29g) ON __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_bg2ble.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_bgble2fg.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_fg2ble.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_fgble2bg.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_transparent_attn.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_transparent_conv.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/vae_transparent_decoder.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/vae_transparent_encoder.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_8 term_sd_echo "下载 DanTagGen 模型" # DanTagGen(1.53g) OFF __term_sd_task_pre_ext_8 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/a1111-sd-webui-dtg/ggml-model-Q6_K.gguf "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI_DanTagGen/models __term_sd_task_pre_ext_8 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/a1111-sd-webui-dtg/ggml-model-Q8_0.gguf "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI_DanTagGen/models __term_sd_task_pre_ext_8 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/a1111-sd-webui-dtg/ggml-model-f16.gguf "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI_DanTagGen/models __term_sd_task_pre_ext_9 term_sd_echo "下载 Comfyui-StableSR 模型" # StableSR(422.3m) ON __term_sd_task_pre_ext_9 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-stablesr/webui_768v_139.ckpt "${COMFYUI_ROOT_PATH}"/models/stablesr __term_sd_task_pre_ext_10 term_sd_echo "下载 z-tipo-extension 模型" # z-tipo-extension(1.42g) ON __term_sd_task_pre_ext_10 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-500M_epoch5-F16.gguf "${COMFYUI_ROOT_PATH}"/models/kgen __term_sd_task_pre_ext_10 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-200M-40Btok-F16.gguf "${COMFYUI_ROOT_PATH}"/models/kgen __term_sd_task_pre_ext_10 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-200M-ft-F16.gguf "${COMFYUI_ROOT_PATH}"/models/kgen
2301_81996401/term-sd
install/comfyui/comfyui_custom_node_hf_model.sh
Shell
agpl-3.0
25,971
__term_sd_task_pre_ext_1 term_sd_echo "下载 Controlnet 模型中" # ControlNet(25.93g) ON __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11e_sd15_ip2p_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11e_sd15_shuffle_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11f1e_sd15_tile_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11f1p_sd15_depth_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_canny_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_inpaint_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_lineart_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_mlsd_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_normalbae_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_openpose_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_scribble_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_seg_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_softedge_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15s2_lineart_anime_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v1p_sd15_brightness.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v1p_sd15_illumination.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v1p_sd15_qrcode_monster.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/sd_control_collection/master/xinsir-controlnet-union-sdxl-1.0-promax.safetensors "${COMFYUI_ROOT_PATH}"/models/controlnet __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r101_fpn_dl.torchscript "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/LayerNorm/DensePose-TorchScript-with-hint-image __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r50_fpn_dl.torchscript "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/LayerNorm/DensePose-TorchScript-with-hint-image __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/LiheYoung/Depth-Anything/checkpoints/depth_anything_vitl14.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/LiheYoung/Depth-Anything/checkpoints __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/LiheYoung/Depth-Anything/checkpoints_metric_depth __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/bdsqlsz/qinglong_controlnet-lllite/Annotators/7_model.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/bdsqlsz/qinglong_controlnet-lllite/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/bdsqlsz/qinglong_controlnet-lllite/Annotators/UNet.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/bdsqlsz/qinglong_controlnet-lllite/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/dhkim2810/MobileSAM/mobile_sam.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/DWPose-TorchScript-BatchSize5/rtmpose-m_ap10k_256_bs5.torchscript.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/ __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/UnJIT-DWPose/dw-ll_ucoco.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/UnJIT-DWPose __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/UnJIT-DWPose/rtmpose-m_ap10k_256.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/UnJIT-DWPose __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/yolo-nas-fp16 __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/yolo-nas-fp16 __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/yolo-nas-fp16 __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/hr16/yolox-onnx/yolox_l.torchscript.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/yolox-onnx __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/150_16_swin_l_oneformer_coco_100ep.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/250_16_swin_l_oneformer_ade20k_160k.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/ControlNetHED.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/ZoeD_M12_N.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/body_pose_model.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/dpt_hybrid-midas-501f0c75.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/dw-ll_ucoco_384.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/erika.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/facenet.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/hand_pose_model.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/latest_net_G.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/mlsd_large_512_fp32.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/netG.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/res101.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/scannet.pt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/sk_model.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/sk_model2.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/table5_pidinet.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/upernet_global_small.pth "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/lllyasviel/Annotators/yolox_l.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/skytnt/anime-seg/isnetis.ckpt "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/skytnt/anime-seg __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/yzd-v/DWPose/dw-ll_ucoco_384.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/yzd-v/DWPose __term_sd_task_pre_ext_1 get_modelscope_model licyks/comfyui-extension-models/master/comfyui_controlnet_aux/yzd-v/DWPose/yolox_l.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/comfyui_controlnet_aux/ckpts/yzd-v/DWPose __term_sd_task_pre_ext_2 term_sd_echo "下载 Animatediff 模型中" # AnimateDiff(1.67g) OFF __term_sd_task_pre_ext_2 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-animatediff/v3_sd15_mm.ckpt "${COMFYUI_ROOT_PATH}"/models/animatediff_models __term_sd_task_pre_ext_3 term_sd_echo "下载 IP-Adapter 模型中" # IP-Adapter(9.63g) ON __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sd15.pth "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sd15_light.pth "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sd15_plus.pth "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sd15_vit-G.safetensors "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sdxl.safetensors "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter-plus_sdxl_vit-h.safetensors "${COMFYUI_ROOT_PATH}"/models/ipadapter __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1_annotator/master/clip_vision/clip_g.pth "${COMFYUI_ROOT_PATH}"/models/clip_vision __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1_annotator/master/clip_vision/clip_h.pth "${COMFYUI_ROOT_PATH}"/models/clip_vision __term_sd_task_pre_ext_3 get_modelscope_model licyks/controlnet_v1.1_annotator/master/clip_vision/clip_vitl.pth "${COMFYUI_ROOT_PATH}"/models/clip_vision __term_sd_task_pre_ext_4 term_sd_echo "下载 ComfyUI-Impact-Pack 模型中" # ComfyUI-Impact-Pack(750m) ON __term_sd_task_pre_ext_4 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Impact-Pack/face_yolov8m.pt "${COMFYUI_ROOT_PATH}"/models/ultralytics/bbox __term_sd_task_pre_ext_4 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Impact-Pack/mmdet_anime-face_yolov3.pth "${COMFYUI_ROOT_PATH}"/models/ultralytics/bbox __term_sd_task_pre_ext_4 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Impact-Pack/sam_vit_b_01ec64.pth "${COMFYUI_ROOT_PATH}"/models/sams __term_sd_task_pre_ext_4 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Impact-Pack/hand_yolov8s.pt "${COMFYUI_ROOT_PATH}"/models/ultralytics/bbox __term_sd_task_pre_ext_4 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Impact-Pack/person_yolov8m-seg.pt "${COMFYUI_ROOT_PATH}"/models/ultralytics/segm __term_sd_task_pre_ext_5 term_sd_echo "下载 ComfyUI-Marigold 模型中" # ComfyUI-Marigold(5.15g) OFF __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/model_index.json "${COMFYUI_ROOT_PATH}"/diffusers __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/scheduler/scheduler_config.json "${COMFYUI_ROOT_PATH}"/diffusers/scheduler __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/text_encoder/config.json "${COMFYUI_ROOT_PATH}"/diffusers/text_encoder __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/text_encoder/model.safetensors "${COMFYUI_ROOT_PATH}"/diffusers/text_encoder __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/tokenizer/merges.txt "${COMFYUI_ROOT_PATH}"/diffusers/tokenizer __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/tokenizer/special_tokens_map.json "${COMFYUI_ROOT_PATH}"/diffusers/tokenizer __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/tokenizer/tokenizer_config.json "${COMFYUI_ROOT_PATH}"/diffusers/tokenizer __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/tokenizer/vocab.json "${COMFYUI_ROOT_PATH}"/diffusers/tokenizer __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/unet/config.json "${COMFYUI_ROOT_PATH}"/diffusers/unet __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/unet/diffusion_pytorch_model.safetensors "${COMFYUI_ROOT_PATH}"/diffusers/unet __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/vae/config.json "${COMFYUI_ROOT_PATH}"/diffusers/vae __term_sd_task_pre_ext_5 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-Marigold/vae/diffusion_pytorch_model.safetensors "${COMFYUI_ROOT_PATH}"/diffusers/vae __term_sd_task_pre_ext_6 term_sd_echo "下载 ComfyUI-WD14-Tagger 模型中" # ComfyUI-WD14-Tagger(3.09g) ON __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-convnext-tagger-v2.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-convnext-tagger-v2.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-convnext-tagger.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-convnext-tagger.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-convnextv2-tagger-v2.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-convnextv2-tagger-v2.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-moat-tagger-v2.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-moat-tagger-v2.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-vit-tagger-v2.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-v1-4-vit-tagger-v2.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-convnext-tagger-v3.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-convnext-tagger-v3.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-swinv2-tagger-v3.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-swinv2-tagger-v3.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-vit-tagger-v3.csv "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/comfyui-extension-models/master/ComfyUI-WD14-Tagger/wd-vit-tagger-v3.onnx "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI-WD14-Tagger/models __term_sd_task_pre_ext_7 term_sd_echo "下载 ComfyUI-LayerDiffusion 模型" # LayerDiffusion(10.29g) ON __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_bg2ble.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_bgble2fg.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_fg2ble.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_fgble2bg.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_transparent_attn.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_transparent_conv.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/vae_transparent_decoder.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/vae_transparent_encoder.safetensors "${COMFYUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_8 term_sd_echo "下载 DanTagGen 模型" # DanTagGen(1.53g) OFF __term_sd_task_pre_ext_8 get_modelscope_model licyks/sd-extensions-model/master/a1111-sd-webui-dtg/ggml-model-Q6_K.gguf "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI_DanTagGen/models __term_sd_task_pre_ext_8 get_modelscope_model licyks/sd-extensions-model/master/a1111-sd-webui-dtg/ggml-model-Q8_0.gguf "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI_DanTagGen/models __term_sd_task_pre_ext_8 get_modelscope_model licyks/sd-extensions-model/master/a1111-sd-webui-dtg/ggml-model-f16.gguf "${COMFYUI_ROOT_PATH}"/custom_nodes/ComfyUI_DanTagGen/models __term_sd_task_pre_ext_9 term_sd_echo "下载 Comfyui-StableSR 模型" # StableSR(422.3m) ON __term_sd_task_pre_ext_9 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-stablesr/webui_768v_139.ckpt "${COMFYUI_ROOT_PATH}"/models/stablesr __term_sd_task_pre_ext_10 term_sd_echo "下载 z-tipo-extension 模型" # z-tipo-extension(1.02g) ON __term_sd_task_pre_ext_10 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-500M_epoch5-F16.gguf "${COMFYUI_ROOT_PATH}"/models/kgen __term_sd_task_pre_ext_10 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-200M-40Btok-F16.gguf "${COMFYUI_ROOT_PATH}"/models/kgen __term_sd_task_pre_ext_10 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-200M-ft-F16.gguf "${COMFYUI_ROOT_PATH}"/models/kgen
2301_81996401/term-sd
install/comfyui/comfyui_custom_node_ms_model.sh
Shell
agpl-3.0
23,447
__term_sd_task_pre_ext_1 git_clone_repository https://github.com/diffus3/ComfyUI-extensions "${COMFYUI_ROOT_PATH}"/web/extensions OFF # ComfyUI插件扩展 __term_sd_task_pre_ext_2 git_clone_repository https://github.com/rock-land/graphNavigator "${COMFYUI_ROOT_PATH}"/web/extensions OFF # 节点辅助插件
2301_81996401/term-sd
install/comfyui/comfyui_extension.sh
Shell
agpl-3.0
309
__term_sd_task_pre_model_1 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/v1-5-pruned-emaonly.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/animefull-final-pruned.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/nai1-artist_all_in_one_merge.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # nai1-artist_all_in_one_merge(2.13g) OFF __term_sd_task_pre_model_5 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/Counterfeit-V3.0_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Counterfeit-V3.0(4.24g) OFF __term_sd_task_pre_model_6 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/cetusMix_Whalefall2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # cetusMix_Whalefall2(3.85g) OFF __term_sd_task_pre_model_7 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/cuteyukimixAdorable_neochapter3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # cuteyukimixAdorable_neochapter3(2.3g) OFF __term_sd_task_pre_model_8 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/ekmix-pastel-fp16-no-ema.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # ekmix-pastel(2.13g) OFF __term_sd_task_pre_model_9 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/ex2K_sse2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # ex2K_sse2(2.38g) OFF __term_sd_task_pre_model_10 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/kohakuV5_rev2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohakuV5_rev2(2.13g) OFF __term_sd_task_pre_model_11 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/meinamix_meinaV11.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # meinamix_meinaV11(2.13g) OFF __term_sd_task_pre_model_12 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/oukaStar_10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # oukaStar_10(5.43g) OFF __term_sd_task_pre_model_13 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/pastelMixStylizedAnime_pastelMixPrunedFP16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # pastelMixStylizedAnime(2.13g) OFF __term_sd_task_pre_model_14 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/rabbit_v6.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # rabbit_v6(1.97g) OFF __term_sd_task_pre_model_15 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/sweetSugarSyndrome_rev15.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sweetSugarSyndrome_rev15(2.13g) OFF __term_sd_task_pre_model_16 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/AnythingV5Ink_ink.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # AnythingV5Ink_ink(2.13g) OFF __term_sd_task_pre_model_17 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/bartstyledbBlueArchiveArtStyleFineTunedModel_v10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # bartstyledbBlueArchiveArtStyle(2.13g) OFF __term_sd_task_pre_model_18 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/meinapastel_v6Pastel.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # meinapastel_v6(2.13g) OFF __term_sd_task_pre_model_19 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/qteamixQ_omegaFp16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # qteamix(2.13g) OFF __term_sd_task_pre_model_20 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/tmndMix_tmndMixSPRAINBOW.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # tmndMix(2.13g) OFF __term_sd_task_pre_model_21 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_22 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/v2-1_768-ema-pruned.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_23 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/wd-1-4-anime_e2.ckpt "${COMFYUI_ROOT_PATH}"/models/checkpoints # wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_24 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/wd-mofu-fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_25 # =====SDXL大模型===== OFF __term_sd_task_pre_model_26 aria2_download https://huggingface.co/licyk/sd-lora/resolve/main/sdxl/sd_xl_offset_example-lora_1.0.safetensors "${COMFYUI_ROOT_PATH}"/models/loras # sd_xl_offset_example-lora_1.0(49.6m) OFF __term_sd_task_pre_model_27 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_28 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_29 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_30 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/cosxl.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # cosxl(6.94g) OFF __term_sd_task_pre_model_31 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/cosxl_edit.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # cosxl_edit(6.94g) OFF __term_sd_task_pre_model_32 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0-base.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_33 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_34 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_35 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_36 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_37 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_38 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/holodayo-xl-2.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_39 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kivotos-xl-2.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_40 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/clandestine-xl-1.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_41 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/UrangDiffusion-1.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_42 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_43 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_anime_V52.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_44 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_45 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_46 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_47 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_48 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-zeta.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_49 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/starryXLV52_v52.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_50 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v20.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_51 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v30.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_52 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_53 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_54 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_55 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_56 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_57 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_58 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_59 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_60 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_61 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_62 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_63 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_64 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_65 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_66 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_67 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_68 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tIllunai3_v4.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_69 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_70 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_71 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_72 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_73 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_74 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_75 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_76 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_77 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_78 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_79 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_80 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_81 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_82 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_83 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_84 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_85 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/pdForAnime_v20.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_86 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_87 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_88 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_89 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_90 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_91 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/AnythingXL_xl.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_92 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/abyssorangeXLElse_v10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_93 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animaPencilXL_v200.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_94 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/bluePencilXL_v401.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_95 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/nekorayxl_v06W3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_96 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/CounterfeitXL-V1.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_97 # =====SD3大模型===== OFF __term_sd_task_pre_model_98 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3_medium.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3_medium(4.34g) OFF __term_sd_task_pre_model_99 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3_medium_incl_clips.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3_medium_incl_clips(5.97g) OFF __term_sd_task_pre_model_100 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3_medium_incl_clips_t5xxlfp8.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3_medium_incl_clips_t5xxlfp8(10.87g) OFF __term_sd_task_pre_model_101 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_large.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_large(16.5g) OFF __term_sd_task_pre_model_102 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_large_fp8_scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_large_fp8_scaled(14.9g) OFF __term_sd_task_pre_model_103 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_large_turbo.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_large_turbo(16.5g) OFF __term_sd_task_pre_model_104 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_medium.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_medium(5.1g) OFF __term_sd_task_pre_model_105 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_medium_incl_clips_t5xxlfp8scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_medium_incl_clips_t5xxlfp8scaled(11.6g) OFF __term_sd_task_pre_model_106 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/emi3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # emi3(16.5g) OFF __term_sd_task_pre_model_107 # =====SD3文本编码器===== OFF __term_sd_task_pre_model_108 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/clip_g.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # clip_g(1.39g) OFF __term_sd_task_pre_model_109 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/clip_l.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # clip_l(246.1m) OFF __term_sd_task_pre_model_110 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/t5xxl_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_111 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/t5xxl_fp8_e4m3fn.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_112 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/t5xxl_fp8_e4m3fn_scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp8_e4m3fn_scaled(5.16g) OFF __term_sd_task_pre_model_113 # =====HunyuanDiT===== OFF __term_sd_task_pre_model_114 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/hunyuan_dit_comfyui/hunyuan_dit_1.2.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # hunyuan_dit_1.2(8.24g) OFF __term_sd_task_pre_model_115 aria2_download https://huggingface.co/licyk/comfyui-extension-models/resolve/main/hunyuan_dit_comfyui/comfy_freeway_animation_hunyuan_dit_180w.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # comfy_freeway_animation_hunyuan_dit_180w(8.24g) OFF __term_sd_task_pre_model_116 # =====FLUX模型===== OFF __term_sd_task_pre_model_117 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev(23.8g) OFF __term_sd_task_pre_model_118 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-fp8.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux1-dev-fp8(17.2g) OFF __term_sd_task_pre_model_119 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux_dev_fp8_scaled_diffusion_model.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux_dev_fp8_scaled_diffusion_model(11.9g) OFF __term_sd_task_pre_model_120 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-bnb-nf4-v2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux1-dev-bnb-nf4-v2(12g) OFF __term_sd_task_pre_model_121 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-bnb-nf4.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux1-dev-bnb-nf4(11.5g) OFF __term_sd_task_pre_model_122 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q2_K.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q2_K-gguf(4.03g) OFF __term_sd_task_pre_model_123 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q3_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q3_K_S-gguf(5.23g) OFF __term_sd_task_pre_model_124 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q4_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q4_0-gguf(6.79g) OFF __term_sd_task_pre_model_125 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q4_1.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q4_1-gguf(7.53g) OFF __term_sd_task_pre_model_126 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q4_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q4_K_S-gguf(6.81g) OFF __term_sd_task_pre_model_127 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q5_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q5_0-gguf(8.27g) OFF __term_sd_task_pre_model_128 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q5_1.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q5_1-gguf(9.01g) OFF __term_sd_task_pre_model_129 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q5_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q5_K_S-gguf(8.29g) OFF __term_sd_task_pre_model_130 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q6_K.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q6_K-gguf(9.86g) OFF __term_sd_task_pre_model_131 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q8_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_132 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-F16.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-F16-gguf(23.8g) OFF __term_sd_task_pre_model_133 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell(23.8g) OFF __term_sd_task_pre_model_134 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-fp8.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux1-schnell-fp8(17.2g) OFF __term_sd_task_pre_model_135 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q2_K.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q2_K-gguf(4.01g) OFF __term_sd_task_pre_model_136 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q3_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q3_K_S-gguf(5.21g) OFF __term_sd_task_pre_model_137 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q4_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q4_0-gguf(6.77g) OFF __term_sd_task_pre_model_138 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q4_1.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q4_1-gguf(7.51g) OFF __term_sd_task_pre_model_139 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q4_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q4_K_S-gguf(6.78g) OFF __term_sd_task_pre_model_140 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q5_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q5_0-gguf(8.25g) OFF __term_sd_task_pre_model_141 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q5_1.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q5_1-gguf(8.99g) OFF __term_sd_task_pre_model_142 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q5_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q5_K_S-gguf(8.26g) OFF __term_sd_task_pre_model_143 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q6_K.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q6_K-gguf(9.83g) OFF __term_sd_task_pre_model_144 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q8_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_145 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-F16.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-F16-gguf(23.8g) OFF __term_sd_task_pre_model_146 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/ashen0209-flux1-dev2pro.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_147 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/jimmycarter-LibreFLUX.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_148 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/nyanko7-flux-dev-de-distill.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_149 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/shuttle-3-diffusion.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_150 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-krea-dev_fp8_scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-krea-dev_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_151 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-krea-dev.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-krea-dev(23.8g) OFF __term_sd_task_pre_model_152 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-kontext_fp8_scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-kontext_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_153 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-kontext-dev.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-kontext-dev(23.8g) OFF __term_sd_task_pre_model_154 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/chroma-unlocked-v50.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # chroma-unlocked-v50(23.8g) OFF __term_sd_task_pre_model_155 # =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_156 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/clip_l.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # clip_l(246.1m) OFF __term_sd_task_pre_model_157 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5xxl_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_158 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_159 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_L.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q3_K_L-gguf(2.46g) OFF __term_sd_task_pre_model_160 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_M.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q3_K_M-gguf(2.3g) OFF __term_sd_task_pre_model_161 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q3_K_S-gguf(2.1g) OFF __term_sd_task_pre_model_162 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q4_K_M.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q4_K_M-gguf(2.9g) OFF __term_sd_task_pre_model_163 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q4_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q4_K_S-gguf(2.74g) OFF __term_sd_task_pre_model_164 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q5_K_M.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q5_K_M-gguf(3.39g) OFF __term_sd_task_pre_model_165 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q5_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q5_K_S-gguf(3.29g) OFF __term_sd_task_pre_model_166 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q6_K.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q6_K-gguf(3.91g) OFF __term_sd_task_pre_model_167 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q8_0.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q8_0-gguf(5.06g) OFF __term_sd_task_pre_model_168 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-f16.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-f16-gguf(9.53g) OFF __term_sd_task_pre_model_169 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-f32.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-f32-gguf(19.1g) OFF __term_sd_task_pre_model_170 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_vae/ae.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # ae(335m) OFF __term_sd_task_pre_model_171 # =====VAE模型===== OFF __term_sd_task_pre_model_172 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sd_1.5/vae-ft-ema-560000-ema-pruned.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_173 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sd_1.5/vae-ft-mse-840000-ema-pruned.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # vae-ft-mse-840000-ema-pruned(334.6m) ON __term_sd_task_pre_model_174 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sdxl_1.0/sdxl_vae.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # sdxl_vae(334.6m) OFF __term_sd_task_pre_model_175 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sdxl_1.0/sdxl_fp16_fix_vae.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_176 # =====VAE-approx模型===== OFF __term_sd_task_pre_model_177 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/vae-approx/model.pt "${COMFYUI_ROOT_PATH}"/models/vae_approx # VAE-approx模型 model(0.2m) ON __term_sd_task_pre_model_178 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/vae-approx/vaeapprox-sdxl.pt "${COMFYUI_ROOT_PATH}"/models/vae_approx # vaeapprox-sdxl(0.2m) ON __term_sd_task_pre_model_179 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/vae-approx/vaeapprox-sd3.pt "${COMFYUI_ROOT_PATH}"/models/vae_approx # vaeapprox-sd3(0.2m) OFF __term_sd_task_pre_model_180 # =====放大模型===== OFF __term_sd_task_pre_model_181 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/Codeformer/codeformer-v0.1.0.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # codeformer-v0.1.0(376.6m) OFF __term_sd_task_pre_model_182 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_2_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_2_x2(139.7m) OFF __term_sd_task_pre_model_183 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_2_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_2_x3(140.4m) OFF __term_sd_task_pre_model_184 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_2_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_2_x4(140.3m) OFF __term_sd_task_pre_model_185 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_S_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_S_x2(87.7m) OFF __term_sd_task_pre_model_186 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_S_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_S_x3(88.4m) OFF __term_sd_task_pre_model_187 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_S_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_S_x4(88.2m) OFF __term_sd_task_pre_model_188 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_light_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_light_x2(45.7m) OFF __term_sd_task_pre_model_189 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_light_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_light_x3(45.7m) OFF __term_sd_task_pre_model_190 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_light_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_light_x4(45.8m) OFF __term_sd_task_pre_model_191 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_x2(154.1m) OFF __term_sd_task_pre_model_192 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_x3(154.8m) OFF __term_sd_task_pre_model_193 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_x4(154.7m) OFF __term_sd_task_pre_model_194 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/16xPSNR.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 16xPSNR(67.2m) OFF __term_sd_task_pre_model_195 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x-ITF-SkinDiffDetail-Lite-v1.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x-ITF-SkinDiffDetail-Lite-v1(20.1m) OFF __term_sd_task_pre_model_196 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NMKD-BrightenRedux_200k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NMKD-BrightenRedux_200k(66.6m) OFF __term_sd_task_pre_model_197 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NMKD-YandereInpaint_375000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NMKD-YandereInpaint_375000_G(66.6m) OFF __term_sd_task_pre_model_198 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NMKDDetoon_97500_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NMKDDetoon_97500_G(66.6m) OFF __term_sd_task_pre_model_199 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NoiseToner-Poisson-Detailed_108000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NoiseToner-Poisson-Detailed_108000_G(66.6m) OFF __term_sd_task_pre_model_200 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NoiseToner-Uniform-Detailed_100000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NoiseToner-Uniform-Detailed_100000_G(66.6m) OFF __term_sd_task_pre_model_201 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x-UltraSharp.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x-UltraSharp(66.9m) OFF __term_sd_task_pre_model_202 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4xPSNR.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4xPSNR(66.9m) OFF __term_sd_task_pre_model_203 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_CountryRoads_377000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_CountryRoads_377000_G(66.9m) OFF __term_sd_task_pre_model_204 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_Fatality_Comix_260000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_Fatality_Comix_260000_G(66.9m) OFF __term_sd_task_pre_model_205 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-Siax_200k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-Siax_200k(66.9m) OFF __term_sd_task_pre_model_206 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-Superscale-Artisoftject_210000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-Superscale-Artisoftject_210000_G(66.9m) OFF __term_sd_task_pre_model_207 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-Superscale-SP_178000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-Superscale-SP_178000_G(66.9m) ON __term_sd_task_pre_model_208 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-UltraYandere-Lite_280k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-UltraYandere-Lite_280k(20.1m) OFF __term_sd_task_pre_model_209 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-UltraYandere_300k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-UltraYandere_300k(66.9m) OFF __term_sd_task_pre_model_210 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-YandereNeoXL_200k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-YandereNeoXL_200k(66.9m) OFF __term_sd_task_pre_model_211 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKDSuperscale_Artisoft_120000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKDSuperscale_Artisoft_120000_G(67.1m) OFF __term_sd_task_pre_model_212 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NickelbackFS_72000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NickelbackFS_72000_G(67.1m) OFF __term_sd_task_pre_model_213 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_Nickelback_70000G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_Nickelback_70000G(66.9m) OFF __term_sd_task_pre_model_214 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_RealisticRescaler_100000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_RealisticRescaler_100000_G(134.1m) OFF __term_sd_task_pre_model_215 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_Valar_v1.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_Valar_v1(67.5m) OFF __term_sd_task_pre_model_216 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_fatal_Anime_500000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_fatal_Anime_500000_G(66.9m) OFF __term_sd_task_pre_model_217 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_foolhardy_Remacri.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_foolhardy_Remacri(67m) OFF __term_sd_task_pre_model_218 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/8xPSNR.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 8xPSNR(67.1m) OFF __term_sd_task_pre_model_219 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/8x_NMKD-Superscale_150000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 8x_NMKD-Superscale_150000_G(67.1m) OFF __term_sd_task_pre_model_220 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/8x_NMKD-Typescale_175k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 8x_NMKD-Typescale_175k(67.1m) OFF __term_sd_task_pre_model_221 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/A_ESRGAN_Single.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # A_ESRGAN_Single(134.1m) OFF __term_sd_task_pre_model_222 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/BSRGAN.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # BSRGAN(67.1m) OFF __term_sd_task_pre_model_223 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/BSRGANx2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # BSRGANx2(66.8m) OFF __term_sd_task_pre_model_224 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/BSRNet.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # BSRNet(67.1m) OFF __term_sd_task_pre_model_225 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/ESRGAN_4x.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # ESRGAN_4x(66.9m) OFF __term_sd_task_pre_model_226 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/LADDIER1_282500_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # LADDIER1_282500_G(66.9m) OFF __term_sd_task_pre_model_227 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Neutral_115000_swaG.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscalerV2-Neutral_115000_swaG(66.9m) OFF __term_sd_task_pre_model_228 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Sharp_101000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscalerV2-Sharp_101000_G(66.9m) OFF __term_sd_task_pre_model_229 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Sharper_103000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscalerV2-Sharper_103000_G(66.9m) OFF __term_sd_task_pre_model_230 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/Legacy/4x_UniversalUpscaler-Detailed_155000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscaler-Detailed_155000_G(66.9m) OFF __term_sd_task_pre_model_231 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/Legacy/4x_UniversalUpscaler-Soft_190000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscaler-Soft_190000_G(66.9m) OFF __term_sd_task_pre_model_232 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/WaifuGAN_v3_30000.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # WaifuGAN_v3_30000(66.9m) OFF __term_sd_task_pre_model_233 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/lollypop.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # lollypop(66.9m) OFF __term_sd_task_pre_model_234 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/sudo_rife4_269.662_testV1_scale1.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # sudo_rife4_269.662_testV1_scale1(33.7m) OFF __term_sd_task_pre_model_235 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/GFPGANv1.3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # GFPGANv1.3(348.6m) OFF __term_sd_task_pre_model_236 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/GFPGANv1.4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # GFPGANv1.4(348.6m) OFF __term_sd_task_pre_model_237 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/detection_Resnet50_Final.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # detection_Resnet50_Final(109.5m) OFF __term_sd_task_pre_model_238 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/parsing_bisenet.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # parsing_bisenet(12.2m) OFF __term_sd_task_pre_model_239 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/parsing_parsenet.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # parsing_parsenet(85.3m) OFF __term_sd_task_pre_model_240 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/RealESRGAN/RealESRGAN_x4plus.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # RealESRGAN_x4plus(67m) ON __term_sd_task_pre_model_241 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/RealESRGAN/RealESRGAN_x4plus_anime_6B.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # RealESRGAN_x4plus_anime_6B(17.9m) ON __term_sd_task_pre_model_242 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DF2K_s64w8_SwinIR-M_x2(67.2m) OFF __term_sd_task_pre_model_243 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DF2K_s64w8_SwinIR-M_x3(68m) OFF __term_sd_task_pre_model_244 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DF2K_s64w8_SwinIR-M_x4(67.8m) OFF __term_sd_task_pre_model_245 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DF2K_s64w8_SwinIR-M_x8(68.4m) OFF __term_sd_task_pre_model_246 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x2(59m) OFF __term_sd_task_pre_model_247 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x3(59.7m) OFF __term_sd_task_pre_model_248 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x4(59.6m) OFF __term_sd_task_pre_model_249 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x8(60.2m) OFF __term_sd_task_pre_model_250 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/Swin2SR_ClassicalSR_X2_64.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # Swin2SR_ClassicalSR_X2_64(68.7m) OFF __term_sd_task_pre_model_251 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/Swin2SR_ClassicalSR_X4_64.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # Swin2SR_ClassicalSR_X4_64(69.3m) OFF __term_sd_task_pre_model_252 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/Swin2SR_CompressedSR_X4_48.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # Swin2SR_CompressedSR_X4_48(61.1m) OFF __term_sd_task_pre_model_253 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR(68.6m) OFF __term_sd_task_pre_model_254 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/SwinIR_4x.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # SwinIR_4x(142.4m) OFF __term_sd_task_pre_model_255 # =====Embedding模型===== OFF __term_sd_task_pre_model_256 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/EasyNegativeV2.safetensors "${COMFYUI_ROOT_PATH}"/models/embeddings # embeddings模型 EasyNegativeV2(0.1m) ON __term_sd_task_pre_model_257 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad-artist-anime.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad-artist-anime(0.1m) ON __term_sd_task_pre_model_258 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad-artist.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad-artist(0.1m) ON __term_sd_task_pre_model_259 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad-hands-5.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad-hands-5(0.1m) ON __term_sd_task_pre_model_260 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad-image-v2-39000.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad-image-v2-39000(0.1m) ON __term_sd_task_pre_model_261 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad_prompt_version2.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad_prompt_version2(0.1m) ON __term_sd_task_pre_model_262 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/ng_deepnegative_v1_75t.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # ng_deepnegative_v1_75t(0.1m) ON __term_sd_task_pre_model_263 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/verybadimagenegative_v1.3.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # verybadimagenegative_v1.3(0.1m) ON
2301_81996401/term-sd
install/comfyui/comfyui_hf_model.sh
Shell
agpl-3.0
54,805
__term_sd_task_pre_model_1 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 get_modelscope_model licyks/sd-model/master/sd_1.5/v1-5-pruned-emaonly.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 get_modelscope_model licyks/sd-model/master/sd_1.5/animefull-final-pruned.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 get_modelscope_model licyks/sd-model/master/sd_1.5/nai1-artist_all_in_one_merge.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # nai1-artist_all_in_one_merge(2.13g) OFF __term_sd_task_pre_model_5 get_modelscope_model licyks/sd-model/master/sd_1.5/Counterfeit-V3.0_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Counterfeit-V3.0(4.24g) OFF __term_sd_task_pre_model_6 get_modelscope_model licyks/sd-model/master/sd_1.5/cetusMix_Whalefall2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # cetusMix_Whalefall2(3.85g) OFF __term_sd_task_pre_model_7 get_modelscope_model licyks/sd-model/master/sd_1.5/cuteyukimixAdorable_neochapter3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # cuteyukimixAdorable_neochapter3(2.3g) OFF __term_sd_task_pre_model_8 get_modelscope_model licyks/sd-model/master/sd_1.5/ekmix-pastel-fp16-no-ema.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # ekmix-pastel(2.13g) OFF __term_sd_task_pre_model_9 get_modelscope_model licyks/sd-model/master/sd_1.5/ex2K_sse2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # ex2K_sse2(2.38g) OFF __term_sd_task_pre_model_10 get_modelscope_model licyks/sd-model/master/sd_1.5/kohakuV5_rev2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohakuV5_rev2(2.13g) OFF __term_sd_task_pre_model_11 get_modelscope_model licyks/sd-model/master/sd_1.5/meinamix_meinaV11.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # meinamix_meinaV11(2.13g) OFF __term_sd_task_pre_model_12 get_modelscope_model licyks/sd-model/master/sd_1.5/oukaStar_10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # oukaStar_10(5.43g) OFF __term_sd_task_pre_model_13 get_modelscope_model licyks/sd-model/master/sd_1.5/pastelMixStylizedAnime_pastelMixPrunedFP16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # pastelMixStylizedAnime(2.13g) OFF __term_sd_task_pre_model_14 get_modelscope_model licyks/sd-model/master/sd_1.5/rabbit_v6.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # rabbit_v6(1.97g) OFF __term_sd_task_pre_model_15 get_modelscope_model licyks/sd-model/master/sd_1.5/sweetSugarSyndrome_rev15.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sweetSugarSyndrome_rev15(1.97g) OFF __term_sd_task_pre_model_16 get_modelscope_model licyks/sd-model/master/sd_1.5/AnythingV5Ink_ink.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # AnythingV5Ink_ink(1.97g) OFF __term_sd_task_pre_model_17 get_modelscope_model licyks/sd-model/master/sd_1.5/bartstyledbBlueArchiveArtStyleFineTunedModel_v10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # bartstyledbBlueArchiveArtStyle(1.97g) OFF __term_sd_task_pre_model_18 get_modelscope_model licyks/sd-model/master/sd_1.5/meinapastel_v6Pastel.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # meinapastel_v6(1.97g) OFF __term_sd_task_pre_model_19 get_modelscope_model licyks/sd-model/master/sd_1.5/qteamixQ_omegaFp16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # qteamix(1.97g) OFF __term_sd_task_pre_model_20 get_modelscope_model licyks/sd-model/master/sd_1.5/tmndMix_tmndMixSPRAINBOW.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # tmndMix(1.97g) OFF __term_sd_task_pre_model_21 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_22 get_modelscope_model licyks/sd-model/master/sd_2.1/v2-1_768-ema-pruned.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_23 get_modelscope_model licyks/sd-model/master/sd_2.1/wd-1-4-anime_e2.ckpt "${COMFYUI_ROOT_PATH}"/models/checkpoints # wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_24 get_modelscope_model licyks/sd-model/master/sd_2.1/wd-mofu-fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_25 # =====SDXL大模型===== OFF __term_sd_task_pre_model_26 get_modelscope_model licyks/sd-lora/master/sdxl/sd_xl_offset_example-lora_1.0.safetensors "${COMFYUI_ROOT_PATH}"/models/loras # sd_xl_offset_example-lora_1.0(49.6m) OFF __term_sd_task_pre_model_27 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_28 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_29 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_30 get_modelscope_model licyks/sd-model/master/sdxl_1.0/cosxl.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # cosxl(6.94g) OFF __term_sd_task_pre_model_31 get_modelscope_model licyks/sd-model/master/sdxl_1.0/cosxl_edit.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # cosxl_edit(6.94g) OFF __term_sd_task_pre_model_32 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0-base.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_33 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_34 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_35 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_36 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_37 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_38 get_modelscope_model licyks/sd-model/master/sdxl_1.0/holodayo-xl-2.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_39 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kivotos-xl-2.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_40 get_modelscope_model licyks/sd-model/master/sdxl_1.0/clandestine-xl-1.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_41 get_modelscope_model licyks/sd-model/master/sdxl_1.0/UrangDiffusion-1.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_42 get_modelscope_model licyks/sd-model/master/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_43 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_anime_V52.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_44 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_45 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_46 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_47 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_48 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-zeta.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_49 get_modelscope_model licyks/sd-model/master/sdxl_1.0/starryXLV52_v52.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_50 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v20.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_51 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v30.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_52 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_53 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_54 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_55 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_56 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_57 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_58 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_59 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_60 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_61 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_62 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_63 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_64 get_modelscope_model licyks/sd-model/master/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_65 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_66 get_modelscope_model licyks/sd-model/master/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_67 get_modelscope_model licyks/sd-model/master/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_68 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tIllunai3_v4.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_69 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_70 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_71 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_72 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_73 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_74 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_75 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_76 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_77 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_78 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_79 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_80 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_81 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_82 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_83 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_84 get_modelscope_model licyks/sd-model/master/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_85 get_modelscope_model licyks/sd-model/master/sdxl_1.0/pdForAnime_v20.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_86 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_87 get_modelscope_model licyks/sd-model/master/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_88 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_89 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_90 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_91 get_modelscope_model licyks/sd-model/master/sdxl_1.0/AnythingXL_xl.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_92 get_modelscope_model licyks/sd-model/master/sdxl_1.0/abyssorangeXLElse_v10.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_93 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animaPencilXL_v200.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_94 get_modelscope_model licyks/sd-model/master/sdxl_1.0/bluePencilXL_v401.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_95 get_modelscope_model licyks/sd-model/master/sdxl_1.0/nekorayxl_v06W3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_96 get_modelscope_model licyks/sd-model/master/sdxl_1.0/CounterfeitXL-V1.0.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_97 # =====SD3大模型===== OFF __term_sd_task_pre_model_98 get_modelscope_model licyks/sd-3-model/master/sd3_medium.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3_medium(4.34g) OFF __term_sd_task_pre_model_99 get_modelscope_model licyks/sd-3-model/master/sd3_medium_incl_clips.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3_medium_incl_clips(5.97g) OFF __term_sd_task_pre_model_100 get_modelscope_model licyks/sd-3-model/master/sd3_medium_incl_clips_t5xxlfp8.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3_medium_incl_clips_t5xxlfp8(10.87g) OFF __term_sd_task_pre_model_101 get_modelscope_model licyks/sd-3-model/master/sd3.5_large.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_large(16.5g) OFF __term_sd_task_pre_model_102 get_modelscope_model licyks/sd-3-model/master/sd3.5_large_fp8_scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_large_fp8_scaled(14.9g) OFF __term_sd_task_pre_model_103 get_modelscope_model licyks/sd-3-model/master/sd3.5_large_turbo.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_large_turbo(16.5g) OFF __term_sd_task_pre_model_104 get_modelscope_model licyks/sd-3-model/master/sd3.5_medium.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_medium(5.1g) OFF __term_sd_task_pre_model_105 get_modelscope_model licyks/sd-3-model/master/sd3.5_medium_incl_clips_t5xxlfp8scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # sd3.5_medium_incl_clips_t5xxlfp8scaled(11.6g) OFF __term_sd_task_pre_model_106 get_modelscope_model licyks/sd-3-model/master/emi3.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # emi3(16.5g) OFF __term_sd_task_pre_model_107 # =====SD3文本编码器===== OFF __term_sd_task_pre_model_108 get_modelscope_model licyks/sd-3-model/master/text_encoders/clip_g.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # clip_g(1.39g) OFF __term_sd_task_pre_model_109 get_modelscope_model licyks/sd-3-model/master/text_encoders/clip_l.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # clip_l(246.1m) OFF __term_sd_task_pre_model_110 get_modelscope_model licyks/sd-3-model/master/text_encoders/t5xxl_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_111 get_modelscope_model licyks/sd-3-model/master/text_encoders/t5xxl_fp8_e4m3fn.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_112 get_modelscope_model licyks/sd-3-model/master/text_encoders/t5xxl_fp8_e4m3fn_scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp8_e4m3fn_scaled(5.16g) OFF __term_sd_task_pre_model_113 # =====HunyuanDiT===== OFF __term_sd_task_pre_model_114 get_modelscope_model licyks/comfyui-extension-models/master/hunyuan_dit_comfyui/hunyuan_dit_1.2.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # hunyuan_dit_1.2(8.24g) OFF __term_sd_task_pre_model_115 get_modelscope_model licyks/comfyui-extension-models/master/hunyuan_dit_comfyui/comfy_freeway_animation_hunyuan_dit_180w.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # comfy_freeway_animation_hunyuan_dit_180w(8.24g) OFF __term_sd_task_pre_model_116 # =====FLUX模型===== OFF __term_sd_task_pre_model_117 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev(23.8g) OFF __term_sd_task_pre_model_118 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-fp8.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux1-dev-fp8(17.2g) OFF __term_sd_task_pre_model_119 get_modelscope_model licyks/flux-model/master/flux_1/flux_dev_fp8_scaled_diffusion_model.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux_dev_fp8_scaled_diffusion_model(11.9g) OFF __term_sd_task_pre_model_120 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-bnb-nf4-v2.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux1-dev-bnb-nf4-v2(12g) OFF __term_sd_task_pre_model_121 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-bnb-nf4.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux1-dev-bnb-nf4(11.5g) OFF __term_sd_task_pre_model_122 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q2_K.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q2_K-gguf(4.03g) OFF __term_sd_task_pre_model_123 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q3_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q3_K_S-gguf(5.23g) OFF __term_sd_task_pre_model_124 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q4_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q4_0-gguf(6.79g) OFF __term_sd_task_pre_model_125 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q4_1.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q4_1-gguf(7.53g) OFF __term_sd_task_pre_model_126 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q4_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q4_K_S-gguf(6.81g) OFF __term_sd_task_pre_model_127 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q5_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q5_0-gguf(8.27g) OFF __term_sd_task_pre_model_128 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q5_1.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q5_1-gguf(9.01g) OFF __term_sd_task_pre_model_129 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q5_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q5_K_S-gguf(8.29g) OFF __term_sd_task_pre_model_130 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q6_K.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q6_K-gguf(9.86g) OFF __term_sd_task_pre_model_131 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q8_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_132 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-F16.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-F16-gguf(23.8g) OFF __term_sd_task_pre_model_133 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell(23.8g) OFF __term_sd_task_pre_model_134 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-fp8.safetensors "${COMFYUI_ROOT_PATH}"/models/checkpoints # flux1-schnell-fp8(17.2g) OFF __term_sd_task_pre_model_135 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q2_K.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q2_K-gguf(4.01g) OFF __term_sd_task_pre_model_136 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q3_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q3_K_S-gguf(5.21g) OFF __term_sd_task_pre_model_137 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q4_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q4_0-gguf(6.77g) OFF __term_sd_task_pre_model_138 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q4_1.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q4_1-gguf(7.51g) OFF __term_sd_task_pre_model_139 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q4_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q4_K_S-gguf(6.78g) OFF __term_sd_task_pre_model_140 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q5_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q5_0-gguf(8.25g) OFF __term_sd_task_pre_model_141 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q5_1.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q5_1-gguf(8.99g) OFF __term_sd_task_pre_model_142 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q5_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q5_K_S-gguf(8.26g) OFF __term_sd_task_pre_model_143 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q6_K.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q6_K-gguf(9.83g) OFF __term_sd_task_pre_model_144 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q8_0.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_145 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-F16.gguf "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-schnell-F16-gguf(23.8g) OFF __term_sd_task_pre_model_146 get_modelscope_model licyks/flux-model/master/flux_1/ashen0209-flux1-dev2pro.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_147 get_modelscope_model licyks/flux-model/master/flux_1/jimmycarter-LibreFLUX.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_148 get_modelscope_model licyks/flux-model/master/flux_1/nyanko7-flux-dev-de-distill.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_149 get_modelscope_model licyks/flux-model/master/flux_1/shuttle-3-diffusion.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_150 get_modelscope_model licyks/flux-model/master/flux_1/flux1-krea-dev_fp8_scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-krea-dev_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_151 get_modelscope_model licyks/flux-model/master/flux_1/flux1-krea-dev.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-krea-dev(23.8g) OFF __term_sd_task_pre_model_152 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-kontext_fp8_scaled.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-dev-kontext_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_153 get_modelscope_model licyks/flux-model/master/flux_1/flux1-kontext-dev.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # flux1-kontext-dev(23.8g) OFF __term_sd_task_pre_model_154 get_modelscope_model licyks/flux-model/master/flux_1/chroma-unlocked-v50.safetensors "${COMFYUI_ROOT_PATH}"/models/diffusion_models # chroma-unlocked-v50(23.8g) OFF __term_sd_task_pre_model_155 # =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_156 get_modelscope_model licyks/flux-model/master/flux_text_encoders/clip_l.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # clip_l(246.1m) OFF __term_sd_task_pre_model_157 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5xxl_fp16.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_158 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_159 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_L.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q3_K_L-gguf(2.46g) OFF __term_sd_task_pre_model_160 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_M.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q3_K_M-gguf(2.3g) OFF __term_sd_task_pre_model_161 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q3_K_S-gguf(2.1g) OFF __term_sd_task_pre_model_162 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q4_K_M.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q4_K_M-gguf(2.9g) OFF __term_sd_task_pre_model_163 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q4_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q4_K_S-gguf(2.74g) OFF __term_sd_task_pre_model_164 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q5_K_M.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q5_K_M-gguf(3.39g) OFF __term_sd_task_pre_model_165 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q5_K_S.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q5_K_S-gguf(3.29g) OFF __term_sd_task_pre_model_166 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q6_K.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q6_K-gguf(3.91g) OFF __term_sd_task_pre_model_167 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q8_0.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-Q8_0-gguf(5.06g) OFF __term_sd_task_pre_model_168 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-f16.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-f16-gguf(9.53g) OFF __term_sd_task_pre_model_169 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-f32.gguf "${COMFYUI_ROOT_PATH}"/models/text_encoders # t5-v1_1-xxl-encoder-f32-gguf(19.1g) OFF __term_sd_task_pre_model_170 get_modelscope_model licyks/flux-model/master/flux_vae/ae.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # ae(335m) OFF __term_sd_task_pre_model_171 # =====VAE模型===== OFF __term_sd_task_pre_model_172 get_modelscope_model licyks/sd-vae/master/sd_1.5/vae-ft-ema-560000-ema-pruned.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_173 get_modelscope_model licyks/sd-vae/master/sd_1.5/vae-ft-mse-840000-ema-pruned.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # vae-ft-mse-840000-ema-pruned(334.6m) ON __term_sd_task_pre_model_174 get_modelscope_model licyks/sd-vae/master/sdxl_1.0/sdxl_vae.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # sdxl_vae(334.6m) OFF __term_sd_task_pre_model_175 get_modelscope_model licyks/sd-vae/master/sdxl_1.0/sdxl_fp16_fix_vae.safetensors "${COMFYUI_ROOT_PATH}"/models/vae # sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_176 # =====VAE-approx模型===== OFF __term_sd_task_pre_model_177 get_modelscope_model licyks/sd-vae/master/vae-approx/model.pt "${COMFYUI_ROOT_PATH}"/models/vae_approx # VAE-approx模型 model(0.2m) ON __term_sd_task_pre_model_178 get_modelscope_model licyks/sd-vae/master/vae-approx/vaeapprox-sdxl.pt "${COMFYUI_ROOT_PATH}"/models/vae_approx # vaeapprox-sdxl(0.2m) ON __term_sd_task_pre_model_179 get_modelscope_model licyks/sd-vae/master/vae-approx/vaeapprox-sd3.pt "${COMFYUI_ROOT_PATH}"/models/vae_approx # vaeapprox-sd3(0.2m) OFF __term_sd_task_pre_model_180 # =====放大模型===== OFF __term_sd_task_pre_model_181 get_modelscope_model licyks/sd-upscaler-models/master/Codeformer/codeformer-v0.1.0.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # codeformer-v0.1.0(376.6m) OFF __term_sd_task_pre_model_182 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_2_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_2_x2(139.7m) OFF __term_sd_task_pre_model_183 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_2_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_2_x3(140.4m) OFF __term_sd_task_pre_model_184 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_2_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_2_x4(140.3m) OFF __term_sd_task_pre_model_185 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_S_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_S_x2(87.7m) OFF __term_sd_task_pre_model_186 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_S_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_S_x3(88.4m) OFF __term_sd_task_pre_model_187 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_S_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_S_x4(88.2m) OFF __term_sd_task_pre_model_188 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_light_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_light_x2(45.7m) OFF __term_sd_task_pre_model_189 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_light_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_light_x3(45.7m) OFF __term_sd_task_pre_model_190 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_light_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_light_x4(45.8m) OFF __term_sd_task_pre_model_191 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_x2(154.1m) OFF __term_sd_task_pre_model_192 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_x3(154.8m) OFF __term_sd_task_pre_model_193 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # DAT_x4(154.7m) OFF __term_sd_task_pre_model_194 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/16xPSNR.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 16xPSNR(67.2m) OFF __term_sd_task_pre_model_195 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x-ITF-SkinDiffDetail-Lite-v1.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x-ITF-SkinDiffDetail-Lite-v1(20.1m) OFF __term_sd_task_pre_model_196 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NMKD-BrightenRedux_200k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NMKD-BrightenRedux_200k(66.6m) OFF __term_sd_task_pre_model_197 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NMKD-YandereInpaint_375000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NMKD-YandereInpaint_375000_G(66.6m) OFF __term_sd_task_pre_model_198 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NMKDDetoon_97500_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NMKDDetoon_97500_G(66.6m) OFF __term_sd_task_pre_model_199 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NoiseToner-Poisson-Detailed_108000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NoiseToner-Poisson-Detailed_108000_G(66.6m) OFF __term_sd_task_pre_model_200 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NoiseToner-Uniform-Detailed_100000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 1x_NoiseToner-Uniform-Detailed_100000_G(66.6m) OFF __term_sd_task_pre_model_201 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x-UltraSharp.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x-UltraSharp(66.9m) OFF __term_sd_task_pre_model_202 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4xPSNR.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4xPSNR(66.9m) OFF __term_sd_task_pre_model_203 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_CountryRoads_377000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_CountryRoads_377000_G(66.9m) OFF __term_sd_task_pre_model_204 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_Fatality_Comix_260000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_Fatality_Comix_260000_G(66.9m) OFF __term_sd_task_pre_model_205 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-Siax_200k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-Siax_200k(66.9m) OFF __term_sd_task_pre_model_206 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-Superscale-Artisoftject_210000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-Superscale-Artisoftject_210000_G(66.9m) OFF __term_sd_task_pre_model_207 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-Superscale-SP_178000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-Superscale-SP_178000_G(66.9m) ON __term_sd_task_pre_model_208 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-UltraYandere-Lite_280k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-UltraYandere-Lite_280k(20.1m) OFF __term_sd_task_pre_model_209 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-UltraYandere_300k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-UltraYandere_300k(66.9m) OFF __term_sd_task_pre_model_210 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-YandereNeoXL_200k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKD-YandereNeoXL_200k(66.9m) OFF __term_sd_task_pre_model_211 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKDSuperscale_Artisoft_120000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NMKDSuperscale_Artisoft_120000_G(67.1m) OFF __term_sd_task_pre_model_212 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NickelbackFS_72000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_NickelbackFS_72000_G(67.1m) OFF __term_sd_task_pre_model_213 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_Nickelback_70000G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_Nickelback_70000G(66.9m) OFF __term_sd_task_pre_model_214 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_RealisticRescaler_100000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_RealisticRescaler_100000_G(134.1m) OFF __term_sd_task_pre_model_215 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_Valar_v1.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_Valar_v1(67.5m) OFF __term_sd_task_pre_model_216 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_fatal_Anime_500000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_fatal_Anime_500000_G(66.9m) OFF __term_sd_task_pre_model_217 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_foolhardy_Remacri.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_foolhardy_Remacri(67m) OFF __term_sd_task_pre_model_218 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/8xPSNR.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 8xPSNR(67.1m) OFF __term_sd_task_pre_model_219 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/8x_NMKD-Superscale_150000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 8x_NMKD-Superscale_150000_G(67.1m) OFF __term_sd_task_pre_model_220 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/8x_NMKD-Typescale_175k.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 8x_NMKD-Typescale_175k(67.1m) OFF __term_sd_task_pre_model_221 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/A_ESRGAN_Single.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # A_ESRGAN_Single(134.1m) OFF __term_sd_task_pre_model_222 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/BSRGAN.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # BSRGAN(67.1m) OFF __term_sd_task_pre_model_223 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/BSRGANx2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # BSRGANx2(66.8m) OFF __term_sd_task_pre_model_224 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/BSRNet.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # BSRNet(67.1m) OFF __term_sd_task_pre_model_225 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/ESRGAN_4x.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # ESRGAN_4x(66.9m) OFF __term_sd_task_pre_model_226 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/LADDIER1_282500_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # LADDIER1_282500_G(66.9m) OFF __term_sd_task_pre_model_227 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Neutral_115000_swaG.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscalerV2-Neutral_115000_swaG(66.9m) OFF __term_sd_task_pre_model_228 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Sharp_101000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscalerV2-Sharp_101000_G(66.9m) OFF __term_sd_task_pre_model_229 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Sharper_103000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscalerV2-Sharper_103000_G(66.9m) OFF __term_sd_task_pre_model_230 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/Legacy/4x_UniversalUpscaler-Detailed_155000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscaler-Detailed_155000_G(66.9m) OFF __term_sd_task_pre_model_231 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/Legacy/4x_UniversalUpscaler-Soft_190000_G.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 4x_UniversalUpscaler-Soft_190000_G(66.9m) OFF __term_sd_task_pre_model_232 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/WaifuGAN_v3_30000.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # WaifuGAN_v3_30000(66.9m) OFF __term_sd_task_pre_model_233 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/lollypop.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # lollypop(66.9m) OFF __term_sd_task_pre_model_234 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/sudo_rife4_269.662_testV1_scale1.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # sudo_rife4_269.662_testV1_scale1(33.7m) OFF __term_sd_task_pre_model_235 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/GFPGANv1.3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # GFPGANv1.3(348.6m) OFF __term_sd_task_pre_model_236 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/GFPGANv1.4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # GFPGANv1.4(348.6m) OFF __term_sd_task_pre_model_237 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/detection_Resnet50_Final.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # detection_Resnet50_Final(109.5m) OFF __term_sd_task_pre_model_238 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/parsing_bisenet.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # parsing_bisenet(12.2m) OFF __term_sd_task_pre_model_239 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/parsing_parsenet.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # parsing_parsenet(85.3m) OFF __term_sd_task_pre_model_240 get_modelscope_model licyks/sd-upscaler-models/master/RealESRGAN/RealESRGAN_x4plus.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # RealESRGAN_x4plus(67m) ON __term_sd_task_pre_model_241 get_modelscope_model licyks/sd-upscaler-models/master/RealESRGAN/RealESRGAN_x4plus_anime_6B.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # RealESRGAN_x4plus_anime_6B(17.9m) ON __term_sd_task_pre_model_242 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DF2K_s64w8_SwinIR-M_x2(67.2m) OFF __term_sd_task_pre_model_243 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DF2K_s64w8_SwinIR-M_x3(68m) OFF __term_sd_task_pre_model_244 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DF2K_s64w8_SwinIR-M_x4(67.8m) OFF __term_sd_task_pre_model_245 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DF2K_s64w8_SwinIR-M_x8(68.4m) OFF __term_sd_task_pre_model_246 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x2(59m) OFF __term_sd_task_pre_model_247 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x3(59.7m) OFF __term_sd_task_pre_model_248 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x4(59.6m) OFF __term_sd_task_pre_model_249 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x8(60.2m) OFF __term_sd_task_pre_model_250 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/Swin2SR_ClassicalSR_X2_64.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # Swin2SR_ClassicalSR_X2_64(68.7m) OFF __term_sd_task_pre_model_251 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/Swin2SR_ClassicalSR_X4_64.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # Swin2SR_ClassicalSR_X4_64(69.3m) OFF __term_sd_task_pre_model_252 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/Swin2SR_CompressedSR_X4_48.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # Swin2SR_CompressedSR_X4_48(61.1m) OFF __term_sd_task_pre_model_253 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR(68.6m) OFF __term_sd_task_pre_model_254 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/SwinIR_4x.pth "${COMFYUI_ROOT_PATH}"/models/upscale_models # SwinIR_4x(142.4m) OFF __term_sd_task_pre_model_255 # =====Embedding模型===== OFF __term_sd_task_pre_model_256 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/EasyNegativeV2.safetensors "${COMFYUI_ROOT_PATH}"/models/embeddings # embeddings模型 EasyNegativeV2(0.1m) ON __term_sd_task_pre_model_257 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad-artist-anime.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad-artist-anime(0.1m) ON __term_sd_task_pre_model_258 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad-artist.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad-artist(0.1m) ON __term_sd_task_pre_model_259 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad-hands-5.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad-hands-5(0.1m) ON __term_sd_task_pre_model_260 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad-image-v2-39000.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad-image-v2-39000(0.1m) ON __term_sd_task_pre_model_261 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad_prompt_version2.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # bad_prompt_version2(0.1m) ON __term_sd_task_pre_model_262 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/ng_deepnegative_v1_75t.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # ng_deepnegative_v1_75t(0.1m) ON __term_sd_task_pre_model_263 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/verybadimagenegative_v1.3.pt "${COMFYUI_ROOT_PATH}"/models/embeddings # verybadimagenegative_v1.3(0.1m) ON
2301_81996401/term-sd
install/comfyui/comfyui_ms_model.sh
Shell
agpl-3.0
49,283
__term_sd_task_pre_ext_1 comfyui_controlnet_aux ON __term_sd_task_pre_ext_2 ComfyUI-AnimateDiff-Evolved OFF __term_sd_task_pre_ext_3 ComfyUI_IPAdapter_plus ON __term_sd_task_pre_ext_4 ComfyUI-Impact-Pack OFF __term_sd_task_pre_ext_5 ComfyUI-Marigold ON __term_sd_task_pre_ext_6 ComfyUI-WD14-Tagger ON __term_sd_task_pre_ext_7 ComfyUI-layerdiffusion OFF __term_sd_task_pre_ext_8 ComfyUI_DanTagGen OFF __term_sd_task_pre_ext_9 Comfyui-StableSR OFF __term_sd_task_pre_ext_10 z-tipo-extension OFF __term_sd_task_pre_ext_11 was-node-suite-comfyui OFF __term_sd_task_pre_ext_12 ComfyUI_Cutoff OFF __term_sd_task_pre_ext_13 ComfyUI_TiledKSampler ON __term_sd_task_pre_ext_14 ComfyUI_ADV_CLIP_emb OFF __term_sd_task_pre_ext_15 ComfyUI_Noise OFF __term_sd_task_pre_ext_16 ComfyUI_Dave_CustomNode OFF __term_sd_task_pre_ext_17 ComfyUI-Manager ON __term_sd_task_pre_ext_18 ComfyUI-Custom-Nodes OFF __term_sd_task_pre_ext_19 ComfyUI-Custom-Scripts ON __term_sd_task_pre_ext_20 NodeGPT OFF __term_sd_task_pre_ext_21 Derfuu_ComfyUI_ModdedNodes OFF __term_sd_task_pre_ext_22 ComfyUI_node_Lilly OFF __term_sd_task_pre_ext_23 ComfyUI-nodes-hnmr OFF __term_sd_task_pre_ext_24 ComfyUI-Vextra-Nodes OFF __term_sd_task_pre_ext_25 ComfyUI-QualityOfLifeSuit_Omar92 OFF __term_sd_task_pre_ext_26 FN16-ComfyUI-nodes OFF __term_sd_task_pre_ext_27 masquerade-nodes-comfyui OFF __term_sd_task_pre_ext_28 ComfyUI-post-processing-nodes OFF __term_sd_task_pre_ext_29 images-grid-comfy-plugin ON __term_sd_task_pre_ext_30 ComfyUI-CLIPSeg OFF __term_sd_task_pre_ext_31 rembg-comfyui-node OFF __term_sd_task_pre_ext_32 ComfyUI_tinyterraNodes OFF __term_sd_task_pre_ext_33 yk-node-suite-comfyui OFF __term_sd_task_pre_ext_34 ComfyUI_experiments OFF __term_sd_task_pre_ext_35 ComfyUI_tagger OFF __term_sd_task_pre_ext_36 MergeBlockWeighted_fo_ComfyUI OFF __term_sd_task_pre_ext_37 ComfyUI-Saveaswebp OFF __term_sd_task_pre_ext_38 trNodes OFF __term_sd_task_pre_ext_39 ComfyUI_NetDist OFF __term_sd_task_pre_ext_40 ComfyUI-Image-Selector OFF __term_sd_task_pre_ext_41 ComfyUI-Strimmlarns-Aesthetic-Score OFF __term_sd_task_pre_ext_42 ComfyUI_UltimateSDUpscale ON __term_sd_task_pre_ext_43 ComfyUI-Disco-Diffusion OFF __term_sd_task_pre_ext_44 ComfyUI-Waveform-Extensions OFF __term_sd_task_pre_ext_45 ComfyUI_Custom_Nodes_AlekPet ON __term_sd_task_pre_ext_46 AIGODLIKE-COMFYUI-TRANSLATION OFF __term_sd_task_pre_ext_47 stability-ComfyUI-nodes OFF __term_sd_task_pre_ext_48 ComfyUI_Fooocus_KSampler OFF __term_sd_task_pre_ext_49 FreeU_Advanced OFF __term_sd_task_pre_ext_50 ControlNet-LLLite-ComfyUI OFF __term_sd_task_pre_ext_51 comfyui-tooling-nodes OFF __term_sd_task_pre_ext_52 efficiency-nodes-comfyui OFF __term_sd_task_pre_ext_53 cd-tuner_negpip-ComfyUI OFF __term_sd_task_pre_ext_54 ComfyUI-Easy-Use ON __term_sd_task_pre_ext_55 sdxl_prompt_styler OFF __term_sd_task_pre_ext_56 comfyui-workspace-manager OFF __term_sd_task_pre_ext_57 comfyui-browser ON __term_sd_task_pre_ext_58 cg-use-everywhere OFF __term_sd_task_pre_ext_59 ComfyUI-Inspire-Pack ON __term_sd_task_pre_ext_60 sd-dynamic-thresholding OFF __term_sd_task_pre_ext_61 rgthree-comfy ON __term_sd_task_pre_ext_62 ComfyUI_Comfyroll_CustomNodes ON __term_sd_task_pre_ext_63 ComfyUI_FizzNodes OFF __term_sd_task_pre_ext_64 ComfyUI-Advanced-ControlNet ON __term_sd_task_pre_ext_65 PowerNoiseSuite OFF __term_sd_task_pre_ext_66 ComfyUI-Crystools ON __term_sd_task_pre_ext_67 ComfyUI_LayerStyle OFF __term_sd_task_pre_ext_68 ComfyUI-N-Sidebar OFF __term_sd_task_pre_ext_69 style_aligned_comfy OFF __term_sd_task_pre_ext_70 ComfyUI-Flowty-TripoSR OFF __term_sd_task_pre_ext_71 ComfyUI_ExtraModels OFF __term_sd_task_pre_ext_72 ComfyUI-SUPIR OFF __term_sd_task_pre_ext_73 ComfyUI-YoloWorld-EfficientSAM OFF __term_sd_task_pre_ext_74 ComfyUI-PixArt-alpha-Diffusers OFF __term_sd_task_pre_ext_75 ComfyUI-BiRefNet-ZHO OFF __term_sd_task_pre_ext_76 ComfyUI-DepthFM OFF __term_sd_task_pre_ext_77 ComfyUI-APISR OFF __term_sd_task_pre_ext_78 ComfyUI-ArtGallery OFF __term_sd_task_pre_ext_79 ComfyUI-BRIA_AI-RMBG OFF __term_sd_task_pre_ext_80 ComfyUI-I2VGenXL OFF __term_sd_task_pre_ext_81 ComfyUI-SegMoE OFF __term_sd_task_pre_ext_82 ComfyUI-AnyText OFF __term_sd_task_pre_ext_83 ComfyUI-Extra-Samplers OFF __term_sd_task_pre_ext_84 ComfyUI-sonar OFF __term_sd_task_pre_ext_85 ComfyUI_restart_sampling OFF __term_sd_task_pre_ext_86 ComfyUI-Diffusers-X-Adapter OFF __term_sd_task_pre_ext_87 ComfyUI-BrushNet OFF __term_sd_task_pre_ext_88 ComfyUI-BrushNet-Wrapper OFF __term_sd_task_pre_ext_89 Euler-Smea-Dyn-Sampler OFF __term_sd_task_pre_ext_90 ComfyUI-bleh OFF __term_sd_task_pre_ext_91 comfyui-tcd-scheduler OFF __term_sd_task_pre_ext_92 ComfyUI-IC-Light-Native OFF __term_sd_task_pre_ext_93 comfyui-inpaint-nodes OFF __term_sd_task_pre_ext_94 ComfyUI_TensorRT OFF __term_sd_task_pre_ext_95 comfyui-diffusion-cg OFF __term_sd_task_pre_ext_96 comfyui-floodgate OFF __term_sd_task_pre_ext_97 comfyui-resharpen OFF __term_sd_task_pre_ext_98 comfyui-menu-anchor OFF __term_sd_task_pre_ext_99 comfyui-tab-handler OFF __term_sd_task_pre_ext_100 comfyui-clear-screen OFF __term_sd_task_pre_ext_101 comfyui-node-beautify OFF __term_sd_task_pre_ext_102 comfyui-prompt-format OFF __term_sd_task_pre_ext_103 ComfyUI_omost OFF __term_sd_task_pre_ext_104 ComfyUI-Anyline OFF __term_sd_task_pre_ext_105 ComfyUI-TiledDiffusion ON __term_sd_task_pre_ext_106 ComfyUI-DynamiCrafterWrapper OFF __term_sd_task_pre_ext_107 comfyui-sixgod_prompt OFF __term_sd_task_pre_ext_108 ComfyUI_densediffusion OFF __term_sd_task_pre_ext_109 omost_region_editor OFF __term_sd_task_pre_ext_110 ComfyUI-openpose-editor ON __term_sd_task_pre_ext_111 ComfyUI-IC-Light OFF __term_sd_task_pre_ext_112 ComfyUI-KJNodes OFF __term_sd_task_pre_ext_113 ComfyUI_essentials OFF __term_sd_task_pre_ext_114 ComfyUI-Restart-Sampler ON __term_sd_task_pre_ext_115 ComfyUI-TCD-Sampler OFF __term_sd_task_pre_ext_116 cg-noise OFF __term_sd_task_pre_ext_117 ComfyUX OFF __term_sd_task_pre_ext_118 ComfyUI-UltraEdit-ZHO OFF __term_sd_task_pre_ext_119 WeiLin-ComfyUI-prompt-all-in-one ON __term_sd_task_pre_ext_120 ComfyUI-GGUF OFF __term_sd_task_pre_ext_121 x-flux-comfyui OFF __term_sd_task_pre_ext_122 ComfyUI-Prompt-Wildcards OFF __term_sd_task_pre_ext_123 cg-controller OFF __term_sd_task_pre_ext_124 ComfyUI-Latent-Modifiers OFF __term_sd_task_pre_ext_125 comfyui-deploy OFF __term_sd_task_pre_ext_126 ComfyUI-HakuImg ON __term_sd_task_pre_ext_127 ComfyUI-flash-attention-rdna3-win-zluda OFF __term_sd_task_pre_ext_128 ComfyUI-BlenderAI-node OFF __term_sd_task_pre_ext_129 comfyui-portrait-master OFF __term_sd_task_pre_ext_130 sigmas_tools_and_the_golden_scheduler OFF __term_sd_task_pre_ext_131 ComfyUI_fabric OFF __term_sd_task_pre_ext_132 ComfyUi_NNLatentUpscale OFF __term_sd_task_pre_ext_133 comfyui_lora_tag_loader OFF __term_sd_task_pre_ext_134 ComfyUI-disty-Flow OFF __term_sd_task_pre_ext_135 ComfyUI-FluxTrainer OFF __term_sd_task_pre_ext_136 ComfyUI-BiRefNet-Hugo OFF __term_sd_task_pre_ext_137 WeiLin-Comfyui-Tools OFF __term_sd_task_pre_ext_138 Comfy-WaveSpeed OFF __term_sd_task_pre_ext_139 ComfyUI-TeaCache OFF __term_sd_task_pre_ext_140 AIGODLIKE-ComfyUI-Studio OFF __term_sd_task_pre_ext_141 ComfyUI-to-Python-Extension OFF __term_sd_task_pre_ext_142 ComfyUI-FramePackWrapper OFF __term_sd_task_pre_ext_143 comfyui-profiler OFF __term_sd_task_pre_ext_144 HDM-ext OFF __term_sd_task_pre_ext_145 ComfyUI-rgthree-comfy OFF __term_sd_task_pre_ext_146 ComfyUI_Civitai_Gallery OFF __term_sd_task_pre_ext_147 A8R8_ComfyUI_nodes OFF __term_sd_task_pre_ext_148 cgem156-ComfyUI OFF
2301_81996401/term-sd
install/comfyui/dialog_comfyui_custom_node.sh
Shell
agpl-3.0
7,558
__term_sd_task_pre_ext_1 ComfyUI-extensions OFF __term_sd_task_pre_ext_2 graphNavigator OFF
2301_81996401/term-sd
install/comfyui/dialog_comfyui_extension.sh
Shell
agpl-3.0
92
__term_sd_task_pre_model_1 =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 nai1-artist_all_in_one_merge(2.13g) OFF __term_sd_task_pre_model_5 Counterfeit-V3.0(4.24g) OFF __term_sd_task_pre_model_6 cetusMix_Whalefall2(3.85g) OFF __term_sd_task_pre_model_7 cuteyukimixAdorable_neochapter3(2.3g) OFF __term_sd_task_pre_model_8 ekmix-pastel(2.13g) OFF __term_sd_task_pre_model_9 ex2K_sse2(2.38g) OFF __term_sd_task_pre_model_10 kohakuV5_rev2(2.13g) OFF __term_sd_task_pre_model_11 meinamix_meinaV11(2.13g) OFF __term_sd_task_pre_model_12 oukaStar_10(5.43g) OFF __term_sd_task_pre_model_13 pastelMixStylizedAnime(2.13g) OFF __term_sd_task_pre_model_14 rabbit_v6(1.97g) OFF __term_sd_task_pre_model_15 sweetSugarSyndrome_rev15(2.13g) OFF __term_sd_task_pre_model_16 AnythingV5Ink_ink(2.13g) OFF __term_sd_task_pre_model_17 bartstyledbBlueArchiveArtStyle(2.13g) OFF __term_sd_task_pre_model_18 meinapastel_v6(2.13g) OFF __term_sd_task_pre_model_19 qteamix(2.13g) OFF __term_sd_task_pre_model_20 tmndMix(2.13g) OFF __term_sd_task_pre_model_21 =====SD2.1大模型===== OFF __term_sd_task_pre_model_22 v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_23 wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_24 wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_25 =====SDXL大模型===== OFF __term_sd_task_pre_model_26 sd_xl_offset_example-lora_1.0(49.6m) OFF __term_sd_task_pre_model_27 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_28 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_29 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_30 cosxl(6.94g) OFF __term_sd_task_pre_model_31 cosxl_edit(6.94g) OFF __term_sd_task_pre_model_32 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_33 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_34 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_35 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_36 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_37 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_38 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_39 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_40 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_41 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_42 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_43 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_44 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_45 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_46 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_47 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_48 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_49 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_50 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_51 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_52 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_53 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_54 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_55 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_56 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_57 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_58 Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_59 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_60 Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_61 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_62 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_63 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_64 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_65 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_66 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_67 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_68 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_69 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_70 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_71 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_72 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_73 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_74 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_75 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_76 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_77 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_78 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_79 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_80 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_81 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_82 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_83 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_84 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_85 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_86 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_87 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_88 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_89 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_90 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_91 AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_92 abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_93 animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_94 bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_95 nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_96 CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_97 =====SD3大模型===== OFF __term_sd_task_pre_model_98 sd3_medium(4.34g) OFF __term_sd_task_pre_model_99 sd3_medium_incl_clips(5.97g) OFF __term_sd_task_pre_model_100 sd3_medium_incl_clips_t5xxlfp8(10.87g) OFF __term_sd_task_pre_model_101 sd3.5_large(16.5g) OFF __term_sd_task_pre_model_102 sd3.5_large_fp8_scaled(14.9g) OFF __term_sd_task_pre_model_103 sd3.5_large_turbo(16.5g) OFF __term_sd_task_pre_model_104 sd3.5_medium(5.1g) OFF __term_sd_task_pre_model_105 sd3.5_medium_incl_clips_t5xxlfp8scaled(11.6g) OFF __term_sd_task_pre_model_106 emi3(16.5g) OFF __term_sd_task_pre_model_107 =====SD3文本编码器===== OFF __term_sd_task_pre_model_108 clip_g(1.39g) OFF __term_sd_task_pre_model_109 clip_l(246.1m) OFF __term_sd_task_pre_model_110 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_111 t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_112 t5xxl_fp8_e4m3fn_scaled(5.16g) OFF __term_sd_task_pre_model_113 =====HunyuanDiT===== OFF __term_sd_task_pre_model_114 hunyuan_dit_1.2(8.24g) OFF __term_sd_task_pre_model_115 comfy_freeway_animation_hunyuan_dit_180w(8.24g) OFF __term_sd_task_pre_model_116 =====FLUX模型===== OFF __term_sd_task_pre_model_117 flux1-dev(23.8g) OFF __term_sd_task_pre_model_118 flux1-dev-fp8(17.2g) OFF __term_sd_task_pre_model_119 flux_dev_fp8_scaled_diffusion_model(11.9g) OFF __term_sd_task_pre_model_120 flux1-dev-bnb-nf4-v2(12g) OFF __term_sd_task_pre_model_121 flux1-dev-bnb-nf4(11.5g) OFF __term_sd_task_pre_model_122 flux1-dev-Q2_K-gguf(4.03g) OFF __term_sd_task_pre_model_123 flux1-dev-Q3_K_S-gguf(5.23g) OFF __term_sd_task_pre_model_124 flux1-dev-Q4_0-gguf(6.79g) OFF __term_sd_task_pre_model_125 flux1-dev-Q4_1-gguf(7.53g) OFF __term_sd_task_pre_model_126 flux1-dev-Q4_K_S-gguf(6.81g) OFF __term_sd_task_pre_model_127 flux1-dev-Q5_0-gguf(8.27g) OFF __term_sd_task_pre_model_128 flux1-dev-Q5_1-gguf(9.01g) OFF __term_sd_task_pre_model_129 flux1-dev-Q5_K_S-gguf(8.29g) OFF __term_sd_task_pre_model_130 flux1-dev-Q6_K-gguf(9.86g) OFF __term_sd_task_pre_model_131 flux1-dev-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_132 flux1-dev-F16-gguf(23.8g) OFF __term_sd_task_pre_model_133 flux1-schnell(23.8g) OFF __term_sd_task_pre_model_134 flux1-schnell-fp8(17.2g) OFF __term_sd_task_pre_model_135 flux1-schnell-Q2_K-gguf(4.01g) OFF __term_sd_task_pre_model_136 flux1-schnell-Q3_K_S-gguf(5.21g) OFF __term_sd_task_pre_model_137 flux1-schnell-Q4_0-gguf(6.77g) OFF __term_sd_task_pre_model_138 flux1-schnell-Q4_1-gguf(7.51g) OFF __term_sd_task_pre_model_139 flux1-schnell-Q4_K_S-gguf(6.78g) OFF __term_sd_task_pre_model_140 flux1-schnell-Q5_0-gguf(8.25g) OFF __term_sd_task_pre_model_141 flux1-schnell-Q5_1-gguf(8.99g) OFF __term_sd_task_pre_model_142 flux1-schnell-Q5_K_S-gguf(8.26g) OFF __term_sd_task_pre_model_143 flux1-schnell-Q6_K-gguf(9.83g) OFF __term_sd_task_pre_model_144 flux1-schnell-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_145 flux1-schnell-F16-gguf(23.8g) OFF __term_sd_task_pre_model_146 ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_147 jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_148 nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_149 shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_150 flux1-krea-dev_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_151 flux1-krea-dev(23.8g) OFF __term_sd_task_pre_model_152 flux1-dev-kontext_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_153 flux1-kontext-dev(23.8g) OFF __term_sd_task_pre_model_154 chroma-unlocked-v50(23.8g) OFF __term_sd_task_pre_model_155 =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_156 clip_l(246.1m) OFF __term_sd_task_pre_model_157 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_158 t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_159 t5-v1_1-xxl-encoder-Q3_K_L-gguf(2.46g) OFF __term_sd_task_pre_model_160 t5-v1_1-xxl-encoder-Q3_K_M-gguf(2.3g) OFF __term_sd_task_pre_model_161 t5-v1_1-xxl-encoder-Q3_K_S-gguf(2.1g) OFF __term_sd_task_pre_model_162 t5-v1_1-xxl-encoder-Q4_K_M-gguf(2.9g) OFF __term_sd_task_pre_model_163 t5-v1_1-xxl-encoder-Q4_K_S-gguf(2.74g) OFF __term_sd_task_pre_model_164 t5-v1_1-xxl-encoder-Q5_K_M-gguf(3.39g) OFF __term_sd_task_pre_model_165 t5-v1_1-xxl-encoder-Q5_K_S-gguf(3.29g) OFF __term_sd_task_pre_model_166 t5-v1_1-xxl-encoder-Q6_K-gguf(3.91g) OFF __term_sd_task_pre_model_167 t5-v1_1-xxl-encoder-Q8_0-gguf(5.06g) OFF __term_sd_task_pre_model_168 t5-v1_1-xxl-encoder-f16-gguf(9.53g) OFF __term_sd_task_pre_model_169 t5-v1_1-xxl-encoder-f32-gguf(19.1g) OFF __term_sd_task_pre_model_170 ae(335m) OFF __term_sd_task_pre_model_171 =====VAE模型===== OFF __term_sd_task_pre_model_172 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_173 vae-ft-mse-840000-ema-pruned(334.6m) ON __term_sd_task_pre_model_174 sdxl_vae(334.6m) OFF __term_sd_task_pre_model_175 sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_176 =====VAE-approx模型===== OFF __term_sd_task_pre_model_177 model(0.2m) ON __term_sd_task_pre_model_178 vaeapprox-sdxl(0.2m) ON __term_sd_task_pre_model_179 vaeapprox-sd3(0.2m) OFF __term_sd_task_pre_model_180 =====放大模型===== OFF __term_sd_task_pre_model_181 codeformer-v0.1.0(376.6m) OFF __term_sd_task_pre_model_182 DAT_2_x2(139.7m) OFF __term_sd_task_pre_model_183 DAT_2_x3(140.4m) OFF __term_sd_task_pre_model_184 DAT_2_x4(140.3m) OFF __term_sd_task_pre_model_185 DAT_S_x2(87.7m) OFF __term_sd_task_pre_model_186 DAT_S_x3(88.4m) OFF __term_sd_task_pre_model_187 DAT_S_x4(88.2m) OFF __term_sd_task_pre_model_188 DAT_light_x2(45.7m) OFF __term_sd_task_pre_model_189 DAT_light_x3(45.7m) OFF __term_sd_task_pre_model_190 DAT_light_x4(45.8m) OFF __term_sd_task_pre_model_191 DAT_x2(154.1m) OFF __term_sd_task_pre_model_192 DAT_x3(154.8m) OFF __term_sd_task_pre_model_193 DAT_x4(154.7m) OFF __term_sd_task_pre_model_194 16xPSNR(67.2m) OFF __term_sd_task_pre_model_195 1x-ITF-SkinDiffDetail-Lite-v1(20.1m) OFF __term_sd_task_pre_model_196 1x_NMKD-BrightenRedux_200k(66.6m) OFF __term_sd_task_pre_model_197 1x_NMKD-YandereInpaint_375000_G(66.6m) OFF __term_sd_task_pre_model_198 1x_NMKDDetoon_97500_G(66.6m) OFF __term_sd_task_pre_model_199 1x_NoiseToner-Poisson-Detailed_108000_G(66.6m) OFF __term_sd_task_pre_model_200 1x_NoiseToner-Uniform-Detailed_100000_G(66.6m) OFF __term_sd_task_pre_model_201 4x-UltraSharp(66.9m) OFF __term_sd_task_pre_model_202 4xPSNR(66.9m) OFF __term_sd_task_pre_model_203 4x_CountryRoads_377000_G(66.9m) OFF __term_sd_task_pre_model_204 4x_Fatality_Comix_260000_G(66.9m) OFF __term_sd_task_pre_model_205 4x_NMKD-Siax_200k(66.9m) OFF __term_sd_task_pre_model_206 4x_NMKD-Superscale-Artisoftject_210000_G(66.9m) OFF __term_sd_task_pre_model_207 4x_NMKD-Superscale-SP_178000_G(66.9m) ON __term_sd_task_pre_model_208 4x_NMKD-UltraYandere-Lite_280k(20.1m) OFF __term_sd_task_pre_model_209 4x_NMKD-UltraYandere_300k(66.9m) OFF __term_sd_task_pre_model_210 4x_NMKD-YandereNeoXL_200k(66.9m) OFF __term_sd_task_pre_model_211 4x_NMKDSuperscale_Artisoft_120000_G(67.1m) OFF __term_sd_task_pre_model_212 4x_NickelbackFS_72000_G(67.1m) OFF __term_sd_task_pre_model_213 4x_Nickelback_70000G(66.9m) OFF __term_sd_task_pre_model_214 4x_RealisticRescaler_100000_G(134.1m) OFF __term_sd_task_pre_model_215 4x_Valar_v1(67.5m) OFF __term_sd_task_pre_model_216 4x_fatal_Anime_500000_G(66.9m) OFF __term_sd_task_pre_model_217 4x_foolhardy_Remacri(67m) OFF __term_sd_task_pre_model_218 8xPSNR(67.1m) OFF __term_sd_task_pre_model_219 8x_NMKD-Superscale_150000_G(67.1m) OFF __term_sd_task_pre_model_220 8x_NMKD-Typescale_175k(67.1m) OFF __term_sd_task_pre_model_221 A_ESRGAN_Single(134.1m) OFF __term_sd_task_pre_model_222 BSRGAN(67.1m) OFF __term_sd_task_pre_model_223 BSRGANx2(66.8m) OFF __term_sd_task_pre_model_224 BSRNet(67.1m) OFF __term_sd_task_pre_model_225 ESRGAN_4x(66.9m) OFF __term_sd_task_pre_model_226 LADDIER1_282500_G(66.9m) OFF __term_sd_task_pre_model_227 4x_UniversalUpscalerV2-Neutral_115000_swaG(66.9m) OFF __term_sd_task_pre_model_228 4x_UniversalUpscalerV2-Sharp_101000_G(66.9m) OFF __term_sd_task_pre_model_229 4x_UniversalUpscalerV2-Sharper_103000_G(66.9m) OFF __term_sd_task_pre_model_230 4x_UniversalUpscaler-Detailed_155000_G(66.9m) OFF __term_sd_task_pre_model_231 4x_UniversalUpscaler-Soft_190000_G(66.9m) OFF __term_sd_task_pre_model_232 WaifuGAN_v3_30000(66.9m) OFF __term_sd_task_pre_model_233 lollypop(66.9m) OFF __term_sd_task_pre_model_234 sudo_rife4_269.662_testV1_scale1(33.7m) OFF __term_sd_task_pre_model_235 GFPGANv1.3(348.6m) OFF __term_sd_task_pre_model_236 GFPGANv1.4(348.6m) OFF __term_sd_task_pre_model_237 detection_Resnet50_Final(109.5m) OFF __term_sd_task_pre_model_238 parsing_bisenet(12.2m) OFF __term_sd_task_pre_model_239 parsing_parsenet(85.3m) OFF __term_sd_task_pre_model_240 RealESRGAN_x4plus(67m) ON __term_sd_task_pre_model_241 RealESRGAN_x4plus_anime_6B(17.9m) ON __term_sd_task_pre_model_242 001_classicalSR_DF2K_s64w8_SwinIR-M_x2(67.2m) OFF __term_sd_task_pre_model_243 001_classicalSR_DF2K_s64w8_SwinIR-M_x3(68m) OFF __term_sd_task_pre_model_244 001_classicalSR_DF2K_s64w8_SwinIR-M_x4(67.8m) OFF __term_sd_task_pre_model_245 001_classicalSR_DF2K_s64w8_SwinIR-M_x8(68.4m) OFF __term_sd_task_pre_model_246 001_classicalSR_DIV2K_s48w8_SwinIR-M_x2(59m) OFF __term_sd_task_pre_model_247 001_classicalSR_DIV2K_s48w8_SwinIR-M_x3(59.7m) OFF __term_sd_task_pre_model_248 001_classicalSR_DIV2K_s48w8_SwinIR-M_x4(59.6m) OFF __term_sd_task_pre_model_249 001_classicalSR_DIV2K_s48w8_SwinIR-M_x8(60.2m) OFF __term_sd_task_pre_model_250 Swin2SR_ClassicalSR_X2_64(68.7m) OFF __term_sd_task_pre_model_251 Swin2SR_ClassicalSR_X4_64(69.3m) OFF __term_sd_task_pre_model_252 Swin2SR_CompressedSR_X4_48(61.1m) OFF __term_sd_task_pre_model_253 Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR(68.6m) OFF __term_sd_task_pre_model_254 SwinIR_4x(142.4m) OFF __term_sd_task_pre_model_255 =====Embedding模型===== OFF __term_sd_task_pre_model_256 EasyNegativeV2(0.1m) ON __term_sd_task_pre_model_257 bad-artist-anime(0.1m) ON __term_sd_task_pre_model_258 bad-artist(0.1m) ON __term_sd_task_pre_model_259 bad-hands-5(0.1m) ON __term_sd_task_pre_model_260 bad-image-v2-39000(0.1m) ON __term_sd_task_pre_model_261 bad_prompt_version2(0.1m) ON __term_sd_task_pre_model_262 ng_deepnegative_v1_75t(0.1m) ON __term_sd_task_pre_model_263 verybadimagenegative_v1.3(0.1m) ON
2301_81996401/term-sd
install/comfyui/dialog_comfyui_hf_model.sh
Shell
agpl-3.0
16,127
__term_sd_task_pre_model_1 =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 nai1-artist_all_in_one_merge(2.13g) OFF __term_sd_task_pre_model_5 Counterfeit-V3.0(4.24g) OFF __term_sd_task_pre_model_6 cetusMix_Whalefall2(3.85g) OFF __term_sd_task_pre_model_7 cuteyukimixAdorable_neochapter3(2.3g) OFF __term_sd_task_pre_model_8 ekmix-pastel(2.13g) OFF __term_sd_task_pre_model_9 ex2K_sse2(2.38g) OFF __term_sd_task_pre_model_10 kohakuV5_rev2(2.13g) OFF __term_sd_task_pre_model_11 meinamix_meinaV11(2.13g) OFF __term_sd_task_pre_model_12 oukaStar_10(5.43g) OFF __term_sd_task_pre_model_13 pastelMixStylizedAnime(2.13g) OFF __term_sd_task_pre_model_14 rabbit_v6(1.97g) OFF __term_sd_task_pre_model_15 sweetSugarSyndrome_rev15(1.97g) OFF __term_sd_task_pre_model_16 AnythingV5Ink_ink(1.97g) OFF __term_sd_task_pre_model_17 bartstyledbBlueArchiveArtStyle(1.97g) OFF __term_sd_task_pre_model_18 meinapastel_v6(1.97g) OFF __term_sd_task_pre_model_19 qteamix(1.97g) OFF __term_sd_task_pre_model_20 tmndMix(1.97g) OFF __term_sd_task_pre_model_21 =====SD2.1大模型===== OFF __term_sd_task_pre_model_22 v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_23 wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_24 wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_25 =====SDXL大模型===== OFF __term_sd_task_pre_model_26 sd_xl_offset_example-lora_1.0(49.6m) OFF __term_sd_task_pre_model_27 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_28 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_29 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_30 cosxl(6.94g) OFF __term_sd_task_pre_model_31 cosxl_edit(6.94g) OFF __term_sd_task_pre_model_32 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_33 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_34 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_35 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_36 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_37 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_38 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_39 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_40 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_41 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_42 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_43 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_44 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_45 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_46 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_47 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_48 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_49 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_50 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_51 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_52 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_53 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_54 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_55 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_56 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_57 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_58 Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_59 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_60 Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_61 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_62 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_63 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_64 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_65 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_66 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_67 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_68 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_69 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_70 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_71 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_72 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_73 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_74 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_75 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_76 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_77 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_78 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_79 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_80 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_81 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_82 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_83 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_84 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_85 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_86 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_87 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_88 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_89 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_90 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_91 AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_92 abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_93 animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_94 bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_95 nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_96 CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_97 =====SD3大模型===== OFF __term_sd_task_pre_model_98 sd3_medium(4.34g) OFF __term_sd_task_pre_model_99 sd3_medium_incl_clips(5.97g) OFF __term_sd_task_pre_model_100 sd3_medium_incl_clips_t5xxlfp8(10.87g) OFF __term_sd_task_pre_model_101 sd3.5_large(16.5g) OFF __term_sd_task_pre_model_102 sd3.5_large_fp8_scaled(14.9g) OFF __term_sd_task_pre_model_103 sd3.5_large_turbo(16.5g) OFF __term_sd_task_pre_model_104 sd3.5_medium(5.1g) OFF __term_sd_task_pre_model_105 sd3.5_medium_incl_clips_t5xxlfp8scaled(11.6g) OFF __term_sd_task_pre_model_106 emi3(16.5g) OFF __term_sd_task_pre_model_107 =====SD3文本编码器===== OFF __term_sd_task_pre_model_108 clip_g(1.39g) OFF __term_sd_task_pre_model_109 clip_l(246.1m) OFF __term_sd_task_pre_model_110 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_111 t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_112 t5xxl_fp8_e4m3fn_scaled(5.16g) OFF __term_sd_task_pre_model_113 =====HunyuanDiT===== OFF __term_sd_task_pre_model_114 hunyuan_dit_1.2(8.24g) OFF __term_sd_task_pre_model_115 comfy_freeway_animation_hunyuan_dit_180w(8.24g) OFF __term_sd_task_pre_model_116 =====FLUX模型===== OFF __term_sd_task_pre_model_117 flux1-dev(23.8g) OFF __term_sd_task_pre_model_118 flux1-dev-fp8(17.2g) OFF __term_sd_task_pre_model_119 flux_dev_fp8_scaled_diffusion_model(11.9g) OFF __term_sd_task_pre_model_120 flux1-dev-bnb-nf4-v2(12g) OFF __term_sd_task_pre_model_121 flux1-dev-bnb-nf4(11.5g) OFF __term_sd_task_pre_model_122 flux1-dev-Q2_K-gguf(4.03g) OFF __term_sd_task_pre_model_123 flux1-dev-Q3_K_S-gguf(5.23g) OFF __term_sd_task_pre_model_124 flux1-dev-Q4_0-gguf(6.79g) OFF __term_sd_task_pre_model_125 flux1-dev-Q4_1-gguf(7.53g) OFF __term_sd_task_pre_model_126 flux1-dev-Q4_K_S-gguf(6.81g) OFF __term_sd_task_pre_model_127 flux1-dev-Q5_0-gguf(8.27g) OFF __term_sd_task_pre_model_128 flux1-dev-Q5_1-gguf(9.01g) OFF __term_sd_task_pre_model_129 flux1-dev-Q5_K_S-gguf(8.29g) OFF __term_sd_task_pre_model_130 flux1-dev-Q6_K-gguf(9.86g) OFF __term_sd_task_pre_model_131 flux1-dev-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_132 flux1-dev-F16-gguf(23.8g) OFF __term_sd_task_pre_model_133 flux1-schnell(23.8g) OFF __term_sd_task_pre_model_134 flux1-schnell-fp8(17.2g) OFF __term_sd_task_pre_model_135 flux1-schnell-Q2_K-gguf(4.01g) OFF __term_sd_task_pre_model_136 flux1-schnell-Q3_K_S-gguf(5.21g) OFF __term_sd_task_pre_model_137 flux1-schnell-Q4_0-gguf(6.77g) OFF __term_sd_task_pre_model_138 flux1-schnell-Q4_1-gguf(7.51g) OFF __term_sd_task_pre_model_139 flux1-schnell-Q4_K_S-gguf(6.78g) OFF __term_sd_task_pre_model_140 flux1-schnell-Q5_0-gguf(8.25g) OFF __term_sd_task_pre_model_141 flux1-schnell-Q5_1-gguf(8.99g) OFF __term_sd_task_pre_model_142 flux1-schnell-Q5_K_S-gguf(8.26g) OFF __term_sd_task_pre_model_143 flux1-schnell-Q6_K-gguf(9.83g) OFF __term_sd_task_pre_model_144 flux1-schnell-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_145 flux1-schnell-F16-gguf(23.8g) OFF __term_sd_task_pre_model_146 ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_147 jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_148 nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_149 shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_150 flux1-krea-dev_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_151 flux1-krea-dev(23.8g) OFF __term_sd_task_pre_model_152 flux1-dev-kontext_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_153 flux1-kontext-dev(23.8g) OFF __term_sd_task_pre_model_154 chroma-unlocked-v50(23.8g) OFF __term_sd_task_pre_model_155 =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_156 clip_l(246.1m) OFF __term_sd_task_pre_model_157 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_158 t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_159 t5-v1_1-xxl-encoder-Q3_K_L-gguf(2.46g) OFF __term_sd_task_pre_model_160 t5-v1_1-xxl-encoder-Q3_K_M-gguf(2.3g) OFF __term_sd_task_pre_model_161 t5-v1_1-xxl-encoder-Q3_K_S-gguf(2.1g) OFF __term_sd_task_pre_model_162 t5-v1_1-xxl-encoder-Q4_K_M-gguf(2.9g) OFF __term_sd_task_pre_model_163 t5-v1_1-xxl-encoder-Q4_K_S-gguf(2.74g) OFF __term_sd_task_pre_model_164 t5-v1_1-xxl-encoder-Q5_K_M-gguf(3.39g) OFF __term_sd_task_pre_model_165 t5-v1_1-xxl-encoder-Q5_K_S-gguf(3.29g) OFF __term_sd_task_pre_model_166 t5-v1_1-xxl-encoder-Q6_K-gguf(3.91g) OFF __term_sd_task_pre_model_167 t5-v1_1-xxl-encoder-Q8_0-gguf(5.06g) OFF __term_sd_task_pre_model_168 t5-v1_1-xxl-encoder-f16-gguf(9.53g) OFF __term_sd_task_pre_model_169 t5-v1_1-xxl-encoder-f32-gguf(19.1g) OFF __term_sd_task_pre_model_170 ae(335m) OFF __term_sd_task_pre_model_171 =====VAE模型===== OFF __term_sd_task_pre_model_172 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_173 vae-ft-mse-840000-ema-pruned(334.6m) ON __term_sd_task_pre_model_174 sdxl_vae(334.6m) OFF __term_sd_task_pre_model_175 sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_176 =====VAE-approx模型===== OFF __term_sd_task_pre_model_177 model(0.2m) ON __term_sd_task_pre_model_178 vaeapprox-sdxl(0.2m) ON __term_sd_task_pre_model_179 vaeapprox-sd3(0.2m) OFF __term_sd_task_pre_model_180 =====放大模型===== OFF __term_sd_task_pre_model_181 codeformer-v0.1.0(376.6m) OFF __term_sd_task_pre_model_182 DAT_2_x2(139.7m) OFF __term_sd_task_pre_model_183 DAT_2_x3(140.4m) OFF __term_sd_task_pre_model_184 DAT_2_x4(140.3m) OFF __term_sd_task_pre_model_185 DAT_S_x2(87.7m) OFF __term_sd_task_pre_model_186 DAT_S_x3(88.4m) OFF __term_sd_task_pre_model_187 DAT_S_x4(88.2m) OFF __term_sd_task_pre_model_188 DAT_light_x2(45.7m) OFF __term_sd_task_pre_model_189 DAT_light_x3(45.7m) OFF __term_sd_task_pre_model_190 DAT_light_x4(45.8m) OFF __term_sd_task_pre_model_191 DAT_x2(154.1m) OFF __term_sd_task_pre_model_192 DAT_x3(154.8m) OFF __term_sd_task_pre_model_193 DAT_x4(154.7m) OFF __term_sd_task_pre_model_194 16xPSNR(67.2m) OFF __term_sd_task_pre_model_195 1x-ITF-SkinDiffDetail-Lite-v1(20.1m) OFF __term_sd_task_pre_model_196 1x_NMKD-BrightenRedux_200k(66.6m) OFF __term_sd_task_pre_model_197 1x_NMKD-YandereInpaint_375000_G(66.6m) OFF __term_sd_task_pre_model_198 1x_NMKDDetoon_97500_G(66.6m) OFF __term_sd_task_pre_model_199 1x_NoiseToner-Poisson-Detailed_108000_G(66.6m) OFF __term_sd_task_pre_model_200 1x_NoiseToner-Uniform-Detailed_100000_G(66.6m) OFF __term_sd_task_pre_model_201 4x-UltraSharp(66.9m) OFF __term_sd_task_pre_model_202 4xPSNR(66.9m) OFF __term_sd_task_pre_model_203 4x_CountryRoads_377000_G(66.9m) OFF __term_sd_task_pre_model_204 4x_Fatality_Comix_260000_G(66.9m) OFF __term_sd_task_pre_model_205 4x_NMKD-Siax_200k(66.9m) OFF __term_sd_task_pre_model_206 4x_NMKD-Superscale-Artisoftject_210000_G(66.9m) OFF __term_sd_task_pre_model_207 4x_NMKD-Superscale-SP_178000_G(66.9m) ON __term_sd_task_pre_model_208 4x_NMKD-UltraYandere-Lite_280k(20.1m) OFF __term_sd_task_pre_model_209 4x_NMKD-UltraYandere_300k(66.9m) OFF __term_sd_task_pre_model_210 4x_NMKD-YandereNeoXL_200k(66.9m) OFF __term_sd_task_pre_model_211 4x_NMKDSuperscale_Artisoft_120000_G(67.1m) OFF __term_sd_task_pre_model_212 4x_NickelbackFS_72000_G(67.1m) OFF __term_sd_task_pre_model_213 4x_Nickelback_70000G(66.9m) OFF __term_sd_task_pre_model_214 4x_RealisticRescaler_100000_G(134.1m) OFF __term_sd_task_pre_model_215 4x_Valar_v1(67.5m) OFF __term_sd_task_pre_model_216 4x_fatal_Anime_500000_G(66.9m) OFF __term_sd_task_pre_model_217 4x_foolhardy_Remacri(67m) OFF __term_sd_task_pre_model_218 8xPSNR(67.1m) OFF __term_sd_task_pre_model_219 8x_NMKD-Superscale_150000_G(67.1m) OFF __term_sd_task_pre_model_220 8x_NMKD-Typescale_175k(67.1m) OFF __term_sd_task_pre_model_221 A_ESRGAN_Single(134.1m) OFF __term_sd_task_pre_model_222 BSRGAN(67.1m) OFF __term_sd_task_pre_model_223 BSRGANx2(66.8m) OFF __term_sd_task_pre_model_224 BSRNet(67.1m) OFF __term_sd_task_pre_model_225 ESRGAN_4x(66.9m) OFF __term_sd_task_pre_model_226 LADDIER1_282500_G(66.9m) OFF __term_sd_task_pre_model_227 4x_UniversalUpscalerV2-Neutral_115000_swaG(66.9m) OFF __term_sd_task_pre_model_228 4x_UniversalUpscalerV2-Sharp_101000_G(66.9m) OFF __term_sd_task_pre_model_229 4x_UniversalUpscalerV2-Sharper_103000_G(66.9m) OFF __term_sd_task_pre_model_230 4x_UniversalUpscaler-Detailed_155000_G(66.9m) OFF __term_sd_task_pre_model_231 4x_UniversalUpscaler-Soft_190000_G(66.9m) OFF __term_sd_task_pre_model_232 WaifuGAN_v3_30000(66.9m) OFF __term_sd_task_pre_model_233 lollypop(66.9m) OFF __term_sd_task_pre_model_234 sudo_rife4_269.662_testV1_scale1(33.7m) OFF __term_sd_task_pre_model_235 GFPGANv1.3(348.6m) OFF __term_sd_task_pre_model_236 GFPGANv1.4(348.6m) OFF __term_sd_task_pre_model_237 detection_Resnet50_Final(109.5m) OFF __term_sd_task_pre_model_238 parsing_bisenet(12.2m) OFF __term_sd_task_pre_model_239 parsing_parsenet(85.3m) OFF __term_sd_task_pre_model_240 RealESRGAN_x4plus(67m) ON __term_sd_task_pre_model_241 RealESRGAN_x4plus_anime_6B(17.9m) ON __term_sd_task_pre_model_242 001_classicalSR_DF2K_s64w8_SwinIR-M_x2(67.2m) OFF __term_sd_task_pre_model_243 001_classicalSR_DF2K_s64w8_SwinIR-M_x3(68m) OFF __term_sd_task_pre_model_244 001_classicalSR_DF2K_s64w8_SwinIR-M_x4(67.8m) OFF __term_sd_task_pre_model_245 001_classicalSR_DF2K_s64w8_SwinIR-M_x8(68.4m) OFF __term_sd_task_pre_model_246 001_classicalSR_DIV2K_s48w8_SwinIR-M_x2(59m) OFF __term_sd_task_pre_model_247 001_classicalSR_DIV2K_s48w8_SwinIR-M_x3(59.7m) OFF __term_sd_task_pre_model_248 001_classicalSR_DIV2K_s48w8_SwinIR-M_x4(59.6m) OFF __term_sd_task_pre_model_249 001_classicalSR_DIV2K_s48w8_SwinIR-M_x8(60.2m) OFF __term_sd_task_pre_model_250 Swin2SR_ClassicalSR_X2_64(68.7m) OFF __term_sd_task_pre_model_251 Swin2SR_ClassicalSR_X4_64(69.3m) OFF __term_sd_task_pre_model_252 Swin2SR_CompressedSR_X4_48(61.1m) OFF __term_sd_task_pre_model_253 Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR(68.6m) OFF __term_sd_task_pre_model_254 SwinIR_4x(142.4m) OFF __term_sd_task_pre_model_255 =====Embedding模型===== OFF __term_sd_task_pre_model_256 EasyNegativeV2(0.1m) ON __term_sd_task_pre_model_257 bad-artist-anime(0.1m) ON __term_sd_task_pre_model_258 bad-artist(0.1m) ON __term_sd_task_pre_model_259 bad-hands-5(0.1m) ON __term_sd_task_pre_model_260 bad-image-v2-39000(0.1m) ON __term_sd_task_pre_model_261 bad_prompt_version2(0.1m) ON __term_sd_task_pre_model_262 ng_deepnegative_v1_75t(0.1m) ON __term_sd_task_pre_model_263 verybadimagenegative_v1.3(0.1m) ON
2301_81996401/term-sd
install/comfyui/dialog_comfyui_ms_model.sh
Shell
agpl-3.0
16,127
__term_sd_task_pre_model_1 =====SDXL大模型===== OFF __term_sd_task_pre_model_2 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_3 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_4 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_5 cosxl(6.94g) OFF __term_sd_task_pre_model_6 cosxl_edit(6.94g) OFF __term_sd_task_pre_model_7 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_8 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_9 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_10 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_11 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_12 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_13 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_14 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_15 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_16 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_17 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_18 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_19 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_20 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_21 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_22 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_23 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_24 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_25 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_26 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_27 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_28 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_29 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_30 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_31 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_32 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_33 Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_34 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_35 Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_36 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_37 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_38 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_39 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_40 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_41 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_42 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_43 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_44 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_45 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_46 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_47 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_48 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_49 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_50 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_51 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_52 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_53 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_54 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_55 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_56 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_57 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_58 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_59 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_60 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_61 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_62 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_63 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_64 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_65 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_66 AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_67 abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_68 animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_69 bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_70 nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_71 CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_72 =====其他模型===== OFF __term_sd_task_pre_model_73 sd_xl_offset_example-lora_1.0(49.6m) ON __term_sd_task_pre_model_74 inpaint.fooocus(1.32g) OFF __term_sd_task_pre_model_75 inpaint_v26.fooocus(1.32g) ON __term_sd_task_pre_model_76 fooocus_inpaint_head(0.05m) ON __term_sd_task_pre_model_77 fooocus_expansion(351.2m) ON __term_sd_task_pre_model_78 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_79 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_80 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_81 fooocus_expansion(2.1m) ON __term_sd_task_pre_model_82 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_83 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_84 fooocus_upscaler_s409985e5(33.6m) ON __term_sd_task_pre_model_85 vaeapp_sd15(0.2m) ON __term_sd_task_pre_model_86 xl-to-v1_interposer-v3.1(6.5m) OFF __term_sd_task_pre_model_87 xl-to-v1_interposer-v4.0(5.6m) ON __term_sd_task_pre_model_88 xlvaeapp(0.2m) ON __term_sd_task_pre_model_89 sdxl_lcm_lora(393.8m) ON __term_sd_task_pre_model_90 control-lora-canny-rank128(395.7m) ON __term_sd_task_pre_model_91 fooocus_ip_negative(0.01m) ON __term_sd_task_pre_model_92 fooocus_xl_cpds_128(395.7m) ON __term_sd_task_pre_model_93 ip-adapter-plus_sdxl_vit-h(1.01g) ON __term_sd_task_pre_model_94 detection_Resnet50_Final(103.5m) ON __term_sd_task_pre_model_95 ip-adapter-plus-face_sdxl_vit-h(1.01g) ON __term_sd_task_pre_model_96 parsing_parsenet(85.3m) ON
2301_81996401/term-sd
install/fooocus/dialog_fooocus_hf_model.sh
Shell
agpl-3.0
5,864
__term_sd_task_pre_model_1 =====SDXL大模型===== OFF __term_sd_task_pre_model_2 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_3 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_4 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_5 cosxl(6.94g) OFF __term_sd_task_pre_model_6 cosxl_edit(6.94g) OFF __term_sd_task_pre_model_7 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_8 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_9 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_10 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_11 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_12 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_13 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_14 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_15 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_16 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_17 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_18 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_19 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_20 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_21 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_22 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_23 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_24 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_25 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_26 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_27 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_28 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_29 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_30 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_31 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_32 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_33 Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_34 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_35 Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_36 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_37 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_38 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_39 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_40 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_41 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_42 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_43 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_44 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_45 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_46 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_47 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_48 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_49 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_50 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_51 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_52 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_53 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_54 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_55 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_56 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_57 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_58 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_59 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_60 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_61 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_62 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_63 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_64 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_65 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_66 AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_67 abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_68 animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_69 bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_70 nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_71 CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_72 =====其他模型===== OFF __term_sd_task_pre_model_73 sd_xl_offset_example-lora_1.0(49.6m) ON __term_sd_task_pre_model_74 inpaint.fooocus(1.32g) OFF __term_sd_task_pre_model_75 inpaint_v26.fooocus(1.32g) ON __term_sd_task_pre_model_76 fooocus_inpaint_head(0.05m) ON __term_sd_task_pre_model_77 fooocus_expansion(351.2m) ON __term_sd_task_pre_model_78 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_79 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_80 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_81 fooocus_expansion(2.1m) ON __term_sd_task_pre_model_82 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_83 fooocus_expansion(0.1m) ON __term_sd_task_pre_model_84 fooocus_upscaler_s409985e5(33.6m) ON __term_sd_task_pre_model_85 vaeapp_sd15(0.2m) ON __term_sd_task_pre_model_86 xl-to-v1_interposer-v3.1(6.5m) OFF __term_sd_task_pre_model_87 xl-to-v1_interposer-v4.0(5.6m) ON __term_sd_task_pre_model_88 xlvaeapp(0.2m) ON __term_sd_task_pre_model_89 sdxl_lcm_lora(393.8m) ON __term_sd_task_pre_model_90 control-lora-canny-rank128(395.7m) ON __term_sd_task_pre_model_91 fooocus_ip_negative(0.01m) ON __term_sd_task_pre_model_92 fooocus_xl_cpds_128(395.7m) ON __term_sd_task_pre_model_93 ip-adapter-plus_sdxl_vit-h(1.01g) ON __term_sd_task_pre_model_94 detection_Resnet50_Final(103.5m) ON __term_sd_task_pre_model_95 ip-adapter-plus-face_sdxl_vit-h(1.01g) ON __term_sd_task_pre_model_96 parsing_parsenet(85.3m) ON
2301_81996401/term-sd
install/fooocus/dialog_fooocus_ms_model.sh
Shell
agpl-3.0
5,864
__term_sd_task_sys term_sd_mkdir "${FOOOCUS_PARENT_PATH}" __term_sd_task_sys cd "${FOOOCUS_PARENT_PATH}" __term_sd_task_sys term_sd_tmp_enable_proxy __term_sd_task_pre_core git_clone_repository https://github.com/lllyasviel/Fooocus "${FOOOCUS_PARENT_PATH}" "${FOOOCUS_FOLDER}" __term_sd_task_sys is_sd_repo_exist "${FOOOCUS_ROOT_PATH}" __term_sd_task_sys term_sd_tmp_disable_proxy # 临时取消代理, 避免一些不必要的网络减速 __term_sd_task_pre_core create_venv "${FOOOCUS_ROOT_PATH}" __term_sd_task_sys enter_venv "${FOOOCUS_ROOT_PATH}" __term_sd_task_pre_core install_pytorch # 安装 PyTorch __term_sd_task_pre_core install_python_package -r "${FOOOCUS_ROOT_PATH}"/requirements_versions.txt __term_sd_task_pre_core set_fooocus_preset # 添加 Term-SD 风格的预设 __term_sd_task_pre_core set_fooocus_lang_config # 为 Fooocus 添加翻译文件
2301_81996401/term-sd
install/fooocus/fooocus_core.sh
Shell
agpl-3.0
865
__term_sd_task_pre_model_1 # =====SDXL大模型===== OFF __term_sd_task_pre_model_2 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_3 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_4 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_5 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/cosxl.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # cosxl(6.94g) OFF __term_sd_task_pre_model_6 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/cosxl_edit.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # cosxl_edit(6.94g) OFF __term_sd_task_pre_model_7 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0-base.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_8 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_9 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_10 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_11 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_12 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_13 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/holodayo-xl-2.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_14 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kivotos-xl-2.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_15 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/clandestine-xl-1.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_16 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/UrangDiffusion-1.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_17 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_18 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_anime_V52.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_19 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_20 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_21 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_22 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_23 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-zeta.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_24 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/starryXLV52_v52.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_25 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v20.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_26 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v30.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_27 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_28 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_29 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_30 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_31 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_32 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_33 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_34 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_35 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_36 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_37 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_38 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_39 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_40 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_41 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_42 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_43 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tIllunai3_v4.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_44 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_45 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_46 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_47 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_48 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_49 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_50 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_51 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_52 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_53 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_54 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_55 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_56 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_57 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_58 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_59 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_60 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/pdForAnime_v20.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_61 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_62 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_63 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_64 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_65 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_66 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/AnythingXL_xl.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_67 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/abyssorangeXLElse_v10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_68 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animaPencilXL_v200.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_69 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/bluePencilXL_v401.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_70 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/nekorayxl_v06W3.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_71 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/CounterfeitXL-V1.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_72 # =====其他模型===== OFF __term_sd_task_pre_model_73 aria2_download https://huggingface.co/licyk/sd-lora/resolve/main/sdxl/sd_xl_offset_example-lora_1.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/loras # sd_xl_offset_example-lora_1.0(49.6m) ON __term_sd_task_pre_model_74 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/inpaint/inpaint.fooocus.patch "${FOOOCUS_ROOT_PATH}"/models/inpaint # inpaint.fooocus(1.32g) OFF __term_sd_task_pre_model_75 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/inpaint/inpaint_v26.fooocus.patch "${FOOOCUS_ROOT_PATH}"/models/inpaint # inpaint_v26.fooocus(1.32g) ON __term_sd_task_pre_model_76 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/inpaint/fooocus_inpaint_head.pth "${FOOOCUS_ROOT_PATH}"/models/inpaint # fooocus_inpaint_head(0.05m) ON __term_sd_task_pre_model_77 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/prompt_expansion/fooocus_expansion/pytorch_model.bin "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(351.2m) ON __term_sd_task_pre_model_78 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/prompt_expansion/fooocus_expansion/config.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_79 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/prompt_expansion/fooocus_expansion/merges.txt "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_80 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/prompt_expansion/fooocus_expansion/special_tokens_map.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_81 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/prompt_expansion/fooocus_expansion/tokenizer.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(2.1m) ON __term_sd_task_pre_model_82 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/prompt_expansion/fooocus_expansion/tokenizer_config.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_83 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/prompt_expansion/fooocus_expansion/vocab.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_84 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/upscale_models/fooocus_upscaler_s409985e5.bin "${FOOOCUS_ROOT_PATH}"/models/upscale_models # fooocus_upscaler_s409985e5(33.6m) ON __term_sd_task_pre_model_85 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/vae_approx/vaeapp_sd15.pth "${FOOOCUS_ROOT_PATH}"/models/vae_approx # vaeapp_sd15(0.2m) ON __term_sd_task_pre_model_86 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/vae_approx/xl-to-v1_interposer-v3.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/vae_approx # xl-to-v1_interposer-v3.1(6.5m) OFF __term_sd_task_pre_model_87 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/vae_approx/xl-to-v1_interposer-v4.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/vae_approx # xl-to-v1_interposer-v4.0(5.6m) ON __term_sd_task_pre_model_88 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/vae_approx/xlvaeapp.pth "${FOOOCUS_ROOT_PATH}"/models/vae_approx # xlvaeapp(0.2m) ON __term_sd_task_pre_model_89 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/loras/sdxl_lcm_lora.safetensors "${FOOOCUS_ROOT_PATH}"/models/loras # sdxl_lcm_lora(393.8m) ON __term_sd_task_pre_model_90 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/controlnet/control-lora-canny-rank128.safetensors "${FOOOCUS_ROOT_PATH}"/models/controlnet # control-lora-canny-rank128(395.7m) ON __term_sd_task_pre_model_91 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/controlnet/fooocus_ip_negative.safetensors "${FOOOCUS_ROOT_PATH}"/models/controlnet # fooocus_ip_negative(0.01m) ON __term_sd_task_pre_model_92 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/controlnet/fooocus_xl_cpds_128.safetensors "${FOOOCUS_ROOT_PATH}"/models/controlnet # fooocus_xl_cpds_128(395.7m) ON __term_sd_task_pre_model_93 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/controlnet/ip-adapter-plus_sdxl_vit-h.bin "${FOOOCUS_ROOT_PATH}"/models/controlnet # ip-adapter-plus_sdxl_vit-h(1.01g) ON __term_sd_task_pre_model_94 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/controlnet/detection_Resnet50_Final.pth "${FOOOCUS_ROOT_PATH}"/models/controlnet # detection_Resnet50_Final(103.5m) ON __term_sd_task_pre_model_95 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/controlnet/ip-adapter-plus-face_sdxl_vit-h.bin "${FOOOCUS_ROOT_PATH}"/models/controlnet # ip-adapter-plus-face_sdxl_vit-h(1.01g) ON __term_sd_task_pre_model_96 aria2_download https://huggingface.co/licyk/fooocus-model/resolve/main/controlnet/parsing_parsenet.pth "${FOOOCUS_ROOT_PATH}"/models/controlnet # parsing_parsenet(85.3m) ON
2301_81996401/term-sd
install/fooocus/fooocus_hf_model.sh
Shell
agpl-3.0
20,592
__term_sd_task_pre_model_1 # =====SDXL大模型===== OFF __term_sd_task_pre_model_2 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_3 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_4 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_5 get_modelscope_model licyks/sd-model/master/sdxl_1.0/cosxl.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # cosxl(6.94g) OFF __term_sd_task_pre_model_6 get_modelscope_model licyks/sd-model/master/sdxl_1.0/cosxl_edit.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # cosxl_edit(6.94g) OFF __term_sd_task_pre_model_7 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0-base.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_8 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_9 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_10 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_11 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_12 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_13 get_modelscope_model licyks/sd-model/master/sdxl_1.0/holodayo-xl-2.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_14 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kivotos-xl-2.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_15 get_modelscope_model licyks/sd-model/master/sdxl_1.0/clandestine-xl-1.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_16 get_modelscope_model licyks/sd-model/master/sdxl_1.0/UrangDiffusion-1.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_17 get_modelscope_model licyks/sd-model/master/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_18 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_anime_V52.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_19 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_20 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_21 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_22 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_23 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-zeta.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_24 get_modelscope_model licyks/sd-model/master/sdxl_1.0/starryXLV52_v52.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_25 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v20.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_26 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v30.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_27 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_28 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_29 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_30 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_31 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_32 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_33 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_34 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_35 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_36 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_37 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_38 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_39 get_modelscope_model licyks/sd-model/master/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_40 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_41 get_modelscope_model licyks/sd-model/master/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_42 get_modelscope_model licyks/sd-model/master/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_43 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tIllunai3_v4.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_44 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_45 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_46 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_47 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_48 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_49 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_50 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_51 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_52 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_53 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_54 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_55 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_56 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_57 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_58 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_59 get_modelscope_model licyks/sd-model/master/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_60 get_modelscope_model licyks/sd-model/master/sdxl_1.0/pdForAnime_v20.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_61 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_62 get_modelscope_model licyks/sd-model/master/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_63 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_64 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_65 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_66 get_modelscope_model licyks/sd-model/master/sdxl_1.0/AnythingXL_xl.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_67 get_modelscope_model licyks/sd-model/master/sdxl_1.0/abyssorangeXLElse_v10.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_68 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animaPencilXL_v200.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_69 get_modelscope_model licyks/sd-model/master/sdxl_1.0/bluePencilXL_v401.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_70 get_modelscope_model licyks/sd-model/master/sdxl_1.0/nekorayxl_v06W3.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_71 get_modelscope_model licyks/sd-model/master/sdxl_1.0/CounterfeitXL-V1.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/checkpoints # CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_72 # =====其他模型===== OFF __term_sd_task_pre_model_73 get_modelscope_model licyks/sd-lora/master/sdxl/sd_xl_offset_example-lora_1.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/loras # sd_xl_offset_example-lora_1.0(49.6m) ON __term_sd_task_pre_model_74 get_modelscope_model licyks/fooocus-model/master/inpaint/inpaint.fooocus.patch "${FOOOCUS_ROOT_PATH}"/models/inpaint # inpaint.fooocus(1.32g) OFF __term_sd_task_pre_model_75 get_modelscope_model licyks/fooocus-model/master/inpaint/inpaint_v26.fooocus.patch "${FOOOCUS_ROOT_PATH}"/models/inpaint # inpaint_v26.fooocus(1.32g) ON __term_sd_task_pre_model_76 get_modelscope_model licyks/fooocus-model/master/inpaint/fooocus_inpaint_head.pth "${FOOOCUS_ROOT_PATH}"/models/inpaint # fooocus_inpaint_head(0.05m) ON __term_sd_task_pre_model_77 get_modelscope_model licyks/fooocus-model/master/prompt_expansion/fooocus_expansion/pytorch_model.bin "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(351.2m) ON __term_sd_task_pre_model_78 get_modelscope_model licyks/fooocus-model/master/prompt_expansion/fooocus_expansion/config.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_79 get_modelscope_model licyks/fooocus-model/master/prompt_expansion/fooocus_expansion/merges.txt "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_80 get_modelscope_model licyks/fooocus-model/master/prompt_expansion/fooocus_expansion/special_tokens_map.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_81 get_modelscope_model licyks/fooocus-model/master/prompt_expansion/fooocus_expansion/tokenizer.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(2.1m) ON __term_sd_task_pre_model_82 get_modelscope_model licyks/fooocus-model/master/prompt_expansion/fooocus_expansion/tokenizer_config.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_83 get_modelscope_model licyks/fooocus-model/master/prompt_expansion/fooocus_expansion/vocab.json "${FOOOCUS_ROOT_PATH}"/models/prompt_expansion/fooocus_expansion # fooocus_expansion(0.1m) ON __term_sd_task_pre_model_84 get_modelscope_model licyks/fooocus-model/master/upscale_models/fooocus_upscaler_s409985e5.bin "${FOOOCUS_ROOT_PATH}"/models/upscale_models # fooocus_upscaler_s409985e5(33.6m) ON __term_sd_task_pre_model_85 get_modelscope_model licyks/fooocus-model/master/vae_approx/vaeapp_sd15.pth "${FOOOCUS_ROOT_PATH}"/models/vae_approx # vaeapp_sd15(0.2m) ON __term_sd_task_pre_model_86 get_modelscope_model licyks/fooocus-model/master/vae_approx/xl-to-v1_interposer-v3.1.safetensors "${FOOOCUS_ROOT_PATH}"/models/vae_approx # xl-to-v1_interposer-v3.1(6.5m) OFF __term_sd_task_pre_model_87 get_modelscope_model licyks/fooocus-model/master/vae_approx/xl-to-v1_interposer-v4.0.safetensors "${FOOOCUS_ROOT_PATH}"/models/vae_approx # xl-to-v1_interposer-v4.0(5.6m) ON __term_sd_task_pre_model_88 get_modelscope_model licyks/fooocus-model/master/vae_approx/xlvaeapp.pth "${FOOOCUS_ROOT_PATH}"/models/vae_approx # xlvaeapp(0.2m) ON __term_sd_task_pre_model_89 get_modelscope_model licyks/fooocus-model/master/loras/sdxl_lcm_lora.safetensors "${FOOOCUS_ROOT_PATH}"/models/loras # sdxl_lcm_lora(393.8m) ON __term_sd_task_pre_model_90 get_modelscope_model licyks/fooocus-model/master/controlnet/control-lora-canny-rank128.safetensors "${FOOOCUS_ROOT_PATH}"/models/controlnet # control-lora-canny-rank128(395.7m) ON __term_sd_task_pre_model_91 get_modelscope_model licyks/fooocus-model/master/controlnet/fooocus_ip_negative.safetensors "${FOOOCUS_ROOT_PATH}"/models/controlnet # fooocus_ip_negative(0.01m) ON __term_sd_task_pre_model_92 get_modelscope_model licyks/fooocus-model/master/controlnet/fooocus_xl_cpds_128.safetensors "${FOOOCUS_ROOT_PATH}"/models/controlnet # fooocus_xl_cpds_128(395.7m) ON __term_sd_task_pre_model_93 get_modelscope_model licyks/fooocus-model/master/controlnet/ip-adapter-plus_sdxl_vit-h.bin "${FOOOCUS_ROOT_PATH}"/models/controlnet # ip-adapter-plus_sdxl_vit-h(1.01g) ON __term_sd_task_pre_model_94 get_modelscope_model licyks/fooocus-model/master/controlnet/detection_Resnet50_Final.pth "${FOOOCUS_ROOT_PATH}"/models/controlnet # detection_Resnet50_Final(103.5m) ON __term_sd_task_pre_model_95 get_modelscope_model licyks/fooocus-model/master/controlnet/ip-adapter-plus-face_sdxl_vit-h.bin "${FOOOCUS_ROOT_PATH}"/models/controlnet # ip-adapter-plus-face_sdxl_vit-h(1.01g) ON __term_sd_task_pre_model_96 get_modelscope_model licyks/fooocus-model/master/controlnet/parsing_parsenet.pth "${FOOOCUS_ROOT_PATH}"/models/controlnet # parsing_parsenet(85.3m) ON
2301_81996401/term-sd
install/fooocus/fooocus_ms_model.sh
Shell
agpl-3.0
18,524
__term_sd_task_pre_ext_1 invoke_tipo ON __term_sd_task_pre_ext_2 invoke_wd14_tagger ON __term_sd_task_pre_ext_3 adapters-linked-nodes OFF __term_sd_task_pre_ext_4 average-images-node OFF __term_sd_task_pre_ext_5 clean-artifact-after-cut-node OFF __term_sd_task_pre_ext_6 close-color-mask-node OFF __term_sd_task_pre_ext_7 clothing-mask-node OFF __term_sd_task_pre_ext_8 clahe-node OFF __term_sd_task_pre_ext_9 depth-from-obj-node OFF __term_sd_task_pre_ext_10 enhance-detail-node OFF __term_sd_task_pre_ext_11 film-grain-node OFF __term_sd_task_pre_ext_12 GPT2RandomPromptMaker OFF __term_sd_task_pre_ext_13 GridToGif.py OFF __term_sd_task_pre_ext_14 invoke_meshgraphormer OFF __term_sd_task_pre_ext_15 halftone-node OFF __term_sd_task_pre_ext_16 composition-nodes OFF __term_sd_task_pre_ext_17 imagetoasciiimage OFF __term_sd_task_pre_ext_18 image-picker-node OFF __term_sd_task_pre_ext_19 image-resize-plus-node OFF __term_sd_task_pre_ext_20 latent-upscale OFF __term_sd_task_pre_ext_21 load_video_frame OFF __term_sd_task_pre_ext_22 mask-operations-node OFF __term_sd_task_pre_ext_23 metadata-linked-nodes OFF __term_sd_task_pre_ext_24 Prompt-tools-nodes OFF __term_sd_task_pre_ext_25 invoke_bria_rmbg ON __term_sd_task_pre_ext_26 remove-background-node OFF __term_sd_task_pre_ext_27 XYGrid_nodes ON
2301_81996401/term-sd
install/invokeai/dialog_invokeai_custom_node.sh
Shell
agpl-3.0
1,303
__term_sd_task_pre_model_1 (提示:) OFF __term_sd_task_pre_model_2 (建议使用InvokeAI自带的模型管理下载和添加模型) OFF __term_sd_task_pre_model_3 (不推荐使用Term-SD下载InvokeAI的模型) OFF __term_sd_task_pre_model_4 =====核心模型===== OFF __term_sd_task_pre_model_5 bert-base-uncased OFF __term_sd_task_pre_model_6 bert-base-uncased OFF __term_sd_task_pre_model_7 bert-base-uncased OFF __term_sd_task_pre_model_8 bert-base-uncased OFF __term_sd_task_pre_model_9 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_10 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_11 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_12 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_13 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_14 clip-vit-large-patch14 OFF __term_sd_task_pre_model_15 clip-vit-large-patch14 OFF __term_sd_task_pre_model_16 clip-vit-large-patch14(492.3m) OFF __term_sd_task_pre_model_17 clip-vit-large-patch14 OFF __term_sd_task_pre_model_18 clip-vit-large-patch14 OFF __term_sd_task_pre_model_19 clip-vit-large-patch14 OFF __term_sd_task_pre_model_20 stable-diffusion-2-clip OFF __term_sd_task_pre_model_21 stable-diffusion-2-clip(1.36g) OFF __term_sd_task_pre_model_22 stable-diffusion-2-clip OFF __term_sd_task_pre_model_23 stable-diffusion-2-clip OFF __term_sd_task_pre_model_24 stable-diffusion-2-clip OFF __term_sd_task_pre_model_25 stable-diffusion-2-clip OFF __term_sd_task_pre_model_26 stable-diffusion-safety-checker OFF __term_sd_task_pre_model_27 stable-diffusion-safety-checker(1.22g) OFF __term_sd_task_pre_model_28 stable-diffusion-safety-checker OFF __term_sd_task_pre_model_29 lama(205.6m) OFF __term_sd_task_pre_model_30 =====放大模型===== OFF __term_sd_task_pre_model_31 ESRGAN_SRx4_DF2KOST_official-ff704c30(66.9m) OFF __term_sd_task_pre_model_32 RealESRGAN_x2plus(67m) OFF __term_sd_task_pre_model_33 RealESRGAN_x4plus(67m) OFF __term_sd_task_pre_model_34 RealESRGAN_x4plus_anime_6B(17.9m) OFF __term_sd_task_pre_model_35 =====配置文件===== OFF __term_sd_task_pre_model_36 INITIAL_MODELS OFF __term_sd_task_pre_model_37 models.yaml OFF __term_sd_task_pre_model_38 models.yaml.example OFF __term_sd_task_pre_model_39 sd_xl_base.yaml OFF __term_sd_task_pre_model_40 sd_xl_refiner.yaml OFF __term_sd_task_pre_model_41 v1-finetune.yaml OFF __term_sd_task_pre_model_42 v1-finetune_style.yaml OFF __term_sd_task_pre_model_43 v1-inference-v.yaml OFF __term_sd_task_pre_model_44 v1-inference.yaml OFF __term_sd_task_pre_model_45 v1-inpainting-inference.yaml OFF __term_sd_task_pre_model_46 v1-m1-finetune.yaml OFF __term_sd_task_pre_model_47 v2-inference-v.yaml OFF __term_sd_task_pre_model_48 v2-inference.yaml OFF __term_sd_task_pre_model_49 v2-inpainting-inference-v.yaml OFF __term_sd_task_pre_model_50 v2-inpainting-inference.yaml OFF __term_sd_task_pre_model_51 =====基础模型===== OFF __term_sd_task_pre_model_52 =====SD1.5大模型===== OFF __term_sd_task_pre_model_53 sd1.5-official OFF __term_sd_task_pre_model_54 sd1.5-official OFF __term_sd_task_pre_model_55 sd1.5-official OFF __term_sd_task_pre_model_56 sd1.5-official OFF __term_sd_task_pre_model_57 sd1.5-official(246.1m) OFF __term_sd_task_pre_model_58 sd1.5-official OFF __term_sd_task_pre_model_59 sd1.5-official OFF __term_sd_task_pre_model_60 sd1.5-official OFF __term_sd_task_pre_model_61 sd1.5-official OFF __term_sd_task_pre_model_62 sd1.5-official OFF __term_sd_task_pre_model_63 sd1.5-official(1.72g) OFF __term_sd_task_pre_model_64 sd1.5-official OFF __term_sd_task_pre_model_65 sd1.5-official(167.3m) OFF __term_sd_task_pre_model_66 sd1.5-inpaint-official OFF __term_sd_task_pre_model_67 sd1.5-inpaint-official OFF __term_sd_task_pre_model_68 sd1.5-inpaint-official OFF __term_sd_task_pre_model_69 sd1.5-inpaint-official OFF __term_sd_task_pre_model_70 sd1.5-inpaint-official(246.1m) OFF __term_sd_task_pre_model_71 sd1.5-inpaint-official OFF __term_sd_task_pre_model_72 sd1.5-inpaint-official OFF __term_sd_task_pre_model_73 sd1.5-inpaint-official OFF __term_sd_task_pre_model_74 sd1.5-inpaint-official OFF __term_sd_task_pre_model_75 sd1.5-inpaint-official OFF __term_sd_task_pre_model_76 sd1.5-inpaint-official(1.72g) OFF __term_sd_task_pre_model_77 sd1.5-inpaint-official OFF __term_sd_task_pre_model_78 sd1.5-inpaint-official(167.3m) OFF __term_sd_task_pre_model_79 openjourney OFF __term_sd_task_pre_model_80 openjourney OFF __term_sd_task_pre_model_81 openjourney OFF __term_sd_task_pre_model_82 openjourney OFF __term_sd_task_pre_model_83 openjourney(246.1m) OFF __term_sd_task_pre_model_84 openjourney OFF __term_sd_task_pre_model_85 openjourney OFF __term_sd_task_pre_model_86 openjourney OFF __term_sd_task_pre_model_87 openjourney OFF __term_sd_task_pre_model_88 openjourney OFF __term_sd_task_pre_model_89 openjourney(1.72g) OFF __term_sd_task_pre_model_90 openjourney OFF __term_sd_task_pre_model_91 openjourney(246.1m) OFF __term_sd_task_pre_model_92 =====SD2.1大模型===== OFF __term_sd_task_pre_model_93 sd2.1-official OFF __term_sd_task_pre_model_94 sd2.1-official OFF __term_sd_task_pre_model_95 sd2.1-official OFF __term_sd_task_pre_model_96 sd2.1-official OFF __term_sd_task_pre_model_97 sd2.1-official(680.8m) OFF __term_sd_task_pre_model_98 sd2.1-official OFF __term_sd_task_pre_model_99 sd2.1-official OFF __term_sd_task_pre_model_100 sd2.1-official OFF __term_sd_task_pre_model_101 sd2.1-official OFF __term_sd_task_pre_model_102 sd2.1-official OFF __term_sd_task_pre_model_103 sd2.1-official(1.73g) OFF __term_sd_task_pre_model_104 sd2.1-official OFF __term_sd_task_pre_model_105 sd2.1-official(167.3m) OFF __term_sd_task_pre_model_106 sd2.1-inpaint-official OFF __term_sd_task_pre_model_107 sd2.1-inpaint-official OFF __term_sd_task_pre_model_108 sd2.1-inpaint-official OFF __term_sd_task_pre_model_109 sd2.1-inpaint-official OFF __term_sd_task_pre_model_110 sd2.1-inpaint-official(680.8m) OFF __term_sd_task_pre_model_111 sd2.1-inpaint-official OFF __term_sd_task_pre_model_112 sd2.1-inpaint-official OFF __term_sd_task_pre_model_113 sd2.1-inpaint-official OFF __term_sd_task_pre_model_114 sd2.1-inpaint-official OFF __term_sd_task_pre_model_115 sd2.1-inpaint-official OFF __term_sd_task_pre_model_116 sd2.1-inpaint-official(1.73g) OFF __term_sd_task_pre_model_117 sd2.1-inpaint-official OFF __term_sd_task_pre_model_118 sd2.1-inpaint-official(167.3m) OFF __term_sd_task_pre_model_119 =====SDXL大模型===== OFF __term_sd_task_pre_model_120 sdxl OFF __term_sd_task_pre_model_121 sdxl OFF __term_sd_task_pre_model_122 sdxl OFF __term_sd_task_pre_model_123 sdxl(246.1m) OFF __term_sd_task_pre_model_124 sdxl OFF __term_sd_task_pre_model_125 sdxl(1.39g) OFF __term_sd_task_pre_model_126 sdxl OFF __term_sd_task_pre_model_127 sdxl OFF __term_sd_task_pre_model_128 sdxl OFF __term_sd_task_pre_model_129 sdxl OFF __term_sd_task_pre_model_130 sdxl OFF __term_sd_task_pre_model_131 sdxl OFF __term_sd_task_pre_model_132 sdxl OFF __term_sd_task_pre_model_133 sdxl OFF __term_sd_task_pre_model_134 sdxl OFF __term_sd_task_pre_model_135 sdxl(5.14g) OFF __term_sd_task_pre_model_136 sdxl OFF __term_sd_task_pre_model_137 sdxl(167.3m) OFF __term_sd_task_pre_model_138 sdxl-refind OFF __term_sd_task_pre_model_139 sdxl-refind OFF __term_sd_task_pre_model_140 sdxl-refind OFF __term_sd_task_pre_model_141 sdxl-refind(1.39g) OFF __term_sd_task_pre_model_142 sdxl-refind OFF __term_sd_task_pre_model_143 sdxl-refind OFF __term_sd_task_pre_model_144 sdxl-refind OFF __term_sd_task_pre_model_145 sdxl-refind OFF __term_sd_task_pre_model_146 sdxl-refind OFF __term_sd_task_pre_model_147 sdxl-refind(5.14g) OFF __term_sd_task_pre_model_148 sdxl-refind OFF __term_sd_task_pre_model_149 sdxl-refind(167.3m) OFF __term_sd_task_pre_model_150 =====VAE模型===== OFF __term_sd_task_pre_model_151 sd-vae-ft-mse OFF __term_sd_task_pre_model_152 sd-vae-ft-mse(334.6m) OFF __term_sd_task_pre_model_153 sdxl-vae OFF __term_sd_task_pre_model_154 sdxl-vae(334.6m) OFF __term_sd_task_pre_model_155 =====Embedding模型===== OFF __term_sd_task_pre_model_156 EasyNegative(0.1m) OFF __term_sd_task_pre_model_157 ahx-beta-453407d(0.1m) OFF __term_sd_task_pre_model_158 =====控制模型===== OFF __term_sd_task_pre_model_159 =====ControlNet(SD1.5)模型===== OFF __term_sd_task_pre_model_160 canny OFF __term_sd_task_pre_model_161 canny(1.45g) OFF __term_sd_task_pre_model_162 depth OFF __term_sd_task_pre_model_163 depth(1.45g) OFF __term_sd_task_pre_model_164 inpaint OFF __term_sd_task_pre_model_165 inpaint(1.45g) OFF __term_sd_task_pre_model_166 ip2p OFF __term_sd_task_pre_model_167 ip2p(1.45g) OFF __term_sd_task_pre_model_168 lineart OFF __term_sd_task_pre_model_169 lineart(1.45g) OFF __term_sd_task_pre_model_170 lineart-anime OFF __term_sd_task_pre_model_171 lineart-anime(1.45g) OFF __term_sd_task_pre_model_172 mlsd OFF __term_sd_task_pre_model_173 mlsd(1.45g) OFF __term_sd_task_pre_model_174 normal-bae OFF __term_sd_task_pre_model_175 normal-bae(1.45g) OFF __term_sd_task_pre_model_176 openpose OFF __term_sd_task_pre_model_177 openpose(1.45g) OFF __term_sd_task_pre_model_178 qrcode OFF __term_sd_task_pre_model_179 qrcode(1.45g) OFF __term_sd_task_pre_model_180 scribble OFF __term_sd_task_pre_model_181 scribble(1.45g) OFF __term_sd_task_pre_model_182 seg OFF __term_sd_task_pre_model_183 seg(1.45g) OFF __term_sd_task_pre_model_184 shuffle OFF __term_sd_task_pre_model_185 shuffle(1.45g) OFF __term_sd_task_pre_model_186 softedge OFF __term_sd_task_pre_model_187 softedge(1.45g) OFF __term_sd_task_pre_model_188 tile OFF __term_sd_task_pre_model_189 tile(1.45g) OFF __term_sd_task_pre_model_190 =====T2I-Adapter(SD1.5)模型===== OFF __term_sd_task_pre_model_191 canny OFF __term_sd_task_pre_model_192 canny(308m) OFF __term_sd_task_pre_model_193 depth OFF __term_sd_task_pre_model_194 depth(308m) OFF __term_sd_task_pre_model_195 sketch OFF __term_sd_task_pre_model_196 sketch(308m) OFF __term_sd_task_pre_model_197 zoedepth OFF __term_sd_task_pre_model_198 zoedepth(308m) OFF __term_sd_task_pre_model_199 =====T2I-Adapter(SDXL)模型===== OFF __term_sd_task_pre_model_200 canny OFF __term_sd_task_pre_model_201 canny(316m) OFF __term_sd_task_pre_model_202 lineart OFF __term_sd_task_pre_model_203 lineart(316m) OFF __term_sd_task_pre_model_204 sketch OFF __term_sd_task_pre_model_205 sketch(316m) OFF __term_sd_task_pre_model_206 zoedepth OFF __term_sd_task_pre_model_207 zoedepth(316m) OFF __term_sd_task_pre_model_208 =====IP-Adapter(SD1.5)模型===== OFF __term_sd_task_pre_model_209 clip_vision OFF __term_sd_task_pre_model_210 clip_vision(2.53g) OFF __term_sd_task_pre_model_211 plus-face OFF __term_sd_task_pre_model_212 plus-face(98.1m) OFF __term_sd_task_pre_model_213 plus OFF __term_sd_task_pre_model_214 plus(158m) OFF __term_sd_task_pre_model_215 normal OFF __term_sd_task_pre_model_216 normal(44.6m) OFF __term_sd_task_pre_model_217 =====IP-Adapter(SDXL)模型===== OFF __term_sd_task_pre_model_218 clip_vision OFF __term_sd_task_pre_model_219 clip_vision(3.69g) OFF __term_sd_task_pre_model_220 normal OFF __term_sd_task_pre_model_221 normal(702.6m) OFF
2301_81996401/term-sd
install/invokeai/dialog_invokeai_hf_model.sh
Shell
agpl-3.0
11,101
__term_sd_task_pre_model_1 (提示:) OFF __term_sd_task_pre_model_2 (建议使用InvokeAI自带的模型管理下载和添加模型) OFF __term_sd_task_pre_model_3 (不推荐使用Term-SD下载InvokeAI的模型) OFF __term_sd_task_pre_model_4 =====核心模型===== OFF __term_sd_task_pre_model_5 bert-base-uncased OFF __term_sd_task_pre_model_6 bert-base-uncased OFF __term_sd_task_pre_model_7 bert-base-uncased OFF __term_sd_task_pre_model_8 bert-base-uncased OFF __term_sd_task_pre_model_9 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_10 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_11 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_12 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_13 CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_14 clip-vit-large-patch14 OFF __term_sd_task_pre_model_15 clip-vit-large-patch14 OFF __term_sd_task_pre_model_16 clip-vit-large-patch14(492.3m) OFF __term_sd_task_pre_model_17 clip-vit-large-patch14 OFF __term_sd_task_pre_model_18 clip-vit-large-patch14 OFF __term_sd_task_pre_model_19 clip-vit-large-patch14 OFF __term_sd_task_pre_model_20 stable-diffusion-2-clip OFF __term_sd_task_pre_model_21 stable-diffusion-2-clip(1.36g) OFF __term_sd_task_pre_model_22 stable-diffusion-2-clip OFF __term_sd_task_pre_model_23 stable-diffusion-2-clip OFF __term_sd_task_pre_model_24 stable-diffusion-2-clip OFF __term_sd_task_pre_model_25 stable-diffusion-2-clip OFF __term_sd_task_pre_model_26 stable-diffusion-safety-checker OFF __term_sd_task_pre_model_27 stable-diffusion-safety-checker(1.22g) OFF __term_sd_task_pre_model_28 stable-diffusion-safety-checker OFF __term_sd_task_pre_model_29 lama(205.6m) OFF __term_sd_task_pre_model_30 =====放大模型===== OFF __term_sd_task_pre_model_31 ESRGAN_SRx4_DF2KOST_official-ff704c30(66.9m) OFF __term_sd_task_pre_model_32 RealESRGAN_x2plus(67m) OFF __term_sd_task_pre_model_33 RealESRGAN_x4plus(67m) OFF __term_sd_task_pre_model_34 RealESRGAN_x4plus_anime_6B(17.9m) OFF __term_sd_task_pre_model_35 =====配置文件===== OFF __term_sd_task_pre_model_36 INITIAL_MODELS OFF __term_sd_task_pre_model_37 models.yaml OFF __term_sd_task_pre_model_38 models.yaml.example OFF __term_sd_task_pre_model_39 sd_xl_base.yaml OFF __term_sd_task_pre_model_40 sd_xl_refiner.yaml OFF __term_sd_task_pre_model_41 v1-finetune.yaml OFF __term_sd_task_pre_model_42 v1-finetune_style.yaml OFF __term_sd_task_pre_model_43 v1-inference-v.yaml OFF __term_sd_task_pre_model_44 v1-inference.yaml OFF __term_sd_task_pre_model_45 v1-inpainting-inference.yaml OFF __term_sd_task_pre_model_46 v1-m1-finetune.yaml OFF __term_sd_task_pre_model_47 v2-inference-v.yaml OFF __term_sd_task_pre_model_48 v2-inference.yaml OFF __term_sd_task_pre_model_49 v2-inpainting-inference-v.yaml OFF __term_sd_task_pre_model_50 v2-inpainting-inference.yaml OFF __term_sd_task_pre_model_51 =====基础模型===== OFF __term_sd_task_pre_model_52 =====SD1.5大模型===== OFF __term_sd_task_pre_model_53 sd1.5-official OFF __term_sd_task_pre_model_54 sd1.5-official OFF __term_sd_task_pre_model_55 sd1.5-official OFF __term_sd_task_pre_model_56 sd1.5-official OFF __term_sd_task_pre_model_57 sd1.5-official(246.1m) OFF __term_sd_task_pre_model_58 sd1.5-official OFF __term_sd_task_pre_model_59 sd1.5-official OFF __term_sd_task_pre_model_60 sd1.5-official OFF __term_sd_task_pre_model_61 sd1.5-official OFF __term_sd_task_pre_model_62 sd1.5-official OFF __term_sd_task_pre_model_63 sd1.5-official(1.72g) OFF __term_sd_task_pre_model_64 sd1.5-official OFF __term_sd_task_pre_model_65 sd1.5-official(167.3m) OFF __term_sd_task_pre_model_66 sd1.5-inpaint-official OFF __term_sd_task_pre_model_67 sd1.5-inpaint-official OFF __term_sd_task_pre_model_68 sd1.5-inpaint-official OFF __term_sd_task_pre_model_69 sd1.5-inpaint-official OFF __term_sd_task_pre_model_70 sd1.5-inpaint-official(246.1m) OFF __term_sd_task_pre_model_71 sd1.5-inpaint-official OFF __term_sd_task_pre_model_72 sd1.5-inpaint-official OFF __term_sd_task_pre_model_73 sd1.5-inpaint-official OFF __term_sd_task_pre_model_74 sd1.5-inpaint-official OFF __term_sd_task_pre_model_75 sd1.5-inpaint-official OFF __term_sd_task_pre_model_76 sd1.5-inpaint-official(1.72g) OFF __term_sd_task_pre_model_77 sd1.5-inpaint-official OFF __term_sd_task_pre_model_78 sd1.5-inpaint-official(167.3m) OFF __term_sd_task_pre_model_79 openjourney OFF __term_sd_task_pre_model_80 openjourney OFF __term_sd_task_pre_model_81 openjourney OFF __term_sd_task_pre_model_82 openjourney OFF __term_sd_task_pre_model_83 openjourney(246.1m) OFF __term_sd_task_pre_model_84 openjourney OFF __term_sd_task_pre_model_85 openjourney OFF __term_sd_task_pre_model_86 openjourney OFF __term_sd_task_pre_model_87 openjourney OFF __term_sd_task_pre_model_88 openjourney OFF __term_sd_task_pre_model_89 openjourney(1.72g) OFF __term_sd_task_pre_model_90 openjourney OFF __term_sd_task_pre_model_91 openjourney(246.1m) OFF __term_sd_task_pre_model_92 =====SD2.1大模型===== OFF __term_sd_task_pre_model_93 sd2.1-official OFF __term_sd_task_pre_model_94 sd2.1-official OFF __term_sd_task_pre_model_95 sd2.1-official OFF __term_sd_task_pre_model_96 sd2.1-official OFF __term_sd_task_pre_model_97 sd2.1-official(680.8m) OFF __term_sd_task_pre_model_98 sd2.1-official OFF __term_sd_task_pre_model_99 sd2.1-official OFF __term_sd_task_pre_model_100 sd2.1-official OFF __term_sd_task_pre_model_101 sd2.1-official OFF __term_sd_task_pre_model_102 sd2.1-official OFF __term_sd_task_pre_model_103 sd2.1-official(1.73g) OFF __term_sd_task_pre_model_104 sd2.1-official OFF __term_sd_task_pre_model_105 sd2.1-official(167.3m) OFF __term_sd_task_pre_model_106 sd2.1-inpaint-official OFF __term_sd_task_pre_model_107 sd2.1-inpaint-official OFF __term_sd_task_pre_model_108 sd2.1-inpaint-official OFF __term_sd_task_pre_model_109 sd2.1-inpaint-official OFF __term_sd_task_pre_model_110 sd2.1-inpaint-official(680.8m) OFF __term_sd_task_pre_model_111 sd2.1-inpaint-official OFF __term_sd_task_pre_model_112 sd2.1-inpaint-official OFF __term_sd_task_pre_model_113 sd2.1-inpaint-official OFF __term_sd_task_pre_model_114 sd2.1-inpaint-official OFF __term_sd_task_pre_model_115 sd2.1-inpaint-official OFF __term_sd_task_pre_model_116 sd2.1-inpaint-official(1.73g) OFF __term_sd_task_pre_model_117 sd2.1-inpaint-official OFF __term_sd_task_pre_model_118 sd2.1-inpaint-official(167.3m) OFF __term_sd_task_pre_model_119 =====SDXL大模型===== OFF __term_sd_task_pre_model_120 sdxl OFF __term_sd_task_pre_model_121 sdxl OFF __term_sd_task_pre_model_122 sdxl OFF __term_sd_task_pre_model_123 sdxl(246.1m) OFF __term_sd_task_pre_model_124 sdxl OFF __term_sd_task_pre_model_125 sdxl(1.39g) OFF __term_sd_task_pre_model_126 sdxl OFF __term_sd_task_pre_model_127 sdxl OFF __term_sd_task_pre_model_128 sdxl OFF __term_sd_task_pre_model_129 sdxl OFF __term_sd_task_pre_model_130 sdxl OFF __term_sd_task_pre_model_131 sdxl OFF __term_sd_task_pre_model_132 sdxl OFF __term_sd_task_pre_model_133 sdxl OFF __term_sd_task_pre_model_134 sdxl OFF __term_sd_task_pre_model_135 sdxl(5.14g) OFF __term_sd_task_pre_model_136 sdxl OFF __term_sd_task_pre_model_137 sdxl(167.3m) OFF __term_sd_task_pre_model_138 sdxl-refind OFF __term_sd_task_pre_model_139 sdxl-refind OFF __term_sd_task_pre_model_140 sdxl-refind OFF __term_sd_task_pre_model_141 sdxl-refind(1.39g) OFF __term_sd_task_pre_model_142 sdxl-refind OFF __term_sd_task_pre_model_143 sdxl-refind OFF __term_sd_task_pre_model_144 sdxl-refind OFF __term_sd_task_pre_model_145 sdxl-refind OFF __term_sd_task_pre_model_146 sdxl-refind OFF __term_sd_task_pre_model_147 sdxl-refind(5.14g) OFF __term_sd_task_pre_model_148 sdxl-refind OFF __term_sd_task_pre_model_149 sdxl-refind(167.3m) OFF __term_sd_task_pre_model_150 =====VAE模型===== OFF __term_sd_task_pre_model_151 sd-vae-ft-mse OFF __term_sd_task_pre_model_152 sd-vae-ft-mse(334.6m) OFF __term_sd_task_pre_model_153 sdxl-vae OFF __term_sd_task_pre_model_154 sdxl-vae(334.6m) OFF __term_sd_task_pre_model_155 =====Embedding模型===== OFF __term_sd_task_pre_model_156 EasyNegative(0.1m) OFF __term_sd_task_pre_model_157 ahx-beta-453407d(0.1m) OFF __term_sd_task_pre_model_158 =====控制模型===== OFF __term_sd_task_pre_model_159 =====ControlNet(SD1.5)模型===== OFF __term_sd_task_pre_model_160 canny OFF __term_sd_task_pre_model_161 canny(1.45g) OFF __term_sd_task_pre_model_162 depth OFF __term_sd_task_pre_model_163 depth(1.45g) OFF __term_sd_task_pre_model_164 inpaint OFF __term_sd_task_pre_model_165 inpaint(1.45g) OFF __term_sd_task_pre_model_166 ip2p OFF __term_sd_task_pre_model_167 ip2p(1.45g) OFF __term_sd_task_pre_model_168 lineart OFF __term_sd_task_pre_model_169 lineart(1.45g) OFF __term_sd_task_pre_model_170 lineart-anime OFF __term_sd_task_pre_model_171 lineart-anime(1.45g) OFF __term_sd_task_pre_model_172 mlsd OFF __term_sd_task_pre_model_173 mlsd(1.45g) OFF __term_sd_task_pre_model_174 normal-bae OFF __term_sd_task_pre_model_175 normal-bae(1.45g) OFF __term_sd_task_pre_model_176 openpose OFF __term_sd_task_pre_model_177 openpose(1.45g) OFF __term_sd_task_pre_model_178 qrcode OFF __term_sd_task_pre_model_179 qrcode(1.45g) OFF __term_sd_task_pre_model_180 scribble OFF __term_sd_task_pre_model_181 scribble(1.45g) OFF __term_sd_task_pre_model_182 seg OFF __term_sd_task_pre_model_183 seg(1.45g) OFF __term_sd_task_pre_model_184 shuffle OFF __term_sd_task_pre_model_185 shuffle(1.45g) OFF __term_sd_task_pre_model_186 softedge OFF __term_sd_task_pre_model_187 softedge(1.45g) OFF __term_sd_task_pre_model_188 tile OFF __term_sd_task_pre_model_189 tile(1.45g) OFF __term_sd_task_pre_model_190 =====T2I-Adapter(SD1.5)模型===== OFF __term_sd_task_pre_model_191 canny OFF __term_sd_task_pre_model_192 canny(308m) OFF __term_sd_task_pre_model_193 depth OFF __term_sd_task_pre_model_194 depth(308m) OFF __term_sd_task_pre_model_195 sketch OFF __term_sd_task_pre_model_196 sketch(308m) OFF __term_sd_task_pre_model_197 zoedepth OFF __term_sd_task_pre_model_198 zoedepth(308m) OFF __term_sd_task_pre_model_199 =====T2I-Adapter(SDXL)模型===== OFF __term_sd_task_pre_model_200 canny OFF __term_sd_task_pre_model_201 canny(316m) OFF __term_sd_task_pre_model_202 lineart OFF __term_sd_task_pre_model_203 lineart(316m) OFF __term_sd_task_pre_model_204 sketch OFF __term_sd_task_pre_model_205 sketch(316m) OFF __term_sd_task_pre_model_206 zoedepth OFF __term_sd_task_pre_model_207 zoedepth(316m) OFF __term_sd_task_pre_model_208 =====IP-Adapter(SD1.5)模型===== OFF __term_sd_task_pre_model_209 clip_vision OFF __term_sd_task_pre_model_210 clip_vision(2.53g) OFF __term_sd_task_pre_model_211 plus-face OFF __term_sd_task_pre_model_212 plus-face(98.1m) OFF __term_sd_task_pre_model_213 plus OFF __term_sd_task_pre_model_214 plus(158m) OFF __term_sd_task_pre_model_215 normal OFF __term_sd_task_pre_model_216 normal(44.6m) OFF __term_sd_task_pre_model_217 =====IP-Adapter(SDXL)模型===== OFF __term_sd_task_pre_model_218 clip_vision OFF __term_sd_task_pre_model_219 clip_vision(3.69g) OFF __term_sd_task_pre_model_220 normal OFF __term_sd_task_pre_model_221 normal(702.6m) OFF
2301_81996401/term-sd
install/invokeai/dialog_invokeai_ms_model.sh
Shell
agpl-3.0
11,101
__term_sd_task_sys term_sd_mkdir "${INVOKEAI_PARENT_PATH}" __term_sd_task_sys cd "${INVOKEAI_PARENT_PATH}" __term_sd_task_sys term_sd_tmp_disable_proxy # 临时取消代理, 避免一些不必要的网络减速 __term_sd_task_sys term_sd_mkdir "${INVOKEAI_FOLDER}" __term_sd_task_sys is_sd_repo_exist "${INVOKEAI_ROOT_PATH}" __term_sd_task_pre_core create_venv "${INVOKEAI_ROOT_PATH}" __term_sd_task_sys enter_venv "${INVOKEAI_ROOT_PATH}" __term_sd_task_pre_core install_invokeai_process "${PYTORCH_TYPE}" # 安装 PyTorch __term_sd_task_pre_core install_pypatchmatch_for_windows # 下载 PyPatchMatch
2301_81996401/term-sd
install/invokeai/invokeai_core.sh
Shell
agpl-3.0
602
__term_sd_task_pre_ext_1 git_clone_repository https://github.com/licyk/invoke_tipo "${INVOKEAI_ROOT_PATH}"/invokeai/nodes ON # 为InvokeAI添加TIPO节点,优化提示词 __term_sd_task_pre_ext_2 git_clone_repository https://github.com/licyk/invoke_wd14_tagger "${INVOKEAI_ROOT_PATH}"/invokeai/nodes ON # 添加提示词反推节点 __term_sd_task_pre_ext_3 git_clone_repository https://github.com/skunkworxdark/adapters-linked-nodes "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 将多个节点(ControlNet、IP-Adapter、T2I-Adapter节点)链接在一起 __term_sd_task_pre_ext_4 git_clone_repository https://github.com/JPPhoto/average-images-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 将多张图像合并取平均值输出 __term_sd_task_pre_ext_5 git_clone_repository https://github.com/VeyDlin/clean-artifact-after-cut-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 去除移除背景后残留的伪影 __term_sd_task_pre_ext_6 git_clone_repository https://github.com/VeyDlin/close-color-mask-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 关闭颜色蒙版 __term_sd_task_pre_ext_7 git_clone_repository https://github.com/VeyDlin/clothing-mask-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 为人物服装生成蒙版 __term_sd_task_pre_ext_8 git_clone_repository https://github.com/VeyDlin/clahe-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 提高图像的对比度 __term_sd_task_pre_ext_9 git_clone_repository https://github.com/dwringer/depth-from-obj-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 从3D文件渲染深度图 __term_sd_task_pre_ext_10 git_clone_repository https://github.com/skunkworxdark/enhance-detail-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 增强图片细节 __term_sd_task_pre_ext_11 git_clone_repository https://github.com/JPPhoto/film-grain-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 生成胶片质感图片 __term_sd_task_pre_ext_12 git_clone_repository https://github.com/mickr777/GPT2RandomPromptMaker "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 使用GPT-2生成提示词 __term_sd_task_pre_ext_13 git_clone_repository https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/GridToGif.py "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 将多张图片转换为GIF图片 __term_sd_task_pre_ext_14 git_clone_repository https://github.com/blessedcoolant/invoke_meshgraphormer "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 为手部生成深度图和蒙版 __term_sd_task_pre_ext_15 git_clone_repository https://github.com/JPPhoto/halftone-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 生成半色调图 __term_sd_task_pre_ext_16 git_clone_repository https://github.com/dwringer/composition-nodes "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 蒙版节点包 __term_sd_task_pre_ext_17 git_clone_repository https://github.com/mickr777/imagetoasciiimage "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 将输入图像转换为ascii/unicode艺术图像的节点 __term_sd_task_pre_ext_18 git_clone_repository https://github.com/JPPhoto/image-picker-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 从多张图像随机选择一张图像输出 __term_sd_task_pre_ext_19 git_clone_repository https://github.com/VeyDlin/image-resize-plus-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 调整图片大小 __term_sd_task_pre_ext_20 git_clone_repository https://github.com/gogurtenjoyer/latent-upscale "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 潜空间放大节点 __term_sd_task_pre_ext_21 git_clone_repository https://github.com/helix4u/load_video_frame "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 图片转视频 __term_sd_task_pre_ext_22 git_clone_repository https://github.com/VeyDlin/mask-operations-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 蒙版组合 __term_sd_task_pre_ext_23 git_clone_repository https://github.com/skunkworxdark/metadata-linked-nodes "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 元数据转换节点 __term_sd_task_pre_ext_24 git_clone_repository https://github.com/skunkworxdark/Prompt-tools-nodes "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 提示词工具 __term_sd_task_pre_ext_25 git_clone_repository https://github.com/blessedcoolant/invoke_bria_rmbg "${INVOKEAI_ROOT_PATH}"/invokeai/nodes ON # 背景移除 __term_sd_task_pre_ext_26 git_clone_repository https://github.com/VeyDlin/remove-background-node "${INVOKEAI_ROOT_PATH}"/invokeai/nodes OFF # 背景移除 __term_sd_task_pre_ext_27 git_clone_repository https://github.com/skunkworxdark/XYGrid_nodes "${INVOKEAI_ROOT_PATH}"/invokeai/nodes ON # 添加xyz图工具
2301_81996401/term-sd
install/invokeai/invokeai_custom_node.sh
Shell
agpl-3.0
4,554
__term_sd_task_pre_ext_1 term_sd_echo "下载 invoke_tipo 模型" # invoke_tipo(1.42g) ON __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-500M_epoch5-F16.gguf "${INVOKEAI_ROOT_PATH}"/invokeai/models/kgen __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-200M-40Btok-F16.gguf "${INVOKEAI_ROOT_PATH}"/invokeai/models/kgen __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-200M-ft-F16.gguf "${INVOKEAI_ROOT_PATH}"/invokeai/models/kgen
2301_81996401/term-sd
install/invokeai/invokeai_custom_node_hf_model.sh
Shell
agpl-3.0
656
__term_sd_task_pre_ext_1 term_sd_echo "下载 invoke_tipo 模型" # invoke_tipo(1.42g) ON __term_sd_task_pre_ext_1 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-500M_epoch5-F16.gguf "${INVOKEAI_ROOT_PATH}"/invokeai/models/kgen __term_sd_task_pre_ext_1 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-200M-40Btok-F16.gguf "${INVOKEAI_ROOT_PATH}"/invokeai/models/kgen __term_sd_task_pre_ext_1 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-200M-ft-F16.gguf "${INVOKEAI_ROOT_PATH}"/invokeai/models/kgen
2301_81996401/term-sd
install/invokeai/invokeai_custom_node_ms_model.sh
Shell
agpl-3.0
590
__term_sd_task_pre_model_1 # (提示:) OFF __term_sd_task_pre_model_2 # (建议使用InvokeAI自带的模型管理下载和添加模型) OFF __term_sd_task_pre_model_3 # (不推荐使用Term-SD下载InvokeAI的模型) OFF __term_sd_task_pre_model_4 # =====核心模型===== OFF __term_sd_task_pre_model_5 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/bert-base-uncased/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/bert-base-uncased # bert-base-uncased OFF __term_sd_task_pre_model_6 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/bert-base-uncased/tokenizer.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/bert-base-uncased # bert-base-uncased OFF __term_sd_task_pre_model_7 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/bert-base-uncased/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/bert-base-uncased # bert-base-uncased OFF __term_sd_task_pre_model_8 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/bert-base-uncased/vocab.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/bert-base-uncased # bert-base-uncased OFF __term_sd_task_pre_model_9 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_10 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_11 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_12 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_13 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_14 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/clip-vit-large-patch14/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_15 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/clip-vit-large-patch14/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_16 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/clip-vit-large-patch14/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14(492.3m) OFF __term_sd_task_pre_model_17 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/clip-vit-large-patch14/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_18 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/clip-vit-large-patch14/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_19 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/clip-vit-large-patch14/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_20 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-2-clip/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/text_encoder # stable-diffusion-2-clip OFF __term_sd_task_pre_model_21 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-2-clip/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/text_encoder # stable-diffusion-2-clip(1.36g) OFF __term_sd_task_pre_model_22 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-2-clip/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/tokenizer # stable-diffusion-2-clip OFF __term_sd_task_pre_model_23 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-2-clip/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/tokenizer # stable-diffusion-2-clip OFF __term_sd_task_pre_model_24 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-2-clip/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/tokenizer # stable-diffusion-2-clip OFF __term_sd_task_pre_model_25 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-2-clip/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/tokenizer # stable-diffusion-2-clip OFF __term_sd_task_pre_model_26 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-safety-checker/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-safety-checker # stable-diffusion-safety-checker OFF __term_sd_task_pre_model_27 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-safety-checker/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-safety-checker # stable-diffusion-safety-checker(1.22g) OFF __term_sd_task_pre_model_28 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/stable-diffusion-safety-checker/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-safety-checker # stable-diffusion-safety-checker OFF __term_sd_task_pre_model_29 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/misc/lama/lama.pt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/misc/lama # lama(205.6m) OFF __term_sd_task_pre_model_30 # =====放大模型===== OFF __term_sd_task_pre_model_31 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/upscaling/realesrgan # ESRGAN_SRx4_DF2KOST_official-ff704c30(66.9m) OFF __term_sd_task_pre_model_32 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/upscaling/realesrgan/RealESRGAN_x2plus.pth "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/upscaling/realesrgan # RealESRGAN_x2plus(67m) OFF __term_sd_task_pre_model_33 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/upscaling/realesrgan/RealESRGAN_x4plus.pth "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/upscaling/realesrgan # RealESRGAN_x4plus(67m) OFF __term_sd_task_pre_model_34 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/upscaling/realesrgan # RealESRGAN_x4plus_anime_6B(17.9m) OFF __term_sd_task_pre_model_35 # =====配置文件===== OFF __term_sd_task_pre_model_36 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/INITIAL_MODELS.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs # INITIAL_MODELS OFF __term_sd_task_pre_model_37 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/models.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs # models.yaml OFF __term_sd_task_pre_model_38 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/models.yaml.example "${INVOKEAI_ROOT_PATH}"/invokeai/configs # models.yaml.example OFF __term_sd_task_pre_model_39 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/sd_xl_base.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # sd_xl_base.yaml OFF __term_sd_task_pre_model_40 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/sd_xl_refiner.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # sd_xl_refiner.yaml OFF __term_sd_task_pre_model_41 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v1-finetune.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-finetune.yaml OFF __term_sd_task_pre_model_42 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v1-finetune_style.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-finetune_style.yaml OFF __term_sd_task_pre_model_43 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v1-inference-v.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-inference-v.yaml OFF __term_sd_task_pre_model_44 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v1-inference.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-inference.yaml OFF __term_sd_task_pre_model_45 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v1-inpainting-inference.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-inpainting-inference.yaml OFF __term_sd_task_pre_model_46 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v1-m1-finetune.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-m1-finetune.yaml OFF __term_sd_task_pre_model_47 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v2-inference-v.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v2-inference-v.yaml OFF __term_sd_task_pre_model_48 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v2-inference.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v2-inference.yaml OFF __term_sd_task_pre_model_49 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v2-inpainting-inference-v.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v2-inpainting-inference-v.yaml OFF __term_sd_task_pre_model_50 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/configs/stable-diffusion/v2-inpainting-inference.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v2-inpainting-inference.yaml OFF __term_sd_task_pre_model_51 # =====基础模型===== OFF __term_sd_task_pre_model_52 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_53 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/feature_extractor # sd1.5-official OFF __term_sd_task_pre_model_54 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5 # sd1.5-official OFF __term_sd_task_pre_model_55 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/scheduler # sd1.5-official OFF __term_sd_task_pre_model_56 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/text_encoder # sd1.5-official OFF __term_sd_task_pre_model_57 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/text_encoder # sd1.5-official(246.1m) OFF __term_sd_task_pre_model_58 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/tokenizer # sd1.5-official OFF __term_sd_task_pre_model_59 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/tokenizer # sd1.5-official OFF __term_sd_task_pre_model_60 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/tokenizer # sd1.5-official OFF __term_sd_task_pre_model_61 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/tokenizer # sd1.5-official OFF __term_sd_task_pre_model_62 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/unet # sd1.5-official OFF __term_sd_task_pre_model_63 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/unet # sd1.5-official(1.72g) OFF __term_sd_task_pre_model_64 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/vae # sd1.5-official OFF __term_sd_task_pre_model_65 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/vae # sd1.5-official(167.3m) OFF __term_sd_task_pre_model_66 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/feature_extractor # sd1.5-inpaint-official OFF __term_sd_task_pre_model_67 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting # sd1.5-inpaint-official OFF __term_sd_task_pre_model_68 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/scheduler # sd1.5-inpaint-official OFF __term_sd_task_pre_model_69 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/text_encoder # sd1.5-inpaint-official OFF __term_sd_task_pre_model_70 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/text_encoder # sd1.5-inpaint-official(246.1m) OFF __term_sd_task_pre_model_71 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer # sd1.5-inpaint-official OFF __term_sd_task_pre_model_72 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer # sd1.5-inpaint-official OFF __term_sd_task_pre_model_73 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer # sd1.5-inpaint-official OFF __term_sd_task_pre_model_74 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer # sd1.5-inpaint-official OFF __term_sd_task_pre_model_75 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/unet # sd1.5-inpaint-official OFF __term_sd_task_pre_model_76 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/unet # sd1.5-inpaint-official(1.72g) OFF __term_sd_task_pre_model_77 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/vae # sd1.5-inpaint-official OFF __term_sd_task_pre_model_78 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/stable-diffusion-v1-5-inpainting/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/vae # sd1.5-inpaint-official(167.3m) OFF __term_sd_task_pre_model_79 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/feature_extractor # openjourney OFF __term_sd_task_pre_model_80 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney # openjourney OFF __term_sd_task_pre_model_81 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/scheduler # openjourney OFF __term_sd_task_pre_model_82 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/text_encoder # openjourney OFF __term_sd_task_pre_model_83 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/text_encoder # openjourney(246.1m) OFF __term_sd_task_pre_model_84 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/tokenizer # openjourney OFF __term_sd_task_pre_model_85 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/tokenizer # openjourney OFF __term_sd_task_pre_model_86 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/tokenizer # openjourney OFF __term_sd_task_pre_model_87 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/tokenizer # openjourney OFF __term_sd_task_pre_model_88 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/unet # openjourney OFF __term_sd_task_pre_model_89 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/unet # openjourney(1.72g) OFF __term_sd_task_pre_model_90 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/vae # openjourney OFF __term_sd_task_pre_model_91 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/main/openjourney/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/vae # openjourney(246.1m) OFF __term_sd_task_pre_model_92 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_93 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/feature_extractor # sd2.1-official OFF __term_sd_task_pre_model_94 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1 # sd2.1-official OFF __term_sd_task_pre_model_95 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/scheduler # sd2.1-official OFF __term_sd_task_pre_model_96 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/text_encoder # sd2.1-official OFF __term_sd_task_pre_model_97 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/text_encoder # sd2.1-official(680.8m) OFF __term_sd_task_pre_model_98 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/tokenizer # sd2.1-official OFF __term_sd_task_pre_model_99 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/tokenizer # sd2.1-official OFF __term_sd_task_pre_model_100 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/tokenizer # sd2.1-official OFF __term_sd_task_pre_model_101 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/tokenizer # sd2.1-official OFF __term_sd_task_pre_model_102 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/unet # sd2.1-official OFF __term_sd_task_pre_model_103 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/unet # sd2.1-official(1.73g) OFF __term_sd_task_pre_model_104 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/vae # sd2.1-official OFF __term_sd_task_pre_model_105 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-1/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/vae # sd2.1-official(167.3m) OFF __term_sd_task_pre_model_106 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/feature_extractor # sd2.1-inpaint-official OFF __term_sd_task_pre_model_107 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting # sd2.1-inpaint-official OFF __term_sd_task_pre_model_108 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/scheduler # sd2.1-inpaint-official OFF __term_sd_task_pre_model_109 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/text_encoder # sd2.1-inpaint-official OFF __term_sd_task_pre_model_110 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/text_encoder # sd2.1-inpaint-official(680.8m) OFF __term_sd_task_pre_model_111 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/tokenizer # sd2.1-inpaint-official OFF __term_sd_task_pre_model_112 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/tokenizer # sd2.1-inpaint-official OFF __term_sd_task_pre_model_113 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/tokenizer # sd2.1-inpaint-official OFF __term_sd_task_pre_model_114 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/tokenizer # sd2.1-inpaint-official OFF __term_sd_task_pre_model_115 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/unet # sd2.1-inpaint-official OFF __term_sd_task_pre_model_116 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/unet # sd2.1-inpaint-official(1.73g) OFF __term_sd_task_pre_model_117 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/vae # sd2.1-inpaint-official OFF __term_sd_task_pre_model_118 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/main/stable-diffusion-2-inpainting/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/vae # sd2.1-inpaint-official(167.3m) OFF __term_sd_task_pre_model_119 # =====SDXL大模型===== OFF __term_sd_task_pre_model_120 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0 # sdxl OFF __term_sd_task_pre_model_121 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/scheduler # sdxl OFF __term_sd_task_pre_model_122 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder # sdxl OFF __term_sd_task_pre_model_123 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder # sdxl(246.1m) OFF __term_sd_task_pre_model_124 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder_2/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder_2 # sdxl OFF __term_sd_task_pre_model_125 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder_2/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder_2 # sdxl(1.39g) OFF __term_sd_task_pre_model_126 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer # sdxl OFF __term_sd_task_pre_model_127 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer # sdxl OFF __term_sd_task_pre_model_128 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer # sdxl OFF __term_sd_task_pre_model_129 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer # sdxl OFF __term_sd_task_pre_model_130 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2 # sdxl OFF __term_sd_task_pre_model_131 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2 # sdxl OFF __term_sd_task_pre_model_132 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2 # sdxl OFF __term_sd_task_pre_model_133 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2 # sdxl OFF __term_sd_task_pre_model_134 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/unet # sdxl OFF __term_sd_task_pre_model_135 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/unet # sdxl(5.14g) OFF __term_sd_task_pre_model_136 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/vae # sdxl OFF __term_sd_task_pre_model_137 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/main/stable-diffusion-xl-base-1-0/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/vae # sdxl(167.3m) OFF __term_sd_task_pre_model_138 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0 # sdxl-refind OFF __term_sd_task_pre_model_139 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/scheduler # sdxl-refind OFF __term_sd_task_pre_model_140 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/text_encoder_2/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/text_encoder_2 # sdxl-refind OFF __term_sd_task_pre_model_141 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/text_encoder_2/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/text_encoder_2 # sdxl-refind(1.39g) OFF __term_sd_task_pre_model_142 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2 # sdxl-refind OFF __term_sd_task_pre_model_143 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2 # sdxl-refind OFF __term_sd_task_pre_model_144 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2 # sdxl-refind OFF __term_sd_task_pre_model_145 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2 # sdxl-refind OFF __term_sd_task_pre_model_146 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/unet # sdxl-refind OFF __term_sd_task_pre_model_147 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/unet # sdxl-refind(5.14g) OFF __term_sd_task_pre_model_148 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/vae # sdxl-refind OFF __term_sd_task_pre_model_149 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/vae # sdxl-refind(167.3m) OFF __term_sd_task_pre_model_150 # =====VAE模型===== OFF __term_sd_task_pre_model_151 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/sd-vae-ft-mse/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/sd-vae-ft-mse # sd-vae-ft-mse OFF __term_sd_task_pre_model_152 aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/models/core/convert/sd-vae-ft-mse/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/sd-vae-ft-mse # sd-vae-ft-mse(334.6m) OFF __term_sd_task_pre_model_153 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/vae/sdxl-1-0-vae-fix/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/vae/sdxl-1-0-vae-fix # sdxl-vae OFF __term_sd_task_pre_model_154 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/vae/sdxl-1-0-vae-fix/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/vae/sdxl-1-0-vae-fix # sdxl-vae(334.6m) OFF __term_sd_task_pre_model_155 # =====Embedding模型===== OFF __term_sd_task_pre_model_156 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/embedding/EasyNegative.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/embedding # EasyNegative(0.1m) OFF __term_sd_task_pre_model_157 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-2/embedding/ahx-beta-453407d/learned_embeds.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/embedding # ahx-beta-453407d(0.1m) OFF __term_sd_task_pre_model_158 # =====控制模型===== OFF __term_sd_task_pre_model_159 # =====ControlNet(SD1.5)模型===== OFF __term_sd_task_pre_model_160 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/canny/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/canny # canny OFF __term_sd_task_pre_model_161 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/canny/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/canny # canny(1.45g) OFF __term_sd_task_pre_model_162 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/depth/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/depth # depth OFF __term_sd_task_pre_model_163 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/depth/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/depth # depth(1.45g) OFF __term_sd_task_pre_model_164 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/inpaint/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/inpaint # inpaint OFF __term_sd_task_pre_model_165 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/inpaint/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/inpaint # inpaint(1.45g) OFF __term_sd_task_pre_model_166 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/ip2p/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/ip2p # ip2p OFF __term_sd_task_pre_model_167 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/ip2p/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/ip2p # ip2p(1.45g) OFF __term_sd_task_pre_model_168 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/lineart/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/lineart # lineart OFF __term_sd_task_pre_model_169 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/lineart/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/lineart # lineart(1.45g) OFF __term_sd_task_pre_model_170 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/lineart_anime/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/lineart_anime # lineart-anime OFF __term_sd_task_pre_model_171 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/lineart_anime/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/lineart_anime # lineart-anime(1.45g) OFF __term_sd_task_pre_model_172 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/mlsd/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/mlsd # mlsd OFF __term_sd_task_pre_model_173 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/mlsd/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/mlsd # mlsd(1.45g) OFF __term_sd_task_pre_model_174 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/normal_bae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/normal_bae # normal-bae OFF __term_sd_task_pre_model_175 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/normal_bae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/normal_bae # normal-bae(1.45g) OFF __term_sd_task_pre_model_176 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/openpose/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/openpose # openpose OFF __term_sd_task_pre_model_177 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/openpose/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/openpose # openpose(1.45g) OFF __term_sd_task_pre_model_178 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/qrcode_monster/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/qrcode_monster # qrcode OFF __term_sd_task_pre_model_179 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/qrcode_monster/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/qrcode_monster # qrcode(1.45g) OFF __term_sd_task_pre_model_180 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/scribble/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/scribble # scribble OFF __term_sd_task_pre_model_181 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/scribble/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/scribble # scribble(1.45g) OFF __term_sd_task_pre_model_182 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/seg/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/seg # seg OFF __term_sd_task_pre_model_183 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/seg/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/seg # seg(1.45g) OFF __term_sd_task_pre_model_184 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/shuffle/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/shuffle # shuffle OFF __term_sd_task_pre_model_185 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/shuffle/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/shuffle # shuffle(1.45g) OFF __term_sd_task_pre_model_186 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/softedge/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/softedge # softedge OFF __term_sd_task_pre_model_187 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/softedge/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/softedge # softedge(1.45g) OFF __term_sd_task_pre_model_188 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/tile/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/tile # tile OFF __term_sd_task_pre_model_189 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/controlnet/tile/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/tile # tile(1.45g) OFF __term_sd_task_pre_model_190 # =====T2I-Adapter(SD1.5)模型===== OFF __term_sd_task_pre_model_191 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/t2i_adapter/canny-sd15/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/canny-sd15 # canny OFF __term_sd_task_pre_model_192 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/t2i_adapter/canny-sd15/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/canny-sd15 # canny(308m) OFF __term_sd_task_pre_model_193 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/t2i_adapter/depth-sd15/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/depth-sd15 # depth OFF __term_sd_task_pre_model_194 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/t2i_adapter/depth-sd15/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/depth-sd15 # depth(308m) OFF __term_sd_task_pre_model_195 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/t2i_adapter/sketch-sd15/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/sketch-sd15 # sketch OFF __term_sd_task_pre_model_196 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/t2i_adapter/sketch-sd15/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/sketch-sd15 # sketch(308m) OFF __term_sd_task_pre_model_197 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/t2i_adapter/zoedepth-sd15/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/zoedepth-sd15 # zoedepth OFF __term_sd_task_pre_model_198 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/t2i_adapter/zoedepth-sd15/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/zoedepth-sd15 # zoedepth(308m) OFF __term_sd_task_pre_model_199 # =====T2I-Adapter(SDXL)模型===== OFF __term_sd_task_pre_model_200 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/t2i_adapter/canny-sdxl/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/canny-sdxl # canny OFF __term_sd_task_pre_model_201 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/t2i_adapter/canny-sdxl/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/canny-sdxl # canny(316m) OFF __term_sd_task_pre_model_202 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/t2i_adapter/lineart-sdxl/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/lineart-sdxl # lineart OFF __term_sd_task_pre_model_203 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/t2i_adapter/lineart-sdxl/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/lineart-sdxl # lineart(316m) OFF __term_sd_task_pre_model_204 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/t2i_adapter/sketch-sdxl/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/sketch-sdxl # sketch OFF __term_sd_task_pre_model_205 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/t2i_adapter/sketch-sdxl/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/sketch-sdxl # sketch(316m) OFF __term_sd_task_pre_model_206 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/t2i_adapter/zoedepth-sdxl/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/zoedepth-sdxl # zoedepth OFF __term_sd_task_pre_model_207 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/t2i_adapter/zoedepth-sdxl/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/zoedepth-sdxl # zoedepth(316m) OFF __term_sd_task_pre_model_208 # =====IP-Adapter(SD1.5)模型===== OFF __term_sd_task_pre_model_209 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/any/clip_vision/ip_adapter_sd_image_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/any/clip_vision/ip_adapter_sd_image_encoder # clip_vision OFF __term_sd_task_pre_model_210 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/any/clip_vision/ip_adapter_sd_image_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/any/clip_vision/ip_adapter_sd_image_encoder # clip_vision(2.53g) OFF __term_sd_task_pre_model_211 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/ip_adapter/ip_adapter_plus_face_sd15/image_encoder.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_plus_face_sd15 # plus-face OFF __term_sd_task_pre_model_212 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/ip_adapter/ip_adapter_plus_face_sd15/ip_adapter.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_plus_face_sd15 # plus-face(98.1m) OFF __term_sd_task_pre_model_213 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/ip_adapter/ip_adapter_plus_sd15/image_encoder.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_plus_sd15 # plus OFF __term_sd_task_pre_model_214 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/ip_adapter/ip_adapter_plus_sd15/ip_adapter.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_plus_sd15 # plus(158m) OFF __term_sd_task_pre_model_215 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/ip_adapter/ip_adapter_sd15/image_encoder.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_sd15 # normal OFF __term_sd_task_pre_model_216 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sd-1/ip_adapter/ip_adapter_sd15/ip_adapter.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_sd15 # normal(44.6m) OFF __term_sd_task_pre_model_217 # =====IP-Adapter(SDXL)模型===== OFF __term_sd_task_pre_model_218 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/any/clip_vision/ip_adapter_sdxl_image_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/any/clip_vision/ip_adapter_sdxl_image_encoder # clip_vision OFF __term_sd_task_pre_model_219 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/any/clip_vision/ip_adapter_sdxl_image_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/any/clip_vision/ip_adapter_sdxl_image_encoder # clip_vision(3.69g) OFF __term_sd_task_pre_model_220 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/ip_adapter/ip_adapter_sdxl/image_encoder.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/ip_adapter/ip_adapter_sdxl # normal OFF __term_sd_task_pre_model_221 aria2_download https://huggingface.co/licyk/invokeai-model/resolve/main/sdxl/ip_adapter/ip_adapter_sdxl/ip_adapter.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/ip_adapter/ip_adapter_sdxl # normal(702.6m) OFF
2301_81996401/term-sd
install/invokeai/invokeai_hf_model.sh
Shell
agpl-3.0
53,855
__term_sd_task_pre_model_1 # (提示:) OFF __term_sd_task_pre_model_2 # (建议使用InvokeAI自带的模型管理下载和添加模型) OFF __term_sd_task_pre_model_3 # (不推荐使用Term-SD下载InvokeAI的模型) OFF __term_sd_task_pre_model_4 # =====核心模型===== OFF __term_sd_task_pre_model_5 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/bert-base-uncased/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/bert-base-uncased # bert-base-uncased OFF __term_sd_task_pre_model_6 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/bert-base-uncased/tokenizer.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/bert-base-uncased # bert-base-uncased OFF __term_sd_task_pre_model_7 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/bert-base-uncased/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/bert-base-uncased # bert-base-uncased OFF __term_sd_task_pre_model_8 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/bert-base-uncased/vocab.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/bert-base-uncased # bert-base-uncased OFF __term_sd_task_pre_model_9 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_10 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_11 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_12 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_13 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/CLIP-ViT-bigG-14-laion2B-39B-b160k # CLIP-ViT-bigG-14-laion2B-39B-b160k OFF __term_sd_task_pre_model_14 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/clip-vit-large-patch14/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_15 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/clip-vit-large-patch14/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_16 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/clip-vit-large-patch14/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14(492.3m) OFF __term_sd_task_pre_model_17 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/clip-vit-large-patch14/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_18 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/clip-vit-large-patch14/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_19 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/clip-vit-large-patch14/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/clip-vit-large-patch14 # clip-vit-large-patch14 OFF __term_sd_task_pre_model_20 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-2-clip/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/text_encoder # stable-diffusion-2-clip OFF __term_sd_task_pre_model_21 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-2-clip/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/text_encoder # stable-diffusion-2-clip(1.36g) OFF __term_sd_task_pre_model_22 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-2-clip/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/tokenizer # stable-diffusion-2-clip OFF __term_sd_task_pre_model_23 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-2-clip/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/tokenizer # stable-diffusion-2-clip OFF __term_sd_task_pre_model_24 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-2-clip/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/tokenizer # stable-diffusion-2-clip OFF __term_sd_task_pre_model_25 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-2-clip/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-2-clip/tokenizer # stable-diffusion-2-clip OFF __term_sd_task_pre_model_26 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-safety-checker/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-safety-checker # stable-diffusion-safety-checker OFF __term_sd_task_pre_model_27 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-safety-checker/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-safety-checker # stable-diffusion-safety-checker(1.22g) OFF __term_sd_task_pre_model_28 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/stable-diffusion-safety-checker/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/stable-diffusion-safety-checker # stable-diffusion-safety-checker OFF __term_sd_task_pre_model_29 get_modelscope_model licyks/invokeai-core-model/master/models/core/misc/lama/lama.pt "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/misc/lama # lama(205.6m) OFF __term_sd_task_pre_model_30 # =====放大模型===== OFF __term_sd_task_pre_model_31 get_modelscope_model licyks/invokeai-core-model/master/models/core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/upscaling/realesrgan # ESRGAN_SRx4_DF2KOST_official-ff704c30(66.9m) OFF __term_sd_task_pre_model_32 get_modelscope_model licyks/invokeai-core-model/master/models/core/upscaling/realesrgan/RealESRGAN_x2plus.pth "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/upscaling/realesrgan # RealESRGAN_x2plus(67m) OFF __term_sd_task_pre_model_33 get_modelscope_model licyks/invokeai-core-model/master/models/core/upscaling/realesrgan/RealESRGAN_x4plus.pth "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/upscaling/realesrgan # RealESRGAN_x4plus(67m) OFF __term_sd_task_pre_model_34 get_modelscope_model licyks/invokeai-core-model/master/models/core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/upscaling/realesrgan # RealESRGAN_x4plus_anime_6B(17.9m) OFF __term_sd_task_pre_model_35 # =====配置文件===== OFF __term_sd_task_pre_model_36 get_modelscope_model licyks/invokeai-core-model/master/configs/INITIAL_MODELS.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs # INITIAL_MODELS OFF __term_sd_task_pre_model_37 get_modelscope_model licyks/invokeai-core-model/master/configs/models.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs # models.yaml OFF __term_sd_task_pre_model_38 get_modelscope_model licyks/invokeai-core-model/master/configs/models.yaml.example "${INVOKEAI_ROOT_PATH}"/invokeai/configs # models.yaml.example OFF __term_sd_task_pre_model_39 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/sd_xl_base.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # sd_xl_base.yaml OFF __term_sd_task_pre_model_40 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/sd_xl_refiner.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # sd_xl_refiner.yaml OFF __term_sd_task_pre_model_41 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v1-finetune.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-finetune.yaml OFF __term_sd_task_pre_model_42 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v1-finetune_style.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-finetune_style.yaml OFF __term_sd_task_pre_model_43 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v1-inference-v.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-inference-v.yaml OFF __term_sd_task_pre_model_44 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v1-inference.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-inference.yaml OFF __term_sd_task_pre_model_45 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v1-inpainting-inference.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-inpainting-inference.yaml OFF __term_sd_task_pre_model_46 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v1-m1-finetune.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v1-m1-finetune.yaml OFF __term_sd_task_pre_model_47 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v2-inference-v.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v2-inference-v.yaml OFF __term_sd_task_pre_model_48 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v2-inference.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v2-inference.yaml OFF __term_sd_task_pre_model_49 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v2-inpainting-inference-v.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v2-inpainting-inference-v.yaml OFF __term_sd_task_pre_model_50 get_modelscope_model licyks/invokeai-core-model/master/configs/stable-diffusion/v2-inpainting-inference.yaml "${INVOKEAI_ROOT_PATH}"/invokeai/configs/stable-diffusion # v2-inpainting-inference.yaml OFF __term_sd_task_pre_model_51 # =====基础模型===== OFF __term_sd_task_pre_model_52 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_53 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/feature_extractor # sd1.5-official OFF __term_sd_task_pre_model_54 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5 # sd1.5-official OFF __term_sd_task_pre_model_55 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/scheduler # sd1.5-official OFF __term_sd_task_pre_model_56 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/text_encoder # sd1.5-official OFF __term_sd_task_pre_model_57 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/text_encoder # sd1.5-official(246.1m) OFF __term_sd_task_pre_model_58 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/tokenizer # sd1.5-official OFF __term_sd_task_pre_model_59 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/tokenizer # sd1.5-official OFF __term_sd_task_pre_model_60 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/tokenizer # sd1.5-official OFF __term_sd_task_pre_model_61 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/tokenizer # sd1.5-official OFF __term_sd_task_pre_model_62 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/unet # sd1.5-official OFF __term_sd_task_pre_model_63 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/unet # sd1.5-official(1.72g) OFF __term_sd_task_pre_model_64 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/vae # sd1.5-official OFF __term_sd_task_pre_model_65 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5/vae # sd1.5-official(167.3m) OFF __term_sd_task_pre_model_66 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/feature_extractor # sd1.5-inpaint-official OFF __term_sd_task_pre_model_67 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting # sd1.5-inpaint-official OFF __term_sd_task_pre_model_68 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/scheduler # sd1.5-inpaint-official OFF __term_sd_task_pre_model_69 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/text_encoder # sd1.5-inpaint-official OFF __term_sd_task_pre_model_70 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/text_encoder # sd1.5-inpaint-official(246.1m) OFF __term_sd_task_pre_model_71 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer # sd1.5-inpaint-official OFF __term_sd_task_pre_model_72 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer # sd1.5-inpaint-official OFF __term_sd_task_pre_model_73 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer # sd1.5-inpaint-official OFF __term_sd_task_pre_model_74 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/tokenizer # sd1.5-inpaint-official OFF __term_sd_task_pre_model_75 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/unet # sd1.5-inpaint-official OFF __term_sd_task_pre_model_76 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/unet # sd1.5-inpaint-official(1.72g) OFF __term_sd_task_pre_model_77 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/vae # sd1.5-inpaint-official OFF __term_sd_task_pre_model_78 get_modelscope_model licyks/invokeai-model/master/sd-1/main/stable-diffusion-v1-5-inpainting/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/stable-diffusion-v1-5-inpainting/vae # sd1.5-inpaint-official(167.3m) OFF __term_sd_task_pre_model_79 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/feature_extractor # openjourney OFF __term_sd_task_pre_model_80 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney # openjourney OFF __term_sd_task_pre_model_81 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/scheduler # openjourney OFF __term_sd_task_pre_model_82 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/text_encoder # openjourney OFF __term_sd_task_pre_model_83 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/text_encoder # openjourney(246.1m) OFF __term_sd_task_pre_model_84 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/tokenizer # openjourney OFF __term_sd_task_pre_model_85 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/tokenizer # openjourney OFF __term_sd_task_pre_model_86 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/tokenizer # openjourney OFF __term_sd_task_pre_model_87 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/tokenizer # openjourney OFF __term_sd_task_pre_model_88 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/unet # openjourney OFF __term_sd_task_pre_model_89 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/unet # openjourney(1.72g) OFF __term_sd_task_pre_model_90 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/vae # openjourney OFF __term_sd_task_pre_model_91 get_modelscope_model licyks/invokeai-model/master/sd-1/main/openjourney/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/main/openjourney/vae # openjourney(246.1m) OFF __term_sd_task_pre_model_92 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_93 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/feature_extractor # sd2.1-official OFF __term_sd_task_pre_model_94 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1 # sd2.1-official OFF __term_sd_task_pre_model_95 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/scheduler # sd2.1-official OFF __term_sd_task_pre_model_96 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/text_encoder # sd2.1-official OFF __term_sd_task_pre_model_97 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/text_encoder # sd2.1-official(680.8m) OFF __term_sd_task_pre_model_98 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/tokenizer # sd2.1-official OFF __term_sd_task_pre_model_99 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/tokenizer # sd2.1-official OFF __term_sd_task_pre_model_100 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/tokenizer # sd2.1-official OFF __term_sd_task_pre_model_101 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/tokenizer # sd2.1-official OFF __term_sd_task_pre_model_102 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/unet # sd2.1-official OFF __term_sd_task_pre_model_103 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/unet # sd2.1-official(1.73g) OFF __term_sd_task_pre_model_104 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/vae # sd2.1-official OFF __term_sd_task_pre_model_105 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-1/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-1/vae # sd2.1-official(167.3m) OFF __term_sd_task_pre_model_106 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/feature_extractor/preprocessor_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/feature_extractor # sd2.1-inpaint-official OFF __term_sd_task_pre_model_107 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting # sd2.1-inpaint-official OFF __term_sd_task_pre_model_108 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/scheduler # sd2.1-inpaint-official OFF __term_sd_task_pre_model_109 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/text_encoder # sd2.1-inpaint-official OFF __term_sd_task_pre_model_110 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/text_encoder # sd2.1-inpaint-official(680.8m) OFF __term_sd_task_pre_model_111 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/tokenizer # sd2.1-inpaint-official OFF __term_sd_task_pre_model_112 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/tokenizer # sd2.1-inpaint-official OFF __term_sd_task_pre_model_113 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/tokenizer # sd2.1-inpaint-official OFF __term_sd_task_pre_model_114 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/tokenizer # sd2.1-inpaint-official OFF __term_sd_task_pre_model_115 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/unet # sd2.1-inpaint-official OFF __term_sd_task_pre_model_116 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/unet # sd2.1-inpaint-official(1.73g) OFF __term_sd_task_pre_model_117 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/vae # sd2.1-inpaint-official OFF __term_sd_task_pre_model_118 get_modelscope_model licyks/invokeai-model/master/sd-2/main/stable-diffusion-2-inpainting/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/main/stable-diffusion-2-inpainting/vae # sd2.1-inpaint-official(167.3m) OFF __term_sd_task_pre_model_119 # =====SDXL大模型===== OFF __term_sd_task_pre_model_120 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0 # sdxl OFF __term_sd_task_pre_model_121 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/scheduler # sdxl OFF __term_sd_task_pre_model_122 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder # sdxl OFF __term_sd_task_pre_model_123 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder # sdxl(246.1m) OFF __term_sd_task_pre_model_124 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder_2/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder_2 # sdxl OFF __term_sd_task_pre_model_125 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder_2/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/text_encoder_2 # sdxl(1.39g) OFF __term_sd_task_pre_model_126 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer # sdxl OFF __term_sd_task_pre_model_127 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer # sdxl OFF __term_sd_task_pre_model_128 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer # sdxl OFF __term_sd_task_pre_model_129 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer # sdxl OFF __term_sd_task_pre_model_130 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2 # sdxl OFF __term_sd_task_pre_model_131 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2 # sdxl OFF __term_sd_task_pre_model_132 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2 # sdxl OFF __term_sd_task_pre_model_133 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/tokenizer_2 # sdxl OFF __term_sd_task_pre_model_134 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/unet # sdxl OFF __term_sd_task_pre_model_135 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/unet # sdxl(5.14g) OFF __term_sd_task_pre_model_136 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/vae # sdxl OFF __term_sd_task_pre_model_137 get_modelscope_model licyks/invokeai-model/master/sdxl/main/stable-diffusion-xl-base-1-0/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/main/stable-diffusion-xl-base-1-0/vae # sdxl(167.3m) OFF __term_sd_task_pre_model_138 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/model_index.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0 # sdxl-refind OFF __term_sd_task_pre_model_139 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/scheduler/scheduler_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/scheduler # sdxl-refind OFF __term_sd_task_pre_model_140 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/text_encoder_2/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/text_encoder_2 # sdxl-refind OFF __term_sd_task_pre_model_141 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/text_encoder_2/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/text_encoder_2 # sdxl-refind(1.39g) OFF __term_sd_task_pre_model_142 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2/merges.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2 # sdxl-refind OFF __term_sd_task_pre_model_143 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2/special_tokens_map.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2 # sdxl-refind OFF __term_sd_task_pre_model_144 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2/tokenizer_config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2 # sdxl-refind OFF __term_sd_task_pre_model_145 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2/vocab.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/tokenizer_2 # sdxl-refind OFF __term_sd_task_pre_model_146 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/unet/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/unet # sdxl-refind OFF __term_sd_task_pre_model_147 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/unet/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/unet # sdxl-refind(5.14g) OFF __term_sd_task_pre_model_148 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/vae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/vae # sdxl-refind OFF __term_sd_task_pre_model_149 get_modelscope_model licyks/invokeai-model/master/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/vae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl-refiner/main/stable-diffusion-xl-refiner-1-0/vae # sdxl-refind(167.3m) OFF __term_sd_task_pre_model_150 # =====VAE模型===== OFF __term_sd_task_pre_model_151 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/sd-vae-ft-mse/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/sd-vae-ft-mse # sd-vae-ft-mse OFF __term_sd_task_pre_model_152 get_modelscope_model licyks/invokeai-core-model/master/models/core/convert/sd-vae-ft-mse/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/core/convert/sd-vae-ft-mse # sd-vae-ft-mse(334.6m) OFF __term_sd_task_pre_model_153 get_modelscope_model licyks/invokeai-model/master/sdxl/vae/sdxl-1-0-vae-fix/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/vae/sdxl-1-0-vae-fix # sdxl-vae OFF __term_sd_task_pre_model_154 get_modelscope_model licyks/invokeai-model/master/sdxl/vae/sdxl-1-0-vae-fix/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/vae/sdxl-1-0-vae-fix # sdxl-vae(334.6m) OFF __term_sd_task_pre_model_155 # =====Embedding模型===== OFF __term_sd_task_pre_model_156 get_modelscope_model licyks/invokeai-model/master/sd-1/embedding/EasyNegative.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/embedding # EasyNegative(0.1m) OFF __term_sd_task_pre_model_157 get_modelscope_model licyks/invokeai-model/master/sd-2/embedding/ahx-beta-453407d/learned_embeds.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-2/embedding # ahx-beta-453407d(0.1m) OFF __term_sd_task_pre_model_158 # =====控制模型===== OFF __term_sd_task_pre_model_159 # =====ControlNet(SD1.5)模型===== OFF __term_sd_task_pre_model_160 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/canny/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/canny # canny OFF __term_sd_task_pre_model_161 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/canny/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/canny # canny(1.45g) OFF __term_sd_task_pre_model_162 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/depth/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/depth # depth OFF __term_sd_task_pre_model_163 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/depth/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/depth # depth(1.45g) OFF __term_sd_task_pre_model_164 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/inpaint/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/inpaint # inpaint OFF __term_sd_task_pre_model_165 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/inpaint/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/inpaint # inpaint(1.45g) OFF __term_sd_task_pre_model_166 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/ip2p/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/ip2p # ip2p OFF __term_sd_task_pre_model_167 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/ip2p/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/ip2p # ip2p(1.45g) OFF __term_sd_task_pre_model_168 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/lineart/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/lineart # lineart OFF __term_sd_task_pre_model_169 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/lineart/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/lineart # lineart(1.45g) OFF __term_sd_task_pre_model_170 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/lineart_anime/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/lineart_anime # lineart-anime OFF __term_sd_task_pre_model_171 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/lineart_anime/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/lineart_anime # lineart-anime(1.45g) OFF __term_sd_task_pre_model_172 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/mlsd/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/mlsd # mlsd OFF __term_sd_task_pre_model_173 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/mlsd/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/mlsd # mlsd(1.45g) OFF __term_sd_task_pre_model_174 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/normal_bae/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/normal_bae # normal-bae OFF __term_sd_task_pre_model_175 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/normal_bae/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/normal_bae # normal-bae(1.45g) OFF __term_sd_task_pre_model_176 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/openpose/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/openpose # openpose OFF __term_sd_task_pre_model_177 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/openpose/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/openpose # openpose(1.45g) OFF __term_sd_task_pre_model_178 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/qrcode_monster/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/qrcode_monster # qrcode OFF __term_sd_task_pre_model_179 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/qrcode_monster/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/qrcode_monster # qrcode(1.45g) OFF __term_sd_task_pre_model_180 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/scribble/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/scribble # scribble OFF __term_sd_task_pre_model_181 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/scribble/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/scribble # scribble(1.45g) OFF __term_sd_task_pre_model_182 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/seg/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/seg # seg OFF __term_sd_task_pre_model_183 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/seg/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/seg # seg(1.45g) OFF __term_sd_task_pre_model_184 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/shuffle/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/shuffle # shuffle OFF __term_sd_task_pre_model_185 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/shuffle/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/shuffle # shuffle(1.45g) OFF __term_sd_task_pre_model_186 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/softedge/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/softedge # softedge OFF __term_sd_task_pre_model_187 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/softedge/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/softedge # softedge(1.45g) OFF __term_sd_task_pre_model_188 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/tile/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/tile # tile OFF __term_sd_task_pre_model_189 get_modelscope_model licyks/invokeai-model/master/sd-1/controlnet/tile/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/controlnet/tile # tile(1.45g) OFF __term_sd_task_pre_model_190 # =====T2I-Adapter(SD1.5)模型===== OFF __term_sd_task_pre_model_191 get_modelscope_model licyks/invokeai-model/master/sd-1/t2i_adapter/canny-sd15/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/canny-sd15 # canny OFF __term_sd_task_pre_model_192 get_modelscope_model licyks/invokeai-model/master/sd-1/t2i_adapter/canny-sd15/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/canny-sd15 # canny(308m) OFF __term_sd_task_pre_model_193 get_modelscope_model licyks/invokeai-model/master/sd-1/t2i_adapter/depth-sd15/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/depth-sd15 # depth OFF __term_sd_task_pre_model_194 get_modelscope_model licyks/invokeai-model/master/sd-1/t2i_adapter/depth-sd15/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/depth-sd15 # depth(308m) OFF __term_sd_task_pre_model_195 get_modelscope_model licyks/invokeai-model/master/sd-1/t2i_adapter/sketch-sd15/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/sketch-sd15 # sketch OFF __term_sd_task_pre_model_196 get_modelscope_model licyks/invokeai-model/master/sd-1/t2i_adapter/sketch-sd15/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/sketch-sd15 # sketch(308m) OFF __term_sd_task_pre_model_197 get_modelscope_model licyks/invokeai-model/master/sd-1/t2i_adapter/zoedepth-sd15/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/zoedepth-sd15 # zoedepth OFF __term_sd_task_pre_model_198 get_modelscope_model licyks/invokeai-model/master/sd-1/t2i_adapter/zoedepth-sd15/diffusion_pytorch_model.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/t2i_adapter/zoedepth-sd15 # zoedepth(308m) OFF __term_sd_task_pre_model_199 # =====T2I-Adapter(SDXL)模型===== OFF __term_sd_task_pre_model_200 get_modelscope_model licyks/invokeai-model/master/sdxl/t2i_adapter/canny-sdxl/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/canny-sdxl # canny OFF __term_sd_task_pre_model_201 get_modelscope_model licyks/invokeai-model/master/sdxl/t2i_adapter/canny-sdxl/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/canny-sdxl # canny(316m) OFF __term_sd_task_pre_model_202 get_modelscope_model licyks/invokeai-model/master/sdxl/t2i_adapter/lineart-sdxl/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/lineart-sdxl # lineart OFF __term_sd_task_pre_model_203 get_modelscope_model licyks/invokeai-model/master/sdxl/t2i_adapter/lineart-sdxl/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/lineart-sdxl # lineart(316m) OFF __term_sd_task_pre_model_204 get_modelscope_model licyks/invokeai-model/master/sdxl/t2i_adapter/sketch-sdxl/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/sketch-sdxl # sketch OFF __term_sd_task_pre_model_205 get_modelscope_model licyks/invokeai-model/master/sdxl/t2i_adapter/sketch-sdxl/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/sketch-sdxl # sketch(316m) OFF __term_sd_task_pre_model_206 get_modelscope_model licyks/invokeai-model/master/sdxl/t2i_adapter/zoedepth-sdxl/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/zoedepth-sdxl # zoedepth OFF __term_sd_task_pre_model_207 get_modelscope_model licyks/invokeai-model/master/sdxl/t2i_adapter/zoedepth-sdxl/diffusion_pytorch_model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/t2i_adapter/zoedepth-sdxl # zoedepth(316m) OFF __term_sd_task_pre_model_208 # =====IP-Adapter(SD1.5)模型===== OFF __term_sd_task_pre_model_209 get_modelscope_model licyks/invokeai-model/master/any/clip_vision/ip_adapter_sd_image_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/any/clip_vision/ip_adapter_sd_image_encoder # clip_vision OFF __term_sd_task_pre_model_210 get_modelscope_model licyks/invokeai-model/master/any/clip_vision/ip_adapter_sd_image_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/any/clip_vision/ip_adapter_sd_image_encoder # clip_vision(2.53g) OFF __term_sd_task_pre_model_211 get_modelscope_model licyks/invokeai-model/master/sd-1/ip_adapter/ip_adapter_plus_face_sd15/image_encoder.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_plus_face_sd15 # plus-face OFF __term_sd_task_pre_model_212 get_modelscope_model licyks/invokeai-model/master/sd-1/ip_adapter/ip_adapter_plus_face_sd15/ip_adapter.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_plus_face_sd15 # plus-face(98.1m) OFF __term_sd_task_pre_model_213 get_modelscope_model licyks/invokeai-model/master/sd-1/ip_adapter/ip_adapter_plus_sd15/image_encoder.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_plus_sd15 # plus OFF __term_sd_task_pre_model_214 get_modelscope_model licyks/invokeai-model/master/sd-1/ip_adapter/ip_adapter_plus_sd15/ip_adapter.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_plus_sd15 # plus(158m) OFF __term_sd_task_pre_model_215 get_modelscope_model licyks/invokeai-model/master/sd-1/ip_adapter/ip_adapter_sd15/image_encoder.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_sd15 # normal OFF __term_sd_task_pre_model_216 get_modelscope_model licyks/invokeai-model/master/sd-1/ip_adapter/ip_adapter_sd15/ip_adapter.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sd-1/ip_adapter/ip_adapter_sd15 # normal(44.6m) OFF __term_sd_task_pre_model_217 # =====IP-Adapter(SDXL)模型===== OFF __term_sd_task_pre_model_218 get_modelscope_model licyks/invokeai-model/master/any/clip_vision/ip_adapter_sdxl_image_encoder/config.json "${INVOKEAI_ROOT_PATH}"/invokeai/models/any/clip_vision/ip_adapter_sdxl_image_encoder # clip_vision OFF __term_sd_task_pre_model_219 get_modelscope_model licyks/invokeai-model/master/any/clip_vision/ip_adapter_sdxl_image_encoder/model.safetensors "${INVOKEAI_ROOT_PATH}"/invokeai/models/any/clip_vision/ip_adapter_sdxl_image_encoder # clip_vision(3.69g) OFF __term_sd_task_pre_model_220 get_modelscope_model licyks/invokeai-model/master/sdxl/ip_adapter/ip_adapter_sdxl/image_encoder.txt "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/ip_adapter/ip_adapter_sdxl # normal OFF __term_sd_task_pre_model_221 get_modelscope_model licyks/invokeai-model/master/sdxl/ip_adapter/ip_adapter_sdxl/ip_adapter.bin "${INVOKEAI_ROOT_PATH}"/invokeai/models/sdxl/ip_adapter/ip_adapter_sdxl # normal(702.6m) OFF
2301_81996401/term-sd
install/invokeai/invokeai_ms_model.sh
Shell
agpl-3.0
49,389
__term_sd_task_pre_model_1 =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 =====SD2.1大模型===== OFF __term_sd_task_pre_model_5 v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_6 wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_7 wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_8 =====SDXL大模型===== OFF __term_sd_task_pre_model_9 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_10 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_11 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_12 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_13 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_14 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_15 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_16 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_17 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_18 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_19 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_20 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_21 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_22 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_23 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_24 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_25 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_26 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_27 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_28 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_29 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_30 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_31 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_32 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_33 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_34 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_35 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_36 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_37 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_38 Illustrious-XL-v0.1(6.94g) ON __term_sd_task_pre_model_39 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_40 Illustrious-XL-v1.0(6.94g) OFF __term_sd_task_pre_model_41 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_42 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_43 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_44 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_45 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_46 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_47 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_48 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_49 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_50 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_51 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_52 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_53 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_54 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_55 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_56 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_57 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_58 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_59 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_60 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_61 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_62 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_63 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_64 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_65 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_66 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_67 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_68 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_69 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_70 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_71 =====VAE模型===== OFF __term_sd_task_pre_model_72 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_73 vae-ft-mse-840000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_74 sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_75 sdxl_vae(334.6m) OFF __term_sd_task_pre_model_76 =====FLUX模型===== OFF __term_sd_task_pre_model_77 flux1-dev(23.8g) OFF __term_sd_task_pre_model_78 flux1-schnell(23.8g) OFF __term_sd_task_pre_model_79 ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_80 jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_81 nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_82 shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_83 =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_84 clip_l(246.1m) OFF __term_sd_task_pre_model_85 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_86 ae(335m) OFF
2301_81996401/term-sd
install/kohya_ss/dialog_kohya_ss_hf_model.sh
Shell
agpl-3.0
5,284
__term_sd_task_pre_model_1 =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 =====SD2.1大模型===== OFF __term_sd_task_pre_model_5 v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_6 wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_7 wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_8 =====SDXL大模型===== OFF __term_sd_task_pre_model_9 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_10 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_11 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_12 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_13 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_14 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_15 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_16 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_17 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_18 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_19 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_20 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_21 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_22 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_23 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_24 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_25 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_26 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_27 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_28 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_29 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_30 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_31 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_32 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_33 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_34 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_35 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_36 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_37 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_38 Illustrious-XL-v0.1(6.94g) ON __term_sd_task_pre_model_39 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_40 Illustrious-XL-v1.0(6.94g) OFF __term_sd_task_pre_model_41 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_42 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_43 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_44 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_45 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_46 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_47 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_48 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_49 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_50 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_51 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_52 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_53 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_54 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_55 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_56 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_57 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_58 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_59 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_60 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_61 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_62 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_63 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_64 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_65 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_66 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_67 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_68 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_69 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_70 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_71 =====VAE模型===== OFF __term_sd_task_pre_model_72 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_73 vae-ft-mse-840000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_74 sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_75 sdxl_vae(334.6m) OFF __term_sd_task_pre_model_76 =====FLUX模型===== OFF __term_sd_task_pre_model_77 flux1-dev(23.8g) OFF __term_sd_task_pre_model_78 flux1-schnell(23.8g) OFF __term_sd_task_pre_model_79 ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_80 jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_81 nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_82 shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_83 =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_84 clip_l(246.1m) OFF __term_sd_task_pre_model_85 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_86 ae(335m) OFF
2301_81996401/term-sd
install/kohya_ss/dialog_kohya_ss_ms_model.sh
Shell
agpl-3.0
5,284
__term_sd_task_sys term_sd_mkdir "${KOHYA_SS_PARENT_PATH}" __term_sd_task_sys cd "${KOHYA_SS_PARENT_PATH}" __term_sd_task_sys term_sd_tmp_enable_proxy __term_sd_task_pre_core git_clone_repository --disable-submod https://github.com/bmaltais/kohya_ss "${KOHYA_SS_PARENT_PATH}" "${KOHYA_SS_FOLDER}" __term_sd_task_pre_core git_clone_repository --disable-submod https://github.com/kohya-ss/sd-scripts "${KOHYA_SS_ROOT_PATH}" sd-scripts # kohya_ss 后端 __term_sd_task_sys cd "${KOHYA_SS_ROOT_PATH}" __term_sd_task_pre_core git_init_submodule "${KOHYA_SS_ROOT_PATH}" # 初始化 Git 子模块 __term_sd_task_sys is_sd_repo_exist "${KOHYA_SS_ROOT_PATH}" __term_sd_task_sys term_sd_tmp_disable_proxy # 临时取消代理, 避免一些不必要的网络减速 __term_sd_task_pre_core create_venv "${KOHYA_SS_ROOT_PATH}" __term_sd_task_sys enter_venv "${KOHYA_SS_ROOT_PATH}" __term_sd_task_pre_core term_sd_mkdir "${KOHYA_SS_ROOT_PATH}"/output __term_sd_task_pre_core term_sd_mkdir "${KOHYA_SS_ROOT_PATH}"/train __term_sd_task_pre_core install_pytorch # 安装 PyTorch __term_sd_task_pre_core install_python_package -r "${KOHYA_SS_ROOT_PATH}"/requirements.txt __term_sd_task_pre_core install_python_package bitsandbytes -U __term_sd_task_sys cd ..
2301_81996401/term-sd
install/kohya_ss/kohya_ss_core.sh
Shell
agpl-3.0
1,241
__term_sd_task_pre_model_1 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/v1-5-pruned-emaonly.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/animefull-final-pruned.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_5 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/v2-1_768-ema-pruned.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_6 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/wd-1-4-anime_e2.ckpt "${KOHYA_SS_ROOT_PATH}"/models/ # wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_7 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/wd-mofu-fp16.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_8 # =====SDXL大模型===== OFF __term_sd_task_pre_model_9 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_10 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_11 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_12 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0-base.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_13 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_14 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_15 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_16 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_17 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_18 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/holodayo-xl-2.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_19 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kivotos-xl-2.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_20 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/clandestine-xl-1.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_21 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/UrangDiffusion-1.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_22 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_23 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_anime_V52.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_24 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_25 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_26 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_27 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_28 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-zeta.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_29 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/starryXLV52_v52.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_30 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v20.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_31 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v30.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_32 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_33 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_34 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_35 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_36 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_37 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_38 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v0.1(6.94g) ON __term_sd_task_pre_model_39 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_40 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v1.0(6.94g) OFF __term_sd_task_pre_model_41 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_42 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_43 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_44 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_45 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_46 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_47 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_48 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tIllunai3_v4.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_49 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_50 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_51 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_52 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_53 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_54 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_55 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_56 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_57 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_58 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_59 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_60 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_61 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_62 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_63 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_64 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_65 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/pdForAnime_v20.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_66 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_67 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_68 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_69 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_70 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_71 # =====VAE模型===== OFF __term_sd_task_pre_model_72 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sd_1.5/vae-ft-ema-560000-ema-pruned.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_73 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sd_1.5/vae-ft-mse-840000-ema-pruned.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # vae-ft-mse-840000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_74 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sdxl_1.0/sdxl_fp16_fix_vae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_75 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sdxl_1.0/sdxl_vae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sdxl_vae(334.6m) OFF __term_sd_task_pre_model_76 # =====FLUX模型===== OFF __term_sd_task_pre_model_77 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # flux1-dev(23.8g) OFF __term_sd_task_pre_model_78 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # flux1-schnell(23.8g) OFF __term_sd_task_pre_model_79 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/ashen0209-flux1-dev2pro.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_80 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/jimmycarter-LibreFLUX.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_81 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/nyanko7-flux-dev-de-distill.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_82 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/shuttle-3-diffusion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_83 # =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_84 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/clip_l.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # clip_l(246.1m) OFF __term_sd_task_pre_model_85 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5xxl_fp16.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_86 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_vae/ae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # ae(335m) OFF
2301_81996401/term-sd
install/kohya_ss/kohya_ss_hf_model.sh
Shell
agpl-3.0
16,811
__term_sd_task_pre_model_1 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 get_modelscope_model licyks/sd-model/master/sd_1.5/v1-5-pruned-emaonly.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 get_modelscope_model licyks/sd-model/master/sd_1.5/animefull-final-pruned.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_5 get_modelscope_model licyks/sd-model/master/sd_2.1/v2-1_768-ema-pruned.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_6 get_modelscope_model licyks/sd-model/master/sd_2.1/wd-1-4-anime_e2.ckpt "${KOHYA_SS_ROOT_PATH}"/models/ # wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_7 get_modelscope_model licyks/sd-model/master/sd_2.1/wd-mofu-fp16.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_8 # =====SDXL大模型===== OFF __term_sd_task_pre_model_9 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_10 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_11 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_12 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0-base.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_13 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_14 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_15 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_16 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_17 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_18 get_modelscope_model licyks/sd-model/master/sdxl_1.0/holodayo-xl-2.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_19 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kivotos-xl-2.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_20 get_modelscope_model licyks/sd-model/master/sdxl_1.0/clandestine-xl-1.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_21 get_modelscope_model licyks/sd-model/master/sdxl_1.0/UrangDiffusion-1.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_22 get_modelscope_model licyks/sd-model/master/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_23 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_anime_V52.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_24 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_25 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_26 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_27 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_28 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-zeta.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_29 get_modelscope_model licyks/sd-model/master/sdxl_1.0/starryXLV52_v52.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_30 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v20.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_31 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v30.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_32 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_33 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_34 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_35 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_36 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_37 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_38 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v0.1(6.94g) ON __term_sd_task_pre_model_39 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_40 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v1.0(6.94g) OFF __term_sd_task_pre_model_41 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_42 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_43 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_44 get_modelscope_model licyks/sd-model/master/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_45 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_46 get_modelscope_model licyks/sd-model/master/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_47 get_modelscope_model licyks/sd-model/master/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_48 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tIllunai3_v4.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_49 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_50 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_51 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_52 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_53 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_54 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_55 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_56 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_57 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_58 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_59 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_60 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_61 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_62 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_63 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_64 get_modelscope_model licyks/sd-model/master/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_65 get_modelscope_model licyks/sd-model/master/sdxl_1.0/pdForAnime_v20.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_66 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_67 get_modelscope_model licyks/sd-model/master/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_68 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_69 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_70 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_71 # =====VAE模型===== OFF __term_sd_task_pre_model_72 get_modelscope_model licyks/sd-vae/master/sd_1.5/vae-ft-ema-560000-ema-pruned.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_73 get_modelscope_model licyks/sd-vae/master/sd_1.5/vae-ft-mse-840000-ema-pruned.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # vae-ft-mse-840000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_74 get_modelscope_model licyks/sd-vae/master/sdxl_1.0/sdxl_fp16_fix_vae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_75 get_modelscope_model licyks/sd-vae/master/sdxl_1.0/sdxl_vae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # sdxl_vae(334.6m) OFF __term_sd_task_pre_model_76 # =====FLUX模型===== OFF __term_sd_task_pre_model_77 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # flux1-dev(23.8g) OFF __term_sd_task_pre_model_78 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # flux1-schnell(23.8g) OFF __term_sd_task_pre_model_79 get_modelscope_model licyks/flux-model/master/flux_1/ashen0209-flux1-dev2pro.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_80 get_modelscope_model licyks/flux-model/master/flux_1/jimmycarter-LibreFLUX.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_81 get_modelscope_model licyks/flux-model/master/flux_1/nyanko7-flux-dev-de-distill.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_82 get_modelscope_model licyks/flux-model/master/flux_1/shuttle-3-diffusion.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_83 # =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_84 get_modelscope_model licyks/flux-model/master/flux_text_encoders/clip_l.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # clip_l(246.1m) OFF __term_sd_task_pre_model_85 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5xxl_fp16.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_86 get_modelscope_model licyks/flux-model/master/flux_vae/ae.safetensors "${KOHYA_SS_ROOT_PATH}"/models/ # ae(335m) OFF
2301_81996401/term-sd
install/kohya_ss/kohya_ss_ms_model.sh
Shell
agpl-3.0
15,051
__term_sd_task_pre_model_1 =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 =====SD2.1大模型===== OFF __term_sd_task_pre_model_5 v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_6 wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_7 wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_8 =====SDXL大模型===== OFF __term_sd_task_pre_model_9 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_10 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_11 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_12 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_13 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_14 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_15 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_16 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_17 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_18 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_19 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_20 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_21 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_22 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_23 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_24 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_25 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_26 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_27 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_28 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_29 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_30 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_31 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_32 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_33 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_34 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_35 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_36 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_37 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_38 Illustrious-XL-v0.1(6.94g) ON __term_sd_task_pre_model_39 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_40 Illustrious-XL-v1.0(6.94g) OFF __term_sd_task_pre_model_41 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_42 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_43 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_44 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_45 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_46 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_47 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_48 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_49 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_50 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_51 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_52 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_53 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_54 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_55 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_56 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_57 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_58 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_59 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_60 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_61 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_62 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_63 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_64 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_65 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_66 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_67 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_68 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_69 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_70 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_71 =====VAE模型===== OFF __term_sd_task_pre_model_72 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_73 vae-ft-mse-840000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_74 sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_75 sdxl_vae(334.6m) OFF __term_sd_task_pre_model_76 =====FLUX模型===== OFF __term_sd_task_pre_model_77 flux1-dev(23.8g) OFF __term_sd_task_pre_model_78 flux1-schnell(23.8g) OFF __term_sd_task_pre_model_79 ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_80 jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_81 nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_82 shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_83 =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_84 clip_l(246.1m) OFF __term_sd_task_pre_model_85 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_86 ae(335m) OFF
2301_81996401/term-sd
install/lora_scripts/dialog_lora_scripts_hf_model.sh
Shell
agpl-3.0
5,284
__term_sd_task_pre_model_1 =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 =====SD2.1大模型===== OFF __term_sd_task_pre_model_5 v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_6 wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_7 wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_8 =====SDXL大模型===== OFF __term_sd_task_pre_model_9 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_10 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_11 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_12 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_13 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_14 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_15 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_16 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_17 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_18 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_19 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_20 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_21 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_22 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_23 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_24 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_25 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_26 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_27 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_28 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_29 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_30 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_31 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_32 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_33 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_34 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_35 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_36 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_37 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_38 Illustrious-XL-v0.1(6.94g) ON __term_sd_task_pre_model_39 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_40 Illustrious-XL-v1.0(6.94g) OFF __term_sd_task_pre_model_41 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_42 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_43 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_44 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_45 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_46 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_47 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_48 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_49 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_50 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_51 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_52 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_53 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_54 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_55 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_56 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_57 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_58 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_59 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_60 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_61 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_62 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_63 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_64 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_65 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_66 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_67 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_68 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_69 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_70 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_71 =====VAE模型===== OFF __term_sd_task_pre_model_72 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_73 vae-ft-mse-840000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_74 sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_75 sdxl_vae(334.6m) OFF __term_sd_task_pre_model_76 =====FLUX模型===== OFF __term_sd_task_pre_model_77 flux1-dev(23.8g) OFF __term_sd_task_pre_model_78 flux1-schnell(23.8g) OFF __term_sd_task_pre_model_79 ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_80 jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_81 nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_82 shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_83 =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_84 clip_l(246.1m) OFF __term_sd_task_pre_model_85 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_86 ae(335m) OFF
2301_81996401/term-sd
install/lora_scripts/dialog_lora_scripts_ms_model.sh
Shell
agpl-3.0
5,284
__term_sd_task_sys term_sd_mkdir "${LORA_SCRIPTS_PARENT_PATH}" __term_sd_task_sys cd "${LORA_SCRIPTS_PARENT_PATH}" __term_sd_task_sys term_sd_tmp_enable_proxy __term_sd_task_pre_core git_clone_repository --disable-submod https://github.com/Akegarasu/lora-scripts "${LORA_SCRIPTS_PARENT_PATH}" "${LORA_SCRIPTS_FOLDER}" __term_sd_task_sys is_sd_repo_exist "${LORA_SCRIPTS_ROOT_PATH}" __term_sd_task_pre_core git_clone_repository --disable-submod https://github.com/hanamizuki-ai/lora-gui-dist "${LORA_SCRIPTS_ROOT_PATH}" frontend # lora-scripts 前端 __term_sd_task_pre_core git_clone_repository --disable-submod https://github.com/Akegarasu/dataset-tag-editor "${LORA_SCRIPTS_ROOT_PATH}"/mikazuki dataset-tag-editor # 标签编辑器 __term_sd_task_sys term_sd_tmp_disable_proxy # 临时取消代理, 避免一些不必要的网络减速 __term_sd_task_sys cd "${LORA_SCRIPTS_ROOT_PATH}" __term_sd_task_pre_core git_init_submodule "${LORA_SCRIPTS_ROOT_PATH}" # 初始化 Git 子模块 __term_sd_task_pre_core create_venv "${LORA_SCRIPTS_ROOT_PATH}" __term_sd_task_sys enter_venv "${LORA_SCRIPTS_ROOT_PATH}" __term_sd_task_pre_core install_pytorch # 安装 PyTorch __term_sd_task_pre_core install_python_package -r "${LORA_SCRIPTS_ROOT_PATH}"/requirements.txt # lora-scripts 依赖 __term_sd_task_sys cd ..
2301_81996401/term-sd
install/lora_scripts/lora_scripts_core.sh
Shell
agpl-3.0
1,306
__term_sd_task_pre_model_1 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/v1-5-pruned-emaonly.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/animefull-final-pruned.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_5 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/v2-1_768-ema-pruned.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_6 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/wd-1-4-anime_e2.ckpt "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_7 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/wd-mofu-fp16.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_8 # =====SDXL大模型===== OFF __term_sd_task_pre_model_9 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_10 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_11 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_12 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0-base.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_13 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_14 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_15 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_16 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_17 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_18 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/holodayo-xl-2.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_19 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kivotos-xl-2.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_20 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/clandestine-xl-1.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_21 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/UrangDiffusion-1.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_22 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_23 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_anime_V52.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_24 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_25 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_26 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_27 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_28 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-zeta.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_29 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/starryXLV52_v52.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_30 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v20.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_31 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v30.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_32 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_33 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_34 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_35 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_36 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_37 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_38 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v0.1(6.94g) ON __term_sd_task_pre_model_39 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_40 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v1.0(6.94g) OFF __term_sd_task_pre_model_41 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_42 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_43 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_44 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_45 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_46 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_47 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_48 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tIllunai3_v4.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_49 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_50 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_51 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_52 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_53 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_54 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_55 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_56 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_57 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_58 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_59 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_60 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_61 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_62 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_63 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_64 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_65 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/pdForAnime_v20.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_66 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_67 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_68 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_69 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_70 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_71 # =====VAE模型===== OFF __term_sd_task_pre_model_72 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sd_1.5/vae-ft-ema-560000-ema-pruned.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_73 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sd_1.5/vae-ft-mse-840000-ema-pruned.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # vae-ft-mse-840000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_74 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sdxl_1.0/sdxl_fp16_fix_vae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_75 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sdxl_1.0/sdxl_vae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sdxl_vae(334.6m) OFF __term_sd_task_pre_model_76 # =====FLUX模型===== OFF __term_sd_task_pre_model_77 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # flux1-dev(23.8g) OFF __term_sd_task_pre_model_78 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # flux1-schnell(23.8g) OFF __term_sd_task_pre_model_79 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/ashen0209-flux1-dev2pro.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_80 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/jimmycarter-LibreFLUX.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_81 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/nyanko7-flux-dev-de-distill.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_82 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/shuttle-3-diffusion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_83 # =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_84 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/clip_l.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # clip_l(246.1m) OFF __term_sd_task_pre_model_85 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5xxl_fp16.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_86 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_vae/ae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # ae(335m) OFF
2301_81996401/term-sd
install/lora_scripts/lora_scripts_hf_model.sh
Shell
agpl-3.0
17,371
__term_sd_task_pre_model_1 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 get_modelscope_model licyks/sd-model/master/sd_1.5/v1-5-pruned-emaonly.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 get_modelscope_model licyks/sd-model/master/sd_1.5/animefull-final-pruned.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_5 get_modelscope_model licyks/sd-model/master/sd_2.1/v2-1_768-ema-pruned.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_6 get_modelscope_model licyks/sd-model/master/sd_2.1/wd-1-4-anime_e2.ckpt "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_7 get_modelscope_model licyks/sd-model/master/sd_2.1/wd-mofu-fp16.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_8 # =====SDXL大模型===== OFF __term_sd_task_pre_model_9 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_10 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_11 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_12 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0-base.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_13 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_14 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_15 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_16 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_17 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_18 get_modelscope_model licyks/sd-model/master/sdxl_1.0/holodayo-xl-2.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_19 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kivotos-xl-2.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_20 get_modelscope_model licyks/sd-model/master/sdxl_1.0/clandestine-xl-1.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_21 get_modelscope_model licyks/sd-model/master/sdxl_1.0/UrangDiffusion-1.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_22 get_modelscope_model licyks/sd-model/master/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_23 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_anime_V52.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_24 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_25 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_26 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_27 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_28 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-zeta.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_29 get_modelscope_model licyks/sd-model/master/sdxl_1.0/starryXLV52_v52.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_30 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v20.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_31 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v30.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_32 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_33 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_34 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_35 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_36 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_37 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_38 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v0.1(6.94g) ON __term_sd_task_pre_model_39 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_40 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v1.0(6.94g) OFF __term_sd_task_pre_model_41 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_42 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_43 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_44 get_modelscope_model licyks/sd-model/master/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_45 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_46 get_modelscope_model licyks/sd-model/master/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_47 get_modelscope_model licyks/sd-model/master/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_48 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tIllunai3_v4.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_49 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_50 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_51 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_52 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_53 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_54 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_55 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_56 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_57 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_58 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_59 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_60 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_61 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_62 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_63 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_64 get_modelscope_model licyks/sd-model/master/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_65 get_modelscope_model licyks/sd-model/master/sdxl_1.0/pdForAnime_v20.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_66 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_67 get_modelscope_model licyks/sd-model/master/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_68 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_69 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_70 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_71 # =====VAE模型===== OFF __term_sd_task_pre_model_72 get_modelscope_model licyks/sd-vae/master/sd_1.5/vae-ft-ema-560000-ema-pruned.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_73 get_modelscope_model licyks/sd-vae/master/sd_1.5/vae-ft-mse-840000-ema-pruned.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # vae-ft-mse-840000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_74 get_modelscope_model licyks/sd-vae/master/sdxl_1.0/sdxl_fp16_fix_vae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_75 get_modelscope_model licyks/sd-vae/master/sdxl_1.0/sdxl_vae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # sdxl_vae(334.6m) OFF __term_sd_task_pre_model_76 # =====FLUX模型===== OFF __term_sd_task_pre_model_77 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # flux1-dev(23.8g) OFF __term_sd_task_pre_model_78 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # flux1-schnell(23.8g) OFF __term_sd_task_pre_model_79 get_modelscope_model licyks/flux-model/master/flux_1/ashen0209-flux1-dev2pro.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_80 get_modelscope_model licyks/flux-model/master/flux_1/jimmycarter-LibreFLUX.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_81 get_modelscope_model licyks/flux-model/master/flux_1/nyanko7-flux-dev-de-distill.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_82 get_modelscope_model licyks/flux-model/master/flux_1/shuttle-3-diffusion.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_83 # =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_84 get_modelscope_model licyks/flux-model/master/flux_text_encoders/clip_l.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # clip_l(246.1m) OFF __term_sd_task_pre_model_85 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5xxl_fp16.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_86 get_modelscope_model licyks/flux-model/master/flux_vae/ae.safetensors "${LORA_SCRIPTS_ROOT_PATH}"/sd-models/ # ae(335m) OFF
2301_81996401/term-sd
install/lora_scripts/lora_scripts_ms_model.sh
Shell
agpl-3.0
15,611
__term_sd_task_pre_ext_1 sd-webui-controlnet ON __term_sd_task_pre_ext_2 sd-webui-animatediff OFF __term_sd_task_pre_ext_3 adetailer ON __term_sd_task_pre_ext_4 sd-webui-IS-NET-pro OFF __term_sd_task_pre_ext_5 sd-webui-segment-anything ON __term_sd_task_pre_ext_6 sd-webui-inpaint-anything OFF __term_sd_task_pre_ext_7 sd-forge-layerdiffuse OFF __term_sd_task_pre_ext_8 z-a1111-sd-webui-dtg OFF __term_sd_task_pre_ext_9 sd-webui-stablesr OFF __term_sd_task_pre_ext_10 z-tipo-extension OFF __term_sd_task_pre_ext_11 kohya-config-webui OFF __term_sd_task_pre_ext_12 sd-webui-additional-networks OFF __term_sd_task_pre_ext_13 a1111-sd-webui-tagcomplete ON __term_sd_task_pre_ext_14 multidiffusion-upscaler-for-automatic1111 ON __term_sd_task_pre_ext_15 sd-dynamic-thresholding ON __term_sd_task_pre_ext_16 sd-webui-cutoff OFF __term_sd_task_pre_ext_17 sd-webui-model-converter ON __term_sd_task_pre_ext_18 sd-webui-supermerger ON __term_sd_task_pre_ext_19 stable-diffusion-webui-localization-zh_Hans ON __term_sd_task_pre_ext_20 sd-webui-wd14-tagger ON __term_sd_task_pre_ext_21 sd-webui-regional-prompter ON __term_sd_task_pre_ext_22 sd-webui-infinite-image-browsing ON __term_sd_task_pre_ext_23 stable-diffusion-webui-anti-burn OFF __term_sd_task_pre_ext_24 loopback_scaler OFF __term_sd_task_pre_ext_25 latentcoupleregionmapper OFF __term_sd_task_pre_ext_26 ultimate-upscale-for-automatic1111 ON __term_sd_task_pre_ext_27 deforum-for-automatic1111-webui OFF __term_sd_task_pre_ext_28 stable-diffusion-webui-images-browser OFF __term_sd_task_pre_ext_29 stable-diffusion-webui-huggingface OFF __term_sd_task_pre_ext_30 sd-civitai-browser OFF __term_sd_task_pre_ext_31 a1111-stable-diffusion-webui-vram-estimator OFF __term_sd_task_pre_ext_32 openpose-editor OFF __term_sd_task_pre_ext_33 sd-webui-depth-lib OFF __term_sd_task_pre_ext_34 posex OFF __term_sd_task_pre_ext_35 sd-webui-tunnels OFF __term_sd_task_pre_ext_36 batchlinks-webui OFF __term_sd_task_pre_ext_37 stable-diffusion-webui-catppuccin OFF __term_sd_task_pre_ext_38 a1111-sd-webui-lycoris OFF __term_sd_task_pre_ext_39 stable-diffusion-webui-rembg OFF __term_sd_task_pre_ext_40 stable-diffusion-webui-two-shot OFF __term_sd_task_pre_ext_41 sd-webui-lora-block-weight ON __term_sd_task_pre_ext_42 sd-face-editor OFF __term_sd_task_pre_ext_43 sd-webui-prompt-all-in-one ON __term_sd_task_pre_ext_44 sd-webui-comfyui OFF __term_sd_task_pre_ext_45 sd-webui-photopea-embed OFF __term_sd_task_pre_ext_46 sd-webui-openpose-editor ON __term_sd_task_pre_ext_47 sd-webui-llul OFF __term_sd_task_pre_ext_48 sd-webui-bilingual-localization OFF __term_sd_task_pre_ext_49 sd-webui-mov2mov OFF __term_sd_task_pre_ext_50 ebsynth_utility OFF __term_sd_task_pre_ext_51 sd_dreambooth_extension OFF __term_sd_task_pre_ext_52 sd-webui-memory-release OFF __term_sd_task_pre_ext_53 stable-diffusion-webui-dataset-tag-editor OFF __term_sd_task_pre_ext_54 sd-webui-deoldify OFF __term_sd_task_pre_ext_55 stable-diffusion-webui-model-toolkit ON __term_sd_task_pre_ext_56 sd-webui-oldsix-prompt-dynamic OFF __term_sd_task_pre_ext_57 sd-webui-fastblend OFF __term_sd_task_pre_ext_58 StyleSelectorXL OFF __term_sd_task_pre_ext_59 sd-dynamic-prompts OFF __term_sd_task_pre_ext_60 LightDiffusionFlow OFF __term_sd_task_pre_ext_61 sd-webui-workspace OFF __term_sd_task_pre_ext_62 openOutpaint-webUI-extension OFF __term_sd_task_pre_ext_63 sd-webui-samplers-scheduler OFF __term_sd_task_pre_ext_64 sd-webui-boomer OFF __term_sd_task_pre_ext_65 model-keyword OFF __term_sd_task_pre_ext_66 Stable-Diffusion-WebUI-TensorRT OFF __term_sd_task_pre_ext_67 sd-webui-lobe-theme OFF __term_sd_task_pre_ext_68 stable-diffusion-webui-GPU-temperature-protection OFF __term_sd_task_pre_ext_69 sd-webui-api-payload-display OFF __term_sd_task_pre_ext_70 sd-webui-aspect-ratio-helper OFF __term_sd_task_pre_ext_71 sd-webui-cd-tuner OFF __term_sd_task_pre_ext_72 sd-webui-negpip OFF __term_sd_task_pre_ext_73 sd-webui-agent-scheduler OFF __term_sd_task_pre_ext_74 Stable-Diffusion-Webui-Civitai-Helper OFF __term_sd_task_pre_ext_75 sd-webui-Lora-queue-helper OFF __term_sd_task_pre_ext_76 PBRemTools OFF __term_sd_task_pre_ext_77 sd-webui-rich-text OFF __term_sd_task_pre_ext_78 image-deduplicate-cluster-webui OFF __term_sd_task_pre_ext_79 stable-diffusion-webui-composable-lora OFF __term_sd_task_pre_ext_80 sdweb-merge-block-weighted-gui OFF __term_sd_task_pre_ext_81 sd-civitai-browser-plus OFF __term_sd_task_pre_ext_82 sd-webui-weight-helper OFF __term_sd_task_pre_ext_83 sd-danbooru-tags-upsampler OFF __term_sd_task_pre_ext_84 Stylez OFF __term_sd_task_pre_ext_85 sd-webui-next-style OFF __term_sd_task_pre_ext_86 a1111-sd-webui-haku-img ON __term_sd_task_pre_ext_87 Kohaku-NAI OFF __term_sd_task_pre_ext_88 sd-webui-cli-interruption OFF __term_sd_task_pre_ext_89 sdwebui-close-confirmation-dialogue OFF __term_sd_task_pre_ext_90 sd-webui-hires-fix-tweaks OFF __term_sd_task_pre_ext_91 sd-webui-custom-autolaunch OFF __term_sd_task_pre_ext_92 sd-webui-triposr OFF __term_sd_task_pre_ext_93 sd-webui-qic-console OFF __term_sd_task_pre_ext_94 sd-webui-qrcode-toolkit OFF __term_sd_task_pre_ext_95 sd-webui-controlnet-marigold OFF __term_sd_task_pre_ext_96 Euler-Smea-Dyn-Sampler OFF __term_sd_task_pre_ext_97 advanced_euler_sampler_extension OFF __term_sd_task_pre_ext_98 sd-webui-vectorscope-cc OFF __term_sd_task_pre_ext_99 sd-webui-smea OFF __term_sd_task_pre_ext_100 sd-webui-neutral-prompt OFF __term_sd_task_pre_ext_101 sd-webui-tabs-extension OFF __term_sd_task_pre_ext_102 sd-forge-ic-light OFF __term_sd_task_pre_ext_103 webui-fooocus-prompt-expansion OFF __term_sd_task_pre_ext_104 sd-webui-model-patcher OFF __term_sd_task_pre_ext_105 lora-prompt-tool OFF __term_sd_task_pre_ext_106 sd-webui-easy-tag-insert OFF __term_sd_task_pre_ext_107 sd-webui-i2i-ancestral-tree OFF __term_sd_task_pre_ext_108 sd-forge-couple OFF __term_sd_task_pre_ext_109 sd-webui-advanced-xyz OFF __term_sd_task_pre_ext_110 sd-webui-mosaic-outpaint ON __term_sd_task_pre_ext_111 sd-webui-image-comparison OFF __term_sd_task_pre_ext_112 sd-webui-diffusion-cg OFF __term_sd_task_pre_ext_113 sd-webui-resharpen OFF __term_sd_task_pre_ext_114 sd-webui-mobile-friendly OFF __term_sd_task_pre_ext_115 sd-webui-prompt-format OFF __term_sd_task_pre_ext_116 sd-webui-aaa OFF __term_sd_task_pre_ext_117 sd-webui-clear-screen OFF __term_sd_task_pre_ext_118 sd-webui-auto-res OFF __term_sd_task_pre_ext_119 sd-webui-moar-generate OFF __term_sd_task_pre_ext_120 metadata_utils OFF __term_sd_task_pre_ext_121 sd-webui-xyz-addon OFF __term_sd_task_pre_ext_122 sd-webui-flash-attention-zluda-win OFF __term_sd_task_pre_ext_123 sd-webui-split-layout OFF __term_sd_task_pre_ext_124 sd-webui-oldsix-prompt OFF __term_sd_task_pre_ext_125 sd-webui-ipex-enhancement OFF __term_sd_task_pre_ext_126 sd-webui-udav2 OFF __term_sd_task_pre_ext_127 sd-webui-cn-sam-preprocessor OFF __term_sd_task_pre_ext_128 sd-webui-pnginfo-beautify OFF __term_sd_task_pre_ext_129 sd-webui-resource-monitor ON __term_sd_task_pre_ext_130 chara-searcher OFF __term_sd_task_pre_ext_131 sd-webui-to_top_button OFF __term_sd_task_pre_ext_132 sd-webui-aurasr OFF __term_sd_task_pre_ext_133 a1111-intelli-prompt OFF __term_sd_task_pre_ext_134 sd-webui-decadetw-auto-prompt-llm OFF __term_sd_task_pre_ext_135 sd-forge-temperature-settings OFF __term_sd_task_pre_ext_136 forge-space-SUPIR OFF __term_sd_task_pre_ext_137 forge-space-ollama OFF __term_sd_task_pre_ext_138 sd-webui-cardmaster OFF __term_sd_task_pre_ext_139 extra-network-side-panel-for-a1111 OFF __term_sd_task_pre_ext_140 sd-forge-regional-prompter OFF __term_sd_task_pre_ext_141 --sd-webui-ar-plus OFF __term_sd_task_pre_ext_142 forge2_cleaner OFF __term_sd_task_pre_ext_143 sd-webui-cleaner OFF __term_sd_task_pre_ext_144 HyperTile OFF __term_sd_task_pre_ext_145 forgeFlux_dualPrompt OFF __term_sd_task_pre_ext_146 GPU_For_T5 OFF __term_sd_task_pre_ext_147 sd-webui-top-k-emphasis OFF __term_sd_task_pre_ext_148 uddetailer OFF __term_sd_task_pre_ext_149 Config-Presets OFF __term_sd_task_pre_ext_150 seamless-tile-inpainting OFF __term_sd_task_pre_ext_151 sd-webui-ux OFF __term_sd_task_pre_ext_152 sd-webui-replacer OFF __term_sd_task_pre_ext_153 stable-diffusion-webui-wildcards OFF __term_sd_task_pre_ext_154 sd-webui-freeu OFF __term_sd_task_pre_ext_155 sd-webui-incantations OFF __term_sd_task_pre_ext_156 sd-webui-kohya-hiresfix OFF __term_sd_task_pre_ext_157 sd-webui-model-mixer OFF __term_sd_task_pre_ext_158 sd-webui-flash-attention2-rdna3-rocm OFF __term_sd_task_pre_ext_159 sd-webui-tcd-sampler OFF __term_sd_task_pre_ext_160 sd-webui-birefnet OFF __term_sd_task_pre_ext_161 stable-diffusion-NPW OFF __term_sd_task_pre_ext_162 sd_forge_hypertile_svd_z123 OFF __term_sd_task_pre_ext_163 stable-diffusion-webui-zoomimage OFF __term_sd_task_pre_ext_164 sd-simple-dimension-preset OFF __term_sd_task_pre_ext_165 sd-hub OFF __term_sd_task_pre_ext_166 lora-keywords-finder OFF __term_sd_task_pre_ext_167 sd-webui-quickrecents OFF __term_sd_task_pre_ext_168 sd-forge-blockcache OFF __term_sd_task_pre_ext_169 sd-forge-blockcache OFF __term_sd_task_pre_ext_170 sd-webui-rewrite-history OFF __term_sd_task_pre_ext_171 sd-refdrop-forge OFF __term_sd_task_pre_ext_172 sd-refdrop OFF __term_sd_task_pre_ext_173 sd-forge-negpip OFF __term_sd_task_pre_ext_174 sd-webui-segment-anything-altoids OFF __term_sd_task_pre_ext_175 sd-webui-framepack OFF __term_sd_task_pre_ext_176 sd-webui-different-save-button-image-format OFF __term_sd_task_pre_ext_177 sd-webui-frequency-separation OFF __term_sd_task_pre_ext_178 sd-webui-hide-gradio-message OFF __term_sd_task_pre_ext_179 sd-webui-licyk-style-image ON
2301_81996401/term-sd
install/sd_webui/dialog_sd_webui_extension.sh
Shell
agpl-3.0
9,618
__term_sd_task_pre_model_1 =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 nai1-artist_all_in_one_merge(2.13g) OFF __term_sd_task_pre_model_5 Counterfeit-V3.0(4.24g) OFF __term_sd_task_pre_model_6 cetusMix_Whalefall2(3.85g) OFF __term_sd_task_pre_model_7 cuteyukimixAdorable_neochapter3(2.3g) OFF __term_sd_task_pre_model_8 ekmix-pastel(2.13g) OFF __term_sd_task_pre_model_9 ex2K_sse2(2.38g) OFF __term_sd_task_pre_model_10 kohakuV5_rev2(2.13g) OFF __term_sd_task_pre_model_11 meinamix_meinaV11(2.13g) OFF __term_sd_task_pre_model_12 oukaStar_10(5.43g) OFF __term_sd_task_pre_model_13 pastelMixStylizedAnime(2.13g) OFF __term_sd_task_pre_model_14 rabbit_v6(1.97g) OFF __term_sd_task_pre_model_15 sweetSugarSyndrome_rev15(2.13g) OFF __term_sd_task_pre_model_16 AnythingV5Ink_ink(2.13g) OFF __term_sd_task_pre_model_17 bartstyledbBlueArchiveArtStyle(2.13g) OFF __term_sd_task_pre_model_18 meinapastel_v6(2.13g) OFF __term_sd_task_pre_model_19 qteamix(2.13g) OFF __term_sd_task_pre_model_20 tmndMix(2.13g) OFF __term_sd_task_pre_model_21 =====SD2.1大模型===== OFF __term_sd_task_pre_model_22 v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_23 wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_24 wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_25 =====SDXL大模型===== OFF __term_sd_task_pre_model_26 sd_xl_offset_example-lora_1.0(49.6m) OFF __term_sd_task_pre_model_27 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_28 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_29 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_30 cosxl(6.94g) OFF __term_sd_task_pre_model_31 cosxl_edit(6.94g) OFF __term_sd_task_pre_model_32 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_33 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_34 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_35 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_36 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_37 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_38 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_39 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_40 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_41 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_42 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_43 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_44 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_45 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_46 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_47 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_48 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_49 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_50 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_51 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_52 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_53 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_54 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_55 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_56 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_57 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_58 Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_59 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_60 Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_61 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_62 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_63 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_64 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_65 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_66 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_67 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_68 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_69 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_70 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_71 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_72 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_73 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_74 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_75 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_76 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_77 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_78 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_79 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_80 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_81 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_82 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_83 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_84 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_85 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_86 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_87 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_88 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_89 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_90 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_91 AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_92 abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_93 animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_94 bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_95 nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_96 CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_97 =====SD3大模型===== OFF __term_sd_task_pre_model_98 sd3_medium(4.34g) OFF __term_sd_task_pre_model_99 sd3_medium_incl_clips(5.97g) OFF __term_sd_task_pre_model_100 sd3_medium_incl_clips_t5xxlfp8(10.87g) OFF __term_sd_task_pre_model_101 sd3.5_large(16.5g) OFF __term_sd_task_pre_model_102 sd3.5_large_fp8_scaled(14.9g) OFF __term_sd_task_pre_model_103 sd3.5_large_turbo(16.5g) OFF __term_sd_task_pre_model_104 sd3.5_medium(5.1g) OFF __term_sd_task_pre_model_105 sd3.5_medium_incl_clips_t5xxlfp8scaled(11.6g) OFF __term_sd_task_pre_model_106 emi3(16.5g) OFF __term_sd_task_pre_model_107 =====SD3文本编码器===== OFF __term_sd_task_pre_model_108 clip_g(1.39g) OFF __term_sd_task_pre_model_109 clip_l(246.1m) OFF __term_sd_task_pre_model_110 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_111 t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_112 t5xxl_fp8_e4m3fn_scaled(5.16g) OFF __term_sd_task_pre_model_113 =====FLUX模型===== OFF __term_sd_task_pre_model_114 flux1-dev(23.8g) OFF __term_sd_task_pre_model_115 flux1-dev-fp8(17.2g) OFF __term_sd_task_pre_model_116 flux_dev_fp8_scaled_diffusion_model(11.9g) OFF __term_sd_task_pre_model_117 flux1-dev-bnb-nf4-v2(12g) OFF __term_sd_task_pre_model_118 flux1-dev-bnb-nf4(11.5g) OFF __term_sd_task_pre_model_119 flux1-dev-Q2_K-gguf(4.03g) OFF __term_sd_task_pre_model_120 flux1-dev-Q3_K_S-gguf(5.23g) OFF __term_sd_task_pre_model_121 flux1-dev-Q4_0-gguf(6.79g) OFF __term_sd_task_pre_model_122 flux1-dev-Q4_1-gguf(7.53g) OFF __term_sd_task_pre_model_123 flux1-dev-Q4_K_S-gguf(6.81g) OFF __term_sd_task_pre_model_124 flux1-dev-Q5_0-gguf(8.27g) OFF __term_sd_task_pre_model_125 flux1-dev-Q5_1-gguf(9.01g) OFF __term_sd_task_pre_model_126 flux1-dev-Q5_K_S-gguf(8.29g) OFF __term_sd_task_pre_model_127 flux1-dev-Q6_K-gguf(9.86g) OFF __term_sd_task_pre_model_128 flux1-dev-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_129 flux1-dev-F16-gguf(23.8g) OFF __term_sd_task_pre_model_130 flux1-schnell(23.8g) OFF __term_sd_task_pre_model_131 flux1-schnell-fp8(17.2g) OFF __term_sd_task_pre_model_132 flux1-schnell-Q2_K-gguf(4.01g) OFF __term_sd_task_pre_model_133 flux1-schnell-Q3_K_S-gguf(5.21g) OFF __term_sd_task_pre_model_134 flux1-schnell-Q4_0-gguf(6.77g) OFF __term_sd_task_pre_model_135 flux1-schnell-Q4_1-gguf(7.51g) OFF __term_sd_task_pre_model_136 flux1-schnell-Q4_K_S-gguf(6.78g) OFF __term_sd_task_pre_model_137 flux1-schnell-Q5_0-gguf(8.25g) OFF __term_sd_task_pre_model_138 flux1-schnell-Q5_1-gguf(8.99g) OFF __term_sd_task_pre_model_139 flux1-schnell-Q5_K_S-gguf(8.26g) OFF __term_sd_task_pre_model_140 flux1-schnell-Q6_K-gguf(9.83g) OFF __term_sd_task_pre_model_141 flux1-schnell-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_142 flux1-schnell-F16-gguf(23.8g) OFF __term_sd_task_pre_model_143 ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_144 jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_145 nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_146 shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_147 flux1-krea-dev_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_148 flux1-krea-dev(23.8g) OFF __term_sd_task_pre_model_149 flux1-dev-kontext_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_150 flux1-kontext-dev(23.8g) OFF __term_sd_task_pre_model_151 chroma-unlocked-v50(23.8g) OFF __term_sd_task_pre_model_152 =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_153 clip_l(246.1m) OFF __term_sd_task_pre_model_154 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_155 t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_156 t5-v1_1-xxl-encoder-Q3_K_L-gguf(2.46g) OFF __term_sd_task_pre_model_157 t5-v1_1-xxl-encoder-Q3_K_M-gguf(2.3g) OFF __term_sd_task_pre_model_158 t5-v1_1-xxl-encoder-Q3_K_S-gguf(2.1g) OFF __term_sd_task_pre_model_159 t5-v1_1-xxl-encoder-Q4_K_M-gguf(2.9g) OFF __term_sd_task_pre_model_160 t5-v1_1-xxl-encoder-Q4_K_S-gguf(2.74g) OFF __term_sd_task_pre_model_161 t5-v1_1-xxl-encoder-Q5_K_M-gguf(3.39g) OFF __term_sd_task_pre_model_162 t5-v1_1-xxl-encoder-Q5_K_S-gguf(3.29g) OFF __term_sd_task_pre_model_163 t5-v1_1-xxl-encoder-Q6_K-gguf(3.91g) OFF __term_sd_task_pre_model_164 t5-v1_1-xxl-encoder-Q8_0-gguf(5.06g) OFF __term_sd_task_pre_model_165 t5-v1_1-xxl-encoder-f16-gguf(9.53g) OFF __term_sd_task_pre_model_166 t5-v1_1-xxl-encoder-f32-gguf(19.1g) OFF __term_sd_task_pre_model_167 ae(335m) OFF __term_sd_task_pre_model_168 =====VAE模型===== OFF __term_sd_task_pre_model_169 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_170 vae-ft-mse-840000-ema-pruned(334.6m) ON __term_sd_task_pre_model_171 sdxl_vae(334.6m) OFF __term_sd_task_pre_model_172 sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_173 =====VAE-approx模型===== OFF __term_sd_task_pre_model_174 model(0.2m) ON __term_sd_task_pre_model_175 vaeapprox-sdxl(0.2m) ON __term_sd_task_pre_model_176 vaeapprox-sd3(0.2m) OFF __term_sd_task_pre_model_177 =====放大模型===== OFF __term_sd_task_pre_model_178 codeformer-v0.1.0(376.6m) OFF __term_sd_task_pre_model_179 DAT_2_x2(139.7m) OFF __term_sd_task_pre_model_180 DAT_2_x3(140.4m) OFF __term_sd_task_pre_model_181 DAT_2_x4(140.3m) OFF __term_sd_task_pre_model_182 DAT_S_x2(87.7m) OFF __term_sd_task_pre_model_183 DAT_S_x3(88.4m) OFF __term_sd_task_pre_model_184 DAT_S_x4(88.2m) OFF __term_sd_task_pre_model_185 DAT_light_x2(45.7m) OFF __term_sd_task_pre_model_186 DAT_light_x3(45.7m) OFF __term_sd_task_pre_model_187 DAT_light_x4(45.8m) OFF __term_sd_task_pre_model_188 DAT_x2(154.1m) OFF __term_sd_task_pre_model_189 DAT_x3(154.8m) OFF __term_sd_task_pre_model_190 DAT_x4(154.7m) OFF __term_sd_task_pre_model_191 16xPSNR(67.2m) OFF __term_sd_task_pre_model_192 1x-ITF-SkinDiffDetail-Lite-v1(20.1m) OFF __term_sd_task_pre_model_193 1x_NMKD-BrightenRedux_200k(66.6m) OFF __term_sd_task_pre_model_194 1x_NMKD-YandereInpaint_375000_G(66.6m) OFF __term_sd_task_pre_model_195 1x_NMKDDetoon_97500_G(66.6m) OFF __term_sd_task_pre_model_196 1x_NoiseToner-Poisson-Detailed_108000_G(66.6m) OFF __term_sd_task_pre_model_197 1x_NoiseToner-Uniform-Detailed_100000_G(66.6m) OFF __term_sd_task_pre_model_198 4x-UltraSharp(66.9m) OFF __term_sd_task_pre_model_199 4xPSNR(66.9m) OFF __term_sd_task_pre_model_200 4x_CountryRoads_377000_G(66.9m) OFF __term_sd_task_pre_model_201 4x_Fatality_Comix_260000_G(66.9m) OFF __term_sd_task_pre_model_202 4x_NMKD-Siax_200k(66.9m) OFF __term_sd_task_pre_model_203 4x_NMKD-Superscale-Artisoftject_210000_G(66.9m) OFF __term_sd_task_pre_model_204 4x_NMKD-Superscale-SP_178000_G(66.9m) ON __term_sd_task_pre_model_205 4x_NMKD-UltraYandere-Lite_280k(20.1m) OFF __term_sd_task_pre_model_206 4x_NMKD-UltraYandere_300k(66.9m) OFF __term_sd_task_pre_model_207 4x_NMKD-YandereNeoXL_200k(66.9m) OFF __term_sd_task_pre_model_208 4x_NMKDSuperscale_Artisoft_120000_G(67.1m) OFF __term_sd_task_pre_model_209 4x_NickelbackFS_72000_G(67.1m) OFF __term_sd_task_pre_model_210 4x_Nickelback_70000G(66.9m) OFF __term_sd_task_pre_model_211 4x_RealisticRescaler_100000_G(134.1m) OFF __term_sd_task_pre_model_212 4x_Valar_v1(67.5m) OFF __term_sd_task_pre_model_213 4x_fatal_Anime_500000_G(66.9m) OFF __term_sd_task_pre_model_214 4x_foolhardy_Remacri(67m) OFF __term_sd_task_pre_model_215 8xPSNR(67.1m) OFF __term_sd_task_pre_model_216 8x_NMKD-Superscale_150000_G(67.1m) OFF __term_sd_task_pre_model_217 8x_NMKD-Typescale_175k(67.1m) OFF __term_sd_task_pre_model_218 A_ESRGAN_Single(134.1m) OFF __term_sd_task_pre_model_219 BSRGAN(67.1m) OFF __term_sd_task_pre_model_220 BSRGANx2(66.8m) OFF __term_sd_task_pre_model_221 BSRNet(67.1m) OFF __term_sd_task_pre_model_222 ESRGAN_4x(66.9m) OFF __term_sd_task_pre_model_223 LADDIER1_282500_G(66.9m) OFF __term_sd_task_pre_model_224 4x_UniversalUpscalerV2-Neutral_115000_swaG(66.9m) OFF __term_sd_task_pre_model_225 4x_UniversalUpscalerV2-Sharp_101000_G(66.9m) OFF __term_sd_task_pre_model_226 4x_UniversalUpscalerV2-Sharper_103000_G(66.9m) OFF __term_sd_task_pre_model_227 4x_UniversalUpscaler-Detailed_155000_G(66.9m) OFF __term_sd_task_pre_model_228 4x_UniversalUpscaler-Soft_190000_G(66.9m) OFF __term_sd_task_pre_model_229 WaifuGAN_v3_30000(66.9m) OFF __term_sd_task_pre_model_230 lollypop(66.9m) OFF __term_sd_task_pre_model_231 sudo_rife4_269.662_testV1_scale1(33.7m) OFF __term_sd_task_pre_model_232 GFPGANv1.3(348.6m) OFF __term_sd_task_pre_model_233 GFPGANv1.4(348.6m) OFF __term_sd_task_pre_model_234 detection_Resnet50_Final(109.5m) OFF __term_sd_task_pre_model_235 parsing_bisenet(12.2m) OFF __term_sd_task_pre_model_236 parsing_parsenet(85.3m) OFF __term_sd_task_pre_model_237 RealESRGAN_x4plus(67m) ON __term_sd_task_pre_model_238 RealESRGAN_x4plus_anime_6B(17.9m) ON __term_sd_task_pre_model_239 001_classicalSR_DF2K_s64w8_SwinIR-M_x2(67.2m) OFF __term_sd_task_pre_model_240 001_classicalSR_DF2K_s64w8_SwinIR-M_x3(68m) OFF __term_sd_task_pre_model_241 001_classicalSR_DF2K_s64w8_SwinIR-M_x4(67.8m) OFF __term_sd_task_pre_model_242 001_classicalSR_DF2K_s64w8_SwinIR-M_x8(68.4m) OFF __term_sd_task_pre_model_243 001_classicalSR_DIV2K_s48w8_SwinIR-M_x2(59m) OFF __term_sd_task_pre_model_244 001_classicalSR_DIV2K_s48w8_SwinIR-M_x3(59.7m) OFF __term_sd_task_pre_model_245 001_classicalSR_DIV2K_s48w8_SwinIR-M_x4(59.6m) OFF __term_sd_task_pre_model_246 001_classicalSR_DIV2K_s48w8_SwinIR-M_x8(60.2m) OFF __term_sd_task_pre_model_247 Swin2SR_ClassicalSR_X2_64(68.7m) OFF __term_sd_task_pre_model_248 Swin2SR_ClassicalSR_X4_64(69.3m) OFF __term_sd_task_pre_model_249 Swin2SR_CompressedSR_X4_48(61.1m) OFF __term_sd_task_pre_model_250 Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR(68.6m) OFF __term_sd_task_pre_model_251 SwinIR_4x(142.4m) OFF __term_sd_task_pre_model_252 =====图生图反推Tag模型===== OFF __term_sd_task_pre_model_253 model_base_caption_capfilt_large(896m) OFF __term_sd_task_pre_model_254 model-resnet_custom_v3(644.1m) OFF __term_sd_task_pre_model_255 =====Embedding模型===== OFF __term_sd_task_pre_model_256 EasyNegativeV2(0.1m) ON __term_sd_task_pre_model_257 bad-artist-anime(0.1m) ON __term_sd_task_pre_model_258 bad-artist(0.1m) ON __term_sd_task_pre_model_259 bad-hands-5(0.1m) ON __term_sd_task_pre_model_260 bad-image-v2-39000(0.1m) ON __term_sd_task_pre_model_261 bad_prompt_version2(0.1m) ON __term_sd_task_pre_model_262 ng_deepnegative_v1_75t(0.1m) ON __term_sd_task_pre_model_263 verybadimagenegative_v1.3(0.1m) ON
2301_81996401/term-sd
install/sd_webui/dialog_sd_webui_hf_model.sh
Shell
agpl-3.0
16,140
__term_sd_task_pre_model_1 =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 nai1-artist_all_in_one_merge(2.13g) OFF __term_sd_task_pre_model_5 Counterfeit-V3.0(4.24g) OFF __term_sd_task_pre_model_6 cetusMix_Whalefall2(3.85g) OFF __term_sd_task_pre_model_7 cuteyukimixAdorable_neochapter3(2.3g) OFF __term_sd_task_pre_model_8 ekmix-pastel(2.13g) OFF __term_sd_task_pre_model_9 ex2K_sse2(2.38g) OFF __term_sd_task_pre_model_10 kohakuV5_rev2(2.13g) OFF __term_sd_task_pre_model_11 meinamix_meinaV11(2.13g) OFF __term_sd_task_pre_model_12 oukaStar_10(5.43g) OFF __term_sd_task_pre_model_13 pastelMixStylizedAnime(2.13g) OFF __term_sd_task_pre_model_14 rabbit_v6(1.97g) OFF __term_sd_task_pre_model_15 sweetSugarSyndrome_rev15(2.13g) OFF __term_sd_task_pre_model_16 AnythingV5Ink_ink(2.13g) OFF __term_sd_task_pre_model_17 bartstyledbBlueArchiveArtStyle(2.13g) OFF __term_sd_task_pre_model_18 meinapastel_v6(2.13g) OFF __term_sd_task_pre_model_19 qteamix(2.13g) OFF __term_sd_task_pre_model_20 tmndMix(2.13g) OFF __term_sd_task_pre_model_21 =====SD2.1大模型===== OFF __term_sd_task_pre_model_22 v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_23 wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_24 wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_25 =====SDXL大模型===== OFF __term_sd_task_pre_model_26 sd_xl_offset_example-lora_1.0(49.6m) OFF __term_sd_task_pre_model_27 sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_28 sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_29 sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_30 cosxl(6.94g) OFF __term_sd_task_pre_model_31 cosxl_edit(6.94g) OFF __term_sd_task_pre_model_32 animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_33 animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_34 animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_35 animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_36 animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_37 animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_38 holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_39 kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_40 clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_41 UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_42 RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_43 sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_44 kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_45 kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_46 kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_47 kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_48 kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_49 starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_50 heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_51 heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_52 baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_53 baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_54 sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_55 sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_56 SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_57 SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_58 Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_59 Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_60 Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_61 Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_62 Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_63 Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_64 jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_65 PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_66 miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_67 waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_68 tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_69 noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_70 noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_71 noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_72 noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_73 noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_74 noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_75 noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_76 noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_77 noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_78 noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_79 noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_80 noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_81 noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_82 PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_83 PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_84 ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_85 pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_86 tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_87 omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_88 animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_89 artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_90 artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_91 AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_92 abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_93 animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_94 bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_95 nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_96 CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_97 =====SD3大模型===== OFF __term_sd_task_pre_model_98 sd3_medium(4.34g) OFF __term_sd_task_pre_model_99 sd3_medium_incl_clips(5.97g) OFF __term_sd_task_pre_model_100 sd3_medium_incl_clips_t5xxlfp8(10.87g) OFF __term_sd_task_pre_model_101 sd3.5_large(16.5g) OFF __term_sd_task_pre_model_102 sd3.5_large_fp8_scaled(14.9g) OFF __term_sd_task_pre_model_103 sd3.5_large_turbo(16.5g) OFF __term_sd_task_pre_model_104 sd3.5_medium(5.1g) OFF __term_sd_task_pre_model_105 sd3.5_medium_incl_clips_t5xxlfp8scaled(11.6g) OFF __term_sd_task_pre_model_106 emi3(16.5g) OFF __term_sd_task_pre_model_107 =====SD3文本编码器===== OFF __term_sd_task_pre_model_108 clip_g(1.39g) OFF __term_sd_task_pre_model_109 clip_l(246.1m) OFF __term_sd_task_pre_model_110 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_111 t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_112 t5xxl_fp8_e4m3fn_scaled(5.16g) OFF __term_sd_task_pre_model_113 =====FLUX模型===== OFF __term_sd_task_pre_model_114 flux1-dev(23.8g) OFF __term_sd_task_pre_model_115 flux1-dev-fp8(17.2g) OFF __term_sd_task_pre_model_116 flux_dev_fp8_scaled_diffusion_model(11.9g) OFF __term_sd_task_pre_model_117 flux1-dev-bnb-nf4-v2(12g) OFF __term_sd_task_pre_model_118 flux1-dev-bnb-nf4(11.5g) OFF __term_sd_task_pre_model_119 flux1-dev-Q2_K-gguf(4.03g) OFF __term_sd_task_pre_model_120 flux1-dev-Q3_K_S-gguf(5.23g) OFF __term_sd_task_pre_model_121 flux1-dev-Q4_0-gguf(6.79g) OFF __term_sd_task_pre_model_122 flux1-dev-Q4_1-gguf(7.53g) OFF __term_sd_task_pre_model_123 flux1-dev-Q4_K_S-gguf(6.81g) OFF __term_sd_task_pre_model_124 flux1-dev-Q5_0-gguf(8.27g) OFF __term_sd_task_pre_model_125 flux1-dev-Q5_1-gguf(9.01g) OFF __term_sd_task_pre_model_126 flux1-dev-Q5_K_S-gguf(8.29g) OFF __term_sd_task_pre_model_127 flux1-dev-Q6_K-gguf(9.86g) OFF __term_sd_task_pre_model_128 flux1-dev-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_129 flux1-dev-F16-gguf(23.8g) OFF __term_sd_task_pre_model_130 flux1-schnell(23.8g) OFF __term_sd_task_pre_model_131 flux1-schnell-fp8(17.2g) OFF __term_sd_task_pre_model_132 flux1-schnell-Q2_K-gguf(4.01g) OFF __term_sd_task_pre_model_133 flux1-schnell-Q3_K_S-gguf(5.21g) OFF __term_sd_task_pre_model_134 flux1-schnell-Q4_0-gguf(6.77g) OFF __term_sd_task_pre_model_135 flux1-schnell-Q4_1-gguf(7.51g) OFF __term_sd_task_pre_model_136 flux1-schnell-Q4_K_S-gguf(6.78g) OFF __term_sd_task_pre_model_137 flux1-schnell-Q5_0-gguf(8.25g) OFF __term_sd_task_pre_model_138 flux1-schnell-Q5_1-gguf(8.99g) OFF __term_sd_task_pre_model_139 flux1-schnell-Q5_K_S-gguf(8.26g) OFF __term_sd_task_pre_model_140 flux1-schnell-Q6_K-gguf(9.83g) OFF __term_sd_task_pre_model_141 flux1-schnell-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_142 flux1-schnell-F16-gguf(23.8g) OFF __term_sd_task_pre_model_143 ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_144 jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_145 nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_146 shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_147 flux1-krea-dev_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_148 flux1-krea-dev(23.8g) OFF __term_sd_task_pre_model_149 flux1-dev-kontext_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_150 flux1-kontext-dev(23.8g) OFF __term_sd_task_pre_model_151 chroma-unlocked-v50(23.8g) OFF __term_sd_task_pre_model_152 =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_153 clip_l(246.1m) OFF __term_sd_task_pre_model_154 t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_155 t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_156 t5-v1_1-xxl-encoder-Q3_K_L-gguf(2.46g) OFF __term_sd_task_pre_model_157 t5-v1_1-xxl-encoder-Q3_K_M-gguf(2.3g) OFF __term_sd_task_pre_model_158 t5-v1_1-xxl-encoder-Q3_K_S-gguf(2.1g) OFF __term_sd_task_pre_model_159 t5-v1_1-xxl-encoder-Q4_K_M-gguf(2.9g) OFF __term_sd_task_pre_model_160 t5-v1_1-xxl-encoder-Q4_K_S-gguf(2.74g) OFF __term_sd_task_pre_model_161 t5-v1_1-xxl-encoder-Q5_K_M-gguf(3.39g) OFF __term_sd_task_pre_model_162 t5-v1_1-xxl-encoder-Q5_K_S-gguf(3.29g) OFF __term_sd_task_pre_model_163 t5-v1_1-xxl-encoder-Q6_K-gguf(3.91g) OFF __term_sd_task_pre_model_164 t5-v1_1-xxl-encoder-Q8_0-gguf(5.06g) OFF __term_sd_task_pre_model_165 t5-v1_1-xxl-encoder-f16-gguf(9.53g) OFF __term_sd_task_pre_model_166 t5-v1_1-xxl-encoder-f32-gguf(19.1g) OFF __term_sd_task_pre_model_167 ae(335m) OFF __term_sd_task_pre_model_168 =====VAE模型===== OFF __term_sd_task_pre_model_169 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_170 vae-ft-mse-840000-ema-pruned(334.6m) ON __term_sd_task_pre_model_171 sdxl_vae(334.6m) OFF __term_sd_task_pre_model_172 sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_173 =====VAE-approx模型===== OFF __term_sd_task_pre_model_174 model(0.2m) ON __term_sd_task_pre_model_175 vaeapprox-sdxl(0.2m) ON __term_sd_task_pre_model_176 vaeapprox-sd3(0.2m) OFF __term_sd_task_pre_model_177 =====放大模型===== OFF __term_sd_task_pre_model_178 codeformer-v0.1.0(376.6m) OFF __term_sd_task_pre_model_179 DAT_2_x2(139.7m) OFF __term_sd_task_pre_model_180 DAT_2_x3(140.4m) OFF __term_sd_task_pre_model_181 DAT_2_x4(140.3m) OFF __term_sd_task_pre_model_182 DAT_S_x2(87.7m) OFF __term_sd_task_pre_model_183 DAT_S_x3(88.4m) OFF __term_sd_task_pre_model_184 DAT_S_x4(88.2m) OFF __term_sd_task_pre_model_185 DAT_light_x2(45.7m) OFF __term_sd_task_pre_model_186 DAT_light_x3(45.7m) OFF __term_sd_task_pre_model_187 DAT_light_x4(45.8m) OFF __term_sd_task_pre_model_188 DAT_x2(154.1m) OFF __term_sd_task_pre_model_189 DAT_x3(154.8m) OFF __term_sd_task_pre_model_190 DAT_x4(154.7m) OFF __term_sd_task_pre_model_191 16xPSNR(67.2m) OFF __term_sd_task_pre_model_192 1x-ITF-SkinDiffDetail-Lite-v1(20.1m) OFF __term_sd_task_pre_model_193 1x_NMKD-BrightenRedux_200k(66.6m) OFF __term_sd_task_pre_model_194 1x_NMKD-YandereInpaint_375000_G(66.6m) OFF __term_sd_task_pre_model_195 1x_NMKDDetoon_97500_G(66.6m) OFF __term_sd_task_pre_model_196 1x_NoiseToner-Poisson-Detailed_108000_G(66.6m) OFF __term_sd_task_pre_model_197 1x_NoiseToner-Uniform-Detailed_100000_G(66.6m) OFF __term_sd_task_pre_model_198 4x-UltraSharp(66.9m) OFF __term_sd_task_pre_model_199 4xPSNR(66.9m) OFF __term_sd_task_pre_model_200 4x_CountryRoads_377000_G(66.9m) OFF __term_sd_task_pre_model_201 4x_Fatality_Comix_260000_G(66.9m) OFF __term_sd_task_pre_model_202 4x_NMKD-Siax_200k(66.9m) OFF __term_sd_task_pre_model_203 4x_NMKD-Superscale-Artisoftject_210000_G(66.9m) OFF __term_sd_task_pre_model_204 4x_NMKD-Superscale-SP_178000_G(66.9m) ON __term_sd_task_pre_model_205 4x_NMKD-UltraYandere-Lite_280k(20.1m) OFF __term_sd_task_pre_model_206 4x_NMKD-UltraYandere_300k(66.9m) OFF __term_sd_task_pre_model_207 4x_NMKD-YandereNeoXL_200k(66.9m) OFF __term_sd_task_pre_model_208 4x_NMKDSuperscale_Artisoft_120000_G(67.1m) OFF __term_sd_task_pre_model_209 4x_NickelbackFS_72000_G(67.1m) OFF __term_sd_task_pre_model_210 4x_Nickelback_70000G(66.9m) OFF __term_sd_task_pre_model_211 4x_RealisticRescaler_100000_G(134.1m) OFF __term_sd_task_pre_model_212 4x_Valar_v1(67.5m) OFF __term_sd_task_pre_model_213 4x_fatal_Anime_500000_G(66.9m) OFF __term_sd_task_pre_model_214 4x_foolhardy_Remacri(67m) OFF __term_sd_task_pre_model_215 8xPSNR(67.1m) OFF __term_sd_task_pre_model_216 8x_NMKD-Superscale_150000_G(67.1m) OFF __term_sd_task_pre_model_217 8x_NMKD-Typescale_175k(67.1m) OFF __term_sd_task_pre_model_218 A_ESRGAN_Single(134.1m) OFF __term_sd_task_pre_model_219 BSRGAN(67.1m) OFF __term_sd_task_pre_model_220 BSRGANx2(66.8m) OFF __term_sd_task_pre_model_221 BSRNet(67.1m) OFF __term_sd_task_pre_model_222 ESRGAN_4x(66.9m) OFF __term_sd_task_pre_model_223 LADDIER1_282500_G(66.9m) OFF __term_sd_task_pre_model_224 4x_UniversalUpscalerV2-Neutral_115000_swaG(66.9m) OFF __term_sd_task_pre_model_225 4x_UniversalUpscalerV2-Sharp_101000_G(66.9m) OFF __term_sd_task_pre_model_226 4x_UniversalUpscalerV2-Sharper_103000_G(66.9m) OFF __term_sd_task_pre_model_227 4x_UniversalUpscaler-Detailed_155000_G(66.9m) OFF __term_sd_task_pre_model_228 4x_UniversalUpscaler-Soft_190000_G(66.9m) OFF __term_sd_task_pre_model_229 WaifuGAN_v3_30000(66.9m) OFF __term_sd_task_pre_model_230 lollypop(66.9m) OFF __term_sd_task_pre_model_231 sudo_rife4_269.662_testV1_scale1(33.7m) OFF __term_sd_task_pre_model_232 GFPGANv1.3(348.6m) OFF __term_sd_task_pre_model_233 GFPGANv1.4(348.6m) OFF __term_sd_task_pre_model_234 detection_Resnet50_Final(109.5m) OFF __term_sd_task_pre_model_235 parsing_bisenet(12.2m) OFF __term_sd_task_pre_model_236 parsing_parsenet(85.3m) OFF __term_sd_task_pre_model_237 RealESRGAN_x4plus(67m) ON __term_sd_task_pre_model_238 RealESRGAN_x4plus_anime_6B(17.9m) ON __term_sd_task_pre_model_239 001_classicalSR_DF2K_s64w8_SwinIR-M_x2(67.2m) OFF __term_sd_task_pre_model_240 001_classicalSR_DF2K_s64w8_SwinIR-M_x3(68m) OFF __term_sd_task_pre_model_241 001_classicalSR_DF2K_s64w8_SwinIR-M_x4(67.8m) OFF __term_sd_task_pre_model_242 001_classicalSR_DF2K_s64w8_SwinIR-M_x8(68.4m) OFF __term_sd_task_pre_model_243 001_classicalSR_DIV2K_s48w8_SwinIR-M_x2(59m) OFF __term_sd_task_pre_model_244 001_classicalSR_DIV2K_s48w8_SwinIR-M_x3(59.7m) OFF __term_sd_task_pre_model_245 001_classicalSR_DIV2K_s48w8_SwinIR-M_x4(59.6m) OFF __term_sd_task_pre_model_246 001_classicalSR_DIV2K_s48w8_SwinIR-M_x8(60.2m) OFF __term_sd_task_pre_model_247 Swin2SR_ClassicalSR_X2_64(68.7m) OFF __term_sd_task_pre_model_248 Swin2SR_ClassicalSR_X4_64(69.3m) OFF __term_sd_task_pre_model_249 Swin2SR_CompressedSR_X4_48(61.1m) OFF __term_sd_task_pre_model_250 Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR(68.6m) OFF __term_sd_task_pre_model_251 SwinIR_4x(142.4m) OFF __term_sd_task_pre_model_252 =====图生图反推Tag模型===== OFF __term_sd_task_pre_model_253 model_base_caption_capfilt_large(896m) OFF __term_sd_task_pre_model_254 model-resnet_custom_v3(644.1m) OFF __term_sd_task_pre_model_255 =====Embedding模型===== OFF __term_sd_task_pre_model_256 EasyNegativeV2(0.1m) ON __term_sd_task_pre_model_257 bad-artist-anime(0.1m) ON __term_sd_task_pre_model_258 bad-artist(0.1m) ON __term_sd_task_pre_model_259 bad-hands-5(0.1m) ON __term_sd_task_pre_model_260 bad-image-v2-39000(0.1m) ON __term_sd_task_pre_model_261 bad_prompt_version2(0.1m) ON __term_sd_task_pre_model_262 ng_deepnegative_v1_75t(0.1m) ON __term_sd_task_pre_model_263 verybadimagenegative_v1.3(0.1m) ON
2301_81996401/term-sd
install/sd_webui/dialog_sd_webui_ms_model.sh
Shell
agpl-3.0
16,140
__term_sd_task_sys term_sd_mkdir "${SD_WEBUI_PARENT_PATH}" __term_sd_task_sys cd "${SD_WEBUI_PARENT_PATH}" __term_sd_task_sys term_sd_tmp_enable_proxy __term_sd_task_pre_core git_clone_repository "${SD_WEBUI_REPO}" "${SD_WEBUI_PARENT_PATH}" "${SD_WEBUI_FOLDER}" __term_sd_task_sys is_sd_repo_exist "${SD_WEBUI_ROOT_PATH}" __term_sd_task_pre_core switch_sd_webui_branch "${SD_WEBUI_BRANCH}" __term_sd_task_pre_core create_venv "${SD_WEBUI_ROOT_PATH}" __term_sd_task_sys enter_venv "${SD_WEBUI_ROOT_PATH}" __term_sd_task_pre_core install_sd_webui_component __term_sd_task_sys term_sd_tmp_disable_proxy # 临时取消代理, 避免一些不必要的网络减速 __term_sd_task_pre_core install_pytorch # 安装 PyTorch __term_sd_task_sys term_sd_tmp_enable_proxy __term_sd_task_pre_core install_python_package git+$(git_format_repository_url ${GITHUB_MIRROR} https://github.com/openai/CLIP) __term_sd_task_sys term_sd_tmp_disable_proxy # 临时取消代理, 避免一些不必要的网络减速 __term_sd_task_pre_core install_sd_webui_requirement __term_sd_task_pre_core term_sd_echo "生成配置中" __term_sd_task_pre_core set_sd_webui_normal_config
2301_81996401/term-sd
install/sd_webui/sd_webui_core.sh
Shell
agpl-3.0
1,151
__term_sd_task_pre_ext_1 git_clone_repository https://github.com/Mikubill/sd-webui-controlnet "${SD_WEBUI_ROOT_PATH}"/extensions ON # 图片生成控制 __term_sd_task_pre_ext_2 git_clone_repository https://github.com/continue-revolution/sd-webui-animatediff "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 视频生成扩展 __term_sd_task_pre_ext_3 git_clone_repository https://github.com/Bing-su/adetailer "${SD_WEBUI_ROOT_PATH}"/extensions ON # 图片细节修复扩展 __term_sd_task_pre_ext_4 git_clone_repository https://github.com/ClockZinc/sd-webui-IS-NET-pro "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 人物抠图 __term_sd_task_pre_ext_5 git_clone_repository https://github.com/continue-revolution/sd-webui-segment-anything "${SD_WEBUI_ROOT_PATH}"/extensions ON # 图片语义分割 __term_sd_task_pre_ext_6 git_clone_repository https://github.com/Uminosachi/sd-webui-inpaint-anything "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用seg生成的蒙版进行图像重绘 __term_sd_task_pre_ext_7 git_clone_repository https://github.com/lllyasviel/sd-forge-layerdiffuse "${SD_WEBUI_ROOT_PATH}"/extensions OFF # LayerDiffusion插件,仅支持sd-webui-forge __term_sd_task_pre_ext_8 git_clone_repository https://github.com/KohakuBlueleaf/z-a1111-sd-webui-dtg "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用Danboou风格对tag进行润色,使出图效果更好,内容更丰富 __term_sd_task_pre_ext_9 git_clone_repository https://github.com/pkuliyi2015/sd-webui-stablesr "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片放大 __term_sd_task_pre_ext_10 git_clone_repository https://github.com/KohakuBlueleaf/z-tipo-extension "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用danbooru-tag和自然语言对提示词进行润色,增强模型的出图效果 __term_sd_task_pre_ext_11 git_clone_repository https://github.com/WSH032/kohya-config-webui "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 一个用于生成kohya-ss训练脚本使用的toml配置文件的WebUI __term_sd_task_pre_ext_12 git_clone_repository https://github.com/kohya-ss/sd-webui-additional-networks "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 将LoRA等模型添加到stablediffusion以生成图像的扩展 __term_sd_task_pre_ext_13 git_clone_repository https://github.com/DominikDoom/a1111-sd-webui-tagcomplete "${SD_WEBUI_ROOT_PATH}"/extensions ON # 输入Tag时提供booru风格(如Danbooru)的TAG自动补全 __term_sd_task_pre_ext_14 git_clone_repository https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111 "${SD_WEBUI_ROOT_PATH}"/extensions ON # 在有限的显存中进行大型图像绘制,提供图片区域控制 __term_sd_task_pre_ext_15 git_clone_repository https://github.com/mcmonkeyprojects/sd-dynamic-thresholding "${SD_WEBUI_ROOT_PATH}"/extensions ON # 解决使用更高的CFGScale而出现颜色问题 __term_sd_task_pre_ext_16 git_clone_repository https://github.com/hnmr293/sd-webui-cutoff "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 解决tag污染 __term_sd_task_pre_ext_17 git_clone_repository https://github.com/Akegarasu/sd-webui-model-converter "${SD_WEBUI_ROOT_PATH}"/extensions ON # 模型转换扩展 __term_sd_task_pre_ext_18 git_clone_repository https://github.com/hako-mikan/sd-webui-supermerger "${SD_WEBUI_ROOT_PATH}"/extensions ON # 模型融合扩展 __term_sd_task_pre_ext_19 git_clone_repository https://github.com/hanamizuki-ai/stable-diffusion-webui-localization-zh_Hans "${SD_WEBUI_ROOT_PATH}"/extensions ON # WEBUI中文扩展 __term_sd_task_pre_ext_20 git_clone_repository https://github.com/licyk/sd-webui-wd14-tagger "${SD_WEBUI_ROOT_PATH}"/extensions ON # 图片tag反推 __term_sd_task_pre_ext_21 git_clone_repository https://github.com/hako-mikan/sd-webui-regional-prompter "${SD_WEBUI_ROOT_PATH}"/extensions ON # 图片区域分割 __term_sd_task_pre_ext_22 git_clone_repository https://github.com/zanllp/sd-webui-infinite-image-browsing "${SD_WEBUI_ROOT_PATH}"/extensions ON # 强大的图像管理器 __term_sd_task_pre_ext_23 git_clone_repository https://github.com/klimaleksus/stable-diffusion-webui-anti-burn "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 通过跳过最后几个步骤并将它们之前的一些图像平均在一起来平滑生成的图像,加快点击停止生成图像后WEBUI的响应速度 __term_sd_task_pre_ext_24 git_clone_repository https://github.com/Elldreth/loopback_scaler "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用迭代过程增强图像分辨率和质量 __term_sd_task_pre_ext_25 git_clone_repository https://github.com/CodeZombie/latentcoupleregionmapper "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 控制绘制和定义区域 __term_sd_task_pre_ext_26 git_clone_repository https://github.com/Coyote-A/ultimate-upscale-for-automatic1111 "${SD_WEBUI_ROOT_PATH}"/extensions ON # 图片放大工具 __term_sd_task_pre_ext_27 git_clone_repository https://github.com/deforum-art/deforum-for-automatic1111-webui "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 视频生成插件 __term_sd_task_pre_ext_28 git_clone_repository https://github.com/AlUlkesh/stable-diffusion-webui-images-browser "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图像管理器 __term_sd_task_pre_ext_29 git_clone_repository https://github.com/camenduru/stable-diffusion-webui-huggingface "${SD_WEBUI_ROOT_PATH}"/extensions OFF # huggingface模型下载扩展 __term_sd_task_pre_ext_30 git_clone_repository https://github.com/camenduru/sd-civitai-browser "${SD_WEBUI_ROOT_PATH}"/extensions OFF # civitai模型下载扩展 __term_sd_task_pre_ext_31 git_clone_repository https://github.com/space-nuko/a1111-stable-diffusion-webui-vram-estimator "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 显存占用评估 __term_sd_task_pre_ext_32 git_clone_repository https://github.com/fkunn1326/openpose-editor "${SD_WEBUI_ROOT_PATH}"/extensions OFF # openpose姿势编辑 __term_sd_task_pre_ext_33 git_clone_repository https://github.com/jexom/sd-webui-depth-lib "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 深度图库,用于Automatic1111/stable-diffusion-webui的controlnet扩展 __term_sd_task_pre_ext_34 git_clone_repository https://github.com/hnmr293/posex "${SD_WEBUI_ROOT_PATH}"/extensions OFF # openpose姿势编辑 __term_sd_task_pre_ext_35 git_clone_repository https://github.com/camenduru/sd-webui-tunnels "${SD_WEBUI_ROOT_PATH}"/extensions OFF # WEBUI端口映射扩展 __term_sd_task_pre_ext_36 git_clone_repository https://github.com/etherealxx/batchlinks-webui "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 批处理链接下载器 __term_sd_task_pre_ext_37 git_clone_repository https://github.com/camenduru/stable-diffusion-webui-catppuccin "${SD_WEBUI_ROOT_PATH}"/extensions OFF # WEBUI主题 __term_sd_task_pre_ext_38 git_clone_repository https://github.com/KohakuBlueleaf/a1111-sd-webui-lycoris "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加lycoris模型支持 __term_sd_task_pre_ext_39 git_clone_repository https://github.com/AUTOMATIC1111/stable-diffusion-webui-rembg "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 人物背景去除 __term_sd_task_pre_ext_40 git_clone_repository https://github.com/ashen-sensored/stable-diffusion-webui-two-shot "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片区域分割和控制 __term_sd_task_pre_ext_41 git_clone_repository https://github.com/hako-mikan/sd-webui-lora-block-weight "${SD_WEBUI_ROOT_PATH}"/extensions ON # lora分层扩展 __term_sd_task_pre_ext_42 git_clone_repository https://github.com/ototadana/sd-face-editor "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 面部编辑器 __term_sd_task_pre_ext_43 git_clone_repository https://github.com/Physton/sd-webui-prompt-all-in-one "${SD_WEBUI_ROOT_PATH}"/extensions ON # tag翻译和管理插件 __term_sd_task_pre_ext_44 git_clone_repository https://github.com/ModelSurge/sd-webui-comfyui "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 在WEBUI添加ComfyUI界面 __term_sd_task_pre_ext_45 git_clone_repository https://github.com/yankooliveira/sd-webui-photopea-embed "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 在WEBUI界面添加ps功能 __term_sd_task_pre_ext_46 git_clone_repository https://github.com/huchenlei/sd-webui-openpose-editor "${SD_WEBUI_ROOT_PATH}"/extensions ON # ControlNet的pose编辑器 __term_sd_task_pre_ext_47 git_clone_repository https://github.com/hnmr293/sd-webui-llul "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 给图片的选定区域增加细节 __term_sd_task_pre_ext_48 git_clone_repository https://github.com/journey-ad/sd-webui-bilingual-localization "${SD_WEBUI_ROOT_PATH}"/extensions OFF # WEBUI双语对照翻译插件 __term_sd_task_pre_ext_49 git_clone_repository https://github.com/Scholar01/sd-webui-mov2mov "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 视频逐帧处理插件 __term_sd_task_pre_ext_50 git_clone_repository https://github.com/s9roll7/ebsynth_utility "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 视频处理扩展 __term_sd_task_pre_ext_51 git_clone_repository https://github.com/d8ahazard/sd_dreambooth_extension "${SD_WEBUI_ROOT_PATH}"/extensions OFF # dreambooth模型训练 __term_sd_task_pre_ext_52 git_clone_repository https://github.com/Haoming02/sd-webui-memory-release "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 显存释放扩展 __term_sd_task_pre_ext_53 git_clone_repository https://github.com/toshiaki1729/stable-diffusion-webui-dataset-tag-editor "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 训练集打标和处理扩展 __term_sd_task_pre_ext_54 git_clone_repository https://github.com/SpenserCai/sd-webui-deoldify "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 黑白图片上色 __term_sd_task_pre_ext_55 git_clone_repository https://github.com/arenasys/stable-diffusion-webui-model-toolkit "${SD_WEBUI_ROOT_PATH}"/extensions ON # 大模型数据查看 __term_sd_task_pre_ext_56 git_clone_repository https://github.com/Bobo-1125/sd-webui-oldsix-prompt-dynamic "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 动态提示词 __term_sd_task_pre_ext_57 git_clone_repository https://github.com/Artiprocher/sd-webui-fastblend "${SD_WEBUI_ROOT_PATH}"/extensions OFF # ai视频平滑 __term_sd_task_pre_ext_58 git_clone_repository https://github.com/ahgsql/StyleSelectorXL "${SD_WEBUI_ROOT_PATH}"/extensions OFF # SDXL模型画风选择 __term_sd_task_pre_ext_59 git_clone_repository https://github.com/adieyal/sd-dynamic-prompts "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 动态提示词 __term_sd_task_pre_ext_60 git_clone_repository https://github.com/Tencent/LightDiffusionFlow "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 保存工作流 __term_sd_task_pre_ext_61 git_clone_repository https://github.com/Scholar01/sd-webui-workspace "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 保存webui生图的参数 __term_sd_task_pre_ext_62 git_clone_repository https://github.com/zero01101/openOutpaint-webUI-extension "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 提供类似InvokeAI的统一画布的功能 __term_sd_task_pre_ext_63 git_clone_repository https://github.com/Carzit/sd-webui-samplers-scheduler "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 采样器调度器,可以在不同的生成步骤中应用不同的采样器 __term_sd_task_pre_ext_64 git_clone_repository https://github.com/Haoming02/sd-webui-boomer "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 恢复新版webui已经移除的按钮 __term_sd_task_pre_ext_65 git_clone_repository https://github.com/mix1009/model-keyword "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 用于补全模型对应的提示词,比如使用lora模型的提示词 __term_sd_task_pre_ext_66 git_clone_repository https://github.com/NVIDIA/Stable-Diffusion-WebUI-TensorRT "${SD_WEBUI_ROOT_PATH}"/extensions OFF # nvidia官方加速工具,加速图片生成 __term_sd_task_pre_ext_67 git_clone_repository https://github.com/lobehub/sd-webui-lobe-theme "${SD_WEBUI_ROOT_PATH}"/extensions OFF # webui主题 __term_sd_task_pre_ext_68 git_clone_repository https://github.com/w-e-w/stable-diffusion-webui-GPU-temperature-protection "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 显卡过热保护 __term_sd_task_pre_ext_69 git_clone_repository https://github.com/huchenlei/sd-webui-api-payload-display "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 生图完成后展示api参数 __term_sd_task_pre_ext_70 git_clone_repository https://github.com/thomasasfk/sd-webui-aspect-ratio-helper "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片尺寸比例固定 __term_sd_task_pre_ext_71 git_clone_repository https://github.com/hako-mikan/sd-webui-cd-tuner "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 修改输出图像中的细节和色调的数量 __term_sd_task_pre_ext_72 git_clone_repository https://github.com/hako-mikan/sd-webui-negpip "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 解决tag的强污染,效果比cutoff更强 __term_sd_task_pre_ext_73 git_clone_repository https://github.com/ArtVentureX/sd-webui-agent-scheduler "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 生图队列管理,可制作一个参数不同的队列来进行批量生图 __term_sd_task_pre_ext_74 git_clone_repository https://github.com/butaixianran/Stable-Diffusion-Webui-Civitai-Helper "${SD_WEBUI_ROOT_PATH}"/extensions OFF # civitai模型管理 __term_sd_task_pre_ext_75 git_clone_repository https://github.com/Yinzo/sd-webui-Lora-queue-helper "${SD_WEBUI_ROOT_PATH}"/extensions OFF # Lora队列助手,用于比较具有相同提示和设置的相同角色的Lora/从同一来源生成不同的角色/或者只需切换和选择Lora,而无需更改选项卡 __term_sd_task_pre_ext_76 git_clone_repository https://github.com/mattyamonaca/PBRemTools "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片背景去除,并且可以生成蒙版图像 __term_sd_task_pre_ext_77 git_clone_repository https://github.com/songweige/sd-webui-rich-text "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用富文本进行图像生成,并且能够通过提示词来精准的控制图像 __term_sd_task_pre_ext_78 git_clone_repository https://github.com/WSH032/image-deduplicate-cluster-webui "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图像查重和图片聚类 __term_sd_task_pre_ext_79 git_clone_repository https://github.com/opparco/stable-diffusion-webui-composable-lora "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 将LoRA在提示中的插入位置与“AND”语法相关联 __term_sd_task_pre_ext_80 git_clone_repository https://github.com/bbc-mc/sdweb-merge-block-weighted-gui "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 模型U-NET权重调整与合并 __term_sd_task_pre_ext_81 git_clone_repository https://github.com/BlafKing/sd-civitai-browser-plus "${SD_WEBUI_ROOT_PATH}"/extensions OFF # civitai助手升级版,支持更多功能 __term_sd_task_pre_ext_82 git_clone_repository https://github.com/nihedon/sd-webui-weight-helper "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 快捷调整lora分层参数 __term_sd_task_pre_ext_83 git_clone_repository https://github.com/p1atdev/sd-danbooru-tags-upsampler "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 将用于生图的提示词进行润色,使其出图的画面多样化,更自然 __term_sd_task_pre_ext_84 git_clone_repository https://github.com/javsezlol1/Stylez "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 提示词预设风格选择工具 __term_sd_task_pre_ext_85 git_clone_repository https://github.com/Firetheft/sd-webui-next-style "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 提示词预设风格选择工具,增加了汉化并添加Fooocus全部风格模板 __term_sd_task_pre_ext_86 git_clone_repository https://github.com/licyk/a1111-sd-webui-haku-img "${SD_WEBUI_ROOT_PATH}"/extensions ON # 图像处理工具 __term_sd_task_pre_ext_87 git_clone_repository https://github.com/KohakuBlueleaf/Kohaku-NAI "${SD_WEBUI_ROOT_PATH}"/extensions OFF # novelai_api调用工具 __term_sd_task_pre_ext_88 git_clone_repository https://github.com/light-and-ray/sd-webui-cli-interruption "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 当在终端中按下Ctrl+C时,若此时正在生图,则将Ctrl+C的终止程序信号更改为终止生图的信号 __term_sd_task_pre_ext_89 git_clone_repository https://github.com/w-e-w/sdwebui-close-confirmation-dialogue "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加关闭SD-WebUI界面的确认提醒 __term_sd_task_pre_ext_90 git_clone_repository https://github.com/w-e-w/sd-webui-hires-fix-tweaks "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加更多高清修复的选项 __term_sd_task_pre_ext_91 git_clone_repository https://github.com/w-e-w/sd-webui-custom-autolaunch "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 自定义启动SD-WebUI界面的浏览器 __term_sd_task_pre_ext_92 git_clone_repository https://github.com/AlbedoFire/sd-webui-triposr "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加Triposr支持 __term_sd_task_pre_ext_93 git_clone_repository https://github.com/SenshiSentou/sd-webui-qic-console "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 在SD-WebUI界面添加Python终端,用于简单的调试 __term_sd_task_pre_ext_94 git_clone_repository https://github.com/antfu/sd-webui-qrcode-toolkit "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 二维码处理工具 __term_sd_task_pre_ext_95 git_clone_repository https://github.com/huchenlei/sd-webui-controlnet-marigold "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为controlnet插件添加marigold深度预处理器 __term_sd_task_pre_ext_96 git_clone_repository https://github.com/Koishi-Star/Euler-Smea-Dyn-Sampler "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加Eular-SMEA-Dy采样算法 __term_sd_task_pre_ext_97 git_clone_repository https://github.com/licyk/advanced_euler_sampler_extension "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加Eular-SMEA-Dy,Eular-SMEA采样算法 __term_sd_task_pre_ext_98 git_clone_repository https://github.com/Haoming02/sd-webui-vectorscope-cc "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 噪声偏移插件,可用于调整亮度,对比度和颜色 __term_sd_task_pre_ext_99 git_clone_repository https://github.com/AG-w/sd-webui-smea "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加Eular-Smea采样器和TCD采样器 __term_sd_task_pre_ext_100 git_clone_repository https://github.com/ljleb/sd-webui-neutral-prompt "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加AND_PERP、AND_SALT、AND_TOPK提示词用法 __term_sd_task_pre_ext_101 git_clone_repository https://github.com/Haoming02/sd-webui-tabs-extension "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 优化WebUI选项卡的排版 __term_sd_task_pre_ext_102 git_clone_repository https://github.com/Haoming02/sd-forge-ic-light "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加ic-light支持 __term_sd_task_pre_ext_103 git_clone_repository https://github.com/power88/webui-fooocus-prompt-expansion "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加fooocus的提示词扩写支持 __term_sd_task_pre_ext_104 git_clone_repository https://github.com/huchenlei/sd-webui-model-patcher "${SD_WEBUI_ROOT_PATH}"/extensions OFF # ComfyUI样式的LDM修补插件 __term_sd_task_pre_ext_105 git_clone_repository https://github.com/a2569875/lora-prompt-tool "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 快捷管理lora模型的触发词 __term_sd_task_pre_ext_106 git_clone_repository https://github.com/Haoming02/sd-webui-easy-tag-insert "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 提示词快捷插入 __term_sd_task_pre_ext_107 git_clone_repository https://github.com/Haoming02/sd-webui-i2i-ancestral-tree "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图生图的可视化图片关系 __term_sd_task_pre_ext_108 git_clone_repository https://github.com/Haoming02/sd-forge-couple "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加分区绘制的功能,仅支持forge __term_sd_task_pre_ext_109 git_clone_repository https://github.com/Haoming02/sd-webui-advanced-xyz "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 改进xyz图表的功能 __term_sd_task_pre_ext_110 git_clone_repository https://github.com/Haoming02/sd-webui-mosaic-outpaint "${SD_WEBUI_ROOT_PATH}"/extensions ON # 快捷扩图工具 __term_sd_task_pre_ext_111 git_clone_repository https://github.com/Haoming02/sd-webui-image-comparison "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片对比工具 __term_sd_task_pre_ext_112 git_clone_repository https://github.com/Haoming02/sd-webui-diffusion-cg "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 在潜空间张量范围执行颜色分级,改善出图的效果 __term_sd_task_pre_ext_113 git_clone_repository https://github.com/Haoming02/sd-webui-resharpen "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片锐化工具,改善出图效果 __term_sd_task_pre_ext_114 git_clone_repository https://github.com/Haoming02/sd-webui-mobile-friendly "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使界面排版在手机上更合理 __term_sd_task_pre_ext_115 git_clone_repository https://github.com/Haoming02/sd-webui-prompt-format "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 提示词格式化工具 __term_sd_task_pre_ext_116 git_clone_repository https://github.com/Haoming02/sd-webui-aaa "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为主体生成用于修复的蒙版,使背景与主体融合更融洽 __term_sd_task_pre_ext_117 git_clone_repository https://github.com/Haoming02/sd-webui-clear-screen "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 清理控制台输出 __term_sd_task_pre_ext_118 git_clone_repository https://github.com/Haoming02/sd-webui-auto-res "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 通过预设自动设置不同模型的分辨率 __term_sd_task_pre_ext_119 git_clone_repository https://github.com/Haoming02/sd-webui-moar-generate "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加了另一个生成按钮,用于当有太多活动扩展但不想每次都一直向上滚动时 __term_sd_task_pre_ext_120 git_clone_repository https://github.com/Tzigo/metadata_utils "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-supermerger融合的模型添加元数据 __term_sd_task_pre_ext_121 git_clone_repository https://github.com/w-e-w/sd-webui-xyz-addon "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为xyz脚本添加更多功能 __term_sd_task_pre_ext_122 git_clone_repository https://github.com/Repeerc/sd-webui-flash-attention-zluda-win "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为zluda添加flash-attension优化 __term_sd_task_pre_ext_123 git_clone_repository https://github.com/thisjam/sd-webui-split-layout "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 调整界面布局 __term_sd_task_pre_ext_124 git_clone_repository https://github.com/thisjam/sd-webui-oldsix-prompt "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 提示词辅助工具 __term_sd_task_pre_ext_125 git_clone_repository https://github.com/Nuullll/sd-webui-ipex-enhancement "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 优化IPEX后端的运行体验 __term_sd_task_pre_ext_126 git_clone_repository https://github.com/MackinationsAi/sd-webui-udav2 "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加DepthAnythingV2支持 __term_sd_task_pre_ext_127 git_clone_repository https://github.com/light-and-ray/sd-webui-cn-sam-preprocessor "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为ControlNet插件添加SegmentAnything预处理器 __term_sd_task_pre_ext_128 git_clone_repository https://github.com/bluelovers/sd-webui-pnginfo-beautify "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 将图片下方的生图信息进行美化排版 __term_sd_task_pre_ext_129 git_clone_repository https://github.com/Haoming02/sd-webui-resource-monitor "${SD_WEBUI_ROOT_PATH}"/extensions ON # 性能监测 __term_sd_task_pre_ext_130 git_clone_repository https://github.com/NON906/chara-searcher "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 角色图片搜索 __term_sd_task_pre_ext_131 git_clone_repository https://github.com/MakkiShizu/sd-webui-to_top_button "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加一个回滚至顶部按钮 __term_sd_task_pre_ext_132 git_clone_repository https://github.com/AndreyRGW/sd-webui-aurasr "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加AuraSR放大算法支持 __term_sd_task_pre_ext_133 git_clone_repository https://github.com/quanghuyn94/a1111-intelli-prompt "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 提示词辅助插件 __term_sd_task_pre_ext_134 git_clone_repository https://github.com/xlinx/sd-webui-decadetw-auto-prompt-llm "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用LLM辅助编写提示词 __term_sd_task_pre_ext_135 git_clone_repository https://github.com/Haoming02/sd-forge-temperature-settings "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片色温调节,仅支持Forge __term_sd_task_pre_ext_136 git_clone_repository https://github.com/Haoming02/forge-space-SUPIR "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-forge添加SUPIR支持 __term_sd_task_pre_ext_137 git_clone_repository https://github.com/Haoming02/forge-space-ollama "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-forge添加ollama支持 __term_sd_task_pre_ext_138 git_clone_repository https://github.com/SenshiSentou/sd-webui-cardmaster "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 优化模型选项卡 __term_sd_task_pre_ext_139 git_clone_repository https://github.com/CurtisDS/extra-network-side-panel-for-a1111 "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 恢复旧版扩展模型按钮 __term_sd_task_pre_ext_140 git_clone_repository https://github.com/jessearodriguez/sd-forge-regional-prompter "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-forge添加分区提示词支持 __term_sd_task_pre_ext_141 git_clone_repository https://github.com/LEv145/--sd-webui-ar-plus "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 宽高比选择工具 __term_sd_task_pre_ext_142 git_clone_repository https://github.com/DenOfEquity/forge2_cleaner "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-forge添加图像内容擦除功能 __term_sd_task_pre_ext_143 git_clone_repository https://github.com/novitalabs/sd-webui-cleaner "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加图像内容擦除功能 __term_sd_task_pre_ext_144 git_clone_repository https://github.com/DenOfEquity/HyperTile "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-forge添加HyperTile支持 __term_sd_task_pre_ext_145 git_clone_repository https://github.com/DenOfEquity/forgeFlux_dualPrompt "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-forge添加多提示词功能 __term_sd_task_pre_ext_146 git_clone_repository https://github.com/Juqowel/GPU_For_T5 "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-forge添加移动t5模型功能,可将t5模型权重移至指定gpu上 __term_sd_task_pre_ext_147 git_clone_repository https://github.com/Filexor/sd-webui-top-k-emphasis "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui-forge添加Top_K_Emphasis提示词语法 __term_sd_task_pre_ext_148 git_clone_repository https://github.com/wkpark/uddetailer "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 面部修复工具 __term_sd_task_pre_ext_149 git_clone_repository https://github.com/Zyin055/Config-Presets "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 生图参数预设保存工具 __term_sd_task_pre_ext_150 git_clone_repository https://github.com/brick2face/seamless-tile-inpainting "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 平滑平铺工具 __term_sd_task_pre_ext_151 git_clone_repository https://github.com/anapnoe/sd-webui-ux "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 更改sd-webui的界面 __term_sd_task_pre_ext_152 git_clone_repository https://github.com/light-and-ray/sd-webui-replacer "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片内容替换工具 __term_sd_task_pre_ext_153 git_clone_repository https://github.com/sdbds/stable-diffusion-webui-wildcards "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加提示词通配符支持 __term_sd_task_pre_ext_154 git_clone_repository https://github.com/ljleb/sd-webui-freeu "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加FreeU支持 __term_sd_task_pre_ext_155 git_clone_repository https://github.com/v0xie/sd-webui-incantations "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加PerturbedAttentionGuidance支持 __term_sd_task_pre_ext_156 git_clone_repository https://github.com/w-e-w/sd-webui-kohya-hiresfix "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 修复在直出高分辨率图片时画面异常的问题 __term_sd_task_pre_ext_157 git_clone_repository https://github.com/wkpark/sd-webui-model-mixer "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 模型融合工具 __term_sd_task_pre_ext_158 git_clone_repository https://github.com/Repeerc/sd-webui-flash-attention2-rdna3-rocm "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为Windows下的ZLUDA添加FlashAttension支持 __term_sd_task_pre_ext_159 git_clone_repository https://github.com/licyk/sd-webui-tcd-sampler "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为SDWebUI添加tcd采样算法 __term_sd_task_pre_ext_160 git_clone_repository https://github.com/dimitribarbot/sd-webui-birefnet "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加BiRefNet支持,用于移除背景 __term_sd_task_pre_ext_161 git_clone_repository https://github.com/muerrilla/stable-diffusion-NPW "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为反向提示词添加整体权重设置 __term_sd_task_pre_ext_162 git_clone_repository https://github.com/licyk/sd_forge_hypertile_svd_z123 "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd-webui和sd-webui-forge添加hypertile,svd,stable-z123支持 __term_sd_task_pre_ext_163 git_clone_repository https://github.com/viyiviyi/stable-diffusion-webui-zoomimage "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为图片查看窗口添加鼠标缩放拖动功能 __term_sd_task_pre_ext_164 git_clone_repository https://github.com/gutris1/sd-simple-dimension-preset "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 图片分辨率预设 __term_sd_task_pre_ext_165 git_clone_repository https://github.com/gutris1/sd-hub "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 批量下载管理文件 __term_sd_task_pre_ext_166 git_clone_repository https://github.com/Avaray/lora-keywords-finder "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用civitai-api查询lora模型触发词 __term_sd_task_pre_ext_167 git_clone_repository https://github.com/MINENEMA/sd-webui-quickrecents "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 查看最近几次图片生成参数并导入 __term_sd_task_pre_ext_168 git_clone_repository https://github.com/Haoming02/sd-forge-blockcache "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用TeaCache加速SDXL的推理速度 __term_sd_task_pre_ext_169 git_clone_repository https://github.com/DenOfEquity/sd-forge-blockcache "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用TeaCache加速FLUX的推理速度 __term_sd_task_pre_ext_170 git_clone_repository https://github.com/Haoming02/sd-webui-rewrite-history "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 批量转换图片格式并保留图片信息 __term_sd_task_pre_ext_171 git_clone_repository https://github.com/tocantrell/sd-refdrop-forge "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用RefDrop保持一致性(SD-WebUI-Forge) __term_sd_task_pre_ext_172 git_clone_repository https://github.com/tocantrell/sd-refdrop "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 使用RefDrop保持一致性(SD-WebUI-reForge) __term_sd_task_pre_ext_173 git_clone_repository https://github.com/Haoming02/sd-forge-negpip "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 解决tag强污染,仅支持SD-WebUI-Forge __term_sd_task_pre_ext_174 git_clone_repository https://github.com/altoiddealer/sd-webui-segment-anything-altoids "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 为sd_webui_forge添加SegmentAnything __term_sd_task_pre_ext_175 git_clone_repository https://github.com/spawner1145/sd-webui-framepack "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 添加FramePack支持 __term_sd_task_pre_ext_176 git_clone_repository https://github.com/w-e-w/sd-webui-different-save-button-image-format "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 设置保存图片时保存的图片格式 __term_sd_task_pre_ext_177 git_clone_repository https://github.com/thavocado/sd-webui-frequency-separation "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 提升图片质量 __term_sd_task_pre_ext_178 git_clone_repository https://github.com/w-e-w/sd-webui-hide-gradio-message "${SD_WEBUI_ROOT_PATH}"/extensions OFF # 隐藏Gradio弹窗消息,将消息输出到控制台 __term_sd_task_pre_ext_179 git_clone_repository https://github.com/licyk/sd-webui-licyk-style-image "${SD_WEBUI_ROOT_PATH}"/extensions ON # 图片滤镜扩展
2301_81996401/term-sd
install/sd_webui/sd_webui_extension.sh
Shell
agpl-3.0
31,939
__term_sd_task_pre_ext_1 term_sd_echo "下载 Controlnet 模型中" # ControlNet(36.12g) ON __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11e_sd15_ip2p_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11e_sd15_shuffle_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11f1e_sd15_tile_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11f1p_sd15_depth_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_canny_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_inpaint_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_lineart_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_mlsd_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_normalbae_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_openpose_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_scribble_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_seg_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15_softedge_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v11p_sd15s2_lineart_anime_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v1p_sd15_brightness.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v1p_sd15_illumination.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/control_v1p_sd15_qrcode_monster.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/sd_control_collection/resolve/main/xinsir-controlnet-union-sdxl-1.0-promax.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sd15.pth "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sd15_light.pth "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sd15_plus.pth "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sd15_vit-G.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter_sdxl.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1/resolve/main/ip-adapter-plus_sdxl_vit-h.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/clip_vision/clip_g.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/clip_vision __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/clip_vision/clip_h.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/clip_vision __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/clip_vision/clip_vitl.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/clip_vision __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/hed/ControlNetHED.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/hed __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/lama/ControlNetLama.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/lama __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/leres/latest_net_G.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/leres __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/leres/res101.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/leres __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/lineart/sk_model.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/lineart __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/lineart/sk_model2.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/lineart __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/lineart_anime/netG.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/lineart_anime __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/manga_line/erika.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/manga_line __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/midas/dpt_hybrid-midas-501f0c75.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/midas __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/mlsd/mlsd_large_512_fp32.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/mlsd __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/normal_bae/scannet.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/normal_bae __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/oneformer/150_16_swin_l_oneformer_coco_100ep.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/oneformer __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/oneformer/250_16_swin_l_oneformer_ade20k_160k.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/oneformer __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/openpose/body_pose_model.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/openpose/dw-ll_ucoco_384.onnx "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/openpose/facenet.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/openpose/hand_pose_model.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/openpose/yolox_l.onnx "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/pidinet/table5_pidinet.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/pidinet __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/uniformer/upernet_global_small.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/uniformer __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/zoedepth/ZoeD_M12_N.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/zoedepth __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/anime_face_segment/UNet.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/anime_face_segment __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/densepose/densepose_r50_fpn_dl.torchscript "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/densepose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/depth_anything/depth_anything_vitl14.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/depth_anything __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/hand_refiner/hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/hand_refiner/hr16/ControlNet-HandRefiner-pruned __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/hand_refiner/hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/hand_refiner/hr16/ControlNet-HandRefiner-pruned __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/openpose/rtmpose-m_simcc-ap10k_pt-aic-coco_210e-256x256-7a041aa1_20230206.onnx "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/depth_anything_v2/depth_anything_v2_vitl.safetensors "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/depth_anything_v2 __term_sd_task_pre_ext_1 aria2_download https://huggingface.co/licyk/controlnet_v1.1_annotator/resolve/main/mobile_sam/mobile_sam.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/mobile_sam __term_sd_task_pre_ext_2 term_sd_echo "下载 Animatediff 模型" # AnimateDiff(1.67g) OFF __term_sd_task_pre_ext_2 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-animatediff/v3_sd15_mm.ckpt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-animatediff/model __term_sd_task_pre_ext_3 term_sd_echo "下载 Adetailer 模型" # Adetailer(224.8m) OFF __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/deepfashion2_yolov8s-seg.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/face_yolov8m.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/face_yolov8n.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/face_yolov8n_v2.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/face_yolov8s.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/hand_yolov8n.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/hand_yolov8s.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/person_yolov8m-seg.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/person_yolov8n-seg.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/adetailer/person_yolov8s-seg.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_4 term_sd_echo "下载 IS-NET 模型" # IS-NET(176.6m) ON __term_sd_task_pre_ext_4 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-IS-NET-pro/isnet-general-use.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-IS-NET-pro/saved_models/IS-Net __term_sd_task_pre_ext_5 term_sd_echo "下载 SD-WebUI-Segment-Anything模型" # Segment-Anything(5.81g) ON __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/sam_vit_h_4b8939.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/sam __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/sam_vit_l_0b3195.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/sam __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/sam_vit_b_01ec64.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/sam __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/mobile_sam.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/sam __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/groundingdino_swint_ogc.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/grounding-dino __term_sd_task_pre_ext_5 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/groundingdino_swinb_cogcoor.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/grounding-dino __term_sd_task_pre_ext_6 term_sd_echo "下载 SD-WebUII-Inpaint-Anything 模型" # Inpaint-Anything(4.18g) ON __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/sam_vit_h_4b8939.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-inpaint-anything/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/sam_vit_l_0b3195.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-inpaint-anything/models __term_sd_task_pre_ext_6 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-segment-anything/sam_vit_b_01ec64.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-inpaint-anything/models __term_sd_task_pre_ext_7 term_sd_echo "下载 SD-Forge-LayerDiffusion 模型" # LayerDiffusion(10.29g) ON __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_bg2ble.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_bgble2fg.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_fg2ble.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_fgble2bg.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_transparent_attn.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/layer_xl_transparent_conv.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/vae_transparent_decoder.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 aria2_download https://huggingface.co/licyk/layerdiffusion/resolve/main/vae_transparent_encoder.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_8 term_sd_echo "下载 DanTagGen 模型" # DanTagGen(1.53g) OFF __term_sd_task_pre_ext_8 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/a1111-sd-webui-dtg/DanTagGen-delta-rev2_ggml-model-Q6_K.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/a1111-sd-webui-dtg/models __term_sd_task_pre_ext_8 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/a1111-sd-webui-dtg/DanTagGen-delta-rev2_ggml-model-Q8_0.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/a1111-sd-webui-dtg/models __term_sd_task_pre_ext_8 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/a1111-sd-webui-dtg/DanTagGen-delta-rev2_ggml-model-f16.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/a1111-sd-webui-dtg/models __term_sd_task_pre_ext_9 term_sd_echo "下载 sd-webui-stablesr 模型" # StableSR(422.3m) ON __term_sd_task_pre_ext_9 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/sd-webui-stablesr/webui_768v_139.ckpt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-stablesr/models __term_sd_task_pre_ext_10 term_sd_echo "下载 z-tipo-extension 模型" # z-tipo-extension(1.42g) ON __term_sd_task_pre_ext_10 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-500M_epoch5-F16.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/z-tipo-extension/models __term_sd_task_pre_ext_10 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-200M-40Btok-F16.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/z-tipo-extension/models __term_sd_task_pre_ext_10 aria2_download https://huggingface.co/licyk/sd-extensions-model/resolve/main/z-tipo-extension/TIPO-200M-ft-F16.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/z-tipo-extension/models
2301_81996401/term-sd
install/sd_webui/sd_webui_extension_hf_model.sh
Shell
agpl-3.0
19,629
__term_sd_task_pre_ext_1 term_sd_echo "下载 ControlNet 模型中" # ControlNet(36.12g) ON __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11e_sd15_ip2p_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11e_sd15_shuffle_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11f1e_sd15_tile_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11f1p_sd15_depth_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_canny_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_inpaint_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_lineart_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_mlsd_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_normalbae_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_openpose_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_scribble_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_seg_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15_softedge_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v11p_sd15s2_lineart_anime_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v1p_sd15_brightness.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v1p_sd15_illumination.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/control_v1p_sd15_qrcode_monster.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/sd_control_collection/master/xinsir-controlnet-union-sdxl-1.0-promax.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sd15.pth "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sd15_light.pth "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sd15_plus.pth "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sd15_vit-G.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter_sdxl.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1/master/ip-adapter-plus_sdxl_vit-h.safetensors "${SD_WEBUI_ROOT_PATH}"/models/ControlNet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/clip_vision/clip_g.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/clip_vision __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/clip_vision/clip_h.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/clip_vision __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/clip_vision/clip_vitl.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/clip_vision __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/hed/ControlNetHED.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/hed __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/lama/ControlNetLama.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/lama __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/leres/latest_net_G.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/leres __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/leres/res101.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/leres __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/lineart/sk_model.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/lineart __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/lineart/sk_model2.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/lineart __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/lineart_anime/netG.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/lineart_anime __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/manga_line/erika.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/manga_line __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/midas/dpt_hybrid-midas-501f0c75.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/midas __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/mlsd/mlsd_large_512_fp32.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/mlsd __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/normal_bae/scannet.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/normal_bae __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/oneformer/150_16_swin_l_oneformer_coco_100ep.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/oneformer __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/oneformer/250_16_swin_l_oneformer_ade20k_160k.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/oneformer __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/openpose/body_pose_model.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/openpose/dw-ll_ucoco_384.onnx "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/openpose/facenet.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/openpose/hand_pose_model.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/openpose/yolox_l.onnx "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/pidinet/table5_pidinet.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/pidinet __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/uniformer/upernet_global_small.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/uniformer __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/zoedepth/ZoeD_M12_N.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/zoedepth __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/anime_face_segment/UNet.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/anime_face_segment __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/densepose/densepose_r50_fpn_dl.torchscript "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/densepose __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/depth_anything/depth_anything_vitl14.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/depth_anything __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/hand_refiner/hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/hand_refiner/hr16/ControlNet-HandRefiner-pruned __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/hand_refiner/hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/hand_refiner/hr16/ControlNet-HandRefiner-pruned __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/openpose/rtmpose-m_simcc-ap10k_pt-aic-coco_210e-256x256-7a041aa1_20230206.onnx "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/openpose __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/depth_anything_v2/depth_anything_v2_vitl.safetensors "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/depth_anything_v2 __term_sd_task_pre_ext_1 get_modelscope_model licyks/controlnet_v1.1_annotator/master/mobile_sam/mobile_sam.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-controlnet/annotator/downloads/mobile_sam __term_sd_task_pre_ext_2 term_sd_echo "下载 AnimateDiff 模型" # AnimateDiff(1.67g) OFF __term_sd_task_pre_ext_2 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-animatediff/v3_sd15_mm.ckpt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-animatediff/model __term_sd_task_pre_ext_3 term_sd_echo "下载 Adetailer 模型" # Adetailer(224.8m) OFF __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/deepfashion2_yolov8s-seg.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/face_yolov8m.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/face_yolov8n.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/face_yolov8n_v2.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/face_yolov8s.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/hand_yolov8n.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/hand_yolov8s.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/person_yolov8m-seg.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/person_yolov8n-seg.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_3 get_modelscope_model licyks/sd-extensions-model/master/adetailer/person_yolov8s-seg.pt "${SD_WEBUI_ROOT_PATH}"/models/adetailer __term_sd_task_pre_ext_4 term_sd_echo "下载 IS-NET 模型" # IS-NET(176.6m) ON __term_sd_task_pre_ext_4 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-IS-NET-pro/isnet-general-use.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-IS-NET-pro/saved_models/IS-Net __term_sd_task_pre_ext_5 term_sd_echo "下载 SD-WebUI-Segment-Anything模型" # Segment-Anything(5.81g) ON __term_sd_task_pre_ext_5 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/sam_vit_h_4b8939.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/sam __term_sd_task_pre_ext_5 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/sam_vit_l_0b3195.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/sam __term_sd_task_pre_ext_5 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/sam_vit_b_01ec64.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/sam __term_sd_task_pre_ext_5 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/mobile_sam.pt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/sam __term_sd_task_pre_ext_5 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/groundingdino_swint_ogc.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/grounding-dino __term_sd_task_pre_ext_5 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/groundingdino_swinb_cogcoor.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-segment-anything/models/grounding-dino __term_sd_task_pre_ext_6 term_sd_echo "下载 SD-WebUII-Inpaint-Anything 模型" # Inpaint-Anything(4.18g) ON __term_sd_task_pre_ext_6 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/sam_vit_h_4b8939.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-inpaint-anything/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/sam_vit_l_0b3195.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-inpaint-anything/models __term_sd_task_pre_ext_6 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-segment-anything/sam_vit_b_01ec64.pth "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-inpaint-anything/models __term_sd_task_pre_ext_7 term_sd_echo "下载 SD-Forge-LayerDiffusion 模型" # LayerDiffusion(10.29g) ON __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_bg2ble.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_bgble2fg.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_fg2ble.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_fgble2bg.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_transparent_attn.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/layer_xl_transparent_conv.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/vae_transparent_decoder.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_7 get_modelscope_model licyks/layerdiffusion/master/vae_transparent_encoder.safetensors "${SD_WEBUI_ROOT_PATH}"/models/layer_model __term_sd_task_pre_ext_8 term_sd_echo "下载 DanTagGen 模型" # DanTagGen(1.53g) OFF __term_sd_task_pre_ext_8 get_modelscope_model licyks/sd-extensions-model/master/a1111-sd-webui-dtg/DanTagGen-delta-rev2_ggml-model-Q6_K.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/a1111-sd-webui-dtg/models __term_sd_task_pre_ext_8 get_modelscope_model licyks/sd-extensions-model/master/a1111-sd-webui-dtg/DanTagGen-delta-rev2_ggml-model-Q8_0.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/a1111-sd-webui-dtg/models __term_sd_task_pre_ext_8 get_modelscope_model licyks/sd-extensions-model/master/a1111-sd-webui-dtg/DanTagGen-delta-rev2_ggml-model-f16.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/a1111-sd-webui-dtg/models __term_sd_task_pre_ext_9 term_sd_echo "下载 sd-webui-stablesr 模型" # StableSR(422.3m) ON __term_sd_task_pre_ext_9 get_modelscope_model licyks/sd-extensions-model/master/sd-webui-stablesr/webui_768v_139.ckpt "${SD_WEBUI_ROOT_PATH}"/extensions/sd-webui-stablesr/models __term_sd_task_pre_ext_10 term_sd_echo "下载 z-tipo-extension 模型" # z-tipo-extension(1.02g) ON __term_sd_task_pre_ext_10 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-500M_epoch5-F16.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/z-tipo-extension/models __term_sd_task_pre_ext_10 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-200M-40Btok-F16.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/z-tipo-extension/models __term_sd_task_pre_ext_10 get_modelscope_model licyks/sd-extensions-model/master/z-tipo-extension/TIPO-200M-ft-F16.gguf "${SD_WEBUI_ROOT_PATH}"/extensions/z-tipo-extension/models
2301_81996401/term-sd
install/sd_webui/sd_webui_extension_ms_model.sh
Shell
agpl-3.0
17,604
__term_sd_task_pre_model_1 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/v1-5-pruned-emaonly.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # 大模型 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/animefull-final-pruned.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/nai1-artist_all_in_one_merge.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # nai1-artist_all_in_one_merge(2.13g) OFF __term_sd_task_pre_model_5 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/Counterfeit-V3.0_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Counterfeit-V3.0(4.24g) OFF __term_sd_task_pre_model_6 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/cetusMix_Whalefall2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # cetusMix_Whalefall2(3.85g) OFF __term_sd_task_pre_model_7 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/cuteyukimixAdorable_neochapter3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # cuteyukimixAdorable_neochapter3(2.3g) OFF __term_sd_task_pre_model_8 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/ekmix-pastel-fp16-no-ema.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # ekmix-pastel(2.13g) OFF __term_sd_task_pre_model_9 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/ex2K_sse2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # ex2K_sse2(2.38g) OFF __term_sd_task_pre_model_10 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/kohakuV5_rev2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohakuV5_rev2(2.13g) OFF __term_sd_task_pre_model_11 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/meinamix_meinaV11.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # meinamix_meinaV11(2.13g) OFF __term_sd_task_pre_model_12 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/oukaStar_10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # oukaStar_10(5.43g) OFF __term_sd_task_pre_model_13 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/pastelMixStylizedAnime_pastelMixPrunedFP16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # pastelMixStylizedAnime(2.13g) OFF __term_sd_task_pre_model_14 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/rabbit_v6.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # rabbit_v6(1.97g) OFF __term_sd_task_pre_model_15 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/sweetSugarSyndrome_rev15.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sweetSugarSyndrome_rev15(2.13g) OFF __term_sd_task_pre_model_16 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/AnythingV5Ink_ink.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # AnythingV5Ink_ink(2.13g) OFF __term_sd_task_pre_model_17 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/bartstyledbBlueArchiveArtStyleFineTunedModel_v10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # bartstyledbBlueArchiveArtStyle(2.13g) OFF __term_sd_task_pre_model_18 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/meinapastel_v6Pastel.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # meinapastel_v6(2.13g) OFF __term_sd_task_pre_model_19 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/qteamixQ_omegaFp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # qteamix(2.13g) OFF __term_sd_task_pre_model_20 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_1.5/tmndMix_tmndMixSPRAINBOW.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # tmndMix(2.13g) OFF __term_sd_task_pre_model_21 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_22 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/v2-1_768-ema-pruned.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_23 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/wd-1-4-anime_e2.ckpt "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_24 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sd_2.1/wd-mofu-fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_25 # =====SDXL大模型===== OFF __term_sd_task_pre_model_26 aria2_download https://huggingface.co/licyk/sd-lora/resolve/main/sdxl/sd_xl_offset_example-lora_1.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Lora # sd_xl_offset_example-lora_1.0(49.6m) OFF __term_sd_task_pre_model_27 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_28 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_29 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_30 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/cosxl.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # cosxl(6.94g) OFF __term_sd_task_pre_model_31 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/cosxl_edit.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # cosxl_edit(6.94g) OFF __term_sd_task_pre_model_32 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0-base.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_33 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_34 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-3.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_35 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_36 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_37 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_38 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/holodayo-xl-2.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_39 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kivotos-xl-2.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_40 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/clandestine-xl-1.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_41 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/UrangDiffusion-1.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_42 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_43 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sd_xl_anime_V52.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_44 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_45 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_46 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_47 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_48 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/kohaku-xl-zeta.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_49 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/starryXLV52_v52.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_50 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v20.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_51 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/heartOfAppleXL_v30.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_52 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_53 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_54 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_55 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_56 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_57 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_58 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_59 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_60 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_61 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_62 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_63 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_64 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_65 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_66 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_67 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_68 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tIllunai3_v4.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_69 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_70 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_71 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_72 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_73 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_74 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_75 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_76 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_77 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_78 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_79 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_80 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_81 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_82 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_83 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_84 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_85 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/pdForAnime_v20.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_86 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_87 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_88 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_89 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_90 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_91 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/AnythingXL_xl.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_92 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/abyssorangeXLElse_v10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_93 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/animaPencilXL_v200.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_94 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/bluePencilXL_v401.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_95 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/nekorayxl_v06W3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_96 aria2_download https://huggingface.co/licyk/sd-model/resolve/main/sdxl_1.0/CounterfeitXL-V1.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_97 # =====SD3大模型===== OFF __term_sd_task_pre_model_98 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3_medium.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3_medium(4.34g) OFF __term_sd_task_pre_model_99 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3_medium_incl_clips.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3_medium_incl_clips(5.97g) OFF __term_sd_task_pre_model_100 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3_medium_incl_clips_t5xxlfp8.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3_medium_incl_clips_t5xxlfp8(10.87g) OFF __term_sd_task_pre_model_101 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_large.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_large(16.5g) OFF __term_sd_task_pre_model_102 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_large_fp8_scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_large_fp8_scaled(14.9g) OFF __term_sd_task_pre_model_103 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_large_turbo.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_large_turbo(16.5g) OFF __term_sd_task_pre_model_104 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_medium.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_medium(5.1g) OFF __term_sd_task_pre_model_105 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/sd3.5_medium_incl_clips_t5xxlfp8scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_medium_incl_clips_t5xxlfp8scaled(11.6g) OFF __term_sd_task_pre_model_106 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/emi3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # emi3(16.5g) OFF __term_sd_task_pre_model_107 # =====SD3文本编码器===== OFF __term_sd_task_pre_model_108 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/clip_g.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # clip_g(1.39g) OFF __term_sd_task_pre_model_109 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/clip_l.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # clip_l(246.1m) OFF __term_sd_task_pre_model_110 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/t5xxl_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_111 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/t5xxl_fp8_e4m3fn.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_112 aria2_download https://huggingface.co/licyk/sd-3-model/resolve/main/text_encoders/t5xxl_fp8_e4m3fn_scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # t5xxl_fp8_e4m3fn_scaled(5.16g) OFF __term_sd_task_pre_model_113 # =====FLUX模型===== OFF __term_sd_task_pre_model_114 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev(23.8g) OFF __term_sd_task_pre_model_115 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-fp8.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-fp8(17.2g) OFF __term_sd_task_pre_model_116 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux_dev_fp8_scaled_diffusion_model.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux_dev_fp8_scaled_diffusion_model(11.9g) OFF __term_sd_task_pre_model_117 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-bnb-nf4-v2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-bnb-nf4-v2(12g) OFF __term_sd_task_pre_model_118 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-bnb-nf4.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-bnb-nf4(11.5g) OFF __term_sd_task_pre_model_119 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q2_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q2_K-gguf(4.03g) OFF __term_sd_task_pre_model_120 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q3_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q3_K_S-gguf(5.23g) OFF __term_sd_task_pre_model_121 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q4_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q4_0-gguf(6.79g) OFF __term_sd_task_pre_model_122 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q4_1.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q4_1-gguf(7.53g) OFF __term_sd_task_pre_model_123 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q4_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q4_K_S-gguf(6.81g) OFF __term_sd_task_pre_model_124 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q5_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q5_0-gguf(8.27g) OFF __term_sd_task_pre_model_125 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q5_1.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q5_1-gguf(9.01g) OFF __term_sd_task_pre_model_126 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q5_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q5_K_S-gguf(8.29g) OFF __term_sd_task_pre_model_127 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q6_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q6_K-gguf(9.86g) OFF __term_sd_task_pre_model_128 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-Q8_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_129 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-F16.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-F16-gguf(23.8g) OFF __term_sd_task_pre_model_130 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell(23.8g) OFF __term_sd_task_pre_model_131 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-fp8.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-fp8(17.2g) OFF __term_sd_task_pre_model_132 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q2_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q2_K-gguf(4.01g) OFF __term_sd_task_pre_model_133 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q3_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q3_K_S-gguf(5.21g) OFF __term_sd_task_pre_model_134 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q4_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q4_0-gguf(6.77g) OFF __term_sd_task_pre_model_135 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q4_1.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q4_1-gguf(7.51g) OFF __term_sd_task_pre_model_136 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q4_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q4_K_S-gguf(6.78g) OFF __term_sd_task_pre_model_137 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q5_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q5_0-gguf(8.25g) OFF __term_sd_task_pre_model_138 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q5_1.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q5_1-gguf(8.99g) OFF __term_sd_task_pre_model_139 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q5_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q5_K_S-gguf(8.26g) OFF __term_sd_task_pre_model_140 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q6_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q6_K-gguf(9.83g) OFF __term_sd_task_pre_model_141 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-Q8_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_142 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-schnell-F16.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-F16-gguf(23.8g) OFF __term_sd_task_pre_model_143 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/ashen0209-flux1-dev2pro.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_144 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/jimmycarter-LibreFLUX.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_145 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/nyanko7-flux-dev-de-distill.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_146 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/shuttle-3-diffusion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_147 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-krea-dev_fp8_scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-krea-dev_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_148 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-krea-dev.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-krea-dev(23.8g) OFF __term_sd_task_pre_model_149 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-dev-kontext_fp8_scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-kontext_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_150 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/flux1-kontext-dev.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-kontext-dev(23.8g) OFF __term_sd_task_pre_model_151 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_1/chroma-unlocked-v50.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # chroma-unlocked-v50(23.8g) OFF __term_sd_task_pre_model_152 # =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_153 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/clip_l.safetensors "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # clip_l(246.1m) OFF __term_sd_task_pre_model_154 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5xxl_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_155 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_156 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_L.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q3_K_L-gguf(2.46g) OFF __term_sd_task_pre_model_157 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_M.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q3_K_M-gguf(2.3g) OFF __term_sd_task_pre_model_158 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q3_K_S-gguf(2.1g) OFF __term_sd_task_pre_model_159 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q4_K_M.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q4_K_M-gguf(2.9g) OFF __term_sd_task_pre_model_160 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q4_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q4_K_S-gguf(2.74g) OFF __term_sd_task_pre_model_161 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q5_K_M.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q5_K_M-gguf(3.39g) OFF __term_sd_task_pre_model_162 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q5_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q5_K_S-gguf(3.29g) OFF __term_sd_task_pre_model_163 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q6_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q6_K-gguf(3.91g) OFF __term_sd_task_pre_model_164 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-Q8_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q8_0-gguf(5.06g) OFF __term_sd_task_pre_model_165 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-f16.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-f16-gguf(9.53g) OFF __term_sd_task_pre_model_166 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_text_encoders/t5-v1_1-xxl-encoder-f32.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-f32-gguf(19.1g) OFF __term_sd_task_pre_model_167 aria2_download https://huggingface.co/licyk/flux-model/resolve/main/flux_vae/ae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # ae(335m) OFF __term_sd_task_pre_model_168 # =====VAE模型===== OFF __term_sd_task_pre_model_169 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sd_1.5/vae-ft-ema-560000-ema-pruned.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_170 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sd_1.5/vae-ft-mse-840000-ema-pruned.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # VAE模型 vae-ft-mse-840000-ema-pruned(334.6m) ON __term_sd_task_pre_model_171 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sdxl_1.0/sdxl_vae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # sdxl_vae(334.6m) OFF __term_sd_task_pre_model_172 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/sdxl_1.0/sdxl_fp16_fix_vae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_173 # =====VAE-approx模型===== OFF __term_sd_task_pre_model_174 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/vae-approx/model.pt "${SD_WEBUI_ROOT_PATH}"/models/VAE-approx # VAE-approx模型 model(0.2m) ON __term_sd_task_pre_model_175 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/vae-approx/vaeapprox-sdxl.pt "${SD_WEBUI_ROOT_PATH}"/models/VAE-approx # vaeapprox-sdxl(0.2m) ON __term_sd_task_pre_model_176 aria2_download https://huggingface.co/licyk/sd-vae/resolve/main/vae-approx/vaeapprox-sd3.pt "${SD_WEBUI_ROOT_PATH}"/models/VAE-approx # vaeapprox-sd3(0.2m) OFF __term_sd_task_pre_model_177 # =====放大模型===== OFF __term_sd_task_pre_model_178 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/Codeformer/codeformer-v0.1.0.pth "${SD_WEBUI_ROOT_PATH}"/models/Codeformer # codeformer-v0.1.0(376.6m) OFF __term_sd_task_pre_model_179 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_2_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_2_x2(139.7m) OFF __term_sd_task_pre_model_180 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_2_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_2_x3(140.4m) OFF __term_sd_task_pre_model_181 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_2_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_2_x4(140.3m) OFF __term_sd_task_pre_model_182 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_S_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_S_x2(87.7m) OFF __term_sd_task_pre_model_183 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_S_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_S_x3(88.4m) OFF __term_sd_task_pre_model_184 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_S_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_S_x4(88.2m) OFF __term_sd_task_pre_model_185 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_light_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_light_x2(45.7m) OFF __term_sd_task_pre_model_186 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_light_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_light_x3(45.7m) OFF __term_sd_task_pre_model_187 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_light_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_light_x4(45.8m) OFF __term_sd_task_pre_model_188 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_x2(154.1m) OFF __term_sd_task_pre_model_189 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_x3(154.8m) OFF __term_sd_task_pre_model_190 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/DAT/DAT_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_x4(154.7m) OFF __term_sd_task_pre_model_191 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/16xPSNR.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 16xPSNR(67.2m) OFF __term_sd_task_pre_model_192 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x-ITF-SkinDiffDetail-Lite-v1.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x-ITF-SkinDiffDetail-Lite-v1(20.1m) OFF __term_sd_task_pre_model_193 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NMKD-BrightenRedux_200k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NMKD-BrightenRedux_200k(66.6m) OFF __term_sd_task_pre_model_194 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NMKD-YandereInpaint_375000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NMKD-YandereInpaint_375000_G(66.6m) OFF __term_sd_task_pre_model_195 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NMKDDetoon_97500_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NMKDDetoon_97500_G(66.6m) OFF __term_sd_task_pre_model_196 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NoiseToner-Poisson-Detailed_108000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NoiseToner-Poisson-Detailed_108000_G(66.6m) OFF __term_sd_task_pre_model_197 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/1x_NoiseToner-Uniform-Detailed_100000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NoiseToner-Uniform-Detailed_100000_G(66.6m) OFF __term_sd_task_pre_model_198 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x-UltraSharp.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x-UltraSharp(66.9m) OFF __term_sd_task_pre_model_199 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4xPSNR.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4xPSNR(66.9m) OFF __term_sd_task_pre_model_200 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_CountryRoads_377000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_CountryRoads_377000_G(66.9m) OFF __term_sd_task_pre_model_201 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_Fatality_Comix_260000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_Fatality_Comix_260000_G(66.9m) OFF __term_sd_task_pre_model_202 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-Siax_200k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-Siax_200k(66.9m) OFF __term_sd_task_pre_model_203 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-Superscale-Artisoftject_210000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-Superscale-Artisoftject_210000_G(66.9m) OFF __term_sd_task_pre_model_204 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-Superscale-SP_178000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-Superscale-SP_178000_G(66.9m) ON __term_sd_task_pre_model_205 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-UltraYandere-Lite_280k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-UltraYandere-Lite_280k(20.1m) OFF __term_sd_task_pre_model_206 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-UltraYandere_300k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-UltraYandere_300k(66.9m) OFF __term_sd_task_pre_model_207 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKD-YandereNeoXL_200k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-YandereNeoXL_200k(66.9m) OFF __term_sd_task_pre_model_208 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NMKDSuperscale_Artisoft_120000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKDSuperscale_Artisoft_120000_G(67.1m) OFF __term_sd_task_pre_model_209 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_NickelbackFS_72000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NickelbackFS_72000_G(67.1m) OFF __term_sd_task_pre_model_210 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_Nickelback_70000G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_Nickelback_70000G(66.9m) OFF __term_sd_task_pre_model_211 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_RealisticRescaler_100000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_RealisticRescaler_100000_G(134.1m) OFF __term_sd_task_pre_model_212 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_Valar_v1.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_Valar_v1(67.5m) OFF __term_sd_task_pre_model_213 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_fatal_Anime_500000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_fatal_Anime_500000_G(66.9m) OFF __term_sd_task_pre_model_214 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/4x_foolhardy_Remacri.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_foolhardy_Remacri(67m) OFF __term_sd_task_pre_model_215 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/8xPSNR.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 8xPSNR(67.1m) OFF __term_sd_task_pre_model_216 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/8x_NMKD-Superscale_150000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 8x_NMKD-Superscale_150000_G(67.1m) OFF __term_sd_task_pre_model_217 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/8x_NMKD-Typescale_175k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 8x_NMKD-Typescale_175k(67.1m) OFF __term_sd_task_pre_model_218 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/A_ESRGAN_Single.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # A_ESRGAN_Single(134.1m) OFF __term_sd_task_pre_model_219 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/BSRGAN.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # BSRGAN(67.1m) OFF __term_sd_task_pre_model_220 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/BSRGANx2.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # BSRGANx2(66.8m) OFF __term_sd_task_pre_model_221 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/BSRNet.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # BSRNet(67.1m) OFF __term_sd_task_pre_model_222 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/ESRGAN_4x.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # ESRGAN_4x(66.9m) OFF __term_sd_task_pre_model_223 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/LADDIER1_282500_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # LADDIER1_282500_G(66.9m) OFF __term_sd_task_pre_model_224 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Neutral_115000_swaG.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscalerV2-Neutral_115000_swaG(66.9m) OFF __term_sd_task_pre_model_225 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Sharp_101000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscalerV2-Sharp_101000_G(66.9m) OFF __term_sd_task_pre_model_226 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Sharper_103000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscalerV2-Sharper_103000_G(66.9m) OFF __term_sd_task_pre_model_227 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/Legacy/4x_UniversalUpscaler-Detailed_155000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscaler-Detailed_155000_G(66.9m) OFF __term_sd_task_pre_model_228 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/UniversalUpscaler/Legacy/4x_UniversalUpscaler-Soft_190000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscaler-Soft_190000_G(66.9m) OFF __term_sd_task_pre_model_229 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/WaifuGAN_v3_30000.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # WaifuGAN_v3_30000(66.9m) OFF __term_sd_task_pre_model_230 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/lollypop.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # lollypop(66.9m) OFF __term_sd_task_pre_model_231 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/ESRGAN/sudo_rife4_269.662_testV1_scale1.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # sudo_rife4_269.662_testV1_scale1(33.7m) OFF __term_sd_task_pre_model_232 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/GFPGANv1.3.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # GFPGANv1.3(348.6m) OFF __term_sd_task_pre_model_233 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/GFPGANv1.4.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # GFPGANv1.4(348.6m) OFF __term_sd_task_pre_model_234 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/detection_Resnet50_Final.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # detection_Resnet50_Final(109.5m) OFF __term_sd_task_pre_model_235 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/parsing_bisenet.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # parsing_bisenet(12.2m) OFF __term_sd_task_pre_model_236 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/GFPGAN/parsing_parsenet.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # parsing_parsenet(85.3m) OFF __term_sd_task_pre_model_237 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/RealESRGAN/RealESRGAN_x4plus.pth "${SD_WEBUI_ROOT_PATH}"/models/RealESRGAN # RealESRGAN_x4plus(67m) ON __term_sd_task_pre_model_238 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/RealESRGAN/RealESRGAN_x4plus_anime_6B.pth "${SD_WEBUI_ROOT_PATH}"/models/RealESRGAN # RealESRGAN_x4plus_anime_6B(17.9m) ON __term_sd_task_pre_model_239 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DF2K_s64w8_SwinIR-M_x2(67.2m) OFF __term_sd_task_pre_model_240 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DF2K_s64w8_SwinIR-M_x3(68m) OFF __term_sd_task_pre_model_241 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DF2K_s64w8_SwinIR-M_x4(67.8m) OFF __term_sd_task_pre_model_242 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DF2K_s64w8_SwinIR-M_x8(68.4m) OFF __term_sd_task_pre_model_243 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x2(59m) OFF __term_sd_task_pre_model_244 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x3(59.7m) OFF __term_sd_task_pre_model_245 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x4(59.6m) OFF __term_sd_task_pre_model_246 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x8(60.2m) OFF __term_sd_task_pre_model_247 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/Swin2SR_ClassicalSR_X2_64.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # Swin2SR_ClassicalSR_X2_64(68.7m) OFF __term_sd_task_pre_model_248 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/Swin2SR_ClassicalSR_X4_64.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # Swin2SR_ClassicalSR_X4_64(69.3m) OFF __term_sd_task_pre_model_249 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/Swin2SR_CompressedSR_X4_48.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # Swin2SR_CompressedSR_X4_48(61.1m) OFF __term_sd_task_pre_model_250 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR(68.6m) OFF __term_sd_task_pre_model_251 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/SwinIR/SwinIR_4x.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # SwinIR_4x(142.4m) OFF __term_sd_task_pre_model_252 # =====图生图反推Tag模型===== OFF __term_sd_task_pre_model_253 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/BLIP/model_base_caption_capfilt_large.pth "${SD_WEBUI_ROOT_PATH}"/models/BLIP # BLIP模型 model_base_caption_capfilt_large(896m) OFF __term_sd_task_pre_model_254 aria2_download https://huggingface.co/licyk/sd-upscaler-models/resolve/main/torch_deepdanbooru/model-resnet_custom_v3.pt "${SD_WEBUI_ROOT_PATH}"/models/torch_deepdanbooru # deepdanbooru模型 model-resnet_custom_v3(644.1m) OFF __term_sd_task_pre_model_255 # =====Embedding模型===== OFF __term_sd_task_pre_model_256 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/EasyNegativeV2.safetensors "${SD_WEBUI_ROOT_PATH}"/embeddings # embeddings模型 EasyNegativeV2(0.1m) ON __term_sd_task_pre_model_257 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad-artist-anime.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad-artist-anime(0.1m) ON __term_sd_task_pre_model_258 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad-artist.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad-artist(0.1m) ON __term_sd_task_pre_model_259 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad-hands-5.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad-hands-5(0.1m) ON __term_sd_task_pre_model_260 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad-image-v2-39000.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad-image-v2-39000(0.1m) ON __term_sd_task_pre_model_261 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/bad_prompt_version2.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad_prompt_version2(0.1m) ON __term_sd_task_pre_model_262 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/ng_deepnegative_v1_75t.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # ng_deepnegative_v1_75t(0.1m) ON __term_sd_task_pre_model_263 aria2_download https://huggingface.co/licyk/sd-embeddings/resolve/main/sd_1.5/verybadimagenegative_v1.3.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # verybadimagenegative_v1.3(0.1m) ON
2301_81996401/term-sd
install/sd_webui/sd_webui_hf_model.sh
Shell
agpl-3.0
54,867
__term_sd_task_pre_model_1 # =====SD1.5大模型===== OFF __term_sd_task_pre_model_2 get_modelscope_model licyks/sd-model/master/sd_1.5/v1-5-pruned-emaonly.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # 大模型 v1-5-pruned-emaonly(4.27g) OFF __term_sd_task_pre_model_3 get_modelscope_model licyks/sd-model/master/sd_1.5/animefull-final-pruned.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animefull-final-pruned(4.27g) OFF __term_sd_task_pre_model_4 get_modelscope_model licyks/sd-model/master/sd_1.5/nai1-artist_all_in_one_merge.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # nai1-artist_all_in_one_merge(2.13g) OFF __term_sd_task_pre_model_5 get_modelscope_model licyks/sd-model/master/sd_1.5/Counterfeit-V3.0_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Counterfeit-V3.0(4.24g) OFF __term_sd_task_pre_model_6 get_modelscope_model licyks/sd-model/master/sd_1.5/cetusMix_Whalefall2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # cetusMix_Whalefall2(3.85g) OFF __term_sd_task_pre_model_7 get_modelscope_model licyks/sd-model/master/sd_1.5/cuteyukimixAdorable_neochapter3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # cuteyukimixAdorable_neochapter3(2.3g) OFF __term_sd_task_pre_model_8 get_modelscope_model licyks/sd-model/master/sd_1.5/ekmix-pastel-fp16-no-ema.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # ekmix-pastel(2.13g) OFF __term_sd_task_pre_model_9 get_modelscope_model licyks/sd-model/master/sd_1.5/ex2K_sse2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # ex2K_sse2(2.38g) OFF __term_sd_task_pre_model_10 get_modelscope_model licyks/sd-model/master/sd_1.5/kohakuV5_rev2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohakuV5_rev2(2.13g) OFF __term_sd_task_pre_model_11 get_modelscope_model licyks/sd-model/master/sd_1.5/meinamix_meinaV11.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # meinamix_meinaV11(2.13g) OFF __term_sd_task_pre_model_12 get_modelscope_model licyks/sd-model/master/sd_1.5/oukaStar_10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # oukaStar_10(5.43g) OFF __term_sd_task_pre_model_13 get_modelscope_model licyks/sd-model/master/sd_1.5/pastelMixStylizedAnime_pastelMixPrunedFP16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # pastelMixStylizedAnime(2.13g) OFF __term_sd_task_pre_model_14 get_modelscope_model licyks/sd-model/master/sd_1.5/rabbit_v6.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # rabbit_v6(1.97g) OFF __term_sd_task_pre_model_15 get_modelscope_model licyks/sd-model/master/sd_1.5/sweetSugarSyndrome_rev15.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sweetSugarSyndrome_rev15(2.13g) OFF __term_sd_task_pre_model_16 get_modelscope_model licyks/sd-model/master/sd_1.5/AnythingV5Ink_ink.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # AnythingV5Ink_ink(2.13g) OFF __term_sd_task_pre_model_17 get_modelscope_model licyks/sd-model/master/sd_1.5/bartstyledbBlueArchiveArtStyleFineTunedModel_v10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # bartstyledbBlueArchiveArtStyle(2.13g) OFF __term_sd_task_pre_model_18 get_modelscope_model licyks/sd-model/master/sd_1.5/meinapastel_v6Pastel.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # meinapastel_v6(2.13g) OFF __term_sd_task_pre_model_19 get_modelscope_model licyks/sd-model/master/sd_1.5/qteamixQ_omegaFp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # qteamix(2.13g) OFF __term_sd_task_pre_model_20 get_modelscope_model licyks/sd-model/master/sd_1.5/tmndMix_tmndMixSPRAINBOW.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # tmndMix(2.13g) OFF __term_sd_task_pre_model_21 # =====SD2.1大模型===== OFF __term_sd_task_pre_model_22 get_modelscope_model licyks/sd-model/master/sd_2.1/v2-1_768-ema-pruned.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # v2-1_768-ema-pruned(5.21g) OFF __term_sd_task_pre_model_23 get_modelscope_model licyks/sd-model/master/sd_2.1/wd-1-4-anime_e2.ckpt "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # wd-1-4-anime_e2(5.16g) OFF __term_sd_task_pre_model_24 get_modelscope_model licyks/sd-model/master/sd_2.1/wd-mofu-fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # wd-mofu-fp16(2.58g) OFF __term_sd_task_pre_model_25 # =====SDXL大模型===== OFF __term_sd_task_pre_model_26 get_modelscope_model licyks/sd-lora/master/sdxl/sd_xl_offset_example-lora_1.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Lora # sd_xl_offset_example-lora_1.0(49.6m) OFF __term_sd_task_pre_model_27 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_base_1.0_0.9vae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd_xl_base_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_28 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_refiner_1.0_0.9vae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd_xl_refiner_1.0_0.9vae(6.94g) OFF __term_sd_task_pre_model_29 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_turbo_1.0_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd_xl_turbo_1.0_fp16(6.94g) OFF __term_sd_task_pre_model_30 get_modelscope_model licyks/sd-model/master/sdxl_1.0/cosxl.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # cosxl(6.94g) OFF __term_sd_task_pre_model_31 get_modelscope_model licyks/sd-model/master/sdxl_1.0/cosxl_edit.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # cosxl_edit(6.94g) OFF __term_sd_task_pre_model_32 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0-base.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-3.0-base(6.94g) OFF __term_sd_task_pre_model_33 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-3.0(6.94g) OFF __term_sd_task_pre_model_34 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-3.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-3.1(6.94g) OFF __term_sd_task_pre_model_35 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-4.0(6.94g) OFF __term_sd_task_pre_model_36 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-opt.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-4.0-opt(6.94g) OFF __term_sd_task_pre_model_37 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animagine-xl-4.0-zero.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animagine-xl-4.0-zero(6.94g) OFF __term_sd_task_pre_model_38 get_modelscope_model licyks/sd-model/master/sdxl_1.0/holodayo-xl-2.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # holodayo-xl-2.1(6.94g) OFF __term_sd_task_pre_model_39 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kivotos-xl-2.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kivotos-xl-2.0(6.94g) OFF __term_sd_task_pre_model_40 get_modelscope_model licyks/sd-model/master/sdxl_1.0/clandestine-xl-1.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # clandestine-xl-1.0(6.94g) OFF __term_sd_task_pre_model_41 get_modelscope_model licyks/sd-model/master/sdxl_1.0/UrangDiffusion-1.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # UrangDiffusion-1.1(6.94g) OFF __term_sd_task_pre_model_42 get_modelscope_model licyks/sd-model/master/sdxl_1.0/RaeDiffusion-XL-v2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # RaeDiffusion-XL-v2(6.94g) OFF __term_sd_task_pre_model_43 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sd_xl_anime_V52.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd_xl_anime_V52(6.94g) OFF __term_sd_task_pre_model_44 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-delta-rev1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohaku-xl-delta-rev1(6.94g) OFF __term_sd_task_pre_model_45 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohakuXLEpsilon_rev1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohakuXLEpsilon_rev1(6.94g) OFF __term_sd_task_pre_model_46 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohaku-xl-epsilon-rev2(6.94g) OFF __term_sd_task_pre_model_47 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-epsilon-rev3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohaku-xl-epsilon-rev3(6.94g) OFF __term_sd_task_pre_model_48 get_modelscope_model licyks/sd-model/master/sdxl_1.0/kohaku-xl-zeta.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # kohaku-xl-zeta(6.94g) OFF __term_sd_task_pre_model_49 get_modelscope_model licyks/sd-model/master/sdxl_1.0/starryXLV52_v52.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # starryXLV52_v52(6.94g) OFF __term_sd_task_pre_model_50 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v20.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # heartOfAppleXL_v20(6.94g) OFF __term_sd_task_pre_model_51 get_modelscope_model licyks/sd-model/master/sdxl_1.0/heartOfAppleXL_v30.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # heartOfAppleXL_v30(6.94g) OFF __term_sd_task_pre_model_52 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBartstylexlBlueArchiveFlatCelluloid_xlv1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # baxlBartstylexlBlueArchiveFlatCelluloid_xlv1(6.94g) OFF __term_sd_task_pre_model_53 get_modelscope_model licyks/sd-model/master/sdxl_1.0/baxlBlueArchiveFlatCelluloidStyle_xlv3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # baxlBlueArchiveFlatCelluloidStyle_xlv3(6.94g) OFF __term_sd_task_pre_model_54 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sanaexlAnimeV10_v10(6.94g) OFF __term_sd_task_pre_model_55 get_modelscope_model licyks/sd-model/master/sdxl_1.0/sanaexlAnimeV10_v11.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sanaexlAnimeV10_v11(6.94g) OFF __term_sd_task_pre_model_56 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.2-aesthetic.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # SanaeXL-Anime-v1.2-aesthetic(6.94g) OFF __term_sd_task_pre_model_57 get_modelscope_model licyks/sd-model/master/sdxl_1.0/SanaeXL-Anime-v1.3-aesthetic.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # SanaeXL-Anime-v1.3-aesthetic(6.94g) OFF __term_sd_task_pre_model_58 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v0.1(6.94g) OFF __term_sd_task_pre_model_59 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v0.1-GUIDED.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v0.1-GUIDED(6.94g) OFF __term_sd_task_pre_model_60 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v1.0(6.94g) ON __term_sd_task_pre_model_61 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v1.1.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v1.1(6.94g) OFF __term_sd_task_pre_model_62 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0-stable.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v2.0-stable(6.94g) OFF __term_sd_task_pre_model_63 get_modelscope_model licyks/sd-model/master/sdxl_1.0/Illustrious-XL-v2.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # Illustrious-XL-v2.0(6.94g) OFF __term_sd_task_pre_model_64 get_modelscope_model licyks/sd-model/master/sdxl_1.0/jruTheJourneyRemains_v25XL.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # jruTheJourneyRemains_v25XL(6.94g) OFF __term_sd_task_pre_model_65 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_illustriousxl10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # PVCStyleModelMovable_illustriousxl10(6.94g) OFF __term_sd_task_pre_model_66 get_modelscope_model licyks/sd-model/master/sdxl_1.0/miaomiaoHarem_v15a.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # miaomiaoHarem_v15a(6.94g) OFF __term_sd_task_pre_model_67 get_modelscope_model licyks/sd-model/master/sdxl_1.0/waiNSFWIllustrious_v80.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # waiNSFWIllustrious_v80(6.94g) OFF __term_sd_task_pre_model_68 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tIllunai3_v4.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # tIllunai3_v4(6.94g) OFF __term_sd_task_pre_model_69 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_earlyAccessVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_earlyAccessVersion(6.94g) OFF __term_sd_task_pre_model_70 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred05Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred05Version(6.94g) OFF __term_sd_task_pre_model_71 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred075.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred075(6.94g) OFF __term_sd_task_pre_model_72 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred077.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred077(6.94g) OFF __term_sd_task_pre_model_73 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred10Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred10Version(6.94g) OFF __term_sd_task_pre_model_74 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_epsilonPred11Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_epsilonPred11Version(6.94g) OFF __term_sd_task_pre_model_75 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPredTestVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPredTestVersion(6.94g) OFF __term_sd_task_pre_model_76 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred05Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred05Version(6.94g) OFF __term_sd_task_pre_model_77 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred06Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred06Version(6.94g) OFF __term_sd_task_pre_model_78 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred065SVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred065SVersion(6.94g) OFF __term_sd_task_pre_model_79 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred075SVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred075SVersion(6.94g) OFF __term_sd_task_pre_model_80 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred09RVersion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred09RVersion(6.94g) OFF __term_sd_task_pre_model_81 get_modelscope_model licyks/sd-model/master/sdxl_1.0/noobaiXLNAIXL_vPred10Version.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # noobaiXLNAIXL_vPred10Version(6.94g) OFF __term_sd_task_pre_model_82 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxl12.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # PVCStyleModelMovable_nbxl12(6.94g) OFF __term_sd_task_pre_model_83 get_modelscope_model licyks/sd-model/master/sdxl_1.0/PVCStyleModelMovable_nbxlVPredV10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # PVCStyleModelMovable_nbxlVPredV10(6.94g) OFF __term_sd_task_pre_model_84 get_modelscope_model licyks/sd-model/master/sdxl_1.0/ponyDiffusionV6XL_v6StartWithThisOne.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # ponyDiffusionV6XL_v6(6.94g) OFF __term_sd_task_pre_model_85 get_modelscope_model licyks/sd-model/master/sdxl_1.0/pdForAnime_v20.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # pdForAnime_v20(7.11g) OFF __term_sd_task_pre_model_86 get_modelscope_model licyks/sd-model/master/sdxl_1.0/tPonynai3_v51WeightOptimized.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # tPonynai3_v51WeightOptimized(6.94g) OFF __term_sd_task_pre_model_87 get_modelscope_model licyks/sd-model/master/sdxl_1.0/omegaPonyXLAnime_v20.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # omegaPonyXLAnime_v20(6.94g) OFF __term_sd_task_pre_model_88 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animeIllustDiffusion_v061.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animeIllustDiffusion_v061(6.94g) OFF __term_sd_task_pre_model_89 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifuDiffusion_v10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # artiwaifuDiffusion_v10(6.94g) OFF __term_sd_task_pre_model_90 get_modelscope_model licyks/sd-model/master/sdxl_1.0/artiwaifu-diffusion-v2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # artiwaifu-diffusion-v2(6.94g) OFF __term_sd_task_pre_model_91 get_modelscope_model licyks/sd-model/master/sdxl_1.0/AnythingXL_xl.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # AnythingXL_xl(6.94g) OFF __term_sd_task_pre_model_92 get_modelscope_model licyks/sd-model/master/sdxl_1.0/abyssorangeXLElse_v10.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # abyssorangeXLElse_v10(6.94g) OFF __term_sd_task_pre_model_93 get_modelscope_model licyks/sd-model/master/sdxl_1.0/animaPencilXL_v200.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # animaPencilXL_v200(6.94g) OFF __term_sd_task_pre_model_94 get_modelscope_model licyks/sd-model/master/sdxl_1.0/bluePencilXL_v401.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # bluePencilXL_v401(6.94g) OFF __term_sd_task_pre_model_95 get_modelscope_model licyks/sd-model/master/sdxl_1.0/nekorayxl_v06W3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # nekorayxl_v06W3(6.94g) OFF __term_sd_task_pre_model_96 get_modelscope_model licyks/sd-model/master/sdxl_1.0/CounterfeitXL-V1.0.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # CounterfeitXL-V1.0(6.94g) OFF __term_sd_task_pre_model_97 # =====SD3大模型===== OFF __term_sd_task_pre_model_98 get_modelscope_model licyks/sd-3-model/master/sd3_medium.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3_medium(4.34g) OFF __term_sd_task_pre_model_99 get_modelscope_model licyks/sd-3-model/master/sd3_medium_incl_clips.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3_medium_incl_clips(5.97g) OFF __term_sd_task_pre_model_100 get_modelscope_model licyks/sd-3-model/master/sd3_medium_incl_clips_t5xxlfp8.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3_medium_incl_clips_t5xxlfp8(10.87g) OFF __term_sd_task_pre_model_101 get_modelscope_model licyks/sd-3-model/master/sd3.5_large.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_large(16.5g) OFF __term_sd_task_pre_model_102 get_modelscope_model licyks/sd-3-model/master/sd3.5_large_fp8_scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_large_fp8_scaled(14.9g) OFF __term_sd_task_pre_model_103 get_modelscope_model licyks/sd-3-model/master/sd3.5_large_turbo.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_large_turbo(16.5g) OFF __term_sd_task_pre_model_104 get_modelscope_model licyks/sd-3-model/master/sd3.5_medium.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_medium(5.1g) OFF __term_sd_task_pre_model_105 get_modelscope_model licyks/sd-3-model/master/sd3.5_medium_incl_clips_t5xxlfp8scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # sd3.5_medium_incl_clips_t5xxlfp8scaled(11.6g) OFF __term_sd_task_pre_model_106 get_modelscope_model licyks/sd-3-model/master/emi3.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # emi3(16.5g) OFF __term_sd_task_pre_model_107 # =====SD3文本编码器===== OFF __term_sd_task_pre_model_108 get_modelscope_model licyks/sd-3-model/master/text_encoders/clip_g.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # clip_g(1.39g) OFF __term_sd_task_pre_model_109 get_modelscope_model licyks/sd-3-model/master/text_encoders/clip_l.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # clip_l(246.1m) OFF __term_sd_task_pre_model_110 get_modelscope_model licyks/sd-3-model/master/text_encoders/t5xxl_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_111 get_modelscope_model licyks/sd-3-model/master/text_encoders/t5xxl_fp8_e4m3fn.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_112 get_modelscope_model licyks/sd-3-model/master/text_encoders/t5xxl_fp8_e4m3fn_scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/CLIP # t5xxl_fp8_e4m3fn_scaled(5.16g) OFF __term_sd_task_pre_model_113 # =====FLUX模型===== OFF __term_sd_task_pre_model_114 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev(23.8g) OFF __term_sd_task_pre_model_115 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-fp8.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-fp8(17.2g) OFF __term_sd_task_pre_model_116 get_modelscope_model licyks/flux-model/master/flux_1/flux_dev_fp8_scaled_diffusion_model.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux_dev_fp8_scaled_diffusion_model(11.9g) OFF __term_sd_task_pre_model_117 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-bnb-nf4-v2.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-bnb-nf4-v2(12g) OFF __term_sd_task_pre_model_118 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-bnb-nf4.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-bnb-nf4(11.5g) OFF __term_sd_task_pre_model_119 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q2_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q2_K-gguf(4.03g) OFF __term_sd_task_pre_model_120 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q3_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q3_K_S-gguf(5.23g) OFF __term_sd_task_pre_model_121 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q4_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q4_0-gguf(6.79g) OFF __term_sd_task_pre_model_122 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q4_1.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q4_1-gguf(7.53g) OFF __term_sd_task_pre_model_123 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q4_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q4_K_S-gguf(6.81g) OFF __term_sd_task_pre_model_124 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q5_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q5_0-gguf(8.27g) OFF __term_sd_task_pre_model_125 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q5_1.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q5_1-gguf(9.01g) OFF __term_sd_task_pre_model_126 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q5_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q5_K_S-gguf(8.29g) OFF __term_sd_task_pre_model_127 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q6_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q6_K-gguf(9.86g) OFF __term_sd_task_pre_model_128 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-Q8_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_129 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-F16.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-F16-gguf(23.8g) OFF __term_sd_task_pre_model_130 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell(23.8g) OFF __term_sd_task_pre_model_131 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-fp8.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-fp8(17.2g) OFF __term_sd_task_pre_model_132 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q2_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q2_K-gguf(4.01g) OFF __term_sd_task_pre_model_133 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q3_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q3_K_S-gguf(5.21g) OFF __term_sd_task_pre_model_134 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q4_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q4_0-gguf(6.77g) OFF __term_sd_task_pre_model_135 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q4_1.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q4_1-gguf(7.51g) OFF __term_sd_task_pre_model_136 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q4_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q4_K_S-gguf(6.78g) OFF __term_sd_task_pre_model_137 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q5_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q5_0-gguf(8.25g) OFF __term_sd_task_pre_model_138 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q5_1.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q5_1-gguf(8.99g) OFF __term_sd_task_pre_model_139 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q5_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q5_K_S-gguf(8.26g) OFF __term_sd_task_pre_model_140 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q6_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q6_K-gguf(9.83g) OFF __term_sd_task_pre_model_141 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-Q8_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-Q8_0-gguf(12.7g) OFF __term_sd_task_pre_model_142 get_modelscope_model licyks/flux-model/master/flux_1/flux1-schnell-F16.gguf "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-schnell-F16-gguf(23.8g) OFF __term_sd_task_pre_model_143 get_modelscope_model licyks/flux-model/master/flux_1/ashen0209-flux1-dev2pro.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # ashen0209-flux1-dev2pro(23.8g) OFF __term_sd_task_pre_model_144 get_modelscope_model licyks/flux-model/master/flux_1/jimmycarter-LibreFLUX.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # jimmycarter-LibreFLUX(23.8g) OFF __term_sd_task_pre_model_145 get_modelscope_model licyks/flux-model/master/flux_1/nyanko7-flux-dev-de-distill.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # nyanko7-flux-dev-de-distill(23.8g) OFF __term_sd_task_pre_model_146 get_modelscope_model licyks/flux-model/master/flux_1/shuttle-3-diffusion.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # shuttle-3-diffusion(23.8g) OFF __term_sd_task_pre_model_147 get_modelscope_model licyks/flux-model/master/flux_1/flux1-krea-dev_fp8_scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-krea-dev_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_148 get_modelscope_model licyks/flux-model/master/flux_1/flux1-krea-dev.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-krea-dev(23.8g) OFF __term_sd_task_pre_model_149 get_modelscope_model licyks/flux-model/master/flux_1/flux1-dev-kontext_fp8_scaled.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-dev-kontext_fp8_scaled(23.8g) OFF __term_sd_task_pre_model_150 get_modelscope_model licyks/flux-model/master/flux_1/flux1-kontext-dev.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # flux1-kontext-dev(23.8g) OFF __term_sd_task_pre_model_151 get_modelscope_model licyks/flux-model/master/flux_1/chroma-unlocked-v50.safetensors "${SD_WEBUI_ROOT_PATH}"/models/Stable-diffusion # chroma-unlocked-v50(23.8g) OFF __term_sd_task_pre_model_152 # =====FLUX-文本编码器/VAE模型===== OFF __term_sd_task_pre_model_153 get_modelscope_model licyks/flux-model/master/flux_text_encoders/clip_l.safetensors "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # clip_l(246.1m) OFF __term_sd_task_pre_model_154 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5xxl_fp16.safetensors "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5xxl_fp16(9.79g) OFF __term_sd_task_pre_model_155 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5xxl_fp8_e4m3fn(4.89g) OFF __term_sd_task_pre_model_156 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_L.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q3_K_L-gguf(2.46g) OFF __term_sd_task_pre_model_157 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_M.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q3_K_M-gguf(2.3g) OFF __term_sd_task_pre_model_158 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q3_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q3_K_S-gguf(2.1g) OFF __term_sd_task_pre_model_159 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q4_K_M.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q4_K_M-gguf(2.9g) OFF __term_sd_task_pre_model_160 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q4_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q4_K_S-gguf(2.74g) OFF __term_sd_task_pre_model_161 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q5_K_M.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q5_K_M-gguf(3.39g) OFF __term_sd_task_pre_model_162 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q5_K_S.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q5_K_S-gguf(3.29g) OFF __term_sd_task_pre_model_163 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q6_K.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q6_K-gguf(3.91g) OFF __term_sd_task_pre_model_164 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-Q8_0.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-Q8_0-gguf(5.06g) OFF __term_sd_task_pre_model_165 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-f16.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-f16-gguf(9.53g) OFF __term_sd_task_pre_model_166 get_modelscope_model licyks/flux-model/master/flux_text_encoders/t5-v1_1-xxl-encoder-f32.gguf "${SD_WEBUI_ROOT_PATH}"/models/text_encoder # t5-v1_1-xxl-encoder-f32-gguf(19.1g) OFF __term_sd_task_pre_model_167 get_modelscope_model licyks/flux-model/master/flux_vae/ae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # ae(335m) OFF __term_sd_task_pre_model_168 # =====VAE模型===== OFF __term_sd_task_pre_model_169 get_modelscope_model licyks/sd-vae/master/sd_1.5/vae-ft-ema-560000-ema-pruned.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # VAE模型 vae-ft-ema-560000-ema-pruned(334.6m) OFF __term_sd_task_pre_model_170 get_modelscope_model licyks/sd-vae/master/sd_1.5/vae-ft-mse-840000-ema-pruned.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # vae-ft-mse-840000-ema-pruned(334.6m) ON __term_sd_task_pre_model_171 get_modelscope_model licyks/sd-vae/master/sdxl_1.0/sdxl_vae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # sdxl_vae(334.6m) OFF __term_sd_task_pre_model_172 get_modelscope_model licyks/sd-vae/master/sdxl_1.0/sdxl_fp16_fix_vae.safetensors "${SD_WEBUI_ROOT_PATH}"/models/VAE # sdxl_fp16_fix_vae(334.6m) OFF __term_sd_task_pre_model_173 # =====VAE-approx模型===== OFF __term_sd_task_pre_model_174 get_modelscope_model licyks/sd-vae/master/vae-approx/model.pt "${SD_WEBUI_ROOT_PATH}"/models/VAE-approx # VAE-approx模型 model(0.2m) ON __term_sd_task_pre_model_175 get_modelscope_model licyks/sd-vae/master/vae-approx/vaeapprox-sdxl.pt "${SD_WEBUI_ROOT_PATH}"/models/VAE-approx # vaeapprox-sdxl(0.2m) ON __term_sd_task_pre_model_176 get_modelscope_model licyks/sd-vae/master/vae-approx/vaeapprox-sd3.pt "${SD_WEBUI_ROOT_PATH}"/models/VAE-approx # vaeapprox-sd3(0.2m) OFF __term_sd_task_pre_model_177 # =====放大模型===== OFF __term_sd_task_pre_model_178 get_modelscope_model licyks/sd-upscaler-models/master/Codeformer/codeformer-v0.1.0.pth "${SD_WEBUI_ROOT_PATH}"/models/Codeformer # codeformer-v0.1.0(376.6m) OFF __term_sd_task_pre_model_179 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_2_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_2_x2(139.7m) OFF __term_sd_task_pre_model_180 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_2_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_2_x3(140.4m) OFF __term_sd_task_pre_model_181 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_2_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_2_x4(140.3m) OFF __term_sd_task_pre_model_182 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_S_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_S_x2(87.7m) OFF __term_sd_task_pre_model_183 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_S_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_S_x3(88.4m) OFF __term_sd_task_pre_model_184 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_S_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_S_x4(88.2m) OFF __term_sd_task_pre_model_185 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_light_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_light_x2(45.7m) OFF __term_sd_task_pre_model_186 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_light_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_light_x3(45.7m) OFF __term_sd_task_pre_model_187 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_light_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_light_x4(45.8m) OFF __term_sd_task_pre_model_188 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_x2(154.1m) OFF __term_sd_task_pre_model_189 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_x3(154.8m) OFF __term_sd_task_pre_model_190 get_modelscope_model licyks/sd-upscaler-models/master/DAT/DAT_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/DAT # DAT_x4(154.7m) OFF __term_sd_task_pre_model_191 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/16xPSNR.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 16xPSNR(67.2m) OFF __term_sd_task_pre_model_192 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x-ITF-SkinDiffDetail-Lite-v1.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x-ITF-SkinDiffDetail-Lite-v1(20.1m) OFF __term_sd_task_pre_model_193 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NMKD-BrightenRedux_200k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NMKD-BrightenRedux_200k(66.6m) OFF __term_sd_task_pre_model_194 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NMKD-YandereInpaint_375000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NMKD-YandereInpaint_375000_G(66.6m) OFF __term_sd_task_pre_model_195 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NMKDDetoon_97500_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NMKDDetoon_97500_G(66.6m) OFF __term_sd_task_pre_model_196 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NoiseToner-Poisson-Detailed_108000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NoiseToner-Poisson-Detailed_108000_G(66.6m) OFF __term_sd_task_pre_model_197 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/1x_NoiseToner-Uniform-Detailed_100000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 1x_NoiseToner-Uniform-Detailed_100000_G(66.6m) OFF __term_sd_task_pre_model_198 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x-UltraSharp.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x-UltraSharp(66.9m) OFF __term_sd_task_pre_model_199 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4xPSNR.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4xPSNR(66.9m) OFF __term_sd_task_pre_model_200 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_CountryRoads_377000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_CountryRoads_377000_G(66.9m) OFF __term_sd_task_pre_model_201 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_Fatality_Comix_260000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_Fatality_Comix_260000_G(66.9m) OFF __term_sd_task_pre_model_202 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-Siax_200k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-Siax_200k(66.9m) OFF __term_sd_task_pre_model_203 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-Superscale-Artisoftject_210000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-Superscale-Artisoftject_210000_G(66.9m) OFF __term_sd_task_pre_model_204 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-Superscale-SP_178000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-Superscale-SP_178000_G(66.9m) ON __term_sd_task_pre_model_205 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-UltraYandere-Lite_280k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-UltraYandere-Lite_280k(20.1m) OFF __term_sd_task_pre_model_206 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-UltraYandere_300k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-UltraYandere_300k(66.9m) OFF __term_sd_task_pre_model_207 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKD-YandereNeoXL_200k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKD-YandereNeoXL_200k(66.9m) OFF __term_sd_task_pre_model_208 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NMKDSuperscale_Artisoft_120000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NMKDSuperscale_Artisoft_120000_G(67.1m) OFF __term_sd_task_pre_model_209 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_NickelbackFS_72000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_NickelbackFS_72000_G(67.1m) OFF __term_sd_task_pre_model_210 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_Nickelback_70000G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_Nickelback_70000G(66.9m) OFF __term_sd_task_pre_model_211 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_RealisticRescaler_100000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_RealisticRescaler_100000_G(134.1m) OFF __term_sd_task_pre_model_212 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_Valar_v1.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_Valar_v1(67.5m) OFF __term_sd_task_pre_model_213 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_fatal_Anime_500000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_fatal_Anime_500000_G(66.9m) OFF __term_sd_task_pre_model_214 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/4x_foolhardy_Remacri.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_foolhardy_Remacri(67m) OFF __term_sd_task_pre_model_215 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/8xPSNR.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 8xPSNR(67.1m) OFF __term_sd_task_pre_model_216 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/8x_NMKD-Superscale_150000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 8x_NMKD-Superscale_150000_G(67.1m) OFF __term_sd_task_pre_model_217 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/8x_NMKD-Typescale_175k.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 8x_NMKD-Typescale_175k(67.1m) OFF __term_sd_task_pre_model_218 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/A_ESRGAN_Single.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # A_ESRGAN_Single(134.1m) OFF __term_sd_task_pre_model_219 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/BSRGAN.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # BSRGAN(67.1m) OFF __term_sd_task_pre_model_220 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/BSRGANx2.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # BSRGANx2(66.8m) OFF __term_sd_task_pre_model_221 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/BSRNet.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # BSRNet(67.1m) OFF __term_sd_task_pre_model_222 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/ESRGAN_4x.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # ESRGAN_4x(66.9m) OFF __term_sd_task_pre_model_223 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/LADDIER1_282500_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # LADDIER1_282500_G(66.9m) OFF __term_sd_task_pre_model_224 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Neutral_115000_swaG.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscalerV2-Neutral_115000_swaG(66.9m) OFF __term_sd_task_pre_model_225 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Sharp_101000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscalerV2-Sharp_101000_G(66.9m) OFF __term_sd_task_pre_model_226 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/4x_UniversalUpscalerV2-Sharper_103000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscalerV2-Sharper_103000_G(66.9m) OFF __term_sd_task_pre_model_227 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/Legacy/4x_UniversalUpscaler-Detailed_155000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscaler-Detailed_155000_G(66.9m) OFF __term_sd_task_pre_model_228 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/UniversalUpscaler/Legacy/4x_UniversalUpscaler-Soft_190000_G.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # 4x_UniversalUpscaler-Soft_190000_G(66.9m) OFF __term_sd_task_pre_model_229 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/WaifuGAN_v3_30000.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # WaifuGAN_v3_30000(66.9m) OFF __term_sd_task_pre_model_230 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/lollypop.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # lollypop(66.9m) OFF __term_sd_task_pre_model_231 get_modelscope_model licyks/sd-upscaler-models/master/ESRGAN/sudo_rife4_269.662_testV1_scale1.pth "${SD_WEBUI_ROOT_PATH}"/models/ESRGAN # sudo_rife4_269.662_testV1_scale1(33.7m) OFF __term_sd_task_pre_model_232 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/GFPGANv1.3.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # GFPGANv1.3(348.6m) OFF __term_sd_task_pre_model_233 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/GFPGANv1.4.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # GFPGANv1.4(348.6m) OFF __term_sd_task_pre_model_234 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/detection_Resnet50_Final.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # detection_Resnet50_Final(109.5m) OFF __term_sd_task_pre_model_235 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/parsing_bisenet.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # parsing_bisenet(12.2m) OFF __term_sd_task_pre_model_236 get_modelscope_model licyks/sd-upscaler-models/master/GFPGAN/parsing_parsenet.pth "${SD_WEBUI_ROOT_PATH}"/models/GFPGAN # parsing_parsenet(85.3m) OFF __term_sd_task_pre_model_237 get_modelscope_model licyks/sd-upscaler-models/master/RealESRGAN/RealESRGAN_x4plus.pth "${SD_WEBUI_ROOT_PATH}"/models/RealESRGAN # RealESRGAN_x4plus(67m) ON __term_sd_task_pre_model_238 get_modelscope_model licyks/sd-upscaler-models/master/RealESRGAN/RealESRGAN_x4plus_anime_6B.pth "${SD_WEBUI_ROOT_PATH}"/models/RealESRGAN # RealESRGAN_x4plus_anime_6B(17.9m) ON __term_sd_task_pre_model_239 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DF2K_s64w8_SwinIR-M_x2(67.2m) OFF __term_sd_task_pre_model_240 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DF2K_s64w8_SwinIR-M_x3(68m) OFF __term_sd_task_pre_model_241 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DF2K_s64w8_SwinIR-M_x4(67.8m) OFF __term_sd_task_pre_model_242 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DF2K_s64w8_SwinIR-M_x8(68.4m) OFF __term_sd_task_pre_model_243 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x2(59m) OFF __term_sd_task_pre_model_244 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x3(59.7m) OFF __term_sd_task_pre_model_245 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x4(59.6m) OFF __term_sd_task_pre_model_246 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # 001_classicalSR_DIV2K_s48w8_SwinIR-M_x8(60.2m) OFF __term_sd_task_pre_model_247 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/Swin2SR_ClassicalSR_X2_64.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # Swin2SR_ClassicalSR_X2_64(68.7m) OFF __term_sd_task_pre_model_248 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/Swin2SR_ClassicalSR_X4_64.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # Swin2SR_ClassicalSR_X4_64(69.3m) OFF __term_sd_task_pre_model_249 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/Swin2SR_CompressedSR_X4_48.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # Swin2SR_CompressedSR_X4_48(61.1m) OFF __term_sd_task_pre_model_250 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR(68.6m) OFF __term_sd_task_pre_model_251 get_modelscope_model licyks/sd-upscaler-models/master/SwinIR/SwinIR_4x.pth "${SD_WEBUI_ROOT_PATH}"/models/SwinIR # SwinIR_4x(142.4m) OFF __term_sd_task_pre_model_252 # =====图生图反推Tag模型===== OFF __term_sd_task_pre_model_253 get_modelscope_model licyks/sd-upscaler-models/master/BLIP/model_base_caption_capfilt_large.pth "${SD_WEBUI_ROOT_PATH}"/models/BLIP # BLIP模型 model_base_caption_capfilt_large(896m) OFF __term_sd_task_pre_model_254 get_modelscope_model licyks/sd-upscaler-models/master/torch_deepdanbooru/model-resnet_custom_v3.pt "${SD_WEBUI_ROOT_PATH}"/models/torch_deepdanbooru # deepdanbooru模型 model-resnet_custom_v3(644.1m) OFF __term_sd_task_pre_model_255 # =====Embedding模型===== OFF __term_sd_task_pre_model_256 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/EasyNegativeV2.safetensors "${SD_WEBUI_ROOT_PATH}"/embeddings # embeddings模型 EasyNegativeV2(0.1m) ON __term_sd_task_pre_model_257 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad-artist-anime.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad-artist-anime(0.1m) ON __term_sd_task_pre_model_258 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad-artist.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad-artist(0.1m) ON __term_sd_task_pre_model_259 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad-hands-5.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad-hands-5(0.1m) ON __term_sd_task_pre_model_260 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad-image-v2-39000.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad-image-v2-39000(0.1m) ON __term_sd_task_pre_model_261 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/bad_prompt_version2.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # bad_prompt_version2(0.1m) ON __term_sd_task_pre_model_262 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/ng_deepnegative_v1_75t.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # ng_deepnegative_v1_75t(0.1m) ON __term_sd_task_pre_model_263 get_modelscope_model licyks/sd-embeddings/master/sd_1.5/verybadimagenegative_v1.3.pt "${SD_WEBUI_ROOT_PATH}"/embeddings # verybadimagenegative_v1.3(0.1m) ON
2301_81996401/term-sd
install/sd_webui/sd_webui_ms_model.sh
Shell
agpl-3.0
49,345
#!/bin/bash # A1111 SD WebUI 启动脚本参数设置 # 启动参数保存在 <Start Path>/term-sd/config/sd-webui-launch.conf a1111_sd_webui_launch_args_setting() { local arg local dialog_arg local launch_args local i dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --checklist "请选择 A1111-Stable-Diffusion-WebUI 启动参数, 确认之后将覆盖原有启动参数配置" \ $(get_dialog_size_menu) \ "1" "(update-all-extensions) 启动时更新所有扩展" OFF \ "2" "(skip-python-version-check) 跳过检查 Python 版本" OFF \ "3" "(skip-torch-cuda-test) 跳过 CUDA 可用性检查" OFF \ "4" "(reinstall-xformers) 启动时重新安装 xFormers" OFF \ "5" "(reinstall-torch) 启动时重新安装 PyTorch" OFF \ "6" "(update-check) 启动时检查更新" OFF \ "7" "(test-server) 配置测试服务器" OFF \ "8" "(log-startup) 显示详细启动日志" OFF \ "9" "(skip-prepare-environment) 跳过所有环境准备工作" OFF \ "10" "(skip-install) 跳过软件包的安装" OFF \ "11" "(dump-sysinfo) 将系统信息文件保存到磁盘并退出" OFF \ "12" "(do-not-download-clip) 跳过下载 CLIP 模型" OFF \ "13" "(no-half) 关闭 UNet 半精度优化" OFF \ "14" "(no-half-vae) 关闭 VAE 模型半精度优化" OFF \ "15" "(no-progressbar-hiding) 不隐藏 Gradio UI 中进度条" OFF \ "16" "(allow-code) 允许从 WebUI 执行自定义脚本" OFF \ "17" "(medvram) 启用显存优化 (显存 < 6g 时推荐使用)" OFF \ "18" "(medvram-sdxl) 仅在 SDXL 模型启用显存优化 (显存 < 8g 时推荐使用)" OFF \ "19" "(lowvram) 启用显存优化 (显存 < 4g 时推荐使用)" OFF \ "20" "(lowram) 将模型加载到显存中而不是内存中" OFF \ "21" "(precision half) 使用模型半精度" OFF \ "22" "(precision full) 使用模型全精度" OFF \ "23" "(upcast-sampling) 使用向上采样法提高精度" OFF \ "24" "(share) 通过 Gradio 共享" OFF \ "25" "(enable-insecure-extension-access) 允许在开放远程访问时安装插件" OFF \ "26" "(xformers) 尝试使用 xFormers 优化" OFF \ "27" "(force-enable-xformers) 强制使用 xFormers 优化" OFF \ "28" "(xformers-flash-attention) 使用 xFormers-Flash优化 (仅支持 SD2.x 以上)" OFF \ "29" "(opt-split-attention) 使用 Split 优化" OFF \ "30" "(opt-sub-quad-attention) 使用 Sub-Quad 优化" OFF \ "31" "(opt-split-attention-invokeai) 使用 Sub-Quad-InvokeAI 优化" OFF \ "32" "(opt-split-attention-v1) 使用 Sub-Quad-V1 优化" OFF \ "33" "(opt-sdp-attention) 使用 Sdp 优化 (仅限 PyTorch2.0 以上)" OFF \ "34" "(opt-sdp-no-mem-attention) 使用无高效内存使用的 Sdp 优化" OFF \ "35" "(disable-opt-split-attention) 禁用 Split 优化" OFF \ "36" "(disable-nan-check) 禁用潜空间 NAN 检查" OFF \ "37" "(use-cpu) 使用 CPU 进行生图" OFF \ "38" "(disable-model-loading-ram-optimization) 禁用减少内存使用的优化" OFF \ "39" "(listen) 开放远程连接" OFF \ "40" "(hide-ui-dir-config) 隐藏 WebUI 目录配置" OFF \ "41" "(freeze-settings) 冻结 WebUI 设置" OFF \ "42" "(gradio-debug) 以 Debug 模式启用 Gradio" OFF \ "43" "(opt-channelslast) 使用 Channelslast 内存格式优化" OFF \ "44" "(autolaunch) 启动 WebUI 完成后自动启动浏览器" OFF \ "45" "(theme dark) 使用黑暗主题" OFF \ "46" "(use-textbox-seed) 使用文本框在 WebUI 中生成的种子" OFF \ "47" "(disable-console-progressbars) 禁用控制台进度条显示" OFF \ "48" "(enable-console-prompts) 启用在生图时输出提示词到控制台" OFF \ "49" "(disable-safe-unpickle) 禁用检查模型是否包含恶意代码" OFF \ "50" "(api) 启用 API" OFF \ "51" "(api-log) 启用输出所有 API 请求的日志记录" OFF \ "52" "(nowebui) 不加载 WebUI 界面" OFF \ "53" "(ui-debug-mode) 不加载模型启动 WebUI (UI Debug)" OFF \ "54" "(administrator) 启用管理员权限" OFF \ "55" "(disable-tls-verify) 禁用 TLS 证书验证" OFF \ "56" "(no-gradio-queue) 禁用 Gradio 队列" OFF \ "57" "(skip-version-check) 禁用 PyTorch, xFormers 版本检查" OFF \ "58" "(no-hashing) 禁用模型 Hash 检查" OFF \ "59" "(no-download-sd-model) 禁用自动下载模型, 即使模型路径无模型" OFF \ "60" "(add-stop-route) 添加 /_stop 路由以停止服务器" OFF \ "61" "(api-server-stop) 通过 API 启用服务器停止/重启/终止功能" OFF \ "62" "(disable-all-extensions) 禁用所有扩展运行" OFF \ "63" "(disable-extra-extensions) 禁用非内置的扩展运行" OFF \ "64" "(use-ipex) 使用 Intel XPU 作为生图后端" OFF \ "65" "(skip-load-model-at-start) 启动 WebUI 时不加载模型, 加速启动" OFF \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then for i in ${dialog_arg}; do case "${i}" in 1) arg="--update-all-extensions" ;; 2) arg="--skip-python-version-check" ;; 3) arg="--skip-torch-cuda-test" ;; 4) arg="--reinstall-xformers" ;; 5) arg="--reinstall-torch" ;; 6) arg="--update-check" ;; 7) arg="--test-server" ;; 8) arg="--log-startup" ;; 9) arg="--skip-prepare-environment" ;; 10) arg="--skip-install" ;; 11) arg="--dump-sysinfo" ;; 12) arg="--do-not-download-clip" ;; 13) arg="--no-half" ;; 14) arg="--no-half-vae" ;; 15) arg="--no-progressbar-hiding" ;; 16) arg="--allow-code" ;; 17) arg="--medvram" ;; 18) arg="--medvram-sdxl" ;; 19) arg="--lowvram" ;; 20) arg="--lowram" ;; 21) arg="--precision half" ;; 22) arg="--precision full" ;; 23) arg="--upcast-sampling" ;; 24) arg="--share" ;; 25) arg="--enable-insecure-extension-access" ;; 26) arg="--xformers" ;; 27) arg="--force-enable-xformers" ;; 28) arg="--xformers-flash-attention" ;; 29) arg="--opt-split-attention" ;; 30) arg="--opt-sub-quad-attention" ;; 31) arg="--opt-split-attention-invokeai" ;; 32) arg="--opt-split-attention-v1" ;; 33) arg="--opt-sdp-attention" ;; 34) arg="--opt-sdp-no-mem-attention" ;; 35) arg="--disable-opt-split-attention" ;; 36) arg="--disable-nan-check" ;; 37) arg="--use-cpu all" ;; 38) arg="--disable-model-loading-ram-optimization" ;; 39) arg="--listen" ;; 40) arg="--hide-ui-dir-config" ;; 41) arg="--freeze-settings" ;; 42) arg="--gradio-debug" ;; 43) arg="--opt-channelslast" ;; 44) arg="--autolaunch" ;; 45) arg="--theme dark" ;; 46) arg="--use-textbox-seed" ;; 47) arg="--disable-console-progressbars" ;; 48) arg="--enable-console-prompts" ;; 49) arg="--disable-safe-unpickle" ;; 50) arg="--api" ;; 51) arg="--api-log" ;; 52) arg="--nowebui" ;; 53) arg="--ui-debug-mode" ;; 54) arg="--administrator" ;; 55) arg="--disable-tls-verify" ;; 56) arg="--no-gradio-queue" ;; 57) arg="--skip-version-check" ;; 58) arg="--no-hashing" ;; 59) arg="--no-download-sd-model" ;; 60) arg="--add-stop-route" ;; 61) arg="--api-server-stop" ;; 62) arg="--disable-all-extensions" ;; 63) arg="--disable-extra-extensions" ;; 64) arg="--use-ipex" ;; 65) arg="--skip-load-model-at-start" ;; esac launch_args="${arg} ${launch_args}" done # 生成启动脚本 term_sd_echo "设置 A1111-Stable-Diffusion-WebUI 启动参数: ${launch_args}" echo "launch.py ${launch_args}" > "${START_PATH}"/term-sd/config/sd-webui-launch.conf else term_sd_echo "取消设置 A1111-Stable-Diffusion-WebUI 启动参数" fi } # A1111 SD WebUI 启动界面 a1111_sd_webui_launch() { local dialog_arg local launch_args add_a1111_sd_webui_normal_launch_args # 当没有设置启动参数时默认生成一个启动参数 while true; do launch_args=$(cat "${START_PATH}"/term-sd/config/sd-webui-launch.conf) if is_use_venv; then launch_args="python ${launch_args}" else launch_args="${TERM_SD_PYTHON_PATH} ${launch_args}" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 启动选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择启动 A1111-Stable-Diffusion-WebUI / 修改 A1111-Stable-Diffusion-WebUI 启动参数\n当前启动参数: ${launch_args}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 配置预设启动参数" \ "3" "> 修改自定义启动参数" \ "4" "> 重置启动参数" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_launch ;; 2) a1111_sd_webui_launch_args_setting ;; 3) a1111_sd_webui_launch_args_revise ;; 4) restore_a1111_sd_webui_launch_args ;; *) break ;; esac done } # A1111 SD WebUI 启动参数修改 # 启动修改界面时将从 <Start Path>/term-sd/config/sd-webui-launch.conf 中读取启动参数 # 可接着上次的启动参数进行修改 a1111_sd_webui_launch_args_revise() { local dialog_arg local launch_args launch_args=$(cat "${START_PATH}"/term-sd/config/sd-webui-launch.conf | awk '{sub("launch.py ","")}1') dialog_arg=$(dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 自定义启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入 A1111-Stable-Diffusion-WebUI 启动参数" \ $(get_dialog_size) \ "${launch_args}" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then term_sd_echo "设置 A1111-Stable-Diffusion-WebUI 启动参数: ${dialog_arg}" echo "launch.py ${dialog_arg}" > "${START_PATH}"/term-sd/config/sd-webui-launch.conf else term_sd_echo "取消修改 A1111-Stable-Diffusion-WebUI 启动参数" fi } # 添加默认启动参数配置 add_a1111_sd_webui_normal_launch_args() { if [[ ! -f "${START_PATH}/term-sd/config/sd-webui-launch.conf" ]]; then # 找不到启动配置时默认生成一个 if [[ "${OSTYPE}" == "darwin"* ]]; then echo "launch.py --theme dark --autolaunch --api --skip-load-model-at-start --skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate" > "${START_PATH}"/term-sd/config/sd-webui-launch.conf else echo "launch.py --theme dark --autolaunch --xformers --api --skip-load-model-at-start" > "${START_PATH}"/term-sd/config/sd-webui-launch.conf fi fi } # 重置启动参数 restore_a1111_sd_webui_launch_args() { if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 重置启动参数选项选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重置 A1111-Stable-Diffusion-WebUI 启动参数 ?" \ $(get_dialog_size)); then term_sd_echo "重置 A1111-Stable-Diffusion-WebUI 启动参数" rm -f "${START_PATH}"/term-sd/config/sd-webui-launch.conf add_a1111_sd_webui_normal_launch_args else term_sd_echo "取消重置 A1111-Stable-Diffusion-WebUI 启动参数操作" fi }
2301_81996401/term-sd
modules/a1111_sd_webui_launch.sh
Shell
agpl-3.0
15,468
#!/bin/bash # ComfyUI 自定义节点管理器 # 管理 <ComfyUI Path>/custom_nodes 文件夹下的自定义节点 comfyui_custom_node_manager() { local dialog_arg if [[ ! -d "${COMFYUI_ROOT_PATH}"/custom_nodes ]]; then dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点管理选项" \ --ok-label "确认" \ --msgbox "找不到 ComfyUI 自定义节点目录, 请检查 ComfyUI 是否安装完整" \ $(get_dialog_size) return 1 fi while true; do cd "${COMFYUI_ROOT_PATH}"/custom_nodes # 回到最初路径 dialog_arg=$(dialog --erase-on-exit --notags \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 ComfyUI 自定义节点管理选项的功能" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 安装自定义节点" \ "2" "> 管理自定义节点" \ "3" "> 更新全部自定义节点" \ "4" "> 安装全部自定义节点依赖" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) # 选择安装 comfyui_custom_node_install ;; 2) # 选择管理 comfyui_custom_node_list ;; 3) # 选择更新全部自定义节点 if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点管理" \ --yes-label "是" --no-label "否" \ --yesno "是否更新所有 ComfyUI 自定义节点 ?" \ $(get_dialog_size)); then update_all_extension fi ;; 4) # 选择安装全部自定义节点依赖 if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点管理" \ --yes-label "是" --no-label "否" \ --yesno "是否安装所有 ComfyUI 自定义节点的依赖 ?" \ $(get_dialog_size)); then comfyui_extension_depend_install "自定义节点" fi ;; *) break ;; esac done } # ComfyUI 自定义节点安装 # 使用 COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE 全局变量临时储存安装信息 comfyui_custom_node_install() { local repo_url local custom_node_name repo_url=$(dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点安装选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "输入自定义节点的 Github 地址或其他下载地址" \ $(get_dialog_size) \ 3>&1 1>&2 2>&3) if [[ ! -z "${repo_url}" ]]; then custom_node_name=$(basename "${repo_url}" | awk -F '.git' '{print $1}') term_sd_echo "安装 ${custom_node_name} 自定义节点中" if ! term_sd_is_git_repository_exist "${repo_url}"; then # 检查待安装的自定义节点是否存在于自定义节点文件夹中 term_sd_try git clone --recurse-submodules "${repo_url}" "${COMFYUI_ROOT_PATH}/custom_nodes/${custom_node_name}" if [[ "$?" == 0 ]]; then COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${custom_node_name} 自定义节点安装成功" comfyui_extension_depend_install_auto "自定义节点" "${custom_node_name}" # 检查是否存在依赖文件并安装 else COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${custom_node_name} 自定义节点安装失败" fi else COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${custom_node_name} 自定义节点已存在" fi dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点安装结果" \ --ok-label "确认" \ --msgbox "${COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE}" \ $(get_dialog_size) unset COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点管理选项" \ --ok-label "确认" \ --msgbox "输入的 ComfyUI 自定义节点安装地址为空" \ $(get_dialog_size) fi } # 自定义节点浏览器 # 将列出 <ComfyUI Path>/custom_nodes 中所有的自定义节点的文件夹 comfyui_custom_node_list() { local custom_node_name while true; do cd "${COMFYUI_ROOT_PATH}"/custom_nodes # 回到最初路径 get_dir_folder_list # 获取当前目录下的所有文件夹 if term_sd_is_bash_ver_lower; then # Bash 版本低于 4 时使用旧版列表显示方案 custom_node_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点列表" \ --menu "使用上下键选择要操作的自定义节点并回车确认" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST}" \ 3>&1 1>&2 2>&3) else custom_node_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点列表" \ --menu "使用上下键选择要操作的自定义节点并回车确认" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST[@]}" \ 3>&1 1>&2 2>&3) fi if [[ "$?" == 0 ]]; then if [[ "${custom_node_name}" == "-->返回<--" ]]; then break elif [[ -d "${custom_node_name}" ]]; then # 选择文件夹 cd "${custom_node_name}" comfyui_custom_node_interface "${custom_node_name}" else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点管理" \ --ok-label "确认" \ --msgbox "当前的选择非 ComfyUI 自定义节点, 请重新选择" \ $(get_dialog_size) fi else break fi done unset LOCAL_DIR_LIST } # ComfyUI 自定义节点管理 # 使用: # comfyui_custom_node_interface <自定义节点的文件夹名> comfyui_custom_node_interface() { local dialog_arg local custom_node_name local custom_node_folder=$@ local dialog_buttom local status_display local custom_node_status local tmp_folder_name while true; do if [[ "$(awk -F '.' '{print $NF}' <<< ${custom_node_folder})" == "disabled" ]]; then custom_node_status=0 status_display="已禁用" dialog_buttom="启用" else custom_node_status=1 status_display="已启用" dialog_buttom="禁用" fi custom_node_name=$(awk -F '.disabled' '{print $1}' <<< ${custom_node_folder}) dialog_arg=$(dialog --erase-on-exit --notags \ --title "ComfyUI 选项" \ --backtitle "ComfyUI 自定义节点管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择对 ${custom_node_name} 自定义节点的管理功能\n当前更新源: $(git_remote_display)\n当前分支: $(git_branch_display)\n当前状态: ${status_display}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 更新" \ "2" "> 修复更新" \ "3" "> 安装依赖" \ "4" "> 版本切换" \ "5" "> 更新源切换" \ "6" "> ${dialog_buttom}自定义节点" \ "7" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) if is_git_repo; then term_sd_echo "更新 ${custom_node_name} 自定义节点中" git_pull_repository if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点更新结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点更新结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点更新失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点更新结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点非 Git 安装, 无法更新" \ $(get_dialog_size) fi ;; 2) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点修复更新" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 ${custom_node_name} 自定义节点更新 ?" \ $(get_dialog_size)); then git_fix_pointer_offset dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点修复更新" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点修复更新完成" \ $(get_dialog_size) else term_sd_echo "取消修复 ${custom_node_name} 自定义节点的更新" fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点修复更新" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 3) # ComfyUI 并不像 SD WebUI 自动为插件安装依赖, 所以只能手动装 if (dialog --erase-on-exit \ --title "ComfyUI 选项" \ --backtitle "ComfyUI 自定义节点依赖安装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否安装 ${custom_node_name} 自定义节点依赖 ?" \ $(get_dialog_size)); then comfyui_extension_depend_install_single "自定义节点" "${custom_node_folder}" else term_sd_echo "取消安装 ${custom_node_name} 自定义节点依赖" fi ;; 4) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点版本切换" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ${custom_node_name} 自定义节点版本 ?" \ $(get_dialog_size)); then git_ver_switch dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点版本切换" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点版本切换完成, 当前版本为: $(git_branch_display)" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI自定义节点版本切换" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点非 Git 安装, 无法进行版本切换" \ $(get_dialog_size) fi ;; 5) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ${custom_node_name} 自定义节点更新源 ?" \ $(get_dialog_size)); then git_remote_url_select_single fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点更新源切换" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点非 Git 安装, 无法进行更新源切换" \ $(get_dialog_size) fi ;; 6) if [[ "${custom_node_status}" == 0 ]]; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否启用 ${custom_node_name} 自定义节点 ?" \ $(get_dialog_size)); then tmp_folder_name=$custom_node_folder custom_node_folder=$(awk -F '.disabled' '{print $1}' <<< ${custom_node_folder}) cd .. mv "${tmp_folder_name}" "${custom_node_folder}" cd "${custom_node_folder}" else continue fi else if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否禁用 ${custom_node_name} 自定义节点 ?" \ $(get_dialog_size)); then tmp_folder_name=$custom_node_folder custom_node_folder="${custom_node_folder}.disabled" cd .. mv -f "${tmp_folder_name}" "${custom_node_folder}" cd "${custom_node_folder}" else continue fi fi dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点删除选项" \ --ok-label "确认" \ --msgbox "${dialog_buttom} ${custom_node_name} 自定义节点成功" \ $(get_dialog_size) ;; 7) if (dialog --erase-on-exit \ --title "ComfyUI 选项" \ --backtitle "ComfyUI 自定义节点删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 ${custom_node_name} 自定义节点 ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 ${custom_node_name} 自定义节点 (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 ${custom_node_name} 自定义节点" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) term_sd_echo "删除 ${custom_node_name} 自定义节点中" cd .. rm -rf "${COMFYUI_ROOT_PATH}/custom_nodes/${custom_node_folder}" dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义节点删除选项" \ --ok-label "确认" \ --msgbox "删除 ${custom_node_name} 自定义节点完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除 ${custom_node_name} 自定义节点操作" ;; esac fi ;; *) break ;; esac done }
2301_81996401/term-sd
modules/comfyui_custom_node_manager.sh
Shell
agpl-3.0
17,991
#!/bin/bash # ComfyUI 插件 / 自定义节点依赖一键安装 # 使用: # comfyui_extension_depend_install <提示信息> # 使用时将检测 ComfyUI 插件 / 自定义节点文件夹中包含的 install.py 文件和 requirements.txt 文件 # 如果检测到上述文件, 将通过文件安装依赖 comfyui_extension_depend_install() { local install_msg local count=0 local sum=0 local depend_sum=0 local success_count=0 local fail_count=0 local i local depend_type=$1 # 安装前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否安装 ComfyUI 插件 / 自定义节点依赖 ?"; then term_sd_print_line "${TERM_SD_MANAGE_OBJECT} ${depend_type}依赖一键安装" term_sd_tmp_disable_proxy enter_venv "${COMFYUI_ROOT_PATH}" for i in ./*; do # 统计需要安装的依赖 [[ -f "${i}" ]] && continue # 排除文件 if [[ -f "${i}/install.py" ]] || [[ -f "${i}/requirements.txt" ]]; then count=$(( count + 1 )) fi done for i in ./*; do [[ -f "${i}" ]] && continue # 排除文件 cd "${i}" if [[ -f "install.py" ]] || [[ -f "requirements.txt" ]]; then sum=$(( sum + 1 )) term_sd_echo "[${sum}/${count}] 安装 $(echo ${i} | awk -F "/" '{print $NF}') ${depend_type}依赖" install_msg="${install_msg} $(basename "${i}"):\n" # 作为显示安装结果信息 fi if [[ -f "install.py" ]]; then # 找到 install.py 文件 depend_sum=$(( depend_sum + 1 )) term_sd_try term_sd_python install.py if [[ "$?" = 0 ]]; then # 记录退出状态 install_msg="${install_msg} run install.py: 成功 ✓\n" success_count=$((success_count + 1)) else install_msg="${install_msg} run install.py: 失败 ×\n" fail_count=$((fail_count + 1)) fi fi if [[ -f "requirements.txt" ]]; then # 找到requirement.txt文件 depend_sum=$(( depend_sum + 1 )) install_python_package -r requirements.txt if [[ "$?" = 0 ]]; then # 记录退出状态 install_msg="${install_msg} install requirements.txt: 成功 ✓\n" success_count=$(( success_count + 1 )) else install_msg="${install_msg} install requirements.txt: 失败 ×\n" fail_count=$(( fail_count + 1 )) fi fi cd .. done exit_venv term_sd_tmp_enable_proxy term_sd_print_line dialog --erase-on-exit \ --title "ComfyUI管理" \ --backtitle "ComfyUI ${depend_type}依赖安装结果" \ --ok-label "确认" \ --msgbox "当前依赖的安装情况列表\n[●: ${depend_sum} | ✓: ${success_count} | ×: ${fail_count}]\n${TERM_SD_DELIMITER}\n${install_msg}${TERM_SD_DELIMITER}" \ $(get_dialog_size) else term_sd_echo "取消安装 ComfyUI 插件 / 自定义节点依赖" fi clean_install_config # 清理安装参数 } # 单独为 ComfyUI 插件 / 自定义节点安装依赖的功能 # 使用: # comfyui_extension_depend_install_single <提示内容> <插件 / 自定义节点名称> # 安装依赖结束后将弹窗提示安装结果 comfyui_extension_depend_install_single() { local install_msg local depend_type=$1 local name=$2 name=$(basename "$(pwd)") # 安装前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否安装 ${name} ${depend_type}依赖 ?"; then enter_venv "${COMFYUI_ROOT_PATH}" if [[ -f "install.py" ]] || [[ -f "requirements.txt" ]]; then term_sd_echo "安装 ${name} ${depend_type}依赖" install_msg="${install_msg}\n ${name}${depend_type}:\n" # 作为显示安装结果信息 fi if [[ -f "install.py" ]]; then # 找到 install.py 文件 term_sd_try term_sd_python install.py if [[ "$?" == 0 ]]; then # 记录退出状态 install_msg="${install_msg} run install.py: 成功 ✓\n" else install_msg="${install_msg} run install.py: 失败 ×\n" fi fi if [[ -f "requirements.txt" ]]; then # 找到requirement.txt文件 install_python_package -r requirements.txt if [[ "$?" == 0 ]]; then # 记录退出状态 install_msg="${install_msg} install requirements.txt: 成功 ✓\n" else install_msg="${install_msg} install requirements.txt: 失败 ×\n" fi fi exit_venv dialog --erase-on-exit \ --title "ComfyUI选项" \ --backtitle "ComfyUI ${depend_type}依赖安装结果" \ --ok-label "确认" \ --msgbox "当前 ${name} ${depend_type}依赖的安装情况\n${TERM_SD_DELIMITER}${install_msg}${TERM_SD_DELIMITER}" \ $(get_dialog_size) fi clean_install_config # 清理安装参数 } # 插件/自定义节点依赖安装(自动) # 使用: # comfyui_extension_depend_install_auto <提示内容> <目录> # COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE 变量用于返回安装依赖的信息 comfyui_extension_depend_install_auto() { local depend_type=$1 local extension_name=$2 if [[ -f "$2/requirements.txt" ]] || [[ -f "$2/install.py" ]]; then term_sd_echo "开始安装 ${extension_name} ${depend_type}依赖" COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE}\n\n${extension_name} ${depend_type}依赖安装:\n" enter_venv "${COMFYUI_ROOT_PATH}" cd "${extension_name}" if [[ -f "install.py" ]]; then # 找到install.py文件 term_sd_try term_sd_python install.py if [[ "$?" == 0 ]]; then # 记录退出状态 COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE} run install.py: 成功 ✓\n" else COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE} run install.py: 失败 ×\n" fi fi if [[ -f "requirements.txt" ]]; then # 找到requirement.txt文件 install_python_package -r requirements.txt if [[ "$?" == 0 ]]; then # 记录退出状态 COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE} install requirements.txt: 成功 ✓\n" else COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE} install requirements.txt: 失败 ×\n" fi fi cd .. exit_venv fi }
2301_81996401/term-sd
modules/comfyui_extension_depend_install.sh
Shell
agpl-3.0
7,145
#!/bin/bash # ComfyUI 的扩展分为两种,一种是前端节点, 另一种是后端扩展(少见). 详见: https://github.com/comfyanonymous/ComfyUI/discussions/631 # 实际上插件非常少见, 更多的是自定义节点, 但是因为存在插件的文件夹, 所以保留了插件的管理功能 # ComfyUI 插件管理器 comfyui_extension_manager() { local dialog_arg if [[ ! -d "${COMFYUI_ROOT_PATH}"/web/extensions ]]; then dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件管理选项" \ --ok-label "确认" \ --msgbox "找不到 ComfyUI 插件目录, 请检查 ComfyUI 是否安装完整" \ $(get_dialog_size) return 1 fi while true; do cd "${COMFYUI_ROOT_PATH}"/web/extensions # 回到最初路径 dialog_arg=$(dialog --erase-on-exit --notags \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 ComfyUI 插件管理选项的功能" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 安装插件" \ "2" "> 管理插件" \ "3" "> 更新全部插件" \ "4" "> 安装全部插件依赖" \ 3>&1 1>&2 2>&3 ) case "${dialog_arg}" in 1) # 选择安装 comfyui_extension_install ;; 2) # 选择管理 comfyui_extension_list ;; 3) # 选择更新全部插件 if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件管理" \ --yes-label "是" --no-label "否" \ --yesno "是否更新所有 ComfyUI 插件 ?" \ $(get_dialog_size)); then update_all_extension fi ;; 4) # 选择安装全部插件依赖 if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件管理" \ --yes-label "是" --no-label "否" \ --yesno "是否安装所有 ComfyUI 插件的依赖 ?" \ $(get_dialog_size)); then comfyui_extension_depend_install "插件" fi ;; *) break ;; esac done } # ComfyUI 插件安装 # 使用 COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE 全局变量临时储存安装信息 comfyui_extension_install() { local repo_url local name repo_url=$(dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件安装选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "输入插件的 Github 地址或其他下载地址" \ $(get_dialog_size) \ 3>&1 1>&2 2>&3) if [[ ! -z "${repo_url}" ]]; then name=$(basename "${repo_url}" | awk -F '.git' '{print $1}') term_sd_echo "安装 ${name} 插件中" if ! term_sd_is_git_repository_exist "${repo_url}"; then term_sd_try git clone --recurse-submodules "${repo_url}" "${COMFYUI_ROOT_PATH}/web/extensions/${name}" if [[ "$?" == 0 ]]; then COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${name} 插件安装成功" comfyui_extension_depend_install_auto "插件" "${name}" else COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${name} 插件安装失败" fi else COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE="${name} 插件已存在" fi dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件安装结果" \ --ok-label "确认" \ --msgbox "${COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE}" \ $(get_dialog_size) unset COMFYUI_CUSTOM_NODE_INSTALL_DEP_MESSAGE else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件管理选项" \ --ok-label "确认" \ --msgbox "输入的 ComfyUI 插件安装地址为空" \ $(get_dialog_size) fi } # 插件列表浏览器 # 将列出 <ComfyUI Path>/web/extensions 中所有的插件的文件夹 comfyui_extension_list() { local extension_name while true; do cd "${COMFYUI_ROOT_PATH}"/web/extensions # 回到最初路径 get_dir_folder_list # 获取当前目录下的所有文件夹 if term_sd_is_bash_ver_lower; then # Bash 版本低于 4 时使用旧版列表显示方案 extension_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件列表" \ --menu "使用上下键选择要操作的插件并回车确认" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST}" \ 3>&1 1>&2 2>&3) else extension_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件列表" \ --menu "使用上下键选择要操作的插件并回车确认" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST[@]}" \ 3>&1 1>&2 2>&3) fi if [[ "$?" == 0 ]]; then if [[ "${extension_name}" == "-->返回<--" ]]; then break elif [[ -d "${extension_name}" ]]; then # 选择文件夹 if [[ ! "${extension_name}" == "core" ]]; then # 排除掉core文件夹 cd "${extension_name}" comfyui_extension_interface "${extension_name}" else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件管理" \ --ok-label "确认" \ --msgbox "当前的选择非 ComfyUI 插件, 请重新选择" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件管理" \ --ok-label "确认" \ --msgbox "当前的选择非 ComfyUI 插件, 请重新选择" \ $(get_dialog_size) fi else break fi done unset LOCAL_DIR_LIST } # 插件管理 # 使用: # comfyui_extension_interface <插件的文件夹名> comfyui_extension_interface() { local dialog_arg local extension_name=$1 while true; do dialog_arg=$(dialog --erase-on-exit --notags \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择对 ${extension_name} 插件的管理功能\n当前更新源: $(git_remote_display)\n当前分支: $(git_branch_display)" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 更新" \ "2" "> 修复更新" \ "3" "> 安装依赖" \ "4" "> 版本切换" \ "5" "> 更新源切换" \ "6" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) if is_git_repo; then term_sd_echo "更新 ${extension_name} 插件中" git_pull_repository if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件更新结果" \ --ok-label "确认" \ --msgbox "${extension_name} 插件更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件更新结果" \ --ok-label "确认" \ --msgbox "${extension_name} 插件更新失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件更新结果" \ --ok-label "确认" \ --msgbox "${extension_name} 插件非 Git 安装, 无法更新" \ $(get_dialog_size) fi ;; 2) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件修复更新" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 ${extension_name} 插件更新 ?" \ $(get_dialog_size)); then git_fix_pointer_offset dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件修复更新" \ --ok-label "确认" \ --msgbox "${extension_name} 插件修复更新完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件修复更新" \ --ok-label "确认" \ --msgbox "${extension_name} 插件非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 3) # ComfyUI 并不像 SD WebUI 自动为插件安装依赖, 所以只能手动装 if (dialog --erase-on-exit \ --title "ComfyUI 选项" \ --backtitle "ComfyUI 插件依赖安装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否安装 ${extension_name} 插件依赖 ?" \ $(get_dialog_size)); then comfyui_extension_depend_install_single "插件" "${extension_name}" else term_sd_echo "取消安装 ${extension_name} 插件依赖" fi ;; 4) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件版本切换" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ${extension_name} 插件版本 ?" \ $(get_dialog_size)); then git_ver_switch dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件版本切换" \ --ok-label "确认" \ --msgbox "${extension_name} 插件版本切换完成, 当前版本为: $(git_branch_display)" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件版本切换" \ --ok-label "确认" \ --msgbox "${extension_name}插件非 Git 安装, 无法进行版本切换" \ $(get_dialog_size) fi ;; 5) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件版本切换" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ${extension_name} 插件版本 ?" \ $(get_dialog_size)); then git_remote_url_select_single fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件更新源切换" \ --ok-label "确认" \ --msgbox "${extension_name} 插件非 Git 安装, 无法进行更新源切换" \ $(get_dialog_size) fi ;; 6) if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 ${extension_name} 插件 ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 ${extension_name} 插件 (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 ${extension_name} 插件" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) term_sd_echo "删除 ${extension_name} 插件中" cd .. rm -rf "${COMFYUI_ROOT_PATH}/web/extensions/${extension_name}" dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 插件删除选项" \ --ok-label "确认" \ --msgbox "删除 ${extension_name} 插件完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除 ${extension_name} 插件操作" ;; esac fi ;; *) break ;; esac done }
2301_81996401/term-sd
modules/comfyui_extension_manager.sh
Shell
agpl-3.0
14,970
#!/bin/bash # ComfyUI 启动脚本生成部分 # 启动参数保存在 <Start Path>/term-sd/config/comfyui-launch.conf comfyui_launch_args_setting() { local arg local dialog_arg local launch_args local i dialog_arg=$(dialog --erase-on-exit --notags \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --checklist "请选择 ComfyUI 启动参数, 确认之后将覆盖原有启动参数配置" \ $(get_dialog_size_menu) \ "1" "(listen) 开放远程连接" OFF \ "2" "(auto-launch) 启动 WebUI 完成后自动启动浏览器" OFF \ "3" "(disable-auto-launch) 禁用在启动 WebUI 完成后自动启动浏览器" OFF \ "4" "(cuda-malloc) 启用 CUDA 流顺序内存分配器 (Torch2.0+ 默认启用)" OFF \ "5" "(disable-cuda-malloc) 禁用 CUDA 流顺序内存分配器" OFF \ "6" "(dont-upcast-attention) 禁用向上注意力优化" OFF \ "7" "(force-fp32) 强制使用 FP32" OFF \ "8" "(force-fp16) 强制使用 FP16" OFF \ "9" "(bf16-unet) 使用 BF16 精度运行 UNet" OFF \ "10" "(fp16-vae) 使用 FP16 精度运行 VAE" OFF \ "11" "(fp32-vae) 使用 FP32 精度运行 VAE" OFF \ "12" "(bf16-vae) 使用 BF16 精度运行 VAE" OFF \ "13" "(disable-ipex-optimize) 禁用 IPEX 优化" OFF \ "14" "(preview-method none) 不使用图片预览" OFF \ "15" "(preview-method auto) 自动选择图片预览方式" OFF \ "16" "(preview-method latent2rgb) 使用 Latent2Rgb 图片预览" OFF \ "17" "(preview-method taesd) 使用 TAESD 图片预览" OFF \ "18" "(use-split-cross-attention) 使用 Split优化" OFF \ "19" "(use-quad-cross-attention) 使用 Quad 优化" OFF \ "20" "(use-pytorch-cross-attention) 使用 PyTorch 方案优化" OFF \ "21" "(disable-xformers) 禁用 xFormers 优化" OFF \ "22" "(gpu-only) 将所有模型, 文本编码器储存在 GPU 中" OFF \ "23" "(highvram) 不使用显存优化 (生图完成后将模型继续保存在显存中)" OFF \ "24" "(normalvram) 使用默认显存优化" OFF \ "25" "(lowvram) 使用显存优化 (将会降低生图速度)" OFF \ "26" "(novram) 使用显存优化 (将会大量降低生图速度)" OFF \ "27" "(cpu) 使用CPU进行生图" OFF \ "28" "(disable-smart-memory) 强制保持模型储存在显存中而不是自动卸载到内存中" OFF \ "29" "(dont-print-server) 禁用日志输出" OFF \ "30" "(quick-test-for-ci) 快速测试 CI" OFF \ "31" "(windows-standalone-build) 启用 Windows 独占功能" OFF \ "32" "(disable-metadata) 禁用在文件中保存提示元数据" OFF \ "33" "(fp8_e4m3fn-text-enc) 使用 FP8 精度 (e4m3fn)" OFF \ "34" "(fp8_e5m2-text-enc) 使用 FP8 精度 (e5m2)" OFF \ "35" "(multi-user) 启用多用户支持" OFF \ "36" "(verbose) 显示更多调试信息" OFF \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then for i in ${dialog_arg}; do case "${i}" in 1) arg="--listen" ;; 2) arg="--auto-launch" ;; 3) arg="--disable-auto-launch" ;; 4) arg="--cuda-malloc" ;; 5) arg="--disable-cuda-malloc" ;; 6) arg="--dont-upcast-attention" ;; 7) arg="--force-fp32" ;; 8) arg="--force-fp16" ;; 9) arg="--bf16-unet" ;; 10) arg="--fp16-vae" ;; 11) arg="--fp32-vae" ;; 12) arg="--bf16-vae" ;; 13) arg="--disable-ipex-optimize" ;; 14) arg="--preview-method none" ;; 15) arg="--preview-method auto" ;; 16) arg="--preview-method latent2rgb" ;; 17) arg="--preview-method taesd" ;; 18) arg="--use-split-cross-attention" ;; 19) arg="--use-quad-cross-attention" ;; 20) arg="--use-pytorch-cross-attention" ;; 21) arg="--disable-xformers" ;; 22) arg="--gpu-only" ;; 23) arg="--highvram" ;; 24) arg="--normalvram" ;; 25) arg="--lowvram" ;; 26) arg="--novram" ;; 27) arg="--cpu" ;; 28) arg="--disable-smart-memory" ;; 29) arg="--dont-print-server" ;; 30) arg="--quick-test-for-ci" ;; 31) arg="--windows-standalone-build" ;; 32) arg="--disable-metadata" ;; 33) arg="--fp8_e4m3fn-text-enc" ;; 34) arg="--fp8_e5m2-text-enc" ;; 35) arg="--multi-user" ;; 36) arg="--verbose" ;; esac launch_args="${arg} ${launch_args}" done # 生成启动脚本 term_sd_echo "设置 ComfyUI 启动参数: ${launch_args}" echo "main.py ${launch_args}" > "${START_PATH}"/term-sd/config/comfyui-launch.conf else term_sd_echo "取消设置 ComfyUI 启动参数" fi } # ComfyUI 启动界面 comfyui_launch() { local dialog_arg local launch_args add_comfyui_normal_launch_args # 没有启动参数时自动生成一个 while true; do launch_args=$(cat "${START_PATH}"/term-sd/config/comfyui-launch.conf) if is_use_venv; then launch_args="python ${launch_args}" else launch_args=${TERM_SD_PYTHON_PATH}" ${launch_args}" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 启动选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择启动 ComfyUI / 修改 ComfyUI 启动参数\n当前启动参数: ${launch_args}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 配置预设启动参数" \ "3" "> 修改自定义启动参数" \ "4" "> 重置启动参数" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_launch ;; 2) comfyui_launch_args_setting ;; 3) comfyui_launch_args_revise ;; 4) restore_comfyui_launch_args ;; *) break ;; esac done } # ComfyUI 手动输入启动参数界面 # 启动修改界面时将从 <Strat Path>/term-sd/config/comfyui-launch.conf 中读取启动参数 # 可接着上次的启动参数进行修改 comfyui_launch_args_revise() { local dialog_arg local launch_args launch_args=$(cat "${START_PATH}"/term-sd/config/comfyui-launch.conf | awk '{sub("main.py ","")}1') dialog_arg=$(dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 自定义启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入 ComfyUI 启动参数" \ $(get_dialog_size) \ "${launch_args}" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then term_sd_echo "设置 ComfyUI 启动参数: ${dialog_arg}" echo "main.py ${dialog_arg}" > "${START_PATH}"/term-sd/config/comfyui-launch.conf else term_sd_echo "取消修改 ComfyUI 启动参数" fi } # 添加 ComfyUI 默认启动参数配置 add_comfyui_normal_launch_args() { if [[ ! -f "${START_PATH}/term-sd/config/comfyui-launch.conf" ]]; then # 找不到启动配置时默认生成一个 echo "main.py --auto-launch --preview-method auto --disable-smart-memory" > "${START_PATH}"/term-sd/config/comfyui-launch.conf fi } # 重置启动参数 restore_comfyui_launch_args() { if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 重置启动参数选项选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重置 ComfyUI 启动参数 ?" \ $(get_dialog_size)); then term_sd_echo "重置 ComfyUI 启动参数" rm -f "${START_PATH}"/term-sd/config/comfyui-launch.conf add_comfyui_normal_launch_args else term_sd_echo "取消重置 ComfyUI 启动参数操作" fi }
2301_81996401/term-sd
modules/comfyui_launch.sh
Shell
agpl-3.0
9,919
#!/bin/bash # ComfyUI 管理 # <ComfyUI>/web 目录已移除, 不再需要插件管理, 参考: https://github.com/comfyanonymous/ComfyUI/pull/7021 comfyui_manager() { local dialog_arg cd "${START_PATH}" # 回到最初路径 exit_venv # 确保进行下一步操作前已退出其他虚拟环境 if [[ -d "${COMFYUI_ROOT_PATH}" ]] && ! term_sd_is_dir_empty "${COMFYUI_ROOT_PATH}"; then while true; do cd "${COMFYUI_ROOT_PATH}" dialog_arg=$(dialog --erase-on-exit --notags \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 ComfyUI 管理选项的功能\n当前更新源: $(git_remote_display)\n当前分支: $(git_branch_display)" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 更新" \ "3" "> 修复更新" \ "4" "> 管理自定义节点" \ "6" "> 切换版本" \ "7" "> 更新源替换" \ "8" "> 更新依赖" \ "9" "> Python 软件包安装 / 重装 / 卸载" \ "10" "> 依赖库版本管理" \ "11" "> 重新安装 PyTorch" \ "12" "> 修复虚拟环境" \ "13" "> 重新构建虚拟环境" \ "14" "> 重新安装" \ "15" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) comfyui_launch ;; 2) if is_git_repo; then term_sd_echo "更新 ComfyUI 中" git_pull_repository if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 更新结果" \ --ok-label "确认" \ --msgbox "ComfyUI 更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 更新结果" \ --ok-label "确认" \ --msgbox "ComfyUI 更新失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 更新结果" \ --ok-label "确认" \ --msgbox "ComfyUI 非 Git 安装, 无法更新" \ $(get_dialog_size) fi ;; 3) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 更新修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 ComfyUI 更新 ?" \ $(get_dialog_size)); then git_fix_pointer_offset dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 修复更新" \ --ok-label "确认" \ --msgbox "ComfyUI 修复更新完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 更新修复选项" \ --ok-label "确认" \ --msgbox "ComfyUI 非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 4) comfyui_custom_node_manager ;; 5) # 已弃用 comfyui_extension_manager ;; 6) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 版本切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ComfyUI 版本 ?" \ $(get_dialog_size)); then git_ver_switch && \ dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 版本切换" \ --ok-label "确认" \ --msgbox "ComfyUI 版本切换完成, 当前版本为: $(git_branch_display)" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 版本切换选项" \ --ok-label "确认" \ --msgbox "ComfyUI 非 Git 安装, 无法切换版本" \ $(get_dialog_size) fi ;; 7) if is_git_repo; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 更新源切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ComfyUI 更新源 ?" \ $(get_dialog_size)); then comfyui_remote_revise fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 更新源切换选项" \ --ok-label "确认" \ --msgbox "ComfyUI 非 Git 安装, 无法切换更新源" \ $(get_dialog_size) fi ;; 8) if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 依赖更新选项" \ --yes-label "是" --no-label "否" \ --yesno "是否更新 ComfyUI 的依赖 ?" \ $(get_dialog_size)); then comfyui_update_depend fi ;; 9) if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 的 Python 软件包安装 / 重装 / 卸载选项" \ --yes-label "是" --no-label "否" \ --yesno "是否进入 Python 软件包安装 / 重装 / 卸载选项 ?" \ $(get_dialog_size)); then python_package_manager fi ;; 10) python_package_ver_backup_manager ;; 11) pytorch_reinstall ;; 12) if is_use_venv; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 虚拟环境修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 ComfyUI 的虚拟环境 ? " \ $(get_dialog_size)); then fix_venv dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "ComfyUI 虚拟环境修复完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 13) if is_use_venv; then if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 虚拟环境重建选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重建 ComfyUI 的虚拟环境 ?" \ $(get_dialog_size)); then comfyui_venv_rebuild dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "ComfyUI 虚拟环境重建完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 14) if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 重新安装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重新安装 ComfyUI ?" \ $(get_dialog_size)); then cd "${START_PATH}" rm -f "${START_PATH}/term-sd/task/comfyui_install.sh" exit_venv install_comfyui break fi ;; 15) if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 ComfyUI ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 ComfyUI (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 ComfyUI" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) term_sd_echo "删除 ComfyUI 中" exit_venv cd .. rm -rf "${COMFYUI_ROOT_PATH}" dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 删除选项" \ --ok-label "确认" \ --msgbox "删除 ComfyUI 完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除操作" ;; esac else term_sd_echo "取消删除操作" fi ;; *) break ;; esac done else if (dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 安装选项" \ --yes-label "是" --no-label "否" \ --yesno "检测到当前未安装 ComfyUI , 是否进行安装 ?" \ $(get_dialog_size)); then rm -f "${START_PATH}/term-sd/task/comfyui_install.sh" install_comfyui fi fi } # ComfyUI 依赖更新功能 # 解决 ComfyUI 部分依赖过旧导致报错的问题 comfyui_update_depend() { # 更新前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select upgrade # 安装方式选择 if term_sd_install_confirm "是否更新 ComfyUI 依赖 ?"; then term_sd_print_line "ComfyUI 依赖更新" term_sd_echo "更新 ComfyUI 依赖中" term_sd_tmp_disable_proxy enter_venv python_package_update "requirements.txt" exit_venv term_sd_tmp_enable_proxy term_sd_echo "更新 ComfyUI 依赖结束" term_sd_pause else term_sd_echo "取消更新 ComfyUI 依赖" fi clean_install_config # 清理安装参数 }
2301_81996401/term-sd
modules/comfyui_manager.sh
Shell
agpl-3.0
14,194
#!/bin/bash # Fooocus 启动参数设置 # 设置的启动参数保存在 <Start Path>/term-sd/config/fooocus-launch.conf fooocus_launch_args_setting() { local arg local dialog_arg local launch_args local i dialog_arg=$(dialog --erase-on-exit --notags \ --title "Fooocus 管理" \ --backtitle "Fooocus 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --checklist "请选择 Fooocus 启动参数, 确认之后将覆盖原有启动参数配置" \ $(get_dialog_size_menu) \ "1" "(listen) 开放远程连接" OFF \ "2" "(disable-header-check) 禁用请求头部检查" OFF \ "3" "(in-browser) 启动后自动打开浏览器" OFF \ "4" "(disable-in-browser) 禁用自动打开浏览器" OFF \ "5" "(async-cuda-allocation) 启用 CUDA 流顺序内存分配器" OFF \ "6" "(disable-async-cuda-allocation) 禁用 CUDA 流顺序内存分配器" OFF \ "7" "(disable-attention-upcast) 使用向上采样法提高精度" OFF \ "8" "(all-in-fp32) 强制使用 FP32" OFF \ "9" "(all-in-fp16) 强制使用 FP16" OFF \ "10" "(unet-in-bf16) 使用 BF16 精度运行 UNet" OFF \ "11" "(unet-in-fp16) 使用 FP16 精度运行 UNet" OFF \ "12" "(unet-in-fp8-e4m3fn) 使用 FP8(e4m3fn) 精度运行 UNet" OFF \ "13" "(unet-in-fp8-e5m2) 使用 FP8(e5m2) 精度运行 UNet" OFF \ "14" "(vae-in-fp16) 使用 FP16 精度运行 VAE" OFF \ "15" "(vae-in-fp32) 使用 FP32 精度运行 VAE" OFF \ "16" "(vae-in-bf16) 使用 BF16 精度运行 VAE" OFF \ "17" "(clip-in-fp8-e4m3fn) 使用 FP8(e4m3fn) 精度运行文本编码器" OFF \ "18" "(clip-in-fp8-e5m2) 使用 FP8(e5m2) 精度运行文本编码器" OFF \ "19" "(clip-in-fp16) 使用 FP16精度运行文本编码器" OFF \ "20" "(clip-in-fp32) 使用 FP32精度运行文本编码器" OFF \ "21" "(directml) 使用 DirectML 作为后端" OFF \ "22" "(disable-ipex-hijack) 禁用 IPEX 修复" OFF \ "23" "(attention-split) 使用 Split 优化" OFF \ "24" "(attention-quad) 使用 Quad 优化" OFF \ "25" "(attention-pytorch) 使用 PyTorch 方案优化" OFF \ "26" "(disable-xformers) 禁用 xFormers 优化" OFF \ "27" "(always-gpu) 将所有模型, 文本编码器储存在 GPU 中" OFF \ "28" "(always-high-vram) 不使用显存优化" OFF \ "29" "(always-normal-vram) 使用默认显存优化" OFF \ "30" "(always-low-vram) 使用显存优化 (将会降低生图速度)" OFF \ "31" "(always-no-vram) 使用显存优化 (将会大量降低生图速度)" OFF \ "32" "(always-cpu) 使用 CPU 进行生图" OFF \ "33" "(always-offload-from-vram) 生图完成后将模型从显存中卸载" OFF \ "34" "(pytorch-deterministic) 将 PyTorch 配置为使用确定性算法" OFF \ "35" "(disable-server-log) 禁用服务端日志输出" OFF \ "36" "(debug-mode) 启用 Debug 模式" OFF \ "37" "(is-windows-embedded-python) 启用 Windows 独占功能" OFF \ "38" "(disable-server-info) 禁用服务端信息输出" OFF \ "39" "(language zh) 启用中文" OFF \ "40" "(theme dark) 使用黑暗主题" OFF \ "41" "(disable-image-log) 禁用将图像和日志写入硬盘" OFF \ "42" "(disable-analytics) 禁用 Gradio 分析" OFF \ "43" "(preset default) 使用默认模型预设" OFF \ "44" "(preset sai) 使用 SAI 模型预设" OFF \ "45" "(preset lcm) 使用 LCM 模型预设" OFF \ "46" "(preset anime) 使用 Anime 模型预设" OFF \ "47" "(preset realistic) 使用 Realistic 模型预设" OFF \ "48" "(preset term_sd) 使用 Term-SD 模型预设" OFF \ "49" "(share) 启用 Gradio 共享" OFF \ "50" "(disable-offload-from-vram) 禁用显存自动卸载" OFF \ "51" "(multi-user) 启用多用户支持" OFF \ "52" "(disable-image-log) 禁用保存图片日志" OFF \ "53" "(disable-analytics) 禁用 Gradio 分析" OFF \ "54" "(disable-metadata) 禁用保存生图信息到图片中" OFF \ "55" "(disable-preset-download) 禁用下载预设中的模型" OFF \ "56" "(enable-describe-uov-image) 为 uov 图像描述提示词" OFF \ "57" "(always-download-new-model) 总是下载最新的模型" ON \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then for i in ${dialog_arg}; do case "${i}" in 1) arg="--listen" ;; 2) arg="--disable-header-check" ;; 3) arg="--in-browser" ;; 4) arg="--disable-in-browser" ;; 5) arg="--async-cuda-allocation" ;; 6) arg="--disable-async-cuda-allocation" ;; 7) arg="--disable-attention-upcast" ;; 8) arg="--all-in-fp32" ;; 9) arg="--all-in-fp16" ;; 10) arg="--unet-in-bf16" ;; 11) arg="--unet-in-fp16" ;; 12) arg="--unet-in-fp8-e4m3fn" ;; 13) arg="--unet-in-fp8-e5m2" ;; 14) arg="--vae-in-fp16" ;; 15) arg="--vae-in-fp32" ;; 16) arg="--vae-in-bf16" ;; 17) arg="--clip-in-fp8-e4m3fn" ;; 18) arg="--clip-in-fp8-e5m2" ;; 19) arg="--clip-in-fp16" ;; 20) arg="--clip-in-fp32" ;; 21) arg="--directml" ;; 22) arg="--disable-ipex-hijack" ;; 23) arg="--attention-split" ;; 24) arg="--attention-quad" ;; 25) arg="--attention-pytorch" ;; 26) arg="--disable-xformers" ;; 27) arg="--always-gpu" ;; 28) arg="--always-high-vram" ;; 29) arg="--always-normal-vram" ;; 30) arg="--always-low-vram" ;; 31) arg="--always-no-vram" ;; 32) arg="--always-cpu" ;; 33) arg="--always-offload-from-vram" ;; 34) arg="--pytorch-deterministic" ;; 35) arg="--disable-server-log" ;; 36) arg="--debug-mode" ;; 37) arg="--is-windows-embedded-python" ;; 38) arg="--disable-server-info" ;; 39) arg="--language zh" ;; 40) arg="--theme dark" ;; 41) arg="--disable-image-log" ;; 42) arg="--disable-analytics" ;; 43) arg="--preset default" ;; 44) arg="--preset sai" ;; 45) arg="--preset lcm" ;; 46) arg="--preset anime" ;; 47) arg="--preset realistic" ;; 48) arg="--preset term_sd" ;; 49) arg="--share" ;; 50) arg="--disable-offload-from-vram" ;; 51) arg="--multi-user" ;; 52) arg="--disable-image-log" ;; 53) arg="--disable-analytics" ;; 54) arg="--disable-metadata" ;; 55) arg="--disable-preset-download" ;; 56) arg="--enable-describe-uov-image" ;; 57) arg="--always-download-new-model" ;; esac launch_args="${arg} ${launch_args}" done term_sd_echo "设置 Fooocus 启动参数: ${launch_args}" echo "launch.py ${launch_args}" > "${START_PATH}"/term-sd/config/fooocus-launch.conf else term_sd_echo "取消 Fooocus 设置启动参数" fi } # Fooocus 启动界面 fooocus_launch() { local dialog_arg local launch_args add_fooocus_normal_launch_args while true; do launch_args=$(cat "${START_PATH}"/term-sd/config/fooocus-launch.conf) if is_use_venv; then launch_args="python ${launch_args}" else launch_args="${TERM_SD_PYTHON_PATH} ${launch_args}" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "Fooocus 管理" \ --backtitle "Fooocus 启动选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择启动 Fooocus / 修改 Fooocus 启动参数\n当前启动参数: ${launch_args}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 配置预设启动参数" \ "3" "> 修改自定义启动参数" \ "4" "> 重置启动参数" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_launch ;; 2) fooocus_launch_args_setting ;; 3) fooocus_manual_launch ;; 4) restore_fooocus_launch_args ;; *) break ;; esac done } # Fooocus 修改启动参数功能 # 启动修改界面时将从 <Start Path>/term-sd/config/fooocus-launch.conf 中读取启动参数 # 可接着上次的启动参数进行修改 fooocus_manual_launch() { local dialog_arg local launch_args launch_args=$(cat "${START_PATH}"/term-sd/config/fooocus-launch.conf | awk '{sub("launch.py ","")}1') dialog_arg=$(dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 自定义启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入 Fooocus 启动参数" \ $(get_dialog_size) \ "${launch_args}" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then term_sd_echo "设置 Fooocus 启动参数: ${dialog_arg}" echo "launch.py ${dialog_arg}" > "${START_PATH}"/term-sd/config/fooocus-launch.conf else term_sd_echo "取消修改 Fooocus 启动参数" fi } # 添加 Fooocus 默认启动参数配置 add_fooocus_normal_launch_args() { if [[ ! -f "${START_PATH}/term-sd/config/fooocus-launch.conf" ]]; then # 找不到启动配置时默认生成一个 echo "launch.py --language zh --preset term_sd --disable-offload-from-vram --disable-analytics --always-download-new-model" > "${START_PATH}"/term-sd/config/fooocus-launch.conf fi } # 重置启动参数 restore_fooocus_launch_args() { if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 重置启动参数选项选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重置 Fooocus 启动参数 ?" \ $(get_dialog_size)); then term_sd_echo "重置 Fooocus 启动参数" rm -f "${START_PATH}"/term-sd/config/fooocus-launch.conf add_fooocus_normal_launch_args else term_sd_echo "取消重置 Fooocus 启动参数操作" fi }
2301_81996401/term-sd
modules/fooocus_launch.sh
Shell
agpl-3.0
13,134
#!/bin/bash # Fooocus 管理界面 fooocus_manager() { local dialog_arg cd "${START_PATH}" # 回到最初路径 exit_venv # 确保进行下一步操作前已退出其他虚拟环境 if [[ -d "${FOOOCUS_ROOT_PATH}" ]] && ! term_sd_is_dir_empty "${FOOOCUS_ROOT_PATH}"; then while true; do cd "${FOOOCUS_ROOT_PATH}" dialog_arg=$(dialog --erase-on-exit --notags \ --title "Fooocus 管理" \ --backtitle "Fooocus 管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 Fooocus 管理选项的功能\n当前更新源: $(git_remote_display)\n当前分支: $(git_branch_display)" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 更新" \ "3" "> 修复更新" \ "4" "> 切换版本" \ "5" "> 更新源替换" \ "6" "> 更新依赖" \ "7" "> Python 软件包安装 / 重装 / 卸载" \ "8" "> 依赖库版本管理" \ "9" "> 重新安装 PyTorch" \ "10" "> 修复虚拟环境" \ "11" "> 重新构建虚拟环境" \ "12" "> 重新安装" \ "13" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) fooocus_launch ;; 2) if is_git_repo; then term_sd_echo "更新 Fooocus 中" git_pull_repository if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 更新结果" \ --ok-label "确认" \ --msgbox "Fooocus 更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 更新结果" \ --ok-label "确认" \ --msgbox "Fooocus 更新失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 更新结果" \ --ok-label "确认" \ --msgbox "Fooocus 非 Git 安装, 无法更新" \ $(get_dialog_size) fi ;; 3) if is_git_repo; then if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 更新修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 Fooocus 更新 ?" \ $(get_dialog_size)); then git_fix_pointer_offset dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 更新修复选项" \ --ok-label "确认" \ --msgbox "Fooocus 修复更新完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 更新修复选项" \ --ok-label "确认" \ --msgbox "Fooocus 非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 4) if is_git_repo; then if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 版本切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 Fooocus 版本 ?" \ $(get_dialog_size)); then git_ver_switch && \ dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 版本切换" \ --ok-label "确认" \ --msgbox "Fooocus 版本切换完成, 当前版本为: $(git_branch_display)" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 版本切换选项" \ --ok-label "确认" \ --msgbox "Fooocus 非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 5) if is_git_repo; then if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 更新源切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 Fooocus 更新源 ?" \ $(get_dialog_size)); then fooocus_remote_revise fi else dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 更新源切换选项" \ --ok-label "确认" \ --msgbox "Fooocus 非 Git 安装, 无法切换更新源" \ $(get_dialog_size) fi ;; 6) if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 依赖更新选项" \ --yes-label "是" --no-label "否" \ --yesno "是否更新 Fooocus 的依赖 ?" \ $(get_dialog_size)); then fooocus_update_depend fi ;; 7) if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 的 Python 软件包安装 / 重装 / 卸载选项" \ --yes-label "是" --no-label "否" \ --yesno "是否进入 Python 软件包安装 / 重装 / 卸载选项 ?" \ $(get_dialog_size)); then python_package_manager fi ;; 8) python_package_ver_backup_manager ;; 9) pytorch_reinstall ;; 10) if is_use_venv; then if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 虚拟环境修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 Fooocus 的虚拟环境 ?" \ $(get_dialog_size)); then fix_venv dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "Fooocus 虚拟环境修复完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 11) if is_use_venv; then if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 虚拟环境重建选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重建 Fooocus 的虚拟环境 ?" \ $(get_dialog_size)); then fooocus_venv_rebuild dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "Fooocus 虚拟环境重建完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 12) if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 重新安装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重新安装 Fooocus ?" \ $(get_dialog_size)); then cd "${START_PATH}" rm -f "${START_PATH}/term-sd/task/fooocus_install.sh" exit_venv install_fooocus break fi ;; 13) if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 Fooocus ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 Fooocus (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 Fooocus" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) term_sd_echo "删除 Fooocus 中" exit_venv cd .. rm -rf "${FOOOCUS_ROOT_PATH}" dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 删除选项" \ --ok-label "确认" \ --msgbox "删除 Fooocus 完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除操作" ;; esac fi ;; *) break ;; esac done else if (dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 安装选项" \ --yes-label "是" --no-label "否" \ --yesno "检测到当前未安装 Fooocus , 是否进行安装 ?" \ $(get_dialog_size)); then rm -f "${START_PATH}/term-sd/task/fooocus_install.sh" install_fooocus fi fi } # Fooocus 依赖更新 fooocus_update_depend() { # 更新前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select upgrade # 安装方式选择 if term_sd_install_confirm "是否更新 Fooocus 依赖 ?"; then term_sd_print_line "Fooocus 依赖更新" term_sd_echo "更新 Fooocus 依赖中" term_sd_tmp_disable_proxy enter_venv python_package_update "requirements_versions.txt" exit_venv term_sd_tmp_enable_proxy term_sd_echo "更新 Fooocus 依赖结束" term_sd_pause fi clean_install_config # 清理安装参数 }
2301_81996401/term-sd
modules/fooocus_manager.sh
Shell
agpl-3.0
13,643
#!/bin/bash # modelscope下载链接格式(旧版) # https://modelscope.cn/api/v1/models/作者/仓库/repo?Revision=分支名&FilePath=文件名 # https://modelscope.cn/api/v1/models/作者/仓库/repo?Revision=分支名&FilePath=文件夹/文件名 # modelscope模型下载 # 使用格式: # get_modelscope_model 作者/仓库/仓库分支/仓库文件路径/文件名 本地下载路径 # get_modelscope_model 作者/仓库/仓库分支/文件名 本地下载路径 # 例: # get_modelscope_model licyks/sd-model/master/sd_1.5/v1-5-pruned-emaonly.safetensors ./stable-diffusion-webui/models/Stable-diffusion # get_modelscope_model licyks/controlnet_v1.1/master/t2iadapter_zoedepth_sd15v1.pth ./stable-diffusion-webui/ get_modelscope_model() { local url=$1 # 链接 local path=$2 # 下载路径 local name=$3 # 要保存的名称 local aria2_tmp_path # Aria2 缓存文件 local file_path # 下载到本地的文件 local modelscope_user # ModelScope 用户名 local modelscope_model_name # ModelScope 仓库名 local modelscope_model_branch # ModelScope 仓库分支 local modelscope_model_path # ModelScope 仓库文件路径 # 处理 ModelScope 链接 modelscope_user=$(echo ${url} | awk '{gsub(/[/]/, " ")}1' | awk '{print $1}') modelscope_model_name=$(echo ${url} | awk '{gsub(/[/]/, " ")}1' | awk '{print $2}') modelscope_model_branch=$(echo ${url} | awk '{gsub(/[/]/, " ")}1' | awk '{print $3}') modelscope_model_path=$(echo ${url} | awk '{sub("'${modelscope_user}/${modelscope_model_name}/${modelscope_model_branch}/'","")}1') url="https://modelscope.cn/models/${modelscope_user}/${modelscope_model_name}/resolve/${modelscope_model_branch}/${modelscope_model_path}" if [[ -z "${path}" ]]; then # 下载路径为空时 path=$(pwd) name=$(basename "${url}") elif [[ -z "${name}" ]]; then # 要保存的名称为空时 # 去除下载路径中末尾的 / 字符 path=$(awk '{ if (substr($0, length($0), 1) == "/") { print substr($0, 1, length($0) - 1) } else { print $0 } }' <<< ${path}) name=$(basename "${url}") else # 去除下载路径中末尾的 / 字符 path=$(awk '{ if (substr($0, length($0), 1) == "/") { print substr($0, 1, length($0) - 1) } else { print $0 } }' <<< ${path}) fi aria2_tmp_path="${path}/${name}.aria2" file_path="${path}/${name}" if term_sd_is_debug; then term_sd_echo "url: ${url}" term_sd_echo "name: ${name}" term_sd_echo "path: ${path}" term_sd_echo "aria2_tmp_path: ${aria2_tmp_path}" term_sd_echo "file_path: ${file_path}" term_sd_echo "modelscope_user: ${modelscope_user}" term_sd_echo "modelscope_model_name: ${modelscope_model_name}" term_sd_echo "modelscope_model_branch: ${modelscope_model_branch}" term_sd_echo "modelscope_model_path: ${modelscope_model_path}" term_sd_echo "ARIA2_MULTI_THREAD: ${ARIA2_MULTI_THREAD}" term_sd_echo "cmd: aria2c --file-allocation=none --summary-interval=0 --console-log-level=error -s 64 -c -x ${ARIA2_MULTI_THREAD} -k 1M ${url} -d ${path} -o ${name}" fi if [[ ! -f "${file_path}" ]]; then term_sd_echo "下载 ${name} 中, 路径: ${file_path}" term_sd_try aria2c --file-allocation=none --summary-interval=0 --console-log-level=error -s 64 -c -x "${ARIA2_MULTI_THREAD}" -k 1M "${url}" -d "${path}" -o "${name}" else if [[ -f "${aria2_tmp_path}" ]]; then term_sd_echo "恢复下载 ${name} 中, 路径: ${file_path}" term_sd_try aria2c --file-allocation=none --summary-interval=0 --console-log-level=error -s 64 -c -x "${ARIA2_MULTI_THREAD}" -k 1M "${url}" -d "${path}" -o "${name}" else term_sd_echo "${name} 文件已存在, 路径: ${file_path}" fi fi }
2301_81996401/term-sd
modules/get_modelscope_model.sh
Shell
agpl-3.0
3,868
# 读取注册表配置 $internet_setting = Get-ItemProperty -Path "HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings" $proxy_addr = $($internet_setting.ProxyServer) # 提取代理地址 if (($proxy_addr -match "http=(.*?);") -or ($proxy_addr -match "https=(.*?);")) { $proxy_value = $matches[1] # 去除 http / https 前缀 $proxy_value = $proxy_value.ToString().Replace("http://", "").Replace("https://", "") $proxy_value = "http://${proxy_value}" } elseif ($proxy_addr -match "socks=(.*)") { $proxy_value = $matches[1] # 去除 socks 前缀 $proxy_value = $proxy_value.ToString().Replace("http://", "").Replace("https://", "") $proxy_value = "socks://${proxy_value}" } else { $proxy_value = "http://${proxy_addr}" } if ($internet_setting.ProxyEnable -eq 1) { Write-Host $proxy_value }
2301_81996401/term-sd
modules/get_windows_proxy_config.ps1
PowerShell
agpl-3.0
849
#!/bin/bash # Term-SD 初始化模块 term_sd_init() { local sum=$(( $(ls "${START_PATH}"/term-sd/modules/*.sh | wc -w) - 1 )) # 需要加载的模块数量 local count=1 local module_name local i for i in "${START_PATH}"/term-sd/modules/*.sh; do [[ "${i}" == "${START_PATH}/term-sd/modules/init.sh" ]] && continue module_name=${i#${START_PATH}/term-sd/modules/} module_name=${module_name%.sh} printf "[\033[33m$(date "+%Y-%m-%d %H:%M:%S")\033[0m][\033[36mTerm-SD\033[0m]\033[36m::\033[0m [${count}/${sum}] 加载: ${module_name} \r" count=$(( $count + 1 )) . "${i}" done printf "[\033[33m$(date "+%Y-%m-%d %H:%M:%S")\033[0m][\033[36mTerm-SD\033[0m]\033[36m::\033[0m 初始化 Term-SD 完成 \n" term_sd_print_line } # Term-SD 初始化模块(带进度条) term_sd_init_new() { local sum=$(( $(ls "${START_PATH}"/term-sd/modules/*.sh | wc -w) - 1 )) # 需要加载的模块数量 local count=1 local bar_length=$(( SHELL_WIDTH - 50 )) # 初始进度条的总长度 local i for i in "${START_PATH}"/term-sd/modules/*.sh; do [[ "${i}" == "${START_PATH}/term-sd/modules/init.sh" ]] && continue # 避免重新初始化 init.sh 脚本 term_sd_process_bar "${bar_length}" "${count}" "${sum}" # 输出进度条 count=$(( count + 1 )) . "${i}" # 加载模块 done term_sd_echo "初始化 Term-SD 完成" term_sd_print_line } # 进度条生成功能(开了只会降低加载速度) # 使用: # term_sd_process_bar <进度条总长度> <已完成进度> <总进度> term_sd_process_bar() { local count=$2 local sum=$3 local mark local bar_length local bar_display='█' # 已完成的进度显示效果 local bar local bar_length_sum=$1 local i mark=$(echo $(awk 'BEGIN {print '$count' / '$sum' * 100 }') | awk -F'.' '{print $1}') # 加载进度百分比 bar_length=$(echo $(awk 'BEGIN {print '$count' / '$sum' * '$bar_length_sum' }') | awk -F '.' '{print $1}') # 进度条已完成的实时长度 for i in $(seq 1 ${bar_length_sum}); do # 这个循环将空的进度条填上一堆空格 if [[ "${i}" -gt "${bar_length}" ]]; then # 更换进度条的内容 bar_display=' ' fi bar="${bar}${bar_display}" # 一开始是空的, 通过循环填上一堆空格, 然后逐渐减少空格数量, 增加方块符号的数量 done printf "[\033[33m$(date "+%Y-%m-%d %H:%M:%S")\033[0m][\033[36mTerm-SD\033[0m]\033[36m::\033[0m 加载模块中|${bar}| ${mark}%%\r" [[ "${count}" == "${sum}" ]] && echo } # 无进度显示的初始化功能(增加进度显示只会降低加载速度) term_sd_init_no_bar() { local i for i in "${START_PATH}"/term-sd/modules/*.sh; do [[ "${i}" == "${START_PATH}/term-sd/modules/init.sh" ]] && continue . "${i}" done term_sd_echo "初始化 Term-SD 完成" term_sd_print_line } # 初始化功能 if [[ -f "${START_PATH}/term-sd/config/term-sd-bar.conf" ]]; then case "$(cat "${START_PATH}/term-sd/config/term-sd-bar.conf")" in none) term_sd_init_no_bar ;; new) term_sd_init_new ;; *) term_sd_init ;; esac else term_sd_init fi
2301_81996401/term-sd
modules/init.sh
Shell
agpl-3.0
3,360
#!/bin/bash # 安装 ComfyUI 的功能 # 使用 COMFYUI_EXTENSION_INSTALL_LIST 全局变量读取要安装的 ComfyUI 插件 # 使用 COMFYUI_CUSTOM_NODE_INSTALL_LIST 全局变量读取要安装的 ComfyUI 自定义节点 # 使用 COMFYUI_DOWNLOAD_MODEL_LIST 全局变量读取要下载的模型 install_comfyui() { local cmd_sum local cmd_point local i if [[ -f "${START_PATH}/term-sd/task/comfyui_install.sh" ]]; then # 检测到有未完成的安装任务时直接执行安装任务 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/comfyui_install.sh" | wc -l) + 1 )) # 统计命令行数 term_sd_print_line "ComfyUI 安装" for (( cmd_point=1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "ComfyUI 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/comfyui_install.sh" "${cmd_point}" # 执行安装命令 if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 安装结果" \ --ok-label "确认" \ --msgbox "ComfyUI 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "ComfyUI 安装结束" rm -f "${START_PATH}/term-sd/task/comfyui_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 安装结果" \ --ok-label "确认" \ --msgbox "ComfyUI 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) comfyui_manager # 进入管理界面 else # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 # comfyui_extension_install_select # 插件选择 comfyui_custom_node_install_select # 自定义节点选择 comfyui_download_model_select # 模型选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否安装 ComfUI ?"; then term_sd_print_line "ComfyUI 安装" term_sd_echo "生成安装任务中" term_sd_set_install_env_value >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 环境变量 cat "${START_PATH}/term-sd/install/comfyui/comfyui_core.sh" >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 核心组件 # 启用代理 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 读取安装插件命令 if [[ ! -z "${COMFYUI_EXTENSION_INSTALL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"安装插件中\"" >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 读取安装插件命令列表 for i in ${COMFYUI_EXTENSION_INSTALL_LIST}; do cat "${START_PATH}/term-sd/install/comfyui/comfyui_extension.sh" | grep -w ${i} | awk '{sub(" ON "," ") ; sub(" OFF "," ")}1' >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 插件 done fi # 读取安装自定义节点命令 if [[ ! -z "${COMFYUI_CUSTOM_NODE_INSTALL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"安装自定义节点中\"" >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 读取安装自定义节点列表 for i in ${COMFYUI_CUSTOM_NODE_INSTALL_LIST}; do cat "${START_PATH}/term-sd/install/comfyui/comfyui_custom_node.sh" | grep -w ${i} | awk '{sub(" ON "," ") ; sub(" OFF "," ")}1' >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 插件 done fi # 取消代理 echo "__term_sd_task_sys term_sd_tmp_disable_proxy" >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 读取模型下载命令 if [[ ! -z "${COMFYUI_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载模型中\"" >> "${START_PATH}/term-sd/task/comfyui_install.sh" if is_use_modelscope_src; then # 读取模型 for i in ${COMFYUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/comfyui/comfyui_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 插件所需的模型 done # 读取扩展的模型 for i in ${COMFYUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/comfyui/comfyui_custom_node_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 自定义节点所需的模型 done else # 恢复代理 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 读取模型 for i in ${COMFYUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/comfyui/comfyui_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 插件所需的模型 done # 读取扩展的模型 for i in ${COMFYUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/comfyui/comfyui_custom_node_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/comfyui_install.sh" # 自定义节点所需的模型 done fi fi unset COMFYUI_EXTENSION_INSTALL_LIST unset COMFYUI_CUSTOM_NODE_INSTALL_LIST unset COMFYUI_DOWNLOAD_MODEL_LIST term_sd_echo "任务队列生成完成" term_sd_echo "开始安装 ComfyUI" # 执行安装命令 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/comfyui_install.sh" | wc -l) + 1 )) # 统计命令行数 for (( cmd_point=1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "ComfyUI 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/comfyui_install.sh" "${cmd_point}" # 执行安装命令 if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 安装结果" \ --ok-label "确认" \ --msgbox "ComfyUI 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "ComfyUI 安装结束" rm -f "${START_PATH}/term-sd/task/comfyui_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "ComfyUI 管理" \ --backtitle "ComfyUI 安装结果" \ --ok-label "确认" \ --msgbox "ComfyUI 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) comfyui_manager # 进入管理界面 else unset COMFYUI_EXTENSION_INSTALL_LIST unset COMFYUI_CUSTOM_NODE_INSTALL_LIST unset COMFYUI_DOWNLOAD_MODEL_LIST clean_install_config # 清理安装参数 fi fi } # ComfyUI 插件选择 # 将选择的 ComfyUI 插件保存在 COMFYUI_EXTENSION_INSTALL_LIST 全局变量 comfyui_extension_install_select() { COMFYUI_EXTENSION_INSTALL_LIST=$(dialog --erase-on-exit --notags \ --title "ComfyUI 安装" \ --backtitle "ComfyUI 插件安装选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要安装的 ComfyUI 插件" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}/term-sd/install/comfyui/dialog_comfyui_extension.sh") \ 3>&1 1>&2 2>&3) } # ComfyUI 自定义节点选择 # 将选择的 ComfyUI 自定义节点保存在 COMFYUI_CUSTOM_NODE_INSTALL_LIST 全局变量中 comfyui_custom_node_install_select() { COMFYUI_CUSTOM_NODE_INSTALL_LIST=$(dialog --erase-on-exit --notags \ --title "ComfyUI 安装" \ --backtitle "ComfyUI 自定义节点安装选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要安装的 ComfyUI 自定义节点" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}/term-sd/install/comfyui/dialog_comfyui_custom_node.sh") \ 3>&1 1>&2 2>&3) } # 模型选择 # 使用 COMFYUI_CUSTOM_NODE_INSTALL_LIST 全局变量读取 ComfyUI 自定义节点对应需要下载的模型 # 将选择的模型保存在 COMFYUI_DOWNLOAD_MODEL_LIST 全局变量中 comfyui_download_model_select() { local model_list_file local dialog_list_file local model_list local i # 插件模型列表选择 if is_use_modelscope_src; then model_list_file="comfyui_custom_node_ms_model.sh" dialog_list_file="dialog_comfyui_ms_model.sh" else model_list_file="comfyui_custom_node_hf_model.sh" dialog_list_file="dialog_comfyui_hf_model.sh" fi term_sd_echo "生成模型选择列表中" # 查找插件对应模型的编号 for i in ${COMFYUI_CUSTOM_NODE_INSTALL_LIST}; do model_list="${model_list} $(cat "${START_PATH}"/term-sd/install/comfyui/${model_list_file} | grep -w ${i} | awk 'NR==1{if ($NF!="") {print $1 " " $(NF-1) " " $NF} }')" done # 模型选择(包含基础模型和插件的模型) COMFYUI_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "ComfyUI 安装" \ --backtitle "ComfyUI 模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 ComfyUI 模型\n注:\n1、模型后面括号内数字为模型的大小\n2、需要根据自己的需求勾选需要下载的模型" \ $(get_dialog_size_menu) \ "_null_" "=====基础模型选择=====" ON \ $(cat "${START_PATH}/term-sd/install/comfyui/${dialog_list_file}") \ "_null_" "=====插件模型选择=====" ON \ ${model_list} \ 3>&1 1>&2 2>&3) } # 写入 ComfyUI 配置文件 # 保存在 <ComfyUI Path>/user/default/comfy.settings.json 中 set_comfyui_normal_config() { term_sd_echo "写入 ComfyUI 默认配置中" term_sd_mkdir "${COMFYUI_ROOT_PATH}"/user/default cp -f "${START_PATH}/term-sd/install/comfyui/comfy.settings.json" "${COMFYUI_ROOT_PATH}"/user/default/comfy.settings.json }
2301_81996401/term-sd
modules/install_comfyui.sh
Shell
agpl-3.0
12,237
#!/bin/bash # Fooocus 安装功能 # 使用 FOOOCUS_DOWNLOAD_MODEL_LIST 全局变量读取要下载的模型 install_fooocus() { local cmd_sum local cmd_point local i if [ -f "${START_PATH}/term-sd/task/fooocus_install.sh" ]; then # 检测到有未完成的安装任务时直接执行安装任务 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/fooocus_install.sh" | wc -l) + 1 )) # 统计命令行数 term_sd_print_line "Fooocus 安装" for (( cmd_point = 1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "Fooocus 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/fooocus_install.sh" "${cmd_point}" if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 安装结果" \ --ok-label "确认" \ --msgbox "Fooocus 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "Fooocus 安装结束" rm -f "${START_PATH}/term-sd/task/fooocus_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 安装结果" \ --ok-label "确认" \ --msgbox "Fooocus 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) fooocus_manager # 进入管理界面 else # 生成安装任务并执行安装任务 # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 fooocus_download_model_select # 模型选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否安装 Fooocus ?"; then term_sd_print_line "Fooocus 安装" term_sd_echo "生成安装任务中" term_sd_set_install_env_value >> "${START_PATH}/term-sd/task/fooocus_install.sh" # 环境变量 cat "${START_PATH}/term-sd/install/fooocus/fooocus_core.sh" >> "${START_PATH}/term-sd/task/fooocus_install.sh" # 核心组件 # 模型下载 if [[ ! -z "${FOOOCUS_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载模型中\"" >> "${START_PATH}/term-sd/task/fooocus_install.sh" if is_use_modelscope_src; then # 读取模型 for i in ${FOOOCUS_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/fooocus/fooocus_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/fooocus_install.sh" # 插件所需的模型 done else # 恢复代理 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/fooocus_install.sh" for i in ${FOOOCUS_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/fooocus/fooocus_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/fooocus_install.sh" # 插件所需的模型 done fi fi unset FOOOCUS_DOWNLOAD_MODEL_LIST term_sd_echo "任务队列生成完成" term_sd_echo "开始安装 Fooocus" # 执行安装命令 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/fooocus_install.sh" | wc -l) + 1 )) # 统计命令行数 for (( cmd_point = 1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "Fooocus 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/fooocus_install.sh" "${cmd_point}" if [[ ! $? = 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 安装结果" \ --ok-label "确认" \ --msgbox "Fooocus 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "Fooocus 安装结束" rm -f "${START_PATH}/term-sd/task/fooocus_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "Fooocus 管理" \ --backtitle "Fooocus 安装结果" \ --ok-label "确认" \ --msgbox "Fooocus 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) fooocus_manager # 进入管理界面 else unset FOOOCUS_DOWNLOAD_MODEL_LIST clean_install_config # 清理安装参数 fi fi } # 模型选择 # 将选择的模型保存在 FOOOCUS_DOWNLOAD_MODEL_LIST 变量中 fooocus_download_model_select() { local dialog_list_file term_sd_echo "生成模型选择列表中" if is_use_modelscope_src; then dialog_list_file="dialog_fooocus_ms_model.sh" else dialog_list_file="dialog_fooocus_hf_model.sh" fi # 模型选择 FOOOCUS_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "Fooocus 安装" \ --backtitle "Fooocus 模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 Fooocus 模型\n注:\n1、模型后面括号内数字为模型的大小\n2、需要根据自己的需求勾选需要下载的模型" \ $(get_dialog_size_menu) \ "_null_" "=====基础模型选择=====" ON \ $(cat "${START_PATH}/term-sd/install/fooocus/${dialog_list_file}") \ 3>&1 1>&2 2>&3) } # Fooocus 预设文件 # 在启动 Fooocus 时 将加载该预设文件并应用 # 预设存放于 <Fooocus Path>/presets 中 set_fooocus_preset() { term_sd_echo "写入 Fooocus 风格预设文件中" cp -f "${START_PATH}/term-sd/install/fooocus/preset_term_sd.json" "${FOOOCUS_ROOT_PATH}"/presets/term_sd.json } # Fooocus 翻译文件 # 翻译文件存放于 <Fooocus Path>/language 中 set_fooocus_lang_config() { term_sd_echo "写入 Fooocus 翻译文件中" cp -f "${START_PATH}/term-sd/install/fooocus/lang_config_zh.json" "${FOOOCUS_ROOT_PATH}"/language/zh.json }
2301_81996401/term-sd
modules/install_fooocus.sh
Shell
agpl-3.0
7,888
#!/bin/bash # InvokeAI 安装功能 # 使用 INVOKEAI_INSTALL_CUSTOM_NODE_LIST 读取要安装的自定义节点 # 使用 INVOKEAI_DOWNLOAD_MODEL_LIST 读取要下载的模型 install_invokeai() { local cmd_sum local cmd_point local i if [ -f "${START_PATH}/term-sd/task/invokeai_install.sh" ]; then # 检测到有未完成的安装任务时直接执行安装任务 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/invokeai_install.sh" | wc -l) + 1 )) # 统计命令行数 term_sd_print_line "InvokeAI 安装" for (( cmd_point=1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "InvokeAI 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/invokeai_install.sh" "${cmd_point}" if [ ! $? = 0 ]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 安装结果" \ --ok-label "确认" \ --msgbox "InvokeAI 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "InvokeAI 安装结束" rm -f "${START_PATH}/term-sd/task/invokeai_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 安装结果" \ --ok-label "确认" \ --msgbox "InvokeAI 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) invokeai_manager # 进入管理界面 else # 生成安装任务并执行安装任务 # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_type_select # PyTorch 版本选择 invokeai_custom_node_install_select # 自定义节点选择 invokeai_download_model_select # 模型选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否安装 InvokeAI ?"; then term_sd_print_line "InvokeAI 安装" term_sd_echo "生成安装任务中" term_sd_set_install_env_value >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 环境变量 cat "${START_PATH}/term-sd/install/invokeai/invokeai_core.sh" >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 核心组件 # 启用代理 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 读取安装自定义节点命令 if [[ ! -z "${INVOKEAI_INSTALL_CUSTOM_NODE_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"安装自定义节点中\"" >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 读取安装自定义节点命令列表 for i in ${INVOKEAI_INSTALL_CUSTOM_NODE_LIST}; do cat "${START_PATH}/term-sd/install/invokeai/invokeai_custom_node.sh" | grep -w ${i} | awk '{sub(" ON "," ") ; sub(" OFF "," ")}1' >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 自定义节点 done fi # 取消代理 echo "__term_sd_task_sys term_sd_tmp_disable_proxy" >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 模型下载 if [[ ! -z "${INVOKEAI_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载模型中\"" >> "${START_PATH}/term-sd/task/invokeai_install.sh" if is_use_modelscope_src; then # 读取模型 for i in ${INVOKEAI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/invokeai/invokeai_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 自定义节点所需的模型 done # 读取自定义节点的模型 for i in ${INVOKEAI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/invokeai/invokeai_custom_node_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 自定义节点所需的模型 done else # 恢复代理 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 读取模型 for i in ${INVOKEAI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/invokeai/invokeai_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 自定义节点所需的模型 done # 读取自定义节点的模型 for i in ${INVOKEAI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/invokeai/invokeai_custom_node_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/invokeai_install.sh" # 自定义节点所需的模型 done fi fi unset INVOKEAI_DOWNLOAD_MODEL_LIST unset INVOKEAI_INSTALL_CUSTOM_NODE_LIST term_sd_echo "任务队列生成完成" term_sd_echo "开始安装 InvokeAI" # 执行命令 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/invokeai_install.sh" | wc -l) + 1 )) # 统计命令行数 for ((cmd_point=1; cmd_point <= cmd_sum; cmd_point++)); do term_sd_echo "InvokeAI 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/invokeai_install.sh" "${cmd_point}" if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 安装结果" \ --ok-label "确认" \ --msgbox "InvokeAI 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "InvokeAI 安装结束" rm -f "${START_PATH}/term-sd/task/invokeai_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 安装结果" \ --ok-label "确认" \ --msgbox "InvokeAI 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) invokeai_manager # 进入管理界面 else unset INVOKEAI_DOWNLOAD_MODEL_LIST unset INVOKEAI_INSTALL_CUSTOM_NODE_LIST clean_install_config # 清理安装参数 fi fi } # 自定义节点选择 # 将选择的自定义节点保存在 INVOKEAI_INSTALL_CUSTOM_NODE_LIST 全局变量中 invokeai_custom_node_install_select() { INVOKEAI_INSTALL_CUSTOM_NODE_LIST=$(dialog --erase-on-exit --notags \ --title "InvokeAI 安装" \ --backtitle "InvokeAI 自定义节点安装选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要安装的 InvokeAI 自定义节点" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}/term-sd/install/invokeai/dialog_invokeai_custom_node.sh") \ 3>&1 1>&2 2>&3) } # 模型选择 # 将选择的模型保存在 INVOKEAI_DOWNLOAD_MODEL_LIST 全局变量中 invokeai_download_model_select() { local dialog_list_file local model_list local invokeai_model_list_file local i term_sd_echo "生成模型选择列表中" if is_use_modelscope_src; then dialog_list_file="dialog_invokeai_ms_model.sh" invokeai_model_list_file="invokeai_custom_node_ms_model.sh" else dialog_list_file="dialog_invokeai_hf_model.sh" invokeai_model_list_file="invokeai_custom_node_hf_model.sh" fi # 查找自定义节点对应模型的编号 for i in ${INVOKEAI_INSTALL_CUSTOM_NODE_LIST}; do model_list="${model_list} $(cat "${START_PATH}"/term-sd/install/invokeai/${invokeai_model_list_file} | grep -w ${i} | awk 'NR==1{if ($NF!="") {print $1 " " $(NF-1) " " $NF} }')" done # 模型选择 INVOKEAI_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "InvokeAI 安装" \ --backtitle "InvokeAI 模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 InvokeAI 模型\n注:\n1、模型后面括号内数字为模型的大小, 未有括号标注的模型大小均小于 0.1m\n2、不建议使用 Term-SD 下载 InvokeAI 的模型, 建议使用 InvokeAI 自带的模型管理器下载模型" \ $(get_dialog_size_menu) \ "_null_" "=====基础模型选择=====" ON \ $(cat "${START_PATH}/term-sd/install/invokeai/${dialog_list_file}") \ "_null_" "=====自定义节点模型选择=====" ON \ ${model_list} \ 3>&1 1>&2 2>&3) } # 安装 PyPatchMatch (仅限 Windows 系统) install_pypatchmatch_for_windows() { local pypatchmatch_path=$(term_sd_python "${START_PATH}/term-sd/python_modules/get_pypatchmatch_path.py") if is_windows_platform && [[ ! "${pypatchmatch_path}" == "None" ]]; then term_sd_echo "下载 PyPatchMatch 中" if is_use_modelscope_src; then get_modelscope_model licyks/invokeai-core-model/master/pypatchmatch/libpatchmatch_windows_amd64.dll "${pypatchmatch_path}" libpatchmatch_windows_amd64.dll get_modelscope_model licyks/invokeai-core-model/master/pypatchmatch/opencv_world460.dll "${pypatchmatch_path}" opencv_world460.dll else aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/pypatchmatch/libpatchmatch_windows_amd64.dll "${pypatchmatch_path}" libpatchmatch_windows_amd64.dll aria2_download https://huggingface.co/licyk/invokeai-core-model/resolve/main/pypatchmatch/opencv_world460.dll "${pypatchmatch_path}" opencv_world460.dll fi fi }
2301_81996401/term-sd
modules/install_invokeai.sh
Shell
agpl-3.0
11,588
#!/bin/bash # kohya_ss 安装功能 # 使用 KOHYA_SS_DOWNLOAD_MODEL_LIST 全局变量读取要下载的模型 install_kohya_ss() { local cmd_sum local cmd_point local i if [ -f "${START_PATH}/term-sd/task/kohya_ss_install.sh" ]; then # 检测到有未完成的安装任务时直接执行安装任务 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/kohya_ss_install.sh" | wc -l) + 1 )) # 统计命令行数 term_sd_print_line "kohya_ss 安装" for (( cmd_point = 1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "kohya_ss 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/kohya_ss_install.sh" "${cmd_point}" if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 安装结果" \ --ok-label "确认" \ --msgbox "kohya_ss 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "kohya_ss 安装结束" rm -f "${START_PATH}/term-sd/task/kohya_ss_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 安装结果" \ --ok-label "确认" \ --msgbox "kohya_ss 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) kohya_ss_manager # 进入管理界面 else # 生成安装任务并执行安装任务 # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 kohya_ss_download_model_select # 模型选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否安装 kohya_ss ?"; then term_sd_print_line "kohya_ss 安装" term_sd_echo "生成安装任务中" term_sd_set_install_env_value >> "${START_PATH}/term-sd/task/kohya_ss_install.sh" # 环境变量 cat "${START_PATH}/term-sd/install/kohya_ss/kohya_ss_core.sh" >> "${START_PATH}/term-sd/task/kohya_ss_install.sh" # 核心组件 # 模型下载 if [[ ! -z "${KOHYA_SS_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载模型中\"" >> "${START_PATH}/term-sd/task/kohya_ss_install.sh" if is_use_modelscope_src; then # 读取模型 for i in ${KOHYA_SS_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/kohya_ss/kohya_ss_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/kohya_ss_install.sh" # 插件所需的模型 done else # 恢复代理 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/kohya_ss_install.sh" for i in ${KOHYA_SS_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/kohya_ss/kohya_ss_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/kohya_ss_install.sh" # 插件所需的模型 done fi fi unset KOHYA_SS_DOWNLOAD_MODEL_LIST term_sd_echo "任务队列生成完成" term_sd_echo "开始安装 kohya_ss" cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/kohya_ss_install.sh" | wc -l) + 1 )) # 统计命令行数 for ((cmd_point=1; cmd_point <= cmd_sum; cmd_point++)); do term_sd_echo "kohya_ss 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/kohya_ss_install.sh" "${cmd_point}" if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 安装结果" \ --ok-label "确认" \ --msgbox "kohya_ss 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "kohya_ss 安装结束" rm -f "${START_PATH}/term-sd/task/kohya_ss_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 安装结果" \ --ok-label "确认" \ --msgbox "kohya_ss 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) kohya_ss_manager # 进入管理界面 else unset KOHYA_SS_DOWNLOAD_MODEL_LIST clean_install_config # 清理安装参数 fi fi } # 模型选择 # 将选择的模型保存在 KOHYA_SS_DOWNLOAD_MODEL_LIST 全局变量中 kohya_ss_download_model_select() { local dialog_list_file term_sd_echo "生成模型选择列表中" if is_use_modelscope_src; then dialog_list_file="dialog_kohya_ss_ms_model.sh" else dialog_list_file="dialog_kohya_ss_hf_model.sh" fi # 模型选择 KOHYA_SS_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "kohya_ss 安装" \ --backtitle "kohya_ss 模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 kohya_ss 模型\n注:\n1、模型后面括号内数字为模型的大小\n2、需要根据自己的需求勾选需要下载的模型" \ $(get_dialog_size_menu) \ "_null_" "=====基础模型选择=====" ON \ $(cat "${START_PATH}/term-sd/install/kohya_ss/${dialog_list_file}") \ 3>&1 1>&2 2>&3) }
2301_81996401/term-sd
modules/install_kohya_ss.sh
Shell
agpl-3.0
7,331
#!/bin/bash # lora-scripts 安装功能 # 使用 LORA_SCRIPTS_DOWNLOAD_MODEL_LIST 全局变量读取需要安装的模型 install_lora_scripts() { local cmd_sum local cmd_point local i if [[ -f "${START_PATH}/term-sd/task/lora_scripts_install.sh" ]]; then # 检测到有未完成的安装任务时直接执行安装任务 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/lora_scripts_install.sh" | wc -l) + 1 )) # 统计命令行数 term_sd_print_line "lora-scripts 安装" for (( cmd_point=1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "lora-script 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/lora_scripts_install.sh" "${cmd_point}" if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 安装结果" \ --ok-label "确认" \ --msgbox "lora-scripts 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "lora-scripts 安装结束" rm -f "${START_PATH}/term-sd/task/lora_scripts_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 安装结果" \ --ok-label "确认" \ --msgbox "lora-scripts 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) lora_scripts_manager # 进入管理界面 else # 生成安装任务并执行安装任务 # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 lora_scripts_download_model_select # 模型选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否安装 lora-scripts ?"; then term_sd_print_line "lora-scripts 安装" term_sd_echo "生成安装任务中" term_sd_set_install_env_value >> "${START_PATH}/term-sd/task/lora_scripts_install.sh" # 环境变量 cat "${START_PATH}/term-sd/install/lora_scripts/lora_scripts_core.sh" >> "${START_PATH}/term-sd/task/lora_scripts_install.sh" # 核心组件 # 模型下载 if [[ ! -z "${LORA_SCRIPTS_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载模型中\"" >> "${START_PATH}/term-sd/task/lora_scripts_install.sh" if is_use_modelscope_src; then # 读取模型 for i in ${LORA_SCRIPTS_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/lora_scripts/lora_scripts_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/lora_scripts_install.sh" # 插件所需的模型 done else # 恢复代理 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/lora_scripts_install.sh" for i in ${LORA_SCRIPTS_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/lora_scripts/lora_scripts_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/lora_scripts_install.sh" # 插件所需的模型 done fi fi unset LORA_SCRIPTS_DOWNLOAD_MODEL_LIST term_sd_echo "任务队列生成完成" term_sd_echo "开始安装 lora-scripts" # 执行命令 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/lora_scripts_install.sh" | wc -l) + 1 )) # 统计命令行数 for (( cmd_point=1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "lora-scripts 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/lora_scripts_install.sh" "${cmd_point}" if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 安装结果" \ --ok-label "确认" \ --msgbox "lora-scripts 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "lora-scripts 安装结束" rm -f "${START_PATH}/term-sd/task/lora_scripts_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 安装结果" \ --ok-label "确认" \ --msgbox "lora-scripts 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) lora_scripts_manager # 进入管理界面 else unset LORA_SCRIPTS_DOWNLOAD_MODEL_LIST clean_install_config # 清理安装参数 fi fi } # 模型选择 # 将选择的模型保存在 LORA_SCRIPTS_DOWNLOAD_MODEL_LIST 全局变量中 lora_scripts_download_model_select() { local dialog_list_file term_sd_echo "生成模型选择列表中" if is_use_modelscope_src; then dialog_list_file="dialog_lora_scripts_ms_model.sh" else dialog_list_file="dialog_lora_scripts_hf_model.sh" fi # 模型选择 LORA_SCRIPTS_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "lora-scripts 安装" \ --backtitle "lora-scripts 模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 lora-scripts 模型\n注:\n1、模型后面括号内数字为模型的大小\n2、需要根据自己的需求勾选需要下载的模型" \ $(get_dialog_size_menu) \ "_null_" "=====基础模型选择=====" ON \ $(cat "${START_PATH}/term-sd/install/lora_scripts/${dialog_list_file}") \ 3>&1 1>&2 2>&3) }
2301_81996401/term-sd
modules/install_lora_scripts.sh
Shell
agpl-3.0
7,598
#!/bin/bash # 安装前镜像选择 # 该函数需要使用 TERM_SD_PIP_INDEX_URL_ARG, TERM_SD_PIP_EXTRA_INDEX_URL_ARG, TERM_SD_PIP_FIND_LINKS_ARG # TERM_SD_UV_INDEX_URL_ARG, TERM_SD_UV_EXTRA_INDEX_URL_ARG, TERM_SD_UV_FIND_LINKS_ARG 变量 # 用于设置其他参数 # 选择后将设置以下变量: # PIP_INDEX_MIRROR, PIP_EXTRA_INDEX_MIRROR, PIP_FIND_LINKS_MIRROR # UV_INDEX_MIRROR, UV_EXTRA_INDEX_MIRROR, UV_FIND_LINKS_MIRROR # USE_MODELSCOPE_MODEL_SRC, GITHUB_MIRROR, GITHUB_MIRROR_NAME # USE_PIP_MIRROR, TERM_SD_ENABLE_ONLY_PROXY download_mirror_select() { local dialog_arg local auto_select_github_mirror=0 local use_env_pip_mirror=0 local use_global_github_mirror=0 local use_global_pip_mirror=0 local i PIP_INDEX_MIRROR="--index-url https://pypi.python.org/simple" UV_INDEX_MIRROR="--default-index https://pypi.python.org/simple" unset PIP_EXTRA_INDEX_MIRROR unset UV_EXTRA_INDEX_MIRROR PIP_FIND_LINKS_MIRROR="--find-links https://download.pytorch.org/whl/torch_stable.html" UV_FIND_LINKS_MIRROR="--find-links https://download.pytorch.org/whl/torch_stable.html" USE_PIP_MIRROR=0 TERM_SD_ENABLE_ONLY_PROXY=0 USE_MODELSCOPE_MODEL_SRC=0 GITHUB_MIRROR="https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="官方源 (github.com)" dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "安装镜像选项" \ --title "Term-SD" \ --ok-label "确认" --no-cancel \ --checklist "请选择镜像, 注:\n1. 当同时启用多个 Github 镜像源时, 优先选择最下面的 Github 镜像源; 勾选 \"Github 镜像源自动选择\" 时, 将覆盖手动设置的 Github 镜像源\n2. 启用全局镜像源后, 优先使用设置中的镜像源\n3. 如果需要保持安装全程使用代理, 需要将 \"Huggingface / Github 下载源独占代理\" 关闭\n4. 有些 Python 软件包的下载需要代理, 需要将 \"Huggingface / Github 下载源独占代理\" 关闭\n5. 通常情况下保持默认即可" \ $(get_dialog_size_menu) \ "1" "启用 PyPI 镜像源 (使用 PyPI 国内镜像源下载 Python 软件包)" OFF \ "2" "使用全局 PyPI 镜像源配置 (使用 Term-SD 设置中配置的 PyPI 镜像源)" ON \ "3" "使用 ModelScope 模型下载源 (将 HuggingFace 下载源改为 ModelScope 下载源)" ON \ "4" "Huggingface / Github 下载源独占代理 (仅在下载 Huggingface / Github 上的文件时启用代理)" OFF \ "5" "使用全局 Github 镜像源配置 (当设置了全局 Github 镜像源时禁用 Github 镜像自动选择)" ON \ "6" "Github 镜像源自动选择 (测试可用的镜像源并选择自动选择)" ON \ "7" "启用 Github 镜像源 1 (使用 ghfast.top 镜像站下载 Github 上的源码)" OFF \ "8" "启用 Github 镜像源 2 (使用 mirror.ghproxy.com 镜像站下载 Github 上的源码)" OFF \ "9" "启用 Github 镜像源 3 (使用 gitclone.com 镜像站下载 Github 上的源码)" OFF \ "10" "启用 Github 镜像源 4 (使用 gh-proxy.com 镜像站下载 Github 上的源码)" OFF \ "11" "启用 Github 镜像源 5 (使用 ghps.cc 镜像站下载 Github 上的源码)" OFF \ "12" "启用 Github 镜像源 6 (使用 gh.idayer.com 镜像站下载 Github 上的源码)" OFF \ "13" "启用 Github 镜像源 7 (使用 ghproxy.net 镜像站下载 Github 上的源码)" OFF \ "14" "启用 Github 镜像源 8 (使用 gh.api.99988866.xyz 镜像站下载 Github 上的源码)" OFF \ "15" "启用 Github 镜像源 9 (使用 ghproxy.1888866.xyz 镜像站下载 Github 上的源码)" OFF \ "16" "启用 Github 镜像源 10 (使用 slink.ltd 镜像站下载 Github 上的源码)" OFF \ "17" "启用 Github 镜像源 11 (使用 github.boki.moe 镜像站下载 Github 上的源码)" OFF \ "18" "启用 Github 镜像源 12 (使用 github.moeyy.xyz 镜像站下载 Github 上的源码)" OFF \ "19" "启用 Github 镜像源 13 (使用 gh-proxy.net 镜像站下载 Github 上的源码)" OFF \ "20" "启用 Github 镜像源 14 (使用 gh-proxy.ygxz.in 镜像站下载 Github 上的源码)" OFF \ "21" "启用 Github 镜像源 15 (使用 wget.la 镜像站下载 Github 上的源码)" OFF \ "22" "启用 Github 镜像源 16 (使用 kkgithub.com 镜像站下载 Github 上的源码)" OFF \ 3>&1 1>&2 2>&3) for i in ${dialog_arg}; do case "${i}" in 1) USE_PIP_MIRROR=1 PIP_INDEX_MIRROR=$TERM_SD_PIP_INDEX_URL_ARG PIP_EXTRA_INDEX_MIRROR=$TERM_SD_PIP_EXTRA_INDEX_URL_ARG PIP_FIND_LINKS_MIRROR=$TERM_SD_PIP_FIND_LINKS_ARG UV_INDEX_MIRROR=$TERM_SD_UV_INDEX_URL_ARG UV_EXTRA_INDEX_MIRROR=$TERM_SD_UV_EXTRA_INDEX_URL_ARG UV_FIND_LINKS_MIRROR=$TERM_SD_UV_FIND_LINKS_ARG ;; 2) use_global_pip_mirror=1 ;; 3) USE_MODELSCOPE_MODEL_SRC=1 ;; 4) TERM_SD_ENABLE_ONLY_PROXY=1 ;; 5) if [[ -f "${START_PATH}/term-sd/config/set-global-github-mirror.conf" ]]; then use_global_github_mirror=1 fi ;; 6) auto_select_github_mirror=1 ;; 7) GITHUB_MIRROR="https://ghfast.top/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 1 (ghfast.top)" ;; 8) GITHUB_MIRROR="https://mirror.ghproxy.com/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 2 (mirror.ghproxy.com)" ;; 9) GITHUB_MIRROR="https://gitclone.com/github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 3 (gitclone.com)" ;; 10) GITHUB_MIRROR="https://gh-proxy.com/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 4 (gh-proxy.com)" ;; 11) GITHUB_MIRROR="https://ghps.cc/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 5 (ghps.cc)" ;; 12) GITHUB_MIRROR="https://gh.idayer.com/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 6 (gh.idayer.com)" ;; 13) GITHUB_MIRROR="https://ghproxy.net/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 7 (ghproxy.net)" ;; 14) GITHUB_MIRROR="https://gh.api.99988866.xyz/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 8 (gh.api.99988866.xyz)" ;; 15) GITHUB_MIRROR="https://ghproxy.1888866.xyz/github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 9 (ghproxy.1888866.xyz)" ;; 16) GITHUB_MIRROR="https://slink.ltd/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 10 (slink.ltd)" ;; 17) GITHUB_MIRROR="https://github.boki.moe/github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 11 (github.boki.moe)" ;; 18) GITHUB_MIRROR="https://github.moeyy.xyz/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 12 (github.moeyy.xyz)" ;; 19) GITHUB_MIRROR="https://gh-proxy.net/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 13 (gh-proxy.net)" ;; 20) GITHUB_MIRROR="https://gh-proxy.ygxz.in/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 14 (gh-proxy.ygxz.in)" ;; 21) GITHUB_MIRROR="https://wget.la/https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 15 (wget.la)" ;; 22) GITHUB_MIRROR="https://kkgithub.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="镜像源 16 (kkgithub.com)" ;; esac done if [[ "${use_global_pip_mirror}" == 1 ]]; then if [[ ! -z "${PIP_INDEX_URL}" ]]; then # 确保存在镜像源 use_env_pip_mirror=1 # 已弃用 # elif [ ! -z "$(term_sd_pip config list | grep -E "global.index-url")" ] && [ ! -z "$(term_sd_pip config list | grep -E "global.find-links")" ]; then # use_env_pip_mirror=1 else use_env_pip_mirror=0 fi if [[ "${use_env_pip_mirror}" == 1 ]]; then term_sd_echo "使用全局 PyPI 镜像源配置" unset PIP_INDEX_MIRROR unset PIP_EXTRA_INDEX_MIRROR unset PIP_FIND_LINKS_MIRROR unset UV_INDEX_MIRROR unset UV_EXTRA_INDEX_MIRROR unset UV_FIND_LINKS_MIRROR if [[ ! "${PIP_INDEX_URL}" == "https://pypi.python.org/simple" ]]; then term_sd_echo "使用 PyPI 镜像源" USE_PIP_MIRROR=1 elif [[ "${PIP_INDEX_URL}" == "https://pypi.python.org/simple" ]]; then term_sd_echo "使用 PyPI 官方源" USE_PIP_MIRROR=0 # 已弃用 # elif term_sd_pip config list | grep -E "global.index-url" | grep "https://pypi.python.org/simple" &> /dev/null; then # term_sd_echo "使用 PyPI 官方源" # USE_PIP_MIRROR=0 else term_sd_echo "使用 PyPI 镜像源" USE_PIP_MIRROR=1 fi else term_sd_echo "未设置任何镜像源,默认使用 PyPI 国内镜像源" USE_PIP_MIRROR=1 PIP_INDEX_MIRROR=$TERM_SD_PIP_INDEX_URL_ARG PIP_EXTRA_INDEX_MIRROR=$TERM_SD_PIP_EXTRA_INDEX_URL_ARG PIP_FIND_LINKS_MIRROR=$TERM_SD_PIP_FIND_LINKS_ARG UV_INDEX_MIRROR=$TERM_SD_UV_INDEX_URL_ARG UV_EXTRA_INDEX_MIRROR=$TERM_SD_UV_EXTRA_INDEX_URL_ARG UV_FIND_LINKS_MIRROR=$TERM_SD_UV_FIND_LINKS_ARG fi fi if [[ "${auto_select_github_mirror}" == 1 ]]; then # 测试可用的镜像源 if [[ "${use_global_github_mirror}" == 1 ]]; then term_sd_echo "使用全局 Github 镜像源" GITHUB_MIRROR="https://github.com/term_sd_git_user/term_sd_git_repo" GITHUB_MIRROR_NAME="全局镜像源 ($(cat "${START_PATH}/term-sd/config/set-global-github-mirror.conf" | awk '{sub("/https://github.com","") sub("/github.com","")}1'))" else term_sd_echo "测试可用的 Github 镜像源中" github_mirror=$(github_mirror_test) GITHUB_MIRROR_NAME="镜像源 ($(echo ${github_mirror} | awk '{sub("https://","")}1' | awk -F '/' '{print$NR}'))" term_sd_echo "镜像源测试结束, 镜像源选择: ${GITHUB_MIRROR_NAME}" fi fi } # PyTorch 安装版本选择 # 选择后设置 INSTALL_PYTORCH_VERSION 全局变量保存 PyTorch 版本信息 # 设置 INSTALL_XFORMERS_VERSION 全局变量保存 xFormers 版本信息 # PYTORCH_TYPE 保存使用的 PyTorch 镜像源种类, 如果为空则使用默认的镜像源 pytorch_version_select() { local dialog_arg unset INSTALL_PYTORCH_VERSION unset INSTALL_XFORMERS_VERSION dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "PyTorch 安装版本选项" \ --ok-label "确认" --no-cancel \ --menu "请选择要安装的 PyTorch 版本, 注:\n1. Nvidia 显卡选择 CUDA 的版本\n2. AMD 显卡选择 ROCm(Linux) / DirectML(Windows) 版本\n3. Intel 显卡选择 IPEX Arc(独显) / Core Ultra(核显) / Intel XPU\n4. Apple M 系列芯片选择无特殊标识版本\n5. 使用 CPU 运算选择 CPU 版本\n6. 标记为 Linux 的版本只能在 Linux 上安装\n当前 PyTorch 版本: $(get_pytorch_version)\n当前 xFormers 版本: $(get_xformers_version)" \ $(get_dialog_size_menu) \ "118" "> Torch 2.8.0 (CUDA 12.6) + xFormers 0.0.32.post2" \ "117" "> Torch 2.8.0 (CUDA 12.8) + xFormers 0.0.32.post2" \ "116" "> Torch 2.8.0 (CUDA 12.9) + xFormers 0.0.32.post2" \ "115" "> Torch 2.8.0 (Intel XPU)" \ "114" "> Torch 2.8.0 (ROCm 6.3)" \ "113" "> Torch 2.8.0 (ROCm 6.4) + xFormers 0.0.32.post2" \ "112" "> Torch 2.8.0 (CPU)" \ "111" "> Torch 2.8.0" \ "110" "> Torch 2.7.1 (CUDA 11.8) + xFormers 0.0.31.post1 (Linux)" \ "109" "> Torch 2.7.1 (CUDA 12.6) + xFormers 0.0.31.post1" \ "108" "> Torch 2.7.1 (CUDA 12.8) + xFormers 0.0.31.post1" \ "107" "> Torch 2.7.1 (Intel XPU)" \ "106" "> Torch 2.7.1 (ROCm 6.2.4) + xFormers 0.0.31.post1 (Linux)" \ "105" "> Torch 2.7.1 (ROCm 6.3) + xFormers 0.0.31.post1 (Linux)" \ "104" "> Torch 2.7.1 (CPU)" \ "103" "> Torch 2.7.1" \ "102" "> Torch 2.7.0 (CUDA 11.8) + xFormers 0.0.30 (Linux)" \ "101" "> Torch 2.7.0 (CUDA 12.6) + xFormers 0.0.30" \ "100" "> Torch 2.7.0 (CUDA 12.8) + xFormers 0.0.30" \ "99" "> Torch 2.7.0 (Intel XPU)" \ "98" "> Torch 2.7.0 (ROCm 6.2.4) + xFormers 0.0.30 (Linux)" \ "97" "> Torch 2.7.0 (ROCm 6.3) + xFormers 0.0.30 (Linux)" \ "96" "> Torch 2.7.0 (CPU)" \ "95" "> Torch 2.7.0" \ "94" "> Torch 2.6.0 (CUDA 11.8) + xFormers 0.0.29.post3 (Linux)" \ "93" "> Torch 2.6.0 (CUDA 12.4) + xFormers 0.0.29.post3" \ "92" "> Torch 2.6.0 (CUDA 12.6) + xFormers 0.0.29.post3" \ "91" "> Torch 2.6.0 (Intel XPU)" \ "90" "> Torch 2.6.0 (ROCm 6.1) + xFormers 0.0.29.post3 (Linux)" \ "89" "> Torch 2.6.0 (ROCm 6.2.4) + xFormers 0.0.29.post3 (Linux)" \ "88" "> Torch 2.6.0 (CPU)" \ "87" "> Torch 2.6.0" \ "86" "> Torch 2.5.1 (CUDA 11.8) + xFormers 0.0.28.post3 (Linux)" \ "85" "> Torch 2.5.1 (CUDA 12.1) + xFormers 0.0.28.post3 (Linux)" \ "84" "> Torch 2.5.1 (CUDA 12.4) + xFormers 0.0.28.post3" \ "83" "> Torch 2.5.1 (ROCm 6.1) + xFormers 0.0.28.post3 (Linux)" \ "82" "> Torch 2.5.1 (ROCm 6.2) (Linux)" \ "81" "> Torch 2.5.1 (CPU)" \ "80" "> Torch 2.5.1" \ "79" "> Torch 2.5.0 (CUDA 11.8) + xFormers 0.0.28.post2 (Linux)" \ "78" "> Torch 2.5.0 (CUDA 12.1) + xFormers 0.0.28.post2 (Linux)" \ "77" "> Torch 2.5.0 (CUDA 12.4) + xFormers 0.0.28.post2" \ "76" "> Torch 2.5.0 (ROCm 6.1) + xFormers 0.0.28.post2 (Linux)" \ "75" "> Torch 2.5.0 (ROCm 6.2) (Linux)" \ "74" "> Torch 2.5.0 (CPU)" \ "73" "> Torch 2.5.0" \ "72" "> Torch 2.4.1 (CUDA 11.8) + xFormers 0.0.28.post1 (Linux)" \ "71" "> Torch 2.4.1 (CUDA 12.1) + xFormers 0.0.28.post1 (Linux)" \ "70" "> Torch 2.4.1 (CUDA 12.4) + xFormers 0.0.28.post1" \ "69" "> Torch 2.4.1 (ROCm 6.1) + xFormers 0.0.28.post1 (Linux)" \ "68" "> Torch 2.4.1 (CPU)" \ "67" "> Torch 2.4.1" \ "66" "> Torch 2.4.0 (CUDA 11.8) + xFormers 0.0.27.post2" \ "65" "> Torch 2.4.0 (CUDA 12.1) + xFormers 0.0.27.post2" \ "64" "> Torch 2.4.0 (CUDA 12.4)" \ "63" "> Torch 2.4.0 (ROCm 6.0) (Linux)" \ "62" "> Torch 2.4.0 (CPU)" \ "61" "> Torch 2.4.0" \ "60" "> Torch 2.3.1 (CUDA 11.8) + xFormers 0.0.27" \ "59" "> Torch 2.3.1 (CUDA 12.1) + xFormers 0.0.27" \ "58" "> Torch 2.3.1 (ROCm 6.0) (Linux)" \ "57" "> Torch 2.3.1 (DirectML)" \ "56" "> Torch 2.3.1 (CPU)" \ "55" "> Torch 2.3.1" \ "54" "> Torch 2.3.0 (CUDA 11.8) + xFormers 0.0.26.post1" \ "53" "> Torch 2.3.0 (CUDA 12.1) + xFormers 0.0.26.post1" \ "52" "> Torch 2.3.0 (ROCm 6.0) (Linux)" \ "51" "> Torch 2.3.0 (CPU)" \ "50" "> Torch 2.3.0" \ "49" "> Torch 2.2.2 (CUDA 11.8) + xFormers 0.0.25.post1" \ "48" "> Torch 2.2.2 (CUDA 12.1) + xFormers 0.0.25.post1" \ "47" "> Torch 2.2.2 (ROCm 5.7) (Linux)" \ "46" "> Torch 2.2.2 (CPU)" \ "45" "> Torch 2.2.2" \ "44" "> Torch 2.2.1 (CUDA 11.8) + xFormers 0.0.25" \ "43" "> Torch 2.2.1 (CUDA 12.1) + xFormers 0.0.25" \ "42" "> Torch 2.2.1 (ROCm 5.7) (Linux)" \ "41" "> Torch 2.2.1 (DirectML)" \ "40" "> Torch 2.2.1 (CPU)" \ "39" "> Torch 2.2.1" \ "38" "> Torch 2.2.0 (CUDA 11.8) + xFormers 0.0.24" \ "37" "> Torch 2.2.0 (CUDA 12.1) + xFormers 0.0.24" \ "36" "> Torch 2.2.0 (ROCm 5.7) (Linux)" \ "35" "> Torch 2.2.0 (CPU)" \ "34" "> Torch 2.2.0" \ "33" "> Torch 2.1.2 (CUDA 11.8) + xFormers 0.0.23.post1" \ "32" "> Torch 2.1.2 (CUDA 12.1) + xFormers 0.0.23.post1" \ "31" "> Torch 2.1.2 (ROCm 5.6) (Linux)" \ "30" "> Torch 2.1.2 (CPU)" \ "29" "> Torch 2.1.2" \ "28" "> Torch 2.1.1 (CUDA 11.8) + xFormers 0.0.23" \ "27" "> Torch 2.1.1 (CUDA 12.1) + xFormers 0.0.23" \ "26" "> Torch 2.1.1 (ROCm 5.6) (Linux)" \ "25" "> Torch 2.1.1 (CPU)" \ "24" "> Torch 2.1.1" \ "23" "> Torch 2.1.0 (Intel Arc)" \ "22" "> Torch 2.1.0 (Intel Core Ultra)" \ "21" "> Torch 2.1.0 (ROCm 5.6) (Linux)" \ "20" "> Torch 2.1.0 (CPU)" \ "19" "> Torch 2.1.0" \ "18" "> Torch 2.0.1 (CUDA 11.8) + xFormers 0.0.22" \ "17" "> Torch 2.0.1 (ROCm 5.4.2) (Linux)" \ "16" "> Torch 2.0.1 (CPU)" \ "15" "> Torch 2.0.1" \ "14" "> Torch 2.0.0 (CUDA 11.8) + xFormers 0.0.18" \ "13" "> Torch 2.0.0 (Intel Arc)" \ "12" "> Torch 2.0.0 (DirectML)" \ "11" "> Torch 2.0.0 (CPU)" \ "10" "> Torch 2.0.0" \ "9" "> Torch 1.13.1 (CUDA 11.7) + xFormers 0.0.16" \ "8" "> Torch 1.13.1 (DirectML)" \ "7" "> Torch 1.13.1 (CPU)" \ "6" "> Torch 1.13.1" \ "5" "> Torch 1.12.1 (CUDA 11.3) + xFormers 0.0.14" \ "4" "> Torch 1.12.1 (CPU)" \ "3" "> Torch 1.12.1" \ "2" "> Torch + xFormers" \ "1" "> Torch" \ "0" "> 跳过安装 PyTorch" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 0) unset INSTALL_PYTORCH_VERSION unset INSTALL_XFORMERS_VERSION ;; 1) INSTALL_PYTORCH_VERSION="torch torchvision torchaudio" ;; 2) INSTALL_PYTORCH_VERSION="torch torchvision torchaudio" INSTALL_XFORMERS_VERSION="xformers" ;; 3) INSTALL_PYTORCH_VERSION="torch==1.12.1 torchvision==0.13.1 torchaudio==1.12.1" ;; 4) INSTALL_PYTORCH_VERSION="torch==1.12.1+cpu torchvision==0.13.1+cpu torchaudio==1.12.1+cpu" PYTORCH_TYPE="cpu" ;; 5) INSTALL_PYTORCH_VERSION="torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==1.12.1+cu113" INSTALL_XFORMERS_VERSION="xformers==0.0.14" ;; 6) INSTALL_PYTORCH_VERSION="torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1" ;; 7) INSTALL_PYTORCH_VERSION="torch==1.13.1+cpu torchvision==0.14.1+cpu torchaudio==0.13.1+cpu" PYTORCH_TYPE="cpu" ;; 8) INSTALL_PYTORCH_VERSION="torch==1.13.1 torchvision==0.14.1 torch-directml==0.1.13.1.dev230413" ;; 9) INSTALL_PYTORCH_VERSION="torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1+cu117" ;; 10) INSTALL_PYTORCH_VERSION="torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.0" ;; 11) INSTALL_PYTORCH_VERSION="torch==2.0.0+cpu torchvision==0.15.1+cpu torchaudio==2.0.0+cpu" PYTORCH_TYPE="cpu" ;; 12) INSTALL_PYTORCH_VERSION="torch==2.0.0 torchvision==0.15.1 torch-directml==0.2.0.dev230426" ;; 13) INSTALL_PYTORCH_VERSION="torch(ipex_Arc) 2.0.0" PYTORCH_TYPE="ipex_legacy_arc" ;; 14) INSTALL_PYTORCH_VERSION="torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.0+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.18" ;; 15) INSTALL_PYTORCH_VERSION="torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.1" ;; 16) INSTALL_PYTORCH_VERSION="torch==2.0.1+cpu torchvision==0.15.2+cpu torchaudio==2.0.1+cpu" PYTORCH_TYPE="cpu" ;; 17) INSTALL_PYTORCH_VERSION="torch==2.0.1+rocm5.4.2 torchvision==0.15.2+rocm5.4.2 torchaudio==2.0.1+rocm5.4.2" ;; 18) INSTALL_PYTORCH_VERSION="torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.1+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.22" ;; 19) INSTALL_PYTORCH_VERSION="torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0" ;; 20) INSTALL_PYTORCH_VERSION="torch==2.1.0+cpu torchvision==0.16.0+cpu torchaudio==2.1.0+cpu" PYTORCH_TYPE="cpu" ;; 21) INSTALL_PYTORCH_VERSION="torch==2.1.0+rocm5.6 torchvision==0.16.0+rocm5.6 torchaudio==2.1.0+rocm5.6" ;; 22) INSTALL_PYTORCH_VERSION="torch(ipex_Core_Ultra) 2.1.0" PYTORCH_TYPE="ipex_legacy_core_ultra" ;; 23) INSTALL_PYTORCH_VERSION="torch(ipex_Arc) 2.1.0" PYTORCH_TYPE="ipex_legacy_arc" ;; 24) INSTALL_PYTORCH_VERSION="torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1" ;; 25) INSTALL_PYTORCH_VERSION="torch==2.1.1+cpu torchvision==0.16.1+cpu torchaudio==2.1.1+cpu" PYTORCH_TYPE="cpu" ;; 26) INSTALL_PYTORCH_VERSION="torch==2.1.1+rocm5.6 torchvision==0.16.1+rocm5.6 torchaudio==2.1.1+rocm5.6" ;; 27) INSTALL_PYTORCH_VERSION="torch==2.1.1+cu121 torchvision==0.16.1+cu121 torchaudio==2.1.1+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.23" ;; 28) INSTALL_PYTORCH_VERSION="torch==2.1.1+cu118 torchvision==0.16.1+cu118 torchaudio==2.1.1+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.23+cu118" PYTORCH_TYPE="cu118" ;; 29) INSTALL_PYTORCH_VERSION="torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2" ;; 30) INSTALL_PYTORCH_VERSION="torch==2.1.2+cpu torchvision==0.16.2+cpu torchaudio==2.1.2+cpu" PYTORCH_TYPE="cpu" ;; 31) INSTALL_PYTORCH_VERSION="torch==2.1.2+rocm5.6 torchvision==0.16.2+rocm5.6 torchaudio==2.1.2+rocm5.6" ;; 32) INSTALL_PYTORCH_VERSION="torch==2.1.2+cu121 torchvision==0.16.2+cu121 torchaudio==2.1.2+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.23.post1" PYTORCH_TYPE="cu121" ;; 33) INSTALL_PYTORCH_VERSION="torch==2.1.2+cu118 torchvision==0.16.2+cu118 torchaudio==2.1.2+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.23.post1+cu118" PYTORCH_TYPE="cu118" ;; 34) INSTALL_PYTORCH_VERSION="torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0" ;; 35) INSTALL_PYTORCH_VERSION="torch==2.2.0+cpu torchvision==0.17.0+cpu torchaudio==2.2.0+cpu" PYTORCH_TYPE="cpu" ;; 36) INSTALL_PYTORCH_VERSION="torch==2.2.0+rocm5.7 torchvision==0.17.0+rocm5.7 torchaudio==2.2.0+rocm5.7" ;; 37) INSTALL_PYTORCH_VERSION="torch==2.2.0+cu121 torchvision==0.17.0+cu121 torchaudio==2.2.0+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.24" PYTORCH_TYPE="cu121" ;; 38) INSTALL_PYTORCH_VERSION="torch==2.2.0+cu118 torchvision==0.17.0+cu118 torchaudio==2.2.0+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.24+cu118" PYTORCH_TYPE="cu118" ;; 39) INSTALL_PYTORCH_VERSION="torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1" ;; 40) INSTALL_PYTORCH_VERSION="torch==2.2.1+cpu torchvision==0.17.1+cpu torchaudio==2.2.1+cpu" PYTORCH_TYPE="cpu" ;; 41) INSTALL_PYTORCH_VERSION="torch==2.2.1 torchvision==0.17.1 torch-directml==0.2.1.dev240521" ;; 42) INSTALL_PYTORCH_VERSION="torch==2.2.1+rocm5.7 torchvision==0.17.1+rocm5.7 torchaudio==2.2.1+rocm5.7" ;; 43) INSTALL_PYTORCH_VERSION="torch==2.2.1+cu121 torchvision==0.17.1+cu121 torchaudio==2.2.1+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.25" PYTORCH_TYPE="cu121" ;; 44) INSTALL_PYTORCH_VERSION="torch==2.2.1+cu118 torchvision==0.17.1+cu118 torchaudio==2.2.1+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.25+cu118" PYTORCH_TYPE="cu118" ;; 45) INSTALL_PYTORCH_VERSION="torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2" ;; 46) INSTALL_PYTORCH_VERSION="torch==2.2.2+cpu torchvision==0.17.2+cpu torchaudio==2.2.2+cpu" PYTORCH_TYPE="cpu" ;; 47) INSTALL_PYTORCH_VERSION="torch==2.2.2+rocm5.7 torchvision==0.17.2+rocm5.7 torchaudio==2.2.2+rocm5.7" ;; 48) INSTALL_PYTORCH_VERSION="torch==2.2.2+cu121 torchvision==0.17.2+cu121 torchaudio==2.2.2+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.25.post1" PYTORCH_TYPE="cu121" ;; 49) INSTALL_PYTORCH_VERSION="torch==2.2.2+cu118 torchvision==0.17.2+cu118 torchaudio==2.2.2+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.25.post1+cu118" PYTORCH_TYPE="cu118" ;; 50) INSTALL_PYTORCH_VERSION="torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0" ;; 51) INSTALL_PYTORCH_VERSION="torch==2.3.0+cpu torchvision==0.18.0+cpu torchaudio==2.3.0+cpu" PYTORCH_TYPE="cpu" ;; 52) INSTALL_PYTORCH_VERSION="torch==2.3.0+rocm6.0 torchvision==0.18.0+rocm6.0 torchaudio==2.3.0+rocm6.0" ;; 53) INSTALL_PYTORCH_VERSION="torch==2.3.0+cu121 torchvision==0.18.0+cu121 torchaudio==2.3.0+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.26.post1" PYTORCH_TYPE="cu121" ;; 54) INSTALL_PYTORCH_VERSION="torch==2.3.0+cu118 torchvision==0.18.0+cu118 torchaudio==2.3.0+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.26.post1+cu118" PYTORCH_TYPE="cu118" ;; 55) INSTALL_PYTORCH_VERSION="torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1" ;; 56) INSTALL_PYTORCH_VERSION="torch==2.3.1+cpu torchvision==0.18.1+cpu torchaudio==2.3.1+cpu" PYTORCH_TYPE="cpu" ;; 57) INSTALL_PYTORCH_VERSION="torch==2.3.1 torchvision==0.18.1 torch-directml==0.2.3.dev240715" ;; 58) INSTALL_PYTORCH_VERSION="torch==2.3.1+rocm6.0 torchvision==0.18.1+rocm6.0 torchaudio==2.3.1+rocm6.0" ;; 59) INSTALL_PYTORCH_VERSION="torch==2.3.1+cu121 torchvision==0.18.1+cu121 torchaudio==2.3.1+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.27" PYTORCH_TYPE="cu121" ;; 60) INSTALL_PYTORCH_VERSION="torch==2.3.1+cu118 torchvision==0.18.1+cu118 torchaudio==2.3.1+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.27+cu118" PYTORCH_TYPE="cu118" ;; 61) INSTALL_PYTORCH_VERSION="torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0" ;; 62) INSTALL_PYTORCH_VERSION="torch==2.4.0+cpu torchvision==0.19.0+cpu torchaudio==2.4.0+cpu" PYTORCH_TYPE="cpu" ;; 63) INSTALL_PYTORCH_VERSION="torch==2.4.0+rocm6.0 torchvision==0.19.0+rocm6.0 torchaudio==2.4.0+rocm6.0" ;; 64) INSTALL_PYTORCH_VERSION="torch==2.4.0+cu124 torchvision==0.19.0+cu124 torchaudio==2.4.0+cu124" PYTORCH_TYPE="cu124" ;; 65) INSTALL_PYTORCH_VERSION="torch==2.4.0+cu121 torchvision==0.19.0+cu121 torchaudio==2.4.0+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.27.post2" PYTORCH_TYPE="cu121" ;; 66) INSTALL_PYTORCH_VERSION="torch==2.4.0+cu118 torchvision==0.19.0+cu118 torchaudio==2.4.0+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.27.post2+cu118" PYTORCH_TYPE="cu118" ;; 67) INSTALL_PYTORCH_VERSION="torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1" ;; 68) INSTALL_PYTORCH_VERSION="torch==2.4.1+cpu torchvision==0.19.1+cpu torchaudio==2.4.1+cpu" PYTORCH_TYPE="cpu" ;; 69) INSTALL_PYTORCH_VERSION="torch==2.4.1+rocm6.1 torchvision==0.19.1+rocm6.1 torchaudio==2.4.1+rocm6.1" INSTALL_XFORMERS_VERSION="xformers===0.0.28.post1" PYTORCH_TYPE="rocm61" ;; 70) INSTALL_PYTORCH_VERSION="torch==2.4.1+cu124 torchvision==0.19.1+cu124 torchaudio==2.4.1+cu124" INSTALL_XFORMERS_VERSION="xformers===0.0.28.post1" PYTORCH_TYPE="cu124" ;; 71) INSTALL_PYTORCH_VERSION="torch==2.4.1+cu121 torchvision==0.19.1+cu121 torchaudio==2.4.1+cu121" INSTALL_XFORMERS_VERSION="xformers===0.0.28.post1" PYTORCH_TYPE="cu121" ;; 72) INSTALL_PYTORCH_VERSION="torch==2.4.1+cu118 torchvision==0.19.1+cu118 torchaudio==2.4.1+cu118" INSTALL_XFORMERS_VERSION="xformers===0.0.28.post1" PYTORCH_TYPE="cu118" ;; 73) INSTALL_PYTORCH_VERSION="torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0" ;; 74) INSTALL_PYTORCH_VERSION="torch==2.5.0+cpu torchvision==0.20.0+cpu torchaudio==2.5.0+cpu" PYTORCH_TYPE="cpu" ;; 75) INSTALL_PYTORCH_VERSION="torch==2.5.0+rocm6.2 torchvision==0.20.0+rocm6.2 torchaudio==2.5.0+rocm6.2" PYTORCH_TYPE="rocm62" ;; 76) INSTALL_PYTORCH_VERSION="torch==2.5.0+rocm6.1 torchvision==0.20.0+rocm6.1 torchaudio==2.5.0+rocm6.1" INSTALL_XFORMERS_VERSION="xformers==0.0.28.post2" PYTORCH_TYPE="rocm61" ;; 77) INSTALL_PYTORCH_VERSION="torch==2.5.0+cu124 torchvision==0.20.0+cu124 torchaudio==2.5.0+cu124" INSTALL_XFORMERS_VERSION="xformers==0.0.28.post2" PYTORCH_TYPE="cu124" ;; 78) INSTALL_PYTORCH_VERSION="torch==2.5.0+cu121 torchvision==0.20.0+cu121 torchaudio==2.5.0+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.28.post2" PYTORCH_TYPE="cu121" ;; 79) INSTALL_PYTORCH_VERSION="torch==2.5.0+cu118 torchvision==0.20.0+cu118 torchaudio==2.5.0+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.28.post2" PYTORCH_TYPE="cu118" ;; 80) INSTALL_PYTORCH_VERSION="torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1" ;; 81) INSTALL_PYTORCH_VERSION="torch==2.5.1+cpu torchvision==0.20.1+cpu torchaudio==2.5.1+cpu" PYTORCH_TYPE="cpu" ;; 82) INSTALL_PYTORCH_VERSION="torch==2.5.1+rocm6.2 torchvision==0.20.1+rocm6.2 torchaudio==2.5.1+rocm6.2" PYTORCH_TYPE="rocm62" ;; 83) INSTALL_PYTORCH_VERSION="torch==2.5.1+rocm6.1 torchvision==0.20.1+rocm6.1 torchaudio==2.5.1+rocm6.1" INSTALL_XFORMERS_VERSION="xformers==0.0.28.post3" PYTORCH_TYPE="rocm61" ;; 84) INSTALL_PYTORCH_VERSION="torch==2.5.1+cu124 torchvision==0.20.1+cu124 torchaudio==2.5.1+cu124" INSTALL_XFORMERS_VERSION="xformers==0.0.28.post3" PYTORCH_TYPE="cu124" ;; 85) INSTALL_PYTORCH_VERSION="torch==2.5.1+cu121 torchvision==0.20.1+cu121 torchaudio==2.5.1+cu121" INSTALL_XFORMERS_VERSION="xformers==0.0.28.post3" PYTORCH_TYPE="cu121" ;; 86) INSTALL_PYTORCH_VERSION="torch==2.5.1+cu118 torchvision==0.20.1+cu118 torchaudio==2.5.1+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.28.post3" PYTORCH_TYPE="cu118" ;; 87) INSTALL_PYTORCH_VERSION="torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0" ;; 88) INSTALL_PYTORCH_VERSION="torch==2.6.0+cpu torchvision==0.21.0+cpu torchaudio==2.6.0+cpu" PYTORCH_TYPE="cpu" ;; 89) INSTALL_PYTORCH_VERSION="torch==2.6.0+rocm6.2.4 torchvision==0.21.0+rocm6.2.4 torchaudio==2.6.0+rocm6.2.4" INSTALL_XFORMERS_VERSION="xformers==0.0.29.post3" PYTORCH_TYPE="rocm624" ;; 90) INSTALL_PYTORCH_VERSION="torch==2.6.0+rocm6.1 torchvision==0.21.0+rocm6.1 torchaudio==2.6.0+rocm6.1" INSTALL_XFORMERS_VERSION="xformers==0.0.29.post3" PYTORCH_TYPE="rocm61" ;; 91) INSTALL_PYTORCH_VERSION="torch==2.6.0+xpu torchvision==0.21.0+xpu torchaudio==2.6.0+xpu" PYTORCH_TYPE="xpu" ;; 92) INSTALL_PYTORCH_VERSION="torch==2.6.0+cu126 torchvision==0.21.0+cu126 torchaudio==2.6.0+cu126" INSTALL_XFORMERS_VERSION="xformers==0.0.29.post3" PYTORCH_TYPE="cu126" ;; 93) INSTALL_PYTORCH_VERSION="torch==2.6.0+cu124 torchvision==0.21.0+cu124 torchaudio==2.6.0+cu124" INSTALL_XFORMERS_VERSION="xformers==0.0.29.post3" PYTORCH_TYPE="cu124" ;; 94) INSTALL_PYTORCH_VERSION="torch==2.6.0+cu118 torchvision==0.21.0+cu118 torchaudio==2.6.0+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.29.post3" PYTORCH_TYPE="cu118" ;; 95) INSTALL_PYTORCH_VERSION="torch==2.7.0 torchvision==0.22.0 torchaudio==2.7.0" ;; 96) INSTALL_PYTORCH_VERSION="torch==2.7.0+cpu torchvision==0.22.0+cpu torchaudio==2.7.0+cpu" PYTORCH_TYPE="cpu" ;; 97) INSTALL_PYTORCH_VERSION="torch==2.7.0+rocm6.3 torchvision==0.22.0+rocm6.3 torchaudio==2.7.0+rocm6.3" INSTALL_XFORMERS_VERSION="xformers==0.0.30" PYTORCH_TYPE="rocm63" ;; 98) INSTALL_PYTORCH_VERSION="torch==2.7.0+rocm6.2.4 torchvision==0.22.0+rocm6.2.4 torchaudio==2.7.0+rocm6.2.4" INSTALL_XFORMERS_VERSION="xformers==0.0.30" PYTORCH_TYPE="rocm624" ;; 99) INSTALL_PYTORCH_VERSION="torch==2.7.0+xpu torchvision==0.22.0+xpu torchaudio==2.7.0+xpu" PYTORCH_TYPE="xpu" ;; 100) INSTALL_PYTORCH_VERSION="torch==2.7.0+cu128 torchvision==0.22.0+cu128 torchaudio==2.7.0+cu128" INSTALL_XFORMERS_VERSION="xformers==0.0.30" PYTORCH_TYPE="cu128" ;; 101) INSTALL_PYTORCH_VERSION="torch==2.7.0+cu126 torchvision==0.22.0+cu126 torchaudio==2.7.0+cu126" INSTALL_XFORMERS_VERSION="xformers==0.0.30" PYTORCH_TYPE="cu126" ;; 102) INSTALL_PYTORCH_VERSION="torch==2.7.0+cu118 torchvision==0.22.0+cu118 torchaudio==2.7.0+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.30" PYTORCH_TYPE="cu118" ;; 103) INSTALL_PYTORCH_VERSION="torch==2.7.1 torchvision==0.22.1 torchaudio==2.7.1" ;; 104) INSTALL_PYTORCH_VERSION="torch==2.7.1+cpu torchvision==0.22.1+cpu torchaudio==2.7.1+cpu" PYTORCH_TYPE="cpu" ;; 105) INSTALL_PYTORCH_VERSION="torch==2.7.1+rocm6.3 torchvision==0.22.1+rocm6.3 torchaudio==2.7.1+rocm6.3" INSTALL_XFORMERS_VERSION="xformers==0.0.31.post1" PYTORCH_TYPE="rocm63" ;; 106) INSTALL_PYTORCH_VERSION="torch==2.7.1+rocm6.2.4 torchvision==0.22.1+rocm6.2.4 torchaudio==2.7.1+rocm6.2.4" INSTALL_XFORMERS_VERSION="xformers==0.0.31.post1" PYTORCH_TYPE="rocm624" ;; 107) INSTALL_PYTORCH_VERSION="torch==2.7.1+xpu torchvision==0.22.1+xpu torchaudio==2.7.1+xpu" PYTORCH_TYPE="xpu" ;; 108) INSTALL_PYTORCH_VERSION="torch==2.7.1+cu128 torchvision==0.22.1+cu128 torchaudio==2.7.1+cu128" INSTALL_XFORMERS_VERSION="xformers==0.0.31.post1" PYTORCH_TYPE="cu128" ;; 109) INSTALL_PYTORCH_VERSION="torch==2.7.1+cu126 torchvision==0.22.1+cu126 torchaudio==2.7.1+cu126" INSTALL_XFORMERS_VERSION="xformers==0.0.31.post1" PYTORCH_TYPE="cu126" ;; 110) INSTALL_PYTORCH_VERSION="torch==2.7.1+cu118 torchvision==0.22.1+cu118 torchaudio==2.7.1+cu118" INSTALL_XFORMERS_VERSION="xformers==0.0.31.post1" PYTORCH_TYPE="cu118" ;; 111) INSTALL_PYTORCH_VERSION="torch==2.8.0 torchvision==0.23.0 torchaudio==2.8.0" ;; 112) INSTALL_PYTORCH_VERSION="torch==2.8.0+cpu torchvision==0.23.0+cpu torchaudio==2.8.0+cpu" PYTORCH_TYPE="cpu" ;; 113) INSTALL_PYTORCH_VERSION="torch==2.8.0+rocm6.4 torchvision==0.23.0+rocm6.4 torchaudio==2.8.0+rocm6.4" INSTALL_XFORMERS_VERSION="xformers==0.0.32.post2" PYTORCH_TYPE="rocm64" ;; 114) INSTALL_PYTORCH_VERSION="torch==2.8.0+rocm6.3 torchvision==0.23.0+rocm6.3 torchaudio==2.8.0+rocm6.3" PYTORCH_TYPE="rocm63" ;; 115) INSTALL_PYTORCH_VERSION="torch==2.8.0+xpu torchvision==0.23.0+xpu torchaudio==2.8.0+xpu" PYTORCH_TYPE="xpu" ;; 116) INSTALL_PYTORCH_VERSION="torch==2.8.0+cu129 torchvision==0.23.0+cu129 torchaudio==2.8.0+cu129" INSTALL_XFORMERS_VERSION="xformers==0.0.32.post2" PYTORCH_TYPE="cu129" ;; 117) INSTALL_PYTORCH_VERSION="torch==2.8.0+cu128 torchvision==0.23.0+cu128 torchaudio==2.8.0+cu128" INSTALL_XFORMERS_VERSION="xformers==0.0.32.post2" PYTORCH_TYPE="cu128" ;; 118) INSTALL_PYTORCH_VERSION="torch==2.8.0+cu126 torchvision==0.23.0+cu126 torchaudio==2.8.0+cu126" INSTALL_XFORMERS_VERSION="xformers==0.0.32.post2" PYTORCH_TYPE="cu126" ;; esac } # PyTorch 类型选择 # 设置 PYTORCH_TYPE 全局变量指定 PyTorch 类型 # 注: # 指定的 PYTORCH_TYPE 类型为大致类型, 无法被 install_pytorch 直接使用 pytorch_type_select() { local dialog_arg unset PYTORCH_TYPE dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "PyTorch 安装版本选项" \ --ok-label "确认" --no-cancel \ --menu "请选择要安装的 PyTorch 类型\n当前 PyTorch 版本: $(get_pytorch_version)\n当前 xFormers 版本: $(get_xformers_version)" \ $(get_dialog_size_menu) \ "1" "CUDA (Nvidia 显卡)" \ "2" "ROCm (AMD 显卡)" \ "3" "XPU (Intel 显卡)" \ "4" "CPU (使用 CPU)" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) PYTORCH_TYPE="cuda" ;; 2) PYTORCH_TYPE="rocm" ;; 3) PYTORCH_TYPE="xpu" ;; 4) PYTORCH_TYPE="cpu" ;; *) term_sd_echo "未选择 PyTorch 类型, 默认选择 cuda 类型" PYTORCH_TYPE="cuda" ;; esac } # 设置 Pip 的安装模式 # 选择后设置 PIP_UPDATE_PACKAGE_ARG, PIP_USE_PEP517_ARG, PIP_FORCE_REINSTALL_ARG, PIP_BREAK_SYSTEM_PACKAGE_ARG 全局变量 # 使用: # pip_install_mode_select <要默认启用的参数> # 参数对应的选项: # upgrade: 更新软件包 (--upgrade) # pep517: 标准构建安装 (--use-pep517) # force_reinstall: 强制重新安装 (--force-reinstall) # break_system_package: 强制使用 Pip 安装 (--break-system-packages) pip_install_mode_select() { local dialog_arg local i local use_upgrade="OFF" local use_pep517="OFF" local use_force_reinstall="OFF" local use_break_system_package="OFF" unset PIP_UPDATE_PACKAGE_ARG unset PIP_USE_PEP517_ARG unset PIP_FORCE_REINSTALL_ARG unset PIP_BREAK_SYSTEM_PACKAGE_ARG # 界面预设 for i in $@; do case "${i}" in upgrade) use_upgrade="ON" ;; pep517) use_pep517="ON" ;; force_reinstall) use_force_reinstall="ON" ;; break_system_package) use_break_system_package="ON" ;; esac done dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "Pip 安装模式选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择 Pip 安装方式, 注:\n1. 安装时更新软件包\n2. 标准构建安装可解决一些报错问题, 但速度较慢\n3. 软件包存在时将重新安装\n4. 忽略系统警告强制使用 Pip 安装软件包" \ $(get_dialog_size_menu) \ "1" "> 更新软件包 (--upgrade)" "${use_upgrade}" \ "2" "> 标准构建安装 (--use-pep517)" "${use_pep517}" \ "3" "> 强制重新安装 (--force-reinstall)" "${use_force_reinstall}" \ "4" "> 强制使用 Pip 安装 (--break-system-packages)" "${use_break_system_package}" \ 3>&1 1>&2 2>&3) for i in ${dialog_arg}; do case "${i}" in 1) PIP_UPDATE_PACKAGE_ARG="--upgrade" ;; 2) PIP_USE_PEP517_ARG="--use-pep517" ;; 3) PIP_FORCE_REINSTALL_ARG="--force-reinstall" ;; 4) PIP_BREAK_SYSTEM_PACKAGE_ARG="--break-system-packages" ;; esac done } # 安装前确认界面 # 加参数可修改提示内容 # 使用: # term_sd_install_confirm <提示内容> term_sd_install_confirm() { local input_text=$@ local use_pip_info local use_github_mirror_info local enable_only_proxy_info local use_modelscope_src_info local pytorch_ver_info local xformers_ver_info local use_break_system_package_info local use_pep517_info local use_force_reinstall_info local use_upgrade_info local use_prefer_binary_info if is_use_pip_mirror; then use_pip_info="启用" else use_pip_info="禁用" fi use_github_mirror_info=$GITHUB_MIRROR_NAME if is_use_modelscope_src; then use_modelscope_src_info="启用" else use_modelscope_src_info="禁用" fi if is_use_only_proxy; then enable_only_proxy_info="启用" else enable_only_proxy_info="禁用" fi if [[ ! -z "${PIP_BREAK_SYSTEM_PACKAGE_ARG}" ]]; then use_break_system_package_info="启用" else use_break_system_package_info="禁用" fi if [[ ! -z "${INSTALL_PYTORCH_VERSION}" ]]; then pytorch_ver_info=$INSTALL_PYTORCH_VERSION else pytorch_ver_info="无" fi if [[ ! -z "${INSTALL_XFORMERS_VERSION}" ]]; then xformers_ver_info=$INSTALL_XFORMERS_VERSION else xformers_ver_info="无" fi if [[ ! -z "${PIP_USE_PEP517_ARG}" ]]; then use_pep517_info="标准构建安装 (--use-pep517)" else use_pep517_info="常规安装 (setup.py)" fi if [[ ! -z "${PIP_FORCE_REINSTALL_ARG}" ]]; then use_force_reinstall_info="启用" else use_force_reinstall_info="禁用" fi if [[ ! -z "${PIP_UPDATE_PACKAGE_ARG}" ]]; then use_upgrade_info="启用" else use_upgrade_info="禁用" fi if (dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "安装确认选项" \ --yes-label "是" --no-label "否" \ --yesno "$@\n PyPI 镜像源: ${use_pip_info}\n Github 镜像: ${use_github_mirror_info}\n Huggingface / Github 下载源独占代理: ${enable_only_proxy_info}\n 使用 ModelScope 模型下载源: ${use_modelscope_src_info}\n 强制使用 Pip: ${use_break_system_package_info}\n PyTorch 版本: ${pytorch_ver_info}\n xFormers 版本: ${xformers_ver_info}\n Pip 安装方式: ${use_pep517_info}\n Pip 强制重装: ${use_force_reinstall_info}\n Pip 更新软件包: ${use_upgrade_info}\ " $(get_dialog_size)); then term_sd_echo "确认进行安装" return 0 else term_sd_echo "取消安装" return 1 fi } # Github 镜像源测试 # 镜像源不保证都可用, 已知 gitclone.com 提供的镜像克隆不完整, 易出现问题 # 测试完成后将输出可用的 Github 镜像源格式 github_mirror_test() { # 镜像源列表 local mirror_list=$GITHUB_MIRROR_LIST local git_req local i local HTTP_PROXY local HTTPS_PROXY HTTP_PROXY= # 临时清除配置好的代理,防止干扰测试 HTTPS_PROXY= [ -d "${START_PATH}/term-sd/task/github_mirror_test" ] && rm -rf "${START_PATH}/term-sd/task/github_mirror_test" &> /dev/null for i in ${mirror_list}; do git clone $(git_format_repository_url ${i} https://github.com/licyk/empty) "${START_PATH}/term-sd/task/github_mirror_test" --depth=1 &> /dev/null # 测试镜像源是否正常连接 git_req=$? rm -rf "${START_PATH}/term-sd/task/github_mirror_test" &> /dev/null if [[ ${git_req} == 0 ]]; then echo ${i} return fi done echo "https://github.com/term_sd_git_user/term_sd_git_repo" } # 清理安装完成后留下的参数 # 每次执行完安装任务后需要执行该函数清理参数 clean_install_config() { if term_sd_is_debug; then term_sd_echo "待清理的用于安装的变量:" term_sd_echo "PIP_INDEX_MIRROR: ${PIP_INDEX_MIRROR}" term_sd_echo "PIP_EXTRA_INDEX_MIRROR: ${PIP_EXTRA_INDEX_MIRROR}" term_sd_echo "PIP_FIND_LINKS_MIRROR: ${PIP_FIND_LINKS_MIRROR}" term_sd_echo "UV_INDEX_MIRROR: ${UV_INDEX_MIRROR}" term_sd_echo "UV_EXTRA_INDEX_MIRROR: ${UV_EXTRA_INDEX_MIRROR}" term_sd_echo "UV_FIND_LINKS_MIRROR: ${UV_FIND_LINKS_MIRROR}" term_sd_echo "USE_PIP_MIRROR: ${USE_PIP_MIRROR}" term_sd_echo "PIP_BREAK_SYSTEM_PACKAGE_ARG: ${PIP_BREAK_SYSTEM_PACKAGE_ARG}" term_sd_echo "TERM_SD_ENABLE_ONLY_PROXY: ${TERM_SD_ENABLE_ONLY_PROXY}" term_sd_echo "USE_MODELSCOPE_MODEL_SRC: ${USE_MODELSCOPE_MODEL_SRC}" term_sd_echo "GITHUB_MIRROR: ${GITHUB_MIRROR}" term_sd_echo "GITHUB_MIRROR_NAME: ${GITHUB_MIRROR_NAME}" term_sd_echo "INSTALL_PYTORCH_VERSION: ${INSTALL_PYTORCH_VERSION}" term_sd_echo "INSTALL_XFORMERS_VERSION: ${INSTALL_XFORMERS_VERSION}" term_sd_echo "PIP_USE_PEP517_ARG: ${PIP_USE_PEP517_ARG}" term_sd_echo "PIP_FORCE_REINSTALL_ARG: ${PIP_FORCE_REINSTALL_ARG}" term_sd_echo "PIP_UPDATE_PACKAGE_ARG: ${PIP_UPDATE_PACKAGE_ARG}" term_sd_echo "PYTORCH_TYPE: ${PYTORCH_TYPE}" term_sd_echo "SD_WEBUI_REPO: ${SD_WEBUI_REPO}" term_sd_echo "SD_WEBUI_BRANCH: ${SD_WEBUI_BRANCH}" fi unset PIP_INDEX_MIRROR # 指定 PyPI 镜像源的参数 unset PIP_EXTRA_INDEX_MIRROR unset PIP_FIND_LINKS_MIRROR unset UV_INDEX_MIRROR unset UV_EXTRA_INDEX_MIRROR unset UV_FIND_LINKS_MIRROR unset USE_PIP_MIRROR # 是否启用 Pip 镜像 unset PIP_BREAK_SYSTEM_PACKAGE_ARG # 是否在 Pip 使用 --break-system-package 参数 unset TERM_SD_ENABLE_ONLY_PROXY # 是否启用 Github / HuggingFace 独占代理功能 unset USE_MODELSCOPE_MODEL_SRC # 是否使用 ModelScope 模型站下载模型 unset GITHUB_MIRROR # Github 镜像的格式, 如: "https://github.com/term_sd_git_user/term_sd_git_repo", 需进行处理后才能使用 unset GITHUB_MIRROR_NAME # 展示 Github 镜像源的名称 unset INSTALL_PYTORCH_VERSION # 要安装的 PyTorch 版本 unset INSTALL_XFORMERS_VERSION # 要安装的 xFormers 版本 unset PIP_USE_PEP517_ARG # 是否在 Pip 使用 --use-pep517 参数 unset PIP_FORCE_REINSTALL_ARG # 是否在 Pip 使用 --force-reinstall 参数 unset PIP_UPDATE_PACKAGE_ARG # 是否更新软件包, 使用 --upgrade 参数 unset PYTORCH_TYPE # PyTorch 种类, 用于切换 PyTorch 镜像源 unset SD_WEBUI_REPO # SD WebUI 远程源地址, 用于安装 SD WebUI 时选择要安装的分支 unset SD_WEBUI_BRANCH # SD WebUI 分支, 用于安装 SD WebUI 时选择要切换成的分支 } # 如果启用了 PyPI 镜像源, 则返回0 is_use_pip_mirror() { if [[ "${USE_PIP_MIRROR}" == 1 ]]; then return 0 else return 1 fi } # 如果启用了 Github / HuggingFace 独占代理, 则返回0 is_use_only_proxy() { if [[ "${TERM_SD_ENABLE_ONLY_PROXY}" == 1 ]]; then return 0 else return 1 fi } # 如果使用了 ModelScope 模型下载源, 则返回0 is_use_modelscope_src() { if [[ "${USE_MODELSCOPE_MODEL_SRC}" == 1 ]]; then return 0 else return 1 fi }
2301_81996401/term-sd
modules/install_prepare.sh
Shell
agpl-3.0
50,694
#!/bin/bash # PyTorch 重装功能 pytorch_reinstall() { if (dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "PyTorch 重装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重新安装 PyTorch ?" \ $(get_dialog_size)); then # 安装前的准备 enter_venv download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否重新安装 PyTorch ?"; then # 开始安装 PyTorch term_sd_print_line "PyTorch 安装" term_sd_tmp_disable_proxy install_pytorch term_sd_tmp_enable_proxy clean_install_config # 清理安装参数 term_sd_echo "PyTorch 安装结束" term_sd_pause else clean_install_config # 清理安装参数 fi exit_venv fi } # PyTorch 安装 # 使用 INSTALL_PYTORCH_VERSION 全局变量读取需要安装的 PyTorch 版本 # 使用 PYTORCH_TYPE 判断 PyTorch 种类, 用于切换 PyTorch 镜像源 install_pytorch() { if [[ ! -z "${INSTALL_PYTORCH_VERSION}" ]]; then # 检测是否使用 PyTorch IPEX Legacy 版本 case "${PYTORCH_TYPE}" in ipex_legacy_arc|ipex_legacy_core_ultra) process_pytorch_ipex_legacy ;; *) process_pytorch ;; esac else term_sd_echo "未指定 PyTorch 版本, 跳过安装" fi } # 处理 PyTorch IPEX 的安装 # 使用 INSTALL_PYTORCH_VERSION 全局变量读取需要安装的 PyTorch 版本 # 使用 PYTORCH_TYPE 判断 PyTorch 种类, 用于切换 PyTorch 镜像源 # 接受 Pip 参数: # PIP_INDEX_MIRROR PIP_EXTRA_INDEX_MIRROR PIP_FIND_LINKS_MIRROR # UV_INDEX_MIRROR UV_EXTRA_INDEX_MIRROR UV_FIND_LINKS_MIRROR # PIP_BREAK_SYSTEM_PACKAGE_ARG PIP_USE_PEP517_ARG PIP_FORCE_REINSTALL_ARG # PIP_UPDATE_PACKAGE_ARG process_pytorch_ipex_legacy() { local torch_ipex_ver local torch_ipex_ver_info local ipex_type local torch_ver local ipex_win_url="--find-links https://licyk.github.io/t/pypi/index.html" local ipex_url_cn="--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn" local ipex_url_us="--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us" local ipex_win_url_uv="--find-links https://licyk.github.io/t/pypi/index.html" local ipex_url_cn_uv="--index https://pytorch-extension.intel.com/release-whl/stable/xpu/cn" local ipex_url_us_uv="--index https://pytorch-extension.intel.com/release-whl/stable/xpu/us" if [[ "${PYTORCH_TYPE}" == "ipex_legacy_core_ultra" ]]; then ipex_type="Core_Ultra" elif [[ "${PYTORCH_TYPE}" == "ipex_legacy_arc" ]]; then ipex_type="Arc" else ipex_type="Core_Ultra" fi case "${PYTORCH_TYPE}" in ipex_legacy_arc|ipex_legacy_core_ultra) torch_ipex_ver=$(awk '{print $2}' <<< ${INSTALL_PYTORCH_VERSION}) torch_ipex_ver_info="PyTorch $(awk '{print $2}' <<< ${INSTALL_PYTORCH_VERSION}) (IPEX ${ipex_type})" ;; esac torch_ver=$INSTALL_PYTORCH_VERSION term_sd_echo "将要安装的 PyTorch 版本组合:" term_sd_echo "PyTorch: ${torch_ipex_ver_info}" term_sd_echo "开始安装 PyTorch" case "${PYTORCH_TYPE}" in ipex_legacy_arc|ipex_legacy_core_ultra) if is_windows_platform; then # Windows 平台 # IPEX(Windows): https://arc.nuullll.com/resource/ case "${torch_ipex_ver}" in 2.0.0) if term_sd_is_use_uv; then install_python_package torch==2.0.0a0+gite9ebda2 torchvision==0.15.2a0+fa99a53 intel_extension_for_pytorch==2.0.110+gitc6ea20b ${ipex_win_url_uv} else install_python_package torch==2.0.0a0+gite9ebda2 torchvision==0.15.2a0+fa99a53 intel_extension_for_pytorch==2.0.110+gitc6ea20b ${ipex_win_url} --no-warn-conflicts fi ;; 2.1.0) if [[ "${ipex_type}" == "Core_Ultra" ]]; then # 核显 if term_sd_is_use_uv; then install_python_package torch==2.1.0a0+git7bcf7da torchvision==0.16.0+fbb4cc5 torchaudio==2.1.0+6ea1133 intel_extension_for_pytorch==2.1.20+git4849f3b ${ipex_win_url_uv} else install_python_package torch==2.1.0a0+git7bcf7da torchvision==0.16.0+fbb4cc5 torchaudio==2.1.0+6ea1133 intel_extension_for_pytorch==2.1.20+git4849f3b ${ipex_win_url} --no-warn-conflicts fi else # 独显 if term_sd_is_use_uv; then install_python_package torch==2.1.0a0+cxx11.abi torchvision==0.16.0a0+cxx11.abi torchaudio==2.1.0a0+cxx11.abi intel_extension_for_pytorch==2.1.10+xpu ${ipex_win_url_uv} else install_python_package torch==2.1.0a0+cxx11.abi torchvision==0.16.0a0+cxx11.abi torchaudio==2.1.0a0+cxx11.abi intel_extension_for_pytorch==2.1.10+xpu ${ipex_win_url} --no-warn-conflicts fi fi ;; esac else # 其他平台 # IPEX: https://intel.github.io/intel-extension-for-pytorch/#installation if is_use_pip_mirror; then # 国内镜像 case "${torch_ipex_ver}" in 2.0.0) if term_sd_is_use_uv; then install_python_package torch==2.0.1a0 torchvision==0.15.2a0 intel-extension-for-pytorch==2.0.120+xpu ${ipex_url_cn_uv} else install_python_package torch==2.0.1a0 torchvision==0.15.2a0 intel-extension-for-pytorch==2.0.120+xpu ${ipex_url_cn} --no-warn-conflicts fi ;; 2.1.0) if term_sd_is_use_uv; then install_python_package torch==2.1.0.post0 torchvision==0.16.0.post0 torchaudio==2.1.0.post0 intel-extension-for-pytorch==2.1.20 ${ipex_url_cn_uv} else install_python_package torch==2.1.0.post0 torchvision==0.16.0.post0 torchaudio==2.1.0.post0 intel-extension-for-pytorch==2.1.20 ${ipex_url_cn} --no-warn-conflicts fi ;; esac else case "${torch_ipex_ver}" in 2.0.0) if term_sd_is_use_uv; then install_python_package torch==2.0.1a0 torchvision==0.15.2a0 intel-extension-for-pytorch==2.0.120+xpu ${ipex_url_us_uv} else install_python_package torch==2.0.1a0 torchvision==0.15.2a0 intel-extension-for-pytorch==2.0.120+xpu ${ipex_url_us} --no-warn-conflicts fi ;; 2.1.0) if term_sd_is_use_uv; then install_python_package torch==2.1.0.post0 torchvision==0.16.0.post0 torchaudio==2.1.0.post0 intel-extension-for-pytorch==2.1.20 ${ipex_url_us_uv} else install_python_package torch==2.1.0.post0 torchvision==0.16.0.post0 torchaudio==2.1.0.post0 intel-extension-for-pytorch==2.1.20 ${ipex_url_us} --no-warn-conflicts fi ;; esac fi fi ;; esac if [[ "$?" == 0 ]]; then term_sd_echo "PyTorch 安装成功" else term_sd_echo "PyTorch 安装失败" return 1 fi } # 处理 PyTorch 的安装 # 使用 INSTALL_PYTORCH_VERSION 全局变量读取需要安装的 PyTorch 版本 # 使用 INSTALL_XFORMERS_VERSION 全局变量读取需要安装的 xFormers 版本 # 使用 PYTORCH_TYPE 判断 PyTorch 种类, 用于切换 PyTorch 镜像源 # 接受 Pip 参数: # PIP_INDEX_MIRROR PIP_EXTRA_INDEX_MIRROR PIP_FIND_LINKS_MIRROR # UV_INDEX_MIRROR UV_EXTRA_INDEX_MIRROR UV_FIND_LINKS_MIRROR # PIP_BREAK_SYSTEM_PACKAGE_ARG PIP_USE_PEP517_ARG PIP_FORCE_REINSTALL_ARG # PIP_UPDATE_PACKAGE_ARG process_pytorch() { local torch_ver local xformers_ver local pypi_index_url local pypi_extra_index_url local pypi_find_links_url local with_pypi_mirror_env_value=0 torch_ver=$INSTALL_PYTORCH_VERSION xformers_ver=$INSTALL_XFORMERS_VERSION term_sd_echo "将要安装的 PyTorch 版本组合:" term_sd_echo "PyTorch: ${torch_ver}" term_sd_echo "xFormers: $([[ ! -z "${xformers_ver}" ]] && echo ${xformers_ver} || echo "无")" # 配置 PyTorch 镜像源 if is_use_pip_mirror; then # 镜像源 case "${PYTORCH_TYPE}" in cu129) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/cu129" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu128) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/cu128" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu126) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/cu126" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu124) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/cu124" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu121) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/cu121" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu118) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/cu118" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm61) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/rocm6.1" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm62) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/rocm6.2" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm624) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/rocm6.2.4" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm63) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/rocm6.3" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm64) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/rocm6.4" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; xpu) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/xpu" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cpu) pypi_index_url="https://mirror.nju.edu.cn/pytorch/whl/cpu" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; other) pypi_index_url="https://download.pytorch.org/whl" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; *) true ;; esac else # 官方源 case "${PYTORCH_TYPE}" in cu129) pypi_index_url="https://download.pytorch.org/whl/cu129" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu128) pypi_index_url="https://download.pytorch.org/whl/cu128" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu126) pypi_index_url="https://download.pytorch.org/whl/cu126" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu124) pypi_index_url="https://download.pytorch.org/whl/cu124" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu121) pypi_index_url="https://download.pytorch.org/whl/cu121" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cu118) pypi_index_url="https://download.pytorch.org/whl/cu118" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm61) pypi_index_url="https://download.pytorch.org/whl/rocm6.1" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm62) pypi_index_url="https://download.pytorch.org/whl/rocm6.2" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm624) pypi_index_url="https://download.pytorch.org/whl/rocm6.2.4" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm63) pypi_index_url="https://download.pytorch.org/whl/rocm6.3" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; rocm64) pypi_index_url="https://download.pytorch.org/whl/rocm6.4" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; xpu) pypi_index_url="https://download.pytorch.org/whl/xpu" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; cpu) pypi_index_url="https://download.pytorch.org/whl/cpu" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; other) pypi_index_url="https://download.pytorch.org/whl" pypi_extra_index_url="" pypi_find_links_url="" with_pypi_mirror_env_value=1 ;; *) true ;; esac fi # 安装 PyTorch term_sd_echo "开始安装 PyTorch" if [[ "${with_pypi_mirror_env_value}" == 1 ]]; then # 使用临时镜像源环境变量进行安装 if term_sd_is_use_uv; then UV_DEFAULT_INDEX=$pypi_index_url \ UV_INDEX=$pypi_extra_index_url \ UV_FIND_LINKS=$pypi_find_links_url \ term_sd_try term_sd_uv_install ${torch_ver} \ ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} if check_uv_install_failed_and_warning; then PIP_INDEX_URL=$pypi_index_url \ PIP_EXTRA_INDEX_URL=$pypi_extra_index_url \ PIP_FIND_LINKS=$pypi_find_links_url \ term_sd_try term_sd_pip install ${torch_ver} \ ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-warn-conflicts fi else PIP_INDEX_URL=$pypi_index_url \ PIP_EXTRA_INDEX_URL=$pypi_extra_index_url \ PIP_FIND_LINKS=$pypi_find_links_url \ term_sd_try term_sd_pip install ${torch_ver} \ ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-warn-conflicts fi else if term_sd_is_use_uv; then term_sd_try term_sd_uv_install ${torch_ver} \ ${UV_INDEX_MIRROR} ${UV_EXTRA_INDEX_MIRROR} ${UV_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} if check_uv_install_failed_and_warning; then term_sd_try term_sd_pip install ${torch_ver} \ ${PIP_INDEX_MIRROR} ${PIP_EXTRA_INDEX_MIRROR} ${PIP_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-warn-conflicts fi else term_sd_try term_sd_pip install ${torch_ver} \ ${PIP_INDEX_MIRROR} ${PIP_EXTRA_INDEX_MIRROR} ${PIP_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-warn-conflicts fi fi if [[ "$?" == 0 ]]; then term_sd_echo "PyTorch 安装成功" else term_sd_echo "PyTorch 安装失败, 未进行安装 xFormers" return 1 fi # 安装 xFormers if [[ ! -z "${xformers_ver}" ]]; then if get_python_env_pkg | grep -q xformers; then # 将原有的 xFormers 卸载 term_sd_echo "卸载原有版本的 xFormers" term_sd_try term_sd_pip uninstall xformers -y fi term_sd_echo "开始安装 xFormers" if [[ "${with_pypi_mirror_env_value}" == 1 ]]; then # 使用临时镜像源环境变量进行安装 if term_sd_is_use_uv; then UV_DEFAULT_INDEX=$pypi_index_url \ UV_INDEX=$pypi_extra_index_url \ UV_FIND_LINKS=$pypi_find_links_url \ term_sd_try term_sd_uv_install ${xformers_ver} \ ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-deps if check_uv_install_failed_and_warning; then PIP_INDEX_URL=$pypi_index_url \ PIP_EXTRA_INDEX_URL=$pypi_extra_index_url \ PIP_FIND_LINKS=$pypi_find_links_url \ term_sd_try term_sd_pip install ${xformers_ver} \ ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-warn-conflicts --no-deps fi else PIP_INDEX_URL=$pypi_index_url \ PIP_EXTRA_INDEX_URL=$pypi_extra_index_url \ PIP_FIND_LINKS=$pypi_find_links_url \ term_sd_try term_sd_pip install ${xformers_ver} \ ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-warn-conflicts --no-deps fi else if term_sd_is_use_uv; then term_sd_try term_sd_uv_install ${xformers_ver} \ ${UV_INDEX_MIRROR} ${UV_EXTRA_INDEX_MIRROR} ${UV_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-deps if check_uv_install_failed_and_warning; then term_sd_try term_sd_pip install ${xformers_ver} \ ${PIP_INDEX_MIRROR} ${PIP_EXTRA_INDEX_MIRROR} ${PIP_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-warn-conflicts --no-deps fi else term_sd_try term_sd_pip install ${xformers_ver} \ ${PIP_INDEX_MIRROR} ${PIP_EXTRA_INDEX_MIRROR} ${PIP_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} --no-warn-conflicts --no-deps fi fi else return 0 fi if [[ "$?" == 0 ]]; then term_sd_echo "xFormers 安装成功" else term_sd_echo "xFormers 安装失败" return 1 fi }
2301_81996401/term-sd
modules/install_pytorch.sh
Shell
agpl-3.0
21,443
#!/bin/bash # SD WebUI 安装 # 使用 SD_WEBUI_INSTALL_EXTENSION_LIST 全局变量读取需要安装的 SD WebUI 插件 # 使用 SD_WEBUI_DOWNLOAD_MODEL_LIST 全局变量读取需要下载的模型 install_sd_webui() { local cmd_sum local cmd_point local i if [[ -f "${START_PATH}/term-sd/task/sd_webui_install.sh" ]]; then # 检测到有未完成的安装任务时直接执行安装任务 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/sd_webui_install.sh" | wc -l) + 1 )) # 统计命令行数 term_sd_print_line "Stable-Diffusion-WebUI 安装" for (( cmd_point=1; cmd_point <= cmd_sum; cmd_point++ )); do term_sd_echo "Stable-Diffusion-WebUI 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/sd_webui_install.sh" "${cmd_point}" if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 安装结果" \ --ok-label "确认" \ --msgbox "Stable-Diffusion-WebUI 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "Stable-Diffusion-WebUI 安装结束" rm -f "${START_PATH}/term-sd/task/sd_webui_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 安装结果" \ --ok-label "确认" \ --msgbox "Stable-Diffusion-WebUI 安装结束, 选择确定进入管理界面" \ $(get_dialog_size) sd_webui_manager # 进入管理界面 else # 生成安装任务并执行安装任务 # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 select_install_sd_webui_branch # 分支选择 sd_webui_extension_install_select # 插件选择 sd_webui_download_model_select # 模型选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否安装 Stable-Diffusion-WebUI ?"; then term_sd_print_line "Stable-Diffusion-WebUI 安装" term_sd_echo "生成安装任务中" term_sd_set_install_env_value >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 环境变量 cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_core.sh" >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 核心组件 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 读取插件安装命令 if [[ ! -z "${SD_WEBUI_INSTALL_EXTENSION_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"安装插件中\"" >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 从插件列表读取插件安装命令 for i in ${SD_WEBUI_INSTALL_EXTENSION_LIST}; do cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_extension.sh" | grep -w ${i} | awk '{sub(" ON "," ") ; sub(" OFF "," ")}1' >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 插件 done fi echo "__term_sd_task_sys term_sd_tmp_disable_proxy" >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 读取模型下载命令 if [[ ! -z "${SD_WEBUI_DOWNLOAD_MODEL_LIST}" ]]; then echo "__term_sd_task_sys term_sd_echo \"下载模型中\"" >> "${START_PATH}/term-sd/task/sd_webui_install.sh" if is_use_modelscope_src; then # 读取模型 for i in ${SD_WEBUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 插件所需的模型 done # 读取插件的模型 for i in ${SD_WEBUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_extension_ms_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 插件所需的模型 done else # 恢复代理 echo "__term_sd_task_sys term_sd_tmp_enable_proxy" >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 读取模型 for i in ${SD_WEBUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 插件所需的模型 done # 读取插件的模型 for i in ${SD_WEBUI_DOWNLOAD_MODEL_LIST}; do cat "${START_PATH}/term-sd/install/sd_webui/sd_webui_extension_hf_model.sh" | grep -w ${i} >> "${START_PATH}/term-sd/task/sd_webui_install.sh" # 插件所需的模型 done fi fi unset SD_WEBUI_INSTALL_EXTENSION_LIST unset SD_WEBUI_DOWNLOAD_MODEL_LIST term_sd_echo "任务队列生成完成" term_sd_echo "开始安装 Stable-Diffusion-WebUI" # 执行安装命令 cmd_sum=$(( $(cat "${START_PATH}/term-sd/task/sd_webui_install.sh" | wc -l) + 1 )) # 统计命令行数 for ((cmd_point=1; cmd_point <= cmd_sum; cmd_point++)); do term_sd_echo "Stable-Diffusion-WebUI 安装进度: [${cmd_point}/${cmd_sum}]" term_sd_exec_cmd "${START_PATH}/term-sd/task/sd_webui_install.sh" "${cmd_point}" if [[ ! "$?" == 0 ]]; then if term_sd_is_use_strict_install_mode; then term_sd_echo "安装命令执行失败, 终止安装程序, 请检查控制台输出的报错信息" term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_pause dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 安装结果" \ --ok-label "确认" \ --msgbox "Stable-Diffusion-WebUI 安装进程执行失败, 请重试" \ $(get_dialog_size) return 1 else term_sd_echo "忽略执行失败的命令" term_sd_echo "提示: 忽略执行失败的命令可能会导致安装不完整或者缺失文件" fi fi done term_sd_tmp_enable_proxy # 恢复代理 clean_install_config # 清理安装参数 term_sd_echo "Stable-Diffusion-WebUI 安装结束" rm -f "${START_PATH}/term-sd/task/sd_webui_install.sh" # 删除任务文件 term_sd_print_line dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 安装结果" \ --ok-label "确认" \ --msgbox "Stable-Diffusion-WebUI 安装结束, 选择确定进入管理界面\n注: 初次启动 Stable-Diffusion-WebUI 时将会进行一次依赖完整性检查, 耗时较久" \ $(get_dialog_size) sd_webui_manager # 进入管理界面 else unset SD_WEBUI_INSTALL_EXTENSION_LIST unset SD_WEBUI_DOWNLOAD_MODEL_LIST clean_install_config # 清理安装参数 fi fi } # 插件选择 # 将选择的插件保存在 SD_WEBUI_INSTALL_EXTENSION_LIST 全局变量中 sd_webui_extension_install_select() { SD_WEBUI_INSTALL_EXTENSION_LIST=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 安装" \ --backtitle "Stable-Diffusion-WebUI 插件安装选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要安装的 Stable-Diffusion-WebUI 插件" \ $(get_dialog_size_menu) \ $(cat "${START_PATH}/term-sd/install/sd_webui/dialog_sd_webui_extension.sh") \ 3>&1 1>&2 2>&3) } # 模型选择 # 将选择的模型保存在 SD_WEBUI_DOWNLOAD_MODEL_LIST 全局变量中 sd_webui_download_model_select() { local dialog_list_file local model_list local sd_webui_model_list_file local i # 插件模型列表选择 if is_use_modelscope_src; then dialog_list_file="sd_webui_extension_ms_model.sh" sd_webui_model_list_file="dialog_sd_webui_ms_model.sh" else dialog_list_file="sd_webui_extension_hf_model.sh" sd_webui_model_list_file="dialog_sd_webui_hf_model.sh" fi term_sd_echo "生成模型选择列表中" # 查找插件对应模型的编号 for i in ${SD_WEBUI_INSTALL_EXTENSION_LIST}; do model_list="${model_list} $(cat "${START_PATH}"/term-sd/install/sd_webui/${dialog_list_file} | grep -w ${i} | awk 'NR==1{if ($NF!="") {print $1 " " $(NF-1) " " $NF} }')" done # 模型选择(包含基础模型和插件的模型) SD_WEBUI_DOWNLOAD_MODEL_LIST=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 安装" \ --backtitle "Stable-Diffusion-WebUI 模型下载选项" \ --ok-label "确认" --no-cancel \ --checklist "请选择需要下载的 Stable-Diffusion-WebUI 模型\n注:\n1、模型后面括号内数字为模型的大小\n2、需要根据自己的需求勾选需要下载的模型" \ $(get_dialog_size_menu) \ "_null_" "=====基础模型选择=====" ON \ $(cat "${START_PATH}/term-sd/install/sd_webui/${sd_webui_model_list_file}") \ "_null_" "=====插件模型选择=====" ON \ ${model_list} \ 3>&1 1>&2 2>&3) } # 写入 SD WebUI 配置文件 # 保存在 <SD WebUI Path>/config.json 中 set_sd_webui_normal_config() { term_sd_echo "写入 Stable-Diffusion-WebUI 默认配置中" cp -f "${START_PATH}/term-sd/install/sd_webui/sd_webui_config.json" "${SD_WEBUI_ROOT_PATH}"/config.json } # SD WebUI 分支选择 # 通过 SD_WEBUI_REPO 全局变量设置 SD WebUI 分支的 Git 链接 # 通过 SD_WEBUI_BRANCH 设置要切换到的 SD WebUI 分支 select_install_sd_webui_branch() { local dialog_arg dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 安装" \ --backtitle "Stable-Diffusion-WebUI 分支选择选项" \ --ok-label "确认" --no-cancel \ --menu "请选择要安装的 Stable-Diffusion-WebUI 分支, 注:\n1. 推荐使用 AUTOMATIC1111 - Stable-Diffusion-WebUI 分支, 稳定性较高\n2.如果有 FLUX 模型的需求或者更好的显存优化, 可选择 lllyasviel - Stable-Diffusion-WebUI-Forge 分支, 但该分支可能会导致部分插件不兼容\n3. Panchovix - stable-diffusion-webui-reForge 分支基于 lllyasviel - Stable-Diffusion-WebUI-Forge 分支, 使用 Gradio3 前端, 对插件的兼容性好一些\n4、Haoming02 - Stable-Diffusion-WebUI-Forge-Classic 分支基于 lllyasviel - Stable-Diffusion-WebUI-Forge 分支, 更轻量" \ $(get_dialog_size_menu) \ "1" "> AUTOMATIC1111 - Stable-Diffusion-WebUI 主分支" \ "2" "> AUTOMATIC1111 - Stable-Diffusion-WebUI 测试分支" \ "3" "> lllyasviel - Stable-Diffusion-WebUI-Forge 分支" \ "4" "> Panchovix - Stable-Diffusion-WebUI-reForge 主分支" \ "5" "> Panchovix - Stable-Diffusion-WebUI-reForge 测试分支" \ "6" "> Haoming02 - Stable-Diffusion-WebUI-Forge-Classic 分支" \ "7" "> Haoming02 - Stable-Diffusion-WebUI-Forge-Neo 分支" \ "8" "> lshqqytiger - Stable-Diffusion-WebUI-AMDGPU 分支" \ "9" "> vladmandic - SD.NEXT 主分支" \ "10" "> vladmandic - SD.NEXT 测试分支" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) SD_WEBUI_REPO="https://github.com/AUTOMATIC1111/stable-diffusion-webui" SD_WEBUI_BRANCH="master" ;; 2) SD_WEBUI_REPO="https://github.com/AUTOMATIC1111/stable-diffusion-webui" SD_WEBUI_BRANCH="dev" ;; 3) SD_WEBUI_REPO="https://github.com/lllyasviel/stable-diffusion-webui-forge" SD_WEBUI_BRANCH="main" ;; 4) SD_WEBUI_REPO="https://github.com/Panchovix/stable-diffusion-webui-reForge" SD_WEBUI_BRANCH="main" ;; 5) SD_WEBUI_REPO="https://github.com/Panchovix/stable-diffusion-webui-reForge" SD_WEBUI_BRANCH="dev_upstream" ;; 6) SD_WEBUI_REPO="https://github.com/Haoming02/sd-webui-forge-classic" SD_WEBUI_BRANCH="classic" ;; 7) SD_WEBUI_REPO="https://github.com/Haoming02/sd-webui-forge-classic" SD_WEBUI_BRANCH="neo" ;; 8) SD_WEBUI_REPO="https://github.com/lshqqytiger/stable-diffusion-webui-amdgpu" SD_WEBUI_BRANCH="master" ;; 9) SD_WEBUI_REPO="https://github.com/vladmandic/sdnext" SD_WEBUI_BRANCH="master" ;; 10) SD_WEBUI_REPO="https://github.com/vladmandic/sdnext" SD_WEBUI_BRANCH="dev" ;; *) SD_WEBUI_REPO="https://github.com/AUTOMATIC1111/stable-diffusion-webui" SD_WEBUI_BRANCH="master" ;; esac if term_sd_is_debug; then term_sd_echo "SD WebUI 远程地址: ${SD_WEBUI_REPO}" term_sd_echo "SD WebUI 分支: ${SD_WEBUI_BRANCH}" fi } # 切换 SD WebUI 的分支 # 使用: # switch_sd_webui_branch <SD WebUI 的分支> switch_sd_webui_branch() { local branch=$@ term_sd_echo "检查 Stable-Diffusion-WebUI 子模块状态" if [[ ! -z "$(git -C "${SD_WEBUI_ROOT_PATH}" submodule status)" ]]; then # 检测是否有子模块 term_sd_echo "初始化 Git 子模块" use_submodules="--recurse-submodules" git -C "${SD_WEBUI_ROOT_PATH}" submodule update --init --recursive || return 1 else term_sd_echo "禁用 Git 子模块" use_submodules="" git -C "${SD_WEBUI_ROOT_PATH}" submodule deinit --all -f || return 1 fi term_sd_echo "切换 Stable-Diffusion-WebUI 分支至 ${branch}" git -C "${SD_WEBUI_ROOT_PATH}" checkout "${branch}" ${use_submodules} || return 1 } # 安装 SD WebUI 的依赖 install_sd_webui_requirement() { local requirement if [[ -f "${SD_WEBUI_ROOT_PATH}/requirements_versions.txt" ]]; then # SD WebUI / SD WebUI Forge requirement="${SD_WEBUI_ROOT_PATH}/requirements_versions.txt" elif [[ -f "${SD_WEBUI_ROOT_PATH}/requirements.txt" ]]; then # SD.Next requirement="${SD_WEBUI_ROOT_PATH}/requirements.txt" else requirement="${SD_WEBUI_ROOT_PATH}/requirements_versions.txt" fi if term_sd_is_debug; then term_sd_echo "requirement path: ${requirement}" fi install_python_package -r "${requirement}" } # 安装 SD WEbUI 组件 install_sd_webui_component() { term_sd_echo "安装 Stable Diffusion WebUI 组件中" case "${SD_WEBUI_REPO}" in *stable-diffusion-webui|*stable-diffusion-webui-reForge|*stable-diffusion-webui-amdgpu) git_clone_repository https://github.com/salesforce/BLIP "${SD_WEBUI_ROOT_PATH}"/repositories BLIP || return 1 git_clone_repository https://github.com/Stability-AI/stablediffusion "${SD_WEBUI_ROOT_PATH}"/repositories stable-diffusion-stability-ai || return 1 git_clone_repository https://github.com/Stability-AI/generative-models "${SD_WEBUI_ROOT_PATH}"/repositories generative-models || return 1 git_clone_repository https://github.com/crowsonkb/k-diffusion "${SD_WEBUI_ROOT_PATH}"/repositories k-diffusion || return 1 git_clone_repository https://github.com/AUTOMATIC1111/stable-diffusion-webui-assets "${SD_WEBUI_ROOT_PATH}"/repositories stable-diffusion-webui-assets || return 1 ;; *automatic) git_clone_repository https://github.com/salesforce/BLIP "${SD_WEBUI_ROOT_PATH}"/repositories blip || return 1 git_clone_repository https://github.com/Stability-AI/stablediffusion "${SD_WEBUI_ROOT_PATH}"/repositories stable-diffusion-stability-ai || return 1 git_clone_repository https://github.com/Stability-AI/generative-models "${SD_WEBUI_ROOT_PATH}"/repositories generative-models || return 1 git_clone_repository https://github.com/crowsonkb/k-diffusion "${SD_WEBUI_ROOT_PATH}"/repositories k-diffusion || return 1 git_clone_repository https://github.com/AUTOMATIC1111/stable-diffusion-webui-assets "${SD_WEBUI_ROOT_PATH}"/repositories stable-diffusion-webui-assets || return 1 ;; *stable-diffusion-webui-forge) git_clone_repository https://github.com/salesforce/BLIP "${SD_WEBUI_ROOT_PATH}"/repositories BLIP || return 1 git_clone_repository https://github.com/Stability-AI/stablediffusion "${SD_WEBUI_ROOT_PATH}"/repositories stable-diffusion-stability-ai || return 1 git_clone_repository https://github.com/Stability-AI/generative-models "${SD_WEBUI_ROOT_PATH}"/repositories generative-models || return 1 git_clone_repository https://github.com/crowsonkb/k-diffusion "${SD_WEBUI_ROOT_PATH}"/repositories k-diffusion || return 1 git_clone_repository https://github.com/lllyasviel/huggingface_guess "${SD_WEBUI_ROOT_PATH}"/repositories huggingface_guess || return 1 git_clone_repository https://github.com/lllyasviel/google_blockly_prototypes "${SD_WEBUI_ROOT_PATH}"/repositories google_blockly_prototypes || return 1 ;; *sd-webui-forge-classic) true ;; esac term_sd_echo "安装 Stable Diffusion WebUI 组件完成" }
2301_81996401/term-sd
modules/install_sd_webui.sh
Shell
agpl-3.0
18,941
#!/bin/bash # InvokeAI 自定义节点管理器 # 管理 <InvokeAI Path>/invokeai/nodes 文件夹下的自定义节点 invokeai_custom_node_manager() { local dialog_arg if [[ ! -d "${INVOKEAI_ROOT_PATH}"/invokeai/nodes ]]; then dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点管理选项" \ --ok-label "确认" \ --msgbox "找不到 InvokeAI 自定义节点目录, 需启动一次生成 InvokeAI 以生成 InvokeAI 自定义目录" \ $(get_dialog_size) return 1 fi while true; do cd "${INVOKEAI_ROOT_PATH}"/invokeai/nodes # 回到最初路径 dialog_arg=$(dialog --erase-on-exit --notags \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 InvokeAI 自定义节点管理选项的功能" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 安装自定义节点" \ "2" "> 管理自定义节点" \ "3" "> 更新全部自定义节点" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) # 选择安装 invokeai_custom_node_install ;; 2) # 选择管理 invokeai_custom_node_list ;; 3) # 选择更新全部自定义节点 if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点管理" \ --yes-label "是" --no-label "否" \ --yesno "是否更新所有 InvokeAI 自定义节点 ?" \ $(get_dialog_size)); then update_all_extension fi ;; *) break ;; esac done } # InvokeAI 自定义节点安装 invokeai_custom_node_install() { local repo_url local custom_node_name repo_url=$(dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点安装选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "输入自定义节点的 Github 地址或其他下载地址" \ $(get_dialog_size) \ 3>&1 1>&2 2>&3) if [[ ! -z "${repo_url}" ]]; then custom_node_name=$(basename "${repo_url}" | awk -F '.git' '{print $1}') term_sd_echo "安装 ${custom_node_name} 自定义节点中" if ! term_sd_is_git_repository_exist "${repo_url}"; then # 检查待安装的自定义节点是否存在于自定义节点文件夹中 term_sd_try git clone --recurse-submodules "${repo_url}" "${INVOKEAI_ROOT_PATH}/invokeai/nodes/${custom_node_name}" if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点安装结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点安装成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点安装结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点安装失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点安装结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点已存在" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点管理选项" \ --ok-label "确认" \ --msgbox "输入的 InvokeAI 自定义节点安装地址为空" \ $(get_dialog_size) fi } # 自定义节点浏览器 # 将列出 <InvokeAI Path>/invokeai/nodes 中所有的自定义节点的文件夹 invokeai_custom_node_list() { local custom_node_name while true; do cd "${INVOKEAI_ROOT_PATH}"/invokeai/nodes # 回到最初路径 get_dir_folder_list # 获取当前目录下的所有文件夹 if term_sd_is_bash_ver_lower; then # Bash 版本低于 4 时使用旧版列表显示方案 custom_node_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点列表" \ --menu "使用上下键选择要操作的自定义节点并回车确认" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST}" \ 3>&1 1>&2 2>&3) else custom_node_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点列表" \ --menu "使用上下键选择要操作的自定义节点并回车确认" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST[@]}" \ 3>&1 1>&2 2>&3) fi if [[ "$?" == 0 ]]; then if [[ "${custom_node_name}" == "-->返回<--" ]]; then break elif [[ -d "${custom_node_name}" ]]; then # 选择文件夹 cd "${custom_node_name}" invokeai_custom_node_interface "${custom_node_name}" else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点管理" \ --ok-label "确认" \ --msgbox "当前的选择非 InvokeAI 自定义节点, 请重新选择" \ $(get_dialog_size) fi else break fi done unset LOCAL_DIR_LIST } # InvokeAI 自定义节点管理 # 使用: # invokeai_custom_node_interface <自定义节点的文件夹名> invokeai_custom_node_interface() { local dialog_arg local custom_node_name=$@ local custom_node_folder=$@ local dialog_buttom local status_display local custom_node_status while true; do if [[ ! -f "__init__.py" ]]; then custom_node_status=0 status_display="已禁用" dialog_buttom="启用" else custom_node_status=1 status_display="已启用" dialog_buttom="禁用" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "InvokeAI 选项" \ --backtitle "InvokeAI 自定义节点管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择对 ${custom_node_name} 自定义节点的管理功能\n当前更新源: $(git_remote_display)\n当前分支: $(git_branch_display)\n当前状态: ${status_display}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 更新" \ "2" "> 修复更新" \ "3" "> 版本切换" \ "4" "> 更新源切换" \ "5" "> ${dialog_buttom}自定义节点" \ "6" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) if is_git_repo; then term_sd_echo "更新 ${custom_node_name} 自定义节点中" # 恢复文件 if [[ "${custom_node_status}" == 0 ]] && [[ -f "__init__.py.bak" ]]; then mv -f "__init__.py.bak" "__init__.py" &> /dev/null fi git_pull_repository if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点更新结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点更新结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点更新失败" \ $(get_dialog_size) fi # 保持自定义节点启用或者禁用状态 if [[ "${custom_node_status}" == 0 ]] && [[ -f "__init__.py" ]]; then mv -f "__init__.py" "__init__.py.bak" &> /dev/null fi else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点更新结果" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点非 Git 安装, 无法更新" \ $(get_dialog_size) fi ;; 2) if is_git_repo; then if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点修复更新" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 ${custom_node_name} 自定义节点更新 ?" \ $(get_dialog_size)); then # 恢复文件 if [[ "${custom_node_status}" == 0 ]] && [[ -f "__init__.py.bak" ]]; then mv -f "__init__.py.bak" "__init__.py" &> /dev/null fi git_fix_pointer_offset # 保持自定义节点启用或者禁用状态 if [[ "${custom_node_status}" == 0 ]] && [[ -f "__init__.py" ]]; then mv -f "__init__.py" "__init__.py.bak" &> /dev/null fi dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点修复更新" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点修复更新完成" \ $(get_dialog_size) else term_sd_echo "取消修复 ${custom_node_name} 自定义节点的更新" fi else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点修复更新" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 3) if is_git_repo; then if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点版本切换" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ${custom_node_name} 自定义节点版本 ?" \ $(get_dialog_size)); then git_ver_switch dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点版本切换" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点版本切换完成, 当前版本为: $(git_branch_display)" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI自定义节点版本切换" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点非 Git 安装, 无法进行版本切换" \ $(get_dialog_size) fi ;; 4) if is_git_repo; then if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ${custom_node_name} 自定义节点更新源 ?" \ $(get_dialog_size)); then git_remote_url_select_single fi else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点更新源切换" \ --ok-label "确认" \ --msgbox "${custom_node_name} 自定义节点非 Git 安装, 无法进行更新源切换" \ $(get_dialog_size) fi ;; 5) if [[ "${custom_node_status}" == 0 ]]; then if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否启用 ${custom_node_name} 自定义节点 ?" \ $(get_dialog_size)); then mv -f "__init__.py.bak" "__init__.py" &> /dev/null else continue fi else if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否禁用 ${custom_node_name} 自定义节点 ?" \ $(get_dialog_size)); then mv -f "__init__.py" "__init__.py.bak" &> /dev/null else continue fi fi dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点删除选项" \ --ok-label "确认" \ --msgbox "${dialog_buttom} ${custom_node_name} 自定义节点成功" \ $(get_dialog_size) ;; 6) if (dialog --erase-on-exit \ --title "InvokeAI 选项" \ --backtitle "InvokeAI 自定义节点删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 ${custom_node_name} 自定义节点 ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 ${custom_node_name} 自定义节点 (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 ${custom_node_name} 自定义节点" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) term_sd_echo "删除 ${custom_node_name} 自定义节点中" cd .. rm -rf "${custom_node_folder}" dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义节点删除选项" \ --ok-label "确认" \ --msgbox "删除 ${custom_node_name} 自定义节点完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除 ${custom_node_name} 自定义节点操作" ;; esac fi ;; *) break ;; esac done }
2301_81996401/term-sd
modules/invokeai_custom_node_manager.sh
Shell
agpl-3.0
17,192
#!/bin/bash # InvokeAI 启动界面 # 参考: https://invoke-ai.github.io/InvokeAI/features/UTILITIES invokeai_launch() { local dialog_arg local launch_args add_invokeai_normal_launch_args while true; do launch_args="invokeai-web $(cat "${START_PATH}"/term-sd/config/invokeai-launch.conf)" dialog_arg=$(dialog --erase-on-exit --notags \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 InvokeAI 启动参数\n当前自定义启动参数: ${launch_args}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 配置预设启动参数" \ "3" "> 修改自定义启动参数" \ "4" "> 重置启动参数" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_launch ;; 2) invokeai_launch_args_setting ;; 3) invokeai_manual_launch ;; 4) restore_invokeai_launch_args ;; *) break ;; esac done } # 启动参数预设选择 # 启动参数保存在 <Start Path>/term-sd/config/invokeai-launch.conf invokeai_launch_args_setting() { local dialog_arg local arg local launch_args local i dialog_arg=$(dialog --erase-on-exit --notags \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --checklist "请选择 InvokeAI 启动参数, 确认之后将覆盖原有启动参数配置\n注: InvokeAI 4.x 已移除该列表中的启动参数, 若使用将导致 InvokeAI 报错导致无法启动, 需使用修改自定义启动参数功能将所有启动参数清除" \ $(get_dialog_size_menu) \ "1" "(host) 开放远程连接" OFF \ "2" "(no-esrgan) 禁用 ESRGAN 进行画面修复" OFF \ "3" "(no-internet_available) 启用离线模式" OFF \ "4" "(log_tokenization) 启用详细日志显示" OFF \ "5" "(no-patchmatch) 禁用图片修复模块" OFF \ "6" "(ignore_missing_core_models) 忽略下载核心模型" OFF \ "7" "(log_format plain) 使用纯文本格式日志" OFF \ "8" "(log_format color) 使用彩色格式日志" OFF \ "9" "(log_format syslog) 使用系统格式日志" OFF \ "10" "(log_format legacy) 使用传统格式日志" OFF \ "11" "(log_sql) 显示数据库查新日志" OFF \ "12" "(dev_reload) 启用开发者模式" OFF \ "13" "(log_memory_usage) 显示详细内存使用日志" OFF \ "14" "(always_use_cpu) 强制使用 CPU" OFF \ "15" "(tiled_decode) 启用分块 VAE 解码, 降低显存占用" OFF \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then for i in ${dialog_arg}; do case "${i}" in 1) arg="--host 0.0.0.0" ;; 2) arg="--no-esrgan" ;; 3) arg="--no-internet_available" ;; 4) arg="--log_tokenization" ;; 5) arg="--no-patchmatch" ;; 6) arg="--ignore_missing_core_models" ;; 7) arg="--log_format plain" ;; 8) arg="--log_format color" ;; 9) arg="--log_format syslog" ;; 10) arg="--log_format legacy" ;; 11) arg="--log_sql" ;; 12) arg="--dev_reload" ;; 13) arg="--log_memory_usage" ;; 14) arg="--always_use_cpu" ;; 15) arg="--tiled_decode" ;; esac launch_args="${arg} ${launch_args}" done term_sd_echo "设置 InvokeAI 启动参数: ${launch_args}" echo "${launch_args}" > "${START_PATH}"/term-sd/config/invokeai-launch.conf else term_sd_echo "取消设置 InvokeAI 启动参数" fi } # 启动参数修改 # 修改参数前将从 <Start Path>/term-sd/config/invokeai-launch.conf 中读取启动参数 # 可在原来的基础上修改 invokeai_manual_launch() { local dialog_arg local launch_args launch_args=$(cat "${START_PATH}"/term-sd/config/invokeai-launch.conf) dialog_arg=$(dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 自定义启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入 InvokeAI 启动参数" \ $(get_dialog_size) \ "${launch_args}" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then term_sd_echo "设置 InvokeAI 启动参数: ${dialog_arg}" echo "${dialog_arg}" > "${START_PATH}"/term-sd/config/invokeai-launch.conf else term_sd_echo "取消 InvokeAI 启动参数修改" fi } # 添加默认启动参数配置 add_invokeai_normal_launch_args() { if [[ ! -f "${START_PATH}/term-sd/config/invokeai-launch.conf" ]]; then # 找不到启动配置时默认生成一个 echo "" > "${START_PATH}"/term-sd/config/invokeai-launch.conf fi } # 重置启动参数 restore_invokeai_launch_args() { if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 重置启动参数选项选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重置 InvokeAI 启动参数 ?" \ $(get_dialog_size)); then term_sd_echo "重置启动参数" rm -f "${START_PATH}"/term-sd/config/invokeai-launch.conf add_invokeai_normal_launch_args else term_sd_echo "取消重置操作" fi } # 启动 InvokeAI # 使用: # launch_invokeai_web <启动参数> launch_invokeai_web() { term_sd_python "${START_PATH}/term-sd/python_modules/launch_invokeai.py" "$@" }
2301_81996401/term-sd
modules/invokeai_launch.sh
Shell
agpl-3.0
6,543
#!/bin/bash # InvokeAI 管理 # 设置 INVOKEAI_ROOT 环境变量指定 InvokeAI 存放数据文件路径 invokeai_manager() { local dialog_arg export INVOKEAI_ROOT="${INVOKEAI_ROOT_PATH}/invokeai" cd "${START_PATH}" # 回到最初路径 exit_venv # 确保进行下一步操作前已退出其他虚拟环境 if [[ -d "${INVOKEAI_ROOT_PATH}" ]]; then # 找到 InvokeAI 文件夹 cd "${INVOKEAI_ROOT_PATH}" enter_venv if is_invokeai_installed; then # 检测 InvokeAI 是否安装 while true; do cd "${INVOKEAI_ROOT_PATH}" dialog_arg=$(dialog --erase-on-exit --notags \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 InvokeAI 管理选项的功能\n当前 InvokeAI 版本: $(get_invokeai_version)" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 更新" \ "3" "> 自定义节点管理" \ "4" "> 切换版本" \ "5" "> 更新依赖" \ "6" "> Python 软件包安装 / 重装 / 卸载" \ "7" "> 依赖库版本管理" \ "8" "> 重新安装 PyTorch" \ "9" "> 切换 PyTorch 类型" \ "10" "> 修复虚拟环境" \ "11" "> 重新构建虚拟环境" \ "12" "> 重新安装" \ "13" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) invokeai_launch ;; 2) # 更新前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否更新 InvokeAI ?"; then term_sd_echo "更新 InvokeAI 中" term_sd_tmp_disable_proxy # 临时取消代理,避免一些不必要的网络减速 update_invokeai_version if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 更新结果" \ --ok-label "确认" \ --msgbox "InvokeAI 更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 更新结果" \ --ok-label "确认" \ --msgbox "InvokeAI 更新失败" \ $(get_dialog_size) fi term_sd_tmp_enable_proxy # 恢复原有的代理 fi clean_install_config # 清理安装参数 ;; 3) invokeai_custom_node_manager ;; 4) if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 版本切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 InvokeAI 版本 ?" \ $(get_dialog_size)); then switch_invokeai_version fi ;; 5) if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 依赖更新选项" \ --yes-label "是" --no-label "否" \ --yesno "是否更新 InvokeAI 的依赖 ?" \ $(get_dialog_size)); then invokeai_update_depend fi ;; 6) if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 的 Python 软件包安装 / 重装 / 卸载选项" \ --yes-label "是" --no-label "否" \ --yesno "是否进入 Python 软件包安装 / 重装 / 卸载选项 ?" \ $(get_dialog_size)); then python_package_manager fi ;; 7) python_package_ver_backup_manager enter_venv ;; 8) pytorch_reinstall enter_venv ;; 9) switch_pytorch_type_for_invokeai ;; 10) if is_use_venv; then if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 虚拟环境修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 InvokeAI 的虚拟环境 ?" \ $(get_dialog_size)); then fix_venv enter_venv dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "InvokeAI 虚拟环境修复完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 11) if is_use_venv; then if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 虚拟环境重建选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重建 InvokeAI 的虚拟环境 ?" \ $(get_dialog_size)); then invokeai_venv_rebuild dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "InvokeAI 虚拟环境重建完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 12) if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 重新安装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重新安装 InvokeAI ?" \ $(get_dialog_size)); then cd "${START_PATH}" rm -f "${START_PATH}/term-sd/task/invokeai_install.sh" exit_venv install_invokeai break fi ;; 13) if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 InvokeAI ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 InvokeAI (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 InvokeAI" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) exit_venv term_sd_echo "删除 InvokeAI 中" cd .. rm -rf "${INVOKEAI_ROOT_PATH}" dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 删除选项" \ --ok-label "确认" \ --msgbox "删除 InvokeAI 完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除 InvokeAI 操作" ;; esac fi ;; *) break ;; esac done else if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 安装选项" \ --yes-label "是" --no-label "否" \ --yesno "检测到当前未安装 InvokeAI, 是否进行安装 ?" \ $(get_dialog_size)); then cd "${INVOKEAI_PARENT_PATH}" rm -f "${START_PATH}/term-sd/task/invokeai_install.sh" install_invokeai fi fi else if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 安装选项" \ --yes-label "是" --no-label "否" \ --yesno "检测到当前未安装 InvokeAI, 是否进行安装 ?" \ $(get_dialog_size)); then rm -f "${START_PATH}/term-sd/task/invokeai_install.sh" install_invokeai fi fi unset INVOKEAI_ROOT } # InvokeAI 更新依赖 invokeai_update_depend() { # 更新前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select upgrade # 安装方式选择 if term_sd_install_confirm "是否更新 InvokeAI 依赖 ?"; then term_sd_print_line "InvokeAI 依赖更新" term_sd_echo "更新 InvokeAI 依赖中" term_sd_tmp_disable_proxy enter_venv get_python_env_pkg | awk -F '==' '{print $1}' > requirements.txt # 生成一个更新列表 python_package_update "requirements.txt" rm -f requirements.txt exit_venv term_sd_tmp_enable_proxy term_sd_echo "更新 InvokeAI 依赖结束" term_sd_pause fi clean_install_config # 清理安装参数 } # 检测 InvokeAI 是否安装 is_invokeai_installed() { local status status=$(term_sd_python "${START_PATH}/term-sd/python_modules/check_invokeai_installed.py") if [[ "${status}" == "True" ]]; then return 0 else return 1 fi } # 切换 InvokeAI 版本 switch_invokeai_version() { local dialog_arg local invokeai_ver local device_type download_mirror_select # 下载镜像源选择 pip_install_mode_select # 安装方式选择 term_sd_echo "获取原 PyTorch 类型" device_type=$(term_sd_python "${START_PATH}/term-sd/python_modules/get_pytorch_type.py") term_sd_echo "获取 InvokeAI 版本列表中" dialog_arg=$(dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 版本切换选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择要切换的 InvokeAI 版本\n当前 InvokeAI 版本: $(get_invokeai_version)" \ $(get_dialog_size_menu) \ "-->返回<--" "<-------------------" \ $(term_sd_pip index versions invokeai --pre |\ grep -oP "Available versions: \K.*" |\ awk -F ',' '{ for (i = 1; i <= NF; i++) {print $i " <-------------------"} }' \ ) \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then if [[ ! "${dialog_arg}" == "-->返回<--" ]]; then invokeai_ver=$dialog_arg term_sd_echo "当前选择的 InvokeAI 版本: ${invokeai_ver}" term_sd_echo "切换 InvokeAI 版本中" update_or_switch_invokeai_version_process "${device_type}" "${invokeai_ver}" if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 版本切换选项" \ --ok-label "确认" \ --msgbox "切换 InvokeAI 版本成功, 当前版本为: ${invokeai_ver}" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 版本切换选项" \ --ok-label "确认" \ --msgbox "切换 InvokeAI 版本失败" \ $(get_dialog_size) fi else term_sd_echo "取消切换版本" fi else term_sd_echo "取消切换版本" fi clean_install_config # 清理安装参数 } # 更新 InvokeAI update_invokeai_version() { local device_type term_sd_echo "获取原 PyTorch 类型" device_type=$(term_sd_python "${START_PATH}/term-sd/python_modules/get_pytorch_type.py") term_sd_echo "更新 InvokeAI 中" update_or_switch_invokeai_version_process "${device_type}" "latest" } # 获取 InvokeAI 版本 get_invokeai_version() { local status status=$(term_sd_python "${START_PATH}/term-sd/python_modules/get_invokeai_version.py") if [[ "${status}" == "None" ]]; then echo "无" else echo "${status}" fi } # 获取 InvokeAI 当前版本对应的 PyTorch 所需的PyTorch镜像源类型 # 使用: # get_pytorch_mirror_type_for_invokeai <显卡类型> # 可用的显卡类型: cuda, rocm, xpu, cpu # 返回: PyTorch 镜像源类型 get_pytorch_mirror_type_for_invokeai() { local status local device_type=$@ status=$(term_sd_python "${START_PATH}/term-sd/python_modules/get_pytorch_mirror_type.py" --device-type "${device_type}") echo "${status}" } # 配置安装 InvokeAI 所需的 PyTorch 安装信息 # 使用: # set_pytorch_install_config_for_invokeai <显卡类型> # 设置 PYTORCH_TYPE, INSTALL_PYTORCH_VERSION, INSTALL_XFORMERS_VERSION 全局变量进行 PyTorch 安装信息配置 # 使用时需确保 InvokeAI 核心包已被安装 set_pytorch_install_config_for_invokeai() { local device_type=$@ local pytorch_ver local xformers_ver term_sd_echo "配置 InvokeAI 所需 PyTorch 的安装信息" PYTORCH_TYPE=$(get_pytorch_mirror_type_for_invokeai "${device_type}") pytorch_ver=$(term_sd_python "${START_PATH}/term-sd/python_modules/get_invokeai_require_pytorch.py") xformers_ver=$(term_sd_python "${START_PATH}/term-sd/python_modules/get_invokeai_require_xformers.py") case "${PYTORCH_TYPE}" in cpu|xpu|ipex_legacy_arc|rocm62|other) INSTALL_PYTORCH_VERSION=$pytorch_ver ;; *) INSTALL_PYTORCH_VERSION="${pytorch_ver} ${xformers_ver}" # 合并依赖需求 ;; esac if term_sd_is_debug; then term_sd_echo "PYTORCH_TYPE: ${PYTORCH_TYPE}" term_sd_echo "pytorch_ver: ${pytorch_ver}" term_sd_echo "xformers_ver: ${xformers_ver}" term_sd_echo "INSTALL_PYTORCH_VERSION: ${INSTALL_PYTORCH_VERSION}" fi term_sd_echo "InvokeAI 所需 PyTorch 的安装信息配置完成" } # 同步 InvokeAI 组件 # 使用: # sync_invokeai_component <显卡类型> <可选参数: force_reinstall (用于强制切换 PyTorch 版本)> sync_invokeai_component() { local invokeai_package_ver local device_type=$1 local force_reinstall_pytorch=$2 invokeai_package_ver=$(get_invokeai_version) [[ "${invokeai_package_ver}" == "无" ]] && invokeai_package_ver="invokeai" term_sd_echo "同步 InvokeAI 组件中" set_pytorch_install_config_for_invokeai "${device_type}" # 配置 PyTorch 安装信息 term_sd_echo "同步 PyTorch 组件中" if [[ "${force_reinstall_pytorch}" == "force_reinstall" ]]; then PIP_FORCE_REINSTALL_ARG="--force-reinstall" process_pytorch || return 1 # 安装 PyTorch else process_pytorch || return 1 # 安装 PyTorch fi term_sd_echo "同步 InvokeAI 其余组件中" install_python_package "invokeai==${invokeai_package_ver}" || return 1 # 安装 InvokeAI 依赖 term_sd_echo "同步 InvokeAI 组件完成" } # 安装 InvokeAI 处理 # 使用: # install_invokeai_process <显卡类型> install_invokeai_process() { local device_type=$@ install_python_package invokeai --no-deps || return 1 sync_invokeai_component "${device_type}" || return 1 } # 更新 / 切换 InvokeAI 版本处理 # 使用: # switch_invokeai_version_process <显卡类型> <InvokeAI 版本> <可选参数: force_reinstall (用于强制切换 PyTorch 版本)> # 当 <InvokeAI 版本> 指定为 latest 时, 则更新 InvokeAI 到最新版本 # 否则切换到指定的 InvokeAI 版本 update_or_switch_invokeai_version_process() { local device_type=$1 local invokeai_version=$2 local force_reinstall_pytorch=$3 local current_version current_version=$(get_invokeai_version) [[ "${current_version}" == "无" ]] && current_version="5.0.2" if [[ "${invokeai_version}" == "latest" ]]; then term_sd_echo "更新 InvokeAI 内核中" install_python_package invokeai --no-deps --upgrade else term_sd_echo "切换 InvokeAI 内核版本到 ${invokeai_version} 中" install_python_package "invokeai==${invokeai_version}" --no-deps fi if [[ "$?" == 0 ]]; then # 内核更新成功时再同步组件版本 term_sd_echo "切换 InvokeAI 内核版本完成, 开始同步组件版本中" if sync_invokeai_component "${device_type}" "${force_reinstall_pytorch}"; then term_sd_echo "InvokeAI 版本切换成功" return 0 else term_sd_echo "InvokeAI 组件同步失败, 回退 InvokeAI 版本中" install_python_package "invokeai==${current_version}" --no-deps term_sd_echo "回退 InvokeAI 版本结束" return 1 fi else term_sd_echo "InvokeAI 内核版本切换失败" return 1 fi } # 切换 InvokeAI 环境的 PyTorch 类型 switch_pytorch_type_for_invokeai() { local current_version if (dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 环境 PyTorch 类型切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 PyTorch 类型 ?" \ $(get_dialog_size)); then pytorch_type_select # 选择 PyTorch 类型 download_mirror_select # 下载镜像源选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否切换 PyTorch 类型 ?"; then term_sd_echo "开始切换 PyTorch 类型" current_version=$(get_invokeai_version) [[ "${current_version}" == "无" ]] && current_version="5.0.2" update_or_switch_invokeai_version_process "${PYTORCH_TYPE}" "${current_version}" "force_reinstall" if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 环境 PyTorch 类型切换选项" \ --ok-label "确认" \ --msgbox "切换 PyTorch 类型成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "InvokeAI 管理" \ --backtitle "InvokeAI 环境 PyTorch 类型切换选项" \ --ok-label "确认" \ --msgbox "切换 PyTorch 类型失败" \ $(get_dialog_size) fi else term_sd_echo "取消切换 PyTorch 类型" fi clean_install_config # 清理安装参数 else term_sd_echo "取消切换 PyTorch 类型" fi }
2301_81996401/term-sd
modules/invokeai_manager.sh
Shell
agpl-3.0
22,170
#!/bin/bash # kohya_ss 启动参数设置 # 启动参数将保存在 <Start Path>/term-sd/config/kohya_ss-launch.conf kohya_ss_launch_args_setting() { local arg local dialog_arg local launch_args local i dialog_arg=$(dialog --erase-on-exit --notags \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --checklist "请选择 kohya_ss 启动参数, 确认之后将覆盖原有启动参数配置" \ $(get_dialog_size_menu) \ "1" "(listen) 开放远程连接" OFF \ "2" "(inbrowser) 启动 WebUI 完成后自动启动浏览器" OFF \ "3" "(share) 启用 Gradio 共享" OFF \ "4" "(language zh-CN) 启用中文界面" OFF \ "5" "(headless) 禁用文件浏览按钮" OFF \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then for i in ${dialog_arg}; do case "${i}" in 1) arg="--listen 0.0.0.0" ;; 2) arg="--inbrowser" ;; 3) arg="--share" ;; 4) arg="--language zh-CN" ;; 5) arg="--headless" ;; esac launch_args="${arg} ${launch_args}" done # 生成启动脚本 term_sd_echo "设置 kohya_ss 启动参数: ${launch_args}" echo "kohya_gui.py ${launch_args}" > "${START_PATH}"/term-sd/config/kohya_ss-launch.conf else term_sd_echo "取消设置 kohya_ss 启动参数" fi } # kohya_ss启动界面 kohya_ss_launch() { local dialog_arg local launch_args add_kohya_ss_normal_launch_args while true; do launch_args=$(cat "${START_PATH}"/term-sd/config/kohya_ss-launch.conf) if is_use_venv; then launch_args="python ${launch_args}" else launch_args="${TERM_SD_PYTHON_PATH} ${launch_args}" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 启动选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择启动 kohya_ss / 修改 kohya_ss 启动参数\n当前启动参数: ${launch_args}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 配置预设启动参数" \ "3" "> 修改自定义启动参数" \ "4" "> 重置启动参数" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_launch ;; 2) kohya_ss_launch_args_setting ;; 3) kohya_ss_launch_args_revise ;; 4) restore_kohya_ss_launch_args ;; *) break ;; esac done } # kohya_ss 启动参数修改 # 输入前将从 <Start Path>/term-sd/config/kohya_ss-launch.conf 读取启动参数 # 可在原来的基础上修改 kohya_ss_launch_args_revise() { local dialog_arg local launch_args launch_args=$(cat "${START_PATH}"/term-sd/config/kohya_ss-launch.conf | awk '{sub("kohya_gui.py ","")}1') dialog_arg=$(dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 自定义启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入 kohya_ss 启动参数" \ $(get_dialog_size) \ "${launch_args}" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then term_sd_echo "设置 kohya_ss 启动参数: ${dialog_arg}" echo "kohya_gui.py ${dialog_arg}" > "${START_PATH}"/term-sd/config/kohya_ss-launch.conf else term_sd_echo "取消修改 kohya_ss 启动参数" fi } # 添加默认启动参数配置 add_kohya_ss_normal_launch_args() { if [[ ! -f "${START_PATH}/term-sd/config/kohya_ss-launch.conf" ]]; then # 找不到启动配置时默认生成一个 echo "kohya_gui.py --inbrowser --language zh-CN" > "${START_PATH}"/term-sd/config/kohya_ss-launch.conf fi } # 重置启动参数 restore_kohya_ss_launch_args() { if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 重置启动参数选项选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重置 kohya_ss 启动参数 ?" \ $(get_dialog_size)); then term_sd_echo "重置 kohya_ss 启动参数" rm -f "${START_PATH}"/term-sd/config/kohya_ss-launch.conf add_kohya_ss_normal_launch_args else term_sd_echo "取消重置 kohya_ss 启动参数操作" fi }
2301_81996401/term-sd
modules/kohya_ss_launch.sh
Shell
agpl-3.0
4,904
#!/bin/bash # kohya_ss 管理界面 kohya_ss_manager() { local dialog_arg cd "${START_PATH}" # 回到最初路径 exit_venv # 确保进行下一步操作前已退出其他虚拟环境 if [[ -d "${KOHYA_SS_ROOT_PATH}" ]] && ! term_sd_is_dir_empty "${KOHYA_SS_ROOT_PATH}"; then while true; do cd "${KOHYA_SS_ROOT_PATH}" dialog_arg=$(dialog --erase-on-exit --notags \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 管理选项" \ --ok-label "确认" \ --cancel-label "取消" \ --menu "请选择 kohya_ss 管理选项的功能\n当前更新源: $(git_remote_display)\n当前分支: $(git_branch_display)" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 更新" \ "3" "> 修复更新" \ "4" "> 切换版本" \ "5" "> 更新源替换" \ "6" "> 更新依赖" \ "7" "> Python 软件包安装 / 重装 / 卸载" \ "8" "> 依赖库版本管理" \ "9" "> 重新安装 PyTorch" \ "10" "> 修复虚拟环境" \ "11" "> 重新构建虚拟环境" \ "12" "> 重新安装后端组件" \ "13" "> 重新安装" \ "14" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) kohya_ss_launch ;; 2) if is_git_repo; then term_sd_echo "更新 kohya_ss 中" git_pull_repository if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 更新结果" \ --ok-label "确认" \ --msgbox "kohya_ss 更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 更新结果" \ --ok-label "确认" \ --msgbox "kohya_ss 更新失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 更新结果" \ --ok-label "确认" \ --msgbox "kohya_ss 非 Git 安装, 无法更新" \ $(get_dialog_size) fi ;; 3) if is_git_repo; then if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 更新修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 kohya_ss 更新 ?" \ $(get_dialog_size)); then git_fix_pointer_offset dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 更新修复选项" \ --ok-label "确认" \ --msgbox "kohya_ss 修复更新完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 更新修复选项" \ --ok-label "确认" \ --msgbox "kohya_ss 非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 4) if is_git_repo; then if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 版本切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 kohya_ss 版本 ?" \ $(get_dialog_size)); then git_ver_switch && \ dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 版本切换选项" \ --ok-label "确认" \ --msgbox "kohya_ss 切换版本完成, 当前版本为: $(git_branch_display)" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 版本切换选项" \ --ok-label "确认" \ --msgbox "kohya_ss 非 Git 安装, 无法切换版本" \ $(get_dialog_size) fi ;; 5) if is_git_repo; then if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 更新源切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 kohya_ss 更新源 ?" \ $(get_dialog_size)); then kohya_ss_remote_revise fi else dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 更新源切换选项" \ --ok-label "确认" \ --msgbox "kohya_ss 非 Git 安装, 无法切换更新源" \ $(get_dialog_size) fi ;; 6) if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 依赖更新选项" \ --yes-label "是" --no-label "否" \ --yesno "是否更新 kohya_ss 的依赖 ?" \ $(get_dialog_size)); then kohya_ss_update_depend fi ;; 7) if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 的 Python 软件包安装 / 重装 / 卸载选项" \ --yes-label "是" --no-label "否" \ --yesno "是否进入 Python 软件包安装 / 重装 / 卸载选项 ?" \ $(get_dialog_size)); then python_package_manager fi ;; 8) python_package_ver_backup_manager ;; 9) pytorch_reinstall ;; 10) if is_use_venv; then if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 虚拟环境修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 kohya_ss 的虚拟环境 ?" \ $(get_dialog_size)); then fix_venv dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "kohya_ss 虚拟环境修复完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 11) if is_use_venv; then if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 虚拟环境重建选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重建 kohya_ss 的虚拟环境 ?" \ $(get_dialog_size)); then kohya_ss_venv_rebuild dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "kohya_ss 虚拟环境重建完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 12) if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 后端组件重装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重新安装 kohya_ss 后端组件 ?" \ $(get_dialog_size)); then kohya_ss_backend_repo_reinstall fi ;; 13) if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 重新安装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重新安装 kohya_ss ?" \ $(get_dialog_size)); then cd "${START_PATH}" rm -f "${START_PATH}/term-sd/task/kohya_ss_install.sh" exit_venv install_kohya_ss break fi ;; 14) if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 kohya_ss ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 kohya_ss (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 kohya_ss" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) term_sd_echo "删除 kohya_ss 中" exit_venv cd .. rm -rf "${KOHYA_SS_ROOT_PATH}" dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 删除选项" \ --ok-label "确认" \ --msgbox "删除 kohya_ss 完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除 kohya_ss 操作" ;; esac fi ;; *) break ;; esac done else if (dialog --erase-on-exit \ --title "kohya_ss 管理" \ --backtitle "kohya_ss 安装选项" \ --yes-label "是" --no-label "否" \ --yesno "检测到当前未安装 kohya_ss , 是否进行安装 ?" \ $(get_dialog_size)); then rm -f "${START_PATH}/term-sd/task/kohya_ss_install.sh" install_kohya_ss fi fi } # kohya_ss 依赖更新功能 kohya_ss_update_depend() { # 更新前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select upgrade # 安装方式选择 if term_sd_install_confirm "是否更新 kohya_ss 依赖 ?"; then term_sd_print_line "kohya_ss 依赖更新" term_sd_echo "更新 kohya_ss 依赖中" term_sd_tmp_disable_proxy enter_venv python_package_update "requirements.txt" # kohya_ss 依赖 exit_venv term_sd_tmp_enable_proxy term_sd_echo "更新 kohya_ss 依赖结束" term_sd_pause fi clean_install_config # 清理安装参数 } # 后端组件重装 kohya_ss_backend_repo_reinstall() { download_mirror_select # 下载镜像源选择 if term_sd_install_confirm "是否重新安装 kohya_ss 后端组件 ?"; then term_sd_print_line "kohya_ss 后端组件重装" term_sd_echo "删除原有 kohya_ss 后端组件中" rm -rf "${KOHYA_SS_ROOT_PATH}"/sd-scripts term_sd_mkdir "${KOHYA_SS_ROOT_PATH}"/sd-scripts term_sd_echo "重新下载 kohya_ss 后端组件中" git_clone_repository https://github.com/kohya-ss/sd-scripts "${KOHYA_SS_ROOT_PATH}" sd-scripts # kohya_ss 后端 git_init_submodule "${KOHYA_SS_ROOT_PATH}" term_sd_echo "重装 kohya_ss 后端组件结束" term_sd_pause fi clean_install_config # 清理安装参数 }
2301_81996401/term-sd
modules/kohya_ss_manager.sh
Shell
agpl-3.0
15,112
#!/bin/bash # lora-scripts 启动参数配置 # 设置的启动参数将保存在 <Start Path>/term-sd/config/lora-scripts-launch.conf lora_scripts_launch_args_setting() { local arg local dialog_arg local launch_args local i dialog_arg=$(dialog --erase-on-exit --notags \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --checklist "请选择 lora-scripts 启动参数, 确认之后将覆盖原有启动参数配置" \ $(get_dialog_size_menu) \ "1" "(listen) 开放远程连接" OFF \ "2" "(skip-prepare-environment) 跳过环境检查" OFF \ "3" "(disable-tensorboard)禁用 TernsorBoard" OFF \ "4" "(disable-tageditor) 禁用标签管理器" OFF \ "5" "(dev) 启用开发版功能" OFF \ "6" "(skip-prepare-onnxruntime) 跳过 onnxruntime 检查" ON \ "7" "(disable-auto-mirror) 禁用自动设置镜像" OFF \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then for i in ${dialog_arg}; do case "${i}" in 1) arg="--listen" ;; 2) arg="--skip-prepare-environment" ;; 3) arg="--disable-tensorboard" ;; 4) arg="--disable-tageditor" ;; 5) arg="--dev" ;; 6) arg="--skip-prepare-onnxruntime" ;; 7) arg="--disable-auto-mirror" ;; esac launch_args="${arg} ${launch_args}" done # 生成启动脚本 term_sd_echo "设置 lora-scripts 启动参数: ${launch_args}" echo "gui.py ${launch_args}" > "${START_PATH}"/term-sd/config/lora-scripts-launch.conf else term_sd_echo "取消设置 lora-scripts 启动参数" fi } # lora-scripts 启动界面 lora_scripts_launch() { local dialog_arg local launch_args add_lora_scripts_normal_launch_args while true; do launch_args=$(cat "${START_PATH}"/term-sd/config/lora-scripts-launch.conf) if is_use_venv; then launch_args="python ${launch_args}" else launch_args="${TERM_SD_PYTHON_PATH} ${launch_args}" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 启动选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择启动 lora-scripts / 修改 lora-scripts 启动参数\n当前启动参数: ${launch_args}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 配置预设启动参数" \ "3" "> 修改自定义启动参数" \ "4" "> 重置启动参数" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_launch ;; 2) lora_scripts_launch_args_setting ;; 3) lora_scripts_launch_args_revise ;; 4) restore_lora_scripts_launch_args ;; *) break ;; esac done } # lora-scripts 启动参数修改 # 修改启动参数前从 term-sd/config/lora-scripts-launch.conf 读取启动参数 # 可在原来的基础上修改 lora_scripts_launch_args_revise() { local dialog_arg local launch_args launch_args=$(cat "${START_PATH}"/term-sd/config/lora-scripts-launch.conf | awk '{sub("gui.py ","")}1') dialog_arg=$(dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 自定义启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入 lora-scripts 启动参数" \ $(get_dialog_size) \ "${launch_args}" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then term_sd_echo "设置 lora-scripts 启动参数: ${dialog_arg}" echo "gui.py ${dialog_arg}" > "${START_PATH}"/term-sd/config/lora-scripts-launch.conf else term_sd_echo "取消修改 lora-scripts 启动参数" fi } # 添加默认启动参数配置 add_lora_scripts_normal_launch_args() { if [[ ! -f "${START_PATH}/term-sd/config/lora-scripts-launch.conf" ]]; then # 找不到启动配置时默认生成一个 echo "gui.py --skip-prepare-onnxruntime" > "${START_PATH}"/term-sd/config/lora-scripts-launch.conf fi } # 重置启动参数 restore_lora_scripts_launch_args() { if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 重置启动参数选项选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重置 lora-scripts 启动参数 ?" \ $(get_dialog_size)); then term_sd_echo "重置 lora-scripts 启动参数" rm -f "${START_PATH}"/term-sd/config/lora-scripts-launch.conf add_lora_scripts_normal_launch_args else term_sd_echo "取消重置 lora-scripts 启动参数操作" fi }
2301_81996401/term-sd
modules/lora_scripts_launch.sh
Shell
agpl-3.0
5,393
#!/bin/bash # lora-scripts 管理 lora_scripts_manager() { local dialog_arg cd "${START_PATH}" # 回到最初路径 exit_venv # 确保进行下一步操作前已退出其他虚拟环境 if [[ -d "${LORA_SCRIPTS_ROOT_PATH}" ]] && ! term_sd_is_dir_empty "${LORA_SCRIPTS_ROOT_PATH}"; then while true; do cd "${LORA_SCRIPTS_ROOT_PATH}" dialog_arg=$(dialog --erase-on-exit --notags \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 lora-scripts 管理选项的功能\n当前更新源: $(git_remote_display)\n当前分支: $(git_branch_display)" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 更新" \ "3" "> 修复更新" \ "4" "> 切换版本" \ "5" "> 更新源替换" \ "6" "> 更新依赖" \ "7" "> Python 软件包安装 / 重装 / 卸载" \ "8" "> 依赖库版本管理" \ "9" "> 重新安装 PyTorch" \ "10" "> 修复虚拟环境" \ "11" "> 重新构建虚拟环境" \ "12" "> 重新安装后端组件" \ "13" "> 重新安装" \ "14" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) lora_scripts_launch ;; 2) if is_git_repo; then term_sd_echo "更新 lora-scripts 中" git_pull_repository if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 更新结果" \ --ok-label "确认" \ --msgbox "lora-scripts 更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 更新结果" \ --ok-label "确认" \ --msgbox "lora-scripts 更新失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 更新结果" \ --ok-label "确认" \ --msgbox "lora-scripts 非 Git 安装, 无法更新" \ $(get_dialog_size) fi ;; 3) if is_git_repo; then if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 更新修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 lora-scripts 更新 ?" \ $(get_dialog_size)); then git_fix_pointer_offset dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 更新修复选项" \ --ok-label "确认" \ --msgbox "lora-scripts 更新修复完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 更新修复选项" \ --ok-label "确认" \ --msgbox "lora-scripts 非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 4) if is_git_repo; then if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 版本切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 lora-scripts 版本 ?" \ $(get_dialog_size)); then git_ver_switch && \ dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 版本切换选项" \ --ok-label "确认" \ --msgbox "lora-scripts 版本切换完成, 当前版本为: $(git_branch_display)" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 版本切换选项" \ --ok-label "确认" \ --msgbox "lora-scripts 非 Git 安装, 无法切换更新" \ $(get_dialog_size) fi ;; 5) if is_git_repo; then if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 更新源切换选项" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 lora-scripts 更新源 ?" \ $(get_dialog_size)); then lora_scripts_remote_revise fi else dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 更新源切换选项" \ --ok-label "确认" \ --msgbox "lora-scripts 非 Git 安装, 无法切换更新源" \ $(get_dialog_size) fi ;; 6) if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 依赖更新选项" \ --yes-label "是" --no-label "否" \ --yesno "是否更新 lora-scripts 的依赖 ?" \ $(get_dialog_size)); then lora_scripts_update_depend fi ;; 7) if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 的 Python 软件包安装 / 重装/ 卸载选项" \ --yes-label "是" --no-label "否" \ --yesno "是否进入 Python 软件包安装/ 重装 / 卸载选项 ?" \ $(get_dialog_size)); then python_package_manager fi ;; 8) python_package_ver_backup_manager ;; 9) pytorch_reinstall ;; 10) if is_use_venv; then if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 虚拟环境修复选项" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 lora-scripts 的虚拟环境 ?" \ $(get_dialog_size)); then fix_venv dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "lora-scripts 虚拟环境修复完成" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 虚拟环境修复选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 11) if is_use_venv; then if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 虚拟环境重建选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重建 lora-scripts 的虚拟环境 ?" \ $(get_dialog_size)); then lora_scripts_venv_rebuild fi else dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 虚拟环境重建选项" \ --ok-label "确认" \ --msgbox "虚拟环境功能已禁用, 无法使用该功能" \ $(get_dialog_size) fi ;; 12) if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 后端组件重装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重新安装 lora-scripts 后端组件 ?" \ $(get_dialog_size)); then lora_scripts_backend_repo_reinstall fi ;; 13) if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 重新安装选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重新安装 lora-scripts ?" \ $(get_dialog_size)); then cd "${START_PATH}" rm -f "${START_PATH}/term-sd/task/lora_scripts_install.sh" exit_venv install_lora_scripts break fi ;; 14) if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 lora-scripts ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 lora-scripts (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 lora-scripts" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) term_sd_echo "删除 lora-scripts 中" exit_venv cd .. rm -rf "${LORA_SCRIPTS_ROOT_PATH}" dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 删除选项" \ --ok-label "确认" \ --msgbox "删除 lora-scripts 完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除 lora-scripts 操作" ;; esac fi ;; *) break ;; esac done else if (dialog --erase-on-exit \ --title "lora-scripts 管理" \ --backtitle "lora-scripts 安装选项" \ --yes-label "是" --no-label "否" \ --yesno "检测到当前未安装 lora_scripts, 是否进行安装 ?" \ $(get_dialog_size)); then rm -f "${START_PATH}/term-sd/task/lora_scripts_install.sh" install_lora_scripts fi fi } # lora-scripts 依赖更新功能 lora_scripts_update_depend() { # 更新前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select upgrade # 安装方式选择 if term_sd_install_confirm "是否更新 lora-scripts 依赖 ?"; then term_sd_print_line "lora-scripts 依赖更新" term_sd_echo "更新 lora-scripts 依赖中" term_sd_tmp_disable_proxy enter_venv python_package_update requirements.txt # lora-scripts 依赖 exit_venv term_sd_tmp_enable_proxy term_sd_echo "更新 lora-scripts 依赖结束" term_sd_pause fi clean_install_config # 清理安装参数 } # 后端组件重装 lora_scripts_backend_repo_reinstall() { download_mirror_select # 下载镜像源选择 if term_sd_install_confirm "是否重新安装 lora-scripts 后端组件 ?"; then term_sd_print_line "lora-scripts 后端组件重装" term_sd_echo "删除原有 lora-scripts 后端组件中" rm -rf "${LORA_SCRIPTS_ROOT_PATH}"/frontend rm -rf "${LORA_SCRIPTS_ROOT_PATH}"/mikazuki/dataset-tag-editor term_sd_mkdir frontend term_sd_mkdir mikazuki/dataset-tag-editor term_sd_echo "重新下载 lora-scripts 后端组件中" git_clone_repository https://github.com/hanamizuki-ai/lora-gui-dist "${LORA_SCRIPTS_ROOT_PATH}" frontend # lora-scripts 前端 git_clone_repository https://github.com/Akegarasu/dataset-tag-editor "${LORA_SCRIPTS_ROOT_PATH}"/mikazuki dataset-tag-editor # 标签编辑器 git_init_submodule "${LORA_SCRIPTS_ROOT_PATH}" term_sd_echo "重装 lora-scripts 后端组件结束" term_sd_pause fi clean_install_config # 清理安装参数 }
2301_81996401/term-sd
modules/lora_scripts_manager.sh
Shell
agpl-3.0
15,378
#!/bin/bash # 安装 Python 软件包功能 # 使用 PIP_PACKAGE_MANAGER_METHON_NAME 全局变量获取进行操作的 Python 软件包的操作名 # 使用 PIP_PACKAGE_MANAGER_METHON 全集变量获取要进行的 Python 软件包操作 python_package_manager() { local dialog_arg local req local i # 安装前的准备 download_mirror_select # 下载镜像源选择 pip_manage_package_methon_select # Python 软件包操作方式选择 dialog_arg=$(dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${TERM_SD_MANAGE_OBJECT} Python 软件包安装 / 重装 / 卸载选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入需要安装 / 重装 / 卸载的 Python 软件包名" \ $(get_dialog_size) 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]] && [ ! -z "$(echo ${dialog_arg} | awk '{gsub(/[=+<>]/, "")}1')" ]; then if term_sd_install_confirm "是否${PIP_PACKAGE_MANAGER_METHON_NAME}输入的 Python 软件包 ?"; then term_sd_print_line "Python 软件包${PIP_PACKAGE_MANAGER_METHON_NAME}" term_sd_echo "将${PIP_PACKAGE_MANAGER_METHON_NAME}以下 Python 软件包" for i in ${dialog_arg}; do echo ${i} done term_sd_print_line enter_venv term_sd_tmp_disable_proxy case "${PIP_PACKAGE_MANAGER_METHON}" in # 选择pip包管理器管理方法 1) # 常规安装 install_python_package ${dialog_arg} ;; 2) # 仅安装 install_python_package --no-deps ${dialog_arg} ;; 3) # 强制重装 install_python_package --force-reinstall ${dialog_arg} ;; 4) # 仅强制重装 install_python_package --force-reinstall --no-deps ${dialog_arg} ;; 5) # 卸载 term_sd_try term_sd_pip uninstall -y ${dialog_arg} ;; esac req=$? term_sd_echo "${PIP_PACKAGE_MANAGER_METHON_NAME} Python 软件包结束" term_sd_tmp_enable_proxy term_sd_print_line if [[ "${req}" == 0 ]]; then dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "Python 软件包${PIP_PACKAGE_MANAGER_METHON_NAME}结果" \ --ok-label "确认" \ --msgbox "以下 Python 软件包${PIP_PACKAGE_MANAGER_METHON_NAME}成功\n${TERM_SD_DELIMITER}\n${dialog_arg}\n${TERM_SD_DELIMITER}" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "Python 软件包${PIP_PACKAGE_MANAGER_METHON_NAME}结果" \ --ok-label "确认" \ --msgbox "以下 Python 软件包${PIP_PACKAGE_MANAGER_METHON_NAME}失败\n${TERM_SD_DELIMITER}\n${dialog_arg}\n${TERM_SD_DELIMITER}" \ $(get_dialog_size) fi else term_sd_echo "取消${PIP_PACKAGE_MANAGER_METHON_NAME} Python 软件包操作" fi else dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${TERM_SD_MANAGE_OBJECT} Python 软件包安装 / 重装 / 卸载选项" \ --ok-label "确认" \ --msgbox "未输入 Python 软件包名, 不执行 Python 软件包操作" \ $(get_dialog_size) fi unset PIP_PACKAGE_MANAGER_METHON unset PIP_PACKAGE_MANAGER_METHON_NAME clean_install_config # 清理安装参数 } # Pip 管理软件包方法选择 # 将操作方法的名称保存至 PIP_PACKAGE_MANAGER_METHON_NAME 全局变量 # 将操作方法保存在 PIP_PACKAGE_MANAGER_METHON 全局变量中 pip_manage_package_methon_select() { local dialog_arg dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "Pip 操作方式选项" \ --ok-label "确认" --no-cancel \ --menu "请选择 Pip 操作方式\n1、常规安装用于安装缺失的软件包\n2、强制重装可解决软件包损坏问题, 但同时重新安装软件包所需的依赖, 速度较慢\n3、卸载软件包\n注: 带有 \"仅\" 的功能是在安装时只安装用户输入的软件包, 而不安装这些软件包的依赖\n安装 / 重装软件包时可以只写包名, 也可以指定包名版本\n可以输入多个软件包的包名, 并使用空格隔开\n如果想要更新某个软件包的版本, 可以加上 -U 参数\n例:\nxformers\nxformers==0.0.21\nxformers==0.0.21 numpy\nnumpy -U" \ $(get_dialog_size_menu) \ "1" "> 常规安装 (install)" \ "2" "> 仅安装 (--no-deps)" \ "3" "> 强制重装 (--force-reinstall)" \ "4" "> 仅强制重装 (--no-deps --force-reinstall)" \ "5" "> 卸载 (uninstall)" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then case "${dialog_arg}" in 1) PIP_PACKAGE_MANAGER_METHON_NAME="安装" PIP_PACKAGE_MANAGER_METHON=1 ;; 2) PIP_PACKAGE_MANAGER_METHON_NAME="安装 (--no-deps)" PIP_PACKAGE_MANAGER_METHON=2 ;; 3) PIP_PACKAGE_MANAGER_METHON_NAME="强制重装 (--force-reinstall)" PIP_PACKAGE_MANAGER_METHON=3 ;; 4) PIP_PACKAGE_MANAGER_METHON_NAME="强制重装 (--no-deps --force-reinstall)" PIP_PACKAGE_MANAGER_METHON=4 ;; 5) PIP_PACKAGE_MANAGER_METHON_NAME="卸载" PIP_PACKAGE_MANAGER_METHON=5 ;; esac fi } # Python 软件包更新 # 使用: # python_package_update <requirements.txt> # 进行更新依赖操作时将忽略部分软件包 # 忽略的软件包名单: # torch torchvision torchaudio xformers InvokeAI python_package_update() { cat "$@" > tmp-python-package-update-list.txt # 生成要更新的软件包名单 local ignore_update_python_package_list="torch torchvision torchaudio xformers InvokeAI" # 忽略更新的软件包名单 for i in ${ignore_update_python_package_list}; do sed -i '/'$i'/d' tmp-python-package-update-list.txt 2> /dev/null # 将忽略的软件包从名单删除 done if term_sd_is_debug; then term_sd_print_line "Python 软件包更新列表" term_sd_echo "要进行更新的软件包名单:" cat tmp-python-package-update-list.txt term_sd_print_line term_sd_echo "cmd: install_python_package -r tmp-python-package-update-list.txt" fi # 更新 Python 软件包 install_python_package -r tmp-python-package-update-list.txt rm -f tmp-python-package-update-list.txt # 删除列表缓存 } # Python 软件包安装 # 使用: # install_python_package <软件包> <其他参数> # 使用以下全局变量作为参数使用 # PIP_INDEX_MIRROR, PIP_EXTRA_INDEX_MIRROR, PIP_FIND_LINKS_MIRROR # UV_INDEX_MIRROR, UV_EXTRA_INDEX_MIRROR, UV_FIND_LINKS_MIRROR # PIP_BREAK_SYSTEM_PACKAGE_ARG, PIP_USE_PEP517_ARG, PIP_FORCE_REINSTALL_ARG # 可使用 Pip 或者 uv 进行 Python 软件包安装 install_python_package() { if term_sd_is_debug; then term_sd_echo "PIP_INDEX_MIRROR: ${PIP_INDEX_MIRROR}" term_sd_echo "PIP_EXTRA_INDEX_MIRROR: ${PIP_EXTRA_INDEX_MIRROR}" term_sd_echo "PIP_FIND_LINKS_MIRROR: ${PIP_FIND_LINKS_MIRROR}" term_sd_echo "UV_INDEX_MIRROR: ${UV_INDEX_MIRROR}" term_sd_echo "UV_EXTRA_INDEX_MIRROR: ${UV_EXTRA_INDEX_MIRROR}" term_sd_echo "UV_FIND_LINKS_MIRROR: ${UV_FIND_LINKS_MIRROR}" term_sd_echo "PIP_BREAK_SYSTEM_PACKAGE_ARG: ${PIP_BREAK_SYSTEM_PACKAGE_ARG}" term_sd_echo "PIP_USE_PEP517_ARG: ${PIP_USE_PEP517_ARG}" term_sd_echo "PIP_FORCE_REINSTALL_ARG: ${PIP_FORCE_REINSTALL_ARG}" term_sd_echo "PIP_UPDATE_PACKAGE_ARG: ${PIP_UPDATE_PACKAGE_ARG}" if term_sd_is_use_uv; then term_sd_echo "cmd: term_sd_uv_install $@ ${UV_INDEX_MIRROR} ${UV_EXTRA_INDEX_MIRROR} ${UV_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG}" else term_sd_echo "cmd: term_sd_pip install $@ ${PIP_INDEX_MIRROR} ${PIP_EXTRA_INDEX_MIRROR} ${PIP_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG}" fi fi if term_sd_is_use_uv; then term_sd_try term_sd_uv_install "$@" ${UV_INDEX_MIRROR} ${UV_EXTRA_INDEX_MIRROR} ${UV_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} if check_uv_install_failed_and_warning; then term_sd_try term_sd_pip install "$@" ${PIP_INDEX_MIRROR} ${PIP_EXTRA_INDEX_MIRROR} ${PIP_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} fi else term_sd_try term_sd_pip install "$@" ${PIP_INDEX_MIRROR} ${PIP_EXTRA_INDEX_MIRROR} ${PIP_FIND_LINKS_MIRROR} ${PIP_BREAK_SYSTEM_PACKAGE_ARG} ${PIP_USE_PEP517_ARG} ${PIP_FORCE_REINSTALL_ARG} ${PIP_UPDATE_PACKAGE_ARG} fi }
2301_81996401/term-sd
modules/python_package_manager.sh
Shell
agpl-3.0
9,532
#!/bin/bash # Python 依赖库版本备份与恢复功能 # 使用 TERM_SD_MANAGE_OBJECT 全局变量判断要进行备份依赖的 AI 软件 python_package_ver_backup_manager() { local dialog_arg local req_file_info local backup_req_file_name # 如果没有存放备份文件的文件夹时就创建一个新的用于存放备份的依赖信息 term_sd_mkdir "${START_PATH}"/term-sd/requirements-backup case "${TERM_SD_MANAGE_OBJECT}" in stable-diffusion-webui) term_sd_mkdir "${START_PATH}"/term-sd/requirements-backup/stable-diffusion-webui backup_req_file_name="stable-diffusion-webui" enter_venv "${SD_WEBUI_ROOT_PATH}" ;; ComfyUI) term_sd_mkdir "${START_PATH}"/term-sd/requirements-backup/ComfyUI backup_req_file_name="ComfyUI" enter_venv "${COMFYUI_ROOT_PATH}" ;; InvokeAI) term_sd_mkdir "${START_PATH}"/term-sd/requirements-backup/InvokeAI backup_req_file_name="InvokeAI" enter_venv "${INVOKEAI_ROOT_PATH}" ;; Fooocus) term_sd_mkdir "${START_PATH}"/term-sd/requirements-backup/Fooocus backup_req_file_name="Fooocus" enter_venv "${FOOOCUS_ROOT_PATH}" ;; lora-scripts) term_sd_mkdir "${START_PATH}"/term-sd/requirements-backup/lora-scripts backup_req_file_name="lora-scripts" enter_venv "${LORA_SCRIPTS_ROOT_PATH}" ;; kohya_ss) term_sd_mkdir "${START_PATH}"/term-sd/requirements-backup/kohya_ss backup_req_file_name="kohya_ss" enter_venv "${KOHYA_SS_ROOT_PATH}" ;; esac while true; do if term_sd_is_dir_empty "${START_PATH}"/term-sd/requirements-backup/"${backup_req_file_name}"; then req_file_info="无" else req_file_info=$(ls -lht "${START_PATH}"/term-sd/requirements-backup/${backup_req_file_name} --time-style=+"%Y-%m-%d" | awk 'NR==2 {print $7}' ) fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "${backup_req_file_name} 依赖库版本管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 Term-SD 的依赖库版本管理功能\n当前 ${backup_req_file_name} 依赖库版本备份情况: ${req_file_info}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 备份 Python 依赖库版本" \ "2" "> Python 依赖库版本管理" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) if (dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${backup_req_file_name} 依赖库版本备份选项" \ --yes-label "是" --no-label "否" \ --yesno "是否备份 ${backup_req_file_name} 依赖库 ?" \ $(get_dialog_size)); then backup_python_package_ver "${backup_req_file_name}" if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${backup_req_file_name} 依赖库版本备份选项" \ --ok-label "确认" \ --msgbox "${backup_req_file_name} 依赖库版本备份成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${backup_req_file_name} 依赖库版本备份选项" \ --ok-label "确认" \ --msgbox "${backup_req_file_name} 依赖库版本备份失败" \ $(get_dialog_size) fi fi ;; 2) python_package_ver_backup_list "${backup_req_file_name}" ;; *) exit_venv break ;; esac done } # Python 依赖库备份功能 # 使用: # backup_python_package_ver <要备份软件包的 AI 软件名> # 依赖信息文件保存在 <Start Path>/term-sd/requirements-backup/<要备份软件包的 AI 软件名> 中 # 获取 TERM_SD_MANAGE_OBJECT 全局变量作为文件名 backup_python_package_ver() { local req_file local backup_name=$@ local name term_sd_echo "备份 ${backup_name} 的 Python 依赖库版本中" # 生成一个文件名 case "${TERM_SD_MANAGE_OBJECT}" in stable-diffusion-webui) case "$(git remote get-url origin | awk -F '/' '{print $NF}')" in # 分支判断 stable-diffusion-webui|stable-diffusion-webui.git) name="stable-diffusion-webui" ;; automatic|automatic.git) name="sdnext" ;; stable-diffusion-webui-directml|stable-diffusion-webui-directml.git|stable-diffusion-webui-amdgpu|stable-diffusion-webui-amdgpu.git) name="stable-diffusion-webui-directml" ;; stable-diffusion-webui-forge|stable-diffusion-webui-forge.git) name="stable-diffusion-webui-forge" ;; stable-diffusion-webui-reForge|stable-diffusion-webui-reForge.git) name="stable-diffusion-webui-reForge" ;; sd-webui-forge-classic|sd-webui-forge-classic.git) name="sd-webui-forge-classic" ;; *) name="stable-diffusion-webui" ;; esac ;; ComfyUI|InvokeAI|Fooocus|lora-scripts|kohya_ss) name=$TERM_SD_MANAGE_OBJECT ;; esac req_file="${name}-$(date "+%Y-%m-%d-%H-%M-%S").txt" # 将python依赖库中各个包和包版本备份到文件中 get_python_env_pkg > "${START_PATH}/term-sd/requirements-backup/${backup_name}/${req_file}" if [[ "$?" == 0 ]]; then term_sd_echo "备份 ${backup_name} 依赖库版本成功" return 0 else term_sd_echo "备份 ${backup_name} 依赖库版本失败" rm -f "${START_PATH}/term-sd/requirements-backup/${backup_name}/${req_file}" return 1 fi } # 备份文件列表浏览器 # 使用: # python_package_ver_backup_list <要备份软件包的 AI 软件名> python_package_ver_backup_list() { local backup_name=$@ while true; do get_dir_list "${START_PATH}/term-sd/requirements-backup/${backup_name}" # 获取当前目录下的所有文件夹 if term_sd_is_bash_ver_lower; then # Bash 版本低于 4 时使用旧版列表显示方案 req_file_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "Term-SD" \ --backtitle "${backup_name} 依赖库版本记录列表选项" \ --menu "使用上下键请选择依赖库版本记录" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST}" \ 3>&1 1>&2 2>&3) else req_file_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "Term-SD" \ --backtitle "${backup_name} 依赖库版本记录列表选项" \ --menu "使用上下键请选择依赖库版本记录" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST[@]}" \ 3>&1 1>&2 2>&3) fi if [[ "$?" == 0 ]]; then if [[ "${req_file_name}" == "-->返回<--" ]]; then break elif [[ -f "${START_PATH}/term-sd/requirements-backup/${backup_name}/${req_file_name}" ]]; then # 选择的是文件 process_python_package_ver_backup "${backup_name}" "${req_file_name}" elif [[ -f "${START_PATH}/term-sd/requirements-backup/${backup_name}/${req_file_name}" ]]; then # 选择的是文件夹 dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${backup_name} 依赖库版本记录列表选项" \ --ok-label "确认" \ --msgbox "选中的项目不是依赖记录文件, 请重新选择" \ $(get_dialog_size) fi else break fi done } # 依赖库备份文件处理选项 # 使用: # process_python_package_ver_backup <要备份软件包的 AI 软件名> <依赖文件的文件名> process_python_package_ver_backup() { local dialog_arg local backup_name=$1 local req_file_name=$2 while true; do dialog_arg=$(dialog --erase-on-exit --notags \ --title "Term-SD" \ --backtitle "依赖库版本记录管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 Term-SD 的依赖库版本记录管理功能\n当前版本记录: ${req_file_name%.txt}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 恢复该版本记录" \ "2" "> 删除该版本记录" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) if (dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "依赖库版本恢复确认选项" \ --yes-label "是" --no-label "否" \ --yesno "是否恢复该版本记录 ?" \ $(get_dialog_size)); then restore_python_package_ver "${backup_name}" "${req_file_name}" fi ;; 2) if (dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "安装确认选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除该版本记录 ?" \ $(get_dialog_size)); then term_sd_echo "删除 ${req_file_name%.txt} 记录中" rm -f "${START_PATH}/term-sd/requirements-backup/${backup_name}/${req_file_name}" dialog --erase-on-exit \ --title "Term-SD" \ --backtitle "${backup_name} 依赖库版本记录列表选项" \ --ok-label "确认" \ --msgbox "${req_file_name%.txt} 记录删除完成" \ $(get_dialog_size) break fi ;; *) break ;; esac done } # 恢复依赖库版本功能 # 使用: # restore_python_package_ver <要备份软件包的 AI 软件名> <依赖文件的文件名> restore_python_package_ver() { local backup_name=$1 local req_file_name=$2 local i local tmp_py_pkg_has_ver_list_path="${START_PATH}/term-sd/task/tmp-${TERM_SD_MANAGE_OBJECT}-python-pkg-has-vers.txt" # 含有版本的 Python 软件包列表(环境) local tmp_py_pkg_no_ver_list_path="${START_PATH}/term-sd/task/tmp-${TERM_SD_MANAGE_OBJECT}-python-pkg-no-vers.txt" # 无版本的 Python 软件包列表(环境) local tmp_py_pkg_no_ver_bak_list_path="${START_PATH}/term-sd/task/tmp-${TERM_SD_MANAGE_OBJECT}-python-pkg-no-vers-bak.txt" # 无版本的 Python 软件包列表(备份列表) local ipex_mirror # 安装前的准备 download_mirror_select # 下载镜像源选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否恢复依赖库版本 ?"; then term_sd_print_line "Python 软件包版本恢复" term_sd_echo "开始恢复依赖库版本中, 版本: ${req_file_name%.txt}" term_sd_echo "统计需要安装和卸载的 Python 软件包中" rm -f "${tmp_py_pkg_has_ver_list_path}" rm -f "${tmp_py_pkg_no_ver_list_path}" rm -f "${tmp_py_pkg_no_ver_bak_list_path}" cat "${START_PATH}"/term-sd/requirements-backup/${backup_name}/${req_file_name} | awk -F'==' '{print $1}' | awk -F '@' '{print $1}' > "${tmp_py_pkg_no_ver_bak_list_path}" # 生成一份无版本的备份列表 get_python_env_pkg > "${tmp_py_pkg_has_ver_list_path}" # 生成一份含有版本的现有列表 # 生成一份软件包卸载名单 for i in $(cat "${tmp_py_pkg_no_ver_bak_list_path}"); do sed -i '/'$i'==/d' "${tmp_py_pkg_has_ver_list_path}" 2> /dev/null sed -i '/'$i' @/d' "${tmp_py_pkg_has_ver_list_path}" 2> /dev/null done sed -i '/-e /d' "${tmp_py_pkg_has_ver_list_path}" 2> /dev/null cat "${tmp_py_pkg_has_ver_list_path}" | awk -F '==' '{print $1}' | awk -F '@' '{print $1}' > "${tmp_py_pkg_no_ver_list_path}" # 生成一份无版本的卸载列表 term_sd_tmp_disable_proxy # 临时取消代理,避免一些不必要的网络减速 if [[ ! -z "$(cat "${tmp_py_pkg_no_ver_list_path}")" ]]; then term_sd_print_line "Python 软件包卸载列表" term_sd_echo "将要卸载以下 Python 软件包" cat "${tmp_py_pkg_no_ver_list_path}" term_sd_print_line term_sd_echo "卸载多余 Python 软件包中" term_sd_pip uninstall -y -r "${tmp_py_pkg_no_ver_list_path}" # 卸载名单中的依赖包 else term_sd_echo "无需卸载 Python 软件包" fi term_sd_print_line "Python 软件包安装列表" term_sd_echo "将要安装以下 Python 软件包" cat "${START_PATH}/term-sd/requirements-backup/${backup_name}/${req_file_name}" term_sd_print_line term_sd_echo "恢复依赖库版本中" if is_use_pip_mirror; then ipex_mirror="--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn" else ipex_mirror="--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us" fi install_python_package -r "${START_PATH}/term-sd/requirements-backup/${backup_name}/${req_file_name}" --no-deps ${ipex_mirror} # 安装原有版本的依赖包 term_sd_tmp_enable_proxy # 恢复原有的代理 rm -f "${tmp_py_pkg_has_ver_list_path}" rm -f "${tmp_py_pkg_no_ver_list_path}" rm -f "${tmp_py_pkg_no_ver_bak_list_path}" term_sd_echo "恢复依赖库版本完成" term_sd_pause fi clean_install_config # 清理安装参数 } # 获取 Python 软件包版本列表 get_python_env_pkg() { term_sd_pip freeze \ || PIP_DISABLE_PIP_VERSION_CHECK=1 term_sd_pip list | awk 'NR>2 { if ($2 != "" && $3 == "" && $1 != "pip") {print $1 "==" $2} }' }
2301_81996401/term-sd
modules/python_package_ver_backup.sh
Shell
agpl-3.0
15,143
#!/bin/bash # 虚拟环境创建功能 create_venv() { if is_use_venv; then if [[ ! -z "$@" ]]; then # 指定路径创建虚拟环境 term_sd_echo "创建虚拟环境" term_sd_python -m venv "$@"/venv &> /dev/null term_sd_echo "创建虚拟环境完成" else term_sd_echo "创建虚拟环境" term_sd_python -m venv venv &> /dev/null term_sd_echo "创建虚拟环境完成" fi fi } # 检测并修复虚拟环境的激活脚本中的现路径错误 # 使用: # fix_activate_venv_script <虚拟环境的路径> fix_activate_venv_script() { local status local venv_path=$@ local venv_bin_path if [[ -d "${venv_path}/Scripts" ]]; then venv_bin_path="${venv_path}/Scripts" elif [[ -d "${venv_path}/bin" ]]; then venv_bin_path="${venv_path}/bin" else venv_bin_path="${venv_path}/bin" fi status=$(term_sd_python "${START_PATH}/term-sd/python_modules/check_venv_path_invalid.py" \ --venv-bin-path "${venv_bin_path}"\ --venv-path "${venv_path}"\ ) if [[ "${status}" == "True" ]]; then term_sd_echo "修正虚拟环境激活脚本中" term_sd_python -m venv "${venv_path}" fi } # 修复虚拟环境功能(一种骚操作, 修复完后只会丢失一些命令文件, 而 Python 的库调用依然正常) # 已知问题: 使用该方法修复虚拟环境后, PyTorch 可能会报错, 提示某个文件找不到, 需要使用 PyTorch 重装功能将 PyTorch 重新安装 # fix_venv <虚拟环境的路径> fix_venv() { local venv_path # 虚拟环境路径 if [[ ! -z "$@" ]]; then venv_path="$(term_sd_win2unix_path "$@")/venv" else venv_path="$(pwd)/venv" fi if is_use_venv; then if [[ -d "${venv_path}" ]]; then term_sd_echo "修复虚拟环境中" # 判断虚拟环境的类型 if [[ -d "${venv_path}/Scripts" ]]; then # Windows 端的 venv 结构 term_sd_echo "将虚拟环境的库转移到临时文件夹中" mkdir term-sd-tmp mv -f "${venv_path}"/Lib term-sd-tmp # 将依赖库转移到临时文件夹 rm -rf venv # 删除原有虚拟环境 term_sd_echo "重新创建新的虚拟环境" term_sd_python -m venv "${venv_path}" &> /dev/null # 重新创建新的虚拟环境 rm -rf "${venv_path}"/Lib # 删除新的虚拟环境中的库文件, 为移入原有的库腾出空间 term_sd_echo "恢复虚拟环境库文件中" mv -f term-sd-tmp/Lib "${venv_path}" # 移入原有的库 rm -rf term-sd-tmp # 清理临时文件夹 term_sd_python -m venv "${venv_path}" &> /dev/null term_sd_echo "修复虚拟环境完成" elif [[ -d "${venv_path}/bin" ]]; then # Linux / MacOS 端的 venv 结构 term_sd_echo "将虚拟环境的库转移到临时文件夹中" mkdir term-sd-tmp mv -f "${venv_path}"/lib term-sd-tmp # 将依赖库转移到临时文件夹 rm -rf "${venv_path}" # 删除原有虚拟环境 term_sd_echo "重新创建新的虚拟环境" term_sd_python -m venv "${venv_path}" &> /dev/null # 重新创建新的虚拟环境 rm -rf "${venv_path}"/lib # 删除新的虚拟环境中的库文件, 为移入原有的库腾出空间 term_sd_echo "恢复虚拟环境库文件中" mv -f term-sd-tmp/lib "${venv_path}" # 移入原有的库 rm -rf term-sd-tmp # 清理临时文件夹 term_sd_python -m venv "${venv_path}" &> /dev/null term_sd_echo "修复虚拟环境完成" else # 未判断出类型 term_sd_echo "创建虚拟环境中" term_sd_python -m venv "${venv_path}" &> /dev/null term_sd_echo "创建虚拟环境完成" fi else term_sd_echo "创建虚拟环境中" term_sd_python -m venv "${venv_path}" &> /dev/null term_sd_echo "创建虚拟环境完成" fi fi } # 进入虚拟环境功能 # 使用: # enter_venv <虚拟环境的路径> enter_venv() { local venv_path local is_venv_broken=0 # 虚拟环境路径 if [[ ! -z "$@" ]]; then venv_path="$(term_sd_win2unix_path "$@")/venv" else venv_path="$(pwd)/venv" fi if is_use_venv; then if [[ ! -z "${VIRTUAL_ENV}" ]]; then # 检测到未退出虚拟环境 exit_venv &> /dev/null fi term_sd_echo "进入虚拟环境" fix_activate_venv_script "${venv_path}" # 检查虚拟环境激活脚本 if [[ -f "${venv_path}/Scripts/activate" ]]; then # 在 Windows 端的 venv 目录结构和 Linux, MacoOS 的不同, 所以进入虚拟环境的方式有区别 . "${venv_path}"/Scripts/activate &> /dev/null elif [[ -f "${venv_path}/bin/activate" ]]; then . "${venv_path}"/bin/activate &> /dev/null else term_sd_echo "虚拟环境文件损坏" is_venv_broken=1 fi # 检测虚拟环境是否有问题 if [[ ! -d "${VIRTUAL_ENV}" ]] \ || [[ ! "$(term_sd_win2unix_path "${VIRTUAL_ENV}")" == "${venv_path}" ]] \ || [[ "${is_venv_broken}" == 1 ]]; then term_sd_echo "检测虚拟环境出现异常, 尝试修复中" exit_venv &> /dev/null fix_venv "$@" # 修复虚拟环境 # 重新进入虚拟环境 if [[ -f "${venv_path}/Scripts/activate" ]]; then # 在 Windows 端的 venv 目录结构和 Linux, MacoOS 的不同, 所以进入虚拟环境的方式有区别 . "${venv_path}"/Scripts/activate &> /dev/null elif [[ -f "${venv_path}/bin/activate" ]]; then . "${venv_path}"/bin/activate &> /dev/null fi fi pip_package_manager_update fi } # 退出虚拟环境功能(方法来自 Python 官方的退出虚拟环境脚本) exit_venv() { if [[ ! -z "${VIRTUAL_ENV}" ]]; then # 检测是否在虚拟环境中 term_sd_echo "退出虚拟环境" # reset old environment variables if [ -n "${_OLD_VIRTUAL_PATH:-}" ] ; then PATH="${_OLD_VIRTUAL_PATH:-}" export PATH unset _OLD_VIRTUAL_PATH fi if [ -n "${_OLD_VIRTUAL_PYTHONHOME:-}" ] ; then PYTHONHOME="${_OLD_VIRTUAL_PYTHONHOME:-}" export PYTHONHOME unset _OLD_VIRTUAL_PYTHONHOME fi # This should detect bash and zsh, which have a hash command that must # be called to get it to forget past commands. Without forgetting # past commands the $PATH changes we made may not be respected if [ -n "${BASH:-}" -o -n "${ZSH_VERSION:-}" ] ; then hash -r 2> /dev/null fi if [ -n "${_OLD_VIRTUAL_PS1:-}" ] ; then PS1="${_OLD_VIRTUAL_PS1:-}" export PS1 unset _OLD_VIRTUAL_PS1 fi unset VIRTUAL_ENV unset VIRTUAL_ENV_PROMPT if [ ! "${1:-}" = "nondestructive" ] ; then # Self destruct! unset -f deactivate fi term_sd_echo "退出虚拟环境完成" fi } # 更新虚拟环境中的 Pip 包管理器 pip_package_manager_update() { local upgrade_status upgrade_status=$(term_sd_python "${START_PATH}/term-sd/python_modules/check_pip_need_upgrade.py" --pip-mininum-ver "${TERM_SD_PIP_MININUM_VER}") if [[ "${ENABLE_PIP_VER_CHECK}" == 1 ]]; then term_sd_echo "开始更新 Pip 包管理器" term_sd_pip install --upgrade pip if [[ "$?" == 0 ]]; then term_sd_echo "Pip 包管理器更新成功" else term_sd_echo "Pip 包管理器更新失败" fi elif [[ "${upgrade_status}" == "True" ]]; then term_sd_echo "开始更新 Pip 包管理器" term_sd_pip install --upgrade pip if [[ "$?" == 0 ]]; then term_sd_echo "Pip 包管理器更新成功" else term_sd_echo "Pip 包管理器更新失败" fi fi } # 如果启用了虚拟环境, 则返回 0 is_use_venv() { if [[ "${ENABLE_VENV}" == 1 ]]; then return 0 else return 1 fi }
2301_81996401/term-sd
modules/python_venv.sh
Shell
agpl-3.0
8,516
#!/bin/bash # SD WebUI 虚拟环境重构功能 # 使用 TERM_SD_MANAGE_OBJECT 全局变量显示要管理的 AI 软件名 # 使用 GITHUB_MIRROR 全局变量来使用 Github 镜像源 sd_webui_venv_rebuild() { # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否重新构建 Stable-Diffusion-WebUI 的虚拟环境 ?"; then term_sd_print_line "${TERM_SD_MANAGE_OBJECT} 虚拟环境重建" term_sd_tmp_disable_proxy term_sd_echo "开始重新构建 Stable-Diffusion-WebUI 的虚拟环境" term_sd_echo "删除原有虚拟环境中" rm -rf "${SD_WEBUI_ROOT_PATH}/venv" term_sd_echo "删除完成" create_venv "${SD_WEBUI_ROOT_PATH}" enter_venv "${SD_WEBUI_ROOT_PATH}" install_pytorch # 安装 PyTorch install_python_package git+$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/openai/CLIP) install_python_package -r requirements_versions.txt # 安装stable-diffusion-webui的依赖 term_sd_echo "重新构建 Stable-Diffusion-WebUI 的虚拟环境结束" exit_venv term_sd_tmp_enable_proxy term_sd_pause fi clean_install_config # 清理安装参数 } # ComfyUI 虚拟环境重构功能 # 使用 TERM_SD_MANAGE_OBJECT 全局变量显示要管理的 AI 软件名 comfyui_venv_rebuild() { # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否重新构建 ComfyUI 的虚拟环境 ?"; then term_sd_print_line "${TERM_SD_MANAGE_OBJECT} 虚拟环境重建" term_sd_tmp_disable_proxy term_sd_echo "开始重新构建 ComfyUI 的虚拟环境" term_sd_echo "删除原有虚拟环境中" rm -rf "${COMFYUI_ROOT_PATH}/venv" term_sd_echo "删除完成" create_venv "${COMFYUI_ROOT_PATH}" enter_venv "${COMFYUI_ROOT_PATH}" install_pytorch # 安装 PyTorch install_python_package -r requirements.txt term_sd_echo "重新构建 ComfyUI 的虚拟环境结束" exit_venv term_sd_tmp_enable_proxy term_sd_pause fi clean_install_config # 清理安装参数 } # InvokeAI 虚拟环境重构功能 # 使用 TERM_SD_MANAGE_OBJECT 全局变量显示要管理的 AI 软件名 invokeai_venv_rebuild() { # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否重新构建 InvokeAI 的虚拟环境 ?"; then term_sd_print_line "${TERM_SD_MANAGE_OBJECT} 虚拟环境重建" term_sd_tmp_disable_proxy term_sd_echo "开始重新构建 InvokeAI 的虚拟环境" term_sd_echo "删除原有虚拟环境中" rm -rf "${INVOKEAI_ROOT_PATH}/venv" term_sd_echo "删除完成" create_venv "${INVOKEAI_ROOT_PATH}" enter_venv "${INVOKEAI_ROOT_PATH}" install_pytorch # 安装 PyTorch install_python_package invokeai term_sd_echo "重新构建 InvokeAI 的虚拟环境结束" exit_venv term_sd_tmp_enable_proxy term_sd_pause fi clean_install_config # 清理安装参数 } # Fooocus 虚拟环境重建功能 # 使用 TERM_SD_MANAGE_OBJECT 全局变量显示要管理的 AI 软件名 fooocus_venv_rebuild() { # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否重新构建 Fooocus 的虚拟环境 ?"; then term_sd_print_line "${TERM_SD_MANAGE_OBJECT} 虚拟环境重建" term_sd_tmp_disable_proxy term_sd_echo "开始重新构建 Fooocus 的虚拟环境" term_sd_echo "删除原有虚拟环境中" rm -rf "${FOOOCUS_ROOT_PATH}/venv" term_sd_echo "删除完成" create_venv "${FOOOCUS_ROOT_PATH}" enter_venv "${FOOOCUS_ROOT_PATH}" install_pytorch # 安装 PyTorch install_python_package -r requirements_versions.txt term_sd_echo "重新构建 Fooocus 的虚拟环境结束" exit_venv term_sd_tmp_enable_proxy term_sd_pause fi clean_install_config # 清理安装参数 } # lora-scripts 虚拟环境重构功能 # 使用 TERM_SD_MANAGE_OBJECT 全局变量显示要管理的 AI 软件名 lora_scripts_venv_rebuild() { # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否重新构建 lora-scripts 的虚拟环境 ?"; then term_sd_print_line "${TERM_SD_MANAGE_OBJECT} 虚拟环境重建" term_sd_tmp_disable_proxy term_sd_echo "开始重新构建 lora-scripts 的虚拟环境" term_sd_echo "删除原有虚拟环境中" rm -rf "${LORA_SCRIPTS_ROOT_PATH}/venv" term_sd_echo "删除完成" create_venv "${LORA_SCRIPTS_ROOT_PATH}" enter_venv "${LORA_SCRIPTS_ROOT_PATH}" install_pytorch # 安装 PyTorch install_python_package -r requirements.txt # lora-scripts 依赖 term_sd_echo "重新构建 lora-scripts 的虚拟环境结束" exit_venv term_sd_tmp_enable_proxy term_sd_pause fi clean_install_config # 清理安装参数 } # kohya_ss 虚拟环境重建功能 # 使用 TERM_SD_MANAGE_OBJECT 全局变量显示要管理的 AI 软件名 kohya_ss_venv_rebuild() { # 安装前的准备 download_mirror_select # 下载镜像源选择 pytorch_version_select # PyTorch 版本选择 pip_install_mode_select # 安装方式选择 if term_sd_install_confirm "是否重新构建 kohya_ss 的虚拟环境 ?"; then term_sd_print_line "${TERM_SD_MANAGE_OBJECT} 虚拟环境重建" term_sd_tmp_disable_proxy term_sd_echo "开始重新构建 kohya_ss 的虚拟环境" term_sd_echo "删除原有虚拟环境中" rm -rf "${KOHYA_SS_ROOT_PATH}/venv" term_sd_echo "删除完成" create_venv "${KOHYA_SS_ROOT_PATH}" enter_venv "${KOHYA_SS_ROOT_PATH}" install_pytorch # 安装 PyTorch install_python_package -r requirements.txt # kohya_ss 依赖 term_sd_echo "重新构建 kohya_ss 的虚拟环境结束" exit_venv term_sd_tmp_enable_proxy term_sd_pause fi clean_install_config # 清理安装参数 }
2301_81996401/term-sd
modules/python_venv_rebuild.sh
Shell
agpl-3.0
6,812
#!/bin/bash # SD WebUI 启动分支判断 sd_webui_launch() { term_sd_echo "检测 Stable-Diffusion-WebUI 分支中" case "$(git remote get-url origin | awk -F '/' '{print $NF}')" in # 分支判断 stable-diffusion-webui|stable-diffusion-webui.git) a1111_sd_webui_launch ;; automatic|automatic.git) vlad_sd_webui_launch ;; stable-diffusion-webui-directml|stable-diffusion-webui-directml.git|stable-diffusion-webui-amdgpu|stable-diffusion-webui-amdgpu.git) sd_webui_directml_launch ;; stable-diffusion-webui-forge|stable-diffusion-webui-forge.git) sd_webui_forge_launch ;; stable-diffusion-webui-reForge|stable-diffusion-webui-reForge.git) sd_webui_reforge_launch ;; sd-webui-forge-classic|sd-webui-forge-classic.git) sd_webui_forge_classic_launch ;; *) a1111_sd_webui_launch ;; esac }
2301_81996401/term-sd
modules/sd_webui_branch.sh
Shell
agpl-3.0
1,022
#!/bin/bash # SD WebUI 分支切换功能 # 使用 GITHUB_MIRROR 环境变量设置 GIthub 镜像源 sd_webui_branch_switch() { local sd_webui_branch local dialog_arg local remote_url case "$(git remote get-url origin | awk -F '/' '{print $NF}')" in # 分支判断 stable-diffusion-webui|stable-diffusion-webui.git) sd_webui_branch="AUTOMATIC1111 webui $(git_branch_display)" ;; automatic|automatic.git) sd_webui_branch="vladmandic webui $(git_branch_display)" ;; stable-diffusion-webui-directml|stable-diffusion-webui-directml.git|stable-diffusion-webui-amdgpu|stable-diffusion-webui-amdgpu.git) sd_webui_branch="lshqqytiger webui $(git_branch_display)" ;; stable-diffusion-webui-forge|stable-diffusion-webui-forge.git) sd_webui_branch="lllyasviel webui $(git_branch_display)" ;; stable-diffusion-webui-reForge|stable-diffusion-webui-reForge.git) sd_webui_branch="Panchovix webui $(git_branch_display)" ;; sd-webui-forge-classic|sd-webui-forge-classic.git) sd_webui_branch="Haoming02 webui $(git_branch_display)" ;; *) dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 更新结果" \ --ok-label "确认" \ --msgbox "Stable-Diffusion-WebUI 非 Git 安装, 无法切换分支" \ $(get_dialog_size) return 10 ;; esac download_mirror_select # 切换前选择 Github 源 dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 分支切换选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择要切换的 Stable-Diffusion-WebUI 分支\n当前更新源: $(git_remote_display)\n当前分支: ${sd_webui_branch}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> AUTOMATIC1111 - Stable-Diffusion-WebUI 主分支" \ "2" "> AUTOMATIC1111 - Stable-Diffusion-WebUI 测试分支" \ "3" "> lllyasviel - Stable-Diffusion-WebUI-Forge 分支" \ "4" "> Panchovix - Stable-Diffusion-WebUI-reForge 主分支" \ "5" "> Panchovix - Stable-Diffusion-WebUI-reForge 测试分支" \ "6" "> Haoming02 - Stable-Diffusion-WebUI-Forge-Classic 分支" \ "7" "> Haoming02 - Stable-Diffusion-WebUI-Forge-Neo 分支" \ "8" "> lshqqytiger - Stable-Diffusion-WebUI-AMDGPU 分支" \ "9" "> vladmandic - SD.NEXT 主分支" \ "10" "> vladmandic - SD.NEXT 测试分支" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 AUTOMATIC1111 - Stable-Diffusion-WebUI 主分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/AUTOMATIC1111/stable-diffusion-webui) git_switch_branch "${remote_url}" master if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/blip "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 2) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 AUTOMATIC1111 - Stable-Diffusion-WebUI 测试分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/AUTOMATIC1111/stable-diffusion-webui) git_switch_branch "${remote_url}" dev if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/blip "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 3) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 lllyasviel - Stable-Diffusion-WebUI-Forge 主分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/lllyasviel/stable-diffusion-webui-forge) git_switch_branch "${remote_url}" main if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/blip "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 4) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 Panchovix - Stable-Diffusion-WebUI-reForge 主分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/Panchovix/stable-diffusion-webui-reForge) git_switch_branch "${remote_url}" main if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/blip "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 5) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 Panchovix - Stable-Diffusion-WebUI-reForge 测试分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/Panchovix/stable-diffusion-webui-reForge) git_switch_branch "${remote_url}" dev_upstream if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/blip "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 6) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 Haoming02 - Stable-Diffusion-WebUI-Forge-Classic 分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/Haoming02/sd-webui-forge-classic) git_switch_branch "${remote_url}" classic if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/blip "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 7) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 Haoming02 - Stable-Diffusion-WebUI-Forge-Neo 分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/Haoming02/sd-webui-forge-classic) git_switch_branch "${remote_url}" neo if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/blip "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 8) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 lshqqytiger - Stable-Diffusion-WebUI-AMDGPU 主分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/lshqqytiger/stable-diffusion-webui-amdgpu) git_switch_branch "${remote_url}" master if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/blip "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 9) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 vladmandic - SD.NEXT 主分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/vladmandic/sdnext) git_switch_branch "${remote_url}" master --submod if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP "${SD_WEBUI_ROOT_PATH}"/repositories/blip &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; 10) term_sd_print_line "Stable-Diffusion-WebUI 分支切换" term_sd_echo "切换到 vladmandic - SD.NEXT 测试分支" remote_url=$(git_format_repository_url "${GITHUB_MIRROR}" https://github.com/vladmandic/sdnext) git_switch_branch "${remote_url}" dev --submod if [[ "$?" == 0 ]]; then mv -f "${SD_WEBUI_ROOT_PATH}"/repositories/BLIP "${SD_WEBUI_ROOT_PATH}"/repositories/blip &> /dev/null term_sd_echo "Stable-Diffusion-WebUI 分支切换完成" else term_sd_echo "Stable-Diffusion-WebUI 分支切换失败" fi term_sd_pause ;; esac clean_install_config # 清理安装参数 }
2301_81996401/term-sd
modules/sd_webui_branch_switch.sh
Shell
agpl-3.0
10,056
#!/bin/bash # SD WebUI DirectML 启动参数配置 # 启动参数将保存在 <Start Path>/term-sd/config/sd-webui-directml-launch.conf sd_webui_directml_launch_args_setting() { local dialog_arg local arg local launch_args local i dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --checklist "请选择 Stable-Diffusion-WebUI-DirectML 启动参数, 确认之后将覆盖原有启动参数配置" \ $(get_dialog_size_menu) \ "1" "(update-all-extensions) 启动时更新所有扩展" OFF \ "2" "(skip-python-version-check) 跳过检查 Python 版本" OFF \ "3" "(skip-torch-cuda-test) 跳过 CUDA 可用性检查" OFF \ "4" "(reinstall-xformers) 启动时重新安装 xFormers" OFF \ "5" "(reinstall-torch) 启动时重新安装 PyTorch" OFF \ "6" "(update-check) 启动时检查更新" OFF \ "7" "(test-server) 配置测试服务器" OFF \ "8" "(log-startup) 显示详细启动日志" OFF \ "9" "(skip-prepare-environment) 跳过所有环境准备工作" OFF \ "10" "(skip-install) 跳过软件包的安装" OFF \ "11" "(dump-sysinfo) 将系统信息文件保存到磁盘并退出" OFF \ "12" "(do-not-download-clip) 跳过下载 CLIP 模型" OFF \ "13" "(no-half) 关闭 UNet 半精度优化" OFF \ "14" "(no-half-vae) 关闭 VAE 模型半精度优化" OFF \ "15" "(no-progressbar-hiding) 不隐藏 Gradio UI 中进度条" OFF \ "16" "(allow-code) 允许从 WebUI 执行自定义脚本" OFF \ "17" "(medvram) 启用显存优化 (显存 < 6g 时推荐使用)" OFF \ "18" "(medvram-sdxl) 仅在 SDXL 模型启用显存优化 (显存 < 8g 时推荐使用)" OFF \ "19" "(lowvram) 启用显存优化 (显存 < 4g时推荐使用)" OFF \ "20" "(lowram) 将模型加载到显存中而不是内存中" OFF \ "21" "(precision full) 使用模型全精度" OFF \ "22" "(upcast-sampling) 使用向上采样法提高精度" OFF \ "23" "(share) 通过 Gradio 共享" OFF \ "24" "(enable-insecure-extension-access) 允许在开放远程访问时安装插件" OFF \ "25" "(xformers) 尝试使用 xFormers 优化" OFF \ "26" "(force-enable-xformers) 强制使用 xFormers 优化" OFF \ "27" "(xformers-flash-attention) 使用 xFormers-Flash 优化 (仅支持 SD2.x 以上)" OFF \ "28" "(opt-split-attention) 使用 Opt-Split 优化" OFF \ "29" "(opt-sub-quad-attention) 使用 Opt-Sub-Quad优化" OFF \ "30" "(opt-split-attention-invokeai) 使用 Opt-Sub-Quad-InvokeAI 优化" OFF \ "31" "(opt-split-attention-v1) 使用 Opt-Sub-Quad-V1优化" OFF \ "32" "(opt-sdp-attention) 使用 Opt-Sdp优化(仅限 PyTorch2.0 以上)" OFF \ "33" "(opt-sdp-no-mem-attention) 使用无高效内存使用的 Opt-Sdp 优化" OFF \ "34" "(disable-opt-split-attention) 禁用 Opt-Split 优化" OFF \ "35" "(disable-nan-check) 禁用潜空间 NAN 检查" OFF \ "36" "(use-cpu) 使用 CPU 进行生图" OFF \ "37" "(disable-model-loading-ram-optimization) 禁用减少内存使用的优化" OFF \ "38" "(listen) 开放远程连接" OFF \ "39" "(hide-ui-dir-config) 隐藏 WebUI 目录配置" OFF \ "40" "(freeze-settings) 冻结 WebUI 设置" OFF \ "41" "(gradio-debug) 以 Debug 模式启用 Gradio" OFF \ "42" "(opt-channelslast) 使用 ChannelsLast 内存格式优化" OFF \ "43" "(autolaunch) 启动 WebUI 完成后自动启动浏览器" OFF \ "44" "(theme dark) 使用黑暗主题" OFF \ "45" "(use-textbox-seed) 使用文本框在 WebUI 中生成的种子" OFF \ "46" "(disable-console-progressbars) 禁用控制台进度条显示" OFF \ "47" "(enable-console-prompts) 启用在生图时输出提示词到控制台" OFF \ "48" "(disable-safe-unpickle) 禁用检查模型是否包含恶意代码" OFF \ "49" "(api) 启用 API" OFF \ "50" "(api-log) 启用输出所有 API 请求的日志记录" OFF \ "51" "(nowebui) 不加载 WebUI 界面" OFF \ "52" "(onnx) 使用 ONNX 模型" OFF \ "53" "(olive) 使用 OLIVE 模型" OFF \ "54" "(backend cuda) 使用 CUDA 作为后端进行生图" OFF \ "55" "(backend rocm) 使用 ROCM 作为后端进行生图" OFF \ "56" "(backend directml) 使用 DirectML 作为后端进行生图" OFF \ "57" "(ui-debug-mode) 不加载模型启动 WebUI (UI Debug)" OFF \ "58" "(administrator) 启用管理员权限" OFF \ "59" "(disable-tls-verify) 禁用 TLS 证书验证" OFF \ "60" "(no-gradio-queue) 禁用 Gradio 队列" OFF \ "61" "(skip-version-check) 禁用 PyTorch, xFormers 版本检查" OFF \ "62" "(no-hashing) 禁用模型 Hash 检查" OFF \ "63" "(no-download-sd-model) 禁用自动下载模型, 即使模型路径无模型" OFF \ "64" "(add-stop-route) 添加 /_stop 路由以停止服务器" OFF \ "65" "(api-server-stop) 通过 API 启用服务器停止 / 重启 / 终止功能" OFF \ "66" "(disable-all-extensions) 禁用所有扩展运行" OFF \ "67" "(disable-extra-extensions) 禁用非内置的扩展运行" OFF \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then for i in ${dialog_arg}; do case "${i}" in 1) arg="--update-all-extensions" ;; 2) arg="--skip-python-version-check" ;; 3) arg="--skip-torch-cuda-test" ;; 4) arg="--reinstall-xformers" ;; 5) arg="--reinstall-torch" ;; 6) arg="--update-check" ;; 7) arg="--test-server" ;; 8) arg="--log-startup" ;; 9) arg="--skip-prepare-environment" ;; 10) arg="--skip-install" ;; 11) arg="--dump-sysinfo" ;; 12) arg="--do-not-download-clip" ;; 13) arg="--no-half" ;; 14) arg="--no-half-vae" ;; 15) arg="--no-progressbar-hiding" ;; 16) arg="--allow-code" ;; 17) arg="--medvram" ;; 18) arg="--medvram-sdxl" ;; 19) arg="--lowvram" ;; 20) arg="--lowram" ;; 21) arg="--precision full" ;; 22) arg="--upcast-sampling" ;; 23) arg="--share" ;; 24) arg="--enable-insecure-extension-access" ;; 25) arg="--xformers" ;; 26) arg="--force-enable-xformers" ;; 27) arg="--xformers-flash-attention" ;; 28) arg="--opt-split-attention" ;; 29) arg="--opt-sub-quad-attention" ;; 30) arg="--opt-split-attention-invokeai" ;; 31) arg="--opt-split-attention-v1" ;; 32) arg="--opt-sdp-attention" ;; 33) arg="--opt-sdp-no-mem-attention" ;; 34) arg="--disable-opt-split-attention" ;; 35) arg="--disable-nan-check" ;; 36) arg="--use-cpu all" ;; 37) arg="--disable-model-loading-ram-optimization" ;; 38) arg="--listen" ;; 39) arg="--hide-ui-dir-config" ;; 40) arg="--freeze-settings" ;; 41) arg="--gradio-debug" ;; 42) arg="--opt-channelslast" ;; 43) arg="--autolaunch" ;; 44) arg="--theme dark" ;; 45) arg="--use-textbox-seed" ;; 46) arg="--disable-console-progressbars" ;; 47) arg="--enable-console-prompts" ;; 48) arg="--disable-safe-unpickle" ;; 49) arg="--api" ;; 50) arg="--api-log" ;; 51) arg="--nowebui" ;; 52) arg="--onnx" ;; 53) arg="--olive" ;; 54) arg="--backend cuda" ;; 55) arg="--backend rocm" ;; 56) arg="--backend directml" ;; 57) arg="--ui-debug-mode" ;; 58) arg="--administrator" ;; 59) arg="--disable-tls-verify" ;; 60) arg="--no-gradio-queue" ;; 61) arg="--skip-version-check" ;; 62) arg="--no-hashing" ;; 63) arg="--no-download-sd-model" ;; 64) arg="--add-stop-route" ;; 65) arg="--api-server-stop" ;; 66) arg="--disable-all-extensions" ;; 67) arg="--disable-extra-extensions" ;; esac launch_args="${arg} ${launch_args}" done # 生成启动脚本 term_sd_echo "设置 Stable-Diffusion-WebUI-DirectML 启动参数: ${launch_args}" echo "launch.py ${launch_args}" > "${START_PATH}"/term-sd/config/sd-webui-directml-launch.conf else term_sd_echo "取消设置 Stable-Diffusion-WebUI-DirectML 启动参数" fi } # SD WebUI DirectML 启动界面 sd_webui_directml_launch() { local dialog_arg local launch_args add_sd_webui_directml_normal_launch_args while true; do launch_args=$(cat "${START_PATH}"/term-sd/config/sd-webui-directml-launch.conf) if is_use_venv; then launch_args="python ${launch_args}" else launch_args="${TERM_SD_PYTHON_PATH} ${launch_args}" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 启动选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择启动 Stable-Diffusion-WebUI-DirectML / 修改 Stable-Diffusion-WebUI-DirectML 启动参数\n当前启动参数: ${launch_args}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 配置预设启动参数" \ "3" "> 修改自定义启动参数" \ "4" "> 重置启动参数" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_launch ;; 2) sd_webui_directml_launch_args_setting ;; 3) sd_webui_directml_launch_args_revise ;; 4) restore_sd_webui_directml_launch_args ;; *) break ;; esac done } # SD WebUI DirectML 修改启动参数功能 # 修改前从 <Start Path>/term-sd/config/sd-webui-directml-launch.conf 读取启动参数 # 可从上次的基础上修改 sd_webui_directml_launch_args_revise() { local dialog_arg local launch_args launch_args=$(cat "${START_PATH}"/term-sd/config/sd-webui-directml-launch.conf | awk '{sub("launch.py ","")}1') dialog_arg=$(dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 自定义启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入 Stable-Diffusion-WebUI-DirectML 启动参数" \ $(get_dialog_size) \ "${launch_args}" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then term_sd_echo "设置 Stable-Diffusion-WebUI-DirectML 启动参数: $dialog_arg" echo "launch.py $dialog_arg" > "${START_PATH}"/term-sd/config/sd-webui-directml-launch.conf else term_sd_echo "取消修改 Stable-Diffusion-WebUI-DirectML 启动参数" fi } # 添加默认启动参数配置 add_sd_webui_directml_normal_launch_args() { if [[ ! -f "${START_PATH}/term-sd/config/sd-webui-directml-launch.conf" ]]; then # 找不到启动配置时默认生成一个 echo "launch.py --theme dark --autolaunch --api --skip-torch-cuda-test --backend directml" > "${START_PATH}"/term-sd/config/sd-webui-directml-launch.conf fi } # 重置启动参数 restore_sd_webui_directml_launch_args() { if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 重置启动参数选项选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重置 Stable-Diffusion-WebUI 启动参数" \ $(get_dialog_size)); then term_sd_echo "重置启动参数" rm -f "${START_PATH}"/term-sd/config/sd-webui-directml-launch.conf add_sd_webui_directml_normal_launch_args else term_sd_echo "取消重置操作" fi }
2301_81996401/term-sd
modules/sd_webui_directml_launch.sh
Shell
agpl-3.0
15,428
#!/bin/bash # SD WebUI 插件管理器 sd_webui_extension_manager() { local dialog_arg if [[ ! -d "${SD_WEBUI_ROOT_PATH}"/extensions ]]; then dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件管理选项" \ --ok-label "确认" \ --msgbox "Stable-Diffusion-WebUI 插件目录, 请检查 Stable-Diffusion-WebUI 是否安装完整" \ $(get_dialog_size) return 1 fi while true; do cd "${SD_WEBUI_ROOT_PATH}"/extensions #回到最初路径 # 功能选择界面 dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择 Stable-Diffusion-WebUI 插件管理选项的功能" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 安装插件" \ "2" "> 管理插件" \ "3" "> 更新全部插件" \ 3>&1 1>&2 2>&3 ) case "${dialog_arg}" in 1) # 选择安装 sd_webui_extension_install ;; 2) # 选择管理 sd_webui_extension_list ;; 3) # 选择更新全部插件 if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件管理" \ --yes-label "是" --no-label "否" \ --yesno "是否更新所有 Stable-Diffusion-WebUI 插件 ?" \ $(get_dialog_size)); then update_all_extension fi ;; *) break ;; esac done } # SD WebUI 插件安装 sd_webui_extension_install() { local repo_url local name repo_url=$(dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件安装选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入插件的 Github 地址或其他下载地址" \ $(get_dialog_size) \ 3>&1 1>&2 2>&3) if [ ! -z "${repo_url}" ]; then name=$(basename "${repo_url}" | awk -F '.git' '{print $1}') term_sd_echo "安装 ${name} 插件中" if ! term_sd_is_git_repository_exist "${repo_url}" ;then term_sd_try git clone --recurse-submodules "${repo_url}" if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件安装结果" \ --ok-label "确认" \ --msgbox "${name} 插件安装成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件安装结果" \ --ok-label "确认" \ --msgbox "${name} 插件安装失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件安装结果" \ --ok-label "确认" \ --msgbox "${name} 插件已存在" \ $(get_dialog_size) fi else term_sd_echo "输入的 Stable-Diffusion-WebUI 插件安装地址为空" fi } # 插件列表浏览器 sd_webui_extension_list() { local extension_name while true; do cd "${SD_WEBUI_ROOT_PATH}"/extensions #回到最初路径 get_dir_folder_list # 获取当前目录下的所有文件夹 if term_sd_is_bash_ver_lower; then # Bash 版本低于 4 时使用旧版列表显示方案 extension_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件列表" \ --menu "使用上下键选择要操作的插件并回车确认" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST}" \ 3>&1 1>&2 2>&3) else extension_name=$(dialog --erase-on-exit \ --ok-label "确认" --cancel-label "取消" \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件列表" \ --menu "使用上下键选择要操作的插件并回车确认" \ $(get_dialog_size_menu) \ "-->返回<--" "<---------" \ "${LOCAL_DIR_LIST[@]}" \ 3>&1 1>&2 2>&3) fi if [[ "$?" == 0 ]]; then if [[ "${extension_name}" == "-->返回<--" ]]; then break elif [[ -d "${extension_name}" ]]; then # 选择文件夹 cd "${extension_name}" sd_webui_extension_interface "${extension_name}" fi else break fi done unset LOCAL_DIR_LIST } # 插件管理功能 # 使用: # sd_webui_extension_interface <插件文件名> sd_webui_extension_interface() { local dialog_arg local extension_name=$@ local extension_status local dialog_buttom local status_display while true; do if is_sd_webui_extension_disabled "${extension_name}"; then extension_status=0 dialog_buttom="启用" status_display="已禁用" else extension_status=1 dialog_buttom="禁用" status_display="已启用" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件管理选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择对 ${extension_name} 插件的管理功能\n当前更新源: $(git_remote_display)\n当前分支: $(git_branch_display)\n当前状态: ${status_display}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 更新" \ "2" "> 修复更新" \ "3" "> 版本切换" \ "4" "> 更新源切换" \ "5" "> ${dialog_buttom}插件" \ "6" "> 卸载" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) if is_git_repo; then term_sd_echo "更新 $(echo ${extension_name} | awk -F "/" '{print $NF}') 插件中" git_pull_repository if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件更新结果" \ --ok-label "确认" \ --msgbox "${extension_name} 插件更新成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件更新结果" \ --ok-label "确认" \ --msgbox "${extension_name} 插件更新失败" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件更新结果" \ --ok-label "确认" \ --msgbox "${extension_name} 插件非 Git 安装, 无法更新" \ $(get_dialog_size) fi ;; 2) if is_git_repo; then if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件修复更新" \ --yes-label "是" --no-label "否" \ --yesno "是否修复 ${extension_name} 插件更新 ?" \ $(get_dialog_size)); then git_fix_pointer_offset fi else dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件修复更新" \ --ok-label "确认" \ --msgbox "${extension_name} 插件非 Git 安装, 无法修复更新" \ $(get_dialog_size) fi ;; 3) if is_git_repo; then if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件版本切换" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ${extension_name} 插件版本 ?" \ $(get_dialog_size)); then git_ver_switch dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 自定义节点版本切换" \ --ok-label "确认" \ --msgbox "${extension_name} 自定义节点版本切换完成, 当前版本为: $(git_branch_display)" \ $(get_dialog_size) fi else dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件版本切换" \ --ok-label "确认" \ --msgbox "${extension_name} 插件非 Git 安装, 无法进行版本切换" \ $(get_dialog_size) fi ;; 4) if is_git_repo; then if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否切换 ${extension_name} 插件更新源 ?" \ $(get_dialog_size)); then git_remote_url_select_single fi else dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件更新源切换" \ --ok-label "确认" \ --msgbox "${extension_name} 插件非 Git 安装, 无法进行更新源切换" \ $(get_dialog_size) fi ;; 5) if [[ "${extension_status}" == 0 ]]; then if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否启用 ${extension_name} 插件 ?" \ $(get_dialog_size)); then switch_sd_webui_enable_extension_status "${extension_name}" else continue fi else if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件更新源切换" \ --yes-label "是" --no-label "否" \ --yesno "是否禁用 ${extension_name} 插件 ?" \ $(get_dialog_size)); then switch_sd_webui_enable_extension_status "${extension_name}" else continue fi fi if [[ "$?" == 0 ]]; then dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件删除选项" \ --ok-label "确认" \ --msgbox "${dialog_buttom} ${extension_name} 插件成功" \ $(get_dialog_size) else dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件删除选项" \ --ok-label "确认" \ --msgbox "${dialog_buttom} ${extension_name} 插件失败" \ $(get_dialog_size) fi ;; 6) if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件删除选项" \ --yes-label "是" --no-label "否" \ --yesno "是否删除 ${extension_name} 插件 ?" \ $(get_dialog_size)); then term_sd_echo "请再次确认是否删除 ${extension_name} (yes/no) ?" term_sd_echo "警告: 该操作将永久删除 ${extension_name}" term_sd_echo "提示: 输入 yes 或 no 后回车" case "$(term_sd_read)" in yes|y|YES|Y) term_sd_echo "删除 ${extension_name} 插件中" cd .. rm -rf "${SD_WEBUI_ROOT_PATH}/extensions/${extension_name}" dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 插件删除选项" \ --ok-label "确认" \ --msgbox "删除 ${extension_name} 插件完成" \ $(get_dialog_size) break ;; *) term_sd_echo "取消删除 ${extension_name} 插件操作" ;; esac fi ;; *) break ;; esac done } # 切换插件的启用状态 # 使用: # switch_sd_webui_enable_extension_status <插件名称> # 通过修改 <SD WebUI Path>/config.json 文件调整插件的启用状态 # 当插件启用时, 执行该函数将禁用插件, 反过来同理 switch_sd_webui_enable_extension_status() { local extension_name=$@ local status if is_sd_webui_extension_disabled "${extension_name}"; then # 插件被禁用时 term_sd_echo "尝试启用 ${extension_name} 插件" status="True" else # 插件启用时 term_sd_echo "尝试禁用 ${extension_name} 插件" status="False" fi if set_sd_webui_extension_status "${extension_name}" "${status}"; then term_sd_echo "操作 ${extension_name} 插件成功" return 0 else term_sd_echo "操作 ${extension_name} 插件失败" return 1 fi } # 查询插件是否被禁用 # 使用: # is_sd_webui_extension_disabled <插件名> is_sd_webui_extension_disabled() { local config_path local extension_name=$@ config_path="${SD_WEBUI_ROOT_PATH}/config.json" # 没有配置文件时返回 1 说明插件未被禁用 if [[ ! -f "${config_path}" ]]; then return 1 fi result=$(term_sd_python "${START_PATH}/term-sd/python_modules/check_sd_webui_extension_disabled.py" \ --config-path "${config_path}" \ --extension "${extension_name}" \ ) if [[ "${result}" == "True" ]]; then return 0 else return 1 fi } # 修改插件的启用状态 # 使用: # set_sd_webui_extension_status <插件名> <True / False> set_sd_webui_extension_status() { local extension_name=$1 local status=$2 local config_path local result config_path="${SD_WEBUI_ROOT_PATH}/config.json" if [[ ! -f "${config_path}" ]]; then echo "{}" > "${config_path}" fi result=$(term_sd_python "${START_PATH}/term-sd/python_modules/set_sd_webui_extension_status.py" \ --config-path "${config_path}" \ --extension "${extension_name}" \ --status "${status}" \ ) if [[ "${result}" == "True" ]]; then return 0 else return 1 fi }
2301_81996401/term-sd
modules/sd_webui_extension_manager.sh
Shell
agpl-3.0
17,626
#!/bin/bash # SD WebUI Forge Classic 启动参数配置 # 启动参数将保存在 <Start Path>/term-sd/config/sd-webui-forge-classic-launch.conf sd_webui_forge_classic_launch_args_setting() { local arg local dialog_arg local launch_args local i dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --checklist "请选择 Stable-Diffusion-WebUI-Forge-Classic 启动参数, 确认之后将覆盖原有启动参数配置" \ $(get_dialog_size_menu) \ "1" "(update-all-extensions) 启动时更新所有扩展" OFF \ "2" "(skip-python-version-check) 跳过检查 Python 版本" OFF \ "3" "(skip-torch-cuda-test) 跳过 CUDA 可用性检查" OFF \ "4" "(reinstall-xformers) 启动时重新安装 xFormers" OFF \ "5" "(reinstall-torch) 启动时重新安装 PyTorch" OFF \ "6" "(update-check) 启动时检查更新" OFF \ "7" "(test-server) 配置测试服务器" OFF \ "8" "(log-startup) 显示详细启动日志" OFF \ "9" "(skip-prepare-environment) 跳过所有环境准备工作" OFF \ "10" "(skip-install) 跳过软件包的安装" OFF \ "11" "(dump-sysinfo) 将系统信息文件保存到磁盘并退出" OFF \ "12" "(do-not-download-clip) 跳过下载 CLIP 模型" OFF \ "13" "(no-half) 关闭 UNet 半精度优化" OFF \ "14" "(no-half-vae) 关闭 VAE 模型半精度优化" OFF \ "15" "(no-progressbar-hiding) 不隐藏 Gradio UI 中进度条" OFF \ "16" "(allow-code) 允许从 WebUI 执行自定义脚本" OFF \ "17" "(medvram) 启用显存优化 (显存 < 6g 时推荐使用)" OFF \ "18" "(medvram-sdxl) 仅在 SDXL 模型启用显存优化 (显存 < 8g 时推荐使用)" OFF \ "19" "(lowvram) 启用显存优化 (显存 < 4g 时推荐使用)" OFF \ "20" "(lowram) 将模型加载到显存中而不是内存中" OFF \ "21" "(precision full) 使用模型全精度" OFF \ "22" "(upcast-sampling) 使用向上采样法提高精度" OFF \ "23" "(share) 通过 Gradio 共享" OFF \ "24" "(enable-insecure-extension-access) 允许在开放远程访问时安装插件" OFF \ "25" "(xformers) 尝试使用 xFormers 优化" OFF \ "26" "(force-enable-xformers) 强制使用 xFormers 优化" OFF \ "27" "(xformers-flash-attention) 使用 xFormers-Flash优化 (仅支持 SD2.x 以上)" OFF \ "28" "(opt-split-attention) 使用 Split 优化" OFF \ "29" "(opt-sub-quad-attention) 使用 Sub-Quad 优化" OFF \ "30" "(opt-split-attention-invokeai) 使用 Sub-Quad-InvokeAI 优化" OFF \ "31" "(opt-split-attention-v1) 使用 Sub-Quad-V1 优化" OFF \ "32" "(opt-sdp-attention) 使用 Sdp 优化 (仅限 PyTorch2.0 以上)" OFF \ "33" "(opt-sdp-no-mem-attention) 使用无高效内存使用的 Sdp 优化" OFF \ "34" "(disable-opt-split-attention) 禁用 Split 优化" OFF \ "35" "(disable-nan-check) 禁用潜空间 NAN 检查" OFF \ "36" "(use-cpu) 使用 CPU 进行生图" OFF \ "37" "(disable-model-loading-ram-optimization) 禁用减少内存使用的优化" OFF \ "38" "(listen) 开放远程连接" OFF \ "39" "(hide-ui-dir-config) 隐藏 WebUI 目录配置" OFF \ "40" "(freeze-settings) 冻结 WebUI 设置" OFF \ "41" "(gradio-debug) 以 Debug 模式启用 Gradio" OFF \ "42" "(opt-channelslast) 使用 ChannelsLast 内存格式优化" OFF \ "43" "(autolaunch) 启动 WebUI 完成后自动启动浏览器" OFF \ "44" "(theme dark) 使用黑暗主题" OFF \ "45" "(use-textbox-seed) 使用文本框在 WebUI 中生成的种子" OFF \ "46" "(disable-console-progressbars) 禁用控制台进度条显示" OFF \ "47" "(enable-console-prompts) 启用在生图时输出提示词到控制台" OFF \ "48" "(disable-safe-unpickle) 禁用检查模型是否包含恶意代码" OFF \ "49" "(api) 启用 API" OFF \ "50" "(api-log) 启用输出所有 API 请求的日志记录" OFF \ "51" "(nowebui) 不加载 WebUI 界面" OFF \ "52" "(ui-debug-mode) 不加载模型启动 WebUI (UI Debug)" OFF \ "53" "(administrator) 启用管理员权限" OFF \ "54" "(disable-tls-verify) 禁用 TLS 证书验证" OFF \ "55" "(no-gradio-queue) 禁用 Gradio 队列" OFF \ "56" "(skip-version-check) 禁用 PyTorch, xFormers 版本检查" OFF \ "57" "(no-hashing) 禁用模型 Hash 检查" OFF \ "58" "(no-download-sd-model) 禁用自动下载模型, 即使模型路径无模型" OFF \ "59" "(add-stop-route) 添加 /_stop 路由以停止服务器" OFF \ "60" "(api-server-stop) 通过 API 启用服务器停止 / 重启 / 终止功能" OFF \ "61" "(disable-all-extensions) 禁用所有扩展运行" OFF \ "62" "(disable-extra-extensions) 禁用非内置的扩展运行" OFF \ "63" "(use-ipex) 使用 Intel XPU 作为生图后端" OFF \ "64" "(skip-load-model-at-start) 启动 WebUI 时不加载模型, 加速启动" OFF \ "65" "(in-browser) 启动 WebUI 完成后自动启动浏览器" OFF \ "66" "(disable-in-browser) 禁用在启动 WebUI 完成后自动启动浏览器" OFF \ "67" "(async-cuda-allocation) 启用 CUDA 流顺序内存分配器" OFF \ "68" "(disable-async-cuda-allocation) 禁用 CUDA 流顺序内存分配器" OFF \ "69" "(disable-attention-upcast) 禁用向上注意力优化" OFF \ "70" "(all-in-fp32) 强制使用 FP32" OFF \ "71" "(all-in-fp16) 强制使用 FP16" OFF \ "72" "(unet-in-bf16) 使用 BF16 精度运行 UNet" OFF \ "73" "(unet-in-fp16) 使用 FP16 精度运行 UNet" OFF \ "74" "(unet-in-fp8-e4m3fn) 使用 FP8(e4m3fn) 精度运行 UNet" OFF \ "75" "(unet-in-fp8-e5m2) 使用 FP8(e5m2) 精度运行 UNet" OFF \ "76" "(vae-in-fp16) 使用 FP16 精度运行 VAE" OFF \ "77" "(vae-in-fp32) 使用 FP32 精度运行 VAE" OFF \ "78" "(vae-in-bf16) 使用 BF16 精度运行 VAE" OFF \ "79" "(vae-in-cpu) 将 VAE 移至 CPU" OFF \ "80" "(clip-in-fp8-e4m3fn) 使用 FP8(e4m3fn) 精度运行 CLIP" OFF \ "81" "(clip-in-fp8-e5m2) 使用 FP8(e5m2) 精度运行 CLIP" OFF \ "82" "(clip-in-fp16) 使用 FP16 精度运行 CLIP" OFF \ "83" "(clip-in-fp32) 使用 FP32 精度运行 CLIP" OFF \ "84" "(disable-ipex-hijack) 禁用 IEPX 修复" OFF \ "85" "(preview-option none) 不使用图片预览" OFF \ "86" "(preview-option fast) 使用快速图片预览" OFF \ "87" "(preview-option taesd) 使用 TAESD 图片预览" OFF \ "88" "(attention-split) 使用 Split 优化" OFF \ "89" "(attention-quad) 使用 Quad 优化" OFF \ "90" "(attention-pytorch) 使用 PyTorch 方案优化" OFF \ "91" "(disable-xformers) 禁用 xFormers 优化" OFF \ "92" "(always-gpu) 将所有模型, 文本编码器储存在 GPU 中" OFF \ "93" "(always-high-vram) 不使用显存优化" OFF \ "94" "(always-normal-vram) 使用默认显存优化" OFF \ "95" "(always-low-vram) 使用显存优化 (将会降低生图速度)" OFF \ "96" "(always-no-vram) 使用显存优化 (将会大量降低生图速度)" OFF \ "97" "(always-cpu) 使用 CPU 进行生图" OFF \ "98" "(always-offload-from-vram) 生图完成后将模型从显存中卸载" OFF \ "99" "(pytorch-deterministic) 将 PyTorch 配置为使用确定性算法" OFF \ "100" "(disable-server-log) 禁用服务端日志输出" OFF \ "101" "(debug-mode) 启用 Debug 模式" OFF \ "102" "(is-windows-embedded-python) 启用 Windows 独占功能" OFF \ "103" "(disable-server-info) 禁用服务端信息输出" OFF \ "104" "(multi-user) 启用多用户模式" OFF \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then for i in ${dialog_arg}; do case "${i}" in 1) arg="--update-all-extensions" ;; 2) arg="--skip-python-version-check" ;; 3) arg="--skip-torch-cuda-test" ;; 4) arg="--reinstall-xformers" ;; 5) arg="--reinstall-torch" ;; 6) arg="--update-check" ;; 7) arg="--test-server" ;; 8) arg="--log-startup" ;; 9) arg="--skip-prepare-environment" ;; 10) arg="--skip-install" ;; 11) arg="--dump-sysinfo" ;; 12) arg="--do-not-download-clip" ;; 13) arg="--no-half" ;; 14) arg="--no-half-vae" ;; 15) arg="--no-progressbar-hiding" ;; 16) arg="--allow-code" ;; 17) arg="--medvram" ;; 18) arg="--medvram-sdxl" ;; 19) arg="--lowvram" ;; 20) arg="--lowram" ;; 21) arg="--precision full" ;; 22) arg="--upcast-sampling" ;; 23) arg="--share" ;; 24) arg="--enable-insecure-extension-access" ;; 25) arg="--xformers" ;; 26) arg="--force-enable-xformers" ;; 27) arg="--xformers-flash-attention" ;; 28) arg="--opt-split-attention" ;; 29) arg="--opt-sub-quad-attention" ;; 30) arg="--opt-split-attention-invokeai" ;; 31) arg="--opt-split-attention-v1" ;; 32) arg="--opt-sdp-attention" ;; 33) arg="--opt-sdp-no-mem-attention" ;; 34) arg="--disable-opt-split-attention" ;; 35) arg="--disable-nan-check" ;; 36) arg="--use-cpu all" ;; 37) arg="--disable-model-loading-ram-optimization" ;; 38) arg="--listen" ;; 39) arg="--hide-ui-dir-config" ;; 40) arg="--freeze-settings" ;; 41) arg="--gradio-debug" ;; 42) arg="--opt-channelslast" ;; 43) arg="--autolaunch" ;; 44) arg="--theme dark" ;; 45) arg="--use-textbox-seed" ;; 46) arg="--disable-console-progressbars" ;; 47) arg="--enable-console-prompts" ;; 48) arg="--disable-safe-unpickle" ;; 49) arg="--api" ;; 50) arg="--api-log" ;; 51) arg="--nowebui" ;; 52) arg="--ui-debug-mode" ;; 53) arg="--administrator" ;; 54) arg="--disable-tls-verify" ;; 55) arg="--no-gradio-queue" ;; 56) arg="--skip-version-check" ;; 57) arg="--no-hashing" ;; 58) arg="--no-download-sd-model" ;; 59) arg="--add-stop-route" ;; 60) arg="--api-server-stop" ;; 61) arg="--disable-all-extensions" ;; 62) arg="--disable-extra-extensions" ;; 63) arg="--use-ipex" ;; 64) arg="--skip-load-model-at-start" ;; 65) arg="--in-browser" ;; 66) arg="--disable-in-browser" ;; 67) arg="--async-cuda-allocation" ;; 68) arg="--disable-async-cuda-allocation" ;; 69) arg="--disable-attention-upcast" ;; 70) arg="--all-in-fp32" ;; 71) arg="--all-in-fp16" ;; 72) arg="--unet-in-bf16" ;; 73) arg="--unet-in-fp16" ;; 74) arg="--unet-in-fp8-e4m3fn" ;; 75) arg="--unet-in-fp8-e5m2" ;; 76) arg="--vae-in-fp16" ;; 77) arg="--vae-in-fp32" ;; 78) arg="--vae-in-bf16" ;; 79) arg="--vae-in-cpu" ;; 80) arg="--clip-in-fp8-e4m3fn" ;; 81) arg="--clip-in-fp8-e5m2" ;; 82) arg="--clip-in-fp16" ;; 83) arg="--clip-in-fp32" ;; 84) arg="--disable-ipex-hijack" ;; 85) arg="--preview-option none" ;; 86) arg="--preview-option fast" ;; 87) arg="--preview-option taesd" ;; 88) arg="--attention-split" ;; 89) arg="--attention-quad" ;; 90) arg="--attention-pytorch" ;; 91) arg="--disable-xformers" ;; 92) arg="--always-gpu" ;; 93) arg="--always-high-vram" ;; 94) arg="--always-normal-vram" ;; 95) arg="--always-low-vram" ;; 96) arg="--always-no-vram" ;; 97) arg="--always-cpu" ;; 98) arg="--always-offload-from-vram" ;; 99) arg="--pytorch-deterministic" ;; 100) arg="--disable-server-log" ;; 101) arg="--debug-mode" ;; 102) arg="--is-windows-embedded-python" ;; 103) arg="--disable-server-info" ;; 104) arg="--multi-user" ;; esac launch_args="${arg} ${launch_args}" done # 生成启动脚本 term_sd_echo "设置 Stable-Diffusion-WebUI-Forge-Classic 启动参数: ${launch_args}" echo "launch.py ${launch_args}" > "${START_PATH}"/term-sd/config/sd-webui-forge-classic-launch.conf else term_sd_echo "取消设置 Stable-Diffusion-WebUI-Forge-Classic 启动参数" fi } # SD WebUI Forge Classic 启动界面 sd_webui_forge_classic_launch() { local dialog_arg local launch_args add_sd_webui_forge_classic_normal_launch_args while true; do launch_args=$(cat "${START_PATH}"/term-sd/config/sd-webui-forge-classic-launch.conf) if is_use_venv; then launch_args="python ${launch_args}" else launch_args="${TERM_SD_PYTHON_PATH} ${launch_args}" fi dialog_arg=$(dialog --erase-on-exit --notags \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 启动选项" \ --ok-label "确认" --cancel-label "取消" \ --menu "请选择启动 Stable-Diffusion-WebUI-Forge-Classic / 修改 Stable-Diffusion-WebUI-Forge-Classic 启动参数\n当前启动参数: ${launch_args}" \ $(get_dialog_size_menu) \ "0" "> 返回" \ "1" "> 启动" \ "2" "> 配置预设启动参数" \ "3" "> 修改自定义启动参数" \ "4" "> 重置启动参数" \ 3>&1 1>&2 2>&3) case "${dialog_arg}" in 1) term_sd_launch ;; 2) sd_webui_forge_classic_launch_args_setting ;; 3) sd_webui_forge_classic_launch_args_revise ;; 4) restore_sd_webui_forge_classic_launch_args ;; *) break ;; esac done } # SD WebUI Forge CLassic 启动参数修改 sd_webui_forge_classic_launch_args_revise() { local dialog_arg local launch_args launch_args=$(cat "${START_PATH}"/term-sd/config/sd-webui-forge-classic-launch.conf | awk '{sub("launch.py ","")}1') dialog_arg=$(dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 自定义启动参数选项" \ --ok-label "确认" --cancel-label "取消" \ --inputbox "请输入 Stable-Diffusion-WebUI-Forge-Classic 启动参数" \ $(get_dialog_size) \ "${launch_args}" \ 3>&1 1>&2 2>&3) if [[ "$?" == 0 ]]; then term_sd_echo "设置 Stable-Diffusion-WebUI-Forge-Classic 启动参数: ${dialog_arg}" echo "launch.py ${dialog_arg}" > "${START_PATH}"/term-sd/config/sd-webui-forge-classic-launch.conf else term_sd_echo "取消修改 Stable-Diffusion-WebUI-Forge-Classic 启动参数" fi } # 添加默认启动参数配置 add_sd_webui_forge_classic_normal_launch_args() { if [[ ! -f "${START_PATH}/term-sd/config/sd-webui-forge-classic-launch.conf" ]]; then # 找不到启动配置时默认生成一个 echo "launch.py --theme dark --autolaunch --xformers --api" > "${START_PATH}"/term-sd/config/sd-webui-forge-classic-launch.conf fi } # 重置启动参数 restore_sd_webui_forge_classic_launch_args() { if (dialog --erase-on-exit \ --title "Stable-Diffusion-WebUI 管理" \ --backtitle "Stable-Diffusion-WebUI 重置启动参数选项选项" \ --yes-label "是" --no-label "否" \ --yesno "是否重置 Stable-Diffusion-WebUI-Forge-CLassic 启动参数" \ $(get_dialog_size)); then term_sd_echo "重置 Stable-Diffusion-WebUI-Forge-Classic 启动参数" rm -f "${START_PATH}"/term-sd/config/sd-webui-forge-classic-launch.conf add_sd_webui_forge_classic_normal_launch_args else term_sd_echo "取消重置 Stable-Diffusion-WebUI-Forge-Classic 启动参数操作" fi }
2301_81996401/term-sd
modules/sd_webui_forge_classic_launch.sh
Shell
agpl-3.0
21,433