code
stringlengths
1
1.05M
repo_name
stringlengths
6
83
path
stringlengths
3
242
language
stringclasses
222 values
license
stringclasses
20 values
size
int64
1
1.05M
docker run -p 8082:8082 -d api-gateway-test:1.0.0 --name api-gateway-test
2301_82000044/my-api-gateway
my-api-gateway-test/start.sh
Shell
mit
73
<script> export default { onLaunch: function() { console.log('App Launch') }, onShow: function() { console.log('App Show') }, onHide: function() { console.log('App Hide') } } </script> <style> /*每个页面公共css */ </style>
2301_82115348/p1
App.vue
Vue
unknown
254
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8" /> <script> var coverSupport = 'CSS' in window && typeof CSS.supports === 'function' && (CSS.supports('top: env(a)') || CSS.supports('top: constant(a)')) document.write( '<meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0' + (coverSupport ? ', viewport-fit=cover' : '') + '" />') </script> <title></title> <!--preload-links--> <!--app-context--> </head> <body> <div id="app"><!--app-html--></div> <script type="module" src="/main.js"></script> </body> </html>
2301_82115348/p1
index.html
HTML
unknown
675
import App from './App' // #ifndef VUE3 import Vue from 'vue' import './uni.promisify.adaptor' Vue.config.productionTip = false App.mpType = 'app' const app = new Vue({ ...App }) app.$mount() // #endif // #ifdef VUE3 import { createSSRApp } from 'vue' export function createApp() { const app = createSSRApp(App) return { app } } // #endif
2301_82115348/p1
main.js
JavaScript
unknown
352
<template> <view class="content"> <image class="logo" src="/static/logo.png"></image> <view class="text-area"> <text class="title">{{title}}</text> </view> </view> </template> <script> export default { data() { return { title: 'Hello' } }, onLoad() { }, methods: { } } </script> <style> .content { display: flex; flex-direction: column; align-items: center; justify-content: center; } .logo { height: 200rpx; width: 200rpx; margin-top: 200rpx; margin-left: auto; margin-right: auto; margin-bottom: 50rpx; } .text-area { display: flex; justify-content: center; } .title { font-size: 36rpx; color: #8f8f94; } </style>
2301_82115348/p1
pages/index/index.vue
Vue
unknown
694
<template> <view> </view> </template> <script> export default { data() { return { } }, methods: { } } </script> <style> </style>
2301_82115348/p1
pages/machine-list/machine-list.vue
Vue
unknown
162
<template> <view class="container"> <view class="title">🌐 网络请求示例</view> <button type="primary" @click="getData">点击发送请求</button> <view class="result"> <text>{{ result }}</text> </view> </view> </template> <script> export default { data() { return { items: {}, result: '点击上方按钮获取数据' } }, methods: { getData() { console.log("开始请求数据..."); // 发起请求 uni.request({ url: "https://vending.neumooc.com/prod-api/api/machine/products", // 示例API method: 'GET', data: { "enterpriseId": 3, "id": 54, 'machineNo': "49f4b29ccfcb4207a35e73327f7cb0b2" }, header: { 'content-type': 'application/x-www-form-urlencoded' }, success: (res) => { console.log("请求成功!"); console.log("完整响应对象:", res); console.log("响应数据部分:", res.data); this.items = res.data; // console.log(this.items["data"][0].productList[0].price) // 将结果显示在页面上 this.result = JSON.stringify(res.data, null, 2); res.data.data.forEach((category) => { console.info(category.categoryName); category.productList.forEach((product) => { console.info(product.name, product.price); }); }); }, fail: (err) => { console.error("请求失败:", err); this.result = '请求失败,请检查网络或URL'; }, complete: () => { console.log("请求已完成。"); } }); } } } </script> <style> .container { padding: 20rpx; } .title { font-size: 36rpx; font-weight: bold; margin-bottom: 40rpx; } .result { margin-top: 40rpx; font-size: 28rpx; color: #333; word-break: break-all; } </style>
2301_82115348/p1
pages/uni-request/uni-request.vue
Vue
unknown
1,807
uni.addInterceptor({ returnValue (res) { if (!(!!res && (typeof res === "object" || typeof res === "function") && typeof res.then === "function")) { return res; } return new Promise((resolve, reject) => { res.then((res) => { if (!res) return resolve(res) return res[0] ? reject(res[0]) : resolve(res[1]) }); }); }, });
2301_82115348/p1
uni.promisify.adaptor.js
JavaScript
unknown
373
/** * 这里是uni-app内置的常用样式变量 * * uni-app 官方扩展插件及插件市场(https://ext.dcloud.net.cn)上很多三方插件均使用了这些样式变量 * 如果你是插件开发者,建议你使用scss预处理,并在插件代码中直接使用这些变量(无需 import 这个文件),方便用户通过搭积木的方式开发整体风格一致的App * */ /** * 如果你是App开发者(插件使用者),你可以通过修改这些变量来定制自己的插件主题,实现自定义主题功能 * * 如果你的项目同样使用了scss预处理,你也可以直接在你的 scss 代码中使用如下变量,同时无需 import 这个文件 */ /* 颜色变量 */ /* 行为相关颜色 */ $uni-color-primary: #007aff; $uni-color-success: #4cd964; $uni-color-warning: #f0ad4e; $uni-color-error: #dd524d; /* 文字基本颜色 */ $uni-text-color:#333;//基本色 $uni-text-color-inverse:#fff;//反色 $uni-text-color-grey:#999;//辅助灰色,如加载更多的提示信息 $uni-text-color-placeholder: #808080; $uni-text-color-disable:#c0c0c0; /* 背景颜色 */ $uni-bg-color:#ffffff; $uni-bg-color-grey:#f8f8f8; $uni-bg-color-hover:#f1f1f1;//点击状态颜色 $uni-bg-color-mask:rgba(0, 0, 0, 0.4);//遮罩颜色 /* 边框颜色 */ $uni-border-color:#c8c7cc; /* 尺寸变量 */ /* 文字尺寸 */ $uni-font-size-sm:12px; $uni-font-size-base:14px; $uni-font-size-lg:16px; /* 图片尺寸 */ $uni-img-size-sm:20px; $uni-img-size-base:26px; $uni-img-size-lg:40px; /* Border Radius */ $uni-border-radius-sm: 2px; $uni-border-radius-base: 3px; $uni-border-radius-lg: 6px; $uni-border-radius-circle: 50%; /* 水平间距 */ $uni-spacing-row-sm: 5px; $uni-spacing-row-base: 10px; $uni-spacing-row-lg: 15px; /* 垂直间距 */ $uni-spacing-col-sm: 4px; $uni-spacing-col-base: 8px; $uni-spacing-col-lg: 12px; /* 透明度 */ $uni-opacity-disabled: 0.3; // 组件禁用态的透明度 /* 文章场景相关 */ $uni-color-title: #2C405A; // 文章标题颜色 $uni-font-size-title:20px; $uni-color-subtitle: #555555; // 二级标题颜色 $uni-font-size-subtitle:26px; $uni-color-paragraph: #3F536E; // 文章段落颜色 $uni-font-size-paragraph:15px;
2301_82115348/p1
uni.scss
SCSS
unknown
2,217
# See here for image contents: https://github.com/microsoft/vscode-dev-containers/tree/v0.187.0/containers/python-3/.devcontainer/base.Dockerfile # [Choice] Python version: 3, 3.9, 3.8, 3.7, 3.6 ARG VARIANT="3.9.0-buster" FROM python:${VARIANT} # [Option] Install Node.js ARG INSTALL_NODE="true" ARG NODE_VERSION="lts/*" RUN if [ "${INSTALL_NODE}" = "true" ]; then su vscode -c "umask 0002 && . /usr/local/share/nvm/nvm.sh && nvm install ${NODE_VERSION} 2>&1"; fi # [Optional] If your pip requirements rarely change, uncomment this section to add them to the image. # COPY requirements.txt /tmp/pip-tmp/ # RUN pip3 --disable-pip-version-check --no-cache-dir install -r /tmp/pip-tmp/requirements.txt \ # && rm -rf /tmp/pip-tmp # [Optional] Uncomment this section to install additional OS packages. # RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \ # && apt-get -y install --no-install-recommends <your-package-list-here> # [Optional] Uncomment this line to install global node packages. # RUN su vscode -c "source /usr/local/share/nvm/nvm.sh && npm install -g <your-package-here>" 2>&1 RUN pip install -U https://github.com/platformio/platformio-core/archive/develop.zip RUN platformio update # To get the test platforms RUN pip install PyYaml #ENV PATH /code/buildroot/bin/:/code/buildroot/tests/:${PATH}
2301_81045437/Marlin
.devcontainer/Dockerfile
Dockerfile
agpl-3.0
1,333
SCRIPTS_DIR := buildroot/share/scripts CONTAINER_RT_BIN := docker CONTAINER_RT_OPTS := --rm -v $(PWD):/code -v platformio-cache:/root/.platformio CONTAINER_IMAGE := marlin-dev UNIT_TEST_CONFIG ?= default help: @echo "Tasks for local development:" @echo "make marlin : Build marlin for the configured board" @echo "make format-pins -j : Reformat all pins files (-j for parallel execution)" @echo "make validate-pins -j : Validate all pins files, fails if any require reformatting" @echo "make tests-single-ci : Run a single test from inside the CI" @echo "make tests-single-local : Run a single test locally" @echo "make tests-single-local-docker : Run a single test locally, using docker" @echo "make tests-all-local : Run all tests locally" @echo "make tests-all-local-docker : Run all tests locally, using docker" @echo "make unit-test-single-local : Run unit tests for a single config locally" @echo "make unit-test-single-local-docker : Run unit tests for a single config locally, using docker" @echo "make unit-test-all-local : Run all code tests locally" @echo "make unit-test-all-local-docker : Run all code tests locally, using docker" @echo "make setup-local-docker : Setup local docker using buildx" @echo "" @echo "Options for testing:" @echo " TEST_TARGET Set when running tests-single-*, to select the" @echo " test. If you set it to ALL it will run all " @echo " tests, but some of them are broken: use " @echo " tests-all-* instead to run only the ones that " @echo " run on GitHub CI" @echo " ONLY_TEST Limit tests to only those that contain this, or" @echo " the index of the test (1-based)" @echo " UNIT_TEST_CONFIG Set the name of the config from the test folder, without" @echo " the leading number. Default is 'default'". Used with the @echo " unit-test-single-* tasks" @echo " VERBOSE_PLATFORMIO If you want the full PIO output, set any value" @echo " GIT_RESET_HARD Used by CI: reset all local changes. WARNING:" @echo " THIS WILL UNDO ANY CHANGES YOU'VE MADE!" marlin: ./buildroot/bin/mftest -a .PHONY: marlin tests-single-ci: export GIT_RESET_HARD=true $(MAKE) tests-single-local TEST_TARGET=$(TEST_TARGET) PLATFORMIO_BUILD_FLAGS=-DGITHUB_ACTION tests-single-local: @if ! test -n "$(TEST_TARGET)" ; then echo "***ERROR*** Set TEST_TARGET=<your-module> or use make tests-all-local" ; return 1; fi export PATH="./buildroot/bin/:./buildroot/tests/:${PATH}" \ && export VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) \ && run_tests . $(TEST_TARGET) "$(ONLY_TEST)" tests-single-local-docker: @if ! test -n "$(TEST_TARGET)" ; then echo "***ERROR*** Set TEST_TARGET=<your-module> or use make tests-all-local-docker" ; return 1; fi @if ! $(CONTAINER_RT_BIN) images -q $(CONTAINER_IMAGE) > /dev/null ; then $(MAKE) setup-local-docker ; fi $(CONTAINER_RT_BIN) run $(CONTAINER_RT_OPTS) $(CONTAINER_IMAGE) make tests-single-local TEST_TARGET=$(TEST_TARGET) VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) GIT_RESET_HARD=$(GIT_RESET_HARD) ONLY_TEST="$(ONLY_TEST)" tests-all-local: @python -c "import yaml" 2>/dev/null || (echo 'pyyaml module is not installed. Install it with "python -m pip install pyyaml"' && exit 1) export PATH="./buildroot/bin/:./buildroot/tests/:${PATH}" \ && export VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) \ && for TEST_TARGET in $$(python $(SCRIPTS_DIR)/get_test_targets.py) ; do \ if [ "$$TEST_TARGET" = "linux_native" ] && [ "$$(uname)" = "Darwin" ]; then \ echo "Skipping tests for $$TEST_TARGET on macOS" ; \ continue ; \ fi ; \ echo "Running tests for $$TEST_TARGET" ; \ run_tests . $$TEST_TARGET || exit 1 ; \ sleep 5; \ done tests-all-local-docker: @if ! $(CONTAINER_RT_BIN) images -q $(CONTAINER_IMAGE) > /dev/null ; then $(MAKE) setup-local-docker ; fi $(CONTAINER_RT_BIN) run $(CONTAINER_RT_OPTS) $(CONTAINER_IMAGE) make tests-all-local VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) GIT_RESET_HARD=$(GIT_RESET_HARD) unit-test-single-local: platformio run -t marlin_$(UNIT_TEST_CONFIG) -e linux_native_test unit-test-single-local-docker: @if ! $(CONTAINER_RT_BIN) images -q $(CONTAINER_IMAGE) > /dev/null ; then $(MAKE) setup-local-docker ; fi $(CONTAINER_RT_BIN) run $(CONTAINER_RT_OPTS) $(CONTAINER_IMAGE) make unit-test-single-local UNIT_TEST_CONFIG=$(UNIT_TEST_CONFIG) unit-test-all-local: platformio run -t test-marlin -e linux_native_test unit-test-all-local-docker: @if ! $(CONTAINER_RT_BIN) images -q $(CONTAINER_IMAGE) > /dev/null ; then $(MAKE) setup-local-docker ; fi $(CONTAINER_RT_BIN) run $(CONTAINER_RT_OPTS) $(CONTAINER_IMAGE) make unit-test-all-local setup-local-docker: $(CONTAINER_RT_BIN) buildx build -t $(CONTAINER_IMAGE) -f docker/Dockerfile . PINS := $(shell find Marlin/src/pins -mindepth 2 -name '*.h') .PHONY: $(PINS) format-pins validate-pins $(PINS): %: @echo "Formatting $@" @python $(SCRIPTS_DIR)/pinsformat.py $< $@ format-pins: $(PINS) validate-pins: format-pins @echo "Validating pins files" @git diff --exit-code || (git status && echo "\nError: Pins files are not formatted correctly. Run \"make format-pins\" to fix.\n" && exit 1)
2301_81045437/Marlin
Makefile
Makefile
agpl-3.0
5,417
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Configuration.h * * Basic settings such as: * * - Type of electronics * - Type of temperature sensor * - Printer geometry * - Endstop configuration * - LCD controller * - Extra features * * Advanced settings can be found in Configuration_adv.h */ #define CONFIGURATION_H_VERSION 02010300 //=========================================================================== //============================= Getting Started ============================= //=========================================================================== /** * Here are some useful links to help get your machine configured and calibrated: * * Example Configs: https://github.com/MarlinFirmware/Configurations/branches/all * * Průša Calculator: https://blog.prusa3d.com/calculator_3416/ * * Calibration Guides: https://reprap.org/wiki/Calibration * https://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide * https://web.archive.org/web/20220907014303/https://sites.google.com/site/repraplogphase/calibration-of-your-reprap * https://youtu.be/wAL9d7FgInk * https://teachingtechyt.github.io/calibration.html * * Calibration Objects: https://www.thingiverse.com/thing:5573 * https://www.thingiverse.com/thing:1278865 */ // @section info // Author info of this build printed to the host during boot and M115 #define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes. //#define CUSTOM_VERSION_FILE Version.h // Path from the root directory (no quotes) // @section machine // Choose the name from boards.h that matches your setup #ifndef MOTHERBOARD #define MOTHERBOARD BOARD_RAMPS_14_EFB #endif /** * Select the serial port on the board to use for communication with the host. * This allows the connection of wireless adapters (for instance) to non-default port pins. * Serial port -1 is the USB emulated serial port, if available. * Note: The first serial port (-1 or 0) will always be used by the Arduino bootloader. * * :[-1, 0, 1, 2, 3, 4, 5, 6, 7] */ #define SERIAL_PORT 0 /** * Serial Port Baud Rate * This is the default communication speed for all serial ports. * Set the baud rate defaults for additional serial ports below. * * 250000 works in most cases, but you might try a lower speed if * you commonly experience drop-outs during host printing. * You may try up to 1000000 to speed up SD file transfer. * * :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] */ #define BAUDRATE 250000 //#define BAUD_RATE_GCODE // Enable G-code M575 to set the baud rate /** * Select a secondary serial port on the board to use for communication with the host. * Currently Ethernet (-2) is only supported on Teensy 4.1 boards. * :[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7] */ //#define SERIAL_PORT_2 -1 //#define BAUDRATE_2 250000 // :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] Enable to override BAUDRATE /** * Select a third serial port on the board to use for communication with the host. * Currently only supported for AVR, DUE, LPC1768/9 and STM32/STM32F1 * :[-1, 0, 1, 2, 3, 4, 5, 6, 7] */ //#define SERIAL_PORT_3 1 //#define BAUDRATE_3 250000 // :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] Enable to override BAUDRATE // Enable the Bluetooth serial interface on AT90USB devices //#define BLUETOOTH // Name displayed in the LCD "Ready" message and Info menu //#define CUSTOM_MACHINE_NAME "3D Printer" // Printer's unique ID, used by some programs to differentiate between machines. // Choose your own or use a service like https://www.uuidgenerator.net/version4 //#define MACHINE_UUID "00000000-0000-0000-0000-000000000000" // @section stepper drivers /** * Stepper Drivers * * These settings allow Marlin to tune stepper driver timing and enable advanced options for * stepper drivers that support them. You may also override timing options in Configuration_adv.h. * * Use TMC2208/TMC2208_STANDALONE for TMC2225 drivers and TMC2209/TMC2209_STANDALONE for TMC2226 drivers. * * Options: A4988, A5984, DRV8825, LV8729, TB6560, TB6600, TMC2100, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2660, TMC2660_STANDALONE, TMC5130, TMC5130_STANDALONE, * TMC5160, TMC5160_STANDALONE * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] */ #define X_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988 #define Z_DRIVER_TYPE A4988 //#define X2_DRIVER_TYPE A4988 //#define Y2_DRIVER_TYPE A4988 //#define Z2_DRIVER_TYPE A4988 //#define Z3_DRIVER_TYPE A4988 //#define Z4_DRIVER_TYPE A4988 //#define I_DRIVER_TYPE A4988 //#define J_DRIVER_TYPE A4988 //#define K_DRIVER_TYPE A4988 //#define U_DRIVER_TYPE A4988 //#define V_DRIVER_TYPE A4988 //#define W_DRIVER_TYPE A4988 #define E0_DRIVER_TYPE A4988 //#define E1_DRIVER_TYPE A4988 //#define E2_DRIVER_TYPE A4988 //#define E3_DRIVER_TYPE A4988 //#define E4_DRIVER_TYPE A4988 //#define E5_DRIVER_TYPE A4988 //#define E6_DRIVER_TYPE A4988 //#define E7_DRIVER_TYPE A4988 /** * Additional Axis Settings * * Define AXISn_ROTATES for all axes that rotate or pivot. * Rotational axis coordinates are expressed in degrees. * * AXISn_NAME defines the letter used to refer to the axis in (most) G-code commands. * By convention the names and roles are typically: * 'A' : Rotational axis parallel to X * 'B' : Rotational axis parallel to Y * 'C' : Rotational axis parallel to Z * 'U' : Secondary linear axis parallel to X * 'V' : Secondary linear axis parallel to Y * 'W' : Secondary linear axis parallel to Z * * Regardless of these settings the axes are internally named I, J, K, U, V, W. */ #ifdef I_DRIVER_TYPE #define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W'] #define AXIS4_ROTATES #endif #ifdef J_DRIVER_TYPE #define AXIS5_NAME 'B' // :['B', 'C', 'U', 'V', 'W'] #define AXIS5_ROTATES #endif #ifdef K_DRIVER_TYPE #define AXIS6_NAME 'C' // :['C', 'U', 'V', 'W'] #define AXIS6_ROTATES #endif #ifdef U_DRIVER_TYPE #define AXIS7_NAME 'U' // :['U', 'V', 'W'] //#define AXIS7_ROTATES #endif #ifdef V_DRIVER_TYPE #define AXIS8_NAME 'V' // :['V', 'W'] //#define AXIS8_ROTATES #endif #ifdef W_DRIVER_TYPE #define AXIS9_NAME 'W' // :['W'] //#define AXIS9_ROTATES #endif // @section extruder // This defines the number of extruders // :[0, 1, 2, 3, 4, 5, 6, 7, 8] #define EXTRUDERS 1 // Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc. #define DEFAULT_NOMINAL_FILAMENT_DIA 1.75 // For Cyclops or any "multi-extruder" that shares a single nozzle. //#define SINGLENOZZLE // Save and restore temperature and fan speed on tool-change. // Set standby for the unselected tool with M104/106/109 T... #if ENABLED(SINGLENOZZLE) //#define SINGLENOZZLE_STANDBY_TEMP //#define SINGLENOZZLE_STANDBY_FAN #endif // A dual extruder that uses a single stepper motor //#define SWITCHING_EXTRUDER #if ENABLED(SWITCHING_EXTRUDER) #define SWITCHING_EXTRUDER_SERVO_NR 0 #define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1[, E2, E3] #if EXTRUDERS > 3 #define SWITCHING_EXTRUDER_E23_SERVO_NR 1 #endif #endif // Switch extruders by bumping the toolhead. Requires EVENT_GCODE_TOOLCHANGE_#. //#define MECHANICAL_SWITCHING_EXTRUDER /** * A dual-nozzle that uses a servomotor to raise/lower one (or both) of the nozzles. * Can be combined with SWITCHING_EXTRUDER. */ //#define SWITCHING_NOZZLE #if ENABLED(SWITCHING_NOZZLE) #define SWITCHING_NOZZLE_SERVO_NR 0 //#define SWITCHING_NOZZLE_E1_SERVO_NR 1 // If two servos are used, the index of the second #define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 } // A pair of angles for { E0, E1 }. // For Dual Servo use two pairs: { { lower, raise }, { lower, raise } } #define SWITCHING_NOZZLE_SERVO_DWELL 2500 // Dwell time to wait for servo to make physical move #endif // Switch nozzles by bumping the toolhead. Requires EVENT_GCODE_TOOLCHANGE_#. //#define MECHANICAL_SWITCHING_NOZZLE /** * Two separate X-carriages with extruders that connect to a moving part * via a solenoid docking mechanism. Requires SOL1_PIN and SOL2_PIN. */ //#define PARKING_EXTRUDER /** * Two separate X-carriages with extruders that connect to a moving part * via a magnetic docking mechanism using movements and no solenoid * * project : https://www.thingiverse.com/thing:3080893 * movements : https://youtu.be/0xCEiG9VS3k * https://youtu.be/Bqbcs0CU2FE */ //#define MAGNETIC_PARKING_EXTRUDER #if ANY(PARKING_EXTRUDER, MAGNETIC_PARKING_EXTRUDER) #define PARKING_EXTRUDER_PARKING_X { -78, 184 } // X positions for parking the extruders #define PARKING_EXTRUDER_GRAB_DISTANCE 1 // (mm) Distance to move beyond the parking point to grab the extruder #if ENABLED(PARKING_EXTRUDER) #define PARKING_EXTRUDER_SOLENOIDS_INVERT // If enabled, the solenoid is NOT magnetized with applied voltage #define PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE LOW // LOW or HIGH pin signal energizes the coil #define PARKING_EXTRUDER_SOLENOIDS_DELAY 250 // (ms) Delay for magnetic field. No delay if 0 or not defined. //#define MANUAL_SOLENOID_CONTROL // Manual control of docking solenoids with M380 S / M381 #elif ENABLED(MAGNETIC_PARKING_EXTRUDER) #define MPE_FAST_SPEED 9000 // (mm/min) Speed for travel before last distance point #define MPE_SLOW_SPEED 4500 // (mm/min) Speed for last distance travel to park and couple #define MPE_TRAVEL_DISTANCE 10 // (mm) Last distance point #define MPE_COMPENSATION 0 // Offset Compensation -1 , 0 , 1 (multiplier) only for coupling #endif #endif /** * Switching Toolhead * * Support for swappable and dockable toolheads, such as * the E3D Tool Changer. Toolheads are locked with a servo. */ //#define SWITCHING_TOOLHEAD /** * Magnetic Switching Toolhead * * Support swappable and dockable toolheads with a magnetic * docking mechanism using movement and no servo. */ //#define MAGNETIC_SWITCHING_TOOLHEAD /** * Electromagnetic Switching Toolhead * * Parking for CoreXY / HBot kinematics. * Toolheads are parked at one edge and held with an electromagnet. * Supports more than 2 Toolheads. See https://youtu.be/JolbsAKTKf4 */ //#define ELECTROMAGNETIC_SWITCHING_TOOLHEAD #if ANY(SWITCHING_TOOLHEAD, MAGNETIC_SWITCHING_TOOLHEAD, ELECTROMAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Y_POS 235 // (mm) Y position of the toolhead dock #define SWITCHING_TOOLHEAD_Y_SECURITY 10 // (mm) Security distance Y axis #define SWITCHING_TOOLHEAD_Y_CLEAR 60 // (mm) Minimum distance from dock for unobstructed X axis #define SWITCHING_TOOLHEAD_X_POS { 215, 0 } // (mm) X positions for parking the extruders #if ENABLED(SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_SERVO_NR 2 // Index of the servo connector #define SWITCHING_TOOLHEAD_SERVO_ANGLES { 0, 180 } // (degrees) Angles for Lock, Unlock #elif ENABLED(MAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Y_RELEASE 5 // (mm) Security distance Y axis #define SWITCHING_TOOLHEAD_X_SECURITY { 90, 150 } // (mm) Security distance X axis (T0,T1) //#define PRIME_BEFORE_REMOVE // Prime the nozzle before release from the dock #if ENABLED(PRIME_BEFORE_REMOVE) #define SWITCHING_TOOLHEAD_PRIME_MM 20 // (mm) Extruder prime length #define SWITCHING_TOOLHEAD_RETRACT_MM 10 // (mm) Retract after priming length #define SWITCHING_TOOLHEAD_PRIME_FEEDRATE 300 // (mm/min) Extruder prime feedrate #define SWITCHING_TOOLHEAD_RETRACT_FEEDRATE 2400 // (mm/min) Extruder retract feedrate #endif #elif ENABLED(ELECTROMAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Z_HOP 2 // (mm) Z raise for switching #endif #endif /** * "Mixing Extruder" * - Adds G-codes M163 and M164 to set and "commit" the current mix factors. * - Extends the stepping routines to move multiple steppers in proportion to the mix. * - Optional support for Repetier Firmware's 'M164 S<index>' supporting virtual tools. * - This implementation supports up to two mixing extruders. * - Enable DIRECT_MIXING_IN_G1 for M165 and mixing in G1 (from Pia Taubert's reference implementation). */ //#define MIXING_EXTRUDER #if ENABLED(MIXING_EXTRUDER) #define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder #define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164 //#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands //#define GRADIENT_MIX // Support for gradient mixing with M166 and LCD //#define MIXING_PRESETS // Assign 8 default V-tool presets for 2 or 3 MIXING_STEPPERS #if ENABLED(GRADIENT_MIX) //#define GRADIENT_VTOOL // Add M166 T to use a V-tool index as a Gradient alias #endif #endif // Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing). // The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder). // For the other hotends it is their distance from the extruder 0 hotend. //#define HOTEND_OFFSET_X { 0.0, 20.00 } // (mm) relative X-offset for each nozzle //#define HOTEND_OFFSET_Y { 0.0, 5.00 } // (mm) relative Y-offset for each nozzle //#define HOTEND_OFFSET_Z { 0.0, 0.00 } // (mm) relative Z-offset for each nozzle // @section multi-material /** * Multi-Material Unit * Set to one of these predefined models: * * PRUSA_MMU1 : Průša MMU1 (The "multiplexer" version) * PRUSA_MMU2 : Průša MMU2 * PRUSA_MMU2S : Průša MMU2S (Requires MK3S extruder with motion sensor, EXTRUDERS = 5) * EXTENDABLE_EMU_MMU2 : MMU with configurable number of filaments (ERCF, SMuFF or similar with Průša MMU2 compatible firmware) * EXTENDABLE_EMU_MMU2S : MMUS with configurable number of filaments (ERCF, SMuFF or similar with Průša MMU2 compatible firmware) * * Requires NOZZLE_PARK_FEATURE to park print head in case MMU unit fails. * See additional options in Configuration_adv.h. * :["PRUSA_MMU1", "PRUSA_MMU2", "PRUSA_MMU2S", "EXTENDABLE_EMU_MMU2", "EXTENDABLE_EMU_MMU2S"] */ //#define MMU_MODEL PRUSA_MMU2 // @section psu control /** * Power Supply Control * * Enable and connect the power supply to the PS_ON_PIN. * Specify whether the power supply is active HIGH or active LOW. */ //#define PSU_CONTROL //#define PSU_NAME "Power Supply" #if ENABLED(PSU_CONTROL) //#define MKS_PWC // Using the MKS PWC add-on //#define PS_OFF_CONFIRM // Confirm dialog when power off //#define PS_OFF_SOUND // Beep 1s when power off #define PSU_ACTIVE_STATE LOW // Set 'LOW' for ATX, 'HIGH' for X-Box //#define PSU_DEFAULT_OFF // Keep power off until enabled directly with M80 //#define PSU_POWERUP_DELAY 250 // (ms) Delay for the PSU to warm up to full power //#define LED_POWEROFF_TIMEOUT 10000 // (ms) Turn off LEDs after power-off, with this amount of delay //#define PSU_OFF_REDUNDANT // Second pin for redundant power control //#define PSU_OFF_REDUNDANT_INVERTED // Redundant pin state is the inverse of PSU_ACTIVE_STATE //#define PS_ON1_PIN 6 // Redundant pin required to enable power in combination with PS_ON_PIN //#define PS_ON_EDM_PIN 8 // External Device Monitoring pins for external power control relay feedback. Fault on mismatch. //#define PS_ON1_EDM_PIN 9 #define PS_EDM_RESPONSE 250 // (ms) Time to allow for relay action //#define POWER_OFF_TIMER // Enable M81 D<seconds> to power off after a delay //#define POWER_OFF_WAIT_FOR_COOLDOWN // Enable M81 S to power off only after cooldown //#define PSU_POWERUP_GCODE "M355 S1" // G-code to run after power-on (e.g., case light on) //#define PSU_POWEROFF_GCODE "M355 S0" // G-code to run before power-off (e.g., case light off) //#define AUTO_POWER_CONTROL // Enable automatic control of the PS_ON pin #if ENABLED(AUTO_POWER_CONTROL) #define AUTO_POWER_FANS // Turn on PSU for fans #define AUTO_POWER_E_FANS // Turn on PSU for E Fans #define AUTO_POWER_CONTROLLERFAN // Turn on PSU for Controller Fan #define AUTO_POWER_CHAMBER_FAN // Turn on PSU for Chamber Fan #define AUTO_POWER_COOLER_FAN // Turn on PSU for Cooler Fan #define AUTO_POWER_SPINDLE_LASER // Turn on PSU for Spindle/Laser #define POWER_TIMEOUT 30 // (s) Turn off power if the machine is idle for this duration //#define POWER_OFF_DELAY 60 // (s) Delay of poweroff after M81 command. Useful to let fans run for extra time. #endif #if ANY(AUTO_POWER_CONTROL, POWER_OFF_WAIT_FOR_COOLDOWN) //#define AUTO_POWER_E_TEMP 50 // (°C) PSU on if any extruder is over this temperature //#define AUTO_POWER_CHAMBER_TEMP 30 // (°C) PSU on if the chamber is over this temperature //#define AUTO_POWER_COOLER_TEMP 26 // (°C) PSU on if the cooler is over this temperature #endif #endif //=========================================================================== //============================= Thermal Settings ============================ //=========================================================================== // @section temperature /** * Temperature Sensors: * * NORMAL IS 4.7kΩ PULLUP! Hotend sensors can use 1kΩ pullup with correct resistor and table. * * ================================================================ * Analog Thermistors - 4.7kΩ pullup - Normal * ================================================================ * 1 : 100kΩ EPCOS - Best choice for EPCOS thermistors * 331 : 100kΩ Same as #1, but 3.3V scaled for MEGA * 332 : 100kΩ Same as #1, but 3.3V scaled for DUE * 2 : 200kΩ ATC Semitec 204GT-2 * 202 : 200kΩ Copymaster 3D * 3 : ???Ω Mendel-parts thermistor * 4 : 10kΩ Generic Thermistor !! DO NOT use for a hotend - it gives bad resolution at high temp. !! * 5 : 100kΩ ATC Semitec 104GT-2/104NT-4-R025H42G - Used in ParCan, J-Head, and E3D, SliceEngineering 300°C * 501 : 100kΩ Zonestar - Tronxy X3A * 502 : 100kΩ Zonestar - used by hot bed in Zonestar Průša P802M * 503 : 100kΩ Zonestar (Z8XM2) Heated Bed thermistor * 504 : 100kΩ Zonestar P802QR2 (Part# QWG-104F-B3950) Hotend Thermistor * 505 : 100kΩ Zonestar P802QR2 (Part# QWG-104F-3950) Bed Thermistor * 512 : 100kΩ RPW-Ultra hotend * 6 : 100kΩ EPCOS - Not as accurate as table #1 (created using a fluke thermocouple) * 7 : 100kΩ Honeywell 135-104LAG-J01 * 71 : 100kΩ Honeywell 135-104LAF-J01 * 8 : 100kΩ Vishay 0603 SMD NTCS0603E3104FXT * 9 : 100kΩ GE Sensing AL03006-58.2K-97-G1 * 10 : 100kΩ RS PRO 198-961 * 11 : 100kΩ Keenovo AC silicone mats, most Wanhao i3 machines - beta 3950, 1% * 12 : 100kΩ Vishay 0603 SMD NTCS0603E3104FXT (#8) - calibrated for Makibox hot bed * 13 : 100kΩ Hisens up to 300°C - for "Simple ONE" & "All In ONE" hotend - beta 3950, 1% * 14 : 100kΩ (R25), 4092K (beta25), 4.7kΩ pull-up, bed thermistor as used in Ender-5 S1 * 15 : 100kΩ Calibrated for JGAurora A5 hotend * 17 : 100kΩ Dagoma NTC white thermistor * 18 : 200kΩ ATC Semitec 204GT-2 Dagoma.Fr - MKS_Base_DKU001327 * 22 : 100kΩ GTM32 Pro vB - hotend - 4.7kΩ pullup to 3.3V and 220Ω to analog input * 23 : 100kΩ GTM32 Pro vB - bed - 4.7kΩ pullup to 3.3v and 220Ω to analog input * 30 : 100kΩ Kis3d Silicone heating mat 200W/300W with 6mm precision cast plate (EN AW 5083) NTC100K - beta 3950 * 60 : 100kΩ Maker's Tool Works Kapton Bed Thermistor - beta 3950 * 61 : 100kΩ Formbot/Vivedino 350°C Thermistor - beta 3950 * 66 : 4.7MΩ Dyze Design / Trianglelab T-D500 500°C High Temperature Thermistor * 67 : 500kΩ SliceEngineering 450°C Thermistor * 68 : PT100 Smplifier board from Dyze Design * 70 : 100kΩ bq Hephestos 2 * 75 : 100kΩ Generic Silicon Heat Pad with NTC100K MGB18-104F39050L32 * 666 : 200kΩ Einstart S custom thermistor with 10k pullup. * 2000 : 100kΩ Ultimachine Rambo TDK NTCG104LH104KT1 NTC100K motherboard Thermistor * * ================================================================ * Analog Thermistors - 1kΩ pullup * Atypical, and requires changing out the 4.7kΩ pullup for 1kΩ. * (but gives greater accuracy and more stable PID) * ================================================================ * 51 : 100kΩ EPCOS (1kΩ pullup) * 52 : 200kΩ ATC Semitec 204GT-2 (1kΩ pullup) * 55 : 100kΩ ATC Semitec 104GT-2 - Used in ParCan & J-Head (1kΩ pullup) * * ================================================================ * Analog Thermistors - 10kΩ pullup - Atypical * ================================================================ * 99 : 100kΩ Found on some Wanhao i3 machines with a 10kΩ pull-up resistor * * ================================================================ * Analog RTDs (Pt100/Pt1000) * ================================================================ * 110 : Pt100 with 1kΩ pullup (atypical) * 147 : Pt100 with 4.7kΩ pullup * 1010 : Pt1000 with 1kΩ pullup (atypical) * 1022 : Pt1000 with 2.2kΩ pullup * 1047 : Pt1000 with 4.7kΩ pullup (E3D) * 20 : Pt100 with circuit in the Ultimainboard V2.x with mainboard ADC reference voltage = INA826 amplifier-board supply voltage. * NOTE: (1) Must use an ADC input with no pullup. (2) Some INA826 amplifiers are unreliable at 3.3V so consider using sensor 147, 110, or 21. * 21 : Pt100 with circuit in the Ultimainboard V2.x with 3.3v ADC reference voltage (STM32, LPC176x....) and 5V INA826 amplifier board supply. * NOTE: ADC pins are not 5V tolerant. Not recommended because it's possible to damage the CPU by going over 500°C. * 201 : Pt100 with circuit in Overlord, similar to Ultimainboard V2.x * * ================================================================ * SPI RTD/Thermocouple Boards * ================================================================ * -5 : MAX31865 with Pt100/Pt1000, 2, 3, or 4-wire (only for sensors 0-2 and bed) * NOTE: You must uncomment/set the MAX31865_*_OHMS_n defines below. * -3 : MAX31855 with Thermocouple, -200°C to +700°C (only for sensors 0-2 and bed) * -2 : MAX6675 with Thermocouple, 0°C to +700°C (only for sensors 0-2 and bed) * * NOTE: Ensure TEMP_n_CS_PIN is set in your pins file for each TEMP_SENSOR_n using an SPI Thermocouple. By default, * Hardware SPI on the default serial bus is used. If you have also set TEMP_n_SCK_PIN and TEMP_n_MISO_PIN, * Software SPI will be used on those ports instead. You can force Hardware SPI on the default bus in the * Configuration_adv.h file. At this time, separate Hardware SPI buses for sensors are not supported. * * ================================================================ * Analog Thermocouple Boards * ================================================================ * -4 : AD8495 with Thermocouple * -1 : AD595 with Thermocouple * * ================================================================ * SoC internal sensor * ================================================================ * 100 : SoC internal sensor * * ================================================================ * Custom/Dummy/Other Thermal Sensors * ================================================================ * 0 : not used * 1000 : Custom - Specify parameters in Configuration_adv.h * * !!! Use these for Testing or Development purposes. NEVER for production machine. !!! * 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below. * 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below. */ #define TEMP_SENSOR_0 1 #define TEMP_SENSOR_1 0 #define TEMP_SENSOR_2 0 #define TEMP_SENSOR_3 0 #define TEMP_SENSOR_4 0 #define TEMP_SENSOR_5 0 #define TEMP_SENSOR_6 0 #define TEMP_SENSOR_7 0 #define TEMP_SENSOR_BED 1 #define TEMP_SENSOR_PROBE 0 #define TEMP_SENSOR_CHAMBER 0 #define TEMP_SENSOR_COOLER 0 #define TEMP_SENSOR_BOARD 0 #define TEMP_SENSOR_SOC 0 #define TEMP_SENSOR_REDUNDANT 0 // Dummy thermistor constant temperature readings, for use with 998 and 999 #define DUMMY_THERMISTOR_998_VALUE 25 #define DUMMY_THERMISTOR_999_VALUE 100 // Resistor values when using MAX31865 sensors (-5) on TEMP_SENSOR_0 / 1 #if TEMP_SENSOR_IS_MAX_TC(0) #define MAX31865_SENSOR_OHMS_0 100 // (Ω) Typically 100 or 1000 (PT100 or PT1000) #define MAX31865_CALIBRATION_OHMS_0 430 // (Ω) Typically 430 for Adafruit PT100; 4300 for Adafruit PT1000 #endif #if TEMP_SENSOR_IS_MAX_TC(1) #define MAX31865_SENSOR_OHMS_1 100 #define MAX31865_CALIBRATION_OHMS_1 430 #endif #if TEMP_SENSOR_IS_MAX_TC(2) #define MAX31865_SENSOR_OHMS_2 100 #define MAX31865_CALIBRATION_OHMS_2 430 #endif #if HAS_E_TEMP_SENSOR #define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109 #define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target #endif #if TEMP_SENSOR_BED #define TEMP_BED_RESIDENCY_TIME 10 // (seconds) Time to wait for bed to "settle" in M190 #define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target #endif #if TEMP_SENSOR_CHAMBER #define TEMP_CHAMBER_RESIDENCY_TIME 10 // (seconds) Time to wait for chamber to "settle" in M191 #define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target #endif /** * Redundant Temperature Sensor (TEMP_SENSOR_REDUNDANT) * * Use a temp sensor as a redundant sensor for another reading. Select an unused temperature sensor, and another * sensor you'd like it to be redundant for. If the two thermistors differ by TEMP_SENSOR_REDUNDANT_MAX_DIFF (°C), * the print will be aborted. Whichever sensor is selected will have its normal functions disabled; i.e. selecting * the Bed sensor (-1) will disable bed heating/monitoring. * * For selecting source/target use: COOLER, PROBE, BOARD, CHAMBER, BED, E0, E1, E2, E3, E4, E5, E6, E7 */ #if TEMP_SENSOR_REDUNDANT #define TEMP_SENSOR_REDUNDANT_SOURCE E1 // The sensor that will provide the redundant reading. #define TEMP_SENSOR_REDUNDANT_TARGET E0 // The sensor that we are providing a redundant reading for. #define TEMP_SENSOR_REDUNDANT_MAX_DIFF 10 // (°C) Temperature difference that will trigger a print abort. #endif // Below this temperature the heater will be switched off // because it probably indicates a broken thermistor wire. #define HEATER_0_MINTEMP 5 #define HEATER_1_MINTEMP 5 #define HEATER_2_MINTEMP 5 #define HEATER_3_MINTEMP 5 #define HEATER_4_MINTEMP 5 #define HEATER_5_MINTEMP 5 #define HEATER_6_MINTEMP 5 #define HEATER_7_MINTEMP 5 #define BED_MINTEMP 5 #define CHAMBER_MINTEMP 5 // Above this temperature the heater will be switched off. // This can protect components from overheating, but NOT from shorts and failures. // (Use MINTEMP for thermistor short/failure protection.) #define HEATER_0_MAXTEMP 275 #define HEATER_1_MAXTEMP 275 #define HEATER_2_MAXTEMP 275 #define HEATER_3_MAXTEMP 275 #define HEATER_4_MAXTEMP 275 #define HEATER_5_MAXTEMP 275 #define HEATER_6_MAXTEMP 275 #define HEATER_7_MAXTEMP 275 #define BED_MAXTEMP 150 #define CHAMBER_MAXTEMP 60 /** * Thermal Overshoot * During heatup (and printing) the temperature can often "overshoot" the target by many degrees * (especially before PID tuning). Setting the target temperature too close to MAXTEMP guarantees * a MAXTEMP shutdown! Use these values to forbid temperatures being set too close to MAXTEMP. */ #define HOTEND_OVERSHOOT 15 // (°C) Forbid temperatures over MAXTEMP - OVERSHOOT #define BED_OVERSHOOT 10 // (°C) Forbid temperatures over MAXTEMP - OVERSHOOT #define COOLER_OVERSHOOT 2 // (°C) Forbid temperatures closer than OVERSHOOT //=========================================================================== //============================= PID Settings ================================ //=========================================================================== // @section hotend temp /** * Temperature Control * * (NONE) : Bang-bang heating * PIDTEMP : PID temperature control (~4.1K) * MPCTEMP : Predictive Model temperature control. (~1.8K without auto-tune) */ #define PIDTEMP // See the PID Tuning Guide at https://reprap.org/wiki/PID_Tuning //#define MPCTEMP // ** EXPERIMENTAL ** See https://marlinfw.org/docs/features/model_predictive_control.html #define PID_MAX 255 // Limit hotend current while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current #define PID_K1 0.95 // Smoothing factor within any PID loop #if ENABLED(PIDTEMP) //#define PID_DEBUG // Print PID debug data to the serial port. Use 'M303 D' to toggle activation. //#define PID_PARAMS_PER_HOTEND // Use separate PID parameters for each extruder (useful for mismatched extruders) // Set/get with G-code: M301 E[extruder number, 0-2] #if ENABLED(PID_PARAMS_PER_HOTEND) // Specify up to one value per hotend here, according to your setup. // If there are fewer values, the last one applies to the remaining hotends. #define DEFAULT_Kp_LIST { 22.20, 22.20 } #define DEFAULT_Ki_LIST { 1.08, 1.08 } #define DEFAULT_Kd_LIST { 114.00, 114.00 } #else #define DEFAULT_Kp 22.20 #define DEFAULT_Ki 1.08 #define DEFAULT_Kd 114.00 #endif #else #define BANG_MAX 255 // Limit hotend current while in bang-bang mode; 255=full current #endif /** * Model Predictive Control for hotend * * Use a physical model of the hotend to control temperature. When configured correctly this gives * better responsiveness and stability than PID and removes the need for PID_EXTRUSION_SCALING * and PID_FAN_SCALING. Enable MPC_AUTOTUNE and use M306 T to autotune the model. * @section mpctemp */ #if ENABLED(MPCTEMP) #define MPC_AUTOTUNE // Include a method to do MPC auto-tuning (~6.3K bytes of flash) //#define MPC_EDIT_MENU // Add MPC editing to the "Advanced Settings" menu. (~1.3K bytes of flash) //#define MPC_AUTOTUNE_MENU // Add MPC auto-tuning to the "Advanced Settings" menu. (~350 bytes of flash) #define MPC_MAX 255 // (0..255) Current to nozzle while MPC is active. #define MPC_HEATER_POWER { 40.0f } // (W) Heat cartridge powers. #define MPC_INCLUDE_FAN // Model the fan speed? // Measured physical constants from M306 #define MPC_BLOCK_HEAT_CAPACITY { 16.7f } // (J/K) Heat block heat capacities. #define MPC_SENSOR_RESPONSIVENESS { 0.22f } // (K/s per ∆K) Rate of change of sensor temperature from heat block. #define MPC_AMBIENT_XFER_COEFF { 0.068f } // (W/K) Heat transfer coefficients from heat block to room air with fan off. #if ENABLED(MPC_INCLUDE_FAN) #define MPC_AMBIENT_XFER_COEFF_FAN255 { 0.097f } // (W/K) Heat transfer coefficients from heat block to room air with fan on full. #endif // For one fan and multiple hotends MPC needs to know how to apply the fan cooling effect. #if ENABLED(MPC_INCLUDE_FAN) //#define MPC_FAN_0_ALL_HOTENDS //#define MPC_FAN_0_ACTIVE_HOTEND #endif // Filament Heat Capacity (joules/kelvin/mm) // Set at runtime with M306 H<value> #define FILAMENT_HEAT_CAPACITY_PERMM { 5.6e-3f } // 0.0056 J/K/mm for 1.75mm PLA (0.0149 J/K/mm for 2.85mm PLA). // 0.0036 J/K/mm for 1.75mm PETG (0.0094 J/K/mm for 2.85mm PETG). // 0.00515 J/K/mm for 1.75mm ABS (0.0137 J/K/mm for 2.85mm ABS). // 0.00522 J/K/mm for 1.75mm Nylon (0.0138 J/K/mm for 2.85mm Nylon). // Advanced options #define MPC_SMOOTHING_FACTOR 0.5f // (0.0...1.0) Noisy temperature sensors may need a lower value for stabilization. #define MPC_MIN_AMBIENT_CHANGE 1.0f // (K/s) Modeled ambient temperature rate of change, when correcting model inaccuracies. #define MPC_STEADYSTATE 0.5f // (K/s) Temperature change rate for steady state logic to be enforced. #define MPC_TUNING_POS { X_CENTER, Y_CENTER, 1.0f } // (mm) M306 Autotuning position, ideally bed center at first layer height. #define MPC_TUNING_END_Z 10.0f // (mm) M306 Autotuning final Z position. #endif //=========================================================================== //====================== PID > Bed Temperature Control ====================== //=========================================================================== // @section bed temp /** * Max Bed Power * Applies to all forms of bed control (PID, bang-bang, and bang-bang with hysteresis). * When set to any value below 255, enables a form of PWM to the bed that acts like a divider * so don't use it unless you are OK with PWM on your bed. (See the comment on enabling PIDTEMPBED) */ #define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current /** * PID Bed Heating * * The PID frequency will be the same as the extruder PWM. * If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz, * which is fine for driving a square wave into a resistive load and does not significantly * impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W * heater. If your configuration is significantly different than this and you don't understand * the issues involved, don't use bed PID until someone else verifies that your hardware works. * * With this option disabled, bang-bang will be used. BED_LIMIT_SWITCHING enables hysteresis. */ //#define PIDTEMPBED #if ENABLED(PIDTEMPBED) //#define MIN_BED_POWER 0 //#define PID_BED_DEBUG // Print Bed PID debug data to the serial port. // 120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+) // from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10) #define DEFAULT_bedKp 10.00 #define DEFAULT_bedKi .023 #define DEFAULT_bedKd 305.4 // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles. #else //#define BED_LIMIT_SWITCHING // Keep the bed temperature within BED_HYSTERESIS of the target #endif // Add 'M190 R T' for more gradual M190 R bed cooling. //#define BED_ANNEALING_GCODE //=========================================================================== //==================== PID > Chamber Temperature Control ==================== //=========================================================================== /** * PID Chamber Heating * * If this option is enabled set PID constants below. * If this option is disabled, bang-bang will be used and CHAMBER_LIMIT_SWITCHING will enable * hysteresis. * * The PID frequency will be the same as the extruder PWM. * If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz, * which is fine for driving a square wave into a resistive load and does not significantly * impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 200W * heater. If your configuration is significantly different than this and you don't understand * the issues involved, don't use chamber PID until someone else verifies that your hardware works. * @section chamber temp */ //#define PIDTEMPCHAMBER //#define CHAMBER_LIMIT_SWITCHING /** * Max Chamber Power * Applies to all forms of chamber control (PID, bang-bang, and bang-bang with hysteresis). * When set to any value below 255, enables a form of PWM to the chamber heater that acts like a divider * so don't use it unless you are OK with PWM on your heater. (See the comment on enabling PIDTEMPCHAMBER) */ #define MAX_CHAMBER_POWER 255 // limits duty cycle to chamber heater; 255=full current #if ENABLED(PIDTEMPCHAMBER) #define MIN_CHAMBER_POWER 0 //#define PID_CHAMBER_DEBUG // Print Chamber PID debug data to the serial port. // Lasko "MyHeat Personal Heater" (200w) modified with a Fotek SSR-10DA to control only the heating element // and placed inside the small Creality printer enclosure tent. // #define DEFAULT_chamberKp 37.04 #define DEFAULT_chamberKi 1.40 #define DEFAULT_chamberKd 655.17 // M309 P37.04 I1.04 D655.17 // FIND YOUR OWN: "M303 E-2 C8 S50" to run autotune on the chamber at 50 degreesC for 8 cycles. #endif // PIDTEMPCHAMBER #if ANY(PIDTEMP, PIDTEMPBED, PIDTEMPCHAMBER) //#define PID_OPENLOOP // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX //#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature // is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. //#define PID_EDIT_MENU // Add PID editing to the "Advanced Settings" menu. (~700 bytes of flash) //#define PID_AUTOTUNE_MENU // Add PID auto-tuning to the "Advanced Settings" menu. (~250 bytes of flash) #endif // @section safety /** * Prevent extrusion if the temperature is below EXTRUDE_MINTEMP. * Add M302 to set the minimum extrusion temperature and/or turn * cold extrusion prevention on and off. * * *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! *** */ #define PREVENT_COLD_EXTRUSION #define EXTRUDE_MINTEMP 170 /** * Prevent a single extrusion longer than EXTRUDE_MAXLENGTH. * Note: For Bowden Extruders make this large enough to allow load/unload. */ #define PREVENT_LENGTHY_EXTRUDE #define EXTRUDE_MAXLENGTH 200 //=========================================================================== //======================== Thermal Runaway Protection ======================= //=========================================================================== /** * Thermal Protection provides additional protection to your printer from damage * and fire. Marlin always includes safe min and max temperature ranges which * protect against a broken or disconnected thermistor wire. * * The issue: If a thermistor falls out, it will report the much lower * temperature of the air in the room, and the the firmware will keep * the heater on. * * If you get "Thermal Runaway" or "Heating failed" errors the * details can be tuned in Configuration_adv.h */ #define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders #define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed #define THERMAL_PROTECTION_CHAMBER // Enable thermal protection for the heated chamber #define THERMAL_PROTECTION_COOLER // Enable thermal protection for the laser cooling //=========================================================================== //============================= Mechanical Settings ========================= //=========================================================================== // @section machine // Enable one of the options below for CoreXY, CoreXZ, or CoreYZ kinematics, // either in the usual order or reversed //#define COREXY //#define COREXZ //#define COREYZ //#define COREYX //#define COREZX //#define COREZY // // MarkForged Kinematics // See https://reprap.org/forum/read.php?152,504042 // //#define MARKFORGED_XY //#define MARKFORGED_YX #if ANY(MARKFORGED_XY, MARKFORGED_YX) //#define MARKFORGED_INVERSE // Enable for an inverted Markforged kinematics belt path #endif // Enable for a belt style printer with endless "Z" motion //#define BELTPRINTER // Enable for Polargraph Kinematics //#define POLARGRAPH #if ENABLED(POLARGRAPH) #define POLARGRAPH_MAX_BELT_LEN 1035.0 // (mm) Belt length at full extension. Override with M665 H. #define DEFAULT_SEGMENTS_PER_SECOND 5 // Move segmentation based on duration #define PEN_UP_DOWN_MENU // Add "Pen Up" and "Pen Down" to the MarlinUI menu #endif // @section delta // Enable for DELTA kinematics and configure below //#define DELTA #if ENABLED(DELTA) // Make delta curves from many straight lines (linear interpolation). // This is a trade-off between visible corners (not enough segments) // and processor overload (too many expensive sqrt calls). #define DEFAULT_SEGMENTS_PER_SECOND 200 // After homing move down to a height where XY movement is unconstrained //#define DELTA_HOME_TO_SAFE_ZONE // Delta calibration menu // Add three-point calibration to the MarlinUI menu. // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU // G33 Delta Auto-Calibration. Enable EEPROM_SETTINGS to store results. //#define DELTA_AUTO_CALIBRATION #if ENABLED(DELTA_AUTO_CALIBRATION) // Default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 #endif #if ANY(DELTA_AUTO_CALIBRATION, DELTA_CALIBRATION_MENU) // Step size for paper-test probing #define PROBE_MANUALLY_STEP 0.05 // (mm) #endif // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define PRINTABLE_RADIUS 140.0 // (mm) // Maximum reachable area #define DELTA_MAX_RADIUS 140.0 // (mm) // Center-to-center distance of the holes in the diagonal push rods. #define DELTA_DIAGONAL_ROD 250.0 // (mm) // Distance between bed and nozzle Z home position #define DELTA_HEIGHT 250.00 // (mm) Get this value from G33 auto calibrate #define DELTA_ENDSTOP_ADJ { 0.0, 0.0, 0.0 } // (mm) Get these values from G33 auto calibrate // Horizontal distance bridged by diagonal push rods when effector is centered. #define DELTA_RADIUS 124.0 // (mm) Get this value from G33 auto calibrate // Trim adjustments for individual towers // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 // measured in degrees anticlockwise looking from above the printer #define DELTA_TOWER_ANGLE_TRIM { 0.0, 0.0, 0.0 } // (mm) Get these values from G33 auto calibrate // Delta radius and diagonal rod adjustments //#define DELTA_RADIUS_TRIM_TOWER { 0.0, 0.0, 0.0 } // (mm) //#define DELTA_DIAGONAL_ROD_TRIM_TOWER { 0.0, 0.0, 0.0 } // (mm) #endif // @section scara /** * MORGAN_SCARA was developed by QHARLEY in South Africa in 2012-2013. * Implemented and slightly reworked by JCERNY in June, 2014. * * Mostly Printed SCARA is an open source design by Tyler Williams. See: * https://www.thingiverse.com/thing:2487048 * https://www.thingiverse.com/thing:1241491 */ //#define MORGAN_SCARA //#define MP_SCARA #if ANY(MORGAN_SCARA, MP_SCARA) // If movement is choppy try lowering this value #define DEFAULT_SEGMENTS_PER_SECOND 200 // Length of inner and outer support arms. Measure arm lengths precisely. #define SCARA_LINKAGE_1 150 // (mm) #define SCARA_LINKAGE_2 150 // (mm) // SCARA tower offset (position of Tower relative to bed zero position) // This needs to be reasonably accurate as it defines the printbed position in the SCARA space. #define SCARA_OFFSET_X 100 // (mm) #define SCARA_OFFSET_Y -56 // (mm) #if ENABLED(MORGAN_SCARA) //#define DEBUG_SCARA_KINEMATICS #define FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly // Radius around the center where the arm cannot reach #define MIDDLE_DEAD_ZONE_R 0 // (mm) #elif ENABLED(MP_SCARA) #define SCARA_OFFSET_THETA1 12 // degrees #define SCARA_OFFSET_THETA2 131 // degrees #endif #endif // @section tpara // Enable for TPARA kinematics and configure below //#define AXEL_TPARA #if ENABLED(AXEL_TPARA) #define DEBUG_TPARA_KINEMATICS #define DEFAULT_SEGMENTS_PER_SECOND 200 // Length of inner and outer support arms. Measure arm lengths precisely. #define TPARA_LINKAGE_1 120 // (mm) #define TPARA_LINKAGE_2 120 // (mm) // TPARA tower offset (position of Tower relative to bed zero position) // This needs to be reasonably accurate as it defines the printbed position in the TPARA space. #define TPARA_OFFSET_X 0 // (mm) #define TPARA_OFFSET_Y 0 // (mm) #define TPARA_OFFSET_Z 0 // (mm) #define FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly // Radius around the center where the arm cannot reach #define MIDDLE_DEAD_ZONE_R 0 // (mm) #endif // @section polar /** * POLAR Kinematics * developed by Kadir ilkimen for PolarBear CNC and babyBear * https://github.com/kadirilkimen/Polar-Bear-Cnc-Machine * https://github.com/kadirilkimen/babyBear-3D-printer * * A polar machine can have different configurations. * This kinematics is only compatible with the following configuration: * X : Independent linear * Y or B : Polar * Z : Independent linear * * For example, PolarBear has CoreXZ plus Polar Y or B. * * Motion problem for Polar axis near center / origin: * * 3D printing: * Movements very close to the center of the polar axis take more time than others. * This brief delay results in more material deposition due to the pressure in the nozzle. * * Current Kinematics and feedrate scaling deals with this by making the movement as fast * as possible. It works for slow movements but doesn't work well with fast ones. A more * complicated extrusion compensation must be implemented. * * Ideally, it should estimate that a long rotation near the center is ahead and will cause * unwanted deposition. Therefore it can compensate the extrusion beforehand. * * Laser cutting: * Same thing would be a problem for laser engraving too. As it spends time rotating at the * center point, more likely it will burn more material than it should. Therefore similar * compensation would be implemented for laser-cutting operations. * * Milling: * This shouldn't be a problem for cutting/milling operations. */ //#define POLAR #if ENABLED(POLAR) #define DEFAULT_SEGMENTS_PER_SECOND 180 // If movement is choppy try lowering this value #define PRINTABLE_RADIUS 82.0f // (mm) Maximum travel of X axis // Movements fall inside POLAR_FAST_RADIUS are assigned the highest possible feedrate // to compensate unwanted deposition related to the near-origin motion problem. #define POLAR_FAST_RADIUS 3.0f // (mm) // Radius which is unreachable by the tool. // Needed if the tool is not perfectly aligned to the center of the polar axis. #define POLAR_CENTER_OFFSET 0.0f // (mm) #define FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly #endif // @section machine // Articulated robot (arm). Joints are directly mapped to axes with no kinematics. //#define ARTICULATED_ROBOT_ARM // For a hot wire cutter with parallel horizontal axes (X, I) where the heights of the two wire // ends are controlled by parallel axes (Y, J). Joints are directly mapped to axes (no kinematics). //#define FOAMCUTTER_XYUV //=========================================================================== //============================== Endstop Settings =========================== //=========================================================================== // @section endstops // Enable pullup for all endstops to prevent a floating state #define ENDSTOPPULLUPS #if DISABLED(ENDSTOPPULLUPS) // Disable ENDSTOPPULLUPS to set pullups individually //#define ENDSTOPPULLUP_XMIN //#define ENDSTOPPULLUP_YMIN //#define ENDSTOPPULLUP_ZMIN //#define ENDSTOPPULLUP_IMIN //#define ENDSTOPPULLUP_JMIN //#define ENDSTOPPULLUP_KMIN //#define ENDSTOPPULLUP_UMIN //#define ENDSTOPPULLUP_VMIN //#define ENDSTOPPULLUP_WMIN //#define ENDSTOPPULLUP_XMAX //#define ENDSTOPPULLUP_YMAX //#define ENDSTOPPULLUP_ZMAX //#define ENDSTOPPULLUP_IMAX //#define ENDSTOPPULLUP_JMAX //#define ENDSTOPPULLUP_KMAX //#define ENDSTOPPULLUP_UMAX //#define ENDSTOPPULLUP_VMAX //#define ENDSTOPPULLUP_WMAX //#define ENDSTOPPULLUP_ZMIN_PROBE #endif // Enable pulldown for all endstops to prevent a floating state //#define ENDSTOPPULLDOWNS #if DISABLED(ENDSTOPPULLDOWNS) // Disable ENDSTOPPULLDOWNS to set pulldowns individually //#define ENDSTOPPULLDOWN_XMIN //#define ENDSTOPPULLDOWN_YMIN //#define ENDSTOPPULLDOWN_ZMIN //#define ENDSTOPPULLDOWN_IMIN //#define ENDSTOPPULLDOWN_JMIN //#define ENDSTOPPULLDOWN_KMIN //#define ENDSTOPPULLDOWN_UMIN //#define ENDSTOPPULLDOWN_VMIN //#define ENDSTOPPULLDOWN_WMIN //#define ENDSTOPPULLDOWN_XMAX //#define ENDSTOPPULLDOWN_YMAX //#define ENDSTOPPULLDOWN_ZMAX //#define ENDSTOPPULLDOWN_IMAX //#define ENDSTOPPULLDOWN_JMAX //#define ENDSTOPPULLDOWN_KMAX //#define ENDSTOPPULLDOWN_UMAX //#define ENDSTOPPULLDOWN_VMAX //#define ENDSTOPPULLDOWN_WMAX //#define ENDSTOPPULLDOWN_ZMIN_PROBE #endif /** * Endstop "Hit" State * Set to the state (HIGH or LOW) that applies to each endstop. */ #define X_MIN_ENDSTOP_HIT_STATE HIGH #define X_MAX_ENDSTOP_HIT_STATE HIGH #define Y_MIN_ENDSTOP_HIT_STATE HIGH #define Y_MAX_ENDSTOP_HIT_STATE HIGH #define Z_MIN_ENDSTOP_HIT_STATE HIGH #define Z_MAX_ENDSTOP_HIT_STATE HIGH #define I_MIN_ENDSTOP_HIT_STATE HIGH #define I_MAX_ENDSTOP_HIT_STATE HIGH #define J_MIN_ENDSTOP_HIT_STATE HIGH #define J_MAX_ENDSTOP_HIT_STATE HIGH #define K_MIN_ENDSTOP_HIT_STATE HIGH #define K_MAX_ENDSTOP_HIT_STATE HIGH #define U_MIN_ENDSTOP_HIT_STATE HIGH #define U_MAX_ENDSTOP_HIT_STATE HIGH #define V_MIN_ENDSTOP_HIT_STATE HIGH #define V_MAX_ENDSTOP_HIT_STATE HIGH #define W_MIN_ENDSTOP_HIT_STATE HIGH #define W_MAX_ENDSTOP_HIT_STATE HIGH #define Z_MIN_PROBE_ENDSTOP_HIT_STATE HIGH // Enable this feature if all enabled endstop pins are interrupt-capable. // This will remove the need to poll the interrupt pins, saving many CPU cycles. //#define ENDSTOP_INTERRUPTS_FEATURE /** * Endstop Noise Threshold * * Enable if your probe or endstops falsely trigger due to noise. * * - Higher values may affect repeatability or accuracy of some bed probes. * - To fix noise install a 100nF ceramic capacitor in parallel with the switch. * - This feature is not required for common micro-switches mounted on PCBs * based on the Makerbot design, which already have the 100nF capacitor. * * :[2,3,4,5,6,7] */ //#define ENDSTOP_NOISE_THRESHOLD 2 // Check for stuck or disconnected endstops during homing moves. //#define DETECT_BROKEN_ENDSTOP //============================================================================= //============================== Movement Settings ============================ //============================================================================= // @section motion /** * Default Settings * * These settings can be reset by M502 * * Note that if EEPROM is enabled, saved values will override these. */ /** * With this option each E stepper can have its own factors for the * following movement settings. If fewer factors are given than the * total number of extruders, the last value applies to the rest. */ //#define DISTINCT_E_FACTORS /** * Default Axis Steps Per Unit (linear=steps/mm, rotational=steps/°) * Override with M92 (when enabled below) * X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]] */ #define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 500 } /** * Enable support for M92. Disable to save at least ~530 bytes of flash. */ #define EDITABLE_STEPS_PER_UNIT /** * Default Max Feed Rate (linear=mm/s, rotational=°/s) * Override with M203 * X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]] */ #define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 } //#define LIMITED_MAX_FR_EDITING // Limit edit via M203 or LCD to DEFAULT_MAX_FEEDRATE * 2 #if ENABLED(LIMITED_MAX_FR_EDITING) #define MAX_FEEDRATE_EDIT_VALUES { 600, 600, 10, 50 } // ...or, set your own edit limits #endif /** * Default Max Acceleration (speed change with time) (linear=mm/(s^2), rotational=°/(s^2)) * (Maximum start speed for accelerated moves) * Override with M201 * X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]] */ #define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 } //#define LIMITED_MAX_ACCEL_EDITING // Limit edit via M201 or LCD to DEFAULT_MAX_ACCELERATION * 2 #if ENABLED(LIMITED_MAX_ACCEL_EDITING) #define MAX_ACCEL_EDIT_VALUES { 6000, 6000, 200, 20000 } // ...or, set your own edit limits #endif /** * Default Acceleration (speed change with time) (linear=mm/(s^2), rotational=°/(s^2)) * Override with M204 * * M204 P Acceleration * M204 R Retract Acceleration * M204 T Travel Acceleration */ #define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves #define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts #define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves /** * Default Jerk limits (mm/s) * Override with M205 X Y Z . . . E * * "Jerk" specifies the minimum speed change that requires acceleration. * When changing speed and direction, if the difference is less than the * value set here, it may happen instantaneously. */ //#define CLASSIC_JERK #if ENABLED(CLASSIC_JERK) #define DEFAULT_XJERK 10.0 #define DEFAULT_YJERK 10.0 #define DEFAULT_ZJERK 0.3 #define DEFAULT_EJERK 5.0 //#define DEFAULT_IJERK 0.3 //#define DEFAULT_JJERK 0.3 //#define DEFAULT_KJERK 0.3 //#define DEFAULT_UJERK 0.3 //#define DEFAULT_VJERK 0.3 //#define DEFAULT_WJERK 0.3 //#define TRAVEL_EXTRA_XYJERK 0.0 // Additional jerk allowance for all travel moves //#define LIMITED_JERK_EDITING // Limit edit via M205 or LCD to DEFAULT_aJERK * 2 #if ENABLED(LIMITED_JERK_EDITING) #define MAX_JERK_EDIT_VALUES { 20, 20, 0.6, 10 } // ...or, set your own edit limits #endif #endif /** * Junction Deviation Factor * * See: * https://reprap.org/forum/read.php?1,739819 * https://blog.kyneticcnc.com/2018/10/computing-junction-deviation-for-marlin.html */ #if DISABLED(CLASSIC_JERK) #define JUNCTION_DEVIATION_MM 0.013 // (mm) Distance from real junction edge #define JD_HANDLE_SMALL_SEGMENTS // Use curvature estimation instead of just the junction angle // for small segments (< 1mm) with large junction angles (> 135°). #endif /** * S-Curve Acceleration * * This option eliminates vibration during printing by fitting a Bézier * curve to move acceleration, producing much smoother direction changes. * * See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained */ //#define S_CURVE_ACCELERATION //=========================================================================== //============================= Z Probe Options ============================= //=========================================================================== // @section probes // // See https://marlinfw.org/docs/configuration/probes.html // /** * Enable this option for a probe connected to the Z-MIN pin. * The probe replaces the Z-MIN endstop and is used for Z homing. * (Automatically enables USE_PROBE_FOR_Z_HOMING.) */ #define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN // Force the use of the probe for Z-axis homing //#define USE_PROBE_FOR_Z_HOMING /** * Z_MIN_PROBE_PIN * * Override this pin only if the probe cannot be connected to * the default Z_MIN_PROBE_PIN for the selected MOTHERBOARD. * * - The simplest option is to use a free endstop connector. * - Use 5V for powered (usually inductive) sensors. * * - For simple switches... * - Normally-closed (NC) also connect to GND. * - Normally-open (NO) also connect to 5V. */ //#define Z_MIN_PROBE_PIN -1 /** * Probe Type * * Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc. * Activate one of these to use Auto Bed Leveling below. */ /** * The "Manual Probe" provides a means to do "Auto" Bed Leveling without a probe. * Use G29 repeatedly, adjusting the Z height at each point with movement commands * or (with LCD_BED_LEVELING) the LCD controller. */ //#define PROBE_MANUALLY /** * A Fix-Mounted Probe either doesn't deploy or needs manual deployment. * (e.g., an inductive probe or a nozzle-based probe-switch.) */ //#define FIX_MOUNTED_PROBE /** * Use the nozzle as the probe, as with a conductive * nozzle system or a piezo-electric smart effector. */ //#define NOZZLE_AS_PROBE /** * Z Servo Probe, such as an endstop switch on a rotating arm. */ //#define Z_PROBE_SERVO_NR 0 #ifdef Z_PROBE_SERVO_NR //#define Z_SERVO_ANGLES { 70, 0 } // Z Servo Deploy and Stow angles //#define Z_SERVO_MEASURE_ANGLE 45 // Use if the servo must move to a "free" position for measuring after deploy //#define Z_SERVO_INTERMEDIATE_STOW // Stow the probe between points //#define Z_SERVO_DEACTIVATE_AFTER_STOW // Deactivate the servo when probe is stowed #endif /** * The BLTouch probe uses a Hall effect sensor and emulates a servo. */ //#define BLTOUCH /** * MagLev V4 probe by MDD * * This probe is deployed and activated by powering a built-in electromagnet. */ //#define MAGLEV4 #if ENABLED(MAGLEV4) //#define MAGLEV_TRIGGER_PIN 11 // Set to the connected digital output #define MAGLEV_TRIGGER_DELAY 15 // Changing this risks overheating the coil #endif /** * Touch-MI Probe by hotends.fr * * This probe is deployed and activated by moving the X-axis to a magnet at the edge of the bed. * By default, the magnet is assumed to be on the left and activated by a home. If the magnet is * on the right, enable and set TOUCH_MI_DEPLOY_XPOS to the deploy position. * * Also requires: BABYSTEPPING, BABYSTEP_ZPROBE_OFFSET, Z_SAFE_HOMING, * and a minimum Z_CLEARANCE_FOR_HOMING of 10. */ //#define TOUCH_MI_PROBE #if ENABLED(TOUCH_MI_PROBE) #define TOUCH_MI_RETRACT_Z 0.5 // Height at which the probe retracts //#define TOUCH_MI_DEPLOY_XPOS (X_MAX_BED + 2) // For a magnet on the right side of the bed //#define TOUCH_MI_MANUAL_DEPLOY // For manual deploy (LCD menu) #endif /** * Bed Distance Sensor * * Measures the distance from bed to nozzle with accuracy of 0.01mm. * For information about this sensor https://github.com/markniu/Bed_Distance_sensor * Uses I2C port, so it requires I2C library markyue/Panda_SoftMasterI2C. */ //#define BD_SENSOR #if ENABLED(BD_SENSOR) //#define BD_SENSOR_PROBE_NO_STOP // Probe bed without stopping at each probe point #endif /** * BIQU MicroProbe * * A lightweight, solenoid-driven probe. * For information about this sensor https://github.com/bigtreetech/MicroProbe * * Also requires: PROBE_ENABLE_DISABLE */ //#define BIQU_MICROPROBE_V1 // Triggers HIGH //#define BIQU_MICROPROBE_V2 // Triggers LOW // A probe that is deployed and stowed with a solenoid pin (SOL1_PIN) //#define SOLENOID_PROBE // A sled-mounted probe like those designed by Charles Bell. //#define Z_PROBE_SLED //#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like. // A probe deployed by moving the x-axis, such as the Wilson II's rack-and-pinion probe designed by Marty Rice. //#define RACK_AND_PINION_PROBE #if ENABLED(RACK_AND_PINION_PROBE) #define Z_PROBE_DEPLOY_X X_MIN_POS #define Z_PROBE_RETRACT_X X_MAX_POS #endif /** * Magnetically Mounted Probe * For probes such as Euclid, Klicky, Klackender, etc. */ //#define MAG_MOUNTED_PROBE #if ENABLED(MAG_MOUNTED_PROBE) #define PROBE_DEPLOY_FEEDRATE (133*60) // (mm/min) Probe deploy speed #define PROBE_STOW_FEEDRATE (133*60) // (mm/min) Probe stow speed #define MAG_MOUNTED_DEPLOY_1 { PROBE_DEPLOY_FEEDRATE, { 245, 114, 30 } } // Move to side Dock & Attach probe #define MAG_MOUNTED_DEPLOY_2 { PROBE_DEPLOY_FEEDRATE, { 210, 114, 30 } } // Move probe off dock #define MAG_MOUNTED_DEPLOY_3 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed #define MAG_MOUNTED_DEPLOY_4 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed #define MAG_MOUNTED_DEPLOY_5 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed #define MAG_MOUNTED_STOW_1 { PROBE_STOW_FEEDRATE, { 245, 114, 20 } } // Move to dock #define MAG_MOUNTED_STOW_2 { PROBE_STOW_FEEDRATE, { 245, 114, 0 } } // Place probe beside remover #define MAG_MOUNTED_STOW_3 { PROBE_STOW_FEEDRATE, { 230, 114, 0 } } // Side move to remove probe #define MAG_MOUNTED_STOW_4 { PROBE_STOW_FEEDRATE, { 210, 114, 20 } } // Side move to remove probe #define MAG_MOUNTED_STOW_5 { PROBE_STOW_FEEDRATE, { 0, 0, 0 } } // Extra move if needed #endif // Duet Smart Effector (for delta printers) - https://docs.duet3d.com/en/Duet3D_hardware/Accessories/Smart_Effector // When the pin is defined you can use M672 to set/reset the probe sensitivity. //#define DUET_SMART_EFFECTOR #if ENABLED(DUET_SMART_EFFECTOR) #define SMART_EFFECTOR_MOD_PIN -1 // Connect a GPIO pin to the Smart Effector MOD pin #endif /** * Use StallGuard2 to probe the bed with the nozzle. * Requires stallGuard-capable Trinamic stepper drivers. * CAUTION: This can damage machines with Z lead screws. * Take extreme care when setting up this feature. */ //#define SENSORLESS_PROBING /** * Allen key retractable z-probe as seen on many Kossel delta printers - https://reprap.org/wiki/Kossel#Autolevel_probe * Deploys by touching z-axis belt. Retracts by pushing the probe down. */ //#define Z_PROBE_ALLEN_KEY #if ENABLED(Z_PROBE_ALLEN_KEY) // 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29, // if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe. #define Z_PROBE_ALLEN_KEY_DEPLOY_1 { 30.0, PRINTABLE_RADIUS, 100.0 } #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_2 { 0.0, PRINTABLE_RADIUS, 100.0 } #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_PROBE_FEEDRATE)/10 #define Z_PROBE_ALLEN_KEY_DEPLOY_3 { 0.0, (PRINTABLE_RADIUS) * 0.75, 100.0 } #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE XY_PROBE_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_1 { -64.0, 56.0, 23.0 } // Move the probe into position #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_2 { -64.0, 56.0, 3.0 } // Push it down #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_FEEDRATE)/10 #define Z_PROBE_ALLEN_KEY_STOW_3 { -64.0, 56.0, 50.0 } // Move it up to clear #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE XY_PROBE_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_4 { 0.0, 0.0, 50.0 } #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE XY_PROBE_FEEDRATE #endif // Z_PROBE_ALLEN_KEY /** * Nozzle-to-Probe offsets { X, Y, Z } * * X and Y offset * Use a caliper or ruler to measure the distance from the tip of * the Nozzle to the center-point of the Probe in the X and Y axes. * * Z offset * - For the Z offset use your best known value and adjust at runtime. * - Common probes trigger below the nozzle and have negative values for Z offset. * - Probes triggering above the nozzle height are uncommon but do exist. When using * probes such as this, carefully set Z_CLEARANCE_DEPLOY_PROBE and Z_CLEARANCE_BETWEEN_PROBES * to avoid collisions during probing. * * Tune and Adjust * - Probe Offsets can be tuned at runtime with 'M851', LCD menus, babystepping, etc. * - PROBE_OFFSET_WIZARD (Configuration_adv.h) can be used for setting the Z offset. * * Assuming the typical work area orientation: * - Probe to RIGHT of the Nozzle has a Positive X offset * - Probe to LEFT of the Nozzle has a Negative X offset * - Probe in BACK of the Nozzle has a Positive Y offset * - Probe in FRONT of the Nozzle has a Negative Y offset * * Some examples: * #define NOZZLE_TO_PROBE_OFFSET { 10, 10, -1 } // Example "1" * #define NOZZLE_TO_PROBE_OFFSET {-10, 5, -1 } // Example "2" * #define NOZZLE_TO_PROBE_OFFSET { 5, -5, -1 } // Example "3" * #define NOZZLE_TO_PROBE_OFFSET {-15,-10, -1 } // Example "4" * * +-- BACK ---+ * | [+] | * L | 1 | R <-- Example "1" (right+, back+) * E | 2 | I <-- Example "2" ( left-, back+) * F |[-] N [+]| G <-- Nozzle * T | 3 | H <-- Example "3" (right+, front-) * | 4 | T <-- Example "4" ( left-, front-) * | [-] | * O-- FRONT --+ */ #define NOZZLE_TO_PROBE_OFFSET { 10, 10, 0 } // Enable and set to use a specific tool for probing. Disable to allow any tool. #define PROBING_TOOL 0 #ifdef PROBING_TOOL //#define PROBE_TOOLCHANGE_NO_MOVE // Suppress motion on probe tool-change #endif // Most probes should stay away from the edges of the bed, but // with NOZZLE_AS_PROBE this can be negative for a wider probing area. #define PROBING_MARGIN 10 // X and Y axis travel speed (mm/min) between probes #define XY_PROBE_FEEDRATE (133*60) // Feedrate (mm/min) for the first approach when double-probing (MULTIPLE_PROBING == 2) #define Z_PROBE_FEEDRATE_FAST (4*60) // Feedrate (mm/min) for the "accurate" probe of each point #define Z_PROBE_FEEDRATE_SLOW (Z_PROBE_FEEDRATE_FAST / 2) /** * Probe Activation Switch * A switch indicating proper deployment, or an optical * switch triggered when the carriage is near the bed. */ //#define PROBE_ACTIVATION_SWITCH #if ENABLED(PROBE_ACTIVATION_SWITCH) #define PROBE_ACTIVATION_SWITCH_STATE LOW // State indicating probe is active //#define PROBE_ACTIVATION_SWITCH_PIN PC6 // Override default pin #endif /** * Tare Probe (determine zero-point) prior to each probe. * Useful for a strain gauge or piezo sensor that needs to factor out * elements such as cables pulling on the carriage. */ //#define PROBE_TARE #if ENABLED(PROBE_TARE) #define PROBE_TARE_TIME 200 // (ms) Time to hold tare pin #define PROBE_TARE_DELAY 200 // (ms) Delay after tare before #define PROBE_TARE_STATE HIGH // State to write pin for tare //#define PROBE_TARE_PIN PA5 // Override default pin #if ENABLED(PROBE_ACTIVATION_SWITCH) //#define PROBE_TARE_ONLY_WHILE_INACTIVE // Fail to tare/probe if PROBE_ACTIVATION_SWITCH is active #endif #endif /** * Probe Enable / Disable * The probe only provides a triggered signal when enabled. */ //#define PROBE_ENABLE_DISABLE #if ENABLED(PROBE_ENABLE_DISABLE) //#define PROBE_ENABLE_PIN -1 // Override the default pin here #endif /** * Multiple Probing * * You may get improved results by probing 2 or more times. * With EXTRA_PROBING the more atypical reading(s) will be disregarded. * * A total of 2 does fast/slow probes with a weighted average. * A total of 3 or more adds more slow probes, taking the average. */ //#define MULTIPLE_PROBING 2 //#define EXTRA_PROBING 1 /** * Z probes require clearance when deploying, stowing, and moving between * probe points to avoid hitting the bed and other hardware. * Servo-mounted probes require extra space for the arm to rotate. * Inductive probes need space to keep from triggering early. * * Use these settings to specify the distance (mm) to raise the probe (or * lower the bed). The values set here apply over and above any (negative) * probe Z Offset set with NOZZLE_TO_PROBE_OFFSET, M851, or the LCD. * Only integer values >= 1 are valid here. * * Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle. * But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle. */ #define Z_CLEARANCE_DEPLOY_PROBE 10 // (mm) Z Clearance for Deploy/Stow #define Z_CLEARANCE_BETWEEN_PROBES 5 // (mm) Z Clearance between probe points #define Z_CLEARANCE_MULTI_PROBE 5 // (mm) Z Clearance between multiple probes #define Z_PROBE_ERROR_TOLERANCE 3 // (mm) Tolerance for early trigger (<= -probe.offset.z + ZPET) //#define Z_AFTER_PROBING 5 // (mm) Z position after probing is done #define Z_PROBE_LOW_POINT -2 // (mm) Farthest distance below the trigger-point to go before stopping // For M851 provide ranges for adjusting the X, Y, and Z probe offsets //#define PROBE_OFFSET_XMIN -50 // (mm) //#define PROBE_OFFSET_XMAX 50 // (mm) //#define PROBE_OFFSET_YMIN -50 // (mm) //#define PROBE_OFFSET_YMAX 50 // (mm) //#define PROBE_OFFSET_ZMIN -20 // (mm) //#define PROBE_OFFSET_ZMAX 20 // (mm) // Enable the M48 repeatability test to test probe accuracy //#define Z_MIN_PROBE_REPEATABILITY_TEST // Before deploy/stow pause for user confirmation //#define PAUSE_BEFORE_DEPLOY_STOW #if ENABLED(PAUSE_BEFORE_DEPLOY_STOW) //#define PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED // For Manual Deploy Allenkey Probe #endif /** * Enable one or more of the following if probing seems unreliable. * Heaters and/or fans can be disabled during probing to minimize electrical * noise. A delay can also be added to allow noise and vibration to settle. * These options are most useful for the BLTouch probe, but may also improve * readings with inductive probes and piezo sensors. */ //#define PROBING_HEATERS_OFF // Turn heaters off when probing #if ENABLED(PROBING_HEATERS_OFF) //#define WAIT_FOR_BED_HEATER // Wait for bed to heat back up between probes (to improve accuracy) //#define WAIT_FOR_HOTEND // Wait for hotend to heat back up between probes (to improve accuracy & prevent cold extrude) #endif //#define PROBING_FANS_OFF // Turn fans off when probing //#define PROBING_ESTEPPERS_OFF // Turn all extruder steppers off when probing //#define PROBING_STEPPERS_OFF // Turn all steppers off (unless needed to hold position) when probing (including extruders) //#define DELAY_BEFORE_PROBING 200 // (ms) To prevent vibrations from triggering piezo sensors // Require minimum nozzle and/or bed temperature for probing //#define PREHEAT_BEFORE_PROBING #if ENABLED(PREHEAT_BEFORE_PROBING) #define PROBING_NOZZLE_TEMP 120 // (°C) Only applies to E0 at this time #define PROBING_BED_TEMP 50 #endif // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 // :{ 0:'Low', 1:'High' } #define X_ENABLE_ON 0 #define Y_ENABLE_ON 0 #define Z_ENABLE_ON 0 #define E_ENABLE_ON 0 // For all extruders //#define I_ENABLE_ON 0 //#define J_ENABLE_ON 0 //#define K_ENABLE_ON 0 //#define U_ENABLE_ON 0 //#define V_ENABLE_ON 0 //#define W_ENABLE_ON 0 // Disable axis steppers immediately when they're not being stepped. // WARNING: When motors turn off there is a chance of losing position accuracy! //#define DISABLE_X //#define DISABLE_Y //#define DISABLE_Z //#define DISABLE_I //#define DISABLE_J //#define DISABLE_K //#define DISABLE_U //#define DISABLE_V //#define DISABLE_W // Turn off the display blinking that warns about possible accuracy reduction //#define DISABLE_REDUCED_ACCURACY_WARNING // @section extruder //#define DISABLE_E // Disable the extruder when not stepping #define DISABLE_OTHER_EXTRUDERS // Keep only the active extruder enabled // @section motion // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. #define INVERT_X_DIR false #define INVERT_Y_DIR true #define INVERT_Z_DIR false //#define INVERT_I_DIR false //#define INVERT_J_DIR false //#define INVERT_K_DIR false //#define INVERT_U_DIR false //#define INVERT_V_DIR false //#define INVERT_W_DIR false // @section extruder // For direct drive extruder v9 set to true, for geared extruder set to false. #define INVERT_E0_DIR false #define INVERT_E1_DIR false #define INVERT_E2_DIR false #define INVERT_E3_DIR false #define INVERT_E4_DIR false #define INVERT_E5_DIR false #define INVERT_E6_DIR false #define INVERT_E7_DIR false // @section homing //#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed. Also enable HOME_AFTER_DEACTIVATE for extra safety. //#define HOME_AFTER_DEACTIVATE // Require rehoming after steppers are deactivated. Also enable NO_MOTION_BEFORE_HOMING for extra safety. /** * Set Z_IDLE_HEIGHT if the Z-Axis moves on its own when steppers are disabled. * - Use a low value (i.e., Z_MIN_POS) if the nozzle falls down to the bed. * - Use a large value (i.e., Z_MAX_POS) if the bed falls down, away from the nozzle. */ //#define Z_IDLE_HEIGHT Z_HOME_POS //#define Z_CLEARANCE_FOR_HOMING 4 // (mm) Minimal Z height before homing (G28) for Z clearance above the bed, clamps, ... // You'll need this much clearance above Z_MAX_POS to avoid grinding. //#define Z_AFTER_HOMING 10 // (mm) Height to move to after homing (if Z was homed) //#define XY_AFTER_HOMING { 10, 10 } // (mm) Move to an XY position after homing (and raising Z) //#define EVENT_GCODE_AFTER_HOMING "M300 P440 S200" // Commands to run after G28 (and move to XY_AFTER_HOMING) // Direction of endstops when homing; 1=MAX, -1=MIN // :[-1,1] #define X_HOME_DIR -1 #define Y_HOME_DIR -1 #define Z_HOME_DIR -1 //#define I_HOME_DIR -1 //#define J_HOME_DIR -1 //#define K_HOME_DIR -1 //#define U_HOME_DIR -1 //#define V_HOME_DIR -1 //#define W_HOME_DIR -1 /** * Safety Stops * If an axis has endstops on both ends the one specified above is used for * homing, while the other can be used for things like SD_ABORT_ON_ENDSTOP_HIT. */ //#define X_SAFETY_STOP //#define Y_SAFETY_STOP //#define Z_SAFETY_STOP //#define I_SAFETY_STOP //#define J_SAFETY_STOP //#define K_SAFETY_STOP //#define U_SAFETY_STOP //#define V_SAFETY_STOP //#define W_SAFETY_STOP // @section geometry // The size of the printable area #define X_BED_SIZE 200 #define Y_BED_SIZE 200 // Travel limits (linear=mm, rotational=°) after homing, corresponding to endstop positions. #define X_MIN_POS 0 #define Y_MIN_POS 0 #define Z_MIN_POS 0 #define X_MAX_POS X_BED_SIZE #define Y_MAX_POS Y_BED_SIZE #define Z_MAX_POS 200 //#define I_MIN_POS 0 //#define I_MAX_POS 50 //#define J_MIN_POS 0 //#define J_MAX_POS 50 //#define K_MIN_POS 0 //#define K_MAX_POS 50 //#define U_MIN_POS 0 //#define U_MAX_POS 50 //#define V_MIN_POS 0 //#define V_MAX_POS 50 //#define W_MIN_POS 0 //#define W_MAX_POS 50 /** * Software Endstops * * - Prevent moves outside the set machine bounds. * - Individual axes can be disabled, if desired. * - X and Y only apply to Cartesian robots. * - Use 'M211' to set software endstops on/off or report current state */ // Min software endstops constrain movement within minimum coordinate bounds #define MIN_SOFTWARE_ENDSTOPS #if ENABLED(MIN_SOFTWARE_ENDSTOPS) #define MIN_SOFTWARE_ENDSTOP_X #define MIN_SOFTWARE_ENDSTOP_Y #define MIN_SOFTWARE_ENDSTOP_Z #define MIN_SOFTWARE_ENDSTOP_I #define MIN_SOFTWARE_ENDSTOP_J #define MIN_SOFTWARE_ENDSTOP_K #define MIN_SOFTWARE_ENDSTOP_U #define MIN_SOFTWARE_ENDSTOP_V #define MIN_SOFTWARE_ENDSTOP_W #endif // Max software endstops constrain movement within maximum coordinate bounds #define MAX_SOFTWARE_ENDSTOPS #if ENABLED(MAX_SOFTWARE_ENDSTOPS) #define MAX_SOFTWARE_ENDSTOP_X #define MAX_SOFTWARE_ENDSTOP_Y #define MAX_SOFTWARE_ENDSTOP_Z #define MAX_SOFTWARE_ENDSTOP_I #define MAX_SOFTWARE_ENDSTOP_J #define MAX_SOFTWARE_ENDSTOP_K #define MAX_SOFTWARE_ENDSTOP_U #define MAX_SOFTWARE_ENDSTOP_V #define MAX_SOFTWARE_ENDSTOP_W #endif #if ANY(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS) //#define SOFT_ENDSTOPS_MENU_ITEM // Enable/Disable software endstops from the LCD #endif /** * Filament Runout Sensors * Mechanical or opto endstops are used to check for the presence of filament. * * IMPORTANT: Runout will only trigger if Marlin is aware that a print job is running. * Marlin knows a print job is running when: * 1. Running a print job from media started with M24. * 2. The Print Job Timer has been started with M75. * 3. The heaters were turned on and PRINTJOB_TIMER_AUTOSTART is enabled. * * RAMPS-based boards use SERVO3_PIN for the first runout sensor. * For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc. */ //#define FILAMENT_RUNOUT_SENSOR #if ENABLED(FILAMENT_RUNOUT_SENSOR) #define FIL_RUNOUT_ENABLED_DEFAULT true // Enable the sensor on startup. Override with M412 followed by M500. #define NUM_RUNOUT_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each. #define FIL_RUNOUT_STATE LOW // Pin state indicating that filament is NOT present. #define FIL_RUNOUT_PULLUP // Use internal pullup for filament runout pins. //#define FIL_RUNOUT_PULLDOWN // Use internal pulldown for filament runout pins. //#define WATCH_ALL_RUNOUT_SENSORS // Execute runout script on any triggering sensor, not only for the active extruder. // This is automatically enabled for MIXING_EXTRUDERs. // Override individually if the runout sensors vary //#define FIL_RUNOUT1_STATE LOW //#define FIL_RUNOUT1_PULLUP //#define FIL_RUNOUT1_PULLDOWN //#define FIL_RUNOUT2_STATE LOW //#define FIL_RUNOUT2_PULLUP //#define FIL_RUNOUT2_PULLDOWN //#define FIL_RUNOUT3_STATE LOW //#define FIL_RUNOUT3_PULLUP //#define FIL_RUNOUT3_PULLDOWN //#define FIL_RUNOUT4_STATE LOW //#define FIL_RUNOUT4_PULLUP //#define FIL_RUNOUT4_PULLDOWN //#define FIL_RUNOUT5_STATE LOW //#define FIL_RUNOUT5_PULLUP //#define FIL_RUNOUT5_PULLDOWN //#define FIL_RUNOUT6_STATE LOW //#define FIL_RUNOUT6_PULLUP //#define FIL_RUNOUT6_PULLDOWN //#define FIL_RUNOUT7_STATE LOW //#define FIL_RUNOUT7_PULLUP //#define FIL_RUNOUT7_PULLDOWN //#define FIL_RUNOUT8_STATE LOW //#define FIL_RUNOUT8_PULLUP //#define FIL_RUNOUT8_PULLDOWN // Commands to execute on filament runout. // With multiple runout sensors use the %c placeholder for the current tool in commands (e.g., "M600 T%c") // NOTE: After 'M412 H1' the host handles filament runout and this script does not apply. #define FILAMENT_RUNOUT_SCRIPT "M600" // After a runout is detected, continue printing this length of filament // before executing the runout script. Useful for a sensor at the end of // a feed tube. Requires 4 bytes SRAM per sensor, plus 4 bytes overhead. //#define FILAMENT_RUNOUT_DISTANCE_MM 25 #ifdef FILAMENT_RUNOUT_DISTANCE_MM // Enable this option to use an encoder disc that toggles the runout pin // as the filament moves. (Be sure to set FILAMENT_RUNOUT_DISTANCE_MM // large enough to avoid false positives.) //#define FILAMENT_MOTION_SENSOR #if ENABLED(FILAMENT_MOTION_SENSOR) //#define FILAMENT_SWITCH_AND_MOTION #if ENABLED(FILAMENT_SWITCH_AND_MOTION) #define NUM_MOTION_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_MOTION#_PIN for each. //#define FIL_MOTION1_PIN -1 // Override individually if the motion sensors vary //#define FIL_MOTION1_STATE LOW //#define FIL_MOTION1_PULLUP //#define FIL_MOTION1_PULLDOWN //#define FIL_MOTION2_STATE LOW //#define FIL_MOTION2_PULLUP //#define FIL_MOTION2_PULLDOWN //#define FIL_MOTION3_STATE LOW //#define FIL_MOTION3_PULLUP //#define FIL_MOTION3_PULLDOWN //#define FIL_MOTION4_STATE LOW //#define FIL_MOTION4_PULLUP //#define FIL_MOTION4_PULLDOWN //#define FIL_MOTION5_STATE LOW //#define FIL_MOTION5_PULLUP //#define FIL_MOTION5_PULLDOWN //#define FIL_MOTION6_STATE LOW //#define FIL_MOTION6_PULLUP //#define FIL_MOTION6_PULLDOWN //#define FIL_MOTION7_STATE LOW //#define FIL_MOTION7_PULLUP //#define FIL_MOTION7_PULLDOWN //#define FIL_MOTION8_STATE LOW //#define FIL_MOTION8_PULLUP //#define FIL_MOTION8_PULLDOWN #endif #endif #endif #endif //=========================================================================== //=============================== Bed Leveling ============================== //=========================================================================== // @section calibrate /** * Choose one of the options below to enable G29 Bed Leveling. The parameters * and behavior of G29 will change depending on your selection. * * If using a Probe for Z Homing, enable Z_SAFE_HOMING also! * * - AUTO_BED_LEVELING_3POINT * Probe 3 arbitrary points on the bed (that aren't collinear) * You specify the XY coordinates of all 3 points. * The result is a single tilted plane. Best for a flat bed. * * - AUTO_BED_LEVELING_LINEAR * Probe several points in a grid. * You specify the rectangle and the density of sample points. * The result is a single tilted plane. Best for a flat bed. * * - AUTO_BED_LEVELING_BILINEAR * Probe several points in a grid. * You specify the rectangle and the density of sample points. * The result is a mesh, best for large or uneven beds. * * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling) * A comprehensive bed leveling system combining the features and benefits * of other systems. UBL also includes integrated Mesh Generation, Mesh * Validation and Mesh Editing systems. * * - MESH_BED_LEVELING * Probe a grid manually * The result is a mesh, suitable for large or uneven beds. (See BILINEAR.) * For machines without a probe, Mesh Bed Leveling provides a method to perform * leveling in steps so you can manually adjust the Z height at each grid-point. * With an LCD controller the process is guided step-by-step. */ //#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_UBL //#define MESH_BED_LEVELING /** * Commands to execute at the end of G29 probing. * Useful to retract or move the Z probe out of the way. */ //#define EVENT_GCODE_AFTER_G29 "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10" /** * Normally G28 leaves leveling disabled on completion. Enable one of * these options to restore the prior leveling state or to always enable * leveling immediately after G28. */ //#define RESTORE_LEVELING_AFTER_G28 //#define ENABLE_LEVELING_AFTER_G28 /** * Auto-leveling needs preheating */ //#define PREHEAT_BEFORE_LEVELING #if ENABLED(PREHEAT_BEFORE_LEVELING) #define LEVELING_NOZZLE_TEMP 120 // (°C) Only applies to E0 at this time #define LEVELING_BED_TEMP 50 #endif /** * Enable detailed logging of G28, G29, M48, etc. * Turn on with the command 'M111 S32'. * NOTE: Requires a lot of flash! */ //#define DEBUG_LEVELING_FEATURE #if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_UBL, PROBE_MANUALLY) // Set a height for the start of manual adjustment #define MANUAL_PROBE_START_Z 0.2 // (mm) Comment out to use the last-measured height #endif #if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_UBL) /** * Gradually reduce leveling correction until a set height is reached, * at which point movement will be level to the machine's XY plane. * The height can be set with M420 Z<height> */ #define ENABLE_LEVELING_FADE_HEIGHT #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #define DEFAULT_LEVELING_FADE_HEIGHT 10.0 // (mm) Default fade height. #endif /** * For Cartesian machines, instead of dividing moves on mesh boundaries, * split up moves into short segments like a Delta. This follows the * contours of the bed more closely than edge-to-edge straight moves. */ #define SEGMENT_LEVELED_MOVES #define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one) /** * Enable the G26 Mesh Validation Pattern tool. */ //#define G26_MESH_VALIDATION #if ENABLED(G26_MESH_VALIDATION) #define MESH_TEST_NOZZLE_SIZE 0.4 // (mm) Diameter of primary nozzle. #define MESH_TEST_LAYER_HEIGHT 0.2 // (mm) Default layer height for G26. #define MESH_TEST_HOTEND_TEMP 205 // (°C) Default nozzle temperature for G26. #define MESH_TEST_BED_TEMP 60 // (°C) Default bed temperature for G26. #define G26_XY_FEEDRATE 20 // (mm/s) Feedrate for G26 XY moves. #define G26_XY_FEEDRATE_TRAVEL 100 // (mm/s) Feedrate for G26 XY travel moves. #define G26_RETRACT_MULTIPLIER 1.0 // G26 Q (retraction) used by default between mesh test elements. #endif #endif #if ANY(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR) // Set the number of grid points per dimension. #define GRID_MAX_POINTS_X 3 #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X // Probe along the Y axis, advancing X after each column //#define PROBE_Y_FIRST #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Beyond the probed grid, continue the implied tilt? // Default is to maintain the height of the nearest edge. //#define EXTRAPOLATE_BEYOND_GRID // // Subdivision of the grid by Catmull-Rom method. // Synthesizes intermediate points to produce a more detailed mesh. // //#define ABL_BILINEAR_SUBDIVISION #if ENABLED(ABL_BILINEAR_SUBDIVISION) // Number of subdivisions between probe points #define BILINEAR_SUBDIVISIONS 3 #endif #endif #elif ENABLED(AUTO_BED_LEVELING_UBL) //=========================================================================== //========================= Unified Bed Leveling ============================ //=========================================================================== //#define MESH_EDIT_GFX_OVERLAY // Display a graphics overlay while editing the mesh #define MESH_INSET 1 // Set Mesh bounds as an inset region of the bed #define GRID_MAX_POINTS_X 10 // Don't use more than 15 points per axis, implementation limited. #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X //#define UBL_HILBERT_CURVE // Use Hilbert distribution for less travel when probing multiple points //#define UBL_TILT_ON_MESH_POINTS // Use nearest mesh points with G29 J for better Z reference //#define UBL_TILT_ON_MESH_POINTS_3POINT // Use nearest mesh points with G29 J0 (3-point) #define UBL_MESH_EDIT_MOVES_Z // Sophisticated users prefer no movement of nozzle #define UBL_SAVE_ACTIVE_ON_M500 // Save the currently active mesh in the current slot on M500 //#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used // as the Z-Height correction value. //#define UBL_MESH_WIZARD // Run several commands in a row to get a complete mesh /** * Probing not allowed within the position of an obstacle. */ //#define AVOID_OBSTACLES #if ENABLED(AVOID_OBSTACLES) #define CLIP_W 23 // Bed clip width, should be padded a few mm over its physical size #define CLIP_H 14 // Bed clip height, should be padded a few mm over its physical size // Obstacle Rectangles defined as { X1, Y1, X2, Y2 } #define OBSTACLE1 { (X_BED_SIZE) / 4 - (CLIP_W) / 2, 0, (X_BED_SIZE) / 4 + (CLIP_W) / 2, CLIP_H } #define OBSTACLE2 { (X_BED_SIZE) * 3 / 4 - (CLIP_W) / 2, 0, (X_BED_SIZE) * 3 / 4 + (CLIP_W) / 2, CLIP_H } #define OBSTACLE3 { (X_BED_SIZE) / 4 - (CLIP_W) / 2, (Y_BED_SIZE) - (CLIP_H), (X_BED_SIZE) / 4 + (CLIP_W) / 2, Y_BED_SIZE } #define OBSTACLE4 { (X_BED_SIZE) * 3 / 4 - (CLIP_W) / 2, (Y_BED_SIZE) - (CLIP_H), (X_BED_SIZE) * 3 / 4 + (CLIP_W) / 2, Y_BED_SIZE } // The probed grid must be inset for G29 J. This is okay, since it is // only used to compute a linear transformation for the mesh itself. #define G29J_MESH_TILT_MARGIN ((CLIP_H) + 1) #endif #elif ENABLED(MESH_BED_LEVELING) //=========================================================================== //=================================== Mesh ================================== //=========================================================================== #define MESH_INSET 10 // Set Mesh bounds as an inset region of the bed #define GRID_MAX_POINTS_X 3 // Don't use more than 7 points per axis, implementation limited. #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS #endif // BED_LEVELING /** * Add a bed leveling sub-menu for ABL or MBL. * Include a guided procedure if manual probing is enabled. */ //#define LCD_BED_LEVELING #if ENABLED(LCD_BED_LEVELING) #define MESH_EDIT_Z_STEP 0.025 // (mm) Step size while manually probing Z axis. #define LCD_PROBE_Z_RANGE 4 // (mm) Z Range centered on Z_MIN_POS for LCD Z adjustment //#define MESH_EDIT_MENU // Add a menu to edit mesh points #endif // Add a menu item to move between bed corners for manual bed adjustment //#define LCD_BED_TRAMMING #if ENABLED(LCD_BED_TRAMMING) #define BED_TRAMMING_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets #define BED_TRAMMING_HEIGHT 0.0 // (mm) Z height of nozzle at tramming points #define BED_TRAMMING_Z_HOP 4.0 // (mm) Z height of nozzle between tramming points //#define BED_TRAMMING_INCLUDE_CENTER // Move to the center after the last corner //#define BED_TRAMMING_USE_PROBE #if ENABLED(BED_TRAMMING_USE_PROBE) #define BED_TRAMMING_PROBE_TOLERANCE 0.1 // (mm) #define BED_TRAMMING_VERIFY_RAISED // After adjustment triggers the probe, re-probe to verify //#define BED_TRAMMING_AUDIO_FEEDBACK #endif /** * Corner Leveling Order * * Set 2 or 4 points. When 2 points are given, the 3rd is the center of the opposite edge. * * LF Left-Front RF Right-Front * LB Left-Back RB Right-Back * * Examples: * * Default {LF,RB,LB,RF} {LF,RF} {LB,LF} * LB --------- RB LB --------- RB LB --------- RB LB --------- RB * | 4 3 | | 3 2 | | <3> | | 1 | * | | | | | | | <3>| * | 1 2 | | 1 4 | | 1 2 | | 2 | * LF --------- RF LF --------- RF LF --------- RF LF --------- RF */ #define BED_TRAMMING_LEVELING_ORDER { LF, RF, RB, LB } #endif // @section homing // The center of the bed is at (X=0, Y=0) //#define BED_CENTER_AT_0_0 // Manually set the home position. Leave these undefined for automatic settings. // For DELTA this is the top-center of the Cartesian print volume. //#define MANUAL_X_HOME_POS 0 //#define MANUAL_Y_HOME_POS 0 //#define MANUAL_Z_HOME_POS 0 //#define MANUAL_I_HOME_POS 0 //#define MANUAL_J_HOME_POS 0 //#define MANUAL_K_HOME_POS 0 //#define MANUAL_U_HOME_POS 0 //#define MANUAL_V_HOME_POS 0 //#define MANUAL_W_HOME_POS 0 /** * Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area. * * - Moves the Z probe (or nozzle) to a defined XY point before Z homing. * - Allows Z homing only when XY positions are known and trusted. * - If stepper drivers sleep, XY homing may be required again before Z homing. */ //#define Z_SAFE_HOMING #if ENABLED(Z_SAFE_HOMING) #define Z_SAFE_HOMING_X_POINT X_CENTER // (mm) X point for Z homing #define Z_SAFE_HOMING_Y_POINT Y_CENTER // (mm) Y point for Z homing //#define Z_SAFE_HOMING_POINT_ABSOLUTE // Ignore home offsets (M206) for Z homing position #endif // Homing speeds (linear=mm/min, rotational=°/min) #define HOMING_FEEDRATE_MM_M { (50*60), (50*60), (4*60) } // Validate that endstops are triggered on homing moves #define VALIDATE_HOMING_ENDSTOPS // @section calibrate /** * Bed Skew Compensation * * This feature corrects for misalignment in the XYZ axes. * * Take the following steps to get the bed skew in the XY plane: * 1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185) * 2. For XY_DIAG_AC measure the diagonal A to C * 3. For XY_DIAG_BD measure the diagonal B to D * 4. For XY_SIDE_AD measure the edge A to D * * Marlin automatically computes skew factors from these measurements. * Skew factors may also be computed and set manually: * * - Compute AB : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2 * - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD))) * * If desired, follow the same procedure for XZ and YZ. * Use these diagrams for reference: * * Y Z Z * ^ B-------C ^ B-------C ^ B-------C * | / / | / / | / / * | / / | / / | / / * | A-------D | A-------D | A-------D * +-------------->X +-------------->X +-------------->Y * XY_SKEW_FACTOR XZ_SKEW_FACTOR YZ_SKEW_FACTOR */ //#define SKEW_CORRECTION #if ENABLED(SKEW_CORRECTION) // Input all length measurements here: #define XY_DIAG_AC 282.8427124746 #define XY_DIAG_BD 282.8427124746 #define XY_SIDE_AD 200 // Or, set the XY skew factor directly: //#define XY_SKEW_FACTOR 0.0 //#define SKEW_CORRECTION_FOR_Z #if ENABLED(SKEW_CORRECTION_FOR_Z) #define XZ_DIAG_AC 282.8427124746 #define XZ_DIAG_BD 282.8427124746 #define YZ_DIAG_AC 282.8427124746 #define YZ_DIAG_BD 282.8427124746 #define YZ_SIDE_AD 200 // Or, set the Z skew factors directly: //#define XZ_SKEW_FACTOR 0.0 //#define YZ_SKEW_FACTOR 0.0 #endif // Enable this option for M852 to set skew at runtime //#define SKEW_CORRECTION_GCODE #endif //============================================================================= //============================= Additional Features =========================== //============================================================================= // @section eeprom /** * EEPROM * * Persistent storage to preserve configurable settings across reboots. * * M500 - Store settings to EEPROM. * M501 - Read settings from EEPROM. (i.e., Throw away unsaved changes) * M502 - Revert settings to "factory" defaults. (Follow with M500 to init the EEPROM.) */ //#define EEPROM_SETTINGS // Persistent storage with M500 and M501 //#define DISABLE_M503 // Saves ~2700 bytes of flash. Disable for release! #define EEPROM_CHITCHAT // Give feedback on EEPROM commands. Disable to save flash. #define EEPROM_BOOT_SILENT // Keep M503 quiet and only give errors during first load #if ENABLED(EEPROM_SETTINGS) //#define EEPROM_AUTO_INIT // Init EEPROM automatically on any errors. //#define EEPROM_INIT_NOW // Init EEPROM on first boot after a new build. #endif // @section host // // Host Keepalive // // When enabled Marlin will send a busy status message to the host // every couple of seconds when it can't accept commands. // #define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages #define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113. #define BUSY_WHILE_HEATING // Some hosts require "busy" messages even during heating // @section units // // G20/G21 Inch mode support // //#define INCH_MODE_SUPPORT // // M149 Set temperature units support // //#define TEMPERATURE_UNITS_SUPPORT // @section temperature // // Preheat Constants - Up to 10 are supported without changes // #define PREHEAT_1_LABEL "PLA" #define PREHEAT_1_TEMP_HOTEND 180 #define PREHEAT_1_TEMP_BED 70 #define PREHEAT_1_TEMP_CHAMBER 35 #define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255 #define PREHEAT_2_LABEL "ABS" #define PREHEAT_2_TEMP_HOTEND 240 #define PREHEAT_2_TEMP_BED 110 #define PREHEAT_2_TEMP_CHAMBER 35 #define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255 // @section motion /** * Nozzle Park * * Park the nozzle at the given XYZ position on idle or G27. * * The "P" parameter controls the action applied to the Z axis: * * P0 (Default) If Z is below park Z raise the nozzle. * P1 Raise the nozzle always to Z-park height. * P2 Raise the nozzle by Z-park amount, limited to Z_MAX_POS. */ //#define NOZZLE_PARK_FEATURE #if ENABLED(NOZZLE_PARK_FEATURE) // Specify a park position as { X, Y, Z_raise } #define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 } #define NOZZLE_PARK_MOVE 0 // Park motion: 0 = XY Move, 1 = X Only, 2 = Y Only, 3 = X before Y, 4 = Y before X #define NOZZLE_PARK_Z_RAISE_MIN 2 // (mm) Always raise Z by at least this distance #define NOZZLE_PARK_XY_FEEDRATE 100 // (mm/s) X and Y axes feedrate (also used for delta Z axis) #define NOZZLE_PARK_Z_FEEDRATE 5 // (mm/s) Z axis feedrate (not used for delta printers) #endif /** * Clean Nozzle Feature * * Adds the G12 command to perform a nozzle cleaning process. * * Parameters: * P Pattern * S Strokes / Repetitions * T Triangles (P1 only) * * Patterns: * P0 Straight line (default). This process requires a sponge type material * at a fixed bed location. "S" specifies strokes (i.e. back-forth motions) * between the start / end points. * * P1 Zig-zag pattern between (X0, Y0) and (X1, Y1), "T" specifies the * number of zig-zag triangles to do. "S" defines the number of strokes. * Zig-zags are done in whichever is the narrower dimension. * For example, "G12 P1 S1 T3" will execute: * * -- * | (X0, Y1) | /\ /\ /\ | (X1, Y1) * | | / \ / \ / \ | * A | | / \ / \ / \ | * | | / \ / \ / \ | * | (X0, Y0) | / \/ \/ \ | (X1, Y0) * -- +--------------------------------+ * |________|_________|_________| * T1 T2 T3 * * P2 Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE. * "R" specifies the radius. "S" specifies the stroke count. * Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT. * * Caveats: The ending Z should be the same as starting Z. */ //#define NOZZLE_CLEAN_FEATURE #if ENABLED(NOZZLE_CLEAN_FEATURE) #define NOZZLE_CLEAN_PATTERN_LINE // Provide 'G12 P0' - a simple linear cleaning pattern #define NOZZLE_CLEAN_PATTERN_ZIGZAG // Provide 'G12 P1' - a zigzag cleaning pattern #define NOZZLE_CLEAN_PATTERN_CIRCLE // Provide 'G12 P2' - a circular cleaning pattern // Default pattern to use when 'P' is not provided to G12. One of the enabled options above. #define NOZZLE_CLEAN_DEFAULT_PATTERN 0 #define NOZZLE_CLEAN_STROKES 12 // Default number of pattern repetitions #if ENABLED(NOZZLE_CLEAN_PATTERN_ZIGZAG) #define NOZZLE_CLEAN_TRIANGLES 3 // Default number of triangles #endif // Specify positions for each tool as { { X, Y, Z }, { X, Y, Z } } // Dual hotend system may use { { -20, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }, { 420, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }} #define NOZZLE_CLEAN_START_POINT { { 30, 30, (Z_MIN_POS + 1) } } #define NOZZLE_CLEAN_END_POINT { { 100, 60, (Z_MIN_POS + 1) } } #if ENABLED(NOZZLE_CLEAN_PATTERN_CIRCLE) #define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5 // (mm) Circular pattern radius #define NOZZLE_CLEAN_CIRCLE_FN 10 // Circular pattern circle number of segments #define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT // Middle point of circle #endif // Move the nozzle to the initial position after cleaning #define NOZZLE_CLEAN_GOBACK // For a purge/clean station that's always at the gantry height (thus no Z move) //#define NOZZLE_CLEAN_NO_Z // For a purge/clean station mounted on the X axis //#define NOZZLE_CLEAN_NO_Y // Require a minimum hotend temperature for cleaning #define NOZZLE_CLEAN_MIN_TEMP 170 //#define NOZZLE_CLEAN_HEATUP // Heat up the nozzle instead of skipping wipe // Explicit wipe G-code script applies to a G12 with no arguments. //#define WIPE_SEQUENCE_COMMANDS "G1 X-17 Y25 Z10 F4000\nG1 Z1\nM114\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 Z15\nM400\nG0 X-10.0 Y-9.0" #endif // @section host /** * Print Job Timer * * Automatically start and stop the print job timer on M104/M109/M140/M190/M141/M191. * The print job timer will only be stopped if the bed/chamber target temp is * below BED_MINTEMP/CHAMBER_MINTEMP. * * M104 (hotend, no wait) - high temp = none, low temp = stop timer * M109 (hotend, wait) - high temp = start timer, low temp = stop timer * M140 (bed, no wait) - high temp = none, low temp = stop timer * M190 (bed, wait) - high temp = start timer, low temp = none * M141 (chamber, no wait) - high temp = none, low temp = stop timer * M191 (chamber, wait) - high temp = start timer, low temp = none * * For M104/M109, high temp is anything over EXTRUDE_MINTEMP / 2. * For M140/M190, high temp is anything over BED_MINTEMP. * For M141/M191, high temp is anything over CHAMBER_MINTEMP. * * The timer can also be controlled with the following commands: * * M75 - Start the print job timer * M76 - Pause the print job timer * M77 - Stop the print job timer */ #define PRINTJOB_TIMER_AUTOSTART // @section stats /** * Print Counter * * Track statistical data such as: * * - Total print jobs * - Total successful print jobs * - Total failed print jobs * - Total time printing * * View the current statistics with M78. */ //#define PRINTCOUNTER #if ENABLED(PRINTCOUNTER) #define PRINTCOUNTER_SAVE_INTERVAL 60 // (minutes) EEPROM save interval during print. A value of 0 will save stats at end of print. #endif // @section security /** * Password * * Set a numerical password for the printer which can be requested: * * - When the printer boots up * - Upon opening the 'Print from Media' Menu * - When SD printing is completed or aborted * * The following G-codes can be used: * * M510 - Lock Printer. Blocks all commands except M511. * M511 - Unlock Printer. * M512 - Set, Change and Remove Password. * * If you forget the password and get locked out you'll need to re-flash * the firmware with the feature disabled, reset EEPROM, and (optionally) * re-flash the firmware again with this feature enabled. */ //#define PASSWORD_FEATURE #if ENABLED(PASSWORD_FEATURE) #define PASSWORD_LENGTH 4 // (#) Number of digits (1-9). 3 or 4 is recommended #define PASSWORD_ON_STARTUP #define PASSWORD_UNLOCK_GCODE // Unlock with the M511 P<password> command. Disable to prevent brute-force attack. #define PASSWORD_CHANGE_GCODE // Change the password with M512 P<old> S<new>. //#define PASSWORD_ON_SD_PRINT_MENU // This does not prevent G-codes from running //#define PASSWORD_AFTER_SD_PRINT_END //#define PASSWORD_AFTER_SD_PRINT_ABORT //#include "Configuration_Secure.h" // External file with PASSWORD_DEFAULT_VALUE #endif //============================================================================= //============================= LCD and SD support ============================ //============================================================================= // @section interface /** * LCD LANGUAGE * * Select the language to display on the LCD. These languages are available: * * en, an, bg, ca, cz, da, de, el, el_CY, es, eu, fi, fr, gl, hr, hu, it, * jp_kana, ko_KR, nl, pl, pt, pt_br, ro, ru, sk, sv, tr, uk, vi, zh_CN, zh_TW * * :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cz':'Czech', 'da':'Danish', 'de':'German', 'el':'Greek (Greece)', 'el_CY':'Greek (Cyprus)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'hu':'Hungarian', 'it':'Italian', 'jp_kana':'Japanese', 'ko_KR':'Korean (South Korea)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt_br':'Portuguese (Brazilian)', 'ro':'Romanian', 'ru':'Russian', 'sk':'Slovak', 'sv':'Swedish', 'tr':'Turkish', 'uk':'Ukrainian', 'vi':'Vietnamese', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Traditional)' } */ #define LCD_LANGUAGE en /** * LCD Character Set * * Note: This option is NOT applicable to Graphical Displays. * * All character-based LCDs provide ASCII plus one of these * language extensions: * * - JAPANESE ... the most common * - WESTERN ... with more accented characters * - CYRILLIC ... for the Russian language * * To determine the language extension installed on your controller: * * - Compile and upload with LCD_LANGUAGE set to 'test' * - Click the controller to view the LCD menu * - The LCD will display Japanese, Western, or Cyrillic text * * See https://marlinfw.org/docs/development/lcd_language.html * * :['JAPANESE', 'WESTERN', 'CYRILLIC'] */ #define DISPLAY_CHARSET_HD44780 JAPANESE /** * Info Screen Style (0:Classic, 1:Průša, 2:CNC) * * :[0:'Classic', 1:'Průša', 2:'CNC'] */ #define LCD_INFO_SCREEN_STYLE 0 /** * SD CARD * * SD Card support is disabled by default. If your controller has an SD slot, * you must uncomment the following option or it won't work. */ //#define SDSUPPORT /** * SD CARD: ENABLE CRC * * Use CRC checks and retries on the SD communication. */ //#define SD_CHECK_AND_RETRY /** * LCD Menu Items * * Disable all menus and only display the Status Screen, or * just remove some extraneous menu items to recover space. */ //#define NO_LCD_MENUS //#define SLIM_LCD_MENUS // // ENCODER SETTINGS // // This option overrides the default number of encoder pulses needed to // produce one step. Should be increased for high-resolution encoders. // //#define ENCODER_PULSES_PER_STEP 4 // // Use this option to override the number of step signals required to // move between next/prev menu items. // //#define ENCODER_STEPS_PER_MENU_ITEM 1 /** * Encoder Direction Options * * Test your encoder's behavior first with both options disabled. * * Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION. * Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION. * Reversed Value Editing only? Enable BOTH options. */ // // This option reverses the encoder direction everywhere. // // Set this option if CLOCKWISE causes values to DECREASE // //#define REVERSE_ENCODER_DIRECTION // // This option reverses the encoder direction for navigating LCD menus. // // If CLOCKWISE normally moves DOWN this makes it go UP. // If CLOCKWISE normally moves UP this makes it go DOWN. // //#define REVERSE_MENU_DIRECTION // // This option reverses the encoder direction for Select Screen. // // If CLOCKWISE normally moves LEFT this makes it go RIGHT. // If CLOCKWISE normally moves RIGHT this makes it go LEFT. // //#define REVERSE_SELECT_DIRECTION // // Encoder EMI Noise Filter // // This option increases encoder samples to filter out phantom encoder clicks caused by EMI noise. // //#define ENCODER_NOISE_FILTER #if ENABLED(ENCODER_NOISE_FILTER) #define ENCODER_SAMPLES 10 #endif // // Individual Axis Homing // // Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu. // //#define INDIVIDUAL_AXIS_HOMING_MENU //#define INDIVIDUAL_AXIS_HOMING_SUBMENU // // SPEAKER/BUZZER // // If you have a speaker that can produce tones, enable it here. // By default Marlin assumes you have a buzzer with a fixed frequency. // //#define SPEAKER // // The duration and frequency for the UI feedback sound. // Set these to 0 to disable audio feedback in the LCD menus. // // Note: Test audio output with the G-Code: // M300 S<frequency Hz> P<duration ms> // //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2 //#define LCD_FEEDBACK_FREQUENCY_HZ 5000 // // Tone queue size, used to keep beeps from blocking execution. // Default is 4, or override here. Costs 4 bytes of SRAM per entry. // //#define TONE_QUEUE_LENGTH 4 // // A sequence of tones to play at startup, in pairs of tone (Hz), duration (ms). // Silence in-between tones. // //#define STARTUP_TUNE { 698, 300, 0, 50, 523, 50, 0, 25, 494, 50, 0, 25, 523, 100, 0, 50, 554, 300, 0, 100, 523, 300 } //============================================================================= //======================== LCD / Controller Selection ========================= //======================== (Character-based LCDs) ========================= //============================================================================= // @section lcd // // RepRapDiscount Smart Controller. // https://reprap.org/wiki/RepRapDiscount_Smart_Controller // // Note: Usually sold with a white PCB. // //#define REPRAP_DISCOUNT_SMART_CONTROLLER // // GT2560 (YHCB2004) LCD Display // // Requires Testato, Koepel softwarewire library and // Andriy Golovnya's LiquidCrystal_AIP31068 library. // //#define YHCB2004 // // Original RADDS LCD Display+Encoder+SDCardReader // https://web.archive.org/web/20200719145306/http://doku.radds.org/dokumentation/lcd-display/ // //#define RADDS_DISPLAY // // ULTIMAKER Controller. // //#define ULTIMAKERCONTROLLER // // ULTIPANEL as seen on Thingiverse. // //#define ULTIPANEL // // PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3) // https://reprap.org/wiki/PanelOne // //#define PANEL_ONE // // GADGETS3D G3D LCD/SD Controller // https://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel // // Note: Usually sold with a blue PCB. // //#define G3D_PANEL // // RigidBot Panel V1.0 // //#define RIGIDBOT_PANEL // // Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller // https://www.aliexpress.com/item/32765887917.html // //#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602 // // ANET and Tronxy 20x4 Controller // //#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin. // This LCD is known to be susceptible to electrical interference // which scrambles the display. Pressing any button clears it up. // This is a LCD2004 display with 5 analog buttons. // // Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD. // //#define ULTRA_LCD //============================================================================= //======================== LCD / Controller Selection ========================= //===================== (I2C and Shift-Register LCDs) ===================== //============================================================================= // // CONTROLLER TYPE: I2C // // Note: These controllers require the installation of Arduino's LiquidCrystal_I2C // library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C // // // Elefu RA Board Control Panel // https://web.archive.org/web/20140823033947/http://www.elefu.com/index.php?route=product/product&product_id=53 // //#define RA_CONTROL_PANEL // // Sainsmart (YwRobot) LCD Displays // // These require LiquidCrystal_I2C library: // https://github.com/MarlinFirmware/New-LiquidCrystal // https://github.com/fmalpartida/New-LiquidCrystal/wiki // //#define LCD_SAINSMART_I2C_1602 //#define LCD_SAINSMART_I2C_2004 // // Generic LCM1602 LCD adapter // //#define LCM1602 // // PANELOLU2 LCD with status LEDs, // separate encoder and click inputs. // // Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later. // For more info: https://github.com/lincomatic/LiquidTWI2 // // Note: The PANELOLU2 encoder click input can either be directly connected to // a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). // //#define LCD_I2C_PANELOLU2 // // Panucatt VIKI LCD with status LEDs, // integrated click & L/R/U/D buttons, separate encoder inputs. // //#define LCD_I2C_VIKI // // CONTROLLER TYPE: Shift register panels // // // 2-wire Non-latching LCD SR from https://github.com/fmalpartida/New-LiquidCrystal/wiki/schematics#user-content-ShiftRegister_connection // LCD configuration: https://reprap.org/wiki/SAV_3D_LCD // //#define SAV_3DLCD // // 3-wire SR LCD with strobe using 74HC4094 // https://github.com/mikeshub/SailfishLCD // Uses the code directly from Sailfish // //#define FF_INTERFACEBOARD // // TFT GLCD Panel with Marlin UI // Panel connected to main board by SPI or I2C interface. // See https://github.com/Serhiy-K/TFTGLCDAdapter // //#define TFTGLCD_PANEL_SPI //#define TFTGLCD_PANEL_I2C //============================================================================= //======================= LCD / Controller Selection ======================= //========================= (Graphical LCDs) ======================== //============================================================================= // // CONTROLLER TYPE: Graphical 128x64 (DOGM) // // IMPORTANT: The U8glib library is required for Graphical Display! // https://github.com/olikraus/U8glib_Arduino // // NOTE: If the LCD is unresponsive you may need to reverse the plugs. // // // RepRapDiscount FULL GRAPHIC Smart Controller // https://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller // //#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER // // K.3D Full Graphic Smart Controller // //#define K3D_FULL_GRAPHIC_SMART_CONTROLLER // // ReprapWorld Graphical LCD // https://reprapworld.com/electronics/3d-printer-modules/autonomous-printing/graphical-lcd-screen-v1-0/ // //#define REPRAPWORLD_GRAPHICAL_LCD // // Activate one of these if you have a Panucatt Devices // Viki 2.0 or mini Viki with Graphic LCD // https://www.panucatt.com // //#define VIKI2 //#define miniVIKI // // Alfawise Ex8 printer LCD marked as WYH L12864 COG // //#define WYH_L12864 // // MakerLab Mini Panel with graphic // controller and SD support - https://reprap.org/wiki/Mini_panel // //#define MINIPANEL // // MaKr3d Makr-Panel with graphic controller and SD support. // https://reprap.org/wiki/MaKrPanel // //#define MAKRPANEL // // Adafruit ST7565 Full Graphic Controller. // https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/ // //#define ELB_FULL_GRAPHIC_CONTROLLER // // BQ LCD Smart Controller shipped by // default with the BQ Hephestos 2 and Witbox 2. // //#define BQ_LCD_SMART_CONTROLLER // // Cartesio UI // https://web.archive.org/web/20180605050442/http://mauk.cc/webshop/cartesio-shop/electronics/user-interface // //#define CARTESIO_UI // // LCD for Melzi Card with Graphical LCD // //#define LCD_FOR_MELZI // // Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder // https://github.com/Ultimaker/Ultimaker2/tree/master/1249_Ulticontroller_Board_(x1) // //#define ULTI_CONTROLLER // // MKS MINI12864 with graphic controller and SD support // https://reprap.org/wiki/MKS_MINI_12864 // //#define MKS_MINI_12864 // // MKS MINI12864 V3 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight. // //#define MKS_MINI_12864_V3 // // MKS LCD12864A/B with graphic controller and SD support. Follows MKS_MINI_12864 pinout. // https://www.aliexpress.com/item/33018110072.html // //#define MKS_LCD12864A //#define MKS_LCD12864B // // FYSETC variant of the MINI12864 graphic controller with SD support // https://wiki.fysetc.com/Mini12864_Panel/ // //#define FYSETC_MINI_12864_X_X // Type C/D/E/F. No tunable RGB Backlight by default //#define FYSETC_MINI_12864_1_2 // Type C/D/E/F. Simple RGB Backlight (always on) //#define FYSETC_MINI_12864_2_0 // Type A/B. Discreet RGB Backlight //#define FYSETC_MINI_12864_2_1 // Type A/B. NeoPixel RGB Backlight //#define FYSETC_GENERIC_12864_1_1 // Larger display with basic ON/OFF backlight. // // BigTreeTech Mini 12864 V1.0 / V2.0 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight. // https://github.com/bigtreetech/MINI-12864 // //#define BTT_MINI_12864 // // BEEZ MINI 12864 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight. // //#define BEEZ_MINI_12864 // // Factory display for Creality CR-10 / CR-7 / Ender-3 // https://marlinfw.org/docs/hardware/controllers.html#cr10_stockdisplay // // Connect to EXP1 on RAMPS and compatible boards. // //#define CR10_STOCKDISPLAY // // Ender-2 OEM display, a variant of the MKS_MINI_12864 // //#define ENDER2_STOCKDISPLAY // // ANET and Tronxy 128×64 Full Graphics Controller as used on Anet A6 // //#define ANET_FULL_GRAPHICS_LCD // // GUCOCO CTC 128×64 Full Graphics Controller as used on GUCOCO CTC A10S // //#define CTC_A10S_A13 // // AZSMZ 12864 LCD with SD // https://www.aliexpress.com/item/32837222770.html // //#define AZSMZ_12864 // // Silvergate GLCD controller // https://github.com/android444/Silvergate // //#define SILVER_GATE_GLCD_CONTROLLER // // eMotion Tech LCD with SD // https://www.reprap-france.com/produit/1234568748-ecran-graphique-128-x-64-points-2-1 // //#define EMOTION_TECH_LCD //============================================================================= //============================== OLED Displays ============================== //============================================================================= // // SSD1306 OLED full graphics generic display // //#define U8GLIB_SSD1306 // // SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules // //#define SAV_3DGLCD #if ENABLED(SAV_3DGLCD) #define U8GLIB_SSD1306 //#define U8GLIB_SH1106 #endif // // TinyBoy2 128x64 OLED / Encoder Panel // //#define OLED_PANEL_TINYBOY2 // // MKS OLED 1.3" 128×64 Full Graphics Controller // https://reprap.org/wiki/MKS_12864OLED // // Tiny, but very sharp OLED display // //#define MKS_12864OLED // Uses the SH1106 controller (default) //#define MKS_12864OLED_SSD1306 // Uses the SSD1306 controller // // Zonestar OLED 128×64 Full Graphics Controller // //#define ZONESTAR_12864LCD // Graphical (DOGM) with ST7920 controller //#define ZONESTAR_12864OLED // 1.3" OLED with SH1106 controller (default) //#define ZONESTAR_12864OLED_SSD1306 // 0.96" OLED with SSD1306 controller // // Einstart S OLED SSD1306 // //#define U8GLIB_SH1106_EINSTART // // Overlord OLED display/controller with i2c buzzer and LEDs // //#define OVERLORD_OLED // // FYSETC OLED 2.42" 128×64 Full Graphics Controller with WS2812 RGB // Where to find : https://www.aliexpress.com/item/4000345255731.html //#define FYSETC_242_OLED_12864 // Uses the SSD1309 controller // // K.3D SSD1309 OLED 2.42" 128×64 Full Graphics Controller // //#define K3D_242_OLED_CONTROLLER // Software SPI //============================================================================= //========================== Extensible UI Displays =========================== //============================================================================= /** * DGUS Touch Display with DWIN OS. (Choose one.) * * ORIGIN (Marlin DWIN_SET) * - Download https://github.com/coldtobi/Marlin_DGUS_Resources * - Copy the downloaded DWIN_SET folder to the SD card. * - Product: https://www.aliexpress.com/item/32993409517.html * * FYSETC (Supplier default) * - Download https://github.com/FYSETC/FYSTLCD-2.0 * - Copy the downloaded SCREEN folder to the SD card. * - Product: https://www.aliexpress.com/item/32961471929.html * * HIPRECY (Supplier default) * - Download https://github.com/HiPrecy/Touch-Lcd-LEO * - Copy the downloaded DWIN_SET folder to the SD card. * * MKS (MKS-H43) (Supplier default) * - Download https://github.com/makerbase-mks/MKS-H43 * - Copy the downloaded DWIN_SET folder to the SD card. * - Product: https://www.aliexpress.com/item/1005002008179262.html * * RELOADED (T5UID1) * - Download https://github.com/Neo2003/DGUS-reloaded/releases * - Copy the downloaded DWIN_SET folder to the SD card. * * IA_CREALITY (T5UID1) * - Download https://github.com/InsanityAutomation/Marlin/raw/CrealityDwin_2.0/TM3D_Combined480272_Landscape_V7.7z * - Copy the downloaded DWIN_SET folder to the SD card. * * E3S1PRO (T5L) * - Download https://github.com/CrealityOfficial/Ender-3S1/archive/3S1_Plus_Screen.zip * - Copy the downloaded DWIN_SET folder to the SD card. * * Flash display with DGUS Displays for Marlin: * - Format the SD card to FAT32 with an allocation size of 4kb. * - Download files as specified for your type of display. * - Plug the microSD card into the back of the display. * - Boot the display and wait for the update to complete. * * :[ 'ORIGIN', 'FYSETC', 'HYPRECY', 'MKS', 'RELOADED', 'IA_CREALITY', 'E3S1PRO' ] */ //#define DGUS_LCD_UI ORIGIN #if DGUS_UI_IS(MKS) #define USE_MKS_GREEN_UI #elif DGUS_UI_IS(IA_CREALITY) //#define LCD_SCREEN_ROTATE 90 // Portrait Mode or 800x480 displays //#define IA_CREALITY_BOOT_DELAY 1500 // (ms) #endif // // Touch-screen LCD for Malyan M200/M300 printers // //#define MALYAN_LCD // // Touch UI for FTDI EVE (FT800/FT810) displays // See Configuration_adv.h for all configuration options. // //#define TOUCH_UI_FTDI_EVE // // Touch-screen LCD for Anycubic Chiron // //#define ANYCUBIC_LCD_CHIRON // // Touch-screen LCD for Anycubic i3 Mega // //#define ANYCUBIC_LCD_I3MEGA #if ENABLED(ANYCUBIC_LCD_I3MEGA) //#define ANYCUBIC_LCD_GCODE_EXT // Add ".gcode" to menu entries for DGUS clone compatibility #endif // // Touch-screen LCD for Anycubic Vyper // //#define ANYCUBIC_LCD_VYPER // // 320x240 Nextion 2.8" serial TFT Resistive Touch Screen NX3224T028 // //#define NEXTION_TFT // // Third-party or vendor-customized controller interfaces. // Sources should be installed in 'src/lcd/extui'. // //#define EXTENSIBLE_UI #if ENABLED(EXTENSIBLE_UI) //#define EXTUI_LOCAL_BEEPER // Enables use of local Beeper pin with external display #endif //============================================================================= //=============================== Graphical TFTs ============================== //============================================================================= /** * Specific TFT Model Presets. Enable one of the following options * or enable TFT_GENERIC and set sub-options. */ // // 480x320, 3.5", SPI Display with Rotary Encoder from MKS // Usually paired with MKS Robin Nano V2 & V3 // https://github.com/makerbase-mks/MKS-TFT-Hardware/tree/master/MKS%20TS35 // //#define MKS_TS35_V2_0 // // 320x240, 2.4", FSMC Display From MKS // Usually paired with MKS Robin Nano V1.2 // //#define MKS_ROBIN_TFT24 // // 320x240, 2.8", FSMC Display From MKS // Usually paired with MKS Robin Nano V1.2 // //#define MKS_ROBIN_TFT28 // // 320x240, 3.2", FSMC Display From MKS // Usually paired with MKS Robin Nano V1.2 // //#define MKS_ROBIN_TFT32 // // 480x320, 3.5", FSMC Display From MKS // Usually paired with MKS Robin Nano V1.2 // //#define MKS_ROBIN_TFT35 // // 480x272, 4.3", FSMC Display From MKS // //#define MKS_ROBIN_TFT43 // // 320x240, 3.2", FSMC Display From MKS // Usually paired with MKS Robin // //#define MKS_ROBIN_TFT_V1_1R // // 480x320, 3.5", FSMC Stock Display from Tronxy // //#define TFT_TRONXY_X5SA // // 480x320, 3.5", FSMC Stock Display from AnyCubic // //#define ANYCUBIC_TFT35 // // 320x240, 2.8", FSMC Stock Display from Longer/Alfawise // //#define LONGER_LK_TFT28 // // 320x240, 2.8", FSMC Stock Display from ET4 // //#define ANET_ET4_TFT28 // // 480x320, 3.5", FSMC Stock Display from ET5 // //#define ANET_ET5_TFT35 // // 1024x600, 7", RGB Stock Display with Rotary Encoder from BIQU BX // https://github.com/bigtreetech/BIQU-BX/tree/master/Hardware // //#define BIQU_BX_TFT70 // // 480x320, 3.5", SPI Stock Display with Rotary Encoder from BIQU B1 SE Series // https://github.com/bigtreetech/TFT35-SPI/tree/master/v1 // //#define BTT_TFT35_SPI_V1_0 // // Generic TFT with detailed options // //#define TFT_GENERIC #if ENABLED(TFT_GENERIC) // :[ 'AUTO', 'ST7735', 'ST7789', 'ST7796', 'R61505', 'ILI9328', 'ILI9341', 'ILI9488' ] #define TFT_DRIVER AUTO // Interface. Enable one of the following options: //#define TFT_INTERFACE_FSMC //#define TFT_INTERFACE_SPI // TFT Resolution. Enable one of the following options: //#define TFT_RES_320x240 //#define TFT_RES_480x272 //#define TFT_RES_480x320 //#define TFT_RES_1024x600 #endif /** * TFT UI - User Interface Selection. Enable one of the following options: * * TFT_CLASSIC_UI - Emulated DOGM - 128x64 Upscaled * TFT_COLOR_UI - Marlin Default Menus, Touch Friendly, using full TFT capabilities * TFT_LVGL_UI - A Modern UI using LVGL * * For LVGL_UI also copy the 'assets' folder from the build directory to the * root of your SD card, together with the compiled firmware. */ //#define TFT_CLASSIC_UI //#define TFT_COLOR_UI //#define TFT_LVGL_UI #if ENABLED(TFT_COLOR_UI) /** * TFT Font for Color_UI. Choose one of the following: * * NOTOSANS - Default font with anti-aliasing. Supports Latin Extended and non-Latin characters. * UNIFONT - Lightweight font, no anti-aliasing. Supports Latin Extended and non-Latin characters. * HELVETICA - Lightweight font, no anti-aliasing. Supports Basic Latin (0x0020-0x007F) and Latin-1 Supplement (0x0080-0x00FF) characters only. */ #define TFT_FONT NOTOSANS /** * TFT Theme for Color_UI. Choose one of the following or add a new one to 'Marlin/src/lcd/tft/themes' directory * * BLUE_MARLIN - Default theme with 'midnight blue' background * BLACK_MARLIN - Theme with 'black' background * ANET_BLACK - Theme used for Anet ET4/5 */ #define TFT_THEME BLACK_MARLIN //#define TFT_SHARED_IO // I/O is shared between TFT display and other devices. Disable async data transfer. #define COMPACT_MARLIN_BOOT_LOGO // Use compressed data to save Flash space #endif #if ENABLED(TFT_LVGL_UI) //#define MKS_WIFI_MODULE // MKS WiFi module #endif /** * TFT Rotation. Set to one of the following values: * * TFT_ROTATE_90, TFT_ROTATE_90_MIRROR_X, TFT_ROTATE_90_MIRROR_Y, * TFT_ROTATE_180, TFT_ROTATE_180_MIRROR_X, TFT_ROTATE_180_MIRROR_Y, * TFT_ROTATE_270, TFT_ROTATE_270_MIRROR_X, TFT_ROTATE_270_MIRROR_Y, * TFT_MIRROR_X, TFT_MIRROR_Y, TFT_NO_ROTATION */ //#define TFT_ROTATION TFT_NO_ROTATION //============================================================================= //============================ Other Controllers ============================ //============================================================================= // // Ender-3 v2 OEM display. A DWIN display with Rotary Encoder. // //#define DWIN_CREALITY_LCD // Creality UI //#define DWIN_LCD_PROUI // Pro UI by MRiscoC //#define DWIN_CREALITY_LCD_JYERSUI // Jyers UI by Jacob Myers //#define DWIN_MARLINUI_PORTRAIT // MarlinUI (portrait orientation) //#define DWIN_MARLINUI_LANDSCAPE // MarlinUI (landscape orientation) // // Touch Screen Settings // //#define TOUCH_SCREEN #if ENABLED(TOUCH_SCREEN) #define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens #define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus //#define DISABLE_ENCODER // Disable the click encoder, if any #define TOUCH_SCREEN_CALIBRATION //#define TOUCH_CALIBRATION_X 12316 //#define TOUCH_CALIBRATION_Y -8981 //#define TOUCH_OFFSET_X -43 //#define TOUCH_OFFSET_Y 257 //#define TOUCH_ORIENTATION TOUCH_LANDSCAPE #if ALL(TOUCH_SCREEN_CALIBRATION, EEPROM_SETTINGS) #define TOUCH_CALIBRATION_AUTO_SAVE // Auto save successful calibration values to EEPROM #endif #if ENABLED(TFT_COLOR_UI) //#define SINGLE_TOUCH_NAVIGATION #endif #endif // // RepRapWorld REPRAPWORLD_KEYPAD v1.1 // https://reprapworld.com/products/electronics/ramps/keypad_v1_0_fully_assembled/ // //#define REPRAPWORLD_KEYPAD //#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // (mm) Distance to move per key-press // // EasyThreeD ET-4000+ with button input and status LED // //#define EASYTHREED_UI //============================================================================= //=============================== Extra Features ============================== //============================================================================= // @section fans // Set number of user-controlled fans. Disable to use all board-defined fans. // :[1,2,3,4,5,6,7,8] //#define NUM_M106_FANS 1 // Use software PWM to drive the fan, as for the heaters. This uses a very low frequency // which is not as annoying as with the hardware PWM. On the other hand, if this frequency // is too low, you should also increment SOFT_PWM_SCALE. //#define FAN_SOFT_PWM // Incrementing this by 1 will double the software PWM frequency, // affecting heaters, and the fan if FAN_SOFT_PWM is enabled. // However, control resolution will be halved for each increment; // at zero value, there are 128 effective control positions. // :[0,1,2,3,4,5,6,7] #define SOFT_PWM_SCALE 0 // If SOFT_PWM_SCALE is set to a value higher than 0, dithering can // be used to mitigate the associated resolution loss. If enabled, // some of the PWM cycles are stretched so on average the desired // duty cycle is attained. //#define SOFT_PWM_DITHER // @section extras // Support for the BariCUDA Paste Extruder //#define BARICUDA // @section lights // Temperature status LEDs that display the hotend and bed temperature. // If all hotends, bed temperature, and target temperature are under 54C // then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis) //#define TEMP_STAT_LEDS // Support for BlinkM/CyzRgb //#define BLINKM // Support for PCA9632 PWM LED driver //#define PCA9632 // Support for PCA9533 PWM LED driver //#define PCA9533 /** * RGB LED / LED Strip Control * * Enable support for an RGB LED connected to 5V digital pins, or * an RGB Strip connected to MOSFETs controlled by digital pins. * * Adds the M150 command to set the LED (or LED strip) color. * If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of * luminance values can be set from 0 to 255. * For NeoPixel LED an overall brightness parameter is also available. * * === CAUTION === * LED Strips require a MOSFET Chip between PWM lines and LEDs, * as the Arduino cannot handle the current the LEDs will require. * Failure to follow this precaution can destroy your Arduino! * * NOTE: A separate 5V power supply is required! The NeoPixel LED needs * more current than the Arduino 5V linear regulator can produce. * * Requires PWM frequency between 50 <> 100Hz (Check HAL or variant) * Use FAST_PWM_FAN, if possible, to reduce fan noise. */ // LED Type. Enable only one of the following two options: //#define RGB_LED //#define RGBW_LED #if ANY(RGB_LED, RGBW_LED) //#define RGB_LED_R_PIN 34 //#define RGB_LED_G_PIN 43 //#define RGB_LED_B_PIN 35 //#define RGB_LED_W_PIN -1 #endif #if ANY(RGB_LED, RGBW_LED, PCA9632) //#define RGB_STARTUP_TEST // For PWM pins, fade between all colors #if ENABLED(RGB_STARTUP_TEST) #define RGB_STARTUP_TEST_INNER_MS 10 // (ms) Reduce or increase fading speed #endif #endif // Support for Adafruit NeoPixel LED driver //#define NEOPIXEL_LED #if ENABLED(NEOPIXEL_LED) #define NEOPIXEL_TYPE NEO_GRBW // NEO_GRBW, NEO_RGBW, NEO_GRB, NEO_RBG, etc. // See https://github.com/adafruit/Adafruit_NeoPixel/blob/master/Adafruit_NeoPixel.h //#define NEOPIXEL_PIN 4 // LED driving pin //#define NEOPIXEL2_TYPE NEOPIXEL_TYPE //#define NEOPIXEL2_PIN 5 #define NEOPIXEL_PIXELS 30 // Number of LEDs in the strip. (Longest strip when NEOPIXEL2_SEPARATE is disabled.) #define NEOPIXEL_IS_SEQUENTIAL // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once. #define NEOPIXEL_BRIGHTNESS 127 // Initial brightness (0-255) //#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup // Support for second Adafruit NeoPixel LED driver controlled with M150 S1 ... //#define NEOPIXEL2_SEPARATE #if ENABLED(NEOPIXEL2_SEPARATE) #define NEOPIXEL2_PIXELS 15 // Number of LEDs in the second strip #define NEOPIXEL2_BRIGHTNESS 127 // Initial brightness (0-255) #define NEOPIXEL2_STARTUP_TEST // Cycle through colors at startup #define NEOPIXEL_M150_DEFAULT -1 // Default strip for M150 without 'S'. Use -1 to set all by default. #else //#define NEOPIXEL2_INSERIES // Default behavior is NeoPixel 2 in parallel #endif // Use some of the NeoPixel LEDs for static (background) lighting //#define NEOPIXEL_BKGD_INDEX_FIRST 0 // Index of the first background LED //#define NEOPIXEL_BKGD_INDEX_LAST 5 // Index of the last background LED //#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W //#define NEOPIXEL_BKGD_TIMEOUT_COLOR { 25, 25, 25, 0 } // R, G, B, W //#define NEOPIXEL_BKGD_ALWAYS_ON // Keep the backlight on when other NeoPixels are off #endif /** * Printer Event LEDs * * During printing, the LEDs will reflect the printer status: * * - Gradually change from blue to violet as the heated bed gets to target temp * - Gradually change from violet to red as the hotend gets to temperature * - Change to white to illuminate work surface * - Change to green once print has finished * - Turn off after the print has finished and the user has pushed a button */ #if ANY(BLINKM, RGB_LED, RGBW_LED, PCA9632, PCA9533, NEOPIXEL_LED) #define PRINTER_EVENT_LEDS #endif // @section servos /** * Number of servos * * For some servo-related options NUM_SERVOS will be set automatically. * Set this manually if there are extra servos needing manual control. * Set to 0 to turn off servo support. */ //#define NUM_SERVOS 3 // Note: Servo index starts with 0 for M280-M282 commands // (ms) Delay before the next move will start, to give the servo time to reach its target angle. // 300ms is a good value but you can try less delay. // If the servo can't reach the requested position, increase it. #define SERVO_DELAY { 300 } // Only power servos during movement, otherwise leave off to prevent jitter //#define DEACTIVATE_SERVOS_AFTER_MOVE // Edit servo angles with M281 and save to EEPROM with M500 //#define EDITABLE_SERVO_ANGLES // Disable servo with M282 to reduce power consumption, noise, and heat when not in use //#define SERVO_DETACH_GCODE
2301_81045437/Marlin
Marlin/Configuration.h
C
agpl-3.0
137,040
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Configuration_adv.h * * Advanced settings. * Only change these if you know exactly what you're doing. * Some of these settings can damage your printer if improperly set! * * Basic settings can be found in Configuration.h */ #define CONFIGURATION_ADV_H_VERSION 02010300 // @section develop /** * Configuration Export * * Export the configuration as part of the build. (See signature.py) * Output files are saved with the build (e.g., .pio/build/mega2560). * * See `build_all_examples --ini` as an example of config.ini archiving. * * 1 = marlin_config.json - Dictionary containing the configuration. * This file is also generated for CONFIGURATION_EMBEDDING. * 2 = config.ini - File format for PlatformIO preprocessing. * 3 = schema.json - The entire configuration schema. (13 = pattern groups) * 4 = schema.yml - The entire configuration schema. */ //#define CONFIG_EXPORT 2 // :[1:'JSON', 2:'config.ini', 3:'schema.json', 4:'schema.yml'] //=========================================================================== //============================= Thermal Settings ============================ //=========================================================================== // @section temperature /** * Thermocouple sensors are quite sensitive to noise. Any noise induced in * the sensor wires, such as by stepper motor wires run in parallel to them, * may result in the thermocouple sensor reporting spurious errors. This * value is the number of errors which can occur in a row before the error * is reported. This allows us to ignore intermittent error conditions while * still detecting an actual failure, which should result in a continuous * stream of errors from the sensor. * * Set this value to 0 to fail on the first error to occur. */ #define THERMOCOUPLE_MAX_ERRORS 15 // // Custom Thermistor 1000 parameters // #if TEMP_SENSOR_0 == 1000 #define HOTEND0_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND0_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND0_BETA 3950 // Beta value #define HOTEND0_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_1 == 1000 #define HOTEND1_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND1_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND1_BETA 3950 // Beta value #define HOTEND1_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_2 == 1000 #define HOTEND2_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND2_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND2_BETA 3950 // Beta value #define HOTEND2_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_3 == 1000 #define HOTEND3_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND3_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND3_BETA 3950 // Beta value #define HOTEND3_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_4 == 1000 #define HOTEND4_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND4_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND4_BETA 3950 // Beta value #define HOTEND4_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_5 == 1000 #define HOTEND5_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND5_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND5_BETA 3950 // Beta value #define HOTEND5_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_6 == 1000 #define HOTEND6_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND6_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND6_BETA 3950 // Beta value #define HOTEND6_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_7 == 1000 #define HOTEND7_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define HOTEND7_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define HOTEND7_BETA 3950 // Beta value #define HOTEND7_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_BED == 1000 #define BED_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define BED_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define BED_BETA 3950 // Beta value #define BED_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_CHAMBER == 1000 #define CHAMBER_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define CHAMBER_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define CHAMBER_BETA 3950 // Beta value #define CHAMBER_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_COOLER == 1000 #define COOLER_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define COOLER_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define COOLER_BETA 3950 // Beta value #define COOLER_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_PROBE == 1000 #define PROBE_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define PROBE_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define PROBE_BETA 3950 // Beta value #define PROBE_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_BOARD == 1000 #define BOARD_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define BOARD_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define BOARD_BETA 3950 // Beta value #define BOARD_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif #if TEMP_SENSOR_REDUNDANT == 1000 #define REDUNDANT_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor #define REDUNDANT_RESISTANCE_25C_OHMS 100000 // Resistance at 25C #define REDUNDANT_BETA 3950 // Beta value #define REDUNDANT_SH_C_COEFF 0 // Steinhart-Hart C coefficient #endif /** * Thermocouple Options — for MAX6675 (-2), MAX31855 (-3), and MAX31865 (-5). */ //#define TEMP_SENSOR_FORCE_HW_SPI // Ignore SCK/MOSI/MISO pins; use CS and the default SPI bus. //#define MAX31865_SENSOR_WIRES_0 2 // (2-4) Number of wires for the probe connected to a MAX31865 board. //#define MAX31865_SENSOR_WIRES_1 2 //#define MAX31865_SENSOR_WIRES_2 2 //#define MAX31865_50HZ_FILTER // Use a 50Hz filter instead of the default 60Hz. //#define MAX31865_USE_READ_ERROR_DETECTION // Treat value spikes (20°C delta in under 1s) as read errors. //#define MAX31865_USE_AUTO_MODE // Read faster and more often than 1-shot; bias voltage always on; slight effect on RTD temperature. //#define MAX31865_MIN_SAMPLING_TIME_MSEC 100 // (ms) 1-shot: minimum read interval. Reduces bias voltage effects by leaving sensor unpowered for longer intervals. //#define MAX31865_IGNORE_INITIAL_FAULTY_READS 10 // Ignore some read faults (keeping the temperature reading) to work around a possible issue (#23439). //#define MAX31865_WIRE_OHMS_0 0.95f // For 2-wire, set the wire resistances for more accurate readings. //#define MAX31865_WIRE_OHMS_1 0.0f //#define MAX31865_WIRE_OHMS_2 0.0f /** * Hephestos 2 24V heated bed upgrade kit. * https://www.en3dstudios.com/product/bq-hephestos-2-heated-bed-kit/ */ //#define HEPHESTOS2_HEATED_BED_KIT #if ENABLED(HEPHESTOS2_HEATED_BED_KIT) #define HEATER_BED_INVERTING true #endif // // Heated Bed Bang-Bang options // #if DISABLED(PIDTEMPBED) #define BED_CHECK_INTERVAL 5000 // (ms) Interval between checks in bang-bang control #if ENABLED(BED_LIMIT_SWITCHING) #define BED_HYSTERESIS 2 // (°C) Only set the relevant heater state when ABS(T-target) > BED_HYSTERESIS #endif #endif // // Heated Chamber options // #if DISABLED(PIDTEMPCHAMBER) #define CHAMBER_CHECK_INTERVAL 5000 // (ms) Interval between checks in bang-bang control #if ENABLED(CHAMBER_LIMIT_SWITCHING) #define CHAMBER_HYSTERESIS 2 // (°C) Only set the relevant heater state when ABS(T-target) > CHAMBER_HYSTERESIS #endif #endif #if TEMP_SENSOR_CHAMBER //#define HEATER_CHAMBER_PIN P2_04 // Required heater on/off pin (example: SKR 1.4 Turbo HE1 plug) //#define HEATER_CHAMBER_INVERTING false //#define FAN1_PIN -1 // Remove the fan signal on pin P2_04 (example: SKR 1.4 Turbo HE1 plug) //#define CHAMBER_FAN // Enable a fan on the chamber #if ENABLED(CHAMBER_FAN) //#define CHAMBER_FAN_INDEX 2 // Index of a fan to repurpose as the chamber fan. (Default: first unused fan) #define CHAMBER_FAN_MODE 2 // Fan control mode: 0=Static; 1=Linear increase when temp is higher than target; 2=V-shaped curve; 3=similar to 1 but fan is always on. #if CHAMBER_FAN_MODE == 0 #define CHAMBER_FAN_BASE 255 // Chamber fan PWM (0-255) #elif CHAMBER_FAN_MODE == 1 #define CHAMBER_FAN_BASE 128 // Base chamber fan PWM (0-255); turns on when chamber temperature is above the target #define CHAMBER_FAN_FACTOR 25 // PWM increase per °C above target #elif CHAMBER_FAN_MODE == 2 #define CHAMBER_FAN_BASE 128 // Minimum chamber fan PWM (0-255) #define CHAMBER_FAN_FACTOR 25 // PWM increase per °C difference from target #elif CHAMBER_FAN_MODE == 3 #define CHAMBER_FAN_BASE 128 // Base chamber fan PWM (0-255) #define CHAMBER_FAN_FACTOR 25 // PWM increase per °C above target #endif #endif //#define CHAMBER_VENT // Enable a servo-controlled vent on the chamber #if ENABLED(CHAMBER_VENT) #define CHAMBER_VENT_SERVO_NR 1 // Index of the vent servo #define HIGH_EXCESS_HEAT_LIMIT 5 // How much above target temp to consider there is excess heat in the chamber #define LOW_EXCESS_HEAT_LIMIT 3 #define MIN_COOLING_SLOPE_TIME_CHAMBER_VENT 20 #define MIN_COOLING_SLOPE_DEG_CHAMBER_VENT 1.5 #endif #endif // // Laser Cooler options // #if TEMP_SENSOR_COOLER #define COOLER_MINTEMP 8 // (°C) #define COOLER_MAXTEMP 26 // (°C) #define COOLER_DEFAULT_TEMP 16 // (°C) #define TEMP_COOLER_HYSTERESIS 1 // (°C) Temperature proximity considered "close enough" to the target #define COOLER_PIN 8 // Laser cooler on/off pin used to control power to the cooling element (e.g., TEC, External chiller via relay) #define COOLER_INVERTING false #define TEMP_COOLER_PIN 15 // Laser/Cooler temperature sensor pin. ADC is required. #define COOLER_FAN // Enable a fan on the cooler, Fan# 0,1,2,3 etc. #define COOLER_FAN_INDEX 0 // FAN number 0, 1, 2 etc. e.g. #if ENABLED(COOLER_FAN) #define COOLER_FAN_BASE 100 // Base Cooler fan PWM (0-255); turns on when Cooler temperature is above the target #define COOLER_FAN_FACTOR 25 // PWM increase per °C above target #endif #endif // // Motherboard Sensor options // #if TEMP_SENSOR_BOARD #define THERMAL_PROTECTION_BOARD // Halt the printer if the board sensor leaves the temp range below. #define BOARD_MINTEMP 8 // (°C) #define BOARD_MAXTEMP 70 // (°C) //#define TEMP_BOARD_PIN -1 // Board temp sensor pin override. #endif // // SoC Sensor options // #if TEMP_SENSOR_SOC #define THERMAL_PROTECTION_SOC // Halt the printer if the SoC sensor leaves the temp range below. #define SOC_MAXTEMP 85 // (°C) #endif /** * Thermal Protection provides additional protection to your printer from damage * and fire. Marlin always includes safe min and max temperature ranges which * protect against a broken or disconnected thermistor wire. * * The issue: If a thermistor falls out, it will report the much lower * temperature of the air in the room, and the the firmware will keep * the heater on. * * The solution: Once the temperature reaches the target, start observing. * If the temperature stays too far below the target (hysteresis) for too * long (period), the firmware will halt the machine as a safety precaution. * * If you get false positives for "Thermal Runaway", increase * THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD */ #if ENABLED(THERMAL_PROTECTION_HOTENDS) #define THERMAL_PROTECTION_PERIOD 40 // (seconds) #define THERMAL_PROTECTION_HYSTERESIS 4 // (°C) //#define ADAPTIVE_FAN_SLOWING // Slow down the part-cooling fan if the temperature drops #if ENABLED(ADAPTIVE_FAN_SLOWING) //#define REPORT_ADAPTIVE_FAN_SLOWING // Report fan slowing activity to the console #if ANY(MPCTEMP, PIDTEMP) //#define TEMP_TUNING_MAINTAIN_FAN // Don't slow down the fan speed during M303 or M306 T #endif #endif /** * Whenever an M104, M109, or M303 increases the target temperature, the * firmware will wait for the WATCH_TEMP_PERIOD to expire. If the temperature * hasn't increased by WATCH_TEMP_INCREASE degrees, the machine is halted and * requires a hard reset. This test restarts with any M104/M109/M303, but only * if the current temperature is far enough below the target for a reliable * test. * * If you get false positives for "Heating failed", increase WATCH_TEMP_PERIOD * and/or decrease WATCH_TEMP_INCREASE. WATCH_TEMP_INCREASE should not be set * below 2. */ #define WATCH_TEMP_PERIOD 40 // (seconds) #define WATCH_TEMP_INCREASE 2 // (°C) #endif /** * Thermal Protection parameters for the bed are just as above for hotends. */ #if ENABLED(THERMAL_PROTECTION_BED) #define THERMAL_PROTECTION_BED_PERIOD 20 // (seconds) #define THERMAL_PROTECTION_BED_HYSTERESIS 2 // (°C) /** * As described above, except for the bed (M140/M190/M303). */ #define WATCH_BED_TEMP_PERIOD 60 // (seconds) #define WATCH_BED_TEMP_INCREASE 2 // (°C) #endif /** * Thermal Protection parameters for the heated chamber. */ #if ENABLED(THERMAL_PROTECTION_CHAMBER) #define THERMAL_PROTECTION_CHAMBER_PERIOD 20 // (seconds) #define THERMAL_PROTECTION_CHAMBER_HYSTERESIS 2 // (°C) /** * Heated chamber watch settings (M141/M191). */ #define WATCH_CHAMBER_TEMP_PERIOD 60 // (seconds) #define WATCH_CHAMBER_TEMP_INCREASE 2 // (°C) #endif /** * Thermal Protection parameters for the laser cooler. */ #if ENABLED(THERMAL_PROTECTION_COOLER) #define THERMAL_PROTECTION_COOLER_PERIOD 10 // (seconds) #define THERMAL_PROTECTION_COOLER_HYSTERESIS 3 // (°C) /** * Laser cooling watch settings (M143/M193). */ #define WATCH_COOLER_TEMP_PERIOD 60 // (seconds) #define WATCH_COOLER_TEMP_INCREASE 3 // (°C) #endif #if ANY(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_BED, THERMAL_PROTECTION_CHAMBER, THERMAL_PROTECTION_COOLER) /** * Thermal Protection Variance Monitor - EXPERIMENTAL * Kill the machine on a stuck temperature sensor. * * This feature may cause some thermally-stable systems to halt. Be sure to test it thoroughly under * a variety of conditions. Disable if you get false positives. * * This feature ensures that temperature sensors are updating regularly. If sensors die or get "stuck", * or if Marlin stops reading them, temperatures will remain constant while heaters may still be powered! * This feature only monitors temperature changes so it should catch any issue, hardware or software. * * By default it uses the THERMAL_PROTECTION_*_PERIOD constants (above) for the time window, within which * at least one temperature change must occur, to indicate that sensor polling is working. If any monitored * heater's temperature remains totally constant (without even a fractional change) during this period, a * thermal malfunction error occurs and the printer is halted. * * A very stable heater might produce a false positive and halt the printer. In this case, try increasing * the corresponding THERMAL_PROTECTION_*_PERIOD constant a bit. Keep in mind that uncontrolled heating * shouldn't be allowed to persist for more than a minute or two. * * Be careful to distinguish false positives from real sensor issues before disabling this feature. If the * heater's temperature appears even slightly higher than expected after restarting, you may have a real * thermal malfunction. Check the temperature graph in your host for any unusual bumps. */ //#define THERMAL_PROTECTION_VARIANCE_MONITOR #if ENABLED(THERMAL_PROTECTION_VARIANCE_MONITOR) // Variance detection window to override the THERMAL_PROTECTION...PERIOD settings above. // Keep in mind that some heaters heat up faster than others. //#define THERMAL_PROTECTION_VARIANCE_MONITOR_PERIOD 30 // (s) Override all watch periods #endif #endif #if ENABLED(PIDTEMP) // Add an additional term to the heater power, proportional to the extrusion speed. // A well-chosen Kc value should add just enough power to melt the increased material volume. //#define PID_EXTRUSION_SCALING #if ENABLED(PID_EXTRUSION_SCALING) #define DEFAULT_Kc (100) // heating power = Kc * e_speed #define LPQ_MAX_LEN 50 #endif /** * Add an additional term to the heater power, proportional to the fan speed. * A well-chosen Kf value should add just enough power to compensate for power-loss from the cooling fan. * You can either just add a constant compensation with the DEFAULT_Kf value * or follow the instruction below to get speed-dependent compensation. * * Constant compensation (use only with fan speeds of 0% and 100%) * --------------------------------------------------------------------- * A good starting point for the Kf-value comes from the calculation: * kf = (power_fan * eff_fan) / power_heater * 255 * where eff_fan is between 0.0 and 1.0, based on fan-efficiency and airflow to the nozzle / heater. * * Example: * Heater: 40W, Fan: 0.1A * 24V = 2.4W, eff_fan = 0.8 * Kf = (2.4W * 0.8) / 40W * 255 = 12.24 * * Fan-speed dependent compensation * -------------------------------- * 1. To find a good Kf value, set the hotend temperature, wait for it to settle, and enable the fan (100%). * Make sure PID_FAN_SCALING_LIN_FACTOR is 0 and PID_FAN_SCALING_ALTERNATIVE_DEFINITION is not enabled. * If you see the temperature drop repeat the test, increasing the Kf value slowly, until the temperature * drop goes away. If the temperature overshoots after enabling the fan, the Kf value is too big. * 2. Note the Kf-value for fan-speed at 100% * 3. Determine a good value for PID_FAN_SCALING_MIN_SPEED, which is around the speed, where the fan starts moving. * 4. Repeat step 1. and 2. for this fan speed. * 5. Enable PID_FAN_SCALING_ALTERNATIVE_DEFINITION and enter the two identified Kf-values in * PID_FAN_SCALING_AT_FULL_SPEED and PID_FAN_SCALING_AT_MIN_SPEED. Enter the minimum speed in PID_FAN_SCALING_MIN_SPEED */ //#define PID_FAN_SCALING #if ENABLED(PID_FAN_SCALING) //#define PID_FAN_SCALING_ALTERNATIVE_DEFINITION #if ENABLED(PID_FAN_SCALING_ALTERNATIVE_DEFINITION) // The alternative definition is used for an easier configuration. // Just figure out Kf at full speed (255) and PID_FAN_SCALING_MIN_SPEED. // DEFAULT_Kf and PID_FAN_SCALING_LIN_FACTOR are calculated accordingly. #define PID_FAN_SCALING_AT_FULL_SPEED 13.0 //=PID_FAN_SCALING_LIN_FACTOR*255+DEFAULT_Kf #define PID_FAN_SCALING_AT_MIN_SPEED 6.0 //=PID_FAN_SCALING_LIN_FACTOR*PID_FAN_SCALING_MIN_SPEED+DEFAULT_Kf #define PID_FAN_SCALING_MIN_SPEED 10.0 // Minimum fan speed at which to enable PID_FAN_SCALING #define DEFAULT_Kf (255.0*PID_FAN_SCALING_AT_MIN_SPEED-PID_FAN_SCALING_AT_FULL_SPEED*PID_FAN_SCALING_MIN_SPEED)/(255.0-PID_FAN_SCALING_MIN_SPEED) #define PID_FAN_SCALING_LIN_FACTOR (PID_FAN_SCALING_AT_FULL_SPEED-DEFAULT_Kf)/255.0 #else #define PID_FAN_SCALING_LIN_FACTOR (0) // Power-loss due to cooling = Kf * (fan_speed) #define DEFAULT_Kf 10 // A constant value added to the PID-tuner #define PID_FAN_SCALING_MIN_SPEED 10 // Minimum fan speed at which to enable PID_FAN_SCALING #endif #endif #endif /** * Automatic Temperature Mode * * Dynamically adjust the hotend target temperature based on planned E moves. * * (Contrast with PID_EXTRUSION_SCALING, which tracks E movement and adjusts PID * behavior using an additional kC value.) * * Autotemp is calculated by (mintemp + factor * mm_per_sec), capped to maxtemp. * * Enable Autotemp Mode with M104/M109 F<factor> S<mintemp> B<maxtemp>. * Disable by sending M104/M109 with no F parameter (or F0 with AUTOTEMP_PROPORTIONAL). */ #define AUTOTEMP #if ENABLED(AUTOTEMP) #define AUTOTEMP_OLDWEIGHT 0.98 // Factor used to weight previous readings (0.0 < value < 1.0) #define AUTOTEMP_MIN 210 #define AUTOTEMP_MAX 250 #define AUTOTEMP_FACTOR 0.1f // Turn on AUTOTEMP on M104/M109 by default using proportions set here //#define AUTOTEMP_PROPORTIONAL #if ENABLED(AUTOTEMP_PROPORTIONAL) #define AUTOTEMP_MIN_P 0 // (°C) Added to the target temperature #define AUTOTEMP_MAX_P 5 // (°C) Added to the target temperature #define AUTOTEMP_FACTOR_P 1 // Apply this F parameter by default (overridden by M104/M109 F) #endif #endif // Show Temperature ADC value // Enable for M105 to include ADC values read from temperature sensors. //#define SHOW_TEMP_ADC_VALUES /** * High Temperature Thermistor Support * * Thermistors able to support high temperature tend to have a hard time getting * good readings at room and lower temperatures. This means TEMP_SENSOR_X_RAW_LO_TEMP * will probably be caught when the heating element first turns on during the * preheating process, which will trigger a MINTEMP error as a safety measure * and force stop everything. * To circumvent this limitation, we allow for a preheat time (during which, * MINTEMP error won't be triggered) and add a min_temp buffer to handle * aberrant readings. * * If you want to enable this feature for your hotend thermistor(s) * uncomment and set values > 0 in the constants below */ // The number of consecutive low temperature errors that can occur // before a MINTEMP error is triggered. (Shouldn't be more than 10.) //#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0 /** * The number of milliseconds a hotend will preheat before starting to check * the temperature. This value should NOT be set to the time it takes the * hot end to reach the target temperature, but the time it takes to reach * the minimum temperature your thermistor can read. The lower the better/safer. * This shouldn't need to be more than 30 seconds (30000) */ //#define PREHEAT_TIME_HOTEND_MS 0 //#define PREHEAT_TIME_BED_MS 0 // @section extruder /** * Extruder runout prevention. * If the machine is idle and the temperature over MINTEMP * then extrude some filament every couple of SECONDS. */ //#define EXTRUDER_RUNOUT_PREVENT #if ENABLED(EXTRUDER_RUNOUT_PREVENT) #define EXTRUDER_RUNOUT_MINTEMP 190 #define EXTRUDER_RUNOUT_SECONDS 30 #define EXTRUDER_RUNOUT_SPEED 1500 // (mm/min) #define EXTRUDER_RUNOUT_EXTRUDE 5 // (mm) #endif /** * Hotend Idle Timeout * Prevent filament in the nozzle from charring and causing a critical jam. */ //#define HOTEND_IDLE_TIMEOUT #if ENABLED(HOTEND_IDLE_TIMEOUT) #define HOTEND_IDLE_TIMEOUT_SEC (5*60) // (seconds) Time without extruder movement to trigger protection #define HOTEND_IDLE_MIN_TRIGGER 180 // (°C) Minimum temperature to enable hotend protection #define HOTEND_IDLE_NOZZLE_TARGET 0 // (°C) Safe temperature for the nozzle after timeout #define HOTEND_IDLE_BED_TARGET 0 // (°C) Safe temperature for the bed after timeout #endif // @section temperature // Calibration for AD595 / AD8495 sensor to adjust temperature measurements. // The final temperature is calculated as (measuredTemp * GAIN) + OFFSET. #define TEMP_SENSOR_AD595_OFFSET 0.0 #define TEMP_SENSOR_AD595_GAIN 1.0 #define TEMP_SENSOR_AD8495_OFFSET 0.0 #define TEMP_SENSOR_AD8495_GAIN 1.0 // @section fans /** * Controller Fan * To cool down the stepper drivers and MOSFETs. * * The fan turns on automatically whenever any driver is enabled and turns * off (or reduces to idle speed) shortly after drivers are turned off. */ //#define USE_CONTROLLER_FAN #if ENABLED(USE_CONTROLLER_FAN) //#define CONTROLLER_FAN_PIN -1 // Set a custom pin for the controller fan //#define CONTROLLER_FAN2_PIN -1 // Set a custom pin for second controller fan //#define CONTROLLER_FAN_USE_Z_ONLY // With this option only the Z axis is considered //#define CONTROLLER_FAN_IGNORE_Z // Ignore Z stepper. Useful when stepper timeout is disabled. #define CONTROLLERFAN_SPEED_MIN 0 // (0-255) Minimum speed. (If set below this value the fan is turned off.) #define CONTROLLERFAN_SPEED_ACTIVE 255 // (0-255) Active speed, used when any motor is enabled #define CONTROLLERFAN_SPEED_IDLE 0 // (0-255) Idle speed, used when motors are disabled #define CONTROLLERFAN_IDLE_TIME 60 // (seconds) Extra time to keep the fan running after disabling motors // Use TEMP_SENSOR_BOARD as a trigger for enabling the controller fan //#define CONTROLLER_FAN_MIN_BOARD_TEMP 40 // (°C) Turn on the fan if the board reaches this temperature // Use TEMP_SENSOR_SOC as a trigger for enabling the controller fan //#define CONTROLLER_FAN_MIN_SOC_TEMP 40 // (°C) Turn on the fan if the SoC reaches this temperature //#define CONTROLLER_FAN_EDITABLE // Enable M710 configurable settings #if ENABLED(CONTROLLER_FAN_EDITABLE) #define CONTROLLER_FAN_MENU // Enable the Controller Fan submenu #endif #endif /** * Fan Kickstart * When part cooling or controller fans first start, run at a speed that * gets it spinning reliably for a short time before setting the requested speed. * (Does not work on Sanguinololu with FAN_SOFT_PWM.) */ //#define FAN_KICKSTART_TIME 100 // (ms) //#define FAN_KICKSTART_POWER 180 // 64-255 // Some coolers may require a non-zero "off" state. //#define FAN_OFF_PWM 1 /** * PWM Fan Scaling * * Define the min/max speeds for PWM fans (as set with M106). * * With these options the M106 0-255 value range is scaled to a subset * to ensure that the fan has enough power to spin, or to run lower * current fans with higher current. (e.g., 5V/12V fans with 12V/24V) * Value 0 always turns off the fan. * * Define one or both of these to override the default 0-255 range. */ //#define FAN_MIN_PWM 50 //#define FAN_MAX_PWM 128 /** * Fan Fast PWM * * Combinations of PWM Modes, prescale values and TOP resolutions are used internally * to produce a frequency as close as possible to the desired frequency. * * FAST_PWM_FAN_FREQUENCY * Set this to your desired frequency. * For AVR, if left undefined this defaults to F = F_CPU/(2*255*1) * i.e., F = 31.4kHz on 16MHz micro-controllers or F = 39.2kHz on 20MHz micro-controllers. * For non AVR, if left undefined this defaults to F = 1Khz. * This F value is only to protect the hardware from an absence of configuration * and not to complete it when users are not aware that the frequency must be specifically set to support the target board. * * NOTE: Setting very low frequencies (< 10 Hz) may result in unexpected timer behavior. * Setting very high frequencies can damage your hardware. * * USE_OCR2A_AS_TOP [undefined by default] * Boards that use TIMER2 for PWM have limitations resulting in only a few possible frequencies on TIMER2: * 16MHz MCUs: [62.5kHz, 31.4kHz (default), 7.8kHz, 3.92kHz, 1.95kHz, 977Hz, 488Hz, 244Hz, 60Hz, 122Hz, 30Hz] * 20MHz MCUs: [78.1kHz, 39.2kHz (default), 9.77kHz, 4.9kHz, 2.44kHz, 1.22kHz, 610Hz, 305Hz, 153Hz, 76Hz, 38Hz] * A greater range can be achieved by enabling USE_OCR2A_AS_TOP. But note that this option blocks the use of * PWM on pin OC2A. Only use this option if you don't need PWM on 0C2A. (Check your schematic.) * USE_OCR2A_AS_TOP sacrifices duty cycle control resolution to achieve this broader range of frequencies. */ //#define FAST_PWM_FAN // Increase the fan PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino #if ENABLED(FAST_PWM_FAN) //#define FAST_PWM_FAN_FREQUENCY 31400 // Define here to override the defaults below //#define USE_OCR2A_AS_TOP #ifndef FAST_PWM_FAN_FREQUENCY #ifdef __AVR__ #define FAST_PWM_FAN_FREQUENCY ((F_CPU) / (2 * 255 * 1)) #else #define FAST_PWM_FAN_FREQUENCY 1000U #endif #endif #endif /** * Assign more PWM fans for part cooling, synchronized with Fan 0 */ //#define REDUNDANT_PART_COOLING_FAN 1 // Index of the first fan to synchronize with Fan 0 #ifdef REDUNDANT_PART_COOLING_FAN //#define NUM_REDUNDANT_FANS 1 // Number of sequential fans to synchronize with Fan 0 #endif /** * Extruder cooling fans * * Extruder auto fans automatically turn on when their extruders' * temperatures go above EXTRUDER_AUTO_FAN_TEMPERATURE. * * Your board's pins file specifies the recommended pins. Override those here * or set to -1 to disable completely. * * Multiple extruders can be assigned to the same pin in which case * the fan will turn on when any selected extruder is above the threshold. */ #define E0_AUTO_FAN_PIN -1 #define E1_AUTO_FAN_PIN -1 #define E2_AUTO_FAN_PIN -1 #define E3_AUTO_FAN_PIN -1 #define E4_AUTO_FAN_PIN -1 #define E5_AUTO_FAN_PIN -1 #define E6_AUTO_FAN_PIN -1 #define E7_AUTO_FAN_PIN -1 #define CHAMBER_AUTO_FAN_PIN -1 #define COOLER_AUTO_FAN_PIN -1 #define EXTRUDER_AUTO_FAN_TEMPERATURE 50 #define EXTRUDER_AUTO_FAN_SPEED 255 // 255 == full speed #define CHAMBER_AUTO_FAN_TEMPERATURE 30 #define CHAMBER_AUTO_FAN_SPEED 255 #define COOLER_AUTO_FAN_TEMPERATURE 18 #define COOLER_AUTO_FAN_SPEED 255 /** * Hotend Cooling Fans tachometers * * Define one or more tachometer pins to enable fan speed * monitoring, and reporting of fan speeds with M123. * * NOTE: Only works with fans up to 7000 RPM. */ //#define FOURWIRES_FANS // Needed with AUTO_FAN when 4-wire PWM fans are installed //#define E0_FAN_TACHO_PIN -1 //#define E0_FAN_TACHO_PULLUP //#define E0_FAN_TACHO_PULLDOWN //#define E1_FAN_TACHO_PIN -1 //#define E1_FAN_TACHO_PULLUP //#define E1_FAN_TACHO_PULLDOWN //#define E2_FAN_TACHO_PIN -1 //#define E2_FAN_TACHO_PULLUP //#define E2_FAN_TACHO_PULLDOWN //#define E3_FAN_TACHO_PIN -1 //#define E3_FAN_TACHO_PULLUP //#define E3_FAN_TACHO_PULLDOWN //#define E4_FAN_TACHO_PIN -1 //#define E4_FAN_TACHO_PULLUP //#define E4_FAN_TACHO_PULLDOWN //#define E5_FAN_TACHO_PIN -1 //#define E5_FAN_TACHO_PULLUP //#define E5_FAN_TACHO_PULLDOWN //#define E6_FAN_TACHO_PIN -1 //#define E6_FAN_TACHO_PULLUP //#define E6_FAN_TACHO_PULLDOWN //#define E7_FAN_TACHO_PIN -1 //#define E7_FAN_TACHO_PULLUP //#define E7_FAN_TACHO_PULLDOWN /** * Part-Cooling Fan Multiplexer * * This feature allows you to digitally multiplex the fan output. * The multiplexer is automatically switched at tool-change. * Set FANMUX[012]_PINs below for up to 2, 4, or 8 multiplexed fans. */ #define FANMUX0_PIN -1 #define FANMUX1_PIN -1 #define FANMUX2_PIN -1 /** * @section caselight * M355 Case Light on-off / brightness */ //#define CASE_LIGHT_ENABLE #if ENABLED(CASE_LIGHT_ENABLE) //#define CASE_LIGHT_PIN 4 // Override the default pin if needed #define INVERT_CASE_LIGHT false // Set true if Case Light is ON when pin is LOW #define CASE_LIGHT_DEFAULT_ON true // Set default power-up state on #define CASE_LIGHT_DEFAULT_BRIGHTNESS 105 // Set default power-up brightness (0-255, requires PWM pin) //#define CASE_LIGHT_NO_BRIGHTNESS // Disable brightness control. Enable for non-PWM lighting. //#define CASE_LIGHT_MAX_PWM 128 // Limit PWM duty cycle (0-255) //#define CASE_LIGHT_MENU // Add Case Light options to the LCD menu #if ENABLED(NEOPIXEL_LED) //#define CASE_LIGHT_USE_NEOPIXEL // Use NeoPixel LED as case light #endif #if ANY(RGB_LED, RGBW_LED) //#define CASE_LIGHT_USE_RGB_LED // Use RGB / RGBW LED as case light #endif #if ANY(CASE_LIGHT_USE_NEOPIXEL, CASE_LIGHT_USE_RGB_LED) #define CASE_LIGHT_DEFAULT_COLOR { 255, 255, 255, 255 } // { Red, Green, Blue, White } #endif #endif // @section endstops // If you want endstops to stay on (by default) even when not homing // enable this option. Override at any time with M120, M121. //#define ENDSTOPS_ALWAYS_ON_DEFAULT // @section extras //#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats. // Employ an external closed loop controller. Override pins here if needed. //#define EXTERNAL_CLOSED_LOOP_CONTROLLER #if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER) //#define CLOSED_LOOP_ENABLE_PIN -1 //#define CLOSED_LOOP_MOVE_COMPLETE_PIN -1 #endif // @section idex /** * Dual X Carriage * * This setup has two X carriages that can move independently, each with its own hotend. * The carriages can be used to print an object with two colors or materials, or in * "duplication mode" it can print two identical or X-mirrored objects simultaneously. * The inactive carriage is parked automatically to prevent oozing. * X1 is the left carriage, X2 the right. They park and home at opposite ends of the X axis. * By default the X2 stepper is assigned to the first unused E plug on the board. * * The following Dual X Carriage modes can be selected with M605 S<mode>: * * 0 : (FULL_CONTROL) The slicer has full control over both X-carriages and can achieve optimal travel * results as long as it supports dual X-carriages. (M605 S0) * * 1 : (AUTO_PARK) The firmware automatically parks and unparks the X-carriages on tool-change so * that additional slicer support is not required. (M605 S1) * * 2 : (DUPLICATION) The firmware moves the second X-carriage and extruder in synchronization with * the first X-carriage and extruder, to print 2 copies of the same object at the same time. * Set the constant X-offset and temperature differential with M605 S2 X[offs] R[deg] and * follow with M605 S2 to initiate duplicated movement. * * 3 : (MIRRORED) Formbot/Vivedino-inspired mirrored mode in which the second extruder duplicates * the movement of the first except the second extruder is reversed in the X axis. * Set the initial X offset and temperature differential with M605 S2 X[offs] R[deg] and * follow with M605 S3 to initiate mirrored movement. */ //#define DUAL_X_CARRIAGE #if ENABLED(DUAL_X_CARRIAGE) #define X1_MIN_POS X_MIN_POS // Set to X_MIN_POS #define X1_MAX_POS X_BED_SIZE // A max coordinate so the X1 carriage can't hit the parked X2 carriage #define X2_MIN_POS 80 // A min coordinate so the X2 carriage can't hit the parked X1 carriage #define X2_MAX_POS 353 // The max position of the X2 carriage, typically also the home position #define X2_HOME_POS X2_MAX_POS // Default X2 home position. Set to X2_MAX_POS. // NOTE: For Dual X Carriage use M218 T1 Xn to override the X2_HOME_POS. // This allows recalibration of endstops distance without a rebuild. // Remember to set the second extruder's X-offset to 0 in your slicer. // This is the default power-up mode which can be changed later using M605 S<mode>. #define DEFAULT_DUAL_X_CARRIAGE_MODE DXC_AUTO_PARK_MODE // Default x offset in duplication mode (typically set to half print bed width) #define DEFAULT_DUPLICATION_X_OFFSET 100 // Default action to execute following M605 mode change commands. Typically G28X to apply new mode. //#define EVENT_GCODE_IDEX_AFTER_MODECHANGE "G28X" #endif // @section multi stepper /** * Multi-Stepper / Multi-Endstop * * When X2_DRIVER_TYPE is defined, this indicates that the X and X2 motors work in tandem. * The following explanations for X also apply to Y and Z multi-stepper setups. * Endstop offsets may be changed by 'M666 X<offset> Y<offset> Z<offset>' and stored to EEPROM. * * - Enable INVERT_X2_VS_X_DIR if the X2 motor requires an opposite DIR signal from X. * * - Enable X_DUAL_ENDSTOPS if the second motor has its own endstop, with adjustable offset. * * - Extra endstops are included in the output of 'M119'. * * - Set X_DUAL_ENDSTOP_ADJUSTMENT to the known error in the X2 endstop. * Applied to the X2 motor on 'G28' / 'G28 X'. * Get the offset by homing X and measuring the error. * Also set with 'M666 X<offset>' and stored to EEPROM with 'M500'. * * - Define the extra endstop pins here to override defaults. No auto-assignment. */ #if HAS_X2_STEPPER && DISABLED(DUAL_X_CARRIAGE) //#define INVERT_X2_VS_X_DIR // X2 direction signal is the opposite of X //#define X_DUAL_ENDSTOPS // X2 has its own endstop #if ENABLED(X_DUAL_ENDSTOPS) //#define X2_STOP_PIN X_MAX_PIN // X2 endstop pin override #define X2_ENDSTOP_ADJUSTMENT 0 // X2 offset relative to X endstop #endif #endif #if HAS_Y2_STEPPER //#define INVERT_Y2_VS_Y_DIR // Y2 direction signal is the opposite of Y //#define Y_DUAL_ENDSTOPS // Y2 has its own endstop #if ENABLED(Y_DUAL_ENDSTOPS) //#define Y2_STOP_PIN Y_MAX_PIN // Y2 endstop pin override #define Y2_ENDSTOP_ADJUSTMENT 0 // Y2 offset relative to Y endstop #endif #endif // // Multi-Z steppers // #ifdef Z2_DRIVER_TYPE //#define INVERT_Z2_VS_Z_DIR // Z2 direction signal is the opposite of Z //#define Z_MULTI_ENDSTOPS // Other Z axes have their own endstops #if ENABLED(Z_MULTI_ENDSTOPS) //#define Z2_STOP_PIN X_MAX_PIN // Z2 endstop pin override #define Z2_ENDSTOP_ADJUSTMENT 0 // Z2 offset relative to Z endstop #endif #ifdef Z3_DRIVER_TYPE //#define INVERT_Z3_VS_Z_DIR // Z3 direction signal is the opposite of Z #if ENABLED(Z_MULTI_ENDSTOPS) //#define Z3_STOP_PIN Y_MAX_PIN // Z3 endstop pin override #define Z3_ENDSTOP_ADJUSTMENT 0 // Z3 offset relative to Z endstop #endif #endif #ifdef Z4_DRIVER_TYPE //#define INVERT_Z4_VS_Z_DIR // Z4 direction signal is the opposite of Z #if ENABLED(Z_MULTI_ENDSTOPS) //#define Z4_STOP_PIN Z_MAX_PIN // Z4 endstop pin override #define Z4_ENDSTOP_ADJUSTMENT 0 // Z4 offset relative to Z endstop #endif #endif #endif // Drive the E axis with two synchronized steppers //#define E_DUAL_STEPPER_DRIVERS #if ENABLED(E_DUAL_STEPPER_DRIVERS) //#define INVERT_E1_VS_E0_DIR // E direction signals are opposites #endif // @section extruder // Activate a solenoid on the active extruder with M380. Disable all with M381. // Define SOL0_PIN, SOL1_PIN, etc., for each extruder that has a solenoid. //#define EXT_SOLENOID // @section homing /** * Homing Procedure * Homing (G28) does an indefinite move towards the endstops to establish * the position of the toolhead relative to the workspace. */ //#define SENSORLESS_BACKOFF_MM { 2, 2, 0 } // (linear=mm, rotational=°) Backoff from endstops before sensorless homing #define HOMING_BUMP_MM { 5, 5, 2 } // (linear=mm, rotational=°) Backoff from endstops after first bump #define HOMING_BUMP_DIVISOR { 2, 2, 4 } // Re-Bump Speed Divisor (Divides the Homing Feedrate) //#define HOMING_BACKOFF_POST_MM { 2, 2, 2 } // (linear=mm, rotational=°) Backoff from endstops after homing //#define XY_COUNTERPART_BACKOFF_MM 0 // (mm) Backoff X after homing Y, and vice-versa //#define QUICK_HOME // If G28 contains XY do a diagonal move first //#define HOME_Y_BEFORE_X // If G28 contains XY home Y before X //#define HOME_Z_FIRST // Home Z first. Requires a real endstop (not a probe). //#define CODEPENDENT_XY_HOMING // If X/Y can't home without homing Y/X first // @section bltouch #if ENABLED(BLTOUCH) /** * Either: Use the defaults (recommended) or: For special purposes, use the following DEFINES * Do not activate settings that the probe might not understand. Clones might misunderstand * advanced commands. * * Note: If the probe is not deploying, do a "Reset" and "Self-Test" and then check the * wiring of the BROWN, RED and ORANGE wires. * * Note: If the trigger signal of your probe is not being recognized, it has been very often * because the BLACK and WHITE wires needed to be swapped. They are not "interchangeable" * like they would be with a real switch. So please check the wiring first. * * Settings for all BLTouch and clone probes: */ // Safety: The probe needs time to recognize the command. // Minimum command delay (ms). Enable and increase if needed. //#define BLTOUCH_DELAY 500 /** * Settings for BLTOUCH Classic 1.2, 1.3 or BLTouch Smart 1.0, 2.0, 2.2, 3.0, 3.1, and most clones: */ // Feature: Switch into SW mode after a deploy. It makes the output pulse longer. Can be useful // in special cases, like noisy or filtered input configurations. //#define BLTOUCH_FORCE_SW_MODE /** * Settings for BLTouch Smart 3.0 and 3.1 * Summary: * - Voltage modes: 5V and OD (open drain - "logic voltage free") output modes * - High-Speed mode * - Disable LCD voltage options */ /** * Danger: Don't activate 5V mode unless attached to a 5V-tolerant controller! * V3.0 or 3.1: Set default mode to 5V mode at Marlin startup. * If disabled, OD mode is the hard-coded default on 3.0 * On startup, Marlin will compare its EEPROM to this value. If the selected mode * differs, a mode set EEPROM write will be completed at initialization. * Use the option below to force an EEPROM write to a V3.1 probe regardless. */ //#define BLTOUCH_SET_5V_MODE // Safety: Enable voltage mode settings in the LCD menu. //#define BLTOUCH_LCD_VOLTAGE_MENU /** * Safety: Activate if connecting a probe with an unknown voltage mode. * V3.0: Set a probe into mode selected above at Marlin startup. Required for 5V mode on 3.0 * V3.1: Force a probe with unknown mode into selected mode at Marlin startup ( = Probe EEPROM write ) * To preserve the life of the probe, use this once then turn it off and re-flash. */ //#define BLTOUCH_FORCE_MODE_SET /** * Enable "HIGH SPEED" option for probing. * Danger: Disable if your probe sometimes fails. Only suitable for stable well-adjusted systems. * This feature was designed for Deltabots with very fast Z moves; however, higher speed Cartesians * might be able to use it. If the machine can't raise Z fast enough the BLTouch may go into ALARM. * * Set the default state here, change with 'M401 S' or UI, use M500 to save, M502 to reset. */ //#define BLTOUCH_HS_MODE true #ifdef BLTOUCH_HS_MODE // The probe Z offset (M851 Z) is the height at which the probe triggers. // This must be large enough to keep the probe pin off the bed and prevent // it from snagging on the bed clips. #define BLTOUCH_HS_EXTRA_CLEARANCE 7 // Extra Z Clearance #endif #endif // BLTOUCH // @section calibration /** * Z Steppers Auto-Alignment * Add the G34 command to align multiple Z steppers using a bed probe. */ //#define Z_STEPPER_AUTO_ALIGN #if ENABLED(Z_STEPPER_AUTO_ALIGN) /** * Define probe X and Y positions for Z1, Z2 [, Z3 [, Z4]] * These positions are machine-relative and do not shift with the M206 home offset! * If not defined, probe limits will be used. * Override with 'M422 S<index> X<pos> Y<pos>'. */ //#define Z_STEPPER_ALIGN_XY { { 10, 190 }, { 100, 10 }, { 190, 190 } } /** * Orientation for the automatically-calculated probe positions. * Override Z stepper align points with 'M422 S<index> X<pos> Y<pos>' * * 2 Steppers: (0) (1) * | | 2 | * | 1 2 | | * | | 1 | * * 3 Steppers: (0) (1) (2) (3) * | 3 | 1 | 2 1 | 2 | * | | 3 | | 3 | * | 1 2 | 2 | 3 | 1 | * * 4 Steppers: (0) (1) (2) (3) * | 4 3 | 1 4 | 2 1 | 3 2 | * | | | | | * | 1 2 | 2 3 | 3 4 | 4 1 | */ #ifndef Z_STEPPER_ALIGN_XY //#define Z_STEPPERS_ORIENTATION 0 #endif /** * Z Stepper positions for more rapid convergence in bed alignment. * Requires 3 or 4 Z steppers. * * Define Stepper XY positions for Z1, Z2, Z3... corresponding to the screw * positions in the bed carriage, with one position per Z stepper in stepper * driver order. */ //#define Z_STEPPER_ALIGN_STEPPER_XY { { 210.7, 102.5 }, { 152.6, 220.0 }, { 94.5, 102.5 } } #ifndef Z_STEPPER_ALIGN_STEPPER_XY // Amplification factor. Used to scale the correction step up or down in case // the stepper (spindle) position is farther out than the test point. #define Z_STEPPER_ALIGN_AMP 1.0 // Use a value > 1.0 NOTE: This may cause instability! #endif // On a 300mm bed a 5% grade would give a misalignment of ~1.5cm #define G34_MAX_GRADE 5 // (%) Maximum incline that G34 will handle #define Z_STEPPER_ALIGN_ITERATIONS 5 // Number of iterations to apply during alignment #define Z_STEPPER_ALIGN_ACC 0.02 // Stop iterating early if the accuracy is better than this #define RESTORE_LEVELING_AFTER_G34 // Restore leveling after G34 is done? // After G34, re-home Z (G28 Z) or just calculate it from the last probe heights? // Re-homing might be more precise in reproducing the actual 'G28 Z' homing height, especially on an uneven bed. #define HOME_AFTER_G34 #endif // // Add the G35 command to read bed corners to help adjust screws. Requires a bed probe. // //#define ASSISTED_TRAMMING #if ENABLED(ASSISTED_TRAMMING) // Define from 3 to 9 points to probe. #define TRAMMING_POINT_XY { { 20, 20 }, { 180, 20 }, { 180, 180 }, { 20, 180 } } // Define position names for probe points. #define TRAMMING_POINT_NAME_1 "Front-Left" #define TRAMMING_POINT_NAME_2 "Front-Right" #define TRAMMING_POINT_NAME_3 "Back-Right" #define TRAMMING_POINT_NAME_4 "Back-Left" #define RESTORE_LEVELING_AFTER_G35 // Enable to restore leveling setup after operation //#define REPORT_TRAMMING_MM // Report Z deviation (mm) for each point relative to the first //#define ASSISTED_TRAMMING_WIZARD // Add a Tramming Wizard to the LCD menu //#define ASSISTED_TRAMMING_WAIT_POSITION { X_CENTER, Y_CENTER, 30 } // Move the nozzle out of the way for adjustment /** * Screw thread: * M3: 30 = Clockwise, 31 = Counter-Clockwise * M4: 40 = Clockwise, 41 = Counter-Clockwise * M5: 50 = Clockwise, 51 = Counter-Clockwise */ #define TRAMMING_SCREW_THREAD 30 #endif // @section motion control /** * Fixed-time-based Motion Control -- EXPERIMENTAL * Enable/disable and set parameters with G-code M493. */ //#define FT_MOTION #if ENABLED(FT_MOTION) #define FTM_DEFAULT_MODE ftMotionMode_DISABLED // Default mode of fixed time control. (Enums in ft_types.h) #define FTM_DEFAULT_DYNFREQ_MODE dynFreqMode_DISABLED // Default mode of dynamic frequency calculation. (Enums in ft_types.h) #define FTM_SHAPING_DEFAULT_X_FREQ 37.0f // (Hz) Default peak frequency used by input shapers #define FTM_SHAPING_DEFAULT_Y_FREQ 37.0f // (Hz) Default peak frequency used by input shapers #define FTM_LINEAR_ADV_DEFAULT_ENA false // Default linear advance enable (true) or disable (false) #define FTM_LINEAR_ADV_DEFAULT_K 0.0f // Default linear advance gain #define FTM_SHAPING_ZETA_X 0.1f // Zeta used by input shapers for X axis #define FTM_SHAPING_ZETA_Y 0.1f // Zeta used by input shapers for Y axis #define FTM_SHAPING_V_TOL_X 0.05f // Vibration tolerance used by EI input shapers for X axis #define FTM_SHAPING_V_TOL_Y 0.05f // Vibration tolerance used by EI input shapers for Y axis //#define FT_MOTION_MENU // Provide a MarlinUI menu to set M493 parameters /** * Advanced configuration */ #define FTM_UNIFIED_BWS // DON'T DISABLE unless you use Ulendo FBS (not implemented) #if ENABLED(FTM_UNIFIED_BWS) #define FTM_BW_SIZE 100 // Unified Window and Batch size with a ratio of 2 #else #define FTM_WINDOW_SIZE 200 // Custom Window size for trajectory generation needed by Ulendo FBS #define FTM_BATCH_SIZE 100 // Custom Batch size for trajectory generation needed by Ulendo FBS #endif #define FTM_FS 1000 // (Hz) Frequency for trajectory generation. (Reciprocal of FTM_TS) #define FTM_TS 0.001f // (s) Time step for trajectory generation. (Reciprocal of FTM_FS) // These values may be configured to adjust the duration of loop(). #define FTM_STEPS_PER_LOOP 60 // Number of stepper commands to generate each loop() #define FTM_POINTS_PER_LOOP 100 // Number of trajectory points to generate each loop() #if DISABLED(COREXY) #define FTM_STEPPER_FS 20000 // (Hz) Frequency for stepper I/O update // Use this to adjust the time required to consume the command buffer. // Try increasing this value if stepper motion is choppy. #define FTM_STEPPERCMD_BUFF_SIZE 3000 // Size of the stepper command buffers // (FTM_STEPS_PER_LOOP * FTM_POINTS_PER_LOOP) is a good start // If you run out of memory, fall back to 3000 and increase progressively #else // CoreXY motion needs a larger buffer size. These values are based on our testing. #define FTM_STEPPER_FS 30000 #define FTM_STEPPERCMD_BUFF_SIZE 6000 #endif #define FTM_STEPS_PER_UNIT_TIME (FTM_STEPPER_FS / FTM_FS) // Interpolated stepper commands per unit time #define FTM_CTS_COMPARE_VAL (FTM_STEPS_PER_UNIT_TIME / 2) // Comparison value used in interpolation algorithm #define FTM_MIN_TICKS ((STEPPER_TIMER_RATE) / (FTM_STEPPER_FS)) // Minimum stepper ticks between steps #define FTM_MIN_SHAPE_FREQ 10 // Minimum shaping frequency #define FTM_RATIO (FTM_FS / FTM_MIN_SHAPE_FREQ) // Factor for use in FTM_ZMAX. DON'T CHANGE. #define FTM_ZMAX (FTM_RATIO * 2) // Maximum delays for shaping functions (even numbers only!) // Calculate as: // ZV : FTM_RATIO / 2 // ZVD, MZV : FTM_RATIO // 2HEI : FTM_RATIO * 3 / 2 // 3HEI : FTM_RATIO * 2 #endif /** * Input Shaping -- EXPERIMENTAL * * Zero Vibration (ZV) Input Shaping for X and/or Y movements. * * This option uses a lot of SRAM for the step buffer. The buffer size is * calculated automatically from SHAPING_FREQ_[XY], DEFAULT_AXIS_STEPS_PER_UNIT, * DEFAULT_MAX_FEEDRATE and ADAPTIVE_STEP_SMOOTHING. The default calculation can * be overridden by setting SHAPING_MIN_FREQ and/or SHAPING_MAX_FEEDRATE. * The higher the frequency and the lower the feedrate, the smaller the buffer. * If the buffer is too small at runtime, input shaping will have reduced * effectiveness during high speed movements. * * Tune with M593 D<factor> F<frequency>: * * D<factor> Set the zeta/damping factor. If axes (X, Y, etc.) are not specified, set for all axes. * F<frequency> Set the frequency. If axes (X, Y, etc.) are not specified, set for all axes. * T[map] Input Shaping type, 0:ZV, 1:EI, 2:2H EI (not implemented yet) * X<1> Set the given parameters only for the X axis. * Y<1> Set the given parameters only for the Y axis. */ //#define INPUT_SHAPING_X //#define INPUT_SHAPING_Y #if ANY(INPUT_SHAPING_X, INPUT_SHAPING_Y) #if ENABLED(INPUT_SHAPING_X) #define SHAPING_FREQ_X 40.0 // (Hz) The default dominant resonant frequency on the X axis. #define SHAPING_ZETA_X 0.15 // Damping ratio of the X axis (range: 0.0 = no damping to 1.0 = critical damping). #endif #if ENABLED(INPUT_SHAPING_Y) #define SHAPING_FREQ_Y 40.0 // (Hz) The default dominant resonant frequency on the Y axis. #define SHAPING_ZETA_Y 0.15 // Damping ratio of the Y axis (range: 0.0 = no damping to 1.0 = critical damping). #endif //#define SHAPING_MIN_FREQ 20.0 // (Hz) By default the minimum of the shaping frequencies. Override to affect SRAM usage. //#define SHAPING_MAX_STEPRATE 10000 // By default the maximum total step rate of the shaped axes. Override to affect SRAM usage. //#define SHAPING_MENU // Add a menu to the LCD to set shaping parameters. #endif // @section motion #define AXIS_RELATIVE_MODES { false, false, false, false } // Add a Duplicate option for well-separated conjoined nozzles //#define MULTI_NOZZLE_DUPLICATION // By default stepper drivers require an active-HIGH signal but some high-power drivers require an active-LOW signal to step. #define STEP_STATE_X HIGH #define STEP_STATE_Y HIGH #define STEP_STATE_Z HIGH #define STEP_STATE_I HIGH #define STEP_STATE_J HIGH #define STEP_STATE_K HIGH #define STEP_STATE_U HIGH #define STEP_STATE_V HIGH #define STEP_STATE_W HIGH #define STEP_STATE_E HIGH /** * Idle Stepper Shutdown * Enable DISABLE_IDLE_* to shut down axis steppers after an idle period. * The default timeout duration can be overridden with M18 and M84. Set to 0 for No Timeout. */ #define DEFAULT_STEPPER_TIMEOUT_SEC 120 #define DISABLE_IDLE_X #define DISABLE_IDLE_Y #define DISABLE_IDLE_Z // Disable if the nozzle could fall onto your printed part! //#define DISABLE_IDLE_I //#define DISABLE_IDLE_J //#define DISABLE_IDLE_K //#define DISABLE_IDLE_U //#define DISABLE_IDLE_V //#define DISABLE_IDLE_W #define DISABLE_IDLE_E // Shut down all idle extruders // Default Minimum Feedrates for printing and travel moves #define DEFAULT_MINIMUMFEEDRATE 0.0 // (mm/s. °/s for rotational-only moves) Minimum feedrate. Set with M205 S. #define DEFAULT_MINTRAVELFEEDRATE 0.0 // (mm/s. °/s for rotational-only moves) Minimum travel feedrate. Set with M205 T. // Minimum time that a segment needs to take as the buffer gets emptied #define DEFAULT_MINSEGMENTTIME 20000 // (µs) Set with M205 B. // Slow down the machine if the lookahead buffer is (by default) half full. // Increase the slowdown divisor for larger buffer sizes. #define SLOWDOWN #if ENABLED(SLOWDOWN) #define SLOWDOWN_DIVISOR 2 #endif /** * XY Frequency limit * Reduce resonance by limiting the frequency of small zigzag infill moves. * See https://hydraraptor.blogspot.com/2010/12/frequency-limit.html * Use M201 F<freq> S<min%> to change limits at runtime. */ //#define XY_FREQUENCY_LIMIT 10 // (Hz) Maximum frequency of small zigzag infill moves. Set with M201 F<hertz>. #ifdef XY_FREQUENCY_LIMIT #define XY_FREQUENCY_MIN_PERCENT 5 // (%) Minimum FR percentage to apply. Set with M201 S<min%>. #endif // // Backlash Compensation // Adds extra movement to axes on direction-changes to account for backlash. // //#define BACKLASH_COMPENSATION #if ENABLED(BACKLASH_COMPENSATION) // Define values for backlash distance and correction. // If BACKLASH_GCODE is enabled these values are the defaults. #define BACKLASH_DISTANCE_MM { 0, 0, 0 } // (linear=mm, rotational=°) One value for each linear axis #define BACKLASH_CORRECTION 0.0 // 0.0 = no correction; 1.0 = full correction // Add steps for motor direction changes on CORE kinematics //#define CORE_BACKLASH // Set BACKLASH_SMOOTHING_MM to spread backlash correction over multiple segments // to reduce print artifacts. (Enabling this is costly in memory and computation!) //#define BACKLASH_SMOOTHING_MM 3 // (mm) // Add runtime configuration and tuning of backlash values (M425) //#define BACKLASH_GCODE #if ENABLED(BACKLASH_GCODE) // Measure the Z backlash when probing (G29) and set with "M425 Z" #define MEASURE_BACKLASH_WHEN_PROBING #if ENABLED(MEASURE_BACKLASH_WHEN_PROBING) // When measuring, the probe will move up to BACKLASH_MEASUREMENT_LIMIT // mm away from point of contact in BACKLASH_MEASUREMENT_RESOLUTION // increments while checking for the contact to be broken. #define BACKLASH_MEASUREMENT_LIMIT 0.5 // (mm) #define BACKLASH_MEASUREMENT_RESOLUTION 0.005 // (mm) #define BACKLASH_MEASUREMENT_FEEDRATE Z_PROBE_FEEDRATE_SLOW // (mm/min) #endif #endif #endif /** * Automatic backlash, position, and hotend offset calibration * * Enable G425 to run automatic calibration using an electrically- * conductive cube, bolt, or washer mounted on the bed. * * G425 uses the probe to touch the top and sides of the calibration object * on the bed and measures and/or correct positional offsets, axis backlash * and hotend offsets. * * Note: HOTEND_OFFSET and CALIBRATION_OBJECT_CENTER must be set to within * ±5mm of true values for G425 to succeed. */ //#define CALIBRATION_GCODE #if ENABLED(CALIBRATION_GCODE) //#define CALIBRATION_SCRIPT_PRE "M117 Starting Auto-Calibration\nT0\nG28\nG12\nM117 Calibrating..." //#define CALIBRATION_SCRIPT_POST "M500\nM117 Calibration data saved" #define CALIBRATION_MEASUREMENT_RESOLUTION 0.01 // mm #define CALIBRATION_FEEDRATE_SLOW 60 // mm/min #define CALIBRATION_FEEDRATE_FAST 1200 // mm/min #define CALIBRATION_FEEDRATE_TRAVEL 3000 // mm/min // The following parameters refer to the conical section of the nozzle tip. #define CALIBRATION_NOZZLE_TIP_HEIGHT 1.0 // mm #define CALIBRATION_NOZZLE_OUTER_DIAMETER 2.0 // mm // Uncomment to enable reporting (required for "G425 V", but consumes flash). //#define CALIBRATION_REPORTING // The true location and dimension the cube/bolt/washer on the bed. #define CALIBRATION_OBJECT_CENTER { 264.0, -22.0, -2.0 } // mm #define CALIBRATION_OBJECT_DIMENSIONS { 10.0, 10.0, 10.0 } // mm // Comment out any sides which are unreachable by the probe. For best // auto-calibration results, all sides must be reachable. #define CALIBRATION_MEASURE_RIGHT #define CALIBRATION_MEASURE_FRONT #define CALIBRATION_MEASURE_LEFT #define CALIBRATION_MEASURE_BACK //#define CALIBRATION_MEASURE_IMIN //#define CALIBRATION_MEASURE_IMAX //#define CALIBRATION_MEASURE_JMIN //#define CALIBRATION_MEASURE_JMAX //#define CALIBRATION_MEASURE_KMIN //#define CALIBRATION_MEASURE_KMAX //#define CALIBRATION_MEASURE_UMIN //#define CALIBRATION_MEASURE_UMAX //#define CALIBRATION_MEASURE_VMIN //#define CALIBRATION_MEASURE_VMAX //#define CALIBRATION_MEASURE_WMIN //#define CALIBRATION_MEASURE_WMAX // Probing at the exact top center only works if the center is flat. If // probing on a screw head or hollow washer, probe near the edges. //#define CALIBRATION_MEASURE_AT_TOP_EDGES // Define the pin to read during calibration #ifndef CALIBRATION_PIN //#define CALIBRATION_PIN -1 // Define here to override the default pin #define CALIBRATION_PIN_INVERTING false // Set to true to invert the custom pin //#define CALIBRATION_PIN_PULLDOWN #define CALIBRATION_PIN_PULLUP #endif #endif /** * Multi-stepping sends steps in bursts to reduce MCU usage for high step-rates. * This allows higher feedrates than the MCU could otherwise support. */ #define MULTISTEPPING_LIMIT 16 //: [1, 2, 4, 8, 16, 32, 64, 128] /** * Adaptive Step Smoothing increases the resolution of multi-axis moves, particularly at step frequencies * below 1kHz (for AVR) or 10kHz (for ARM), where aliasing between axes in multi-axis moves causes audible * vibration and surface artifacts. The algorithm adapts to provide the best possible step smoothing at the * lowest stepping frequencies. */ //#define ADAPTIVE_STEP_SMOOTHING /** * Custom Microstepping * Override as-needed for your setup. Up to 3 MS pins are supported. */ //#define MICROSTEP1 LOW,LOW,LOW //#define MICROSTEP2 HIGH,LOW,LOW //#define MICROSTEP4 LOW,HIGH,LOW //#define MICROSTEP8 HIGH,HIGH,LOW //#define MICROSTEP16 LOW,LOW,HIGH //#define MICROSTEP32 HIGH,LOW,HIGH // Microstep settings (Requires a board with pins named X_MS1, X_MS2, etc.) #define MICROSTEP_MODES { 16, 16, 16, 16, 16, 16 } // [1,2,4,8,16] /** * @section stepper motor current * * Some boards have a means of setting the stepper motor current via firmware. * * The power on motor currents are set by: * PWM_MOTOR_CURRENT - used by MINIRAMBO & ULTIMAIN_2 * known compatible chips: A4982 * DIGIPOT_MOTOR_CURRENT - used by BQ_ZUM_MEGA_3D, RAMBO & SCOOVO_X9H * known compatible chips: AD5206 * DAC_MOTOR_CURRENT_DEFAULT - used by PRINTRBOARD_REVF & RIGIDBOARD_V2 * known compatible chips: MCP4728 * DIGIPOT_I2C_MOTOR_CURRENTS - used by 5DPRINT, AZTEEG_X3_PRO, AZTEEG_X5_MINI_WIFI, MIGHTYBOARD_REVE * known compatible chips: MCP4451, MCP4018 * * Motor currents can also be set by M907 - M910 and by the LCD. * M907 - applies to all. * M908 - BQ_ZUM_MEGA_3D, RAMBO, PRINTRBOARD_REVF, RIGIDBOARD_V2 & SCOOVO_X9H * M909, M910 & LCD - only PRINTRBOARD_REVF & RIGIDBOARD_V2 */ //#define PWM_MOTOR_CURRENT { 1300, 1300, 1250 } // Values in milliamps //#define DIGIPOT_MOTOR_CURRENT { 135,135,135,135,135 } // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A) //#define DAC_MOTOR_CURRENT_DEFAULT { 70, 80, 90, 80 } // Default drive percent - X, Y, Z, E axis /** * I2C-based DIGIPOTs (e.g., Azteeg X3 Pro) */ //#define DIGIPOT_MCP4018 // Requires https://github.com/felias-fogg/SlowSoftI2CMaster //#define DIGIPOT_MCP4451 #if ANY(DIGIPOT_MCP4018, DIGIPOT_MCP4451) #define DIGIPOT_I2C_NUM_CHANNELS 8 // 5DPRINT:4 AZTEEG_X3_PRO:8 MKS_SBASE:5 MIGHTYBOARD_REVE:5 // Actual motor currents in Amps. The number of entries must match DIGIPOT_I2C_NUM_CHANNELS. // These correspond to the physical drivers, so be mindful if the order is changed. #define DIGIPOT_I2C_MOTOR_CURRENTS { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 } // AZTEEG_X3_PRO //#define DIGIPOT_USE_RAW_VALUES // Use DIGIPOT_MOTOR_CURRENT raw wiper values (instead of A4988 motor currents) /** * Common slave addresses: * * A (A shifted) B (B shifted) IC * Smoothie 0x2C (0x58) 0x2D (0x5A) MCP4451 * AZTEEG_X3_PRO 0x2C (0x58) 0x2E (0x5C) MCP4451 * AZTEEG_X5_MINI 0x2C (0x58) 0x2E (0x5C) MCP4451 * AZTEEG_X5_MINI_WIFI 0x58 0x5C MCP4451 * MIGHTYBOARD_REVE 0x2F (0x5E) MCP4018 */ //#define DIGIPOT_I2C_ADDRESS_A 0x2C // Unshifted slave address for first DIGIPOT //#define DIGIPOT_I2C_ADDRESS_B 0x2D // Unshifted slave address for second DIGIPOT #endif //=========================================================================== //=============================Additional Features=========================== //=========================================================================== // @section lcd #if HAS_MANUAL_MOVE_MENU #define MANUAL_FEEDRATE { 50*60, 50*60, 4*60, 2*60 } // (mm/min) Feedrates for manual moves along X, Y, Z, E from panel #define FINE_MANUAL_MOVE 0.025 // (mm) Smallest manual move (< 0.1mm) applying to Z on most machines #if IS_ULTIPANEL #define MANUAL_E_MOVES_RELATIVE // Display extruder move distance rather than "position" #define ULTIPANEL_FEEDMULTIPLY // Encoder sets the feedrate multiplier on the Status Screen //#define ULTIPANEL_FLOWPERCENT // Encoder sets the flow percentage on the Status Screen #endif #endif // Change values more rapidly when the encoder is rotated faster #define ENCODER_RATE_MULTIPLIER #if ENABLED(ENCODER_RATE_MULTIPLIER) #define ENCODER_10X_STEPS_PER_SEC 30 // (steps/s) Encoder rate for 10x speed #define ENCODER_100X_STEPS_PER_SEC 80 // (steps/s) Encoder rate for 100x speed #endif // Play a beep when the feedrate is changed from the Status Screen //#define BEEP_ON_FEEDRATE_CHANGE #if ENABLED(BEEP_ON_FEEDRATE_CHANGE) #define FEEDRATE_CHANGE_BEEP_DURATION 10 #define FEEDRATE_CHANGE_BEEP_FREQUENCY 440 #endif #if HAS_BED_PROBE && ANY(HAS_MARLINUI_MENU, HAS_TFT_LVGL_UI) //#define PROBE_OFFSET_WIZARD // Add a Probe Z Offset calibration option to the LCD menu #if ENABLED(PROBE_OFFSET_WIZARD) /** * Enable to init the Probe Z-Offset when starting the Wizard. * Use a height slightly above the estimated nozzle-to-probe Z offset. * For example, with an offset of -5, consider a starting height of -4. */ //#define PROBE_OFFSET_WIZARD_START_Z -4.0 // Set a convenient position to do the calibration (probing point and nozzle/bed-distance) //#define PROBE_OFFSET_WIZARD_XY_POS { X_CENTER, Y_CENTER } #endif #endif #if HAS_MARLINUI_MENU #if HAS_BED_PROBE // Add calibration in the Probe Offsets menu to compensate for X-axis twist. //#define X_AXIS_TWIST_COMPENSATION #if ENABLED(X_AXIS_TWIST_COMPENSATION) /** * Enable to init the Probe Z-Offset when starting the Wizard. * Use a height slightly above the estimated nozzle-to-probe Z offset. * For example, with an offset of -5, consider a starting height of -4. */ #define XATC_START_Z 0.0 #define XATC_MAX_POINTS 3 // Number of points to probe in the wizard #define XATC_Y_POSITION Y_CENTER // (mm) Y position to probe #define XATC_Z_OFFSETS { 0, 0, 0 } // Z offsets for X axis sample points #endif // Show Deploy / Stow Probe options in the Motion menu. #define PROBE_DEPLOY_STOW_MENU #endif // Include a page of printer information in the LCD Main Menu //#define LCD_INFO_MENU #if ENABLED(LCD_INFO_MENU) //#define LCD_PRINTER_INFO_IS_BOOTSCREEN // Show bootscreen(s) instead of Printer Info pages #endif /** * MarlinUI "Move Axis" menu distances. Comma-separated list. * Values are displayed as-defined, so always use plain numbers here. * Axis moves <= 1/2 the axis length and Extruder moves <= EXTRUDE_MAXLENGTH * will be shown in the move submenus. */ #define MANUAL_MOVE_DISTANCE_MM 10, 1.0, 0.1 // (mm) //#define MANUAL_MOVE_DISTANCE_MM 100, 50, 10, 1.0, 0.1 // (mm) //#define MANUAL_MOVE_DISTANCE_MM 500, 100, 50, 10, 1.0, 0.1 // (mm) // Manual move distances for INCH_MODE_SUPPORT #define MANUAL_MOVE_DISTANCE_IN 0.100, 0.010, 0.001 // (in) //#define MANUAL_MOVE_DISTANCE_IN 1.000, 0.500, 0.100, 0.010, 0.001 // (in) //#define MANUAL_MOVE_DISTANCE_IN 5.000, 1.000, 0.500, 0.100, 0.010, 0.001 // (in) // Manual move distances for rotational axes #define MANUAL_MOVE_DISTANCE_DEG 90, 45, 22.5, 5, 1 // (°) // BACK menu items keep the highlight at the top //#define TURBO_BACK_MENU_ITEM // Insert a menu for preheating at the top level to allow for quick access //#define PREHEAT_SHORTCUT_MENU_ITEM // Add Configuration > Debug Menu > Endstop Test for endstop/probe/runout testing //#define LCD_ENDSTOP_TEST #endif // HAS_MARLINUI_MENU #if HAS_DISPLAY /** * *** VENDORS PLEASE READ *** * * Marlin allows you to add a custom boot image for Graphical LCDs. * With this option Marlin will first show your custom screen followed * by the standard Marlin logo with version number and web URL. * * We encourage you to take advantage of this new feature and we also * respectfully request that you retain the unmodified Marlin boot screen. */ #define SHOW_BOOTSCREEN // Show the Marlin bootscreen on startup. ** ENABLE FOR PRODUCTION ** #if ENABLED(SHOW_BOOTSCREEN) #define BOOTSCREEN_TIMEOUT 3000 // (ms) Total Duration to display the boot screen(s) #if ANY(HAS_MARLINUI_U8GLIB, TFT_COLOR_UI) #define BOOT_MARLIN_LOGO_SMALL // Show a smaller Marlin logo on the Boot Screen (saving lots of flash) #endif #if HAS_MARLINUI_U8GLIB //#define BOOT_MARLIN_LOGO_ANIMATED // Animated Marlin logo. Costs ~3260 (or ~940) bytes of flash. #endif #if ANY(HAS_MARLINUI_U8GLIB, TOUCH_UI_FTDI_EVE) //#define SHOW_CUSTOM_BOOTSCREEN // Show the bitmap in Marlin/_Bootscreen.h on startup. #endif #endif #if HAS_MARLINUI_U8GLIB //#define CUSTOM_STATUS_SCREEN_IMAGE // Show the bitmap in Marlin/_Statusscreen.h on the status screen. #endif //#define SOUND_MENU_ITEM // Add a mute option to the LCD menu #define SOUND_ON_DEFAULT // Buzzer/speaker default enabled state #if HAS_WIRED_LCD //#define DOUBLE_LCD_FRAMERATE // Not recommended for slow boards. #endif // The timeout to return to the status screen from sub-menus //#define LCD_TIMEOUT_TO_STATUS 15000 // (ms) // Scroll a longer status message into view //#define STATUS_MESSAGE_SCROLLING // Apply a timeout to low-priority status messages //#define STATUS_MESSAGE_TIMEOUT_SEC 30 // (seconds) // On the Info Screen, display XY with one decimal place when possible //#define LCD_DECIMAL_SMALL_XY // Show the E position (filament used) during printing //#define LCD_SHOW_E_TOTAL // Display a negative temperature instead of "err" //#define SHOW_TEMPERATURE_BELOW_ZERO /** * LED Control Menu * Add LED Control to the LCD menu */ //#define LED_CONTROL_MENU #if ENABLED(LED_CONTROL_MENU) #define LED_COLOR_PRESETS // Enable the Preset Color menu option //#define NEO2_COLOR_PRESETS // Enable a second NeoPixel Preset Color menu option #if ENABLED(LED_COLOR_PRESETS) #define LED_USER_PRESET_RED 255 // User defined RED value #define LED_USER_PRESET_GREEN 128 // User defined GREEN value #define LED_USER_PRESET_BLUE 0 // User defined BLUE value #define LED_USER_PRESET_WHITE 255 // User defined WHITE value #define LED_USER_PRESET_BRIGHTNESS 255 // User defined intensity //#define LED_USER_PRESET_STARTUP // Have the printer display the user preset color on startup #endif #if ENABLED(NEO2_COLOR_PRESETS) #define NEO2_USER_PRESET_RED 255 // User defined RED value #define NEO2_USER_PRESET_GREEN 128 // User defined GREEN value #define NEO2_USER_PRESET_BLUE 0 // User defined BLUE value #define NEO2_USER_PRESET_WHITE 255 // User defined WHITE value #define NEO2_USER_PRESET_BRIGHTNESS 255 // User defined intensity //#define NEO2_USER_PRESET_STARTUP // Have the printer display the user preset color on startup for the second strip #endif #endif #endif // HAS_DISPLAY #if HAS_FEEDRATE_EDIT #define SPEED_EDIT_MIN 10 // (%) Feedrate percentage edit range minimum #define SPEED_EDIT_MAX 999 // (%) Feedrate percentage edit range maximum #endif #if HAS_FLOW_EDIT #define FLOW_EDIT_MIN 10 // (%) Flow percentage edit range minimum #define FLOW_EDIT_MAX 999 // (%) Flow percentage edit range maximum #endif // Add 'M73' to set print job progress, overrides Marlin's built-in estimate //#define SET_PROGRESS_MANUALLY #if ENABLED(SET_PROGRESS_MANUALLY) #define SET_PROGRESS_PERCENT // Add 'P' parameter to set percentage done #define SET_REMAINING_TIME // Add 'R' parameter to set remaining time //#define SET_INTERACTION_TIME // Add 'C' parameter to set time until next filament change or other user interaction //#define M73_REPORT // Report M73 values to host #if ALL(M73_REPORT, HAS_MEDIA) #define M73_REPORT_SD_ONLY // Report only when printing from SD #endif #endif // LCD Print Progress options. Multiple times may be displayed in turn. #if HAS_DISPLAY && ANY(HAS_MEDIA, SET_PROGRESS_MANUALLY) #define SHOW_PROGRESS_PERCENT // Show print progress percentage (doesn't affect progress bar) #define SHOW_ELAPSED_TIME // Display elapsed printing time (prefix 'E') //#define SHOW_REMAINING_TIME // Display estimated time to completion (prefix 'R') #if ENABLED(SET_INTERACTION_TIME) #define SHOW_INTERACTION_TIME // Display time until next user interaction ('C' = filament change) #endif //#define PRINT_PROGRESS_SHOW_DECIMALS // Show/report progress with decimal digits, not all UIs support this #if ANY(HAS_MARLINUI_HD44780, IS_TFTGLCD_PANEL) //#define LCD_PROGRESS_BAR // Show a progress bar on HD44780 LCDs for SD printing #if ENABLED(LCD_PROGRESS_BAR) #define PROGRESS_BAR_BAR_TIME 2000 // (ms) Amount of time to show the bar #define PROGRESS_BAR_MSG_TIME 3000 // (ms) Amount of time to show the status message #define PROGRESS_MSG_EXPIRE 0 // (ms) Amount of time to retain the status message (0=forever) //#define PROGRESS_MSG_ONCE // Show the message for MSG_TIME then clear it //#define LCD_PROGRESS_BAR_TEST // Add a menu item to test the progress bar #endif #endif #endif #if HAS_MEDIA /** * SD Card SPI Speed * May be required to resolve "volume init" errors. * * Enable and set to SPI_HALF_SPEED, SPI_QUARTER_SPEED, or SPI_EIGHTH_SPEED * otherwise full speed will be applied. * * :['SPI_HALF_SPEED', 'SPI_QUARTER_SPEED', 'SPI_EIGHTH_SPEED'] */ //#define SD_SPI_SPEED SPI_HALF_SPEED // The standard SD detect circuit reads LOW when media is inserted and HIGH when empty. // Enable this option and set to HIGH if your SD cards are incorrectly detected. //#define SD_DETECT_STATE HIGH //#define SD_IGNORE_AT_STARTUP // Don't mount the SD card when starting up //#define SDCARD_READONLY // Read-only SD card (to save over 2K of flash) //#define GCODE_REPEAT_MARKERS // Enable G-code M808 to set repeat markers and do looping #define SD_PROCEDURE_DEPTH 1 // Increase if you need more nested M32 calls #define SD_FINISHED_STEPPERRELEASE true // Disable steppers when SD Print is finished #define SD_FINISHED_RELEASECOMMAND "M84" // Use "M84XYE" to keep Z enabled so your bed stays in place // Reverse SD sort to show "more recent" files first, according to the card's FAT. // Since the FAT gets out of order with usage, SDCARD_SORT_ALPHA is recommended. #define SDCARD_RATHERRECENTFIRST #define SD_MENU_CONFIRM_START // Confirm the selected SD file before printing //#define NO_SD_AUTOSTART // Remove auto#.g file support completely to save some Flash, SRAM //#define MENU_ADDAUTOSTART // Add a menu option to run auto#.g files //#define ONE_CLICK_PRINT // Prompt to print the newest file on inserted media //#define BROWSE_MEDIA_ON_INSERT // Open the file browser when media is inserted //#define MEDIA_MENU_AT_TOP // Force the media menu to be listed on the top of the main menu #define EVENT_GCODE_SD_ABORT "G28XY" // G-code to run on SD Abort Print (e.g., "G28XY" or "G27") #if ENABLED(PRINTER_EVENT_LEDS) #define PE_LEDS_COMPLETED_TIME (30*60) // (seconds) Time to keep the LED "done" color before restoring normal illumination #endif /** * Continue after Power-Loss (Creality3D) * * Store the current state to the SD Card at the start of each layer * during SD printing. If the recovery file is found at boot time, present * an option on the LCD screen to continue the print from the last-known * point in the file. */ //#define POWER_LOSS_RECOVERY #if ENABLED(POWER_LOSS_RECOVERY) #define PLR_ENABLED_DEFAULT false // Power-Loss Recovery enabled by default. (Set with 'M413 Sn' & M500) //#define PLR_BED_THRESHOLD BED_MAXTEMP // (°C) Skip user confirmation at or above this bed temperature (0 to disable) //#define POWER_LOSS_PIN 44 // Pin to detect power-loss. Set to -1 to disable default pin on boards without module, or comment to use board default. //#define POWER_LOSS_STATE HIGH // State of pin indicating power-loss //#define POWER_LOSS_PULLUP // Set pullup / pulldown as appropriate for your sensor //#define POWER_LOSS_PULLDOWN //#define POWER_LOSS_ZRAISE 2 // (mm) Z axis raise on resume (on power-loss with UPS) //#define POWER_LOSS_PURGE_LEN 20 // (mm) Length of filament to purge on resume // Without a POWER_LOSS_PIN the following option helps reduce wear on the SD card, // especially with "vase mode" printing. Set too high and vases cannot be continued. #define POWER_LOSS_MIN_Z_CHANGE 0.05 // (mm) Minimum Z change before saving power-loss data //#define BACKUP_POWER_SUPPLY // Backup power / UPS to move the steppers on power-loss #if ENABLED(BACKUP_POWER_SUPPLY) //#define POWER_LOSS_RETRACT_LEN 10 // (mm) Length of filament to retract on fail #endif // Enable if Z homing is needed for proper recovery. 99.9% of the time this should be disabled! //#define POWER_LOSS_RECOVER_ZHOME #if ENABLED(POWER_LOSS_RECOVER_ZHOME) //#define POWER_LOSS_ZHOME_POS { 0, 0 } // Safe XY position to home Z while avoiding objects on the bed #endif #endif /** * Sort SD file listings in alphabetical order. * * With this option enabled, items on SD cards will be sorted * by name for easier navigation. * * By default... * * - Use the slowest -but safest- method for sorting. * - Folders are sorted to the top. * - The sort key is statically allocated. * - No added G-code (M34) support. * - 40 item sorting limit. (Items after the first 40 are unsorted.) * * SD sorting uses static allocation (as set by SDSORT_LIMIT), allowing the * compiler to calculate the worst-case usage and throw an error if the SRAM * limit is exceeded. * * - SDSORT_USES_RAM provides faster sorting via a static directory buffer. * - SDSORT_USES_STACK does the same, but uses a local stack-based buffer. * - SDSORT_CACHE_NAMES will retain the sorted file listing in RAM. (Expensive!) * - SDSORT_DYNAMIC_RAM only uses RAM when the SD menu is visible. (Use with caution!) */ //#define SDCARD_SORT_ALPHA // SD Card Sorting options #if ENABLED(SDCARD_SORT_ALPHA) #define SDSORT_REVERSE false // Default to sorting file names in reverse order. #define SDSORT_LIMIT 40 // Maximum number of sorted items (10-256). Costs 27 bytes each. #define SDSORT_FOLDERS -1 // -1=above 0=none 1=below #define SDSORT_GCODE false // Enable G-code M34 to set sorting behaviors: M34 S<-1|0|1> F<-1|0|1> #define SDSORT_USES_RAM false // Pre-allocate a static array for faster pre-sorting. #define SDSORT_USES_STACK false // Prefer the stack for pre-sorting to give back some SRAM. (Negated by next 2 options.) #define SDSORT_CACHE_NAMES false // Keep sorted items in RAM longer for speedy performance. Most expensive option. #define SDSORT_DYNAMIC_RAM false // Use dynamic allocation (within SD menus). Least expensive option. Set SDSORT_LIMIT before use! #define SDSORT_CACHE_VFATS 2 // Maximum number of 13-byte VFAT entries to use for sorting. // Note: Only affects SCROLL_LONG_FILENAMES with SDSORT_CACHE_NAMES but not SDSORT_DYNAMIC_RAM. #endif // Allow international symbols in long filenames. To display correctly, the // LCD's font must contain the characters. Check your selected LCD language. //#define UTF_FILENAME_SUPPORT //#define LONG_FILENAME_HOST_SUPPORT // Get the long filename of a file/folder with 'M33 <dosname>' and list long filenames with 'M20 L' //#define LONG_FILENAME_WRITE_SUPPORT // Create / delete files with long filenames via M28, M30, and Binary Transfer Protocol //#define M20_TIMESTAMP_SUPPORT // Include timestamps by adding the 'T' flag to M20 commands //#define SCROLL_LONG_FILENAMES // Scroll long filenames in the SD card menu //#define SD_ABORT_NO_COOLDOWN // Leave the heaters on after Stop Print (not recommended!) /** * Abort SD printing when any endstop is triggered. * This feature is enabled with 'M540 S1' or from the LCD menu. * Endstops must be activated for this option to work. */ //#define SD_ABORT_ON_ENDSTOP_HIT #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT) //#define SD_ABORT_ON_ENDSTOP_HIT_GCODE "G28XY" // G-code to run on endstop hit (e.g., "G28XY" or "G27") #endif //#define SD_REPRINT_LAST_SELECTED_FILE // On print completion open the LCD Menu and select the same file //#define AUTO_REPORT_SD_STATUS // Auto-report media status with 'M27 S<seconds>' /** * Support for USB thumb drives using an Arduino USB Host Shield or * equivalent MAX3421E breakout board. The USB thumb drive will appear * to Marlin as an SD card. * * The MAX3421E can be assigned the same pins as the SD card reader, with * the following pin mapping: * * SCLK, MOSI, MISO --> SCLK, MOSI, MISO * INT --> SD_DETECT_PIN [1] * SS --> SDSS * * [1] On AVR an interrupt-capable pin is best for UHS3 compatibility. */ //#define USB_FLASH_DRIVE_SUPPORT #if ENABLED(USB_FLASH_DRIVE_SUPPORT) /** * USB Host Shield Library * * - UHS2 uses no interrupts and has been production-tested * on a LulzBot TAZ Pro with a 32-bit Archim board. * * - UHS3 is newer code with better USB compatibility. But it * is less tested and is known to interfere with Servos. * [1] This requires USB_INTR_PIN to be interrupt-capable. */ //#define USE_UHS2_USB //#define USE_UHS3_USB #define DISABLE_DUE_SD_MMC // Disable USB Host access to USB Drive to prevent hangs on block access for DUE platform /** * Native USB Host supported by some boards (USB OTG) */ //#define USE_OTG_USB_HOST #if DISABLED(USE_OTG_USB_HOST) #define USB_CS_PIN SDSS #define USB_INTR_PIN SD_DETECT_PIN #endif #endif /** * When using a bootloader that supports SD-Firmware-Flashing, * add a menu item to activate SD-FW-Update on the next reboot. * * Requires ATMEGA2560 (Arduino Mega) * * Tested with this bootloader: * https://github.com/FleetProbe/MicroBridge-Arduino-ATMega2560 */ //#define SD_FIRMWARE_UPDATE #if ENABLED(SD_FIRMWARE_UPDATE) #define SD_FIRMWARE_UPDATE_EEPROM_ADDR 0x1FF #define SD_FIRMWARE_UPDATE_ACTIVE_VALUE 0xF0 #define SD_FIRMWARE_UPDATE_INACTIVE_VALUE 0xFF #endif /** * Enable this option if you have more than ~3K of unused flash space. * Marlin will embed all settings in the firmware binary as compressed data. * Use 'M503 C' to write the settings out to the SD Card as 'mc.zip'. * See docs/ConfigEmbedding.md for details on how to use 'mc-apply.py'. */ //#define CONFIGURATION_EMBEDDING // Add an optimized binary file transfer mode, initiated with 'M28 B1' //#define BINARY_FILE_TRANSFER #if ENABLED(BINARY_FILE_TRANSFER) // Include extra facilities (e.g., 'M20 F') supporting firmware upload via BINARY_FILE_TRANSFER //#define CUSTOM_FIRMWARE_UPLOAD #endif /** * Set this option to one of the following (or the board's defaults apply): * * LCD - Use the SD drive in the external LCD controller. * ONBOARD - Use the SD drive on the control board. * CUSTOM_CABLE - Use a custom cable to access the SD (as defined in a pins file). * * :[ 'LCD', 'ONBOARD', 'CUSTOM_CABLE' ] */ //#define SDCARD_CONNECTION LCD // Enable if SD detect is rendered useless (e.g., by using an SD extender) //#define NO_SD_DETECT /** * Multiple volume support - EXPERIMENTAL. * Adds 'M21 Pm' / 'M21 S' / 'M21 U' to mount SD Card / USB Drive. */ //#define MULTI_VOLUME #if ENABLED(MULTI_VOLUME) #define VOLUME_SD_ONBOARD #define VOLUME_USB_FLASH_DRIVE #define DEFAULT_VOLUME SV_SD_ONBOARD #define DEFAULT_SHARED_VOLUME SV_USB_FLASH_DRIVE #endif #endif // HAS_MEDIA /** * By default an onboard SD card reader may be shared as a USB mass- * storage device. This option hides the SD card from the host PC. */ //#define NO_SD_HOST_DRIVE // Disable SD Card access over USB (for security). /** * Additional options for Graphical Displays * * Use the optimizations here to improve printing performance, * which can be adversely affected by graphical display drawing, * especially when doing several short moves, and when printing * on DELTA and SCARA machines. * * Some of these options may result in the display lagging behind * controller events, as there is a trade-off between reliable * printing performance versus fast display updates. */ #if HAS_MARLINUI_U8GLIB // Save many cycles by drawing a hollow frame or no frame on the Info Screen //#define XYZ_NO_FRAME #define XYZ_HOLLOW_FRAME // A bigger font is available for edit items. Costs 3120 bytes of flash. // Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese. //#define USE_BIG_EDIT_FONT // A smaller font may be used on the Info Screen. Costs 2434 bytes of flash. // Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese. //#define USE_SMALL_INFOFONT /** * ST7920-based LCDs can emulate a 16 x 4 character display using * the ST7920 character-generator for very fast screen updates. * Enable LIGHTWEIGHT_UI to use this special display mode. * * Since LIGHTWEIGHT_UI has limited space, the position and status * message occupy the same line. Set STATUS_EXPIRE_SECONDS to the * length of time to display the status message before clearing. * * Set STATUS_EXPIRE_SECONDS to zero to never clear the status. * This will prevent position updates from being displayed. */ #if IS_U8GLIB_ST7920 // Enable this option and reduce the value to optimize screen updates. // The normal delay is 10µs. Use the lowest value that still gives a reliable display. //#define DOGM_SPI_DELAY_US 5 //#define LIGHTWEIGHT_UI #if ENABLED(LIGHTWEIGHT_UI) #define STATUS_EXPIRE_SECONDS 20 #endif #endif /** * Status (Info) Screen customization * These options may affect code size and screen render time. * Custom status screens can forcibly override these settings. */ //#define STATUS_COMBINE_HEATERS // Use combined heater images instead of separate ones //#define STATUS_HOTEND_NUMBERLESS // Use plain hotend icons instead of numbered ones (with 2+ hotends) #define STATUS_HOTEND_INVERTED // Show solid nozzle bitmaps when heating (Requires STATUS_HOTEND_ANIM for numbered hotends) #define STATUS_HOTEND_ANIM // Use a second bitmap to indicate hotend heating #define STATUS_BED_ANIM // Use a second bitmap to indicate bed heating #define STATUS_CHAMBER_ANIM // Use a second bitmap to indicate chamber heating //#define STATUS_CUTTER_ANIM // Use a second bitmap to indicate spindle / laser active //#define STATUS_COOLER_ANIM // Use a second bitmap to indicate laser cooling //#define STATUS_FLOWMETER_ANIM // Use multiple bitmaps to indicate coolant flow //#define STATUS_ALT_BED_BITMAP // Use the alternative bed bitmap //#define STATUS_ALT_FAN_BITMAP // Use the alternative fan bitmap //#define STATUS_FAN_FRAMES 3 // :[0,1,2,3,4] Number of fan animation frames // Only one STATUS_HEAT_* option can be enabled //#define STATUS_HEAT_PERCENT // Show heating in a progress bar //#define STATUS_HEAT_POWER // Show heater output power as a vertical bar // Frivolous Game Options //#define MARLIN_BRICKOUT //#define MARLIN_INVADERS //#define MARLIN_SNAKE //#define GAMES_EASTER_EGG // Add extra blank lines above the "Games" sub-menu #endif // HAS_MARLINUI_U8GLIB #if HAS_MARLINUI_U8GLIB || IS_DWIN_MARLINUI #define MENU_HOLLOW_FRAME // Enable to save many cycles by drawing a hollow frame on Menu Screens //#define OVERLAY_GFX_REVERSE // Swap the CW/CCW indicators in the graphics overlay #endif // // Additional options for DGUS / DWIN displays // #if HAS_DGUS_LCD #define LCD_BAUDRATE 115200 #define DGUS_RX_BUFFER_SIZE 128 #define DGUS_TX_BUFFER_SIZE 48 //#define SERIAL_STATS_RX_BUFFER_OVERRUNS // Fix Rx overrun situation (Currently only for AVR) #define DGUS_UPDATE_INTERVAL_MS 500 // (ms) Interval between automatic screen updates #if DGUS_UI_IS(FYSETC, MKS, HIPRECY) #define DGUS_PRINT_FILENAME // Display the filename during printing #define DGUS_PREHEAT_UI // Display a preheat screen during heatup #if DGUS_UI_IS(FYSETC, MKS) //#define DGUS_UI_MOVE_DIS_OPTION // Disabled by default for FYSETC and MKS #else #define DGUS_UI_MOVE_DIS_OPTION // Enabled by default for UI_HIPRECY #endif #define DGUS_FILAMENT_LOADUNLOAD #if ENABLED(DGUS_FILAMENT_LOADUNLOAD) #define DGUS_FILAMENT_PURGE_LENGTH 10 #define DGUS_FILAMENT_LOAD_LENGTH_PER_TIME 0.5 // (mm) Adjust in proportion to DGUS_UPDATE_INTERVAL_MS #endif #define DGUS_UI_WAITING // Show a "waiting" screen between some screens #if ENABLED(DGUS_UI_WAITING) #define DGUS_UI_WAITING_STATUS 10 #define DGUS_UI_WAITING_STATUS_PERIOD 8 // Increase to slower waiting status looping #endif #elif DGUS_UI_IS(E3S1PRO) /** * The stock Ender-3 S1 Pro/Plus display firmware has rather poor SD file handling. * * The autoscroll is mainly useful for status messages, filenames, and the "About" page. * * NOTE: The Advanced SD Card option is affected by the stock touchscreen firmware, so * pages 5 and up will display "4/4". This may get fixed in a screen firmware update. */ #define DGUS_SOFTWARE_AUTOSCROLL // Enable long text software auto-scroll #define DGUS_AUTOSCROLL_START_CYCLES 1 // Refresh cycles without scrolling at the beginning of text strings #define DGUS_AUTOSCROLL_END_CYCLES 1 // ... at the end of text strings #define DGUS_ADVANCED_SDCARD // Allow more than 20 files and navigating directories #define DGUS_USERCONFIRM // Reuse the SD Card page to show various messages #endif #endif // HAS_DGUS_LCD // // Additional options for AnyCubic Chiron TFT displays // #if ENABLED(ANYCUBIC_LCD_CHIRON) // By default the type of panel is automatically detected. // Enable one of these options if you know the panel type. //#define CHIRON_TFT_STANDARD //#define CHIRON_TFT_NEW // Enable the longer Anycubic powerup startup tune //#define AC_DEFAULT_STARTUP_TUNE /** * Display Folders * By default the file browser lists all G-code files (including those in subfolders) in a flat list. * Enable this option to display a hierarchical file browser. * * NOTES: * - Without this option it helps to enable SDCARD_SORT_ALPHA so files are sorted before/after folders. * - When used with the "new" panel, folder names will also have '.gcode' appended to their names. * This hack is currently required to force the panel to show folders. */ #define AC_SD_FOLDER_VIEW #endif // // Specify additional languages for the UI. Default specified by LCD_LANGUAGE. // #if ANY(DOGLCD, TFT_COLOR_UI, TOUCH_UI_FTDI_EVE, IS_DWIN_MARLINUI, ANYCUBIC_LCD_VYPER) //#define LCD_LANGUAGE_2 fr //#define LCD_LANGUAGE_3 de //#define LCD_LANGUAGE_4 es //#define LCD_LANGUAGE_5 it #ifdef LCD_LANGUAGE_2 //#define LCD_LANGUAGE_AUTO_SAVE // Automatically save language to EEPROM on change #endif #endif // // Touch UI for the FTDI Embedded Video Engine (EVE) // #if ENABLED(TOUCH_UI_FTDI_EVE) // Display board used //#define LCD_FTDI_VM800B35A // FTDI 3.5" with FT800 (320x240) //#define LCD_4DSYSTEMS_4DLCD_FT843 // 4D Systems 4.3" (480x272) //#define LCD_HAOYU_FT800CB // Haoyu with 4.3" or 5" (480x272) //#define LCD_HAOYU_FT810CB // Haoyu with 5" (800x480) //#define LCD_LULZBOT_CLCD_UI // LulzBot Color LCD UI //#define LCD_FYSETC_TFT81050 // FYSETC with 5" (800x480) //#define LCD_EVE3_50G // Matrix Orbital 5.0", 800x480, BT815 //#define LCD_EVE2_50G // Matrix Orbital 5.0", 800x480, FT813 // Correct the resolution if not using the stock TFT panel. //#define TOUCH_UI_320x240 //#define TOUCH_UI_480x272 //#define TOUCH_UI_800x480 // Mappings for boards with a standard RepRapDiscount Display connector //#define AO_EXP1_PINMAP // LulzBot CLCD UI EXP1 mapping //#define AO_EXP2_PINMAP // LulzBot CLCD UI EXP2 mapping //#define CR10_TFT_PINMAP // Rudolph Riedel's CR10 pin mapping //#define S6_TFT_PINMAP // FYSETC S6 pin mapping //#define F6_TFT_PINMAP // FYSETC F6 pin mapping //#define OTHER_PIN_LAYOUT // Define pins manually below #if ENABLED(OTHER_PIN_LAYOUT) // Pins for CS and MOD_RESET (PD) must be chosen #define CLCD_MOD_RESET 9 #define CLCD_SPI_CS 10 // If using software SPI, specify pins for SCLK, MOSI, MISO //#define CLCD_USE_SOFT_SPI #if ENABLED(CLCD_USE_SOFT_SPI) #define CLCD_SOFT_SPI_MOSI 11 #define CLCD_SOFT_SPI_MISO 12 #define CLCD_SOFT_SPI_SCLK 13 #endif #endif // Display Orientation. An inverted (i.e. upside-down) display // is supported on the FT800. The FT810 and beyond also support // portrait and mirrored orientations. //#define TOUCH_UI_INVERTED //#define TOUCH_UI_PORTRAIT //#define TOUCH_UI_MIRRORED // UTF8 processing and rendering. // Unsupported characters are shown as '?'. //#define TOUCH_UI_USE_UTF8 #if ENABLED(TOUCH_UI_USE_UTF8) // Western accents support. These accented characters use // combined bitmaps and require relatively little storage. #define TOUCH_UI_UTF8_WESTERN_CHARSET #if ENABLED(TOUCH_UI_UTF8_WESTERN_CHARSET) // Additional character groups. These characters require // full bitmaps and take up considerable storage: //#define TOUCH_UI_UTF8_SUPERSCRIPTS // ¹ ² ³ //#define TOUCH_UI_UTF8_COPYRIGHT // © ® //#define TOUCH_UI_UTF8_GERMANIC // ß //#define TOUCH_UI_UTF8_SCANDINAVIAN // Æ Ð Ø Þ æ ð ø þ //#define TOUCH_UI_UTF8_PUNCTUATION // « » ¿ ¡ //#define TOUCH_UI_UTF8_CURRENCY // ¢ £ ¤ ¥ //#define TOUCH_UI_UTF8_ORDINALS // º ª //#define TOUCH_UI_UTF8_MATHEMATICS // ± × ÷ //#define TOUCH_UI_UTF8_FRACTIONS // ¼ ½ ¾ //#define TOUCH_UI_UTF8_SYMBOLS // µ ¶ ¦ § ¬ #endif // Cyrillic character set, costs about 27KiB of flash //#define TOUCH_UI_UTF8_CYRILLIC_CHARSET #endif // Use a smaller font when labels don't fit buttons #define TOUCH_UI_FIT_TEXT // Use a numeric passcode for "Screen lock" keypad. // (recommended for smaller displays) //#define TOUCH_UI_PASSCODE // Output extra debug info for Touch UI events //#define TOUCH_UI_DEBUG // Developer menu (accessed by touching "About Printer" copyright text) //#define TOUCH_UI_DEVELOPER_MENU #endif // // Classic UI Options // #if TFT_SCALED_DOGLCD //#define TFT_MARLINUI_COLOR 0xFFFF // White //#define TFT_MARLINBG_COLOR 0x0000 // Black //#define TFT_DISABLED_COLOR 0x0003 // Almost black //#define TFT_BTCANCEL_COLOR 0xF800 // Red //#define TFT_BTARROWS_COLOR 0xDEE6 // 11011 110111 00110 Yellow //#define TFT_BTOKMENU_COLOR 0x145F // 00010 100010 11111 Cyan #endif /** * Display Sleep * Enable this option to save energy and prevent OLED pixel burn-in. */ //#define DISPLAY_SLEEP_MINUTES 2 // (minutes) Timeout before turning off the screen /** * LCD Backlight Timeout * Requires a display with a controllable backlight */ //#define LCD_BACKLIGHT_TIMEOUT_MINS 1 // (minutes) Timeout before turning off the backlight #if defined(DISPLAY_SLEEP_MINUTES) || defined(LCD_BACKLIGHT_TIMEOUT_MINS) #define EDITABLE_DISPLAY_TIMEOUT // Edit sleep / backlight timeout with M255 S<minutes> and a menu item #endif // // ADC Button Debounce // #if HAS_ADC_BUTTONS #define ADC_BUTTON_DEBOUNCE_DELAY 16 // Increase if buttons bounce or repeat too fast #endif // @section safety /** * The watchdog hardware timer will do a reset and disable all outputs * if the firmware gets too overloaded to read the temperature sensors. * * If you find that watchdog reboot causes your AVR board to hang forever, * enable WATCHDOG_RESET_MANUAL to use a custom timer instead of WDTO. * NOTE: This method is less reliable as it can only catch hangups while * interrupts are enabled. */ #define USE_WATCHDOG #if ENABLED(USE_WATCHDOG) //#define WATCHDOG_RESET_MANUAL #endif // @section lcd /** * Babystepping enables movement of the axes by tiny increments without changing * the current position values. This feature is used primarily to adjust the Z * axis in the first layer of a print in real-time. * * Warning: Does not respect endstops! */ //#define BABYSTEPPING #if ENABLED(BABYSTEPPING) //#define EP_BABYSTEPPING // M293/M294 babystepping with EMERGENCY_PARSER support //#define BABYSTEP_WITHOUT_HOMING //#define BABYSTEP_ALWAYS_AVAILABLE // Allow babystepping at all times (not just during movement) //#define BABYSTEP_XY // Also enable X/Y Babystepping. Not supported on DELTA! //#define BABYSTEP_INVERT_Z // Enable if Z babysteps should go the other way //#define BABYSTEP_MILLIMETER_UNITS // Specify BABYSTEP_MULTIPLICATOR_(XY|Z) in mm instead of micro-steps #define BABYSTEP_MULTIPLICATOR_Z 1 // (steps or mm) Steps or millimeter distance for each Z babystep #define BABYSTEP_MULTIPLICATOR_XY 1 // (steps or mm) Steps or millimeter distance for each XY babystep //#define DOUBLECLICK_FOR_Z_BABYSTEPPING // Double-click on the Status Screen for Z Babystepping. #if ENABLED(DOUBLECLICK_FOR_Z_BABYSTEPPING) #define DOUBLECLICK_MAX_INTERVAL 1250 // Maximum interval between clicks, in milliseconds. // Note: Extra time may be added to mitigate controller latency. //#define MOVE_Z_WHEN_IDLE // Jump to the move Z menu on double-click when printer is idle. #if ENABLED(MOVE_Z_WHEN_IDLE) #define MOVE_Z_IDLE_MULTIPLICATOR 1 // Multiply 1mm by this factor for the move step size. #endif #endif //#define BABYSTEP_DISPLAY_TOTAL // Display total babysteps since last G28 //#define BABYSTEP_ZPROBE_OFFSET // Combine M851 Z and Babystepping #if ENABLED(BABYSTEP_ZPROBE_OFFSET) //#define BABYSTEP_HOTEND_Z_OFFSET // For multiple hotends, babystep relative Z offsets //#define BABYSTEP_GFX_OVERLAY // Enable graphical overlay on Z-offset editor #endif #endif // @section extruder /** * Linear Pressure Control v1.5 * * Assumption: advance [steps] = k * (delta velocity [steps/s]) * K=0 means advance disabled. * * NOTE: K values for LIN_ADVANCE 1.5 differ from earlier versions! * * Set K around 0.22 for 3mm PLA Direct Drive with ~6.5cm between the drive gear and heatbreak. * Larger K values will be needed for flexible filament and greater distances. * If this algorithm produces a higher speed offset than the extruder can handle (compared to E jerk) * print acceleration will be reduced during the affected moves to keep within the limit. * * See https://marlinfw.org/docs/features/lin_advance.html for full instructions. */ //#define LIN_ADVANCE #if ENABLED(LIN_ADVANCE) #if ENABLED(DISTINCT_E_FACTORS) #define ADVANCE_K { 0.22 } // (mm) Compression length per 1mm/s extruder speed, per extruder #else #define ADVANCE_K 0.22 // (mm) Compression length applying to all extruders #endif //#define ADVANCE_K_EXTRA // Add a second linear advance constant, configurable with M900 L. //#define LA_DEBUG // Print debug information to serial during operation. Disable for production use. //#define EXPERIMENTAL_I2S_LA // Allow I2S_STEPPER_STREAM to be used with LA. Performance degrades as the LA step rate reaches ~20kHz. #endif /** * Nonlinear Extrusion Control * * Control extrusion rate based on instantaneous extruder velocity. Can be used to correct for * underextrusion at high extruder speeds that are otherwise well-behaved (i.e., not skipping). */ //#define NONLINEAR_EXTRUSION // @section leveling /** * Use Safe Bed Leveling coordinates to move axes to a useful position before bed probing. * For example, after homing a rotational axis the Z probe might not be perpendicular to the bed. * Choose values the orient the bed horizontally and the Z-probe vertically. */ //#define SAFE_BED_LEVELING_START_X 0.0 //#define SAFE_BED_LEVELING_START_Y 0.0 //#define SAFE_BED_LEVELING_START_Z 0.0 //#define SAFE_BED_LEVELING_START_I 0.0 //#define SAFE_BED_LEVELING_START_J 0.0 //#define SAFE_BED_LEVELING_START_K 0.0 //#define SAFE_BED_LEVELING_START_U 0.0 //#define SAFE_BED_LEVELING_START_V 0.0 //#define SAFE_BED_LEVELING_START_W 0.0 /** * Points to probe for all 3-point Leveling procedures. * Override if the automatically selected points are inadequate. */ #if NEEDS_THREE_PROBE_POINTS //#define PROBE_PT_1 { 15, 180 } // (mm) { x, y } //#define PROBE_PT_2 { 15, 20 } //#define PROBE_PT_3 { 170, 20 } #endif /** * Probing Margins * * Override PROBING_MARGIN for each side of the build plate * Useful to get probe points to exact positions on targets or * to allow leveling to avoid plate clamps on only specific * sides of the bed. With NOZZLE_AS_PROBE negative values are * allowed, to permit probing outside the bed. * * If you are replacing the prior *_PROBE_BED_POSITION options, * LEFT and FRONT values in most cases will map directly over * RIGHT and REAR would be the inverse such as * (X/Y_BED_SIZE - RIGHT/BACK_PROBE_BED_POSITION) * * This will allow all positions to match at compilation, however * should the probe position be modified with M851XY then the * probe points will follow. This prevents any change from causing * the probe to be unable to reach any points. */ #if PROBE_SELECTED && !IS_KINEMATIC //#define PROBING_MARGIN_LEFT PROBING_MARGIN //#define PROBING_MARGIN_RIGHT PROBING_MARGIN //#define PROBING_MARGIN_FRONT PROBING_MARGIN //#define PROBING_MARGIN_BACK PROBING_MARGIN #endif #if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_UBL) // Override the mesh area if the automatic (max) area is too large //#define MESH_MIN_X MESH_INSET //#define MESH_MIN_Y MESH_INSET //#define MESH_MAX_X X_BED_SIZE - (MESH_INSET) //#define MESH_MAX_Y Y_BED_SIZE - (MESH_INSET) #endif #if ALL(AUTO_BED_LEVELING_UBL, EEPROM_SETTINGS) //#define OPTIMIZED_MESH_STORAGE // Store mesh with less precision to save EEPROM space #endif /** * Repeatedly attempt G29 leveling until it succeeds. * Stop after G29_MAX_RETRIES attempts. */ //#define G29_RETRY_AND_RECOVER #if ENABLED(G29_RETRY_AND_RECOVER) #define G29_MAX_RETRIES 3 #define G29_HALT_ON_FAILURE /** * Specify the GCODE commands that will be executed when leveling succeeds, * between attempts, and after the maximum number of retries have been tried. */ #define G29_SUCCESS_COMMANDS "M117 Bed leveling done." #define G29_RECOVER_COMMANDS "M117 Probe failed. Rewiping.\nG28\nG12 P0 S12 T0" #define G29_FAILURE_COMMANDS "M117 Bed leveling failed.\nG0 Z10\nM300 P25 S880\nM300 P50 S0\nM300 P25 S880\nM300 P50 S0\nM300 P25 S880\nM300 P50 S0\nG4 S1" #endif // @section probes /** * Thermal Probe Compensation * * Adjust probe measurements to compensate for distortion associated with the temperature * of the probe, bed, and/or hotend. * Use G76 to automatically calibrate this feature for probe and bed temperatures. * (Extruder temperature/offset values must be calibrated manually.) * Use M871 to set temperature/offset values manually. * For more details see https://marlinfw.org/docs/features/probe_temp_compensation.html */ //#define PTC_PROBE // Compensate based on probe temperature //#define PTC_BED // Compensate based on bed temperature //#define PTC_HOTEND // Compensate based on hotend temperature #if ANY(PTC_PROBE, PTC_BED, PTC_HOTEND) /** * If the probe is outside the defined range, use linear extrapolation with the closest * point and the point with index PTC_LINEAR_EXTRAPOLATION. e.g., If set to 4 it will use the * linear extrapolation between data[0] and data[4] for values below PTC_PROBE_START. */ //#define PTC_LINEAR_EXTRAPOLATION 4 #if ENABLED(PTC_PROBE) // Probe temperature calibration generates a table of values starting at PTC_PROBE_START // (e.g., 30), in steps of PTC_PROBE_RES (e.g., 5) with PTC_PROBE_COUNT (e.g., 10) samples. #define PTC_PROBE_START 30 // (°C) #define PTC_PROBE_RES 5 // (°C) #define PTC_PROBE_COUNT 10 #define PTC_PROBE_ZOFFS { 0 } // (µm) Z adjustments per sample #endif #if ENABLED(PTC_BED) // Bed temperature calibration builds a similar table. #define PTC_BED_START 60 // (°C) #define PTC_BED_RES 5 // (°C) #define PTC_BED_COUNT 10 #define PTC_BED_ZOFFS { 0 } // (µm) Z adjustments per sample #endif #if ENABLED(PTC_HOTEND) // Note: There is no automatic calibration for the hotend. Use M871. #define PTC_HOTEND_START 180 // (°C) #define PTC_HOTEND_RES 5 // (°C) #define PTC_HOTEND_COUNT 20 #define PTC_HOTEND_ZOFFS { 0 } // (µm) Z adjustments per sample #endif // G76 options #if ALL(PTC_PROBE, PTC_BED) // Park position to wait for probe cooldown #define PTC_PARK_POS { 0, 0, 100 } // Probe position to probe and wait for probe to reach target temperature //#define PTC_PROBE_POS { 12.0f, 7.3f } // Example: MK52 magnetic heatbed #define PTC_PROBE_POS { 90, 100 } // The temperature the probe should be at while taking measurements during // bed temperature calibration. #define PTC_PROBE_TEMP 30 // (°C) // Height above Z=0.0 to raise the nozzle. Lowering this can help the probe to heat faster. // Note: The Z=0.0 offset is determined by the probe Z offset (e.g., as set with M851 Z). #define PTC_PROBE_HEATING_OFFSET 0.5 // (mm) #endif #endif // PTC_PROBE || PTC_BED || PTC_HOTEND // @section extras // // G60/G61 Position Save and Return // //#define SAVED_POSITIONS 1 // Each saved position slot costs 12 bytes // // G2/G3 Arc Support // #define ARC_SUPPORT // Requires ~3226 bytes #if ENABLED(ARC_SUPPORT) #define MIN_ARC_SEGMENT_MM 0.1 // (mm) Minimum length of each arc segment #define MAX_ARC_SEGMENT_MM 1.0 // (mm) Maximum length of each arc segment #define MIN_CIRCLE_SEGMENTS 72 // Minimum number of segments in a complete circle //#define ARC_SEGMENTS_PER_SEC 50 // Use the feedrate to choose the segment length #define N_ARC_CORRECTION 25 // Number of interpolated segments between corrections //#define ARC_P_CIRCLES // Enable the 'P' parameter to specify complete circles //#define SF_ARC_FIX // Enable only if using SkeinForge with "Arc Point" fillet procedure #endif // G5 Bézier Curve Support with XYZE destination and IJPQ offsets //#define BEZIER_CURVE_SUPPORT // Requires ~2666 bytes #if ANY(ARC_SUPPORT, BEZIER_CURVE_SUPPORT) //#define CNC_WORKSPACE_PLANES // Allow G2/G3/G5 to operate in XY, ZX, or YZ planes #endif /** * Direct Stepping * * Comparable to the method used by Klipper, G6 direct stepping significantly * reduces motion calculations, increases top printing speeds, and results in * less step aliasing by calculating all motions in advance. * Preparing your G-code: https://github.com/colinrgodsey/step-daemon */ //#define DIRECT_STEPPING /** * G38 Probe Target * * This option adds G38.2 and G38.3 (probe towards target) * and optionally G38.4 and G38.5 (probe away from target). * Set MULTIPLE_PROBING for G38 to probe more than once. */ //#define G38_PROBE_TARGET #if ENABLED(G38_PROBE_TARGET) //#define G38_PROBE_AWAY // Include G38.4 and G38.5 to probe away from target #define G38_MINIMUM_MOVE 0.0275 // (mm) Minimum distance that will produce a move. #endif // @section motion // Moves (or segments) with fewer steps than this will be joined with the next move #define MIN_STEPS_PER_SEGMENT 6 /** * Minimum delay before and after setting the stepper DIR (in ns) * 0 : No delay (Expect at least 10µS since one Stepper ISR must transpire) * 20 : Minimum for TMC2xxx drivers * 200 : Minimum for A4988 drivers * 400 : Minimum for A5984 drivers * 500 : Minimum for LV8729 drivers (guess, no info in datasheet) * 650 : Minimum for DRV8825 drivers * 1500 : Minimum for TB6600 drivers (guess, no info in datasheet) * 15000 : Minimum for TB6560 drivers (guess, no info in datasheet) * * Override the default value based on the driver type set in Configuration.h. */ //#define MINIMUM_STEPPER_POST_DIR_DELAY 650 //#define MINIMUM_STEPPER_PRE_DIR_DELAY 650 /** * Minimum stepper driver pulse width (in µs) * 0 : Smallest possible width the MCU can produce, compatible with TMC2xxx drivers * 0 : Minimum 500ns for LV8729, adjusted in stepper.h * 1 : Minimum for A4988 and A5984 stepper drivers * 2 : Minimum for DRV8825 stepper drivers * 3 : Minimum for TB6600 stepper drivers * 30 : Minimum for TB6560 stepper drivers * * Override the default value based on the driver type set in Configuration.h. */ //#define MINIMUM_STEPPER_PULSE 2 /** * Maximum stepping rate (in Hz) the stepper driver allows * If undefined, defaults to 1MHz / (2 * MINIMUM_STEPPER_PULSE) * 5000000 : Maximum for TMC2xxx stepper drivers * 1000000 : Maximum for LV8729 stepper driver * 500000 : Maximum for A4988 stepper driver * 250000 : Maximum for DRV8825 stepper driver * 150000 : Maximum for TB6600 stepper driver * 15000 : Maximum for TB6560 stepper driver * * Override the default value based on the driver type set in Configuration.h. */ //#define MAXIMUM_STEPPER_RATE 250000 // @section temperature // Control heater 0 and heater 1 in parallel. //#define HEATERS_PARALLEL //=========================================================================== //================================= Buffers ================================= //=========================================================================== // @section gcode // The number of linear moves that can be in the planner at once. #if ALL(HAS_MEDIA, DIRECT_STEPPING) #define BLOCK_BUFFER_SIZE 8 #elif HAS_MEDIA #define BLOCK_BUFFER_SIZE 16 #else #define BLOCK_BUFFER_SIZE 16 #endif // @section serial // The ASCII buffer for serial input #define MAX_CMD_SIZE 96 #define BUFSIZE 4 // Transmission to Host Buffer Size // To save 386 bytes of flash (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0. // To buffer a simple "ok" you need 4 bytes. // For ADVANCED_OK (M105) you need 32 bytes. // For debug-echo: 128 bytes for the optimal speed. // Other output doesn't need to be that speedy. // :[0, 2, 4, 8, 16, 32, 64, 128, 256] #define TX_BUFFER_SIZE 0 // Host Receive Buffer Size // Without XON/XOFF flow control (see SERIAL_XON_XOFF below) 32 bytes should be enough. // To use flow control, set this buffer size to at least 1024 bytes. // :[0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] //#define RX_BUFFER_SIZE 1024 #if RX_BUFFER_SIZE >= 1024 // Enable to have the controller send XON/XOFF control characters to // the host to signal the RX buffer is becoming full. //#define SERIAL_XON_XOFF #endif #if HAS_MEDIA // Enable this option to collect and display the maximum // RX queue usage after transferring a file to SD. //#define SERIAL_STATS_MAX_RX_QUEUED // Enable this option to collect and display the number // of dropped bytes after a file transfer to SD. //#define SERIAL_STATS_DROPPED_RX #endif // Monitor RX buffer usage // Dump an error to the serial port if the serial receive buffer overflows. // If you see these errors, increase the RX_BUFFER_SIZE value. // Not supported on all platforms. //#define RX_BUFFER_MONITOR /** * Emergency Command Parser * * Add a low-level parser to intercept certain commands as they * enter the serial receive buffer, so they cannot be blocked. * Currently handles M108, M112, M410, M876 * NOTE: Not yet implemented for all platforms. */ //#define EMERGENCY_PARSER /** * Realtime Reporting (requires EMERGENCY_PARSER) * * - Report position and state of the machine (like Grbl). * - Auto-report position during long moves. * - Useful for CNC/LASER. * * Adds support for commands: * S000 : Report State and Position while moving. * P000 : Instant Pause / Hold while moving. * R000 : Resume from Pause / Hold. * * - During Hold all Emergency Parser commands are available, as usual. * - Enable NANODLP_Z_SYNC and NANODLP_ALL_AXIS for move command end-state reports. */ //#define REALTIME_REPORTING_COMMANDS #if ENABLED(REALTIME_REPORTING_COMMANDS) //#define FULL_REPORT_TO_HOST_FEATURE // Auto-report the machine status like Grbl CNC #endif /** * Bad Serial-connections can miss a received command by sending an 'ok' * Therefore some clients abort after 30 seconds in a timeout. * Some other clients start sending commands while receiving a 'wait'. * This "wait" is only sent when the buffer is empty. 1 second is a good value here. */ //#define NO_TIMEOUTS 1000 // (ms) // Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary. //#define ADVANCED_OK // Printrun may have trouble receiving long strings all at once. // This option inserts short delays between lines of serial output. #define SERIAL_OVERRUN_PROTECTION // For serial echo, the number of digits after the decimal point //#define SERIAL_FLOAT_PRECISION 4 /** * This feature is EXPERIMENTAL so use with caution and test thoroughly. * Enable this option to receive data on the serial ports via the onboard DMA * controller for more stable and reliable high-speed serial communication. * Support is currently limited to some STM32 MCUs and all HC32 MCUs. * Note: This has no effect on emulated USB serial ports. */ //#define SERIAL_DMA /** * Set the number of proportional font spaces required to fill up a typical character space. * This can help to better align the output of commands like `G29 O` Mesh Output. * * For clients that use a fixed-width font (like OctoPrint), leave this set to 1.0. * Otherwise, adjust according to your client and font. */ #define PROPORTIONAL_FONT_RATIO 1.0 // @section extras /** * Extra Fan Speed * Adds a secondary fan speed for each print-cooling fan. * 'M106 P<fan> T3-255' : Set a secondary speed for <fan> * 'M106 P<fan> T2' : Use the set secondary speed * 'M106 P<fan> T1' : Restore the previous fan speed */ //#define EXTRA_FAN_SPEED // @section gcode /** * Firmware-based and LCD-controlled retract * * Add G10 / G11 commands for automatic firmware-based retract / recover. * Use M207 and M208 to define parameters for retract / recover. * * Use M209 to enable or disable auto-retract. * With auto-retract enabled, all G1 E moves within the set range * will be converted to firmware-based retract/recover moves. * * Be sure to turn off auto-retract during filament change. * * Note that M207 / M208 / M209 settings are saved to EEPROM. */ //#define FWRETRACT #if ENABLED(FWRETRACT) #define FWRETRACT_AUTORETRACT // Override slicer retractions #if ENABLED(FWRETRACT_AUTORETRACT) #define MIN_AUTORETRACT 0.1 // (mm) Don't convert E moves under this length #define MAX_AUTORETRACT 10.0 // (mm) Don't convert E moves over this length #endif #define RETRACT_LENGTH 3 // (mm) Default retract length (positive value) #define RETRACT_LENGTH_SWAP 13 // (mm) Default swap retract length (positive value) #define RETRACT_FEEDRATE 45 // (mm/s) Default feedrate for retracting #define RETRACT_ZRAISE 0 // (mm) Default retract Z-raise #define RETRACT_RECOVER_LENGTH 0 // (mm) Default additional recover length (added to retract length on recover) #define RETRACT_RECOVER_LENGTH_SWAP 0 // (mm) Default additional swap recover length (added to retract length on recover from toolchange) #define RETRACT_RECOVER_FEEDRATE 8 // (mm/s) Default feedrate for recovering from retraction #define RETRACT_RECOVER_FEEDRATE_SWAP 8 // (mm/s) Default feedrate for recovering from swap retraction #if ENABLED(MIXING_EXTRUDER) //#define RETRACT_SYNC_MIXING // Retract and restore all mixing steppers simultaneously #endif #endif // @section tool change /** * Universal tool change settings. * Applies to all types of extruders except where explicitly noted. */ #if HAS_MULTI_EXTRUDER // Z raise distance for tool-change, as needed for some extruders #define TOOLCHANGE_ZRAISE 2 // (mm) //#define TOOLCHANGE_ZRAISE_BEFORE_RETRACT // Apply raise before swap retraction (if enabled) //#define TOOLCHANGE_NO_RETURN // Never return to previous position on tool-change #if ENABLED(TOOLCHANGE_NO_RETURN) //#define EVENT_GCODE_AFTER_TOOLCHANGE "G12X" // Extra G-code to run after tool-change #endif /** * Extra G-code to run while executing tool-change commands. Can be used to use an additional * stepper motor (e.g., I axis in Configuration.h) to drive the tool-changer. */ //#define EVENT_GCODE_TOOLCHANGE_T0 "G28 A\nG1 A0" // Extra G-code to run while executing tool-change command T0 //#define EVENT_GCODE_TOOLCHANGE_T1 "G1 A10" // Extra G-code to run while executing tool-change command T1 //#define EVENT_GCODE_TOOLCHANGE_ALWAYS_RUN // Always execute above G-code sequences. Use with caution! /** * Consider coordinates for EVENT_GCODE_TOOLCHANGE_Tx as relative to T0 * so that moves in the specified axes are the same for all tools. */ //#define TC_GCODE_USE_GLOBAL_X // Use X position relative to Tool 0 //#define TC_GCODE_USE_GLOBAL_Y // Use Y position relative to Tool 0 //#define TC_GCODE_USE_GLOBAL_Z // Use Z position relative to Tool 0 /** * Tool Sensors detect when tools have been picked up or dropped. * Requires the pins TOOL_SENSOR1_PIN, TOOL_SENSOR2_PIN, etc. */ //#define TOOL_SENSOR /** * Retract and prime filament on tool-change to reduce * ooze and stringing and to get cleaner transitions. */ //#define TOOLCHANGE_FILAMENT_SWAP #if ENABLED(TOOLCHANGE_FILAMENT_SWAP) // Load / Unload #define TOOLCHANGE_FS_LENGTH 12 // (mm) Load / Unload length #define TOOLCHANGE_FS_EXTRA_RESUME_LENGTH 0 // (mm) Extra length for better restart. Adjust with LCD or M217 B. #define TOOLCHANGE_FS_RETRACT_SPEED (50*60) // (mm/min) (Unloading) #define TOOLCHANGE_FS_UNRETRACT_SPEED (25*60) // (mm/min) (On SINGLENOZZLE or Bowden loading must be slowed down) // Longer prime to clean out a SINGLENOZZLE #define TOOLCHANGE_FS_EXTRA_PRIME 0 // (mm) Extra priming length #define TOOLCHANGE_FS_PRIME_SPEED (4.6*60) // (mm/min) Extra priming feedrate #define TOOLCHANGE_FS_WIPE_RETRACT 0 // (mm) Cutting retraction out of park, for less stringing, better wipe, etc. Adjust with LCD or M217 G. // Cool after prime to reduce stringing #define TOOLCHANGE_FS_FAN -1 // Fan index or -1 to skip #define TOOLCHANGE_FS_FAN_SPEED 255 // 0-255 #define TOOLCHANGE_FS_FAN_TIME 10 // (seconds) // Use TOOLCHANGE_FS_PRIME_SPEED feedrate the first time each extruder is primed //#define TOOLCHANGE_FS_SLOW_FIRST_PRIME /** * Prime T0 the first time T0 is sent to the printer: * [ Power-On -> T0 { Activate & Prime T0 } -> T1 { Retract T0, Activate & Prime T1 } ] * If disabled, no priming on T0 until switching back to T0 from another extruder: * [ Power-On -> T0 { T0 Activated } -> T1 { Activate & Prime T1 } -> T0 { Retract T1, Activate & Prime T0 } ] * Enable with M217 V1 before printing to avoid unwanted priming on host connect. */ //#define TOOLCHANGE_FS_PRIME_FIRST_USED /** * Tool Change Migration * This feature provides G-code and LCD options to switch tools mid-print. * All applicable tool properties are migrated so the print can continue. * Tools must be closely matching and other restrictions may apply. * Useful to: * - Change filament color without interruption * - Switch spools automatically on filament runout * - Switch to a different nozzle on an extruder jam */ #define TOOLCHANGE_MIGRATION_FEATURE #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE) // Override toolchange settings // By default tool migration uses regular toolchange settings. // With a prime tower, tool-change swapping/priming occur inside the bed. // When migrating to a new unprimed tool you can set override values below. //#define MIGRATION_ZRAISE 0 // (mm) // Longer prime to clean out //#define MIGRATION_FS_EXTRA_PRIME 0 // (mm) Extra priming length //#define MIGRATION_FS_WIPE_RETRACT 0 // (mm) Retract before cooling for less stringing, better wipe, etc. // Cool after prime to reduce stringing //#define MIGRATION_FS_FAN_SPEED 255 // 0-255 //#define MIGRATION_FS_FAN_TIME 0 // (seconds) #endif #endif /** * Position to park head during tool change. * Doesn't apply to SWITCHING_TOOLHEAD, DUAL_X_CARRIAGE, or PARKING_EXTRUDER */ //#define TOOLCHANGE_PARK #if ENABLED(TOOLCHANGE_PARK) #define TOOLCHANGE_PARK_XY { X_MIN_POS + 10, Y_MIN_POS + 10 } #define TOOLCHANGE_PARK_XY_FEEDRATE 6000 // (mm/min) //#define TOOLCHANGE_PARK_X_ONLY // X axis only move //#define TOOLCHANGE_PARK_Y_ONLY // Y axis only move #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE) //#define TOOLCHANGE_MIGRATION_DO_PARK // Force park (or no-park) on migration #endif #endif #endif // HAS_MULTI_EXTRUDER // @section advanced pause /** * Advanced Pause for Filament Change * - Adds the G-code M600 Filament Change to initiate a filament change. * - This feature is required for the default FILAMENT_RUNOUT_SCRIPT. * * Requirements: * - For Filament Change parking enable and configure NOZZLE_PARK_FEATURE. * - For user interaction enable an LCD display, HOST_PROMPT_SUPPORT, or EMERGENCY_PARSER. * * Enable PARK_HEAD_ON_PAUSE to add the G-code M125 Pause and Park. */ //#define ADVANCED_PAUSE_FEATURE #if ENABLED(ADVANCED_PAUSE_FEATURE) #define PAUSE_PARK_RETRACT_FEEDRATE 60 // (mm/s) Initial retract feedrate. #define PAUSE_PARK_RETRACT_LENGTH 2 // (mm) Initial retract. // This short retract is done immediately, before parking the nozzle. #define FILAMENT_CHANGE_UNLOAD_FEEDRATE 10 // (mm/s) Unload filament feedrate. This can be pretty fast. #define FILAMENT_CHANGE_UNLOAD_ACCEL 25 // (mm/s^2) Lower acceleration may allow a faster feedrate. #define FILAMENT_CHANGE_UNLOAD_LENGTH 100 // (mm) The length of filament for a complete unload. // For Bowden, the full length of the tube and nozzle. // For direct drive, the full length of the nozzle. // Set to 0 for manual unloading. #define FILAMENT_CHANGE_SLOW_LOAD_FEEDRATE 6 // (mm/s) Slow move when starting load. #define FILAMENT_CHANGE_SLOW_LOAD_LENGTH 0 // (mm) Slow length, to allow time to insert material. // 0 to disable start loading and skip to fast load only #define FILAMENT_CHANGE_FAST_LOAD_FEEDRATE 6 // (mm/s) Load filament feedrate. This can be pretty fast. #define FILAMENT_CHANGE_FAST_LOAD_ACCEL 25 // (mm/s^2) Lower acceleration may allow a faster feedrate. #define FILAMENT_CHANGE_FAST_LOAD_LENGTH 0 // (mm) Load length of filament, from extruder gear to nozzle. // For Bowden, the full length of the tube and nozzle. // For direct drive, the full length of the nozzle. //#define ADVANCED_PAUSE_CONTINUOUS_PURGE // Purge continuously up to the purge length until interrupted. #define ADVANCED_PAUSE_PURGE_FEEDRATE 3 // (mm/s) Extrude feedrate (after loading). Should be slower than load feedrate. #define ADVANCED_PAUSE_PURGE_LENGTH 50 // (mm) Length to extrude after loading. // Set to 0 for manual extrusion. // Filament can be extruded repeatedly from the Filament Change menu // until extrusion is consistent, and to purge old filament. #define ADVANCED_PAUSE_RESUME_PRIME 0 // (mm) Extra distance to prime nozzle after returning from park. //#define ADVANCED_PAUSE_FANS_PAUSE // Turn off print-cooling fans while the machine is paused. // Filament Unload does a Retract, Delay, and Purge first: #define FILAMENT_UNLOAD_PURGE_RETRACT 13 // (mm) Unload initial retract length. #define FILAMENT_UNLOAD_PURGE_DELAY 5000 // (ms) Delay for the filament to cool after retract. #define FILAMENT_UNLOAD_PURGE_LENGTH 8 // (mm) An unretract is done, then this length is purged. #define FILAMENT_UNLOAD_PURGE_FEEDRATE 25 // (mm/s) feedrate to purge before unload #define PAUSE_PARK_NOZZLE_TIMEOUT 45 // (seconds) Time limit before the nozzle is turned off for safety. #define FILAMENT_CHANGE_ALERT_BEEPS 10 // Number of alert beeps to play when a response is needed. #define PAUSE_PARK_NO_STEPPER_TIMEOUT // Enable for XYZ steppers to stay powered on during filament change. //#define FILAMENT_CHANGE_RESUME_ON_INSERT // Automatically continue / load filament when runout sensor is triggered again. //#define PAUSE_REHEAT_FAST_RESUME // Reduce number of waits by not prompting again post-timeout before continuing. //#define PARK_HEAD_ON_PAUSE // Park the nozzle during pause and filament change. //#define HOME_BEFORE_FILAMENT_CHANGE // If needed, home before parking for filament change //#define FILAMENT_LOAD_UNLOAD_GCODES // Add M701/M702 Load/Unload G-codes, plus Load/Unload in the LCD Prepare menu. //#define FILAMENT_UNLOAD_ALL_EXTRUDERS // Allow M702 to unload all extruders above a minimum target temp (as set by M302) #define CONFIGURE_FILAMENT_CHANGE // Add M603 G-code and menu items. Requires ~1.3K bytes of flash. #endif // @section tmc_smart /** * Trinamic Smart Drivers * * To use TMC2130, TMC2160, TMC2660, TMC5130, TMC5160 stepper drivers in SPI mode: * - Connect your SPI pins to the Hardware SPI interface on the board. * Some boards have simple jumper connections! See your board's documentation. * - Define the required Stepper CS pins in your `pins_MYBOARD.h` file. * (See the RAMPS pins, for example.) * - You can also use Software SPI with GPIO pins instead of Hardware SPI. * * To use TMC220x stepper drivers with Serial UART: * - Connect PDN_UART to the #_SERIAL_TX_PIN through a 1K resistor. * For reading capabilities also connect PDN_UART to #_SERIAL_RX_PIN with no resistor. * Some boards have simple jumper connections! See your board's documentation. * - These drivers can also be used with Hardware Serial. * * The TMCStepper library is required for other TMC stepper drivers. * https://github.com/teemuatlut/TMCStepper * * @section tmc/config */ #if HAS_TRINAMIC_CONFIG #define HOLD_MULTIPLIER 0.5 // Scales down the holding current from run current /** * Interpolate microsteps to 256 * Override for each driver with <driver>_INTERPOLATE settings below */ #define INTERPOLATE true #if AXIS_IS_TMC_CONFIG(X) #define X_CURRENT 800 // (mA) RMS current. Multiply by 1.414 for peak current. #define X_CURRENT_HOME X_CURRENT // (mA) RMS current for sensorless homing #define X_MICROSTEPS 16 // 0..256 #define X_RSENSE 0.11 #define X_CHAIN_POS -1 // -1..0: Not chained. 1: MCU MOSI connected. 2: Next in chain, ... //#define X_INTERPOLATE true // Enable to override 'INTERPOLATE' for the X axis //#define X_HOLD_MULTIPLIER 0.5 // Enable to override 'HOLD_MULTIPLIER' for the X axis #endif #if AXIS_IS_TMC_CONFIG(X2) #define X2_CURRENT X_CURRENT #define X2_CURRENT_HOME X_CURRENT_HOME #define X2_MICROSTEPS X_MICROSTEPS #define X2_RSENSE X_RSENSE #define X2_CHAIN_POS -1 //#define X2_INTERPOLATE true //#define X2_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(Y) #define Y_CURRENT 800 #define Y_CURRENT_HOME Y_CURRENT #define Y_MICROSTEPS 16 #define Y_RSENSE 0.11 #define Y_CHAIN_POS -1 //#define Y_INTERPOLATE true //#define Y_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(Y2) #define Y2_CURRENT Y_CURRENT #define Y2_CURRENT_HOME Y_CURRENT_HOME #define Y2_MICROSTEPS Y_MICROSTEPS #define Y2_RSENSE Y_RSENSE #define Y2_CHAIN_POS -1 //#define Y2_INTERPOLATE true //#define Y2_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(Z) #define Z_CURRENT 800 #define Z_CURRENT_HOME Z_CURRENT #define Z_MICROSTEPS 16 #define Z_RSENSE 0.11 #define Z_CHAIN_POS -1 //#define Z_INTERPOLATE true //#define Z_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(Z2) #define Z2_CURRENT Z_CURRENT #define Z2_CURRENT_HOME Z_CURRENT_HOME #define Z2_MICROSTEPS Z_MICROSTEPS #define Z2_RSENSE Z_RSENSE #define Z2_CHAIN_POS -1 //#define Z2_INTERPOLATE true //#define Z2_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(Z3) #define Z3_CURRENT Z_CURRENT #define Z3_CURRENT_HOME Z_CURRENT_HOME #define Z3_MICROSTEPS Z_MICROSTEPS #define Z3_RSENSE Z_RSENSE #define Z3_CHAIN_POS -1 //#define Z3_INTERPOLATE true //#define Z3_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(Z4) #define Z4_CURRENT Z_CURRENT #define Z4_CURRENT_HOME Z_CURRENT_HOME #define Z4_MICROSTEPS Z_MICROSTEPS #define Z4_RSENSE Z_RSENSE #define Z4_CHAIN_POS -1 //#define Z4_INTERPOLATE true //#define Z4_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(I) #define I_CURRENT 800 #define I_CURRENT_HOME I_CURRENT #define I_MICROSTEPS 16 #define I_RSENSE 0.11 #define I_CHAIN_POS -1 //#define I_INTERPOLATE true //#define I_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(J) #define J_CURRENT 800 #define J_CURRENT_HOME J_CURRENT #define J_MICROSTEPS 16 #define J_RSENSE 0.11 #define J_CHAIN_POS -1 //#define J_INTERPOLATE true //#define J_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(K) #define K_CURRENT 800 #define K_CURRENT_HOME K_CURRENT #define K_MICROSTEPS 16 #define K_RSENSE 0.11 #define K_CHAIN_POS -1 //#define K_INTERPOLATE true //#define K_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(U) #define U_CURRENT 800 #define U_CURRENT_HOME U_CURRENT #define U_MICROSTEPS 8 #define U_RSENSE 0.11 #define U_CHAIN_POS -1 //#define U_INTERPOLATE true //#define U_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(V) #define V_CURRENT 800 #define V_CURRENT_HOME V_CURRENT #define V_MICROSTEPS 8 #define V_RSENSE 0.11 #define V_CHAIN_POS -1 //#define V_INTERPOLATE true //#define V_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(W) #define W_CURRENT 800 #define W_CURRENT_HOME W_CURRENT #define W_MICROSTEPS 8 #define W_RSENSE 0.11 #define W_CHAIN_POS -1 //#define W_INTERPOLATE true //#define W_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(E0) #define E0_CURRENT 800 #define E0_MICROSTEPS 16 #define E0_RSENSE 0.11 #define E0_CHAIN_POS -1 //#define E0_INTERPOLATE true //#define E0_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(E1) #define E1_CURRENT E0_CURRENT #define E1_MICROSTEPS E0_MICROSTEPS #define E1_RSENSE E0_RSENSE #define E1_CHAIN_POS -1 //#define E1_INTERPOLATE true //#define E1_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(E2) #define E2_CURRENT E0_CURRENT #define E2_MICROSTEPS E0_MICROSTEPS #define E2_RSENSE E0_RSENSE #define E2_CHAIN_POS -1 //#define E2_INTERPOLATE true //#define E2_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(E3) #define E3_CURRENT E0_CURRENT #define E3_MICROSTEPS E0_MICROSTEPS #define E3_RSENSE E0_RSENSE #define E3_CHAIN_POS -1 //#define E3_INTERPOLATE true //#define E3_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(E4) #define E4_CURRENT E0_CURRENT #define E4_MICROSTEPS E0_MICROSTEPS #define E4_RSENSE E0_RSENSE #define E4_CHAIN_POS -1 //#define E4_INTERPOLATE true //#define E4_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(E5) #define E5_CURRENT E0_CURRENT #define E5_MICROSTEPS E0_MICROSTEPS #define E5_RSENSE E0_RSENSE #define E5_CHAIN_POS -1 //#define E5_INTERPOLATE true //#define E5_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(E6) #define E6_CURRENT E0_CURRENT #define E6_MICROSTEPS E0_MICROSTEPS #define E6_RSENSE E0_RSENSE #define E6_CHAIN_POS -1 //#define E6_INTERPOLATE true //#define E6_HOLD_MULTIPLIER 0.5 #endif #if AXIS_IS_TMC_CONFIG(E7) #define E7_CURRENT E0_CURRENT #define E7_MICROSTEPS E0_MICROSTEPS #define E7_RSENSE E0_RSENSE #define E7_CHAIN_POS -1 //#define E7_INTERPOLATE true //#define E7_HOLD_MULTIPLIER 0.5 #endif // @section tmc/spi /** * Override default SPI pins for TMC2130, TMC2160, TMC2660, TMC5130 and TMC5160 drivers here. * The default pins can be found in your board's pins file. */ //#define X_CS_PIN -1 //#define Y_CS_PIN -1 //#define Z_CS_PIN -1 //#define X2_CS_PIN -1 //#define Y2_CS_PIN -1 //#define Z2_CS_PIN -1 //#define Z3_CS_PIN -1 //#define Z4_CS_PIN -1 //#define I_CS_PIN -1 //#define J_CS_PIN -1 //#define K_CS_PIN -1 //#define U_CS_PIN -1 //#define V_CS_PIN -1 //#define W_CS_PIN -1 //#define E0_CS_PIN -1 //#define E1_CS_PIN -1 //#define E2_CS_PIN -1 //#define E3_CS_PIN -1 //#define E4_CS_PIN -1 //#define E5_CS_PIN -1 //#define E6_CS_PIN -1 //#define E7_CS_PIN -1 /** * Software option for SPI driven drivers (TMC2130, TMC2160, TMC2660, TMC5130 and TMC5160). * The default SW SPI pins are defined the respective pins files, * but you can override or define them here. */ //#define TMC_USE_SW_SPI //#define TMC_SPI_MOSI -1 //#define TMC_SPI_MISO -1 //#define TMC_SPI_SCK -1 // @section tmc/serial /** * Four TMC2209 drivers can use the same HW/SW serial port with hardware configured addresses. * Set the address using jumpers on pins MS1 and MS2. * Address | MS1 | MS2 * 0 | LOW | LOW * 1 | HIGH | LOW * 2 | LOW | HIGH * 3 | HIGH | HIGH * * Set *_SERIAL_TX_PIN and *_SERIAL_RX_PIN to match for all drivers * on the same serial port, either here or in your board's pins file. */ //#define X_SLAVE_ADDRESS 0 //#define Y_SLAVE_ADDRESS 0 //#define Z_SLAVE_ADDRESS 0 //#define X2_SLAVE_ADDRESS 0 //#define Y2_SLAVE_ADDRESS 0 //#define Z2_SLAVE_ADDRESS 0 //#define Z3_SLAVE_ADDRESS 0 //#define Z4_SLAVE_ADDRESS 0 //#define I_SLAVE_ADDRESS 0 //#define J_SLAVE_ADDRESS 0 //#define K_SLAVE_ADDRESS 0 //#define U_SLAVE_ADDRESS 0 //#define V_SLAVE_ADDRESS 0 //#define W_SLAVE_ADDRESS 0 //#define E0_SLAVE_ADDRESS 0 //#define E1_SLAVE_ADDRESS 0 //#define E2_SLAVE_ADDRESS 0 //#define E3_SLAVE_ADDRESS 0 //#define E4_SLAVE_ADDRESS 0 //#define E5_SLAVE_ADDRESS 0 //#define E6_SLAVE_ADDRESS 0 //#define E7_SLAVE_ADDRESS 0 // @section tmc/smart /** * Software enable * * Use for drivers that do not use a dedicated enable pin, but rather handle the same * function through a communication line such as SPI or UART. */ //#define SOFTWARE_DRIVER_ENABLE // @section tmc/stealthchop /** * TMC2130, TMC2160, TMC2208, TMC2209, TMC5130 and TMC5160 only * Use Trinamic's ultra quiet stepping mode. * When disabled, Marlin will use spreadCycle stepping mode. */ #if HAS_STEALTHCHOP #define STEALTHCHOP_XY #define STEALTHCHOP_Z #define STEALTHCHOP_I #define STEALTHCHOP_J #define STEALTHCHOP_K #define STEALTHCHOP_U #define STEALTHCHOP_V #define STEALTHCHOP_W #define STEALTHCHOP_E #endif /** * Optimize spreadCycle chopper parameters by using predefined parameter sets * or with the help of an example included in the library. * Provided parameter sets are * CHOPPER_DEFAULT_12V * CHOPPER_DEFAULT_19V * CHOPPER_DEFAULT_24V * CHOPPER_DEFAULT_36V * CHOPPER_09STEP_24V // 0.9 degree steppers (24V) * CHOPPER_PRUSAMK3_24V // Imported parameters from the official Průša firmware for MK3 (24V) * CHOPPER_MARLIN_119 // Old defaults from Marlin v1.1.9 * * Define your own with: * { <off_time[1..15]>, <hysteresis_end[-3..12]>, hysteresis_start[1..8] } */ #define CHOPPER_TIMING CHOPPER_DEFAULT_12V // All axes (override below) //#define CHOPPER_TIMING_X CHOPPER_TIMING // For X Axes (override below) //#define CHOPPER_TIMING_X2 CHOPPER_TIMING_X //#define CHOPPER_TIMING_Y CHOPPER_TIMING // For Y Axes (override below) //#define CHOPPER_TIMING_Y2 CHOPPER_TIMING_Y //#define CHOPPER_TIMING_Z CHOPPER_TIMING // For Z Axes (override below) //#define CHOPPER_TIMING_Z2 CHOPPER_TIMING_Z //#define CHOPPER_TIMING_Z3 CHOPPER_TIMING_Z //#define CHOPPER_TIMING_Z4 CHOPPER_TIMING_Z //#define CHOPPER_TIMING_I CHOPPER_TIMING // For I Axis //#define CHOPPER_TIMING_J CHOPPER_TIMING // For J Axis //#define CHOPPER_TIMING_K CHOPPER_TIMING // For K Axis //#define CHOPPER_TIMING_U CHOPPER_TIMING // For U Axis //#define CHOPPER_TIMING_V CHOPPER_TIMING // For V Axis //#define CHOPPER_TIMING_W CHOPPER_TIMING // For W Axis //#define CHOPPER_TIMING_E CHOPPER_TIMING // For Extruders (override below) //#define CHOPPER_TIMING_E1 CHOPPER_TIMING_E //#define CHOPPER_TIMING_E2 CHOPPER_TIMING_E //#define CHOPPER_TIMING_E3 CHOPPER_TIMING_E //#define CHOPPER_TIMING_E4 CHOPPER_TIMING_E //#define CHOPPER_TIMING_E5 CHOPPER_TIMING_E //#define CHOPPER_TIMING_E6 CHOPPER_TIMING_E //#define CHOPPER_TIMING_E7 CHOPPER_TIMING_E // @section tmc/status /** * Monitor Trinamic drivers * for error conditions like overtemperature and short to ground. * To manage over-temp Marlin can decrease the driver current until the error condition clears. * Other detected conditions can be used to stop the current print. * Relevant G-codes: * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. * M911 - Report stepper driver overtemperature pre-warn condition. * M912 - Clear stepper driver overtemperature pre-warn condition flag. * M122 - Report driver parameters (Requires TMC_DEBUG) */ //#define MONITOR_DRIVER_STATUS #if ENABLED(MONITOR_DRIVER_STATUS) #define CURRENT_STEP_DOWN 50 // [mA] #define REPORT_CURRENT_CHANGE #define STOP_ON_ERROR #endif // @section tmc/hybrid /** * TMC2130, TMC2160, TMC2208, TMC2209, TMC5130 and TMC5160 only * The driver will switch to spreadCycle when stepper speed is over HYBRID_THRESHOLD. * This mode allows for faster movements at the expense of higher noise levels. * STEALTHCHOP_(XY|Z|E) must be enabled to use HYBRID_THRESHOLD. * M913 X/Y/Z/E to live tune the setting */ //#define HYBRID_THRESHOLD #define X_HYBRID_THRESHOLD 100 // [mm/s] #define X2_HYBRID_THRESHOLD 100 #define Y_HYBRID_THRESHOLD 100 #define Y2_HYBRID_THRESHOLD 100 #define Z_HYBRID_THRESHOLD 3 #define Z2_HYBRID_THRESHOLD 3 #define Z3_HYBRID_THRESHOLD 3 #define Z4_HYBRID_THRESHOLD 3 #define I_HYBRID_THRESHOLD 3 // [linear=mm/s, rotational=°/s] #define J_HYBRID_THRESHOLD 3 // [linear=mm/s, rotational=°/s] #define K_HYBRID_THRESHOLD 3 // [linear=mm/s, rotational=°/s] #define U_HYBRID_THRESHOLD 3 // [mm/s] #define V_HYBRID_THRESHOLD 3 #define W_HYBRID_THRESHOLD 3 #define E0_HYBRID_THRESHOLD 30 #define E1_HYBRID_THRESHOLD 30 #define E2_HYBRID_THRESHOLD 30 #define E3_HYBRID_THRESHOLD 30 #define E4_HYBRID_THRESHOLD 30 #define E5_HYBRID_THRESHOLD 30 #define E6_HYBRID_THRESHOLD 30 #define E7_HYBRID_THRESHOLD 30 /** * Use StallGuard to home / probe X, Y, Z. * * TMC2130, TMC2160, TMC2209, TMC2660, TMC5130, and TMC5160 only * Connect the stepper driver's DIAG1 pin to the X/Y endstop pin. * X, Y, and Z homing will always be done in spreadCycle mode. * * X/Y/Z_STALL_SENSITIVITY is the default stall threshold. * Use M914 X Y Z to set the stall threshold at runtime: * * Sensitivity TMC2209 Others * HIGHEST 255 -64 (Too sensitive => False positive) * LOWEST 0 63 (Too insensitive => No trigger) * * It is recommended to set HOMING_BUMP_MM to { 0, 0, 0 }. * * SPI_ENDSTOPS *** TMC2130/TMC5160 Only *** * Poll the driver through SPI to determine load when homing. * Removes the need for a wire from DIAG1 to an endstop pin. * * IMPROVE_HOMING_RELIABILITY tunes acceleration and jerk when * homing and adds a guard period for endstop triggering. * * Comment *_STALL_SENSITIVITY to disable sensorless homing for that axis. * @section tmc/stallguard */ //#define SENSORLESS_HOMING // StallGuard capable drivers only #if ANY(SENSORLESS_HOMING, SENSORLESS_PROBING) // TMC2209: 0...255. TMC2130: -64...63 #define X_STALL_SENSITIVITY 8 #define X2_STALL_SENSITIVITY X_STALL_SENSITIVITY #define Y_STALL_SENSITIVITY 8 #define Y2_STALL_SENSITIVITY Y_STALL_SENSITIVITY //#define Z_STALL_SENSITIVITY 8 //#define Z2_STALL_SENSITIVITY Z_STALL_SENSITIVITY //#define Z3_STALL_SENSITIVITY Z_STALL_SENSITIVITY //#define Z4_STALL_SENSITIVITY Z_STALL_SENSITIVITY //#define I_STALL_SENSITIVITY 8 //#define J_STALL_SENSITIVITY 8 //#define K_STALL_SENSITIVITY 8 //#define U_STALL_SENSITIVITY 8 //#define V_STALL_SENSITIVITY 8 //#define W_STALL_SENSITIVITY 8 //#define SPI_ENDSTOPS // TMC2130/TMC5160 only //#define IMPROVE_HOMING_RELIABILITY #endif // @section tmc/config /** * TMC Homing stepper phase. * * Improve homing repeatability by homing to stepper coil's nearest absolute * phase position. Trinamic drivers use a stepper phase table with 1024 values * spanning 4 full steps with 256 positions each (ergo, 1024 positions). * Full step positions (128, 384, 640, 896) have the highest holding torque. * * Values from 0..1023, -1 to disable homing phase for that axis. */ //#define TMC_HOME_PHASE { 896, 896, 896 } /** * Step on both rising and falling edge signals (as with a square wave). */ //#define EDGE_STEPPING /** * Enable M122 debugging command for TMC stepper drivers. * M122 S0/1 will enable continuous reporting. */ //#define TMC_DEBUG /** * You can set your own advanced settings by filling in predefined functions. * A list of available functions can be found on the library github page * https://github.com/teemuatlut/TMCStepper * * Example: * #define TMC_ADV() { \ * stepperX.diag0_otpw(1); \ * stepperY.intpol(0); \ * } */ #define TMC_ADV() { } #endif // HAS_TRINAMIC_CONFIG // @section i2cbus // // I2C Master ID for LPC176x LCD and Digital Current control // Does not apply to other peripherals based on the Wire library. // //#define I2C_MASTER_ID 1 // Set a value from 0 to 2 /** * TWI/I2C BUS * * This feature is EXPERIMENTAL but may be useful for custom I2C peripherals. * Enable this to send and receive I2C data from slave devices on the bus. * * ; Example #1 * ; This macro send the string "Marlin" to the slave device with address 0x63 (99) * ; It uses multiple M260 commands with one B<base 10> arg * M260 A99 ; Target slave address * M260 B77 ; M * M260 B97 ; a * M260 B114 ; r * M260 B108 ; l * M260 B105 ; i * M260 B110 ; n * M260 S1 ; Send the current buffer * * ; Example #2 * ; Request 6 bytes from slave device with address 0x63 (99) * M261 A99 B5 * * ; Example #3 * ; Example serial output of a M261 request * echo:i2c-reply: from:99 bytes:5 data:hello */ //#define EXPERIMENTAL_I2CBUS #if ENABLED(EXPERIMENTAL_I2CBUS) #define I2C_SLAVE_ADDRESS 0 // Set a value from 8 to 127 to act as a slave #endif // @section photo /** * Photo G-code * Add the M240 G-code to take a photo. * The photo can be triggered by a digital pin or a physical movement. */ //#define PHOTO_GCODE #if ENABLED(PHOTO_GCODE) // A position to move to (and raise Z) before taking the photo //#define PHOTO_POSITION { X_MAX_POS - 5, Y_MAX_POS, 0 } // { xpos, ypos, zraise } (M240 X Y Z) //#define PHOTO_DELAY_MS 100 // (ms) Duration to pause before moving back (M240 P) //#define PHOTO_RETRACT_MM 6.5 // (mm) E retract/recover for the photo move (M240 R S) // Canon RC-1 or homebrew digital camera trigger // Data from: https://www.doc-diy.net/photo/rc-1_hacked/ //#define PHOTOGRAPH_PIN 23 // Canon Hack Development Kit // https://web.archive.org/web/20200920094805/https://captain-slow.dk/2014/03/09/3d-printing-timelapses/ //#define CHDK_PIN 4 // Optional second move with delay to trigger the camera shutter //#define PHOTO_SWITCH_POSITION { X_MAX_POS, Y_MAX_POS } // { xpos, ypos } (M240 I J) // Duration to hold the switch or keep CHDK_PIN high //#define PHOTO_SWITCH_MS 50 // (ms) (M240 D) /** * PHOTO_PULSES_US may need adjustment depending on board and camera model. * Pin must be running at 48.4kHz. * Be sure to use a PHOTOGRAPH_PIN which can rise and fall quick enough. * (e.g., MKS SBase temp sensor pin was too slow, so used P1.23 on J8.) * * Example pulse data for Nikon: https://bit.ly/2FKD0Aq * IR Wiring: https://git.io/JvJf7 */ //#define PHOTO_PULSES_US { 2000, 27850, 400, 1580, 400, 3580, 400 } // (µs) Durations for each 48.4kHz oscillation #ifdef PHOTO_PULSES_US #define PHOTO_PULSE_DELAY_US 13 // (µs) Approximate duration of each HIGH and LOW pulse in the oscillation #endif #endif // @section cnc /** * Spindle & Laser control * * Add the M3, M4, and M5 commands to turn the spindle/laser on and off, and * to set spindle speed, spindle direction, and laser power. * * SuperPID is a router/spindle speed controller used in the CNC milling community. * Marlin can be used to turn the spindle on and off. It can also be used to set * the spindle speed from 5,000 to 30,000 RPM. * * You'll need to select a pin for the ON/OFF function and optionally choose a 0-5V * hardware PWM pin for the speed control and a pin for the rotation direction. * * See https://marlinfw.org/docs/configuration/2.0.9/laser_spindle.html for more config details. */ //#define SPINDLE_FEATURE //#define LASER_FEATURE #if ANY(SPINDLE_FEATURE, LASER_FEATURE) #define SPINDLE_LASER_ACTIVE_STATE LOW // Set to "HIGH" if SPINDLE_LASER_ENA_PIN is active HIGH #define SPINDLE_LASER_USE_PWM // Enable if your controller supports setting the speed/power #if ENABLED(SPINDLE_LASER_USE_PWM) #define SPINDLE_LASER_PWM_INVERT false // Set to "true" if the speed/power goes up when you want it to go slower #define SPINDLE_LASER_FREQUENCY 2500 // (Hz) Spindle/laser frequency (only on supported HALs: AVR, ESP32, and LPC) // ESP32: If SPINDLE_LASER_PWM_PIN is onboard then <=78125Hz. For I2S expander // the frequency determines the PWM resolution. 2500Hz = 0-100, 977Hz = 0-255, ... // (250000 / SPINDLE_LASER_FREQUENCY) = max value. #endif //#define AIR_EVACUATION // Cutter Vacuum / Laser Blower motor control with G-codes M10-M11 #if ENABLED(AIR_EVACUATION) #define AIR_EVACUATION_ACTIVE LOW // Set to "HIGH" if the on/off function is active HIGH //#define AIR_EVACUATION_PIN 42 // Override the default Cutter Vacuum or Laser Blower pin #endif //#define AIR_ASSIST // Air Assist control with G-codes M8-M9 #if ENABLED(AIR_ASSIST) #define AIR_ASSIST_ACTIVE LOW // Active state on air assist pin //#define AIR_ASSIST_PIN 44 // Override the default Air Assist pin #endif //#define SPINDLE_SERVO // A servo converting an angle to spindle power #ifdef SPINDLE_SERVO #define SPINDLE_SERVO_NR 0 // Index of servo used for spindle control #define SPINDLE_SERVO_MIN 10 // Minimum angle for servo spindle #endif /** * Speed / Power can be set ('M3 S') and displayed in terms of: * - PWM255 (S0 - S255) * - PERCENT (S0 - S100) * - RPM (S0 - S50000) Best for use with a spindle * - SERVO (S0 - S180) */ #define CUTTER_POWER_UNIT PWM255 /** * Relative Cutter Power * Normally, 'M3 O<power>' sets * OCR power is relative to the range SPEED_POWER_MIN...SPEED_POWER_MAX. * so input powers of 0...255 correspond to SPEED_POWER_MIN...SPEED_POWER_MAX * instead of normal range (0 to SPEED_POWER_MAX). * Best used with (e.g.) SuperPID router controller: S0 = 5,000 RPM and S255 = 30,000 RPM */ //#define CUTTER_POWER_RELATIVE // Set speed proportional to [SPEED_POWER_MIN...SPEED_POWER_MAX] #if ENABLED(SPINDLE_FEATURE) //#define SPINDLE_CHANGE_DIR // Enable if your spindle controller can change spindle direction #define SPINDLE_CHANGE_DIR_STOP // Enable if the spindle should stop before changing spin direction #define SPINDLE_INVERT_DIR false // Set to "true" if the spin direction is reversed #define SPINDLE_LASER_POWERUP_DELAY 5000 // (ms) Delay to allow the spindle/laser to come up to speed/power #define SPINDLE_LASER_POWERDOWN_DELAY 5000 // (ms) Delay to allow the spindle to stop /** * M3/M4 Power Equation * * Each tool uses different value ranges for speed / power control. * These parameters are used to convert between tool power units and PWM. * * Speed/Power = (PWMDC / 255 * 100 - SPEED_POWER_INTERCEPT) / SPEED_POWER_SLOPE * PWMDC = (spdpwr - SPEED_POWER_MIN) / (SPEED_POWER_MAX - SPEED_POWER_MIN) / SPEED_POWER_SLOPE */ #if ENABLED(SPINDLE_LASER_USE_PWM) #define SPEED_POWER_INTERCEPT 0 // (%) 0-100 i.e., Minimum power percentage #define SPEED_POWER_MIN 5000 // (RPM) #define SPEED_POWER_MAX 30000 // (RPM) SuperPID router controller 0 - 30,000 RPM #define SPEED_POWER_STARTUP 25000 // (RPM) M3/M4 speed/power default (with no arguments) #endif #else #if ENABLED(SPINDLE_LASER_USE_PWM) #define SPEED_POWER_INTERCEPT 0 // (%) 0-100 i.e., Minimum power percentage #define SPEED_POWER_MIN 0 // (%) 0-100 #define SPEED_POWER_MAX 100 // (%) 0-100 #define SPEED_POWER_STARTUP 80 // (%) M3/M4 speed/power default (with no arguments) #endif // Define the minimum and maximum test pulse time values for a laser test fire function #define LASER_TEST_PULSE_MIN 1 // (ms) Used with Laser Control Menu #define LASER_TEST_PULSE_MAX 999 // (ms) Caution: Menu may not show more than 3 characters #define SPINDLE_LASER_POWERUP_DELAY 50 // (ms) Delay to allow the spindle/laser to come up to speed/power #define SPINDLE_LASER_POWERDOWN_DELAY 50 // (ms) Delay to allow the spindle to stop /** * Laser Safety Timeout * * The laser should be turned off when there is no movement for a period of time. * Consider material flammability, cut rate, and G-code order when setting this * value. Too low and it could turn off during a very slow move; too high and * the material could ignite. */ #define LASER_SAFETY_TIMEOUT_MS 1000 // (ms) /** * Any M3 or G1/2/3/5 command with the 'I' parameter enables continuous inline power mode. * * e.g., 'M3 I' enables continuous inline power which is processed by the planner. * Power is stored in move blocks and applied when blocks are processed by the Stepper ISR. * * 'M4 I' sets dynamic mode which uses the current feedrate to calculate a laser power OCR value. * * Any move in dynamic mode will use the current feedrate to calculate the laser power. * Feed rates are set by the F parameter of a move command e.g. G1 X0 Y10 F6000 * Laser power would be calculated by bit shifting off 8 LSB's. In binary this is div 256. * The calculation gives us ocr values from 0 to 255, values over F65535 will be set as 255 . * More refined power control such as compensation for accel/decel will be addressed in future releases. * * M5 I clears inline mode and set power to 0, M5 sets the power output to 0 but leaves inline mode on. */ /** * Enable M3 commands for laser mode inline power planner syncing. * This feature enables any M3 S-value to be injected into the block buffers while in * CUTTER_MODE_CONTINUOUS. The option allows M3 laser power to be committed without waiting * for a planner synchronization */ //#define LASER_POWER_SYNC /** * Scale the laser's power in proportion to the movement rate. * * - Sets the entry power proportional to the entry speed over the nominal speed. * - Ramps the power up every N steps to approximate the speed trapezoid. * - Due to the limited power resolution this is only approximate. */ //#define LASER_POWER_TRAP // // Laser I2C Ammeter (High precision INA226 low/high side module) // //#define I2C_AMMETER #if ENABLED(I2C_AMMETER) #define I2C_AMMETER_IMAX 0.1 // (Amps) Calibration value for the expected current range #define I2C_AMMETER_SHUNT_RESISTOR 0.1 // (Ohms) Calibration shunt resistor value #endif // // Laser Coolant Flow Meter // //#define LASER_COOLANT_FLOW_METER #if ENABLED(LASER_COOLANT_FLOW_METER) #define FLOWMETER_PIN 20 // Requires an external interrupt-enabled pin (e.g., RAMPS 2,3,18,19,20,21) #define FLOWMETER_PPL 5880 // (pulses/liter) Flow meter pulses-per-liter on the input pin #define FLOWMETER_INTERVAL 1000 // (ms) Flow rate calculation interval in milliseconds #define FLOWMETER_SAFETY // Prevent running the laser without the minimum flow rate set below #if ENABLED(FLOWMETER_SAFETY) #define FLOWMETER_MIN_LITERS_PER_MINUTE 1.5 // (liters/min) Minimum flow required when enabled #endif #endif #endif #endif // SPINDLE_FEATURE || LASER_FEATURE /** * Synchronous Laser Control with M106/M107 * * Marlin normally applies M106/M107 fan speeds at a time "soon after" processing * a planner block. This is too inaccurate for a PWM/TTL laser attached to the fan * header (as with some add-on laser kits). Enable this option to set fan/laser * speeds with much more exact timing for improved print fidelity. * * NOTE: This option sacrifices some cooling fan speed options. */ //#define LASER_SYNCHRONOUS_M106_M107 /** * Coolant Control * * Add the M7, M8, and M9 commands to turn mist or flood coolant on and off. * * Note: COOLANT_MIST_PIN and/or COOLANT_FLOOD_PIN must also be defined. */ //#define COOLANT_CONTROL #if ENABLED(COOLANT_CONTROL) #define COOLANT_MIST // Enable if mist coolant is present #define COOLANT_FLOOD // Enable if flood coolant is present #define COOLANT_MIST_INVERT false // Set "true" if the on/off function is reversed #define COOLANT_FLOOD_INVERT false // Set "true" if the on/off function is reversed #endif // @section filament width /** * Filament Width Sensor * * Measures the filament width in real-time and adjusts * flow rate to compensate for any irregularities. * * Also allows the measured filament diameter to set the * extrusion rate, so the slicer only has to specify the * volume. * * Only a single extruder is supported at this time. * * 34 RAMPS_14 : Analog input 5 on the AUX2 connector * 81 PRINTRBOARD : Analog input 2 on the Exp1 connector (version B,C,D,E) * 301 RAMBO : Analog input 3 * * Note: May require analog pins to be defined for other boards. */ //#define FILAMENT_WIDTH_SENSOR #if ENABLED(FILAMENT_WIDTH_SENSOR) #define FILAMENT_SENSOR_EXTRUDER_NUM 0 // Index of the extruder that has the filament sensor. :[0,1,2,3,4] #define MEASUREMENT_DELAY_CM 14 // (cm) The distance from the filament sensor to the melting chamber #define FILWIDTH_ERROR_MARGIN 1.0 // (mm) If a measurement differs too much from nominal width ignore it #define MAX_MEASUREMENT_DELAY 20 // (bytes) Buffer size for stored measurements (1 byte per cm). Must be larger than MEASUREMENT_DELAY_CM. #define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA // Set measured to nominal initially // Display filament width on the LCD status line. Status messages will expire after 5 seconds. //#define FILAMENT_LCD_DISPLAY #endif // @section power /** * Power Monitor * Monitor voltage (V) and/or current (A), and -when possible- power (W) * * Read and configure with M430 * * The current sensor feeds DC voltage (relative to the measured current) to an analog pin * The voltage sensor feeds DC voltage (relative to the measured voltage) to an analog pin */ //#define POWER_MONITOR_CURRENT // Monitor the system current //#define POWER_MONITOR_VOLTAGE // Monitor the system voltage #if ENABLED(POWER_MONITOR_CURRENT) #define POWER_MONITOR_VOLTS_PER_AMP 0.05000 // Input voltage to the MCU analog pin per amp - DO NOT apply more than ADC_VREF! #define POWER_MONITOR_CURRENT_OFFSET 0 // Offset (in amps) applied to the calculated current #define POWER_MONITOR_FIXED_VOLTAGE 13.6 // Voltage for a current sensor with no voltage sensor (for power display) #endif #if ENABLED(POWER_MONITOR_VOLTAGE) #define POWER_MONITOR_VOLTS_PER_VOLT 0.077933 // Input voltage to the MCU analog pin per volt - DO NOT apply more than ADC_VREF! #define POWER_MONITOR_VOLTAGE_OFFSET 0 // Offset (in volts) applied to the calculated voltage #endif // @section safety /** * Stepper Driver Anti-SNAFU Protection * * If the SAFE_POWER_PIN is defined for your board, Marlin will check * that stepper drivers are properly plugged in before applying power. * Disable protection if your stepper drivers don't support the feature. */ //#define DISABLE_DRIVER_SAFE_POWER_PROTECT // @section cnc /** * CNC Coordinate Systems * * Enables G53 and G54-G59.3 commands to select coordinate systems * and G92.1 to reset the workspace to native machine space. */ //#define CNC_COORDINATE_SYSTEMS // @section security /** * Expected Printer Check * Add the M16 G-code to compare a string to the MACHINE_NAME. * M16 with a non-matching string causes the printer to halt. */ //#define EXPECTED_PRINTER_CHECK // @section volumetrics /** * Disable all Volumetric extrusion options */ //#define NO_VOLUMETRICS #if DISABLED(NO_VOLUMETRICS) /** * Volumetric extrusion default state * Activate to make volumetric extrusion the default method, * with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter. * * M200 D0 to disable, M200 Dn to set a new diameter (and enable volumetric). * M200 S0/S1 to disable/enable volumetric extrusion. */ //#define VOLUMETRIC_DEFAULT_ON //#define VOLUMETRIC_EXTRUDER_LIMIT #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) /** * Default volumetric extrusion limit in cubic mm per second (mm^3/sec). * This factory setting applies to all extruders. * Use 'M200 [T<extruder>] L<limit>' to override and 'M502' to reset. * A non-zero value activates Volume-based Extrusion Limiting. */ #define DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT 0.00 // (mm^3/sec) #define VOLUMETRIC_EXTRUDER_LIMIT_MAX 20 // (mm^3/sec) #endif #endif // @section reporting /** * Extra options for the M114 "Current Position" report */ //#define M114_DETAIL // Use 'M114` for details to check planner calculations //#define M114_REALTIME // Real current position based on forward kinematics //#define M114_LEGACY // M114 used to synchronize on every call. Enable if needed. /** * Auto-report fan speed with M123 S<seconds> * Requires fans with tachometer pins */ //#define AUTO_REPORT_FANS //#define REPORT_FAN_CHANGE // Report the new fan speed when changed by M106 (and others) /** * Auto-report temperatures with M155 S<seconds> */ #define AUTO_REPORT_TEMPERATURES #if ENABLED(AUTO_REPORT_TEMPERATURES) && TEMP_SENSOR_REDUNDANT //#define AUTO_REPORT_REDUNDANT // Include the "R" sensor in the auto-report #endif /** * Auto-report position with M154 S<seconds> */ //#define AUTO_REPORT_POSITION #if ENABLED(AUTO_REPORT_POSITION) //#define AUTO_REPORT_REAL_POSITION // Auto-report the real position #endif /** * M115 - Report capabilites. Disable to save ~1150 bytes of flash. * Some hosts (and serial TFT displays) rely on this feature. */ #define CAPABILITIES_REPORT #if ENABLED(CAPABILITIES_REPORT) // Include capabilities in M115 output #define EXTENDED_CAPABILITIES_REPORT #if ENABLED(EXTENDED_CAPABILITIES_REPORT) //#define M115_GEOMETRY_REPORT #endif #endif // @section gcode /** * Spend 28 bytes of SRAM to optimize the G-code parser */ #define FASTER_GCODE_PARSER #if ENABLED(FASTER_GCODE_PARSER) //#define GCODE_QUOTED_STRINGS // Support for quoted string parameters #endif /** * Support for MeatPack G-code compression (https://github.com/scottmudge/OctoPrint-MeatPack) */ //#define MEATPACK_ON_SERIAL_PORT_1 //#define MEATPACK_ON_SERIAL_PORT_2 //#define GCODE_CASE_INSENSITIVE // Accept G-code sent to the firmware in lowercase //#define REPETIER_GCODE_M360 // Add commands originally from Repetier FW /** * Enable M111 debug flags 1=ECHO, 2=INFO, 4=ERRORS (unimplemented). * Disable to save some flash. Some hosts (Repetier Host) may rely on this feature. */ #define DEBUG_FLAGS_GCODE /** * Enable this option for a leaner build of Marlin that removes * workspace offsets to slightly optimize performance. * G92 will revert to its behavior from Marlin 1.0. */ //#define NO_WORKSPACE_OFFSETS /** * Disable M206 and M428 if you don't need home offsets. */ //#define NO_HOME_OFFSETS /** * CNC G-code options * Support CNC-style G-code dialects used by laser cutters, drawing machine cams, etc. * Note that G0 feedrates should be used with care for 3D printing (if used at all). * High feedrates may cause ringing and harm print quality. */ //#define PAREN_COMMENTS // Support for parentheses-delimited comments //#define GCODE_MOTION_MODES // Remember the motion mode (G0 G1 G2 G3 G5 G38.X) and apply for X Y Z E F, etc. // Enable and set a (default) feedrate for all G0 moves //#define G0_FEEDRATE 3000 // (mm/min) #ifdef G0_FEEDRATE //#define VARIABLE_G0_FEEDRATE // The G0 feedrate is set by F in G0 motion mode #endif /** * Startup commands * * Execute certain G-code commands immediately after power-on. */ //#define STARTUP_COMMANDS "M17 Z" /** * G-code Macros * * Add G-codes M810-M819 to define and run G-code macros. * Macros are not saved to EEPROM. */ //#define GCODE_MACROS #if ENABLED(GCODE_MACROS) #define GCODE_MACROS_SLOTS 5 // Up to 10 may be used #define GCODE_MACROS_SLOT_SIZE 50 // Maximum length of a single macro #endif /** * User-defined menu items to run custom G-code. * Up to 25 may be defined, but the actual number is LCD-dependent. */ // @section custom main menu // Custom Menu: Main Menu //#define CUSTOM_MENU_MAIN #if ENABLED(CUSTOM_MENU_MAIN) //#define CUSTOM_MENU_MAIN_TITLE "Custom Commands" #define CUSTOM_MENU_MAIN_SCRIPT_DONE "M117 User Script Done" #define CUSTOM_MENU_MAIN_SCRIPT_AUDIBLE_FEEDBACK //#define CUSTOM_MENU_MAIN_SCRIPT_RETURN // Return to status screen after a script #define CUSTOM_MENU_MAIN_ONLY_IDLE // Only show custom menu when the machine is idle #define MAIN_MENU_ITEM_1_DESC "Home & UBL Info" #define MAIN_MENU_ITEM_1_GCODE "G28\nG29 W" //#define MAIN_MENU_ITEM_1_CONFIRM // Show a confirmation dialog before this action #define MAIN_MENU_ITEM_2_DESC "Preheat for " PREHEAT_1_LABEL #define MAIN_MENU_ITEM_2_GCODE "M140 S" STRINGIFY(PREHEAT_1_TEMP_BED) "\nM104 S" STRINGIFY(PREHEAT_1_TEMP_HOTEND) //#define MAIN_MENU_ITEM_2_CONFIRM //#define MAIN_MENU_ITEM_3_DESC "Preheat for " PREHEAT_2_LABEL //#define MAIN_MENU_ITEM_3_GCODE "M140 S" STRINGIFY(PREHEAT_2_TEMP_BED) "\nM104 S" STRINGIFY(PREHEAT_2_TEMP_HOTEND) //#define MAIN_MENU_ITEM_3_CONFIRM //#define MAIN_MENU_ITEM_4_DESC "Heat Bed/Home/Level" //#define MAIN_MENU_ITEM_4_GCODE "M140 S" STRINGIFY(PREHEAT_2_TEMP_BED) "\nG28\nG29" //#define MAIN_MENU_ITEM_4_CONFIRM //#define MAIN_MENU_ITEM_5_DESC "Home & Info" //#define MAIN_MENU_ITEM_5_GCODE "G28\nM503" //#define MAIN_MENU_ITEM_5_CONFIRM #endif // @section custom config menu // Custom Menu: Configuration Menu //#define CUSTOM_MENU_CONFIG #if ENABLED(CUSTOM_MENU_CONFIG) //#define CUSTOM_MENU_CONFIG_TITLE "Custom Commands" #define CUSTOM_MENU_CONFIG_SCRIPT_DONE "M117 Wireless Script Done" #define CUSTOM_MENU_CONFIG_SCRIPT_AUDIBLE_FEEDBACK //#define CUSTOM_MENU_CONFIG_SCRIPT_RETURN // Return to status screen after a script #define CUSTOM_MENU_CONFIG_ONLY_IDLE // Only show custom menu when the machine is idle #define CONFIG_MENU_ITEM_1_DESC "Wifi ON" #define CONFIG_MENU_ITEM_1_GCODE "M118 [ESP110] WIFI-STA pwd=12345678" //#define CONFIG_MENU_ITEM_1_CONFIRM // Show a confirmation dialog before this action #define CONFIG_MENU_ITEM_2_DESC "Bluetooth ON" #define CONFIG_MENU_ITEM_2_GCODE "M118 [ESP110] BT pwd=12345678" //#define CONFIG_MENU_ITEM_2_CONFIRM //#define CONFIG_MENU_ITEM_3_DESC "Radio OFF" //#define CONFIG_MENU_ITEM_3_GCODE "M118 [ESP110] OFF pwd=12345678" //#define CONFIG_MENU_ITEM_3_CONFIRM //#define CONFIG_MENU_ITEM_4_DESC "Wifi ????" //#define CONFIG_MENU_ITEM_4_GCODE "M118 ????" //#define CONFIG_MENU_ITEM_4_CONFIRM //#define CONFIG_MENU_ITEM_5_DESC "Wifi ????" //#define CONFIG_MENU_ITEM_5_GCODE "M118 ????" //#define CONFIG_MENU_ITEM_5_CONFIRM #endif // @section custom buttons /** * User-defined buttons to run custom G-code. * Up to 25 may be defined. */ //#define CUSTOM_USER_BUTTONS #if ENABLED(CUSTOM_USER_BUTTONS) //#define BUTTON1_PIN -1 #if PIN_EXISTS(BUTTON1) #define BUTTON1_HIT_STATE LOW // State of the triggered button. NC=LOW. NO=HIGH. #define BUTTON1_WHEN_PRINTING false // Button allowed to trigger during printing? #define BUTTON1_GCODE "G28" #define BUTTON1_DESC "Homing" // Optional string to set the LCD status #endif //#define BUTTON2_PIN -1 #if PIN_EXISTS(BUTTON2) #define BUTTON2_HIT_STATE LOW #define BUTTON2_WHEN_PRINTING false #define BUTTON2_GCODE "M140 S" STRINGIFY(PREHEAT_1_TEMP_BED) "\nM104 S" STRINGIFY(PREHEAT_1_TEMP_HOTEND) #define BUTTON2_DESC "Preheat for " PREHEAT_1_LABEL #endif //#define BUTTON3_PIN -1 #if PIN_EXISTS(BUTTON3) #define BUTTON3_HIT_STATE LOW #define BUTTON3_WHEN_PRINTING false #define BUTTON3_GCODE "M140 S" STRINGIFY(PREHEAT_2_TEMP_BED) "\nM104 S" STRINGIFY(PREHEAT_2_TEMP_HOTEND) #define BUTTON3_DESC "Preheat for " PREHEAT_2_LABEL #endif #endif // @section host /** * Host Action Commands * * Define host streamer action commands in compliance with the standard. * * See https://reprap.org/wiki/G-code#Action_commands * Common commands ........ poweroff, pause, paused, resume, resumed, cancel * G29_RETRY_AND_RECOVER .. probe_rewipe, probe_failed * * Some features add reason codes to extend these commands. * * Host Prompt Support enables Marlin to use the host for user prompts so * filament runout and other processes can be managed from the host side. */ //#define HOST_ACTION_COMMANDS #if ENABLED(HOST_ACTION_COMMANDS) //#define HOST_PAUSE_M76 // Tell the host to pause in response to M76 //#define HOST_PROMPT_SUPPORT // Initiate host prompts to get user feedback #if ENABLED(HOST_PROMPT_SUPPORT) //#define HOST_STATUS_NOTIFICATIONS // Send some status messages to the host as notifications #endif //#define HOST_START_MENU_ITEM // Add a menu item that tells the host to start //#define HOST_SHUTDOWN_MENU_ITEM // Add a menu item that tells the host to shut down #endif // @section extras /** * Cancel Objects * * Implement M486 to allow Marlin to skip objects */ //#define CANCEL_OBJECTS #if ENABLED(CANCEL_OBJECTS) #define CANCEL_OBJECTS_REPORTING // Emit the current object as a status message #endif /** * I2C position encoders for closed loop control. * Developed by Chris Barr at Aus3D. * * Wiki: https://wiki.aus3d.com.au/Magnetic_Encoder * Github: https://github.com/Aus3D/MagneticEncoder * * Supplier: https://aus3d.com.au/products/magnetic-encoder-module * Alternative Supplier: https://reliabuild3d.com/ * * Reliabuild encoders have been modified to improve reliability. * @section i2c encoders */ //#define I2C_POSITION_ENCODERS #if ENABLED(I2C_POSITION_ENCODERS) #define I2CPE_ENCODER_CNT 1 // The number of encoders installed; max of 5 // encoders supported currently. #define I2CPE_ENC_1_ADDR I2CPE_PRESET_ADDR_X // I2C address of the encoder. 30-200. #define I2CPE_ENC_1_AXIS X_AXIS // Axis the encoder module is installed on. <X|Y|Z|E>_AXIS. #define I2CPE_ENC_1_TYPE I2CPE_ENC_TYPE_LINEAR // Type of encoder: I2CPE_ENC_TYPE_LINEAR -or- // I2CPE_ENC_TYPE_ROTARY. #define I2CPE_ENC_1_TICKS_UNIT 2048 // 1024 for magnetic strips with 2mm poles; 2048 for // 1mm poles. For linear encoders this is ticks / mm, // for rotary encoders this is ticks / revolution. //#define I2CPE_ENC_1_TICKS_REV (16 * 200) // Only needed for rotary encoders; number of stepper // steps per full revolution (motor steps/rev * microstepping) //#define I2CPE_ENC_1_INVERT // Invert the direction of axis travel. #define I2CPE_ENC_1_EC_METHOD I2CPE_ECM_MICROSTEP // Type of error error correction. #define I2CPE_ENC_1_EC_THRESH 0.10 // Threshold size for error (in mm) above which the // printer will attempt to correct the error; errors // smaller than this are ignored to minimize effects of // measurement noise / latency (filter). #define I2CPE_ENC_2_ADDR I2CPE_PRESET_ADDR_Y // Same as above, but for encoder 2. #define I2CPE_ENC_2_AXIS Y_AXIS #define I2CPE_ENC_2_TYPE I2CPE_ENC_TYPE_LINEAR #define I2CPE_ENC_2_TICKS_UNIT 2048 //#define I2CPE_ENC_2_TICKS_REV (16 * 200) //#define I2CPE_ENC_2_INVERT #define I2CPE_ENC_2_EC_METHOD I2CPE_ECM_MICROSTEP #define I2CPE_ENC_2_EC_THRESH 0.10 #define I2CPE_ENC_3_ADDR I2CPE_PRESET_ADDR_Z // Encoder 3. Add additional configuration options #define I2CPE_ENC_3_AXIS Z_AXIS // as above, or use defaults below. #define I2CPE_ENC_4_ADDR I2CPE_PRESET_ADDR_E // Encoder 4. #define I2CPE_ENC_4_AXIS E_AXIS #define I2CPE_ENC_5_ADDR 34 // Encoder 5. #define I2CPE_ENC_5_AXIS E_AXIS // Default settings for encoders which are enabled, but without settings configured above. #define I2CPE_DEF_TYPE I2CPE_ENC_TYPE_LINEAR #define I2CPE_DEF_ENC_TICKS_UNIT 2048 #define I2CPE_DEF_TICKS_REV (16 * 200) #define I2CPE_DEF_EC_METHOD I2CPE_ECM_NONE #define I2CPE_DEF_EC_THRESH 0.1 //#define I2CPE_ERR_THRESH_ABORT 100.0 // Threshold size for error (in mm) error on any given // axis after which the printer will abort. Comment out to // disable abort behavior. #define I2CPE_TIME_TRUSTED 10000 // After an encoder fault, there must be no further fault // for this amount of time (in ms) before the encoder // is trusted again. /** * Position is checked every time a new command is executed from the buffer but during long moves, * this setting determines the minimum update time between checks. A value of 100 works well with * error rolling average when attempting to correct only for skips and not for vibration. */ #define I2CPE_MIN_UPD_TIME_MS 4 // (ms) Minimum time between encoder checks. // Use a rolling average to identify persistent errors that indicate skips, as opposed to vibration and noise. #define I2CPE_ERR_ROLLING_AVERAGE #endif // I2C_POSITION_ENCODERS /** * Analog Joystick(s) * @section joystick */ //#define JOYSTICK #if ENABLED(JOYSTICK) #define JOY_X_PIN 5 // RAMPS: Suggested pin A5 on AUX2 #define JOY_Y_PIN 10 // RAMPS: Suggested pin A10 on AUX2 #define JOY_Z_PIN 12 // RAMPS: Suggested pin A12 on AUX2 #define JOY_EN_PIN 44 // RAMPS: Suggested pin D44 on AUX2 //#define INVERT_JOY_X // Enable if X direction is reversed //#define INVERT_JOY_Y // Enable if Y direction is reversed //#define INVERT_JOY_Z // Enable if Z direction is reversed // Use M119 with JOYSTICK_DEBUG to find reasonable values after connecting: #define JOY_X_LIMITS { 5600, 8190-100, 8190+100, 10800 } // min, deadzone start, deadzone end, max #define JOY_Y_LIMITS { 5600, 8250-100, 8250+100, 11000 } #define JOY_Z_LIMITS { 4800, 8080-100, 8080+100, 11550 } //#define JOYSTICK_DEBUG #endif /** * Mechanical Gantry Calibration * Modern replacement for the Průša TMC_Z_CALIBRATION. * Adds capability to work with any adjustable current drivers. * Implemented as G34 because M915 is deprecated. * @section calibrate */ //#define MECHANICAL_GANTRY_CALIBRATION #if ENABLED(MECHANICAL_GANTRY_CALIBRATION) #define GANTRY_CALIBRATION_CURRENT 600 // Default calibration current in ma #define GANTRY_CALIBRATION_EXTRA_HEIGHT 15 // Extra distance in mm past Z_###_POS to move #define GANTRY_CALIBRATION_FEEDRATE 500 // Feedrate for correction move //#define GANTRY_CALIBRATION_TO_MIN // Enable to calibrate Z in the MIN direction //#define GANTRY_CALIBRATION_SAFE_POSITION XY_CENTER // Safe position for nozzle //#define GANTRY_CALIBRATION_XY_PARK_FEEDRATE 3000 // XY Park Feedrate - MMM //#define GANTRY_CALIBRATION_COMMANDS_PRE "" #define GANTRY_CALIBRATION_COMMANDS_POST "G28" // G28 highly recommended to ensure an accurate position #endif /** * Instant freeze / unfreeze functionality * Potentially useful for rapid stop that allows being resumed. Halts stepper movement. * Note this does NOT pause spindles, lasers, fans, heaters or any other auxiliary device. * @section interface */ //#define FREEZE_FEATURE #if ENABLED(FREEZE_FEATURE) //#define FREEZE_PIN 41 // Override the default (KILL) pin here #define FREEZE_STATE LOW // State of pin indicating freeze #endif /** * MAX7219 Debug Matrix * * Add support for a low-cost 8x8 LED Matrix based on the Max7219 chip as a realtime status display. * Requires 3 signal wires. Some useful debug options are included to demonstrate its usage. * @section debug matrix */ //#define MAX7219_DEBUG #if ENABLED(MAX7219_DEBUG) #define MAX7219_CLK_PIN 64 #define MAX7219_DIN_PIN 57 #define MAX7219_LOAD_PIN 44 //#define MAX7219_GCODE // Add the M7219 G-code to control the LED matrix #define MAX7219_INIT_TEST 2 // Test pattern at startup: 0=none, 1=sweep, 2=spiral #define MAX7219_NUMBER_UNITS 1 // Number of Max7219 units in chain. #define MAX7219_ROTATE 0 // Rotate the display clockwise (in multiples of +/- 90°) // connector at: right=0 bottom=-90 top=90 left=180 //#define MAX7219_REVERSE_ORDER // The order of the LED matrix units may be reversed //#define MAX7219_REVERSE_EACH // The LEDs in each matrix unit row may be reversed //#define MAX7219_SIDE_BY_SIDE // Big chip+matrix boards can be chained side-by-side /** * Sample debug features * If you add more debug displays, be careful to avoid conflicts! */ #define MAX7219_DEBUG_PRINTER_ALIVE // Blink corner LED of 8x8 matrix to show that the firmware is functioning #define MAX7219_DEBUG_PLANNER_HEAD 2 // Show the planner queue head position on this and the next LED matrix row #define MAX7219_DEBUG_PLANNER_TAIL 4 // Show the planner queue tail position on this and the next LED matrix row #define MAX7219_DEBUG_PLANNER_QUEUE 0 // Show the current planner queue depth on this and the next LED matrix row // If you experience stuttering, reboots, etc. this option can reveal how // tweaks made to the configuration are affecting the printer in real-time. #define MAX7219_DEBUG_PROFILE 6 // Display the fraction of CPU time spent in profiled code on this LED matrix // row. By default idle() is profiled so this shows how "idle" the processor is. // See class CodeProfiler. //#define MAX7219_DEBUG_MULTISTEPPING 6 // Show multi-stepping 1 to 128 on this LED matrix row. //#define MAX7219_DEBUG_SLOWDOWN 6 // Count (mod 16) how many times SLOWDOWN has reduced print speed. //#define MAX7219_REINIT_ON_POWERUP // Re-initialize MAX7129 when power supply turns on #endif /** * NanoDLP Sync support * * Support for Synchronized Z moves when used with NanoDLP. G0/G1 axis moves will * output a "Z_move_comp" string to enable synchronization with DLP projector exposure. * This feature allows you to use [[WaitForDoneMessage]] instead of M400 commands. * @section nanodlp */ //#define NANODLP_Z_SYNC #if ENABLED(NANODLP_Z_SYNC) //#define NANODLP_ALL_AXIS // Send a "Z_move_comp" report for any axis move (not just Z). #endif /** * Ethernet. Use M552 to enable and set the IP address. * @section network */ #if HAS_ETHERNET #define MAC_ADDRESS { 0xDE, 0xAD, 0xBE, 0xEF, 0xF0, 0x0D } // A MAC address unique to your network #endif /** * Native ESP32 board with WiFi or add-on ESP32 WiFi-101 module */ //#define WIFISUPPORT // Marlin embedded WiFi management. Not needed for simple WiFi serial port. //#define ESP3D_WIFISUPPORT // ESP3D Library WiFi management (https://github.com/luc-github/ESP3DLib) /** * Extras for an ESP32-based motherboard with WIFISUPPORT * These options don't apply to add-on WiFi modules based on ESP32 WiFi101. */ #if ANY(WIFISUPPORT, ESP3D_WIFISUPPORT) //#define WEBSUPPORT // Start a webserver (which may include auto-discovery) using SPIFFS //#define OTASUPPORT // Support over-the-air firmware updates //#define WIFI_CUSTOM_COMMAND // Accept feature config commands (e.g., WiFi ESP3D) from the host /** * To set a default WiFi SSID / Password, create a file called Configuration_Secure.h with * the following defines, customized for your network. This specific file is excluded via * .gitignore to prevent it from accidentally leaking to the public. * * #define WIFI_SSID "WiFi SSID" * #define WIFI_PWD "WiFi Password" */ //#include "Configuration_Secure.h" // External file with WiFi SSID / Password #endif // @section multi-material /** * Průša Multi-Material Unit (MMU) * Enable in Configuration.h * * These devices allow a single stepper driver on the board to drive * multi-material feeders with any number of stepper motors. */ #if HAS_PRUSA_MMU1 /** * This option only allows the multiplexer to switch on tool-change. * Additional options to configure custom E moves are pending. * * Override the default DIO selector pins here, if needed. * Some pins files may provide defaults for these pins. */ //#define E_MUX0_PIN 40 // Always Required //#define E_MUX1_PIN 42 // Needed for 3 to 8 inputs //#define E_MUX2_PIN 44 // Needed for 5 to 8 inputs #elif HAS_PRUSA_MMU2 // Serial port used for communication with MMU2. #define MMU2_SERIAL_PORT 2 // Use hardware reset for MMU if a pin is defined for it //#define MMU2_RST_PIN 23 // Enable if the MMU2 has 12V stepper motors (MMU2 Firmware 1.0.2 and up) //#define MMU2_MODE_12V // G-code to execute when MMU2 F.I.N.D.A. probe detects filament runout #define MMU2_FILAMENT_RUNOUT_SCRIPT "M600" // Add an LCD menu for MMU2 //#define MMU2_MENUS // Settings for filament load / unload from the LCD menu. // This is for Průša MK3-style extruders. Customize for your hardware. #define MMU2_FILAMENTCHANGE_EJECT_FEED 80.0 #define MMU2_LOAD_TO_NOZZLE_SEQUENCE \ { 7.2, 1145 }, \ { 14.4, 871 }, \ { 36.0, 1393 }, \ { 14.4, 871 }, \ { 50.0, 198 } #define MMU2_RAMMING_SEQUENCE \ { 1.0, 1000 }, \ { 1.0, 1500 }, \ { 2.0, 2000 }, \ { 1.5, 3000 }, \ { 2.5, 4000 }, \ { -15.0, 5000 }, \ { -14.0, 1200 }, \ { -6.0, 600 }, \ { 10.0, 700 }, \ { -10.0, 400 }, \ { -50.0, 2000 } /** * Using a sensor like the MMU2S * This mode requires a MK3S extruder with a sensor at the extruder idler, like the MMU2S. * See https://help.prusa3d.com/guide/3b-mk3s-mk2-5s-extruder-upgrade_41560#42048, step 11 */ #if HAS_PRUSA_MMU2S #define MMU2_C0_RETRY 5 // Number of retries (total time = timeout*retries) #define MMU2_CAN_LOAD_FEEDRATE 800 // (mm/min) #define MMU2_CAN_LOAD_SEQUENCE \ { 0.1, MMU2_CAN_LOAD_FEEDRATE }, \ { 60.0, MMU2_CAN_LOAD_FEEDRATE }, \ { -52.0, MMU2_CAN_LOAD_FEEDRATE } #define MMU2_CAN_LOAD_RETRACT 6.0 // (mm) Keep under the distance between Load Sequence values #define MMU2_CAN_LOAD_DEVIATION 0.8 // (mm) Acceptable deviation #define MMU2_CAN_LOAD_INCREMENT 0.2 // (mm) To reuse within MMU2 module #define MMU2_CAN_LOAD_INCREMENT_SEQUENCE \ { -MMU2_CAN_LOAD_INCREMENT, MMU2_CAN_LOAD_FEEDRATE } // Continue unloading if sensor detects filament after the initial unload move //#define MMU_IR_UNLOAD_MOVE #else /** * MMU1 Extruder Sensor * * Support for a Průša (or other) IR Sensor to detect filament near the extruder * and make loading more reliable. Suitable for an extruder equipped with a filament * sensor less than 38mm from the gears. * * During loading the extruder will stop when the sensor is triggered, then do a last * move up to the gears. If no filament is detected, the MMU2 can make some more attempts. * If all attempts fail, a filament runout will be triggered. */ //#define MMU_EXTRUDER_SENSOR #if ENABLED(MMU_EXTRUDER_SENSOR) #define MMU_LOADING_ATTEMPTS_NR 5 // max. number of attempts to load filament if first load fail #endif #endif //#define MMU2_DEBUG // Write debug info to serial output #endif // HAS_PRUSA_MMU2 /** * Advanced Print Counter settings * @section stats */ #if ENABLED(PRINTCOUNTER) #define SERVICE_WARNING_BUZZES 3 // Activate up to 3 service interval watchdogs //#define SERVICE_NAME_1 "Service S" //#define SERVICE_INTERVAL_1 100 // print hours //#define SERVICE_NAME_2 "Service L" //#define SERVICE_INTERVAL_2 200 // print hours //#define SERVICE_NAME_3 "Service 3" //#define SERVICE_INTERVAL_3 1 // print hours #endif // @section develop // // M100 Free Memory Watcher to debug memory usage // //#define M100_FREE_MEMORY_WATCHER // // M42 - Set pin states // //#define DIRECT_PIN_CONTROL // // M43 - display pin status, toggle pins, watch pins, watch endstops & toggle LED, test servo probe // //#define PINS_DEBUGGING // Enable Tests that will run at startup and produce a report //#define MARLIN_TEST_BUILD // Enable Marlin dev mode which adds some special commands //#define MARLIN_DEV_MODE #if ENABLED(MARLIN_DEV_MODE) /** * D576 - Buffer Monitoring * To help diagnose print quality issues stemming from empty command buffers. */ //#define BUFFER_MONITORING #endif /** * Postmortem Debugging captures misbehavior and outputs the CPU status and backtrace to serial. * When running in the debugger it will break for debugging. This is useful to help understand * a crash from a remote location. Requires ~400 bytes of SRAM and 5Kb of flash. */ //#define POSTMORTEM_DEBUGGING /** * Software Reset options */ //#define SOFT_RESET_VIA_SERIAL // 'KILL' and '^X' commands will soft-reset the controller //#define SOFT_RESET_ON_KILL // Use a digital button to soft-reset the controller after KILL // Report uncleaned reset reason from register r2 instead of MCUSR. Supported by Optiboot on AVR. //#define OPTIBOOT_RESET_REASON // Shrink the build for smaller boards by sacrificing some serial feedback //#define MARLIN_SMALL_BUILD
2301_81045437/Marlin
Marlin/Configuration_adv.h
C
agpl-3.0
190,621
# Marlin Firmware Arduino Project Makefile # # Makefile Based on: # Arduino 0011 Makefile # Arduino adaptation by mellis, eighthave, oli.keller # Marlin adaption by Daid # Marlin 2.0 support and RELOC_WORKAROUND by @marcio-ao # # This has been tested with Arduino 0022. # # This makefile allows you to build sketches from the command line # without the Arduino environment (or Java). # # Detailed instructions for using the makefile: # # 1. Modify the line containing "ARDUINO_INSTALL_DIR" to point to the directory that # contains the Arduino installation (for example, under macOS, this # might be /Applications/Arduino.app/Contents/Resources/Java). # # 2. Modify the line containing "UPLOAD_PORT" to refer to the filename # representing the USB or serial connection to your Arduino board # (e.g. UPLOAD_PORT = /dev/tty.USB0). If the exact name of this file # changes, you can use * as a wild card (e.g. UPLOAD_PORT = /dev/tty.usb*). # # 3. Set the line containing "MCU" to match your board's processor. Set # "PROG_MCU" as the AVR part name corresponding to "MCU". You can use the # following command to get a list of correspondences: `avrdude -c alf -p x` # Older boards are atmega8 based, newer ones like Arduino Mini, Bluetooth # or Diecimila have the atmega168. If you're using a LilyPad Arduino, # change F_CPU to 8000000. If you are using Gen7 electronics, you # probably need to use 20000000. Either way, you must regenerate # the speed lookup table with create_speed_lookuptable.py. # # 4. Type "make" and press enter to compile/verify your program. # # 5. Type "make upload", reset your Arduino board, and press enter to # upload your program to the Arduino board. # # Note that all settings at the top of this file can be overridden from # the command line with, for example, "make HARDWARE_MOTHERBOARD=71" # # To compile for RAMPS (atmega2560) with Arduino 1.6.9 at root/arduino you would use... # # make ARDUINO_VERSION=10609 AVR_TOOLS_PATH=/root/arduino/hardware/tools/avr/bin/ \ # HARDWARE_MOTHERBOARD=1200 ARDUINO_INSTALL_DIR=/root/arduino # # To compile and upload simply add "upload" to the end of the line... # # make ARDUINO_VERSION=10609 AVR_TOOLS_PATH=/root/arduino/hardware/tools/avr/bin/ \ # HARDWARE_MOTHERBOARD=1200 ARDUINO_INSTALL_DIR=/root/arduino upload # # If uploading doesn't work try adding the parameter "AVRDUDE_PROGRAMMER=wiring" or # start upload manually (using stk500) like so: # # avrdude -C /root/arduino/hardware/tools/avr/etc/avrdude.conf -v -p m2560 -c stk500 \ # -U flash:w:applet/Marlin.hex:i -P /dev/ttyUSB0 # # Or, try disconnecting USB to power down and then reconnecting before running avrdude. # # This defines the board to compile for (see boards.h for your board's ID) HARDWARE_MOTHERBOARD ?= 1020 ifeq ($(OS),Windows_NT) # Windows ARDUINO_INSTALL_DIR ?= ${HOME}/AppData/Local/Arduino ARDUINO_USER_DIR ?= ${HOME}/Documents/Arduino else UNAME_S := $(shell uname -s) ifeq ($(UNAME_S),Linux) # Linux ARDUINO_INSTALL_DIR ?= /usr/share/arduino ARDUINO_USER_DIR ?= ${HOME}/Arduino endif ifeq ($(UNAME_S),Darwin) # Darwin (macOS) ARDUINO_INSTALL_DIR ?= /Applications/Arduino.app/Contents/Java ARDUINO_USER_DIR ?= ${HOME}/Documents/Arduino AVR_TOOLS_PATH ?= /Applications/Arduino.app/Contents/Java/hardware/tools/avr/bin/ endif endif # Arduino source install directory, and version number # On most linuxes this will be /usr/share/arduino ARDUINO_INSTALL_DIR ?= ${HOME}/AppData/Local/Arduino # C:/Users/${USERNAME}/AppData/Local/Arduino ARDUINO_VERSION ?= 10819 # The installed Libraries are in the User folder ARDUINO_USER_DIR ?= ${HOME}/Documents/Arduino # You can optionally set a path to the avr-gcc tools. # Requires a trailing slash. For example, /usr/local/avr-gcc/bin/ AVR_TOOLS_PATH ?= # Programmer configuration UPLOAD_RATE ?= 57600 AVRDUDE_PROGRAMMER ?= arduino # On most linuxes this will be /dev/ttyACM0 or /dev/ttyACM1 UPLOAD_PORT ?= /dev/ttyUSB0 # Directory used to build files in, contains all the build files, from object # files to the final hex file on linux it is best to put an absolute path # like /home/username/tmp . BUILD_DIR ?= applet # This defines whether Liquid_TWI2 support will be built LIQUID_TWI2 ?= 0 # This defines if Wire is needed WIRE ?= 0 # This defines if Tone is needed (i.e., SPEAKER is defined in Configuration.h) # Disabling this (and SPEAKER) saves approximately 350 bytes of memory. TONE ?= 1 # This defines if U8GLIB is needed (may require RELOC_WORKAROUND) U8GLIB ?= 0 # This defines whether to include the Trinamic TMCStepper library TMC ?= 0 # This defines whether to include the AdaFruit NeoPixel library NEOPIXEL ?= 0 ############ # Try to automatically determine whether RELOC_WORKAROUND is needed based # on GCC versions: # https://www.avrfreaks.net/comment/1789106#comment-1789106 CC_MAJ:=$(shell $(CC) -dM -E - < /dev/null | grep __GNUC__ | cut -f3 -d\ ) CC_MIN:=$(shell $(CC) -dM -E - < /dev/null | grep __GNUC_MINOR__ | cut -f3 -d\ ) CC_PATCHLEVEL:=$(shell $(CC) -dM -E - < /dev/null | grep __GNUC_PATCHLEVEL__ | cut -f3 -d\ ) CC_VER:=$(shell echo $$(( $(CC_MAJ) * 10000 + $(CC_MIN) * 100 + $(CC_PATCHLEVEL) ))) ifeq ($(shell test $(CC_VER) -lt 40901 && echo 1),1) $(warning This GCC version $(CC_VER) is likely broken. Enabling relocation workaround.) RELOC_WORKAROUND = 1 endif ############################################################################ # Below here nothing should be changed... # Here the Arduino variant is selected by the board type # HARDWARE_VARIANT = "arduino", "Sanguino", "Gen7", ... # MCU = "atmega1280", "Mega2560", "atmega2560", "atmega644p", ... ifeq ($(HARDWARE_MOTHERBOARD),0) # No motherboard selected # # RAMPS 1.3 / 1.4 - ATmega1280, ATmega2560 # # MEGA/RAMPS up to 1.2 else ifeq ($(HARDWARE_MOTHERBOARD),1000) # RAMPS 1.3 (Power outputs: Hotend, Fan, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1010) # RAMPS 1.3 (Power outputs: Hotend0, Hotend1, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1011) # RAMPS 1.3 (Power outputs: Hotend, Fan0, Fan1) else ifeq ($(HARDWARE_MOTHERBOARD),1012) # RAMPS 1.3 (Power outputs: Hotend0, Hotend1, Fan) else ifeq ($(HARDWARE_MOTHERBOARD),1013) # RAMPS 1.3 (Power outputs: Spindle, Controller Fan) else ifeq ($(HARDWARE_MOTHERBOARD),1014) # RAMPS 1.4 (Power outputs: Hotend, Fan, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1020) # RAMPS 1.4 (Power outputs: Hotend0, Hotend1, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1021) # RAMPS 1.4 (Power outputs: Hotend, Fan0, Fan1) else ifeq ($(HARDWARE_MOTHERBOARD),1022) # RAMPS 1.4 (Power outputs: Hotend0, Hotend1, Fan) else ifeq ($(HARDWARE_MOTHERBOARD),1023) # RAMPS 1.4 (Power outputs: Spindle, Controller Fan) else ifeq ($(HARDWARE_MOTHERBOARD),1024) # RAMPS Plus 3DYMY (Power outputs: Hotend, Fan, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1030) # RAMPS Plus 3DYMY (Power outputs: Hotend0, Hotend1, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1031) # RAMPS Plus 3DYMY (Power outputs: Hotend, Fan0, Fan1) else ifeq ($(HARDWARE_MOTHERBOARD),1032) # RAMPS Plus 3DYMY (Power outputs: Hotend0, Hotend1, Fan) else ifeq ($(HARDWARE_MOTHERBOARD),1033) # RAMPS Plus 3DYMY (Power outputs: Spindle, Controller Fan) else ifeq ($(HARDWARE_MOTHERBOARD),1034) # # RAMPS Derivatives - ATmega1280, ATmega2560 # # 3Drag Controller else ifeq ($(HARDWARE_MOTHERBOARD),1100) # Velleman K8200 Controller (derived from 3Drag Controller) else ifeq ($(HARDWARE_MOTHERBOARD),1101) # Velleman K8400 Controller (derived from 3Drag Controller) else ifeq ($(HARDWARE_MOTHERBOARD),1102) # Velleman K8600 Controller (Vertex Nano) else ifeq ($(HARDWARE_MOTHERBOARD),1103) # Velleman K8800 Controller (Vertex Delta) else ifeq ($(HARDWARE_MOTHERBOARD),1104) # 2PrintBeta BAM&DICE with STK drivers else ifeq ($(HARDWARE_MOTHERBOARD),1105) # 2PrintBeta BAM&DICE Due with STK drivers else ifeq ($(HARDWARE_MOTHERBOARD),1106) # MKS BASE v1.0 else ifeq ($(HARDWARE_MOTHERBOARD),1107) # MKS BASE v1.4 with Allegro A4982 stepper drivers else ifeq ($(HARDWARE_MOTHERBOARD),1108) # MKS BASE v1.5 with Allegro A4982 stepper drivers else ifeq ($(HARDWARE_MOTHERBOARD),1109) # MKS BASE v1.6 with Allegro A4982 stepper drivers else ifeq ($(HARDWARE_MOTHERBOARD),1110) # MKS BASE 1.0 with Heroic HR4982 stepper drivers else ifeq ($(HARDWARE_MOTHERBOARD),1111) # MKS GEN v1.3 or 1.4 else ifeq ($(HARDWARE_MOTHERBOARD),1112) # MKS GEN L else ifeq ($(HARDWARE_MOTHERBOARD),1113) # BigTreeTech or BIQU KFB2.0 else ifeq ($(HARDWARE_MOTHERBOARD),1114) # zrib V2.0 (Chinese RAMPS replica) else ifeq ($(HARDWARE_MOTHERBOARD),1115) # zrib V5.2 (Chinese RAMPS replica) else ifeq ($(HARDWARE_MOTHERBOARD),1116) # Felix 2.0+ Electronics Board (RAMPS like) else ifeq ($(HARDWARE_MOTHERBOARD),1117) # Invent-A-Part RigidBoard else ifeq ($(HARDWARE_MOTHERBOARD),1118) # Invent-A-Part RigidBoard V2 else ifeq ($(HARDWARE_MOTHERBOARD),1119) # Sainsmart 2-in-1 board else ifeq ($(HARDWARE_MOTHERBOARD),1120) # Ultimaker else ifeq ($(HARDWARE_MOTHERBOARD),1121) # Ultimaker (Older electronics. Pre 1.5.4. This is rare) else ifeq ($(HARDWARE_MOTHERBOARD),1122) MCU ?= atmega1280 PROG_MCU ?= m1280 # Azteeg X3 else ifeq ($(HARDWARE_MOTHERBOARD),1123) # Azteeg X3 Pro else ifeq ($(HARDWARE_MOTHERBOARD),1124) # Ultimainboard 2.x (Uses TEMP_SENSOR 20) else ifeq ($(HARDWARE_MOTHERBOARD),1125) # Rumba else ifeq ($(HARDWARE_MOTHERBOARD),1126) # Raise3D N series Rumba derivative else ifeq ($(HARDWARE_MOTHERBOARD),1127) # Rapide Lite 200 (v1, low-cost RUMBA clone with drv) else ifeq ($(HARDWARE_MOTHERBOARD),1128) # Formbot T-Rex 2 Plus else ifeq ($(HARDWARE_MOTHERBOARD),1129) # Formbot T-Rex 3 else ifeq ($(HARDWARE_MOTHERBOARD),1130) # Formbot Raptor else ifeq ($(HARDWARE_MOTHERBOARD),1131) # Formbot Raptor 2 else ifeq ($(HARDWARE_MOTHERBOARD),1132) # bq ZUM Mega 3D else ifeq ($(HARDWARE_MOTHERBOARD),1133) # MakeBoard Mini v2.1.2 by MicroMake else ifeq ($(HARDWARE_MOTHERBOARD),1134) # TriGorilla Anycubic version 1.3-based on RAMPS EFB else ifeq ($(HARDWARE_MOTHERBOARD),1135) # ... Ver 1.4 else ifeq ($(HARDWARE_MOTHERBOARD),1136) # ... Rev 1.1 (new servo pin order) else ifeq ($(HARDWARE_MOTHERBOARD),1137) # Creality: Ender-4, CR-8 else ifeq ($(HARDWARE_MOTHERBOARD),1138) # Creality: CR10S, CR20, CR-X else ifeq ($(HARDWARE_MOTHERBOARD),1139) # Dagoma F5 else ifeq ($(HARDWARE_MOTHERBOARD),1140) # FYSETC F6 1.3 else ifeq ($(HARDWARE_MOTHERBOARD),1141) # FYSETC F6 1.4 else ifeq ($(HARDWARE_MOTHERBOARD),1142) # Wanhao Duplicator i3 Plus else ifeq ($(HARDWARE_MOTHERBOARD),1143) # VORON Design else ifeq ($(HARDWARE_MOTHERBOARD),1144) # Tronxy TRONXY-V3-1.0 else ifeq ($(HARDWARE_MOTHERBOARD),1145) # Z-Bolt X Series else ifeq ($(HARDWARE_MOTHERBOARD),1146) # TT OSCAR else ifeq ($(HARDWARE_MOTHERBOARD),1147) # Overlord/Overlord Pro else ifeq ($(HARDWARE_MOTHERBOARD),1148) # ADIMLab Gantry v1 else ifeq ($(HARDWARE_MOTHERBOARD),1149) # ADIMLab Gantry v2 else ifeq ($(HARDWARE_MOTHERBOARD),1150) # BIQU Tango V1 else ifeq ($(HARDWARE_MOTHERBOARD),1151) # MKS GEN L V2 else ifeq ($(HARDWARE_MOTHERBOARD),1152) # MKS GEN L V2.1 else ifeq ($(HARDWARE_MOTHERBOARD),1153) # Copymaster 3D else ifeq ($(HARDWARE_MOTHERBOARD),1154) # Ortur 4 else ifeq ($(HARDWARE_MOTHERBOARD),1155) # Tenlog D3 Hero IDEX printer else ifeq ($(HARDWARE_MOTHERBOARD),1156) # Tenlog D3,5,6 Pro IDEX printers else ifeq ($(HARDWARE_MOTHERBOARD),1157) # Ramps S 1.2 by Sakul.cz (Power outputs: Hotend0, Hotend1, Fan, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1158) # Ramps S 1.2 by Sakul.cz (Power outputs: Hotend0, Hotend1, Hotend2, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1159) # Ramps S 1.2 by Sakul.cz (Power outputs: Hotend, Fan0, Fan1, Bed) else ifeq ($(HARDWARE_MOTHERBOARD),1160) # Longer LK1 PRO / Alfawise U20 Pro (PRO version) else ifeq ($(HARDWARE_MOTHERBOARD),1161) # Longer LKx PRO / Alfawise Uxx Pro (PRO version) else ifeq ($(HARDWARE_MOTHERBOARD),1162) # Zonestar zrib V5.3 (Chinese RAMPS replica) else ifeq ($(HARDWARE_MOTHERBOARD),1163) # Pxmalion Core I3 else ifeq ($(HARDWARE_MOTHERBOARD),1164) # # RAMBo and derivatives # # Rambo else ifeq ($(HARDWARE_MOTHERBOARD),1200) # Mini-Rambo else ifeq ($(HARDWARE_MOTHERBOARD),1201) # Mini-Rambo 1.0a else ifeq ($(HARDWARE_MOTHERBOARD),1202) # Einsy Rambo else ifeq ($(HARDWARE_MOTHERBOARD),1203) # Einsy Retro else ifeq ($(HARDWARE_MOTHERBOARD),1204) # abee Scoovo X9H else ifeq ($(HARDWARE_MOTHERBOARD),1205) # Rambo ThinkerV2 else ifeq ($(HARDWARE_MOTHERBOARD),1206) # # Other ATmega1280, ATmega2560 # # Cartesio CN Controls V11 else ifeq ($(HARDWARE_MOTHERBOARD),1300) # Cartesio CN Controls V12 else ifeq ($(HARDWARE_MOTHERBOARD),1301) # Cartesio CN Controls V15 else ifeq ($(HARDWARE_MOTHERBOARD),1302) # Cheaptronic v1.0 else ifeq ($(HARDWARE_MOTHERBOARD),1303) # Cheaptronic v2.0 else ifeq ($(HARDWARE_MOTHERBOARD),1304) # Makerbot Mightyboard Revision E else ifeq ($(HARDWARE_MOTHERBOARD),1305) # Megatronics else ifeq ($(HARDWARE_MOTHERBOARD),1306) # Megatronics v2.0 else ifeq ($(HARDWARE_MOTHERBOARD),1307) # Megatronics v3.0 else ifeq ($(HARDWARE_MOTHERBOARD),1308) # Megatronics v3.1 else ifeq ($(HARDWARE_MOTHERBOARD),1309) # Megatronics v3.2 else ifeq ($(HARDWARE_MOTHERBOARD),1310) # Elefu Ra Board (v3) else ifeq ($(HARDWARE_MOTHERBOARD),1311) # Leapfrog else ifeq ($(HARDWARE_MOTHERBOARD),1312) # Mega controller else ifeq ($(HARDWARE_MOTHERBOARD),1313) # Geeetech GT2560 Rev A else ifeq ($(HARDWARE_MOTHERBOARD),1314) # Geeetech GT2560 Rev A+ (with auto level probe) else ifeq ($(HARDWARE_MOTHERBOARD),1315) # Geeetech GT2560 Rev B else ifeq ($(HARDWARE_MOTHERBOARD),1316) # Geeetech GT2560 Rev B for A10(M/T/D) else ifeq ($(HARDWARE_MOTHERBOARD),1317) # Geeetech GT2560 Rev B for A10(M/T/D) else ifeq ($(HARDWARE_MOTHERBOARD),1318) # Geeetech GT2560 Rev B for Mecreator2 else ifeq ($(HARDWARE_MOTHERBOARD),1319) # Geeetech GT2560 Rev B for A20(M/T/D) else ifeq ($(HARDWARE_MOTHERBOARD),1320) # Einstart retrofit else ifeq ($(HARDWARE_MOTHERBOARD),1321) # Wanhao 0ne+ i3 Mini else ifeq ($(HARDWARE_MOTHERBOARD),1322) # Leapfrog Xeed 2015 else ifeq ($(HARDWARE_MOTHERBOARD),1323) # PICA Shield (original version) else ifeq ($(HARDWARE_MOTHERBOARD),1324) # PICA Shield (rev C or later) else ifeq ($(HARDWARE_MOTHERBOARD),1325) # Intamsys 4.0 (Funmat HT) else ifeq ($(HARDWARE_MOTHERBOARD),1326) # Malyan M180 Mainboard Version 2 (no display function, direct G-code only) else ifeq ($(HARDWARE_MOTHERBOARD),1327) # Geeetech GT2560 Rev B for A20(M/T/D) else ifeq ($(HARDWARE_MOTHERBOARD),1328) # Mega controller & Protoneer CNC Shield V3.00 else ifeq ($(HARDWARE_MOTHERBOARD),1329) # # ATmega1281, ATmega2561 # # Minitronics v1.0/1.1 else ifeq ($(HARDWARE_MOTHERBOARD),1400) MCU ?= atmega1281 PROG_MCU ?= m1281 # Silvergate v1.0 else ifeq ($(HARDWARE_MOTHERBOARD),1401) MCU ?= atmega1281 PROG_MCU ?= m1281 # # Sanguinololu and Derivatives - ATmega644P, ATmega1284P # # Sanguinololu < 1.2 else ifeq ($(HARDWARE_MOTHERBOARD),1500) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega644p PROG_MCU ?= m644p # Sanguinololu 1.2 and above else ifeq ($(HARDWARE_MOTHERBOARD),1501) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega644p PROG_MCU ?= m644p # Melzi else ifeq ($(HARDWARE_MOTHERBOARD),1502) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega644p PROG_MCU ?= m644p # Melzi V2.0 else ifeq ($(HARDWARE_MOTHERBOARD),1503) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # Melzi with ATmega1284 (MaKr3d version) else ifeq ($(HARDWARE_MOTHERBOARD),1504) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # Melzi Creality3D board (for CR-10 etc) else ifeq ($(HARDWARE_MOTHERBOARD),1505) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # Melzi Malyan M150 board else ifeq ($(HARDWARE_MOTHERBOARD),1506) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # Tronxy X5S else ifeq ($(HARDWARE_MOTHERBOARD),1507) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # STB V1.1 else ifeq ($(HARDWARE_MOTHERBOARD),1508) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # Azteeg X1 else ifeq ($(HARDWARE_MOTHERBOARD),1509) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # Anet 1.0 (Melzi clone) else ifeq ($(HARDWARE_MOTHERBOARD),1510) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # ZoneStar ZMIB V2 else ifeq ($(HARDWARE_MOTHERBOARD),1511) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega1284p PROG_MCU ?= m1284p # # Other ATmega644P, ATmega644, ATmega1284P # # Gen3 Monolithic Electronics else ifeq ($(HARDWARE_MOTHERBOARD),1600) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega644p PROG_MCU ?= m644p # Gen3+ else ifeq ($(HARDWARE_MOTHERBOARD),1601) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega644p PROG_MCU ?= m644p # Gen6 else ifeq ($(HARDWARE_MOTHERBOARD),1602) HARDWARE_VARIANT ?= Gen6 MCU ?= atmega644p PROG_MCU ?= m644p # Gen6 deluxe else ifeq ($(HARDWARE_MOTHERBOARD),1603) HARDWARE_VARIANT ?= Gen6 MCU ?= atmega644p PROG_MCU ?= m644p # Gen7 custom (Alfons3 Version) else ifeq ($(HARDWARE_MOTHERBOARD),1604) HARDWARE_VARIANT ?= Gen7 MCU ?= atmega644 PROG_MCU ?= m644 F_CPU ?= 20000000 # Gen7 v1.1, v1.2 else ifeq ($(HARDWARE_MOTHERBOARD),1605) HARDWARE_VARIANT ?= Gen7 MCU ?= atmega644p PROG_MCU ?= m644p F_CPU ?= 20000000 # Gen7 v1.3 else ifeq ($(HARDWARE_MOTHERBOARD),1606) HARDWARE_VARIANT ?= Gen7 MCU ?= atmega644p PROG_MCU ?= m644p F_CPU ?= 20000000 # Gen7 v1.4 else ifeq ($(HARDWARE_MOTHERBOARD),1607) HARDWARE_VARIANT ?= Gen7 MCU ?= atmega1284p PROG_MCU ?= m1284p F_CPU ?= 20000000 # Alpha OMCA board else ifeq ($(HARDWARE_MOTHERBOARD),1608) HARDWARE_VARIANT ?= SanguinoA MCU ?= atmega644 PROG_MCU ?= m644 # Final OMCA board else ifeq ($(HARDWARE_MOTHERBOARD),1609) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega644p PROG_MCU ?= m644p # Sethi 3D_1 else ifeq ($(HARDWARE_MOTHERBOARD),1610) HARDWARE_VARIANT ?= Sanguino MCU ?= atmega644p PROG_MCU ?= m644p # # Teensyduino - AT90USB1286, AT90USB1286P # # Teensylu else ifeq ($(HARDWARE_MOTHERBOARD),1700) HARDWARE_VARIANT ?= Teensy MCU ?= at90usb1286 PROG_MCU ?= usb1286 # Printrboard (AT90USB1286) else ifeq ($(HARDWARE_MOTHERBOARD),1701) HARDWARE_VARIANT ?= Teensy MCU ?= at90usb1286 PROG_MCU ?= usb1286 # Printrboard Revision F (AT90USB1286) else ifeq ($(HARDWARE_MOTHERBOARD),1702) HARDWARE_VARIANT ?= Teensy MCU ?= at90usb1286 PROG_MCU ?= usb1286 # Brainwave (AT90USB646) else ifeq ($(HARDWARE_MOTHERBOARD),1703) HARDWARE_VARIANT ?= Teensy MCU ?= at90usb646 PROG_MCU ?= usb646 # Brainwave Pro (AT90USB1286) else ifeq ($(HARDWARE_MOTHERBOARD),1704) HARDWARE_VARIANT ?= Teensy MCU ?= at90usb1286 PROG_MCU ?= usb1286 # SAV Mk-I (AT90USB1286) else ifeq ($(HARDWARE_MOTHERBOARD),1705) HARDWARE_VARIANT ?= Teensy MCU ?= at90usb1286 PROG_MCU ?= usb1286 # Teensy++2.0 (AT90USB1286) else ifeq ($(HARDWARE_MOTHERBOARD),1706) HARDWARE_VARIANT ?= Teensy MCU ?= at90usb1286 PROG_MCU ?= usb1286 # 5DPrint D8 Driver Board else ifeq ($(HARDWARE_MOTHERBOARD),1707) HARDWARE_VARIANT ?= Teensy MCU ?= at90usb1286 PROG_MCU ?= usb1286 # UltiMachine Archim1 (with DRV8825 drivers) else ifeq ($(HARDWARE_MOTHERBOARD),3023) HARDWARE_VARIANT ?= archim MCPU = cortex-m3 F_CPU = 84000000 IS_MCU = 0 # UltiMachine Archim2 (with TMC2130 drivers) else ifeq ($(HARDWARE_MOTHERBOARD),3024) HARDWARE_VARIANT ?= archim MCPU = cortex-m3 F_CPU = 84000000 IS_MCU = 0 endif # Be sure to regenerate speed_lookuptable.h with create_speed_lookuptable.py # if you are setting this to something other than 16MHz # Do not put the UL suffix, it's done later on. # Set to 16Mhz if not yet set. F_CPU ?= 16000000 # Set to microcontroller if IS_MCU not yet set IS_MCU ?= 1 ifeq ($(IS_MCU),1) # Set to arduino, ATmega2560 if not yet set. HARDWARE_VARIANT ?= arduino MCU ?= atmega2560 PROG_MCU ?= m2560 TOOL_PREFIX = avr MCU_FLAGS = -mmcu=$(MCU) SIZE_FLAGS = --mcu=$(MCU) -C else TOOL_PREFIX = arm-none-eabi CPU_FLAGS = -mthumb -mcpu=$(MCPU) SIZE_FLAGS = -A endif # Arduino contained the main source code for the Arduino # Libraries, the "hardware variant" are for boards # that derives from that, and their source are present in # the main Marlin source directory TARGET = $(notdir $(CURDIR)) # VPATH tells make to look into these directory for source files, # there is no need to specify explicit pathnames as long as the # directory is added here # The Makefile for previous versions of Marlin used VPATH for all # source files, but for Marlin 2.0, we use VPATH only for arduino # library files. VPATH = . VPATH += $(BUILD_DIR) VPATH += $(HARDWARE_SRC) ifeq ($(HARDWARE_VARIANT), $(filter $(HARDWARE_VARIANT),arduino Teensy Sanguino)) # Old libraries (avr-core 1.6.21 < / Arduino < 1.6.8) VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SPI # New libraries (avr-core >= 1.6.21 / Arduino >= 1.6.8) VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/arduino/avr/1.8.6/libraries/SPI/src endif ifeq ($(IS_MCU),1) VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/arduino/avr/1.8.6/cores/arduino # Old libraries (avr-core 1.6.21 < / Arduino < 1.6.8) VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SPI VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SoftwareSerial # New libraries (avr-core >= 1.6.21 / Arduino >= 1.6.8) VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/arduino/avr/1.8.6/libraries/SPI/src VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/arduino/avr/1.8.6/libraries/SoftwareSerial/src endif VPATH += $(ARDUINO_INSTALL_DIR)/libraries/LiquidCrystal/src ifeq ($(LIQUID_TWI2), 1) WIRE = 1 VPATH += $(ARDUINO_INSTALL_DIR)/libraries/LiquidTWI2 endif ifeq ($(WIRE), 1) # Old libraries (avr-core 1.6.21 / Arduino < 1.6.8) VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/Wire VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/Wire/utility # New libraries (avr-core >= 1.6.21 / Arduino >= 1.6.8) VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/avr/1.8.6/libraries/Wire/src VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/avr/1.8.6/libraries/Wire/src/utility endif ifeq ($(NEOPIXEL), 1) VPATH += $(ARDUINO_INSTALL_DIR)/libraries/Adafruit_NeoPixel endif ifeq ($(U8GLIB), 1) VPATH += $(ARDUINO_INSTALL_DIR)/libraries/U8glib-HAL VPATH += $(ARDUINO_INSTALL_DIR)/libraries/U8glib-HAL/src # VPATH += $(ARDUINO_INSTALL_DIR)/libraries/U8glib # VPATH += $(ARDUINO_INSTALL_DIR)/libraries/U8glib/src endif ifeq ($(TMC), 1) VPATH += $(ARDUINO_INSTALL_DIR)/libraries/TMCStepper/src VPATH += $(ARDUINO_INSTALL_DIR)/libraries/TMCStepper/src/source endif ifeq ($(HARDWARE_VARIANT), arduino) HARDWARE_SUB_VARIANT ?= mega VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/avr/1.8.6/variants/$(HARDWARE_SUB_VARIANT) else ifeq ($(HARDWARE_VARIANT), Sanguino) VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/avr/1.8.6/variants/sanguino else ifeq ($(HARDWARE_VARIANT), archim) VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/system/libsam VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/system/CMSIS/CMSIS/Include/ VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/system/CMSIS/Device/ATMEL/ VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/cores/arduino VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/cores/arduino/avr VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/cores/arduino/USB VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/libraries/Wire/src VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/libraries/SPI/src VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/libraries/U8glib/src/clib VPATH += $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/variants/archim LDSCRIPT = $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/variants/archim/linker_scripts/gcc/flash.ld LDLIBS = $(ARDUINO_INSTALL_DIR)/packages/ultimachine/hardware/sam/1.6.9-b/variants/archim/libsam_sam3x8e_gcc_rel.a else HARDWARE_SUB_VARIANT ?= standard VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/avr/1.8.6/variants/$(HARDWARE_SUB_VARIANT) endif LIB_SRC = wiring.c \ wiring_analog.c wiring_digital.c \ wiring_shift.c WInterrupts.c hooks.c ifeq ($(HARDWARE_VARIANT), archim) LIB_ASRC += wiring_pulse_asm.S else LIB_SRC += wiring_pulse.c endif ifeq ($(HARDWARE_VARIANT), Teensy) LIB_SRC = wiring.c VPATH += $(ARDUINO_INSTALL_DIR)/packages/arduino/hardware/teensy/cores/teensy endif LIB_CXXSRC = WMath.cpp WString.cpp Print.cpp SPI.cpp ifeq ($(NEOPIXEL), 1) LIB_CXXSRC += Adafruit_NeoPixel.cpp endif ifeq ($(LIQUID_TWI2), 0) LIB_CXXSRC += LiquidCrystal.cpp else LIB_SRC += twi.c LIB_CXXSRC += Wire.cpp LiquidTWI2.cpp endif ifeq ($(WIRE), 1) LIB_SRC += twi.c LIB_CXXSRC += Wire.cpp endif ifeq ($(TONE), 1) LIB_CXXSRC += Tone.cpp endif ifeq ($(U8GLIB), 1) LIB_CXXSRC += U8glib.cpp LIB_SRC += u8g_ll_api.c u8g_bitmap.c u8g_clip.c u8g_com_null.c u8g_delay.c \ u8g_page.c u8g_pb.c u8g_pb16h1.c u8g_rect.c u8g_state.c u8g_font.c \ u8g_font_6x13.c u8g_font_04b_03.c u8g_font_5x8.c endif ifeq ($(TMC), 1) LIB_CXXSRC += TMCStepper.cpp COOLCONF.cpp DRV_STATUS.cpp IHOLD_IRUN.cpp \ CHOPCONF.cpp GCONF.cpp PWMCONF.cpp DRV_CONF.cpp DRVCONF.cpp DRVCTRL.cpp \ DRVSTATUS.cpp ENCMODE.cpp RAMP_STAT.cpp SGCSCONF.cpp SHORT_CONF.cpp \ SMARTEN.cpp SW_MODE.cpp SW_SPI.cpp TMC2130Stepper.cpp TMC2208Stepper.cpp \ TMC2209Stepper.cpp TMC2660Stepper.cpp TMC5130Stepper.cpp TMC5160Stepper.cpp endif ifeq ($(RELOC_WORKAROUND), 1) LD_PREFIX=-nodefaultlibs LD_SUFFIX=-lm -lgcc -lc -lgcc endif #Check for Arduino 1.0.0 or higher and use the correct source files for that version ifeq ($(shell [ $(ARDUINO_VERSION) -ge 100 ] && echo true), true) LIB_CXXSRC += main.cpp else LIB_SRC += pins_arduino.c main.c endif FORMAT = ihex # Name of this Makefile (used for "make depend"). MAKEFILE = Makefile # Debugging format. # Native formats for AVR-GCC's -g are stabs [default], or dwarf-2. # AVR (extended) COFF requires stabs, plus an avr-objcopy run. DEBUG = stabs OPT = s DEFINES ?= # Program settings CC = $(AVR_TOOLS_PATH)$(TOOL_PREFIX)-gcc CXX = $(AVR_TOOLS_PATH)$(TOOL_PREFIX)-g++ OBJCOPY = $(AVR_TOOLS_PATH)$(TOOL_PREFIX)-objcopy OBJDUMP = $(AVR_TOOLS_PATH)$(TOOL_PREFIX)-objdump AR = $(AVR_TOOLS_PATH)$(TOOL_PREFIX)-ar SIZE = $(AVR_TOOLS_PATH)$(TOOL_PREFIX)-size NM = $(AVR_TOOLS_PATH)$(TOOL_PREFIX)-nm AVRDUDE = avrdude REMOVE = rm -f MV = mv -f # Place -D or -U options here CDEFS = -DF_CPU=$(F_CPU)UL ${addprefix -D , $(DEFINES)} -DARDUINO=$(ARDUINO_VERSION) CXXDEFS = $(CDEFS) ifeq ($(HARDWARE_VARIANT), Teensy) CDEFS += -DUSB_SERIAL LIB_SRC += usb.c pins_teensy.c LIB_CXXSRC += usb_api.cpp else ifeq ($(HARDWARE_VARIANT), archim) CDEFS += -DARDUINO_SAM_ARCHIM -DARDUINO_ARCH_SAM -D__SAM3X8E__ CDEFS += -DUSB_VID=0x27B1 -DUSB_PID=0x0001 -DUSBCON CDEFS += '-DUSB_MANUFACTURER="UltiMachine"' '-DUSB_PRODUCT_STRING="Archim"' LIB_CXXSRC += variant.cpp IPAddress.cpp Reset.cpp RingBuffer.cpp Stream.cpp \ UARTClass.cpp USARTClass.cpp abi.cpp new.cpp watchdog.cpp CDC.cpp \ PluggableUSB.cpp USBCore.cpp LIB_SRC += cortex_handlers.c iar_calls_sam3.c syscalls_sam3.c dtostrf.c itoa.c ifeq ($(U8GLIB), 1) LIB_SRC += u8g_com_api.c u8g_pb32h1.c endif endif # Add all the source directories as include directories too CINCS = ${addprefix -I ,${VPATH}} CXXINCS = ${addprefix -I ,${VPATH}} # Silence warnings for library code (won't work for .h files, unfortunately) LIBWARN = -w -Wno-packed-bitfield-compat # Compiler flag to set the C/CPP Standard level. CSTANDARD = -std=gnu99 CXXSTANDARD = -std=gnu++11 CDEBUG = -g$(DEBUG) CWARN = -Wall -Wstrict-prototypes -Wno-packed-bitfield-compat -Wno-pragmas -Wunused-parameter CXXWARN = -Wall -Wno-packed-bitfield-compat -Wno-pragmas -Wunused-parameter CTUNING = -fsigned-char -funsigned-bitfields -fno-exceptions \ -fshort-enums -ffunction-sections -fdata-sections ifneq ($(HARDWARE_MOTHERBOARD),) CTUNING += -DMOTHERBOARD=${HARDWARE_MOTHERBOARD} endif #CEXTRA = -Wa,-adhlns=$(<:.c=.lst) CXXEXTRA = -fno-use-cxa-atexit -fno-threadsafe-statics -fno-rtti CFLAGS := $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CEXTRA) $(CTUNING) $(CSTANDARD) CXXFLAGS := $(CDEFS) $(CINCS) -O$(OPT) $(CXXEXTRA) $(CTUNING) $(CXXSTANDARD) ASFLAGS := $(CDEFS) #ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs ifeq ($(HARDWARE_VARIANT), archim) LD_PREFIX = -Wl,--gc-sections,-Map,Marlin.ino.map,--cref,--check-sections,--entry=Reset_Handler,--unresolved-symbols=report-all,--warn-common,--warn-section-align LD_SUFFIX = $(LDLIBS) LDFLAGS = -lm -T$(LDSCRIPT) -u _sbrk -u link -u _close -u _fstat -u _isatty LDFLAGS += -u _lseek -u _read -u _write -u _exit -u kill -u _getpid else LD_PREFIX = -Wl,--gc-sections,--relax LDFLAGS = -lm CTUNING += -flto endif # Programming support using avrdude. Settings and variables. AVRDUDE_PORT = $(UPLOAD_PORT) AVRDUDE_WRITE_FLASH = -Uflash:w:$(BUILD_DIR)/$(TARGET).hex:i ifeq ($(shell uname -s), Linux) AVRDUDE_CONF = /etc/avrdude/avrdude.conf else AVRDUDE_CONF = $(ARDUINO_INSTALL_DIR)/packages/arduino/tools/avrdude/6.3.0-arduino17/etc/avrdude.conf endif AVRDUDE_FLAGS = -D -C$(AVRDUDE_CONF) \ -p$(PROG_MCU) -P$(AVRDUDE_PORT) -c$(AVRDUDE_PROGRAMMER) \ -b$(UPLOAD_RATE) # Since Marlin 2.0, the source files may be distributed into several # different directories, so it is necessary to find them recursively SRC = $(shell find src -name '*.c' -type f) CXXSRC = $(shell find src -name '*.cpp' -type f) # Define all object files. OBJ = ${patsubst %.c, $(BUILD_DIR)/arduino/%.o, ${LIB_SRC}} OBJ += ${patsubst %.cpp, $(BUILD_DIR)/arduino/%.o, ${LIB_CXXSRC}} OBJ += ${patsubst %.S, $(BUILD_DIR)/arduino/%.o, ${LIB_ASRC}} OBJ += ${patsubst %.c, $(BUILD_DIR)/%.o, ${SRC}} OBJ += ${patsubst %.cpp, $(BUILD_DIR)/%.o, ${CXXSRC}} # Define all listing files. LST = $(LIB_ASRC:.S=.lst) $(LIB_CXXSRC:.cpp=.lst) $(LIB_SRC:.c=.lst) # Combine all necessary flags and optional flags. # Add target processor to flags. ALL_CFLAGS = $(MCU_FLAGS) $(CPU_FLAGS) $(CFLAGS) -I. ALL_CXXFLAGS = $(MCU_FLAGS) $(CPU_FLAGS) $(CXXFLAGS) ALL_ASFLAGS = $(MCU_FLAGS) $(CPU_FLAGS) $(ASFLAGS) -x assembler-with-cpp # set V=1 (eg, "make V=1") to print the full commands etc. ifneq ($V,1) Pecho=@echo P=@ else Pecho=@: P= endif # Create required build hierarchy if it does not exist $(shell mkdir -p $(dir $(OBJ))) # Default target. all: sizeafter build: elf hex bin elf: $(BUILD_DIR)/$(TARGET).elf bin: $(BUILD_DIR)/$(TARGET).bin hex: $(BUILD_DIR)/$(TARGET).hex eep: $(BUILD_DIR)/$(TARGET).eep lss: $(BUILD_DIR)/$(TARGET).lss sym: $(BUILD_DIR)/$(TARGET).sym # Program the device. # Do not try to reset an Arduino if it's not one upload: $(BUILD_DIR)/$(TARGET).hex ifeq (${AVRDUDE_PROGRAMMER}, arduino) stty hup < $(UPLOAD_PORT); true endif $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) ifeq (${AVRDUDE_PROGRAMMER}, arduino) stty -hup < $(UPLOAD_PORT); true endif # Display size of file. HEXSIZE = $(SIZE) --target=$(FORMAT) $(BUILD_DIR)/$(TARGET).hex ELFSIZE = $(SIZE) $(SIZE_FLAGS) $(BUILD_DIR)/$(TARGET).elf; \ $(SIZE) $(BUILD_DIR)/$(TARGET).elf sizebefore: $P if [ -f $(BUILD_DIR)/$(TARGET).elf ]; then echo; echo $(MSG_SIZE_BEFORE); $(HEXSIZE); echo; fi sizeafter: build $P if [ -f $(BUILD_DIR)/$(TARGET).elf ]; then echo; echo $(MSG_SIZE_AFTER); $(ELFSIZE); echo; fi # Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB. COFFCONVERT=$(OBJCOPY) --debugging \ --change-section-address .data-0x800000 \ --change-section-address .bss-0x800000 \ --change-section-address .noinit-0x800000 \ --change-section-address .eeprom-0x810000 coff: $(BUILD_DIR)/$(TARGET).elf $(COFFCONVERT) -O coff-avr $(BUILD_DIR)/$(TARGET).elf $(TARGET).cof extcoff: $(TARGET).elf $(COFFCONVERT) -O coff-ext-avr $(BUILD_DIR)/$(TARGET).elf $(TARGET).cof .SUFFIXES: .elf .hex .eep .lss .sym .bin .PRECIOUS: .o .elf.hex: $(Pecho) " COPY $@" $P $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@ .elf.bin: $(Pecho) " COPY $@" $P $(OBJCOPY) -O binary -R .eeprom $< $@ .elf.eep: -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \ --change-section-lma .eeprom=0 -O $(FORMAT) $< $@ # Create extended listing file from ELF output file. .elf.lss: $(OBJDUMP) -h -S $< > $@ # Create a symbol table from ELF output file. .elf.sym: $(NM) -n $< > $@ # Link: create ELF output file from library. $(BUILD_DIR)/$(TARGET).elf: $(OBJ) Configuration.h $(Pecho) " CXX $@" $P $(CXX) $(LD_PREFIX) $(ALL_CXXFLAGS) -o $@ -L. $(OBJ) $(LDFLAGS) $(LD_SUFFIX) # Object files that were found in "src" will be stored in $(BUILD_DIR) # in directories that mirror the structure of "src" $(BUILD_DIR)/%.o: %.c Configuration.h Configuration_adv.h $(MAKEFILE) $(Pecho) " CC $<" $P $(CC) -MMD -c $(ALL_CFLAGS) $(CWARN) $< -o $@ $(BUILD_DIR)/%.o: %.cpp Configuration.h Configuration_adv.h $(MAKEFILE) $(Pecho) " CXX $<" $P $(CXX) -MMD -c $(ALL_CXXFLAGS) $(CXXWARN) $< -o $@ # Object files for Arduino libs will be created in $(BUILD_DIR)/arduino $(BUILD_DIR)/arduino/%.o: %.c Configuration.h Configuration_adv.h $(MAKEFILE) $(Pecho) " CC $<" $P $(CC) -MMD -c $(ALL_CFLAGS) $(LIBWARN) $< -o $@ $(BUILD_DIR)/arduino/%.o: %.cpp Configuration.h Configuration_adv.h $(MAKEFILE) $(Pecho) " CXX $<" $P $(CXX) -MMD -c $(ALL_CXXFLAGS) $(LIBWARN) $< -o $@ $(BUILD_DIR)/arduino/%.o: %.S $(MAKEFILE) $(Pecho) " CXX $<" $P $(CXX) -MMD -c $(ALL_ASFLAGS) $< -o $@ # Target: clean project. clean: $(Pecho) " RMDIR $(BUILD_DIR)/" $P rm -rf $(BUILD_DIR) .PHONY: all build elf hex eep lss sym program coff extcoff clean depend sizebefore sizeafter # Automatically include the dependency files created by gcc -include ${patsubst %.o, %.d, ${OBJ}}
2301_81045437/Marlin
Marlin/Makefile
Makefile
agpl-3.0
35,305
/*============================================================================== Marlin Firmware (c) 2011-2024 MarlinFirmware Portions of Marlin are (c) by their respective authors. All code complies with GPLv2 and/or GPLv3 ================================================================================ Greetings! Thank you for choosing Marlin 2 as your 3D printer firmware. To configure Marlin you must edit Configuration.h and Configuration_adv.h located in the root 'Marlin' folder. Check our Configurations repository to see if there's a more suitable starting-point for your specific hardware. Before diving in, we recommend the following essential links: Marlin Firmware Official Website - https://marlinfw.org/ The official Marlin Firmware website contains the most up-to-date documentation. Contributions are always welcome! Configuration - https://github.com/MarlinFirmware/Configurations Example configurations for several printer models. - https://youtu.be/3gwWVFtdg-4 A good 20-minute overview of Marlin configuration by Tom Sanladerer. (Applies to Marlin 1.0.x, so Jerk and Acceleration should be halved.) Also... https://www.google.com/search?tbs=vid%3A1&q=configure+marlin - https://marlinfw.org/docs/configuration/configuration.html Marlin's configuration options are explained in more detail here. Getting Help - https://reprap.org/forum/list.php?415 The Marlin Discussion Forum is a great place to get help from other Marlin users who may have experienced similar issues to your own. - https://github.com/MarlinFirmware/Marlin/issues With a free GitHub account you can provide us with feedback, bug reports, and feature requests via the Marlin Issue Queue. Contributing - https://marlinfw.org/docs/development/contributing.html If you'd like to contribute to Marlin, read this first! - https://marlinfw.org/docs/development/coding_standards.html Before submitting code get to know the Coding Standards. ------------------------------------------------------------------------------*/
2301_81045437/Marlin
Marlin/Marlin.ino
C++
agpl-3.0
2,100
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once //////////////////////////// // VENDOR VERSION EXAMPLE // //////////////////////////// /** * Marlin release version identifier */ //#define SHORT_BUILD_VERSION "bugfix-2.1.x" /** * Verbose version identifier which should contain a reference to the location * from where the binary was downloaded or the source code was compiled. */ //#define DETAILED_BUILD_VERSION SHORT_BUILD_VERSION /** * The STRING_DISTRIBUTION_DATE represents when the binary file was built, * here we define this default string as the date where the latest release * version was tagged. */ //#define STRING_DISTRIBUTION_DATE "2024-05-10" /** * Defines a generic printer name to be output to the LCD after booting Marlin. */ //#define MACHINE_NAME "3D Printer" /** * The SOURCE_CODE_URL is the location where users will find the Marlin Source * Code which is installed on the device. In most cases —unless the manufacturer * has a distinct Github fork— the Source Code URL should just be the main * Marlin repository. */ //#define SOURCE_CODE_URL "github.com/MarlinFirmware/Marlin" /** * Default generic printer UUID. */ //#define DEFAULT_MACHINE_UUID "cede2a2f-41a2-4748-9b12-c55c62f367ff" /** * The WEBSITE_URL is the location where users can get more information such as * documentation about a specific Marlin release. */ //#define WEBSITE_URL "marlinfw.org" /** * Set the vendor info the serial USB interface, if changable * Currently only supported by DUE platform */ //#define USB_DEVICE_VENDOR_ID 0x0000 //#define USB_DEVICE_PRODUCT_ID 0x0000 //#define USB_DEVICE_MANUFACTURE_NAME WEBSITE_URL
2301_81045437/Marlin
Marlin/Version.h
C
agpl-3.0
2,506
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #ifdef __AVR__ #include "../../inc/MarlinConfig.h" #include "HAL.h" #include <avr/wdt.h> #ifdef USBCON DefaultSerial1 MSerial0(false, Serial); #ifdef BLUETOOTH BTSerial btSerial(false, bluetoothSerial); #endif #endif // ------------------------ // Public Variables // ------------------------ // Don't initialize/override variable (which would happen in .init4) uint8_t MarlinHAL::reset_reason __attribute__((section(".noinit"))); // ------------------------ // Public functions // ------------------------ __attribute__((naked)) // Don't output function pro- and epilogue __attribute__((used)) // Output the function, even if "not used" __attribute__((section(".init3"))) // Put in an early user definable section void save_reset_reason() { #if ENABLED(OPTIBOOT_RESET_REASON) __asm__ __volatile__( A("STS %0, r2") : "=m"(hal.reset_reason) ); #else hal.reset_reason = MCUSR; #endif // Clear within 16ms since WDRF bit enables a 16ms watchdog timer -> Boot loop hal.clear_reset_source(); wdt_disable(); } #include "registers.h" MarlinHAL::MarlinHAL() { TERN_(HAL_AVR_DIRTY_INIT, _ATmega_resetperipherals()); // Clean-wipe the device state. } void MarlinHAL::init() { // Init Servo Pins #if HAS_SERVO_0 OUT_WRITE(SERVO0_PIN, LOW); #endif #if HAS_SERVO_1 OUT_WRITE(SERVO1_PIN, LOW); #endif #if HAS_SERVO_2 OUT_WRITE(SERVO2_PIN, LOW); #endif #if HAS_SERVO_3 OUT_WRITE(SERVO3_PIN, LOW); #endif #if HAS_SERVO_4 OUT_WRITE(SERVO4_PIN, LOW); #endif #if HAS_SERVO_5 OUT_WRITE(SERVO5_PIN, LOW); #endif init_pwm_timers(); // Init user timers to default frequency - 1000HZ #if PIN_EXISTS(BEEPER) && ENABLED(HAL_AVR_DIRTY_INIT) && DISABLED(ATMEGA_NO_BEEPFIX) // Make sure no alternative is locked onto the BEEPER. // This fixes the issue where the ATmega is constantly beeping. // Might disable other peripherals using the pin; to circumvent that please undefine one of the above things! // The true culprit is the AVR ArduinoCore that enables peripherals redundantly. // (USART1 on the GeeeTech GT2560) // https://www.youtube.com/watch?v=jMgCvRXkexk _ATmega_savePinAlternate(BEEPER_PIN); OUT_WRITE(BEEPER_PIN, LOW); #endif } void MarlinHAL::reboot() { #if ENABLED(USE_WATCHDOG) while (1) { /* run out the watchdog */ } #else void (*resetFunc)() = 0; // Declare resetFunc() at address 0 resetFunc(); // Jump to address 0 #endif } // ------------------------ // Watchdog Timer // ------------------------ #if ENABLED(USE_WATCHDOG) #include <avr/wdt.h> #include "../../MarlinCore.h" // Initialize watchdog with 8s timeout, if possible. Otherwise, make it 4s. void MarlinHAL::watchdog_init() { #if ENABLED(WATCHDOG_DURATION_8S) && defined(WDTO_8S) #define WDTO_NS WDTO_8S #else #define WDTO_NS WDTO_4S #endif #if ENABLED(WATCHDOG_RESET_MANUAL) // Enable the watchdog timer, but only for the interrupt. // Take care, as this requires the correct order of operation, with interrupts disabled. // See the datasheet of any AVR chip for details. wdt_reset(); cli(); _WD_CONTROL_REG = _BV(_WD_CHANGE_BIT) | _BV(WDE); _WD_CONTROL_REG = _BV(WDIE) | (WDTO_NS & 0x07) | ((WDTO_NS & 0x08) << 2); // WDTO_NS directly does not work. bit 0-2 are consecutive in the register but the highest value bit is at bit 5 // So worked for up to WDTO_2S sei(); wdt_reset(); #else wdt_enable(WDTO_NS); // The function handles the upper bit correct. #endif //delay(10000); // test it! } //=========================================================================== //=================================== ISR =================================== //=========================================================================== // Watchdog timer interrupt, called if main program blocks >4sec and manual reset is enabled. #if ENABLED(WATCHDOG_RESET_MANUAL) ISR(WDT_vect) { sei(); // With the interrupt driven serial we need to allow interrupts. SERIAL_ERROR_MSG(STR_WATCHDOG_FIRED); minkill(); // interrupt-safe final kill and infinite loop } #endif // Reset watchdog. MUST be called at least every 4 seconds after the // first watchdog_init or AVR will go into emergency procedures. void MarlinHAL::watchdog_refresh() { wdt_reset(); } #endif // USE_WATCHDOG // ------------------------ // Free Memory Accessor // ------------------------ #if HAS_MEDIA #include "../../sd/SdFatUtil.h" int freeMemory() { return SdFatUtil::FreeRam(); } #else // !HAS_MEDIA extern "C" { extern char __bss_end; extern char __heap_start; extern void* __brkval; int freeMemory() { int free_memory; if ((int)__brkval == 0) free_memory = ((int)&free_memory) - ((int)&__bss_end); else free_memory = ((int)&free_memory) - ((int)__brkval); return free_memory; } } #endif // !HAS_MEDIA #endif // __AVR__
2301_81045437/Marlin
Marlin/src/HAL/AVR/HAL.cpp
C++
agpl-3.0
6,016
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * HAL for Arduino AVR */ #include "../shared/Marduino.h" #include "../shared/HAL_SPI.h" #include "fastio.h" #include "math.h" #ifdef USBCON #include <HardwareSerial.h> #else #include "MarlinSerial.h" #define BOARD_NO_NATIVE_USB #endif #include <stdint.h> #include <util/delay.h> #include <avr/eeprom.h> #include <avr/pgmspace.h> #include <avr/interrupt.h> #include <avr/io.h> // // Default graphical display delays // #if F_CPU >= 20000000 #define CPU_ST7920_DELAY_1 150 #define CPU_ST7920_DELAY_2 0 #define CPU_ST7920_DELAY_3 150 #elif F_CPU == 16000000 #define CPU_ST7920_DELAY_1 125 #define CPU_ST7920_DELAY_2 0 #define CPU_ST7920_DELAY_3 188 #endif #ifndef pgm_read_ptr // Compatibility for avr-libc 1.8.0-4.1 included with Ubuntu for // Windows Subsystem for Linux on Windows 10 as of 10/18/2019 #define pgm_read_ptr_far(address_long) (void*)__ELPM_word((uint32_t)(address_long)) #define pgm_read_ptr_near(address_short) (void*)__LPM_word((uint16_t)(address_short)) #define pgm_read_ptr(address_short) pgm_read_ptr_near(address_short) #endif // ------------------------ // Defines // ------------------------ // AVR PROGMEM extension for sprintf_P #define S_FMT "%S" // AVR PROGMEM extension for string define #define PGMSTR(NAM,STR) const char NAM[] PROGMEM = STR #ifndef CRITICAL_SECTION_START #define CRITICAL_SECTION_START() unsigned char _sreg = SREG; cli() #define CRITICAL_SECTION_END() SREG = _sreg #endif #define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment #define PWM_FREQUENCY 1000 // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency() // ------------------------ // Types // ------------------------ typedef int8_t pin_t; #define SHARED_SERVOS HAS_SERVOS // Use shared/servos.cpp class Servo; typedef Servo hal_servo_t; // ------------------------ // Serial ports // ------------------------ #ifdef USBCON #include "../../core/serial_hook.h" typedef ForwardSerial1Class< decltype(Serial) > DefaultSerial1; extern DefaultSerial1 MSerial0; #ifdef BLUETOOTH typedef ForwardSerial1Class< decltype(bluetoothSerial) > BTSerial; extern BTSerial btSerial; #endif #define MYSERIAL1 TERN(BLUETOOTH, btSerial, MSerial0) #else #if !WITHIN(SERIAL_PORT, 0, 3) #error "SERIAL_PORT must be from 0 to 3." #endif #define MYSERIAL1 customizedSerial1 #ifdef SERIAL_PORT_2 #if !WITHIN(SERIAL_PORT_2, 0, 3) #error "SERIAL_PORT_2 must be from 0 to 3." #endif #define MYSERIAL2 customizedSerial2 #endif #ifdef SERIAL_PORT_3 #if !WITHIN(SERIAL_PORT_3, 0, 3) #error "SERIAL_PORT_3 must be from 0 to 3." #endif #define MYSERIAL3 customizedSerial3 #endif #endif #ifdef MMU2_SERIAL_PORT #if !WITHIN(MMU2_SERIAL_PORT, 0, 3) #error "MMU2_SERIAL_PORT must be from 0 to 3" #endif #define MMU2_SERIAL mmuSerial #endif #ifdef LCD_SERIAL_PORT #if !WITHIN(LCD_SERIAL_PORT, 0, 3) #error "LCD_SERIAL_PORT must be from 0 to 3." #endif #define LCD_SERIAL lcdSerial #if HAS_DGUS_LCD #define LCD_SERIAL_TX_BUFFER_FREE() LCD_SERIAL.get_tx_buffer_free() #endif #endif // // ADC // #define HAL_ADC_VREF_MV 5000 #define HAL_ADC_RESOLUTION 10 // // Pin Mapping for M42, M43, M226 // #define GET_PIN_MAP_PIN(index) index #define GET_PIN_MAP_INDEX(pin) pin #define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval) #define HAL_SENSITIVE_PINS 0, 1, #ifdef __AVR_AT90USB1286__ #define JTAG_DISABLE() do{ MCUCR = 0x80; MCUCR = 0x80; }while(0) #endif // AVR compatibility #define strtof strtod // ------------------------ // Free Memory Accessor // ------------------------ #pragma GCC diagnostic push #if GCC_VERSION <= 50000 #pragma GCC diagnostic ignored "-Wunused-function" #endif extern "C" int freeMemory(); #pragma GCC diagnostic pop // ------------------------ // MarlinHAL Class // ------------------------ class MarlinHAL { public: // Earliest possible init, before setup() MarlinHAL(); // Watchdog static void watchdog_init() IF_DISABLED(USE_WATCHDOG, {}); static void watchdog_refresh() IF_DISABLED(USE_WATCHDOG, {}); static void init(); // Called early in setup() static void init_board() {} // Called less early in setup() static void reboot(); // Restart the firmware from 0x0 // Interrupts static bool isr_state() { return TEST(SREG, SREG_I); } static void isr_on() { sei(); } static void isr_off() { cli(); } static void delay_ms(const int ms) { _delay_ms(ms); } // Tasks, called from idle() static void idletask() {} // Reset static uint8_t reset_reason; static uint8_t get_reset_source() { return reset_reason; } static void clear_reset_source() { MCUSR = 0; } // Free SRAM static int freeMemory() { return ::freeMemory(); } // // ADC Methods // // Called by Temperature::init once at startup static void adc_init() { ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07; DIDR0 = 0; #ifdef DIDR2 DIDR2 = 0; #endif } // Called by Temperature::init for each sensor at startup static void adc_enable(const uint8_t ch) { #ifdef DIDR2 if (ch > 7) { SBI(DIDR2, ch & 0x07); return; } #endif SBI(DIDR0, ch); } // Begin ADC sampling on the given channel. Called from Temperature::isr! static void adc_start(const uint8_t ch) { #ifdef MUX5 ADCSRB = ch > 7 ? _BV(MUX5) : 0; #else ADCSRB = 0; #endif ADMUX = _BV(REFS0) | (ch & 0x07); SBI(ADCSRA, ADSC); } // Is the ADC ready for reading? static bool adc_ready() { return !TEST(ADCSRA, ADSC); } // The current value of the ADC register static __typeof__(ADC) adc_value() { return ADC; } /** * init_pwm_timers * Set the default frequency for timers 2-5 to 1000HZ */ static void init_pwm_timers(); /** * Set the PWM duty cycle for the pin to the given value. * Optionally invert the duty cycle [default = false] * Optionally change the scale of the provided value to enable finer PWM duty control [default = 255] */ static void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false); /** * Set the frequency of the timer for the given pin as close as * possible to the provided desired frequency. Internally calculate * the required waveform generation mode, prescaler, and resolution * values and set timer registers accordingly. * NOTE that the frequency is applied to all pins on the timer (Ex OC3A, OC3B and OC3B) * NOTE that there are limitations, particularly if using TIMER2. (see Configuration_adv.h -> FAST_PWM_FAN Settings) */ static void set_pwm_frequency(const pin_t pin, const uint16_t f_desired); };
2301_81045437/Marlin
Marlin/src/HAL/AVR/HAL.h
C++
agpl-3.0
7,638
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Adapted from Arduino Sd2Card Library * Copyright (c) 2009 by William Greiman */ /** * HAL for AVR - SPI functions */ #ifdef __AVR__ #include "../../inc/MarlinConfig.h" void spiBegin() { #if PIN_EXISTS(SD_SS) // Do not init HIGH for boards with pin 4 used as Fans or Heaters or otherwise, not likely to have multiple SPI devices anyway. #if defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__) // SS must be in output mode even it is not chip select SET_OUTPUT(SD_SS_PIN); #else // set SS high - may be chip select for another SPI device OUT_WRITE(SD_SS_PIN, HIGH); #endif #endif SET_OUTPUT(SD_SCK_PIN); SET_INPUT(SD_MISO_PIN); SET_OUTPUT(SD_MOSI_PIN); IF_DISABLED(SOFTWARE_SPI, spiInit(SPI_HALF_SPEED)); } #if NONE(SOFTWARE_SPI, FORCE_SOFT_SPI) // ------------------------ // Hardware SPI // ------------------------ // make sure SPCR rate is in expected bits #if (SPR0 != 0 || SPR1 != 1) #error "unexpected SPCR bits" #endif /** * Initialize hardware SPI * Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6] */ void spiInit(uint8_t spiRate) { // See avr processor documentation CBI( #ifdef PRR PRR #elif defined(PRR0) PRR0 #endif , PRSPI ); SPCR = _BV(SPE) | _BV(MSTR) | (spiRate >> 1); SPSR = spiRate & 1 || spiRate == 6 ? 0 : _BV(SPI2X); } /** SPI receive a byte */ uint8_t spiRec() { SPDR = 0xFF; while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } return SPDR; } /** SPI read data */ void spiRead(uint8_t *buf, uint16_t nbyte) { if (nbyte-- == 0) return; SPDR = 0xFF; for (uint16_t i = 0; i < nbyte; i++) { while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } buf[i] = SPDR; SPDR = 0xFF; } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } buf[nbyte] = SPDR; } /** SPI send a byte */ void spiSend(uint8_t b) { SPDR = b; while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } } /** SPI send block */ void spiSendBlock(uint8_t token, const uint8_t *buf) { SPDR = token; for (uint16_t i = 0; i < 512; i += 2) { while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } SPDR = buf[i]; while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } SPDR = buf[i + 1]; } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ } } /** begin spi transaction */ void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { // Based on Arduino SPI library // Clock settings are defined as follows. Note that this shows SPI2X // inverted, so the bits form increasing numbers. Also note that // fosc/64 appears twice // SPR1 SPR0 ~SPI2X Freq // 0 0 0 fosc/2 // 0 0 1 fosc/4 // 0 1 0 fosc/8 // 0 1 1 fosc/16 // 1 0 0 fosc/32 // 1 0 1 fosc/64 // 1 1 0 fosc/64 // 1 1 1 fosc/128 // We find the fastest clock that is less than or equal to the // given clock rate. The clock divider that results in clock_setting // is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the // slowest (128 == 2 ^^ 7, so clock_div = 6). uint8_t clockDiv; // When the clock is known at compiletime, use this if-then-else // cascade, which the compiler knows how to completely optimize // away. When clock is not known, use a loop instead, which generates // shorter code. if (__builtin_constant_p(spiClock)) { if (spiClock >= F_CPU / 2) clockDiv = 0; else if (spiClock >= F_CPU / 4) clockDiv = 1; else if (spiClock >= F_CPU / 8) clockDiv = 2; else if (spiClock >= F_CPU / 16) clockDiv = 3; else if (spiClock >= F_CPU / 32) clockDiv = 4; else if (spiClock >= F_CPU / 64) clockDiv = 5; else clockDiv = 6; } else { uint32_t clockSetting = F_CPU / 2; clockDiv = 0; while (clockDiv < 6 && spiClock < clockSetting) { clockSetting /= 2; clockDiv++; } } // Compensate for the duplicate fosc/64 if (clockDiv == 6) clockDiv = 7; // Invert the SPI2X bit clockDiv ^= 0x1; SPCR = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) | (dataMode << CPHA) | ((clockDiv >> 1) << SPR0); SPSR = clockDiv | 0x01; } #else // SOFTWARE_SPI || FORCE_SOFT_SPI // ------------------------ // Software SPI // ------------------------ // nop to tune soft SPI timing #define nop asm volatile ("\tnop\n") void spiInit(uint8_t) { /* do nothing */ } // Begin SPI transaction, set clock, bit order, data mode void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { /* do nothing */ } // Soft SPI receive byte uint8_t spiRec() { uint8_t data = 0; // no interrupts during byte receive - about 8µs cli(); // output pin high - like sending 0xFF WRITE(SD_MOSI_PIN, HIGH); for (uint8_t i = 0; i < 8; ++i) { WRITE(SD_SCK_PIN, HIGH); nop; // adjust so SCK is nice nop; data <<= 1; if (READ(SD_MISO_PIN)) data |= 1; WRITE(SD_SCK_PIN, LOW); } sei(); return data; } // Soft SPI read data void spiRead(uint8_t *buf, uint16_t nbyte) { for (uint16_t i = 0; i < nbyte; i++) buf[i] = spiRec(); } // Soft SPI send byte void spiSend(uint8_t data) { // no interrupts during byte send - about 8µs cli(); for (uint8_t i = 0; i < 8; ++i) { WRITE(SD_SCK_PIN, LOW); WRITE(SD_MOSI_PIN, data & 0x80); data <<= 1; WRITE(SD_SCK_PIN, HIGH); } nop; // hold SCK high for a few ns nop; nop; nop; WRITE(SD_SCK_PIN, LOW); sei(); } // Soft SPI send block void spiSendBlock(uint8_t token, const uint8_t *buf) { spiSend(token); for (uint16_t i = 0; i < 512; i++) spiSend(buf[i]); } #endif // SOFTWARE_SPI || FORCE_SOFT_SPI #endif // __AVR__
2301_81045437/Marlin
Marlin/src/HAL/AVR/HAL_SPI.cpp
C++
agpl-3.0
7,058
/** * Marlin 3D Printer Firmware * Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once #include <SPI.h> using MarlinSPI = SPIClass;
2301_81045437/Marlin
Marlin/src/HAL/AVR/MarlinSPI.h
C
agpl-3.0
922
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * MarlinSerial.cpp - Hardware serial library for Wiring * Copyright (c) 2006 Nicholas Zambetti. All right reserved. * * Modified 23 November 2006 by David A. Mellis * Modified 28 September 2010 by Mark Sproul * Modified 14 February 2016 by Andreas Hardtung (added tx buffer) * Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF) * Modified 10 June 2018 by Eduardo José Tagle (See #10991) * Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances */ #ifdef __AVR__ // Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.) #include "../../inc/MarlinConfig.h" #if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)) #include "MarlinSerial.h" #include "../../MarlinCore.h" #if ENABLED(DIRECT_STEPPING) #include "../../feature/direct_stepping.h" #endif template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0, 0, { 0 } }; template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 }; template<typename Cfg> bool MarlinSerial<Cfg>::_written = false; template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR; template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0; template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0; template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0; template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0; // A SW memory barrier, to ensure GCC does not overoptimize loops #define sw_barrier() asm volatile("": : :"memory"); #include "../../feature/e_parser.h" // "Atomically" read the RX head index value without disabling interrupts: // This MUST be called with RX interrupts enabled, and CAN'T be called // from the RX ISR itself! template<typename Cfg> FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_head() { if (Cfg::RX_SIZE > 256) { // Keep reading until 2 consecutive reads return the same value, // meaning there was no update in-between caused by an interrupt. // This works because serial RX interrupts happen at a slower rate // than successive reads of a variable, so 2 consecutive reads with // the same value means no interrupt updated it. ring_buffer_pos_t vold, vnew = rx_buffer.head; sw_barrier(); do { vold = vnew; vnew = rx_buffer.head; sw_barrier(); } while (vold != vnew); return vnew; } else { // With an 8bit index, reads are always atomic. No need for special handling return rx_buffer.head; } } template<typename Cfg> volatile bool MarlinSerial<Cfg>::rx_tail_value_not_stable = false; template<typename Cfg> volatile uint16_t MarlinSerial<Cfg>::rx_tail_value_backup = 0; // Set RX tail index, taking into account the RX ISR could interrupt // the write to this variable in the middle - So a backup strategy // is used to ensure reads of the correct values. // -Must NOT be called from the RX ISR - template<typename Cfg> FORCE_INLINE void MarlinSerial<Cfg>::atomic_set_rx_tail(typename MarlinSerial<Cfg>::ring_buffer_pos_t value) { if (Cfg::RX_SIZE > 256) { // Store the new value in the backup rx_tail_value_backup = value; sw_barrier(); // Flag we are about to change the true value rx_tail_value_not_stable = true; sw_barrier(); // Store the new value rx_buffer.tail = value; sw_barrier(); // Signal the new value is completely stored into the value rx_tail_value_not_stable = false; sw_barrier(); } else rx_buffer.tail = value; } // Get the RX tail index, taking into account the read could be // interrupting in the middle of the update of that index value // -Called from the RX ISR - template<typename Cfg> FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_tail() { if (Cfg::RX_SIZE > 256) { // If the true index is being modified, return the backup value if (rx_tail_value_not_stable) return rx_tail_value_backup; } // The true index is stable, return it return rx_buffer.tail; } // (called with RX interrupts disabled) template<typename Cfg> FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() { static EmergencyParser::State emergency_state; // = EP_RESET // This must read the R_UCSRA register before reading the received byte to detect error causes if (Cfg::DROPPED_RX && B_DOR && !++rx_dropped_bytes) --rx_dropped_bytes; if (Cfg::RX_OVERRUNS && B_DOR && !++rx_buffer_overruns) --rx_buffer_overruns; if (Cfg::RX_FRAMING_ERRORS && B_FE && !++rx_framing_errors) --rx_framing_errors; // Read the character from the USART uint8_t c = R_UDR; #if ENABLED(DIRECT_STEPPING) if (page_manager.maybe_store_rxd_char(c)) return; #endif // Get the tail - Nothing can alter its value while this ISR is executing, but there's // a chance that this ISR interrupted the main process while it was updating the index. // The backup mechanism ensures the correct value is always returned. const ring_buffer_pos_t t = atomic_read_rx_tail(); // Get the head pointer - This ISR is the only one that modifies its value, so it's safe to read here ring_buffer_pos_t h = rx_buffer.head; // Get the next element ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the RX FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; if (Cfg::MAX_RX_QUEUED) { // Calculate count of bytes stored into the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Keep track of the maximum count of enqueued bytes NOLESS(rx_max_enqueued, rx_count); } if (Cfg::XONOFF) { // If the last char that was sent was an XON if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { // Bytes stored into the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // If over 12.5% of RX buffer capacity, send XOFF before running out of // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react // and stop sending bytes. This translates to 13mS propagation time. if (rx_count >= (Cfg::RX_SIZE) / 8) { // At this point, definitely no TX interrupt was executing, since the TX ISR can't be preempted. // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens // to be in the middle of trying to disable the RX interrupt in the main program, eventually the // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure // the sending of the XOFF char is to send it HERE AND NOW. // About to send the XOFF char xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; // Wait until the TX register becomes empty and send it - Here there could be a problem // - While waiting for the TX register to empty, the RX register could receive a new // character. This must also handle that situation! while (!B_UDRE) { if (B_RXC) { // A char arrived while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART c = R_UDR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; } sw_barrier(); } R_UDR = XOFF_CHAR; // Clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written B_TXC = 1; // At this point there could be a race condition between the write() function // and this sending of the XOFF char. This interrupt could happen between the // wait to be empty TX buffer loop and the actual write of the character. Since // the TX buffer is full because it's sending the XOFF char, the only way to be // sure the write() function will succeed is to wait for the XOFF char to be // completely sent. Since an extra character could be received during the wait // it must also be handled! while (!B_UDRE) { if (B_RXC) { // A char arrived while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART c = R_UDR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; } sw_barrier(); } // At this point everything is ready. The write() function won't // have any issues writing to the UART TX register if it needs to! } } } // Store the new head value - The main loop will retry until the value is stable rx_buffer.head = h; } // (called with TX irqs disabled) template<typename Cfg> FORCE_INLINE void MarlinSerial<Cfg>::_tx_udr_empty_irq() { if (Cfg::TX_SIZE > 0) { // Read positions uint8_t t = tx_buffer.tail; const uint8_t h = tx_buffer.head; if (Cfg::XONOFF) { // If an XON char is pending to be sent, do it now if (xon_xoff_state == XON_CHAR) { // Send the character R_UDR = XON_CHAR; // clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written B_TXC = 1; // Remember we sent it. xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; // If nothing else to transmit, just disable TX interrupts. if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) return; } } // If nothing to transmit, just disable TX interrupts. This could // happen as the result of the non atomicity of the disabling of RX // interrupts that could end reenabling TX interrupts as a side effect. if (h == t) { B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) return; } // There is something to TX, Send the next byte const uint8_t c = tx_buffer.buffer[t]; t = (t + 1) & (Cfg::TX_SIZE - 1); R_UDR = c; tx_buffer.tail = t; // Clear the TXC bit (by writing a one to its bit location). // Ensures flush() won't return until the bytes are actually written/ B_TXC = 1; // Disable interrupts if there is nothing to transmit following this byte if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) } } // Public Methods template<typename Cfg> void MarlinSerial<Cfg>::begin(const long baud) { uint16_t baud_setting; bool useU2X = true; #if F_CPU == 16000000UL && SERIAL_PORT == 0 // Hard-coded exception for compatibility with the bootloader shipped // with the Duemilanove and previous boards, and the firmware on the // 8U2 on the Uno and Mega 2560. if (baud == 57600) useU2X = false; #endif R_UCSRA = 0; if (useU2X) { B_U2X = 1; baud_setting = (F_CPU / 4 / baud - 1) / 2; } else baud_setting = (F_CPU / 8 / baud - 1) / 2; // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register) R_UBRRH = baud_setting >> 8; R_UBRRL = baud_setting; B_RXEN = 1; B_TXEN = 1; B_RXCIE = 1; if (Cfg::TX_SIZE > 0) B_UDRIE = 0; _written = false; } template<typename Cfg> void MarlinSerial<Cfg>::end() { B_RXEN = 0; B_TXEN = 0; B_RXCIE = 0; B_UDRIE = 0; } template<typename Cfg> int MarlinSerial<Cfg>::peek() { const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail; return h == t ? -1 : rx_buffer.buffer[t]; } template<typename Cfg> int MarlinSerial<Cfg>::read() { const ring_buffer_pos_t h = atomic_read_rx_head(); // Read the tail. Main thread owns it, so it is safe to directly read it ring_buffer_pos_t t = rx_buffer.tail; // If nothing to read, return now if (h == t) return -1; // Get the next char const int v = rx_buffer.buffer[t]; t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1); // Advance tail - Making sure the RX ISR will always get an stable value, even // if it interrupts the writing of the value of that variable in the middle. atomic_set_rx_tail(t); if (Cfg::XONOFF) { // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { // Get count of bytes in the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); if (rx_count < (Cfg::RX_SIZE) / 10) { if (Cfg::TX_SIZE > 0) { // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX ISR. Non atomic, but it will eventually enable them B_UDRIE = 1; } else { // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!B_UDRE) sw_barrier(); R_UDR = XON_CHAR; } } } } return v; } template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available() { const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail; return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1); } template<typename Cfg> void MarlinSerial<Cfg>::flush() { // Set the tail to the head: // - Read the RX head index in a safe way. (See atomic_read_rx_head.) // - Set the tail, making sure the RX ISR will always get a stable value, even // if it interrupts the writing of the value of that variable in the middle. atomic_set_rx_tail(atomic_read_rx_head()); if (Cfg::XONOFF) { // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if (Cfg::TX_SIZE > 0) { // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX ISR. Non atomic, but it will eventually enable it. B_UDRIE = 1; } else { // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!B_UDRE) sw_barrier(); R_UDR = XON_CHAR; } } } } template<typename Cfg> void MarlinSerial<Cfg>::write(const uint8_t c) { if (Cfg::TX_SIZE == 0) { _written = true; while (!B_UDRE) sw_barrier(); R_UDR = c; } else { _written = true; // If the TX interrupts are disabled and the data register // is empty, just write the byte to the data register and // be done. This shortcut helps significantly improve the // effective datarate at high (>500kbit/s) bitrates, where // interrupt overhead becomes a slowdown. // Yes, there is a race condition between the sending of the // XOFF char at the RX ISR, but it is properly handled there if (!B_UDRIE && B_UDRE) { R_UDR = c; // clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written B_TXC = 1; return; } const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1); // If global interrupts are disabled (as the result of being called from an ISR)... if (!hal.isr_state()) { // Make room by polling if it is possible to transmit, and do so! while (i == tx_buffer.tail) { // If we can transmit another byte, do it. if (B_UDRE) _tx_udr_empty_irq(); // Make sure compiler rereads tx_buffer.tail sw_barrier(); } } else { // Interrupts are enabled, just wait until there is space while (i == tx_buffer.tail) sw_barrier(); } // Store new char. head is always safe to move tx_buffer.buffer[tx_buffer.head] = c; tx_buffer.head = i; // Enable TX ISR - Non atomic, but it will eventually enable TX ISR B_UDRIE = 1; } } template<typename Cfg> void MarlinSerial<Cfg>::flushTX() { if (Cfg::TX_SIZE == 0) { // No bytes written, no need to flush. This special case is needed since there's // no way to force the TXC (transmit complete) bit to 1 during initialization. if (!_written) return; // Wait until everything was transmitted while (!B_TXC) sw_barrier(); // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } else { // No bytes written, no need to flush. This special case is needed since there's // no way to force the TXC (transmit complete) bit to 1 during initialization. if (!_written) return; // If global interrupts are disabled (as the result of being called from an ISR)... if (!hal.isr_state()) { // Wait until everything was transmitted - We must do polling, as interrupts are disabled while (tx_buffer.head != tx_buffer.tail || !B_TXC) { // If there is more space, send an extra character if (B_UDRE) _tx_udr_empty_irq(); sw_barrier(); } } else { // Wait until everything was transmitted while (tx_buffer.head != tx_buffer.tail || !B_TXC) sw_barrier(); } // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } } // Hookup ISR handlers ISR(SERIAL_REGNAME(USART, SERIAL_PORT, _RX_vect)) { MarlinSerial<MarlinSerialCfg<SERIAL_PORT>>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, SERIAL_PORT, _UDRE_vect)) { MarlinSerial<MarlinSerialCfg<SERIAL_PORT>>::_tx_udr_empty_irq(); } // Because of the template definition above, it's required to instantiate the template to have all methods generated template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT> >; MSerialT1 customizedSerial1(MSerialT1::HasEmergencyParser); #ifdef SERIAL_PORT_2 // Hookup ISR handlers ISR(SERIAL_REGNAME(USART, SERIAL_PORT_2, _RX_vect)) { MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, SERIAL_PORT_2, _UDRE_vect)) { MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>>::_tx_udr_empty_irq(); } template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> >; MSerialT2 customizedSerial2(MSerialT2::HasEmergencyParser); #endif // SERIAL_PORT_2 #ifdef SERIAL_PORT_3 // Hookup ISR handlers ISR(SERIAL_REGNAME(USART, SERIAL_PORT_3, _RX_vect)) { MarlinSerial<MarlinSerialCfg<SERIAL_PORT_3>>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, SERIAL_PORT_3, _UDRE_vect)) { MarlinSerial<MarlinSerialCfg<SERIAL_PORT_3>>::_tx_udr_empty_irq(); } template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_3> >; MSerialT3 customizedSerial3(MSerialT3::HasEmergencyParser); #endif // SERIAL_PORT_3 #ifdef MMU2_SERIAL_PORT ISR(SERIAL_REGNAME(USART, MMU2_SERIAL_PORT, _RX_vect)) { MarlinSerial<MMU2SerialCfg<MMU2_SERIAL_PORT>>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, MMU2_SERIAL_PORT, _UDRE_vect)) { MarlinSerial<MMU2SerialCfg<MMU2_SERIAL_PORT>>::_tx_udr_empty_irq(); } template class MarlinSerial< MMU2SerialCfg<MMU2_SERIAL_PORT> >; MSerialMMU2 mmuSerial(MSerialMMU2::HasEmergencyParser); #endif // MMU2_SERIAL_PORT #ifdef LCD_SERIAL_PORT ISR(SERIAL_REGNAME(USART, LCD_SERIAL_PORT, _RX_vect)) { MarlinSerial<LCDSerialCfg<LCD_SERIAL_PORT>>::store_rxd_char(); } ISR(SERIAL_REGNAME(USART, LCD_SERIAL_PORT, _UDRE_vect)) { MarlinSerial<LCDSerialCfg<LCD_SERIAL_PORT>>::_tx_udr_empty_irq(); } template class MarlinSerial< LCDSerialCfg<LCD_SERIAL_PORT> >; MSerialLCD lcdSerial(MSerialLCD::HasEmergencyParser); #if HAS_DGUS_LCD template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::get_tx_buffer_free() { const ring_buffer_pos_t t = tx_buffer.tail, // next byte to send. h = tx_buffer.head; // next pos for queue. int ret = t - h - 1; if (ret < 0) ret += Cfg::TX_SIZE + 1; return ret; } #endif #endif // LCD_SERIAL_PORT #endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H) // For AT90USB targets use the UART for BT interfacing #if defined(USBCON) && ENABLED(BLUETOOTH) MSerialBT bluetoothSerial(false); #endif #endif // __AVR__
2301_81045437/Marlin
Marlin/src/HAL/AVR/MarlinSerial.cpp
C++
agpl-3.0
22,907
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * MarlinSerial.h - Hardware serial library for Wiring * Copyright (c) 2006 Nicholas Zambetti. All right reserved. * * Modified 28 September 2010 by Mark Sproul * Modified 14 February 2016 by Andreas Hardtung (added tx buffer) * Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF) * Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances */ #include <WString.h> #include "../../inc/MarlinConfigPre.h" #include "../../core/types.h" #include "../../core/serial_hook.h" #ifndef USBCON // The presence of the UBRRH register is used to detect a UART. #define UART_PRESENT(port) ((port == 0 && (defined(UBRRH) || defined(UBRR0H))) || \ (port == 1 && defined(UBRR1H)) || (port == 2 && defined(UBRR2H)) || \ (port == 3 && defined(UBRR3H))) // These are macros to build serial port register names for the selected SERIAL_PORT (C preprocessor // requires two levels of indirection to expand macro values properly) #define SERIAL_REGNAME(registerbase,number,suffix) _SERIAL_REGNAME(registerbase,number,suffix) #if SERIAL_PORT == 0 && (!defined(UBRR0H) || !defined(UDR0)) // use un-numbered registers if necessary #define _SERIAL_REGNAME(registerbase,number,suffix) registerbase##suffix #else #define _SERIAL_REGNAME(registerbase,number,suffix) registerbase##number##suffix #endif // Registers used by MarlinSerial class (expanded depending on selected serial port) // Templated 8bit register (generic) #define UART_REGISTER_DECL_BASE(registerbase, suffix) \ template<int portNr> struct R_##registerbase##x##suffix {} // Templated 8bit register (specialization for each port) #define UART_REGISTER_DECL(port, registerbase, suffix) \ template<> struct R_##registerbase##x##suffix<port> { \ constexpr R_##registerbase##x##suffix(int) {} \ FORCE_INLINE void operator=(uint8_t newVal) const { SERIAL_REGNAME(registerbase,port,suffix) = newVal; } \ FORCE_INLINE operator uint8_t() const { return SERIAL_REGNAME(registerbase,port,suffix); } \ } // Templated 1bit register (generic) #define UART_BIT_DECL_BASE(registerbase, suffix, bit) \ template<int portNr>struct B_##bit##x {} // Templated 1bit register (specialization for each port) #define UART_BIT_DECL(port, registerbase, suffix, bit) \ template<> struct B_##bit##x<port> { \ constexpr B_##bit##x(int) {} \ FORCE_INLINE void operator=(int newVal) const { \ if (newVal) \ SBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \ else \ CBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \ } \ FORCE_INLINE operator bool() const { return TEST(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); } \ } #define UART_DECL_BASE() \ UART_REGISTER_DECL_BASE(UCSR,A);\ UART_REGISTER_DECL_BASE(UDR,);\ UART_REGISTER_DECL_BASE(UBRR,H);\ UART_REGISTER_DECL_BASE(UBRR,L);\ UART_BIT_DECL_BASE(UCSR,B,RXEN);\ UART_BIT_DECL_BASE(UCSR,B,TXEN);\ UART_BIT_DECL_BASE(UCSR,A,TXC);\ UART_BIT_DECL_BASE(UCSR,B,RXCIE);\ UART_BIT_DECL_BASE(UCSR,A,UDRE);\ UART_BIT_DECL_BASE(UCSR,A,FE);\ UART_BIT_DECL_BASE(UCSR,A,DOR);\ UART_BIT_DECL_BASE(UCSR,B,UDRIE);\ UART_BIT_DECL_BASE(UCSR,A,RXC);\ UART_BIT_DECL_BASE(UCSR,A,U2X) #define UART_DECL(port) \ UART_REGISTER_DECL(port,UCSR,A);\ UART_REGISTER_DECL(port,UDR,);\ UART_REGISTER_DECL(port,UBRR,H);\ UART_REGISTER_DECL(port,UBRR,L);\ UART_BIT_DECL(port,UCSR,B,RXEN);\ UART_BIT_DECL(port,UCSR,B,TXEN);\ UART_BIT_DECL(port,UCSR,A,TXC);\ UART_BIT_DECL(port,UCSR,B,RXCIE);\ UART_BIT_DECL(port,UCSR,A,UDRE);\ UART_BIT_DECL(port,UCSR,A,FE);\ UART_BIT_DECL(port,UCSR,A,DOR);\ UART_BIT_DECL(port,UCSR,B,UDRIE);\ UART_BIT_DECL(port,UCSR,A,RXC);\ UART_BIT_DECL(port,UCSR,A,U2X) // Declare empty templates UART_DECL_BASE(); // And all the specializations for each possible serial port #if UART_PRESENT(0) UART_DECL(0); #endif #if UART_PRESENT(1) UART_DECL(1); #endif #if UART_PRESENT(2) UART_DECL(2); #endif #if UART_PRESENT(3) UART_DECL(3); #endif #define BYTE 0 template<typename Cfg> class MarlinSerial { protected: // Registers static constexpr R_UCSRxA<Cfg::PORT> R_UCSRA = 0; static constexpr R_UDRx<Cfg::PORT> R_UDR = 0; static constexpr R_UBRRxH<Cfg::PORT> R_UBRRH = 0; static constexpr R_UBRRxL<Cfg::PORT> R_UBRRL = 0; // Bits static constexpr B_RXENx<Cfg::PORT> B_RXEN = 0; static constexpr B_TXENx<Cfg::PORT> B_TXEN = 0; static constexpr B_TXCx<Cfg::PORT> B_TXC = 0; static constexpr B_RXCIEx<Cfg::PORT> B_RXCIE = 0; static constexpr B_UDREx<Cfg::PORT> B_UDRE = 0; static constexpr B_FEx<Cfg::PORT> B_FE = 0; static constexpr B_DORx<Cfg::PORT> B_DOR = 0; static constexpr B_UDRIEx<Cfg::PORT> B_UDRIE = 0; static constexpr B_RXCx<Cfg::PORT> B_RXC = 0; static constexpr B_U2Xx<Cfg::PORT> B_U2X = 0; // Base size of type on buffer size typedef uvalue_t(Cfg::RX_SIZE - 1) ring_buffer_pos_t; struct ring_buffer_r { volatile ring_buffer_pos_t head, tail; unsigned char buffer[Cfg::RX_SIZE]; }; struct ring_buffer_t { volatile uint8_t head, tail; unsigned char buffer[Cfg::TX_SIZE]; }; static ring_buffer_r rx_buffer; static ring_buffer_t tx_buffer; static bool _written; static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send // XON / XOFF character definitions static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19; static uint8_t xon_xoff_state, rx_dropped_bytes, rx_buffer_overruns, rx_framing_errors; static ring_buffer_pos_t rx_max_enqueued; FORCE_INLINE static ring_buffer_pos_t atomic_read_rx_head(); static volatile bool rx_tail_value_not_stable; static volatile uint16_t rx_tail_value_backup; FORCE_INLINE static void atomic_set_rx_tail(ring_buffer_pos_t value); FORCE_INLINE static ring_buffer_pos_t atomic_read_rx_tail(); public: FORCE_INLINE static void store_rxd_char(); FORCE_INLINE static void _tx_udr_empty_irq(); public: static void begin(const long); static void end(); static int peek(); static int read(); static void flush(); static ring_buffer_pos_t available(); static void write(const uint8_t c); static void flushTX(); #if HAS_DGUS_LCD static ring_buffer_pos_t get_tx_buffer_free(); #endif enum { HasEmergencyParser = Cfg::EMERGENCYPARSER }; static bool emergency_parser_enabled() { return Cfg::EMERGENCYPARSER; } FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; } FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; } FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; } FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; } }; template <uint8_t serial> struct MarlinSerialCfg { static constexpr int PORT = serial; static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE; static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE; static constexpr bool XONOFF = ENABLED(SERIAL_XON_XOFF); static constexpr bool EMERGENCYPARSER = ENABLED(EMERGENCY_PARSER); static constexpr bool DROPPED_RX = ENABLED(SERIAL_STATS_DROPPED_RX); static constexpr bool RX_OVERRUNS = ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS); static constexpr bool RX_FRAMING_ERRORS = ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS); static constexpr bool MAX_RX_QUEUED = ENABLED(SERIAL_STATS_MAX_RX_QUEUED); }; typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT> > > MSerialT1; extern MSerialT1 customizedSerial1; #ifdef SERIAL_PORT_2 typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> > > MSerialT2; extern MSerialT2 customizedSerial2; #endif #ifdef SERIAL_PORT_3 typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT_3> > > MSerialT3; extern MSerialT3 customizedSerial3; #endif #endif // !USBCON #ifdef MMU2_SERIAL_PORT template <uint8_t serial> struct MMU2SerialCfg { static constexpr int PORT = serial; static constexpr unsigned int RX_SIZE = 32; static constexpr unsigned int TX_SIZE = 32; static constexpr bool XONOFF = false; static constexpr bool EMERGENCYPARSER = false; static constexpr bool DROPPED_RX = false; static constexpr bool RX_FRAMING_ERRORS = false; static constexpr bool MAX_RX_QUEUED = false; static constexpr bool RX_OVERRUNS = false; }; typedef Serial1Class< MarlinSerial< MMU2SerialCfg<MMU2_SERIAL_PORT> > > MSerialMMU2; extern MSerialMMU2 mmuSerial; #endif #ifdef LCD_SERIAL_PORT template <uint8_t serial> struct LCDSerialCfg { static constexpr int PORT = serial; static constexpr unsigned int RX_SIZE = TERN(HAS_DGUS_LCD, DGUS_RX_BUFFER_SIZE, 64); static constexpr unsigned int TX_SIZE = TERN(HAS_DGUS_LCD, DGUS_TX_BUFFER_SIZE, 128); static constexpr bool XONOFF = false; static constexpr bool EMERGENCYPARSER = ENABLED(EMERGENCY_PARSER); static constexpr bool DROPPED_RX = false; static constexpr bool RX_FRAMING_ERRORS = false; static constexpr bool MAX_RX_QUEUED = false; static constexpr bool RX_OVERRUNS = ALL(HAS_DGUS_LCD, SERIAL_STATS_RX_BUFFER_OVERRUNS); }; typedef Serial1Class< MarlinSerial< LCDSerialCfg<LCD_SERIAL_PORT> > > MSerialLCD; extern MSerialLCD lcdSerial; #endif // Use the UART for Bluetooth in AT90USB configurations #if defined(USBCON) && ENABLED(BLUETOOTH) typedef Serial1Class<HardwareSerial> MSerialBT; extern MSerialBT bluetoothSerial; #endif
2301_81045437/Marlin
Marlin/src/HAL/AVR/MarlinSerial.h
C++
agpl-3.0
11,112
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2 * Copyright (c) 2009 Michael Margolis. All right reserved. */ /** * A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method. * The servos are pulsed in the background using the value most recently written using the write() method * * Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached. * Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four. * * The methods are: * * Servo - Class for manipulating servo motors connected to Arduino pins. * * attach(pin) - Attach a servo motor to an i/o pin. * attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds * Default min is 544, max is 2400 * * write() - Set the servo angle in degrees. (Invalid angles —over MIN_PULSE_WIDTH— are treated as µs.) * writeMicroseconds() - Set the servo pulse width in microseconds. * move(pin, angle) - Sequence of attach(pin), write(angle), safe_delay(servo_delay[servoIndex]). * With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after servo_delay[servoIndex]. * read() - Get the last-written servo pulse width as an angle between 0 and 180. * readMicroseconds() - Get the last-written servo pulse width in microseconds. * attached() - Return true if a servo is attached. * detach() - Stop an attached servo from pulsing its i/o pin. */ #ifdef __AVR__ #include "../../inc/MarlinConfig.h" #if HAS_SERVOS #include <avr/interrupt.h> #include "../shared/servo.h" #include "../shared/servo_private.h" static volatile int8_t Channel[_Nbr_16timers]; // counter for the servo being pulsed for each timer (or -1 if refresh interval) /************ static functions common to all instances ***********************/ static inline void handle_interrupts(const timer16_Sequence_t timer, volatile uint16_t* TCNTn, volatile uint16_t* OCRnA) { int8_t cho = Channel[timer]; // Handle the prior Channel[timer] first if (cho < 0) // Channel -1 indicates the refresh interval completed... *TCNTn = 0; // ...so reset the timer else if (SERVO_INDEX(timer, cho) < ServoCount) // prior channel handled? extDigitalWrite(SERVO(timer, cho).Pin.nbr, LOW); // pulse the prior channel LOW Channel[timer] = ++cho; // Handle the next channel (or 0) if (cho < SERVOS_PER_TIMER && SERVO_INDEX(timer, cho) < ServoCount) { *OCRnA = *TCNTn + SERVO(timer, cho).ticks; // set compare to current ticks plus duration if (SERVO(timer, cho).Pin.isActive) // activated? extDigitalWrite(SERVO(timer, cho).Pin.nbr, HIGH); // yes: pulse HIGH } else { // finished all channels so wait for the refresh period to expire before starting over const unsigned int cval = ((unsigned)*TCNTn) + 32 / (SERVO_TIMER_PRESCALER), // allow 32 cycles to ensure the next OCR1A not missed ival = (unsigned int)usToTicks(REFRESH_INTERVAL); // at least REFRESH_INTERVAL has elapsed *OCRnA = max(cval, ival); Channel[timer] = -1; // reset the timer counter to 0 on the next call } } #ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform // Interrupt handlers for Arduino #ifdef _useTimer1 SIGNAL(TIMER1_COMPA_vect) { handle_interrupts(_timer1, &TCNT1, &OCR1A); } #endif #ifdef _useTimer3 SIGNAL(TIMER3_COMPA_vect) { handle_interrupts(_timer3, &TCNT3, &OCR3A); } #endif #ifdef _useTimer4 SIGNAL(TIMER4_COMPA_vect) { handle_interrupts(_timer4, &TCNT4, &OCR4A); } #endif #ifdef _useTimer5 SIGNAL(TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); } #endif #else // WIRING // Interrupt handlers for Wiring #ifdef _useTimer1 void Timer1Service() { handle_interrupts(_timer1, &TCNT1, &OCR1A); } #endif #ifdef _useTimer3 void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); } #endif #endif // WIRING /****************** end of static functions ******************************/ void initISR(const timer16_Sequence_t timer_index) { switch (timer_index) { default: break; #ifdef _useTimer1 case _timer1: TCCR1A = 0; // normal counting mode TCCR1B = _BV(CS11); // set prescaler of 8 TCNT1 = 0; // clear the timer count #if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__) SBI(TIFR, OCF1A); // clear any pending interrupts; SBI(TIMSK, OCIE1A); // enable the output compare interrupt #else // here if not ATmega8 or ATmega128 SBI(TIFR1, OCF1A); // clear any pending interrupts; SBI(TIMSK1, OCIE1A); // enable the output compare interrupt #endif #ifdef WIRING timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service); #endif break; #endif #ifdef _useTimer3 case _timer3: TCCR3A = 0; // normal counting mode TCCR3B = _BV(CS31); // set prescaler of 8 TCNT3 = 0; // clear the timer count #ifdef __AVR_ATmega128__ SBI(TIFR, OCF3A); // clear any pending interrupts; SBI(ETIMSK, OCIE3A); // enable the output compare interrupt #else SBI(TIFR3, OCF3A); // clear any pending interrupts; SBI(TIMSK3, OCIE3A); // enable the output compare interrupt #endif #ifdef WIRING timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only #endif break; #endif #ifdef _useTimer4 case _timer4: TCCR4A = 0; // normal counting mode TCCR4B = _BV(CS41); // set prescaler of 8 TCNT4 = 0; // clear the timer count TIFR4 = _BV(OCF4A); // clear any pending interrupts; TIMSK4 = _BV(OCIE4A); // enable the output compare interrupt break; #endif #ifdef _useTimer5 case _timer5: TCCR5A = 0; // normal counting mode TCCR5B = _BV(CS51); // set prescaler of 8 TCNT5 = 0; // clear the timer count TIFR5 = _BV(OCF5A); // clear any pending interrupts; TIMSK5 = _BV(OCIE5A); // enable the output compare interrupt break; #endif } } void finISR(const timer16_Sequence_t timer_index) { // Disable use of the given timer #ifdef WIRING switch (timer_index) { default: break; case _timer1: CBI( #if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) TIMSK1 #else TIMSK #endif , OCIE1A // disable timer 1 output compare interrupt ); timerDetach(TIMER1OUTCOMPAREA_INT); break; case _timer3: CBI( #if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) TIMSK3 #else ETIMSK #endif , OCIE3A // disable the timer3 output compare A interrupt ); timerDetach(TIMER3OUTCOMPAREA_INT); break; } #else // !WIRING // For arduino - in future: call here to a currently undefined function to reset the timer UNUSED(timer_index); #endif } #endif // HAS_SERVOS #endif // __AVR__
2301_81045437/Marlin
Marlin/src/HAL/AVR/Servo.cpp
C++
agpl-3.0
8,736
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * ServoTimers.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2 * Copyright (c) 2009 Michael Margolis. All right reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** * Defines for 16 bit timers used with Servo library * * If _useTimerX is defined then TimerX is a 16 bit timer on the current board * timer16_Sequence_t enumerates the sequence that the timers should be allocated * _Nbr_16timers indicates how many 16 bit timers are available. */ /** * AVR Only definitions * -------------------- */ #define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays #define SERVO_TIMER_PRESCALER 8 // timer prescaler // Say which 16 bit timers can be used and in what order #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //#define _useTimer1 #define _useTimer4 #if NUM_SERVOS > SERVOS_PER_TIMER #define _useTimer3 #if !HAS_MOTOR_CURRENT_PWM && SERVOS > 2 * SERVOS_PER_TIMER #define _useTimer5 // Timer 5 is used for motor current PWM and can't be used for servos. #endif #endif #elif defined(__AVR_ATmega32U4__) #define _useTimer3 #elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__) #define _useTimer3 #elif defined(__AVR_ATmega128__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega2561__) #define _useTimer3 #else // everything else #endif typedef enum { #ifdef _useTimer1 _timer1, #endif #ifdef _useTimer3 _timer3, #endif #ifdef _useTimer4 _timer4, #endif #ifdef _useTimer5 _timer5, #endif _Nbr_16timers } timer16_Sequence_t;
2301_81045437/Marlin
Marlin/src/HAL/AVR/ServoTimers.h
C
agpl-3.0
3,230
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #ifdef __AVR__ #include "../../inc/MarlinConfig.h" #if ANY(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE) /** * PersistentStore for Arduino-style EEPROM interface * with implementations supplied by the framework. */ #include "../shared/eeprom_api.h" #ifndef MARLIN_EEPROM_SIZE #define MARLIN_EEPROM_SIZE size_t(E2END + 1) #endif size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE - eeprom_exclude_size; } bool PersistentStore::access_start() { return true; } bool PersistentStore::access_finish() { return true; } bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) { uint16_t written = 0; while (size--) { uint8_t * const p = (uint8_t * const)REAL_EEPROM_ADDR(pos); uint8_t v = *value; if (v != eeprom_read_byte(p)) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed! eeprom_write_byte(p, v); if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes if (eeprom_read_byte(p) != v) { SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE); return true; } } crc16(crc, &v, 1); pos++; value++; } return false; } bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) { do { const uint8_t c = eeprom_read_byte((uint8_t*)REAL_EEPROM_ADDR(pos)); if (writing) *value = c; crc16(crc, &c, 1); pos++; value++; } while (--size); return false; // always assume success for AVR's } #endif // EEPROM_SETTINGS || SD_FIRMWARE_UPDATE #endif // __AVR__
2301_81045437/Marlin
Marlin/src/HAL/AVR/eeprom.cpp
C++
agpl-3.0
2,484
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Endstop Interrupts * * Without endstop interrupts the endstop pins must be polled continually in * the temperature-ISR via endstops.update(), most of the time finding no change. * With this feature endstops.update() is called only when we know that at * least one endstop has changed state, saving valuable CPU cycles. * * This feature only works when all used endstop pins can generate either an * 'external interrupt' or a 'pin change interrupt'. * * Test whether pins issue interrupts on your board by flashing 'pin_interrupt_test.ino'. * (Located in Marlin/buildroot/share/pin_interrupt_test/pin_interrupt_test.ino) */ #include "../../module/endstops.h" #include <stdint.h> // One ISR for all EXT-Interrupts void endstop_ISR() { endstops.update(); } /** * Patch for pins_arduino.h (...\Arduino\hardware\arduino\avr\variants\mega\pins_arduino.h) * * These macros for the Arduino MEGA do not include the two connected pins on Port J (D14, D15). * So we extend them here because these are the normal pins for Y_MIN and Y_MAX on RAMPS. * There are more PCI-enabled processor pins on Port J, but they are not connected to Arduino MEGA. */ #if defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_AVR_MEGA) #define digitalPinHasPCICR(p) (WITHIN(p, 10, 15) || WITHIN(p, 50, 53) || WITHIN(p, 62, 69)) #undef digitalPinToPCICR #define digitalPinToPCICR(p) (digitalPinHasPCICR(p) ? (&PCICR) : nullptr) #undef digitalPinToPCICRbit #define digitalPinToPCICRbit(p) (WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? 0 : \ WITHIN(p, 14, 15) ? 1 : \ WITHIN(p, 62, 69) ? 2 : \ 0) #undef digitalPinToPCMSK #define digitalPinToPCMSK(p) (WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? (&PCMSK0) : \ WITHIN(p, 14, 15) ? (&PCMSK1) : \ WITHIN(p, 62, 69) ? (&PCMSK2) : \ nullptr) #undef digitalPinToPCMSKbit #define digitalPinToPCMSKbit(p) (WITHIN(p, 10, 13) ? ((p) - 6) : \ (p) == 14 || (p) == 51 ? 2 : \ (p) == 15 || (p) == 52 ? 1 : \ (p) == 50 ? 3 : \ (p) == 53 ? 0 : \ WITHIN(p, 62, 69) ? ((p) - 62) : \ 0) #elif defined(__AVR_ATmega164A__) || defined(__AVR_ATmega164P__) || defined(__AVR_ATmega324A__) || \ defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega324PB__) || \ defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284__) || \ defined(__AVR_ATmega1284P__) #define digitalPinHasPCICR(p) WITHIN(p, 0, NUM_DIGITAL_PINS) #else #error "Unsupported AVR variant!" #endif // Install Pin change interrupt for a pin. Can be called multiple times. void pciSetup(const int8_t pin) { if (digitalPinHasPCICR(pin)) { SBI(*digitalPinToPCMSK(pin), digitalPinToPCMSKbit(pin)); // enable pin SBI(PCIFR, digitalPinToPCICRbit(pin)); // clear any outstanding interrupt SBI(PCICR, digitalPinToPCICRbit(pin)); // enable interrupt for the group } } // Handlers for pin change interrupts #ifdef PCINT0_vect ISR(PCINT0_vect) { endstop_ISR(); } #endif #ifdef PCINT1_vect ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect)); #endif #ifdef PCINT2_vect ISR(PCINT2_vect, ISR_ALIASOF(PCINT0_vect)); #endif #ifdef PCINT3_vect ISR(PCINT3_vect, ISR_ALIASOF(PCINT0_vect)); #endif void setup_endstop_interrupts() { #define _ATTACH(P) attachInterrupt(digitalPinToInterrupt(P), endstop_ISR, CHANGE) #if USE_X_MAX #if (digitalPinToInterrupt(X_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(X_MAX_PIN); #else static_assert(digitalPinHasPCICR(X_MAX_PIN), "X_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(X_MAX_PIN); #endif #endif #if USE_X_MIN #if (digitalPinToInterrupt(X_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(X_MIN_PIN); #else static_assert(digitalPinHasPCICR(X_MIN_PIN), "X_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(X_MIN_PIN); #endif #endif #if USE_Y_MAX #if (digitalPinToInterrupt(Y_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(Y_MAX_PIN); #else static_assert(digitalPinHasPCICR(Y_MAX_PIN), "Y_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Y_MAX_PIN); #endif #endif #if USE_Y_MIN #if (digitalPinToInterrupt(Y_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(Y_MIN_PIN); #else static_assert(digitalPinHasPCICR(Y_MIN_PIN), "Y_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Y_MIN_PIN); #endif #endif #if USE_Z_MAX #if (digitalPinToInterrupt(Z_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z_MAX_PIN); #else static_assert(digitalPinHasPCICR(Z_MAX_PIN), "Z_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z_MAX_PIN); #endif #endif #if USE_Z_MIN #if (digitalPinToInterrupt(Z_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z_MIN_PIN); #else static_assert(digitalPinHasPCICR(Z_MIN_PIN), "Z_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z_MIN_PIN); #endif #endif #if USE_I_MAX #if (digitalPinToInterrupt(I_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(I_MAX_PIN); #else static_assert(digitalPinHasPCICR(I_MAX_PIN), "I_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(I_MAX_PIN); #endif #elif USE_I_MIN #if (digitalPinToInterrupt(I_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(I_MIN_PIN); #else static_assert(digitalPinHasPCICR(I_MIN_PIN), "I_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(I_MIN_PIN); #endif #endif #if USE_J_MAX #if (digitalPinToInterrupt(J_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(J_MAX_PIN); #else static_assert(digitalPinHasPCICR(J_MAX_PIN), "J_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(J_MAX_PIN); #endif #elif USE_J_MIN #if (digitalPinToInterrupt(J_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(J_MIN_PIN); #else static_assert(digitalPinHasPCICR(J_MIN_PIN), "J_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(J_MIN_PIN); #endif #endif #if USE_K_MAX #if (digitalPinToInterrupt(K_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(K_MAX_PIN); #else static_assert(digitalPinHasPCICR(K_MAX_PIN), "K_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(K_MAX_PIN); #endif #elif USE_K_MIN #if (digitalPinToInterrupt(K_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(K_MIN_PIN); #else static_assert(digitalPinHasPCICR(K_MIN_PIN), "K_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(K_MIN_PIN); #endif #endif #if USE_U_MAX #if (digitalPinToInterrupt(U_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(U_MAX_PIN); #else static_assert(digitalPinHasPCICR(U_MAX_PIN), "U_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(U_MAX_PIN); #endif #elif USE_U_MIN #if (digitalPinToInterrupt(U_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(U_MIN_PIN); #else static_assert(digitalPinHasPCICR(U_MIN_PIN), "U_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(U_MIN_PIN); #endif #endif #if USE_V_MAX #if (digitalPinToInterrupt(V_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(V_MAX_PIN); #else static_assert(digitalPinHasPCICR(V_MAX_PIN), "V_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(V_MAX_PIN); #endif #elif USE_V_MIN #if (digitalPinToInterrupt(V_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(V_MIN_PIN); #else static_assert(digitalPinHasPCICR(V_MIN_PIN), "V_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(V_MIN_PIN); #endif #endif #if USE_W_MAX #if (digitalPinToInterrupt(W_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(W_MAX_PIN); #else static_assert(digitalPinHasPCICR(W_MAX_PIN), "W_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(W_MAX_PIN); #endif #elif USE_W_MIN #if (digitalPinToInterrupt(W_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(W_MIN_PIN); #else static_assert(digitalPinHasPCICR(W_MIN_PIN), "W_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(W_MIN_PIN); #endif #endif #if USE_X2_MAX #if (digitalPinToInterrupt(X2_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(X2_MAX_PIN); #else static_assert(digitalPinHasPCICR(X2_MAX_PIN), "X2_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(X2_MAX_PIN); #endif #endif #if USE_X2_MIN #if (digitalPinToInterrupt(X2_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(X2_MIN_PIN); #else static_assert(digitalPinHasPCICR(X2_MIN_PIN), "X2_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(X2_MIN_PIN); #endif #endif #if USE_Y2_MAX #if (digitalPinToInterrupt(Y2_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(Y2_MAX_PIN); #else static_assert(digitalPinHasPCICR(Y2_MAX_PIN), "Y2_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Y2_MAX_PIN); #endif #endif #if USE_Y2_MIN #if (digitalPinToInterrupt(Y2_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(Y2_MIN_PIN); #else static_assert(digitalPinHasPCICR(Y2_MIN_PIN), "Y2_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Y2_MIN_PIN); #endif #endif #if USE_Z2_MAX #if (digitalPinToInterrupt(Z2_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z2_MAX_PIN); #else static_assert(digitalPinHasPCICR(Z2_MAX_PIN), "Z2_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z2_MAX_PIN); #endif #endif #if USE_Z2_MIN #if (digitalPinToInterrupt(Z2_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z2_MIN_PIN); #else static_assert(digitalPinHasPCICR(Z2_MIN_PIN), "Z2_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z2_MIN_PIN); #endif #endif #if USE_Z3_MAX #if (digitalPinToInterrupt(Z3_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z3_MAX_PIN); #else static_assert(digitalPinHasPCICR(Z3_MAX_PIN), "Z3_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z3_MAX_PIN); #endif #endif #if USE_Z3_MIN #if (digitalPinToInterrupt(Z3_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z3_MIN_PIN); #else static_assert(digitalPinHasPCICR(Z3_MIN_PIN), "Z3_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z3_MIN_PIN); #endif #endif #if USE_Z4_MAX #if (digitalPinToInterrupt(Z4_MAX_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z4_MAX_PIN); #else static_assert(digitalPinHasPCICR(Z4_MAX_PIN), "Z4_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z4_MAX_PIN); #endif #endif #if USE_Z4_MIN #if (digitalPinToInterrupt(Z4_MIN_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z4_MIN_PIN); #else static_assert(digitalPinHasPCICR(Z4_MIN_PIN), "Z4_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z4_MIN_PIN); #endif #endif #if USE_Z_MIN_PROBE #if (digitalPinToInterrupt(Z_MIN_PROBE_PIN) != NOT_AN_INTERRUPT) _ATTACH(Z_MIN_PROBE_PIN); #else static_assert(digitalPinHasPCICR(Z_MIN_PROBE_PIN), "Z_MIN_PROBE_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."); pciSetup(Z_MIN_PROBE_PIN); #endif #endif // If we arrive here without raising an assertion, each pin has either an EXT-interrupt or a PCI. }
2301_81045437/Marlin
Marlin/src/HAL/AVR/endstop_interrupts.h
C
agpl-3.0
13,497
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #ifdef __AVR__ #include "../../inc/MarlinConfig.h" //#define DEBUG_AVR_FAST_PWM #define DEBUG_OUT ENABLED(DEBUG_AVR_FAST_PWM) #include "../../core/debug_out.h" struct Timer { volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer volatile uint16_t* ICRn; // max 1 ICR register per timer uint8_t n; // the timer number [0->5] uint8_t q; // the timer output [0->2] (A->C) bool isPWM; // True if pin is a "hardware timer" bool isProtected; // True if timer is protected }; // Macros for the Timer structure #define _SET_WGMnQ(T, V) do{ \ *(T.TCCRnQ)[0] = (*(T.TCCRnQ)[0] & ~(0x3 << 0)) | (( int(V) & 0x3) << 0); \ *(T.TCCRnQ)[1] = (*(T.TCCRnQ)[1] & ~(0x3 << 3)) | (((int(V) >> 2) & 0x3) << 3); \ }while(0) // Set TCCR CS bits #define _SET_CSn(T, V) (*(T.TCCRnQ)[1] = (*(T.TCCRnQ[1]) & ~(0x7 << 0)) | ((int(V) & 0x7) << 0)) // Set TCCR COM bits #define _SET_COMnQ(T, Q, V) (*(T.TCCRnQ)[0] = (*(T.TCCRnQ)[0] & ~(0x3 << (6-2*(Q)))) | (int(V) << (6-2*(Q)))) // Set OCRnQ register #define _SET_OCRnQ(T, Q, V) (*(T.OCRnQ)[Q] = int(V) & 0xFFFF) // Set ICRn register (one per timer) #define _SET_ICRn(T, V) (*(T.ICRn) = int(V) & 0xFFFF) /** * Return a Timer struct describing a pin's timer. */ const Timer get_pwm_timer(const pin_t pin) { uint8_t q = 0; switch (digitalPinToTimer(pin)) { #ifdef TCCR0A IF_DISABLED(AVR_AT90USB1286_FAMILY, case TIMER0A:) #endif #ifdef TCCR1A case TIMER1A: case TIMER1B: #endif break; // Protect reserved timers (TIMER0 & TIMER1) #ifdef TCCR0A case TIMER0B: // Protected timer, but allow setting the duty cycle on OCR0B for pin D4 only return Timer({ { &TCCR0A, nullptr, nullptr }, { (uint16_t*)&OCR0A, (uint16_t*)&OCR0B, nullptr }, nullptr, 0, 1, true, true }); #endif #if HAS_TCCR2 case TIMER2: return Timer({ { &TCCR2, nullptr, nullptr }, { (uint16_t*)&OCR2, nullptr, nullptr }, nullptr, 2, 0, true, false }); #elif ENABLED(USE_OCR2A_AS_TOP) case TIMER2A: break; // Protect TIMER2A since its OCR is used by TIMER2B case TIMER2B: return Timer({ { &TCCR2A, &TCCR2B, nullptr }, { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr }, nullptr, 2, 1, true, false }); #elif defined(TCCR2A) case TIMER2B: ++q; case TIMER2A: return Timer({ { &TCCR2A, &TCCR2B, nullptr }, { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr }, nullptr, 2, q, true, false }); #endif #ifdef OCR3C case TIMER3C: ++q; case TIMER3B: ++q; case TIMER3A: return Timer({ { &TCCR3A, &TCCR3B, &TCCR3C }, { &OCR3A, &OCR3B, &OCR3C }, &ICR3, 3, q, true, false }); #elif defined(OCR3B) case TIMER3B: ++q; case TIMER3A: return Timer({ { &TCCR3A, &TCCR3B, nullptr }, { &OCR3A, &OCR3B, nullptr }, &ICR3, 3, q, true, false }); #endif #ifdef TCCR4A case TIMER4C: ++q; case TIMER4B: ++q; case TIMER4A: return Timer({ { &TCCR4A, &TCCR4B, &TCCR4C }, { &OCR4A, &OCR4B, &OCR4C }, &ICR4, 4, q, true, false }); #endif #ifdef TCCR5A case TIMER5C: ++q; case TIMER5B: ++q; case TIMER5A: return Timer({ { &TCCR5A, &TCCR5B, &TCCR5C }, { &OCR5A, &OCR5B, &OCR5C }, &ICR5, 5, q, true, false }); #endif } return Timer(); } void MarlinHAL::set_pwm_frequency(const pin_t pin, const uint16_t f_desired) { DEBUG_ECHOLNPGM("set_pwm_frequency(pin=", pin, ", freq=", f_desired, ")"); const Timer timer = get_pwm_timer(pin); if (timer.isProtected || !timer.isPWM) return; // Don't proceed if protected timer or not recognized const bool is_timer2 = timer.n == 2; const uint16_t maxtop = is_timer2 ? 0xFF : 0xFFFF; DEBUG_ECHOLNPGM("maxtop=", maxtop); uint16_t res = 0xFF; // resolution (TOP value) uint8_t j = CS_NONE; // prescaler index uint8_t wgm = WGM_PWM_PC_8; // waveform generation mode // Calculating the prescaler and resolution to use to achieve closest frequency if (f_desired != 0) { constexpr uint16_t prescaler[] = { 1, 8, (32), 64, (128), 256, 1024 }; // (*) are Timer 2 only uint16_t f = (F_CPU) / (uint32_t(maxtop) << 11) + 1; // Start with the lowest non-zero frequency achievable (for 16MHz, 1 or 31) DEBUG_ECHOLNPGM("f=", f); DEBUG_ECHOLNPGM("(prescaler loop)"); for (uint8_t i = 0; i < COUNT(prescaler); ++i) { // Loop through all prescaler values const uint32_t p = prescaler[i]; // Extend to 32 bits for calculations DEBUG_ECHOLNPGM("prescaler[", i, "]=", p); uint16_t res_fast_temp, res_pc_temp; if (is_timer2) { #if ENABLED(USE_OCR2A_AS_TOP) // No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP const uint16_t rft = (F_CPU) / (p * f_desired); res_fast_temp = rft - 1; res_pc_temp = rft / 2; DEBUG_ECHOLNPGM("(Timer2) res_fast_temp=", res_fast_temp, " res_pc_temp=", res_pc_temp); #else res_fast_temp = res_pc_temp = maxtop; DEBUG_ECHOLNPGM("(Timer2) res_fast_temp=", maxtop, " res_pc_temp=", maxtop); #endif } else { if (p == 32 || p == 128) continue; // Skip TIMER2 specific prescalers when not TIMER2 const uint16_t rft = (F_CPU) / (p * f_desired); DEBUG_ECHOLNPGM("(Not Timer 2) F_CPU=" STRINGIFY(F_CPU), " prescaler=", p, " f_desired=", f_desired); res_fast_temp = rft - 1; res_pc_temp = rft / 2; } LIMIT(res_fast_temp, 1U, maxtop); LIMIT(res_pc_temp, 1U, maxtop); // Calculate frequencies of test prescaler and resolution values const uint16_t f_fast_temp = (F_CPU) / (p * (1 + res_fast_temp)), f_pc_temp = (F_CPU) / ((p * res_pc_temp) << 1), f_diff = _MAX(f, f_desired) - _MIN(f, f_desired), f_fast_diff = _MAX(f_fast_temp, f_desired) - _MIN(f_fast_temp, f_desired), f_pc_diff = _MAX(f_pc_temp, f_desired) - _MIN(f_pc_temp, f_desired); DEBUG_ECHOLNPGM("f_fast_temp=", f_fast_temp, " f_pc_temp=", f_pc_temp, " f_diff=", f_diff, " f_fast_diff=", f_fast_diff, " f_pc_diff=", f_pc_diff); if (f_fast_diff < f_diff && f_fast_diff <= f_pc_diff) { // FAST values are closest to desired f // Set the Wave Generation Mode to FAST PWM wgm = is_timer2 ? uint8_t(TERN(USE_OCR2A_AS_TOP, WGM2_FAST_PWM_OCR2A, WGM2_FAST_PWM)) : uint8_t(WGM_FAST_PWM_ICRn); // Remember this combination f = f_fast_temp; res = res_fast_temp; j = i + 1; DEBUG_ECHOLNPGM("(FAST) updated f=", f); } else if (f_pc_diff < f_diff) { // PHASE CORRECT values are closes to desired f // Set the Wave Generation Mode to PWM PHASE CORRECT wgm = is_timer2 ? uint8_t(TERN(USE_OCR2A_AS_TOP, WGM2_PWM_PC_OCR2A, WGM2_PWM_PC)) : uint8_t(WGM_PWM_PC_ICRn); f = f_pc_temp; res = res_pc_temp; j = i + 1; DEBUG_ECHOLNPGM("(PHASE) updated f=", f); } } // prescaler loop } _SET_WGMnQ(timer, wgm); _SET_CSn(timer, j); if (is_timer2) { TERN_(USE_OCR2A_AS_TOP, _SET_OCRnQ(timer, 0, res)); // Set OCR2A value (TOP) = res } else _SET_ICRn(timer, res); // Set ICRn value (TOP) = res } void MarlinHAL::set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) { // If v is 0 or v_size (max), digitalWrite to LOW or HIGH. // Note that digitalWrite also disables PWM output for us (sets COM bit to 0) if (v == 0) digitalWrite(pin, invert); else if (v == v_size) digitalWrite(pin, !invert); else { const Timer timer = get_pwm_timer(pin); if (timer.isPWM) { if (timer.n == 0) { _SET_COMnQ(timer, timer.q, COM_CLEAR_SET); // Only allow a TIMER0B select... _SET_OCRnQ(timer, timer.q, v); // ...and OCR0B duty update. For output pin D4 no frequency changes are permitted. } else if (!timer.isProtected) { const uint16_t top = timer.n == 2 ? TERN(USE_OCR2A_AS_TOP, *timer.OCRnQ[0], 255) : *timer.ICRn; _SET_COMnQ(timer, SUM_TERN(HAS_TCCR2, timer.q, timer.q == 2), COM_CLEAR_SET + invert); // COM20 is on bit 4 of TCCR2, so +1 for q==2 _SET_OCRnQ(timer, timer.q, uint16_t(uint32_t(v) * top / v_size)); // Scale 8/16-bit v to top value } } else digitalWrite(pin, v < v_size / 2 ? LOW : HIGH); } } void MarlinHAL::init_pwm_timers() { // Init some timer frequencies to a default 1KHz const pin_t pwm_pin[] = { #ifdef __AVR_ATmega2560__ 10, 5, 6, 46 #elif defined(__AVR_ATmega1280__) 12, 31 #elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega1284__) 15, 6 #elif defined(__AVR_AT90USB1286__) || defined(__AVR_mega64) || defined(__AVR_mega128) 16, 24 #endif }; for (uint8_t i = 0; i < COUNT(pwm_pin); ++i) set_pwm_frequency(pwm_pin[i], 1000); } #endif // __AVR__
2301_81045437/Marlin
Marlin/src/HAL/AVR/fast_pwm.cpp
C++
agpl-3.0
9,997
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Pin mapping for the 1280 and 2560 * * Hardware Pin : 02 03 06 07 01 05 15 16 17 18 23 24 25 26 64 63 13 12 46 45 44 43 78 77 76 75 74 73 72 71 60 59 58 57 56 55 54 53 50 70 52 51 42 41 40 39 38 37 36 35 22 21 20 19 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 | 04 08 09 10 11 14 27 28 29 30 31 32 33 34 47 48 49 61 62 65 66 67 68 69 79 80 81 98 99 100 * Port : E0 E1 E4 E5 G5 E3 H3 H4 H5 H6 B4 B5 B6 B7 J1 J0 H1 H0 D3 D2 D1 D0 A0 A1 A2 A3 A4 A5 A6 A7 C7 C6 C5 C4 C3 C2 C1 C0 D7 G2 G1 G0 L7 L6 L5 L4 L3 L2 L1 L0 B3 B2 B1 B0 F0 F1 F2 F3 F4 F5 F6 F7 K0 K1 K2 K3 K4 K5 K6 K7 | E2 E6 E7 xx xx H2 H7 G3 G4 xx xx xx xx xx D4 D5 D6 xx xx J2 J3 J4 J5 J6 J7 xx xx xx xx xx * Logical Pin : 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | 78 79 80 xx xx 84 85 71 70 xx xx xx xx xx 81 82 83 xx xx 72 73 75 76 77 74 xx xx xx xx xx * Analog Input : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * * Arduino Pin Layout video: https://youtu.be/rIqeVCX09FA * AVR alternate pin function overview video: https://youtu.be/1yd8wuI5Plg */ #include "../fastio.h" // UART #define RXD 0 #define TXD 1 // SPI #define MISO 50 #define MOSI 51 #define SCK 52 #define SS 53 // TWI (I2C) #define SCL 21 #define SDA 20 // Timers and PWM #define OC0A 13 #define OC0B 4 #define OC1A 11 #define OC1B 12 #define OC2A 10 #define OC2B 9 #define OC3A 5 #define OC3B 2 #define OC3C 3 #define OC4A 6 #define OC4B 7 #define OC4C 8 #define OC5A 46 #define OC5B 45 #define OC5C 44 // Digital I/O #define DIO0_PIN PINE0 #define DIO0_RPORT PINE #define DIO0_WPORT PORTE #define DIO0_DDR DDRE #define DIO0_PWM nullptr #define DIO1_PIN PINE1 #define DIO1_RPORT PINE #define DIO1_WPORT PORTE #define DIO1_DDR DDRE #define DIO1_PWM nullptr #define DIO2_PIN PINE4 #define DIO2_RPORT PINE #define DIO2_WPORT PORTE #define DIO2_DDR DDRE #define DIO2_PWM &OCR3BL #define DIO3_PIN PINE5 #define DIO3_RPORT PINE #define DIO3_WPORT PORTE #define DIO3_DDR DDRE #define DIO3_PWM &OCR3CL #define DIO4_PIN PING5 #define DIO4_RPORT PING #define DIO4_WPORT PORTG #define DIO4_DDR DDRG #define DIO4_PWM &OCR0B #define DIO5_PIN PINE3 #define DIO5_RPORT PINE #define DIO5_WPORT PORTE #define DIO5_DDR DDRE #define DIO5_PWM &OCR3AL #define DIO6_PIN PINH3 #define DIO6_RPORT PINH #define DIO6_WPORT PORTH #define DIO6_DDR DDRH #define DIO6_PWM &OCR4AL #define DIO7_PIN PINH4 #define DIO7_RPORT PINH #define DIO7_WPORT PORTH #define DIO7_DDR DDRH #define DIO7_PWM &OCR4BL #define DIO8_PIN PINH5 #define DIO8_RPORT PINH #define DIO8_WPORT PORTH #define DIO8_DDR DDRH #define DIO8_PWM &OCR4CL #define DIO9_PIN PINH6 #define DIO9_RPORT PINH #define DIO9_WPORT PORTH #define DIO9_DDR DDRH #define DIO9_PWM &OCR2B #define DIO10_PIN PINB4 #define DIO10_RPORT PINB #define DIO10_WPORT PORTB #define DIO10_DDR DDRB #define DIO10_PWM &OCR2A #define DIO11_PIN PINB5 #define DIO11_RPORT PINB #define DIO11_WPORT PORTB #define DIO11_DDR DDRB #define DIO11_PWM nullptr #define DIO12_PIN PINB6 #define DIO12_RPORT PINB #define DIO12_WPORT PORTB #define DIO12_DDR DDRB #define DIO12_PWM nullptr #define DIO13_PIN PINB7 #define DIO13_RPORT PINB #define DIO13_WPORT PORTB #define DIO13_DDR DDRB #define DIO13_PWM &OCR0A #define DIO14_PIN PINJ1 #define DIO14_RPORT PINJ #define DIO14_WPORT PORTJ #define DIO14_DDR DDRJ #define DIO14_PWM nullptr #define DIO15_PIN PINJ0 #define DIO15_RPORT PINJ #define DIO15_WPORT PORTJ #define DIO15_DDR DDRJ #define DIO15_PWM nullptr #define DIO16_PIN PINH1 #define DIO16_RPORT PINH #define DIO16_WPORT PORTH #define DIO16_DDR DDRH #define DIO16_PWM nullptr #define DIO17_PIN PINH0 #define DIO17_RPORT PINH #define DIO17_WPORT PORTH #define DIO17_DDR DDRH #define DIO17_PWM nullptr #define DIO18_PIN PIND3 #define DIO18_RPORT PIND #define DIO18_WPORT PORTD #define DIO18_DDR DDRD #define DIO18_PWM nullptr #define DIO19_PIN PIND2 #define DIO19_RPORT PIND #define DIO19_WPORT PORTD #define DIO19_DDR DDRD #define DIO19_PWM nullptr #define DIO20_PIN PIND1 #define DIO20_RPORT PIND #define DIO20_WPORT PORTD #define DIO20_DDR DDRD #define DIO20_PWM nullptr #define DIO21_PIN PIND0 #define DIO21_RPORT PIND #define DIO21_WPORT PORTD #define DIO21_DDR DDRD #define DIO21_PWM nullptr #define DIO22_PIN PINA0 #define DIO22_RPORT PINA #define DIO22_WPORT PORTA #define DIO22_DDR DDRA #define DIO22_PWM nullptr #define DIO23_PIN PINA1 #define DIO23_RPORT PINA #define DIO23_WPORT PORTA #define DIO23_DDR DDRA #define DIO23_PWM nullptr #define DIO24_PIN PINA2 #define DIO24_RPORT PINA #define DIO24_WPORT PORTA #define DIO24_DDR DDRA #define DIO24_PWM nullptr #define DIO25_PIN PINA3 #define DIO25_RPORT PINA #define DIO25_WPORT PORTA #define DIO25_DDR DDRA #define DIO25_PWM nullptr #define DIO26_PIN PINA4 #define DIO26_RPORT PINA #define DIO26_WPORT PORTA #define DIO26_DDR DDRA #define DIO26_PWM nullptr #define DIO27_PIN PINA5 #define DIO27_RPORT PINA #define DIO27_WPORT PORTA #define DIO27_DDR DDRA #define DIO27_PWM nullptr #define DIO28_PIN PINA6 #define DIO28_RPORT PINA #define DIO28_WPORT PORTA #define DIO28_DDR DDRA #define DIO28_PWM nullptr #define DIO29_PIN PINA7 #define DIO29_RPORT PINA #define DIO29_WPORT PORTA #define DIO29_DDR DDRA #define DIO29_PWM nullptr #define DIO30_PIN PINC7 #define DIO30_RPORT PINC #define DIO30_WPORT PORTC #define DIO30_DDR DDRC #define DIO30_PWM nullptr #define DIO31_PIN PINC6 #define DIO31_RPORT PINC #define DIO31_WPORT PORTC #define DIO31_DDR DDRC #define DIO31_PWM nullptr #define DIO32_PIN PINC5 #define DIO32_RPORT PINC #define DIO32_WPORT PORTC #define DIO32_DDR DDRC #define DIO32_PWM nullptr #define DIO33_PIN PINC4 #define DIO33_RPORT PINC #define DIO33_WPORT PORTC #define DIO33_DDR DDRC #define DIO33_PWM nullptr #define DIO34_PIN PINC3 #define DIO34_RPORT PINC #define DIO34_WPORT PORTC #define DIO34_DDR DDRC #define DIO34_PWM nullptr #define DIO35_PIN PINC2 #define DIO35_RPORT PINC #define DIO35_WPORT PORTC #define DIO35_DDR DDRC #define DIO35_PWM nullptr #define DIO36_PIN PINC1 #define DIO36_RPORT PINC #define DIO36_WPORT PORTC #define DIO36_DDR DDRC #define DIO36_PWM nullptr #define DIO37_PIN PINC0 #define DIO37_RPORT PINC #define DIO37_WPORT PORTC #define DIO37_DDR DDRC #define DIO37_PWM nullptr #define DIO38_PIN PIND7 #define DIO38_RPORT PIND #define DIO38_WPORT PORTD #define DIO38_DDR DDRD #define DIO38_PWM nullptr #define DIO39_PIN PING2 #define DIO39_RPORT PING #define DIO39_WPORT PORTG #define DIO39_DDR DDRG #define DIO39_PWM nullptr #define DIO40_PIN PING1 #define DIO40_RPORT PING #define DIO40_WPORT PORTG #define DIO40_DDR DDRG #define DIO40_PWM nullptr #define DIO41_PIN PING0 #define DIO41_RPORT PING #define DIO41_WPORT PORTG #define DIO41_DDR DDRG #define DIO41_PWM nullptr #define DIO42_PIN PINL7 #define DIO42_RPORT PINL #define DIO42_WPORT PORTL #define DIO42_DDR DDRL #define DIO42_PWM nullptr #define DIO43_PIN PINL6 #define DIO43_RPORT PINL #define DIO43_WPORT PORTL #define DIO43_DDR DDRL #define DIO43_PWM nullptr #define DIO44_PIN PINL5 #define DIO44_RPORT PINL #define DIO44_WPORT PORTL #define DIO44_DDR DDRL #define DIO44_PWM &OCR5CL #define DIO45_PIN PINL4 #define DIO45_RPORT PINL #define DIO45_WPORT PORTL #define DIO45_DDR DDRL #define DIO45_PWM &OCR5BL #define DIO46_PIN PINL3 #define DIO46_RPORT PINL #define DIO46_WPORT PORTL #define DIO46_DDR DDRL #define DIO46_PWM &OCR5AL #define DIO47_PIN PINL2 #define DIO47_RPORT PINL #define DIO47_WPORT PORTL #define DIO47_DDR DDRL #define DIO47_PWM nullptr #define DIO48_PIN PINL1 #define DIO48_RPORT PINL #define DIO48_WPORT PORTL #define DIO48_DDR DDRL #define DIO48_PWM nullptr #define DIO49_PIN PINL0 #define DIO49_RPORT PINL #define DIO49_WPORT PORTL #define DIO49_DDR DDRL #define DIO49_PWM nullptr #define DIO50_PIN PINB3 #define DIO50_RPORT PINB #define DIO50_WPORT PORTB #define DIO50_DDR DDRB #define DIO50_PWM nullptr #define DIO51_PIN PINB2 #define DIO51_RPORT PINB #define DIO51_WPORT PORTB #define DIO51_DDR DDRB #define DIO51_PWM nullptr #define DIO52_PIN PINB1 #define DIO52_RPORT PINB #define DIO52_WPORT PORTB #define DIO52_DDR DDRB #define DIO52_PWM nullptr #define DIO53_PIN PINB0 #define DIO53_RPORT PINB #define DIO53_WPORT PORTB #define DIO53_DDR DDRB #define DIO53_PWM nullptr #define DIO54_PIN PINF0 #define DIO54_RPORT PINF #define DIO54_WPORT PORTF #define DIO54_DDR DDRF #define DIO54_PWM nullptr #define DIO55_PIN PINF1 #define DIO55_RPORT PINF #define DIO55_WPORT PORTF #define DIO55_DDR DDRF #define DIO55_PWM nullptr #define DIO56_PIN PINF2 #define DIO56_RPORT PINF #define DIO56_WPORT PORTF #define DIO56_DDR DDRF #define DIO56_PWM nullptr #define DIO57_PIN PINF3 #define DIO57_RPORT PINF #define DIO57_WPORT PORTF #define DIO57_DDR DDRF #define DIO57_PWM nullptr #define DIO58_PIN PINF4 #define DIO58_RPORT PINF #define DIO58_WPORT PORTF #define DIO58_DDR DDRF #define DIO58_PWM nullptr #define DIO59_PIN PINF5 #define DIO59_RPORT PINF #define DIO59_WPORT PORTF #define DIO59_DDR DDRF #define DIO59_PWM nullptr #define DIO60_PIN PINF6 #define DIO60_RPORT PINF #define DIO60_WPORT PORTF #define DIO60_DDR DDRF #define DIO60_PWM nullptr #define DIO61_PIN PINF7 #define DIO61_RPORT PINF #define DIO61_WPORT PORTF #define DIO61_DDR DDRF #define DIO61_PWM nullptr #define DIO62_PIN PINK0 #define DIO62_RPORT PINK #define DIO62_WPORT PORTK #define DIO62_DDR DDRK #define DIO62_PWM nullptr #define DIO63_PIN PINK1 #define DIO63_RPORT PINK #define DIO63_WPORT PORTK #define DIO63_DDR DDRK #define DIO63_PWM nullptr #define DIO64_PIN PINK2 #define DIO64_RPORT PINK #define DIO64_WPORT PORTK #define DIO64_DDR DDRK #define DIO64_PWM nullptr #define DIO65_PIN PINK3 #define DIO65_RPORT PINK #define DIO65_WPORT PORTK #define DIO65_DDR DDRK #define DIO65_PWM nullptr #define DIO66_PIN PINK4 #define DIO66_RPORT PINK #define DIO66_WPORT PORTK #define DIO66_DDR DDRK #define DIO66_PWM nullptr #define DIO67_PIN PINK5 #define DIO67_RPORT PINK #define DIO67_WPORT PORTK #define DIO67_DDR DDRK #define DIO67_PWM nullptr #define DIO68_PIN PINK6 #define DIO68_RPORT PINK #define DIO68_WPORT PORTK #define DIO68_DDR DDRK #define DIO68_PWM nullptr #define DIO69_PIN PINK7 #define DIO69_RPORT PINK #define DIO69_WPORT PORTK #define DIO69_DDR DDRK #define DIO69_PWM nullptr //#define FASTIO_EXT_START 70 //#define FASTIO_EXT_END 85 #define DIO70_PIN PING4 #define DIO70_RPORT PING #define DIO70_WPORT PORTG #define DIO70_DDR DDRG #define DIO70_PWM nullptr #define DIO71_PIN PING3 #define DIO71_RPORT PING #define DIO71_WPORT PORTG #define DIO71_DDR DDRG #define DIO71_PWM nullptr #define DIO72_PIN PINJ2 #define DIO72_RPORT PINJ #define DIO72_WPORT PORTJ #define DIO72_DDR DDRJ #define DIO72_PWM nullptr #define DIO73_PIN PINJ3 #define DIO73_RPORT PINJ #define DIO73_WPORT PORTJ #define DIO73_DDR DDRJ #define DIO73_PWM nullptr #define DIO74_PIN PINJ7 #define DIO74_RPORT PINJ #define DIO74_WPORT PORTJ #define DIO74_DDR DDRJ #define DIO74_PWM nullptr #define DIO75_PIN PINJ4 #define DIO75_RPORT PINJ #define DIO75_WPORT PORTJ #define DIO75_DDR DDRJ #define DIO75_PWM nullptr #define DIO76_PIN PINJ5 #define DIO76_RPORT PINJ #define DIO76_WPORT PORTJ #define DIO76_DDR DDRJ #define DIO76_PWM nullptr #define DIO77_PIN PINJ6 #define DIO77_RPORT PINJ #define DIO77_WPORT PORTJ #define DIO77_DDR DDRJ #define DIO77_PWM nullptr #define DIO78_PIN PINE2 #define DIO78_RPORT PINE #define DIO78_WPORT PORTE #define DIO78_DDR DDRE #define DIO78_PWM nullptr #define DIO79_PIN PINE6 #define DIO79_RPORT PINE #define DIO79_WPORT PORTE #define DIO79_DDR DDRE #define DIO79_PWM nullptr #define DIO80_PIN PINE7 #define DIO80_RPORT PINE #define DIO80_WPORT PORTE #define DIO80_DDR DDRE #define DIO80_PWM nullptr #define DIO81_PIN PIND4 #define DIO81_RPORT PIND #define DIO81_WPORT PORTD #define DIO81_DDR DDRD #define DIO81_PWM nullptr #define DIO82_PIN PIND5 #define DIO82_RPORT PIND #define DIO82_WPORT PORTD #define DIO82_DDR DDRD #define DIO82_PWM nullptr #define DIO83_PIN PIND6 #define DIO83_RPORT PIND #define DIO83_WPORT PORTD #define DIO83_DDR DDRD #define DIO83_PWM nullptr #define DIO84_PIN PINH2 #define DIO84_RPORT PINH #define DIO84_WPORT PORTH #define DIO84_DDR DDRH #define DIO84_PWM nullptr #define DIO85_PIN PINH7 #define DIO85_RPORT PINH #define DIO85_WPORT PORTH #define DIO85_DDR DDRH #define DIO85_PWM nullptr #undef PA0 #define PA0_PIN PINA0 #define PA0_RPORT PINA #define PA0_WPORT PORTA #define PA0_DDR DDRA #define PA0_PWM nullptr #undef PA1 #define PA1_PIN PINA1 #define PA1_RPORT PINA #define PA1_WPORT PORTA #define PA1_DDR DDRA #define PA1_PWM nullptr #undef PA2 #define PA2_PIN PINA2 #define PA2_RPORT PINA #define PA2_WPORT PORTA #define PA2_DDR DDRA #define PA2_PWM nullptr #undef PA3 #define PA3_PIN PINA3 #define PA3_RPORT PINA #define PA3_WPORT PORTA #define PA3_DDR DDRA #define PA3_PWM nullptr #undef PA4 #define PA4_PIN PINA4 #define PA4_RPORT PINA #define PA4_WPORT PORTA #define PA4_DDR DDRA #define PA4_PWM nullptr #undef PA5 #define PA5_PIN PINA5 #define PA5_RPORT PINA #define PA5_WPORT PORTA #define PA5_DDR DDRA #define PA5_PWM nullptr #undef PA6 #define PA6_PIN PINA6 #define PA6_RPORT PINA #define PA6_WPORT PORTA #define PA6_DDR DDRA #define PA6_PWM nullptr #undef PA7 #define PA7_PIN PINA7 #define PA7_RPORT PINA #define PA7_WPORT PORTA #define PA7_DDR DDRA #define PA7_PWM nullptr #undef PB0 #define PB0_PIN PINB0 #define PB0_RPORT PINB #define PB0_WPORT PORTB #define PB0_DDR DDRB #define PB0_PWM nullptr #undef PB1 #define PB1_PIN PINB1 #define PB1_RPORT PINB #define PB1_WPORT PORTB #define PB1_DDR DDRB #define PB1_PWM nullptr #undef PB2 #define PB2_PIN PINB2 #define PB2_RPORT PINB #define PB2_WPORT PORTB #define PB2_DDR DDRB #define PB2_PWM nullptr #undef PB3 #define PB3_PIN PINB3 #define PB3_RPORT PINB #define PB3_WPORT PORTB #define PB3_DDR DDRB #define PB3_PWM nullptr #undef PB4 #define PB4_PIN PINB4 #define PB4_RPORT PINB #define PB4_WPORT PORTB #define PB4_DDR DDRB #define PB4_PWM &OCR2A #undef PB5 #define PB5_PIN PINB5 #define PB5_RPORT PINB #define PB5_WPORT PORTB #define PB5_DDR DDRB #define PB5_PWM nullptr #undef PB6 #define PB6_PIN PINB6 #define PB6_RPORT PINB #define PB6_WPORT PORTB #define PB6_DDR DDRB #define PB6_PWM nullptr #undef PB7 #define PB7_PIN PINB7 #define PB7_RPORT PINB #define PB7_WPORT PORTB #define PB7_DDR DDRB #define PB7_PWM &OCR0A #undef PC0 #define PC0_PIN PINC0 #define PC0_RPORT PINC #define PC0_WPORT PORTC #define PC0_DDR DDRC #define PC0_PWM nullptr #undef PC1 #define PC1_PIN PINC1 #define PC1_RPORT PINC #define PC1_WPORT PORTC #define PC1_DDR DDRC #define PC1_PWM nullptr #undef PC2 #define PC2_PIN PINC2 #define PC2_RPORT PINC #define PC2_WPORT PORTC #define PC2_DDR DDRC #define PC2_PWM nullptr #undef PC3 #define PC3_PIN PINC3 #define PC3_RPORT PINC #define PC3_WPORT PORTC #define PC3_DDR DDRC #define PC3_PWM nullptr #undef PC4 #define PC4_PIN PINC4 #define PC4_RPORT PINC #define PC4_WPORT PORTC #define PC4_DDR DDRC #define PC4_PWM nullptr #undef PC5 #define PC5_PIN PINC5 #define PC5_RPORT PINC #define PC5_WPORT PORTC #define PC5_DDR DDRC #define PC5_PWM nullptr #undef PC6 #define PC6_PIN PINC6 #define PC6_RPORT PINC #define PC6_WPORT PORTC #define PC6_DDR DDRC #define PC6_PWM nullptr #undef PC7 #define PC7_PIN PINC7 #define PC7_RPORT PINC #define PC7_WPORT PORTC #define PC7_DDR DDRC #define PC7_PWM nullptr #undef PD0 #define PD0_PIN PIND0 #define PD0_RPORT PIND #define PD0_WPORT PORTD #define PD0_DDR DDRD #define PD0_PWM nullptr #undef PD1 #define PD1_PIN PIND1 #define PD1_RPORT PIND #define PD1_WPORT PORTD #define PD1_DDR DDRD #define PD1_PWM nullptr #undef PD2 #define PD2_PIN PIND2 #define PD2_RPORT PIND #define PD2_WPORT PORTD #define PD2_DDR DDRD #define PD2_PWM nullptr #undef PD3 #define PD3_PIN PIND3 #define PD3_RPORT PIND #define PD3_WPORT PORTD #define PD3_DDR DDRD #define PD3_PWM nullptr #undef PD4 #define PD4_PIN PIND4 #define PD4_RPORT PIND #define PD4_WPORT PORTD #define PD4_DDR DDRD #define PD4_PWM nullptr #undef PD5 #define PD5_PIN PIND5 #define PD5_RPORT PIND #define PD5_WPORT PORTD #define PD5_DDR DDRD #define PD5_PWM nullptr #undef PD6 #define PD6_PIN PIND6 #define PD6_RPORT PIND #define PD6_WPORT PORTD #define PD6_DDR DDRD #define PD6_PWM nullptr #undef PD7 #define PD7_PIN PIND7 #define PD7_RPORT PIND #define PD7_WPORT PORTD #define PD7_DDR DDRD #define PD7_PWM nullptr #undef PE0 #define PE0_PIN PINE0 #define PE0_RPORT PINE #define PE0_WPORT PORTE #define PE0_DDR DDRE #define PE0_PWM nullptr #undef PE1 #define PE1_PIN PINE1 #define PE1_RPORT PINE #define PE1_WPORT PORTE #define PE1_DDR DDRE #define PE1_PWM nullptr #undef PE2 #define PE2_PIN PINE2 #define PE2_RPORT PINE #define PE2_WPORT PORTE #define PE2_DDR DDRE #define PE2_PWM nullptr #undef PE3 #define PE3_PIN PINE3 #define PE3_RPORT PINE #define PE3_WPORT PORTE #define PE3_DDR DDRE #define PE3_PWM &OCR3AL #undef PE4 #define PE4_PIN PINE4 #define PE4_RPORT PINE #define PE4_WPORT PORTE #define PE4_DDR DDRE #define PE4_PWM &OCR3BL #undef PE5 #define PE5_PIN PINE5 #define PE5_RPORT PINE #define PE5_WPORT PORTE #define PE5_DDR DDRE #define PE5_PWM &OCR3CL #undef PE6 #define PE6_PIN PINE6 #define PE6_RPORT PINE #define PE6_WPORT PORTE #define PE6_DDR DDRE #define PE6_PWM nullptr #undef PE7 #define PE7_PIN PINE7 #define PE7_RPORT PINE #define PE7_WPORT PORTE #define PE7_DDR DDRE #define PE7_PWM nullptr #undef PF0 #define PF0_PIN PINF0 #define PF0_RPORT PINF #define PF0_WPORT PORTF #define PF0_DDR DDRF #define PF0_PWM nullptr #undef PF1 #define PF1_PIN PINF1 #define PF1_RPORT PINF #define PF1_WPORT PORTF #define PF1_DDR DDRF #define PF1_PWM nullptr #undef PF2 #define PF2_PIN PINF2 #define PF2_RPORT PINF #define PF2_WPORT PORTF #define PF2_DDR DDRF #define PF2_PWM nullptr #undef PF3 #define PF3_PIN PINF3 #define PF3_RPORT PINF #define PF3_WPORT PORTF #define PF3_DDR DDRF #define PF3_PWM nullptr #undef PF4 #define PF4_PIN PINF4 #define PF4_RPORT PINF #define PF4_WPORT PORTF #define PF4_DDR DDRF #define PF4_PWM nullptr #undef PF5 #define PF5_PIN PINF5 #define PF5_RPORT PINF #define PF5_WPORT PORTF #define PF5_DDR DDRF #define PF5_PWM nullptr #undef PF6 #define PF6_PIN PINF6 #define PF6_RPORT PINF #define PF6_WPORT PORTF #define PF6_DDR DDRF #define PF6_PWM nullptr #undef PF7 #define PF7_PIN PINF7 #define PF7_RPORT PINF #define PF7_WPORT PORTF #define PF7_DDR DDRF #define PF7_PWM nullptr #undef PG0 #define PG0_PIN PING0 #define PG0_RPORT PING #define PG0_WPORT PORTG #define PG0_DDR DDRG #define PG0_PWM nullptr #undef PG1 #define PG1_PIN PING1 #define PG1_RPORT PING #define PG1_WPORT PORTG #define PG1_DDR DDRG #define PG1_PWM nullptr #undef PG2 #define PG2_PIN PING2 #define PG2_RPORT PING #define PG2_WPORT PORTG #define PG2_DDR DDRG #define PG2_PWM nullptr #undef PG3 #define PG3_PIN PING3 #define PG3_RPORT PING #define PG3_WPORT PORTG #define PG3_DDR DDRG #define PG3_PWM nullptr #undef PG4 #define PG4_PIN PING4 #define PG4_RPORT PING #define PG4_WPORT PORTG #define PG4_DDR DDRG #define PG4_PWM nullptr #undef PG5 #define PG5_PIN PING5 #define PG5_RPORT PING #define PG5_WPORT PORTG #define PG5_DDR DDRG #define PG5_PWM &OCR0B #undef PH0 #define PH0_PIN PINH0 #define PH0_RPORT PINH #define PH0_WPORT PORTH #define PH0_DDR DDRH #define PH0_PWM nullptr #undef PH1 #define PH1_PIN PINH1 #define PH1_RPORT PINH #define PH1_WPORT PORTH #define PH1_DDR DDRH #define PH1_PWM nullptr #undef PH2 #define PH2_PIN PINH2 #define PH2_RPORT PINH #define PH2_WPORT PORTH #define PH2_DDR DDRH #define PH2_PWM nullptr #undef PH3 #define PH3_PIN PINH3 #define PH3_RPORT PINH #define PH3_WPORT PORTH #define PH3_DDR DDRH #define PH3_PWM &OCR4AL #undef PH4 #define PH4_PIN PINH4 #define PH4_RPORT PINH #define PH4_WPORT PORTH #define PH4_DDR DDRH #define PH4_PWM &OCR4BL #undef PH5 #define PH5_PIN PINH5 #define PH5_RPORT PINH #define PH5_WPORT PORTH #define PH5_DDR DDRH #define PH5_PWM &OCR4CL #undef PH6 #define PH6_PIN PINH6 #define PH6_RPORT PINH #define PH6_WPORT PORTH #define PH6_DDR DDRH #define PH6_PWM &OCR2B #undef PH7 #define PH7_PIN PINH7 #define PH7_RPORT PINH #define PH7_WPORT PORTH #define PH7_DDR DDRH #define PH7_PWM nullptr #undef PJ0 #define PJ0_PIN PINJ0 #define PJ0_RPORT PINJ #define PJ0_WPORT PORTJ #define PJ0_DDR DDRJ #define PJ0_PWM nullptr #undef PJ1 #define PJ1_PIN PINJ1 #define PJ1_RPORT PINJ #define PJ1_WPORT PORTJ #define PJ1_DDR DDRJ #define PJ1_PWM nullptr #undef PJ2 #define PJ2_PIN PINJ2 #define PJ2_RPORT PINJ #define PJ2_WPORT PORTJ #define PJ2_DDR DDRJ #define PJ2_PWM nullptr #undef PJ3 #define PJ3_PIN PINJ3 #define PJ3_RPORT PINJ #define PJ3_WPORT PORTJ #define PJ3_DDR DDRJ #define PJ3_PWM nullptr #undef PJ4 #define PJ4_PIN PINJ4 #define PJ4_RPORT PINJ #define PJ4_WPORT PORTJ #define PJ4_DDR DDRJ #define PJ4_PWM nullptr #undef PJ5 #define PJ5_PIN PINJ5 #define PJ5_RPORT PINJ #define PJ5_WPORT PORTJ #define PJ5_DDR DDRJ #define PJ5_PWM nullptr #undef PJ6 #define PJ6_PIN PINJ6 #define PJ6_RPORT PINJ #define PJ6_WPORT PORTJ #define PJ6_DDR DDRJ #define PJ6_PWM nullptr #undef PJ7 #define PJ7_PIN PINJ7 #define PJ7_RPORT PINJ #define PJ7_WPORT PORTJ #define PJ7_DDR DDRJ #define PJ7_PWM nullptr #undef PK0 #define PK0_PIN PINK0 #define PK0_RPORT PINK #define PK0_WPORT PORTK #define PK0_DDR DDRK #define PK0_PWM nullptr #undef PK1 #define PK1_PIN PINK1 #define PK1_RPORT PINK #define PK1_WPORT PORTK #define PK1_DDR DDRK #define PK1_PWM nullptr #undef PK2 #define PK2_PIN PINK2 #define PK2_RPORT PINK #define PK2_WPORT PORTK #define PK2_DDR DDRK #define PK2_PWM nullptr #undef PK3 #define PK3_PIN PINK3 #define PK3_RPORT PINK #define PK3_WPORT PORTK #define PK3_DDR DDRK #define PK3_PWM nullptr #undef PK4 #define PK4_PIN PINK4 #define PK4_RPORT PINK #define PK4_WPORT PORTK #define PK4_DDR DDRK #define PK4_PWM nullptr #undef PK5 #define PK5_PIN PINK5 #define PK5_RPORT PINK #define PK5_WPORT PORTK #define PK5_DDR DDRK #define PK5_PWM nullptr #undef PK6 #define PK6_PIN PINK6 #define PK6_RPORT PINK #define PK6_WPORT PORTK #define PK6_DDR DDRK #define PK6_PWM nullptr #undef PK7 #define PK7_PIN PINK7 #define PK7_RPORT PINK #define PK7_WPORT PORTK #define PK7_DDR DDRK #define PK7_PWM nullptr #undef PL0 #define PL0_PIN PINL0 #define PL0_RPORT PINL #define PL0_WPORT PORTL #define PL0_DDR DDRL #define PL0_PWM nullptr #undef PL1 #define PL1_PIN PINL1 #define PL1_RPORT PINL #define PL1_WPORT PORTL #define PL1_DDR DDRL #define PL1_PWM nullptr #undef PL2 #define PL2_PIN PINL2 #define PL2_RPORT PINL #define PL2_WPORT PORTL #define PL2_DDR DDRL #define PL2_PWM nullptr #undef PL3 #define PL3_PIN PINL3 #define PL3_RPORT PINL #define PL3_WPORT PORTL #define PL3_DDR DDRL #define PL3_PWM &OCR5AL #undef PL4 #define PL4_PIN PINL4 #define PL4_RPORT PINL #define PL4_WPORT PORTL #define PL4_DDR DDRL #define PL4_PWM &OCR5BL #undef PL5 #define PL5_PIN PINL5 #define PL5_RPORT PINL #define PL5_WPORT PORTL #define PL5_DDR DDRL #define PL5_PWM &OCR5CL #undef PL6 #define PL6_PIN PINL6 #define PL6_RPORT PINL #define PL6_WPORT PORTL #define PL6_DDR DDRL #define PL6_PWM nullptr #undef PL7 #define PL7_PIN PINL7 #define PL7_RPORT PINL #define PL7_WPORT PORTL #define PL7_DDR DDRL #define PL7_PWM nullptr
2301_81045437/Marlin
Marlin/src/HAL/AVR/fastio/fastio_1280.h
C
agpl-3.0
26,326
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Pin mapping for the 1281 and 2561 * * Logical Pin: 38 39 40 41 42 43 44 45 16 10 11 12 06 07 08 09 30 31 32 33 34 35 36 37 17 18 19 20 21 22 23 24 00 01 13 05 02 03 14 15 46 47 48 49 50 51 52 53 25 26 27 28 29 04 * Port: A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7 C0 C1 C2 C3 C4 C5 C6 C7 D0 D1 D2 D3 D4 D5 D6 D7 E0 E1 E2 E3 E4 E5 E6 E7 F0 F1 F2 F3 F4 F5 F6 F7 G0 G1 G2 G3 G4 G5 * * Arduino Pin Layout video: https://youtu.be/rIqeVCX09FA * AVR alternate pin function overview video: https://youtu.be/1yd8wuI5Plg */ #include "../fastio.h" // UART #define RXD 0 #define TXD 1 // SPI #define SCK 10 #define MISO 12 #define MOSI 11 #define SS 16 // TWI (I2C) #define SCL 17 #define SDA 18 // Timers and PWM #define OC0A 9 #define OC0B 4 #define OC1A 7 #define OC1B 8 #define OC2A 6 #define OC3A 5 #define OC3B 2 #define OC3C 3 // Digital I/O #define DIO0_PIN PINE0 #define DIO0_RPORT PINE #define DIO0_WPORT PORTE #define DIO0_DDR DDRE #define DIO0_PWM nullptr #define DIO1_PIN PINE1 #define DIO1_RPORT PINE #define DIO1_WPORT PORTE #define DIO1_DDR DDRE #define DIO1_PWM nullptr #define DIO2_PIN PINE4 #define DIO2_RPORT PINE #define DIO2_WPORT PORTE #define DIO2_DDR DDRE #define DIO2_PWM &OCR3BL #define DIO3_PIN PINE5 #define DIO3_RPORT PINE #define DIO3_WPORT PORTE #define DIO3_DDR DDRE #define DIO3_PWM &OCR3CL #define DIO4_PIN PING5 #define DIO4_RPORT PING #define DIO4_WPORT PORTG #define DIO4_DDR DDRG #define DIO4_PWM &OCR0B #define DIO5_PIN PINE3 #define DIO5_RPORT PINE #define DIO5_WPORT PORTE #define DIO5_DDR DDRE #define DIO5_PWM &OCR3AL #define DIO6_PIN PINB4 #define DIO6_RPORT PINB #define DIO6_WPORT PORTB #define DIO6_DDR DDRB #define DIO6_PWM &OCR2AL #define DIO7_PIN PINB5 #define DIO7_RPORT PINB #define DIO7_WPORT PORTB #define DIO7_DDR DDRB #define DIO7_PWM &OCR1AL #define DIO8_PIN PINB6 #define DIO8_RPORT PINB #define DIO8_WPORT PORTB #define DIO8_DDR DDRB #define DIO8_PWM &OCR1BL #define DIO9_PIN PINB7 #define DIO9_RPORT PINB #define DIO9_WPORT PORTB #define DIO9_DDR DDRB #define DIO9_PWM &OCR0AL #define DIO10_PIN PINB1 #define DIO10_RPORT PINB #define DIO10_WPORT PORTB #define DIO10_DDR DDRB #define DIO10_PWM nullptr #define DIO11_PIN PINB2 #define DIO11_RPORT PINB #define DIO11_WPORT PORTB #define DIO11_DDR DDRB #define DIO11_PWM nullptr #define DIO12_PIN PINB3 #define DIO12_RPORT PINB #define DIO12_WPORT PORTB #define DIO12_DDR DDRB #define DIO12_PWM nullptr #define DIO13_PIN PINE2 #define DIO13_RPORT PINE #define DIO13_WPORT PORTE #define DIO13_DDR DDRE #define DIO13_PWM nullptr #define DIO14_PIN PINE6 #define DIO14_RPORT PINE #define DIO14_WPORT PORTE #define DIO14_DDR DDRE #define DIO14_PWM nullptr #define DIO15_PIN PINE7 #define DIO15_RPORT PINE #define DIO15_WPORT PORTE #define DIO15_DDR DDRE #define DIO15_PWM nullptr #define DIO16_PIN PINB0 #define DIO16_RPORT PINB #define DIO16_WPORT PORTB #define DIO16_DDR DDRB #define DIO16_PWM nullptr #define DIO17_PIN PIND0 #define DIO17_RPORT PIND #define DIO17_WPORT PORTD #define DIO17_DDR DDRD #define DIO17_PWM nullptr #define DIO18_PIN PIND1 #define DIO18_RPORT PIND #define DIO18_WPORT PORTD #define DIO18_DDR DDRD #define DIO18_PWM nullptr #define DIO19_PIN PIND2 #define DIO19_RPORT PIND #define DIO19_WPORT PORTD #define DIO19_DDR DDRD #define DIO19_PWM nullptr #define DIO20_PIN PIND3 #define DIO20_RPORT PIND #define DIO20_WPORT PORTD #define DIO20_DDR DDRD #define DIO20_PWM nullptr #define DIO21_PIN PIND4 #define DIO21_RPORT PIND #define DIO21_WPORT PORTD #define DIO21_DDR DDRD #define DIO21_PWM nullptr #define DIO22_PIN PIND5 #define DIO22_RPORT PIND #define DIO22_WPORT PORTD #define DIO22_DDR DDRD #define DIO22_PWM nullptr #define DIO23_PIN PIND6 #define DIO23_RPORT PIND #define DIO23_WPORT PORTD #define DIO23_DDR DDRD #define DIO23_PWM nullptr #define DIO24_PIN PIND7 #define DIO24_RPORT PIND #define DIO24_WPORT PORTD #define DIO24_DDR DDRD #define DIO24_PWM nullptr #define DIO25_PIN PING0 #define DIO25_RPORT PING #define DIO25_WPORT PORTG #define DIO25_DDR DDRG #define DIO25_PWM nullptr #define DIO26_PIN PING1 #define DIO26_RPORT PING #define DIO26_WPORT PORTG #define DIO26_DDR DDRG #define DIO26_PWM nullptr #define DIO27_PIN PING2 #define DIO27_RPORT PING #define DIO27_WPORT PORTG #define DIO27_DDR DDRG #define DIO27_PWM nullptr #define DIO28_PIN PING3 #define DIO28_RPORT PING #define DIO28_WPORT PORTG #define DIO28_DDR DDRG #define DIO28_PWM nullptr #define DIO29_PIN PING4 #define DIO29_RPORT PING #define DIO29_WPORT PORTG #define DIO29_DDR DDRG #define DIO29_PWM nullptr #define DIO30_PIN PINC0 #define DIO30_RPORT PINC #define DIO30_WPORT PORTC #define DIO30_DDR DDRC #define DIO30_PWM nullptr #define DIO31_PIN PINC1 #define DIO31_RPORT PINC #define DIO31_WPORT PORTC #define DIO31_DDR DDRC #define DIO31_PWM nullptr #define DIO32_PIN PINC2 #define DIO32_RPORT PINC #define DIO32_WPORT PORTC #define DIO32_DDR DDRC #define DIO32_PWM nullptr #define DIO33_PIN PINC3 #define DIO33_RPORT PINC #define DIO33_WPORT PORTC #define DIO33_DDR DDRC #define DIO33_PWM nullptr #define DIO34_PIN PINC4 #define DIO34_RPORT PINC #define DIO34_WPORT PORTC #define DIO34_DDR DDRC #define DIO34_PWM nullptr #define DIO35_PIN PINC5 #define DIO35_RPORT PINC #define DIO35_WPORT PORTC #define DIO35_DDR DDRC #define DIO35_PWM nullptr #define DIO36_PIN PINC6 #define DIO36_RPORT PINC #define DIO36_WPORT PORTC #define DIO36_DDR DDRC #define DIO36_PWM nullptr #define DIO37_PIN PINC7 #define DIO37_RPORT PINC #define DIO37_WPORT PORTC #define DIO37_DDR DDRC #define DIO37_PWM nullptr #define DIO38_PIN PINA0 #define DIO38_RPORT PINA #define DIO38_WPORT PORTA #define DIO38_DDR DDRA #define DIO38_PWM nullptr #define DIO39_PIN PINA1 #define DIO39_RPORT PINA #define DIO39_WPORT PORTA #define DIO39_DDR DDRA #define DIO39_PWM nullptr #define DIO40_PIN PINA2 #define DIO40_RPORT PINA #define DIO40_WPORT PORTA #define DIO40_DDR DDRA #define DIO40_PWM nullptr #define DIO41_PIN PINA3 #define DIO41_RPORT PINA #define DIO41_WPORT PORTA #define DIO41_DDR DDRA #define DIO41_PWM nullptr #define DIO42_PIN PINA4 #define DIO42_RPORT PINA #define DIO42_WPORT PORTA #define DIO42_DDR DDRA #define DIO42_PWM nullptr #define DIO43_PIN PINA5 #define DIO43_RPORT PINA #define DIO43_WPORT PORTA #define DIO43_DDR DDRA #define DIO43_PWM nullptr #define DIO44_PIN PINA6 #define DIO44_RPORT PINA #define DIO44_WPORT PORTA #define DIO44_DDR DDRA #define DIO44_PWM nullptr #define DIO45_PIN PINA7 #define DIO45_RPORT PINA #define DIO45_WPORT PORTA #define DIO45_DDR DDRA #define DIO45_PWM nullptr #define DIO46_PIN PINF0 #define DIO46_RPORT PINF #define DIO46_WPORT PORTF #define DIO46_DDR DDRF #define DIO46_PWM nullptr #define DIO47_PIN PINF1 #define DIO47_RPORT PINF #define DIO47_WPORT PORTF #define DIO47_DDR DDRF #define DIO47_PWM nullptr #define DIO48_PIN PINF2 #define DIO48_RPORT PINF #define DIO48_WPORT PORTF #define DIO48_DDR DDRF #define DIO48_PWM nullptr #define DIO49_PIN PINF3 #define DIO49_RPORT PINF #define DIO49_WPORT PORTF #define DIO49_DDR DDRF #define DIO49_PWM nullptr #define DIO50_PIN PINF4 #define DIO50_RPORT PINF #define DIO50_WPORT PORTF #define DIO50_DDR DDRF #define DIO50_PWM nullptr #define DIO51_PIN PINF5 #define DIO51_RPORT PINF #define DIO51_WPORT PORTF #define DIO51_DDR DDRF #define DIO51_PWM nullptr #define DIO52_PIN PINF6 #define DIO52_RPORT PINF #define DIO52_WPORT PORTF #define DIO52_DDR DDRF #define DIO52_PWM nullptr #define DIO53_PIN PINF7 #define DIO53_RPORT PINF #define DIO53_WPORT PORTF #define DIO53_DDR DDRF #define DIO53_PWM nullptr #undef PA0 #define PA0_PIN PINA0 #define PA0_RPORT PINA #define PA0_WPORT PORTA #define PA0_DDR DDRA #define PA0_PWM nullptr #undef PA1 #define PA1_PIN PINA1 #define PA1_RPORT PINA #define PA1_WPORT PORTA #define PA1_DDR DDRA #define PA1_PWM nullptr #undef PA2 #define PA2_PIN PINA2 #define PA2_RPORT PINA #define PA2_WPORT PORTA #define PA2_DDR DDRA #define PA2_PWM nullptr #undef PA3 #define PA3_PIN PINA3 #define PA3_RPORT PINA #define PA3_WPORT PORTA #define PA3_DDR DDRA #define PA3_PWM nullptr #undef PA4 #define PA4_PIN PINA4 #define PA4_RPORT PINA #define PA4_WPORT PORTA #define PA4_DDR DDRA #define PA4_PWM nullptr #undef PA5 #define PA5_PIN PINA5 #define PA5_RPORT PINA #define PA5_WPORT PORTA #define PA5_DDR DDRA #define PA5_PWM nullptr #undef PA6 #define PA6_PIN PINA6 #define PA6_RPORT PINA #define PA6_WPORT PORTA #define PA6_DDR DDRA #define PA6_PWM nullptr #undef PA7 #define PA7_PIN PINA7 #define PA7_RPORT PINA #define PA7_WPORT PORTA #define PA7_DDR DDRA #define PA7_PWM nullptr #undef PB0 #define PB0_PIN PINB0 #define PB0_RPORT PINB #define PB0_WPORT PORTB #define PB0_DDR DDRB #define PB0_PWM nullptr #undef PB1 #define PB1_PIN PINB1 #define PB1_RPORT PINB #define PB1_WPORT PORTB #define PB1_DDR DDRB #define PB1_PWM nullptr #undef PB2 #define PB2_PIN PINB2 #define PB2_RPORT PINB #define PB2_WPORT PORTB #define PB2_DDR DDRB #define PB2_PWM nullptr #undef PB3 #define PB3_PIN PINB3 #define PB3_RPORT PINB #define PB3_WPORT PORTB #define PB3_DDR DDRB #define PB3_PWM nullptr #undef PB4 #define PB4_PIN PINB4 #define PB4_RPORT PINB #define PB4_WPORT PORTB #define PB4_DDR DDRB #define PB4_PWM &OCR2A #undef PB5 #define PB5_PIN PINB5 #define PB5_RPORT PINB #define PB5_WPORT PORTB #define PB5_DDR DDRB #define PB5_PWM nullptr #undef PB6 #define PB6_PIN PINB6 #define PB6_RPORT PINB #define PB6_WPORT PORTB #define PB6_DDR DDRB #define PB6_PWM nullptr #undef PB7 #define PB7_PIN PINB7 #define PB7_RPORT PINB #define PB7_WPORT PORTB #define PB7_DDR DDRB #define PB7_PWM &OCR0A #undef PC0 #define PC0_PIN PINC0 #define PC0_RPORT PINC #define PC0_WPORT PORTC #define PC0_DDR DDRC #define PC0_PWM nullptr #undef PC1 #define PC1_PIN PINC1 #define PC1_RPORT PINC #define PC1_WPORT PORTC #define PC1_DDR DDRC #define PC1_PWM nullptr #undef PC2 #define PC2_PIN PINC2 #define PC2_RPORT PINC #define PC2_WPORT PORTC #define PC2_DDR DDRC #define PC2_PWM nullptr #undef PC3 #define PC3_PIN PINC3 #define PC3_RPORT PINC #define PC3_WPORT PORTC #define PC3_DDR DDRC #define PC3_PWM nullptr #undef PC4 #define PC4_PIN PINC4 #define PC4_RPORT PINC #define PC4_WPORT PORTC #define PC4_DDR DDRC #define PC4_PWM nullptr #undef PC5 #define PC5_PIN PINC5 #define PC5_RPORT PINC #define PC5_WPORT PORTC #define PC5_DDR DDRC #define PC5_PWM nullptr #undef PC6 #define PC6_PIN PINC6 #define PC6_RPORT PINC #define PC6_WPORT PORTC #define PC6_DDR DDRC #define PC6_PWM nullptr #undef PC7 #define PC7_PIN PINC7 #define PC7_RPORT PINC #define PC7_WPORT PORTC #define PC7_DDR DDRC #define PC7_PWM nullptr #undef PD0 #define PD0_PIN PIND0 #define PD0_RPORT PIND #define PD0_WPORT PORTD #define PD0_DDR DDRD #define PD0_PWM nullptr #undef PD1 #define PD1_PIN PIND1 #define PD1_RPORT PIND #define PD1_WPORT PORTD #define PD1_DDR DDRD #define PD1_PWM nullptr #undef PD2 #define PD2_PIN PIND2 #define PD2_RPORT PIND #define PD2_WPORT PORTD #define PD2_DDR DDRD #define PD2_PWM nullptr #undef PD3 #define PD3_PIN PIND3 #define PD3_RPORT PIND #define PD3_WPORT PORTD #define PD3_DDR DDRD #define PD3_PWM nullptr #undef PD4 #define PD4_PIN PIND4 #define PD4_RPORT PIND #define PD4_WPORT PORTD #define PD4_DDR DDRD #define PD4_PWM nullptr #undef PD5 #define PD5_PIN PIND5 #define PD5_RPORT PIND #define PD5_WPORT PORTD #define PD5_DDR DDRD #define PD5_PWM nullptr #undef PD6 #define PD6_PIN PIND6 #define PD6_RPORT PIND #define PD6_WPORT PORTD #define PD6_DDR DDRD #define PD6_PWM nullptr #undef PD7 #define PD7_PIN PIND7 #define PD7_RPORT PIND #define PD7_WPORT PORTD #define PD7_DDR DDRD #define PD7_PWM nullptr #undef PE0 #define PE0_PIN PINE0 #define PE0_RPORT PINE #define PE0_WPORT PORTE #define PE0_DDR DDRE #define PE0_PWM nullptr #undef PE1 #define PE1_PIN PINE1 #define PE1_RPORT PINE #define PE1_WPORT PORTE #define PE1_DDR DDRE #define PE1_PWM nullptr #undef PE2 #define PE2_PIN PINE2 #define PE2_RPORT PINE #define PE2_WPORT PORTE #define PE2_DDR DDRE #define PE2_PWM nullptr #undef PE3 #define PE3_PIN PINE3 #define PE3_RPORT PINE #define PE3_WPORT PORTE #define PE3_DDR DDRE #define PE3_PWM &OCR3AL #undef PE4 #define PE4_PIN PINE4 #define PE4_RPORT PINE #define PE4_WPORT PORTE #define PE4_DDR DDRE #define PE4_PWM &OCR3BL #undef PE5 #define PE5_PIN PINE5 #define PE5_RPORT PINE #define PE5_WPORT PORTE #define PE5_DDR DDRE #define PE5_PWM &OCR3CL #undef PE6 #define PE6_PIN PINE6 #define PE6_RPORT PINE #define PE6_WPORT PORTE #define PE6_DDR DDRE #define PE6_PWM nullptr #undef PE7 #define PE7_PIN PINE7 #define PE7_RPORT PINE #define PE7_WPORT PORTE #define PE7_DDR DDRE #define PE7_PWM nullptr #undef PF0 #define PF0_PIN PINF0 #define PF0_RPORT PINF #define PF0_WPORT PORTF #define PF0_DDR DDRF #define PF0_PWM nullptr #undef PF1 #define PF1_PIN PINF1 #define PF1_RPORT PINF #define PF1_WPORT PORTF #define PF1_DDR DDRF #define PF1_PWM nullptr #undef PF2 #define PF2_PIN PINF2 #define PF2_RPORT PINF #define PF2_WPORT PORTF #define PF2_DDR DDRF #define PF2_PWM nullptr #undef PF3 #define PF3_PIN PINF3 #define PF3_RPORT PINF #define PF3_WPORT PORTF #define PF3_DDR DDRF #define PF3_PWM nullptr #undef PF4 #define PF4_PIN PINF4 #define PF4_RPORT PINF #define PF4_WPORT PORTF #define PF4_DDR DDRF #define PF4_PWM nullptr #undef PF5 #define PF5_PIN PINF5 #define PF5_RPORT PINF #define PF5_WPORT PORTF #define PF5_DDR DDRF #define PF5_PWM nullptr #undef PF6 #define PF6_PIN PINF6 #define PF6_RPORT PINF #define PF6_WPORT PORTF #define PF6_DDR DDRF #define PF6_PWM nullptr #undef PF7 #define PF7_PIN PINF7 #define PF7_RPORT PINF #define PF7_WPORT PORTF #define PF7_DDR DDRF #define PF7_PWM nullptr #undef PG0 #define PG0_PIN PING0 #define PG0_RPORT PING #define PG0_WPORT PORTG #define PG0_DDR DDRG #define PG0_PWM nullptr #undef PG1 #define PG1_PIN PING1 #define PG1_RPORT PING #define PG1_WPORT PORTG #define PG1_DDR DDRG #define PG1_PWM nullptr #undef PG2 #define PG2_PIN PING2 #define PG2_RPORT PING #define PG2_WPORT PORTG #define PG2_DDR DDRG #define PG2_PWM nullptr #undef PG3 #define PG3_PIN PING3 #define PG3_RPORT PING #define PG3_WPORT PORTG #define PG3_DDR DDRG #define PG3_PWM nullptr #undef PG4 #define PG4_PIN PING4 #define PG4_RPORT PING #define PG4_WPORT PORTG #define PG4_DDR DDRG #define PG4_PWM nullptr #undef PG5 #define PG5_PIN PING5 #define PG5_RPORT PING #define PG5_WPORT PORTG #define PG5_DDR DDRG #define PG5_PWM &OCR0B
2301_81045437/Marlin
Marlin/src/HAL/AVR/fastio/fastio_1281.h
C
agpl-3.0
16,559
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Pin mapping for the 168, 328, and 328P * * Logical Pin: 08 09 10 11 12 13 14 15 16 17 18 19 20 21 00 01 02 03 04 05 06 07 * Port: B0 B1 B2 B3 B4 B5 C0 C1 C2 C3 C4 C5 C6 C7 D0 D1 D2 D3 D4 D5 D6 D7 * * Arduino Pin Layout video: https://youtu.be/rIqeVCX09FA * AVR alternate pin function overview video: https://youtu.be/1yd8wuI5Plg */ #include "../fastio.h" // UART #define RXD 0 #define TXD 1 // SPI #define SS 10 #define MOSI 11 #define MISO 12 #define SCK 13 // TWI (I2C) #define SCL AIO5 #define SDA AIO4 // Timers and PWM #define OC0A 6 #define OC0B 5 #define OC1A 9 #define OC1B 10 #define OC2A 11 #define OC2B 3 // Digital I/O #define DIO0_PIN PIND0 #define DIO0_RPORT PIND #define DIO0_WPORT PORTD #define DIO0_DDR DDRD #define DIO0_PWM nullptr #define DIO1_PIN PIND1 #define DIO1_RPORT PIND #define DIO1_WPORT PORTD #define DIO1_DDR DDRD #define DIO1_PWM nullptr #define DIO2_PIN PIND2 #define DIO2_RPORT PIND #define DIO2_WPORT PORTD #define DIO2_DDR DDRD #define DIO2_PWM nullptr #define DIO3_PIN PIND3 #define DIO3_RPORT PIND #define DIO3_WPORT PORTD #define DIO3_DDR DDRD #define DIO3_PWM &OCR2B #define DIO4_PIN PIND4 #define DIO4_RPORT PIND #define DIO4_WPORT PORTD #define DIO4_DDR DDRD #define DIO4_PWM nullptr #define DIO5_PIN PIND5 #define DIO5_RPORT PIND #define DIO5_WPORT PORTD #define DIO5_DDR DDRD #define DIO5_PWM &OCR0B #define DIO6_PIN PIND6 #define DIO6_RPORT PIND #define DIO6_WPORT PORTD #define DIO6_DDR DDRD #define DIO6_PWM &OCR0A #define DIO7_PIN PIND7 #define DIO7_RPORT PIND #define DIO7_WPORT PORTD #define DIO7_DDR DDRD #define DIO7_PWM nullptr #define DIO8_PIN PINB0 #define DIO8_RPORT PINB #define DIO8_WPORT PORTB #define DIO8_DDR DDRB #define DIO8_PWM nullptr #define DIO9_PIN PINB1 #define DIO9_RPORT PINB #define DIO9_WPORT PORTB #define DIO9_DDR DDRB #define DIO9_PWM nullptr #define DIO10_PIN PINB2 #define DIO10_RPORT PINB #define DIO10_WPORT PORTB #define DIO10_DDR DDRB #define DIO10_PWM nullptr #define DIO11_PIN PINB3 #define DIO11_RPORT PINB #define DIO11_WPORT PORTB #define DIO11_DDR DDRB #define DIO11_PWM &OCR2A #define DIO12_PIN PINB4 #define DIO12_RPORT PINB #define DIO12_WPORT PORTB #define DIO12_DDR DDRB #define DIO12_PWM nullptr #define DIO13_PIN PINB5 #define DIO13_RPORT PINB #define DIO13_WPORT PORTB #define DIO13_DDR DDRB #define DIO13_PWM nullptr #define DIO14_PIN PINC0 #define DIO14_RPORT PINC #define DIO14_WPORT PORTC #define DIO14_DDR DDRC #define DIO14_PWM nullptr #define DIO15_PIN PINC1 #define DIO15_RPORT PINC #define DIO15_WPORT PORTC #define DIO15_DDR DDRC #define DIO15_PWM nullptr #define DIO16_PIN PINC2 #define DIO16_RPORT PINC #define DIO16_WPORT PORTC #define DIO16_DDR DDRC #define DIO16_PWM nullptr #define DIO17_PIN PINC3 #define DIO17_RPORT PINC #define DIO17_WPORT PORTC #define DIO17_DDR DDRC #define DIO17_PWM nullptr #define DIO18_PIN PINC4 #define DIO18_RPORT PINC #define DIO18_WPORT PORTC #define DIO18_DDR DDRC #define DIO18_PWM nullptr #define DIO19_PIN PINC5 #define DIO19_RPORT PINC #define DIO19_WPORT PORTC #define DIO19_DDR DDRC #define DIO19_PWM nullptr #define DIO20_PIN PINC6 #define DIO20_RPORT PINC #define DIO20_WPORT PORTC #define DIO20_DDR DDRC #define DIO20_PWM nullptr #define DIO21_PIN PINC7 #define DIO21_RPORT PINC #define DIO21_WPORT PORTC #define DIO21_DDR DDRC #define DIO21_PWM nullptr #undef PB0 #define PB0_PIN PINB0 #define PB0_RPORT PINB #define PB0_WPORT PORTB #define PB0_DDR DDRB #define PB0_PWM nullptr #undef PB1 #define PB1_PIN PINB1 #define PB1_RPORT PINB #define PB1_WPORT PORTB #define PB1_DDR DDRB #define PB1_PWM nullptr #undef PB2 #define PB2_PIN PINB2 #define PB2_RPORT PINB #define PB2_WPORT PORTB #define PB2_DDR DDRB #define PB2_PWM nullptr #undef PB3 #define PB3_PIN PINB3 #define PB3_RPORT PINB #define PB3_WPORT PORTB #define PB3_DDR DDRB #define PB3_PWM &OCR2A #undef PB4 #define PB4_PIN PINB4 #define PB4_RPORT PINB #define PB4_WPORT PORTB #define PB4_DDR DDRB #define PB4_PWM nullptr #undef PB5 #define PB5_PIN PINB5 #define PB5_RPORT PINB #define PB5_WPORT PORTB #define PB5_DDR DDRB #define PB5_PWM nullptr #undef PB6 #define PB6_PIN PINB6 #define PB6_RPORT PINB #define PB6_WPORT PORTB #define PB6_DDR DDRB #define PB6_PWM nullptr #undef PB7 #define PB7_PIN PINB7 #define PB7_RPORT PINB #define PB7_WPORT PORTB #define PB7_DDR DDRB #define PB7_PWM nullptr #undef PC0 #define PC0_PIN PINC0 #define PC0_RPORT PINC #define PC0_WPORT PORTC #define PC0_DDR DDRC #define PC0_PWM nullptr #undef PC1 #define PC1_PIN PINC1 #define PC1_RPORT PINC #define PC1_WPORT PORTC #define PC1_DDR DDRC #define PC1_PWM nullptr #undef PC2 #define PC2_PIN PINC2 #define PC2_RPORT PINC #define PC2_WPORT PORTC #define PC2_DDR DDRC #define PC2_PWM nullptr #undef PC3 #define PC3_PIN PINC3 #define PC3_RPORT PINC #define PC3_WPORT PORTC #define PC3_DDR DDRC #define PC3_PWM nullptr #undef PC4 #define PC4_PIN PINC4 #define PC4_RPORT PINC #define PC4_WPORT PORTC #define PC4_DDR DDRC #define PC4_PWM nullptr #undef PC5 #define PC5_PIN PINC5 #define PC5_RPORT PINC #define PC5_WPORT PORTC #define PC5_DDR DDRC #define PC5_PWM nullptr #undef PC6 #define PC6_PIN PINC6 #define PC6_RPORT PINC #define PC6_WPORT PORTC #define PC6_DDR DDRC #define PC6_PWM nullptr #undef PC7 #define PC7_PIN PINC7 #define PC7_RPORT PINC #define PC7_WPORT PORTC #define PC7_DDR DDRC #define PC7_PWM nullptr #undef PD0 #define PD0_PIN PIND0 #define PD0_RPORT PIND #define PD0_WPORT PORTD #define PD0_DDR DDRD #define PD0_PWM nullptr #undef PD1 #define PD1_PIN PIND1 #define PD1_RPORT PIND #define PD1_WPORT PORTD #define PD1_DDR DDRD #define PD1_PWM nullptr #undef PD2 #define PD2_PIN PIND2 #define PD2_RPORT PIND #define PD2_WPORT PORTD #define PD2_DDR DDRD #define PD2_PWM nullptr #undef PD3 #define PD3_PIN PIND3 #define PD3_RPORT PIND #define PD3_WPORT PORTD #define PD3_DDR DDRD #define PD3_PWM &OCR2B #undef PD4 #define PD4_PIN PIND4 #define PD4_RPORT PIND #define PD4_WPORT PORTD #define PD4_DDR DDRD #define PD4_PWM nullptr #undef PD5 #define PD5_PIN PIND5 #define PD5_RPORT PIND #define PD5_WPORT PORTD #define PD5_DDR DDRD #define PD5_PWM &OCR0B #undef PD6 #define PD6_PIN PIND6 #define PD6_RPORT PIND #define PD6_WPORT PORTD #define PD6_DDR DDRD #define PD6_PWM &OCR0A #undef PD7 #define PD7_PIN PIND7 #define PD7_RPORT PIND #define PD7_WPORT PORTD #define PD7_DDR DDRD #define PD7_PWM nullptr
2301_81045437/Marlin
Marlin/src/HAL/AVR/fastio/fastio_168.h
C
agpl-3.0
7,925
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Pin mapping for the 644, 644p, 644pa, and 1284p * * Logical Pin: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 * Port: B0 B1 B2 B3 B4 B5 B6 B7 D0 D1 D2 D3 D4 D5 D6 D7 C0 C1 C2 C3 C4 C5 C6 C7 A7 A6 A5 A4 A3 A2 A1 A0 * * Arduino Pin Layout video: https://youtu.be/rIqeVCX09FA * AVR alternate pin function overview video: https://youtu.be/1yd8wuI5Plg */ /** ATMega644 * * +---\/---+ * (D 0) PB0 1| |40 PA0 (AI 0 / D31) * (D 1) PB1 2| |39 PA1 (AI 1 / D30) * INT2 (D 2) PB2 3| |38 PA2 (AI 2 / D29) * PWM (D 3) PB3 4| |37 PA3 (AI 3 / D28) * PWM (D 4) PB4 5| |36 PA4 (AI 4 / D27) * MOSI (D 5) PB5 6| |35 PA5 (AI 5 / D26) * MISO (D 6) PB6 7| |34 PA6 (AI 6 / D25) * SCK (D 7) PB7 8| |33 PA7 (AI 7 / D24) * RST 9| |32 AREF * VCC 10| |31 GND * GND 11| |30 AVCC * XTAL2 12| |29 PC7 (D 23) * XTAL1 13| |28 PC6 (D 22) * RX0 (D 8) PD0 14| |27 PC5 (D 21) TDI * TX0 (D 9) PD1 15| |26 PC4 (D 20) TDO * INT0 RX1 (D 10) PD2 16| |25 PC3 (D 19) TMS * INT1 TX1 (D 11) PD3 17| |24 PC2 (D 18) TCK * PWM (D 12) PD4 18| |23 PC1 (D 17) SDA * PWM (D 13) PD5 19| |22 PC0 (D 16) SCL * PWM (D 14) PD6 20| |21 PD7 (D 15) PWM * +--------+ */ #include "../fastio.h" // UART #define RXD 8 #define TXD 9 #define RXD0 8 #define TXD0 9 #define RXD1 10 #define TXD1 11 // SPI #define SS 4 #define MOSI 5 #define MISO 6 #define SCK 7 // TWI (I2C) #define SCL 16 #define SDA 17 // Timers and PWM #define OC0A 3 #define OC0B 4 #define OC1A 13 #define OC1B 12 #define OC2A 15 #define OC2B 14 // Digital I/O #define DIO0_PIN PINB0 #define DIO0_RPORT PINB #define DIO0_WPORT PORTB #define DIO0_DDR DDRB #define DIO0_PWM nullptr #define DIO1_PIN PINB1 #define DIO1_RPORT PINB #define DIO1_WPORT PORTB #define DIO1_DDR DDRB #define DIO1_PWM nullptr #define DIO2_PIN PINB2 #define DIO2_RPORT PINB #define DIO2_WPORT PORTB #define DIO2_DDR DDRB #define DIO2_PWM nullptr #define DIO3_PIN PINB3 #define DIO3_RPORT PINB #define DIO3_WPORT PORTB #define DIO3_DDR DDRB #define DIO3_PWM &OCR0A #define DIO4_PIN PINB4 #define DIO4_RPORT PINB #define DIO4_WPORT PORTB #define DIO4_DDR DDRB #define DIO4_PWM &OCR0B #define DIO5_PIN PINB5 #define DIO5_RPORT PINB #define DIO5_WPORT PORTB #define DIO5_DDR DDRB #define DIO5_PWM nullptr #define DIO6_PIN PINB6 #define DIO6_RPORT PINB #define DIO6_WPORT PORTB #define DIO6_DDR DDRB #define DIO6_PWM nullptr #define DIO7_PIN PINB7 #define DIO7_RPORT PINB #define DIO7_WPORT PORTB #define DIO7_DDR DDRB #define DIO7_PWM nullptr #define DIO8_PIN PIND0 #define DIO8_RPORT PIND #define DIO8_WPORT PORTD #define DIO8_DDR DDRD #define DIO8_PWM nullptr #define DIO9_PIN PIND1 #define DIO9_RPORT PIND #define DIO9_WPORT PORTD #define DIO9_DDR DDRD #define DIO9_PWM nullptr #define DIO10_PIN PIND2 #define DIO10_RPORT PIND #define DIO10_WPORT PORTD #define DIO10_DDR DDRD #define DIO10_PWM nullptr #define DIO11_PIN PIND3 #define DIO11_RPORT PIND #define DIO11_WPORT PORTD #define DIO11_DDR DDRD #define DIO11_PWM nullptr #define DIO12_PIN PIND4 #define DIO12_RPORT PIND #define DIO12_WPORT PORTD #define DIO12_DDR DDRD #define DIO12_PWM &OCR1B #define DIO13_PIN PIND5 #define DIO13_RPORT PIND #define DIO13_WPORT PORTD #define DIO13_DDR DDRD #define DIO13_PWM &OCR1A #define DIO14_PIN PIND6 #define DIO14_RPORT PIND #define DIO14_WPORT PORTD #define DIO14_DDR DDRD #define DIO14_PWM &OCR2B #define DIO15_PIN PIND7 #define DIO15_RPORT PIND #define DIO15_WPORT PORTD #define DIO15_DDR DDRD #define DIO15_PWM &OCR2A #define DIO16_PIN PINC0 #define DIO16_RPORT PINC #define DIO16_WPORT PORTC #define DIO16_DDR DDRC #define DIO16_PWM nullptr #define DIO17_PIN PINC1 #define DIO17_RPORT PINC #define DIO17_WPORT PORTC #define DIO17_DDR DDRC #define DIO17_PWM nullptr #define DIO18_PIN PINC2 #define DIO18_RPORT PINC #define DIO18_WPORT PORTC #define DIO18_DDR DDRC #define DIO18_PWM nullptr #define DIO19_PIN PINC3 #define DIO19_RPORT PINC #define DIO19_WPORT PORTC #define DIO19_DDR DDRC #define DIO19_PWM nullptr #define DIO20_PIN PINC4 #define DIO20_RPORT PINC #define DIO20_WPORT PORTC #define DIO20_DDR DDRC #define DIO20_PWM nullptr #define DIO21_PIN PINC5 #define DIO21_RPORT PINC #define DIO21_WPORT PORTC #define DIO21_DDR DDRC #define DIO21_PWM nullptr #define DIO22_PIN PINC6 #define DIO22_RPORT PINC #define DIO22_WPORT PORTC #define DIO22_DDR DDRC #define DIO22_PWM nullptr #define DIO23_PIN PINC7 #define DIO23_RPORT PINC #define DIO23_WPORT PORTC #define DIO23_DDR DDRC #define DIO23_PWM nullptr #define DIO24_PIN PINA7 #define DIO24_RPORT PINA #define DIO24_WPORT PORTA #define DIO24_DDR DDRA #define DIO24_PWM nullptr #define DIO25_PIN PINA6 #define DIO25_RPORT PINA #define DIO25_WPORT PORTA #define DIO25_DDR DDRA #define DIO25_PWM nullptr #define DIO26_PIN PINA5 #define DIO26_RPORT PINA #define DIO26_WPORT PORTA #define DIO26_DDR DDRA #define DIO26_PWM nullptr #define DIO27_PIN PINA4 #define DIO27_RPORT PINA #define DIO27_WPORT PORTA #define DIO27_DDR DDRA #define DIO27_PWM nullptr #define DIO28_PIN PINA3 #define DIO28_RPORT PINA #define DIO28_WPORT PORTA #define DIO28_DDR DDRA #define DIO28_PWM nullptr #define DIO29_PIN PINA2 #define DIO29_RPORT PINA #define DIO29_WPORT PORTA #define DIO29_DDR DDRA #define DIO29_PWM nullptr #define DIO30_PIN PINA1 #define DIO30_RPORT PINA #define DIO30_WPORT PORTA #define DIO30_DDR DDRA #define DIO30_PWM nullptr #define DIO31_PIN PINA0 #define DIO31_RPORT PINA #define DIO31_WPORT PORTA #define DIO31_DDR DDRA #define DIO31_PWM nullptr #define AIO0_PIN PINA0 #define AIO0_RPORT PINA #define AIO0_WPORT PORTA #define AIO0_DDR DDRA #define AIO0_PWM nullptr #define AIO1_PIN PINA1 #define AIO1_RPORT PINA #define AIO1_WPORT PORTA #define AIO1_DDR DDRA #define AIO1_PWM nullptr #define AIO2_PIN PINA2 #define AIO2_RPORT PINA #define AIO2_WPORT PORTA #define AIO2_DDR DDRA #define AIO2_PWM nullptr #define AIO3_PIN PINA3 #define AIO3_RPORT PINA #define AIO3_WPORT PORTA #define AIO3_DDR DDRA #define AIO3_PWM nullptr #define AIO4_PIN PINA4 #define AIO4_RPORT PINA #define AIO4_WPORT PORTA #define AIO4_DDR DDRA #define AIO4_PWM nullptr #define AIO5_PIN PINA5 #define AIO5_RPORT PINA #define AIO5_WPORT PORTA #define AIO5_DDR DDRA #define AIO5_PWM nullptr #define AIO6_PIN PINA6 #define AIO6_RPORT PINA #define AIO6_WPORT PORTA #define AIO6_DDR DDRA #define AIO6_PWM nullptr #define AIO7_PIN PINA7 #define AIO7_RPORT PINA #define AIO7_WPORT PORTA #define AIO7_DDR DDRA #define AIO7_PWM nullptr #undef PA0 #define PA0_PIN PINA0 #define PA0_RPORT PINA #define PA0_WPORT PORTA #define PA0_DDR DDRA #define PA0_PWM nullptr #undef PA1 #define PA1_PIN PINA1 #define PA1_RPORT PINA #define PA1_WPORT PORTA #define PA1_DDR DDRA #define PA1_PWM nullptr #undef PA2 #define PA2_PIN PINA2 #define PA2_RPORT PINA #define PA2_WPORT PORTA #define PA2_DDR DDRA #define PA2_PWM nullptr #undef PA3 #define PA3_PIN PINA3 #define PA3_RPORT PINA #define PA3_WPORT PORTA #define PA3_DDR DDRA #define PA3_PWM nullptr #undef PA4 #define PA4_PIN PINA4 #define PA4_RPORT PINA #define PA4_WPORT PORTA #define PA4_DDR DDRA #define PA4_PWM nullptr #undef PA5 #define PA5_PIN PINA5 #define PA5_RPORT PINA #define PA5_WPORT PORTA #define PA5_DDR DDRA #define PA5_PWM nullptr #undef PA6 #define PA6_PIN PINA6 #define PA6_RPORT PINA #define PA6_WPORT PORTA #define PA6_DDR DDRA #define PA6_PWM nullptr #undef PA7 #define PA7_PIN PINA7 #define PA7_RPORT PINA #define PA7_WPORT PORTA #define PA7_DDR DDRA #define PA7_PWM nullptr #undef PB0 #define PB0_PIN PINB0 #define PB0_RPORT PINB #define PB0_WPORT PORTB #define PB0_DDR DDRB #define PB0_PWM nullptr #undef PB1 #define PB1_PIN PINB1 #define PB1_RPORT PINB #define PB1_WPORT PORTB #define PB1_DDR DDRB #define PB1_PWM nullptr #undef PB2 #define PB2_PIN PINB2 #define PB2_RPORT PINB #define PB2_WPORT PORTB #define PB2_DDR DDRB #define PB2_PWM nullptr #undef PB3 #define PB3_PIN PINB3 #define PB3_RPORT PINB #define PB3_WPORT PORTB #define PB3_DDR DDRB #define PB3_PWM &OCR0A #undef PB4 #define PB4_PIN PINB4 #define PB4_RPORT PINB #define PB4_WPORT PORTB #define PB4_DDR DDRB #define PB4_PWM &OCR0B #undef PB5 #define PB5_PIN PINB5 #define PB5_RPORT PINB #define PB5_WPORT PORTB #define PB5_DDR DDRB #define PB5_PWM nullptr #undef PB6 #define PB6_PIN PINB6 #define PB6_RPORT PINB #define PB6_WPORT PORTB #define PB6_DDR DDRB #define PB6_PWM nullptr #undef PB7 #define PB7_PIN PINB7 #define PB7_RPORT PINB #define PB7_WPORT PORTB #define PB7_DDR DDRB #define PB7_PWM nullptr #undef PC0 #define PC0_PIN PINC0 #define PC0_RPORT PINC #define PC0_WPORT PORTC #define PC0_DDR DDRC #define PC0_PWM nullptr #undef PC1 #define PC1_PIN PINC1 #define PC1_RPORT PINC #define PC1_WPORT PORTC #define PC1_DDR DDRC #define PC1_PWM nullptr #undef PC2 #define PC2_PIN PINC2 #define PC2_RPORT PINC #define PC2_WPORT PORTC #define PC2_DDR DDRC #define PC2_PWM nullptr #undef PC3 #define PC3_PIN PINC3 #define PC3_RPORT PINC #define PC3_WPORT PORTC #define PC3_DDR DDRC #define PC3_PWM nullptr #undef PC4 #define PC4_PIN PINC4 #define PC4_RPORT PINC #define PC4_WPORT PORTC #define PC4_DDR DDRC #define PC4_PWM nullptr #undef PC5 #define PC5_PIN PINC5 #define PC5_RPORT PINC #define PC5_WPORT PORTC #define PC5_DDR DDRC #define PC5_PWM nullptr #undef PC6 #define PC6_PIN PINC6 #define PC6_RPORT PINC #define PC6_WPORT PORTC #define PC6_DDR DDRC #define PC6_PWM nullptr #undef PC7 #define PC7_PIN PINC7 #define PC7_RPORT PINC #define PC7_WPORT PORTC #define PC7_DDR DDRC #define PC7_PWM nullptr #undef PD0 #define PD0_PIN PIND0 #define PD0_RPORT PIND #define PD0_WPORT PORTD #define PD0_DDR DDRD #define PD0_PWM nullptr #undef PD1 #define PD1_PIN PIND1 #define PD1_RPORT PIND #define PD1_WPORT PORTD #define PD1_DDR DDRD #define PD1_PWM nullptr #undef PD2 #define PD2_PIN PIND2 #define PD2_RPORT PIND #define PD2_WPORT PORTD #define PD2_DDR DDRD #define PD2_PWM nullptr #undef PD3 #define PD3_PIN PIND3 #define PD3_RPORT PIND #define PD3_WPORT PORTD #define PD3_DDR DDRD #define PD3_PWM nullptr #undef PD4 #define PD4_PIN PIND4 #define PD4_RPORT PIND #define PD4_WPORT PORTD #define PD4_DDR DDRD #define PD4_PWM nullptr #undef PD5 #define PD5_PIN PIND5 #define PD5_RPORT PIND #define PD5_WPORT PORTD #define PD5_DDR DDRD #define PD5_PWM nullptr #undef PD6 #define PD6_PIN PIND6 #define PD6_RPORT PIND #define PD6_WPORT PORTD #define PD6_DDR DDRD #define PD6_PWM &OCR2B #undef PD7 #define PD7_PIN PIND7 #define PD7_RPORT PIND #define PD7_WPORT PORTD #define PD7_DDR DDRD #define PD7_PWM &OCR2A
2301_81045437/Marlin
Marlin/src/HAL/AVR/fastio/fastio_644.h
C
agpl-3.0
12,767
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Pin mapping (Teensy) for AT90USB646, 647, 1286, and 1287 * * Logical Pin: 28 29 30 31 32 33 34 35 20 21 22 23 24 25 26 27 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07 08 09(46*47)36 37 18 19 38 39 40 41 42 43 44 45 * Port: A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7 C0 C1 C2 C3 C4 C5 C6 C7 D0 D1 D2 D3 D4 D5 D6 D7 E0 E1 E2 E3 E4 E5 E6 E7 F0 F1 F2 F3 F4 F5 F6 F7 * The logical pins 46 and 47 are not supported by Teensyduino, but are supported below as E2 and E3 * * Arduino Pin Layout video: https://youtu.be/rIqeVCX09FA * AVR alternate pin function overview video: https://youtu.be/1yd8wuI5Plg */ #include "../fastio.h" // SPI #define SS 20 // 8 #define SCK 21 // 9 #define MOSI 22 // 10 #define MISO 23 // 11 // Digital I/O #define DIO0_PIN PIND0 #define DIO0_RPORT PIND #define DIO0_WPORT PORTD #define DIO0_PWM 0 #define DIO0_DDR DDRD #define DIO1_PIN PIND1 #define DIO1_RPORT PIND #define DIO1_WPORT PORTD #define DIO1_PWM 0 #define DIO1_DDR DDRD #define DIO2_PIN PIND2 #define DIO2_RPORT PIND #define DIO2_WPORT PORTD #define DIO2_PWM 0 #define DIO2_DDR DDRD #define DIO3_PIN PIND3 #define DIO3_RPORT PIND #define DIO3_WPORT PORTD #define DIO3_PWM 0 #define DIO3_DDR DDRD #define DIO4_PIN PIND4 #define DIO4_RPORT PIND #define DIO4_WPORT PORTD #define DIO4_PWM 0 #define DIO4_DDR DDRD #define DIO5_PIN PIND5 #define DIO5_RPORT PIND #define DIO5_WPORT PORTD #define DIO5_PWM 0 #define DIO5_DDR DDRD #define DIO6_PIN PIND6 #define DIO6_RPORT PIND #define DIO6_WPORT PORTD #define DIO6_PWM 0 #define DIO6_DDR DDRD #define DIO7_PIN PIND7 #define DIO7_RPORT PIND #define DIO7_WPORT PORTD #define DIO7_PWM 0 #define DIO7_DDR DDRD #define DIO8_PIN PINE0 #define DIO8_RPORT PINE #define DIO8_WPORT PORTE #define DIO8_PWM 0 #define DIO8_DDR DDRE #define DIO9_PIN PINE1 #define DIO9_RPORT PINE #define DIO9_WPORT PORTE #define DIO9_PWM 0 #define DIO9_DDR DDRE #define DIO10_PIN PINC0 #define DIO10_RPORT PINC #define DIO10_WPORT PORTC #define DIO10_PWM 0 #define DIO10_DDR DDRC #define DIO11_PIN PINC1 #define DIO11_RPORT PINC #define DIO11_WPORT PORTC #define DIO11_PWM 0 #define DIO11_DDR DDRC #define DIO12_PIN PINC2 #define DIO12_RPORT PINC #define DIO12_WPORT PORTC #define DIO12_PWM 0 #define DIO12_DDR DDRC #define DIO13_PIN PINC3 #define DIO13_RPORT PINC #define DIO13_WPORT PORTC #define DIO13_PWM 0 #define DIO13_DDR DDRC #define DIO14_PIN PINC4 #define DIO14_RPORT PINC #define DIO14_WPORT PORTC #define DIO14_PWM 0 // OC3C #define DIO14_DDR DDRC #define DIO15_PIN PINC5 #define DIO15_RPORT PINC #define DIO15_WPORT PORTC #define DIO15_PWM 0 // OC3B #define DIO15_DDR DDRC #define DIO16_PIN PINC6 #define DIO16_RPORT PINC #define DIO16_WPORT PORTC #define DIO16_PWM 0 // OC3A #define DIO16_DDR DDRC #define DIO17_PIN PINC7 #define DIO17_RPORT PINC #define DIO17_WPORT PORTC #define DIO17_PWM 0 #define DIO17_DDR DDRC #define DIO18_PIN PINE6 #define DIO18_RPORT PINE #define DIO18_WPORT PORTE #define DIO18_PWM 0 #define DIO18_DDR DDRE #define DIO19_PIN PINE7 #define DIO19_RPORT PINE #define DIO19_WPORT PORTE #define DIO19_PWM 0 #define DIO19_DDR DDRE #define DIO20_PIN PINB0 #define DIO20_RPORT PINB #define DIO20_WPORT PORTB #define DIO20_PWM 0 #define DIO20_DDR DDRB #define DIO21_PIN PINB1 #define DIO21_RPORT PINB #define DIO21_WPORT PORTB #define DIO21_PWM 0 #define DIO21_DDR DDRB #define DIO22_PIN PINB2 #define DIO22_RPORT PINB #define DIO22_WPORT PORTB #define DIO22_PWM 0 #define DIO22_DDR DDRB #define DIO23_PIN PINB3 #define DIO23_RPORT PINB #define DIO23_WPORT PORTB #define DIO23_PWM 0 #define DIO23_DDR DDRB #define DIO24_PIN PINB4 #define DIO24_RPORT PINB #define DIO24_WPORT PORTB #define DIO24_PWM 0 // OC2A #define DIO24_DDR DDRB #define DIO25_PIN PINB5 #define DIO25_RPORT PINB #define DIO25_WPORT PORTB #define DIO25_PWM 0 // OC1A #define DIO25_DDR DDRB #define DIO26_PIN PINB6 #define DIO26_RPORT PINB #define DIO26_WPORT PORTB #define DIO26_PWM 0 // OC1B #define DIO26_DDR DDRB #define DIO27_PIN PINB7 #define DIO27_RPORT PINB #define DIO27_WPORT PORTB #define DIO27_PWM 0 // OC1C #define DIO27_DDR DDRB #define DIO28_PIN PINA0 #define DIO28_RPORT PINA #define DIO28_WPORT PORTA #define DIO28_PWM 0 #define DIO28_DDR DDRA #define DIO29_PIN PINA1 #define DIO29_RPORT PINA #define DIO29_WPORT PORTA #define DIO29_PWM 0 #define DIO29_DDR DDRA #define DIO30_PIN PINA2 #define DIO30_RPORT PINA #define DIO30_WPORT PORTA #define DIO30_PWM 0 #define DIO30_DDR DDRA #define DIO31_PIN PINA3 #define DIO31_RPORT PINA #define DIO31_WPORT PORTA #define DIO31_PWM 0 #define DIO31_DDR DDRA #define DIO32_PIN PINA4 #define DIO32_RPORT PINA #define DIO32_WPORT PORTA #define DIO32_PWM 0 #define DIO32_DDR DDRA #define DIO33_PIN PINA5 #define DIO33_RPORT PINA #define DIO33_WPORT PORTA #define DIO33_PWM 0 #define DIO33_DDR DDRA #define DIO34_PIN PINA6 #define DIO34_RPORT PINA #define DIO34_WPORT PORTA #define DIO34_PWM 0 #define DIO34_DDR DDRA #define DIO35_PIN PINA7 #define DIO35_RPORT PINA #define DIO35_WPORT PORTA #define DIO35_PWM 0 #define DIO35_DDR DDRA #define DIO36_PIN PINE4 #define DIO36_RPORT PINE #define DIO36_WPORT PORTE #define DIO36_PWM 0 #define DIO36_DDR DDRE #define DIO37_PIN PINE5 #define DIO37_RPORT PINE #define DIO37_WPORT PORTE #define DIO37_PWM 0 #define DIO37_DDR DDRE #define DIO38_PIN PINF0 #define DIO38_RPORT PINF #define DIO38_WPORT PORTF #define DIO38_PWM 0 #define DIO38_DDR DDRF #define DIO39_PIN PINF1 #define DIO39_RPORT PINF #define DIO39_WPORT PORTF #define DIO39_PWM 0 #define DIO39_DDR DDRF #define DIO40_PIN PINF2 #define DIO40_RPORT PINF #define DIO40_WPORT PORTF #define DIO40_PWM 0 #define DIO40_DDR DDRF #define DIO41_PIN PINF3 #define DIO41_RPORT PINF #define DIO41_WPORT PORTF #define DIO41_PWM 0 #define DIO41_DDR DDRF #define DIO42_PIN PINF4 #define DIO42_RPORT PINF #define DIO42_WPORT PORTF #define DIO42_PWM 0 #define DIO42_DDR DDRF #define DIO43_PIN PINF5 #define DIO43_RPORT PINF #define DIO43_WPORT PORTF #define DIO43_PWM 0 #define DIO43_DDR DDRF #define DIO44_PIN PINF6 #define DIO44_RPORT PINF #define DIO44_WPORT PORTF #define DIO44_PWM 0 #define DIO44_DDR DDRF #define DIO45_PIN PINF7 #define DIO45_RPORT PINF #define DIO45_WPORT PORTF #define DIO45_PWM 0 #define DIO45_DDR DDRF #define AIO0_PIN PINF0 #define AIO0_RPORT PINF #define AIO0_WPORT PORTF #define AIO0_PWM 0 #define AIO0_DDR DDRF #define AIO1_PIN PINF1 #define AIO1_RPORT PINF #define AIO1_WPORT PORTF #define AIO1_PWM 0 #define AIO1_DDR DDRF #define AIO2_PIN PINF2 #define AIO2_RPORT PINF #define AIO2_WPORT PORTF #define AIO2_PWM 0 #define AIO2_DDR DDRF #define AIO3_PIN PINF3 #define AIO3_RPORT PINF #define AIO3_WPORT PORTF #define AIO3_PWM 0 #define AIO3_DDR DDRF #define AIO4_PIN PINF4 #define AIO4_RPORT PINF #define AIO4_WPORT PORTF #define AIO4_PWM 0 #define AIO4_DDR DDRF #define AIO5_PIN PINF5 #define AIO5_RPORT PINF #define AIO5_WPORT PORTF #define AIO5_PWM 0 #define AIO5_DDR DDRF #define AIO6_PIN PINF6 #define AIO6_RPORT PINF #define AIO6_WPORT PORTF #define AIO6_PWM 0 #define AIO6_DDR DDRF #define AIO7_PIN PINF7 #define AIO7_RPORT PINF #define AIO7_WPORT PORTF #define AIO7_PWM 0 #define AIO7_DDR DDRF //-- Begin not supported by Teensyduino //-- don't use Arduino functions on these pins pinMode/digitalWrite/etc #define DIO46_PIN PINE2 #define DIO46_RPORT PINE #define DIO46_WPORT PORTE #define DIO46_PWM 0 #define DIO46_DDR DDRE #define DIO47_PIN PINE3 #define DIO47_RPORT PINE #define DIO47_WPORT PORTE #define DIO47_PWM 0 #define DIO47_DDR DDRE #define TEENSY_E2 46 #define TEENSY_E3 47 //-- end not supported by Teensyduino #undef PA0 #define PA0_PIN PINA0 #define PA0_RPORT PINA #define PA0_WPORT PORTA #define PA0_PWM 0 #define PA0_DDR DDRA #undef PA1 #define PA1_PIN PINA1 #define PA1_RPORT PINA #define PA1_WPORT PORTA #define PA1_PWM 0 #define PA1_DDR DDRA #undef PA2 #define PA2_PIN PINA2 #define PA2_RPORT PINA #define PA2_WPORT PORTA #define PA2_PWM 0 #define PA2_DDR DDRA #undef PA3 #define PA3_PIN PINA3 #define PA3_RPORT PINA #define PA3_WPORT PORTA #define PA3_PWM 0 #define PA3_DDR DDRA #undef PA4 #define PA4_PIN PINA4 #define PA4_RPORT PINA #define PA4_WPORT PORTA #define PA4_PWM 0 #define PA4_DDR DDRA #undef PA5 #define PA5_PIN PINA5 #define PA5_RPORT PINA #define PA5_WPORT PORTA #define PA5_PWM 0 #define PA5_DDR DDRA #undef PA6 #define PA6_PIN PINA6 #define PA6_RPORT PINA #define PA6_WPORT PORTA #define PA6_PWM 0 #define PA6_DDR DDRA #undef PA7 #define PA7_PIN PINA7 #define PA7_RPORT PINA #define PA7_WPORT PORTA #define PA7_PWM 0 #define PA7_DDR DDRA #undef PB0 #define PB0_PIN PINB0 #define PB0_RPORT PINB #define PB0_WPORT PORTB #define PB0_PWM 0 #define PB0_DDR DDRB #undef PB1 #define PB1_PIN PINB1 #define PB1_RPORT PINB #define PB1_WPORT PORTB #define PB1_PWM 0 #define PB1_DDR DDRB #undef PB2 #define PB2_PIN PINB2 #define PB2_RPORT PINB #define PB2_WPORT PORTB #define PB2_PWM 0 #define PB2_DDR DDRB #undef PB3 #define PB3_PIN PINB3 #define PB3_RPORT PINB #define PB3_WPORT PORTB #define PB3_PWM 0 #define PB3_DDR DDRB #undef PB4 #define PB4_PIN PINB4 #define PB4_RPORT PINB #define PB4_WPORT PORTB #define PB4_PWM 0 #define PB4_DDR DDRB #undef PB5 #define PB5_PIN PINB5 #define PB5_RPORT PINB #define PB5_WPORT PORTB #define PB5_PWM 0 #define PB5_DDR DDRB #undef PB6 #define PB6_PIN PINB6 #define PB6_RPORT PINB #define PB6_WPORT PORTB #define PB6_PWM 0 #define PB6_DDR DDRB #undef PB7 #define PB7_PIN PINB7 #define PB7_RPORT PINB #define PB7_WPORT PORTB #define PB7_PWM 0 #define PB7_DDR DDRB #undef PC0 #define PC0_PIN PINC0 #define PC0_RPORT PINC #define PC0_WPORT PORTC #define PC0_PWM 0 #define PC0_DDR DDRC #undef PC1 #define PC1_PIN PINC1 #define PC1_RPORT PINC #define PC1_WPORT PORTC #define PC1_PWM 0 #define PC1_DDR DDRC #undef PC2 #define PC2_PIN PINC2 #define PC2_RPORT PINC #define PC2_WPORT PORTC #define PC2_PWM 0 #define PC2_DDR DDRC #undef PC3 #define PC3_PIN PINC3 #define PC3_RPORT PINC #define PC3_WPORT PORTC #define PC3_PWM 0 #define PC3_DDR DDRC #undef PC4 #define PC4_PIN PINC4 #define PC4_RPORT PINC #define PC4_WPORT PORTC #define PC4_PWM 0 #define PC4_DDR DDRC #undef PC5 #define PC5_PIN PINC5 #define PC5_RPORT PINC #define PC5_WPORT PORTC #define PC5_PWM 0 #define PC5_DDR DDRC #undef PC6 #define PC6_PIN PINC6 #define PC6_RPORT PINC #define PC6_WPORT PORTC #define PC6_PWM 0 #define PC6_DDR DDRC #undef PC7 #define PC7_PIN PINC7 #define PC7_RPORT PINC #define PC7_WPORT PORTC #define PC7_PWM 0 #define PC7_DDR DDRC #undef PD0 #define PD0_PIN PIND0 #define PD0_RPORT PIND #define PD0_WPORT PORTD #define PD0_PWM 0 // OC0B #define PD0_DDR DDRD #undef PD1 #define PD1_PIN PIND1 #define PD1_RPORT PIND #define PD1_WPORT PORTD #define PD1_PWM 0 // OC2B #define PD1_DDR DDRD #undef PD2 #define PD2_PIN PIND2 #define PD2_RPORT PIND #define PD2_WPORT PORTD #define PD2_PWM 0 #define PD2_DDR DDRD #undef PD3 #define PD3_PIN PIND3 #define PD3_RPORT PIND #define PD3_WPORT PORTD #define PD3_PWM 0 #define PD3_DDR DDRD #undef PD4 #define PD4_PIN PIND4 #define PD4_RPORT PIND #define PD4_WPORT PORTD #define PD4_PWM 0 #define PD4_DDR DDRD #undef PD5 #define PD5_PIN PIND5 #define PD5_RPORT PIND #define PD5_WPORT PORTD #define PD5_PWM 0 #define PD5_DDR DDRD #undef PD6 #define PD6_PIN PIND6 #define PD6_RPORT PIND #define PD6_WPORT PORTD #define PD6_PWM 0 #define PD6_DDR DDRD #undef PD7 #define PD7_PIN PIND7 #define PD7_RPORT PIND #define PD7_WPORT PORTD #define PD7_PWM 0 #define PD7_DDR DDRD #undef PE0 #define PE0_PIN PINE0 #define PE0_RPORT PINE #define PE0_WPORT PORTE #define PE0_PWM 0 #define PE0_DDR DDRE #undef PE1 #define PE1_PIN PINE1 #define PE1_RPORT PINE #define PE1_WPORT PORTE #define PE1_PWM 0 #define PE1_DDR DDRE #undef PE2 #define PE2_PIN PINE2 #define PE2_RPORT PINE #define PE2_WPORT PORTE #define PE2_PWM 0 #define PE2_DDR DDRE #undef PE3 #define PE3_PIN PINE3 #define PE3_RPORT PINE #define PE3_WPORT PORTE #define PE3_PWM 0 #define PE3_DDR DDRE #undef PE4 #define PE4_PIN PINE4 #define PE4_RPORT PINE #define PE4_WPORT PORTE #define PE4_PWM 0 #define PE4_DDR DDRE #undef PE5 #define PE5_PIN PINE5 #define PE5_RPORT PINE #define PE5_WPORT PORTE #define PE5_PWM 0 #define PE5_DDR DDRE #undef PE6 #define PE6_PIN PINE6 #define PE6_RPORT PINE #define PE6_WPORT PORTE #define PE6_PWM 0 #define PE6_DDR DDRE #undef PE7 #define PE7_PIN PINE7 #define PE7_RPORT PINE #define PE7_WPORT PORTE #define PE7_PWM 0 #define PE7_DDR DDRE #undef PF0 #define PF0_PIN PINF0 #define PF0_RPORT PINF #define PF0_WPORT PORTF #define PF0_PWM 0 #define PF0_DDR DDRF #undef PF1 #define PF1_PIN PINF1 #define PF1_RPORT PINF #define PF1_WPORT PORTF #define PF1_PWM 0 #define PF1_DDR DDRF #undef PF2 #define PF2_PIN PINF2 #define PF2_RPORT PINF #define PF2_WPORT PORTF #define PF2_PWM 0 #define PF2_DDR DDRF #undef PF3 #define PF3_PIN PINF3 #define PF3_RPORT PINF #define PF3_WPORT PORTF #define PF3_PWM 0 #define PF3_DDR DDRF #undef PF4 #define PF4_PIN PINF4 #define PF4_RPORT PINF #define PF4_WPORT PORTF #define PF4_PWM 0 #define PF4_DDR DDRF #undef PF5 #define PF5_PIN PINF5 #define PF5_RPORT PINF #define PF5_WPORT PORTF #define PF5_PWM 0 #define PF5_DDR DDRF #undef PF6 #define PF6_PIN PINF6 #define PF6_RPORT PINF #define PF6_WPORT PORTF #define PF6_PWM 0 #define PF6_DDR DDRF #undef PF7 #define PF7_PIN PINF7 #define PF7_RPORT PINF #define PF7_WPORT PORTF #define PF7_PWM 0 #define PF7_DDR DDRF /** * Some of the pin mapping functions of the Teensduino extension to the Arduino IDE * do not function the same as the other Arduino extensions. */ //digitalPinToTimer(pin) function works like Arduino but Timers are not defined #define TIMER0B 1 #define TIMER1A 7 #define TIMER1B 8 #define TIMER1C 9 #define TIMER2A 6 #define TIMER2B 2 #define TIMER3A 5 #define TIMER3B 4 #define TIMER3C 3
2301_81045437/Marlin
Marlin/src/HAL/AVR/fastio/fastio_AT90USB.h
C
agpl-3.0
15,840
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Fast I/O for extended pins */ #ifdef __AVR__ #include "fastio.h" #ifdef FASTIO_EXT_START #include "../shared/Marduino.h" #define _IS_EXT(P) WITHIN(P, FASTIO_EXT_START, FASTIO_EXT_END) void extDigitalWrite(const int8_t pin, const uint8_t state) { #define _WCASE(N) case N: WRITE(N, state); break switch (pin) { default: digitalWrite(pin, state); #if _IS_EXT(70) _WCASE(70); #endif #if _IS_EXT(71) _WCASE(71); #endif #if _IS_EXT(72) _WCASE(72); #endif #if _IS_EXT(73) _WCASE(73); #endif #if _IS_EXT(74) _WCASE(74); #endif #if _IS_EXT(75) _WCASE(75); #endif #if _IS_EXT(76) _WCASE(76); #endif #if _IS_EXT(77) _WCASE(77); #endif #if _IS_EXT(78) _WCASE(78); #endif #if _IS_EXT(79) _WCASE(79); #endif #if _IS_EXT(80) _WCASE(80); #endif #if _IS_EXT(81) _WCASE(81); #endif #if _IS_EXT(82) _WCASE(82); #endif #if _IS_EXT(83) _WCASE(83); #endif #if _IS_EXT(84) _WCASE(84); #endif #if _IS_EXT(85) _WCASE(85); #endif #if _IS_EXT(86) _WCASE(86); #endif #if _IS_EXT(87) _WCASE(87); #endif #if _IS_EXT(88) _WCASE(88); #endif #if _IS_EXT(89) _WCASE(89); #endif #if _IS_EXT(90) _WCASE(90); #endif #if _IS_EXT(91) _WCASE(91); #endif #if _IS_EXT(92) _WCASE(92); #endif #if _IS_EXT(93) _WCASE(93); #endif #if _IS_EXT(94) _WCASE(94); #endif #if _IS_EXT(95) _WCASE(95); #endif #if _IS_EXT(96) _WCASE(96); #endif #if _IS_EXT(97) _WCASE(97); #endif #if _IS_EXT(98) _WCASE(98); #endif #if _IS_EXT(99) _WCASE(99); #endif #if _IS_EXT(100) _WCASE(100); #endif } } uint8_t extDigitalRead(const int8_t pin) { #define _RCASE(N) case N: return READ(N) switch (pin) { default: return digitalRead(pin); #if _IS_EXT(70) _RCASE(70); #endif #if _IS_EXT(71) _RCASE(71); #endif #if _IS_EXT(72) _RCASE(72); #endif #if _IS_EXT(73) _RCASE(73); #endif #if _IS_EXT(74) _RCASE(74); #endif #if _IS_EXT(75) _RCASE(75); #endif #if _IS_EXT(76) _RCASE(76); #endif #if _IS_EXT(77) _RCASE(77); #endif #if _IS_EXT(78) _RCASE(78); #endif #if _IS_EXT(79) _RCASE(79); #endif #if _IS_EXT(80) _RCASE(80); #endif #if _IS_EXT(81) _RCASE(81); #endif #if _IS_EXT(82) _RCASE(82); #endif #if _IS_EXT(83) _RCASE(83); #endif #if _IS_EXT(84) _RCASE(84); #endif #if _IS_EXT(85) _RCASE(85); #endif #if _IS_EXT(86) _RCASE(86); #endif #if _IS_EXT(87) _RCASE(87); #endif #if _IS_EXT(88) _RCASE(88); #endif #if _IS_EXT(89) _RCASE(89); #endif #if _IS_EXT(90) _RCASE(90); #endif #if _IS_EXT(91) _RCASE(91); #endif #if _IS_EXT(92) _RCASE(92); #endif #if _IS_EXT(93) _RCASE(93); #endif #if _IS_EXT(94) _RCASE(94); #endif #if _IS_EXT(95) _RCASE(95); #endif #if _IS_EXT(96) _RCASE(96); #endif #if _IS_EXT(97) _RCASE(97); #endif #if _IS_EXT(98) _RCASE(98); #endif #if _IS_EXT(99) _RCASE(99); #endif #if _IS_EXT(100) _RCASE(100); #endif } } #if 0 /** * Set Timer 5 PWM frequency in Hz, from 3.8Hz up to ~16MHz * with a minimum resolution of 100 steps. * * DC values -1.0 to 1.0. Negative duty cycle inverts the pulse. */ uint16_t set_pwm_frequency_hz(const_float_t hz, const float dca, const float dcb, const float dcc) { float count = 0; if (hz > 0 && (dca || dcb || dcc)) { count = float(F_CPU) / hz; // 1x prescaler, TOP for 16MHz base freq. uint16_t prescaler; // Range of 30.5Hz (65535) 64.5kHz (>31) if (count >= 255. * 256.) { prescaler = 1024; SET_CS(5, PRESCALER_1024); } else if (count >= 255. * 64.) { prescaler = 256; SET_CS(5, PRESCALER_256); } else if (count >= 255. * 8.) { prescaler = 64; SET_CS(5, PRESCALER_64); } else if (count >= 255.) { prescaler = 8; SET_CS(5, PRESCALER_8); } else { prescaler = 1; SET_CS(5, PRESCALER_1); } count /= float(prescaler); const float pwm_top = round(count); // Get the rounded count ICR5 = (uint16_t)pwm_top - 1; // Subtract 1 for TOP OCR5A = pwm_top * ABS(dca); // Update and scale DCs OCR5B = pwm_top * ABS(dcb); OCR5C = pwm_top * ABS(dcc); _SET_COM(5, A, dca ? (dca < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL); // Set compare modes _SET_COM(5, B, dcb ? (dcb < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL); _SET_COM(5, C, dcc ? (dcc < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL); SET_WGM(5, FAST_PWM_ICRn); // Fast PWM with ICR5 as TOP //SERIAL_ECHOLNPGM("Timer 5 Settings:"); //SERIAL_ECHOLNPGM(" Prescaler=", prescaler); //SERIAL_ECHOLNPGM(" TOP=", ICR5); //SERIAL_ECHOLNPGM(" OCR5A=", OCR5A); //SERIAL_ECHOLNPGM(" OCR5B=", OCR5B); //SERIAL_ECHOLNPGM(" OCR5C=", OCR5C); } else { // Restore the default for Timer 5 SET_WGM(5, PWM_PC_8); // PWM 8-bit (Phase Correct) SET_COMS(5, NORMAL, NORMAL, NORMAL); // Do nothing SET_CS(5, PRESCALER_64); // 16MHz / 64 = 250kHz OCR5A = OCR5B = OCR5C = 0; } return round(count); } #endif #endif // FASTIO_EXT_START #endif // __AVR__
2301_81045437/Marlin
Marlin/src/HAL/AVR/fastio.cpp
C++
agpl-3.0
6,633
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Fast I/O Routines for AVR * Use direct port manipulation to save scads of processor time. * Contributed by Triffid_Hunter and modified by Kliment, thinkyhead, Bob-the-Kuhn, et.al. */ #include <avr/io.h> #if defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1286P__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB646P__) || defined(__AVR_AT90USB647__) #define AVR_AT90USB1286_FAMILY 1 #elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__) #define AVR_ATmega1284_FAMILY 1 #elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define AVR_ATmega2560_FAMILY 1 #elif defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) #define AVR_ATmega2561_FAMILY 1 #elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__) #define AVR_ATmega328_FAMILY 1 #endif /** * Include Ports and Functions */ #if AVR_ATmega328_FAMILY #include "fastio/fastio_168.h" #elif AVR_ATmega1284_FAMILY #include "fastio/fastio_644.h" #elif AVR_ATmega2560_FAMILY #include "fastio/fastio_1280.h" #elif AVR_AT90USB1286_FAMILY #include "fastio/fastio_AT90USB.h" #elif AVR_ATmega2561_FAMILY #include "fastio/fastio_1281.h" #else #error "No FastIO definition for the selected AVR Board." #endif /** * Magic I/O routines * * Now you can simply SET_OUTPUT(PIN); WRITE(PIN, HIGH); WRITE(PIN, LOW); * * Why double up on these macros? see https://gcc.gnu.org/onlinedocs/cpp/Stringification.html */ #define _READ(IO) TEST(DIO ## IO ## _RPORT, DIO ## IO ## _PIN) #define _WRITE_NC(IO,V) do{ \ if (V) SBI(DIO ## IO ## _WPORT, DIO ## IO ## _PIN); \ else CBI(DIO ## IO ## _WPORT, DIO ## IO ## _PIN); \ }while(0) #define _WRITE_C(IO,V) do{ \ uint8_t port_bits = DIO ## IO ## _WPORT; /* Get a mask from the current port bits */ \ if (V) port_bits = ~port_bits; /* For setting bits, invert the mask */ \ DIO ## IO ## _RPORT = port_bits & _BV(DIO ## IO ## _PIN); /* Atomically toggle the output port bits */ \ }while(0) #define _WRITE(IO,V) do{ if (&(DIO ## IO ## _RPORT) < (uint8_t*)0x100) _WRITE_NC(IO,V); else _WRITE_C(IO,V); }while(0) #define _TOGGLE(IO) (DIO ## IO ## _RPORT = _BV(DIO ## IO ## _PIN)) #define _SET_INPUT(IO) CBI(DIO ## IO ## _DDR, DIO ## IO ## _PIN) #define _SET_OUTPUT(IO) SBI(DIO ## IO ## _DDR, DIO ## IO ## _PIN) #define _IS_INPUT(IO) !TEST(DIO ## IO ## _DDR, DIO ## IO ## _PIN) #define _IS_OUTPUT(IO) TEST(DIO ## IO ## _DDR, DIO ## IO ## _PIN) // digitalRead/Write wrappers #ifdef FASTIO_EXT_START void extDigitalWrite(const int8_t pin, const uint8_t state); uint8_t extDigitalRead(const int8_t pin); #else #define extDigitalWrite(IO,V) digitalWrite(IO,V) #define extDigitalRead(IO) digitalRead(IO) #endif #define READ(IO) _READ(IO) #define WRITE(IO,V) _WRITE(IO,V) #define TOGGLE(IO) _TOGGLE(IO) #define SET_INPUT(IO) _SET_INPUT(IO) #define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _WRITE(IO, HIGH); }while(0) #define SET_INPUT_PULLDOWN SET_INPUT #define SET_OUTPUT(IO) _SET_OUTPUT(IO) #define SET_PWM SET_OUTPUT #define IS_INPUT(IO) _IS_INPUT(IO) #define IS_OUTPUT(IO) _IS_OUTPUT(IO) #define OUT_WRITE(IO,V) do{ SET_OUTPUT(IO); WRITE(IO,V); }while(0) /** * Timer and Interrupt Control */ // Waveform Generation Modes enum WaveGenMode : uint8_t { WGM_NORMAL, // 0 WGM_PWM_PC_8, // 1 WGM_PWM_PC_9, // 2 WGM_PWM_PC_10, // 3 WGM_CTC_OCRnA, // 4 COM OCnx WGM_FAST_PWM_8, // 5 WGM_FAST_PWM_9, // 6 WGM_FAST_PWM_10, // 7 WGM_PWM_PC_FC_ICRn, // 8 WGM_PWM_PC_FC_OCRnA, // 9 COM OCnA WGM_PWM_PC_ICRn, // 10 WGM_PWM_PC_OCRnA, // 11 COM OCnA WGM_CTC_ICRn, // 12 COM OCnx WGM_reserved, // 13 WGM_FAST_PWM_ICRn, // 14 COM OCnA WGM_FAST_PWM_OCRnA // 15 COM OCnA }; // Wavefore Generation Modes (Timer 2 only) enum WaveGenMode2 : uint8_t { WGM2_NORMAL, // 0 WGM2_PWM_PC, // 1 WGM2_CTC_OCR2A, // 2 WGM2_FAST_PWM, // 3 WGM2_reserved_1, // 4 WGM2_PWM_PC_OCR2A, // 5 WGM2_reserved_2, // 6 WGM2_FAST_PWM_OCR2A, // 7 }; // Compare Modes enum CompareMode : uint8_t { COM_NORMAL, // 0 COM_TOGGLE, // 1 Non-PWM: OCnx ... Both PWM (WGM 9,11,14,15): OCnA only ... else NORMAL COM_CLEAR_SET, // 2 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down COM_SET_CLEAR // 3 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down }; // Clock Sources enum ClockSource : uint8_t { CS_NONE, // 0 CS_PRESCALER_1, // 1 CS_PRESCALER_8, // 2 CS_PRESCALER_64, // 3 CS_PRESCALER_256, // 4 CS_PRESCALER_1024, // 5 CS_EXT_FALLING, // 6 CS_EXT_RISING // 7 }; // Clock Sources (Timer 2 only) enum ClockSource2 : uint8_t { CS2_NONE, // 0 CS2_PRESCALER_1, // 1 CS2_PRESCALER_8, // 2 CS2_PRESCALER_32, // 3 CS2_PRESCALER_64, // 4 CS2_PRESCALER_128, // 5 CS2_PRESCALER_256, // 6 CS2_PRESCALER_1024 // 7 }; // Get interrupt bits in an orderly way // Ex: cs = GET_CS(0); coma1 = GET_COM(A,1); #define GET_WGM(T) (((TCCR##T##A >> WGM##T##0) & 0x3) | ((TCCR##T##B >> WGM##T##2 << 2) & 0xC)) #define GET_CS(T) ((TCCR##T##B >> CS##T##0) & 0x7) #define GET_COM(T,Q) ((TCCR##T##Q >> COM##T##Q##0) & 0x3) #define GET_COMA(T) GET_COM(T,A) #define GET_COMB(T) GET_COM(T,B) #define GET_COMC(T) GET_COM(T,C) #define GET_ICNC(T) (!!(TCCR##T##B & _BV(ICNC##T))) #define GET_ICES(T) (!!(TCCR##T##B & _BV(ICES##T))) #define GET_FOC(T,Q) (!!(TCCR##T##C & _BV(FOC##T##Q))) #define GET_FOCA(T) GET_FOC(T,A) #define GET_FOCB(T) GET_FOC(T,B) #define GET_FOCC(T) GET_FOC(T,C) // Set Wave Generation Mode bits // Ex: SET_WGM(5,CTC_ICRn); #define _SET_WGM(T,V) do{ \ TCCR##T##A = (TCCR##T##A & ~(0x3 << WGM##T##0)) | (( int(V) & 0x3) << WGM##T##0); \ TCCR##T##B = (TCCR##T##B & ~(0x3 << WGM##T##2)) | (((int(V) >> 2) & 0x3) << WGM##T##2); \ }while(0) #define SET_WGM(T,V) _SET_WGM(T,WGM_##V) // Set Clock Select bits // Ex: SET_CS3(PRESCALER_64); #ifdef TCCR2 #define HAS_TCCR2 1 #endif #define _SET_CS(T,V) (TCCR##T##B = (TCCR##T##B & ~(0x7 << CS##T##0)) | ((int(V) & 0x7) << CS##T##0)) #define _SET_CS0(V) _SET_CS(0,V) #define _SET_CS1(V) _SET_CS(1,V) #define _SET_CS3(V) _SET_CS(3,V) #define _SET_CS4(V) _SET_CS(4,V) #define _SET_CS5(V) _SET_CS(5,V) #define SET_CS0(V) _SET_CS0(CS_##V) #define SET_CS1(V) _SET_CS1(CS_##V) #if HAS_TCCR2 #define _SET_CS2(V) (TCCR2 = (TCCR2 & ~(0x7 << CS20)) | (int(V) << CS20)) #define SET_CS2(V) _SET_CS2(CS2_##V) #else #define _SET_CS2(V) _SET_CS(2,V) #define SET_CS2(V) _SET_CS2(CS_##V) #endif #define SET_CS3(V) _SET_CS3(CS_##V) #define SET_CS4(V) _SET_CS4(CS_##V) #define SET_CS5(V) _SET_CS5(CS_##V) #define SET_CS(T,V) SET_CS##T(V) // Set Compare Mode bits // Ex: SET_COMS(4,CLEAR_SET,CLEAR_SET,CLEAR_SET); #define _SET_COM(T,Q,V) (TCCR##T##Q = (TCCR##T##Q & ~(0x3 << COM##T##Q##0)) | (int(V) << COM##T##Q##0)) #define SET_COM(T,Q,V) _SET_COM(T,Q,COM_##V) #define SET_COMA(T,V) SET_COM(T,A,V) #define SET_COMB(T,V) SET_COM(T,B,V) #define SET_COMC(T,V) SET_COM(T,C,V) #define SET_COMS(T,V1,V2,V3) do{ SET_COMA(T,V1); SET_COMB(T,V2); SET_COMC(T,V3); }while(0) // Set Noise Canceler bit // Ex: SET_ICNC(2,1) #define SET_ICNC(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICNC##T) : TCCR##T##B & ~_BV(ICNC##T)) // Set Input Capture Edge Select bit // Ex: SET_ICES(5,0) #define SET_ICES(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICES##T) : TCCR##T##B & ~_BV(ICES##T)) // Set Force Output Compare bit // Ex: SET_FOC(3,A,1) #define SET_FOC(T,Q,V) (TCCR##T##C = (V) ? TCCR##T##C | _BV(FOC##T##Q) : TCCR##T##C & ~_BV(FOC##T##Q)) #define SET_FOCA(T,V) SET_FOC(T,A,V) #define SET_FOCB(T,V) SET_FOC(T,B,V) #define SET_FOCC(T,V) SET_FOC(T,C,V) // define which hardware PWMs are available for the current CPU // all timer 1 PWMS deleted from this list because they are never available #if AVR_ATmega2560_FAMILY #define PWM_PIN(P) ((P >= 2 && P <= 10) || P == 13 || P == 44 || P == 45 || P == 46) #elif AVR_ATmega2561_FAMILY #define PWM_PIN(P) ((P >= 2 && P <= 6) || P == 9) #elif AVR_ATmega1284_FAMILY #define PWM_PIN(P) (P == 3 || P == 4 || P == 14 || P == 15) #elif AVR_AT90USB1286_FAMILY #define PWM_PIN(P) (P == 0 || P == 1 || P == 14 || P == 15 || P == 16 || P == 24) #elif AVR_ATmega328_FAMILY #define PWM_PIN(P) (P == 3 || P == 5 || P == 6 || P == 11) #else #error "unknown CPU" #endif
2301_81045437/Marlin
Marlin/src/HAL/AVR/fastio.h
C
agpl-3.0
9,665
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once #ifndef SERIAL_PORT #define SERIAL_PORT 0 #endif
2301_81045437/Marlin
Marlin/src/HAL/AVR/inc/Conditionals_LCD.h
C
agpl-3.0
927
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once
2301_81045437/Marlin
Marlin/src/HAL/AVR/inc/Conditionals_adv.h
C
agpl-3.0
875
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once
2301_81045437/Marlin
Marlin/src/HAL/AVR/inc/Conditionals_post.h
C
agpl-3.0
875
/** * Marlin 3D Printer Firmware * Copyright (c) 2024 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once
2301_81045437/Marlin
Marlin/src/HAL/AVR/inc/Conditionals_type.h
C
agpl-3.0
875
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Test AVR-specific configuration values for errors at compile-time. */ #if HAS_SPI_TFT || HAS_FSMC_TFT #error "Sorry! TFT displays are not available for HAL/AVR." #endif /** * Check for common serial pin conflicts */ #define CHECK_SERIAL_PIN(N) ( \ X_STOP_PIN == N || Y_STOP_PIN == N || Z_STOP_PIN == N \ || X_MIN_PIN == N || Y_MIN_PIN == N || Z_MIN_PIN == N \ || X_MAX_PIN == N || Y_MAX_PIN == N || Z_MAX_PIN == N \ || X_STEP_PIN == N || Y_STEP_PIN == N || Z_STEP_PIN == N \ || X_DIR_PIN == N || Y_DIR_PIN == N || Z_DIR_PIN == N \ || X_ENA_PIN == N || Y_ENA_PIN == N || Z_ENA_PIN == N \ || BTN_EN1 == N || BTN_EN2 == N || LCD_PINS_EN == N \ ) #if SERIAL_IN_USE(0) // D0-D1. No known conflicts. #endif #if SERIAL_IN_USE(1) #if NOT_TARGET(__AVR_ATmega644P__, __AVR_ATmega1284P__) #if CHECK_SERIAL_PIN(18) || CHECK_SERIAL_PIN(19) #error "Serial Port 1 pin D18 and/or D19 conflicts with another pin on the board." #endif #else #if CHECK_SERIAL_PIN(10) || CHECK_SERIAL_PIN(11) #error "Serial Port 1 pin D10 and/or D11 conflicts with another pin on the board." #endif #endif #endif #if SERIAL_IN_USE(2) && (CHECK_SERIAL_PIN(16) || CHECK_SERIAL_PIN(17)) #error "Serial Port 2 pin D16 and/or D17 conflicts with another pin on the board." #endif #if SERIAL_IN_USE(3) && (CHECK_SERIAL_PIN(14) || CHECK_SERIAL_PIN(15)) #error "Serial Port 3 pin D14 and/or D15 conflicts with another pin on the board." #endif #undef CHECK_SERIAL_PIN /** * Checks for FAST PWM */ #if ALL(FAST_PWM_FAN, USE_OCR2A_AS_TOP, HAS_TCCR2) #error "USE_OCR2A_AS_TOP does not apply to devices with a single output TIMER2." #endif /** * Checks for SOFT PWM */ #if HAS_FAN0 && FAN0_PIN == 9 && DISABLED(FAN_SOFT_PWM) && ENABLED(SPEAKER) #error "FAN0_PIN 9 Hardware PWM uses Timer 2 which conflicts with Arduino AVR Tone Timer (for SPEAKER)." #error "Disable SPEAKER or enable FAN_SOFT_PWM." #endif /** * Sanity checks for Spindle / Laser PWM */ #if ENABLED(SPINDLE_LASER_USE_PWM) #include "../ServoTimers.h" // Needed to check timer availability (_useTimer3) #if SPINDLE_LASER_PWM_PIN == 4 || WITHIN(SPINDLE_LASER_PWM_PIN, 11, 13) #error "Counter/Timer for SPINDLE_LASER_PWM_PIN is used by a system interrupt." #elif NUM_SERVOS > 0 && defined(_useTimer3) && (WITHIN(SPINDLE_LASER_PWM_PIN, 2, 3) || SPINDLE_LASER_PWM_PIN == 5) #error "Counter/Timer for SPINDLE_LASER_PWM_PIN is used by the servo system." #endif #elif SPINDLE_LASER_FREQUENCY #error "SPINDLE_LASER_FREQUENCY requires SPINDLE_LASER_USE_PWM." #endif /** * The Trinamic library includes SoftwareSerial.h, leading to a compile error. */ #if ALL(HAS_TRINAMIC_CONFIG, ENDSTOP_INTERRUPTS_FEATURE) #error "TMCStepper includes SoftwareSerial.h which is incompatible with ENDSTOP_INTERRUPTS_FEATURE. Disable ENDSTOP_INTERRUPTS_FEATURE to continue." #endif #if ALL(HAS_TMC_SW_SERIAL, MONITOR_DRIVER_STATUS) #error "MONITOR_DRIVER_STATUS causes performance issues when used with SoftwareSerial-connected drivers. Disable MONITOR_DRIVER_STATUS or use hardware serial to continue." #endif /** * Postmortem debugging */ #if ENABLED(POSTMORTEM_DEBUGGING) #error "POSTMORTEM_DEBUGGING is not supported on AVR boards." #endif #if USING_PULLDOWNS #error "PULLDOWN pin mode is not available on AVR boards." #endif
2301_81045437/Marlin
Marlin/src/HAL/AVR/inc/SanityCheck.h
C
agpl-3.0
4,239
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Optimized math functions for AVR */ // intRes = longIn1 * longIn2 >> 24 // uses: // r1, r0 for the result of mul. // [tmp1] to store 0. // [tmp2] to store bits 16-23 of the 56 bit result. The top bit of [tmp2] is used for rounding. // Note that the lower two bytes and the upper two bytes of the 56 bit result are not calculated. // This can cause the result to be out by one as the lower bytes may cause carries into the upper ones. // [intRes] (A B) is bits 24-39 and is the returned value. // [longIn1] (C B A) is a 24 bit parameter. // [longIn2] (D C B A) is a 32 bit parameter. // FORCE_INLINE static uint16_t MultiU24X32toH16(uint32_t longIn1, uint32_t longIn2) { uint8_t tmp1; uint8_t tmp2; uint16_t intRes; __asm__ __volatile__( A("clr %[tmp1]") A("mul %A[longIn1], %B[longIn2]") A("mov %[tmp2], r1") A("mul %B[longIn1], %C[longIn2]") A("movw %A[intRes], r0") A("mul %C[longIn1], %C[longIn2]") A("add %B[intRes], r0") A("mul %C[longIn1], %B[longIn2]") A("add %A[intRes], r0") A("adc %B[intRes], r1") A("mul %A[longIn1], %C[longIn2]") A("add %[tmp2], r0") A("adc %A[intRes], r1") A("adc %B[intRes], %[tmp1]") A("mul %B[longIn1], %B[longIn2]") A("add %[tmp2], r0") A("adc %A[intRes], r1") A("adc %B[intRes], %[tmp1]") A("mul %C[longIn1], %A[longIn2]") A("add %[tmp2], r0") A("adc %A[intRes], r1") A("adc %B[intRes], %[tmp1]") A("mul %B[longIn1], %A[longIn2]") A("add %[tmp2], r1") A("adc %A[intRes], %[tmp1]") A("adc %B[intRes], %[tmp1]") A("mul %D[longIn2], %A[longIn1]") A("lsl %[tmp2]") A("adc %A[intRes], r0") A("adc %B[intRes], r1") A("mul %D[longIn2], %B[longIn1]") A("add %B[intRes], r0") A("clr r1") : [intRes] "=&r" (intRes), [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2) : [longIn1] "d" (longIn1), [longIn2] "d" (longIn2) : "cc" ); return intRes; } // charRes = charIn1 * charIn2 >> 8 // uses: // r1, r0 for the result of mul. After the mul, r0 holds bits 0-7 of the 16 bit result, // and the top bit of r0 is used for rounding. // [charRes] is bits 8-15 and is the returned value. // [charIn1] is an 8 bit parameter. // [charIn2] is an 8 bit parameter. // FORCE_INLINE static uint8_t MultiU8X8toH8(uint8_t charIn1, uint8_t charIn2) { uint8_t charRes; __asm__ __volatile__ ( A("mul %[charIn1], %[charIn2]") A("mov %[charRes], r1") A("clr r1") A("lsl r0") A("adc %[charRes], r1") : [charRes] "=&r" (charRes) : [charIn1] "d" (charIn1), [charIn2] "d" (charIn2) : "cc" ); return charRes; }
2301_81045437/Marlin
Marlin/src/HAL/AVR/math.h
C
agpl-3.0
3,530
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * PWM print routines for Atmel 8 bit AVR CPUs */ #include "../../inc/MarlinConfig.h" #define NUMBER_PINS_TOTAL NUM_DIGITAL_PINS #if MB(BQ_ZUM_MEGA_3D, MIGHTYBOARD_REVE, MINIRAMBO, SCOOVO_X9H, TRIGORILLA_14) #define AVR_ATmega2560_FAMILY_PLUS_70 1 #endif #if AVR_AT90USB1286_FAMILY // Working with Teensyduino extension so need to re-define some things #include "pinsDebug_Teensyduino.h" // Can't use the "digitalPinToPort" function from the Teensyduino type IDEs // portModeRegister takes a different argument #define digitalPinToTimer_DEBUG(p) digitalPinToTimer(p) #define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask(p) #define digitalPinToPort_DEBUG(p) digitalPinToPort(p) #define GET_PINMODE(pin) (*portModeRegister(pin) & digitalPinToBitMask_DEBUG(pin)) #elif AVR_ATmega2560_FAMILY_PLUS_70 // So we can access/display all the pins on boards using more than 70 #include "pinsDebug_plus_70.h" #define digitalPinToTimer_DEBUG(p) digitalPinToTimer_plus_70(p) #define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask_plus_70(p) #define digitalPinToPort_DEBUG(p) digitalPinToPort_plus_70(p) bool GET_PINMODE(int8_t pin) {return *portModeRegister(digitalPinToPort_DEBUG(pin)) & digitalPinToBitMask_DEBUG(pin); } #else #define digitalPinToTimer_DEBUG(p) digitalPinToTimer(p) #define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask(p) #define digitalPinToPort_DEBUG(p) digitalPinToPort(p) bool GET_PINMODE(int8_t pin) {return *portModeRegister(digitalPinToPort_DEBUG(pin)) & digitalPinToBitMask_DEBUG(pin); } #define GET_ARRAY_PIN(p) pgm_read_byte(&pin_array[p].pin) #endif #define VALID_PIN(pin) (pin >= 0 && pin < NUM_DIGITAL_PINS ? 1 : 0) #if AVR_ATmega1284_FAMILY #define IS_ANALOG(P) WITHIN(P, analogInputToDigitalPin(7), analogInputToDigitalPin(0)) #define DIGITAL_PIN_TO_ANALOG_PIN(P) int(IS_ANALOG(P) ? (P) - analogInputToDigitalPin(7) : -1) #else #define _ANALOG1(P) WITHIN(P, analogInputToDigitalPin(0), analogInputToDigitalPin(7)) #define _ANALOG2(P) WITHIN(P, analogInputToDigitalPin(8), analogInputToDigitalPin(15)) #define IS_ANALOG(P) (_ANALOG1(P) || _ANALOG2(P)) #define DIGITAL_PIN_TO_ANALOG_PIN(P) int(_ANALOG1(P) ? (P) - analogInputToDigitalPin(0) : _ANALOG2(P) ? (P) - analogInputToDigitalPin(8) + 8 : -1) #endif #define GET_ARRAY_PIN(p) pgm_read_byte(&pin_array[p].pin) #define MULTI_NAME_PAD 26 // space needed to be pretty if not first name assigned to a pin void PRINT_ARRAY_NAME(uint8_t x) { PGM_P const name_mem_pointer = (PGM_P)pgm_read_ptr(&pin_array[x].name); for (uint8_t y = 0; y < MAX_NAME_LENGTH; ++y) { char temp_char = pgm_read_byte(name_mem_pointer + y); if (temp_char != 0) SERIAL_CHAR(temp_char); else { for (uint8_t i = 0; i < MAX_NAME_LENGTH - y; ++i) SERIAL_CHAR(' '); break; } } } #define GET_ARRAY_IS_DIGITAL(x) pgm_read_byte(&pin_array[x].is_digital) #if defined(__AVR_ATmega1284P__) // 1284 IDE extensions set this to the number of #undef NUM_DIGITAL_PINS // digital only pins while all other CPUs have it #define NUM_DIGITAL_PINS 32 // set to digital only + digital/analog #endif #define PWM_PRINT(V) do{ sprintf_P(buffer, PSTR("PWM: %4d"), V); SERIAL_ECHO(buffer); }while(0) #define PWM_CASE(N,Z) \ case TIMER##N##Z: \ if (TCCR##N##A & (_BV(COM##N##Z##1) | _BV(COM##N##Z##0))) { \ PWM_PRINT(OCR##N##Z); \ return true; \ } else return false #define ABTEST(N) defined(TCCR##N##A) && defined(COM##N##A1) /** * Print a pin's PWM status. * Return true if it's currently a PWM pin. */ bool pwm_status(uint8_t pin) { char buffer[20]; // for the sprintf statements switch (digitalPinToTimer_DEBUG(pin)) { #if ABTEST(0) #ifdef TIMER0A #if !AVR_AT90USB1286_FAMILY // not available in Teensyduino type IDEs PWM_CASE(0, A); #endif #endif PWM_CASE(0, B); #endif #if ABTEST(1) PWM_CASE(1, A); PWM_CASE(1, B); #if defined(COM1C1) && defined(TIMER1C) PWM_CASE(1, C); #endif #endif #if ABTEST(2) PWM_CASE(2, A); PWM_CASE(2, B); #endif #if ABTEST(3) PWM_CASE(3, A); PWM_CASE(3, B); #ifdef COM3C1 PWM_CASE(3, C); #endif #endif #ifdef TCCR4A PWM_CASE(4, A); PWM_CASE(4, B); PWM_CASE(4, C); #endif #if ABTEST(5) PWM_CASE(5, A); PWM_CASE(5, B); PWM_CASE(5, C); #endif case NOT_ON_TIMER: default: return false; } SERIAL_ECHO_SP(2); } // pwm_status const volatile uint8_t* const PWM_other[][3] PROGMEM = { { &TCCR0A, &TCCR0B, &TIMSK0 }, { &TCCR1A, &TCCR1B, &TIMSK1 }, #if ABTEST(2) { &TCCR2A, &TCCR2B, &TIMSK2 }, #endif #if ABTEST(3) { &TCCR3A, &TCCR3B, &TIMSK3 }, #endif #ifdef TCCR4A { &TCCR4A, &TCCR4B, &TIMSK4 }, #endif #if ABTEST(5) { &TCCR5A, &TCCR5B, &TIMSK5 }, #endif }; const volatile uint8_t* const PWM_OCR[][3] PROGMEM = { #ifdef TIMER0A { &OCR0A, &OCR0B, 0 }, #else { 0, &OCR0B, 0 }, #endif #if defined(COM1C1) && defined(TIMER1C) { (const uint8_t*)&OCR1A, (const uint8_t*)&OCR1B, (const uint8_t*)&OCR1C }, #else { (const uint8_t*)&OCR1A, (const uint8_t*)&OCR1B, 0 }, #endif #if ABTEST(2) { &OCR2A, &OCR2B, 0 }, #endif #if ABTEST(3) #ifdef COM3C1 { (const uint8_t*)&OCR3A, (const uint8_t*)&OCR3B, (const uint8_t*)&OCR3C }, #else { (const uint8_t*)&OCR3A, (const uint8_t*)&OCR3B, 0 }, #endif #endif #ifdef TCCR4A { (const uint8_t*)&OCR4A, (const uint8_t*)&OCR4B, (const uint8_t*)&OCR4C }, #endif #if ABTEST(5) { (const uint8_t*)&OCR5A, (const uint8_t*)&OCR5B, (const uint8_t*)&OCR5C }, #endif }; #define TCCR_A(T) pgm_read_word(&PWM_other[T][0]) #define TCCR_B(T) pgm_read_word(&PWM_other[T][1]) #define TIMSK(T) pgm_read_word(&PWM_other[T][2]) #define CS_0 0 #define CS_1 1 #define CS_2 2 #define WGM_0 0 #define WGM_1 1 #define WGM_2 3 #define WGM_3 4 #define TOIE 0 #define OCR_VAL(T, L) pgm_read_word(&PWM_OCR[T][L]) void err_is_counter() { SERIAL_ECHOPGM(" non-standard PWM mode"); } void err_is_interrupt() { SERIAL_ECHOPGM(" compare interrupt enabled"); } void err_prob_interrupt() { SERIAL_ECHOPGM(" overflow interrupt enabled"); } void print_is_also_tied() { SERIAL_ECHOPGM(" is also tied to this pin"); SERIAL_ECHO_SP(14); } void com_print(const uint8_t N, const uint8_t Z) { const uint8_t *TCCRA = (uint8_t*)TCCR_A(N); SERIAL_ECHOPGM(" COM", AS_DIGIT(N)); SERIAL_CHAR(Z); SERIAL_ECHOPGM(": ", int((*TCCRA >> (6 - Z * 2)) & 0x03)); } void timer_prefix(uint8_t T, char L, uint8_t N) { // T - timer L - pwm N - WGM bit layout char buffer[20]; // for the sprintf statements const uint8_t *TCCRB = (uint8_t*)TCCR_B(T), *TCCRA = (uint8_t*)TCCR_A(T); uint8_t WGM = (((*TCCRB & _BV(WGM_2)) >> 1) | (*TCCRA & (_BV(WGM_0) | _BV(WGM_1)))); if (N == 4) WGM |= ((*TCCRB & _BV(WGM_3)) >> 1); SERIAL_ECHOPGM(" TIMER", AS_DIGIT(T)); SERIAL_CHAR(L); SERIAL_ECHO_SP(3); if (N == 3) { const uint8_t *OCRVAL8 = (uint8_t*)OCR_VAL(T, L - 'A'); PWM_PRINT(*OCRVAL8); } else { const uint16_t *OCRVAL16 = (uint16_t*)OCR_VAL(T, L - 'A'); PWM_PRINT(*OCRVAL16); } SERIAL_ECHOPGM(" WGM: ", WGM); com_print(T,L); SERIAL_ECHOPGM(" CS: ", (*TCCRB & (_BV(CS_0) | _BV(CS_1) | _BV(CS_2)) )); SERIAL_ECHOPGM(" TCCR", AS_DIGIT(T), "A: ", *TCCRA); SERIAL_ECHOPGM(" TCCR", AS_DIGIT(T), "B: ", *TCCRB); const uint8_t *TMSK = (uint8_t*)TIMSK(T); SERIAL_ECHOPGM(" TIMSK", AS_DIGIT(T), ": ", *TMSK); const uint8_t OCIE = L - 'A' + 1; if (N == 3) { if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) err_is_counter(); } else { if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) err_is_counter(); } if (TEST(*TMSK, OCIE)) err_is_interrupt(); if (TEST(*TMSK, TOIE)) err_prob_interrupt(); } void pwm_details(uint8_t pin) { switch (digitalPinToTimer_DEBUG(pin)) { #if ABTEST(0) #ifdef TIMER0A #if !AVR_AT90USB1286_FAMILY // not available in Teensyduino type IDEs case TIMER0A: timer_prefix(0, 'A', 3); break; #endif #endif case TIMER0B: timer_prefix(0, 'B', 3); break; #endif #if ABTEST(1) case TIMER1A: timer_prefix(1, 'A', 4); break; case TIMER1B: timer_prefix(1, 'B', 4); break; #if defined(COM1C1) && defined(TIMER1C) case TIMER1C: timer_prefix(1, 'C', 4); break; #endif #endif #if ABTEST(2) case TIMER2A: timer_prefix(2, 'A', 3); break; case TIMER2B: timer_prefix(2, 'B', 3); break; #endif #if ABTEST(3) case TIMER3A: timer_prefix(3, 'A', 4); break; case TIMER3B: timer_prefix(3, 'B', 4); break; #ifdef COM3C1 case TIMER3C: timer_prefix(3, 'C', 4); break; #endif #endif #ifdef TCCR4A case TIMER4A: timer_prefix(4, 'A', 4); break; case TIMER4B: timer_prefix(4, 'B', 4); break; case TIMER4C: timer_prefix(4, 'C', 4); break; #endif #if ABTEST(5) case TIMER5A: timer_prefix(5, 'A', 4); break; case TIMER5B: timer_prefix(5, 'B', 4); break; case TIMER5C: timer_prefix(5, 'C', 4); break; #endif case NOT_ON_TIMER: break; } SERIAL_ECHOPGM(" "); // on pins that have two PWMs, print info on second PWM #if AVR_ATmega2560_FAMILY || AVR_AT90USB1286_FAMILY // looking for port B7 - PWMs 0A and 1C if (digitalPinToPort_DEBUG(pin) == 'B' - 64 && 0x80 == digitalPinToBitMask_DEBUG(pin)) { #if !AVR_AT90USB1286_FAMILY SERIAL_ECHOPGM("\n ."); SERIAL_ECHO_SP(18); SERIAL_ECHOPGM("TIMER1C"); print_is_also_tied(); timer_prefix(1, 'C', 4); #else SERIAL_ECHOPGM("\n ."); SERIAL_ECHO_SP(18); SERIAL_ECHOPGM("TIMER0A"); print_is_also_tied(); timer_prefix(0, 'A', 3); #endif } #else UNUSED(print_is_also_tied); #endif } // pwm_details #ifndef digitalRead_mod // Use Teensyduino's version of digitalRead - it doesn't disable the PWMs int digitalRead_mod(const pin_t pin) { // same as digitalRead except the PWM stop section has been removed const uint8_t port = digitalPinToPort_DEBUG(pin); return (port != NOT_A_PIN) && (*portInputRegister(port) & digitalPinToBitMask_DEBUG(pin)) ? HIGH : LOW; } #endif void print_port(const pin_t pin) { // print port number #ifdef digitalPinToPort_DEBUG uint8_t x; SERIAL_ECHOPGM(" Port: "); #if AVR_AT90USB1286_FAMILY x = (pin == 46 || pin == 47) ? 'E' : digitalPinToPort_DEBUG(pin) + 64; #else x = digitalPinToPort_DEBUG(pin) + 64; #endif SERIAL_CHAR(x); #if AVR_AT90USB1286_FAMILY if (pin == 46) x = '2'; else if (pin == 47) x = '3'; else { uint8_t temp = digitalPinToBitMask_DEBUG(pin); for (x = '0'; x < '9' && temp != 1; x++) temp >>= 1; } #else uint8_t temp = digitalPinToBitMask_DEBUG(pin); for (x = '0'; x < '9' && temp != 1; x++) temp >>= 1; #endif SERIAL_CHAR(x); #else SERIAL_ECHO_SP(10); #endif } #define PRINT_PIN(p) do{ sprintf_P(buffer, PSTR("%3d "), p); SERIAL_ECHO(buffer); }while(0) #define PRINT_PIN_ANALOG(p) do{ sprintf_P(buffer, PSTR(" (A%2d) "), DIGITAL_PIN_TO_ANALOG_PIN(pin)); SERIAL_ECHO(buffer); }while(0) #undef ABTEST
2301_81045437/Marlin
Marlin/src/HAL/AVR/pinsDebug.h
C
agpl-3.0
12,542
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once // // Some of the pin mapping functions of the Arduino IDE Teensduino extension // function differently from other Arduino extensions. // #define TEENSYDUINO_IDE //digitalPinToTimer(pin) function works like Arduino but Timers are not defined #define TIMER0B 1 #define TIMER1A 7 #define TIMER1B 8 #define TIMER1C 9 #define TIMER2A 6 #define TIMER2B 2 #define TIMER3A 5 #define TIMER3B 4 #define TIMER3C 3 // digitalPinToPort function just returns the pin number so need to create our own #define PA 1 #define PB 2 #define PC 3 #define PD 4 #define PE 5 #define PF 6 const uint8_t PROGMEM digital_pin_to_port_PGM[] = { PD, // 0 - PD0 - INT0 - PWM PD, // 1 - PD1 - INT1 - PWM PD, // 2 - PD2 - INT2 - RX PD, // 3 - PD3 - INT3 - TX PD, // 4 - PD4 PD, // 5 - PD5 PD, // 6 - PD6 PD, // 7 - PD7 PE, // 8 - PE0 PE, // 9 - PE1 PC, // 10 - PC0 PC, // 11 - PC1 PC, // 12 - PC2 PC, // 13 - PC3 PC, // 14 - PC4 - PWM PC, // 15 - PC5 - PWM PC, // 16 - PC6 - PWM PC, // 17 - PC7 PE, // 18 - PE6 - INT6 PE, // 19 - PE7 - INT7 PB, // 20 - PB0 PB, // 21 - PB1 PB, // 22 - PB2 PB, // 23 - PB3 PB, // 24 - PB4 - PWM PB, // 25 - PB5 - PWM PB, // 26 - PB6 - PWM PB, // 27 - PB7 - PWM PA, // 28 - PA0 PA, // 29 - PA1 PA, // 30 - PA2 PA, // 31 - PA3 PA, // 32 - PA4 PA, // 33 - PA5 PA, // 34 - PA6 PA, // 35 - PA7 PE, // 36 - PE4 - INT4 PE, // 37 - PE5 - INT5 PF, // 38 - PF0 - A0 PF, // 39 - PF1 - A1 PF, // 40 - PF2 - A2 PF, // 41 - PF3 - A3 PF, // 42 - PF4 - A4 PF, // 43 - PF5 - A5 PF, // 44 - PF6 - A6 PF, // 45 - PF7 - A7 PE, // 46 - PE2 (not defined in teensyduino) PE, // 47 - PE3 (not defined in teensyduino) }; #define digitalPinToPort(P) pgm_read_byte(digital_pin_to_port_PGM[P]) // digitalPinToBitMask(pin) is OK #define digitalRead_mod(p) extDigitalRead(p) // Teensyduino's version of digitalRead doesn't // disable the PWMs so we can use it as is // portModeRegister(pin) is OK
2301_81045437/Marlin
Marlin/src/HAL/AVR/pinsDebug_Teensyduino.h
C
agpl-3.0
2,908
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Structures for 2560 family boards that use more than 70 pins */ #if MB(BQ_ZUM_MEGA_3D, MINIRAMBO, SCOOVO_X9H, TRIGORILLA_14) #undef NUM_DIGITAL_PINS #define NUM_DIGITAL_PINS 85 #elif MB(MIGHTYBOARD_REVE) #undef NUM_DIGITAL_PINS #define NUM_DIGITAL_PINS 80 #endif #define PA 1 #define PB 2 #define PC 3 #define PD 4 #define PE 5 #define PF 6 #define PG 7 #define PH 8 #define PJ 10 #define PK 11 #define PL 12 const uint8_t PROGMEM digital_pin_to_port_PGM_plus_70[] = { // PORTLIST // ------------------------ PE , // PE 0 ** 0 ** USART0_RX PE , // PE 1 ** 1 ** USART0_TX PE , // PE 4 ** 2 ** PWM2 PE , // PE 5 ** 3 ** PWM3 PG , // PG 5 ** 4 ** PWM4 PE , // PE 3 ** 5 ** PWM5 PH , // PH 3 ** 6 ** PWM6 PH , // PH 4 ** 7 ** PWM7 PH , // PH 5 ** 8 ** PWM8 PH , // PH 6 ** 9 ** PWM9 PB , // PB 4 ** 10 ** PWM10 PB , // PB 5 ** 11 ** PWM11 PB , // PB 6 ** 12 ** PWM12 PB , // PB 7 ** 13 ** PWM13 PJ , // PJ 1 ** 14 ** USART3_TX PJ , // PJ 0 ** 15 ** USART3_RX PH , // PH 1 ** 16 ** USART2_TX PH , // PH 0 ** 17 ** USART2_RX PD , // PD 3 ** 18 ** USART1_TX PD , // PD 2 ** 19 ** USART1_RX PD , // PD 1 ** 20 ** I2C_SDA PD , // PD 0 ** 21 ** I2C_SCL PA , // PA 0 ** 22 ** D22 PA , // PA 1 ** 23 ** D23 PA , // PA 2 ** 24 ** D24 PA , // PA 3 ** 25 ** D25 PA , // PA 4 ** 26 ** D26 PA , // PA 5 ** 27 ** D27 PA , // PA 6 ** 28 ** D28 PA , // PA 7 ** 29 ** D29 PC , // PC 7 ** 30 ** D30 PC , // PC 6 ** 31 ** D31 PC , // PC 5 ** 32 ** D32 PC , // PC 4 ** 33 ** D33 PC , // PC 3 ** 34 ** D34 PC , // PC 2 ** 35 ** D35 PC , // PC 1 ** 36 ** D36 PC , // PC 0 ** 37 ** D37 PD , // PD 7 ** 38 ** D38 PG , // PG 2 ** 39 ** D39 PG , // PG 1 ** 40 ** D40 PG , // PG 0 ** 41 ** D41 PL , // PL 7 ** 42 ** D42 PL , // PL 6 ** 43 ** D43 PL , // PL 5 ** 44 ** D44 PL , // PL 4 ** 45 ** D45 PL , // PL 3 ** 46 ** D46 PL , // PL 2 ** 47 ** D47 PL , // PL 1 ** 48 ** D48 PL , // PL 0 ** 49 ** D49 PB , // PB 3 ** 50 ** SPI_MISO PB , // PB 2 ** 51 ** SPI_MOSI PB , // PB 1 ** 52 ** SPI_SCK PB , // PB 0 ** 53 ** SPI_SS PF , // PF 0 ** 54 ** A0 PF , // PF 1 ** 55 ** A1 PF , // PF 2 ** 56 ** A2 PF , // PF 3 ** 57 ** A3 PF , // PF 4 ** 58 ** A4 PF , // PF 5 ** 59 ** A5 PF , // PF 6 ** 60 ** A6 PF , // PF 7 ** 61 ** A7 PK , // PK 0 ** 62 ** A8 PK , // PK 1 ** 63 ** A9 PK , // PK 2 ** 64 ** A10 PK , // PK 3 ** 65 ** A11 PK , // PK 4 ** 66 ** A12 PK , // PK 5 ** 67 ** A13 PK , // PK 6 ** 68 ** A14 PK , // PK 7 ** 69 ** A15 PG , // PG 4 ** 70 ** PG , // PG 3 ** 71 ** PJ , // PJ 2 ** 72 ** PJ , // PJ 3 ** 73 ** PJ , // PJ 7 ** 74 ** PJ , // PJ 4 ** 75 ** PJ , // PJ 5 ** 76 ** PJ , // PJ 6 ** 77 ** PE , // PE 2 ** 78 ** PE , // PE 6 ** 79 ** PE , // PE 7 ** 80 ** PD , // PD 4 ** 81 ** PD , // PD 5 ** 82 ** PD , // PD 6 ** 83 ** PH , // PH 2 ** 84 ** PH , // PH 7 ** 85 ** }; #define digitalPinToPort_plus_70(P) ( pgm_read_byte( digital_pin_to_port_PGM_plus_70 + (P) ) ) const uint8_t PROGMEM digital_pin_to_bit_mask_PGM_plus_70[] = { // PIN IN PORT // ------------------------ _BV( 0 ) , // PE 0 ** 0 ** USART0_RX _BV( 1 ) , // PE 1 ** 1 ** USART0_TX _BV( 4 ) , // PE 4 ** 2 ** PWM2 _BV( 5 ) , // PE 5 ** 3 ** PWM3 _BV( 5 ) , // PG 5 ** 4 ** PWM4 _BV( 3 ) , // PE 3 ** 5 ** PWM5 _BV( 3 ) , // PH 3 ** 6 ** PWM6 _BV( 4 ) , // PH 4 ** 7 ** PWM7 _BV( 5 ) , // PH 5 ** 8 ** PWM8 _BV( 6 ) , // PH 6 ** 9 ** PWM9 _BV( 4 ) , // PB 4 ** 10 ** PWM10 _BV( 5 ) , // PB 5 ** 11 ** PWM11 _BV( 6 ) , // PB 6 ** 12 ** PWM12 _BV( 7 ) , // PB 7 ** 13 ** PWM13 _BV( 1 ) , // PJ 1 ** 14 ** USART3_TX _BV( 0 ) , // PJ 0 ** 15 ** USART3_RX _BV( 1 ) , // PH 1 ** 16 ** USART2_TX _BV( 0 ) , // PH 0 ** 17 ** USART2_RX _BV( 3 ) , // PD 3 ** 18 ** USART1_TX _BV( 2 ) , // PD 2 ** 19 ** USART1_RX _BV( 1 ) , // PD 1 ** 20 ** I2C_SDA _BV( 0 ) , // PD 0 ** 21 ** I2C_SCL _BV( 0 ) , // PA 0 ** 22 ** D22 _BV( 1 ) , // PA 1 ** 23 ** D23 _BV( 2 ) , // PA 2 ** 24 ** D24 _BV( 3 ) , // PA 3 ** 25 ** D25 _BV( 4 ) , // PA 4 ** 26 ** D26 _BV( 5 ) , // PA 5 ** 27 ** D27 _BV( 6 ) , // PA 6 ** 28 ** D28 _BV( 7 ) , // PA 7 ** 29 ** D29 _BV( 7 ) , // PC 7 ** 30 ** D30 _BV( 6 ) , // PC 6 ** 31 ** D31 _BV( 5 ) , // PC 5 ** 32 ** D32 _BV( 4 ) , // PC 4 ** 33 ** D33 _BV( 3 ) , // PC 3 ** 34 ** D34 _BV( 2 ) , // PC 2 ** 35 ** D35 _BV( 1 ) , // PC 1 ** 36 ** D36 _BV( 0 ) , // PC 0 ** 37 ** D37 _BV( 7 ) , // PD 7 ** 38 ** D38 _BV( 2 ) , // PG 2 ** 39 ** D39 _BV( 1 ) , // PG 1 ** 40 ** D40 _BV( 0 ) , // PG 0 ** 41 ** D41 _BV( 7 ) , // PL 7 ** 42 ** D42 _BV( 6 ) , // PL 6 ** 43 ** D43 _BV( 5 ) , // PL 5 ** 44 ** D44 _BV( 4 ) , // PL 4 ** 45 ** D45 _BV( 3 ) , // PL 3 ** 46 ** D46 _BV( 2 ) , // PL 2 ** 47 ** D47 _BV( 1 ) , // PL 1 ** 48 ** D48 _BV( 0 ) , // PL 0 ** 49 ** D49 _BV( 3 ) , // PB 3 ** 50 ** SPI_MISO _BV( 2 ) , // PB 2 ** 51 ** SPI_MOSI _BV( 1 ) , // PB 1 ** 52 ** SPI_SCK _BV( 0 ) , // PB 0 ** 53 ** SPI_SS _BV( 0 ) , // PF 0 ** 54 ** A0 _BV( 1 ) , // PF 1 ** 55 ** A1 _BV( 2 ) , // PF 2 ** 56 ** A2 _BV( 3 ) , // PF 3 ** 57 ** A3 _BV( 4 ) , // PF 4 ** 58 ** A4 _BV( 5 ) , // PF 5 ** 59 ** A5 _BV( 6 ) , // PF 6 ** 60 ** A6 _BV( 7 ) , // PF 7 ** 61 ** A7 _BV( 0 ) , // PK 0 ** 62 ** A8 _BV( 1 ) , // PK 1 ** 63 ** A9 _BV( 2 ) , // PK 2 ** 64 ** A10 _BV( 3 ) , // PK 3 ** 65 ** A11 _BV( 4 ) , // PK 4 ** 66 ** A12 _BV( 5 ) , // PK 5 ** 67 ** A13 _BV( 6 ) , // PK 6 ** 68 ** A14 _BV( 7 ) , // PK 7 ** 69 ** A15 _BV( 4 ) , // PG 4 ** 70 ** _BV( 3 ) , // PG 3 ** 71 ** _BV( 2 ) , // PJ 2 ** 72 ** _BV( 3 ) , // PJ 3 ** 73 ** _BV( 7 ) , // PJ 7 ** 74 ** _BV( 4 ) , // PJ 4 ** 75 ** _BV( 5 ) , // PJ 5 ** 76 ** _BV( 6 ) , // PJ 6 ** 77 ** _BV( 2 ) , // PE 2 ** 78 ** _BV( 6 ) , // PE 6 ** 79 ** _BV( 7 ) , // PE 7 ** 80 ** _BV( 4 ) , // PD 4 ** 81 ** _BV( 5 ) , // PD 5 ** 82 ** _BV( 6 ) , // PD 6 ** 83 ** _BV( 2 ) , // PH 2 ** 84 ** _BV( 7 ) , // PH 7 ** 85 ** }; #define digitalPinToBitMask_plus_70(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM_plus_70 + (P) ) ) const uint8_t PROGMEM digital_pin_to_timer_PGM_plus_70[] = { // TIMERS // ------------------------ NOT_ON_TIMER , // PE 0 ** 0 ** USART0_RX NOT_ON_TIMER , // PE 1 ** 1 ** USART0_TX TIMER3B , // PE 4 ** 2 ** PWM2 TIMER3C , // PE 5 ** 3 ** PWM3 TIMER0B , // PG 5 ** 4 ** PWM4 TIMER3A , // PE 3 ** 5 ** PWM5 TIMER4A , // PH 3 ** 6 ** PWM6 TIMER4B , // PH 4 ** 7 ** PWM7 TIMER4C , // PH 5 ** 8 ** PWM8 TIMER2B , // PH 6 ** 9 ** PWM9 TIMER2A , // PB 4 ** 10 ** PWM10 TIMER1A , // PB 5 ** 11 ** PWM11 TIMER1B , // PB 6 ** 12 ** PWM12 TIMER0A , // PB 7 ** 13 ** PWM13 NOT_ON_TIMER , // PJ 1 ** 14 ** USART3_TX NOT_ON_TIMER , // PJ 0 ** 15 ** USART3_RX NOT_ON_TIMER , // PH 1 ** 16 ** USART2_TX NOT_ON_TIMER , // PH 0 ** 17 ** USART2_RX NOT_ON_TIMER , // PD 3 ** 18 ** USART1_TX NOT_ON_TIMER , // PD 2 ** 19 ** USART1_RX NOT_ON_TIMER , // PD 1 ** 20 ** I2C_SDA NOT_ON_TIMER , // PD 0 ** 21 ** I2C_SCL NOT_ON_TIMER , // PA 0 ** 22 ** D22 NOT_ON_TIMER , // PA 1 ** 23 ** D23 NOT_ON_TIMER , // PA 2 ** 24 ** D24 NOT_ON_TIMER , // PA 3 ** 25 ** D25 NOT_ON_TIMER , // PA 4 ** 26 ** D26 NOT_ON_TIMER , // PA 5 ** 27 ** D27 NOT_ON_TIMER , // PA 6 ** 28 ** D28 NOT_ON_TIMER , // PA 7 ** 29 ** D29 NOT_ON_TIMER , // PC 7 ** 30 ** D30 NOT_ON_TIMER , // PC 6 ** 31 ** D31 NOT_ON_TIMER , // PC 5 ** 32 ** D32 NOT_ON_TIMER , // PC 4 ** 33 ** D33 NOT_ON_TIMER , // PC 3 ** 34 ** D34 NOT_ON_TIMER , // PC 2 ** 35 ** D35 NOT_ON_TIMER , // PC 1 ** 36 ** D36 NOT_ON_TIMER , // PC 0 ** 37 ** D37 NOT_ON_TIMER , // PD 7 ** 38 ** D38 NOT_ON_TIMER , // PG 2 ** 39 ** D39 NOT_ON_TIMER , // PG 1 ** 40 ** D40 NOT_ON_TIMER , // PG 0 ** 41 ** D41 NOT_ON_TIMER , // PL 7 ** 42 ** D42 NOT_ON_TIMER , // PL 6 ** 43 ** D43 TIMER5C , // PL 5 ** 44 ** D44 TIMER5B , // PL 4 ** 45 ** D45 TIMER5A , // PL 3 ** 46 ** D46 NOT_ON_TIMER , // PL 2 ** 47 ** D47 NOT_ON_TIMER , // PL 1 ** 48 ** D48 NOT_ON_TIMER , // PL 0 ** 49 ** D49 NOT_ON_TIMER , // PB 3 ** 50 ** SPI_MISO NOT_ON_TIMER , // PB 2 ** 51 ** SPI_MOSI NOT_ON_TIMER , // PB 1 ** 52 ** SPI_SCK NOT_ON_TIMER , // PB 0 ** 53 ** SPI_SS NOT_ON_TIMER , // PF 0 ** 54 ** A0 NOT_ON_TIMER , // PF 1 ** 55 ** A1 NOT_ON_TIMER , // PF 2 ** 56 ** A2 NOT_ON_TIMER , // PF 3 ** 57 ** A3 NOT_ON_TIMER , // PF 4 ** 58 ** A4 NOT_ON_TIMER , // PF 5 ** 59 ** A5 NOT_ON_TIMER , // PF 6 ** 60 ** A6 NOT_ON_TIMER , // PF 7 ** 61 ** A7 NOT_ON_TIMER , // PK 0 ** 62 ** A8 NOT_ON_TIMER , // PK 1 ** 63 ** A9 NOT_ON_TIMER , // PK 2 ** 64 ** A10 NOT_ON_TIMER , // PK 3 ** 65 ** A11 NOT_ON_TIMER , // PK 4 ** 66 ** A12 NOT_ON_TIMER , // PK 5 ** 67 ** A13 NOT_ON_TIMER , // PK 6 ** 68 ** A14 NOT_ON_TIMER , // PK 7 ** 69 ** A15 NOT_ON_TIMER , // PG 4 ** 70 ** NOT_ON_TIMER , // PG 3 ** 71 ** NOT_ON_TIMER , // PJ 2 ** 72 ** NOT_ON_TIMER , // PJ 3 ** 73 ** NOT_ON_TIMER , // PJ 7 ** 74 ** NOT_ON_TIMER , // PJ 4 ** 75 ** NOT_ON_TIMER , // PJ 5 ** 76 ** NOT_ON_TIMER , // PJ 6 ** 77 ** NOT_ON_TIMER , // PE 2 ** 78 ** NOT_ON_TIMER , // PE 6 ** 79 ** }; #define digitalPinToTimer_plus_70(P) ( pgm_read_byte( digital_pin_to_timer_PGM_plus_70 + (P) ) ) /** * Interrupts that are not implemented * * INT6 E6 79 * INT7 E7 80 * PCINT11 J2 72 * PCINT12 J3 73 * PCINT13 J4 75 * PCINT14 J5 76 * PCINT15 J6 77 */
2301_81045437/Marlin
Marlin/src/HAL/AVR/pinsDebug_plus_70.h
C
agpl-3.0
10,703
/** * Marlin 3D Printer Firmware * Copyright (c) 2023 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #ifdef __AVR__ #include "../../inc/MarlinConfigPre.h" #if ENABLED(HAL_AVR_DIRTY_INIT) #include "registers.h" // Since the compiler could be creating multiple copies of function code-graphs for each header inline-inclusion, // we want to off-load the function definitions that define static memory into this solitary compilation unit. // This way the ROM is NOT bloated (who knows if the compiler is optimizing same-content constant objects into one?) ATmegaPinFunctions _ATmega_getPinFunctions(int pin) { if (pin < 0) return {}; ATmegaPinInfo info = _ATmega_getPinInfo((unsigned int)pin); #ifdef __AVR_TRM01__ if (info.port == eATmegaPort::PORT_A) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD0 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_B) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC0A, eATmegaPinFunc::TOC1C, eATmegaPinFunc::PCI7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1B, eATmegaPinFunc::PCI6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1A, eATmegaPinFunc::PCI5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC2A, eATmegaPinFunc::PCI4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::PCI3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::PCI2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::PCI1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_CS, eATmegaPinFunc::PCI0 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_C) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD15 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD14 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD13 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD12 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD11 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD10 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD9 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD8 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_D) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER0_CLKI }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_CLKI }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART1_CLK }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_ICP }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT3, eATmegaPinFunc::USART1_TXD }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT2, eATmegaPinFunc::USART1_RXD }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT1, eATmegaPinFunc::TWI_SDA }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT0, eATmegaPinFunc::TWI_CLK }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_E) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT7, eATmegaPinFunc::TIMER3_ICP, eATmegaPinFunc::CLKO }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT6, eATmegaPinFunc::TIMER3_CLKI }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT5, eATmegaPinFunc::TOC3C }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT4, eATmegaPinFunc::TOC3B }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::AIN1, eATmegaPinFunc::TOC3A }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::AIN0, eATmegaPinFunc::USART0_CLK }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PDO, eATmegaPinFunc::USART0_TXD }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PDI, eATmegaPinFunc::USART0_RXD, eATmegaPinFunc::PCI8 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_F) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC0 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_G) { if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC0B }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOSC1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3 ) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOSC2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_ALE }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_RD }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_WR }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_H) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER4_CLKI }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC2B }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC4C }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC4B }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC4A }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART2_CLK }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART2_TXD }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART2_RXD }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_J) { if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI15 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI14 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI13 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI12 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART3_CLK, eATmegaPinFunc::PCI11 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART3_TXD, eATmegaPinFunc::PCI10 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART3_RXD, eATmegaPinFunc::PCI9 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_K) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC15, eATmegaPinFunc::PCI23 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC14, eATmegaPinFunc::PCI22 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC13, eATmegaPinFunc::PCI21 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC12, eATmegaPinFunc::PCI20 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC11, eATmegaPinFunc::PCI19 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC10, eATmegaPinFunc::PCI18 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC9, eATmegaPinFunc::PCI17 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC8, eATmegaPinFunc::PCI16 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_L) { if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC5C }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC5B }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC5A }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER5_CLKI }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER5_ICP }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER4_ICP }; return { funcs, countof(funcs) }; } } #elif defined(__AVR_TRM02__) if (info.port == eATmegaPort::PORT_A) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI7, eATmegaPinFunc::ADC7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI6, eATmegaPinFunc::ADC6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI5, eATmegaPinFunc::ADC5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI4, eATmegaPinFunc::ADC4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI3, eATmegaPinFunc::ADC3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI2, eATmegaPinFunc::ADC2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI1, eATmegaPinFunc::ADC1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI0, eATmegaPinFunc::ADC0 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_B) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::TOC3B, eATmegaPinFunc::PCI15 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::TOC3A, eATmegaPinFunc::PCI14 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::TIMER3_ICP, eATmegaPinFunc::PCI13 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_CS, eATmegaPinFunc::TOC0B, eATmegaPinFunc::PCI12 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::AIN1, eATmegaPinFunc::TOC0A, eATmegaPinFunc::PCI11 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::AIN0, eATmegaPinFunc::EINT2, eATmegaPinFunc::PCI10 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_ECI, eATmegaPinFunc::CLKO, eATmegaPinFunc::PCI9 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER0_ECI, eATmegaPinFunc::USART0_CLK, eATmegaPinFunc::PCI8 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_C) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOSC2, eATmegaPinFunc::PCI23 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOSC1, eATmegaPinFunc::PCI22 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI21 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI20 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI19 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI18 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI17, eATmegaPinFunc::TWI_SDA }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TWI_CLK, eATmegaPinFunc::PCI16 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_D) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC2A, eATmegaPinFunc::PCI31 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_ICP, eATmegaPinFunc::TOC2B, eATmegaPinFunc::PCI30 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1A, eATmegaPinFunc::PCI29 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1B, eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::PCI28 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT1, eATmegaPinFunc::USART1_TXD, eATmegaPinFunc::PCI27 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT0, eATmegaPinFunc::USART1_RXD, eATmegaPinFunc::PCI26 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART0_TXD, eATmegaPinFunc::PCI25 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART0_TXD, eATmegaPinFunc::PCI24, eATmegaPinFunc::TIMER3_ECI }; return { funcs, countof(funcs) }; } } #elif defined(__AVR_TRM03__) if (info.port == eATmegaPort::PORT_B) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::XTAL2, eATmegaPinFunc::TOSC2, eATmegaPinFunc::PCI7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::XTAL1, eATmegaPinFunc::TOSC1, eATmegaPinFunc::PCI6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::PCI5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::PCI4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::TOC2A, eATmegaPinFunc::PCI3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_CS, eATmegaPinFunc::TOC1B, eATmegaPinFunc::PCI2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1A, eATmegaPinFunc::PCI1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_ICP, eATmegaPinFunc::CLKO, eATmegaPinFunc::PCI0 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_C) { if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI14 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC5, eATmegaPinFunc::TWI_CLK, eATmegaPinFunc::PCI13 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC4, eATmegaPinFunc::TWI_SDA, eATmegaPinFunc::PCI12 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC3, eATmegaPinFunc::PCI11 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC2, eATmegaPinFunc::PCI10 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC1, eATmegaPinFunc::PCI9 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC0, eATmegaPinFunc::PCI8 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_D) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::AIN1, eATmegaPinFunc::PCI23 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::AIN0, eATmegaPinFunc::TOC0A, eATmegaPinFunc::PCI22 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_ECI, eATmegaPinFunc::TOC0B, eATmegaPinFunc::PCI21 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART_CLK, eATmegaPinFunc::TIMER0_ECI, eATmegaPinFunc::PCI20 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT1, eATmegaPinFunc::TOC2B, eATmegaPinFunc::PCI19 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT0, eATmegaPinFunc::PCI18 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART_TXD, eATmegaPinFunc::PCI17 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART_RXD, eATmegaPinFunc::PCI16 }; return { funcs, countof(funcs) }; } } #elif defined(__AVR_TRM04__) if (info.port == eATmegaPort::PORT_A) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD0 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_B) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC0A, eATmegaPinFunc::TOC1C, eATmegaPinFunc::PCI7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1B, eATmegaPinFunc::PCI6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1A, eATmegaPinFunc::PCI5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC2A, eATmegaPinFunc::PCI4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PDO, eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::PCI3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PDI, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::PCI2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::PCI1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_CS, eATmegaPinFunc::PCI0 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_C) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD15, eATmegaPinFunc::TIMER3_ICP, eATmegaPinFunc::CLKO }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD14, eATmegaPinFunc::TOC3A }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD13, eATmegaPinFunc::TOC3B }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD12, eATmegaPinFunc::TOC3C }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD11, eATmegaPinFunc::TIMER3_CLKI }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD10 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD9 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_AD8 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_D) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER0_CLKI }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_CLKI }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART1_CLK }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_ICP }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT3, eATmegaPinFunc::USART1_TXD }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT2, eATmegaPinFunc::USART1_RXD }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT1, eATmegaPinFunc::TWI_SDA, eATmegaPinFunc::TOC2B }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT0, eATmegaPinFunc::TWI_CLK, eATmegaPinFunc::TOC0B }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_E) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT7, eATmegaPinFunc::AIN1, eATmegaPinFunc::UVCON }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT6, eATmegaPinFunc::AIN0 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT5, eATmegaPinFunc::TOSC2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT4, eATmegaPinFunc::TOSC2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::UID }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_ALE }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_RD }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EXTMEM_WR }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_F) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC0 }; return { funcs, countof(funcs) }; } } #elif defined(__AVR_TRM05__) if (info.port == eATmegaPort::PORT_A) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC7, eATmegaPinFunc::PCI7 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC6, eATmegaPinFunc::PCI6 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC5, eATmegaPinFunc::PCI5 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC4, eATmegaPinFunc::PCI4 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC3, eATmegaPinFunc::PCI3 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC2, eATmegaPinFunc::PCI2 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC1, eATmegaPinFunc::PCI1 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::ADC0, eATmegaPinFunc::PCI0 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_B) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::PCI15 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::PCI14 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::PCI13 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::SPI_CS, eATmegaPinFunc::TOC0B, eATmegaPinFunc::PCI12 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::AIN1, eATmegaPinFunc::TOC0A, eATmegaPinFunc::PCI11 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::AIN0, eATmegaPinFunc::EINT2, eATmegaPinFunc::PCI10 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_ECI, eATmegaPinFunc::CLKO, eATmegaPinFunc::PCI9 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER0_ECI, eATmegaPinFunc::USART0_CLK, eATmegaPinFunc::PCI8 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_C) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOSC2, eATmegaPinFunc::PCI23 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOSC1, eATmegaPinFunc::PCI22 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI21 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI20 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI19 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::PCI18 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TWI_SDA, eATmegaPinFunc::PCI17 }; return { funcs, countof(funcs) }; } else if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TWI_CLK, eATmegaPinFunc::PCI16 }; return { funcs, countof(funcs) }; } } else if (info.port == eATmegaPort::PORT_D) { if (info.pinidx == 7) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC2A, eATmegaPinFunc::PCI31 }; return { funcs, countof(funcs) }; } if (info.pinidx == 6) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TIMER1_ICP, eATmegaPinFunc::TOC2B, eATmegaPinFunc::PCI30 }; return { funcs, countof(funcs) }; } if (info.pinidx == 5) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1A, eATmegaPinFunc::PCI29 }; return { funcs, countof(funcs) }; } if (info.pinidx == 4) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::TOC1B, eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::PCI28 }; return { funcs, countof(funcs) }; } if (info.pinidx == 3) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT1, eATmegaPinFunc::USART1_TXD, eATmegaPinFunc::PCI27 }; return { funcs, countof(funcs) }; } if (info.pinidx == 2) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::EINT0, eATmegaPinFunc::USART1_RXD, eATmegaPinFunc::PCI26 }; return { funcs, countof(funcs) }; } if (info.pinidx == 1) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART0_TXD, eATmegaPinFunc::PCI25 }; return { funcs, countof(funcs) }; } if (info.pinidx == 0) { static const eATmegaPinFunc funcs[] = { eATmegaPinFunc::USART0_RXD, eATmegaPinFunc::PCI24 }; return { funcs, countof(funcs) }; } } #endif return ATmegaPinFunctions(); // default and empty. } #endif // HAL_AVR_DIRTY_INIT #endif // __AVR__
2301_81045437/Marlin
Marlin/src/HAL/AVR/registers.cpp
C++
agpl-3.0
41,918
/** * Marlin 3D Printer Firmware * Copyright (c) 2023 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once #include <stdint.h> // This volatile-nonsense has to be done due to the C++ platform language specialization that specifies, for it's own compiler ideology, // that memory writes and reads can be optimized across easily-reachable code spaces. This is in contrast to MSVC which specifies that // memory writes and reads are holy. // OVERVIEW OF PREPROCESSOR DEFINITIONS: // __AVR_ATmega2560__ // __AVR_ATmega1284P__ // __AVR_ATmega1280__ // __AVR_ATmega644__ // __AVR_ATmega644P__ // __AVR_ATmega2561__ // Contributed by Martin Turski, company owner of EirDev, on the 29th of November, 2022 // Contact E-Mail: turningtides@outlook.de // Created specifically for the Marlin FW for AVR backwards-compatibility. // Please expand this file with details of every supported AVR implementation. // 1) download the latest technical reference manual // 2) add the new technical reference manual below using a set of __AVR_*__ preprocessor definitions and a new __AVR_TRM*__ incrementing define // 3) check which of the existing AVR registers exist on the new implementation and enable them // 4) add any new register definitions // 5) add the register memory layout below the definitions // 6) extend the _ATmega_resetperipherals functions // 7) extend the _ATmega_savePinAlternate function // 8) copy the extension idea to _ATmega_restorePinAlternate and finish implementing it // You need to adjust the eATmegaPort enumeration aswell. #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) #error "Fatal error: __AVR_TRMn__ already defined! (n: 01|02|03|04|05)" #endif #if defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega640__) // ATmega2560 technical reference manual date: 28th of November, 2022 // ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf #define __AVR_TRM01__ #elif defined(__AVR_ATmega164A__) || defined(__AVR_ATmega164PA__) || defined(__AVR_ATmega324A__) || defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) // ATmega1284 technical reference manual date: 29th of November, 2022 // ATmega164A_PA-324A_PA-644A_PA-1284_P_Data-Sheet-40002070B.pdf #define __AVR_TRM02__ #elif defined(__AVR_ATmega48A__) || defined(__AVR_ATmega48PA__) || defined(__AVR_ATmega88A__) || defined(__AVR_ATmega88PA__) || defined(__AVR_ATmega168A__) || defined(__AVR_ATmega168PA__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__) // ATmega328 technical reference manual date: 29th of November, 2022 // ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf #define __AVR_TRM03__ #elif defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1286P__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB646P__) || defined(__AVR_AT90USB647__) // AT90USB1287 technical reference manual ID: 7593D–AVR–07/06 // Preliminary. #define __AVR_TRM04__ #elif defined(__AVR_ATmega164P__) || defined(__AVR_ATmega164V__) || defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324V__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644V__) // ATmega644P technical reference manual date: 14th of February, 2023 // ATmega164P-324P-644P-Data-Sheet-40002071A.pdf #define __AVR_TRM05__ #endif /** * HELPER FUNCTIONS */ namespace AVRHelpers { template <typename T> struct no_volatile { typedef T type; }; template <typename T> struct no_volatile <volatile T> : public no_volatile <T> {}; template <typename T, unsigned int> struct voltype { typedef T type; }; template <typename T> struct voltype <T, 1u> { typedef uint8_t type; }; template <typename T> struct voltype <T, 2u> { typedef uint16_t type; }; template <typename T> struct voltype <T, 4u> { typedef uint32_t type; }; template <typename T> inline void dwrite(volatile T& v, const T& V) noexcept { (volatile typename voltype <T, sizeof(T)>::type&)v = (const typename voltype <T, sizeof(T)>::type&)V; } } // namespace AVRHelpers // As old as the ATmega series of CPU is, the worse the actual libraries making // use of the MCU likely are. // These registers as references do not take program space since they are purely references. // It would be great if the old AVR definitions could be wasted in favor of these // and code be rewritten to use the following more robust definitions. struct _bit_reg_t { uint8_t val; bool getValue(uint8_t idx) const volatile { return ( val & (1 << idx) ); } void setValue(uint8_t idx, bool value) volatile { if (value) val |= (1 << idx); else val &= ~(1 << idx); } }; #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) typedef _bit_reg_t PIN_reg_t; typedef _bit_reg_t DDR_reg_t; typedef _bit_reg_t PORT_reg_t; struct PORT_dev_t { PIN_reg_t _PIN; DDR_reg_t _DDR; PORT_reg_t _PORT; inline void operator = ( const PORT_dev_t& r ) volatile { using namespace AVRHelpers; dwrite(this->_PIN, r._PIN); dwrite(this->_DDR, r._DDR); dwrite(this->_PORT, r._PORT); } }; static_assert(sizeof(PORT_dev_t) == 3, "invalid size of ATmega2560 GPIO_dev_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM03__ || __AVR_TRM04__ || __AVR_TRM05__ #ifdef __AVR_TRM01__ struct _bitG_reg_t { uint8_t val : 6; uint8_t reserved1 : 2; bool getValue(uint8_t idx) const volatile { return val & (1 << idx); } void setValue(uint8_t idx, bool value) volatile { if (value) val |= (1 << idx); else val &= ~(1 << idx); } }; typedef _bitG_reg_t PING_reg_t; typedef _bitG_reg_t DDRG_reg_t; typedef _bitG_reg_t PORTG_reg_t; struct PORTG_dev_t { PING_reg_t _PIN; DDRG_reg_t _DDR; PORTG_reg_t _PORT; inline void operator = ( const PORTG_dev_t& r ) volatile { using namespace AVRHelpers; dwrite(this->_PIN, r._PIN); dwrite(this->_DDR, r._DDR); dwrite(this->_PORT, r._PORT); } }; #endif #ifdef __AVR_TRM03__ struct _bitC_reg_t { uint8_t val : 7; uint8_t reserved1 : 1; bool getValue(uint8_t idx) const volatile { return ( val & (1 << idx) ); } void setValue(uint8_t idx, bool value) volatile { if (value) val |= (1 << idx); else val &= ~(1 << idx); } }; typedef _bitC_reg_t PINC_reg_t; typedef _bitC_reg_t DDRC_reg_t; typedef _bitC_reg_t PORTC_reg_t; struct PORTC_dev_t { PINC_reg_t _PIN; DDRC_reg_t _DDR; PORTC_reg_t _PORT; inline void operator = ( const PORTC_dev_t& r ) volatile { this->_PIN = r._PIN; this->_DDR = r._DDR; this->_PORT = r._PORT; } }; #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) struct TIFR0_reg_t { uint8_t _TOV0 : 1; uint8_t _OCF0A : 1; uint8_t _OCF0B : 1; uint8_t reserved1 : 5; }; static_assert(sizeof(TIFR0_reg_t) == 1, "invalid size of ATmega2560 TIFR0_reg_t"); struct TIFR1_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _TOV1 : 1; uint8_t _OCF1A : 1; uint8_t _OCF1B : 1; uint8_t _OCF1C : 1; uint8_t reserved1 : 1; uint8_t _ICF1 : 1; uint8_t reserved2 : 2; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) uint8_t _TOV1 : 1; uint8_t _OCF1A : 1; uint8_t _OCF1B : 1; uint8_t reserved1 : 2; uint8_t _ICF1 : 1; uint8_t reserved2 : 2; #endif }; static_assert(sizeof(TIFR1_reg_t) == 1, "invalid size of ATmega2560 TIFR1_reg_t"); struct TIFR2_reg_t { uint8_t _TOV2 : 1; uint8_t _OCF2A : 1; uint8_t _OCF2B : 1; uint8_t reserved1 : 5; }; static_assert(sizeof(TIFR2_reg_t) == 1, "invalid size of ATmega2560 TIFR2_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM03__ || __AVR_TRM04__ || __AVR_TRM05__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) struct TIFR3_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _TOV3 : 1; uint8_t _OCF3A : 1; uint8_t _OCF3B : 1; uint8_t _OCF3C : 1; uint8_t reserved1 : 1; uint8_t _ICF3 : 1; uint8_t reserved2 : 2; #elif defined(__AVR_TRM02__) uint8_t _TOV3 : 1; uint8_t _OCF3A : 1; uint8_t _OCF3B : 1; uint8_t reserved1 : 2; uint8_t _ICF3 : 1; uint8_t reserved2 : 2; #endif }; static_assert(sizeof(TIFR3_reg_t) == 1, "invalid size of ATmega2560 TIFR3_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM04__ #ifdef __AVR_TRM01__ struct TIFR4_reg_t { uint8_t _TOV4 : 1; uint8_t _OCF4A : 1; uint8_t _OCF4B : 1; uint8_t _OCF4C : 1; uint8_t reserved1 : 1; uint8_t _ICF4 : 1; uint8_t reserved2 : 2; }; static_assert(sizeof(TIFR4_reg_t) == 1, "invalid size of ATmega2560 TIFR4_reg_t"); struct TIFR5_reg_t { uint8_t _TOV5 : 1; uint8_t _OCF5A : 1; uint8_t _OCF5B : 1; uint8_t _OCF5C : 1; uint8_t reserved1 : 1; uint8_t _ICF5 : 1; uint8_t reserved2 : 2; }; static_assert(sizeof(TIFR5_reg_t) == 1, "invalid size of ATmega2560 TIFR5_reg_t"); #endif // __AVR_TRM01__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) struct PCIFR_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM03__) uint8_t _PCIF0 : 1; uint8_t _PCIF1 : 1; uint8_t _PCIF2 : 1; uint8_t reserved1 : 5; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) uint8_t _PCIF0 : 1; uint8_t _PCIF1 : 1; uint8_t _PCIF2 : 1; uint8_t _PCIF3 : 1; uint8_t reserved1 : 4; #elif defined(__AVR_TRM04__) uint8_t _PCIF0 : 1; uint8_t reserved1 : 7; #endif }; static_assert(sizeof(PCIFR_reg_t) == 1, "invalid size of ATmega2560 PCIFR_reg_t"); struct EIFR_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _INTF0 : 1; uint8_t _INTF1 : 1; uint8_t _INTF2 : 1; uint8_t _INTF3 : 1; uint8_t _INTF4 : 1; uint8_t _INTF5 : 1; uint8_t _INTF6 : 1; uint8_t _INTF7 : 1; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) uint8_t _INTF0 : 1; uint8_t _INTF1 : 1; uint8_t _INTF2 : 1; uint8_t reserved1 : 5; #elif defined(__AVR_TRM03__) uint8_t _INTF0 : 1; uint8_t _INTF1 : 1; uint8_t reserved1 : 6; #endif }; static_assert(sizeof(EIFR_reg_t) == 1, "invalid size of ATmega2560 EIFR_reg_t"); struct EIMSK_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _INT0 : 1; uint8_t _INT1 : 1; uint8_t _INT2 : 1; uint8_t _INT3 : 1; uint8_t _INT4 : 1; uint8_t _INT5 : 1; uint8_t _INT6 : 1; uint8_t _INT7 : 1; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) uint8_t _INT0 : 1; uint8_t _INT1 : 1; uint8_t _INT2 : 1; uint8_t reserved1 : 5; #elif defined(__AVR_TRM03__) uint8_t _INT0 : 1; uint8_t _INT1 : 1; uint8_t reserved1 : 6; #endif }; static_assert(sizeof(EIMSK_reg_t) == 1, "invalid size of ATmega2560 EIMSK_reg_t"); struct EECR_reg_t { uint8_t _EERE : 1; uint8_t _EEPE : 1; uint8_t _EEMPE : 1; uint8_t _EERIE : 1; uint8_t _EEPM0 : 1; uint8_t _EEPM1 : 1; uint8_t reserved1 : 2; }; static_assert(sizeof(EECR_reg_t) == 1, "invalid size of ATmega2560 EECR_reg_t"); struct EEAR_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) uint16_t _EEAR : 12; uint16_t reserved1 : 4; #elif defined(__AVR_TRM03__) #if defined(__AVR_ATmega88A__) || defined(__AVR_ATmega88PA__) || defined(__AVR_ATmega168A__) || defined(__AVR_ATmega168PA__) || defined(__AVR_ATmega328P__) uint16_t _EEAR : 16; #else uint8_t _EEAR : 8; uint8_t reserved1 : 8; #endif #endif }; static_assert(sizeof(EEAR_reg_t) == 2, "invalid size of ATmega2560 EEAR_reg_t"); struct GTCCR_reg_t { uint8_t _PSRSYNC : 1; uint8_t _PSRASY : 1; uint8_t reserved1 : 5; uint8_t _TSM : 1; }; static_assert(sizeof(GTCCR_reg_t) == 1, "invalid size of ATmega2560 GTCCR_reg_t"); struct SPCR_reg_t { uint8_t _SPR : 2; uint8_t _CPHA : 1; uint8_t _CPOL : 1; uint8_t _MSTR : 1; uint8_t _DORD : 1; uint8_t _SPE : 1; uint8_t _SPIE : 1; }; static_assert(sizeof(SPCR_reg_t) == 1, "invalid size of ATmega2560 SPCR_reg_t"); struct SPSR_reg_t { uint8_t _SPI2X : 1; uint8_t reserved1 : 5; uint8_t _WCOL : 1; uint8_t _SPIF : 1; }; static_assert(sizeof(SPSR_reg_t) == 1, "invalid size of ATmega2560 SPSR_reg_t"); struct ACSR_reg_t { uint8_t _ACIS : 2; uint8_t _ACIC : 1; uint8_t _ACIE : 1; uint8_t _ACI : 1; uint8_t _ACO : 1; uint8_t _ACBG : 1; uint8_t _ACD : 1; }; static_assert(sizeof(ACSR_reg_t) == 1, "invalid size of ATmega2560 ACSR_reg_t"); struct SMCR_reg_t { uint8_t _SE : 1; uint8_t _SM : 3; uint8_t reserved1 : 4; }; static_assert(sizeof(SMCR_reg_t) == 1, "invalid size of ATmega2560 SMCR_reg_t"); struct MCUSR_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) uint8_t _PORF : 1; uint8_t _EXTRF : 1; uint8_t _BORF : 1; uint8_t _WDRF : 1; uint8_t _JTRF : 1; uint8_t reserved1 : 3; #elif defined(__AVR_TRM03__) uint8_t _PORF : 1; uint8_t _EXTRF : 1; uint8_t _BORF : 1; uint8_t _WDRF : 1; uint8_t reserved1 : 4; #endif }; static_assert(sizeof(MCUSR_reg_t) == 1, "invalid size of ATmega2560 MCUSR_reg_t"); struct MCUCR_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _IVCE : 1; uint8_t _IVSEL : 1; uint8_t reserved1 : 2; uint8_t _PUD : 1; uint8_t reserved2 : 2; uint8_t _JTD : 1; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) uint8_t _IVCE : 1; uint8_t _IVSEL : 1; uint8_t reserved1 : 2; uint8_t _PUD : 1; uint8_t _BODSE : 1; uint8_t _BODS : 1; uint8_t _JTD : 1; #elif defined(__AVR_TRM03__) uint8_t _IVCE : 1; uint8_t _IVSEL : 1; uint8_t reserved1 : 2; uint8_t _PUD : 1; uint8_t _BODSE : 1; uint8_t _BODS : 1; uint8_t reserved2 : 1; #endif }; static_assert(sizeof(MCUCR_reg_t) == 1, "invalid size of ATmega2560 MCUCR_reg_t"); struct SPMCSR_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) uint8_t _SPMEN : 1; uint8_t _PGERS : 1; uint8_t _PGWRT : 1; uint8_t _BLBSET : 1; uint8_t _RWWSRE : 1; uint8_t _SIGRD : 1; uint8_t _RWWSB : 1; uint8_t _SPMIE : 1; #elif defined(__AVR_TRM03__) #if defined(__AVR_ATmega88A__) || defined(__AVR_ATmega88PA__) || defined(__AVR_ATmega168A__) || defined(__AVR_ATmega168PA__) || defined(__AVR_ATmega328P__) uint8_t _SPMEN : 1; uint8_t _PGERS : 1; uint8_t _PGWRT : 1; uint8_t _BLBSET : 1; uint8_t _RWWSRE : 1; uint8_t _SIGRD : 1; uint8_t _RWWSB : 1; uint8_t _SPMIE : 1; #else uint8_t _SPMEN : 1; uint8_t _PGERS : 1; uint8_t _PGWRT : 1; uint8_t _BLBSET : 1; uint8_t reserved1 : 1; uint8_t _SIGRD : 1; uint8_t reserved2 : 1; uint8_t _SPMIE : 1; #endif #endif }; static_assert(sizeof(SPMCSR_reg_t) == 1, "invalid size of ATmega2560 SPMCSR_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM03__ || __AVR_TRM04__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) struct RAMPZ_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) uint8_t _RAMPZ : 2; uint8_t reserved1 : 6; #elif defined(__AVR_TRM05__) uint8_t _RAMPZ : 1; uint8_t reserved1 : 7; #endif }; static_assert(sizeof(RAMPZ_reg_t) == 1, "invalid size of ATmega2560 RAMPZ_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM04__ || __AVR_TRM05__ #ifdef __AVR_TRM01__ struct EIND_reg_t { uint8_t _EIND0 : 1; uint8_t reserved1 : 7; }; static_assert(sizeof(EIND_reg_t) == 1, "invalid size of ATmega2560 EIND_reg_t"); #endif // __AVR_TRM01__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) struct SP_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) uint16_t _SP; #elif defined(__AVR_TRM03__) #if defined(__AVR_ATmega88A__) || defined(__AVR_ATmega88PA__) || defined(__AVR_ATmega168A__) || defined(__AVR_ATmega168PA__) || defined(__AVR_ATmega328P__) uint16_t _SP : 11; uint16_t reserved1 : 5; #else uint16_t _SP : 10; uint16_t reserved1 : 6; #endif #endif }; static_assert(sizeof(SP_reg_t) == 2, "invalid size of ATmega2560 SP_reg_t"); struct SREG_reg_t { uint8_t _C : 1; uint8_t _Z : 1; uint8_t _N : 1; uint8_t _V : 1; uint8_t _S : 1; uint8_t _H : 1; uint8_t _T : 1; uint8_t _I : 1; }; static_assert(sizeof(SREG_reg_t) == 1, "invalid size of ATmega2560 SREG_reg_t"); struct WDTCSR_reg_t { uint8_t _WDP0 : 1; uint8_t _WDP1 : 1; uint8_t _WDP2 : 1; uint8_t _WDE : 1; uint8_t _WDCE : 1; uint8_t _WDP3 : 1; uint8_t _WDIE : 1; uint8_t _WDIF : 1; }; static_assert(sizeof(WDTCSR_reg_t) == 1, "invalid size of ATmega2560 WDTCSR_reg_t"); struct CLKPR_reg_t { uint8_t _CLKPS : 4; uint8_t reserved1 : 3; uint8_t _CLKPCE : 1; }; static_assert(sizeof(CLKPR_reg_t) == 1, "invalid size of ATmega2560 CLKPR_reg_t"); struct PRR0_reg_t { #ifdef __AVR_TRM01__ uint8_t _PRADC : 1; uint8_t _PRUSART0 : 1; uint8_t _PRSPI : 1; uint8_t _PRTIM1 : 1; uint8_t reserved1 : 1; uint8_t _PRTIM0 : 1; uint8_t _PRTIM2 : 1; uint8_t _PRTWI : 1; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) uint8_t _PRADC : 1; uint8_t _PRUSART0 : 1; uint8_t _PRSPI : 1; uint8_t _PRTIM1 : 1; uint8_t _PRUSART1 : 1; uint8_t _PRTIM0 : 1; uint8_t _PRTIM2 : 1; uint8_t _PRTWI : 1; #elif defined(__AVR_TRM03__) uint8_t _PRADC : 1; uint8_t _PRUSART0 : 1; uint8_t _PRSPI : 1; uint8_t _PRTIM1 : 1; uint8_t reserved1 : 1; uint8_t _PRTIM0 : 1; uint8_t _PRTIM2 : 1; uint8_t _PRTWI : 1; #elif defined(__AVR_TRM04__) uint8_t _PRADC : 1; uint8_t reserved1 : 1; uint8_t _PRSPI : 1; uint8_t _PRTIM1 : 1; uint8_t reserved2 : 1; uint8_t _PRTIM0 : 1; uint8_t _PRTIM2 : 1; uint8_t _PRTWI : 1; #endif }; static_assert(sizeof(PRR0_reg_t) == 1, "invalid size of ATmega2560 PRR0_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM03__ || __AVR_TRM04__ || __AVR_TRM05__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) struct PRR1_reg_t { #ifdef __AVR_TRM01__ uint8_t _PRUSART1 : 1; uint8_t _PRUSART2 : 1; uint8_t _PRUSART3 : 1; uint8_t _PRTIM3 : 1; uint8_t _PRTIM4 : 1; uint8_t _PRTIM5 : 1; uint8_t reserved1 : 2; #elif defined(__AVR_TRM02__) uint8_t _PRTIM3 : 1; uint8_t reserved1 : 7; #elif defined(__AVR_TRM04__) uint8_t _PRUSART1 : 1; uint8_t reserved1 : 2; uint8_t _PRTIM3 : 1; uint8_t reserved2 : 3; uint8_t _PRUSB : 1; #endif }; static_assert(sizeof(PRR1_reg_t) == 1, "invalid size of ATmega2560 PRR1_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM04__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) struct PCICR_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM03__) uint8_t _PCIE0 : 1; uint8_t _PCIE1 : 1; uint8_t _PCIE2 : 1; uint8_t reserved1 : 5; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) uint8_t _PCIE0 : 1; uint8_t _PCIE1 : 1; uint8_t _PCIE2 : 1; uint8_t _PCIE3 : 1; uint8_t reserved1 : 4; #elif defined(__AVR_TRM04__) uint8_t _PCIE0 : 1; uint8_t reserved1 : 7; #endif }; static_assert(sizeof(PCICR_reg_t) == 1, "invalid size of ATmega2560 PCICR_reg_t"); struct EICRA_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _ISC0 : 2; uint8_t _ISC1 : 2; uint8_t _ISC2 : 2; uint8_t _ISC3 : 2; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) uint8_t _ISC0 : 2; uint8_t _ISC1 : 2; uint8_t _ISC2 : 2; uint8_t reserved1 : 2; #elif defined(__AVR_TRM03__) uint8_t _ISC0 : 2; uint8_t _ISC1 : 2; uint8_t reserved1 : 4; #endif }; static_assert(sizeof(EICRA_reg_t) == 1, "invalid size of ATmega2560 EICRA_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM03__ || __AVR_TRM04__ || __AVR_TRM05__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) struct EICRB_reg_t { uint8_t _ISC4 : 2; uint8_t _ISC5 : 2; uint8_t _ISC6 : 2; uint8_t _ISC7 : 2; }; static_assert(sizeof(EICRB_reg_t) == 1, "invalid size of ATmega2560 EICRB_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM04__ #if defined(__AVR_TRM03__) struct _bitPCMSK1_reg_t { uint8_t val : 7; uint8_t reserved1 : 1; bool getValue(uint8_t idx) { return val & (1 << idx); } void setValue(uint8_t idx, bool value) { if (value) val |= (1 << idx); else val &= ~(1 << idx); } }; #endif // __AVR_TRM03__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) struct TIMSK0_reg_t { #ifdef __AVR_TRM01__ uint8_t _TOIE0 : 1; uint8_t _OCIE0A : 1; uint8_t _OCIE0B : 1; uint8_t _OCIE0C : 1; uint8_t reserved1 : 1; uint8_t _ICIE0 : 1; uint8_t reserved2 : 2; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) uint8_t _TOIE0 : 1; uint8_t _OCIE0A : 1; uint8_t _OCIE0B : 1; uint8_t reserved1 : 5; #endif }; static_assert(sizeof(TIMSK0_reg_t) == 1, "invalid size of ATmega2560 TIMSK0_reg_t"); struct TIMSK1_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _TOIE1 : 1; uint8_t _OCIE1A : 1; uint8_t _OCIE1B : 1; uint8_t _OCIE1C : 1; uint8_t reserved1 : 1; uint8_t _ICIE1: 1; uint8_t reserved2 : 2; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) uint8_t _TOIE1 : 1; uint8_t _OCIE1A : 1; uint8_t _OCIE1B : 1; uint8_t reserved1 : 2; uint8_t _ICIE1: 1; uint8_t reserved2 : 2; #endif }; static_assert(sizeof(TIMSK1_reg_t) == 1, "invalid size of ATmega2560 TIMSK1_reg_t"); struct TIMSK2_reg_t { uint8_t _TOIE2 : 1; uint8_t _OCIE2A : 1; uint8_t _OCIE2B : 1; uint8_t reserved1 : 5; }; static_assert(sizeof(TIMSK2_reg_t) == 1, "invalid size of ATmega2560 TIMSK2_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM03__ || __AVR_TRM04__ || __AVR_TRM05__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) struct TIMSK3_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _TOIE3 : 1; uint8_t _OCIE3A : 1; uint8_t _OCIE3B : 1; uint8_t _OCIE3C : 1; uint8_t reserved1 : 1; uint8_t _ICIE3 : 1; uint8_t reserved2 : 2; #elif defined(__AVR_TRM02__) uint8_t _TOIE3 : 1; uint8_t _OCIE3A : 1; uint8_t _OCIE3B : 1; uint8_t reserved1 : 2; uint8_t _ICIE3 : 1; uint8_t reserved2 : 2; #endif }; static_assert(sizeof(TIMSK3_reg_t) == 1, "invalid size of ATmega2560 TIMSK3_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM04__ #ifdef __AVR_TRM01__ struct TIMSK4_reg_t { uint8_t _TOIE4 : 1; uint8_t _OCIE4A : 1; uint8_t _OCIE4B : 1; uint8_t _OCIE4C : 1; uint8_t reserved1 : 1; uint8_t _ICIE4 : 1; uint8_t reserved2 : 2; }; static_assert(sizeof(TIMSK4_reg_t) == 1, "invalid size of ATmega2560 TIMSK4_reg_t"); struct TIMSK5_reg_t { uint8_t _TOIE5 : 1; uint8_t _OCIE5A : 1; uint8_t _OCIE5B : 1; uint8_t _OCIE5C : 1; uint8_t reserved1 : 1; uint8_t _ICIE5 : 1; uint8_t reserved2 : 2; }; static_assert(sizeof(TIMSK5_reg_t) == 1, "invalid size of ATmega2560 TIMSK5_reg_t"); #endif // __AVR_TRM01__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) struct XMCRA_reg_t { uint8_t _SRW0 : 2; uint8_t _SRW1 : 2; uint8_t _SRL : 3; uint8_t _SRE : 1; }; static_assert(sizeof(XMCRA_reg_t) == 1, "invalid size of ATmega2560 XMCRA_reg_t"); struct XMCRB_reg_t { uint8_t _XMM : 3; uint8_t reserved1 : 4; uint8_t _XMBK : 1; }; static_assert(sizeof(XMCRB_reg_t) == 1, "invalid size of ATmega2560 XMCRB_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM04__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) struct ADCSRA_reg_t { uint8_t _ADPS : 3; uint8_t _ADIE : 1; uint8_t _ADIF : 1; uint8_t _ADATE : 1; uint8_t _ADSC : 1; uint8_t _ADEN : 1; }; static_assert(sizeof(ADCSRA_reg_t) == 1, "invalid size of ATmega2560 ADCSRA_reg_t"); struct ADCSRB_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _ADTS : 3; uint8_t _MUX5 : 1; uint8_t reserved1 : 2; uint8_t _ACME : 1; uint8_t reserved2 : 1; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) uint8_t _ADTS : 3; uint8_t reserved1 : 3; uint8_t _ACME : 1; uint8_t reserved2 : 1; #endif }; static_assert(sizeof(ADCSRB_reg_t) == 1, "invalid size of ATmega2560 ADCSRB_reg_t"); struct ADMUX_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) uint8_t _MUX0 : 1; uint8_t _MUX1 : 1; uint8_t _MUX2 : 1; uint8_t _MUX3 : 1; uint8_t _MUX4 : 1; uint8_t _ADLAR : 1; uint8_t _REFS0 : 1; uint8_t _REFS1 : 1; #elif defined(__AVR_TRM03__) uint8_t _MUX0 : 1; uint8_t _MUX1 : 1; uint8_t _MUX2 : 1; uint8_t _MUX3 : 1; uint8_t reserved1 : 1; uint8_t _ADLAR : 1; uint8_t _REFS0 : 1; uint8_t _REFS1 : 1; #endif }; static_assert(sizeof(ADMUX_reg_t) == 1, "invalid size of ATmega2560 ADMUX_reg_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM03__ || __AVR_TRM04__ #ifdef __AVR_TRM01__ struct DIDR2_reg_t { uint8_t _ADC8D : 1; uint8_t _ADC9D : 1; uint8_t _ADC10D : 1; uint8_t _ADC11D : 1; uint8_t _ADC12D : 1; uint8_t _ADC13D : 1; uint8_t _ADC14D : 1; uint8_t _ADC15D : 1; }; static_assert(sizeof(DIDR2_reg_t) == 1, "invalid size of ATmega2560 DIDR2_reg_t"); #endif // __AVR_TRM01__ #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) struct DIDR0_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) uint8_t _ADC0D : 1; uint8_t _ADC1D : 1; uint8_t _ADC2D : 1; uint8_t _ADC3D : 1; uint8_t _ADC4D : 1; uint8_t _ADC5D : 1; uint8_t _ADC6D : 1; uint8_t _ADC7D : 1; #elif defined(__AVR_TRM03__) uint8_t _ADC0D : 1; uint8_t _ADC1D : 1; uint8_t _ADC2D : 1; uint8_t _ADC3D : 1; uint8_t _ADC4D : 1; uint8_t _ADC5D : 1; uint8_t reserved1 : 2; #endif }; static_assert(sizeof(DIDR0_reg_t) == 1, "invalid size of ATmega2560 DIDR0_reg_t"); struct DIDR1_reg_t { uint8_t _AIN0D : 1; uint8_t _AIN1D : 1; uint8_t reserved1 : 6; }; static_assert(sizeof(DIDR1_reg_t) == 1, "invalid size of ATmega2560 DIDR1_reg_t"); struct TCCRnA_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t _WGMn0 : 1; uint8_t _WGMn1 : 1; uint8_t _COMnC : 2; uint8_t _COMnB : 2; uint8_t _COMnA : 2; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) uint8_t _WGMn0 : 1; uint8_t _WGMn1 : 1; uint8_t reserved1 : 2; uint8_t _COMnB : 2; uint8_t _COMnA : 2; #endif }; static_assert(sizeof(TCCRnA_reg_t) == 1, "invalid size of ATmega2560 TCCRnA_reg_t"); struct TCCRnB_reg_t { uint8_t _CSn : 3; uint8_t _WGMn2 : 1; uint8_t _WGMn3 : 1; uint8_t reserved1 : 1; uint8_t _ICESn : 1; uint8_t _ICNCn : 1; }; static_assert(sizeof(TCCRnB_reg_t) == 1, "invalid size of ATmega2560 TCCRnB_reg_t"); struct TCCRnC_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint8_t reserved1 : 5; uint8_t _FOCnC : 1; uint8_t _FOCnB : 1; uint8_t _FOCnA : 1; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) uint8_t reserved1 : 6; uint8_t _FOCnB : 1; uint8_t _FOCnA : 1; #endif }; static_assert(sizeof(TCCRnC_reg_t) == 1, "invalid size of ATmega2560 TCCRnC_reg_t"); struct TIMER_dev_t { TCCRnA_reg_t _TCCRnA; TCCRnB_reg_t _TCCRnB; TCCRnC_reg_t _TCCRnC; uint8_t reserved1; uint16_t _TCNTn; uint16_t _ICRn; uint16_t _OCRnA; uint16_t _OCRnB; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) uint16_t _OCRnC; #endif inline void operator = ( const TIMER_dev_t& r ) volatile { using namespace AVRHelpers; dwrite(this->_TCCRnA, r._TCCRnA); dwrite(this->_TCCRnB, r._TCCRnB); dwrite(this->_TCCRnC, r._TCCRnC); this->reserved1 = r.reserved1; this->_TCNTn = r._TCNTn; this->_ICRn = r._ICRn; this->_OCRnA = r._OCRnA; this->_OCRnB = r._OCRnB; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) this->_OCRnC = r._OCRnC; #endif } }; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) static_assert(sizeof(TIMER_dev_t) == 14, "invalid size of ATmega2560 TIMER_dev_t"); #elif defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) static_assert(sizeof(TIMER_dev_t) == 12, "invalid size of ATmega1284 TIMER_dev_t"); #endif struct TCCRnA_8bit_reg_t { uint8_t _WGMn0 : 1; uint8_t _WGMn1 : 1; uint8_t reserved1 : 2; uint8_t _COMnB : 2; uint8_t _COMnA : 2; }; static_assert(sizeof(TCCRnA_8bit_reg_t) == 1, "invalid size of ATmega2560 TCCRnA_8bit_reg_t"); struct TCCRnB_8bit_reg_t { uint8_t _CSn : 3; uint8_t _WGMn2 : 1; uint8_t reserved1 : 2; uint8_t _FOCnB : 1; uint8_t _FOCnA : 1; }; static_assert(sizeof(TCCRnB_8bit_reg_t) == 1, "invalid size of ATmega2560 TCCRnB_8bit_reg_t"); struct TIMER_8bit_dev_t { TCCRnA_8bit_reg_t _TCCRnA; TCCRnB_8bit_reg_t _TCCRnB; uint8_t _TCNTn; uint8_t _OCRnA; uint8_t _OCRnB; inline void operator = ( const TIMER_8bit_dev_t& r ) volatile { using namespace AVRHelpers; dwrite(this->_TCCRnA, r._TCCRnA); dwrite(this->_TCCRnB, r._TCCRnB); this->_TCNTn = r._TCNTn; this->_OCRnA = r._OCRnA; this->_OCRnB = r._OCRnB; } }; static_assert(sizeof(TIMER_8bit_dev_t) == 5, "invalid size of ATmega2560 TIMER_8bit_dev_t"); struct ASSR_reg_t { uint8_t _TCR2BUB : 1; uint8_t _TCR2AUB : 1; uint8_t _OCR2BUB : 1; uint8_t _OCR2AUB : 1; uint8_t _TCN2UB : 1; uint8_t _AS2 : 1; uint8_t _EXCLK : 1; uint8_t reserved1 : 1; }; static_assert(sizeof(ASSR_reg_t) == 1, "invalid size of ATmega2560 ASSR_reg_t"); struct TWSR_reg_t { uint8_t _TWPS0 : 1; uint8_t _TWPS1 : 1; uint8_t reserved1 : 1; uint8_t _TWS3 : 1; uint8_t _TWS4 : 1; uint8_t _TWS5 : 1; uint8_t _TWS6 : 1; uint8_t _TWS7 : 1; }; static_assert(sizeof(TWSR_reg_t) == 1, "invalid size of ATmega2560 TWSR_reg_t"); struct TWAR_reg_t { uint8_t _TWGCE : 1; uint8_t _TWA : 7; }; static_assert(sizeof(TWAR_reg_t) == 1, "invalid size of ATmega2560 TWAR_reg_t"); struct TWCR_reg_t { uint8_t _TWIE : 1; uint8_t reserved1 : 1; uint8_t _TWEN : 1; uint8_t _TWWC : 1; uint8_t _TWSTO : 1; uint8_t _TWSTA : 1; uint8_t _TWEA : 1; uint8_t _TWINT : 1; }; static_assert(sizeof(TWCR_reg_t) == 1, "invalid size of ATmega2560 TWCR_reg_t"); struct TWAMR_reg_t { uint8_t reserved1 : 1; uint8_t _TWAM : 7; }; static_assert(sizeof(TWAMR_reg_t) == 1, "invalid size of ATmega2560 TWAMR_reg_t"); struct UBRRn_reg_t { uint16_t _UBRR : 12; uint16_t reserved1 : 4; }; static_assert(sizeof(UBRRn_reg_t) == 2, "invalid size of ATmega2560 UBRRn_reg_t)"); struct UCSRnC_reg_t { #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) uint8_t _UCPOL : 1; uint8_t _UCSZn0 : 1; uint8_t _UCSZn1 : 1; uint8_t _USBS : 1; uint8_t _UPM : 2; uint8_t _UMSEL : 2; #elif defined(__AVR_TRM05__) uint8_t _UCPOL : 1; uint8_t _UCPHA : 1; uint8_t _UDORD : 1; uint8_t reserved1 : 3; uint8_t _UMSEL : 2; #endif }; static_assert(sizeof(UCSRnC_reg_t) == 1, "invalid size of ATmega2560 UCSRnC_reg_t"); struct UCSRnB_reg_t { uint8_t _TXB8 : 1; uint8_t _RXB8 : 1; uint8_t _UCSZn2 : 1; uint8_t _TXEN : 1; uint8_t _RXEN : 1; uint8_t _UDRIE : 1; uint8_t _TXCIE : 1; uint8_t _RXCIE : 1; }; static_assert(sizeof(UCSRnB_reg_t) == 1, "invalid size of ATmega2560 UCSRnB_reg_t"); struct UCSRnA_reg_t { uint8_t _MPCM : 1; uint8_t _U2X : 1; uint8_t _UPE : 1; uint8_t _DOR : 1; uint8_t _FE : 1; uint8_t _UDRE : 1; uint8_t _TXC : 1; uint8_t _RXC : 1; }; static_assert(sizeof(UCSRnA_reg_t) == 1, "invalid size of ATmega2560 UCSRnA_reg_t"); struct USART_dev_t { UCSRnA_reg_t _UCSRnA; UCSRnB_reg_t _UCSRnB; UCSRnC_reg_t _UCSRnC; uint8_t reserved1; UBRRn_reg_t _UBRRn; uint8_t _UDRn; inline void operator = ( const USART_dev_t& r ) volatile { using namespace AVRHelpers; dwrite(this->_UCSRnA, r._UCSRnA); dwrite(this->_UCSRnB, r._UCSRnB); dwrite(this->_UCSRnC, r._UCSRnC); dwrite(this->reserved1, r.reserved1); dwrite(this->_UBRRn, r._UBRRn); dwrite(this->_UDRn, r._UDRn); } }; static_assert(sizeof(USART_dev_t) == 7, "invalid size of ATmega2560 USART_dev_t"); #endif // __AVR_TRM01__ || __AVR_TRM02__ || __AVR_TRM03__ || __AVR_TRM04__ #ifdef __AVR_TRM04__ struct UHCON_reg_t { uint8_t _SOFEN : 1; uint8_t _RESET : 1; uint8_t _RESUME : 1; uint8_t reserved1 : 5; }; static_assert(sizeof(UHCON_reg_t) == 1, "invalid size of ATUSB90 UHCON_reg_t"); struct UHINT_reg_t { uint8_t _DCONNI : 1; uint8_t _DDISCI : 1; uint8_t _RSTI : 1; uint8_t _RSMEDI : 1; uint8_t _RXRSMI : 1; uint8_t _HSOFI : 1; uint8_t _HWUPI : 1; uint8_t reserved1 : 1; }; static_assert(sizeof(UHINT_reg_t) == 1, "invalid size of ATUSB90 UHINT_reg_t"); struct UHIEN_reg_t { uint8_t _SUSPE : 1; uint8_t _MSOFE : 1; uint8_t _SOFE : 1; uint8_t _EORSTE : 1; uint8_t _WAKEUPE : 1; uint8_t _EORSME : 1; uint8_t _UPRSME : 1; uint8_t reserved1 : 1; }; static_assert(sizeof(UHIEN_reg_t) == 1, "invalid size of ATUSB90 UHIEN_reg_t"); struct UHADDR_reg_t { uint8_t _HADD : 7; uint8_t reserved1 : 1; }; static_assert(sizeof(UHADDR_reg_t) == 1, "invalid size of ATUSB90 UHADDR_reg_t"); struct UHFNUM_reg_t { uint16_t _FNUM : 11; uint16_t reserved1 : 5; }; static_assert(sizeof(UHFNUM_reg_t) == 2, "invalid size of ATUSB90 UHFNUM_reg_t"); struct UPINTX_reg_t { uint8_t _RXINI : 1; uint8_t _RXSTALLI : 1; uint8_t _TXOUTI : 1; uint8_t _TXSTPI : 1; uint8_t _PERRI : 1; uint8_t _RWAL : 1; uint8_t _NAKEDI : 1; uint8_t _FIFOCON : 1; }; static_assert(sizeof(UPINTX_reg_t) == 1, "invalid size of ATUSB90 UPINTX_reg_t"); struct UPNUM_reg_t { uint8_t _PNUM : 3; uint8_t reserved1 : 5; }; static_assert(sizeof(UPNUM_reg_t) == 1, "invalid size of ATUSB90 UPNUM_reg_t"); struct UPRST_reg_t { uint8_t _PRST : 7; uint8_t reserved1 : 1; }; static_assert(sizeof(UPRST_reg_t) == 1, "invalid size of ATUSB90 UPRST_reg_t"); struct UPCONX_reg_t { uint8_t _PEN : 1; uint8_t reserved1 : 2; uint8_t _RSTDT : 1; uint8_t _AUTOSW : 1; uint8_t _INMODE : 1; uint8_t _PFREEZE : 1; uint8_t reserved2 : 1; }; static_assert(sizeof(UPCONX_reg_t) == 1, "invalid size of ATUSB90 UPCONX_reg_t"); struct UPCFG0X_reg_t { uint8_t _PEPNUM : 4; uint8_t _PTOKEN : 2; uint8_t _PTYPE : 2; }; static_assert(sizeof(UPCFG0X_reg_t) == 1, "invalid size of ATUSB90 UPCFG0_reg_t"); struct UPCFG1X_reg_t { uint8_t reserved1 : 1; uint8_t _ALLOC : 1; uint8_t _PBK : 2; uint8_t _PSIZE : 3; uint8_t reserved2 : 1; }; static_assert(sizeof(UPCFG1X_reg_t) == 1, "invalid size of ATUSB90 UPCFG1X_reg_t"); struct UPSTAX_reg_t { uint8_t _NBUSYBK : 2; uint8_t _DTSEQ : 2; uint8_t reserved1 : 1; uint8_t _UNDERFI : 1; uint8_t _OVERFI : 1; uint8_t _CFGOK : 1; }; static_assert(sizeof(UPSTAX_reg_t) == 1, "invalid size of ATUSB90 UPSTAX_reg_t"); struct UPIENX_reg_t { uint8_t _RXINE : 1; uint8_t _RXSTALLE : 1; uint8_t _TXOUTE : 1; uint8_t _TXSTPE : 1; uint8_t _PERRE : 1; uint8_t reserved1 : 1; uint8_t _NAKEDE : 1; uint8_t _FLERRE : 1; }; static_assert(sizeof(UPIENX_reg_t) == 1, "invalid size of ATUSB90 UPIENX_reg_t"); struct UHWCON_reg_t { uint8_t _UVREGE : 1; uint8_t reserved1 : 3; uint8_t _UVCONE : 1; uint8_t reserved2 : 1; uint8_t _UIDE : 1; uint8_t _UIMOD : 1; }; static_assert(sizeof(UHWCON_reg_t) == 1, "invalid size of ATUSB90 UHWCON_reg_t"); struct USBCON_reg_t { uint8_t _VBUSTE : 1; uint8_t _IDTE : 1; uint8_t reserved1 : 2; uint8_t _OTGPADE : 1; uint8_t _FRZCLK : 1; uint8_t _HOST : 1; uint8_t _USBE : 1; }; static_assert(sizeof(USBCON_reg_t) == 1, "invalid size of ATUSB90 USBCON_reg_t"); struct USBSTA_reg_t { uint8_t _VBUS : 1; uint8_t _ID : 1; uint8_t reserved1 : 1; uint8_t _SPEED : 1; uint8_t reserved2 : 4; }; static_assert(sizeof(USBSTA_reg_t) == 1, "invalid size of ATUSB90 USBSTA_reg_t"); struct USBINT_reg_t { uint8_t _VBUSTI : 1; uint8_t _IDTI : 1; uint8_t reserved1 : 6; }; static_assert(sizeof(USBINT_reg_t) == 1, "invalid size of ATUSB90 USBINT_reg_t"); struct UDPADD_reg_t { uint16_t _DPADD : 11; uint16_t reserved1 : 4; uint16_t _DPACC : 1; }; static_assert(sizeof(UDPADD_reg_t) == 2, "invalid size of ATUSB90 UDPADD_reg_t"); struct OTGCON_reg_t { uint8_t _VBUSRQC : 1; uint8_t _VBUSREQ : 1; uint8_t _VBUSHWC : 1; uint8_t _SRPSEL : 1; uint8_t _SRPREQ : 1; uint8_t _HNPREQ : 1; uint8_t reserved1 : 1; uint8_t _zero : 1; }; static_assert(sizeof(OTGCON_reg_t) == 1, "invalid size of ATUSB90 OTGCON_reg_t"); struct OTGIEN_reg_t { uint8_t _SRPE : 1; uint8_t _VBERRE : 1; uint8_t _BCERRE : 1; uint8_t _ROLEEXE : 1; uint8_t _HNPERRE : 1; uint8_t _STOE : 1; uint8_t reserved1 : 2; }; static_assert(sizeof(OTGIEN_reg_t) == 1, "invalid size of ATUSB90 OTGIEN_reg_t"); struct OTGINT_reg_t { uint8_t _SRPI : 1; uint8_t _VBERRI : 1; uint8_t _BCERRI : 1; uint8_t _ROLEEXI : 1; uint8_t _HNPERRI : 1; uint8_t _STOI : 1; uint8_t reserved1 : 2; }; static_assert(sizeof(OTGINT_reg_t) == 1, "invalid size of ATUSB90 OTGINT_reg_t"); struct UDCON_reg_t { uint8_t _DETACH : 1; uint8_t _RMWKUP : 1; uint8_t _LSM : 1; uint8_t reserved1 : 5; }; static_assert(sizeof(UDCON_reg_t) == 1, "invalid size of ATUSB90 UDCON_reg_t"); struct UDINT_reg_t { uint8_t _SUSPI : 1; uint8_t _MSOFI : 1; uint8_t _SOFI : 1; uint8_t _EORSTI : 1; uint8_t _WAKEUPI : 1; uint8_t _EORSMI : 1; uint8_t _UPRSMI : 1; uint8_t reserved1 : 1; }; static_assert(sizeof(UDINT_reg_t) == 1, "invalid size of ATUSB90 UDINT_reg_t"); struct UDIEN_reg_t { uint8_t _SUSPE : 1; uint8_t _MSOFE : 1; uint8_t _SOFE : 1; uint8_t _EORSTE : 1; uint8_t _WAKEUPE : 1; uint8_t _EORSME : 1; uint8_t _UPRSME : 1; uint8_t reserved1 : 1; }; static_assert(sizeof(UDIEN_reg_t) == 1, "invalid size of ATUSB90 UDIEN_reg_t"); struct UDADDR_reg_t { uint8_t _UADD : 7; uint8_t _ADDEN : 1; }; static_assert(sizeof(UDADDR_reg_t) == 1, "invalid size of ATUSB90 UADDR_reg_t"); struct UDFNUM_reg_t { uint16_t _FNUM : 11; uint16_t reserved1 : 5; }; static_assert(sizeof(UDFNUM_reg_t) == 2, "invalid size of ATUSB90 UDFNUM_reg_t"); struct UDMFN_reg_t { uint8_t reserved1 : 4; uint8_t _FNCERR : 1; uint8_t reserved2 : 3; }; static_assert(sizeof(UDMFN_reg_t) == 1, "invalid size of ATUSB90 UDMFN_reg_t"); struct UDTST_reg_t { uint8_t reserved1 : 2; uint8_t _TSTJ : 1; uint8_t _TSTK : 1; uint8_t _TSTPCKT : 1; uint8_t _OPMODE2 : 1; uint8_t reserved2 : 2; }; static_assert(sizeof(UDTST_reg_t) == 1, "invalid size of ATUSB90 UDTST_reg_t"); struct UEINTX_reg_t { uint8_t _TXINI : 1; uint8_t _STALLEDI : 1; uint8_t _RXOUTI : 1; uint8_t _RXSTPI : 1; uint8_t _NAKOUTI : 1; uint8_t _RWAL : 1; uint8_t _NAKINI : 1; uint8_t _FIFOCON : 1; }; static_assert(sizeof(UEINTX_reg_t) == 1, "invalid size of ATUSB90 UEINTX_reg_t"); struct UENUM_reg_t { uint8_t _EPNUM : 3; uint8_t reserved1 : 5; }; static_assert(sizeof(UENUM_reg_t) == 1, "invalid size of ATUSB90 UENUM_reg_t"); struct UERST_reg_t { uint8_t _EPRST : 7; uint8_t reserved1 : 1; }; static_assert(sizeof(UERST_reg_t) == 1, "invalid size of ATUSB90 UERST_reg_t"); struct UECONX_reg_t { uint8_t _EPEN : 1; uint8_t reserved1 : 2; uint8_t _RSTDT : 1; uint8_t _STALLRQC : 1; uint8_t _STALLRQ : 1; uint8_t reserved2 : 2; }; static_assert(sizeof(UECONX_reg_t) == 1, "invalid size of ATUSB90 UECONX_reg_t"); struct UECFG0X_reg_t { uint8_t _EPDIR : 1; uint8_t _NYETSDIS : 1; uint8_t _AUTOSW : 1; uint8_t _ISOSW : 1; uint8_t reserved1 : 2; uint8_t _EPTYPE : 2; }; static_assert(sizeof(UECFG0X_reg_t) == 1, "invalid size of ATUSB90 UECFG0X_reg_t"); struct UECFG1X_reg_t { uint8_t reserved1 : 1; uint8_t _ALLOC : 1; uint8_t _EPBK : 2; uint8_t _EPSIZE : 3; uint8_t reserved2 : 1; }; static_assert(sizeof(UECFG1X_reg_t) == 1, "invalid size of ATUSB90 UECFG1X_reg_t"); struct UESTA0X_reg_t { uint8_t _NBUSYBK : 2; uint8_t _DTSEQ : 2; uint8_t _ZLPSEEN : 1; uint8_t _UNDERFI : 1; uint8_t _OVERFI : 1; uint8_t _CFGOK : 1; }; static_assert(sizeof(UESTA0X_reg_t) == 1, "invalid size of ATUSB90 UESTA0X_reg_t"); struct UESTA1X_reg_t { uint8_t _CURRBK : 2; uint8_t _CTRLDIR : 1; uint8_t reserved1 : 5; }; static_assert(sizeof(UESTA1X_reg_t) == 1, "invalid size of ATUSB90 UESTA1X_reg_t"); struct UEIENX_reg_t { uint8_t _TXINE : 1; uint8_t _STALLEDE : 1; uint8_t _RXOUTE : 1; uint8_t _RXSTPE : 1; uint8_t _NAKOUTE : 1; uint8_t reserved1 : 1; uint8_t _NAKINE : 1; uint8_t _FLERRE : 1; }; static_assert(sizeof(UEIENX_reg_t) == 1, "invalid size of ATUSB90 UEIENX_reg_t"); struct UEBCX_reg_t { uint16_t _BYCT : 11; uint16_t reserved1 : 5; }; static_assert(sizeof(UEBCX_reg_t) == 2, "invalid size of ATUSB90 UEBCX_reg_t"); struct UEINT_reg_t { uint8_t _EPINT : 7; uint8_t reserved1 : 1; }; static_assert(sizeof(UEINT_reg_t) == 1, "invalid size of ATUSB90 UEINT_reg_t"); struct UPERRX_reg_t { uint8_t _DATATGL : 1; uint8_t _DATAPID : 1; uint8_t _PID : 1; uint8_t _TIMEOUT : 1; uint8_t _CRC16 : 1; uint8_t _COUNTER : 2; uint8_t reserved1 : 1; }; static_assert(sizeof(UPERRX_reg_t) == 1, "invalid size of ATUSB90 UPERRX_reg_t"); struct UPBCX_reg_t { uint16_t _PBYCT : 11; uint16_t reserved1 : 5; }; static_assert(sizeof(UPBCX_reg_t) == 2, "invalid size of ATUSB90 UPBCX_reg_t"); struct OTGTCON_reg_t { uint8_t _VALUE : 2; uint8_t reserved1 : 3; uint8_t _PAGE : 2; uint8_t _one : 1; }; static_assert(sizeof(OTGTCON_reg_t) == 1, "invalid size of ATUSB90 OTGTCON_reg_t"); struct PLLCSR_reg_t { uint8_t _PLOCK : 1; uint8_t _PLLE : 1; uint8_t _PLLP : 3; uint8_t reserved1 : 3; }; static_assert(sizeof(PLLCSR_reg_t) == 1, "invalid size of ATUSB90 PLLCSR_reg_t"); #endif // __AVR_TRM04__ /** * REGISTER MEMORY MAP */ #define __AVR_DEFREG(tn,n,a) static volatile tn& n = *(tn*)a #define _AVR_DEFREG(n,a) __AVR_DEFREG(n##_reg_t, _##n, a) #ifdef __AVR_TRM01__ // page 399ff of ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf __AVR_DEFREG(PORT_dev_t, _PORTA, 0x20); __AVR_DEFREG(PORT_dev_t, _PORTB, 0x23); __AVR_DEFREG(PORT_dev_t, _PORTC, 0x26); __AVR_DEFREG(PORT_dev_t, _PORTD, 0x29); __AVR_DEFREG(PORT_dev_t, _PORTE, 0x2C); __AVR_DEFREG(PORT_dev_t, _PORTF, 0x2F); __AVR_DEFREG(PORTG_dev_t, _PORTG, 0x32); __AVR_DEFREG(PORT_dev_t, _PORTH, 0x100); __AVR_DEFREG(PORT_dev_t, _PORTJ, 0x103); __AVR_DEFREG(PORT_dev_t, _PORTK, 0x106); __AVR_DEFREG(PORT_dev_t, _PORTL, 0x109); __AVR_DEFREG(TIFR0_reg_t, _TIFR0, 0x35); __AVR_DEFREG(TIFR1_reg_t, _TIFR1, 0x36); __AVR_DEFREG(TIFR2_reg_t, _TIFR2, 0x37); __AVR_DEFREG(TIFR3_reg_t, _TIFR3, 0x38); __AVR_DEFREG(TIFR4_reg_t, _TIFR4, 0x39); __AVR_DEFREG(TIFR5_reg_t, _TIFR5, 0x3A); __AVR_DEFREG(PCIFR_reg_t, _PCIFR, 0x3B); __AVR_DEFREG(EIFR_reg_t, _EIFR, 0x3C); __AVR_DEFREG(EIMSK_reg_t, _EIMSK, 0x3D); __AVR_DEFREG(_bit_reg_t, _GPIOR0, 0x3E); __AVR_DEFREG(EECR_reg_t, _EECR, 0x3F); __AVR_DEFREG(uint8_t, _EEDR, 0x40); __AVR_DEFREG(EEAR_reg_t, _EEAR, 0x41); __AVR_DEFREG(GTCCR_reg_t, _GTCCR, 0x43); __AVR_DEFREG(TIMER_8bit_dev_t, TIMER0, 0x44); __AVR_DEFREG(_bit_reg_t, _GPIOR1, 0x4A); __AVR_DEFREG(_bit_reg_t, _GPIOR2, 0x4B); __AVR_DEFREG(SPCR_reg_t, _SPCR, 0x4C); __AVR_DEFREG(SPSR_reg_t, _SPSR, 0x4D); __AVR_DEFREG(uint8_t, _SPDR, 0x4E); __AVR_DEFREG(ACSR_reg_t, _ACSR, 0x50); __AVR_DEFREG(_bit_reg_t, _OCDR, 0x51); __AVR_DEFREG(SMCR_reg_t, _SMCR, 0x53); __AVR_DEFREG(MCUSR_reg_t, _MCUSR, 0x54); __AVR_DEFREG(MCUCR_reg_t, _MCUCR, 0x55); __AVR_DEFREG(SPMCSR_reg_t, _SPMCSR, 0x57); __AVR_DEFREG(RAMPZ_reg_t, _RAMPZ, 0x5B); __AVR_DEFREG(EIND_reg_t, _EIND, 0x5C); __AVR_DEFREG(SP_reg_t, _SP, 0x5D); __AVR_DEFREG(SREG_reg_t, _SREG, 0x5F); __AVR_DEFREG(WDTCSR_reg_t, _WDTCSR, 0x60); __AVR_DEFREG(CLKPR_reg_t, _CLKPR, 0x61); __AVR_DEFREG(PRR0_reg_t, _PRR0, 0x64); __AVR_DEFREG(PRR1_reg_t, _PRR1, 0x65); __AVR_DEFREG(uint8_t, _OSCCAL, 0x66); __AVR_DEFREG(PCICR_reg_t, _PCICR, 0x68); __AVR_DEFREG(EICRA_reg_t, _EICRA, 0x69); __AVR_DEFREG(EICRB_reg_t, _EICRB, 0x6A); __AVR_DEFREG(_bit_reg_t, _PCMSK0, 0x6B); __AVR_DEFREG(_bit_reg_t, _PCMSK1, 0x6C); __AVR_DEFREG(_bit_reg_t, _PCMSK2, 0x6D); __AVR_DEFREG(TIMSK0_reg_t, _TIMSK0, 0x6E); __AVR_DEFREG(TIMSK1_reg_t, _TIMSK1, 0x6F); __AVR_DEFREG(TIMSK2_reg_t, _TIMSK2, 0x70); __AVR_DEFREG(TIMSK3_reg_t, _TIMSK3, 0x71); __AVR_DEFREG(TIMSK4_reg_t, _TIMSK4, 0x72); __AVR_DEFREG(TIMSK5_reg_t, _TIMSK5, 0x73); __AVR_DEFREG(XMCRA_reg_t, _XMCRA, 0x74); __AVR_DEFREG(XMCRB_reg_t, _XMCRB, 0x75); __AVR_DEFREG(uint16_t, _ADC, 0x78); __AVR_DEFREG(ADCSRA_reg_t, _ADCSRA, 0x7A); __AVR_DEFREG(ADCSRB_reg_t, _ADCSRB, 0x7B); __AVR_DEFREG(ADMUX_reg_t, _ADMUX, 0x7C); __AVR_DEFREG(DIDR2_reg_t, _DIDR2, 0x7D); __AVR_DEFREG(DIDR0_reg_t, _DIDR0, 0x7E); __AVR_DEFREG(DIDR1_reg_t, _DIDR1, 0x7F); __AVR_DEFREG(TIMER_dev_t, TIMER1, 0x80); __AVR_DEFREG(TIMER_dev_t, TIMER3, 0x90); __AVR_DEFREG(TIMER_dev_t, TIMER4, 0xA0); __AVR_DEFREG(TIMER_dev_t, TIMER5, 0x120); __AVR_DEFREG(TIMER_8bit_dev_t, _TIMER2, 0xB0); __AVR_DEFREG(ASSR_reg_t, _ASSR, 0xB6); __AVR_DEFREG(uint8_t, _TWBR, 0xB8); __AVR_DEFREG(TWSR_reg_t, _TWSR, 0xB9); __AVR_DEFREG(TWAR_reg_t, _TWAR, 0xBA); __AVR_DEFREG(uint8_t, _TWDR, 0xBB); __AVR_DEFREG(TWCR_reg_t, _TWCR, 0xBC); __AVR_DEFREG(TWAMR_reg_t, _TWAMR, 0xBD); __AVR_DEFREG(USART_dev_t, USART0, 0xC0); __AVR_DEFREG(USART_dev_t, USART1, 0xC8); __AVR_DEFREG(USART_dev_t, USART2, 0xD0); __AVR_DEFREG(USART_dev_t, USART3, 0x130); #elif defined(__AVR_TRM02__) // page 637ff of ATmega164A_PA-324A_PA-644A_PA-1284_P_Data-Sheet-40002070B.pdf __AVR_DEFREG(PORT_dev_t, _PORTA, 0x20); __AVR_DEFREG(PORT_dev_t, _PORTB, 0x23); __AVR_DEFREG(PORT_dev_t, _PORTC, 0x26); __AVR_DEFREG(PORT_dev_t, _PORTD, 0x29); __AVR_DEFREG(TIFR0_reg_t, _TIFR0, 0x35); __AVR_DEFREG(TIFR1_reg_t, _TIFR1, 0x36); __AVR_DEFREG(TIFR2_reg_t, _TIFR2, 0x37); __AVR_DEFREG(TIFR3_reg_t, _TIFR3, 0x38); __AVR_DEFREG(PCIFR_reg_t, _PCIFR, 0x3B); __AVR_DEFREG(EIFR_reg_t, _EIFR, 0x3C); __AVR_DEFREG(EIMSK_reg_t, _EIMSK, 0x3D); __AVR_DEFREG(_bit_reg_t, _GPIOR0, 0x3E); __AVR_DEFREG(EECR_reg_t, _EECR, 0x3F); __AVR_DEFREG(uint8_t, _EEDR, 0x40); __AVR_DEFREG(EEAR_reg_t, _EEAR, 0x41); __AVR_DEFREG(GTCCR_reg_t, _GTCCR, 0x43); __AVR_DEFREG(TIMER_8bit_dev_t, TIMER0, 0x44); __AVR_DEFREG(_bit_reg_t, _GPIOR1, 0x4A); __AVR_DEFREG(_bit_reg_t, _GPIOR2, 0x4B); __AVR_DEFREG(SPCR_reg_t, _SPCR, 0x4C); __AVR_DEFREG(SPSR_reg_t, _SPSR, 0x4D); __AVR_DEFREG(uint8_t, _SPDR, 0x4E); __AVR_DEFREG(ACSR_reg_t, _ACSR, 0x50); __AVR_DEFREG(SMCR_reg_t, _SMCR, 0x53); __AVR_DEFREG(MCUSR_reg_t, _MSUSR, 0x54); __AVR_DEFREG(MCUCR_reg_t, _MCUCR, 0x55); __AVR_DEFREG(SPMCSR_reg_t, _SPMCSR, 0x57); __AVR_DEFREG(SP_reg_t, _SP, 0x5D); __AVR_DEFREG(SREG_reg_t, _SREG, 0x5F); __AVR_DEFREG(WDTCSR_reg_t, _WDTCSR, 0x60); __AVR_DEFREG(CLKPR_reg_t, _CLKPR, 0x61); __AVR_DEFREG(PRR0_reg_t, _PRR0, 0x64); __AVR_DEFREG(PRR1_reg_t, _PRR1, 0x65); __AVR_DEFREG(uint8_t, _OSCCAL, 0x66); __AVR_DEFREG(PCICR_reg_t, _PCICR, 0x68); __AVR_DEFREG(EICRA_reg_t, _EICRA, 0x69); __AVR_DEFREG(_bit_reg_t, _PCMSK0, 0x6B); __AVR_DEFREG(_bit_reg_t, _PCMSK1, 0x6C); __AVR_DEFREG(_bit_reg_t, _PCMSK2, 0x6D); __AVR_DEFREG(TIMSK0_reg_t, _TIMSK0, 0x6E); __AVR_DEFREG(TIMSK1_reg_t, _TIMSK1, 0x6F); __AVR_DEFREG(TIMSK2_reg_t, _TIMSK2, 0x70); __AVR_DEFREG(TIMSK3_reg_t, _TIMSK3, 0x71); __AVR_DEFREG(_bit_reg_t, _PCMSK3, 0x73); __AVR_DEFREG(uint16_t, _ADC, 0x78); __AVR_DEFREG(ADCSRA_reg_t, _ADCSRA, 0x7A); __AVR_DEFREG(ADCSRB_reg_t, _ADCSRB, 0x7B); __AVR_DEFREG(ADMUX_reg_t, _ADMUX, 0x7C); __AVR_DEFREG(DIDR0_reg_t, _DIDR0, 0x7E); __AVR_DEFREG(DIDR1_reg_t, _DIDR1, 0x7F); __AVR_DEFREG(TIMER_dev_t, TIMER1, 0x80); __AVR_DEFREG(TIMER_dev_t, TIMER3, 0x90); __AVR_DEFREG(TIMER_8bit_dev_t, _TIMER2, 0xB0); __AVR_DEFREG(ASSR_reg_t, _ASSR, 0xB6); __AVR_DEFREG(uint8_t, _TWBR, 0xB8); __AVR_DEFREG(TWSR_reg_t, _TWSR, 0xB9); __AVR_DEFREG(TWAR_reg_t, _TWAR, 0xBA); __AVR_DEFREG(uint8_t, _TWDR, 0xBB); __AVR_DEFREG(TWCR_reg_t, _TWCR, 0xBC); __AVR_DEFREG(TWAMR_reg_t, _TWAMR, 0xBD); __AVR_DEFREG(USART_dev_t, USART0, 0xC0); __AVR_DEFREG(USART_dev_t, USART1, 0xC8); #elif defined(__AVR_TRM03__) // page 621ff of ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf __AVR_DEFREG(PORT_dev_t, _PORTB, 0x23); __AVR_DEFREG(PORTC_dev_t, _PORTC, 0x26); __AVR_DEFREG(PORT_dev_t, _PORTD, 0x29); __AVR_DEFREG(TIFR0_reg_t, _TIFR0, 0x35); __AVR_DEFREG(TIFR1_reg_t, _TIFR1, 0x36); __AVR_DEFREG(TIFR2_reg_t, _TIFR2, 0x37); __AVR_DEFREG(PCIFR_reg_t, _PCIFR, 0x3B); __AVR_DEFREG(EIFR_reg_t, _EIFR, 0x3C); __AVR_DEFREG(EIMSK_reg_t, _EIMSK, 0x3D); __AVR_DEFREG(_bit_reg_t, _GPIOR0, 0x3E); __AVR_DEFREG(EECR_reg_t, _EECR, 0x3F); __AVR_DEFREG(uint8_t, _EEDR, 0x40); __AVR_DEFREG(EEAR_reg_t, _EEAR, 0x41); __AVR_DEFREG(GTCCR_reg_t, _GTCCR, 0x43); __AVR_DEFREG(TIMER_8bit_dev_t, TIMER0, 0x44); __AVR_DEFREG(_bit_reg_t, _GPIOR1, 0x4A); __AVR_DEFREG(_bit_reg_t, _GPIOR2, 0x4B); __AVR_DEFREG(SPCR_reg_t, _SPCR, 0x4C); __AVR_DEFREG(SPSR_reg_t, _SPSR, 0x4D); __AVR_DEFREG(uint8_t, _SPDR, 0x4E); __AVR_DEFREG(ACSR_reg_t, _ACSR, 0x50); __AVR_DEFREG(SMCR_reg_t, _SMCR, 0x53); __AVR_DEFREG(MCUSR_reg_t, _MSUCR, 0x54); __AVR_DEFREG(MCUCR_reg_t, _MCUCR, 0x55); __AVR_DEFREG(SPMCSR_reg_t, _SPMCSR, 0x57); __AVR_DEFREG(SP_reg_t, _SP, 0x5D); __AVR_DEFREG(SREG_reg_t, _SREG, 0x5F); __AVR_DEFREG(WDTCSR_reg_t, _WDTCSR, 0x60); __AVR_DEFREG(CLKPR_reg_t, _CLKPR, 0x61); __AVR_DEFREG(PRR0_reg_t, _PRR0, 0x64); __AVR_DEFREG(uint8_t, _OSCCAL, 0x66); __AVR_DEFREG(PCICR_reg_t, _PCICR, 0x68); __AVR_DEFREG(EICRA_reg_t, _EICRA, 0x69); __AVR_DEFREG(_bit_reg_t, _PCMSK0, 0x6B); __AVR_DEFREG(_bitPCMSK1_reg_t, _PCMSK1, 0x6C); __AVR_DEFREG(_bit_reg_t, _PCMSK2, 0x6D); __AVR_DEFREG(TIMSK0_reg_t, _TIMSK0, 0x6E); __AVR_DEFREG(TIMSK1_reg_t, _TIMSK1, 0x6F); __AVR_DEFREG(TIMSK2_reg_t, _TIMSK2, 0x70); __AVR_DEFREG(uint16_t, _ADC, 0x78); __AVR_DEFREG(ADCSRA_reg_t, _ADCSRA, 0x7A); __AVR_DEFREG(ADCSRB_reg_t, _ADCSRB, 0x7B); __AVR_DEFREG(ADMUX_reg_t, _ADMUX, 0x7C); __AVR_DEFREG(DIDR0_reg_t, _DIDR0, 0x7E); __AVR_DEFREG(DIDR1_reg_t, _DIDR1, 0x7F); __AVR_DEFREG(TIMER_dev_t, TIMER1, 0x80); __AVR_DEFREG(TIMER_8bit_dev_t, _TIMER2, 0xB0); __AVR_DEFREG(ASSR_reg_t, _ASSR, 0xB6); __AVR_DEFREG(uint8_t, _TWBR, 0xB8); __AVR_DEFREG(TWSR_reg_t, _TWSR, 0xB9); __AVR_DEFREG(TWAR_reg_t, _TWAR, 0xBA); __AVR_DEFREG(uint8_t, _TWDR, 0xBB); __AVR_DEFREG(TWCR_reg_t, _TWCR, 0xBC); __AVR_DEFREG(TWAMR_reg_t, _TWAMR, 0xBD); __AVR_DEFREG(USART_dev_t, USART0, 0xC0); #elif defined(__AVR_TRM04__) __AVR_DEFREG(PORT_dev_t, _PORTA, 0x20); __AVR_DEFREG(PORT_dev_t, _PORTB, 0x23); __AVR_DEFREG(PORT_dev_t, _PORTC, 0x26); __AVR_DEFREG(PORT_dev_t, _PORTD, 0x29); __AVR_DEFREG(PORT_dev_t, _PORTE, 0x2C); __AVR_DEFREG(PORT_dev_t, _PORTF, 0x2F); __AVR_DEFREG(TIFR0_reg_t, _TIFR0, 0x35); __AVR_DEFREG(TIFR1_reg_t, _TIFR1, 0x36); __AVR_DEFREG(TIFR2_reg_t, _TIFR2, 0x37); __AVR_DEFREG(TIFR3_reg_t, _TIFR3, 0x38); __AVR_DEFREG(PCIFR_reg_t, _PCIFR, 0x3B); __AVR_DEFREG(EIFR_reg_t, _EIFR, 0x3C); __AVR_DEFREG(EIMSK_reg_t, _EIMSK, 0x3D); __AVR_DEFREG(_bit_reg_t, _GPIOR0, 0x3E); __AVR_DEFREG(EECR_reg_t, _EECR, 0x3F); __AVR_DEFREG(uint8_t, _EEDR, 0x40); __AVR_DEFREG(EEAR_reg_t, _EEAR, 0x41); __AVR_DEFREG(GTCCR_reg_t, _GTCCR, 0x43); __AVR_DEFREG(TIMER_8bit_dev_t, TIMER0, 0x44); __AVR_DEFREG(PLLCSR_reg_t, _PLLCSR, 0x49); __AVR_DEFREG(_bit_reg_t, _GPIOR1, 0x4A); __AVR_DEFREG(_bit_reg_t, _GPIOR2, 0x4B); __AVR_DEFREG(SPCR_reg_t, _SPCR, 0x4C); __AVR_DEFREG(SPSR_reg_t, _SPSR, 0x4D); __AVR_DEFREG(uint8_t, _SPDR, 0x4E); __AVR_DEFREG(ACSR_reg_t, _ACSR, 0x50); __AVR_DEFREG(uint8_t, _OCDR, 0x51); __AVR_DEFREG(SMCR_reg_t, _SMCR, 0x53); __AVR_DEFREG(MCUSR_reg_t, _MCUSR, 0x54); __AVR_DEFREG(MCUCR_reg_t, _MCUCR, 0x55); __AVR_DEFREG(SPMCSR_reg_t, _SPMCSR, 0x57); __AVR_DEFREG(RAMPZ_reg_t, _RAMPZ, 0x5B); __AVR_DEFREG(SP_reg_t, _SP, 0x5D); __AVR_DEFREG(SREG_reg_t, _SREG, 0x5F); __AVR_DEFREG(WDTCSR_reg_t, _WDTCSR, 0x60); __AVR_DEFREG(CLKPR_reg_t, _CLKPR, 0x61); __AVR_DEFREG(PRR0_reg_t, _PRR0, 0x64); __AVR_DEFREG(PRR1_reg_t, _PRR1, 0x65); __AVR_DEFREG(uint8_t, _OSCCAL, 0x66); __AVR_DEFREG(PCICR_reg_t, _PCICR, 0x68); __AVR_DEFREG(EICRA_reg_t, _EICRA, 0x69); __AVR_DEFREG(EICRB_reg_t, _EICRB, 0x6A); __AVR_DEFREG(_bit_reg_t, _PCMSK0, 0x6B); __AVR_DEFREG(TIMSK0_reg_t, _TIMSK0, 0x6E); __AVR_DEFREG(TIMSK1_reg_t, _TIMSK1, 0x6F); __AVR_DEFREG(TIMSK2_reg_t, _TIMSK2, 0x70); __AVR_DEFREG(TIMSK3_reg_t, _TIMSK3, 0x71); __AVR_DEFREG(XMCRA_reg_t, _XMCRA, 0x74); __AVR_DEFREG(XMCRB_reg_t, _XMCRB, 0x75); __AVR_DEFREG(uint16_t, _ADC, 0x78); __AVR_DEFREG(ADCSRA_reg_t, _ADCSRA, 0x7A); __AVR_DEFREG(ADCSRB_reg_t, _ADCSRB, 0x7B); __AVR_DEFREG(ADMUX_reg_t, _ADMUX, 0x7C); __AVR_DEFREG(DIDR0_reg_t, _DIDR0, 0x7E); __AVR_DEFREG(DIDR1_reg_t, _DIDR1, 0x7F); __AVR_DEFREG(TIMER_dev_t, TIMER1, 0x80); __AVR_DEFREG(TIMER_dev_t, TIMER3, 0x90); __AVR_DEFREG(UHCON_reg_t, _UHCON, 0x9E); __AVR_DEFREG(UHINT_reg_t, _UHINT, 0x9F); __AVR_DEFREG(UHIEN_reg_t, _UHIEN, 0xA0); __AVR_DEFREG(UHADDR_reg_t, _UHADDR, 0xA1); __AVR_DEFREG(UHFNUM_reg_t, _UHFNUM, 0xA2); __AVR_DEFREG(uint8_t, _UHFLEN, 0xA4); __AVR_DEFREG(uint8_t, _UPINRQX, 0xA5); __AVR_DEFREG(UPINTX_reg_t, _UPINTX, 0xA6); __AVR_DEFREG(UPNUM_reg_t, _UPNUM, 0xA7); __AVR_DEFREG(UPRST_reg_t, _UPRST, 0xA8); __AVR_DEFREG(UPCONX_reg_t, _UPCONX, 0xA9); _AVR_DEFREG(UPCFG0X, 0xAA); _AVR_DEFREG(UPCFG1X, 0xAB); _AVR_DEFREG(UPSTAX, 0xAC); __AVR_DEFREG(uint8_t, _UPCFG2X, 0xAD); _AVR_DEFREG(UPIENX, 0xAE); __AVR_DEFREG(uint8_t, _UPDATX, 0xAF); __AVR_DEFREG(TIMER_8bit_dev_t, _TIMER2, 0xB0); __AVR_DEFREG(ASSR_reg_t, _ASSR, 0xB6); __AVR_DEFREG(uint8_t, _TWBR, 0xB8); __AVR_DEFREG(TWSR_reg_t, _TWSR, 0xB9); __AVR_DEFREG(TWAR_reg_t, _TWAR, 0xBA); __AVR_DEFREG(uint8_t, _TWDR, 0xBB); __AVR_DEFREG(TWCR_reg_t, _TWCR, 0xBC); __AVR_DEFREG(TWAMR_reg_t, _TWAMR, 0xBD); __AVR_DEFREG(USART_dev_t, USART1, 0xC8); _AVR_DEFREG(UHWCON, 0xD7); _AVR_DEFREG(USBCON, 0xD8); _AVR_DEFREG(USBSTA, 0xD9); _AVR_DEFREG(USBINT, 0xDA); _AVR_DEFREG(UDPADD, 0xDB); _AVR_DEFREG(OTGCON, 0xDD); _AVR_DEFREG(OTGIEN, 0xDE); _AVR_DEFREG(OTGINT, 0xDF); _AVR_DEFREG(UDCON, 0xE0); _AVR_DEFREG(UDINT, 0xE1); _AVR_DEFREG(UDIEN, 0xE2); _AVR_DEFREG(UDADDR, 0xE3); _AVR_DEFREG(UDFNUM, 0xE4); _AVR_DEFREG(UDMFN, 0xE6); _AVR_DEFREG(UDTST, 0xE7); _AVR_DEFREG(UEINTX, 0xE8); _AVR_DEFREG(UENUM, 0xE9); _AVR_DEFREG(UERST, 0xEA); _AVR_DEFREG(UECONX, 0xEB); _AVR_DEFREG(UECFG0X, 0xEC); _AVR_DEFREG(UECFG1X, 0xED); _AVR_DEFREG(UESTA0X, 0xEE); _AVR_DEFREG(UESTA1X, 0xEF); _AVR_DEFREG(UEIENX, 0xF0); __AVR_DEFREG(uint8_t, _UEDATx, 0xF1); _AVR_DEFREG(UEBCX, 0xF2); _AVR_DEFREG(UEINT, 0xF4); _AVR_DEFREG(UPERRX, 0xF5); _AVR_DEFREG(UPBCX, 0xF6); __AVR_DEFREG(uint8_t, _UPINT, 0xF8); _AVR_DEFREG(OTGTCON, 0xF9); #elif defined(__AVR_TRM05__) // page 476ff. of ATmega164P-324P-644P-Data-Sheet-40002071A.pdf __AVR_DEFREG(PORT_dev_t, _PORTA, 0x20); __AVR_DEFREG(PORT_dev_t, _PORTB, 0x23); __AVR_DEFREG(PORT_dev_t, _PORTC, 0x26); __AVR_DEFREG(PORT_dev_t, _PORTD, 0x29); __AVR_DEFREG(TIFR0_reg_t, _TIFR0, 0x35); __AVR_DEFREG(TIFR1_reg_t, _TIFR1, 0x36); __AVR_DEFREG(TIFR2_reg_t, _TIFR2, 0x37); __AVR_DEFREG(PCIFR_reg_t, _PCIFR, 0x3B); __AVR_DEFREG(EIFR_reg_t, _EIFR, 0x3C); __AVR_DEFREG(EIMSK_reg_t, _EIMSK, 0x3D); __AVR_DEFREG(_bit_reg_t, _GPIOR0, 0x3E); __AVR_DEFREG(EECR_reg_t, _EECR, 0x3F); __AVR_DEFREG(uint8_t, _EEDR, 0x40); __AVR_DEFREG(EEAR_reg_t, _EEAR, 0x41); __AVR_DEFREG(GTCCR_reg_t, _GTCCR, 0x43); __AVR_DEFREG(TIMER_8bit_dev_t, TIMER0, 0x44); __AVR_DEFREG(_bit_reg_t, _GPIOR1, 0x4A); __AVR_DEFREG(_bit_reg_t, _GPIOR2, 0x4B); __AVR_DEFREG(SPCR_reg_t, _SPCR, 0x4C); __AVR_DEFREG(SPSR_reg_t, _SPSR, 0x4D); __AVR_DEFREG(uint8_t, _SPDR, 0x4E); __AVR_DEFREG(ACSR_reg_t, _ACSR, 0x50); __AVR_DEFREG(uint8_t, _OCDR, 0x51); __AVR_DEFREG(SMCR_reg_t, _SMCR, 0x53); __AVR_DEFREG(MCUSR_reg_t, _MCUSR, 0x54); __AVR_DEFREG(MCUCR_reg_t, _MCUCR, 0x55); __AVR_DEFREG(SPMCSR_reg_t, _SPMCSR, 0x57); __AVR_DEFREG(RAMPZ_reg_t, _RAMPZ, 0x5B); __AVR_DEFREG(SP_reg_t, _SP, 0x5D); __AVR_DEFREG(SREG_reg_t, _SREG, 0x5F); __AVR_DEFREG(WDTCSR_reg_t, _WDTCSR, 0x60); __AVR_DEFREG(CLKPR_reg_t, _CLKPR, 0x61); __AVR_DEFREG(PRR0_reg_t, _PRR0, 0x64); __AVR_DEFREG(uint8_t, _OSCCAL, 0x66); __AVR_DEFREG(PCICR_reg_t, _PCICR, 0x68); __AVR_DEFREG(EICRA_reg_t, _EICRA, 0x69); __AVR_DEFREG(_bit_reg_t, _PCMSK0, 0x6B); __AVR_DEFREG(_bit_reg_t, _PCMSK1, 0x6C); __AVR_DEFREG(_bit_reg_t, _PCMSK2, 0x6D); __AVR_DEFREG(TIMSK0_reg_t, _TIMSK0, 0x6E); __AVR_DEFREG(TIMSK1_reg_t, _TIMSK1, 0x6F); __AVR_DEFREG(TIMSK2_reg_t, _TIMSK2, 0x70); __AVR_DEFREG(_bit_reg_t, _PCMKS3, 0x73); __AVR_DEFREG(uint16_t, _ADC, 0x78); __AVR_DEFREG(ADCSRA_reg_t, _ADCSRA, 0x7A); __AVR_DEFREG(ADCSRB_reg_t, _ADCSRB, 0x7B); __AVR_DEFREG(ADMUX_reg_t, _ADMUX, 0x7C); __AVR_DEFREG(DIDR0_reg_t, _DIDR0, 0x7E); __AVR_DEFREG(DIDR1_reg_t, _DIDR1, 0x7F); __AVR_DEFREG(TIMER_dev_t, TIMER1, 0x80); __AVR_DEFREG(TIMER_8bit_dev_t, _TIMER2, 0xB0); __AVR_DEFREG(ASSR_reg_t, _ASSR, 0xB6); __AVR_DEFREG(uint8_t, _TWBR, 0xB8); __AVR_DEFREG(TWSR_reg_t, _TWSR, 0xB8); __AVR_DEFREG(TWAR_reg_t, _TWAR, 0xBA); __AVR_DEFREG(uint8_t, _TWDR, 0xBB); __AVR_DEFREG(TWCR_reg_t, _TWCR, 0xBC); __AVR_DEFREG(TWAMR_reg_t, _TWAMR, 0xBD); __AVR_DEFREG(USART_dev_t, USART0, 0xC0); __AVR_DEFREG(USART_dev_t, USART1, 0xC8); #endif inline void _ATmega_resetperipherals() { using namespace AVRHelpers; // Due to BOOTLOADER or other board inconsistencies we could get launched into Marlin FW // with configuration that does not match the reset state in the documentation. That is why // we should clean-reset the entire device. #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) SREG_reg_t __SREG; __SREG._C = false; __SREG._Z = false; __SREG._N = false; __SREG._V = false; __SREG._S = false; __SREG._H = false; __SREG._T = false; __SREG._I = false; dwrite(_SREG, __SREG); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) _RAMPZ._RAMPZ = 0; #endif #ifdef __AVR_TRM01__ _EIND._EIND0 = false; #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) _EEAR._EEAR = 0; dwrite(_EEDR, (uint8_t)0u); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) EECR_reg_t __EECR; __EECR._EERE = false; __EECR._EEPE = false; __EECR._EEMPE = false; __EECR._EERIE = false; __EECR._EEPM0 = 0; __EECR._EEPM1 = 0; __EECR.reserved1 = 0; dwrite(_EECR, __EECR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) _GPIOR2.val = 0; _GPIOR1.val = 0; _GPIOR0.val = 0; #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) XMCRA_reg_t __XMCRA; __XMCRA._SRW0 = 0; __XMCRA._SRW1 = 0; __XMCRA._SRL = 0; __XMCRA._SRE = 0; dwrite(_XMCRA, __XMCRA); XMCRB_reg_t __XMCRB; __XMCRB._XMM = 0; __XMCRB.reserved1 = 0; __XMCRB._XMBK = false; dwrite(_XMCRB, __XMCRB); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) SMCR_reg_t __SMCR; __SMCR._SE = false; __SMCR._SM = 0; __SMCR.reserved1 = 0; dwrite(_SMCR, __SMCR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) PRR0_reg_t __PRR0; #if defined(__AVR_TRM01__) || defined(__AVR_TRM03__) __PRR0._PRADC = false; __PRR0._PRUSART0 = false; __PRR0._PRSPI = false; __PRR0._PRTIM1 = false; __PRR0.reserved1 = false; __PRR0._PRTIM0 = false; __PRR0._PRTIM2 = false; __PRR0._PRTWI = false; #elif defined(__AVR_TRM02__) __PRR0._PRADC = false; __PRR0._PRUSART0 = false; __PRR0._PRSPI = false; __PRR0._PRTIM1 = false; __PRR0._PRUSART1 = false; __PRR0._PRTIM0 = false; __PRR0._PRTIM2 = false; __PRR0._PRTWI = false; #elif defined(__AVR_TRM04__) __PRR0._PRADC = false; __PRR0.reserved1 = false; __PRR0._PRSPI = false; __PRR0._PRTIM1 = false; __PRR0.reserved2 = false; __PRR0._PRTIM0 = false; __PRR0._PRTIM2 = false; __PRR0._PRTWI = false; #endif dwrite(_PRR0, __PRR0); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) PRR1_reg_t __PRR1; #ifdef __AVR_TRM01__ __PRR1._PRUSART1 = false; __PRR1._PRUSART2 = false; __PRR1._PRUSART3 = false; __PRR1._PRTIM3 = false; __PRR1._PRTIM4 = false; __PRR1._PRTIM5 = false; __PRR1.reserved1 = 0; #elif defined(__AVR_TRM02__) __PRR1._PRTIM3 = false; __PRR1.reserved1 = 0; #elif defined(__AVR_TRM04__) __PRR1._PRUSART1 = false; __PRR1.reserved1 = 0; #endif dwrite(_PRR1, __PRR1); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) WDTCSR_reg_t __WDTCSR; __WDTCSR._WDP0 = 0; __WDTCSR._WDP1 = 0; __WDTCSR._WDP2 = 0; __WDTCSR._WDE = false; __WDTCSR._WDCE = false; __WDTCSR._WDP3 = 0; __WDTCSR._WDIE = false; __WDTCSR._WDIF = false; dwrite(_WDTCSR, __WDTCSR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) _MCUCR._PUD = false; #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) PORT_dev_t __PORT; __PORT._PIN.val = 0; __PORT._DDR.val = 0; __PORT._PORT.val = 0; #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) dwrite(_PORTA, __PORT); dwrite(_PORTC, __PORT); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) dwrite(_PORTB, __PORT); dwrite(_PORTD, __PORT); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) dwrite(_PORTE, __PORT); dwrite(_PORTF, __PORT); #endif #ifdef __AVR_TRM01__ PORTG_dev_t __PORTG; __PORTG._PIN.val = 0; __PORTG._PIN.reserved1 = 0; __PORTG._DDR.val = 0; __PORTG._DDR.reserved1 = 0; __PORTG._PORT.val = 0; __PORTG._PORT.reserved1 = 0; dwrite(_PORTG, __PORTG); #endif #ifdef __AVR_TRM03__ PORTC_dev_t __PORTC; __PORTC._PIN.val = 0; __PORTC._PIN.reserved1 = 0; __PORTC._DDR.val = 0; __PORTC._DDR.reserved1 = 0; __PORTC._PORT.val = 0; __PORTC._PORT.reserved1 = 0; dwrite(_PORTC, __PORTC); #endif #ifdef __AVR_TRM01__ dwrite(_PORTH, __PORT); dwrite(_PORTJ, __PORT); dwrite(_PORTK, __PORT); dwrite(_PORTL, __PORT); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) EICRA_reg_t __EICRA; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) __EICRA._ISC0 = 0; __EICRA._ISC1 = 0; __EICRA._ISC2 = 0; __EICRA._ISC3 = 0; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) __EICRA._ISC0 = 0; __EICRA._ISC1 = 0; __EICRA._ISC2 = 0; __EICRA.reserved1 = 0; #elif defined(__AVR_TRM03__) __EICRA._ISC0 = 0; __EICRA._ISC1 = 0; __EICRA.reserved1 = 0; #endif dwrite(_EICRA, __EICRA); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) EICRB_reg_t __EICRB; __EICRB._ISC4 = 0; __EICRB._ISC5 = 0; __EICRB._ISC6 = 0; __EICRB._ISC7 = 0; dwrite(_EICRB, __EICRB); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) EIMSK_reg_t __EIMSK; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) __EIMSK._INT0 = false; __EIMSK._INT1 = false; __EIMSK._INT2 = false; __EIMSK._INT3 = false; __EIMSK._INT4 = false; __EIMSK._INT5 = false; __EIMSK._INT6 = false; __EIMSK._INT7 = false; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) __EIMSK._INT0 = false; __EIMSK._INT1 = false; __EIMSK._INT2 = false; __EIMSK.reserved1 = 0; #elif defined(__AVR_TRM03__) __EIMSK._INT0 = false; __EIMSK._INT1 = false; __EIMSK.reserved1 = 0; #endif dwrite(_EIMSK, __EIMSK); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) EIFR_reg_t __EIFR; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) __EIFR._INTF0 = false; __EIFR._INTF1 = false; __EIFR._INTF2 = false; __EIFR._INTF3 = false; __EIFR._INTF4 = false; __EIFR._INTF5 = false; __EIFR._INTF6 = false; __EIFR._INTF7 = false; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) __EIFR._INTF0 = false; __EIFR._INTF1 = false; __EIFR._INTF2 = false; __EIFR.reserved1 = 0; #elif defined(__AVR_TRM03__) __EIFR._INTF0 = false; __EIFR._INTF1 = false; __EIFR.reserved1 = 0; #endif dwrite(_EIFR, __EIFR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) PCICR_reg_t __PCICR; #if defined(__AVR_TRM01__) || defined(__AVR_TRM03__) __PCICR._PCIE0 = false; __PCICR._PCIE1 = false; __PCICR._PCIE2 = false; __PCICR.reserved1 = 0; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) __PCICR._PCIE0 = false; __PCICR._PCIE1 = false; __PCICR._PCIE2 = false; __PCICR._PCIE3 = false; __PCICR.reserved1 = 0; #elif defined(__AVR_TRM04__) __PCICR._PCIE0 = false; __PCICR.reserved1 = 0; #endif dwrite(_PCICR, __PCICR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) PCIFR_reg_t __PCIFR; #if defined(__AVR_TRM01__) || defined(__AVR_TRM03__) __PCIFR._PCIF0 = false; __PCIFR._PCIF1 = false; __PCIFR._PCIF2 = false; __PCIFR.reserved1 = 0; #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) __PCIFR._PCIF0 = false; __PCIFR._PCIF1 = false; __PCIFR._PCIF2 = false; __PCIFR._PCIF3 = false; __PCIFR.reserved1 = 0; #elif defined(__AVR_TRM04__) __PCIFR._PCIF0 = false; __PCIFR.reserved1 = 0; #endif dwrite(_PCIFR, __PCIFR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) _PCMSK0.val = 0; #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) _PCMSK1.val = 0; _PCMSK2.val = 0; #endif #if defined(__AVR_TRM03__) _PCMSK1.reserved1 = 0; #endif #if defined(__AVR_TRM02__) _PCMSK3.val = 0; #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) TIMER_8bit_dev_t __TIMER_8bit; __TIMER_8bit._TCCRnA._WGMn0 = 0; __TIMER_8bit._TCCRnA._WGMn1 = 0; __TIMER_8bit._TCCRnA.reserved1 = 0; __TIMER_8bit._TCCRnA._COMnB = 0; __TIMER_8bit._TCCRnA._COMnA = 0; __TIMER_8bit._TCCRnB._CSn = 0; __TIMER_8bit._TCCRnB._WGMn2 = 0; __TIMER_8bit._TCCRnB.reserved1 = 0; __TIMER_8bit._TCCRnB._FOCnB = false; __TIMER_8bit._TCCRnB._FOCnA = false, __TIMER_8bit._TCNTn = 0; __TIMER_8bit._OCRnA = 0; __TIMER_8bit._OCRnB = 0; dwrite(TIMER0, __TIMER_8bit); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) TIMSK0_reg_t __TIMSK0; __TIMSK0._TOIE0 = false; __TIMSK0._OCIE0A = false; __TIMSK0._OCIE0B = false; __TIMSK0.reserved1 = 0; dwrite(_TIMSK0, __TIMSK0); TIFR0_reg_t __TIFR0; __TIFR0._TOV0 = false; __TIFR0._OCF0A = false; __TIFR0._OCF0B = false; __TIFR0.reserved1 = 0; dwrite(_TIFR0, __TIFR0); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) TIMER_dev_t TIMER; TIMER._TCCRnA._WGMn0 = 0; TIMER._TCCRnA._WGMn1 = 0; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) TIMER._TCCRnA._COMnC = 0; #endif TIMER._TCCRnA._COMnB = 0; TIMER._TCCRnA._COMnA = 0; TIMER._TCCRnB._CSn = 0; TIMER._TCCRnB._WGMn2 = 0; TIMER._TCCRnB.reserved1 = 0; TIMER._TCCRnB._ICESn = 0; TIMER._TCCRnB._ICNCn = 0; TIMER._TCCRnC.reserved1 = 0; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) TIMER._TCCRnC._FOCnC = false; #endif TIMER._TCCRnC._FOCnB = false; TIMER._TCCRnC._FOCnA = false; TIMER._TCNTn = 0; TIMER._OCRnA = 0; TIMER._OCRnB = 0; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) TIMER._OCRnC = 0; #endif TIMER._ICRn = 0; dwrite(TIMER1, TIMER); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) dwrite(TIMER3, TIMER); #endif #ifdef __AVR_TRM01__ dwrite(TIMER4, TIMER); dwrite(TIMER5, TIMER); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) TIMSK1_reg_t __TIMSK1; __TIMSK1._TOIE1 = false; __TIMSK1._OCIE1A = false; __TIMSK1._OCIE1B = false; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) __TIMSK1._OCIE1C = false; #endif __TIMSK1.reserved1 = 0; __TIMSK1._ICIE1 = false; __TIMSK1.reserved2 = 0; dwrite(_TIMSK1, __TIMSK1); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) TIMSK3_reg_t __TIMSK3; __TIMSK3._TOIE3 = false; __TIMSK3._OCIE3A = false; __TIMSK3._OCIE3B = false; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) __TIMSK3._OCIE3C = false; #endif __TIMSK3.reserved1 = 0; __TIMSK3._ICIE3 = false; __TIMSK3.reserved2 = 0; dwrite(_TIMSK3, __TIMSK3); #endif #ifdef __AVR_TRM01__ TIMSK4_reg_t __TIMSK4; __TIMSK4._TOIE4 = false; __TIMSK4._OCIE4A = false; __TIMSK4._OCIE4B = false; __TIMSK4._OCIE4C = false; __TIMSK4.reserved1 = false; __TIMSK4._ICIE4 = false; __TIMSK4.reserved2 = false; dwrite(_TIMSK4, __TIMSK4); TIMSK5_reg_t __TIMSK5; __TIMSK5._TOIE5 = false; __TIMSK5._OCIE5A = false; __TIMSK5._OCIE5B = false; __TIMSK5._OCIE5C = false; __TIMSK5.reserved1 = 0; __TIMSK5._ICIE5 = false; __TIMSK5.reserved2 = 0; dwrite(_TIMSK5, __TIMSK5); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) TIFR1_reg_t __TIFR1; __TIFR1._TOV1 = false; __TIFR1._OCF1A = false; __TIFR1._OCF1B = false; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) __TIFR1._OCF1C = false; #endif __TIFR1.reserved1 = 0; __TIFR1._ICF1 = false; __TIFR1.reserved2 = 0; dwrite(_TIFR1, __TIFR1); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) TIFR3_reg_t __TIFR3; __TIFR3._TOV3 = false; __TIFR3._OCF3A = false; __TIFR3._OCF3B = false; #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) __TIFR3._OCF3C = false; #endif __TIFR3.reserved1 = 0; __TIFR3._ICF3 = false; __TIFR3.reserved2 = 0; dwrite(_TIFR3, __TIFR3); #endif #ifdef __AVR_TRM01__ TIFR4_reg_t __TIFR4; __TIFR4._TOV4 = false; __TIFR4._OCF4A = false; __TIFR4._OCF4B = false; __TIFR4._OCF4C = false; __TIFR4.reserved1 = 0; __TIFR4._ICF4 = false; __TIFR4.reserved2 = 0; dwrite(_TIFR4, __TIFR4); TIFR5_reg_t __TIFR5; __TIFR5._TOV5 = false; __TIFR5._OCF5A = false; __TIFR5._OCF5B = false; __TIFR5._OCF5C = false; __TIFR5.reserved1 = 0; __TIFR5._ICF5 = false; __TIFR5.reserved2 = 0; dwrite(_TIFR5, __TIFR5); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) dwrite(_TIMER2, __TIMER_8bit); #endif #if defined(__AV_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) ASSR_reg_t __ASSR; __ASSR._TCR2BUB = false; __ASSR._TCR2AUB = false; __ASSR._OCR2BUB = false; __ASSR._OCR2AUB = false; __ASSR._TCN2UB = false; __ASSR._AS2 = false; __ASSR._EXCLK = false; __ASSR.reserved1 = 0; dwrite(_ASSR, __ASSR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) TIMSK2_reg_t __TIMSK2; __TIMSK2._TOIE2 = false; __TIMSK2._OCIE2A = false; __TIMSK2._OCIE2B = false; __TIMSK2.reserved1 = 0; dwrite(_TIMSK2, __TIMSK2); TIFR2_reg_t __TIFR2; __TIFR2._TOV2 = false; __TIFR2._OCF2A = false; __TIFR2._OCF2B = false; __TIFR2.reserved1 = 0; dwrite(_TIFR2, __TIFR2); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) SPCR_reg_t __SPCR; __SPCR._SPR = 0; __SPCR._CPHA = 0; __SPCR._CPOL = 0; __SPCR._MSTR = 0; __SPCR._DORD = 0; __SPCR._SPE = false; __SPCR._SPIE = false; dwrite(_SPCR, __SPCR); SPSR_reg_t __SPSR; __SPSR._SPI2X = false; __SPSR.reserved1 = 0; __SPSR._WCOL = false; __SPSR._SPIF = false; dwrite(_SPSR, __SPSR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) USART_dev_t USART; USART._UDRn = 0; USART._UCSRnA._MPCM = false; USART._UCSRnA._U2X = false; USART._UCSRnA._UPE = false; USART._UCSRnA._DOR = false; USART._UCSRnA._FE = false; USART._UCSRnA._UDRE = true; USART._UCSRnA._TXC = false; USART._UCSRnA._RXC = false; USART._UCSRnB._TXB8 = false; USART._UCSRnB._RXB8 = false; USART._UCSRnB._UCSZn2 = false; USART._UCSRnB._TXEN = false; USART._UCSRnB._RXEN = false; USART._UCSRnB._UDRIE = false; USART._UCSRnB._TXCIE = false; USART._UCSRnB._RXCIE = false; USART._UCSRnC._UCPOL = false; #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) USART._UCSRnC._UCSZn0 = 1; USART._UCSRnC._UCSZn1 = 1; USART._UCSRnC._USBS = false; USART._UCSRnC._UPM = 0; USART._UCSRnC._UPM = 0; USART._UCSRnC._UMSEL = 0; #elif defined(__AVR_TRM05__) USART._UCSRnC._UCPOL = 0; USART._UCSRnC._UCPHA = 0; USART._UCSRnC._UDORD = 0; USART._UCSRnC.reserved1 = 0; USART._UCSRnC._UMSEL = 0; #endif USART._UBRRn._UBRR = 0; USART._UBRRn.reserved1 = 0; #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__) dwrite(USART0, USART); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) dwrite(USART1, USART); #endif #ifdef __AVR_TRM01__ dwrite(USART2, USART); dwrite(USART3, USART); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) dwrite(_TWBR, (uint8_t)0); TWCR_reg_t __TWCR; __TWCR._TWIE = false; __TWCR.reserved1 = 0; __TWCR._TWEN = false; __TWCR._TWWC = false; __TWCR._TWSTO = false; __TWCR._TWSTA = false; __TWCR._TWEA = false; __TWCR._TWINT = false; dwrite(_TWCR, __TWCR); TWSR_reg_t __TWSR; __TWSR._TWPS0 = false; __TWSR._TWPS1 = false; __TWSR.reserved1 = 0; __TWSR._TWS3 = 1; __TWSR._TWS4 = 1; __TWSR._TWS5 = 1; __TWSR._TWS6 = 1; __TWSR._TWS7 = 1; dwrite(_TWSR, __TWSR); dwrite(_TWDR, (uint8_t)0xFF); TWAR_reg_t __TWAR; __TWAR._TWGCE = false; __TWAR._TWA = 0x7F; dwrite(_TWAR, __TWAR); TWAMR_reg_t __TWAMR; __TWAMR.reserved1 = false; __TWAMR._TWAM = 0; dwrite(_TWAMR, __TWAMR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) ADCSRB_reg_t __ADCSRB; __ADCSRB._ADTS = 0; #ifdef __AVR_TRM01__ __ADCSRB._MUX5 = 0; #endif __ADCSRB.reserved1 = 0; __ADCSRB._ACME = false; __ADCSRB.reserved2 = 0; dwrite(_ADCSRB, __ADCSRB); ACSR_reg_t __ACSR; __ACSR._ACIS = 0; __ACSR._ACIC = false; __ACSR._ACIE = false; __ACSR._ACI = false; __ACSR._ACO = false; __ACSR._ACBG = false; __ACSR._ACD = false; dwrite(_ACSR, __ACSR); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) DIDR1_reg_t __DIDR1; __DIDR1._AIN0D = false; __DIDR1._AIN1D = false; __DIDR1.reserved1 = false; dwrite(_DIDR1, __DIDR1); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) ADMUX_reg_t __ADMUX; __ADMUX._MUX0 = 0; __ADMUX._MUX1 = 0; __ADMUX._MUX2 = 0; __ADMUX._MUX3 = 0; #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) __ADMUX._MUX4 = 0; #elif defined(__AVR_TRM03__) __ADMUX.reserved1 = 0; #endif __ADMUX._ADLAR = 0; __ADMUX._REFS0 = 0; __ADMUX._REFS1 = 0; dwrite(_ADMUX, __ADMUX); ADCSRA_reg_t __ADCSRA; __ADCSRA._ADPS = 0; __ADCSRA._ADIE = false; __ADCSRA._ADIF = false; __ADCSRA._ADATE = false; __ADCSRA._ADSC = false; __ADCSRA._ADEN = false; dwrite(_ADCSRA, __ADCSRA); dwrite(_ADC, (uint16_t)0); #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) SPMCSR_reg_t __SPMCSR; #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) __SPMCSR._SPMEN = false; __SPMCSR._PGERS = false; __SPMCSR._PGWRT = false; __SPMCSR._BLBSET = false; __SPMCSR._RWWSRE = false; __SPMCSR._SIGRD = false; __SPMCSR._RWWSB = false; __SPMCSR._SPMIE = false; #elif defined(__AVR_TRM03__) #if defined(__AVR_ATmega88A__) || defined(__AVR_ATmega88PA__) || defined(__AVR_ATmega168A__) || defined(__AVR_ATmega168PA__) || defined(__AVR_ATmega328P__) __SPMCSR._SPMEN = false; __SPMCSR._PGERS = false; __SPMCSR._PGWRT = false; __SPMCSR._BLBSET = false; __SPMCSR._RWWSRE = false; __SPMCSR._SIGRD = false; __SPMCSR._RWWSB = false; __SPMCSR._SPMIE = false; #else __SPMCSR._SPMEN = false; __SPMCSR._PGERS = false; __SPMCSR._PGWRT = false; __SPMCSR._BLBSET = false; __SPMCSR.reserved1 = false; __SPMCSR._SIGRD = false; __SPMCSR.reserved2 = false; __SPMCSR._SPMIE = false; #endif #endif dwrite(_SPMCSR, __SPMCSR); #endif // TODO: add the __AVR_TRM04__ initializations, if required (mostly USB related) } struct pin_dev_state_t { #ifdef __AVR_TRM01__ uint8_t _SRE : 1; // port A uint8_t _COM0B : 2; uint8_t _COM1A : 2; uint8_t _COM1B : 2; uint8_t _COM1C : 2; uint8_t _COM2A : 2; uint8_t _COM2B : 2; uint8_t _COM3A : 2; uint8_t _COM3B : 2; uint8_t _COM3C : 2; uint8_t _COM4A : 2; uint8_t _COM4B : 2; uint8_t _COM4C : 2; uint8_t _COM5A : 2; uint8_t _COM5B : 2; uint8_t _COM5C : 2; uint8_t _PCIE0 : 1; uint8_t _PCIE1 : 1; // INTn uint8_t _PCIE2 : 1; uint8_t _SPE : 1; uint8_t _USART0_RXEN : 1; uint8_t _USART0_TXEN : 1; uint8_t _USART1_RXEN : 1; uint8_t _USART1_TXEN : 1; uint8_t _USART2_RXEN : 1; uint8_t _USART2_TXEN : 1; uint8_t _USART3_RXEN : 1; uint8_t _USART3_TXEN : 1; //uint8_t _JTAGEN : 1; uint8_t _AS2 : 1; #elif defined(__AVR_TRM02__) uint8_t _PCIE0 : 1; uint8_t _PCIE1 : 1; uint8_t _PCIE2 : 1; uint8_t _PCIE3 : 1; uint8_t _ADC7D : 1; uint8_t _ADC6D : 1; uint8_t _ADC5D : 1; uint8_t _ADC4D : 1; uint8_t _ADC3D : 1; uint8_t _ADC2D : 1; uint8_t _ADC1D : 1; uint8_t _ADC0D : 1; uint8_t _SPE : 1; uint8_t _COM0A : 2; uint8_t _COM0B : 2; uint8_t _COM2A : 2; uint8_t _COM2B : 2; uint8_t _COM1A : 2; uint8_t _COM1B : 2; //uint8_t _JTAGEN : 1; uint8_t _AS2 : 1; uint8_t _TWEN : 1; uint8_t _USART1_TXEN : 1; uint8_t _USART1_RXEN : 1; uint8_t _USART0_TXEN : 1; uint8_t _USART0_RXEN : 1; #elif defined(__AVR_TRM03__) uint8_t _AS2 : 1; uint8_t _PCIE0 : 1; uint8_t _PCIE1 : 1; uint8_t _PCIE2 : 1; uint8_t _SPE : 1; uint8_t _COM2B : 2; uint8_t _COM2A : 2; uint8_t _COM1B : 2; uint8_t _COM1A : 2; uint8_t _COM0A : 2; uint8_t _COM0B : 2; uint8_t _TWEN : 1; uint8_t _ADC7D : 1; uint8_t _ADC6D : 1; uint8_t _ADC5D : 1; uint8_t _ADC4D : 1; uint8_t _ADC3D : 1; uint8_t _ADC2D : 1; uint8_t _ADC1D : 1; uint8_t _ADC0D : 1; uint8_t _UMSEL : 2; uint8_t _USART0_TXEN : 1; uint8_t _USART0_RXEN : 1; #elif defined(__AVR_TRM04__) uint8_t _SRE : 1; uint8_t _SPE : 1; uint8_t _COM0B : 2; uint8_t _COM1C : 2; uint8_t _COM1B : 2; uint8_t _COM1A : 2; uint8_t _COM2A : 2; uint8_t _COM2B : 2; uint8_t _PCIE0 : 1; uint8_t _USART1_RXEN : 1; uint8_t _USART1_TXEN : 1; uint8_t _TWEN : 1; uint8_t _INT7 : 1; uint8_t _INT6 : 1; uint8_t _INT5 : 1; uint8_t _INT4 : 1; uint8_t _INT3 : 1; uint8_t _INT2 : 1; uint8_t _INT1 : 1; uint8_t _INT0; uint8_t _UVCONE : 1; uint8_t _UIDE : 1; //uint8_t _JTAGEN : 1; #elif defined(__AVR_TRM05__) uint8_t _ADC7D : 1; uint8_t _ADC6D : 1; uint8_t _ADC5D : 1; uint8_t _ADC4D : 1; uint8_t _ADC3D : 1; uint8_t _ADC2D : 1; uint8_t _ADC1D : 1; uint8_t _ADC0D : 1; uint8_t _PCIE0 : 1; uint8_t _PCIE1 : 1; uint8_t _PCIE2 : 1; uint8_t _PCIE3 : 1; uint8_t _SPE : 1; uint8_t _COM0A : 2; uint8_t _COM0B : 2; uint8_t _COM2A : 2; uint8_t _COM2B : 2; uint8_t _COM1A : 2; uint8_t _COM1B : 2; uint8_t _AS2 : 1; uint8_t _TWEN : 1; uint8_t _TXEN1 : 1; uint8_t _RXEN1 : 1; uint8_t _TXEN0 : 1; uint8_t _RXEN0 : 1; uint8_t _INT2 : 1; uint8_t _INT1 : 1; uint8_t _INT0 : 1; //uint8_t _JTAGEN : 1; #endif }; // AVR ArduinoCore is written like a hack-job (random peripherals enabled all-the-time). enum class eATmegaPort { #ifdef __AVR_TRM01__ PORT_A, PORT_B, PORT_C, PORT_D, PORT_E, PORT_F, PORT_G, PORT_H, PORT_J, PORT_K, PORT_L #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) PORT_A, PORT_B, PORT_C, PORT_D #elif defined(__AVR_TRM03__) PORT_B, PORT_C, PORT_D #elif defined(__AVR_TRM04__) PORT_A, PORT_B, PORT_C, PORT_D, PORT_E, PORT_F #endif }; struct ATmegaPinInfo { eATmegaPort port; uint8_t pinidx; }; #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) #define _SPA_DIO_DDRA (eATmegaPort::PORT_A) #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) #define _SPA_DIO_DDRB (eATmegaPort::PORT_B) #define _SPA_DIO_DDRC (eATmegaPort::PORT_C) #define _SPA_DIO_DDRD (eATmegaPort::PORT_D) #endif #if defined(__AVR_TRM01__) || defined(__AVR_TRM04__) #define _SPA_DIO_DDRE (eATmegaPort::PORT_E) #define _SPA_DIO_DDRF (eATmegaPort::PORT_F) #endif #ifdef __AVR_TRM01__ #define _SPA_DIO_DDRG (eATmegaPort::PORT_G) #define _SPA_DIO_DDRH (eATmegaPort::PORT_H) #define _SPA_DIO_DDRJ (eATmegaPort::PORT_J) #define _SPA_DIO_DDRK (eATmegaPort::PORT_K) #define _SPA_DIO_DDRL (eATmegaPort::PORT_L) #endif #define __SPA_IFPORT_STMT(dr) if (ddrp == &D##dr) port = _SPA_DIO_D##dr; #ifdef _SPA_DIO_DDRA #define _SPA_IFPORT_PORTA __SPA_IFPORT_STMT(DRA) #else #define _SPA_IFPORT_PORTA #endif #ifdef _SPA_DIO_DDRB #define _SPA_IFPORT_PORTB __SPA_IFPORT_STMT(DRB) #else #define _SPA_IFPORT_PORTB #endif #ifdef _SPA_DIO_DDRC #define _SPA_IFPORT_PORTC __SPA_IFPORT_STMT(DRC) #else #define _SPA_IFPORT_PORTC #endif #ifdef _SPA_DIO_DDRD #define _SPA_IFPORT_PORTD __SPA_IFPORT_STMT(DRD) #else #define _SPA_IFPORT_PORTD #endif #ifdef _SPA_DIO_DDRE #define _SPA_IFPORT_PORTE __SPA_IFPORT_STMT(DRE) #else #define _SPA_IFPORT_PORTE #endif #ifdef _SPA_DIO_DDRF #define _SPA_IFPORT_PORTF __SPA_IFPORT_STMT(DRF) #else #define _SPA_IFPORT_PORTF #endif #ifdef _SPA_DIO_DDRG #define _SPA_IFPORT_PORTG __SPA_IFPORT_STMT(DRG) #else #define _SPA_IFPORT_PORTG #endif #ifdef _SPA_DIO_DDRH #define _SPA_IFPORT_PORTH __SPA_IFPORT_STMT(DRH) #else #define _SPA_IFPORT_PORTH #endif #ifdef _SPA_DIO_DDRJ #define _SPA_IFPORT_PORTJ __SPA_IFPORT_STMT(DRJ) #else #define _SPA_IFPORT_PORTJ #endif #ifdef _SPA_DIO_DDRK #define _SPA_IFPORT_PORTK __SPA_IFPORT_STMT(DRK) #else #define _SPA_IFPORT_PORTK #endif #ifdef _SPA_DIO_DDRL #define _SPA_IFPORT_PORTL __SPA_IFPORT_STMT(DRL) #else #define _SPA_IFPORT_PORTL #endif #define _SPA_RESOLVE_DIO(ddr) _SPA_DIO_##ddr #define _SPA_DIOn_PORTRET(val, n) if (val == n) { \ auto *ddrp = &DIO##n##_DDR; \ eATmegaPort port; \ _SPA_IFPORT_PORTA \ _SPA_IFPORT_PORTB \ _SPA_IFPORT_PORTC \ _SPA_IFPORT_PORTD \ _SPA_IFPORT_PORTE \ _SPA_IFPORT_PORTF \ _SPA_IFPORT_PORTG \ _SPA_IFPORT_PORTH \ _SPA_IFPORT_PORTJ \ _SPA_IFPORT_PORTK \ _SPA_IFPORT_PORTL \ return { port, DIO##n##_PIN }; \ } inline ATmegaPinInfo _ATmega_getPinInfo(uint8_t pin) { #if DIO_NUM > 0 _SPA_DIOn_PORTRET(pin, 0) #endif #if DIO_NUM > 1 _SPA_DIOn_PORTRET(pin, 1) #endif #if DIO_NUM > 2 _SPA_DIOn_PORTRET(pin, 2) #endif #if DIO_NUM > 3 _SPA_DIOn_PORTRET(pin, 3) #endif #if DIO_NUM > 4 _SPA_DIOn_PORTRET(pin, 4) #endif #if DIO_NUM > 5 _SPA_DIOn_PORTRET(pin, 5) #endif #if DIO_NUM > 6 _SPA_DIOn_PORTRET(pin, 6) #endif #if DIO_NUM > 7 _SPA_DIOn_PORTRET(pin, 7) #endif #if DIO_NUM > 8 _SPA_DIOn_PORTRET(pin, 8) #endif #if DIO_NUM > 9 _SPA_DIOn_PORTRET(pin, 9) #endif #if DIO_NUM > 10 _SPA_DIOn_PORTRET(pin, 10) #endif #if DIO_NUM > 11 _SPA_DIOn_PORTRET(pin, 11) #endif #if DIO_NUM > 12 _SPA_DIOn_PORTRET(pin, 12) #endif #if DIO_NUM > 13 _SPA_DIOn_PORTRET(pin, 13) #endif #if DIO_NUM > 14 _SPA_DIOn_PORTRET(pin, 14) #endif #if DIO_NUM > 15 _SPA_DIOn_PORTRET(pin, 15) #endif #if DIO_NUM > 16 _SPA_DIOn_PORTRET(pin, 16) #endif #if DIO_NUM > 17 _SPA_DIOn_PORTRET(pin, 17) #endif #if DIO_NUM > 18 _SPA_DIOn_PORTRET(pin, 18) #endif #if DIO_NUM > 19 _SPA_DIOn_PORTRET(pin, 19) #endif #if DIO_NUM > 20 _SPA_DIOn_PORTRET(pin, 20) #endif #if DIO_NUM > 21 _SPA_DIOn_PORTRET(pin, 21) #endif #if DIO_NUM > 22 _SPA_DIOn_PORTRET(pin, 22) #endif #if DIO_NUM > 23 _SPA_DIOn_PORTRET(pin, 23) #endif #if DIO_NUM > 24 _SPA_DIOn_PORTRET(pin, 24) #endif #if DIO_NUM > 25 _SPA_DIOn_PORTRET(pin, 25) #endif #if DIO_NUM > 26 _SPA_DIOn_PORTRET(pin, 26) #endif #if DIO_NUM > 27 _SPA_DIOn_PORTRET(pin, 27) #endif #if DIO_NUM > 28 _SPA_DIOn_PORTRET(pin, 28) #endif #if DIO_NUM > 29 _SPA_DIOn_PORTRET(pin, 29) #endif #if DIO_NUM > 30 _SPA_DIOn_PORTRET(pin, 30) #endif #if DIO_NUM > 31 _SPA_DIOn_PORTRET(pin, 31) #endif #if DIO_NUM > 32 _SPA_DIOn_PORTRET(pin, 32) #endif #if DIO_NUM > 33 _SPA_DIOn_PORTRET(pin, 33) #endif #if DIO_NUM > 34 _SPA_DIOn_PORTRET(pin, 34) #endif #if DIO_NUM > 35 _SPA_DIOn_PORTRET(pin, 35) #endif #if DIO_NUM > 36 _SPA_DIOn_PORTRET(pin, 36) #endif #if DIO_NUM > 37 _SPA_DIOn_PORTRET(pin, 37) #endif #if DIO_NUM > 38 _SPA_DIOn_PORTRET(pin, 38) #endif #if DIO_NUM > 39 _SPA_DIOn_PORTRET(pin, 39) #endif #if DIO_NUM > 40 _SPA_DIOn_PORTRET(pin, 40) #endif #if DIO_NUM > 41 _SPA_DIOn_PORTRET(pin, 41) #endif #if DIO_NUM > 42 _SPA_DIOn_PORTRET(pin, 42) #endif #if DIO_NUM > 43 _SPA_DIOn_PORTRET(pin, 43) #endif #if DIO_NUM > 44 _SPA_DIOn_PORTRET(pin, 44) #endif #if DIO_NUM > 45 _SPA_DIOn_PORTRET(pin, 45) #endif #if DIO_NUM > 46 _SPA_DIOn_PORTRET(pin, 46) #endif #if DIO_NUM > 47 _SPA_DIOn_PORTRET(pin, 47) #endif #if DIO_NUM > 48 _SPA_DIOn_PORTRET(pin, 48) #endif #if DIO_NUM > 49 _SPA_DIOn_PORTRET(pin, 49) #endif #if DIO_NUM > 50 _SPA_DIOn_PORTRET(pin, 50) #endif #if DIO_NUM > 51 _SPA_DIOn_PORTRET(pin, 51) #endif #if DIO_NUM > 52 _SPA_DIOn_PORTRET(pin, 52) #endif #if DIO_NUM > 53 _SPA_DIOn_PORTRET(pin, 53) #endif #if DIO_NUM > 54 _SPA_DIOn_PORTRET(pin, 54) #endif #if DIO_NUM > 55 _SPA_DIOn_PORTRET(pin, 55) #endif #if DIO_NUM > 56 _SPA_DIOn_PORTRET(pin, 56) #endif #if DIO_NUM > 57 _SPA_DIOn_PORTRET(pin, 57) #endif #if DIO_NUM > 58 _SPA_DIOn_PORTRET(pin, 58) #endif #if DIO_NUM > 59 _SPA_DIOn_PORTRET(pin, 59) #endif #if DIO_NUM > 60 _SPA_DIOn_PORTRET(pin, 60) #endif #if DIO_NUM > 61 _SPA_DIOn_PORTRET(pin, 61) #endif #if DIO_NUM > 62 _SPA_DIOn_PORTRET(pin, 62) #endif #if DIO_NUM > 63 _SPA_DIOn_PORTRET(pin, 63) #endif #if DIO_NUM > 64 _SPA_DIOn_PORTRET(pin, 64) #endif #if DIO_NUM > 65 _SPA_DIOn_PORTRET(pin, 65) #endif #if DIO_NUM > 66 _SPA_DIOn_PORTRET(pin, 66) #endif #if DIO_NUM > 67 _SPA_DIOn_PORTRET(pin, 67) #endif #if DIO_NUM > 68 _SPA_DIOn_PORTRET(pin, 68) #endif #if DIO_NUM > 69 _SPA_DIOn_PORTRET(pin, 69) #endif #if DIO_NUM > 70 _SPA_DIOn_PORTRET(pin, 70) #endif #if DIO_NUM > 71 _SPA_DIOn_PORTRET(pin, 71) #endif #if DIO_NUM > 72 _SPA_DIOn_PORTRET(pin, 72) #endif #if DIO_NUM > 73 _SPA_DIOn_PORTRET(pin, 73) #endif #if DIO_NUM > 74 _SPA_DIOn_PORTRET(pin, 74) #endif #if DIO_NUM > 75 _SPA_DIOn_PORTRET(pin, 75) #endif #if DIO_NUM > 76 _SPA_DIOn_PORTRET(pin, 76) #endif #if DIO_NUM > 77 _SPA_DIOn_PORTRET(pin, 77) #endif #if DIO_NUM > 78 _SPA_DIOn_PORTRET(pin, 78) #endif #if DIO_NUM > 79 _SPA_DIOn_PORTRET(pin, 79) #endif #if DIO_NUM > 80 _SPA_DIOn_PORTRET(pin, 80) #endif #if DIO_NUM > 81 _SPA_DIOn_PORTRET(pin, 81) #endif #if DIO_NUM > 82 _SPA_DIOn_PORTRET(pin, 82) #endif #if DIO_NUM > 83 _SPA_DIOn_PORTRET(pin, 83) #endif #if DIO_NUM > 84 _SPA_DIOn_PORTRET(pin, 84) #endif #if DIO_NUM > 85 _SPA_DIOn_PORTRET(pin, 85) #endif #if DIO_NUM > 86 _SPA_DIOn_PORTRET(pin, 86) #endif #if DIO_NUM > 87 _SPA_DIOn_PORTRET(pin, 87) #endif #if DIO_NUM > 88 _SPA_DIOn_PORTRET(pin, 88) #endif #if DIO_NUM > 89 _SPA_DIOn_PORTRET(pin, 89) #endif // Default. #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__) return { eATmegaPort::PORT_A, 0 }; #elif defined(__AVR_TRM03__) return { eATmegaPort::PORT_B, 0 }; #endif } enum class eATmegaPeripheral { UNDEFINED, #ifdef __AVR_TRM01__ PADC, PUSART0, PSPI, PTIM1, PTIM0, PTIM2, PTWI, PUSART1, PUSART2, PUSART3, PTIM3, PTIM4, PTIM5 #elif defined(__AVR_TRM02__) PADC, PUSART0, PSPI, PTIM1, PUSART1, PTIM0, PTIM2, PTWI, PTIM3 #elif defined(__AVR_TRM03__) PADC, PUSART0, PSPI, PTIM1, PTIM0, PTIM2, PTWI #elif defined(__AVR_TRM04__) PADC, PSPI, PTIM1, PTIM0, PTIM2, PTWI, PUSART1, PTIM3, PUSB #elif defined(__AVR_TRM05__) PADC, PUSART0, PSPI, PTIM1, PUSART1, PTIM0, PTIM2, PTWI #endif , NUM_PERIPHERALS }; enum class eATmegaPinFunc : uint8_t { #ifdef __AVR_TRM01__ EXTMEM_AD15, EXTMEM_AD14, EXTMEM_AD13, EXTMEM_AD12, EXTMEM_AD11, EXTMEM_AD10, EXTMEM_AD9, EXTMEM_AD8, EXTMEM_AD7, EXTMEM_AD6, EXTMEM_AD5, EXTMEM_AD4, EXTMEM_AD3, EXTMEM_AD2, EXTMEM_AD1, EXTMEM_AD0, EXTMEM_ALE, EXTMEM_RD, EXTMEM_WR, TOC0A, TOC0B, TOC1A, TOC1B, TOC1C, TOC2A, TOC2B, TOC3C, TOC3B, TOC3A, TOC4C, TOC4B, TOC4A, TOC5C, TOC5B, TOC5A, EINT7, EINT6, EINT5, EINT4, EINT3, EINT2, EINT1, EINT0, PCI0, PCI1, PCI2, PCI3, PCI4, PCI5, PCI6, PCI7, PCI8, PCI9, PCI10, PCI11, PCI12, PCI13, PCI14, PCI15, PCI16, PCI17, PCI18, PCI19, PCI20, PCI21, PCI22, PCI23, SPI_MISO, SPI_MOSI, SPI_SCK, SPI_CS, TOSC1, TOSC2, TIMER0_CLKI, TIMER1_CLKI, TIMER3_CLKI, TIMER4_CLKI, TIMER5_CLKI, TIMER1_ICP, TIMER3_ICP, TIMER5_ICP, TIMER4_ICP, USART0_CLK, USART1_CLK, USART2_CLK, USART3_CLK, USART0_TXD, USART0_RXD, USART1_TXD, USART1_RXD, USART2_TXD, USART2_RXD, USART3_TXD, USART3_RXD, TWI_SDA, TWI_CLK, CLKO, PDO, PDI, AIN0, AIN1, ADC15, ADC14, ADC13, ADC12, ADC11, ADC10, ADC9, ADC8, ADC7, ADC6, ADC5, ADC4, ADC3, ADC2, ADC1, ADC0 #elif defined(__AVR_TRM02__) ADC7, ADC6, ADC5, ADC4, ADC3, ADC2, ADC1, ADC0, SPI_SCK, SPI_MISO, SPI_MOSI, SPI_CS, PCI31, PCI30, PCI29, PCI28, PCI27, PCI26, PCI25, PCI24, PCI23, PCI22, PCI21, PCI20, PCI19, PCI18, PCI17, PCI16, PCI15, PCI14, PCI13, PCI12, PCI11, PCI10, PCI9, PCI8, PCI7, PCI6, PCI5, PCI4, PCI3, PCI2, PCI1, PCI0, EINT2, EINT1, EINT0, TIMER3_ICP, TIMER3_ECI, TIMER1_ECI, TIMER0_ECI, TIMER1_ICP, TOC3B, TOC3A, TOC2A, TOC2B, TOC1A, TOC1B, TOC0B, TOC0A, AIN1, AIN0, USART0_CLK, USART1_CLK, USART0_TXD, USART0_RXD, USART1_TXD, USART1_RXD, CLKO, TOSC2, TOSC1, TWI_SDA, TWI_CLK #elif defined(__AVR_TRM03__) ADC5, ADC4, ADC3, ADC2, ADC1, ADC0, XTAL2, XTAL1, TOSC2, TOSC1, SPI_SCK, SPI_MISO, SPI_MOSI, SPI_CS, TOC2B, TOC2A, TOC1B, TOC1A, TOC0A, TOC0B, TIMER1_ICP, TIMER1_ECI, TIMER0_ECI, TWI_CLK, TWI_SDA, PCI23, PCI22, PCI21, PCI20, PCI19, PCI18, PCI17, PCI16, PCI14, PCI13, PCI12, PCI11, PCI10, PCI9, PCI8, PCI7, PCI6, PCI5, PCI4, PCI3, PCI2, PCI1, PCI0, CLKO, AIN1, AIN0, USART_CLK, USART_TXD, USART_RXD, EINT1, EINT0 #elif defined(__AVR_TRM04__) EXTMEM_AD15, EXTMEM_AD14, EXTMEM_AD13, EXTMEM_AD12, EXTMEM_AD11, EXTMEM_AD10, EXTMEM_AD9, EXTMEM_AD8, EXTMEM_AD7, EXTMEM_AD6, EXTMEM_AD5, EXTMEM_AD4, EXTMEM_AD3, EXTMEM_AD2, EXTMEM_AD1, EXTMEM_AD0, EXTMEM_ALE, EXTMEM_RD, EXTMEM_WR, TOC0B, TOC0A, TOC1C, TOC1B, TOC1A, TOC2B, TOC2A, TOC3A, TOC3B, TOC3C, CLKO, PDO, PDI, SPI_MISO, SPI_MOSI, SPI_SCK, SPI_CS, TIMER3_ICP, TIMER1_ICP, TIMER3_CLKI, TIMER0_CLKI, TIMER1_CLKI, USART1_CLK, USART1_TXD, USART1_RXD, EINT7, EINT6, EINT5, EINT4, EINT3, EINT2, EINT1, EINT0, PCI7, PCI6, PCI5, PCI4, PCI3, PCI2, PCI1, PCI0, TWI_SDA, TWI_CLK, AIN1, AIN0, TOSC2, UID, UVCON, ADC7, ADC6, ADC5, ADC4, ADC3, ADC2, ADC1, ADC0 #elif defined(__AVR_TRM05__) ADC7, ADC6, ADC5, ADC4, ADC3, ADC2, ADC1, ADC0, PCI31, PCI30, PCI29, PCI28, PCI27, PCI26, PCI25, PCI24, PCI23, PCI22, PCI21, PCI20, PCI19, PCI18, PCI17, PCI16, PCI15, PCI14, PCI13, PCI12, PCI11, PCI10, PCI9, PCI8, PCI7, PCI6, PCI5, PCI4, PCI3, PCI2, PCI1, PCI0, SPI_SCK, SPI_MISO, SPI_MOSI, SPI_CS, AIN1, AIN0, TIMER1_ICP, TIMER0_ICP, TIMER1_ECI, TIMER0_ECI, TOC0B, TOC0A, TOC2A, TOC2B, TOC1A, TOC1B, TOSC2, TOSC1, //JTAG_TDI, JTAG_TDO, JTAG_TMS, JTAG_TCK, TWI_CLK, TWI_SDA, EINT2, EINT1, EINT0, CLKO, USART0_CLK, USART0_TXD, USART0_RXD, USART1_CLK, USART1_TXD, USART1_RXD #endif , NUM_FUNCS }; #ifndef countof #define countof(x) (sizeof(x) / sizeof(*x)) #endif struct ATmegaPinFunctions { inline ATmegaPinFunctions(const eATmegaPinFunc *funcs, uint8_t cnt) noexcept : funcs(funcs), cnt(cnt) {} inline ATmegaPinFunctions() = default; inline ATmegaPinFunctions(const ATmegaPinFunctions&) = default; const eATmegaPinFunc *funcs = nullptr; uint8_t cnt = 0; inline bool hasFunc(eATmegaPinFunc query) const { for (uint8_t n = 0; n < this->cnt; n++) { eATmegaPinFunc func = this->funcs[n]; if (func == query) return true; } return false; } template <typename... otherItemType> inline bool hasFunc(eATmegaPinFunc func, otherItemType&&... items) const { return hasFunc(func) || hasFunc(((otherItemType&&)items)...); } template <typename callbackType> inline void iterate(callbackType&& cb) const { for (uint8_t n = 0; n < this->cnt; n++) { eATmegaPinFunc func = this->funcs[n]; cb(func); } } }; ATmegaPinFunctions _ATmega_getPinFunctions(int pin); struct ATmegaPinFuncSet { inline ATmegaPinFuncSet() noexcept { for (bool& f : this->funcs) f = false; } template <typename... funcItemType> inline ATmegaPinFuncSet(eATmegaPinFunc func, funcItemType&&... items) noexcept : ATmegaPinFuncSet() { add(func, ((funcItemType&&)items)...); } template <typename... funcItemType> inline ATmegaPinFuncSet(int pin, funcItemType&&... items) noexcept : ATmegaPinFuncSet() { addFromPin(pin, ((funcItemType&&)items)...); } inline ATmegaPinFuncSet(const ATmegaPinFuncSet&) = default; inline void add(eATmegaPinFunc value) noexcept { this->funcs[(uint8_t)value] = true; } template <typename... funcItemType> inline void add(eATmegaPinFunc value, funcItemType&&... items) { add(value); add(((eATmegaPinFunc&&)items)...); } inline void addFromPin(int pin) noexcept { ATmegaPinFunctions funcs = _ATmega_getPinFunctions(pin); funcs.iterate( [this]( eATmegaPinFunc func ) noexcept { this->add(func); } ); } template <typename... itemType> inline void addFromPin(int pin, itemType&&... items) noexcept { addFromPin(pin); addFromPin(((itemType&&)items)...); } inline bool hasFunc(eATmegaPinFunc value) const noexcept { return this->funcs[(uint8_t)value]; } inline bool hasAnyFunc() const noexcept { return false; } template <typename funcItem, typename... otherFuncItem> inline bool hasAnyFunc(funcItem&& item, otherFuncItem&&... funcs) const noexcept { return hasFunc(item) || hasAnyFunc(((otherFuncItem&&)funcs)...); } template <typename callbackType> inline void iterate(callbackType&& cb) const { for (uint8_t n = 1; n < countof(this->funcs); n++) { const bool& f = this->funcs[n]; if (f) cb((eATmegaPinFunc)n); } } private: bool funcs[(uint8_t)eATmegaPinFunc::NUM_FUNCS]; }; inline void _ATmega_setPeripheralPower(eATmegaPeripheral peri, bool fullPower) { bool reducePower = (fullPower == false); switch(peri) { #ifdef __AVR_TRM01__ case eATmegaPeripheral::PADC: _PRR0._PRADC = reducePower; break; case eATmegaPeripheral::PUSART0: _PRR0._PRUSART0 = reducePower; break; case eATmegaPeripheral::PSPI: _PRR0._PRSPI = reducePower; break; case eATmegaPeripheral::PTIM1: _PRR0._PRTIM1 = reducePower; break; case eATmegaPeripheral::PTIM0: _PRR0._PRTIM0 = reducePower; break; case eATmegaPeripheral::PTIM2: _PRR0._PRTIM2 = reducePower; break; case eATmegaPeripheral::PTWI: _PRR0._PRTWI = reducePower; break; case eATmegaPeripheral::PUSART1: _PRR1._PRUSART1 = reducePower; break; case eATmegaPeripheral::PUSART2: _PRR1._PRUSART2 = reducePower; break; case eATmegaPeripheral::PUSART3: _PRR1._PRUSART3 = reducePower; break; case eATmegaPeripheral::PTIM3: _PRR1._PRTIM3 = reducePower; break; case eATmegaPeripheral::PTIM4: _PRR1._PRTIM4 = reducePower; break; case eATmegaPeripheral::PTIM5: _PRR1._PRTIM5 = reducePower; break; #elif defined(__AVR_TRM02__) case eATmegaPeripheral::PADC: _PRR0._PRADC = reducePower; break; case eATmegaPeripheral::PUSART0: _PRR0._PRUSART0 = reducePower; break; case eATmegaPeripheral::PSPI: _PRR0._PRSPI = reducePower; break; case eATmegaPeripheral::PTIM1: _PRR0._PRTIM1 = reducePower; break; case eATmegaPeripheral::PUSART1: _PRR0._PRUSART1 = reducePower; break; case eATmegaPeripheral::PTIM0: _PRR0._PRTIM0 = reducePower; break; case eATmegaPeripheral::PTIM2: _PRR0._PRTIM2 = reducePower; break; case eATmegaPeripheral::PTWI: _PRR0._PRTWI = reducePower; break; case eATmegaPeripheral::PTIM3: _PRR1._PRTIM3 = reducePower; break; #elif defined(__AVR_TRM03__) case eATmegaPeripheral::PADC: _PRR0._PRADC = reducePower; break; case eATmegaPeripheral::PUSART0: _PRR0._PRUSART0 = reducePower; break; case eATmegaPeripheral::PSPI: _PRR0._PRSPI = reducePower; break; case eATmegaPeripheral::PTIM1: _PRR0._PRTIM1 = reducePower; break; case eATmegaPeripheral::PTIM0: _PRR0._PRTIM0 = reducePower; break; case eATmegaPeripheral::PTIM2: _PRR0._PRTIM2 = reducePower; break; case eATmegaPeripheral::PTWI: _PRR0._PRTWI = reducePower; break; #elif defined(__AVR_TRM04__) case eATmegaPeripheral::PADC: _PRR0._PRADC = reducePower; break; case eATmegaPeripheral::PSPI: _PRR0._PRSPI = reducePower; break; case eATmegaPeripheral::PTIM1: _PRR0._PRTIM1 = reducePower; break; case eATmegaPeripheral::PTIM0: _PRR0._PRTIM0 = reducePower; break; case eATmegaPeripheral::PTIM2: _PRR0._PRTIM2 = reducePower; break; case eATmegaPeripheral::PTWI: _PRR0._PRTWI = reducePower; break; case eATmegaPeripheral::PUSART1: _PRR1._PRUSART1 = reducePower; break; case eATmegaPeripheral::PTIM3: _PRR1._PRTIM3 = reducePower; break; case eATmegaPeripheral::PUSB: _PRR1._PRUSB = reducePower; break; #elif defined(__AVR_TRM05__) case eATmegaPeripheral::PADC: _PRR0._PRADC = reducePower; break; case eATmegaPeripheral::PUSART0: _PRR0._PRUSART0 = reducePower; break; case eATmegaPeripheral::PSPI: _PRR0._PRSPI = reducePower; break; case eATmegaPeripheral::PTIM1: _PRR0._PRTIM1 = reducePower; break; case eATmegaPeripheral::PUSART1: _PRR0._PRUSART1 = reducePower; break; case eATmegaPeripheral::PTIM0: _PRR0._PRTIM0 = reducePower; break; case eATmegaPeripheral::PTIM2: _PRR0._PRTIM2 = reducePower; break; case eATmegaPeripheral::PTWI: _PRR0._PRTWI = reducePower; break; #endif case eATmegaPeripheral::UNDEFINED: case eATmegaPeripheral::NUM_PERIPHERALS: break; } } inline bool _ATmega_getPeripheralPower(eATmegaPeripheral peri) { switch(peri) { #ifdef __AVR_TRM01__ case eATmegaPeripheral::PADC: return _PRR0._PRADC == false; case eATmegaPeripheral::PUSART0: return _PRR0._PRUSART0 == false; case eATmegaPeripheral::PSPI: return _PRR0._PRSPI == false; case eATmegaPeripheral::PTIM1: return _PRR0._PRTIM1 == false; case eATmegaPeripheral::PTIM0: return _PRR0._PRTIM0 == false; case eATmegaPeripheral::PTIM2: return _PRR0._PRTIM2 == false; case eATmegaPeripheral::PTWI: return _PRR0._PRTWI == false; case eATmegaPeripheral::PUSART1: return _PRR1._PRUSART1 == false; case eATmegaPeripheral::PUSART2: return _PRR1._PRUSART2 == false; case eATmegaPeripheral::PUSART3: return _PRR1._PRUSART3 == false; case eATmegaPeripheral::PTIM3: return _PRR1._PRTIM3 == false; case eATmegaPeripheral::PTIM4: return _PRR1._PRTIM4 == false; case eATmegaPeripheral::PTIM5: return _PRR1._PRTIM5 == false; #elif defined(__AVR_TRM02__) case eATmegaPeripheral::PADC: return _PRR0._PRADC == false; case eATmegaPeripheral::PUSART0: return _PRR0._PRUSART0 == false; case eATmegaPeripheral::PSPI: return _PRR0._PRSPI == false; case eATmegaPeripheral::PTIM1: return _PRR0._PRTIM1 == false; case eATmegaPeripheral::PUSART1: return _PRR0._PRUSART1 == false; case eATmegaPeripheral::PTIM0: return _PRR0._PRTIM0 == false; case eATmegaPeripheral::PTIM2: return _PRR0._PRTIM2 == false; case eATmegaPeripheral::PTWI: return _PRR0._PRTWI == false; case eATmegaPeripheral::PTIM3: return _PRR1._PRTIM3 == false; #elif defined(__AVR_TRM03__) case eATmegaPeripheral::PADC: return _PRR0._PRADC == false; case eATmegaPeripheral::PUSART0: return _PRR0._PRUSART0 == false; case eATmegaPeripheral::PSPI: return _PRR0._PRSPI == false; case eATmegaPeripheral::PTIM1: return _PRR0._PRTIM1 == false; case eATmegaPeripheral::PTIM0: return _PRR0._PRTIM0 == false; case eATmegaPeripheral::PTIM2: return _PRR0._PRTIM2 == false; case eATmegaPeripheral::PTWI: return _PRR0._PRTWI == false; #elif defined(__AVR_TRM04__) case eATmegaPeripheral::PADC: return _PRR0._PRADC == false; case eATmegaPeripheral::PSPI: return _PRR0._PRSPI == false; case eATmegaPeripheral::PTIM1: return _PRR0._PRTIM1 == false; case eATmegaPeripheral::PTIM0: return _PRR0._PRTIM0 == false; case eATmegaPeripheral::PTIM2: return _PRR0._PRTIM2 == false; case eATmegaPeripheral::PTWI: return _PRR0._PRTWI == false; case eATmegaPeripheral::PUSART1: return _PRR1._PRUSART1 == false; case eATmegaPeripheral::PTIM3: return _PRR1._PRTIM3 == false; case eATmegaPeripheral::PUSB: return _PRR1._PRUSB == false; #elif defined(__AVR_TRM05__) case eATmegaPeripheral::PADC: return _PRR0._PRADC == false; case eATmegaPeripheral::PUSART0: return _PRR0._PRUSART0 == false; case eATmegaPeripheral::PSPI: return _PRR0._PRSPI == false; case eATmegaPeripheral::PTIM1: return _PRR0._PRTIM1 == false; case eATmegaPeripheral::PUSART1: return _PRR0._PRUSART1 == false; case eATmegaPeripheral::PTIM0: return _PRR0._PRTIM0 == false; case eATmegaPeripheral::PTIM2: return _PRR0._PRTIM2 == false; case eATmegaPeripheral::PTWI: return _PRR0._PRTWI == false; #endif case eATmegaPeripheral::UNDEFINED: case eATmegaPeripheral::NUM_PERIPHERALS: break; } return false; } inline eATmegaPeripheral _ATmega_getPeripheralForFunc( eATmegaPinFunc func ) { // In C++20 there is the "using-enum" statement. I wish we had C++20 over here... //using enum eATmegaPinFunc; switch(func) { #ifdef __AVR_TRM01__ case eATmegaPinFunc::TOC0A: case eATmegaPinFunc::TOC0B: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::TOC1A: case eATmegaPinFunc::TOC1B: case eATmegaPinFunc::TOC1C: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TOC2A: case eATmegaPinFunc::TOC2B: return eATmegaPeripheral::PTIM2; case eATmegaPinFunc::TOC3A: case eATmegaPinFunc::TOC3B: case eATmegaPinFunc::TOC3C: return eATmegaPeripheral::PTIM3; case eATmegaPinFunc::TOC4A: case eATmegaPinFunc::TOC4B: case eATmegaPinFunc::TOC4C: return eATmegaPeripheral::PTIM4; case eATmegaPinFunc::TOC5A: case eATmegaPinFunc::TOC5B: case eATmegaPinFunc::TOC5C: return eATmegaPeripheral::PTIM5; case eATmegaPinFunc::SPI_MISO: case eATmegaPinFunc::SPI_MOSI: case eATmegaPinFunc::SPI_SCK: case eATmegaPinFunc::SPI_CS: return eATmegaPeripheral::PSPI; case eATmegaPinFunc::TIMER0_CLKI: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::TIMER1_CLKI: case eATmegaPinFunc::TIMER1_ICP: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TIMER3_CLKI: case eATmegaPinFunc::TIMER3_ICP: return eATmegaPeripheral::PTIM3; case eATmegaPinFunc::TIMER4_CLKI: case eATmegaPinFunc::TIMER4_ICP: return eATmegaPeripheral::PTIM4; case eATmegaPinFunc::TIMER5_CLKI: case eATmegaPinFunc::TIMER5_ICP: return eATmegaPeripheral::PTIM5; case eATmegaPinFunc::USART0_CLK: case eATmegaPinFunc::USART0_TXD: case eATmegaPinFunc::USART0_RXD: return eATmegaPeripheral::PUSART0; case eATmegaPinFunc::USART1_CLK: case eATmegaPinFunc::USART1_TXD: case eATmegaPinFunc::USART1_RXD: return eATmegaPeripheral::PUSART1; case eATmegaPinFunc::USART2_CLK: case eATmegaPinFunc::USART2_TXD: case eATmegaPinFunc::USART2_RXD: return eATmegaPeripheral::PUSART2; case eATmegaPinFunc::USART3_CLK: case eATmegaPinFunc::USART3_TXD: case eATmegaPinFunc::USART3_RXD: return eATmegaPeripheral::PUSART3; case eATmegaPinFunc::TWI_SDA: case eATmegaPinFunc::TWI_CLK: return eATmegaPeripheral::PTWI; case eATmegaPinFunc::ADC15: case eATmegaPinFunc::ADC14: case eATmegaPinFunc::ADC13: case eATmegaPinFunc::ADC12: case eATmegaPinFunc::ADC11: case eATmegaPinFunc::ADC10: case eATmegaPinFunc::ADC9: case eATmegaPinFunc::ADC8: case eATmegaPinFunc::ADC7: case eATmegaPinFunc::ADC6: case eATmegaPinFunc::ADC5: case eATmegaPinFunc::ADC4: case eATmegaPinFunc::ADC3: case eATmegaPinFunc::ADC2: case eATmegaPinFunc::ADC1: case eATmegaPinFunc::ADC0: return eATmegaPeripheral::PADC; #elif defined(__AVR_TRM02__) case eATmegaPinFunc::ADC7: case eATmegaPinFunc::ADC6: case eATmegaPinFunc::ADC5: case eATmegaPinFunc::ADC4: case eATmegaPinFunc::ADC3: case eATmegaPinFunc::ADC2: case eATmegaPinFunc::ADC1: case eATmegaPinFunc::ADC0: return eATmegaPeripheral::PADC; case eATmegaPinFunc::SPI_SCK: case eATmegaPinFunc::SPI_MISO: case eATmegaPinFunc::SPI_MOSI: case eATmegaPinFunc::SPI_CS: return eATmegaPeripheral::PSPI; case eATmegaPinFunc::TIMER3_ICP: case eATmegaPinFunc::TIMER3_ECI: return eATmegaPeripheral::PTIM3; case eATmegaPinFunc::TIMER1_ECI: case eATmegaPinFunc::TIMER1_ICP: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TIMER0_ECI: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::TOC3B: case eATmegaPinFunc::TOC3A: return eATmegaPeripheral::PTIM3; case eATmegaPinFunc::TOC2A: case eATmegaPinFunc::TOC2B: return eATmegaPeripheral::PTIM2; case eATmegaPinFunc::TOC1A: case eATmegaPinFunc::TOC1B: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TOC0B: case eATmegaPinFunc::TOC0A: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::USART0_CLK: case eATmegaPinFunc::USART0_TXD: case eATmegaPinFunc::USART0_RXD: return eATmegaPeripheral::PUSART0; case eATmegaPinFunc::USART1_CLK: case eATmegaPinFunc::USART1_TXD: case eATmegaPinFunc::USART1_RXD: return eATmegaPeripheral::PUSART1; case eATmegaPinFunc::TWI_SDA: case eATmegaPinFunc::TWI_CLK: return eATmegaPeripheral::PTWI; #elif defined(__AVR_TRM03__) case eATmegaPinFunc::ADC5: case eATmegaPinFunc::ADC4: case eATmegaPinFunc::ADC3: case eATmegaPinFunc::ADC2: case eATmegaPinFunc::ADC1: case eATmegaPinFunc::ADC0: return eATmegaPeripheral::PADC; case eATmegaPinFunc::SPI_SCK: case eATmegaPinFunc::SPI_MISO: case eATmegaPinFunc::SPI_MOSI: case eATmegaPinFunc::SPI_CS: return eATmegaPeripheral::PSPI; case eATmegaPinFunc::TOC2B: case eATmegaPinFunc::TOC2A: return eATmegaPeripheral::PTIM2; case eATmegaPinFunc::TOC1B: case eATmegaPinFunc::TOC1A: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TOC0A: case eATmegaPinFunc::TOC0B: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::TIMER1_ICP: case eATmegaPinFunc::TIMER1_ECI: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TIMER0_ECI: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::TWI_CLK: case eATmegaPinFunc::TWI_SDA: return eATmegaPeripheral::PTWI; case eATmegaPinFunc::USART_CLK: case eATmegaPinFunc::USART_TXD: case eATmegaPinFunc::USART_RXD: return eATmegaPeripheral::PUSART0; #elif defined(__AVR_TRM04__) case eATmegaPinFunc::TOC0B: case eATmegaPinFunc::TOC0A: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::TOC1C: case eATmegaPinFunc::TOC1B: case eATmegaPinFunc::TOC1A: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TOC2B: case eATmegaPinFunc::TOC2A: return eATmegaPeripheral::PTIM2; case eATmegaPinFunc::TOC3A: case eATmegaPinFunc::TOC3B: case eATmegaPinFunc::TOC3C: return eATmegaPeripheral::PTIM3; case eATmegaPinFunc::SPI_MISO: case eATmegaPinFunc::SPI_MOSI: case eATmegaPinFunc::SPI_SCK: case eATmegaPinFunc::SPI_CS: return eATmegaPeripheral::PSPI; case eATmegaPinFunc::TIMER3_ICP: case eATmegaPinFunc::TIMER3_CLKI: return eATmegaPeripheral::PTIM3; case eATmegaPinFunc::TIMER1_ICP: case eATmegaPinFunc::TIMER1_CLKI: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TIMER0_CLKI: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::USART1_CLK: case eATmegaPinFunc::USART1_TXD: case eATmegaPinFunc::USART1_RXD: return eATmegaPeripheral::PUSART1; case eATmegaPinFunc::TWI_SDA: case eATmegaPinFunc::TWI_CLK: return eATmegaPeripheral::PTWI; case eATmegaPinFunc::UID: case eATmegaPinFunc::UVCON: return eATmegaPeripheral::PUSB; case eATmegaPinFunc::ADC7: case eATmegaPinFunc::ADC6: case eATmegaPinFunc::ADC5: case eATmegaPinFunc::ADC4: case eATmegaPinFunc::ADC3: case eATmegaPinFunc::ADC2: case eATmegaPinFunc::ADC1: case eATmegaPinFunc::ADC0: return eATmegaPeripheral::PADC; #elif defined(__AVR_TRM05__) case eATmegaPinFunc::ADC7: case eATmegaPinFunc::ADC6: case eATmegaPinFunc::ADC5: case eATmegaPinFunc::ADC4: case eATmegaPinFunc::ADC3: case eATmegaPinFunc::ADC2: case eATmegaPinFunc::ADC1: case eATmegaPinFunc::ADC0: return eATmegaPeripheral::PADC; case eATmegaPinFunc::SPI_MISO: case eATmegaPinFunc::SPI_MOSI: case eATmegaPinFunc::SPI_SCK: case eATmegaPinFunc::SPI_CS: return eATmegaPeripheral::PSPI; case eATmegaPinFunc::TIMER1_ICP: case eATmegaPinFunc::TIMER1_ECI: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TIMER0_ICP: case eATmegaPinFunc::TIMER0_ECI: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::TOC0B: case eATmegaPinFunc::TOC0A: return eATmegaPeripheral::PTIM0; case eATmegaPinFunc::TOC1A: case eATmegaPinFunc::TOC1B: return eATmegaPeripheral::PTIM1; case eATmegaPinFunc::TOC2A: case eATmegaPinFunc::TOC2B: return eATmegaPeripheral::PTIM2; case eATmegaPinFunc::TWI_CLK: case eATmegaPinFunc::TWI_SDA: return eATmegaPeripheral::PTWI; case eATmegaPinFunc::USART0_CLK: case eATmegaPinFunc::USART0_TXD: case eATmegaPinFunc::USART0_RXD: return eATmegaPeripheral::PUSART0; case eATmegaPinFunc::USART1_CLK: case eATmegaPinFunc::USART1_TXD: case eATmegaPinFunc::USART1_RXD: return eATmegaPeripheral::PUSART1; #endif // There are quite some pin functions that have no peripheral assignment, and that is OK! default: break; } return eATmegaPeripheral::UNDEFINED; } struct ATmegaPeripheralSet { inline ATmegaPeripheralSet() noexcept { for (bool& f : this->funcs) f = false; } template <typename... funcItemType> inline ATmegaPeripheralSet(funcItemType&&... items) noexcept : ATmegaPinFuncSet() { add(((eATmegaPinFunc&&)items)...); } inline ATmegaPeripheralSet(const ATmegaPeripheralSet&) = default; inline void add(eATmegaPeripheral value) noexcept { this->funcs[(uint8_t)value] = true; } template <typename... funcItemType> inline void add(eATmegaPeripheral value, funcItemType&&... items) noexcept { add(value); add(((funcItemType&&)items)...); } inline bool hasItem(eATmegaPeripheral value) const noexcept { return this->funcs[(uint8_t)value]; } template <typename... otherFuncItem> inline bool hasItem(eATmegaPeripheral&& item, otherFuncItem&&... funcs) const noexcept { return hasItem(item) || hasItem(((otherFuncItem&&)funcs)...); } template <typename callbackType> inline void iterate(callbackType&& cb) const { for (uint8_t n = 1; n < countof(funcs); n++) { const bool& f = this->funcs[n]; if (f) cb( (eATmegaPeripheral)n ); } } inline void fromPinFuncs(const ATmegaPinFuncSet& funcSet) { funcSet.iterate( [this]( eATmegaPinFunc func ) noexcept { this->add( _ATmega_getPeripheralForFunc(func) ); } ); } private: bool funcs[(uint8_t)eATmegaPeripheral::NUM_PERIPHERALS]; }; struct ATmegaPeripheralPowerGate { inline ATmegaPeripheralPowerGate(ATmegaPeripheralSet& periSet) noexcept : periSet(periSet) { periSet.iterate( [this]( eATmegaPeripheral peri ) noexcept { this->states[(uint8_t)peri] = _ATmega_getPeripheralPower(peri); _ATmega_setPeripheralPower(peri, true); } ); } inline ATmegaPeripheralPowerGate(const ATmegaPeripheralPowerGate&) = delete; inline ~ATmegaPeripheralPowerGate() { periSet.iterate( [this]( eATmegaPeripheral peri ) noexcept { _ATmega_setPeripheralPower(peri, this->states[(uint8_t)peri]); } ); } inline ATmegaPeripheralPowerGate& operator = (const ATmegaPeripheralPowerGate&) = delete; private: ATmegaPeripheralSet& periSet; bool states[(uint8_t)eATmegaPeripheral::NUM_PERIPHERALS]; }; inline pin_dev_state_t _ATmega_savePinAlternates(const ATmegaPinFuncSet& funcSet) { // TODO: the manual states that registers of power-reduced peripherals cannot be read or written, and that // the resources (GPIO pins) remain occupied during power-reduction. This is a serious problem and we should // add power-reduction awareness to this logic! pin_dev_state_t state; ATmegaPeripheralSet periSet; periSet.fromPinFuncs(funcSet); ATmegaPeripheralPowerGate pgate(periSet); #ifdef __AVR_TRM01__ // See page 75ff of ATmega2560 technical reference manual. if (funcSet.hasAnyFunc( eATmegaPinFunc::EXTMEM_AD15, eATmegaPinFunc::EXTMEM_AD14, eATmegaPinFunc::EXTMEM_AD13, eATmegaPinFunc::EXTMEM_AD12, eATmegaPinFunc::EXTMEM_AD11, eATmegaPinFunc::EXTMEM_AD10, eATmegaPinFunc::EXTMEM_AD9, eATmegaPinFunc::EXTMEM_AD8, eATmegaPinFunc::EXTMEM_AD7, eATmegaPinFunc::EXTMEM_AD6, eATmegaPinFunc::EXTMEM_AD5, eATmegaPinFunc::EXTMEM_AD4, eATmegaPinFunc::EXTMEM_AD3, eATmegaPinFunc::EXTMEM_AD2, eATmegaPinFunc::EXTMEM_AD1, eATmegaPinFunc::EXTMEM_AD0, eATmegaPinFunc::EXTMEM_ALE, eATmegaPinFunc::EXTMEM_RD, eATmegaPinFunc::EXTMEM_WR )) { state._SRE = _XMCRA._SRE; _XMCRA._SRE = false; } if (funcSet.hasAnyFunc( eATmegaPinFunc::PCI0, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI7 )) { state._PCIE0 = _PCICR._PCIE0; _PCICR._PCIE0 = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1C)) { state._COM1C = TIMER1._TCCRnA._COMnC; TIMER1._TCCRnA._COMnC = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { state._COM1B = TIMER1._TCCRnA._COMnB; TIMER1._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { state._COM1A = TIMER1._TCCRnA._COMnA; TIMER1._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { state._COM2A = _TIMER2._TCCRnA._COMnA; _TIMER2._TCCRnA._COMnA = 0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_TXD, eATmegaPinFunc::USART1_CLK)) { state._USART1_TXEN = USART1._UCSRnB._TXEN; USART1._UCSRnB._TXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_RXD, eATmegaPinFunc::USART1_CLK)) { state._USART1_RXEN = USART1._UCSRnB._RXEN; USART1._UCSRnB._RXEN = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC3C)) { state._COM3C = TIMER3._TCCRnA._COMnC; TIMER3._TCCRnA._COMnC = 0; } // There is an error in the technical reference manual signal mapping table // of ATmega2560 where is says that pin 3 is mapped to OC3B, but the list // says OC3A. if (funcSet.hasFunc(eATmegaPinFunc::TOC3B)) { state._COM3B = TIMER3._TCCRnA._COMnB; TIMER3._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC3A)) { state._COM3A = TIMER3._TCCRnA._COMnA; TIMER3._TCCRnA._COMnA = 0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART0_RXD, eATmegaPinFunc::USART0_CLK)) { state._USART0_RXEN = USART0._UCSRnB._RXEN; USART0._UCSRnB._RXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART0_TXD, eATmegaPinFunc::USART0_CLK)) { state._USART0_TXEN = USART0._UCSRnB._TXEN; USART0._UCSRnB._TXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI15, eATmegaPinFunc::PCI14, eATmegaPinFunc::PCI13, eATmegaPinFunc::PCI12, eATmegaPinFunc::PCI11, eATmegaPinFunc::PCI10, eATmegaPinFunc::PCI9, eATmegaPinFunc::PCI8)) { state._PCIE1 = _PCICR._PCIE1; _PCICR._PCIE1 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TOC0B)) { state._COM0B = TIMER0._TCCRnA._COMnB; TIMER0._TCCRnA._COMnB = 0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TOSC1, eATmegaPinFunc::TOSC2)) { state._AS2 = _ASSR._AS2; _ASSR._AS2 = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { state._COM2B = _TIMER2._TCCRnA._COMnB; _TIMER2._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC4C)) { state._COM4C = TIMER4._TCCRnA._COMnC; TIMER4._TCCRnA._COMnC = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC4B)) { state._COM4B = TIMER4._TCCRnA._COMnB; TIMER4._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC4A)) { state._COM4A = TIMER4._TCCRnA._COMnA; TIMER4._TCCRnA._COMnA = 0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART2_RXD, eATmegaPinFunc::USART2_CLK)) { state._USART2_RXEN = USART2._UCSRnB._RXEN; USART2._UCSRnB._RXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART2_TXD, eATmegaPinFunc::USART2_CLK)) { state._USART2_TXEN = USART2._UCSRnB._TXEN; USART2._UCSRnB._TXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART3_TXD, eATmegaPinFunc::USART3_CLK)) { state._USART3_RXEN = USART3._UCSRnB._RXEN; USART3._UCSRnB._RXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART3_TXD, eATmegaPinFunc::USART3_CLK)) { state._USART3_TXEN = USART3._UCSRnB._TXEN; USART3._UCSRnB._TXEN = false; } if (funcSet.hasAnyFunc( eATmegaPinFunc::PCI23, eATmegaPinFunc::PCI22, eATmegaPinFunc::PCI21, eATmegaPinFunc::PCI20, eATmegaPinFunc::PCI19, eATmegaPinFunc::PCI18, eATmegaPinFunc::PCI17, eATmegaPinFunc::PCI16 )) { state._PCIE2 = _PCICR._PCIE2; _PCICR._PCIE2 = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC5C)) { state._COM5C = TIMER5._TCCRnA._COMnC; TIMER5._TCCRnA._COMnC = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC5B)) { state._COM5B = TIMER5._TCCRnA._COMnB; TIMER5._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC5A)) { state._COM5A = TIMER5._TCCRnA._COMnA; TIMER5._TCCRnA._COMnA = 0; } #elif defined(__AVR_TRM02__) if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI7, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI0)) { state._PCIE0 = _PCICR._PCIE0; _PCICR._PCIE0 = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC7)) { state._ADC7D = _DIDR0._ADC7D; _DIDR0._ADC7D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC6)) { state._ADC6D = _DIDR0._ADC6D; _DIDR0._ADC6D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC5)) { state._ADC5D = _DIDR0._ADC5D; _DIDR0._ADC5D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC4)) { state._ADC4D = _DIDR0._ADC4D; _DIDR0._ADC4D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC3)) { state._ADC3D = _DIDR0._ADC3D; _DIDR0._ADC3D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC2)) { state._ADC2D = _DIDR0._ADC2D; _DIDR0._ADC2D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC1)) { state._ADC1D = _DIDR0._ADC1D; _DIDR0._ADC1D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC0)) { state._ADC0D = _DIDR0._ADC0D; _DIDR0._ADC0D = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI15, eATmegaPinFunc::PCI14, eATmegaPinFunc::PCI13, eATmegaPinFunc::PCI12, eATmegaPinFunc::PCI11, eATmegaPinFunc::PCI10, eATmegaPinFunc::PCI9, eATmegaPinFunc::PCI8)) { state._PCIE1 = _PCICR._PCIE1; _PCICR._PCIE1 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::SPI_CS)) { state._SPE = _SPCR._SPE; _SPCR._SPE = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0A)) { state._COM0A = TIMER0._TCCRnA._COMnA; TIMER0._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0B)) { state._COM0B = TIMER0._TCCRnA._COMnB; TIMER0._TCCRnA._COMnB = 0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TOSC1, eATmegaPinFunc::TOSC2)) { state._AS2 = _ASSR._AS2; _ASSR._AS2 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI23, eATmegaPinFunc::PCI22, eATmegaPinFunc::PCI21, eATmegaPinFunc::PCI20, eATmegaPinFunc::PCI19, eATmegaPinFunc::PCI18, eATmegaPinFunc::PCI17, eATmegaPinFunc::PCI16)) { state._PCIE2 = _PCICR._PCIE2; _PCICR._PCIE2 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI31, eATmegaPinFunc::PCI30, eATmegaPinFunc::PCI29, eATmegaPinFunc::PCI28, eATmegaPinFunc::PCI27, eATmegaPinFunc::PCI26, eATmegaPinFunc::PCI25, eATmegaPinFunc::PCI24)) { state._PCIE3 = _PCICR._PCIE3; _PCICR._PCIE3 = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { state._COM2A = _TIMER2._TCCRnA._COMnA; _TIMER2._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { state._COM2B = _TIMER2._TCCRnA._COMnB; _TIMER2._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { state._COM1A = TIMER1._TCCRnA._COMnA; TIMER1._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { state._COM1B = TIMER1._TCCRnA._COMnB; TIMER1._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::USART1_TXD)) { state._USART1_TXEN = USART1._UCSRnB._TXEN; USART1._UCSRnB._TXEN = false; } if (funcSet.hasFunc(eATmegaPinFunc::USART1_RXD)) { state._USART1_RXEN = USART1._UCSRnB._RXEN; USART1._UCSRnB._RXEN = false; } if (funcSet.hasFunc(eATmegaPinFunc::USART0_TXD)) { state._USART0_TXEN = USART0._UCSRnB._TXEN; USART0._UCSRnB._TXEN = false; } // There is a bug in the ATmega164A technical reference manual where // it says that pin 0 is mapped to USART1 RXD in the signal mapping table // but the associated list says USART0 RXD. if (funcSet.hasFunc(eATmegaPinFunc::USART0_RXD)) { state._USART0_RXEN = USART0._UCSRnB._RXEN; USART0._UCSRnB._RXEN = false; } #elif defined(__AVR_TRM03__) if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI7, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI0)) { state._PCIE0 = _PCICR._PCIE0; _PCICR._PCIE0 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TOSC1, eATmegaPinFunc::TOSC2)) { state._AS2 = _ASSR._AS2; _ASSR._AS2 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::SPI_CS)) { state._SPE = _SPCR._SPE; _SPCR._SPE = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { state._COM2A = _TIMER2._TCCRnA._COMnA; _TIMER2._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { state._COM1B = TIMER1._TCCRnA._COMnB; TIMER1._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { state._COM1A = TIMER1._TCCRnA._COMnA; TIMER1._TCCRnA._COMnA = 0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI14, eATmegaPinFunc::PCI13, eATmegaPinFunc::PCI12, eATmegaPinFunc::PCI11, eATmegaPinFunc::PCI10, eATmegaPinFunc::PCI9, eATmegaPinFunc::PCI8)) { state._PCIE1 = _PCICR._PCIE1; _PCICR._PCIE1 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TWI_CLK, eATmegaPinFunc::TWI_SDA)) { state._TWEN = _TWCR._TWEN; _TWCR._TWEN = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC5)) { state._ADC5D = _DIDR0._ADC5D; _DIDR0._ADC5D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC4)) { state._ADC4D = _DIDR0._ADC4D; _DIDR0._ADC4D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC3)) { state._ADC3D = _DIDR0._ADC3D; _DIDR0._ADC3D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC2)) { state._ADC2D = _DIDR0._ADC2D; _DIDR0._ADC2D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC1)) { state._ADC1D = _DIDR0._ADC1D; _DIDR0._ADC1D = false; } if (funcSet.hasFunc(eATmegaPinFunc::ADC0)) { state._ADC0D = _DIDR0._ADC0D; _DIDR0._ADC0D = false; } // There is a bug in the ATmega48A technical reference manual where pin 2 // is said to be mapped to PCIE1 but logically it should be PCIE2 instead. // The real mapping can be read in the documentation of the PCICR register. if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI23, eATmegaPinFunc::PCI22, eATmegaPinFunc::PCI21, eATmegaPinFunc::PCI20, eATmegaPinFunc::PCI19, eATmegaPinFunc::PCI18, eATmegaPinFunc::PCI17, eATmegaPinFunc::PCI16)) { state._PCIE2 = _PCICR._PCIE2; _PCICR._PCIE2 = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0A)) { state._COM0A = TIMER0._TCCRnA._COMnA; TIMER0._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0B)) { state._COM0B = TIMER0._TCCRnA._COMnB; TIMER0._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::USART_CLK)) { state._UMSEL = USART0._UCSRnC._UMSEL; USART0._UCSRnC._UMSEL = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { state._COM2B = _TIMER2._TCCRnA._COMnB; _TIMER2._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::USART_TXD)) { state._USART0_TXEN = USART0._UCSRnB._TXEN; USART0._UCSRnB._TXEN = false; } if (funcSet.hasFunc(eATmegaPinFunc::USART_RXD)) { state._USART0_RXEN = USART0._UCSRnB._RXEN; USART0._UCSRnB._RXEN = false; } #elif defined(__AVR_TRM04__) if (funcSet.hasAnyFunc( eATmegaPinFunc::EXTMEM_AD15, eATmegaPinFunc::EXTMEM_AD14, eATmegaPinFunc::EXTMEM_AD13, eATmegaPinFunc::EXTMEM_AD12, eATmegaPinFunc::EXTMEM_AD11, eATmegaPinFunc::EXTMEM_AD10, eATmegaPinFunc::EXTMEM_AD9, eATmegaPinFunc::EXTMEM_AD8, eATmegaPinFunc::EXTMEM_AD7, eATmegaPinFunc::EXTMEM_AD6, eATmegaPinFunc::EXTMEM_AD5, eATmegaPinFunc::EXTMEM_AD4, eATmegaPinFunc::EXTMEM_AD3, eATmegaPinFunc::EXTMEM_AD2, eATmegaPinFunc::EXTMEM_AD1, eATmegaPinFunc::EXTMEM_AD0, eATmegaPinFunc::EXTMEM_ALE, eATmegaPinFunc::EXTMEM_RD, eATmegaPinFunc::EXTMEM_WR )) { state._SRE = _XMCRA._SRE; _XMCRA._SRE = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1C)) { state._COM1C = TIMER1._TCCRnA._COMnC; TIMER1._TCCRnA._COMnC = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { state._COM1B = TIMER1._TCCRnA._COMnB; TIMER1._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { state._COM1A = TIMER1._TCCRnA._COMnA; TIMER1._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { state._COM2A = _TIMER2._TCCRnA._COMnA; _TIMER2._TCCRnA._COMnA = 0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::SPI_CS)) { state._SPE = _SPCR._SPE; _SPCR._SPE = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI7, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI0)) { state._PCIE0 = _PCICR._PCIE0; _PCICR._PCIE0 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::USART1_TXD)) { state._USART1_TXEN = USART1._UCSRnB._TXEN; USART1._UCSRnB._TXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::USART1_RXD)) { state._USART1_RXEN = USART1._UCSRnB._RXEN; USART1._UCSRnB._RXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TWI_SDA, eATmegaPinFunc::TWI_CLK)) { state._TWEN = _TWCR._TWEN; _TWCR._TWEN = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { state._COM2B = _TIMER2._TCCRnA._COMnB; _TIMER2._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0B)) { state._COM0B = TIMER0._TCCRnA._COMnB; TIMER0._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::EINT3)) { state._INT3 = _EIMSK._INT3; _EIMSK._INT3 = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT2)) { state._INT2 = _EIMSK._INT2; _EIMSK._INT2 = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT1)) { state._INT1 = _EIMSK._INT1; _EIMSK._INT1 = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT0)) { state._INT0 = _EIMSK._INT0; _EIMSK._INT0 = false; } if (funcSet.hasFunc(eATmegaPinFunc::UVCON)) { state._UVCONE = _UHWCON._UVCONE; _UHWCON._UVCONE = false; } if (funcSet.hasFunc(eATmegaPinFunc::UID)) { state._UIDE = _UHWCON._UIDE; _UHWCON._UIDE = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT7)) { state._INT7 = _EIMSK._INT7; _EIMSK._INT7 = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT6)) { state._INT6 = _EIMSK._INT6; _EIMSK._INT6 = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT5)) { state._INT5 = _EIMSK._INT5; _EIMSK._INT5 = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT4)) { state._INT4 = _EIMSK._INT4; _EIMSK._INT4 = false; } #elif defined(__AVR_TRM05__) if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI7, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI0)) { state._PCIE0 = _PCICR._PCIE0; _PCICR._PCIE0 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI15, eATmegaPinFunc::PCI14, eATmegaPinFunc::PCI13, eATmegaPinFunc::PCI12, eATmegaPinFunc::PCI11, eATmegaPinFunc::PCI10, eATmegaPinFunc::PCI9, eATmegaPinFunc::PCI8)) { state._PCIE1 = _PCICR._PCIE1; _PCICR._PCIE1 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI23, eATmegaPinFunc::PCI22, eATmegaPinFunc::PCI21, eATmegaPinFunc::PCI20, eATmegaPinFunc::PCI19, eATmegaPinFunc::PCI18, eATmegaPinFunc::PCI17, eATmegaPinFunc::PCI16)) { state._PCIE2 = _PCICR._PCIE2; _PCICR._PCIE2 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI31, eATmegaPinFunc::PCI30, eATmegaPinFunc::PCI29, eATmegaPinFunc::PCI28, eATmegaPinFunc::PCI27, eATmegaPinFunc::PCI26, eATmegaPinFunc::PCI25, eATmegaPinFunc::PCI24)) { state._PCIE3 = _PCICR._PCIE3; _PCICR._PCIE3 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::SPI_CS)) { state._SPE = _SPCR._SPE; _SPCR._SPE = false; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0B)) { state._COM0B = TIMER0._TCCRnA._COMnB; TIMER0._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0A)) { state._COM0A = TIMER0._TCCRnA._COMnA; TIMER0._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { state._COM2A = _TIMER2._TCCRnA._COMnA; _TIMER2._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { state._COM2B = _TIMER2._TCCRnA._COMnB; _TIMER2._TCCRnA._COMnB = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { state._COM1A = TIMER1._TCCRnA._COMnA; TIMER1._TCCRnA._COMnA = 0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { state._COM1B = TIMER1._TCCRnA._COMnB; TIMER1._TCCRnA._COMnB = 0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TWI_CLK, eATmegaPinFunc::TWI_SDA)) { state._TWEN = _TWCR._TWEN; _TWCR._TWEN = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT2)) { state._INT2 = _EIMSK._INT2; _EIMSK._INT2 = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT1)) { state._INT1 = _EIMSK._INT1; _EIMSK._INT1 = false; } if (funcSet.hasFunc(eATmegaPinFunc::EINT0)) { state._INT0 = _EIMSK._INT0; _EIMSK._INT0 = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART0_CLK, eATmegaPinFunc::USART0_TXD)) { state._TXEN0 = USART0._UCSRnB._TXEN; USART0._UCSRnB._TXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART0_CLK, eATmegaPinFunc::USART0_RXD)) { state._RXEN0 = USART0._UCSRnB._RXEN; USART0._UCSRnB._RXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::USART1_TXD)) { state._TXEN1 = USART1._UCSRnB._TXEN; USART1._UCSRnB._TXEN = false; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::USART1_RXD)) { state._RXEN1 = USART1._UCSRnB._RXEN; USART1._UCSRnB._RXEN = false; } #endif return state; } inline void _ATmega_restorePinAlternates(const ATmegaPinFuncSet& funcSet, const pin_dev_state_t& state) { ATmegaPeripheralSet periSet; periSet.fromPinFuncs(funcSet); ATmegaPeripheralPowerGate pgate(periSet); #ifdef __AVR_TRM01__ // See page 75ff of ATmega2560 technical reference manual. if (funcSet.hasAnyFunc( eATmegaPinFunc::EXTMEM_AD15, eATmegaPinFunc::EXTMEM_AD14, eATmegaPinFunc::EXTMEM_AD13, eATmegaPinFunc::EXTMEM_AD12, eATmegaPinFunc::EXTMEM_AD11, eATmegaPinFunc::EXTMEM_AD10, eATmegaPinFunc::EXTMEM_AD9, eATmegaPinFunc::EXTMEM_AD8, eATmegaPinFunc::EXTMEM_AD7, eATmegaPinFunc::EXTMEM_AD6, eATmegaPinFunc::EXTMEM_AD5, eATmegaPinFunc::EXTMEM_AD4, eATmegaPinFunc::EXTMEM_AD3, eATmegaPinFunc::EXTMEM_AD2, eATmegaPinFunc::EXTMEM_AD1, eATmegaPinFunc::EXTMEM_AD0, eATmegaPinFunc::EXTMEM_ALE, eATmegaPinFunc::EXTMEM_RD, eATmegaPinFunc::EXTMEM_WR )) { _XMCRA._SRE = state._SRE; } if (funcSet.hasAnyFunc( eATmegaPinFunc::PCI0, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI7 )) { _PCICR._PCIE0 = state._PCIE0; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1C)) { TIMER1._TCCRnA._COMnC = state._COM1C; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { TIMER1._TCCRnA._COMnB = state._COM1B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { TIMER1._TCCRnA._COMnA = state._COM1A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { _TIMER2._TCCRnA._COMnA = state._COM2A; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_TXD, eATmegaPinFunc::USART1_CLK)) { USART1._UCSRnB._TXEN = state._USART1_TXEN; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_RXD, eATmegaPinFunc::USART1_CLK)) { USART1._UCSRnB._RXEN = state._USART1_RXEN; } if (funcSet.hasFunc(eATmegaPinFunc::TOC3C)) { TIMER3._TCCRnA._COMnC = state._COM3C; } // There is an error in the technical reference manual signal mapping table // of ATmega2560 where is says that pin 3 is mapped to OC3B, but the list // says OC3A. if (funcSet.hasFunc(eATmegaPinFunc::TOC3B)) { TIMER3._TCCRnA._COMnB = state._COM3B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC3A)) { TIMER3._TCCRnA._COMnA = state._COM3A; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART0_RXD, eATmegaPinFunc::USART0_CLK)) { USART0._UCSRnB._RXEN = state._USART0_RXEN; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART0_TXD, eATmegaPinFunc::USART0_CLK)) { USART0._UCSRnB._TXEN = state._USART0_TXEN; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI15, eATmegaPinFunc::PCI14, eATmegaPinFunc::PCI13, eATmegaPinFunc::PCI12, eATmegaPinFunc::PCI11, eATmegaPinFunc::PCI10, eATmegaPinFunc::PCI9, eATmegaPinFunc::PCI8)) { _PCICR._PCIE1 = state._PCIE1; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TOC0B)) { TIMER0._TCCRnA._COMnB = state._COM0B; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TOSC1, eATmegaPinFunc::TOSC2)) { _ASSR._AS2 = state._AS2; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { _TIMER2._TCCRnA._COMnB = state._COM2B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC4C)) { TIMER4._TCCRnA._COMnC = state._COM4C; } if (funcSet.hasFunc(eATmegaPinFunc::TOC4B)) { TIMER4._TCCRnA._COMnB = state._COM4B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC4A)) { TIMER4._TCCRnA._COMnA = state._COM4A; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART2_RXD, eATmegaPinFunc::USART2_CLK)) { USART2._UCSRnB._RXEN = state._USART2_RXEN; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART2_TXD, eATmegaPinFunc::USART2_CLK)) { USART2._UCSRnB._TXEN = state._USART2_TXEN; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART3_TXD, eATmegaPinFunc::USART3_CLK)) { USART3._UCSRnB._RXEN = state._USART3_RXEN; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART3_TXD, eATmegaPinFunc::USART3_CLK)) { USART3._UCSRnB._TXEN = state._USART3_TXEN; } if (funcSet.hasAnyFunc( eATmegaPinFunc::PCI23, eATmegaPinFunc::PCI22, eATmegaPinFunc::PCI21, eATmegaPinFunc::PCI20, eATmegaPinFunc::PCI19, eATmegaPinFunc::PCI18, eATmegaPinFunc::PCI17, eATmegaPinFunc::PCI16 )) { _PCICR._PCIE2 = state._PCIE2; } if (funcSet.hasFunc(eATmegaPinFunc::TOC5C)) { TIMER5._TCCRnA._COMnC = state._COM5C; } if (funcSet.hasFunc(eATmegaPinFunc::TOC5B)) { TIMER5._TCCRnA._COMnB = state._COM5B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC5A)) { TIMER5._TCCRnA._COMnA = state._COM5A; } #elif defined(__AVR_TRM02__) if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI7, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI0)) { _PCICR._PCIE0 = state._PCIE0; } if (funcSet.hasFunc(eATmegaPinFunc::ADC7)) { _DIDR0._ADC7D = state._ADC7D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC6)) { _DIDR0._ADC6D = state._ADC6D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC5)) { _DIDR0._ADC5D = state._ADC5D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC4)) { _DIDR0._ADC4D = state._ADC4D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC3)) { _DIDR0._ADC3D = state._ADC3D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC2)) { _DIDR0._ADC2D = state._ADC2D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC1)) { _DIDR0._ADC1D = state._ADC1D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC0)) { _DIDR0._ADC0D = state._ADC0D; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI15, eATmegaPinFunc::PCI14, eATmegaPinFunc::PCI13, eATmegaPinFunc::PCI12, eATmegaPinFunc::PCI11, eATmegaPinFunc::PCI10, eATmegaPinFunc::PCI9, eATmegaPinFunc::PCI8)) { _PCICR._PCIE1 = state._PCIE1; } if (funcSet.hasAnyFunc(eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::SPI_CS)) { _SPCR._SPE = state._SPE; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0A)) { TIMER0._TCCRnA._COMnA = state._COM0A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0B)) { TIMER0._TCCRnA._COMnB = state._COM0B; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TOSC1, eATmegaPinFunc::TOSC2)) { _ASSR._AS2 = state._AS2; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI23, eATmegaPinFunc::PCI22, eATmegaPinFunc::PCI21, eATmegaPinFunc::PCI20, eATmegaPinFunc::PCI19, eATmegaPinFunc::PCI18, eATmegaPinFunc::PCI17, eATmegaPinFunc::PCI16)) { _PCICR._PCIE2 = state._PCIE2; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI31, eATmegaPinFunc::PCI30, eATmegaPinFunc::PCI29, eATmegaPinFunc::PCI28, eATmegaPinFunc::PCI27, eATmegaPinFunc::PCI26, eATmegaPinFunc::PCI25, eATmegaPinFunc::PCI24)) { _PCICR._PCIE3 = state._PCIE3; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { _TIMER2._TCCRnA._COMnA = state._COM2A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { _TIMER2._TCCRnA._COMnB = state._COM2B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { TIMER1._TCCRnA._COMnA = state._COM1A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { TIMER1._TCCRnA._COMnB = state._COM1B; } if (funcSet.hasFunc(eATmegaPinFunc::USART1_TXD)) { USART1._UCSRnB._TXEN = state._USART1_TXEN; } if (funcSet.hasFunc(eATmegaPinFunc::USART1_RXD)) { USART1._UCSRnB._RXEN = state._USART1_RXEN; } if (funcSet.hasFunc(eATmegaPinFunc::USART0_TXD)) { USART0._UCSRnB._TXEN = state._USART0_TXEN; } // There is a bug in the ATmega164A technical reference manual where // it says that pin 0 is mapped to USART1 RXD in the signal mapping table // but the associated list says USART0 RXD. if (funcSet.hasFunc(eATmegaPinFunc::USART0_RXD)) { USART0._UCSRnB._RXEN = state._USART0_RXEN; } #elif defined(__AVR_TRM03__) if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI7, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI0)) { _PCICR._PCIE0 = state._PCIE0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TOSC1, eATmegaPinFunc::TOSC2)) { _ASSR._AS2 = state._AS2; } if (funcSet.hasAnyFunc(eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::SPI_CS)) { _SPCR._SPE = state._SPE; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { _TIMER2._TCCRnA._COMnA = state._COM2A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { TIMER1._TCCRnA._COMnB = state._COM1B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { TIMER1._TCCRnA._COMnA = state._COM1A; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI14, eATmegaPinFunc::PCI13, eATmegaPinFunc::PCI12, eATmegaPinFunc::PCI11, eATmegaPinFunc::PCI10, eATmegaPinFunc::PCI9, eATmegaPinFunc::PCI8)) { _PCICR._PCIE1 = state._PCIE1; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TWI_CLK, eATmegaPinFunc::TWI_SDA)) { _TWCR._TWEN = state._TWEN; } if (funcSet.hasFunc(eATmegaPinFunc::ADC5)) { _DIDR0._ADC5D = state._ADC5D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC4)) { _DIDR0._ADC4D = state._ADC4D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC3)) { _DIDR0._ADC3D = state._ADC3D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC2)) { _DIDR0._ADC2D = state._ADC2D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC1)) { _DIDR0._ADC1D = state._ADC1D; } if (funcSet.hasFunc(eATmegaPinFunc::ADC0)) { _DIDR0._ADC0D = state._ADC0D; } // There is a bug in the ATmega48A technical reference manual where pin 2 // is said to be mapped to PCIE1 but logically it should be PCIE2 instead. // The real mapping can be read in the documentation of the PCICR register. if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI23, eATmegaPinFunc::PCI22, eATmegaPinFunc::PCI21, eATmegaPinFunc::PCI20, eATmegaPinFunc::PCI19, eATmegaPinFunc::PCI18, eATmegaPinFunc::PCI17, eATmegaPinFunc::PCI16)) { _PCICR._PCIE2 = state._PCIE2; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0A)) { TIMER0._TCCRnA._COMnA = state._COM0A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0B)) { TIMER0._TCCRnA._COMnB = state._COM0B; } if (funcSet.hasFunc(eATmegaPinFunc::USART_CLK)) { USART0._UCSRnC._UMSEL = state._UMSEL; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { _TIMER2._TCCRnA._COMnB = state._COM2B; } if (funcSet.hasFunc(eATmegaPinFunc::USART_TXD)) { USART0._UCSRnB._TXEN = state._USART0_TXEN; } if (funcSet.hasFunc(eATmegaPinFunc::USART_RXD)) { USART0._UCSRnB._RXEN = state._USART0_RXEN; } #elif defined(__AVR_TRM04__) if (funcSet.hasAnyFunc( eATmegaPinFunc::EXTMEM_AD15, eATmegaPinFunc::EXTMEM_AD14, eATmegaPinFunc::EXTMEM_AD13, eATmegaPinFunc::EXTMEM_AD12, eATmegaPinFunc::EXTMEM_AD11, eATmegaPinFunc::EXTMEM_AD10, eATmegaPinFunc::EXTMEM_AD9, eATmegaPinFunc::EXTMEM_AD8, eATmegaPinFunc::EXTMEM_AD7, eATmegaPinFunc::EXTMEM_AD6, eATmegaPinFunc::EXTMEM_AD5, eATmegaPinFunc::EXTMEM_AD4, eATmegaPinFunc::EXTMEM_AD3, eATmegaPinFunc::EXTMEM_AD2, eATmegaPinFunc::EXTMEM_AD1, eATmegaPinFunc::EXTMEM_AD0, eATmegaPinFunc::EXTMEM_ALE, eATmegaPinFunc::EXTMEM_RD, eATmegaPinFunc::EXTMEM_WR )) { _XMCRA._SRE = state._SRE; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1C)) { TIMER1._TCCRnA._COMnC = state._COM1C; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { TIMER1._TCCRnA._COMnB = state._COM1B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { TIMER1._TCCRnA._COMnA = state._COM1A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { _TIMER2._TCCRnA._COMnA = state._COM2A; } if (funcSet.hasAnyFunc(eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::SPI_CS)) { _SPCR._SPE = state._SPE; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI7, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI0)) { _PCICR._PCIE0 = state._PCIE0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::USART1_TXD)) { USART1._UCSRnB._TXEN = state._USART1_TXEN; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::USART1_RXD)) { USART1._UCSRnB._RXEN = state._USART1_RXEN; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TWI_SDA, eATmegaPinFunc::TWI_CLK)) { _TWCR._TWEN = state._TWEN; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { _TIMER2._TCCRnA._COMnB = state._COM2B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0B)) { TIMER0._TCCRnA._COMnB = state._COM0B; } if (funcSet.hasFunc(eATmegaPinFunc::EINT3)) { _EIMSK._INT3 = state._INT3; } if (funcSet.hasFunc(eATmegaPinFunc::EINT2)) { _EIMSK._INT2 = state._INT2; } if (funcSet.hasFunc(eATmegaPinFunc::EINT1)) { _EIMSK._INT1 = state._INT1; } if (funcSet.hasFunc(eATmegaPinFunc::EINT0)) { _EIMSK._INT0 = state._INT0; } if (funcSet.hasFunc(eATmegaPinFunc::UVCON)) { _UHWCON._UVCONE = state._UVCONE; } if (funcSet.hasFunc(eATmegaPinFunc::UID)) { _UHWCON._UIDE = state._UIDE; } if (funcSet.hasFunc(eATmegaPinFunc::EINT7)) { _EIMSK._INT7 = state._INT7; } if (funcSet.hasFunc(eATmegaPinFunc::EINT6)) { _EIMSK._INT6 = state._INT6; } if (funcSet.hasFunc(eATmegaPinFunc::EINT5)) { _EIMSK._INT5 = state._INT5; } if (funcSet.hasFunc(eATmegaPinFunc::EINT4)) { _EIMSK._INT4 = state._INT4; } #elif defined(__AVR_TRM05__) if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI7, eATmegaPinFunc::PCI6, eATmegaPinFunc::PCI5, eATmegaPinFunc::PCI4, eATmegaPinFunc::PCI3, eATmegaPinFunc::PCI2, eATmegaPinFunc::PCI1, eATmegaPinFunc::PCI0)) { _PCICR._PCIE0 = state._PCIE0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI15, eATmegaPinFunc::PCI14, eATmegaPinFunc::PCI13, eATmegaPinFunc::PCI12, eATmegaPinFunc::PCI11, eATmegaPinFunc::PCI10, eATmegaPinFunc::PCI9, eATmegaPinFunc::PCI8)) { _PCICR._PCIE1 = state._PCIE1; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI23, eATmegaPinFunc::PCI22, eATmegaPinFunc::PCI21, eATmegaPinFunc::PCI20, eATmegaPinFunc::PCI19, eATmegaPinFunc::PCI18, eATmegaPinFunc::PCI17, eATmegaPinFunc::PCI16)) { _PCICR._PCIE2 = state._PCIE2; } if (funcSet.hasAnyFunc(eATmegaPinFunc::PCI31, eATmegaPinFunc::PCI30, eATmegaPinFunc::PCI29, eATmegaPinFunc::PCI28, eATmegaPinFunc::PCI27, eATmegaPinFunc::PCI26, eATmegaPinFunc::PCI25, eATmegaPinFunc::PCI24)) { _PCICR._PCIE3 = state._PCIE3; } if (funcSet.hasAnyFunc(eATmegaPinFunc::SPI_SCK, eATmegaPinFunc::SPI_MISO, eATmegaPinFunc::SPI_MOSI, eATmegaPinFunc::SPI_CS)) { _SPCR._SPE = state._SPE; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0B)) { TIMER0._TCCRnA._COMnB = state._COM0B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC0A)) { TIMER0._TCCRnA._COMnA = state._COM0A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2A)) { _TIMER2._TCCRnA._COMnA = state._COM2A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC2B)) { _TIMER2._TCCRnA._COMnB = state._COM2B; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1A)) { TIMER1._TCCRnA._COMnA = state._COM1A; } if (funcSet.hasFunc(eATmegaPinFunc::TOC1B)) { TIMER1._TCCRnA._COMnB = state._COM1B; } if (funcSet.hasAnyFunc(eATmegaPinFunc::TWI_CLK, eATmegaPinFunc::TWI_SDA)) { _TWCR._TWEN = state._TWEN; } if (funcSet.hasFunc(eATmegaPinFunc::EINT2)) { _EIMSK._INT2 = state._INT2; } if (funcSet.hasFunc(eATmegaPinFunc::EINT1)) { _EIMSK._INT1 = state._INT1; } if (funcSet.hasFunc(eATmegaPinFunc::EINT0)) { _EIMSK._INT0 = state._INT0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART0_CLK, eATmegaPinFunc::USART0_TXD)) { USART0._UCSRnB._TXEN = state._TXEN0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART0_CLK, eATmegaPinFunc::USART0_RXD)) { USART0._UCSRnB._RXEN = state._RXEN0; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::USART1_TXD)) { USART1._UCSRnB._TXEN = state._TXEN1; } if (funcSet.hasAnyFunc(eATmegaPinFunc::USART1_CLK, eATmegaPinFunc::USART1_RXD)) { USART1._UCSRnB._RXEN = state._RXEN1; } #endif } inline pin_dev_state_t _ATmega_savePinAlternate(uint8_t pin) { return _ATmega_savePinAlternates({pin}); } inline void _ATmega_restorePinAlternate(uint8_t pin, const pin_dev_state_t& state) { _ATmega_restorePinAlternate({pin}, state); } #ifndef LOW #define LOW 0 #endif #ifndef HIGH #define HIGH 1 #endif inline void _ATmega_digitalWrite(int pin, int state) { if (pin < 0) return; ATmegaPinInfo info = _ATmega_getPinInfo((unsigned int)pin); #ifdef __AVR_TRM01__ if (info.port == eATmegaPort::PORT_A) { _PORTA._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_B) { _PORTB._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_C) { _PORTC._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_D) { _PORTD._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_E) { _PORTE._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_F) { _PORTF._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_G) { _PORTG._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_H) { _PORTH._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_J) { _PORTJ._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_K) { _PORTK._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_L) { _PORTL._PORT.setValue(info.pinidx, state == HIGH); } #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) if (info.port == eATmegaPort::PORT_A) { _PORTA._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_B) { _PORTB._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_C) { _PORTC._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_D) { _PORTD._PORT.setValue(info.pinidx, state == HIGH); } #elif defined(__AVR_TRM03__) if (info.port == eATmegaPort::PORT_B) { _PORTB._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_C) { _PORTC._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_D) { _PORTD._PORT.setValue(info.pinidx, state == HIGH); } #elif defined(__AVR_TRM04__) if (info.port == eATmegaPort::PORT_A) { _PORTA._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_B) { _PORTB._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_C) { _PORTC._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_D) { _PORTD._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_E) { _PORTE._PORT.setValue(info.pinidx, state == HIGH); } else if (info.port == eATmegaPort::PORT_F) { _PORTF._PORT.setValue(info.pinidx, state == HIGH); } #endif } inline int _ATmega_digitalRead(int pin) { int value = LOW; if (pin < 0) return value; ATmegaPinInfo info = _ATmega_getPinInfo((unsigned int)pin); #ifdef __AVR_TRM01__ if (info.port == eATmegaPort::PORT_A) { value = _PORTA._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_B) { value = _PORTB._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_C) { value = _PORTC._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_D) { value = _PORTD._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_E) { value = _PORTE._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_F) { value = _PORTF._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_G) { value = _PORTG._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_H) { value = _PORTH._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_J) { value = _PORTJ._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_K) { value = _PORTK._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_L) { value = _PORTL._PIN.getValue(info.pinidx); } #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) if (info.port == eATmegaPort::PORT_A) { value = _PORTA._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_B) { value = _PORTB._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_C) { value = _PORTC._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_D) { value = _PORTD._PIN.getValue(info.pinidx); } #elif defined(__AVR_TRM03__) if (info.port == eATmegaPort::PORT_B) { value = _PORTB._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_C) { value = _PORTC._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_D) { value = _PORTD._PIN.getValue(info.pinidx); } #elif defined(__AVR_TRM04__) if (info.port == eATmegaPort::PORT_A) { value = _PORTA._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_B) { value = _PORTB._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_C) { value = _PORTC._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_D) { value = _PORTD._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_E) { value = _PORTE._PIN.getValue(info.pinidx); } else if (info.port == eATmegaPort::PORT_F) { value = _PORTF._PIN.getValue(info.pinidx); } #endif return value; } #ifndef OUTPUT #define OUTPUT 1 #endif #ifndef INPUT #define INPUT 0 #endif inline void _ATmega_pinMode(int pin, int mode) { if (pin < 0) return; ATmegaPinInfo info = _ATmega_getPinInfo((unsigned int)pin); #ifdef __AVR_TRM01__ if (info.port == eATmegaPort::PORT_A) { _PORTA._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_B) { _PORTB._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_C) { _PORTC._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_D) { _PORTD._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_E) { _PORTE._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_F) { _PORTF._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_G) { _PORTG._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_H) { _PORTH._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_J) { _PORTJ._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_K) { _PORTK._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_L) { _PORTL._DDR.setValue(info.pinidx, mode == OUTPUT); } #elif defined(__AVR_TRM02__) || defined(__AVR_TRM05__) if (info.port == eATmegaPort::PORT_A) { _PORTA._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_B) { _PORTB._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_C) { _PORTC._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_D) { _PORTD._DDR.setValue(info.pinidx, mode == OUTPUT); } #elif defined(__AVR_TRM03__) if (info.port == eATmegaPort::PORT_B) { _PORTB._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_C) { _PORTC._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_D) { _PORTD._DDR.setValue(info.pinidx, mode == OUTPUT); } #elif defined(__AVR_TRM04__) if (info.port == eATmegaPort::PORT_A) { _PORTA._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_B) { _PORTB._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_C) { _PORTC._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_D) { _PORTD._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_E) { _PORTE._DDR.setValue(info.pinidx, mode == OUTPUT); } else if (info.port == eATmegaPort::PORT_F) { _PORTF._DDR.setValue(info.pinidx, mode == OUTPUT); } #endif } #if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) struct _ATmega_efuse { uint8_t _BODLEVEL : 3; uint8_t reserved1 : 5; }; struct _ATmega_hfuse { uint8_t _BOOTRST : 1; uint8_t _BOOTSZ : 2; uint8_t _EESAVE : 1; uint8_t _WDTON : 1; uint8_t _SPIEN : 1; uint8_t _JTAGEN : 1; uint8_t _OCDEN : 1; }; struct _ATmega_lfuse { uint8_t _CKSEL : 4; uint8_t _SUT0 : 1; uint8_t _SUT1 : 1; uint8_t _CKOUT : 1; uint8_t _CKDIV8 : 1; }; #ifndef AVR_DEFAULT_LFUSE_VALUE #define AVR_DEFAULT_LFUSE_VALUE 0xFF #endif #ifndef AVR_DEFAULT_HFUSE_VALUE #define AVR_DEFAULT_HFUSE_VALUE 0x99 #endif #ifndef AVR_DEFAULT_LFUSE_VALUE #define AVR_DEFAULT_LFUSE_VALUE 0x62 #endif #elif defined(__AVR_TRM03__) #if defined(__AVR_ATmega48A__) || defined(__AVR_ATmega48PA__) struct _ATmega_efuse { uint8_t _SELFPRGEN : 1; uint8_t reserved1 : 7; }; #ifndef AVR_DEFAULT_EFUSE_VALUE #define AVR_DEFAULT_EFUSE_VALUE 0xFF #endif #elif defined(__AVR_ATmega88A__) || defined(__AVR_ATmega88PA__) || defined(__AVR_ATmega168A__) || defined(__AVR_ATmega168PA__) struct _ATmega_efuse { uint8_t _BOOTRST : 1; uint8_t _BOOTSZ : 2; uint8_t reserved1 : 5; }; #ifndef AVR_DEFAULT_EFUSE_VALUE #define AVR_DEFAULT_EFUSE_VALUE 0xF9 #endif #else // defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__) struct _ATmega_efuse { uint8_t _BODLEVEL : 3; uint8_t reserved1 : 5; }; #ifndef AVR_DEFAULT_EFUSE_VALUE #define AVR_DEFAULT_EFUSE_VALUE 0xFF #endif #endif #if defined(__AVR_ATmega48A__) || defined(__AVR_ATmega48PA__) || defined(__AVR_ATmega88A__) || defined(__AVR_ATmega88PA__) || defined(__AVR_ATmega168A__) || defined(__AVR_ATmega168PA__) struct _ATmega_hfuse { uint8_t _BODLEVEL : 3; uint8_t _EESAVE : 1; uint8_t _WDTON : 1; uint8_t _SPIEN : 1; uint8_t _DWEN : 1; uint8_t _RSTDISBL : 1; }; #ifndef AVR_DEFAULT_HFUSE_VALUE #define AVR_DEFAULT_HFUSE_VALUE 0xCF #endif #else // defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__) struct _ATmega_hfuse { uint8_t _BOOTRST : 1; uint8_t _BOOTSZ : 2; uint8_t _EESAVE : 1; uint8_t _WDTON : 1; uint8_t _SPIEN : 1; uint8_t _DWEN : 1; uint8_t _RSTDISBL : 1; }; #ifndef AVR_DEFAULT_HFUSE_VALUE #define AVR_DEFAULT_HFUSE_VALUE 0xC9 #endif #endif struct _ATmega_lfuse { uint8_t _CKSEL : 4; uint8_t _SUT0 : 1; uint8_t _SUT1 : 1; uint8_t _CKOUT : 1; uint8_t _CKDIV8 : 1; }; #ifndef AVR_DEFAULT_LFUSE_VALUE #define AVR_DEFAULT_LFUSE_VALUE 0xC9 #endif #elif defined(__AVR_TRM04__) struct _ATmega_efuse { uint8_t _BODLEVEL : 3; uint8_t _HWBE : 1; uint8_t reserved1 : 4; }; struct _ATmega_hfuse { uint8_t _BOOTRST : 1; uint8_t _BOOTSZ : 2; uint8_t _EESAVE : 1; uint8_t _WDTON : 1; uint8_t _SPIEN : 1; uint8_t _JTAGEN : 1; uint8_t _OCDEN : 1; }; struct _ATmega_lfuse { uint8_t _CKSEL : 4; uint8_t _SUT0 : 1; uint8_t _SUT1 : 1; uint8_t _CKOUT : 1; uint8_t _CKDIV8 : 1; }; // Default values if not already defined. #ifndef AVR_DEFAULT_EFUSE_VALUE #define AVR_DEFAULT_EFUSE_VALUE 0xF3 #endif #ifndef AVR_DEFAULT_HFUSE_VALUE #define AVR_DEFAULT_HFUSE_VALUE 0x99 #endif #ifndef AVR_DEFAULT_LFUSE_VALUE #define AVR_DEFAULT_LFUSE_VALUE 0x62 #endif #elif defined(__AVR_TRM05__) struct _ATmega_efuse { uint8_t _BODLEVEL0 : 1; uint8_t _BODLEVEL1 : 1; uint8_t _BODLEVEL2 : 1; uint8_t reserved1 : 5; }; struct _ATmega_hfuse { uint8_t _BOOTRST : 1; uint8_t _BOOTSZ : 2; uint8_t _EESAVE : 1; uint8_t _WDTON : 1; uint8_t _SPIEN : 1; uint8_t _JTAGEN : 1; uint8_t _OCDEN : 1; }; struct _ATmega_lfuse { uint8_t _CKSEL : 4; uint8_t _SUT0 : 1; uint8_t _SUT1 : 1; uint8_t _CKOUT : 1; uint8_t _CKDIV8 : 1; }; #ifndef AVR_DEFAULT_EFUSE_VALUE #define AVR_DEFAULT_EFUSE_VALUE 0xFF #endif #ifndef AVR_DEFAULT_HFUSE_VALUE #define AVR_DEFAULT_HFUSE_VALUE 0x88 #endif #ifndef AVR_DEFAULT_LFUSE_VALUE #define AVR_DEFAULT_LFUSE_VALUE 0x62 #endif #endif struct ATmega_efuse : public _ATmega_efuse { inline ATmega_efuse(uint8_t val = 0) { *(uint8_t*)this = val; } inline ATmega_efuse(const ATmega_efuse&) = default; }; struct ATmega_hfuse : public _ATmega_hfuse { inline ATmega_hfuse(uint8_t val = 0) { *(uint8_t*)this = val; } inline ATmega_hfuse(const ATmega_hfuse&) = default; }; struct ATmega_lfuse : public _ATmega_lfuse { inline ATmega_lfuse(uint8_t val = 0) { *(uint8_t*)this = val; } inline ATmega_lfuse(const ATmega_lfuse&) = default; };
2301_81045437/Marlin
Marlin/src/HAL/AVR/registers.h
C++
agpl-3.0
172,988
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Define SPI Pins: SCK, MISO, MOSI, SS */ #if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__) #define AVR_SCK_PIN 13 #define AVR_MISO_PIN 12 #define AVR_MOSI_PIN 11 #define AVR_SS_PIN 10 #elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__) #define AVR_SCK_PIN 7 #define AVR_MISO_PIN 6 #define AVR_MOSI_PIN 5 #define AVR_SS_PIN 4 #elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define AVR_SCK_PIN 52 #define AVR_MISO_PIN 50 #define AVR_MOSI_PIN 51 #define AVR_SS_PIN 53 #elif defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) #define AVR_SCK_PIN 21 #define AVR_MISO_PIN 23 #define AVR_MOSI_PIN 22 #define AVR_SS_PIN 20 #elif defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) #define AVR_SCK_PIN 10 #define AVR_MISO_PIN 12 #define AVR_MOSI_PIN 11 #define AVR_SS_PIN 16 #endif #ifndef SD_SCK_PIN #define SD_SCK_PIN AVR_SCK_PIN #endif #ifndef SD_MISO_PIN #define SD_MISO_PIN AVR_MISO_PIN #endif #ifndef SD_MOSI_PIN #define SD_MOSI_PIN AVR_MOSI_PIN #endif #ifndef SD_SS_PIN #define SD_SS_PIN AVR_SS_PIN #endif
2301_81045437/Marlin
Marlin/src/HAL/AVR/spi_pins.h
C
agpl-3.0
2,169
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once #include <stdint.h> // ------------------------ // Types // ------------------------ typedef uint16_t hal_timer_t; #define HAL_TIMER_TYPE_MAX 0xFFFF // ------------------------ // Defines // ------------------------ #define HAL_TIMER_RATE ((F_CPU) / 8) // i.e., 2MHz or 2.5MHz #ifndef MF_TIMER_STEP #define MF_TIMER_STEP 1 #endif #ifndef MF_TIMER_PULSE #define MF_TIMER_PULSE MF_TIMER_STEP #endif #ifndef MF_TIMER_TEMP #define MF_TIMER_TEMP 0 #endif #define TEMP_TIMER_FREQUENCY (((F_CPU) + 0x2000) / 0x4000) #define STEPPER_TIMER_RATE HAL_TIMER_RATE #define STEPPER_TIMER_PRESCALE 8 #define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) #define PULSE_TIMER_RATE STEPPER_TIMER_RATE #define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE #define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A) #define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A) #define ENABLE_TEMPERATURE_INTERRUPT() SBI(TIMSK0, OCIE0A) #define DISABLE_TEMPERATURE_INTERRUPT() CBI(TIMSK0, OCIE0A) #define TEMPERATURE_ISR_ENABLED() TEST(TIMSK0, OCIE0A) FORCE_INLINE void HAL_timer_start(const uint8_t timer_num, const uint32_t) { switch (timer_num) { case MF_TIMER_STEP: // waveform generation = 0100 = CTC SET_WGM(1, CTC_OCRnA); // output mode = 00 (disconnected) SET_COMA(1, NORMAL); // Set the timer pre-scaler // Generally we use a divider of 8, resulting in a 2MHz timer // frequency on a 16MHz MCU. If you are going to change this, be // sure to regenerate speed_lookuptable.h with // create_speed_lookuptable.py SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler // Init Stepper ISR to 122 Hz for quick starting // (F_CPU) / (STEPPER_TIMER_PRESCALE) / frequency OCR1A = 0x4000; TCNT1 = 0; break; case MF_TIMER_TEMP: // Use timer0 for temperature measurement // Interleave temperature interrupt with millies interrupt OCR0A = 128; break; } } #define TIMER_OCR_1 OCR1A #define TIMER_COUNTER_1 TCNT1 #define TIMER_OCR_0 OCR0A #define TIMER_COUNTER_0 TCNT0 #define _CAT(a,V...) a##V #define HAL_timer_set_compare(timer, compare) (_CAT(TIMER_OCR_, timer) = compare) #define HAL_timer_get_compare(timer) _CAT(TIMER_OCR_, timer) #define HAL_timer_get_count(timer) _CAT(TIMER_COUNTER_, timer) /** * On AVR there is no hardware prioritization and preemption of * interrupts, so this emulates it. The UART has first priority * (otherwise, characters will be lost due to UART overflow). * Then: Stepper, Endstops, Temperature, and -finally- all others. */ #define HAL_timer_isr_prologue(T) NOOP #define HAL_timer_isr_epilogue(T) NOOP #ifndef HAL_STEP_TIMER_ISR /* 18 cycles maximum latency */ #define HAL_STEP_TIMER_ISR() \ extern "C" void TIMER1_COMPA_vect() __attribute__ ((signal, naked, used, externally_visible)); \ extern "C" void TIMER1_COMPA_vect_bottom() asm ("TIMER1_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \ void TIMER1_COMPA_vect() { \ __asm__ __volatile__ ( \ A("push r16") /* 2 Save R16 */ \ A("in r16, __SREG__") /* 1 Get SREG */ \ A("push r16") /* 2 Save SREG into stack */ \ A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \ A("push r16") /* 2 Save TIMSK0 into the stack */ \ A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \ A("sts %[timsk0], r16") /* 2 And set the new value */ \ A("lds r16, %[timsk1]") /* 2 Load into R0 the stepper timer Interrupt mask register [TIMSK1] */ \ A("andi r16,~%[msk1]") /* 1 Disable the stepper ISR */ \ A("sts %[timsk1], r16") /* 2 And set the new value */ \ A("push r16") /* 2 Save TIMSK1 into stack */ \ A("in r16, 0x3B") /* 1 Get RAMPZ register */ \ A("push r16") /* 2 Save RAMPZ into stack */ \ A("in r16, 0x3C") /* 1 Get EIND register */ \ A("push r0") /* C runtime can modify all the following registers without restoring them */ \ A("push r1") \ A("push r18") \ A("push r19") \ A("push r20") \ A("push r21") \ A("push r22") \ A("push r23") \ A("push r24") \ A("push r25") \ A("push r26") \ A("push r27") \ A("push r30") \ A("push r31") \ A("clr r1") /* C runtime expects this register to be 0 */ \ A("call TIMER1_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \ A("pop r31") \ A("pop r30") \ A("pop r27") \ A("pop r26") \ A("pop r25") \ A("pop r24") \ A("pop r23") \ A("pop r22") \ A("pop r21") \ A("pop r20") \ A("pop r19") \ A("pop r18") \ A("pop r1") \ A("pop r0") \ A("out 0x3C, r16") /* 1 Restore EIND register */ \ A("pop r16") /* 2 Get the original RAMPZ register value */ \ A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \ A("pop r16") /* 2 Get the original TIMSK1 value but with stepper ISR disabled */ \ A("ori r16,%[msk1]") /* 1 Reenable the stepper ISR */ \ A("cli") /* 1 Disable global interrupts - Reenabling Stepper ISR can reenter amd temperature can reenter, and we want that, if it happens, after this ISR has ended */ \ A("sts %[timsk1], r16") /* 2 And restore the old value - This reenables the stepper ISR */ \ A("pop r16") /* 2 Get the temperature timer Interrupt mask register [TIMSK0] */ \ A("sts %[timsk0], r16") /* 2 And restore the old value - This reenables the temperature ISR */ \ A("pop r16") /* 2 Get the old SREG value */ \ A("out __SREG__, r16") /* 1 And restore the SREG value */ \ A("pop r16") /* 2 Restore R16 value */ \ A("reti") /* 4 Return from interrupt */ \ : \ : [timsk0] "i" ((uint16_t)&TIMSK0), \ [timsk1] "i" ((uint16_t)&TIMSK1), \ [msk0] "M" ((uint8_t)(1<<OCIE0A)),\ [msk1] "M" ((uint8_t)(1<<OCIE1A)) \ : \ ); \ } \ void TIMER1_COMPA_vect_bottom() #endif // HAL_STEP_TIMER_ISR #ifndef HAL_TEMP_TIMER_ISR /* 14 cycles maximum latency */ #define HAL_TEMP_TIMER_ISR() \ extern "C" void TIMER0_COMPA_vect() __attribute__ ((signal, naked, used, externally_visible)); \ extern "C" void TIMER0_COMPA_vect_bottom() asm ("TIMER0_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \ void TIMER0_COMPA_vect() { \ __asm__ __volatile__ ( \ A("push r16") /* 2 Save R16 */ \ A("in r16, __SREG__") /* 1 Get SREG */ \ A("push r16") /* 2 Save SREG into stack */ \ A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \ A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \ A("sts %[timsk0], r16") /* 2 And set the new value */ \ A("sei") /* 1 Enable global interrupts - It is safe, as the temperature ISR is disabled, so we cannot reenter it */ \ A("push r16") /* 2 Save TIMSK0 into stack */ \ A("in r16, 0x3B") /* 1 Get RAMPZ register */ \ A("push r16") /* 2 Save RAMPZ into stack */ \ A("in r16, 0x3C") /* 1 Get EIND register */ \ A("push r0") /* C runtime can modify all the following registers without restoring them */ \ A("push r1") \ A("push r18") \ A("push r19") \ A("push r20") \ A("push r21") \ A("push r22") \ A("push r23") \ A("push r24") \ A("push r25") \ A("push r26") \ A("push r27") \ A("push r30") \ A("push r31") \ A("clr r1") /* C runtime expects this register to be 0 */ \ A("call TIMER0_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \ A("pop r31") \ A("pop r30") \ A("pop r27") \ A("pop r26") \ A("pop r25") \ A("pop r24") \ A("pop r23") \ A("pop r22") \ A("pop r21") \ A("pop r20") \ A("pop r19") \ A("pop r18") \ A("pop r1") \ A("pop r0") \ A("out 0x3C, r16") /* 1 Restore EIND register */ \ A("pop r16") /* 2 Get the original RAMPZ register value */ \ A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \ A("pop r16") /* 2 Get the original TIMSK0 value but with temperature ISR disabled */ \ A("ori r16,%[msk0]") /* 1 Enable temperature ISR */ \ A("cli") /* 1 Disable global interrupts - We must do this, as we will reenable the temperature ISR, and we don't want to reenter this handler until the current one is done */ \ A("sts %[timsk0], r16") /* 2 And restore the old value */ \ A("pop r16") /* 2 Get the old SREG */ \ A("out __SREG__, r16") /* 1 And restore the SREG value */ \ A("pop r16") /* 2 Restore R16 */ \ A("reti") /* 4 Return from interrupt */ \ : \ : [timsk0] "i"((uint16_t)&TIMSK0), \ [msk0] "M" ((uint8_t)(1<<OCIE0A)) \ : \ ); \ } \ void TIMER0_COMPA_vect_bottom() #endif // HAL_TEMP_TIMER_ISR
2301_81045437/Marlin
Marlin/src/HAL/AVR/timers.h
C
agpl-3.0
12,156
/** * Marlin 3D Printer Firmware * Copyright (c) 2023 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * AVR LCD-specific defines */ uint8_t u8g_com_HAL_AVR_sw_sp_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr); #define U8G_COM_HAL_SW_SPI_FN u8g_com_HAL_AVR_sw_sp_fn
2301_81045437/Marlin
Marlin/src/HAL/AVR/u8g/LCD_defines.h
C
agpl-3.0
1,059
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Based on u8g_com_st7920_hw_spi.c * * Universal 8bit Graphics Library * * Copyright (c) 2011, olikraus@gmail.com * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #if defined(ARDUINO) && !defined(ARDUINO_ARCH_STM32) && !defined(ARDUINO_ARCH_SAM) #include "../../inc/MarlinConfigPre.h" #if HAS_MARLINUI_U8GLIB #include "../shared/Marduino.h" #include "../shared/Delay.h" #include <U8glib-HAL.h> static uint8_t u8g_bitData, u8g_bitNotData, u8g_bitClock, u8g_bitNotClock; static volatile uint8_t *u8g_outData, *u8g_outClock; static void u8g_com_arduino_init_shift_out(uint8_t dataPin, uint8_t clockPin) { u8g_outData = portOutputRegister(digitalPinToPort(dataPin)); u8g_outClock = portOutputRegister(digitalPinToPort(clockPin)); u8g_bitData = digitalPinToBitMask(dataPin); u8g_bitClock = digitalPinToBitMask(clockPin); u8g_bitNotClock = u8g_bitClock; u8g_bitNotClock ^= 0xFF; u8g_bitNotData = u8g_bitData; u8g_bitNotData ^= 0xFF; } void u8g_spiSend_sw_AVR_mode_0(uint8_t val) { uint8_t bitData = u8g_bitData, bitNotData = u8g_bitNotData, bitClock = u8g_bitClock, bitNotClock = u8g_bitNotClock; volatile uint8_t *outData = u8g_outData, *outClock = u8g_outClock; U8G_ATOMIC_START(); for (uint8_t i = 0; i < 8; ++i) { if (val & 0x80) *outData |= bitData; else *outData &= bitNotData; *outClock |= bitClock; val <<= 1; *outClock &= bitNotClock; } U8G_ATOMIC_END(); } void u8g_spiSend_sw_AVR_mode_3(uint8_t val) { uint8_t bitData = u8g_bitData, bitNotData = u8g_bitNotData, bitClock = u8g_bitClock, bitNotClock = u8g_bitNotClock; volatile uint8_t *outData = u8g_outData, *outClock = u8g_outClock; U8G_ATOMIC_START(); for (uint8_t i = 0; i < 8; ++i) { *outClock &= bitNotClock; if (val & 0x80) *outData |= bitData; else *outData &= bitNotData; *outClock |= bitClock; val <<= 1; } U8G_ATOMIC_END(); } #if ENABLED(FYSETC_MINI_12864) #define SPISEND_SW_AVR u8g_spiSend_sw_AVR_mode_3 #else #define SPISEND_SW_AVR u8g_spiSend_sw_AVR_mode_0 #endif uint8_t u8g_com_HAL_AVR_sw_sp_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) { switch (msg) { case U8G_COM_MSG_INIT: u8g_com_arduino_init_shift_out(u8g->pin_list[U8G_PI_MOSI], u8g->pin_list[U8G_PI_SCK]); u8g_com_arduino_assign_pin_output_high(u8g); u8g_com_arduino_digital_write(u8g, U8G_PI_SCK, 0); u8g_com_arduino_digital_write(u8g, U8G_PI_MOSI, 0); break; case U8G_COM_MSG_STOP: break; case U8G_COM_MSG_RESET: if (U8G_PIN_NONE != u8g->pin_list[U8G_PI_RESET]) u8g_com_arduino_digital_write(u8g, U8G_PI_RESET, arg_val); break; case U8G_COM_MSG_CHIP_SELECT: #if ENABLED(FYSETC_MINI_12864) // LCD SPI is running mode 3 while SD card is running mode 0 if (arg_val) { // SCK idle state needs to be set to the proper idle state before // the next chip select goes active u8g_com_arduino_digital_write(u8g, U8G_PI_SCK, 1); // Set SCK to mode 3 idle state before CS goes active u8g_com_arduino_digital_write(u8g, U8G_PI_CS, LOW); } else { u8g_com_arduino_digital_write(u8g, U8G_PI_CS, HIGH); u8g_com_arduino_digital_write(u8g, U8G_PI_SCK, 0); // Set SCK to mode 0 idle state after CS goes inactive } #else u8g_com_arduino_digital_write(u8g, U8G_PI_CS, !arg_val); #endif break; case U8G_COM_MSG_WRITE_BYTE: SPISEND_SW_AVR(arg_val); break; case U8G_COM_MSG_WRITE_SEQ: { uint8_t *ptr = (uint8_t *)arg_ptr; while (arg_val > 0) { SPISEND_SW_AVR(*ptr++); arg_val--; } } break; case U8G_COM_MSG_WRITE_SEQ_P: { uint8_t *ptr = (uint8_t *)arg_ptr; while (arg_val > 0) { SPISEND_SW_AVR(u8g_pgm_read(ptr)); ptr++; arg_val--; } } break; case U8G_COM_MSG_ADDRESS: /* define cmd (arg_val = 0) or data mode (arg_val = 1) */ u8g_com_arduino_digital_write(u8g, U8G_PI_A0, arg_val); break; } return 1; } #endif // HAS_MARLINUI_U8GLIB #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/AVR/u8g_com_HAL_AVR_sw_spi.cpp
C++
agpl-3.0
6,519
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * HAL for Arduino Due and compatible (SAM3X8E) */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #include "../../MarlinCore.h" #include <Wire.h> #include "usb/usb_task.h" // ------------------------ // Public Variables // ------------------------ uint16_t MarlinHAL::adc_result; // ------------------------ // Public functions // ------------------------ #if ENABLED(POSTMORTEM_DEBUGGING) extern void install_min_serial(); #endif void MarlinHAL::init() { #if HAS_MEDIA OUT_WRITE(SDSS, HIGH); // Try to set SDSS inactive before any other SPI users start up #endif usb_task_init(); // Initialize the USB stack TERN_(POSTMORTEM_DEBUGGING, install_min_serial()); // Install the min serial handler } void MarlinHAL::init_board() { #ifdef BOARD_INIT BOARD_INIT(); #endif } void MarlinHAL::idletask() { usb_task_idle(); } // Perform USB stack housekeeping uint8_t MarlinHAL::get_reset_source() { switch ((RSTC->RSTC_SR >> 8) & 0x07) { case 0: return RST_POWER_ON; case 1: return RST_BACKUP; case 2: return RST_WATCHDOG; case 3: return RST_SOFTWARE; case 4: return RST_EXTERNAL; default: return 0; } } void MarlinHAL::reboot() { rstc_start_software_reset(RSTC); } // ------------------------ // Watchdog Timer // ------------------------ #if ENABLED(USE_WATCHDOG) // Initialize watchdog - On SAM3X, Watchdog was already configured // and enabled or disabled at startup, so no need to reconfigure it // here. void MarlinHAL::watchdog_init() { WDT_Restart(WDT); } // Reset watchdog to start clean // Reset watchdog. MUST be called at least every 4 seconds after the // first watchdog_init or AVR will go into emergency procedures. void MarlinHAL::watchdog_refresh() { watchdogReset(); } #endif // Override Arduino runtime to either config or disable the watchdog // // We need to configure the watchdog as soon as possible in the boot // process, because watchdog initialization at hardware reset on SAM3X8E // is unreliable, and there is risk of unintended resets if we delay // that initialization to a later time. void watchdogSetup() { #if ENABLED(USE_WATCHDOG) // 4 seconds timeout uint32_t timeout = TERN(WATCHDOG_DURATION_8S, 8000, 4000); // Calculate timeout value in WDT counter ticks: This assumes // the slow clock is running at 32.768 kHz watchdog // frequency is therefore 32768 / 128 = 256 Hz timeout = (timeout << 8) / 1000; if (timeout == 0) timeout = 1; else if (timeout > 0xFFF) timeout = 0xFFF; // We want to enable the watchdog with the specified timeout uint32_t value = WDT_MR_WDV(timeout) | // With the specified timeout WDT_MR_WDD(timeout) | // and no invalid write window #if !(SAMV70 || SAMV71 || SAME70 || SAMS70) WDT_MR_WDRPROC | // WDT fault resets processor only - We want // to keep PIO controller state #endif WDT_MR_WDDBGHLT | // WDT stops in debug state. WDT_MR_WDIDLEHLT; // WDT stops in idle state. #if ENABLED(WATCHDOG_RESET_MANUAL) // We enable the watchdog timer, but only for the interrupt. // Configure WDT to only trigger an interrupt value |= WDT_MR_WDFIEN; // Enable WDT fault interrupt. // Disable WDT interrupt (just in case, to avoid triggering it!) NVIC_DisableIRQ(WDT_IRQn); // We NEED memory barriers to ensure Interrupts are actually disabled! // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) __DSB(); __ISB(); // Initialize WDT with the given parameters WDT_Enable(WDT, value); // Configure and enable WDT interrupt. NVIC_ClearPendingIRQ(WDT_IRQn); NVIC_SetPriority(WDT_IRQn, 0); // Use highest priority, so we detect all kinds of lockups NVIC_EnableIRQ(WDT_IRQn); #else // a WDT fault triggers a reset value |= WDT_MR_WDRSTEN; // Initialize WDT with the given parameters WDT_Enable(WDT, value); #endif // Reset the watchdog WDT_Restart(WDT); #else // Make sure to completely disable the Watchdog WDT_Disable(WDT); #endif } // ------------------------ // Free Memory Accessor // ------------------------ extern "C" { extern unsigned int _ebss; // end of bss section } // Return free memory between end of heap (or end bss) and whatever is current int freeMemory() { int free_memory, heap_end = (int)_sbrk(0); return (int)&free_memory - (heap_end ?: (int)&_ebss); } // ------------------------ // Serial Ports // ------------------------ // Forward the default serial ports #if USING_HW_SERIAL0 DefaultSerial1 MSerial0(false, Serial); #endif #if USING_HW_SERIAL1 DefaultSerial2 MSerial1(false, Serial1); #endif #if USING_HW_SERIAL2 DefaultSerial3 MSerial2(false, Serial2); #endif #if USING_HW_SERIAL3 DefaultSerial4 MSerial3(false, Serial3); #endif #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/HAL.cpp
C++
agpl-3.0
5,941
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * HAL for Arduino Due and compatible (SAM3X8E) */ #define CPU_32_BIT #include "../shared/Marduino.h" #include "../shared/eeprom_if.h" #include "../shared/math_32bit.h" #include "../shared/HAL_SPI.h" #include "fastio.h" #include <stdint.h> #include "../../core/serial_hook.h" // ------------------------ // Serial ports // ------------------------ typedef ForwardSerial1Class< decltype(Serial) > DefaultSerial1; typedef ForwardSerial1Class< decltype(Serial1) > DefaultSerial2; typedef ForwardSerial1Class< decltype(Serial2) > DefaultSerial3; typedef ForwardSerial1Class< decltype(Serial3) > DefaultSerial4; extern DefaultSerial1 MSerial0; extern DefaultSerial2 MSerial1; extern DefaultSerial3 MSerial2; extern DefaultSerial4 MSerial3; #define _MSERIAL(X) MSerial##X #define MSERIAL(X) _MSERIAL(X) #if SERIAL_PORT == -1 || ENABLED(EMERGENCY_PARSER) #define MYSERIAL1 customizedSerial1 #elif WITHIN(SERIAL_PORT, 0, 3) #define MYSERIAL1 MSERIAL(SERIAL_PORT) #else #error "The required SERIAL_PORT must be from 0 to 3, or -1 for USB Serial." #endif #ifdef SERIAL_PORT_2 #if SERIAL_PORT_2 == -1 || ENABLED(EMERGENCY_PARSER) #define MYSERIAL2 customizedSerial2 #elif WITHIN(SERIAL_PORT_2, 0, 3) #define MYSERIAL2 MSERIAL(SERIAL_PORT_2) #else #error "SERIAL_PORT_2 must be from 0 to 3, or -1 for USB Serial." #endif #endif #ifdef SERIAL_PORT_3 #if SERIAL_PORT_3 == -1 || ENABLED(EMERGENCY_PARSER) #define MYSERIAL3 customizedSerial3 #elif WITHIN(SERIAL_PORT_3, 0, 3) #define MYSERIAL3 MSERIAL(SERIAL_PORT_3) #else #error "SERIAL_PORT_3 must be from 0 to 3, or -1 for USB Serial." #endif #endif #ifdef MMU2_SERIAL_PORT #if WITHIN(MMU2_SERIAL_PORT, 0, 3) #define MMU2_SERIAL MSERIAL(MMU2_SERIAL_PORT) #else #error "MMU2_SERIAL_PORT must be from 0 to 3." #endif #endif #ifdef LCD_SERIAL_PORT #if WITHIN(LCD_SERIAL_PORT, 0, 3) #define LCD_SERIAL MSERIAL(LCD_SERIAL_PORT) #else #error "LCD_SERIAL_PORT must be from 0 to 3." #endif #endif #include "MarlinSerial.h" #include "MarlinSerialUSB.h" // ------------------------ // Types // ------------------------ typedef int8_t pin_t; #define SHARED_SERVOS HAS_SERVOS // Use shared/servos.cpp class Servo; typedef Servo hal_servo_t; // // Interrupts // #define sei() interrupts() #define cli() noInterrupts() #define CRITICAL_SECTION_START() const bool _irqon = hal.isr_state(); hal.isr_off() #define CRITICAL_SECTION_END() if (_irqon) hal.isr_on() // // ADC // #define HAL_ADC_VREF_MV 3300 #define HAL_ADC_RESOLUTION 10 #ifndef analogInputToDigitalPin #define analogInputToDigitalPin(p) ((p < 12U) ? (p) + 54U : -1) #endif // // Pin Mapping for M42, M43, M226 // #define GET_PIN_MAP_PIN(index) index #define GET_PIN_MAP_INDEX(pin) pin #define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval) // // Tone // void tone(const pin_t _pin, const unsigned int frequency, const unsigned long duration=0); void noTone(const pin_t _pin); // ------------------------ // Class Utilities // ------------------------ #pragma GCC diagnostic push #if GCC_VERSION <= 50000 #pragma GCC diagnostic ignored "-Wunused-function" #endif #pragma GCC diagnostic pop #ifdef __cplusplus extern "C" { #endif char *dtostrf(double __val, signed char __width, unsigned char __prec, char *__s); #ifdef __cplusplus } #endif // Return free RAM between end of heap (or end bss) and whatever is current int freeMemory(); // ------------------------ // MarlinHAL Class // ------------------------ class MarlinHAL { public: // Earliest possible init, before setup() MarlinHAL() {} // Watchdog static void watchdog_init() IF_DISABLED(USE_WATCHDOG, {}); static void watchdog_refresh() IF_DISABLED(USE_WATCHDOG, {}); static void init(); // Called early in setup() static void init_board(); // Called less early in setup() static void reboot(); // Restart the firmware // Interrupts static bool isr_state() { return !__get_PRIMASK(); } static void isr_on() { __enable_irq(); } static void isr_off() { __disable_irq(); } static void delay_ms(const int ms) { delay(ms); } // Tasks, called from idle() static void idletask(); // Reset static uint8_t get_reset_source(); static void clear_reset_source() {} // Free SRAM static int freeMemory() { return ::freeMemory(); } // // ADC Methods // static uint16_t adc_result; // Called by Temperature::init once at startup static void adc_init() {} // Called by Temperature::init for each sensor at startup static void adc_enable(const uint8_t /*ch*/) {} // Begin ADC sampling on the given channel. Called from Temperature::isr! static void adc_start(const uint8_t ch) { adc_result = analogRead(ch); } // Is the ADC ready for reading? static bool adc_ready() { return true; } // The current value of the ADC register static uint16_t adc_value() { return adc_result; } /** * Set the PWM duty cycle for the pin to the given value. * No inverting the duty cycle in this HAL. * No changing the maximum size of the provided value to enable finer PWM duty control in this HAL. */ static void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); } };
2301_81045437/Marlin
Marlin/src/HAL/DUE/HAL.h
C++
agpl-3.0
6,169
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Software SPI functions originally from Arduino Sd2Card Library * Copyright (c) 2009 by William Greiman * * Completely rewritten and tuned by Eduardo José Tagle in 2017/2018 * in ARM thumb2 inline assembler and tuned for maximum speed and performance * allowing SPI clocks of up to 12 Mhz to increase SD card read/write performance */ /** * HAL for Arduino Due and compatible (SAM3X8E) */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #include "../shared/Delay.h" // ------------------------ // Public functions // ------------------------ #if ANY(SOFTWARE_SPI, FORCE_SOFT_SPI) // ------------------------ // Software SPI // ------------------------ // Make sure GCC optimizes this file. // Note that this line triggers a bug in GCC which is fixed by casting. // See the note below. #pragma GCC optimize (3) typedef uint8_t (*pfnSpiTransfer)(uint8_t b); typedef void (*pfnSpiRxBlock)(uint8_t *buf, uint32_t nbyte); typedef void (*pfnSpiTxBlock)(const uint8_t *buf, uint32_t nbyte); /* ---------------- Macros to be able to access definitions from asm */ #define _PORT(IO) DIO ## IO ## _WPORT #define _PIN_MASK(IO) MASK(DIO ## IO ## _PIN) #define _PIN_SHIFT(IO) DIO ## IO ## _PIN #define PORT(IO) _PORT(IO) #define PIN_MASK(IO) _PIN_MASK(IO) #define PIN_SHIFT(IO) _PIN_SHIFT(IO) // run at ~8 .. ~10Mhz - Tx version (Rx data discarded) static uint8_t spiTransferTx0(uint8_t bout) { // using Mode 0 uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(SD_MOSI_PIN)) + 0x30; /* SODR of port */ uint32_t MOSI_MASK = PIN_MASK(SD_MOSI_PIN); uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */ uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN); uint32_t idx = 0; /* Negate bout, as the assembler requires a negated value */ bout = ~bout; /* The software SPI routine */ __asm__ __volatile__( A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax /* Bit 7 */ A("ubfx %[idx],%[txval],#7,#1") /* Place bit 7 in bit 0 of idx*/ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[idx],%[txval],#6,#1") /* Place bit 6 in bit 0 of idx*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 6 */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[idx],%[txval],#5,#1") /* Place bit 5 in bit 0 of idx*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 5 */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[idx],%[txval],#4,#1") /* Place bit 4 in bit 0 of idx*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 4 */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[idx],%[txval],#3,#1") /* Place bit 3 in bit 0 of idx*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 3 */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[idx],%[txval],#2,#1") /* Place bit 2 in bit 0 of idx*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 2 */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[idx],%[txval],#1,#1") /* Place bit 1 in bit 0 of idx*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 1 */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[idx],%[txval],#0,#1") /* Place bit 0 in bit 0 of idx*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 0 */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("nop") /* Result will be 0 */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ : [idx]"+r"( idx ) : [txval]"r"( bout ) , [mosi_mask]"r"( MOSI_MASK ), [mosi_port]"r"( MOSI_PORT_PLUS30 ), [sck_mask]"r"( SCK_MASK ), [sck_port]"r"( SCK_PORT_PLUS30 ) : "cc" ); return 0; } // Calculates the bit band alias address and returns a pointer address to word. // addr: The byte address of bitbanding bit. // bit: The bit position of bitbanding bit. #define BITBAND_ADDRESS(addr, bit) \ (((uint32_t)(addr) & 0xF0000000) + 0x02000000 + ((uint32_t)(addr)&0xFFFFF)*32 + (bit)*4) // run at ~8 .. ~10Mhz - Rx version (Tx line not altered) static uint8_t spiTransferRx0(uint8_t) { // using Mode 0 uint32_t bin = 0; uint32_t work = 0; uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(SD_MISO_PIN))+0x3C, PIN_SHIFT(SD_MISO_PIN)); /* PDSR of port in bitband area */ uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */ uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN); /* The software SPI routine */ __asm__ __volatile__( A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax /* bit 7 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#7,#1") /* Store read bit as the bit 7 */ /* bit 6 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#6,#1") /* Store read bit as the bit 6 */ /* bit 5 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#5,#1") /* Store read bit as the bit 5 */ /* bit 4 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#4,#1") /* Store read bit as the bit 4 */ /* bit 3 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#3,#1") /* Store read bit as the bit 3 */ /* bit 2 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#2,#1") /* Store read bit as the bit 2 */ /* bit 1 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#1,#1") /* Store read bit as the bit 1 */ /* bit 0 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#0,#1") /* Store read bit as the bit 0 */ : [bin]"+r"(bin), [work]"+r"(work) : [bitband_miso_port]"r"( BITBAND_MISO_PORT ), [sck_mask]"r"( SCK_MASK ), [sck_port]"r"( SCK_PORT_PLUS30 ) : "cc" ); return bin; } // run at ~4Mhz static uint8_t spiTransfer1(uint8_t b) { // using Mode 0 int bits = 8; do { WRITE(SD_MOSI_PIN, b & 0x80); b <<= 1; // little setup time WRITE(SD_SCK_PIN, HIGH); DELAY_NS(125); // 10 cycles @ 84mhz b |= (READ(SD_MISO_PIN) != 0); WRITE(SD_SCK_PIN, LOW); DELAY_NS(125); // 10 cycles @ 84mhz } while (--bits); return b; } // all the others static uint16_t spiDelayNS = 4000; // 4000ns => 125khz static uint8_t spiTransferX(uint8_t b) { // using Mode 0 int bits = 8; do { WRITE(SD_MOSI_PIN, b & 0x80); b <<= 1; // little setup time WRITE(SD_SCK_PIN, HIGH); DELAY_NS_VAR(spiDelayNS); b |= (READ(SD_MISO_PIN) != 0); WRITE(SD_SCK_PIN, LOW); DELAY_NS_VAR(spiDelayNS); } while (--bits); return b; } // Pointers to generic functions for byte transfers /** * Note: The cast is unnecessary, but without it, this file triggers a GCC 4.8.3-2014 bug. * Later GCC versions do not have this problem, but at this time (May 2018) Arduino still * uses that buggy and obsolete GCC version!! */ static pfnSpiTransfer spiTransferRx = (pfnSpiTransfer)spiTransferX; static pfnSpiTransfer spiTransferTx = (pfnSpiTransfer)spiTransferX; // Block transfers run at ~8 .. ~10Mhz - Tx version (Rx data discarded) static void spiTxBlock0(const uint8_t *ptr, uint32_t todo) { uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(SD_MOSI_PIN)) + 0x30; /* SODR of port */ uint32_t MOSI_MASK = PIN_MASK(SD_MOSI_PIN); uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */ uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN); uint32_t work = 0; uint32_t txval = 0; /* The software SPI routine */ __asm__ __volatile__( A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax L("loop%=") A("ldrb.w %[txval], [%[ptr]], #1") /* Load value to send, increment buffer */ A("mvn %[txval],%[txval]") /* Negate value */ /* Bit 7 */ A("ubfx %[work],%[txval],#7,#1") /* Place bit 7 in bit 0 of work*/ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[work],%[txval],#6,#1") /* Place bit 6 in bit 0 of work*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 6 */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[work],%[txval],#5,#1") /* Place bit 5 in bit 0 of work*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 5 */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[work],%[txval],#4,#1") /* Place bit 4 in bit 0 of work*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 4 */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[work],%[txval],#3,#1") /* Place bit 3 in bit 0 of work*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 3 */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[work],%[txval],#2,#1") /* Place bit 2 in bit 0 of work*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 2 */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[work],%[txval],#1,#1") /* Place bit 1 in bit 0 of work*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 1 */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ubfx %[work],%[txval],#0,#1") /* Place bit 0 in bit 0 of work*/ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ /* Bit 0 */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("subs %[todo],#1") /* Decrement count of pending words to send, update status */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bne.n loop%=") /* Repeat until done */ : [ptr]"+r" ( ptr ) , [todo]"+r" ( todo ) , [work]"+r"( work ) , [txval]"+r"( txval ) : [mosi_mask]"r"( MOSI_MASK ), [mosi_port]"r"( MOSI_PORT_PLUS30 ), [sck_mask]"r"( SCK_MASK ), [sck_port]"r"( SCK_PORT_PLUS30 ) : "cc" ); } static void spiRxBlock0(uint8_t *ptr, uint32_t todo) { uint32_t bin = 0; uint32_t work = 0; uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(SD_MISO_PIN))+0x3C, PIN_SHIFT(SD_MISO_PIN)); /* PDSR of port in bitband area */ uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */ uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN); /* The software SPI routine */ __asm__ __volatile__( A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax L("loop%=") /* bit 7 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#7,#1") /* Store read bit as the bit 7 */ /* bit 6 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#6,#1") /* Store read bit as the bit 6 */ /* bit 5 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#5,#1") /* Store read bit as the bit 5 */ /* bit 4 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#4,#1") /* Store read bit as the bit 4 */ /* bit 3 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#3,#1") /* Store read bit as the bit 3 */ /* bit 2 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#2,#1") /* Store read bit as the bit 2 */ /* bit 1 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#1,#1") /* Store read bit as the bit 1 */ /* bit 0 */ A("str %[sck_mask],[%[sck_port]]") /* SODR */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */ A("bfi %[bin],%[work],#0,#1") /* Store read bit as the bit 0 */ A("subs %[todo],#1") /* Decrement count of pending words to send, update status */ A("strb.w %[bin], [%[ptr]], #1") /* Store read value into buffer, increment buffer pointer */ A("bne.n loop%=") /* Repeat until done */ : [ptr]"+r"(ptr), [todo]"+r"(todo), [bin]"+r"(bin), [work]"+r"(work) : [bitband_miso_port]"r"( BITBAND_MISO_PORT ), [sck_mask]"r"( SCK_MASK ), [sck_port]"r"( SCK_PORT_PLUS30 ) : "cc" ); } static void spiTxBlockX(const uint8_t *buf, uint32_t todo) { do { (void)spiTransferTx(*buf++); } while (--todo); } static void spiRxBlockX(uint8_t *buf, uint32_t todo) { do { *buf++ = spiTransferRx(0xFF); } while (--todo); } // Pointers to generic functions for block transfers static pfnSpiTxBlock spiTxBlock = (pfnSpiTxBlock)spiTxBlockX; static pfnSpiRxBlock spiRxBlock = (pfnSpiRxBlock)spiRxBlockX; #if MB(ALLIGATOR) #define _SS_WRITE(S) WRITE(SD_SS_PIN, S) #else #define _SS_WRITE(S) NOOP #endif void spiBegin() { SET_OUTPUT(SD_SS_PIN); _SS_WRITE(HIGH); SET_OUTPUT(SD_SCK_PIN); SET_INPUT(SD_MISO_PIN); SET_OUTPUT(SD_MOSI_PIN); } uint8_t spiRec() { _SS_WRITE(LOW); WRITE(SD_MOSI_PIN, HIGH); // Output 1s 1 uint8_t b = spiTransferRx(0xFF); _SS_WRITE(HIGH); return b; } void spiRead(uint8_t *buf, uint16_t nbyte) { if (nbyte) { _SS_WRITE(LOW); WRITE(SD_MOSI_PIN, HIGH); // Output 1s 1 spiRxBlock(buf, nbyte); _SS_WRITE(HIGH); } } void spiSend(uint8_t b) { _SS_WRITE(LOW); (void)spiTransferTx(b); _SS_WRITE(HIGH); } void spiSendBlock(uint8_t token, const uint8_t *buf) { _SS_WRITE(LOW); (void)spiTransferTx(token); spiTxBlock(buf, 512); _SS_WRITE(HIGH); } /** * spiRate should be * 0 : 8 - 10 MHz * 1 : 4 - 5 MHz * 2 : 2 - 2.5 MHz * 3 : 1 - 1.25 MHz * 4 : 500 - 625 kHz * 5 : 250 - 312 kHz * 6 : 125 - 156 kHz */ void spiInit(uint8_t spiRate) { switch (spiRate) { case 0: spiTransferTx = (pfnSpiTransfer)spiTransferTx0; spiTransferRx = (pfnSpiTransfer)spiTransferRx0; spiTxBlock = (pfnSpiTxBlock)spiTxBlock0; spiRxBlock = (pfnSpiRxBlock)spiRxBlock0; break; case 1: spiTransferTx = (pfnSpiTransfer)spiTransfer1; spiTransferRx = (pfnSpiTransfer)spiTransfer1; spiTxBlock = (pfnSpiTxBlock)spiTxBlockX; spiRxBlock = (pfnSpiRxBlock)spiRxBlockX; break; default: spiDelayNS = 4000 >> (6 - spiRate); // spiRate of 2 gives the maximum error with current CPU spiTransferTx = (pfnSpiTransfer)spiTransferX; spiTransferRx = (pfnSpiTransfer)spiTransferX; spiTxBlock = (pfnSpiTxBlock)spiTxBlockX; spiRxBlock = (pfnSpiRxBlock)spiRxBlockX; break; } _SS_WRITE(HIGH); WRITE(SD_MOSI_PIN, HIGH); WRITE(SD_SCK_PIN, LOW); } /** Begin SPI transaction, set clock, bit order, data mode */ void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { // TODO: to be implemented } #pragma GCC reset_options #else // !SOFTWARE_SPI #define WHILE_TX(N) while ((SPI0->SPI_SR & SPI_SR_TDRE) == (N)) #define WHILE_RX(N) while ((SPI0->SPI_SR & SPI_SR_RDRF) == (N)) #define FLUSH_TX() do{ WHILE_RX(1) SPI0->SPI_RDR; }while(0) #if MB(ALLIGATOR) // slave selects controlled by SPI controller // doesn't support changing SPI speeds for SD card // ------------------------ // hardware SPI // ------------------------ static bool spiInitialized = false; void spiInit(uint8_t spiRate) { if (spiInitialized) return; // 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz constexpr int spiDivider[] = { 10, 21, 42, 84, 168, 255, 255 }; if (spiRate > 6) spiRate = 1; // Set SPI mode 1, clock, select not active after transfer, with delay between transfers SPI_ConfigureNPCS(SPI0, SPI_CHAN_DAC, SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) | SPI_CSR_DLYBCT(1)); // Set SPI mode 0, clock, select not active after transfer, with delay between transfers SPI_ConfigureNPCS(SPI0, SPI_CHAN_EEPROM1, SPI_CSR_NCPHA | SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) | SPI_CSR_DLYBCT(1)); // Set SPI mode 0, clock, select not active after transfer, with delay between transfers SPI_ConfigureNPCS(SPI0, SPI_CHAN, SPI_CSR_NCPHA | SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) | SPI_CSR_DLYBCT(1)); SPI_Enable(SPI0); spiInitialized = true; } void spiBegin() { if (spiInitialized) return; // Configure SPI pins PIO_Configure( g_APinDescription[SD_SCK_PIN].pPort, g_APinDescription[SD_SCK_PIN].ulPinType, g_APinDescription[SD_SCK_PIN].ulPin, g_APinDescription[SD_SCK_PIN].ulPinConfiguration); PIO_Configure( g_APinDescription[SD_MOSI_PIN].pPort, g_APinDescription[SD_MOSI_PIN].ulPinType, g_APinDescription[SD_MOSI_PIN].ulPin, g_APinDescription[SD_MOSI_PIN].ulPinConfiguration); PIO_Configure( g_APinDescription[SD_MISO_PIN].pPort, g_APinDescription[SD_MISO_PIN].ulPinType, g_APinDescription[SD_MISO_PIN].ulPin, g_APinDescription[SD_MISO_PIN].ulPinConfiguration); // set master mode, peripheral select, fault detection SPI_Configure(SPI0, ID_SPI0, SPI_MR_MSTR | SPI_MR_MODFDIS | SPI_MR_PS); SPI_Enable(SPI0); SET_OUTPUT(DAC0_SYNC_PIN); #if HAS_MULTI_EXTRUDER OUT_WRITE(DAC1_SYNC_PIN, HIGH); #endif WRITE(DAC0_SYNC_PIN, HIGH); OUT_WRITE(SPI_EEPROM1_CS_PIN, HIGH); OUT_WRITE(SPI_EEPROM2_CS_PIN, HIGH); OUT_WRITE(SPI_FLASH_CS_PIN, HIGH); WRITE(SD_SS_PIN, HIGH); OUT_WRITE(SDSS, LOW); PIO_Configure( g_APinDescription[SPI_PIN].pPort, g_APinDescription[SPI_PIN].ulPinType, g_APinDescription[SPI_PIN].ulPin, g_APinDescription[SPI_PIN].ulPinConfiguration ); spiInit(1); } // Read single byte from SPI uint8_t spiRec() { // write dummy byte with address and end transmission flag SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER; WHILE_TX(0); WHILE_RX(0); //DELAY_US(1U); return SPI0->SPI_RDR; } uint8_t spiRec(uint32_t chan) { WHILE_TX(0); FLUSH_RX(); // write dummy byte with address and end transmission flag SPI0->SPI_TDR = 0x000000FF | SPI_PCS(chan) | SPI_TDR_LASTXFER; WHILE_RX(0); return SPI0->SPI_RDR; } // Read from SPI into buffer void spiRead(uint8_t *buf, uint16_t nbyte) { if (!nbyte) return; --nbyte; for (int i = 0; i < nbyte; i++) { //WHILE_TX(0); SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN); WHILE_RX(0); buf[i] = SPI0->SPI_RDR; //DELAY_US(1U); } buf[nbyte] = spiRec(); } // Write single byte to SPI void spiSend(const byte b) { // write byte with address and end transmission flag SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER; WHILE_TX(0); WHILE_RX(0); SPI0->SPI_RDR; //DELAY_US(1U); } void spiSend(const uint8_t *buf, size_t nbyte) { if (!nbyte) return; --nbyte; for (size_t i = 0; i < nbyte; i++) { SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN); WHILE_TX(0); WHILE_RX(0); SPI0->SPI_RDR; //DELAY_US(1U); } spiSend(buf[nbyte]); } void spiSend(uint32_t chan, byte b) { WHILE_TX(0); // write byte with address and end transmission flag SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(chan) | SPI_TDR_LASTXFER; WHILE_RX(0); FLUSH_RX(); } void spiSend(uint32_t chan, const uint8_t *buf, size_t nbyte) { if (!nbyte) return; --nbyte; for (size_t i = 0; i < nbyte; i++) { WHILE_TX(0); SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(chan); WHILE_RX(0); FLUSH_RX(); } spiSend(chan, buf[nbyte]); } // Write from buffer to SPI void spiSendBlock(uint8_t token, const uint8_t *buf) { SPI0->SPI_TDR = (uint32_t)token | SPI_PCS(SPI_CHAN); WHILE_TX(0); //WHILE_RX(0); //SPI0->SPI_RDR; for (int i = 0; i < 511; i++) { SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN); WHILE_TX(0); WHILE_RX(0); SPI0->SPI_RDR; //DELAY_US(1U); } spiSend(buf[511]); } /** Begin SPI transaction, set clock, bit order, data mode */ void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { // TODO: to be implemented } #else // U8G compatible hardware SPI #define SPI_MODE_0_DUE_HW 2 // DUE CPHA control bit is inverted #define SPI_MODE_1_DUE_HW 3 #define SPI_MODE_2_DUE_HW 0 #define SPI_MODE_3_DUE_HW 1 /** * The DUE SPI controller is set up so the upper word of the longword * written to the transmit data register selects which SPI Chip Select * Register is used. This allows different streams to have different SPI * settings. * * In practice it's spooky. Some combinations hang the system, while others * upset the peripheral device. * * SPI mode should be the same for all streams. The FYSETC_MINI_12864 gets * upset if the clock phase changes after chip select goes active. * * SPI_CSR_CSAAT should be set for all streams. If not the WHILE_TX(0) * macro returns immediately which can result in the SPI chip select going * inactive before all the data has been sent. * * The TMC2130 library uses SPI0->SPI_CSR[3]. * * The U8G hardware SPI uses SPI0->SPI_CSR[0]. The system hangs and/or the * FYSETC_MINI_12864 gets upset if lower baud rates are used and the SD card * is inserted or removed. * * The SD card uses SPI0->SPI_CSR[3]. Efforts were made to use [1] and [2] * but they all resulted in hangs or garbage on the LCD. * * The SPI controlled chip selects are NOT enabled in the GPIO controller. * The application must control the chip select. * * All of the above can be avoided by defining FORCE_SOFT_SPI to force the * display to use software SPI. */ void spiInit(uint8_t spiRate=6) { // Default to slowest rate if not specified) // Also sets U8G SPI rate to 4MHz and the SPI mode to 3 // 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz constexpr int spiDivider[] = { 10, 21, 42, 84, 168, 255, 255 }; if (spiRate > 6) spiRate = 1; // Enable PIOA and SPI0 REG_PMC_PCER0 = (1UL << ID_PIOA) | (1UL << ID_SPI0); // Disable PIO on A26 and A27 REG_PIOA_PDR = 0x0C000000; OUT_WRITE(SDSS, HIGH); // Reset SPI0 (from sam lib) SPI0->SPI_CR = SPI_CR_SPIDIS; SPI0->SPI_CR = SPI_CR_SWRST; SPI0->SPI_CR = SPI_CR_SWRST; SPI0->SPI_CR = SPI_CR_SPIEN; // TMC2103 compatible setup // Master mode, no fault detection, PCS bits in data written to TDR select CSR register SPI0->SPI_MR = SPI_MR_MSTR | SPI_MR_PS | SPI_MR_MODFDIS; // SPI mode 3, 8 Bit data transfer, baud rate SPI0->SPI_CSR[3] = SPI_CSR_SCBR(spiDivider[spiRate]) | SPI_CSR_CSAAT | SPI_MODE_3_DUE_HW; // use same CSR as TMC2130 SPI0->SPI_CSR[0] = SPI_CSR_SCBR(spiDivider[1]) | SPI_CSR_CSAAT | SPI_MODE_3_DUE_HW; // U8G default to 4MHz } void spiBegin() { spiInit(); } static uint8_t spiTransfer(uint8_t data) { WHILE_TX(0); SPI0->SPI_TDR = (uint32_t)data | 0x00070000UL; // Add TMC2130 PCS bits to every byte (use SPI0->SPI_CSR[3]) WHILE_TX(0); WHILE_RX(0); return SPI0->SPI_RDR; } uint8_t spiRec() { return (uint8_t)spiTransfer(0xFF); } void spiRead(uint8_t *buf, uint16_t nbyte) { for (int i = 0; i < nbyte; i++) buf[i] = spiTransfer(0xFF); } void spiSend(uint8_t data) { spiTransfer(data); } void spiSend(const uint8_t *buf, size_t nbyte) { for (uint16_t i = 0; i < nbyte; i++) spiTransfer(buf[i]); } void spiSendBlock(uint8_t token, const uint8_t *buf) { spiTransfer(token); for (uint16_t i = 0; i < 512; i++) spiTransfer(buf[i]); } #endif // !ALLIGATOR #endif // !SOFTWARE_SPI #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/HAL_SPI.cpp
C++
agpl-3.0
32,026
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * InterruptVectors_Due.cpp - This module relocates the Interrupt vector table to SRAM, * allowing to register new interrupt handlers at runtime. Specially valuable and needed * because Arduino runtime allocates some interrupt handlers that we NEED to override to * properly support extended functionality, as for example, USB host or USB device (MSD, MTP) * and custom serial port handlers, and we don't actually want to modify and/or recompile the * Arduino runtime. We just want to run as much as possible on Stock Arduino * * Copyright (c) 2017 Eduardo José Tagle. All right reserved */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #include "HAL.h" #include "InterruptVectors.h" /* The relocated Exception/Interrupt Table - According to the ARM reference manual, alignment to 128 bytes should suffice, but in practice, we need alignment to 256 bytes to make this work in all cases */ __attribute__ ((aligned(256))) static DeviceVectors ram_tab[61] = { nullptr }; /** * This function checks if the exception/interrupt table is already in SRAM or not. * If it is not, then it copies the ROM table to the SRAM and relocates the table * by reprogramming the NVIC registers */ static pfnISR_Handler* get_relocated_table_addr() { // Get the address of the interrupt/exception table uint32_t isrtab = SCB->VTOR; // If already relocated, we are done! if (isrtab >= IRAM0_ADDR) return (pfnISR_Handler*)isrtab; // Get the address of the table stored in FLASH const pfnISR_Handler* romtab = (const pfnISR_Handler*)isrtab; // Copy it to SRAM memcpy(&ram_tab, romtab, sizeof(ram_tab)); // Disable global interrupts CRITICAL_SECTION_START(); // Set the vector table base address to the SRAM copy SCB->VTOR = (uint32_t)(&ram_tab); // Reenable interrupts CRITICAL_SECTION_END(); // Return the address of the table return (pfnISR_Handler*)(&ram_tab); } pfnISR_Handler install_isr(IRQn_Type irq, pfnISR_Handler newHandler) { // Get the address of the relocated table pfnISR_Handler *isrtab = get_relocated_table_addr(); // Disable global interrupts CRITICAL_SECTION_START(); // Get the original handler pfnISR_Handler oldHandler = isrtab[irq + 16]; // Install the new one isrtab[irq + 16] = newHandler; // Reenable interrupts CRITICAL_SECTION_END(); // Return the original one return oldHandler; } #endif
2301_81045437/Marlin
Marlin/src/HAL/DUE/InterruptVectors.cpp
C++
agpl-3.0
3,273
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * InterruptVectors_Due.h * * This module relocates the Interrupt vector table to SRAM, allowing new * interrupt handlers to be added at runtime. This is required because the * Arduino runtime steals interrupt handlers that Marlin MUST use to support * extended functionality such as USB hosts and USB devices (MSD, MTP) and * custom serial port handlers. Rather than modifying and/or recompiling the * Arduino runtime, We just want to run as much as possible on Stock Arduino. * * Copyright (c) 2017 Eduardo José Tagle. All right reserved */ #ifdef ARDUINO_ARCH_SAM // ISR handler type typedef void (*pfnISR_Handler)(); // Install a new interrupt vector handler for the given irq, returning the old one pfnISR_Handler install_isr(IRQn_Type irq, pfnISR_Handler newHandler); #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/InterruptVectors.h
C
agpl-3.0
1,696
/** * Marlin 3D Printer Firmware * Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once #include <SPI.h> using MarlinSPI = SPIClass;
2301_81045437/Marlin
Marlin/src/HAL/DUE/MarlinSPI.h
C
agpl-3.0
922
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE * Copyright (c) 2017 Eduardo José Tagle. All right reserved * Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved. */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #include "MarlinSerial.h" #include "InterruptVectors.h" #include "../../MarlinCore.h" template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0, 0, { 0 } }; template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 }; template<typename Cfg> bool MarlinSerial<Cfg>::_written = false; template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR; template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0; template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0; template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0; template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0; // A SW memory barrier, to ensure GCC does not overoptimize loops #define sw_barrier() asm volatile("": : :"memory"); #include "../../feature/e_parser.h" // (called with RX interrupts disabled) template<typename Cfg> FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() { static EmergencyParser::State emergency_state; // = EP_RESET // Get the tail - Nothing can alter its value while we are at this ISR const ring_buffer_pos_t t = rx_buffer.tail; // Get the head pointer ring_buffer_pos_t h = rx_buffer.head; // Get the next element ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART uint8_t c = HWUART->UART_RHR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the RX FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Calculate count of bytes stored into the RX buffer // Keep track of the maximum count of enqueued bytes if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count); if (Cfg::XONOFF) { // If the last char that was sent was an XON if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { // Bytes stored into the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // If over 12.5% of RX buffer capacity, send XOFF before running out of // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react // and stop sending bytes. This translates to 13mS propagation time. if (rx_count >= (Cfg::RX_SIZE) / 8) { // At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted. // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens // to be in the middle of trying to disable the RX interrupt in the main program, eventually the // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure // the sending of the XOFF char is to send it HERE AND NOW. // About to send the XOFF char xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; // Wait until the TX register becomes empty and send it - Here there could be a problem // - While waiting for the TX register to empty, the RX register could receive a new // character. This must also handle that situation! uint32_t status; while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) { if (status & UART_SR_RXRDY) { // We received a char while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART c = HWUART->UART_RHR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; } sw_barrier(); } HWUART->UART_THR = XOFF_CHAR; // At this point there could be a race condition between the write() function // and this sending of the XOFF char. This interrupt could happen between the // wait to be empty TX buffer loop and the actual write of the character. Since // the TX buffer is full because it's sending the XOFF char, the only way to be // sure the write() function will succeed is to wait for the XOFF char to be // completely sent. Since an extra character could be received during the wait // it must also be handled! while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) { if (status & UART_SR_RXRDY) { // A char arrived while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // Read the character from the USART c = HWUART->UART_RHR; if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c); // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } else if (Cfg::DROPPED_RX && !++rx_dropped_bytes) --rx_dropped_bytes; } sw_barrier(); } // At this point everything is ready. The write() function won't // have any issues writing to the UART TX register if it needs to! } } } // Store the new head value rx_buffer.head = h; } template<typename Cfg> FORCE_INLINE void MarlinSerial<Cfg>::_tx_thr_empty_irq() { if (Cfg::TX_SIZE > 0) { // Read positions uint8_t t = tx_buffer.tail; const uint8_t h = tx_buffer.head; if (Cfg::XONOFF) { // If an XON char is pending to be sent, do it now if (xon_xoff_state == XON_CHAR) { // Send the character HWUART->UART_THR = XON_CHAR; // Remember we sent it. xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; // If nothing else to transmit, just disable TX interrupts. if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; return; } } // If nothing to transmit, just disable TX interrupts. This could // happen as the result of the non atomicity of the disabling of RX // interrupts that could end reenabling TX interrupts as a side effect. if (h == t) { HWUART->UART_IDR = UART_IDR_TXRDY; return; } // There is something to TX, Send the next byte const uint8_t c = tx_buffer.buffer[t]; t = (t + 1) & (Cfg::TX_SIZE - 1); HWUART->UART_THR = c; tx_buffer.tail = t; // Disable interrupts if there is nothing to transmit following this byte if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; } } template<typename Cfg> void MarlinSerial<Cfg>::UART_ISR() { const uint32_t status = HWUART->UART_SR; // Data received? if (status & UART_SR_RXRDY) store_rxd_char(); if (Cfg::TX_SIZE > 0) { // Something to send, and TX interrupts are enabled (meaning something to send)? if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq(); } // Acknowledge errors if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) { if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes; if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns; if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors; // TODO: error reporting outside ISR HWUART->UART_CR = UART_CR_RSTSTA; } } // Public Methods template<typename Cfg> void MarlinSerial<Cfg>::begin(const long baud_setting) { // Disable UART interrupt in NVIC NVIC_DisableIRQ( HWUART_IRQ ); // We NEED memory barriers to ensure Interrupts are actually disabled! // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) __DSB(); __ISB(); // Disable clock pmc_disable_periph_clk( HWUART_IRQ_ID ); // Configure PMC pmc_enable_periph_clk( HWUART_IRQ_ID ); // Disable PDC channel HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS; // Reset and disable receiver and transmitter HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS; // Configure mode: 8bit, No parity, 1 bit stop HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO; // Configure baudrate (asynchronous, no oversampling) HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4)); // Configure interrupts HWUART->UART_IDR = 0xFFFFFFFF; HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME; // Install interrupt handler install_isr(HWUART_IRQ, UART_ISR); // Configure priority. We need a very high priority to avoid losing characters // and we need to be able to preempt the Stepper ISR and everything else! // (this could probably be fixed by using DMA with the Serial port) NVIC_SetPriority(HWUART_IRQ, 1); // Enable UART interrupt in NVIC NVIC_EnableIRQ(HWUART_IRQ); // Enable receiver and transmitter HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN; if (Cfg::TX_SIZE > 0) _written = false; } template<typename Cfg> void MarlinSerial<Cfg>::end() { // Disable UART interrupt in NVIC NVIC_DisableIRQ( HWUART_IRQ ); // We NEED memory barriers to ensure Interrupts are actually disabled! // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) __DSB(); __ISB(); pmc_disable_periph_clk( HWUART_IRQ_ID ); } template<typename Cfg> int MarlinSerial<Cfg>::peek() { const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail]; return v; } template<typename Cfg> int MarlinSerial<Cfg>::read() { const ring_buffer_pos_t h = rx_buffer.head; ring_buffer_pos_t t = rx_buffer.tail; if (h == t) return -1; int v = rx_buffer.buffer[t]; t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1); // Advance tail rx_buffer.tail = t; if (Cfg::XONOFF) { // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { // Get count of bytes in the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1); // When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes if (rx_count < (Cfg::RX_SIZE) / 10) { if (Cfg::TX_SIZE > 0) { // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX isr. HWUART->UART_IER = UART_IER_TXRDY; } else { // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); HWUART->UART_THR = XON_CHAR; } } } } return v; } template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available() { const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail; return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1); } template<typename Cfg> void MarlinSerial<Cfg>::flush() { rx_buffer.tail = rx_buffer.head; if (Cfg::XONOFF) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if (Cfg::TX_SIZE > 0) { // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX isr. HWUART->UART_IER = UART_IER_TXRDY; } else { // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); HWUART->UART_THR = XON_CHAR; } } } } template<typename Cfg> size_t MarlinSerial<Cfg>::write(const uint8_t c) { _written = true; if (Cfg::TX_SIZE == 0) { while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); HWUART->UART_THR = c; } else { // If the TX interrupts are disabled and the data register // is empty, just write the byte to the data register and // be done. This shortcut helps significantly improve the // effective datarate at high (>500kbit/s) bitrates, where // interrupt overhead becomes a slowdown. // Yes, there is a race condition between the sending of the // XOFF char at the RX isr, but it is properly handled there if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) { HWUART->UART_THR = c; return 1; } const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1); // If global interrupts are disabled (as the result of being called from an ISR)... if (!hal.isr_state()) { // Make room by polling if it is possible to transmit, and do so! while (i == tx_buffer.tail) { // If we can transmit another byte, do it. if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); // Make sure compiler rereads tx_buffer.tail sw_barrier(); } } else { // Interrupts are enabled, just wait until there is space while (i == tx_buffer.tail) sw_barrier(); } // Store new char. head is always safe to move tx_buffer.buffer[tx_buffer.head] = c; tx_buffer.head = i; // Enable TX isr - Non atomic, but it will eventually enable TX isr HWUART->UART_IER = UART_IER_TXRDY; } return 1; } template<typename Cfg> void MarlinSerial<Cfg>::flushTX() { // TX if (Cfg::TX_SIZE == 0) { // No bytes written, no need to flush. This special case is needed since there's // no way to force the TXC (transmit complete) bit to 1 during initialization. if (!_written) return; // Wait until everything was transmitted while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier(); // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } else { // If we have never written a byte, no need to flush. This special // case is needed since there is no way to force the TXC (transmit // complete) bit to 1 during initialization if (!_written) return; // If global interrupts are disabled (as the result of being called from an ISR)... if (!hal.isr_state()) { // Wait until everything was transmitted - We must do polling, as interrupts are disabled while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) { // If there is more space, send an extra character if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); sw_barrier(); } } else { // Wait until everything was transmitted while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier(); } // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } } // If not using the USB port as serial port #if defined(SERIAL_PORT) && SERIAL_PORT >= 0 template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT> >; MSerialT1 customizedSerial1(MarlinSerialCfg<SERIAL_PORT>::EMERGENCYPARSER); #endif #if defined(SERIAL_PORT_2) && SERIAL_PORT_2 >= 0 template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> >; MSerialT2 customizedSerial2(MarlinSerialCfg<SERIAL_PORT_2>::EMERGENCYPARSER); #endif #if defined(SERIAL_PORT_3) && SERIAL_PORT_3 >= 0 template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_3> >; MSerialT3 customizedSerial3(MarlinSerialCfg<SERIAL_PORT_3>::EMERGENCYPARSER); #endif #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/MarlinSerial.cpp
C++
agpl-3.0
17,729
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * MarlinSerial_Due.h - Hardware serial library for Arduino DUE * Copyright (c) 2017 Eduardo José Tagle. All right reserved * Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved. */ #include <WString.h> #include "../../inc/MarlinConfigPre.h" #include "../../core/types.h" #include "../../core/serial_hook.h" // Define constants and variables for buffering incoming serial data. We're // using a ring buffer (I think), in which rx_buffer_head is the index of the // location to which to write the next incoming character and rx_buffer_tail // is the index of the location from which to read. // 256 is the max limit due to uint8_t head and tail. Use only powers of 2. (...,16,32,64,128,256) #ifndef RX_BUFFER_SIZE #define RX_BUFFER_SIZE 128 #endif #ifndef TX_BUFFER_SIZE #define TX_BUFFER_SIZE 32 #endif //#if ENABLED(SERIAL_XON_XOFF) && RX_BUFFER_SIZE < 1024 // #error "SERIAL_XON_XOFF requires RX_BUFFER_SIZE >= 1024 for reliable transfers without drops." //#elif RX_BUFFER_SIZE && (RX_BUFFER_SIZE < 2 || !IS_POWER_OF_2(RX_BUFFER_SIZE)) // #error "RX_BUFFER_SIZE must be a power of 2 greater than 1." //#elif TX_BUFFER_SIZE && (TX_BUFFER_SIZE < 2 || TX_BUFFER_SIZE > 256 || !IS_POWER_OF_2(TX_BUFFER_SIZE)) // #error "TX_BUFFER_SIZE must be 0, a power of 2 greater than 1, and no greater than 256." //#endif // Templated structure wrapper template<typename S, unsigned int addr> struct StructWrapper { constexpr StructWrapper(int) {} FORCE_INLINE S* operator->() const { return (S*)addr; } }; template<typename Cfg> class MarlinSerial { protected: // Information for all supported UARTs static constexpr uint32_t BASES[] = {0x400E0800U, 0x40098000U, 0x4009C000U, 0x400A0000U, 0x400A4000U}; static constexpr IRQn_Type IRQS[] = { UART_IRQn, USART0_IRQn, USART1_IRQn, USART2_IRQn, USART3_IRQn}; static constexpr int IRQ_IDS[] = { ID_UART, ID_USART0, ID_USART1, ID_USART2, ID_USART3}; // Alias for shorter code static constexpr StructWrapper<Uart,BASES[Cfg::PORT]> HWUART = 0; static constexpr IRQn_Type HWUART_IRQ = IRQS[Cfg::PORT]; static constexpr int HWUART_IRQ_ID = IRQ_IDS[Cfg::PORT]; // Base size of type on buffer size typedef uvalue_t(Cfg::RX_SIZE - 1) ring_buffer_pos_t; struct ring_buffer_r { volatile ring_buffer_pos_t head, tail; unsigned char buffer[Cfg::RX_SIZE]; }; struct ring_buffer_t { volatile uint8_t head, tail; unsigned char buffer[Cfg::TX_SIZE]; }; static ring_buffer_r rx_buffer; static ring_buffer_t tx_buffer; static bool _written; static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send // XON / XOFF character definitions static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19; static uint8_t xon_xoff_state, rx_dropped_bytes, rx_buffer_overruns, rx_framing_errors; static ring_buffer_pos_t rx_max_enqueued; FORCE_INLINE static void store_rxd_char(); FORCE_INLINE static void _tx_thr_empty_irq(); static void UART_ISR(); public: MarlinSerial() {}; static void begin(const long); static void end(); static int peek(); static int read(); static void flush(); static ring_buffer_pos_t available(); static size_t write(const uint8_t c); static void flushTX(); static bool emergency_parser_enabled() { return Cfg::EMERGENCYPARSER; } FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; } FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; } FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; } FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; } }; // Serial port configuration template <uint8_t serial> struct MarlinSerialCfg { static constexpr int PORT = serial; static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE; static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE; static constexpr bool XONOFF = ENABLED(SERIAL_XON_XOFF); static constexpr bool EMERGENCYPARSER = ENABLED(EMERGENCY_PARSER); static constexpr bool DROPPED_RX = ENABLED(SERIAL_STATS_DROPPED_RX); static constexpr bool RX_OVERRUNS = ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS); static constexpr bool RX_FRAMING_ERRORS = ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS); static constexpr bool MAX_RX_QUEUED = ENABLED(SERIAL_STATS_MAX_RX_QUEUED); }; #if defined(SERIAL_PORT) && SERIAL_PORT >= 0 typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT> > > MSerialT1; extern MSerialT1 customizedSerial1; #endif #if defined(SERIAL_PORT_2) && SERIAL_PORT_2 >= 0 typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> > > MSerialT2; extern MSerialT2 customizedSerial2; #endif #if defined(SERIAL_PORT_3) && SERIAL_PORT_3 >= 0 typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT_3> > > MSerialT3; extern MSerialT3 customizedSerial3; #endif
2301_81045437/Marlin
Marlin/src/HAL/DUE/MarlinSerial.h
C++
agpl-3.0
6,042
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #ifdef ARDUINO_ARCH_SAM /** * MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE * Copyright (c) 2017 Eduardo José Tagle. All right reserved * Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved. */ #include "../../inc/MarlinConfig.h" #if HAS_USB_SERIAL #include "MarlinSerialUSB.h" // Imports from Atmel USB Stack/CDC implementation extern "C" { bool usb_task_cdc_isenabled(); bool usb_task_cdc_dtr_active(); bool udi_cdc_is_rx_ready(); int udi_cdc_getc(); bool udi_cdc_is_tx_ready(); int udi_cdc_putc(int value); } // Pending character static int pending_char = -1; // Public Methods void MarlinSerialUSB::begin(const long) {} void MarlinSerialUSB::end() {} int MarlinSerialUSB::peek() { if (pending_char >= 0) return pending_char; // If USB CDC not enumerated or not configured on the PC side if (!usb_task_cdc_isenabled()) return -1; // If no bytes sent from the PC if (!udi_cdc_is_rx_ready()) return -1; pending_char = udi_cdc_getc(); TERN_(EMERGENCY_PARSER, emergency_parser.update(static_cast<MSerialT1*>(this)->emergency_state, (char)pending_char)); return pending_char; } int MarlinSerialUSB::read() { if (pending_char >= 0) { int ret = pending_char; pending_char = -1; return ret; } // If USB CDC not enumerated or not configured on the PC side if (!usb_task_cdc_isenabled()) return -1; // If no bytes sent from the PC if (!udi_cdc_is_rx_ready()) return -1; int c = udi_cdc_getc(); TERN_(EMERGENCY_PARSER, emergency_parser.update(static_cast<MSerialT1*>(this)->emergency_state, (char)c)); return c; } int MarlinSerialUSB::available() { if (pending_char > 0) return pending_char; return pending_char == 0 || // or USB CDC enumerated and configured on the PC side and some bytes where sent to us */ (usb_task_cdc_isenabled() && udi_cdc_is_rx_ready()); } void MarlinSerialUSB::flush() { } size_t MarlinSerialUSB::write(const uint8_t c) { /* Do not even bother sending anything if USB CDC is not enumerated or not configured on the PC side or there is no program on the PC listening to our messages */ if (!usb_task_cdc_isenabled() || !usb_task_cdc_dtr_active()) return 0; /* Wait until the PC has read the pending to be sent data */ while (usb_task_cdc_isenabled() && usb_task_cdc_dtr_active() && !udi_cdc_is_tx_ready()) { }; /* Do not even bother sending anything if USB CDC is not enumerated or not configured on the PC side or there is no program on the PC listening to our messages at this point */ if (!usb_task_cdc_isenabled() || !usb_task_cdc_dtr_active()) return 0; // Fifo full // udi_cdc_signal_overrun(); udi_cdc_putc(c); return 1; } // Preinstantiate #if SERIAL_PORT == -1 MSerialT1 customizedSerial1(TERN0(EMERGENCY_PARSER, true)); #endif #if SERIAL_PORT_2 == -1 MSerialT2 customizedSerial2(TERN0(EMERGENCY_PARSER, true)); #endif #if SERIAL_PORT_3 == -1 MSerialT3 customizedSerial3(TERN0(EMERGENCY_PARSER, true)); #endif #endif // HAS_USB_SERIAL #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/MarlinSerialUSB.cpp
C++
agpl-3.0
4,002
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * MarlinSerialUSB_Due.h - Hardware Serial over USB (CDC) library for Arduino DUE * Copyright (c) 2017 Eduardo José Tagle. All right reserved */ #include "../../inc/MarlinConfig.h" #include "../../core/serial_hook.h" #include <WString.h> struct MarlinSerialUSB { void begin(const long); void end(); int peek(); int read(); void flush(); int available(); size_t write(const uint8_t c); #if ENABLED(SERIAL_STATS_DROPPED_RX) FORCE_INLINE uint32_t dropped() { return 0; } #endif #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) FORCE_INLINE int rxMaxEnqueued() { return 0; } #endif }; #if SERIAL_PORT == -1 typedef Serial1Class<MarlinSerialUSB> MSerialT1; extern MSerialT1 customizedSerial1; #endif #if SERIAL_PORT_2 == -1 typedef Serial1Class<MarlinSerialUSB> MSerialT2; extern MSerialT2 customizedSerial2; #endif #if SERIAL_PORT_3 == -1 typedef Serial1Class<MarlinSerialUSB> MSerialT3; extern MSerialT3 customizedSerial3; #endif
2301_81045437/Marlin
Marlin/src/HAL/DUE/MarlinSerialUSB.h
C
agpl-3.0
1,851
/** * Marlin 3D Printer Firmware * Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfigPre.h" #if ENABLED(POSTMORTEM_DEBUGGING) #include "../shared/MinSerial.h" #include <stdarg.h> static void TXBegin() { // Disable UART interrupt in NVIC NVIC_DisableIRQ( UART_IRQn ); // We NEED memory barriers to ensure Interrupts are actually disabled! // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) __DSB(); __ISB(); // Disable clock pmc_disable_periph_clk( ID_UART ); // Configure PMC pmc_enable_periph_clk( ID_UART ); // Disable PDC channel UART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS; // Reset and disable receiver and transmitter UART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS; // Configure mode: 8bit, No parity, 1 bit stop UART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO; // Configure baudrate (asynchronous, no oversampling) to BAUDRATE bauds UART->UART_BRGR = (SystemCoreClock / (BAUDRATE << 4)); // Enable receiver and transmitter UART->UART_CR = UART_CR_RXEN | UART_CR_TXEN; } // A SW memory barrier, to ensure GCC does not overoptimize loops #define sw_barrier() __asm__ volatile("": : :"memory"); static void TX(char c) { while (!(UART->UART_SR & UART_SR_TXRDY)) { WDT_Restart(WDT); sw_barrier(); }; UART->UART_THR = c; } void install_min_serial() { HAL_min_serial_init = &TXBegin; HAL_min_serial_out = &TX; } #if DISABLED(DYNAMIC_VECTORTABLE) extern "C" { __attribute__((naked)) void JumpHandler_ASM() { __asm__ __volatile__ ( "b CommonHandler_ASM\n" ); } void __attribute__((naked, alias("JumpHandler_ASM"))) HardFault_Handler(); void __attribute__((naked, alias("JumpHandler_ASM"))) BusFault_Handler(); void __attribute__((naked, alias("JumpHandler_ASM"))) UsageFault_Handler(); void __attribute__((naked, alias("JumpHandler_ASM"))) MemManage_Handler(); void __attribute__((naked, alias("JumpHandler_ASM"))) NMI_Handler(); } #endif #endif // POSTMORTEM_DEBUGGING #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/MinSerial.cpp
C++
agpl-3.0
2,966
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /* Copyright (c) 2013 Arduino LLC. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #if HAS_SERVOS #include "../shared/servo.h" #include "../shared/servo_private.h" static Flags<_Nbr_16timers> DisablePending; // ISR should disable the timer at the next timer reset // ------------------------ /// Interrupt handler for the TC0 channel 1. // ------------------------ void Servo_Handler(const timer16_Sequence_t, Tc*, const uint8_t); #ifdef _useTimer1 void HANDLER_FOR_TIMER1() { Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1); } #endif #ifdef _useTimer2 void HANDLER_FOR_TIMER2() { Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2); } #endif #ifdef _useTimer3 void HANDLER_FOR_TIMER3() { Servo_Handler(_timer3, TC_FOR_TIMER3, CHANNEL_FOR_TIMER3); } #endif #ifdef _useTimer4 void HANDLER_FOR_TIMER4() { Servo_Handler(_timer4, TC_FOR_TIMER4, CHANNEL_FOR_TIMER4); } #endif #ifdef _useTimer5 void HANDLER_FOR_TIMER5() { Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5); } #endif void Servo_Handler(const timer16_Sequence_t timer, Tc *tc, const uint8_t channel) { static int8_t Channel[_Nbr_16timers]; // Servo counters to pulse (or -1 for refresh interval) int8_t cho = Channel[timer]; // Handle the prior Channel[timer] first if (cho < 0) { // Channel -1 indicates the refresh interval completed... tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // ...so reset the timer if (DisablePending[timer]) { // Disabling only after the full servo period expires prevents // pulses being too close together if immediately re-enabled. DisablePending.clear(timer); TC_Stop(tc, channel); tc->TC_CHANNEL[channel].TC_SR; // clear interrupt return; } } else if (SERVO_INDEX(timer, cho) < ServoCount) // prior channel handled? extDigitalWrite(SERVO(timer, cho).Pin.nbr, LOW); // pulse the prior channel LOW Channel[timer] = ++cho; // go to the next channel (or 0) if (cho < SERVOS_PER_TIMER && SERVO_INDEX(timer, cho) < ServoCount) { tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer, cho).ticks; if (SERVO(timer, cho).Pin.isActive) // activated? extDigitalWrite(SERVO(timer, cho).Pin.nbr, HIGH); // yes: pulse HIGH } else { // finished all channels so wait for the refresh period to expire before starting over const unsigned int cval = tc->TC_CHANNEL[channel].TC_CV + 128 / (SERVO_TIMER_PRESCALER), // allow 128 cycles to ensure the next CV not missed ival = (unsigned int)usToTicks(REFRESH_INTERVAL); // at least REFRESH_INTERVAL has elapsed tc->TC_CHANNEL[channel].TC_RA = max(cval, ival); Channel[timer] = -1; // reset the timer CCR on the next call } tc->TC_CHANNEL[channel].TC_SR; // clear interrupt } static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn) { pmc_enable_periph_clk(id); TC_Configure(tc, channel, TC_CMR_WAVE // Waveform mode | TC_CMR_WAVSEL_UP_RC // Counter running up and reset when equal to RC | (SERVO_TIMER_PRESCALER == 2 ? TC_CMR_TCCLKS_TIMER_CLOCK1 : 0) // MCK/2 | (SERVO_TIMER_PRESCALER == 8 ? TC_CMR_TCCLKS_TIMER_CLOCK2 : 0) // MCK/8 | (SERVO_TIMER_PRESCALER == 32 ? TC_CMR_TCCLKS_TIMER_CLOCK3 : 0) // MCK/32 | (SERVO_TIMER_PRESCALER == 128 ? TC_CMR_TCCLKS_TIMER_CLOCK4 : 0) // MCK/128 ); // Wait 1ms before the first ISR TC_SetRA(tc, channel, (F_CPU) / (SERVO_TIMER_PRESCALER) / 1000UL); // 1ms // Configure and enable interrupt NVIC_EnableIRQ(irqn); tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS; // TC_IER_CPAS: RA Compare // Enables the timer clock and performs a software reset to start the counting TC_Start(tc, channel); } void initISR(const timer16_Sequence_t timer_index) { CRITICAL_SECTION_START(); const bool disable_soon = DisablePending[timer_index]; DisablePending.clear(timer_index); CRITICAL_SECTION_END(); if (!disable_soon) switch (timer_index) { default: break; #ifdef _useTimer1 case _timer1: return _initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1); #endif #ifdef _useTimer2 case _timer2: return _initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2); #endif #ifdef _useTimer3 case _timer3: return _initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3); #endif #ifdef _useTimer4 case _timer4: return _initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4); #endif #ifdef _useTimer5 case _timer5: return _initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5); #endif } } void finISR(const timer16_Sequence_t timer_index) { // Timer is disabled from the ISR, to ensure proper final pulse length. DisablePending.set(timer_index); } #endif // HAS_SERVOS #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/Servo.cpp
C++
agpl-3.0
6,934
/** * Copyright (c) 2013 Arduino LLC. All right reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** * Defines for 16 bit timers used with Servo library * * If _useTimerX is defined then TimerX is a 32 bit timer on the current board * timer16_Sequence_t enumerates the sequence that the timers should be allocated * _Nbr_16timers indicates how many timers are available. */ /** * SAM Only definitions * -------------------- */ // For SAM3X: //!#define _useTimer1 //!#define _useTimer2 #define _useTimer3 //!#define _useTimer4 #define _useTimer5 #define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays #define SERVO_TIMER_PRESCALER 2 // timer prescaler /* TC0, chan 0 => TC0_Handler TC0, chan 1 => TC1_Handler TC0, chan 2 => TC2_Handler TC1, chan 0 => TC3_Handler TC1, chan 1 => TC4_Handler TC1, chan 2 => TC5_Handler TC2, chan 0 => TC6_Handler TC2, chan 1 => TC7_Handler TC2, chan 2 => TC8_Handler */ #ifdef _useTimer1 #define TC_FOR_TIMER1 TC1 #define CHANNEL_FOR_TIMER1 0 #define ID_TC_FOR_TIMER1 ID_TC3 #define IRQn_FOR_TIMER1 TC3_IRQn #define HANDLER_FOR_TIMER1 TC3_Handler #endif #ifdef _useTimer2 #define TC_FOR_TIMER2 TC1 #define CHANNEL_FOR_TIMER2 1 #define ID_TC_FOR_TIMER2 ID_TC4 #define IRQn_FOR_TIMER2 TC4_IRQn #define HANDLER_FOR_TIMER2 TC4_Handler #endif #ifdef _useTimer3 #define TC_FOR_TIMER3 TC1 #define CHANNEL_FOR_TIMER3 2 #define ID_TC_FOR_TIMER3 ID_TC5 #define IRQn_FOR_TIMER3 TC5_IRQn #define HANDLER_FOR_TIMER3 TC5_Handler #endif #ifdef _useTimer4 #define TC_FOR_TIMER4 TC0 #define CHANNEL_FOR_TIMER4 2 #define ID_TC_FOR_TIMER4 ID_TC2 #define IRQn_FOR_TIMER4 TC2_IRQn #define HANDLER_FOR_TIMER4 TC2_Handler #endif #ifdef _useTimer5 #define TC_FOR_TIMER5 TC0 #define CHANNEL_FOR_TIMER5 0 #define ID_TC_FOR_TIMER5 ID_TC0 #define IRQn_FOR_TIMER5 TC0_IRQn #define HANDLER_FOR_TIMER5 TC0_Handler #endif typedef enum : unsigned char { #ifdef _useTimer1 _timer1, #endif #ifdef _useTimer2 _timer2, #endif #ifdef _useTimer3 _timer3, #endif #ifdef _useTimer4 _timer4, #endif #ifdef _useTimer5 _timer5, #endif _Nbr_16timers } timer16_Sequence_t;
2301_81045437/Marlin
Marlin/src/HAL/DUE/ServoTimers.h
C
agpl-3.0
3,013
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * SAMD51 HAL developed by Giuliano Zaro (AKA GMagician) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Description: Tone function for Arduino Due and compatible (SAM3X8E) * Derived from https://forum.arduino.cc/index.php?topic=136500.msg2903012#msg2903012 */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #include "HAL.h" static pin_t tone_pin; volatile static int32_t toggles; void tone(const pin_t _pin, const unsigned int frequency, const unsigned long duration/*=0*/) { tone_pin = _pin; toggles = 2 * frequency * duration / 1000; HAL_timer_start(MF_TIMER_TONE, 2 * frequency); } void noTone(const pin_t _pin) { HAL_timer_disable_interrupt(MF_TIMER_TONE); extDigitalWrite(_pin, LOW); } HAL_TONE_TIMER_ISR() { static uint8_t pin_state = 0; HAL_timer_isr_prologue(MF_TIMER_TONE); if (toggles) { toggles--; extDigitalWrite(tone_pin, (pin_state ^= 1)); } else noTone(tone_pin); // turn off interrupt } #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/Tone.cpp
C++
agpl-3.0
1,831
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #if ENABLED(FLASH_EEPROM_EMULATION) /* EEPROM emulation over flash with reduced wear * * We will use 2 contiguous groups of pages as main and alternate. * We want an structure that allows to read as fast as possible, * without the need of scanning the whole FLASH memory. * * FLASH bits default erased state is 1, and can be set to 0 * on a per bit basis. To reset them to 1, a full page erase * is needed. * * Values are stored as differences that should be applied to a * completely erased EEPROM (filled with 0xFFs). We just encode * the starting address of the values to change, the length of * the block of new values, and the values themselves. All diffs * are accumulated into a RAM buffer, compacted into the least * amount of non overlapping diffs possible and sorted by starting * address before being saved into the next available page of FLASH * of the current group. * Once the current group is completely full, we compact it and save * it into the other group, then erase the current group and switch * to that new group and set it as current. * * The FLASH endurance is about 1/10 ... 1/100 of an EEPROM * endurance, but EEPROM endurance is specified per byte, not * per page. We can't emulate EE endurance with FLASH for all * bytes, but we can emulate endurance for a given percent of * bytes. */ //#define EE_EMU_DEBUG #define EEPROMSize 4096 #define PagesPerGroup 128 #define GroupCount 2 #define PageSize 256U /* Flash storage */ typedef struct FLASH_SECTOR { uint8_t page[PageSize]; } FLASH_SECTOR_T; #define PAGE_FILL \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF #define FLASH_INIT_FILL \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \ PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL /* This is the FLASH area used to emulate a 2Kbyte EEPROM -- We need this buffer aligned to a 256 byte boundary. */ static const uint8_t flashStorage[PagesPerGroup * GroupCount * PageSize] __attribute__ ((aligned (PageSize))) = { FLASH_INIT_FILL }; /* Get the address of an specific page */ static const FLASH_SECTOR_T* getFlashStorage(int page) { return (const FLASH_SECTOR_T*)&flashStorage[page*PageSize]; } static uint8_t buffer[256] = {0}, // The RAM buffer to accumulate writes curPage = 0, // Current FLASH page inside the group curGroup = 0xFF; // Current FLASH group #define DEBUG_OUT ENABLED(EE_EMU_DEBUG) #include "../../core/debug_out.h" static void ee_Dump(const int page, const void *data) { #ifdef EE_EMU_DEBUG const uint8_t *c = (const uint8_t*) data; char buffer[80]; sprintf_P(buffer, PSTR("Page: %d (0x%04x)\n"), page, page); DEBUG_ECHO(buffer); char* p = &buffer[0]; for (int i = 0; i< PageSize; ++i) { if ((i & 0xF) == 0) p += sprintf_P(p, PSTR("%04x] "), i); p += sprintf_P(p, PSTR(" %02x"), c[i]); if ((i & 0xF) == 0xF) { *p++ = '\n'; *p = 0; DEBUG_ECHO(buffer); p = &buffer[0]; } } #else UNUSED(page); UNUSED(data); #endif } /* Flash Writing Protection Key */ #define FWP_KEY 0x5Au #if SAM4S_SERIES #define EEFC_FCR_FCMD(value) \ ((EEFC_FCR_FCMD_Msk & ((value) << EEFC_FCR_FCMD_Pos))) #define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE | EEFC_FSR_FLERR) #else #define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE) #endif /** * Writes the contents of the specified page (no previous erase) * @param page (page #) * @param data (pointer to the data buffer) */ __attribute__ ((long_call, section (".ramfunc"))) static bool ee_PageWrite(uint16_t page, const void *data) { uint16_t i; uint32_t addrflash = uint32_t(getFlashStorage(page)); // Read the flash contents uint32_t pageContents[PageSize>>2]; memcpy(pageContents, (void*)addrflash, PageSize); // We ONLY want to toggle bits that have changed, and that have changed to 0. // SAM3X8E tends to destroy contiguous bits if reprogrammed without erasing, so // we try by all means to avoid this. That is why it says: "The Partial // Programming mode works only with 128-bit (or higher) boundaries. It cannot // be used with boundaries lower than 128 bits (8, 16 or 32-bit for example)." // All bits that did not change, set them to 1. for (i = 0; i <PageSize >> 2; i++) pageContents[i] = (((uint32_t*)data)[i]) | (~(pageContents[i] ^ ((uint32_t*)data)[i])); DEBUG_ECHO_MSG("EEPROM PageWrite ", page); DEBUG_ECHOLNPGM(" in FLASH address ", (uint32_t)addrflash); DEBUG_ECHOLNPGM(" base address ", (uint32_t)getFlashStorage(0)); DEBUG_FLUSH(); // Get the page relative to the start of the EFC controller, and the EFC controller to use Efc *efc; uint16_t fpage; if (addrflash >= IFLASH1_ADDR) { efc = EFC1; fpage = (addrflash - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE; } else { efc = EFC0; fpage = (addrflash - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE; } // Get the page that must be unlocked, then locked uint16_t lpage = fpage & (~((IFLASH0_LOCK_REGION_SIZE / IFLASH0_PAGE_SIZE) - 1)); // Disable all interrupts __disable_irq(); // Get the FLASH wait states uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos; // Set wait states to 6 (SAM errata) efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6); // Unlock the flash page uint32_t status; efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(lpage) | EEFC_FCR_FCMD(EFC_FCMD_CLB); while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) { // force compiler to not optimize this -- NOPs don't work! __asm__ __volatile__(""); }; if ((status & EEFC_ERROR_FLAGS) != 0) { // Restore original wait states efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS); // Reenable interrupts __enable_irq(); DEBUG_ECHO_MSG("EEPROM Unlock failure for page ", page); return false; } // Write page and lock: Writing 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption. const uint32_t * aligned_src = (const uint32_t *) &pageContents[0]; /*data;*/ uint32_t * p_aligned_dest = (uint32_t *) addrflash; for (i = 0; i < (IFLASH0_PAGE_SIZE / sizeof(uint32_t)); ++i) { *p_aligned_dest++ = *aligned_src++; } efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(fpage) | EEFC_FCR_FCMD(EFC_FCMD_WPL); while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) { // force compiler to not optimize this -- NOPs don't work! __asm__ __volatile__(""); }; if ((status & EEFC_ERROR_FLAGS) != 0) { // Restore original wait states efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS); // Reenable interrupts __enable_irq(); DEBUG_ECHO_MSG("EEPROM Write failure for page ", page); return false; } // Restore original wait states efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS); // Reenable interrupts __enable_irq(); // Compare contents if (memcmp(getFlashStorage(page),data,PageSize)) { #ifdef EE_EMU_DEBUG DEBUG_ECHO_MSG("EEPROM Verify Write failure for page ", page); ee_Dump( page, (uint32_t *)addrflash); ee_Dump(-page, data); // Calculate count of changed bits uint32_t *p1 = (uint32_t*)addrflash; uint32_t *p2 = (uint32_t*)data; int count = 0; for (i =0; i<PageSize >> 2; i++) { if (p1[i] != p2[i]) { uint32_t delta = p1[i] ^ p2[i]; while (delta) { if ((delta&1) != 0) count++; delta >>= 1; } } } DEBUG_ECHOLNPGM("--> Differing bits: ", count); #endif return false; } return true; } /** * Erases the contents of the specified page * @param page (page #) */ __attribute__ ((long_call, section (".ramfunc"))) static bool ee_PageErase(uint16_t page) { uint16_t i; uint32_t addrflash = uint32_t(getFlashStorage(page)); DEBUG_ECHO_MSG("EEPROM PageErase ", page); DEBUG_ECHOLNPGM(" in FLASH address ", (uint32_t)addrflash); DEBUG_ECHOLNPGM(" base address ", (uint32_t)getFlashStorage(0)); DEBUG_FLUSH(); // Get the page relative to the start of the EFC controller, and the EFC controller to use Efc *efc; uint16_t fpage; if (addrflash >= IFLASH1_ADDR) { efc = EFC1; fpage = (addrflash - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE; } else { efc = EFC0; fpage = (addrflash - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE; } // Get the page that must be unlocked, then locked uint16_t lpage = fpage & (~((IFLASH0_LOCK_REGION_SIZE / IFLASH0_PAGE_SIZE) - 1)); // Disable all interrupts __disable_irq(); // Get the FLASH wait states uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos; // Set wait states to 6 (SAM errata) efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6); // Unlock the flash page uint32_t status; efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(lpage) | EEFC_FCR_FCMD(EFC_FCMD_CLB); while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) { // force compiler to not optimize this -- NOPs don't work! __asm__ __volatile__(""); }; if ((status & EEFC_ERROR_FLAGS) != 0) { // Restore original wait states efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS); // Reenable interrupts __enable_irq(); DEBUG_ECHO_MSG("EEPROM Unlock failure for page ",page); return false; } // Erase Write page and lock: Writing 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption. uint32_t * p_aligned_dest = (uint32_t *) addrflash; for (i = 0; i < (IFLASH0_PAGE_SIZE / sizeof(uint32_t)); ++i) { *p_aligned_dest++ = 0xFFFFFFFF; } efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(fpage) | EEFC_FCR_FCMD(EFC_FCMD_EWPL); while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) { // force compiler to not optimize this -- NOPs don't work! __asm__ __volatile__(""); }; if ((status & EEFC_ERROR_FLAGS) != 0) { // Restore original wait states efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS); // Reenable interrupts __enable_irq(); DEBUG_ECHO_MSG("EEPROM Erase failure for page ",page); return false; } // Restore original wait states efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS); // Reenable interrupts __enable_irq(); // Check erase uint32_t * aligned_src = (uint32_t *) addrflash; for (i = 0; i < PageSize >> 2; i++) { if (*aligned_src++ != 0xFFFFFFFF) { DEBUG_ECHO_MSG("EEPROM Verify Erase failure for page ",page); ee_Dump(page, (uint32_t *)addrflash); return false; } } return true; } static uint8_t ee_Read(uint32_t address, bool excludeRAMBuffer=false) { uint32_t baddr; uint32_t blen; // If we were requested an address outside of the emulated range, fail now if (address >= EEPROMSize) return false; // Check that the value is not contained in the RAM buffer if (!excludeRAMBuffer) { uint16_t i = 0; while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */ // Get the address of the block baddr = buffer[i] | (buffer[i + 1] << 8); // Get the length of the block blen = buffer[i + 2]; // If we reach the end of the list, break loop if (blen == 0xFF) break; // Check if data is contained in this block if (address >= baddr && address < (baddr + blen)) { // Yes, it is contained. Return it! return buffer[i + 3 + address - baddr]; } // As blocks are always sorted, if the starting address of this block is higher // than the address we are looking for, break loop now - We wont find the value // associated to the address if (baddr > address) break; // Jump to the next block i += 3 + blen; } } // It is NOT on the RAM buffer. It could be stored in FLASH. We are // ensured on a given FLASH page, address contents are never repeated // but on different pages, there is no such warranty, so we must go // backwards from the last written FLASH page to the first one. for (int page = curPage - 1; page >= 0; --page) { // Get a pointer to the flash page uint8_t *pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup); uint16_t i = 0; while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */ // Get the address of the block baddr = pflash[i] | (pflash[i + 1] << 8); // Get the length of the block blen = pflash[i + 2]; // If we reach the end of the list, break loop if (blen == 0xFF) break; // Check if data is contained in this block if (address >= baddr && address < (baddr + blen)) return pflash[i + 3 + address - baddr]; // Yes, it is contained. Return it! // As blocks are always sorted, if the starting address of this block is higher // than the address we are looking for, break loop now - We wont find the value // associated to the address if (baddr > address) break; // Jump to the next block i += 3 + blen; } } // If reached here, value is not stored, so return its default value return 0xFF; } static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer=false) { uint32_t baddr, blen, nextAddr = 0xFFFF, nextRange = 0; // Check that the value is not contained in the RAM buffer if (!excludeRAMBuffer) { uint16_t i = 0; while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */ // Get the address of the block baddr = buffer[i] | (buffer[i + 1] << 8); // Get the length of the block blen = buffer[i + 2]; // If we reach the end of the list, break loop if (blen == 0xFF) break; // Check if address and address + 1 is contained in this block if (address >= baddr && address < (baddr + blen)) return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it! // Otherwise, check if we can use it as a limit if (baddr > address && baddr < nextAddr) { nextAddr = baddr; nextRange = blen; } // As blocks are always sorted, if the starting address of this block is higher // than the address we are looking for, break loop now - We wont find the value // associated to the address if (baddr > address) break; // Jump to the next block i += 3 + blen; } } // It is NOT on the RAM buffer. It could be stored in FLASH. We are // ensured on a given FLASH page, address contents are never repeated // but on different pages, there is no such warranty, so we must go // backwards from the last written FLASH page to the first one. for (int page = curPage - 1; page >= 0; --page) { // Get a pointer to the flash page uint8_t *pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup); uint16_t i = 0; while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */ // Get the address of the block baddr = pflash[i] | (pflash[i + 1] << 8); // Get the length of the block blen = pflash[i + 2]; // If we reach the end of the list, break loop if (blen == 0xFF) break; // Check if data is contained in this block if (address >= baddr && address < (baddr + blen)) return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it! // Otherwise, check if we can use it as a limit if (baddr > address && baddr < nextAddr) { nextAddr = baddr; nextRange = blen; } // As blocks are always sorted, if the starting address of this block is higher // than the address we are looking for, break loop now - We wont find the value // associated to the address if (baddr > address) break; // Jump to the next block i += 3 + blen; } } // If reached here, we will return the next valid address return nextAddr | (nextRange << 16); } static bool ee_IsPageClean(int page) { uint32_t *pflash = (uint32_t*) getFlashStorage(page); for (uint16_t i = 0; i < (PageSize >> 2); ++i) if (*pflash++ != 0xFFFFFFFF) return false; return true; } static bool ee_Flush(uint32_t overrideAddress = 0xFFFFFFFF, uint8_t overrideData=0xFF) { // Check if RAM buffer has something to be written bool isEmpty = true; uint32_t *p = (uint32_t*) &buffer[0]; for (uint16_t j = 0; j < (PageSize >> 2); j++) { if (*p++ != 0xFFFFFFFF) { isEmpty = false; break; } } // If something has to be written, do so! if (!isEmpty) { // Write the current ram buffer into FLASH ee_PageWrite(curPage + curGroup * PagesPerGroup, buffer); // Clear the RAM buffer memset(buffer, 0xFF, sizeof(buffer)); // Increment the page to use the next time ++curPage; } // Did we reach the maximum count of available pages per group for storage ? if (curPage < PagesPerGroup) { // Do we have an override address ? if (overrideAddress < EEPROMSize) { // Yes, just store the value into the RAM buffer buffer[0] = overrideAddress & 0xFF; buffer[0 + 1] = (overrideAddress >> 8) & 0xFF; buffer[0 + 2] = 1; buffer[0 + 3] = overrideData; } // Done! return true; } // We have no space left on the current group - We must compact the values uint16_t i = 0; // Compute the next group to use int curwPage = 0, curwGroup = curGroup + 1; if (curwGroup >= GroupCount) curwGroup = 0; uint32_t rdAddr = 0; do { // Get the next valid range uint32_t addrRange = ee_GetAddrRange(rdAddr, true); // Make sure not to skip the override address, if specified int rdRange; if (overrideAddress < EEPROMSize && rdAddr <= overrideAddress && (addrRange & 0xFFFF) > overrideAddress) { rdAddr = overrideAddress; rdRange = 1; } else { rdAddr = addrRange & 0xFFFF; rdRange = addrRange >> 16; } // If no range, break loop if (rdRange == 0) break; do { // Get the value uint8_t rdValue = overrideAddress == rdAddr ? overrideData : ee_Read(rdAddr, true); // Do not bother storing default values if (rdValue != 0xFF) { // If we have room, add it to the buffer if (buffer[i + 2] == 0xFF) { // Uninitialized buffer, just add it! buffer[i] = rdAddr & 0xFF; buffer[i + 1] = (rdAddr >> 8) & 0xFF; buffer[i + 2] = 1; buffer[i + 3] = rdValue; } else { // Buffer already has contents. Check if we can extend it // Get the address of the block uint32_t baddr = buffer[i] | (buffer[i + 1] << 8); // Get the length of the block uint32_t blen = buffer[i + 2]; // Can we expand it ? if (rdAddr == (baddr + blen) && i < (PageSize - 4) && /* This block has a chance to contain data AND */ buffer[i + 2] < (PageSize - i - 3)) {/* There is room for this block to be expanded */ // Yes, do it ++buffer[i + 2]; // And store the value buffer[i + 3 + rdAddr - baddr] = rdValue; } else { // No, we can't expand it - Skip the existing block i += 3 + blen; // Can we create a new slot ? if (i > (PageSize - 4)) { // Not enough space - Write the current buffer to FLASH ee_PageWrite(curwPage + curwGroup * PagesPerGroup, buffer); // Advance write page (as we are compacting, should never overflow!) ++curwPage; // Clear RAM buffer memset(buffer, 0xFF, sizeof(buffer)); // Start fresh */ i = 0; } // Enough space, add the new block buffer[i] = rdAddr & 0xFF; buffer[i + 1] = (rdAddr >> 8) & 0xFF; buffer[i + 2] = 1; buffer[i + 3] = rdValue; } } } // Go to the next address ++rdAddr; // Repeat for bytes of this range } while (--rdRange); // Repeat until we run out of ranges } while (rdAddr < EEPROMSize); // We must erase the previous group, in preparation for the next swap for (int page = 0; page < curPage; page++) { ee_PageErase(page + curGroup * PagesPerGroup); } // Finally, Now the active group is the created new group curGroup = curwGroup; curPage = curwPage; // Done! return true; } static bool ee_Write(uint32_t address, uint8_t data) { // If we were requested an address outside of the emulated range, fail now if (address >= EEPROMSize) return false; // Lets check if we have a block with that data previously defined. Block // start addresses are always sorted in ascending order uint16_t i = 0; while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */ // Get the address of the block uint32_t baddr = buffer[i] | (buffer[i + 1] << 8); // Get the length of the block uint32_t blen = buffer[i + 2]; // If we reach the end of the list, break loop if (blen == 0xFF) break; // Check if data is contained in this block if (address >= baddr && address < (baddr + blen)) { // Yes, it is contained. Just modify it buffer[i + 3 + address - baddr] = data; // Done! return true; } // Maybe we could add it to the front or to the back // of this block ? if ((address + 1) == baddr || address == (baddr + blen)) { // Potentially, it could be done. But we must ensure there is room // so we can expand the block. Lets find how much free space remains uint32_t iend = i; do { uint32_t ln = buffer[iend + 2]; if (ln == 0xFF) break; iend += 3 + ln; } while (iend <= (PageSize - 4)); /* (PageSize - 4) because otherwise, there is not enough room for data and headers */ // Here, inxt points to the first free address in the buffer. Do we have room ? if (iend < PageSize) { // Yes, at least a byte is free - We can expand the block // Do we have to insert at the beginning ? if ((address + 1) == baddr) { // Insert at the beginning // Make room at the beginning for our byte memmove(&buffer[i + 3 + 1], &buffer[i + 3], iend - i - 3); // Adjust the header and store the data buffer[i] = address & 0xFF; buffer[i + 1] = (address >> 8) & 0xFF; buffer[i + 2]++; buffer[i + 3] = data; } else { // Insert at the end - There is a very interesting thing that could happen here: // Maybe we could coalesce the next block with this block. Let's try to do it! uint16_t inext = i + 3 + blen; if (inext <= (PageSize - 4) && (buffer[inext] | uint16_t(buffer[inext + 1] << 8)) == (baddr + blen + 1)) { // YES! ... we can coalesce blocks! . Do it! // Adjust this block header to include the next one buffer[i + 2] += buffer[inext + 2] + 1; // Store data at the right place buffer[i + 3 + blen] = data; // Remove the next block header and append its data memmove(&buffer[inext + 1], &buffer[inext + 3], iend - inext - 3); // Finally, as we have saved 2 bytes at the end, make sure to clean them buffer[iend - 2] = 0xFF; buffer[iend - 1] = 0xFF; } else { // NO ... No coalescing possible yet // Make room at the end for our byte memmove(&buffer[i + 3 + blen + 1], &buffer[i + 3 + blen], iend - i - 3 - blen); // And add the data to the block buffer[i + 2]++; buffer[i + 3 + blen] = data; } } // Done! return true; } } // As blocks are always sorted, if the starting address of this block is higher // than the address we are looking for, break loop now - We wont find the value // associated to the address if (baddr > address) break; // Jump to the next block i += 3 + blen; } // Value is not stored AND we can't expand previous block to contain it. We must create a new block // First, lets find how much free space remains uint32_t iend = i; while (iend <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */ uint32_t ln = buffer[iend + 2]; if (ln == 0xFF) break; iend += 3 + ln; } // If there is room for a new block, insert it at the proper place if (iend <= (PageSize - 4)) { // We have room to create a new block. Do so --- But add // the block at the proper position, sorted by starting // address, so it will be possible to compact it with other blocks. // Make space memmove(&buffer[i + 4], &buffer[i], iend - i); // And add the block buffer[i] = address & 0xFF; buffer[i + 1] = (address >> 8) & 0xFF; buffer[i + 2] = 1; buffer[i + 3] = data; // Done! return true; } // Not enough room to store this information on this FLASH page - Perform a // flush and override the address with the specified contents return ee_Flush(address, data); } static void ee_Init() { // Just init once! if (curGroup != 0xFF) return; // Clean up the SRAM buffer memset(buffer, 0xFF, sizeof(buffer)); // Now, we must find out the group where settings are stored for (curGroup = 0; curGroup < GroupCount; curGroup++) if (!ee_IsPageClean(curGroup * PagesPerGroup)) break; // If all groups seem to be used, default to first group if (curGroup >= GroupCount) curGroup = 0; DEBUG_ECHO_MSG("EEPROM Current Group: ",curGroup); DEBUG_FLUSH(); // Now, validate that all the other group pages are empty for (int grp = 0; grp < GroupCount; grp++) { if (grp == curGroup) continue; for (int page = 0; page < PagesPerGroup; page++) { if (!ee_IsPageClean(grp * PagesPerGroup + page)) { DEBUG_ECHO_MSG("EEPROM Page ", page, " not clean on group ", grp); DEBUG_FLUSH(); ee_PageErase(grp * PagesPerGroup + page); } } } // Finally, for the active group, determine the first unused page // and also validate that all the other ones are clean for (curPage = 0; curPage < PagesPerGroup; curPage++) { if (ee_IsPageClean(curGroup * PagesPerGroup + curPage)) { ee_Dump(curGroup * PagesPerGroup + curPage, getFlashStorage(curGroup * PagesPerGroup + curPage)); break; } } DEBUG_ECHO_MSG("EEPROM Active page: ", curPage); DEBUG_FLUSH(); // Make sure the pages following the first clean one are also clean for (int page = curPage + 1; page < PagesPerGroup; page++) { if (!ee_IsPageClean(curGroup * PagesPerGroup + page)) { DEBUG_ECHO_MSG("EEPROM Page ", page, " not clean on active group ", curGroup); DEBUG_FLUSH(); ee_Dump(curGroup * PagesPerGroup + page, getFlashStorage(curGroup * PagesPerGroup + page)); ee_PageErase(curGroup * PagesPerGroup + page); } } } /* PersistentStore -----------------------------------------------------------*/ #include "../shared/eeprom_api.h" #ifndef MARLIN_EEPROM_SIZE #define MARLIN_EEPROM_SIZE 0x1000 // 4KB #endif size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE - eeprom_exclude_size; } bool PersistentStore::access_start() { ee_Init(); return true; } bool PersistentStore::access_finish() { ee_Flush(); return true; } bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) { uint16_t written = 0; while (size--) { uint8_t * const p = (uint8_t * const)REAL_EEPROM_ADDR(pos); uint8_t v = *value; if (v != ee_Read(uint32_t(p))) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed! ee_Write(uint32_t(p), v); if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes if (ee_Read(uint32_t(p)) != v) { SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE); return true; } } crc16(crc, &v, 1); pos++; value++; } return false; } bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) { do { uint8_t c = ee_Read(uint32_t(REAL_EEPROM_ADDR(pos))); if (writing) *value = c; crc16(crc, &c, 1); pos++; value++; } while (--size); return false; } #endif // FLASH_EEPROM_EMULATION #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/eeprom_flash.cpp
C++
agpl-3.0
34,089
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #if USE_WIRED_EEPROM /** * PersistentStore for Arduino-style EEPROM interface * with simple implementations supplied by Marlin. */ #include "../shared/eeprom_if.h" #include "../shared/eeprom_api.h" #ifndef MARLIN_EEPROM_SIZE #error "MARLIN_EEPROM_SIZE is required for I2C / SPI EEPROM." #endif size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE - eeprom_exclude_size; } bool PersistentStore::access_start() { eeprom_init(); return true; } bool PersistentStore::access_finish() { return true; } bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) { uint16_t written = 0; while (size--) { uint8_t * const p = (uint8_t * const)REAL_EEPROM_ADDR(pos); uint8_t v = *value; if (v != eeprom_read_byte(p)) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed! eeprom_write_byte(p, v); if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes if (eeprom_read_byte(p) != v) { SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE); return true; } } crc16(crc, &v, 1); pos++; value++; } return false; } bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) { do { const uint8_t c = eeprom_read_byte((uint8_t*)REAL_EEPROM_ADDR(pos)); if (writing) *value = c; crc16(crc, &c, 1); pos++; value++; } while (--size); return false; } #endif // USE_WIRED_EEPROM #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/eeprom_wired.cpp
C++
agpl-3.0
2,486
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Endstop Interrupts * * Without endstop interrupts the endstop pins must be polled continually in * the temperature-ISR via endstops.update(), most of the time finding no change. * With this feature endstops.update() is called only when we know that at * least one endstop has changed state, saving valuable CPU cycles. * * This feature only works when all used endstop pins can generate an 'external interrupt'. * * Test whether pins issue interrupts on your board by flashing 'pin_interrupt_test.ino'. * (Located in Marlin/buildroot/share/pin_interrupt_test/pin_interrupt_test.ino) */ #include "../../module/endstops.h" // One ISR for all EXT-Interrupts void endstop_ISR() { endstops.update(); } /** * Endstop interrupts for Due based targets. * On Due, all pins support external interrupt capability. */ void setup_endstop_interrupts() { #define _ATTACH(P) attachInterrupt(digitalPinToInterrupt(P), endstop_ISR, CHANGE) TERN_(USE_X_MAX, _ATTACH(X_MAX_PIN)); TERN_(USE_X_MIN, _ATTACH(X_MIN_PIN)); TERN_(USE_Y_MAX, _ATTACH(Y_MAX_PIN)); TERN_(USE_Y_MIN, _ATTACH(Y_MIN_PIN)); TERN_(USE_Z_MAX, _ATTACH(Z_MAX_PIN)); TERN_(USE_Z_MIN, _ATTACH(Z_MIN_PIN)); TERN_(USE_X2_MAX, _ATTACH(X2_MAX_PIN)); TERN_(USE_X2_MIN, _ATTACH(X2_MIN_PIN)); TERN_(USE_Y2_MAX, _ATTACH(Y2_MAX_PIN)); TERN_(USE_Y2_MIN, _ATTACH(Y2_MIN_PIN)); TERN_(USE_Z2_MAX, _ATTACH(Z2_MAX_PIN)); TERN_(USE_Z2_MIN, _ATTACH(Z2_MIN_PIN)); TERN_(USE_Z3_MAX, _ATTACH(Z3_MAX_PIN)); TERN_(USE_Z3_MIN, _ATTACH(Z3_MIN_PIN)); TERN_(USE_Z4_MAX, _ATTACH(Z4_MAX_PIN)); TERN_(USE_Z4_MIN, _ATTACH(Z4_MIN_PIN)); TERN_(USE_Z_MIN_PROBE, _ATTACH(Z_MIN_PROBE_PIN)); TERN_(USE_I_MAX, _ATTACH(I_MAX_PIN)); TERN_(USE_I_MIN, _ATTACH(I_MIN_PIN)); TERN_(USE_J_MAX, _ATTACH(J_MAX_PIN)); TERN_(USE_J_MIN, _ATTACH(J_MIN_PIN)); TERN_(USE_K_MAX, _ATTACH(K_MAX_PIN)); TERN_(USE_K_MIN, _ATTACH(K_MIN_PIN)); TERN_(USE_U_MAX, _ATTACH(U_MAX_PIN)); TERN_(USE_U_MIN, _ATTACH(U_MIN_PIN)); TERN_(USE_V_MAX, _ATTACH(V_MAX_PIN)); TERN_(USE_V_MIN, _ATTACH(V_MIN_PIN)); TERN_(USE_W_MAX, _ATTACH(W_MAX_PIN)); TERN_(USE_W_MIN, _ATTACH(W_MIN_PIN)); }
2301_81045437/Marlin
Marlin/src/HAL/DUE/endstop_interrupts.h
C
agpl-3.0
3,179
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * The PWM module is only used to generate interrupts at specified times. It * is NOT used to directly toggle pins. The ISR writes to the pin assigned to * that interrupt. * * All PWMs use the same repetition rate. The G2 needs about 10kHz min in order to * not have obvious ripple on the Vref signals. * * The data structures are setup to minimize the computation done by the ISR which * minimizes ISR execution time. Execution times are 0.8 to 1.1 microseconds. * * FIve PWM interrupt sources are used. Channel 0 sets the base period. All Vref * signals are set active when this counter overflows and resets to zero. The compare * values in channels 1-4 are set to give the desired duty cycle for that Vref pin. * When counter 0 matches the compare value then that channel generates an interrupt. * The ISR checks the source of the interrupt and sets the corresponding pin inactive. * * Some jitter in the Vref signal is OK so the interrupt priority is left at its default value. */ #include "../../../inc/MarlinConfig.h" #if MB(PRINTRBOARD_G2) #include "G2_PWM.h" #if PIN_EXISTS(MOTOR_CURRENT_PWM_X) #define G2_PWM_X 1 #else #define G2_PWM_X 0 #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y) #define G2_PWM_Y 1 #else #define G2_PWM_Y 0 #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) #define G2_PWM_Z 1 #else #define G2_PWM_Z 0 #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) #define G2_PWM_E 1 #else #define G2_PWM_E 0 #endif #define G2_MASK_X(V) (G2_PWM_X * (V)) #define G2_MASK_Y(V) (G2_PWM_Y * (V)) #define G2_MASK_Z(V) (G2_PWM_Z * (V)) #define G2_MASK_E(V) (G2_PWM_E * (V)) volatile uint32_t *SODR_A = &PIOA->PIO_SODR, *SODR_B = &PIOB->PIO_SODR, *CODR_A = &PIOA->PIO_CODR, *CODR_B = &PIOB->PIO_CODR; PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT; void Stepper::digipot_init() { #if PIN_EXISTS(MOTOR_CURRENT_PWM_X) OUT_WRITE(MOTOR_CURRENT_PWM_X_PIN, 0); // init pins #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y) OUT_WRITE(MOTOR_CURRENT_PWM_Y_PIN, 0); #endif #if G2_PWM_Z OUT_WRITE(MOTOR_CURRENT_PWM_Z_PIN, 0); #endif #if G2_PWM_E OUT_WRITE(MOTOR_CURRENT_PWM_E_PIN, 0); #endif #define WPKEY (0x50574D << 8) // “PWM” in ASCII #define WPCMD_DIS_SW 0 // command to disable Write Protect SW #define WPRG_ALL (PWM_WPCR_WPRG0 | PWM_WPCR_WPRG1 | PWM_WPCR_WPRG2 | PWM_WPCR_WPRG3 | PWM_WPCR_WPRG4 | PWM_WPCR_WPRG5) // all Write Protect Groups #define PWM_CLOCK_F F_CPU / 1000000UL // set clock to 1MHz PMC->PMC_PCER1 = PMC_PCER1_PID36; // enable PWM controller clock (disabled on power up) PWM->PWM_WPCR = WPKEY | WPRG_ALL | WPCMD_DIS_SW; // enable setting of all PWM registers PWM->PWM_CLK = PWM_CLOCK_F; // enable CLK_A and set it to 1MHz, leave CLK_B disabled PWM->PWM_CH_NUM[0].PWM_CMR = 0b1011; // set channel 0 to Clock A input & to left aligned if (G2_PWM_X) PWM->PWM_CH_NUM[1].PWM_CMR = 0b1011; // set channel 1 to Clock A input & to left aligned if (G2_PWM_Y) PWM->PWM_CH_NUM[2].PWM_CMR = 0b1011; // set channel 2 to Clock A input & to left aligned if (G2_PWM_Z) PWM->PWM_CH_NUM[3].PWM_CMR = 0b1011; // set channel 3 to Clock A input & to left aligned if (G2_PWM_E) PWM->PWM_CH_NUM[4].PWM_CMR = 0b1011; // set channel 4 to Clock A input & to left aligned PWM->PWM_CH_NUM[0].PWM_CPRD = PWM_PERIOD_US; // set channel 0 Period PWM->PWM_IER2 = PWM_IER1_CHID0; // generate interrupt when counter0 overflows PWM->PWM_IER2 = PWM_IER2_CMPM0 | G2_MASK_X(PWM_IER2_CMPM1) | G2_MASK_Y(PWM_IER2_CMPM2) | G2_MASK_Z(PWM_IER2_CMPM3) | G2_MASK_E(PWM_IER2_CMPM4) ; // generate interrupt on compare event if (G2_PWM_X) PWM->PWM_CMP[1].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[0])); // interrupt when counter0 == CMPV - used to set Motor 1 PWM inactive if (G2_PWM_Y) PWM->PWM_CMP[2].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[0])); // interrupt when counter0 == CMPV - used to set Motor 2 PWM inactive if (G2_PWM_Z) PWM->PWM_CMP[3].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[1])); // interrupt when counter0 == CMPV - used to set Motor 3 PWM inactive if (G2_PWM_E) PWM->PWM_CMP[4].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[2])); // interrupt when counter0 == CMPV - used to set Motor 4 PWM inactive if (G2_PWM_X) PWM->PWM_CMP[1].PWM_CMPM = 0x0001; // enable compare event if (G2_PWM_Y) PWM->PWM_CMP[2].PWM_CMPM = 0x0001; // enable compare event if (G2_PWM_Z) PWM->PWM_CMP[3].PWM_CMPM = 0x0001; // enable compare event if (G2_PWM_E) PWM->PWM_CMP[4].PWM_CMPM = 0x0001; // enable compare event PWM->PWM_SCM = PWM_SCM_UPDM_MODE0 | PWM_SCM_SYNC0 | G2_MASK_X(PWM_SCM_SYNC1) | G2_MASK_Y(PWM_SCM_SYNC2) | G2_MASK_Z(PWM_SCM_SYNC3) | G2_MASK_E(PWM_SCM_SYNC4) ; // sync 1-4 with 0, use mode 0 for updates PWM->PWM_ENA = PWM_ENA_CHID0 | G2_MASK_X(PWM_ENA_CHID1) | G2_MASK_Y(PWM_ENA_CHID2) | G2_MASK_Z(PWM_ENA_CHID3) | G2_MASK_E(PWM_ENA_CHID4) ; // enable channels used by G2 PWM->PWM_IER1 = PWM_IER1_CHID0 | G2_MASK_X(PWM_IER1_CHID1) | G2_MASK_Y(PWM_IER1_CHID2) | G2_MASK_Z(PWM_IER1_CHID3) | G2_MASK_E(PWM_IER1_CHID4) ; // enable interrupts for channels used by G2 NVIC_EnableIRQ(PWM_IRQn); // Enable interrupt handler NVIC_SetPriority(PWM_IRQn, NVIC_EncodePriority(0, 10, 0)); // normal priority for PWM module (can stand some jitter on the Vref signals) } void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) { if (!(PWM->PWM_CH_NUM[0].PWM_CPRD == PWM_PERIOD_US)) digipot_init(); // Init PWM system if needed switch (driver) { case 0: if (G2_PWM_X) PWM->PWM_CMP[1].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update X & Y if (G2_PWM_Y) PWM->PWM_CMP[2].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); if (G2_PWM_X) PWM->PWM_CMP[1].PWM_CMPMUPD = 0x0001; // enable compare event if (G2_PWM_Y) PWM->PWM_CMP[2].PWM_CMPMUPD = 0x0001; // enable compare event if (G2_PWM_X || G2_PWM_Y) PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle break; case 1: if (G2_PWM_Z) { PWM->PWM_CMP[3].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update Z PWM->PWM_CMP[3].PWM_CMPMUPD = 0x0001; // enable compare event PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle } break; default: if (G2_PWM_E) { PWM->PWM_CMP[4].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update E PWM->PWM_CMP[4].PWM_CMPMUPD = 0x0001; // enable compare event PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle } break; } } volatile uint32_t PWM_ISR1_STATUS, PWM_ISR2_STATUS; void PWM_Handler() { PWM_ISR1_STATUS = PWM->PWM_ISR1; PWM_ISR2_STATUS = PWM->PWM_ISR2; if (PWM_ISR1_STATUS & PWM_IER1_CHID0) { // CHAN_0 interrupt if (G2_PWM_X) *ISR_table[0].set_register = ISR_table[0].write_mask; // set X to active if (G2_PWM_Y) *ISR_table[1].set_register = ISR_table[1].write_mask; // set Y to active if (G2_PWM_Z) *ISR_table[2].set_register = ISR_table[2].write_mask; // set Z to active if (G2_PWM_E) *ISR_table[3].set_register = ISR_table[3].write_mask; // set E to active } else { if (G2_PWM_X && (PWM_ISR2_STATUS & PWM_IER2_CMPM1)) *ISR_table[0].clr_register = ISR_table[0].write_mask; // set X to inactive if (G2_PWM_Y && (PWM_ISR2_STATUS & PWM_IER2_CMPM2)) *ISR_table[1].clr_register = ISR_table[1].write_mask; // set Y to inactive if (G2_PWM_Z && (PWM_ISR2_STATUS & PWM_IER2_CMPM3)) *ISR_table[2].clr_register = ISR_table[2].write_mask; // set Z to inactive if (G2_PWM_E && (PWM_ISR2_STATUS & PWM_IER2_CMPM4)) *ISR_table[3].clr_register = ISR_table[3].write_mask; // set E to inactive } return; } #endif // PRINTRBOARD_G2
2301_81045437/Marlin
Marlin/src/HAL/DUE/fastio/G2_PWM.cpp
C++
agpl-3.0
9,272
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * This module is stripped down version of the LPC1768_PWM.h file from * PR #7500. It is hardwired for the PRINTRBOARD_G2 Motor Current needs. */ #include "../../../inc/MarlinConfigPre.h" #include "../../../module/stepper.h" //C:\Users\bobku\Documents\GitHub\Marlin-Bob-2\Marlin\src\module\stepper.h //C:\Users\bobku\Documents\GitHub\Marlin-Bob-2\Marlin\src\HAL\HAL_DUE\G2_PWM.h #define PWM_PERIOD_US 100 // base repetition rate in micro seconds typedef struct { // holds the data needed by the ISR to control the Vref pin volatile uint32_t* set_register; volatile uint32_t* clr_register; uint32_t write_mask; } PWM_map; #define G2_VREF(I) (uint32_t)(I * 5 * 0.15) // desired Vref * 1000 (scaled so don't loose accuracy in next step) #define G2_VREF_COUNT(Q) (uint32_t)map(constrain(Q, 500, 3.3 * 1000), 0, 3.3 * 1000, 0, PWM_PERIOD_US) // under 500 the results are very non-linear extern volatile uint32_t *SODR_A, *SODR_B, *CODR_A, *CODR_B; #define _PIN(IO) (DIO ## IO ## _PIN) #define PWM_MAP_INIT_ROW(IO,ZZ) { ZZ == 'A' ? SODR_A : SODR_B, ZZ == 'A' ? CODR_A : CODR_B, 1 << _PIN(IO) } #define PWM_MAP_INIT { PWM_MAP_INIT_ROW(MOTOR_CURRENT_PWM_X_PIN, 'B'), \ PWM_MAP_INIT_ROW(MOTOR_CURRENT_PWM_Y_PIN, 'B'), \ PWM_MAP_INIT_ROW(MOTOR_CURRENT_PWM_Z_PIN, 'B'), \ PWM_MAP_INIT_ROW(MOTOR_CURRENT_PWM_E_PIN, 'A'), \ }; #define NUM_PWMS 4 extern PWM_map ISR_table[NUM_PWMS]; extern uint32_t motor_current_setting[3]; #define IR_BIT(p) (WITHIN(p, 0, 3) ? (p) : (p) + 4) #define COPY_ACTIVE_TABLE() do{ for (uint8_t i = 0; i < 6; ++i) work_table[i] = active_table[i]; }while(0) #define PWM_MR0 19999 // base repetition rate minus one count - 20mS #define PWM_PR 24 // prescaler value - prescaler divide by 24 + 1 - 1 MHz output #define PWM_PCLKSEL0 0x00 // select clock source for prescaler - defaults to 25MHz on power up // 0: 25MHz, 1: 100MHz, 2: 50MHz, 3: 12.5MHZ to PWM1 prescaler #define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up extern bool PWM_table_swap; // flag to tell the ISR that the tables have been swapped #define HAL_G2_PWM_ISR void PWM_Handler() extern volatile uint32_t PWM_ISR1_STATUS, PWM_ISR2_STATUS;
2301_81045437/Marlin
Marlin/src/HAL/DUE/fastio/G2_PWM.h
C
agpl-3.0
3,223
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once #include <stdint.h> /** * This file contains the custom port/pin definitions for the PRINTRBOARD_G2 * motherboard. This motherboard uses the SAM3X8C which is a subset of the * SAM3X8E used in the DUE board. It uses port/pin pairs that are not * available using the DUE definitions. * * The first part is a copy of the pin descriptions in the * "variants\arduino_due_x\variant.cpp" file but with pins 34-41 replaced by * the G2 pins. * * The second part is the FASTIO port/pin definitions. * * THESE PINS CAN ONLY BE ACCESSED VIA FASTIO COMMANDS. */ /* Copyright (c) 2011 Arduino. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ typedef struct _G2_PinDescription { Pio* pPort; uint32_t ulPin; uint32_t ulPeripheralId; EPioType ulPinType; uint32_t ulPinConfiguration; uint32_t ulPinAttribute; EAnalogChannel ulAnalogChannel; /* Analog pin in the Arduino context (label on the board) */ EAnalogChannel ulADCChannelNumber; /* ADC Channel number in the SAM device */ EPWMChannel ulPWMChannel; ETCChannel ulTCChannel; } G2_PinDescription; /** * This section is a copy of the pin descriptions in the "variants\arduino_due_x\variant.cpp" file * with pins 34-41 replaced by the G2 pins. */ /** * Pins descriptions */ const G2_PinDescription G2_g_APinDescription[] = { // 0 .. 53 - Digital pins // ---------------------- // 0/1 - UART (Serial) { PIOA, PIO_PA8A_URXD, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // URXD { PIOA, PIO_PA9A_UTXD, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // UTXD // 2 { PIOB, PIO_PB25B_TIOA0, ID_PIOB, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_TIMER), NO_ADC, NO_ADC, NOT_ON_PWM, TC0_CHA0 }, // TIOA0 { PIOC, PIO_PC28B_TIOA7, ID_PIOC, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_TIMER), NO_ADC, NO_ADC, NOT_ON_PWM, TC2_CHA7 }, // TIOA7 { PIOC, PIO_PC26B_TIOB6, ID_PIOC, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_TIMER), NO_ADC, NO_ADC, NOT_ON_PWM, TC2_CHB6 }, // TIOB6 // 5 { PIOC, PIO_PC25B_TIOA6, ID_PIOC, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_TIMER), NO_ADC, NO_ADC, NOT_ON_PWM, TC2_CHA6 }, // TIOA6 { PIOC, PIO_PC24B_PWML7, ID_PIOC, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), NO_ADC, NO_ADC, PWM_CH7, NOT_ON_TIMER }, // PWML7 { PIOC, PIO_PC23B_PWML6, ID_PIOC, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), NO_ADC, NO_ADC, PWM_CH6, NOT_ON_TIMER }, // PWML6 { PIOC, PIO_PC22B_PWML5, ID_PIOC, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), NO_ADC, NO_ADC, PWM_CH5, NOT_ON_TIMER }, // PWML5 { PIOC, PIO_PC21B_PWML4, ID_PIOC, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_PWM), NO_ADC, NO_ADC, PWM_CH4, NOT_ON_TIMER }, // PWML4 // 10 { PIOC, PIO_PC29B_TIOB7, ID_PIOC, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_TIMER), NO_ADC, NO_ADC, NOT_ON_PWM, TC2_CHB7 }, // TIOB7 { PIOD, PIO_PD7B_TIOA8, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_TIMER), NO_ADC, NO_ADC, NOT_ON_PWM, TC2_CHA8 }, // TIOA8 { PIOD, PIO_PD8B_TIOB8, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_TIMER), NO_ADC, NO_ADC, NOT_ON_PWM, TC2_CHB8 }, // TIOB8 // 13 - AMBER LED { PIOB, PIO_PB27B_TIOB0, ID_PIOB, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_TIMER), NO_ADC, NO_ADC, NOT_ON_PWM, TC0_CHB0 }, // TIOB0 // 14/15 - USART3 (Serial3) { PIOD, PIO_PD4B_TXD3, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // TXD3 { PIOD, PIO_PD5B_RXD3, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // RXD3 // 16/17 - USART1 (Serial2) { PIOA, PIO_PA13A_TXD1, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // TXD1 { PIOA, PIO_PA12A_RXD1, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // RXD1 // 18/19 - USART0 (Serial1) { PIOA, PIO_PA11A_TXD0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // TXD0 { PIOA, PIO_PA10A_RXD0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // RXD0 // 20/21 - TWI1 { PIOB, PIO_PB12A_TWD1, ID_PIOB, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // TWD1 - SDA0 { PIOB, PIO_PB13A_TWCK1, ID_PIOB, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // TWCK1 - SCL0 // 22 { PIOB, PIO_PB26, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 22 { PIOA, PIO_PA14, ID_PIOA, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 23 { PIOA, PIO_PA15, ID_PIOA, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 24 { PIOD, PIO_PD0, ID_PIOD, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 25 // 26 { PIOD, PIO_PD1, ID_PIOD, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 26 { PIOD, PIO_PD2, ID_PIOD, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 27 { PIOD, PIO_PD3, ID_PIOD, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 28 { PIOD, PIO_PD6, ID_PIOD, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 29 // 30 { PIOD, PIO_PD9, ID_PIOD, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 30 { PIOA, PIO_PA7, ID_PIOA, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 31 { PIOD, PIO_PD10, ID_PIOD, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 32 { PIOC, PIO_PC1, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 33 // 34 // start of custom pins { PIOA, PIO_PA29, ID_PIOA, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 34 Y_STEP_PIN { PIOB, PIO_PB1, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 35 Y_DIR_PIN { PIOB, PIO_PB0, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 36 Y_ENABLE_PIN { PIOB, PIO_PB22, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 37 E0_ENABLE_PIN { PIOB, PIO_PB11, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 38 E0_MS1_PIN { PIOB, PIO_PB10, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 39 E0_MS3_PIN { PIOA, PIO_PA5, ID_PIOA, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 40 HEATER_0_PIN { PIOB, PIO_PB24, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 41 HEATER_BED_PIN // end of custom pins // 42 { PIOA, PIO_PA19, ID_PIOA, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 42 { PIOA, PIO_PA20, ID_PIOA, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 43 { PIOC, PIO_PC19, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 44 { PIOC, PIO_PC18, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 45 // 46 { PIOC, PIO_PC17, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 46 { PIOC, PIO_PC16, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 47 { PIOC, PIO_PC15, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 48 { PIOC, PIO_PC14, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 49 // 50 { PIOC, PIO_PC13, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 50 { PIOC, PIO_PC12, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 51 { PIOB, PIO_PB21, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 52 { PIOB, PIO_PB14, ID_PIOB, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // PIN 53 // 54 .. 65 - Analog pins // ---------------------- { PIOA, PIO_PA16X1_AD7, ID_PIOA, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC0, ADC7, NOT_ON_PWM, NOT_ON_TIMER }, // AD0 { PIOA, PIO_PA24X1_AD6, ID_PIOA, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC1, ADC6, NOT_ON_PWM, NOT_ON_TIMER }, // AD1 { PIOA, PIO_PA23X1_AD5, ID_PIOA, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC2, ADC5, NOT_ON_PWM, NOT_ON_TIMER }, // AD2 { PIOA, PIO_PA22X1_AD4, ID_PIOA, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC3, ADC4, NOT_ON_PWM, NOT_ON_TIMER }, // AD3 // 58 { PIOA, PIO_PA6X1_AD3, ID_PIOA, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC4, ADC3, NOT_ON_PWM, TC0_CHB2 }, // AD4 { PIOA, PIO_PA4X1_AD2, ID_PIOA, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC5, ADC2, NOT_ON_PWM, NOT_ON_TIMER }, // AD5 { PIOA, PIO_PA3X1_AD1, ID_PIOA, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC6, ADC1, NOT_ON_PWM, TC0_CHB1 }, // AD6 { PIOA, PIO_PA2X1_AD0, ID_PIOA, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC7, ADC0, NOT_ON_PWM, TC0_CHA1 }, // AD7 // 62 { PIOB, PIO_PB17X1_AD10, ID_PIOB, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC8, ADC10, NOT_ON_PWM, NOT_ON_TIMER }, // AD8 { PIOB, PIO_PB18X1_AD11, ID_PIOB, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC9, ADC11, NOT_ON_PWM, NOT_ON_TIMER }, // AD9 { PIOB, PIO_PB19X1_AD12, ID_PIOB, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC10, ADC12, NOT_ON_PWM, NOT_ON_TIMER }, // AD10 { PIOB, PIO_PB20X1_AD13, ID_PIOB, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC11, ADC13, NOT_ON_PWM, NOT_ON_TIMER }, // AD11 // 66/67 - DAC0/DAC1 { PIOB, PIO_PB15X1_DAC0, ID_PIOB, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC12, DA0, NOT_ON_PWM, NOT_ON_TIMER }, // DAC0 { PIOB, PIO_PB16X1_DAC1, ID_PIOB, PIO_INPUT, PIO_DEFAULT, PIN_ATTR_ANALOG, ADC13, DA1, NOT_ON_PWM, NOT_ON_TIMER }, // DAC1 // 68/69 - CANRX0/CANTX0 { PIOA, PIO_PA1A_CANRX0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, ADC14, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // CANRX { PIOA, PIO_PA0A_CANTX0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, ADC15, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // CANTX // 70/71 - TWI0 { PIOA, PIO_PA17A_TWD0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // TWD0 - SDA1 { PIOA, PIO_PA18A_TWCK0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // TWCK0 - SCL1 // 72/73 - LEDs { PIOC, PIO_PC30, ID_PIOC, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // LED AMBER RXL { PIOA, PIO_PA21, ID_PIOA, PIO_OUTPUT_0, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // LED AMBER TXL // 74/75/76 - SPI { PIOA, PIO_PA25A_SPI0_MISO,ID_PIOA,PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // MISO { PIOA, PIO_PA26A_SPI0_MOSI,ID_PIOA,PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // MOSI { PIOA, PIO_PA27A_SPI0_SPCK,ID_PIOA,PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // SPCK // 77 - SPI CS0 { PIOA, PIO_PA28A_SPI0_NPCS0,ID_PIOA,PIO_PERIPH_A,PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // NPCS0 // 78 - SPI CS3 (unconnected) { PIOB, PIO_PB23B_SPI0_NPCS3,ID_PIOB,PIO_PERIPH_B,PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // NPCS3 // 79 .. 84 - "All pins" masks // 79 - TWI0 all pins { PIOA, PIO_PA17A_TWD0|PIO_PA18A_TWCK0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_COMBO), NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // 80 - TWI1 all pins { PIOB, PIO_PB12A_TWD1|PIO_PB13A_TWCK1, ID_PIOB, PIO_PERIPH_A, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_COMBO), NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // 81 - UART (Serial) all pins { PIOA, PIO_PA8A_URXD|PIO_PA9A_UTXD, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_COMBO), NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // 82 - USART0 (Serial1) all pins { PIOA, PIO_PA11A_TXD0|PIO_PA10A_RXD0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_COMBO), NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // 83 - USART1 (Serial2) all pins { PIOA, PIO_PA13A_TXD1|PIO_PA12A_RXD1, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_COMBO), NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // 84 - USART3 (Serial3) all pins { PIOD, PIO_PD4B_TXD3|PIO_PD5B_RXD3, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_COMBO), NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // 85 - USB { PIOB, PIO_PB11A_UOTGID|PIO_PB10A_UOTGVBOF, ID_PIOB, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL,NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // ID - VBOF // 86 - SPI CS2 { PIOB, PIO_PB21B_SPI0_NPCS2, ID_PIOB, PIO_PERIPH_B, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // NPCS2 // 87 - SPI CS1 { PIOA, PIO_PA29A_SPI0_NPCS1, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // NPCS1 // 88/89 - CANRX1/CANTX1 (same physical pin for 66/53) { PIOB, PIO_PB15A_CANRX1, ID_PIOB, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // CANRX1 { PIOB, PIO_PB14A_CANTX1, ID_PIOB, PIO_PERIPH_A, PIO_DEFAULT, PIN_ATTR_DIGITAL, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // CANTX1 // 90 .. 91 - "All CAN pins" masks // 90 - CAN0 all pins { PIOA, PIO_PA1A_CANRX0|PIO_PA0A_CANTX0, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_COMBO), NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // 91 - CAN1 all pins { PIOB, PIO_PB15A_CANRX1|PIO_PB14A_CANTX1, ID_PIOB, PIO_PERIPH_A, PIO_DEFAULT, (PIN_ATTR_DIGITAL|PIN_ATTR_COMBO), NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER }, // END { nullptr, 0, 0, PIO_NOT_A_PIN, PIO_DEFAULT, 0, NO_ADC, NO_ADC, NOT_ON_PWM, NOT_ON_TIMER } }; // This section replaces the FASTIO definitions of pins 34-41 #define DIO34_PIN 29 #define DIO34_WPORT PIOA // only available via FASTIO // 34 PA29 - Y_STEP_PIN #define DIO35_PIN 1 #define DIO35_WPORT PIOB // only available via FASTIO // 35 PAB1 - Y_DIR_PIN #define DIO36_PIN 0 #define DIO36_WPORT PIOB // only available via FASTIO // 36 PB0 - Y_ENABLE_PIN #define DIO37_PIN 22 #define DIO37_WPORT PIOB // only available via FASTIO // 37 PB22 - E0_ENABLE_PIN #define DIO38_PIN 11 #define DIO38_WPORT PIOB // only available via FASTIO // 38 PB11 - E0_MS1_PIN #define DIO39_PIN 10 #define DIO39_WPORT PIOB // only available via FASTIO // 39 PB10 - E0_MS3_PIN #define DIO40_PIN 5 #define DIO40_WPORT PIOA // only available via FASTIO // 40 PA5 - HEATER_0_PIN #define DIO41_PIN 24 #define DIO41_WPORT PIOB // only available via FASTIO // 41 PB24 - HEATER_BED_PIN
2301_81045437/Marlin
Marlin/src/HAL/DUE/fastio/G2_pins.h
C
agpl-3.0
19,313
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Fast I/O Routines for SAM3X8E * Use direct port manipulation to save scads of processor time. * Contributed by Triffid_Hunter and modified by Kliment, thinkyhead, Bob-the-Kuhn, et.al. */ /** * Description: Fast IO functions for Arduino Due and compatible (SAM3X8E) * * For ARDUINO_ARCH_SAM * Note the code here was specifically crafted by disassembling what GCC produces * out of it, so GCC is able to optimize it out as much as possible to the least * amount of instructions. Be very careful if you modify them, as "clean code" * leads to less efficient compiled code!! */ #include <pins_arduino.h> #include "../../inc/MarlinConfigPre.h" /** * Utility functions */ // Due has 12 PWMs assigned to logical pins 2-13. // 6, 7, 8 & 9 come from the PWM controller. The others come from the timers. #define PWM_PIN(P) WITHIN(P, 2, 13) #ifndef MASK #define MASK(PIN) _BV(PIN) #endif /** * Magic I/O routines * * Now you can simply SET_OUTPUT(STEP); WRITE(STEP, HIGH); WRITE(STEP, LOW); * * Why double up on these macros? see https://gcc.gnu.org/onlinedocs/cpp/Stringification.html */ // Read a pin #define _READ(IO) bool(DIO ## IO ## _WPORT -> PIO_PDSR & MASK(DIO ## IO ## _PIN)) // Write to a pin #define _WRITE(IO,V) do { \ volatile Pio* port = (DIO ## IO ## _WPORT); \ const uint32_t mask = MASK(DIO ## IO ## _PIN); \ if (V) port->PIO_SODR = mask; \ else port->PIO_CODR = mask; \ }while(0) // Toggle a pin #define _TOGGLE(IO) _WRITE(IO, !READ(IO)) #if MB(PRINTRBOARD_G2) #include "fastio/G2_pins.h" // Set pin as input #define _SET_INPUT(IO) do{ \ pmc_enable_periph_clk(G2_g_APinDescription[IO].ulPeripheralId); \ PIO_Configure((DIO ## IO ## _WPORT), PIO_INPUT, MASK(DIO ## IO ## _PIN), 0); \ }while(0) // Set pin as output #define _SET_OUTPUT(IO) do{ \ uint32_t mask = MASK(G2_g_APinDescription[IO].ulPeripheralId); \ if ((PMC->PMC_PCSR0 & mask) != (mask)) PMC->PMC_PCER0 = mask; \ volatile Pio* port = (DIO ## IO ## _WPORT); \ mask = MASK(DIO ## IO ## _PIN); \ if (_READ(IO)) port->PIO_SODR = mask; \ else port->PIO_CODR = mask; \ port->PIO_IDR = mask; \ const uint32_t pin_config = G2_g_APinDescription[IO].ulPinConfiguration; \ if (pin_config & PIO_PULLUP) port->PIO_PUER = mask; \ else port->PIO_PUDR = mask; \ if (pin_config & PIO_OPENDRAIN) port->PIO_MDER = mask; \ else port->PIO_MDDR = mask; \ port->PIO_PER = mask; \ port->PIO_OER = mask; \ g_pinStatus[IO] = (g_pinStatus[IO] & 0xF0) | PIN_STATUS_DIGITAL_OUTPUT; \ }while(0) /** * Set pin as output with comments * #define _SET_OUTPUT(IO) do{ \ * uint32_t mask = MASK(G2_g_APinDescription[IO].ulPeripheralId); \ * if ((PMC->PMC_PCSR0 & mask ) != (mask)) PMC->PMC_PCER0 = mask; \ // enable PIO clock if not already enabled * * volatile Pio* port = (DIO ## IO ## _WPORT); \ * const uint32_t mask = MASK(DIO ## IO ## _PIN); \ * if (_READ(IO)) port->PIO_SODR = mask; \ // set output to match input BEFORE setting direction or will glitch the output * else port->PIO_CODR = mask; \ * * port->PIO_IDR = mask; \ // disable interrupt * * uint32_t pin_config = G2_g_APinDescription[IO].ulPinConfiguration; \ * if (pin_config & PIO_PULLUP) pPio->PIO_PUER = mask; \ // enable pullup if necessary * else pPio->PIO_PUDR = mask; \ * * if (pin_config & PIO_OPENDRAIN) port->PIO_MDER = mask; \ // Enable multi-drive if necessary * else port->PIO_MDDR = mask; \ * * port->PIO_PER = mask; \ * port->PIO_OER = mask; \ // set to output * * g_pinStatus[IO] = (g_pinStatus[IO] & 0xF0) | PIN_STATUS_DIGITAL_OUTPUT; \ * }while(0) */ #else // Set pin as input #define _SET_INPUT(IO) do{ \ pmc_enable_periph_clk(g_APinDescription[IO].ulPeripheralId); \ PIO_Configure(digitalPinToPort(IO), PIO_INPUT, digitalPinToBitMask(IO), 0); \ }while(0) // Set pin as output #define _SET_OUTPUT(IO) do{ \ pmc_enable_periph_clk(g_APinDescription[IO].ulPeripheralId); \ PIO_Configure(digitalPinToPort(IO), _READ(IO) ? PIO_OUTPUT_1 : PIO_OUTPUT_0, digitalPinToBitMask(IO), g_APinDescription[IO].ulPinConfiguration); \ g_pinStatus[IO] = (g_pinStatus[IO] & 0xF0) | PIN_STATUS_DIGITAL_OUTPUT; \ }while(0) #endif // Set pin as input with pullup mode #define _PULLUP(IO,V) pinMode(IO, (V) ? INPUT_PULLUP : INPUT) // Read a pin (wrapper) #define READ(IO) _READ(IO) // Write to a pin (wrapper) #define WRITE(IO,V) _WRITE(IO,V) // Toggle a pin (wrapper) #define TOGGLE(IO) _TOGGLE(IO) // Set pin as input (wrapper) #define SET_INPUT(IO) _SET_INPUT(IO) // Set pin as input with pullup (wrapper) #define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _PULLUP(IO, HIGH); }while(0) // Set pin as input with pulldown (substitution) #define SET_INPUT_PULLDOWN SET_INPUT // Set pin as output (wrapper) - reads the pin and sets the output to that value #define SET_OUTPUT(IO) _SET_OUTPUT(IO) // Set pin as PWM #define SET_PWM SET_OUTPUT // Check if pin is an input #define IS_INPUT(IO) ((digitalPinToPort(IO)->PIO_OSR & digitalPinToBitMask(IO)) == 0) // Check if pin is an output #define IS_OUTPUT(IO) ((digitalPinToPort(IO)->PIO_OSR & digitalPinToBitMask(IO)) != 0) // Shorthand #define OUT_WRITE(IO,V) do{ SET_OUTPUT(IO); WRITE(IO,V); }while(0) // digitalRead/Write wrappers #define extDigitalRead(IO) digitalRead(IO) #define extDigitalWrite(IO,V) digitalWrite(IO,V) /** * Ports and functions * Added as necessary or if I feel like it- not a comprehensive list! */ // UART #define RXD 0 #define TXD 1 // TWI (I2C) #define SCL 21 #define SDA 20 /** * pins */ #define DIO0_PIN 8 #define DIO0_WPORT PIOA #define DIO1_PIN 9 #define DIO1_WPORT PIOA #define DIO2_PIN 25 #define DIO2_WPORT PIOB #define DIO3_PIN 28 #define DIO3_WPORT PIOC #define DIO4_PIN 26 #define DIO4_WPORT PIOC #define DIO5_PIN 25 #define DIO5_WPORT PIOC #define DIO6_PIN 24 #define DIO6_WPORT PIOC #define DIO7_PIN 23 #define DIO7_WPORT PIOC #define DIO8_PIN 22 #define DIO8_WPORT PIOC #define DIO9_PIN 21 #define DIO9_WPORT PIOC #define DIO10_PIN 29 #define DIO10_WPORT PIOC #define DIO11_PIN 7 #define DIO11_WPORT PIOD #define DIO12_PIN 8 #define DIO12_WPORT PIOD #define DIO13_PIN 27 #define DIO13_WPORT PIOB #define DIO14_PIN 4 #define DIO14_WPORT PIOD #define DIO15_PIN 5 #define DIO15_WPORT PIOD #define DIO16_PIN 13 #define DIO16_WPORT PIOA #define DIO17_PIN 12 #define DIO17_WPORT PIOA #define DIO18_PIN 11 #define DIO18_WPORT PIOA #define DIO19_PIN 10 #define DIO19_WPORT PIOA #define DIO20_PIN 12 #define DIO20_WPORT PIOB #define DIO21_PIN 13 #define DIO21_WPORT PIOB #define DIO22_PIN 26 #define DIO22_WPORT PIOB #define DIO23_PIN 14 #define DIO23_WPORT PIOA #define DIO24_PIN 15 #define DIO24_WPORT PIOA #define DIO25_PIN 0 #define DIO25_WPORT PIOD #define DIO26_PIN 1 #define DIO26_WPORT PIOD #define DIO27_PIN 2 #define DIO27_WPORT PIOD #define DIO28_PIN 3 #define DIO28_WPORT PIOD #define DIO29_PIN 6 #define DIO29_WPORT PIOD #define DIO30_PIN 9 #define DIO30_WPORT PIOD #define DIO31_PIN 7 #define DIO31_WPORT PIOA #define DIO32_PIN 10 #define DIO32_WPORT PIOD #define DIO33_PIN 1 #define DIO33_WPORT PIOC #if !MB(PRINTRBOARD_G2) // normal DUE pin mapping #define DIO34_PIN 2 #define DIO34_WPORT PIOC #define DIO35_PIN 3 #define DIO35_WPORT PIOC #define DIO36_PIN 4 #define DIO36_WPORT PIOC #define DIO37_PIN 5 #define DIO37_WPORT PIOC #define DIO38_PIN 6 #define DIO38_WPORT PIOC #define DIO39_PIN 7 #define DIO39_WPORT PIOC #define DIO40_PIN 8 #define DIO40_WPORT PIOC #define DIO41_PIN 9 #define DIO41_WPORT PIOC #endif // !PRINTRBOARD_G2 #define DIO42_PIN 19 #define DIO42_WPORT PIOA #define DIO43_PIN 20 #define DIO43_WPORT PIOA #define DIO44_PIN 19 #define DIO44_WPORT PIOC #define DIO45_PIN 18 #define DIO45_WPORT PIOC #define DIO46_PIN 17 #define DIO46_WPORT PIOC #define DIO47_PIN 16 #define DIO47_WPORT PIOC #define DIO48_PIN 15 #define DIO48_WPORT PIOC #define DIO49_PIN 14 #define DIO49_WPORT PIOC #define DIO50_PIN 13 #define DIO50_WPORT PIOC #define DIO51_PIN 12 #define DIO51_WPORT PIOC #define DIO52_PIN 21 #define DIO52_WPORT PIOB #define DIO53_PIN 14 #define DIO53_WPORT PIOB #define DIO54_PIN 16 #define DIO54_WPORT PIOA #define DIO55_PIN 24 #define DIO55_WPORT PIOA #define DIO56_PIN 23 #define DIO56_WPORT PIOA #define DIO57_PIN 22 #define DIO57_WPORT PIOA #define DIO58_PIN 6 #define DIO58_WPORT PIOA #define DIO59_PIN 4 #define DIO59_WPORT PIOA #define DIO60_PIN 3 #define DIO60_WPORT PIOA #define DIO61_PIN 2 #define DIO61_WPORT PIOA #define DIO62_PIN 17 #define DIO62_WPORT PIOB #define DIO63_PIN 18 #define DIO63_WPORT PIOB #define DIO64_PIN 19 #define DIO64_WPORT PIOB #define DIO65_PIN 20 #define DIO65_WPORT PIOB #define DIO66_PIN 15 #define DIO66_WPORT PIOB #define DIO67_PIN 16 #define DIO67_WPORT PIOB #define DIO68_PIN 1 #define DIO68_WPORT PIOA #define DIO69_PIN 0 #define DIO69_WPORT PIOA #define DIO70_PIN 17 #define DIO70_WPORT PIOA #define DIO71_PIN 18 #define DIO71_WPORT PIOA #define DIO72_PIN 30 #define DIO72_WPORT PIOC #define DIO73_PIN 21 #define DIO73_WPORT PIOA #define DIO74_PIN 25 #define DIO74_WPORT PIOA #define DIO75_PIN 26 #define DIO75_WPORT PIOA #define DIO76_PIN 27 #define DIO76_WPORT PIOA #define DIO77_PIN 28 #define DIO77_WPORT PIOA #define DIO78_PIN 23 #define DIO78_WPORT PIOB #define DIO79_PIN 17 #define DIO79_WPORT PIOA #define DIO80_PIN 12 #define DIO80_WPORT PIOB #define DIO81_PIN 8 #define DIO81_WPORT PIOA #define DIO82_PIN 11 #define DIO82_WPORT PIOA #define DIO83_PIN 13 #define DIO83_WPORT PIOA #define DIO84_PIN 4 #define DIO84_WPORT PIOD #define DIO85_PIN 11 #define DIO85_WPORT PIOB #define DIO86_PIN 21 #define DIO86_WPORT PIOB #define DIO87_PIN 29 #define DIO87_WPORT PIOA #define DIO88_PIN 15 #define DIO88_WPORT PIOB #define DIO89_PIN 14 #define DIO89_WPORT PIOB #define DIO90_PIN 1 #define DIO90_WPORT PIOA #define DIO91_PIN 15 #define DIO91_WPORT PIOB #ifdef ARDUINO_SAM_ARCHIM #define DIO92_PIN 11 #define DIO92_WPORT PIOC #define DIO93_PIN 2 #define DIO93_WPORT PIOB #define DIO94_PIN 1 #define DIO94_WPORT PIOB #define DIO95_PIN 0 #define DIO95_WPORT PIOB #define DIO96_PIN 10 #define DIO96_WPORT PIOC #define DIO97_PIN 24 #define DIO97_WPORT PIOB #define DIO98_PIN 7 #define DIO98_WPORT PIOB #define DIO99_PIN 6 #define DIO99_WPORT PIOB #define DIO100_PIN 8 #define DIO100_WPORT PIOB #define DIO101_PIN 5 #define DIO101_WPORT PIOB #define DIO102_PIN 4 #define DIO102_WPORT PIOB #define DIO103_PIN 3 #define DIO103_WPORT PIOB #define DIO104_PIN 20 #define DIO104_WPORT PIOC #define DIO105_PIN 22 #define DIO105_WPORT PIOB #define DIO106_PIN 27 #define DIO106_WPORT PIOC #define DIO107_PIN 10 #define DIO107_WPORT PIOB #define DIO108_PIN 9 #define DIO108_WPORT PIOB #else // !ARDUINO_SAM_ARCHIM #define DIO92_PIN 5 #define DIO92_WPORT PIOA #define DIO93_PIN 12 #define DIO93_WPORT PIOB #define DIO94_PIN 22 #define DIO94_WPORT PIOB #define DIO95_PIN 23 #define DIO95_WPORT PIOB #define DIO96_PIN 24 #define DIO96_WPORT PIOB #define DIO97_PIN 20 #define DIO97_WPORT PIOC #define DIO98_PIN 27 #define DIO98_WPORT PIOC #define DIO99_PIN 10 #define DIO99_WPORT PIOC #define DIO100_PIN 11 #define DIO100_WPORT PIOC #endif // !ARDUINO_SAM_ARCHIM
2301_81045437/Marlin
Marlin/src/HAL/DUE/fastio.h
C
agpl-3.0
12,465
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once
2301_81045437/Marlin
Marlin/src/HAL/DUE/inc/Conditionals_LCD.h
C
agpl-3.0
875
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once
2301_81045437/Marlin
Marlin/src/HAL/DUE/inc/Conditionals_adv.h
C
agpl-3.0
875
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once #if USE_FALLBACK_EEPROM #define FLASH_EEPROM_EMULATION #elif ANY(I2C_EEPROM, SPI_EEPROM) #define USE_SHARED_EEPROM 1 #endif
2301_81045437/Marlin
Marlin/src/HAL/DUE/inc/Conditionals_post.h
C
agpl-3.0
1,004
/** * Marlin 3D Printer Firmware * Copyright (c) 2024 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once
2301_81045437/Marlin
Marlin/src/HAL/DUE/inc/Conditionals_type.h
C
agpl-3.0
875
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Test Arduino Due specific configuration values for errors at compile-time. */ #if HAS_SPI_TFT || HAS_FSMC_TFT #error "Sorry! TFT displays are not available for HAL/DUE." #endif /** * Check for common serial pin conflicts */ #define CHECK_SERIAL_PIN(N) ( \ X_STOP_PIN == N || Y_STOP_PIN == N || Z_STOP_PIN == N \ || X_MIN_PIN == N || Y_MIN_PIN == N || Z_MIN_PIN == N \ || X_MAX_PIN == N || Y_MAX_PIN == N || Z_MAX_PIN == N \ || X_STEP_PIN == N || Y_STEP_PIN == N || Z_STEP_PIN == N \ || X_DIR_PIN == N || Y_DIR_PIN == N || Z_DIR_PIN == N \ || X_ENA_PIN == N || Y_ENA_PIN == N || Z_ENA_PIN == N \ ) #if SERIAL_IN_USE(0) // D0-D1. No known conflicts. #endif #if SERIAL_IN_USE(1) && (CHECK_SERIAL_PIN(18) || CHECK_SERIAL_PIN(19)) #error "Serial Port 1 pin D18 and/or D19 conflicts with another pin on the board." #endif #if SERIAL_IN_USE(2) && (CHECK_SERIAL_PIN(16) || CHECK_SERIAL_PIN(17)) #error "Serial Port 2 pin D16 and/or D17 conflicts with another pin on the board." #endif #if SERIAL_IN_USE(3) && (CHECK_SERIAL_PIN(14) || CHECK_SERIAL_PIN(15)) #error "Serial Port 3 pin D14 and/or D15 conflicts with another pin on the board." #endif #undef CHECK_SERIAL_PIN /** * HARDWARE VS. SOFTWARE SPI COMPATIBILITY * * DUE selects hardware vs. software SPI depending on whether one of the hardware-controllable SDSS pins is in use. * * The hardware SPI controller doesn't allow software SPIs to control any shared pins. * * When DUE software SPI is used then Trinamic drivers must use the TMC softSPI. * * When DUE hardware SPI is used then a Trinamic driver can use either its hardware SPI or, if there are no shared * pins, its software SPI. * * Usually the hardware SPI pins are only available to the LCD. This makes the DUE hard SPI used at the same time * as the TMC2130 soft SPI the most common setup. */ #define _IS_HW_SPI(P) (defined(TMC_SPI_##P) && (TMC_SPI_##P == SD_MOSI_PIN || TMC_SPI_##P == SD_MISO_PIN || TMC_SPI_##P == SD_SCK_PIN)) #if HAS_MEDIA && HAS_DRIVER(TMC2130) #if ENABLED(TMC_USE_SW_SPI) #if DISABLED(SOFTWARE_SPI) && (_IS_HW_SPI(MOSI) || _IS_HW_SPI(MISO) || _IS_HW_SPI(SCK)) #error "DUE hardware SPI is required but is incompatible with TMC2130 software SPI. Either disable TMC_USE_SW_SPI or use separate pins for the two SPIs." #endif #elif ENABLED(SOFTWARE_SPI) #error "DUE software SPI is required but is incompatible with TMC2130 hardware SPI. Enable TMC_USE_SW_SPI to fix." #endif #endif #if ENABLED(FAST_PWM_FAN) || SPINDLE_LASER_FREQUENCY #error "Features requiring Hardware PWM (FAST_PWM_FAN, SPINDLE_LASER_FREQUENCY) are not yet supported for HAL/DUE." #endif #if HAS_TMC_SW_SERIAL #error "TMC220x Software Serial is not supported on the DUE platform." #endif #if USING_PULLDOWNS #error "PULLDOWN pin mode is not available on DUE boards." #endif
2301_81045437/Marlin
Marlin/src/HAL/DUE/inc/SanityCheck.h
C
agpl-3.0
3,745
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Support routines for Due */ /** * Translation of routines & variables used by pinsDebug.h */ #include "../shared/Marduino.h" /** * Due/Marlin quirks * * a) determining the state of a pin * The Due/Arduino status definitions for the g_pinStatus[pin] array are: * #define PIN_STATUS_DIGITAL_INPUT_PULLUP (0x01) * #define PIN_STATUS_DIGITAL_INPUT (0x02) * #define PIN_STATUS_DIGITAL_OUTPUT (0x03) * #define PIN_STATUS_ANALOG (0x04) * #define PIN_STATUS_PWM (0x05) * #define PIN_STATUS_TIMER (0x06) * * These are only valid if the following Due/Arduino provided functions are used: * analogRead * analogWrite * digitalWrite * pinMode * * The FASTIO routines do not touch the g_pinStatus[pin] array. * * The net result is that both the g_pinStatus[pin] array and the PIO_OSR register * needs to be looked at when determining if a pin is an input or an output. * * b) Due has only pins 6, 7, 8 & 9 enabled for PWMs. FYI - they run at 1kHz * * c) NUM_DIGITAL_PINS does not include the analog pins * * d) Pins 0-78 are defined for Due but 78 has a comment of "unconnected!". 78 is * included just in case. */ #define NUMBER_PINS_TOTAL PINS_COUNT #define digitalRead_mod(p) extDigitalRead(p) // AVR digitalRead disabled PWM before it read the pin #define PRINT_ARRAY_NAME(x) do{ sprintf_P(buffer, PSTR("%-" STRINGIFY(MAX_NAME_LENGTH) "s"), pin_array[x].name); SERIAL_ECHO(buffer); }while(0) #define PRINT_PIN(p) do{ sprintf_P(buffer, PSTR("%02d"), p); SERIAL_ECHO(buffer); }while(0) #define PRINT_PIN_ANALOG(p) do{ sprintf_P(buffer, PSTR(" (A%2d) "), DIGITAL_PIN_TO_ANALOG_PIN(pin)); SERIAL_ECHO(buffer); }while(0) #define GET_ARRAY_PIN(p) pin_array[p].pin #define GET_ARRAY_IS_DIGITAL(p) pin_array[p].is_digital #define VALID_PIN(pin) (pin >= 0 && pin < int8_t(NUMBER_PINS_TOTAL)) #define DIGITAL_PIN_TO_ANALOG_PIN(p) int(p - analogInputToDigitalPin(0)) #define IS_ANALOG(P) WITHIN(P, char(analogInputToDigitalPin(0)), char(analogInputToDigitalPin(NUM_ANALOG_INPUTS - 1))) #define pwm_status(pin) (((g_pinStatus[pin] & 0xF) == PIN_STATUS_PWM) && \ ((g_APinDescription[pin].ulPinAttribute & PIN_ATTR_PWM) == PIN_ATTR_PWM)) #define MULTI_NAME_PAD 14 // space needed to be pretty if not first name assigned to a pin bool GET_PINMODE(int8_t pin) { // 1: output, 0: input volatile Pio* port = g_APinDescription[pin].pPort; uint32_t mask = g_APinDescription[pin].ulPin; uint8_t pin_status = g_pinStatus[pin] & 0xF; return ( (pin_status == 0 && (port->PIO_OSR & mask)) || pin_status == PIN_STATUS_DIGITAL_OUTPUT || pwm_status(pin)); } void pwm_details(int32_t pin) { if (pwm_status(pin)) { uint32_t chan = g_APinDescription[pin].ulPWMChannel; SERIAL_ECHOPGM("PWM = ", PWM_INTERFACE->PWM_CH_NUM[chan].PWM_CDTY); } } void print_port(const pin_t) {} /** * DUE Board pin | PORT | Label * ----------------+--------+------- * 0 | PA8 | "RX0" * 1 | PA9 | "TX0" * 2 TIOA0 | PB25 | * 3 TIOA7 | PC28 | * 4 NPCS1 | PA29 | * TIOB6 | PC26 | * 5 TIOA6 | PC25 | * 6 PWML7 | PC24 | * 7 PWML6 | PC23 | * 8 PWML5 | PC22 | * 9 PWML4 | PC21 | * 10 NPCS0 | PA28 | * TIOB7 | PC29 | * 11 TIOA8 | PD7 | * 12 TIOB8 | PD8 | * 13 TIOB0 | PB27 | LED AMBER "L" * 14 TXD3 | PD4 | "TX3" * 15 RXD3 | PD5 | "RX3" * 16 TXD1 | PA13 | "TX2" * 17 RXD1 | PA12 | "RX2" * 18 TXD0 | PA11 | "TX1" * 19 RXD0 | PA10 | "RX1" * 20 | PB12 | "SDA" * 21 | PB13 | "SCL" * 22 | PB26 | * 23 | PA14 | * 24 | PA15 | * 25 | PD0 | * 26 | PD1 | * 27 | PD2 | * 28 | PD3 | * 29 | PD6 | * 30 | PD9 | * 31 | PA7 | * 32 | PD10 | * 33 | PC1 | * 34 | PC2 | * 35 | PC3 | * 36 | PC4 | * 37 | PC5 | * 38 | PC6 | * 39 | PC7 | * 40 | PC8 | * 41 | PC9 | * 42 | PA19 | * 43 | PA20 | * 44 | PC19 | * 45 | PC18 | * 46 | PC17 | * 47 | PC16 | * 48 | PC15 | * 49 | PC14 | * 50 | PC13 | * 51 | PC12 | * 52 NPCS2 | PB21 | * 53 | PB14 | * 54 | PA16 | "A0" * 55 | PA24 | "A1" * 56 | PA23 | "A2" * 57 | PA22 | "A3" * 58 TIOB2 | PA6 | "A4" * 69 | PA4 | "A5" * 60 TIOB1 | PA3 | "A6" * 61 TIOA1 | PA2 | "A7" * 62 | PB17 | "A8" * 63 | PB18 | "A9" * 64 | PB19 | "A10" * 65 | PB20 | "A11" * 66 | PB15 | "DAC0" * 67 | PB16 | "DAC1" * 68 | PA1 | "CANRX" * 69 | PA0 | "CANTX" * 70 | PA17 | "SDA1" * 71 | PA18 | "SCL1" * 72 | PC30 | LED AMBER "RX" * 73 | PA21 | LED AMBER "TX" * 74 MISO | PA25 | * 75 MOSI | PA26 | * 76 SCLK | PA27 | * 77 NPCS0 | PA28 | * 78 NPCS3 | PB23 | unconnected! * * USB pin | PORT * ----------------+-------- * ID | PB11 * VBOF | PB10 */
2301_81045437/Marlin
Marlin/src/HAL/DUE/pinsDebug.h
C
agpl-3.0
6,708
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * Define SPI Pins: SCK, MISO, MOSI, SS * * Available chip select pins for HW SPI are 4 10 52 77 */ #if SDSS == 4 || SDSS == 10 || SDSS == 52 || SDSS == 77 || SDSS == 87 #if SDSS == 4 #define SPI_PIN 87 #define SPI_CHAN 1 #elif SDSS == 10 #define SPI_PIN 77 #define SPI_CHAN 0 #elif SDSS == 52 #define SPI_PIN 86 #define SPI_CHAN 2 #elif SDSS == 77 #define SPI_PIN 77 #define SPI_CHAN 0 #else #define SPI_PIN 87 #define SPI_CHAN 1 #endif #define SD_SCK_PIN 76 #define SD_MISO_PIN 74 #define SD_MOSI_PIN 75 #else // defaults #define SOFTWARE_SPI #ifndef SD_SCK_PIN #define SD_SCK_PIN 52 #endif #ifndef SD_MISO_PIN #define SD_MISO_PIN 50 #endif #ifndef SD_MOSI_PIN #define SD_MOSI_PIN 51 #endif #endif /* A.28, A.29, B.21, C.26, C.29 */ #define SD_SS_PIN SDSS
2301_81045437/Marlin
Marlin/src/HAL/DUE/spi_pins.h
C
agpl-3.0
1,848
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * HAL Timers for Arduino Due and compatible (SAM3X8E) */ #ifdef ARDUINO_ARCH_SAM // ------------------------ // Includes // ------------------------ #include "../../inc/MarlinConfig.h" #include "HAL.h" // ------------------------ // Local defines // ------------------------ #define NUM_HARDWARE_TIMERS 9 // ------------------------ // Private Variables // ------------------------ const tTimerConfig timer_config[NUM_HARDWARE_TIMERS] = { { TC0, 0, TC0_IRQn, 3}, // 0 - [servo timer5] { TC0, 1, TC1_IRQn, 0}, // 1 { TC0, 2, TC2_IRQn, 2}, // 2 - stepper { TC1, 0, TC3_IRQn, 0}, // 3 - stepper for BOARD_ARCHIM1 { TC1, 1, TC4_IRQn, 15}, // 4 - temperature { TC1, 2, TC5_IRQn, 3}, // 5 - [servo timer3] { TC2, 0, TC6_IRQn, 14}, // 6 - tone { TC2, 1, TC7_IRQn, 0}, // 7 { TC2, 2, TC8_IRQn, 0}, // 8 }; // ------------------------ // Public functions // ------------------------ /* Timer_clock1: Prescaler 2 -> 42MHz Timer_clock2: Prescaler 8 -> 10.5MHz Timer_clock3: Prescaler 32 -> 2.625MHz Timer_clock4: Prescaler 128 -> 656.25kHz */ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) { Tc *tc = timer_config[timer_num].pTimerRegs; IRQn_Type irq = timer_config[timer_num].IRQ_Id; uint32_t channel = timer_config[timer_num].channel; // Disable interrupt, just in case it was already enabled NVIC_DisableIRQ(irq); // We NEED memory barriers to ensure Interrupts are actually disabled! // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) __DSB(); __ISB(); // Disable timer interrupt tc->TC_CHANNEL[channel].TC_IDR = TC_IDR_CPCS; // Stop timer, just in case, to be able to reconfigure it TC_Stop(tc, channel); pmc_set_writeprotect(false); pmc_enable_periph_clk((uint32_t)irq); NVIC_SetPriority(irq, timer_config[timer_num].priority); // wave mode, reset counter on match with RC, TC_Configure(tc, channel, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | (HAL_TIMER_PRESCALER == 2 ? TC_CMR_TCCLKS_TIMER_CLOCK1 : 0) | (HAL_TIMER_PRESCALER == 8 ? TC_CMR_TCCLKS_TIMER_CLOCK2 : 0) | (HAL_TIMER_PRESCALER == 32 ? TC_CMR_TCCLKS_TIMER_CLOCK3 : 0) | (HAL_TIMER_PRESCALER == 128 ? TC_CMR_TCCLKS_TIMER_CLOCK4 : 0) ); // Set compare value TC_SetRC(tc, channel, VARIANT_MCK / (HAL_TIMER_PRESCALER) / frequency); // And start timer TC_Start(tc, channel); // enable interrupt on RC compare tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPCS; // Finally, enable IRQ NVIC_EnableIRQ(irq); } void HAL_timer_enable_interrupt(const uint8_t timer_num) { IRQn_Type irq = timer_config[timer_num].IRQ_Id; NVIC_EnableIRQ(irq); } void HAL_timer_disable_interrupt(const uint8_t timer_num) { IRQn_Type irq = timer_config[timer_num].IRQ_Id; NVIC_DisableIRQ(irq); // We NEED memory barriers to ensure Interrupts are actually disabled! // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) __DSB(); __ISB(); } // missing from CMSIS: Check if interrupt is enabled or not static bool NVIC_GetEnabledIRQ(IRQn_Type IRQn) { return TEST(NVIC->ISER[uint32_t(IRQn) >> 5], uint32_t(IRQn) & 0x1F); } bool HAL_timer_interrupt_enabled(const uint8_t timer_num) { IRQn_Type irq = timer_config[timer_num].IRQ_Id; return NVIC_GetEnabledIRQ(irq); } #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/timers.cpp
C++
agpl-3.0
4,220
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * HAL Timers for Arduino Due and compatible (SAM3X8E) */ #include <stdint.h> // ------------------------ // Defines // ------------------------ #define FORCE_INLINE __attribute__((always_inline)) inline typedef uint32_t hal_timer_t; #define HAL_TIMER_TYPE_MAX 0xFFFFFFFF #define HAL_TIMER_PRESCALER 2 #define HAL_TIMER_RATE ((F_CPU) / (HAL_TIMER_PRESCALER)) // frequency of timers peripherals #ifndef MF_TIMER_STEP #define MF_TIMER_STEP 2 // Timer Index for Stepper #endif #ifndef MF_TIMER_PULSE #define MF_TIMER_PULSE MF_TIMER_STEP #endif #ifndef MF_TIMER_TEMP #define MF_TIMER_TEMP 4 // Timer Index for Temperature #endif #ifndef MF_TIMER_TONE #define MF_TIMER_TONE 6 // index of timer to use for beeper tones #endif #define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency #define STEPPER_TIMER_RATE HAL_TIMER_RATE // frequency of stepper timer (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE) #define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per µs #define STEPPER_TIMER_PRESCALE (CYCLES_PER_MICROSECOND / STEPPER_TIMER_TICKS_PER_US) #define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer #define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE #define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US #define ENABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_enable_interrupt(MF_TIMER_STEP) #define DISABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_disable_interrupt(MF_TIMER_STEP) #define STEPPER_ISR_ENABLED() HAL_timer_interrupt_enabled(MF_TIMER_STEP) #define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(MF_TIMER_TEMP) #define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(MF_TIMER_TEMP) #ifndef HAL_STEP_TIMER_ISR #define HAL_STEP_TIMER_ISR() void TC2_Handler() #endif #ifndef HAL_TEMP_TIMER_ISR #define HAL_TEMP_TIMER_ISR() void TC4_Handler() #endif #ifndef HAL_TONE_TIMER_ISR #define HAL_TONE_TIMER_ISR() void TC6_Handler() #endif // ------------------------ // Types // ------------------------ typedef struct { Tc *pTimerRegs; uint16_t channel; IRQn_Type IRQ_Id; uint8_t priority; } tTimerConfig; // ------------------------ // Public Variables // ------------------------ extern const tTimerConfig timer_config[]; // ------------------------ // Public functions // ------------------------ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency); FORCE_INLINE static void HAL_timer_set_compare(const uint8_t timer_num, const hal_timer_t compare) { const tTimerConfig * const pConfig = &timer_config[timer_num]; pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_RC = compare; } FORCE_INLINE static hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) { const tTimerConfig * const pConfig = &timer_config[timer_num]; return pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_RC; } FORCE_INLINE static hal_timer_t HAL_timer_get_count(const uint8_t timer_num) { const tTimerConfig * const pConfig = &timer_config[timer_num]; return pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_CV; } void HAL_timer_enable_interrupt(const uint8_t timer_num); void HAL_timer_disable_interrupt(const uint8_t timer_num); bool HAL_timer_interrupt_enabled(const uint8_t timer_num); FORCE_INLINE static void HAL_timer_isr_prologue(const uint8_t timer_num) { const tTimerConfig * const pConfig = &timer_config[timer_num]; // Reading the status register clears the interrupt flag pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_SR; } #define HAL_timer_isr_epilogue(T) NOOP
2301_81045437/Marlin
Marlin/src/HAL/DUE/timers.h
C
agpl-3.0
4,623
/** * Marlin 3D Printer Firmware * Copyright (c) 2023 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once /** * DUE (SAM3X8E) LCD-specific defines */ uint8_t u8g_com_HAL_DUE_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr); uint8_t u8g_com_HAL_DUE_shared_hw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr); uint8_t u8g_com_HAL_DUE_ST7920_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr); #define U8G_COM_HAL_SW_SPI_FN u8g_com_HAL_DUE_sw_spi_fn #define U8G_COM_HAL_HW_SPI_FN u8g_com_HAL_DUE_shared_hw_spi_fn #define U8G_COM_ST7920_HAL_SW_SPI u8g_com_HAL_DUE_ST7920_sw_spi_fn
2301_81045437/Marlin
Marlin/src/HAL/DUE/u8g/LCD_defines.h
C
agpl-3.0
1,408
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Based on u8g_com_msp430_hw_spi.c * * Universal 8bit Graphics Library * * Copyright (c) 2012, olikraus@gmail.com * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef __SAM3X8E__ #include "../../../inc/MarlinConfigPre.h" #if HAS_MARLINUI_U8GLIB #include <U8glib-HAL.h> #include "../../../MarlinCore.h" #ifndef LCD_SPI_SPEED #define LCD_SPI_SPEED SPI_QUARTER_SPEED #endif #include "../../shared/HAL_SPI.h" #include "../fastio.h" void u8g_SetPIOutput_DUE_hw_spi(u8g_t *u8g, uint8_t pin_index) { PIO_Configure(g_APinDescription[u8g->pin_list[pin_index]].pPort, PIO_OUTPUT_1, g_APinDescription[u8g->pin_list[pin_index]].ulPin, g_APinDescription[u8g->pin_list[pin_index]].ulPinConfiguration); // OUTPUT } void u8g_SetPILevel_DUE_hw_spi(u8g_t *u8g, uint8_t pin_index, uint8_t level) { volatile Pio* port = g_APinDescription[u8g->pin_list[pin_index]].pPort; uint32_t mask = g_APinDescription[u8g->pin_list[pin_index]].ulPin; if (level) port->PIO_SODR = mask; else port->PIO_CODR = mask; } uint8_t u8g_com_HAL_DUE_shared_hw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) { switch (msg) { case U8G_COM_MSG_STOP: break; case U8G_COM_MSG_INIT: u8g_SetPILevel_DUE_hw_spi(u8g, U8G_PI_CS, 1); u8g_SetPILevel_DUE_hw_spi(u8g, U8G_PI_A0, 1); u8g_SetPIOutput_DUE_hw_spi(u8g, U8G_PI_CS); u8g_SetPIOutput_DUE_hw_spi(u8g, U8G_PI_A0); u8g_Delay(5); spiBegin(); spiInit(LCD_SPI_SPEED); break; case U8G_COM_MSG_ADDRESS: /* define cmd (arg_val = 0) or data mode (arg_val = 1) */ u8g_SetPILevel_DUE_hw_spi(u8g, U8G_PI_A0, arg_val); break; case U8G_COM_MSG_CHIP_SELECT: u8g_SetPILevel_DUE_hw_spi(u8g, U8G_PI_CS, (arg_val ? 0 : 1)); break; case U8G_COM_MSG_RESET: break; case U8G_COM_MSG_WRITE_BYTE: spiSend((uint8_t)arg_val); break; case U8G_COM_MSG_WRITE_SEQ: { uint8_t *ptr = (uint8_t*) arg_ptr; while (arg_val > 0) { spiSend(*ptr++); arg_val--; } } break; case U8G_COM_MSG_WRITE_SEQ_P: { uint8_t *ptr = (uint8_t*) arg_ptr; while (arg_val > 0) { spiSend(*ptr++); arg_val--; } } break; } return 1; } #endif // HAS_MARLINUI_U8GLIB #endif // __SAM3X8E__
2301_81045437/Marlin
Marlin/src/HAL/DUE/u8g/u8g_com_HAL_DUE_shared_hw_spi.cpp
C++
agpl-3.0
4,509
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Based on u8g_com_st7920_hw_spi.c * * Universal 8bit Graphics Library * * Copyright (c) 2011, olikraus@gmail.com * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef ARDUINO_ARCH_SAM #include "../../../inc/MarlinConfigPre.h" #if IS_U8GLIB_ST7920 #include "../../../inc/MarlinConfig.h" #include "../../shared/Delay.h" #include <U8glib-HAL.h> #include "u8g_com_HAL_DUE_sw_spi_shared.h" #define SPISEND_SW_DUE u8g_spiSend_sw_DUE_mode_0 static uint8_t rs_last_state = 255; static void u8g_com_DUE_st7920_write_byte_sw_spi(uint8_t rs, uint8_t val) { if (rs != rs_last_state) { // time to send a command/data byte rs_last_state = rs; SPISEND_SW_DUE(rs ? 0x0FA : 0x0F8); // Command or Data DELAY_US(40); // give the controller some time to process the data: 20 is bad, 30 is OK, 40 is safe } SPISEND_SW_DUE(val & 0xF0); SPISEND_SW_DUE(val << 4); } uint8_t u8g_com_HAL_DUE_ST7920_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) { switch (msg) { case U8G_COM_MSG_INIT: SCK_pPio = g_APinDescription[u8g->pin_list[U8G_PI_SCK]].pPort; SCK_dwMask = g_APinDescription[u8g->pin_list[U8G_PI_SCK]].ulPin; MOSI_pPio = g_APinDescription[u8g->pin_list[U8G_PI_MOSI]].pPort; MOSI_dwMask = g_APinDescription[u8g->pin_list[U8G_PI_MOSI]].ulPin; u8g_SetPILevel_DUE(u8g, U8G_PI_CS, 0); u8g_SetPIOutput_DUE(u8g, U8G_PI_CS); u8g_SetPILevel_DUE(u8g, U8G_PI_SCK, 0); u8g_SetPIOutput_DUE(u8g, U8G_PI_SCK); u8g_SetPILevel_DUE(u8g, U8G_PI_MOSI, 0); u8g_SetPIOutput_DUE(u8g, U8G_PI_MOSI); SCK_pPio->PIO_CODR = SCK_dwMask; //SCK low - needed at power up but not after reset MOSI_pPio->PIO_CODR = MOSI_dwMask; //MOSI low - needed at power up but not after reset u8g_Delay(5); u8g->pin_list[U8G_PI_A0_STATE] = 0; /* initial RS state: command mode */ break; case U8G_COM_MSG_STOP: break; case U8G_COM_MSG_RESET: if (U8G_PIN_NONE != u8g->pin_list[U8G_PI_RESET]) u8g_SetPILevel_DUE(u8g, U8G_PI_RESET, arg_val); break; case U8G_COM_MSG_ADDRESS: /* define cmd (arg_val = 0) or data mode (arg_val = 1) */ u8g->pin_list[U8G_PI_A0_STATE] = arg_val; break; case U8G_COM_MSG_CHIP_SELECT: if (U8G_PIN_NONE != u8g->pin_list[U8G_PI_CS]) u8g_SetPILevel_DUE(u8g, U8G_PI_CS, arg_val); //note: the st7920 has an active high chip select break; case U8G_COM_MSG_WRITE_BYTE: u8g_com_DUE_st7920_write_byte_sw_spi(u8g->pin_list[U8G_PI_A0_STATE], arg_val); break; case U8G_COM_MSG_WRITE_SEQ: { uint8_t *ptr = (uint8_t*) arg_ptr; while (arg_val > 0) { u8g_com_DUE_st7920_write_byte_sw_spi(u8g->pin_list[U8G_PI_A0_STATE], *ptr++); arg_val--; } } break; case U8G_COM_MSG_WRITE_SEQ_P: { uint8_t *ptr = (uint8_t*) arg_ptr; while (arg_val > 0) { u8g_com_DUE_st7920_write_byte_sw_spi(u8g->pin_list[U8G_PI_A0_STATE], *ptr++); arg_val--; } } break; } return 1; } #if ENABLED(LIGHTWEIGHT_UI) #include "../../../lcd/marlinui.h" #include "../../shared/HAL_ST7920.h" #define ST7920_CS_PIN LCD_PINS_RS #if DOGM_SPI_DELAY_US > 0 #define U8G_DELAY() DELAY_US(DOGM_SPI_DELAY_US) #else #define U8G_DELAY() DELAY_US(10) #endif void ST7920_cs() { WRITE(ST7920_CS_PIN, HIGH); U8G_DELAY(); } void ST7920_ncs() { WRITE(ST7920_CS_PIN, LOW); } void ST7920_set_cmd() { SPISEND_SW_DUE(0xF8); DELAY_US(40); } void ST7920_set_dat() { SPISEND_SW_DUE(0xFA); DELAY_US(40); } void ST7920_write_byte(const uint8_t val) { SPISEND_SW_DUE(val & 0xF0); SPISEND_SW_DUE(val << 4); } #endif // LIGHTWEIGHT_UI #endif // IS_U8GLIB_ST7920 #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/u8g/u8g_com_HAL_DUE_st7920_sw_spi.cpp
C++
agpl-3.0
6,011
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Based on u8g_com_std_sw_spi.c * * Universal 8bit Graphics Library * * Copyright (c) 2015, olikraus@gmail.com * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef ARDUINO_ARCH_SAM #include "../../../inc/MarlinConfigPre.h" #if HAS_MARLINUI_U8GLIB && !IS_U8GLIB_ST7920 #include "u8g_com_HAL_DUE_sw_spi_shared.h" #include "../../shared/Marduino.h" #include "../../shared/Delay.h" #include <U8glib-HAL.h> #if ENABLED(FYSETC_MINI_12864) #define SPISEND_SW_DUE u8g_spiSend_sw_DUE_mode_3 #else #define SPISEND_SW_DUE u8g_spiSend_sw_DUE_mode_0 #endif uint8_t u8g_com_HAL_DUE_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) { switch (msg) { case U8G_COM_MSG_INIT: SCK_pPio = g_APinDescription[u8g->pin_list[U8G_PI_SCK]].pPort; SCK_dwMask = g_APinDescription[u8g->pin_list[U8G_PI_SCK]].ulPin; MOSI_pPio = g_APinDescription[u8g->pin_list[U8G_PI_MOSI]].pPort; MOSI_dwMask = g_APinDescription[u8g->pin_list[U8G_PI_MOSI]].ulPin; u8g_SetPIOutput_DUE(u8g, U8G_PI_SCK); u8g_SetPIOutput_DUE(u8g, U8G_PI_MOSI); u8g_SetPIOutput_DUE(u8g, U8G_PI_CS); u8g_SetPIOutput_DUE(u8g, U8G_PI_A0); if (U8G_PIN_NONE != u8g->pin_list[U8G_PI_RESET]) u8g_SetPIOutput_DUE(u8g, U8G_PI_RESET); u8g_SetPILevel_DUE(u8g, U8G_PI_SCK, 0); u8g_SetPILevel_DUE(u8g, U8G_PI_MOSI, 0); break; case U8G_COM_MSG_STOP: break; case U8G_COM_MSG_RESET: if (U8G_PIN_NONE != u8g->pin_list[U8G_PI_RESET]) u8g_SetPILevel_DUE(u8g, U8G_PI_RESET, arg_val); break; case U8G_COM_MSG_CHIP_SELECT: #if ENABLED(FYSETC_MINI_12864) // LCD SPI is running mode 3 while SD card is running mode 0 if (arg_val) { // SCK idle state needs to be set to the proper idle state before // the next chip select goes active u8g_SetPILevel_DUE(u8g, U8G_PI_SCK, 1); //set SCK to mode 3 idle state before CS goes active u8g_SetPILevel_DUE(u8g, U8G_PI_CS, LOW); } else { u8g_SetPILevel_DUE(u8g, U8G_PI_CS, HIGH); u8g_SetPILevel_DUE(u8g, U8G_PI_SCK, 0); //set SCK to mode 0 idle state after CS goes inactive } #else u8g_SetPILevel_DUE(u8g, U8G_PI_CS, !arg_val); #endif break; case U8G_COM_MSG_WRITE_BYTE: SPISEND_SW_DUE(arg_val); break; case U8G_COM_MSG_WRITE_SEQ: { uint8_t *ptr = (uint8_t *)arg_ptr; while (arg_val > 0) { SPISEND_SW_DUE(*ptr++); arg_val--; } } break; case U8G_COM_MSG_WRITE_SEQ_P: { uint8_t *ptr = (uint8_t *)arg_ptr; while (arg_val > 0) { SPISEND_SW_DUE(u8g_pgm_read(ptr)); ptr++; arg_val--; } } break; case U8G_COM_MSG_ADDRESS: /* define cmd (arg_val = 0) or data mode (arg_val = 1) */ u8g_SetPILevel_DUE(u8g, U8G_PI_A0, arg_val); break; } return 1; } #endif // HAS_MARLINUI_U8GLIB && !IS_U8GLIB_ST7920 #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/u8g/u8g_com_HAL_DUE_sw_spi.cpp
C++
agpl-3.0
5,255
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ /** * Based on u8g_com_st7920_hw_spi.c * * Universal 8bit Graphics Library * * Copyright (c) 2011, olikraus@gmail.com * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef ARDUINO_ARCH_SAM #include "../../../inc/MarlinConfigPre.h" #if HAS_MARLINUI_U8GLIB #include "../../../inc/MarlinConfig.h" #include "../../shared/Delay.h" #include <U8glib-HAL.h> #include "u8g_com_HAL_DUE_sw_spi_shared.h" void u8g_SetPIOutput_DUE(u8g_t *u8g, uint8_t pin_index) { PIO_Configure(g_APinDescription[u8g->pin_list[pin_index]].pPort, PIO_OUTPUT_1, g_APinDescription[u8g->pin_list[pin_index]].ulPin, g_APinDescription[u8g->pin_list[pin_index]].ulPinConfiguration); // OUTPUT } void u8g_SetPILevel_DUE(u8g_t *u8g, uint8_t pin_index, uint8_t level) { volatile Pio* port = g_APinDescription[u8g->pin_list[pin_index]].pPort; uint32_t mask = g_APinDescription[u8g->pin_list[pin_index]].ulPin; if (level) port->PIO_SODR = mask; else port->PIO_CODR = mask; } Pio *SCK_pPio, *MOSI_pPio; uint32_t SCK_dwMask, MOSI_dwMask; void u8g_spiSend_sw_DUE_mode_0(uint8_t val) { // 3MHz for (uint8_t i = 0; i < 8; ++i) { if (val & 0x80) MOSI_pPio->PIO_SODR = MOSI_dwMask; else MOSI_pPio->PIO_CODR = MOSI_dwMask; DELAY_NS(48); SCK_pPio->PIO_SODR = SCK_dwMask; DELAY_NS(905); val <<= 1; SCK_pPio->PIO_CODR = SCK_dwMask; } } void u8g_spiSend_sw_DUE_mode_3(uint8_t val) { // 3.5MHz for (uint8_t i = 0; i < 8; ++i) { SCK_pPio->PIO_CODR = SCK_dwMask; DELAY_NS(50); if (val & 0x80) MOSI_pPio->PIO_SODR = MOSI_dwMask; else MOSI_pPio->PIO_CODR = MOSI_dwMask; val <<= 1; DELAY_NS(10); SCK_pPio->PIO_SODR = SCK_dwMask; DELAY_NS(70); } } #endif // HAS_MARLINUI_U8GLIB #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/u8g/u8g_com_HAL_DUE_sw_spi_shared.cpp
C++
agpl-3.0
3,924
/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * */ #pragma once #include "../../../inc/MarlinConfigPre.h" #include "../../shared/Marduino.h" #include <U8glib-HAL.h> void u8g_SetPIOutput_DUE(u8g_t *u8g, uint8_t pin_index); void u8g_SetPILevel_DUE(u8g_t *u8g, uint8_t pin_index, uint8_t level); void u8g_spiSend_sw_DUE_mode_0(uint8_t val); void u8g_spiSend_sw_DUE_mode_3(uint8_t val); extern Pio *SCK_pPio, *MOSI_pPio; extern uint32_t SCK_dwMask, MOSI_dwMask;
2301_81045437/Marlin
Marlin/src/HAL/DUE/u8g/u8g_com_HAL_DUE_sw_spi_shared.h
C
agpl-3.0
1,273
# # Set upload_command # # Windows: bossac.exe # Other: leave unchanged # import pioutil if pioutil.is_pio_build(): import platform current_OS = platform.system() if current_OS == 'Windows': Import("env") # Use bossac.exe on Windows env.Replace( UPLOADCMD="bossac --info --unlock --write --verify --reset --erase -U false --boot $SOURCE" )
2301_81045437/Marlin
Marlin/src/HAL/DUE/upload_extra_script.py
Python
agpl-3.0
401
/** * \file * * \brief Arduino Due/X Board Definition. * * Copyright (c) 2011-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ #pragma once /** * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ /** * \page arduino_due_x_opfreq "Arduino Due/X - Operating frequencies" * This page lists several definition related to the board operating frequency * * \section Definitions * - \ref BOARD_FREQ_* * - \ref BOARD_MCK */ /*! Board oscillator settings */ #define BOARD_FREQ_SLCK_XTAL (32768U) #define BOARD_FREQ_SLCK_BYPASS (32768U) #define BOARD_FREQ_MAINCK_XTAL (12000000U) #define BOARD_FREQ_MAINCK_BYPASS (12000000U) /*! Master clock frequency */ #define BOARD_MCK CHIP_FREQ_CPU_MAX #define BOARD_NO_32K_XTAL /** board main clock xtal startup time */ #define BOARD_OSC_STARTUP_US 15625 /* ------------------------------------------------------------------------ */ /** * \page arduino_due_x_board_info "Arduino Due/X - Board information" * This page lists several definition related to the board description. * */ /* ------------------------------------------------------------------------ */ /* USB */ /* ------------------------------------------------------------------------ */ /*! USB OTG VBus On/Off: Bus Power Control Port. */ #define PIN_UOTGHS_VBOF { PIO_PB10, PIOB, ID_PIOB, PIO_PERIPH_A, PIO_PULLUP } /*! USB OTG Identification: Mini Connector Identification Port. */ #define PIN_UOTGHS_ID { PIO_PB11, PIOB, ID_PIOB, PIO_PERIPH_A, PIO_PULLUP } /*! Multiplexed pin used for USB_ID: */ #define USB_ID PIO_PB11_IDX #define USB_ID_GPIO (PIO_PB11_IDX) #define USB_ID_FLAGS (PIO_PERIPH_A | PIO_DEFAULT) /*! Multiplexed pin used for USB_VBOF: */ #define USB_VBOF PIO_PB10_IDX #define USB_VBOF_GPIO (PIO_PB10_IDX) #define USB_VBOF_FLAGS (PIO_PERIPH_A | PIO_DEFAULT) /*! Active level of the USB_VBOF output pin. */ #define USB_VBOF_ACTIVE_STATE LOW /* ------------------------------------------------------------------------ */
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/arduino_due_x.h
C
agpl-3.0
3,867
/** * \file * * \brief Commonly used includes, types and macros. * * Copyright (c) 2010-2016 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef UTILS_COMPILER_H #define UTILS_COMPILER_H #include <sam.h> #include <chip.h> #include "arduino_due_x.h" #include "conf_clock.h" #ifdef SAM3XA_SERIES #define SAM3XA 1 #endif #define UDD_NO_SLEEP_MGR 1 #define pmc_is_wakeup_clocks_restored() true #undef udd_get_endpoint_size_max #define UDD_USB_INT_FUN USBD_ISR /** * \defgroup group_sam_utils Compiler abstraction layer and code utilities * * Compiler abstraction layer and code utilities for AT91SAM. * This module provides various abstraction layers and utilities to make code compatible between different compilers. * * \{ */ #include <stddef.h> #if (defined __ICCARM__) # include <intrinsics.h> #endif #include <sam.h> #include "preprocessor.h" //_____ D E C L A R A T I O N S ____________________________________________ #ifndef __ASSEMBLY__ // Not defined for assembling. #include <stdio.h> #include <stdbool.h> #include <stdint.h> #include <stdlib.h> #ifdef __ICCARM__ /*! \name Compiler Keywords * * Port of some keywords from GCC to IAR Embedded Workbench. */ //! @{ #define __asm__ asm #define __inline__ inline #define __volatile__ //! @} #endif #define FUNC_PTR void * /** * \def UNUSED * \brief Marking \a v as a unused parameter or value. */ #ifndef UNUSED #define UNUSED(x) ((void)(x)) #endif /** * \def unused * \brief Marking \a v as a unused parameter or value. */ #define unused(v) do { (void)(v); }while(0) /** * \def barrier * \brief Memory barrier */ #define barrier() __DMB() /** * \brief Emit the compiler pragma \a arg. * * \param arg The pragma directive as it would appear after \e \#pragma * (i.e. not stringified). */ #define COMPILER_PRAGMA(arg) _Pragma(#arg) /** * \def COMPILER_PACK_SET(alignment) * \brief Set maximum alignment for subsequent struct and union * definitions to \a alignment. */ #define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment)) /** * \def COMPILER_PACK_RESET() * \brief Set default alignment for subsequent struct and union * definitions. */ #define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack()) /** * \brief Set aligned boundary. */ #if (defined __GNUC__) || (defined __CC_ARM) # define COMPILER_ALIGNED(a) __attribute__((__aligned__(a))) #elif (defined __ICCARM__) # define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a) #endif /** * \brief Set word-aligned boundary. */ #if (defined __GNUC__) || defined(__CC_ARM) #define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4))) #elif (defined __ICCARM__) #define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4) #endif /** * \def __always_inline * \brief The function should always be inlined. * * This annotation instructs the compiler to ignore its inlining * heuristics and inline the function no matter how big it thinks it * becomes. */ #ifdef __CC_ARM # define __always_inline __forceinline #elif (defined __GNUC__) #ifdef __always_inline # undef __always_inline #endif # define __always_inline inline __attribute__((__always_inline__)) #elif (defined __ICCARM__) # define __always_inline _Pragma("inline=forced") #endif /** * \def __no_inline * \brief The function should not be inlined. * * This annotation instructs the compiler to ignore its inlining * heuristics and not inline the function. */ #ifdef __CC_ARM # define __no_inline __attribute__((noinline)) #elif (defined __GNUC__) # define __no_inline __attribute__((__noinline__)) #elif (defined __ICCARM__) # define __no_inline _Pragma("inline=never") #endif /*! \brief This macro is used to test fatal errors. * * The macro tests if the expression is false. If it is, a fatal error is * detected and the application hangs up. If TEST_SUITE_DEFINE_ASSERT_MACRO * is defined, a unit test version of the macro is used, to allow execution * of further tests after a false expression. * * \param expr Expression to evaluate and supposed to be nonzero. */ #ifdef _ASSERT_ENABLE_ # if defined(TEST_SUITE_DEFINE_ASSERT_MACRO) // Assert() is defined in unit_test/suite.h # include "unit_test/suite.h" # else #undef TEST_SUITE_DEFINE_ASSERT_MACRO # define Assert(expr) \ {\ if (!(expr)) while (true);\ } # endif #else # define Assert(expr) ((void) 0) #endif /* Define WEAK attribute */ #if defined ( __CC_ARM ) /* Keil µVision 4 */ # define WEAK __attribute__ ((weak)) #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ # define WEAK __weak #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ # define WEAK __attribute__ ((weak)) #endif /* Define NO_INIT attribute */ #if 0 //ndef NO_INIT #ifdef __CC_ARM # define NO_INIT __attribute__((zero_init)) #elif defined ( __ICCARM__ ) # define NO_INIT __no_init #elif defined ( __GNUC__ ) # define NO_INIT __attribute__((section(".no_init"))) #endif #endif /* Define RAMFUNC attribute */ #if defined ( __CC_ARM ) /* Keil µVision 4 */ # define RAMFUNC __attribute__ ((section(".ramfunc"))) #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ # define RAMFUNC __ramfunc #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ # define RAMFUNC __attribute__ ((section(".ramfunc"))) #endif /* Define OPTIMIZE_HIGH attribute */ #if defined ( __CC_ARM ) /* Keil µVision 4 */ # define OPTIMIZE_HIGH _Pragma("O3") #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ # define OPTIMIZE_HIGH _Pragma("optimize=high") #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ # define OPTIMIZE_HIGH __attribute__((optimize("s"))) #endif /*! \name Usual Types */ //! @{ typedef unsigned char Bool; //!< Boolean. #ifndef __cplusplus #ifndef __bool_true_false_are_defined typedef unsigned char bool; //!< Boolean. #endif #endif typedef int8_t S8 ; //!< 8-bit signed integer. typedef uint8_t U8 ; //!< 8-bit unsigned integer. typedef int16_t S16; //!< 16-bit signed integer. typedef uint16_t U16; //!< 16-bit unsigned integer. typedef uint16_t le16_t; typedef uint16_t be16_t; typedef int32_t S32; //!< 32-bit signed integer. typedef uint32_t U32; //!< 32-bit unsigned integer. typedef uint32_t le32_t; typedef uint32_t be32_t; typedef int64_t S64; //!< 64-bit signed integer. typedef uint64_t U64; //!< 64-bit unsigned integer. typedef float F32; //!< 32-bit floating-point number. typedef double F64; //!< 64-bit floating-point number. typedef uint32_t iram_size_t; //! @} /*! \name Status Types */ //! @{ typedef bool Status_bool_t; //!< Boolean status. typedef U8 Status_t; //!< 8-bit-coded status. //! @} /*! \name Aliasing Aggregate Types */ //! @{ //! 16-bit union. typedef union { S16 s16 ; U16 u16 ; S8 s8 [2]; U8 u8 [2]; } Union16; //! 32-bit union. typedef union { S32 s32 ; U32 u32 ; S16 s16[2]; U16 u16[2]; S8 s8 [4]; U8 u8 [4]; } Union32; //! 64-bit union. typedef union { S64 s64 ; U64 u64 ; S32 s32[2]; U32 u32[2]; S16 s16[4]; U16 u16[4]; S8 s8 [8]; U8 u8 [8]; } Union64; //! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. typedef union { S64 *s64ptr; U64 *u64ptr; S32 *s32ptr; U32 *u32ptr; S16 *s16ptr; U16 *u16ptr; S8 *s8ptr ; U8 *u8ptr ; } UnionPtr; //! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. typedef union { volatile S64 *s64ptr; volatile U64 *u64ptr; volatile S32 *s32ptr; volatile U32 *u32ptr; volatile S16 *s16ptr; volatile U16 *u16ptr; volatile S8 *s8ptr ; volatile U8 *u8ptr ; } UnionVPtr; //! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. typedef union { const S64 *s64ptr; const U64 *u64ptr; const S32 *s32ptr; const U32 *u32ptr; const S16 *s16ptr; const U16 *u16ptr; const S8 *s8ptr ; const U8 *u8ptr ; } UnionCPtr; //! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. typedef union { const volatile S64 *s64ptr; const volatile U64 *u64ptr; const volatile S32 *s32ptr; const volatile U32 *u32ptr; const volatile S16 *s16ptr; const volatile U16 *u16ptr; const volatile S8 *s8ptr ; const volatile U8 *u8ptr ; } UnionCVPtr; //! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. typedef struct { S64 *s64ptr; U64 *u64ptr; S32 *s32ptr; U32 *u32ptr; S16 *s16ptr; U16 *u16ptr; S8 *s8ptr ; U8 *u8ptr ; } StructPtr; //! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. typedef struct { volatile S64 *s64ptr; volatile U64 *u64ptr; volatile S32 *s32ptr; volatile U32 *u32ptr; volatile S16 *s16ptr; volatile U16 *u16ptr; volatile S8 *s8ptr ; volatile U8 *u8ptr ; } StructVPtr; //! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. typedef struct { const S64 *s64ptr; const U64 *u64ptr; const S32 *s32ptr; const U32 *u32ptr; const S16 *s16ptr; const U16 *u16ptr; const S8 *s8ptr ; const U8 *u8ptr ; } StructCPtr; //! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. typedef struct { const volatile S64 *s64ptr; const volatile U64 *u64ptr; const volatile S32 *s32ptr; const volatile U32 *u32ptr; const volatile S16 *s16ptr; const volatile U16 *u16ptr; const volatile S8 *s8ptr ; const volatile U8 *u8ptr ; } StructCVPtr; //! @} #endif // #ifndef __ASSEMBLY__ /*! \name Usual Constants */ //! @{ #define DISABLE 0 #define ENABLE 1 #ifndef __cplusplus #ifndef __bool_true_false_are_defined #define false (1==0) #define true (1==1) #endif #endif #ifndef PASS #define PASS 0 #endif #ifndef FAIL #define FAIL 1 #endif #ifndef LOW #define LOW 0x0 #endif #ifndef HIGH #define HIGH 0x1 #endif //! @} #ifndef __ASSEMBLY__ // not for assembling. //! \name Optimization Control //@{ /** * \def likely(exp) * \brief The expression \a exp is likely to be true */ #ifndef likely # define likely(exp) (exp) #endif /** * \def unlikely(exp) * \brief The expression \a exp is unlikely to be true */ #ifndef unlikely # define unlikely(exp) (exp) #endif /** * \def is_constant(exp) * \brief Determine if an expression evaluates to a constant value. * * \param exp Any expression * * \return true if \a exp is constant, false otherwise. */ #if (defined __GNUC__) || (defined __CC_ARM) # define is_constant(exp) __builtin_constant_p(exp) #else # define is_constant(exp) (0) #endif //! @} /*! \name Bit-Field Handling */ //! @{ /*! \brief Reads the bits of a value specified by a given bit-mask. * * \param value Value to read bits from. * \param mask Bit-mask indicating bits to read. * * \return Read bits. */ #define Rd_bits( value, mask) ((value) & (mask)) /*! \brief Writes the bits of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue to write bits to. * \param mask Bit-mask indicating bits to write. * \param bits Bits to write. * * \return Resulting value with written bits. */ #define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\ ((bits ) & (mask))) /*! \brief Tests the bits of a value specified by a given bit-mask. * * \param value Value of which to test bits. * \param mask Bit-mask indicating bits to test. * * \return \c 1 if at least one of the tested bits is set, else \c 0. */ #define Tst_bits( value, mask) (Rd_bits(value, mask) != 0) /*! \brief Clears the bits of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue of which to clear bits. * \param mask Bit-mask indicating bits to clear. * * \return Resulting value with cleared bits. */ #define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask)) /*! \brief Sets the bits of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue of which to set bits. * \param mask Bit-mask indicating bits to set. * * \return Resulting value with set bits. */ #define Set_bits(lvalue, mask) ((lvalue) |= (mask)) /*! \brief Toggles the bits of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue of which to toggle bits. * \param mask Bit-mask indicating bits to toggle. * * \return Resulting value with toggled bits. */ #define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask)) /*! \brief Reads the bit-field of a value specified by a given bit-mask. * * \param value Value to read a bit-field from. * \param mask Bit-mask indicating the bit-field to read. * * \return Read bit-field. */ #define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask)) /*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue to write a bit-field to. * \param mask Bit-mask indicating the bit-field to write. * \param bitfield Bit-field to write. * * \return Resulting value with written bit-field. */ #define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask))) //! @} /*! \name Zero-Bit Counting * * Under GCC, __builtin_clz and __builtin_ctz behave like macros when * applied to constant expressions (values known at compile time), so they are * more optimized than the use of the corresponding assembly instructions and * they can be used as constant expressions e.g. to initialize objects having * static storage duration, and like the corresponding assembly instructions * when applied to non-constant expressions (values unknown at compile time), so * they are more optimized than an assembly periphrasis. Hence, clz and ctz * ensure a possible and optimized behavior for both constant and non-constant * expressions. */ //! @{ /*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer. * * \param u Value of which to count the leading zero bits. * * \return The count of leading zero bits in \a u. */ #ifndef clz #if (defined __GNUC__) || (defined __CC_ARM) # define clz(u) ((u) ? __builtin_clz(u) : 32) #elif (defined __ICCARM__) # define clz(u) ((u) ? __CLZ(u) : 32) #else # define clz(u) (((u) == 0) ? 32 : \ ((u) & (1UL << 31)) ? 0 : \ ((u) & (1UL << 30)) ? 1 : \ ((u) & (1UL << 29)) ? 2 : \ ((u) & (1UL << 28)) ? 3 : \ ((u) & (1UL << 27)) ? 4 : \ ((u) & (1UL << 26)) ? 5 : \ ((u) & (1UL << 25)) ? 6 : \ ((u) & (1UL << 24)) ? 7 : \ ((u) & (1UL << 23)) ? 8 : \ ((u) & (1UL << 22)) ? 9 : \ ((u) & (1UL << 21)) ? 10 : \ ((u) & (1UL << 20)) ? 11 : \ ((u) & (1UL << 19)) ? 12 : \ ((u) & (1UL << 18)) ? 13 : \ ((u) & (1UL << 17)) ? 14 : \ ((u) & (1UL << 16)) ? 15 : \ ((u) & (1UL << 15)) ? 16 : \ ((u) & (1UL << 14)) ? 17 : \ ((u) & (1UL << 13)) ? 18 : \ ((u) & (1UL << 12)) ? 19 : \ ((u) & (1UL << 11)) ? 20 : \ ((u) & (1UL << 10)) ? 21 : \ ((u) & (1UL << 9)) ? 22 : \ ((u) & (1UL << 8)) ? 23 : \ ((u) & (1UL << 7)) ? 24 : \ ((u) & (1UL << 6)) ? 25 : \ ((u) & (1UL << 5)) ? 26 : \ ((u) & (1UL << 4)) ? 27 : \ ((u) & (1UL << 3)) ? 28 : \ ((u) & (1UL << 2)) ? 29 : \ ((u) & (1UL << 1)) ? 30 : \ 31) #endif #endif /*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer. * * \param u Value of which to count the trailing zero bits. * * \return The count of trailing zero bits in \a u. */ #ifndef ctz #if (defined __GNUC__) || (defined __CC_ARM) # define ctz(u) ((u) ? __builtin_ctz(u) : 32) #else # define ctz(u) ((u) & (1UL << 0) ? 0 : \ (u) & (1UL << 1) ? 1 : \ (u) & (1UL << 2) ? 2 : \ (u) & (1UL << 3) ? 3 : \ (u) & (1UL << 4) ? 4 : \ (u) & (1UL << 5) ? 5 : \ (u) & (1UL << 6) ? 6 : \ (u) & (1UL << 7) ? 7 : \ (u) & (1UL << 8) ? 8 : \ (u) & (1UL << 9) ? 9 : \ (u) & (1UL << 10) ? 10 : \ (u) & (1UL << 11) ? 11 : \ (u) & (1UL << 12) ? 12 : \ (u) & (1UL << 13) ? 13 : \ (u) & (1UL << 14) ? 14 : \ (u) & (1UL << 15) ? 15 : \ (u) & (1UL << 16) ? 16 : \ (u) & (1UL << 17) ? 17 : \ (u) & (1UL << 18) ? 18 : \ (u) & (1UL << 19) ? 19 : \ (u) & (1UL << 20) ? 20 : \ (u) & (1UL << 21) ? 21 : \ (u) & (1UL << 22) ? 22 : \ (u) & (1UL << 23) ? 23 : \ (u) & (1UL << 24) ? 24 : \ (u) & (1UL << 25) ? 25 : \ (u) & (1UL << 26) ? 26 : \ (u) & (1UL << 27) ? 27 : \ (u) & (1UL << 28) ? 28 : \ (u) & (1UL << 29) ? 29 : \ (u) & (1UL << 30) ? 30 : \ (u) & (1UL << 31) ? 31 : \ 32) #endif #endif //! @} /*! \name Bit Reversing */ //! @{ /*! \brief Reverses the bits of \a u8. * * \param u8 U8 of which to reverse the bits. * * \return Value resulting from \a u8 with reversed bits. */ #define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24)) /*! \brief Reverses the bits of \a u16. * * \param u16 U16 of which to reverse the bits. * * \return Value resulting from \a u16 with reversed bits. */ #define bit_reverse16(u16) ((U16)(bit_reverse32((U16)(u16)) >> 16)) /*! \brief Reverses the bits of \a u32. * * \param u32 U32 of which to reverse the bits. * * \return Value resulting from \a u32 with reversed bits. */ #define bit_reverse32(u32) __RBIT(u32) /*! \brief Reverses the bits of \a u64. * * \param u64 U64 of which to reverse the bits. * * \return Value resulting from \a u64 with reversed bits. */ #define bit_reverse64(u64) ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\ ((U64)bit_reverse32((U64)(u64)) << 32))) //! @} /*! \name Alignment */ //! @{ /*! \brief Tests alignment of the number \a val with the \a n boundary. * * \param val Input value. * \param n Boundary. * * \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0. */ #define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) ) /*! \brief Gets alignment of the number \a val with respect to the \a n boundary. * * \param val Input value. * \param n Boundary. * * \return Alignment of the number \a val with respect to the \a n boundary. */ #define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) ) /*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary. * * \param lval Input/output lvalue. * \param n Boundary. * \param alg Alignment. * * \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary. */ #define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) ) /*! \brief Aligns the number \a val with the upper \a n boundary. * * \param val Input value. * \param n Boundary. * * \return Value resulting from the number \a val aligned with the upper \a n boundary. */ #define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1)) /*! \brief Aligns the number \a val with the lower \a n boundary. * * \param val Input value. * \param n Boundary. * * \return Value resulting from the number \a val aligned with the lower \a n boundary. */ #define Align_down(val, n ) ( (val) & ~((n) - 1)) //! @} /*! \brief Calls the routine at address \a addr. * * It generates a long call opcode. * * For example, `Long_call(0x80000000)' generates a software reset on a UC3 if * it is invoked from the CPU supervisor mode. * * \param addr Address of the routine to call. * * \note It may be used as a long jump opcode in some special cases. */ #define Long_call(addr) ((*(void (*)(void))(addr))()) /*! \name MCU Endianism Handling * ARM is MCU little endianism. */ //! @{ #define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16. #define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16. #define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32. #define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32. #define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32. #define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32. #define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32. #define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32. #define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32. #define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32. #define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32. #define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32. #define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64. #define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64. #define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64. #define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64. #define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64. #define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64. #define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64. #define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64. #define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64. #define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64. #define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64. #define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64. #define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64. #define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64. #define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64. #define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64. #define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64. #define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64. #define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64. #define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64. #define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64. #define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64. #define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64. #define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64. #define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64. #define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64. #define BE16(x) swap16(x) #define LE16(x) (x) #define le16_to_cpu(x) (x) #define cpu_to_le16(x) (x) #define LE16_TO_CPU(x) (x) #define CPU_TO_LE16(x) (x) #define be16_to_cpu(x) swap16(x) #define cpu_to_be16(x) swap16(x) #define BE16_TO_CPU(x) swap16(x) #define CPU_TO_BE16(x) swap16(x) #define le32_to_cpu(x) (x) #define cpu_to_le32(x) (x) #define LE32_TO_CPU(x) (x) #define CPU_TO_LE32(x) (x) #define be32_to_cpu(x) swap32(x) #define cpu_to_be32(x) swap32(x) #define BE32_TO_CPU(x) swap32(x) #define CPU_TO_BE32(x) swap32(x) //! @} /*! \name Endianism Conversion * * The same considerations as for clz and ctz apply here but GCC's * __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when * applied to constant expressions, so two sets of macros are defined here: * - Swap16, Swap32 and Swap64 to apply to constant expressions (values known * at compile time); * - swap16, swap32 and swap64 to apply to non-constant expressions (values * unknown at compile time). */ //! @{ /*! \brief Toggles the endianism of \a u16 (by swapping its bytes). * * \param u16 U16 of which to toggle the endianism. * * \return Value resulting from \a u16 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\ ((U16)(u16) << 8))) /*! \brief Toggles the endianism of \a u32 (by swapping its bytes). * * \param u32 U32 of which to toggle the endianism. * * \return Value resulting from \a u32 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\ ((U32)Swap16((U32)(u32)) << 16))) /*! \brief Toggles the endianism of \a u64 (by swapping its bytes). * * \param u64 U64 of which to toggle the endianism. * * \return Value resulting from \a u64 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\ ((U64)Swap32((U64)(u64)) << 32))) /*! \brief Toggles the endianism of \a u16 (by swapping its bytes). * * \param u16 U16 of which to toggle the endianism. * * \return Value resulting from \a u16 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #define swap16(u16) Swap16(u16) /*! \brief Toggles the endianism of \a u32 (by swapping its bytes). * * \param u32 U32 of which to toggle the endianism. * * \return Value resulting from \a u32 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #if (defined __GNUC__) # define swap32(u32) ((U32)__builtin_bswap32((U32)(u32))) #else # define swap32(u32) Swap32(u32) #endif /*! \brief Toggles the endianism of \a u64 (by swapping its bytes). * * \param u64 U64 of which to toggle the endianism. * * \return Value resulting from \a u64 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #if (defined __GNUC__) # define swap64(u64) ((U64)__builtin_bswap64((U64)(u64))) #else # define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\ ((U64)swap32((U64)(u64)) << 32))) #endif //! @} /*! \name Target Abstraction */ //! @{ #define _GLOBEXT_ extern //!< extern storage-class specifier. #define _CONST_TYPE_ const //!< const type qualifier. #define _MEM_TYPE_SLOW_ //!< Slow memory type. #define _MEM_TYPE_MEDFAST_ //!< Fairly fast memory type. #define _MEM_TYPE_FAST_ //!< Fast memory type. typedef U8 Byte; //!< 8-bit unsigned integer. #define memcmp_ram2ram memcmp //!< Target-specific memcmp of RAM to RAM. #define memcmp_code2ram memcmp //!< Target-specific memcmp of RAM to NVRAM. #define memcpy_ram2ram memcpy //!< Target-specific memcpy from RAM to RAM. #define memcpy_code2ram memcpy //!< Target-specific memcpy from NVRAM to RAM. #define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32. #define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32. #define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32. #define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32. #define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32. #define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32. #define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32. #define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32. //! @} /** * \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using * integer arithmetic. * * \param a An integer * \param b Another integer * * \return (\a a / \a b) rounded up to the nearest integer. */ #define div_ceil(a, b) (((a) + (b) - 1) / (b)) #endif // #ifndef __ASSEMBLY__ #ifdef __ICCARM__ #define SHORTENUM __packed #elif defined(__GNUC__) #define SHORTENUM __attribute__((packed)) #endif /* No operation */ #ifdef __ICCARM__ #define nop() __no_operation() #elif defined(__GNUC__) #define nop() (__NOP()) #endif #define FLASH_DECLARE(x) const x #define FLASH_EXTERN(x) extern const x #define PGM_READ_BYTE(x) *(x) #define PGM_READ_WORD(x) *(x) #define PGM_READ_DWORD(x) *(x) #define MEMCPY_ENDIAN memcpy #define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len)) /*Defines the Flash Storage for the request and response of MAC*/ #define CMD_ID_OCTET (0) /* Converting of values from CPU endian to little endian. */ #define CPU_ENDIAN_TO_LE16(x) (x) #define CPU_ENDIAN_TO_LE32(x) (x) #define CPU_ENDIAN_TO_LE64(x) (x) /* Converting of values from little endian to CPU endian. */ #define LE16_TO_CPU_ENDIAN(x) (x) #define LE32_TO_CPU_ENDIAN(x) (x) #define LE64_TO_CPU_ENDIAN(x) (x) /* Converting of constants from little endian to CPU endian. */ #define CLE16_TO_CPU_ENDIAN(x) (x) #define CLE32_TO_CPU_ENDIAN(x) (x) #define CLE64_TO_CPU_ENDIAN(x) (x) /* Converting of constants from CPU endian to little endian. */ #define CCPU_ENDIAN_TO_LE16(x) (x) #define CCPU_ENDIAN_TO_LE32(x) (x) #define CCPU_ENDIAN_TO_LE64(x) (x) #define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src)) #define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src)) /** * @brief Converts a 64-Bit value into a 8 Byte array * * @param[in] value 64-Bit value * @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value * @ingroup apiPalApi */ static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data) { uint8_t val_index = 0; while (val_index < 8) { data[val_index++] = value & 0xFF; value >>= 8; } } /** * @brief Converts a 16-Bit value into a 2 Byte array * * @param[in] value 16-Bit value * @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value * @ingroup apiPalApi */ static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* Converts a 16-Bit value into a 2 Byte array */ static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* Converts a 16-Bit value into a 2 Byte array */ static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* * @brief Converts a 2 Byte array into a 16-Bit value * * @param data Specifies the pointer to the 2 Byte array * * @return 16-Bit value * @ingroup apiPalApi */ static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data) { return (data[0] | ((uint16_t)data[1] << 8)); } /* Converts a 8 Byte array into a 32-Bit value */ static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data) { union { uint32_t u32; uint8_t u8[8]; }long_addr; uint8_t index; for (index = 0; index < 4; index++) { long_addr.u8[index] = *data++; } return long_addr.u32; } /** * @brief Converts a 8 Byte array into a 64-Bit value * * @param data Specifies the pointer to the 8 Byte array * * @return 64-Bit value * @ingroup apiPalApi */ static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data) { union { uint64_t u64; uint8_t u8[8]; } long_addr; uint8_t val_index; for (val_index = 0; val_index < 8; val_index++) { long_addr.u8[val_index] = *data++; } return long_addr.u64; } /** * \} */ #endif /* UTILS_COMPILER_H */
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/compiler.h
C
agpl-3.0
36,152
/** * \file * * \brief Memory access control configuration file. * * Copyright (c) 2012-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef _CONF_ACCESS_H_ #define _CONF_ACCESS_H_ #include "compiler.h" #include "../../../inc/MarlinConfigPre.h" /*! \name Activation of Logical Unit Numbers */ //! @{ #define LUN_0 ENABLE //!< SD/MMC Card over MCI Slot 0. #define LUN_1 DISABLE #define LUN_2 DISABLE #define LUN_3 DISABLE #define LUN_4 DISABLE #define LUN_5 DISABLE #define LUN_6 DISABLE #define LUN_7 DISABLE #define LUN_USB DISABLE //! @} /*! \name LUN 0 Definitions */ //! @{ #define SD_MMC_SPI_MEM LUN_0 #define LUN_ID_SD_MMC_SPI_MEM LUN_ID_0 #define LUN_0_INCLUDE "sd_mmc_spi_mem.h" #define Lun_0_test_unit_ready sd_mmc_spi_test_unit_ready #define Lun_0_read_capacity sd_mmc_spi_read_capacity #define Lun_0_unload sd_mmc_spi_unload #define Lun_0_wr_protect sd_mmc_spi_wr_protect #define Lun_0_removal sd_mmc_spi_removal #define Lun_0_usb_read_10 sd_mmc_spi_usb_read_10 #define Lun_0_usb_write_10 sd_mmc_spi_usb_write_10 #define LUN_0_NAME "\"SD/MMC Card\"" //! @} /*! \name Actions Associated with Memory Accesses * * Write here the action to associate with each memory access. * * \warning Be careful not to waste time in order not to disturb the functions. */ //! @{ #define memory_start_read_action(nb_sectors) #define memory_stop_read_action() #define memory_start_write_action(nb_sectors) #define memory_stop_write_action() //! @} /*! \name Activation of Interface Features */ //! @{ #define ACCESS_USB true //!< MEM <-> USB interface. #define ACCESS_MEM_TO_RAM false //!< MEM <-> RAM interface. #define ACCESS_STREAM false //!< Streaming MEM <-> MEM interface. #define ACCESS_STREAM_RECORD false //!< Streaming MEM <-> MEM interface in record mode. #define ACCESS_MEM_TO_MEM false //!< MEM <-> MEM interface. #define ACCESS_CODEC false //!< Codec interface. //! @} /*! \name Specific Options for Access Control */ //! @{ #define GLOBAL_WR_PROTECT false //!< Management of a global write protection. //! @} #endif // _CONF_ACCESS_H_
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/conf_access.h
C
agpl-3.0
4,236
/** * \file * * \brief SAM3X clock configuration. * * Copyright (c) 2011-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef CONF_CLOCK_H_INCLUDED #define CONF_CLOCK_H_INCLUDED // ===== System Clock (MCK) Source Options //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_RC //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_XTAL //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_BYPASS //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_4M_RC //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_8M_RC //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_12M_RC //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_XTAL //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_BYPASS #define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLLACK //#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_UPLLCK // ===== System Clock (MCK) Prescaler Options (Fmck = Fsys / (SYSCLK_PRES)) //#define CONFIG_SYSCLK_PRES SYSCLK_PRES_1 #define CONFIG_SYSCLK_PRES SYSCLK_PRES_2 //#define CONFIG_SYSCLK_PRES SYSCLK_PRES_4 //#define CONFIG_SYSCLK_PRES SYSCLK_PRES_8 //#define CONFIG_SYSCLK_PRES SYSCLK_PRES_16 //#define CONFIG_SYSCLK_PRES SYSCLK_PRES_32 //#define CONFIG_SYSCLK_PRES SYSCLK_PRES_64 //#define CONFIG_SYSCLK_PRES SYSCLK_PRES_3 // ===== PLL0 (A) Options (Fpll = (Fclk * PLL_mul) / PLL_div) // Use mul and div effective values here. #define CONFIG_PLL0_SOURCE PLL_SRC_MAINCK_XTAL #define CONFIG_PLL0_MUL 14 #define CONFIG_PLL0_DIV 1 // ===== UPLL (UTMI) Hardware fixed at 480MHz. // ===== USB Clock Source Options (Fusb = FpllX / USB_div) // Use div effective value here. //#define CONFIG_USBCLK_SOURCE USBCLK_SRC_PLL0 #define CONFIG_USBCLK_SOURCE USBCLK_SRC_UPLL #define CONFIG_USBCLK_DIV 1 // ===== Target frequency (System clock) // - XTAL frequency: 12MHz // - System clock source: PLLA // - System clock prescaler: 2 (divided by 2) // - PLLA source: XTAL // - PLLA output: XTAL * 14 / 1 // - System clock is: 12 * 14 / 1 /2 = 84MHz // ===== Target frequency (USB Clock) // - USB clock source: UPLL // - USB clock divider: 1 (not divided) // - UPLL frequency: 480MHz // - USB clock: 480 / 1 = 480MHz #endif /* CONF_CLOCK_H_INCLUDED */
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/conf_clock.h
C
agpl-3.0
4,029
/** * \file * * \brief USB configuration file * * Copyright (c) 2011-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef _CONF_USB_H_ #define _CONF_USB_H_ #undef UNUSED /* To avoid a macro clash as macros.h already defines it */ #include "../../../inc/MarlinConfigPre.h" #include "compiler.h" /** * USB Device Configuration * @{ */ //! Device definition (mandatory) #define USB_DEVICE_MAJOR_VERSION 1 #define USB_DEVICE_MINOR_VERSION 0 #define USB_DEVICE_POWER 100 // Consumption on Vbus line (mA) #define USB_DEVICE_ATTR \ (USB_CONFIG_ATTR_SELF_POWERED) // (USB_CONFIG_ATTR_BUS_POWERED) // (USB_CONFIG_ATTR_REMOTE_WAKEUP|USB_CONFIG_ATTR_SELF_POWERED) // (USB_CONFIG_ATTR_REMOTE_WAKEUP|USB_CONFIG_ATTR_BUS_POWERED) /** * Device speeds support * Low speed not supported by CDC and MSC * @{ */ //! To define a Low speed device //#define USB_DEVICE_LOW_SPEED //! To define a Full speed device //#define USB_DEVICE_FULL_SPEED //! To authorize the High speed #ifndef USB_DEVICE_FULL_SPEED #if (UC3A3||UC3A4) #define USB_DEVICE_HS_SUPPORT #elif (SAM3XA||SAM3U) #define USB_DEVICE_HS_SUPPORT #endif #endif //@} /** * USB Device Callbacks definitions (Optional) * @{ */ #define UDC_VBUS_EVENT(b_vbus_high) #define UDC_SOF_EVENT() #define UDC_SUSPEND_EVENT() #define UDC_RESUME_EVENT() #define UDC_GET_EXTRA_STRING() usb_task_extra_string() #define USB_DEVICE_SPECIFIC_REQUEST() usb_task_other_requests() //@} #if HAS_MEDIA /** * USB Device low level configuration * When only one interface is used, these configurations are defined by the class module. * For composite device, these configuration must be defined here * @{ */ //! Control endpoint size #define USB_DEVICE_EP_CTRL_SIZE 64 //! Two interfaces for this device (CDC COM + CDC DATA + MSC) #define USB_DEVICE_NB_INTERFACE 3 //! 5 endpoints used by CDC and MSC interfaces #if SAM3U // (3 | USB_EP_DIR_IN) // CDC Notify endpoint // (6 | USB_EP_DIR_IN) // CDC TX // (5 | USB_EP_DIR_OUT) // CDC RX // (1 | USB_EP_DIR_IN) // MSC IN // (2 | USB_EP_DIR_OUT) // MSC OUT # define USB_DEVICE_MAX_EP 6 # if defined(USB_DEVICE_HS_SUPPORT) // In HS mode, size of bulk endpoints are 512 // If CDC and MSC endpoints all uses 2 banks, DPRAM is not enough: 4 bulk // endpoints requires 4K bytes. So reduce the number of banks of CDC bulk // endpoints to use less DPRAM. Keep MSC setting to keep MSC performance. # define UDD_BULK_NB_BANK(ep) ((ep == 5 || ep== 6) ? 1 : 2) #endif #else // (3 | USB_EP_DIR_IN) // CDC Notify endpoint // (4 | USB_EP_DIR_IN) // CDC TX // (5 | USB_EP_DIR_OUT) // CDC RX // (1 | USB_EP_DIR_IN) // MSC IN // (2 | USB_EP_DIR_OUT) // MSC OUT # define USB_DEVICE_MAX_EP 5 # if SAM3XA && defined(USB_DEVICE_HS_SUPPORT) // In HS mode, size of bulk endpoints are 512 // If CDC and MSC endpoints all uses 2 banks, DPRAM is not enough: 4 bulk // endpoints requires 4K bytes. So reduce the number of banks of CDC bulk // endpoints to use less DPRAM. Keep MSC setting to keep MSC performance. # define UDD_BULK_NB_BANK(ep) ((ep == 4 || ep== 5) ? 1 : 2) # endif #endif #endif //@} //@} /** * USB Interface Configuration * @{ */ /** * Configuration of CDC interface * @{ */ //! Define one USB communication ports #define UDI_CDC_PORT_NB 1 //! Interface callback definition #define UDI_CDC_ENABLE_EXT(port) usb_task_cdc_enable(port) #define UDI_CDC_DISABLE_EXT(port) usb_task_cdc_disable(port) #define UDI_CDC_RX_NOTIFY(port) usb_task_cdc_rx_notify(port) #define UDI_CDC_TX_EMPTY_NOTIFY(port) #define UDI_CDC_SET_CODING_EXT(port,cfg) usb_task_cdc_config(port,cfg) #define UDI_CDC_SET_DTR_EXT(port,set) usb_task_cdc_set_dtr(port,set) #define UDI_CDC_SET_RTS_EXT(port,set) //! Define it when the transfer CDC Device to Host is a low rate (<512000 bauds) //! to reduce CDC buffers size //#define UDI_CDC_LOW_RATE //! Default configuration of communication port #define UDI_CDC_DEFAULT_RATE 115200 #define UDI_CDC_DEFAULT_STOPBITS CDC_STOP_BITS_1 #define UDI_CDC_DEFAULT_PARITY CDC_PAR_NONE #define UDI_CDC_DEFAULT_DATABITS 8 //! Enable id string of interface to add an extra USB string #define UDI_CDC_IAD_STRING_ID 4 #if HAS_MEDIA /** * USB CDC low level configuration * In standalone these configurations are defined by the CDC module. * For composite device, these configuration must be defined here * @{ */ //! Endpoint numbers definition #if SAM3U # define UDI_CDC_COMM_EP_0 (3 | USB_EP_DIR_IN) // Notify endpoint # define UDI_CDC_DATA_EP_IN_0 (6 | USB_EP_DIR_IN) // TX # define UDI_CDC_DATA_EP_OUT_0 (5 | USB_EP_DIR_OUT)// RX #else # define UDI_CDC_COMM_EP_0 (3 | USB_EP_DIR_IN) // Notify endpoint # define UDI_CDC_DATA_EP_IN_0 (4 | USB_EP_DIR_IN) // TX # define UDI_CDC_DATA_EP_OUT_0 (5 | USB_EP_DIR_OUT)// RX #endif //! Interface numbers #define UDI_CDC_COMM_IFACE_NUMBER_0 0 #define UDI_CDC_DATA_IFACE_NUMBER_0 1 //@} //@} /** * Configuration of MSC interface * @{ */ //! Vendor name and Product version of MSC interface #define UDI_MSC_GLOBAL_VENDOR_ID \ 'M', 'A', 'R', 'L', 'I', 'N', '3', 'D' #define UDI_MSC_GLOBAL_PRODUCT_VERSION \ '1', '.', '0', '0' //! Interface callback definition #define UDI_MSC_ENABLE_EXT() usb_task_msc_enable() #define UDI_MSC_DISABLE_EXT() usb_task_msc_disable() //! Enable id string of interface to add an extra USB string #define UDI_MSC_STRING_ID 5 /** * USB MSC low level configuration * In standalone these configurations are defined by the MSC module. * For composite device, these configuration must be defined here * @{ */ //! Endpoint numbers definition #define UDI_MSC_EP_IN (1 | USB_EP_DIR_IN) #define UDI_MSC_EP_OUT (2 | USB_EP_DIR_OUT) //! Interface number #define UDI_MSC_IFACE_NUMBER 2 //@} //@} //@} /** * Description of Composite Device * @{ */ //! USB Interfaces descriptor structure #define UDI_COMPOSITE_DESC_T \ usb_iad_desc_t udi_cdc_iad; \ udi_cdc_comm_desc_t udi_cdc_comm; \ udi_cdc_data_desc_t udi_cdc_data; \ udi_msc_desc_t udi_msc //! USB Interfaces descriptor value for Full Speed #define UDI_COMPOSITE_DESC_FS \ .udi_cdc_iad = UDI_CDC_IAD_DESC_0, \ .udi_cdc_comm = UDI_CDC_COMM_DESC_0, \ .udi_cdc_data = UDI_CDC_DATA_DESC_0_FS, \ .udi_msc = UDI_MSC_DESC_FS //! USB Interfaces descriptor value for High Speed #define UDI_COMPOSITE_DESC_HS \ .udi_cdc_iad = UDI_CDC_IAD_DESC_0, \ .udi_cdc_comm = UDI_CDC_COMM_DESC_0, \ .udi_cdc_data = UDI_CDC_DATA_DESC_0_HS, \ .udi_msc = UDI_MSC_DESC_HS //! USB Interface APIs #define UDI_COMPOSITE_API \ &udi_api_cdc_comm, \ &udi_api_cdc_data, \ &udi_api_msc //@} /** * USB Device Driver Configuration * @{ */ //@} //! The includes of classes and other headers must be done at the end of this file to avoid compile error #include "udi_cdc.h" #include "udi_msc.h" #else #include "udi_cdc_conf.h" #endif #include "usb_task.h" #endif // _CONF_USB_H_
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/conf_usb.h
C
agpl-3.0
9,262
/***************************************************************************** * * \file * * \brief Abstraction layer for memory interfaces. * * This module contains the interfaces: * - MEM <-> USB; * - MEM <-> RAM; * - MEM <-> MEM. * * This module may be configured and expanded to support the following features: * - write-protected globals; * - password-protected data; * - specific features; * - etc. * * Copyright (c) 2009-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * ******************************************************************************/ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifdef ARDUINO_ARCH_SAM //_____ I N C L U D E S ____________________________________________________ #include "compiler.h" #include "preprocessor.h" #ifdef FREERTOS_USED #include "FreeRTOS.h" #include "semphr.h" #endif #include "ctrl_access.h" //_____ D E F I N I T I O N S ______________________________________________ #ifdef FREERTOS_USED /*! \name LUN Access Protection Macros */ //! @{ /*! \brief Locks accesses to LUNs. * * \return \c true if the access was successfully locked, else \c false. */ #define Ctrl_access_lock() ctrl_access_lock() /*! \brief Unlocks accesses to LUNs. */ #define Ctrl_access_unlock() xSemaphoreGive(ctrl_access_semphr) //! @} //! Handle to the semaphore protecting accesses to LUNs. static xSemaphoreHandle ctrl_access_semphr = NULL; #else /*! \name LUN Access Protection Macros */ //! @{ /*! \brief Locks accesses to LUNs. * * \return \c true if the access was successfully locked, else \c false. */ #define Ctrl_access_lock() true /*! \brief Unlocks accesses to LUNs. */ #define Ctrl_access_unlock() //! @} #endif // FREERTOS_USED #if MAX_LUN /*! \brief Initializes an entry of the LUN descriptor table. * * \param lun Logical Unit Number. * * \return LUN descriptor table entry initializer. */ #if ACCESS_USB == true && ACCESS_MEM_TO_RAM == true #define Lun_desc_entry(lun) \ {\ TPASTE3(Lun_, lun, _test_unit_ready),\ TPASTE3(Lun_, lun, _read_capacity),\ TPASTE3(Lun_, lun, _unload),\ TPASTE3(Lun_, lun, _wr_protect),\ TPASTE3(Lun_, lun, _removal),\ TPASTE3(Lun_, lun, _usb_read_10),\ TPASTE3(Lun_, lun, _usb_write_10),\ TPASTE3(Lun_, lun, _mem_2_ram),\ TPASTE3(Lun_, lun, _ram_2_mem),\ TPASTE3(LUN_, lun, _NAME)\ } #elif ACCESS_USB == true #define Lun_desc_entry(lun) \ {\ TPASTE3(Lun_, lun, _test_unit_ready),\ TPASTE3(Lun_, lun, _read_capacity),\ TPASTE3(Lun_, lun, _unload),\ TPASTE3(Lun_, lun, _wr_protect),\ TPASTE3(Lun_, lun, _removal),\ TPASTE3(Lun_, lun, _usb_read_10),\ TPASTE3(Lun_, lun, _usb_write_10),\ TPASTE3(LUN_, lun, _NAME)\ } #elif ACCESS_MEM_TO_RAM == true #define Lun_desc_entry(lun) \ {\ TPASTE3(Lun_, lun, _test_unit_ready),\ TPASTE3(Lun_, lun, _read_capacity),\ TPASTE3(Lun_, lun, _unload),\ TPASTE3(Lun_, lun, _wr_protect),\ TPASTE3(Lun_, lun, _removal),\ TPASTE3(Lun_, lun, _mem_2_ram),\ TPASTE3(Lun_, lun, _ram_2_mem),\ TPASTE3(LUN_, lun, _NAME)\ } #else #define Lun_desc_entry(lun) \ {\ TPASTE3(Lun_, lun, _test_unit_ready),\ TPASTE3(Lun_, lun, _read_capacity),\ TPASTE3(Lun_, lun, _unload),\ TPASTE3(Lun_, lun, _wr_protect),\ TPASTE3(Lun_, lun, _removal),\ TPASTE3(LUN_, lun, _NAME)\ } #endif //! LUN descriptor table. static const struct { Ctrl_status (*test_unit_ready)(void); Ctrl_status (*read_capacity)(U32 *); bool (*unload)(bool); bool (*wr_protect)(void); bool (*removal)(void); #if ACCESS_USB == true Ctrl_status (*usb_read_10)(U32, U16); Ctrl_status (*usb_write_10)(U32, U16); #endif #if ACCESS_MEM_TO_RAM == true Ctrl_status (*mem_2_ram)(U32, void *); Ctrl_status (*ram_2_mem)(U32, const void *); #endif const char *name; } lun_desc[MAX_LUN] = { #if LUN_0 == ENABLE # ifndef Lun_0_unload # define Lun_0_unload NULL # endif Lun_desc_entry(0), #endif #if LUN_1 == ENABLE # ifndef Lun_1_unload # define Lun_1_unload NULL # endif Lun_desc_entry(1), #endif #if LUN_2 == ENABLE # ifndef Lun_2_unload # define Lun_2_unload NULL # endif Lun_desc_entry(2), #endif #if LUN_3 == ENABLE # ifndef Lun_3_unload # define Lun_3_unload NULL # endif Lun_desc_entry(3), #endif #if LUN_4 == ENABLE # ifndef Lun_4_unload # define Lun_4_unload NULL # endif Lun_desc_entry(4), #endif #if LUN_5 == ENABLE # ifndef Lun_5_unload # define Lun_5_unload NULL # endif Lun_desc_entry(5), #endif #if LUN_6 == ENABLE # ifndef Lun_6_unload # define Lun_6_unload NULL # endif Lun_desc_entry(6), #endif #if LUN_7 == ENABLE # ifndef Lun_7_unload # define Lun_7_unload NULL # endif Lun_desc_entry(7) #endif }; #endif #if GLOBAL_WR_PROTECT == true bool g_wr_protect; #endif /*! \name Control Interface */ //! @{ #ifdef FREERTOS_USED bool ctrl_access_init(void) { // If the handle to the protecting semaphore is not valid, if (!ctrl_access_semphr) { // try to create the semaphore. vSemaphoreCreateBinary(ctrl_access_semphr); // If the semaphore could not be created, there is no backup solution. if (!ctrl_access_semphr) return false; } return true; } /*! \brief Locks accesses to LUNs. * * \return \c true if the access was successfully locked, else \c false. */ static bool ctrl_access_lock(void) { // If the semaphore could not be created, there is no backup solution. if (!ctrl_access_semphr) return false; // Wait for the semaphore. while (!xSemaphoreTake(ctrl_access_semphr, portMAX_DELAY)); return true; } #endif // FREERTOS_USED U8 get_nb_lun(void) { #if MEM_USB == ENABLE # ifndef Lun_usb_get_lun # define Lun_usb_get_lun() host_get_lun() # endif U8 nb_lun; if (!Ctrl_access_lock()) return MAX_LUN; nb_lun = MAX_LUN + Lun_usb_get_lun(); Ctrl_access_unlock(); return nb_lun; #else return MAX_LUN; #endif } U8 get_cur_lun(void) { return LUN_ID_0; } Ctrl_status mem_test_unit_ready(U8 lun) { Ctrl_status status; if (!Ctrl_access_lock()) return CTRL_FAIL; status = #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].test_unit_ready() : #endif #if LUN_USB == ENABLE Lun_usb_test_unit_ready(lun - LUN_ID_USB); #else CTRL_FAIL; #endif Ctrl_access_unlock(); return status; } Ctrl_status mem_read_capacity(U8 lun, U32 *u32_nb_sector) { Ctrl_status status; if (!Ctrl_access_lock()) return CTRL_FAIL; status = #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].read_capacity(u32_nb_sector) : #endif #if LUN_USB == ENABLE Lun_usb_read_capacity(lun - LUN_ID_USB, u32_nb_sector); #else CTRL_FAIL; #endif Ctrl_access_unlock(); return status; } U8 mem_sector_size(U8 lun) { U8 sector_size; if (!Ctrl_access_lock()) return 0; sector_size = #if MAX_LUN (lun < MAX_LUN) ? 1 : #endif #if LUN_USB == ENABLE Lun_usb_read_sector_size(lun - LUN_ID_USB); #else 0; #endif Ctrl_access_unlock(); return sector_size; } bool mem_unload(U8 lun, bool unload) { bool unloaded; #if !MAX_LUN || !defined(Lun_usb_unload) UNUSED(lun); #endif if (!Ctrl_access_lock()) return false; unloaded = #if MAX_LUN (lun < MAX_LUN) ? (lun_desc[lun].unload ? lun_desc[lun].unload(unload) : !unload) : #endif #if LUN_USB == ENABLE # if defined(Lun_usb_unload) Lun_usb_unload(lun - LUN_ID_USB, unload); # else !unload; /* Can not unload: load success, unload fail */ # endif #else false; /* No mem, unload/load fail */ #endif Ctrl_access_unlock(); return unloaded; } bool mem_wr_protect(U8 lun) { bool wr_protect; if (!Ctrl_access_lock()) return true; wr_protect = #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].wr_protect() : #endif #if LUN_USB == ENABLE Lun_usb_wr_protect(lun - LUN_ID_USB); #else true; #endif Ctrl_access_unlock(); return wr_protect; } bool mem_removal(U8 lun) { bool removal; #if MAX_LUN==0 UNUSED(lun); #endif if (!Ctrl_access_lock()) return true; removal = #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].removal() : #endif #if LUN_USB == ENABLE Lun_usb_removal(); #else true; #endif Ctrl_access_unlock(); return removal; } const char *mem_name(U8 lun) { #if MAX_LUN==0 UNUSED(lun); #endif return #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].name : #endif #if LUN_USB == ENABLE LUN_USB_NAME; #else NULL; #endif } //! @} #if ACCESS_USB == true /*! \name MEM <-> USB Interface */ //! @{ Ctrl_status memory_2_usb(U8 lun, U32 addr, U16 nb_sector) { Ctrl_status status; if (!Ctrl_access_lock()) return CTRL_FAIL; memory_start_read_action(nb_sector); status = #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].usb_read_10(addr, nb_sector) : #endif CTRL_FAIL; memory_stop_read_action(); Ctrl_access_unlock(); return status; } Ctrl_status usb_2_memory(U8 lun, U32 addr, U16 nb_sector) { Ctrl_status status; if (!Ctrl_access_lock()) return CTRL_FAIL; memory_start_write_action(nb_sector); status = #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].usb_write_10(addr, nb_sector) : #endif CTRL_FAIL; memory_stop_write_action(); Ctrl_access_unlock(); return status; } //! @} #endif // ACCESS_USB == true #if ACCESS_MEM_TO_RAM == true /*! \name MEM <-> RAM Interface */ //! @{ Ctrl_status memory_2_ram(U8 lun, U32 addr, void *ram) { Ctrl_status status; #if MAX_LUN==0 UNUSED(lun); #endif if (!Ctrl_access_lock()) return CTRL_FAIL; memory_start_read_action(1); status = #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].mem_2_ram(addr, ram) : #endif #if LUN_USB == ENABLE Lun_usb_mem_2_ram(addr, ram); #else CTRL_FAIL; #endif memory_stop_read_action(); Ctrl_access_unlock(); return status; } Ctrl_status ram_2_memory(U8 lun, U32 addr, const void *ram) { Ctrl_status status; #if MAX_LUN==0 UNUSED(lun); #endif if (!Ctrl_access_lock()) return CTRL_FAIL; memory_start_write_action(1); status = #if MAX_LUN (lun < MAX_LUN) ? lun_desc[lun].ram_2_mem(addr, ram) : #endif #if LUN_USB == ENABLE Lun_usb_ram_2_mem(addr, ram); #else CTRL_FAIL; #endif memory_stop_write_action(); Ctrl_access_unlock(); return status; } //! @} #endif // ACCESS_MEM_TO_RAM == true #if ACCESS_STREAM == true /*! \name Streaming MEM <-> MEM Interface */ //! @{ #if ACCESS_MEM_TO_MEM == true #include "fat.h" Ctrl_status stream_mem_to_mem(U8 src_lun, U32 src_addr, U8 dest_lun, U32 dest_addr, U16 nb_sector) { COMPILER_ALIGNED(4) static U8 sector_buf[FS_512B]; Ctrl_status status = CTRL_GOOD; while (nb_sector--) { if ((status = memory_2_ram(src_lun, src_addr++, sector_buf)) != CTRL_GOOD) break; if ((status = ram_2_memory(dest_lun, dest_addr++, sector_buf)) != CTRL_GOOD) break; } return status; } #endif // ACCESS_MEM_TO_MEM == true Ctrl_status stream_state(U8 id) { UNUSED(id); return CTRL_GOOD; } U16 stream_stop(U8 id) { UNUSED(id); return 0; } //! @} #endif // ACCESS_STREAM #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/ctrl_access.c
C
agpl-3.0
13,229
/***************************************************************************** * * \file * * \brief Abstraction layer for memory interfaces. * * This module contains the interfaces: * - MEM <-> USB; * - MEM <-> RAM; * - MEM <-> MEM. * * This module may be configured and expanded to support the following features: * - write-protected globals; * - password-protected data; * - specific features; * - etc. * * Copyright (c) 2009-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * ******************************************************************************/ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef _CTRL_ACCESS_H_ #define _CTRL_ACCESS_H_ #ifdef __cplusplus extern "C" { #endif /** * \defgroup group_common_services_storage_ctrl_access Memory Control Access * * Common abstraction layer for memory interfaces. It provides interfaces between: * Memory and USB, Memory and RAM, Memory and Memory. Common API for XMEGA and UC3. * * \{ */ #include "compiler.h" #include "conf_access.h" #ifndef SECTOR_SIZE #define SECTOR_SIZE 512 #endif //! Status returned by CTRL_ACCESS interfaces. typedef enum { CTRL_GOOD = PASS, //!< Success, memory ready. CTRL_FAIL = FAIL, //!< An error occurred. CTRL_NO_PRESENT = FAIL + 1, //!< Memory unplugged. CTRL_BUSY = FAIL + 2 //!< Memory not initialized or changed. } Ctrl_status; // FYI: Each Logical Unit Number (LUN) corresponds to a memory. // Check LUN defines. #ifndef LUN_0 #error LUN_0 must be defined as ENABLE or DISABLE in conf_access.h #endif #ifndef LUN_1 #error LUN_1 must be defined as ENABLE or DISABLE in conf_access.h #endif #ifndef LUN_2 #error LUN_2 must be defined as ENABLE or DISABLE in conf_access.h #endif #ifndef LUN_3 #error LUN_3 must be defined as ENABLE or DISABLE in conf_access.h #endif #ifndef LUN_4 #error LUN_4 must be defined as ENABLE or DISABLE in conf_access.h #endif #ifndef LUN_5 #error LUN_5 must be defined as ENABLE or DISABLE in conf_access.h #endif #ifndef LUN_6 #error LUN_6 must be defined as ENABLE or DISABLE in conf_access.h #endif #ifndef LUN_7 #error LUN_7 must be defined as ENABLE or DISABLE in conf_access.h #endif #ifndef LUN_USB #error LUN_USB must be defined as ENABLE or DISABLE in conf_access.h #endif /*! \name LUN IDs */ //! @{ #define LUN_ID_0 (0) //!< First static LUN. #define LUN_ID_1 (LUN_ID_0 + LUN_0) #define LUN_ID_2 (LUN_ID_1 + LUN_1) #define LUN_ID_3 (LUN_ID_2 + LUN_2) #define LUN_ID_4 (LUN_ID_3 + LUN_3) #define LUN_ID_5 (LUN_ID_4 + LUN_4) #define LUN_ID_6 (LUN_ID_5 + LUN_5) #define LUN_ID_7 (LUN_ID_6 + LUN_6) #define MAX_LUN (LUN_ID_7 + LUN_7) //!< Number of static LUNs. #define LUN_ID_USB (MAX_LUN) //!< First dynamic LUN (USB host mass storage). //! @} // Include LUN header files. #if LUN_0 == ENABLE #include LUN_0_INCLUDE #endif #if LUN_1 == ENABLE #include LUN_1_INCLUDE #endif #if LUN_2 == ENABLE #include LUN_2_INCLUDE #endif #if LUN_3 == ENABLE #include LUN_3_INCLUDE #endif #if LUN_4 == ENABLE #include LUN_4_INCLUDE #endif #if LUN_5 == ENABLE #include LUN_5_INCLUDE #endif #if LUN_6 == ENABLE #include LUN_6_INCLUDE #endif #if LUN_7 == ENABLE #include LUN_7_INCLUDE #endif #if LUN_USB == ENABLE #include LUN_USB_INCLUDE #endif // Check the configuration of write protection in conf_access.h. #ifndef GLOBAL_WR_PROTECT #error GLOBAL_WR_PROTECT must be defined as true or false in conf_access.h #endif #if GLOBAL_WR_PROTECT == true //! Write protect. extern bool g_wr_protect; #endif /*! \name Control Interface */ //! @{ #ifdef FREERTOS_USED /*! \brief Initializes the LUN access locker. * * \return \c true if the locker was successfully initialized, else \c false. */ extern bool ctrl_access_init(void); #endif // FREERTOS_USED /*! \brief Returns the number of LUNs. * * \return Number of LUNs in the system. */ extern U8 get_nb_lun(void); /*! \brief Returns the current LUN. * * \return Current LUN. * * \todo Implement. */ extern U8 get_cur_lun(void); /*! \brief Tests the memory state and initializes the memory if required. * * The TEST UNIT READY SCSI primary command allows an application client to poll * a LUN until it is ready without having to allocate memory for returned data. * * This command may be used to check the media status of LUNs with removable * media. * * \param lun Logical Unit Number. * * \return Status. */ extern Ctrl_status mem_test_unit_ready(U8 lun); /*! \brief Returns the address of the last valid sector (512 bytes) in the * memory. * * \param lun Logical Unit Number. * \param u32_nb_sector Pointer to the address of the last valid sector. * * \return Status. */ extern Ctrl_status mem_read_capacity(U8 lun, U32 *u32_nb_sector); /*! \brief Returns the size of the physical sector. * * \param lun Logical Unit Number. * * \return Sector size (unit: 512 bytes). */ extern U8 mem_sector_size(U8 lun); /*! \brief Unload/load the medium. * * \param lun Logical Unit Number. * \param unload \c true to unload the medium, \c false to load the medium. * * \return \c true if unload/load success, else \c false. */ extern bool mem_unload(U8 lun, bool unload); /*! \brief Returns the write-protection state of the memory. * * \param lun Logical Unit Number. * * \return \c true if the memory is write-protected, else \c false. * * \note Only used by removable memories with hardware-specific write * protection. */ extern bool mem_wr_protect(U8 lun); /*! \brief Tells whether the memory is removable. * * \param lun Logical Unit Number. * * \return \c true if the memory is removable, else \c false. */ extern bool mem_removal(U8 lun); /*! \brief Returns a pointer to the LUN name. * * \param lun Logical Unit Number. * * \return Pointer to the LUN name string. */ extern const char *mem_name(U8 lun); //! @} #if ACCESS_USB == true /*! \name MEM <-> USB Interface */ //! @{ /*! \brief Transfers data from the memory to USB. * * \param lun Logical Unit Number. * \param addr Address of first memory sector to read. * \param nb_sector Number of sectors to transfer. * * \return Status. */ extern Ctrl_status memory_2_usb(U8 lun, U32 addr, U16 nb_sector); /*! \brief Transfers data from USB to the memory. * * \param lun Logical Unit Number. * \param addr Address of first memory sector to write. * \param nb_sector Number of sectors to transfer. * * \return Status. */ extern Ctrl_status usb_2_memory(U8 lun, U32 addr, U16 nb_sector); //! @} #endif // ACCESS_USB == true #if ACCESS_MEM_TO_RAM == true /*! \name MEM <-> RAM Interface */ //! @{ /*! \brief Copies 1 data sector from the memory to RAM. * * \param lun Logical Unit Number. * \param addr Address of first memory sector to read. * \param ram Pointer to RAM buffer to write. * * \return Status. */ extern Ctrl_status memory_2_ram(U8 lun, U32 addr, void *ram); /*! \brief Copies 1 data sector from RAM to the memory. * * \param lun Logical Unit Number. * \param addr Address of first memory sector to write. * \param ram Pointer to RAM buffer to read. * * \return Status. */ extern Ctrl_status ram_2_memory(U8 lun, U32 addr, const void *ram); //! @} #endif // ACCESS_MEM_TO_RAM == true #if ACCESS_STREAM == true /*! \name Streaming MEM <-> MEM Interface */ //! @{ //! Erroneous streaming data transfer ID. #define ID_STREAM_ERR 0xFF #if ACCESS_MEM_TO_MEM == true /*! \brief Copies data from one memory to another. * * \param src_lun Source Logical Unit Number. * \param src_addr Source address of first memory sector to read. * \param dest_lun Destination Logical Unit Number. * \param dest_addr Destination address of first memory sector to write. * \param nb_sector Number of sectors to copy. * * \return Status. */ extern Ctrl_status stream_mem_to_mem(U8 src_lun, U32 src_addr, U8 dest_lun, U32 dest_addr, U16 nb_sector); #endif // ACCESS_MEM_TO_MEM == true /*! \brief Returns the state of a streaming data transfer. * * \param id Transfer ID. * * \return Status. * * \todo Implement. */ extern Ctrl_status stream_state(U8 id); /*! \brief Stops a streaming data transfer. * * \param id Transfer ID. * * \return Number of remaining sectors. * * \todo Implement. */ extern U16 stream_stop(U8 id); //! @} #endif // ACCESS_STREAM == true /** * \} */ #ifdef __cplusplus } #endif #endif // _CTRL_ACCESS_H_
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/ctrl_access.h
C
agpl-3.0
10,252
/** * \file * * \brief Chip-specific generic clock management. * * Copyright (c) 2011-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef CHIP_GENCLK_H_INCLUDED #define CHIP_GENCLK_H_INCLUDED #include <osc.h> #include <pll.h> /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus extern "C" { #endif /**INDENT-ON**/ /// @endcond /** * \weakgroup genclk_group * @{ */ //! \name Programmable Clock Identifiers (PCK) //@{ #define GENCLK_PCK_0 0 //!< PCK0 ID #define GENCLK_PCK_1 1 //!< PCK1 ID #define GENCLK_PCK_2 2 //!< PCK2 ID //@} //! \name Programmable Clock Sources (PCK) //@{ enum genclk_source { GENCLK_PCK_SRC_SLCK_RC = 0, //!< Internal 32kHz RC oscillator as PCK source clock GENCLK_PCK_SRC_SLCK_XTAL = 1, //!< External 32kHz crystal oscillator as PCK source clock GENCLK_PCK_SRC_SLCK_BYPASS = 2, //!< External 32kHz bypass oscillator as PCK source clock GENCLK_PCK_SRC_MAINCK_4M_RC = 3, //!< Internal 4MHz RC oscillator as PCK source clock GENCLK_PCK_SRC_MAINCK_8M_RC = 4, //!< Internal 8MHz RC oscillator as PCK source clock GENCLK_PCK_SRC_MAINCK_12M_RC = 5, //!< Internal 12MHz RC oscillator as PCK source clock GENCLK_PCK_SRC_MAINCK_XTAL = 6, //!< External crystal oscillator as PCK source clock GENCLK_PCK_SRC_MAINCK_BYPASS = 7, //!< External bypass oscillator as PCK source clock GENCLK_PCK_SRC_PLLACK = 8, //!< Use PLLACK as PCK source clock GENCLK_PCK_SRC_PLLBCK = 9, //!< Use PLLBCK as PCK source clock GENCLK_PCK_SRC_MCK = 10, //!< Use Master Clk as PCK source clock }; //@} //! \name Programmable Clock Prescalers (PCK) //@{ enum genclk_divider { GENCLK_PCK_PRES_1 = PMC_PCK_PRES_CLK_1, //!< Set PCK clock prescaler to 1 GENCLK_PCK_PRES_2 = PMC_PCK_PRES_CLK_2, //!< Set PCK clock prescaler to 2 GENCLK_PCK_PRES_4 = PMC_PCK_PRES_CLK_4, //!< Set PCK clock prescaler to 4 GENCLK_PCK_PRES_8 = PMC_PCK_PRES_CLK_8, //!< Set PCK clock prescaler to 8 GENCLK_PCK_PRES_16 = PMC_PCK_PRES_CLK_16, //!< Set PCK clock prescaler to 16 GENCLK_PCK_PRES_32 = PMC_PCK_PRES_CLK_32, //!< Set PCK clock prescaler to 32 GENCLK_PCK_PRES_64 = PMC_PCK_PRES_CLK_64, //!< Set PCK clock prescaler to 64 }; //@} struct genclk_config { uint32_t ctrl; }; static inline void genclk_config_defaults(struct genclk_config *p_cfg, uint32_t ul_id) { ul_id = ul_id; p_cfg->ctrl = 0; } static inline void genclk_config_read(struct genclk_config *p_cfg, uint32_t ul_id) { p_cfg->ctrl = PMC->PMC_PCK[ul_id]; } static inline void genclk_config_write(const struct genclk_config *p_cfg, uint32_t ul_id) { PMC->PMC_PCK[ul_id] = p_cfg->ctrl; } //! \name Programmable Clock Source and Prescaler configuration //@{ static inline void genclk_config_set_source(struct genclk_config *p_cfg, enum genclk_source e_src) { p_cfg->ctrl &= (~PMC_PCK_CSS_Msk); switch (e_src) { case GENCLK_PCK_SRC_SLCK_RC: case GENCLK_PCK_SRC_SLCK_XTAL: case GENCLK_PCK_SRC_SLCK_BYPASS: p_cfg->ctrl |= (PMC_PCK_CSS_SLOW_CLK); break; case GENCLK_PCK_SRC_MAINCK_4M_RC: case GENCLK_PCK_SRC_MAINCK_8M_RC: case GENCLK_PCK_SRC_MAINCK_12M_RC: case GENCLK_PCK_SRC_MAINCK_XTAL: case GENCLK_PCK_SRC_MAINCK_BYPASS: p_cfg->ctrl |= (PMC_PCK_CSS_MAIN_CLK); break; case GENCLK_PCK_SRC_PLLACK: p_cfg->ctrl |= (PMC_PCK_CSS_PLLA_CLK); break; case GENCLK_PCK_SRC_PLLBCK: p_cfg->ctrl |= (PMC_PCK_CSS_UPLL_CLK); break; case GENCLK_PCK_SRC_MCK: p_cfg->ctrl |= (PMC_PCK_CSS_MCK); break; } } static inline void genclk_config_set_divider(struct genclk_config *p_cfg, uint32_t e_divider) { p_cfg->ctrl &= ~PMC_PCK_PRES_Msk; p_cfg->ctrl |= e_divider; } //@} static inline void genclk_enable(const struct genclk_config *p_cfg, uint32_t ul_id) { PMC->PMC_PCK[ul_id] = p_cfg->ctrl; pmc_enable_pck(ul_id); } static inline void genclk_disable(uint32_t ul_id) { pmc_disable_pck(ul_id); } static inline void genclk_enable_source(enum genclk_source e_src) { switch (e_src) { case GENCLK_PCK_SRC_SLCK_RC: if (!osc_is_ready(OSC_SLCK_32K_RC)) { osc_enable(OSC_SLCK_32K_RC); osc_wait_ready(OSC_SLCK_32K_RC); } break; case GENCLK_PCK_SRC_SLCK_XTAL: if (!osc_is_ready(OSC_SLCK_32K_XTAL)) { osc_enable(OSC_SLCK_32K_XTAL); osc_wait_ready(OSC_SLCK_32K_XTAL); } break; case GENCLK_PCK_SRC_SLCK_BYPASS: if (!osc_is_ready(OSC_SLCK_32K_BYPASS)) { osc_enable(OSC_SLCK_32K_BYPASS); osc_wait_ready(OSC_SLCK_32K_BYPASS); } break; case GENCLK_PCK_SRC_MAINCK_4M_RC: if (!osc_is_ready(OSC_MAINCK_4M_RC)) { osc_enable(OSC_MAINCK_4M_RC); osc_wait_ready(OSC_MAINCK_4M_RC); } break; case GENCLK_PCK_SRC_MAINCK_8M_RC: if (!osc_is_ready(OSC_MAINCK_8M_RC)) { osc_enable(OSC_MAINCK_8M_RC); osc_wait_ready(OSC_MAINCK_8M_RC); } break; case GENCLK_PCK_SRC_MAINCK_12M_RC: if (!osc_is_ready(OSC_MAINCK_12M_RC)) { osc_enable(OSC_MAINCK_12M_RC); osc_wait_ready(OSC_MAINCK_12M_RC); } break; case GENCLK_PCK_SRC_MAINCK_XTAL: if (!osc_is_ready(OSC_MAINCK_XTAL)) { osc_enable(OSC_MAINCK_XTAL); osc_wait_ready(OSC_MAINCK_XTAL); } break; case GENCLK_PCK_SRC_MAINCK_BYPASS: if (!osc_is_ready(OSC_MAINCK_BYPASS)) { osc_enable(OSC_MAINCK_BYPASS); osc_wait_ready(OSC_MAINCK_BYPASS); } break; #ifdef CONFIG_PLL0_SOURCE case GENCLK_PCK_SRC_PLLACK: pll_enable_config_defaults(0); break; #endif #ifdef CONFIG_PLL1_SOURCE case GENCLK_PCK_SRC_PLLBCK: pll_enable_config_defaults(1); break; #endif case GENCLK_PCK_SRC_MCK: break; default: Assert(false); break; } } //! @} /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus } #endif /**INDENT-ON**/ /// @endcond #endif /* CHIP_GENCLK_H_INCLUDED */
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/genclk.h
C
agpl-3.0
7,575
/** * \file * * \brief Preprocessor macro repeating utils. * * Copyright (c) 2010-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef _MREPEAT_H_ #define _MREPEAT_H_ /** * \defgroup group_sam_utils_mrepeat Preprocessor - Macro Repeat * * \ingroup group_sam_utils * * \{ */ #include "preprocessor.h" //! Maximal number of repetitions supported by MREPEAT. #define MREPEAT_LIMIT 256 /*! \brief Macro repeat. * * This macro represents a horizontal repetition construct. * * \param count The number of repetitious calls to macro. Valid values range from 0 to MREPEAT_LIMIT. * \param macro A binary operation of the form macro(n, data). This macro is expanded by MREPEAT with * the current repetition number and the auxiliary data argument. * \param data Auxiliary data passed to macro. * * \return <tt>macro(0, data) macro(1, data) ... macro(count - 1, data)</tt> */ #define MREPEAT(count, macro, data) TPASTE2(MREPEAT, count)(macro, data) #define MREPEAT0( macro, data) #define MREPEAT1( macro, data) MREPEAT0( macro, data) macro( 0, data) #define MREPEAT2( macro, data) MREPEAT1( macro, data) macro( 1, data) #define MREPEAT3( macro, data) MREPEAT2( macro, data) macro( 2, data) #define MREPEAT4( macro, data) MREPEAT3( macro, data) macro( 3, data) #define MREPEAT5( macro, data) MREPEAT4( macro, data) macro( 4, data) #define MREPEAT6( macro, data) MREPEAT5( macro, data) macro( 5, data) #define MREPEAT7( macro, data) MREPEAT6( macro, data) macro( 6, data) #define MREPEAT8( macro, data) MREPEAT7( macro, data) macro( 7, data) #define MREPEAT9( macro, data) MREPEAT8( macro, data) macro( 8, data) #define MREPEAT10( macro, data) MREPEAT9( macro, data) macro( 9, data) #define MREPEAT11( macro, data) MREPEAT10( macro, data) macro( 10, data) #define MREPEAT12( macro, data) MREPEAT11( macro, data) macro( 11, data) #define MREPEAT13( macro, data) MREPEAT12( macro, data) macro( 12, data) #define MREPEAT14( macro, data) MREPEAT13( macro, data) macro( 13, data) #define MREPEAT15( macro, data) MREPEAT14( macro, data) macro( 14, data) #define MREPEAT16( macro, data) MREPEAT15( macro, data) macro( 15, data) #define MREPEAT17( macro, data) MREPEAT16( macro, data) macro( 16, data) #define MREPEAT18( macro, data) MREPEAT17( macro, data) macro( 17, data) #define MREPEAT19( macro, data) MREPEAT18( macro, data) macro( 18, data) #define MREPEAT20( macro, data) MREPEAT19( macro, data) macro( 19, data) #define MREPEAT21( macro, data) MREPEAT20( macro, data) macro( 20, data) #define MREPEAT22( macro, data) MREPEAT21( macro, data) macro( 21, data) #define MREPEAT23( macro, data) MREPEAT22( macro, data) macro( 22, data) #define MREPEAT24( macro, data) MREPEAT23( macro, data) macro( 23, data) #define MREPEAT25( macro, data) MREPEAT24( macro, data) macro( 24, data) #define MREPEAT26( macro, data) MREPEAT25( macro, data) macro( 25, data) #define MREPEAT27( macro, data) MREPEAT26( macro, data) macro( 26, data) #define MREPEAT28( macro, data) MREPEAT27( macro, data) macro( 27, data) #define MREPEAT29( macro, data) MREPEAT28( macro, data) macro( 28, data) #define MREPEAT30( macro, data) MREPEAT29( macro, data) macro( 29, data) #define MREPEAT31( macro, data) MREPEAT30( macro, data) macro( 30, data) #define MREPEAT32( macro, data) MREPEAT31( macro, data) macro( 31, data) #define MREPEAT33( macro, data) MREPEAT32( macro, data) macro( 32, data) #define MREPEAT34( macro, data) MREPEAT33( macro, data) macro( 33, data) #define MREPEAT35( macro, data) MREPEAT34( macro, data) macro( 34, data) #define MREPEAT36( macro, data) MREPEAT35( macro, data) macro( 35, data) #define MREPEAT37( macro, data) MREPEAT36( macro, data) macro( 36, data) #define MREPEAT38( macro, data) MREPEAT37( macro, data) macro( 37, data) #define MREPEAT39( macro, data) MREPEAT38( macro, data) macro( 38, data) #define MREPEAT40( macro, data) MREPEAT39( macro, data) macro( 39, data) #define MREPEAT41( macro, data) MREPEAT40( macro, data) macro( 40, data) #define MREPEAT42( macro, data) MREPEAT41( macro, data) macro( 41, data) #define MREPEAT43( macro, data) MREPEAT42( macro, data) macro( 42, data) #define MREPEAT44( macro, data) MREPEAT43( macro, data) macro( 43, data) #define MREPEAT45( macro, data) MREPEAT44( macro, data) macro( 44, data) #define MREPEAT46( macro, data) MREPEAT45( macro, data) macro( 45, data) #define MREPEAT47( macro, data) MREPEAT46( macro, data) macro( 46, data) #define MREPEAT48( macro, data) MREPEAT47( macro, data) macro( 47, data) #define MREPEAT49( macro, data) MREPEAT48( macro, data) macro( 48, data) #define MREPEAT50( macro, data) MREPEAT49( macro, data) macro( 49, data) #define MREPEAT51( macro, data) MREPEAT50( macro, data) macro( 50, data) #define MREPEAT52( macro, data) MREPEAT51( macro, data) macro( 51, data) #define MREPEAT53( macro, data) MREPEAT52( macro, data) macro( 52, data) #define MREPEAT54( macro, data) MREPEAT53( macro, data) macro( 53, data) #define MREPEAT55( macro, data) MREPEAT54( macro, data) macro( 54, data) #define MREPEAT56( macro, data) MREPEAT55( macro, data) macro( 55, data) #define MREPEAT57( macro, data) MREPEAT56( macro, data) macro( 56, data) #define MREPEAT58( macro, data) MREPEAT57( macro, data) macro( 57, data) #define MREPEAT59( macro, data) MREPEAT58( macro, data) macro( 58, data) #define MREPEAT60( macro, data) MREPEAT59( macro, data) macro( 59, data) #define MREPEAT61( macro, data) MREPEAT60( macro, data) macro( 60, data) #define MREPEAT62( macro, data) MREPEAT61( macro, data) macro( 61, data) #define MREPEAT63( macro, data) MREPEAT62( macro, data) macro( 62, data) #define MREPEAT64( macro, data) MREPEAT63( macro, data) macro( 63, data) #define MREPEAT65( macro, data) MREPEAT64( macro, data) macro( 64, data) #define MREPEAT66( macro, data) MREPEAT65( macro, data) macro( 65, data) #define MREPEAT67( macro, data) MREPEAT66( macro, data) macro( 66, data) #define MREPEAT68( macro, data) MREPEAT67( macro, data) macro( 67, data) #define MREPEAT69( macro, data) MREPEAT68( macro, data) macro( 68, data) #define MREPEAT70( macro, data) MREPEAT69( macro, data) macro( 69, data) #define MREPEAT71( macro, data) MREPEAT70( macro, data) macro( 70, data) #define MREPEAT72( macro, data) MREPEAT71( macro, data) macro( 71, data) #define MREPEAT73( macro, data) MREPEAT72( macro, data) macro( 72, data) #define MREPEAT74( macro, data) MREPEAT73( macro, data) macro( 73, data) #define MREPEAT75( macro, data) MREPEAT74( macro, data) macro( 74, data) #define MREPEAT76( macro, data) MREPEAT75( macro, data) macro( 75, data) #define MREPEAT77( macro, data) MREPEAT76( macro, data) macro( 76, data) #define MREPEAT78( macro, data) MREPEAT77( macro, data) macro( 77, data) #define MREPEAT79( macro, data) MREPEAT78( macro, data) macro( 78, data) #define MREPEAT80( macro, data) MREPEAT79( macro, data) macro( 79, data) #define MREPEAT81( macro, data) MREPEAT80( macro, data) macro( 80, data) #define MREPEAT82( macro, data) MREPEAT81( macro, data) macro( 81, data) #define MREPEAT83( macro, data) MREPEAT82( macro, data) macro( 82, data) #define MREPEAT84( macro, data) MREPEAT83( macro, data) macro( 83, data) #define MREPEAT85( macro, data) MREPEAT84( macro, data) macro( 84, data) #define MREPEAT86( macro, data) MREPEAT85( macro, data) macro( 85, data) #define MREPEAT87( macro, data) MREPEAT86( macro, data) macro( 86, data) #define MREPEAT88( macro, data) MREPEAT87( macro, data) macro( 87, data) #define MREPEAT89( macro, data) MREPEAT88( macro, data) macro( 88, data) #define MREPEAT90( macro, data) MREPEAT89( macro, data) macro( 89, data) #define MREPEAT91( macro, data) MREPEAT90( macro, data) macro( 90, data) #define MREPEAT92( macro, data) MREPEAT91( macro, data) macro( 91, data) #define MREPEAT93( macro, data) MREPEAT92( macro, data) macro( 92, data) #define MREPEAT94( macro, data) MREPEAT93( macro, data) macro( 93, data) #define MREPEAT95( macro, data) MREPEAT94( macro, data) macro( 94, data) #define MREPEAT96( macro, data) MREPEAT95( macro, data) macro( 95, data) #define MREPEAT97( macro, data) MREPEAT96( macro, data) macro( 96, data) #define MREPEAT98( macro, data) MREPEAT97( macro, data) macro( 97, data) #define MREPEAT99( macro, data) MREPEAT98( macro, data) macro( 98, data) #define MREPEAT100(macro, data) MREPEAT99( macro, data) macro( 99, data) #define MREPEAT101(macro, data) MREPEAT100(macro, data) macro(100, data) #define MREPEAT102(macro, data) MREPEAT101(macro, data) macro(101, data) #define MREPEAT103(macro, data) MREPEAT102(macro, data) macro(102, data) #define MREPEAT104(macro, data) MREPEAT103(macro, data) macro(103, data) #define MREPEAT105(macro, data) MREPEAT104(macro, data) macro(104, data) #define MREPEAT106(macro, data) MREPEAT105(macro, data) macro(105, data) #define MREPEAT107(macro, data) MREPEAT106(macro, data) macro(106, data) #define MREPEAT108(macro, data) MREPEAT107(macro, data) macro(107, data) #define MREPEAT109(macro, data) MREPEAT108(macro, data) macro(108, data) #define MREPEAT110(macro, data) MREPEAT109(macro, data) macro(109, data) #define MREPEAT111(macro, data) MREPEAT110(macro, data) macro(110, data) #define MREPEAT112(macro, data) MREPEAT111(macro, data) macro(111, data) #define MREPEAT113(macro, data) MREPEAT112(macro, data) macro(112, data) #define MREPEAT114(macro, data) MREPEAT113(macro, data) macro(113, data) #define MREPEAT115(macro, data) MREPEAT114(macro, data) macro(114, data) #define MREPEAT116(macro, data) MREPEAT115(macro, data) macro(115, data) #define MREPEAT117(macro, data) MREPEAT116(macro, data) macro(116, data) #define MREPEAT118(macro, data) MREPEAT117(macro, data) macro(117, data) #define MREPEAT119(macro, data) MREPEAT118(macro, data) macro(118, data) #define MREPEAT120(macro, data) MREPEAT119(macro, data) macro(119, data) #define MREPEAT121(macro, data) MREPEAT120(macro, data) macro(120, data) #define MREPEAT122(macro, data) MREPEAT121(macro, data) macro(121, data) #define MREPEAT123(macro, data) MREPEAT122(macro, data) macro(122, data) #define MREPEAT124(macro, data) MREPEAT123(macro, data) macro(123, data) #define MREPEAT125(macro, data) MREPEAT124(macro, data) macro(124, data) #define MREPEAT126(macro, data) MREPEAT125(macro, data) macro(125, data) #define MREPEAT127(macro, data) MREPEAT126(macro, data) macro(126, data) #define MREPEAT128(macro, data) MREPEAT127(macro, data) macro(127, data) #define MREPEAT129(macro, data) MREPEAT128(macro, data) macro(128, data) #define MREPEAT130(macro, data) MREPEAT129(macro, data) macro(129, data) #define MREPEAT131(macro, data) MREPEAT130(macro, data) macro(130, data) #define MREPEAT132(macro, data) MREPEAT131(macro, data) macro(131, data) #define MREPEAT133(macro, data) MREPEAT132(macro, data) macro(132, data) #define MREPEAT134(macro, data) MREPEAT133(macro, data) macro(133, data) #define MREPEAT135(macro, data) MREPEAT134(macro, data) macro(134, data) #define MREPEAT136(macro, data) MREPEAT135(macro, data) macro(135, data) #define MREPEAT137(macro, data) MREPEAT136(macro, data) macro(136, data) #define MREPEAT138(macro, data) MREPEAT137(macro, data) macro(137, data) #define MREPEAT139(macro, data) MREPEAT138(macro, data) macro(138, data) #define MREPEAT140(macro, data) MREPEAT139(macro, data) macro(139, data) #define MREPEAT141(macro, data) MREPEAT140(macro, data) macro(140, data) #define MREPEAT142(macro, data) MREPEAT141(macro, data) macro(141, data) #define MREPEAT143(macro, data) MREPEAT142(macro, data) macro(142, data) #define MREPEAT144(macro, data) MREPEAT143(macro, data) macro(143, data) #define MREPEAT145(macro, data) MREPEAT144(macro, data) macro(144, data) #define MREPEAT146(macro, data) MREPEAT145(macro, data) macro(145, data) #define MREPEAT147(macro, data) MREPEAT146(macro, data) macro(146, data) #define MREPEAT148(macro, data) MREPEAT147(macro, data) macro(147, data) #define MREPEAT149(macro, data) MREPEAT148(macro, data) macro(148, data) #define MREPEAT150(macro, data) MREPEAT149(macro, data) macro(149, data) #define MREPEAT151(macro, data) MREPEAT150(macro, data) macro(150, data) #define MREPEAT152(macro, data) MREPEAT151(macro, data) macro(151, data) #define MREPEAT153(macro, data) MREPEAT152(macro, data) macro(152, data) #define MREPEAT154(macro, data) MREPEAT153(macro, data) macro(153, data) #define MREPEAT155(macro, data) MREPEAT154(macro, data) macro(154, data) #define MREPEAT156(macro, data) MREPEAT155(macro, data) macro(155, data) #define MREPEAT157(macro, data) MREPEAT156(macro, data) macro(156, data) #define MREPEAT158(macro, data) MREPEAT157(macro, data) macro(157, data) #define MREPEAT159(macro, data) MREPEAT158(macro, data) macro(158, data) #define MREPEAT160(macro, data) MREPEAT159(macro, data) macro(159, data) #define MREPEAT161(macro, data) MREPEAT160(macro, data) macro(160, data) #define MREPEAT162(macro, data) MREPEAT161(macro, data) macro(161, data) #define MREPEAT163(macro, data) MREPEAT162(macro, data) macro(162, data) #define MREPEAT164(macro, data) MREPEAT163(macro, data) macro(163, data) #define MREPEAT165(macro, data) MREPEAT164(macro, data) macro(164, data) #define MREPEAT166(macro, data) MREPEAT165(macro, data) macro(165, data) #define MREPEAT167(macro, data) MREPEAT166(macro, data) macro(166, data) #define MREPEAT168(macro, data) MREPEAT167(macro, data) macro(167, data) #define MREPEAT169(macro, data) MREPEAT168(macro, data) macro(168, data) #define MREPEAT170(macro, data) MREPEAT169(macro, data) macro(169, data) #define MREPEAT171(macro, data) MREPEAT170(macro, data) macro(170, data) #define MREPEAT172(macro, data) MREPEAT171(macro, data) macro(171, data) #define MREPEAT173(macro, data) MREPEAT172(macro, data) macro(172, data) #define MREPEAT174(macro, data) MREPEAT173(macro, data) macro(173, data) #define MREPEAT175(macro, data) MREPEAT174(macro, data) macro(174, data) #define MREPEAT176(macro, data) MREPEAT175(macro, data) macro(175, data) #define MREPEAT177(macro, data) MREPEAT176(macro, data) macro(176, data) #define MREPEAT178(macro, data) MREPEAT177(macro, data) macro(177, data) #define MREPEAT179(macro, data) MREPEAT178(macro, data) macro(178, data) #define MREPEAT180(macro, data) MREPEAT179(macro, data) macro(179, data) #define MREPEAT181(macro, data) MREPEAT180(macro, data) macro(180, data) #define MREPEAT182(macro, data) MREPEAT181(macro, data) macro(181, data) #define MREPEAT183(macro, data) MREPEAT182(macro, data) macro(182, data) #define MREPEAT184(macro, data) MREPEAT183(macro, data) macro(183, data) #define MREPEAT185(macro, data) MREPEAT184(macro, data) macro(184, data) #define MREPEAT186(macro, data) MREPEAT185(macro, data) macro(185, data) #define MREPEAT187(macro, data) MREPEAT186(macro, data) macro(186, data) #define MREPEAT188(macro, data) MREPEAT187(macro, data) macro(187, data) #define MREPEAT189(macro, data) MREPEAT188(macro, data) macro(188, data) #define MREPEAT190(macro, data) MREPEAT189(macro, data) macro(189, data) #define MREPEAT191(macro, data) MREPEAT190(macro, data) macro(190, data) #define MREPEAT192(macro, data) MREPEAT191(macro, data) macro(191, data) #define MREPEAT193(macro, data) MREPEAT192(macro, data) macro(192, data) #define MREPEAT194(macro, data) MREPEAT193(macro, data) macro(193, data) #define MREPEAT195(macro, data) MREPEAT194(macro, data) macro(194, data) #define MREPEAT196(macro, data) MREPEAT195(macro, data) macro(195, data) #define MREPEAT197(macro, data) MREPEAT196(macro, data) macro(196, data) #define MREPEAT198(macro, data) MREPEAT197(macro, data) macro(197, data) #define MREPEAT199(macro, data) MREPEAT198(macro, data) macro(198, data) #define MREPEAT200(macro, data) MREPEAT199(macro, data) macro(199, data) #define MREPEAT201(macro, data) MREPEAT200(macro, data) macro(200, data) #define MREPEAT202(macro, data) MREPEAT201(macro, data) macro(201, data) #define MREPEAT203(macro, data) MREPEAT202(macro, data) macro(202, data) #define MREPEAT204(macro, data) MREPEAT203(macro, data) macro(203, data) #define MREPEAT205(macro, data) MREPEAT204(macro, data) macro(204, data) #define MREPEAT206(macro, data) MREPEAT205(macro, data) macro(205, data) #define MREPEAT207(macro, data) MREPEAT206(macro, data) macro(206, data) #define MREPEAT208(macro, data) MREPEAT207(macro, data) macro(207, data) #define MREPEAT209(macro, data) MREPEAT208(macro, data) macro(208, data) #define MREPEAT210(macro, data) MREPEAT209(macro, data) macro(209, data) #define MREPEAT211(macro, data) MREPEAT210(macro, data) macro(210, data) #define MREPEAT212(macro, data) MREPEAT211(macro, data) macro(211, data) #define MREPEAT213(macro, data) MREPEAT212(macro, data) macro(212, data) #define MREPEAT214(macro, data) MREPEAT213(macro, data) macro(213, data) #define MREPEAT215(macro, data) MREPEAT214(macro, data) macro(214, data) #define MREPEAT216(macro, data) MREPEAT215(macro, data) macro(215, data) #define MREPEAT217(macro, data) MREPEAT216(macro, data) macro(216, data) #define MREPEAT218(macro, data) MREPEAT217(macro, data) macro(217, data) #define MREPEAT219(macro, data) MREPEAT218(macro, data) macro(218, data) #define MREPEAT220(macro, data) MREPEAT219(macro, data) macro(219, data) #define MREPEAT221(macro, data) MREPEAT220(macro, data) macro(220, data) #define MREPEAT222(macro, data) MREPEAT221(macro, data) macro(221, data) #define MREPEAT223(macro, data) MREPEAT222(macro, data) macro(222, data) #define MREPEAT224(macro, data) MREPEAT223(macro, data) macro(223, data) #define MREPEAT225(macro, data) MREPEAT224(macro, data) macro(224, data) #define MREPEAT226(macro, data) MREPEAT225(macro, data) macro(225, data) #define MREPEAT227(macro, data) MREPEAT226(macro, data) macro(226, data) #define MREPEAT228(macro, data) MREPEAT227(macro, data) macro(227, data) #define MREPEAT229(macro, data) MREPEAT228(macro, data) macro(228, data) #define MREPEAT230(macro, data) MREPEAT229(macro, data) macro(229, data) #define MREPEAT231(macro, data) MREPEAT230(macro, data) macro(230, data) #define MREPEAT232(macro, data) MREPEAT231(macro, data) macro(231, data) #define MREPEAT233(macro, data) MREPEAT232(macro, data) macro(232, data) #define MREPEAT234(macro, data) MREPEAT233(macro, data) macro(233, data) #define MREPEAT235(macro, data) MREPEAT234(macro, data) macro(234, data) #define MREPEAT236(macro, data) MREPEAT235(macro, data) macro(235, data) #define MREPEAT237(macro, data) MREPEAT236(macro, data) macro(236, data) #define MREPEAT238(macro, data) MREPEAT237(macro, data) macro(237, data) #define MREPEAT239(macro, data) MREPEAT238(macro, data) macro(238, data) #define MREPEAT240(macro, data) MREPEAT239(macro, data) macro(239, data) #define MREPEAT241(macro, data) MREPEAT240(macro, data) macro(240, data) #define MREPEAT242(macro, data) MREPEAT241(macro, data) macro(241, data) #define MREPEAT243(macro, data) MREPEAT242(macro, data) macro(242, data) #define MREPEAT244(macro, data) MREPEAT243(macro, data) macro(243, data) #define MREPEAT245(macro, data) MREPEAT244(macro, data) macro(244, data) #define MREPEAT246(macro, data) MREPEAT245(macro, data) macro(245, data) #define MREPEAT247(macro, data) MREPEAT246(macro, data) macro(246, data) #define MREPEAT248(macro, data) MREPEAT247(macro, data) macro(247, data) #define MREPEAT249(macro, data) MREPEAT248(macro, data) macro(248, data) #define MREPEAT250(macro, data) MREPEAT249(macro, data) macro(249, data) #define MREPEAT251(macro, data) MREPEAT250(macro, data) macro(250, data) #define MREPEAT252(macro, data) MREPEAT251(macro, data) macro(251, data) #define MREPEAT253(macro, data) MREPEAT252(macro, data) macro(252, data) #define MREPEAT254(macro, data) MREPEAT253(macro, data) macro(253, data) #define MREPEAT255(macro, data) MREPEAT254(macro, data) macro(254, data) #define MREPEAT256(macro, data) MREPEAT255(macro, data) macro(255, data) /** * \} */ #endif // _MREPEAT_H_
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/mrepeat.h
C
agpl-3.0
23,536
/** * \file * * \brief Chip-specific oscillator management functions. * * Copyright (c) 2011-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef CHIP_OSC_H_INCLUDED #define CHIP_OSC_H_INCLUDED #include "compiler.h" /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus extern "C" { #endif /**INDENT-ON**/ /// @endcond /* * Below BOARD_XXX macros are related to the specific board, and * should be defined by the board code, otherwise default value are used. */ #ifndef BOARD_FREQ_SLCK_XTAL #warning The board slow clock xtal frequency has not been defined. #define BOARD_FREQ_SLCK_XTAL (32768UL) #endif #ifndef BOARD_FREQ_SLCK_BYPASS #warning The board slow clock bypass frequency has not been defined. #define BOARD_FREQ_SLCK_BYPASS (32768UL) #endif #ifndef BOARD_FREQ_MAINCK_XTAL #warning The board main clock xtal frequency has not been defined. #define BOARD_FREQ_MAINCK_XTAL (12000000UL) #endif #ifndef BOARD_FREQ_MAINCK_BYPASS #warning The board main clock bypass frequency has not been defined. #define BOARD_FREQ_MAINCK_BYPASS (12000000UL) #endif #ifndef BOARD_OSC_STARTUP_US #warning The board main clock xtal startup time has not been defined. #define BOARD_OSC_STARTUP_US (15625UL) #endif /** * \weakgroup osc_group * @{ */ //! \name Oscillator identifiers //@{ #define OSC_SLCK_32K_RC 0 //!< Internal 32kHz RC oscillator. #define OSC_SLCK_32K_XTAL 1 //!< External 32kHz crystal oscillator. #define OSC_SLCK_32K_BYPASS 2 //!< External 32kHz bypass oscillator. #define OSC_MAINCK_4M_RC 3 //!< Internal 4MHz RC oscillator. #define OSC_MAINCK_8M_RC 4 //!< Internal 8MHz RC oscillator. #define OSC_MAINCK_12M_RC 5 //!< Internal 12MHz RC oscillator. #define OSC_MAINCK_XTAL 6 //!< External crystal oscillator. #define OSC_MAINCK_BYPASS 7 //!< External bypass oscillator. //@} //! \name Oscillator clock speed in hertz //@{ #define OSC_SLCK_32K_RC_HZ CHIP_FREQ_SLCK_RC //!< Internal 32kHz RC oscillator. #define OSC_SLCK_32K_XTAL_HZ BOARD_FREQ_SLCK_XTAL //!< External 32kHz crystal oscillator. #define OSC_SLCK_32K_BYPASS_HZ BOARD_FREQ_SLCK_BYPASS //!< External 32kHz bypass oscillator. #define OSC_MAINCK_4M_RC_HZ CHIP_FREQ_MAINCK_RC_4MHZ //!< Internal 4MHz RC oscillator. #define OSC_MAINCK_8M_RC_HZ CHIP_FREQ_MAINCK_RC_8MHZ //!< Internal 8MHz RC oscillator. #define OSC_MAINCK_12M_RC_HZ CHIP_FREQ_MAINCK_RC_12MHZ //!< Internal 12MHz RC oscillator. #define OSC_MAINCK_XTAL_HZ BOARD_FREQ_MAINCK_XTAL //!< External crystal oscillator. #define OSC_MAINCK_BYPASS_HZ BOARD_FREQ_MAINCK_BYPASS //!< External bypass oscillator. //@} static inline void osc_enable(uint32_t ul_id) { switch (ul_id) { case OSC_SLCK_32K_RC: break; case OSC_SLCK_32K_XTAL: pmc_switch_sclk_to_32kxtal(PMC_OSC_XTAL); break; case OSC_SLCK_32K_BYPASS: pmc_switch_sclk_to_32kxtal(PMC_OSC_BYPASS); break; case OSC_MAINCK_4M_RC: pmc_switch_mainck_to_fastrc(CKGR_MOR_MOSCRCF_4_MHz); break; case OSC_MAINCK_8M_RC: pmc_switch_mainck_to_fastrc(CKGR_MOR_MOSCRCF_8_MHz); break; case OSC_MAINCK_12M_RC: pmc_switch_mainck_to_fastrc(CKGR_MOR_MOSCRCF_12_MHz); break; case OSC_MAINCK_XTAL: pmc_switch_mainck_to_xtal(PMC_OSC_XTAL/*, pmc_us_to_moscxtst(BOARD_OSC_STARTUP_US, OSC_SLCK_32K_RC_HZ)*/); break; case OSC_MAINCK_BYPASS: pmc_switch_mainck_to_xtal(PMC_OSC_BYPASS/*, pmc_us_to_moscxtst(BOARD_OSC_STARTUP_US, OSC_SLCK_32K_RC_HZ)*/); break; } } static inline void osc_disable(uint32_t ul_id) { switch (ul_id) { case OSC_SLCK_32K_RC: case OSC_SLCK_32K_XTAL: case OSC_SLCK_32K_BYPASS: break; case OSC_MAINCK_4M_RC: case OSC_MAINCK_8M_RC: case OSC_MAINCK_12M_RC: pmc_osc_disable_fastrc(); break; case OSC_MAINCK_XTAL: pmc_osc_disable_xtal(PMC_OSC_XTAL); break; case OSC_MAINCK_BYPASS: pmc_osc_disable_xtal(PMC_OSC_BYPASS); break; } } static inline bool osc_is_ready(uint32_t ul_id) { switch (ul_id) { case OSC_SLCK_32K_RC: return 1; case OSC_SLCK_32K_XTAL: case OSC_SLCK_32K_BYPASS: return pmc_osc_is_ready_32kxtal(); case OSC_MAINCK_4M_RC: case OSC_MAINCK_8M_RC: case OSC_MAINCK_12M_RC: case OSC_MAINCK_XTAL: case OSC_MAINCK_BYPASS: return pmc_osc_is_ready_mainck(); } return 0; } static inline uint32_t osc_get_rate(uint32_t ul_id) { switch (ul_id) { case OSC_SLCK_32K_RC: return OSC_SLCK_32K_RC_HZ; case OSC_SLCK_32K_XTAL: return BOARD_FREQ_SLCK_XTAL; case OSC_SLCK_32K_BYPASS: return BOARD_FREQ_SLCK_BYPASS; case OSC_MAINCK_4M_RC: return OSC_MAINCK_4M_RC_HZ; case OSC_MAINCK_8M_RC: return OSC_MAINCK_8M_RC_HZ; case OSC_MAINCK_12M_RC: return OSC_MAINCK_12M_RC_HZ; case OSC_MAINCK_XTAL: return BOARD_FREQ_MAINCK_XTAL; case OSC_MAINCK_BYPASS: return BOARD_FREQ_MAINCK_BYPASS; } return 0; } /** * \brief Wait until the oscillator identified by \a id is ready * * This function will busy-wait for the oscillator identified by \a id * to become stable and ready to use as a clock source. * * \param id A number identifying the oscillator to wait for. */ static inline void osc_wait_ready(uint8_t id) { while (!osc_is_ready(id)) { /* Do nothing */ } } //! @} /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus } #endif /**INDENT-ON**/ /// @endcond #endif /* CHIP_OSC_H_INCLUDED */
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/osc.h
C
agpl-3.0
7,345
/** * \file * * \brief Chip-specific PLL definitions. * * Copyright (c) 2011-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef CHIP_PLL_H_INCLUDED #define CHIP_PLL_H_INCLUDED #include "osc.h" /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus extern "C" { #endif /**INDENT-ON**/ /// @endcond /** * \weakgroup pll_group * @{ */ #define PLL_OUTPUT_MIN_HZ 84000000 #define PLL_OUTPUT_MAX_HZ 192000000 #define PLL_INPUT_MIN_HZ 8000000 #define PLL_INPUT_MAX_HZ 16000000 #define NR_PLLS 2 #define PLLA_ID 0 #define UPLL_ID 1 //!< USB UTMI PLL. #define PLL_UPLL_HZ 480000000 #define PLL_COUNT 0x3FU enum pll_source { PLL_SRC_MAINCK_4M_RC = OSC_MAINCK_4M_RC, //!< Internal 4MHz RC oscillator. PLL_SRC_MAINCK_8M_RC = OSC_MAINCK_8M_RC, //!< Internal 8MHz RC oscillator. PLL_SRC_MAINCK_12M_RC = OSC_MAINCK_12M_RC, //!< Internal 12MHz RC oscillator. PLL_SRC_MAINCK_XTAL = OSC_MAINCK_XTAL, //!< External crystal oscillator. PLL_SRC_MAINCK_BYPASS = OSC_MAINCK_BYPASS, //!< External bypass oscillator. PLL_NR_SOURCES, //!< Number of PLL sources. }; struct pll_config { uint32_t ctrl; }; #define pll_get_default_rate(pll_id) \ ((osc_get_rate(CONFIG_PLL##pll_id##_SOURCE) \ * CONFIG_PLL##pll_id##_MUL) \ / CONFIG_PLL##pll_id##_DIV) /* Force UTMI PLL parameters (Hardware defined) */ #ifdef CONFIG_PLL1_SOURCE # undef CONFIG_PLL1_SOURCE #endif #ifdef CONFIG_PLL1_MUL # undef CONFIG_PLL1_MUL #endif #ifdef CONFIG_PLL1_DIV # undef CONFIG_PLL1_DIV #endif #define CONFIG_PLL1_SOURCE PLL_SRC_MAINCK_XTAL #define CONFIG_PLL1_MUL 0 #define CONFIG_PLL1_DIV 0 /** * \note The SAM3X PLL hardware interprets mul as mul+1. For readability the hardware mul+1 * is hidden in this implementation. Use mul as mul effective value. */ static inline void pll_config_init(struct pll_config *p_cfg, enum pll_source e_src, uint32_t ul_div, uint32_t ul_mul) { uint32_t vco_hz; Assert(e_src < PLL_NR_SOURCES); if (ul_div == 0 && ul_mul == 0) { /* Must only be true for UTMI PLL */ p_cfg->ctrl = CKGR_UCKR_UPLLCOUNT(PLL_COUNT); } else { /* PLLA */ /* Calculate internal VCO frequency */ vco_hz = osc_get_rate(e_src) / ul_div; Assert(vco_hz >= PLL_INPUT_MIN_HZ); Assert(vco_hz <= PLL_INPUT_MAX_HZ); vco_hz *= ul_mul; Assert(vco_hz >= PLL_OUTPUT_MIN_HZ); Assert(vco_hz <= PLL_OUTPUT_MAX_HZ); /* PMC hardware will automatically make it mul+1 */ p_cfg->ctrl = CKGR_PLLAR_MULA(ul_mul - 1) | CKGR_PLLAR_DIVA(ul_div) | CKGR_PLLAR_PLLACOUNT(PLL_COUNT); } } #define pll_config_defaults(cfg, pll_id) \ pll_config_init(cfg, \ CONFIG_PLL##pll_id##_SOURCE, \ CONFIG_PLL##pll_id##_DIV, \ CONFIG_PLL##pll_id##_MUL) static inline void pll_config_read(struct pll_config *p_cfg, uint32_t ul_pll_id) { Assert(ul_pll_id < NR_PLLS); p_cfg->ctrl = ul_pll_id == PLLA_ID ? PMC->CKGR_PLLAR : PMC->CKGR_UCKR; } static inline void pll_config_write(const struct pll_config *p_cfg, uint32_t ul_pll_id) { Assert(ul_pll_id < NR_PLLS); if (ul_pll_id == PLLA_ID) { pmc_disable_pllack(); // Always stop PLL first! PMC->CKGR_PLLAR = CKGR_PLLAR_ONE | p_cfg->ctrl; } else PMC->CKGR_UCKR = p_cfg->ctrl; } static inline void pll_enable(const struct pll_config *p_cfg, uint32_t ul_pll_id) { Assert(ul_pll_id < NR_PLLS); if (ul_pll_id == PLLA_ID) { pmc_disable_pllack(); // Always stop PLL first! PMC->CKGR_PLLAR = CKGR_PLLAR_ONE | p_cfg->ctrl; } else PMC->CKGR_UCKR = p_cfg->ctrl | CKGR_UCKR_UPLLEN; } /** * \note This will only disable the selected PLL, not the underlying oscillator (mainck). */ static inline void pll_disable(uint32_t ul_pll_id) { Assert(ul_pll_id < NR_PLLS); if (ul_pll_id == PLLA_ID) pmc_disable_pllack(); else PMC->CKGR_UCKR &= ~CKGR_UCKR_UPLLEN; } static inline uint32_t pll_is_locked(uint32_t ul_pll_id) { Assert(ul_pll_id < NR_PLLS); if (ul_pll_id == PLLA_ID) return pmc_is_locked_pllack(); else return pmc_is_locked_upll(); } static inline void pll_enable_source(enum pll_source e_src) { switch (e_src) { case PLL_SRC_MAINCK_4M_RC: case PLL_SRC_MAINCK_8M_RC: case PLL_SRC_MAINCK_12M_RC: case PLL_SRC_MAINCK_XTAL: case PLL_SRC_MAINCK_BYPASS: osc_enable(e_src); osc_wait_ready(e_src); break; default: Assert(false); break; } } static inline void pll_enable_config_defaults(unsigned int ul_pll_id) { struct pll_config pllcfg; if (pll_is_locked(ul_pll_id)) return; // Pll already running switch (ul_pll_id) { #ifdef CONFIG_PLL0_SOURCE case 0: pll_enable_source(CONFIG_PLL0_SOURCE); pll_config_init(&pllcfg, CONFIG_PLL0_SOURCE, CONFIG_PLL0_DIV, CONFIG_PLL0_MUL); break; #endif #ifdef CONFIG_PLL1_SOURCE case 1: pll_enable_source(CONFIG_PLL1_SOURCE); pll_config_init(&pllcfg, CONFIG_PLL1_SOURCE, CONFIG_PLL1_DIV, CONFIG_PLL1_MUL); break; #endif default: Assert(false); break; } pll_enable(&pllcfg, ul_pll_id); while (!pll_is_locked(ul_pll_id)); } /** * \brief Wait for PLL \a pll_id to become locked * * \todo Use a timeout to avoid waiting forever and hanging the system * * \param pll_id The ID of the PLL to wait for. * * \retval STATUS_OK The PLL is now locked. * \retval ERR_TIMEOUT Timed out waiting for PLL to become locked. */ static inline int pll_wait_for_lock(unsigned int pll_id) { Assert(pll_id < NR_PLLS); while (!pll_is_locked(pll_id)) { /* Do nothing */ } return 0; } //! @} /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus } #endif /**INDENT-ON**/ /// @endcond #endif /* CHIP_PLL_H_INCLUDED */
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/pll.h
C
agpl-3.0
7,731
/** * \file * * \brief Preprocessor utils. * * Copyright (c) 2010-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef _PREPROCESSOR_H_ #define _PREPROCESSOR_H_ #include "tpaste.h" #include "stringz.h" #include "mrepeat.h" #endif // _PREPROCESSOR_H_
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/preprocessor.h
C
agpl-3.0
1,990
/** * \file * * \brief SCSI Block Commands * * This file contains definitions of some of the commands found in the * SCSI SBC-2 standard. * * Note that the SBC specification depends on several commands defined * by the SCSI Primary Commands (SPC) standard. Each version of the SBC * standard is meant to be used in conjunction with a specific version * of the SPC standard, as follows: * - SBC depends on SPC * - SBC-2 depends on SPC-3 * - SBC-3 depends on SPC-4 * * Copyright (c) 2014-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> */ #ifndef _SBC_PROTOCOL_H_ #define _SBC_PROTOCOL_H_ /** * \ingroup usb_msc_protocol * \defgroup usb_sbc_protocol SCSI Block Commands protocol definitions * * @{ */ //! \name SCSI commands defined by SBC-2 //@{ #define SBC_FORMAT_UNIT 0x04 #define SBC_READ6 0x08 #define SBC_WRITE6 0x0A #define SBC_START_STOP_UNIT 0x1B #define SBC_READ_CAPACITY10 0x25 #define SBC_READ10 0x28 #define SBC_WRITE10 0x2A #define SBC_VERIFY10 0x2F //@} //! \name SBC-2 Mode page definitions //@{ enum scsi_sbc_mode { SCSI_MS_MODE_RW_ERR_RECOV = 0x01, //!< Read-Write Error Recovery mode page SCSI_MS_MODE_FORMAT_DEVICE = 0x03, //!< Format Device mode page SCSI_MS_MODE_FLEXIBLE_DISK = 0x05, //!< Flexible Disk mode page SCSI_MS_MODE_CACHING = 0x08, //!< Caching mode page }; //! \name SBC-2 Device-Specific Parameter //@{ #define SCSI_MS_SBC_WP 0x80 //!< Write Protected #define SCSI_MS_SBC_DPOFUA 0x10 //!< DPO and FUA supported //@} /** * \brief SBC-2 Short LBA mode parameter block descriptor */ struct sbc_slba_block_desc { be32_t nr_blocks; //!< Number of Blocks be32_t block_len; //!< Block Length #define SBC_SLBA_BLOCK_LEN_MASK 0x00FFFFFFU //!< Mask reserved bits }; /** * \brief SBC-2 Caching mode page */ struct sbc_caching_mode_page { uint8_t page_code; uint8_t page_length; uint8_t flags2; #define SBC_MP_CACHE_IC (1 << 7) //!< Initiator Control #define SBC_MP_CACHE_ABPF (1 << 6) //!< Abort Pre-Fetch #define SBC_MP_CACHE_CAP (1 << 5) //!< Catching Analysis Permitted #define SBC_MP_CACHE_DISC (1 << 4) //!< Discontinuity #define SBC_MP_CACHE_SIZE (1 << 3) //!< Size enable #define SBC_MP_CACHE_WCE (1 << 2) //!< Write back Cache Enable #define SBC_MP_CACHE_MF (1 << 1) //!< Multiplication Factor #define SBC_MP_CACHE_RCD (1 << 0) //!< Read Cache Disable uint8_t retention; be16_t dis_pf_transfer_len; be16_t min_prefetch; be16_t max_prefetch; be16_t max_prefetch_ceil; uint8_t flags12; #define SBC_MP_CACHE_FSW (1 << 7) //!< Force Sequential Write #define SBC_MP_CACHE_LBCSS (1 << 6) //!< Logical Blk Cache Seg Sz #define SBC_MP_CACHE_DRA (1 << 5) //!< Disable Read-Ahead #define SBC_MP_CACHE_NV_DIS (1 << 0) //!< Non-Volatile Cache Disable uint8_t nr_cache_segments; be16_t cache_segment_size; uint8_t reserved[4]; }; /** * \brief SBC-2 Read-Write Error Recovery mode page */ struct sbc_rdwr_error_recovery_mode_page { uint8_t page_code; uint8_t page_length; #define SPC_MP_RW_ERR_RECOV_PAGE_LENGTH 0x0A uint8_t flags1; #define SBC_MP_RW_ERR_RECOV_AWRE (1 << 7) #define SBC_MP_RW_ERR_RECOV_ARRE (1 << 6) #define SBC_MP_RW_ERR_RECOV_TB (1 << 5) #define SBC_MP_RW_ERR_RECOV_RC (1 << 4) #define SBC_MP_RW_ERR_RECOV_ERR (1 << 3) #define SBC_MP_RW_ERR_RECOV_PER (1 << 2) #define SBC_MP_RW_ERR_RECOV_DTE (1 << 1) #define SBC_MP_RW_ERR_RECOV_DCR (1 << 0) uint8_t read_retry_count; uint8_t correction_span; uint8_t head_offset_count; uint8_t data_strobe_offset_count; uint8_t flags2; uint8_t write_retry_count; uint8_t flags3; be16_t recovery_time_limit; }; //@} /** * \brief SBC-2 READ CAPACITY (10) parameter data */ struct sbc_read_capacity10_data { be32_t max_lba; //!< LBA of last logical block be32_t block_len; //!< Number of bytes in the last logical block }; //@} #endif // _SBC_PROTOCOL_H_
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/sbc_protocol.h
C
agpl-3.0
5,808
/** * Interface from Atmel USB MSD to Marlin SD card */ #ifdef ARDUINO_ARCH_SAM #include "../../../inc/MarlinConfig.h" #if HAS_MEDIA #include "../../../sd/cardreader.h" extern "C" { #include "sd_mmc_spi_mem.h" } #define SD_MMC_BLOCK_SIZE 512 void sd_mmc_spi_mem_init() { } Ctrl_status sd_mmc_spi_test_unit_ready() { #ifdef DISABLE_DUE_SD_MMC return CTRL_NO_PRESENT; #endif if (!IS_SD_INSERTED() || IS_SD_PRINTING() || IS_SD_FILE_OPEN() || !card.isMounted()) return CTRL_NO_PRESENT; return CTRL_GOOD; } // NOTE: This function is defined as returning the address of the last block // in the card, which is cardSize() - 1 Ctrl_status sd_mmc_spi_read_capacity(uint32_t *nb_sector) { if (!IS_SD_INSERTED() || IS_SD_PRINTING() || IS_SD_FILE_OPEN() || !card.isMounted()) return CTRL_NO_PRESENT; *nb_sector = card.diskIODriver()->cardSize() - 1; return CTRL_GOOD; } bool sd_mmc_spi_unload(bool) { return true; } bool sd_mmc_spi_wr_protect() { return false; } bool sd_mmc_spi_removal() { return (!IS_SD_INSERTED() || IS_SD_PRINTING() || IS_SD_FILE_OPEN() || !card.isMounted()); } #if ACCESS_USB == true /** * \name MEM <-> USB Interface * @{ */ #include "udi_msc.h" COMPILER_WORD_ALIGNED uint8_t sector_buf[SD_MMC_BLOCK_SIZE]; // #define DEBUG_MMC Ctrl_status sd_mmc_spi_usb_read_10(uint32_t addr, uint16_t nb_sector) { #ifdef DISABLE_DUE_SD_MMC return CTRL_NO_PRESENT; #endif if (!IS_SD_INSERTED() || IS_SD_PRINTING() || IS_SD_FILE_OPEN() || !card.isMounted()) return CTRL_NO_PRESENT; #ifdef DEBUG_MMC { char buffer[80]; sprintf_P(buffer, PSTR("SDRD: %d @ 0x%08x\n"), nb_sector, addr); PORT_REDIRECT(SERIAL_PORTMASK(0)); SERIAL_ECHO(buffer); } #endif // Start reading if (!card.diskIODriver()->readStart(addr)) return CTRL_FAIL; // For each specified sector while (nb_sector--) { // Read a sector card.diskIODriver()->readData(sector_buf); // RAM -> USB if (!udi_msc_trans_block(true, sector_buf, SD_MMC_BLOCK_SIZE, nullptr)) { card.diskIODriver()->readStop(); return CTRL_FAIL; } } // Stop reading card.diskIODriver()->readStop(); // Done return CTRL_GOOD; } Ctrl_status sd_mmc_spi_usb_write_10(uint32_t addr, uint16_t nb_sector) { #ifdef DISABLE_DUE_SD_MMC return CTRL_NO_PRESENT; #endif if (!IS_SD_INSERTED() || IS_SD_PRINTING() || IS_SD_FILE_OPEN() || !card.isMounted()) return CTRL_NO_PRESENT; #ifdef DEBUG_MMC { char buffer[80]; sprintf_P(buffer, PSTR("SDWR: %d @ 0x%08x\n"), nb_sector, addr); PORT_REDIRECT(SERIAL_PORTMASK(0)); SERIAL_ECHO(buffer); } #endif if (!card.diskIODriver()->writeStart(addr, nb_sector)) return CTRL_FAIL; // For each specified sector while (nb_sector--) { // USB -> RAM if (!udi_msc_trans_block(false, sector_buf, SD_MMC_BLOCK_SIZE, nullptr)) { card.diskIODriver()->writeStop(); return CTRL_FAIL; } // Write a sector card.diskIODriver()->writeData(sector_buf); } // Stop writing card.diskIODriver()->writeStop(); // Done return CTRL_GOOD; } #endif // ACCESS_USB == true #endif // HAS_MEDIA #endif // ARDUINO_ARCH_SAM
2301_81045437/Marlin
Marlin/src/HAL/DUE/usb/sd_mmc_spi_mem.cpp
C++
agpl-3.0
3,192