content
stringlengths
5
1.05M
from AccessControl import ClassSecurityInfo from DateTime import DateTime from Products.ATContentTypes.content import schemata from Products.Archetypes import atapi from Products.Archetypes.public import * from Products.CMFCore.utils import getToolByName from Products.CMFPlone.utils import safe_unicode from bika.lims import bikaMessageFactory as _ from bika.lims.utils import t from bika.lims.browser.widgets import DateTimeWidget from bika.lims.config import PROJECTNAME from bika.lims.content.bikaschema import BikaSchema schema = BikaSchema.copy() + Schema(( ReferenceField('Instrument', allowed_types=('Instrument',), relationship='InstrumentMaintenanceTaskInstrument', widget=StringWidget( visible=False, ) ), ComputedField('InstrumentUID', expression = 'context.getInstrument() and context.getInstrument().UID() or None', widget=ComputedWidget( visible=False, ), ), StringField('Type', vocabulary = "getMaintenanceTypes", widget = ReferenceWidget( checkbox_bound = 0, label = _("Maintenance type", "Type"), ), ), DateTimeField('DownFrom', with_time = 1, with_date = 1, required = 1, widget = DateTimeWidget( label=_("From"), description=_("Date from which the instrument is under maintenance"), show_hm = True, ), ), DateTimeField('DownTo', with_time = 1, with_date = 1, widget = DateTimeWidget( label=_("To"), description=_("Date until the instrument will not be available"), show_hm = True, ), ), StringField('Maintainer', widget = StringWidget( label=_("Maintainer"), description=_("The analyst or agent responsible of the maintenance"), ) ), TextField('Considerations', default_content_type = 'text/plain', allowed_content_types= ('text/plain', ), default_output_type="text/plain", widget = TextAreaWidget( label=_("Considerations"), description=_("Remarks to take into account for maintenance process"), ), ), TextField('WorkPerformed', default_content_type = 'text/plain', allowed_content_types= ('text/plain', ), default_output_type="text/plain", widget = TextAreaWidget( label=_("Work Performed"), description=_("Description of the actions made during the maintenance process"), ), ), TextField('Remarks', default_content_type = 'text/plain', allowed_content_types= ('text/plain', ), default_output_type="text/plain", widget = TextAreaWidget( label=_("Remarks"), ), ), FixedPointField('Cost', default = '0.00', widget = DecimalWidget( label=_("Price"), ), ), BooleanField('Closed', default = '0', widget = BooleanWidget( label=_("Closed"), description=_("Set the maintenance task as closed.") ), ), )) IdField = schema['id'] schema['description'].required = False schema['description'].widget.visible = True schema['description'].schemata = 'default' # Title is not needed to be unique schema['title'].validators = () schema['title']._validationLayer() class InstrumentMaintenanceTaskStatuses: CLOSED = 'Closed' CANCELLED = 'Cancelled' OVERDUE = "Overdue" PENDING = "Pending" INQUEUE = "In queue" class InstrumentMaintenanceTask(BaseFolder): security = ClassSecurityInfo() schema = schema displayContentsTab = False _at_rename_after_creation = True def _renameAfterCreation(self, check_auto_id=False): from bika.lims.idserver import renameAfterCreation renameAfterCreation(self) def getMaintenanceTypes(self): """ Return the current list of maintenance types """ types = [('Preventive',safe_unicode(_('Preventive')).encode('utf-8')), ('Repair', safe_unicode(_('Repair')).encode('utf-8')), ('Enhancement', safe_unicode(_('Enhancement')).encode('utf-8'))] return DisplayList(types) def getCurrentStateI18n(self): return safe_unicode(_(self.getCurrentState()).encode('utf-8')) def getCurrentState(self): workflow = getToolByName(self, 'portal_workflow') if self.getClosed(): return InstrumentMaintenanceTaskStatuses.CLOSED elif workflow.getInfoFor(self, 'cancellation_state', '') == 'cancelled': return InstrumentMaintenanceTaskStatuses.CANCELLED else: now = DateTime() dfrom = self.getDownFrom() dto = self.getDownTo() and self.getDownTo() or DateTime(9999, 12, 31) if (now > dto): return InstrumentMaintenanceTaskStatuses.OVERDUE if (now >= dfrom): return InstrumentMaintenanceTaskStatuses.PENDING else: return InstrumentMaintenanceTaskStatuses.INQUEUE atapi.registerType(InstrumentMaintenanceTask, PROJECTNAME)
# Copyright 2012, Intel, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unit Tests for cinder.volume.rpcapi """ import ddt import mock from oslo_config import cfg from oslo_serialization import jsonutils from cinder import db from cinder import exception from cinder import objects from cinder.objects import fields from cinder import test from cinder.tests.unit.backup import fake_backup from cinder.tests.unit import fake_constants as fake from cinder.tests.unit import fake_service from cinder.tests.unit import fake_volume from cinder.tests.unit import utils as tests_utils from cinder.volume import rpcapi as volume_rpcapi CONF = cfg.CONF @ddt.ddt class VolumeRPCAPITestCase(test.RPCAPITestCase): def setUp(self): super(VolumeRPCAPITestCase, self).setUp() self.rpcapi = volume_rpcapi.VolumeAPI self.base_version = '3.0' vol = {} vol['host'] = 'fake_host' vol['availability_zone'] = CONF.storage_availability_zone vol['status'] = "available" vol['attach_status'] = "detached" vol['metadata'] = {"test_key": "test_val"} vol['size'] = 1 volume = db.volume_create(self.context, vol) kwargs = { 'status': fields.SnapshotStatus.CREATING, 'progress': '0%', 'display_name': 'fake_name', 'display_description': 'fake_description'} snapshot = tests_utils.create_snapshot(self.context, vol['id'], **kwargs) generic_group = tests_utils.create_group( self.context, availability_zone=CONF.storage_availability_zone, group_type_id='group_type1', host='fakehost@fakedrv#fakepool') group_snapshot = tests_utils.create_group_snapshot( self.context, group_id=generic_group.id, group_type_id=fake.GROUP_TYPE_ID) self.fake_volume = jsonutils.to_primitive(volume) self.fake_volume_obj = fake_volume.fake_volume_obj(self.context, **vol) self.fake_snapshot = snapshot self.fake_reservations = ["RESERVATION"] self.fake_backup_obj = fake_backup.fake_backup_obj(self.context) self.fake_group = generic_group self.fake_group_snapshot = group_snapshot self.can_send_version_mock = self.patch( 'oslo_messaging.RPCClient.can_send_version', return_value=True) def tearDown(self): super(VolumeRPCAPITestCase, self).tearDown() self.fake_snapshot.destroy() self.fake_volume_obj.destroy() self.fake_group_snapshot.destroy() self.fake_group.destroy() self.fake_backup_obj.destroy() def _change_cluster_name(self, resource, cluster_name): resource.cluster_name = cluster_name resource.obj_reset_changes() def test_create_volume(self): self._test_rpc_api('create_volume', rpc_method='cast', server='fake_host', volume=self.fake_volume_obj, request_spec=objects.RequestSpec.from_primitives( {}), filter_properties={'availability_zone': 'fake_az'}, allow_reschedule=True) @ddt.data(None, 'my_cluster') def test_delete_volume(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) self._test_rpc_api('delete_volume', rpc_method='cast', server=cluster_name or self.fake_volume_obj.host, volume=self.fake_volume_obj, unmanage_only=False, cascade=False) def test_delete_volume_cascade(self): self._test_rpc_api('delete_volume', rpc_method='cast', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, unmanage_only=False, cascade=True) @ddt.data(None, 'mycluster') def test_create_snapshot(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) self._test_rpc_api('create_snapshot', rpc_method='cast', server=cluster_name or self.fake_volume_obj.host, volume=self.fake_volume_obj, snapshot=self.fake_snapshot) @ddt.data(None, 'mycluster') def test_delete_snapshot(self, cluster_name): self._change_cluster_name(self.fake_snapshot.volume, cluster_name) self._test_rpc_api( 'delete_snapshot', rpc_method='cast', server=cluster_name or self.fake_snapshot.volume.host, snapshot=self.fake_snapshot, unmanage_only=False) def test_delete_snapshot_with_unmanage_only(self): self._test_rpc_api('delete_snapshot', rpc_method='cast', server=self.fake_snapshot.volume.host, snapshot=self.fake_snapshot, unmanage_only=True) @ddt.data('3.0', '3.3') def test_attach_volume_to_instance(self, version): self.can_send_version_mock.return_value = (version == '3.3') self._test_rpc_api('attach_volume', rpc_method='call', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, instance_uuid=fake.INSTANCE_ID, host_name=None, mountpoint='fake_mountpoint', mode='ro', expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}, retval=fake_volume.fake_db_volume_attachment(), version=version) @ddt.data('3.0', '3.3') def test_attach_volume_to_host(self, version): self.can_send_version_mock.return_value = (version == '3.3') self._test_rpc_api('attach_volume', rpc_method='call', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, instance_uuid=None, host_name='fake_host', mountpoint='fake_mountpoint', mode='rw', expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}, retval=fake_volume.fake_db_volume_attachment(), version=version) @ddt.data('3.0', '3.3') def test_attach_volume_cluster(self, version): self.can_send_version_mock.return_value = (version == '3.3') self._change_cluster_name(self.fake_volume_obj, 'mycluster') self._test_rpc_api('attach_volume', rpc_method='call', server=self.fake_volume_obj.cluster_name, volume=self.fake_volume_obj, instance_uuid=None, host_name='fake_host', mountpoint='fake_mountpoint', mode='rw', expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}, retval=fake_volume.fake_db_volume_attachment(), version=version) @ddt.data('3.0', '3.4') def test_detach_volume(self, version): self.can_send_version_mock.return_value = (version == '3.4') self._test_rpc_api('detach_volume', rpc_method='call', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, attachment_id=fake.ATTACHMENT_ID, expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}, # NOTE(dulek): Detach isn't returning anything, but # it's a call and it is synchronous. retval=None, version=version) @ddt.data('3.0', '3.4') def test_detach_volume_cluster(self, version): self.can_send_version_mock.return_value = (version == '3.4') self._change_cluster_name(self.fake_volume_obj, 'mycluster') self._test_rpc_api('detach_volume', rpc_method='call', server=self.fake_volume_obj.cluster_name, volume=self.fake_volume_obj, attachment_id='fake_uuid', expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}, # NOTE(dulek): Detach isn't returning anything, but # it's a call and it is synchronous. retval=None, version=version) @ddt.data(None, 'mycluster') def test_copy_volume_to_image(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) self._test_rpc_api('copy_volume_to_image', rpc_method='cast', server=cluster_name or self.fake_volume_obj.host, volume=self.fake_volume_obj, expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}, image_meta={'id': fake.IMAGE_ID, 'container_format': 'fake_type', 'disk_format': 'fake_format'}) @ddt.data(None, 'mycluster') def test_initialize_connection(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) self._test_rpc_api('initialize_connection', rpc_method='call', server=cluster_name or self.fake_volume_obj.host, connector='fake_connector', volume=self.fake_volume_obj) @ddt.data(None, 'mycluster') def test_terminate_connection(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) self._test_rpc_api('terminate_connection', rpc_method='call', server=cluster_name or self.fake_volume_obj.host, volume=self.fake_volume_obj, connector='fake_connector', force=False, # NOTE(dulek): Terminate isn't returning anything, # but it's a call and it is synchronous. retval=None, expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}) @ddt.data(None, 'mycluster') def test_accept_transfer(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) self._test_rpc_api('accept_transfer', rpc_method='call', server=cluster_name or self.fake_volume_obj.host, volume=self.fake_volume_obj, new_user=fake.USER_ID, new_project=fake.PROJECT_ID, expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}) @ddt.data(None, 'mycluster') def test_extend_volume(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) self._test_rpc_api('extend_volume', rpc_method='cast', server=cluster_name or self.fake_volume_obj.host, volume=self.fake_volume_obj, new_size=1, reservations=self.fake_reservations) def test_migrate_volume(self): class FakeBackend(object): def __init__(self): self.host = 'fake_host' self.cluster_name = 'cluster_name' self.capabilities = {} dest_backend = FakeBackend() self._test_rpc_api('migrate_volume', rpc_method='cast', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, dest_backend=dest_backend, force_host_copy=True, expected_kwargs_diff={ 'host': {'host': 'fake_host', 'cluster_name': 'cluster_name', 'capabilities': {}}}, version='3.5') def test_migrate_volume_completion(self): self._test_rpc_api('migrate_volume_completion', rpc_method='call', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, new_volume=self.fake_volume_obj, error=False, retval=fake.VOLUME_ID) def test_retype(self): class FakeBackend(object): def __init__(self): self.host = 'fake_host' self.cluster_name = 'cluster_name' self.capabilities = {} dest_backend = FakeBackend() self._test_rpc_api('retype', rpc_method='cast', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, new_type_id=fake.VOLUME_TYPE_ID, dest_backend=dest_backend, migration_policy='never', reservations=self.fake_reservations, old_reservations=self.fake_reservations, expected_kwargs_diff={ 'host': {'host': 'fake_host', 'cluster_name': 'cluster_name', 'capabilities': {}}}, version='3.5') def test_manage_existing(self): self._test_rpc_api('manage_existing', rpc_method='cast', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, ref={'lv_name': 'foo'}) def test_manage_existing_snapshot(self): self._test_rpc_api('manage_existing_snapshot', rpc_method='cast', server=self.fake_snapshot.volume.host, snapshot=self.fake_snapshot, ref='foo', backend='fake_host') def test_freeze_host(self): service = fake_service.fake_service_obj(self.context, host='fake_host', binary='cinder-volume') self._test_rpc_api('freeze_host', rpc_method='call', server='fake_host', service=service, retval=True) def test_thaw_host(self): service = fake_service.fake_service_obj(self.context, host='fake_host', binary='cinder-volume') self._test_rpc_api('thaw_host', rpc_method='call', server='fake_host', service=service, retval=True) @ddt.data('3.0', '3.8') def test_failover(self, version): self.can_send_version_mock.side_effect = lambda x: x == version service = objects.Service(self.context, host='fake_host', cluster_name=None) expected_method = 'failover' if version == '3.8' else 'failover_host' self._test_rpc_api('failover', rpc_method='cast', expected_method=expected_method, server='fake_host', service=service, secondary_backend_id='fake_backend', version=version) @mock.patch('cinder.volume.rpcapi.VolumeAPI._get_cctxt') def test_failover_completed(self, cctxt_mock): service = objects.Service(self.context, host='fake_host', cluster_name='cluster_name') self._test_rpc_api('failover_completed', rpc_method='cast', fanout=True, server='fake_host', service=service, updates=mock.sentinel.updates) def test_get_capabilities(self): self._test_rpc_api('get_capabilities', rpc_method='call', server='fake_host', backend_id='fake_host', discover=True, retval={'foo': 'bar'}) def test_remove_export(self): self._test_rpc_api('remove_export', rpc_method='cast', server=self.fake_volume_obj.host, volume=self.fake_volume_obj, expected_kwargs_diff={ 'volume_id': self.fake_volume_obj.id}) @ddt.data(None, 'mycluster') def test_get_backup_device(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) backup_device_dict = {'backup_device': self.fake_volume, 'is_snapshot': False, 'secure_enabled': True} backup_device_obj = objects.BackupDeviceInfo.from_primitive( backup_device_dict, self.context) self._test_rpc_api('get_backup_device', rpc_method='call', server=cluster_name or self.fake_volume_obj.host, backup=self.fake_backup_obj, volume=self.fake_volume_obj, expected_kwargs_diff={ 'want_objects': True, }, retval=backup_device_obj, version='3.2') @ddt.data(None, 'mycluster') def test_get_backup_device_old(self, cluster_name): self.can_send_version_mock.side_effect = (True, False, False) self._change_cluster_name(self.fake_volume_obj, cluster_name) backup_device_dict = {'backup_device': self.fake_volume, 'is_snapshot': False, 'secure_enabled': True} backup_device_obj = objects.BackupDeviceInfo.from_primitive( backup_device_dict, self.context) self._test_rpc_api('get_backup_device', rpc_method='call', server=cluster_name or self.fake_volume_obj.host, backup=self.fake_backup_obj, volume=self.fake_volume_obj, retval=backup_device_dict, expected_retval=backup_device_obj, version='3.0') @ddt.data(None, 'mycluster') def test_secure_file_operations_enabled(self, cluster_name): self._change_cluster_name(self.fake_volume_obj, cluster_name) self._test_rpc_api('secure_file_operations_enabled', rpc_method='call', server=cluster_name or self.fake_volume_obj.host, volume=self.fake_volume_obj, retval=True) def test_create_group(self): self._test_rpc_api('create_group', rpc_method='cast', server='fakehost@fakedrv', group=self.fake_group) @ddt.data(None, 'mycluster') def test_delete_group(self, cluster_name): self._change_cluster_name(self.fake_group, cluster_name) self._test_rpc_api('delete_group', rpc_method='cast', server=cluster_name or self.fake_group.host, group=self.fake_group) @ddt.data(None, 'mycluster') def test_update_group(self, cluster_name): self._change_cluster_name(self.fake_group, cluster_name) self._test_rpc_api('update_group', rpc_method='cast', server=cluster_name or self.fake_group.host, group=self.fake_group, add_volumes=[fake.VOLUME2_ID], remove_volumes=[fake.VOLUME3_ID]) def test_create_group_from_src(self): self._test_rpc_api('create_group_from_src', rpc_method='cast', server=self.fake_group.host, group=self.fake_group, group_snapshot=self.fake_group_snapshot, source_group=None) def test_create_group_snapshot(self): self._test_rpc_api('create_group_snapshot', rpc_method='cast', server=self.fake_group_snapshot.group.host, group_snapshot=self.fake_group_snapshot) def test_delete_group_snapshot(self): self._test_rpc_api('delete_group_snapshot', rpc_method='cast', server=self.fake_group_snapshot.group.host, group_snapshot=self.fake_group_snapshot) @ddt.data(('myhost', None), ('myhost', 'mycluster')) @ddt.unpack @mock.patch('cinder.volume.rpcapi.VolumeAPI._get_cctxt') def test_do_cleanup(self, host, cluster, get_cctxt_mock): cleanup_request = objects.CleanupRequest(self.context, host=host, cluster_name=cluster) rpcapi = volume_rpcapi.VolumeAPI() rpcapi.do_cleanup(self.context, cleanup_request) get_cctxt_mock.assert_called_once_with( cleanup_request.service_topic_queue, '3.7') get_cctxt_mock.return_value.cast.assert_called_once_with( self.context, 'do_cleanup', cleanup_request=cleanup_request) def test_do_cleanup_too_old(self): cleanup_request = objects.CleanupRequest(self.context) rpcapi = volume_rpcapi.VolumeAPI() with mock.patch.object(rpcapi.client, 'can_send_version', return_value=False) as can_send_mock: self.assertRaises(exception.ServiceTooOld, rpcapi.do_cleanup, self.context, cleanup_request) can_send_mock.assert_called_once_with('3.7') @ddt.data(('myhost', None, '3.10'), ('myhost', 'mycluster', '3.10'), ('myhost', None, '3.0')) @ddt.unpack @mock.patch('oslo_messaging.RPCClient.can_send_version') def test_get_manageable_volumes( self, host, cluster_name, version, can_send_version): can_send_version.side_effect = lambda x: x == version service = objects.Service(self.context, host=host, cluster_name=cluster_name) expected_kwargs_diff = { 'want_objects': True} if version == '3.10' else {} self._test_rpc_api('get_manageable_volumes', rpc_method='call', service=service, server=cluster_name or host, marker=5, limit=20, offset=5, sort_keys='fake_keys', sort_dirs='fake_dirs', expected_kwargs_diff=expected_kwargs_diff, version=version) can_send_version.assert_has_calls([mock.call('3.10')]) @ddt.data(('myhost', None, '3.10'), ('myhost', 'mycluster', '3.10'), ('myhost', None, '3.0')) @ddt.unpack @mock.patch('oslo_messaging.RPCClient.can_send_version') def test_get_manageable_snapshots( self, host, cluster_name, version, can_send_version): can_send_version.side_effect = lambda x: x == version service = objects.Service(self.context, host=host, cluster_name=cluster_name) expected_kwargs_diff = { 'want_objects': True} if version == '3.10' else {} self._test_rpc_api('get_manageable_snapshots', rpc_method='call', service=service, server=cluster_name or host, marker=5, limit=20, offset=5, sort_keys='fake_keys', sort_dirs='fake_dirs', expected_kwargs_diff=expected_kwargs_diff, version=version) can_send_version.assert_has_calls([mock.call('3.10')]) @mock.patch('oslo_messaging.RPCClient.can_send_version', mock.Mock()) def test_set_log_levels(self): service = objects.Service(self.context, host='host1') self._test_rpc_api('set_log_levels', rpc_method='cast', server=service.host, service=service, log_request='log_request', version='3.12') @mock.patch('oslo_messaging.RPCClient.can_send_version', mock.Mock()) def test_get_log_levels(self): service = objects.Service(self.context, host='host1') self._test_rpc_api('get_log_levels', rpc_method='call', server=service.host, service=service, log_request='log_request', version='3.12') @ddt.data(None, 'mycluster') def test_initialize_connection_snapshot(self, cluster_name): self._change_cluster_name(self.fake_snapshot.volume, cluster_name) self._test_rpc_api('initialize_connection_snapshot', rpc_method='call', server=(cluster_name or self.fake_snapshot.volume.host), connector='fake_connector', snapshot=self.fake_snapshot, expected_kwargs_diff={ 'snapshot_id': self.fake_snapshot.id}, version='3.13') @ddt.data(None, 'mycluster') def test_terminate_connection_snapshot(self, cluster_name): self._change_cluster_name(self.fake_snapshot.volume, cluster_name) self._test_rpc_api('terminate_connection_snapshot', rpc_method='call', server=(cluster_name or self.fake_snapshot.volume.host), snapshot=self.fake_snapshot, connector='fake_connector', force=False, retval=None, expected_kwargs_diff={ 'snapshot_id': self.fake_snapshot.id}, version='3.13') def test_remove_export_snapshot(self): self._test_rpc_api('remove_export_snapshot', rpc_method='cast', server=self.fake_volume_obj.host, snapshot=self.fake_snapshot, expected_kwargs_diff={ 'snapshot_id': self.fake_snapshot.id}, version='3.13') def test_enable_replication(self): self._test_rpc_api('enable_replication', rpc_method='cast', server=self.fake_group.host, group=self.fake_group, version='3.14') def test_disable_replication(self): self._test_rpc_api('disable_replication', rpc_method='cast', server=self.fake_group.host, group=self.fake_group, version='3.14') def test_failover_replication(self): self._test_rpc_api('failover_replication', rpc_method='cast', server=self.fake_group.host, group=self.fake_group, allow_attached_volume=False, secondary_backend_id=None, version='3.14') def test_list_replication_targets(self): self._test_rpc_api('list_replication_targets', rpc_method='call', server=self.fake_group.host, group=self.fake_group, version='3.14')
from django.db import models from django.contrib.auth.models import AbstractUser from .choices import * class User(AbstractUser): email = models.EmailField(null=True, default=None) USER_TYPE = ( ('st', 'Студент'), ('com', 'Компания'), ('unv', 'Университет') ) user_type = models.CharField(choices=USER_TYPE, max_length=80) class Student(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) first_name = models.CharField(max_length=40) last_name = models.CharField(max_length=40) patronymic = models.CharField(max_length=40, null=True, blank=True) city = models.CharField(max_length=40, null=True, blank=True) def __str__(self): return '%s %s' % (self.first_name, self.last_name) class Company(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) name = models.CharField(max_length=80) foundation_year = models.IntegerField(null=True, default=0) description = models.TextField(null=True, default=None) verified = models.BooleanField(default=False) def __str__(self): return '%s' % (self.name) class SubjectArea(models.Model): title = models.CharField(max_length=40) def __str__(self): return '%s' % (self.title) class Competency(models.Model): title = models.CharField(max_length=150) subject_area = models.ForeignKey(SubjectArea, on_delete=models.CASCADE) def __str__(self): return '%s' % (self.title) class StudentCompetency(models.Model): student = models.ForeignKey(Student, on_delete=models.CASCADE) competency = models.ForeignKey(Competency, on_delete=models.CASCADE) who_verified = models.ManyToManyField(User, null=True, blank=True) class Meta: unique_together = ('student', 'competency',) class University(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) title = models.CharField(max_length=40) foundation_year = models.IntegerField() description = models.TextField(null=True) city = models.CharField(max_length=40, null=True, blank=True) verified = models.BooleanField(default=False) bg_src = models.CharField(max_length=200, null=True, blank=True, default='http://2bddea4c.ngrok.io/static/img/no-image.jpg') icon_src = models.CharField(max_length=200, null=True, blank=True) def __str__(self): return '%s' % (self.title) class UniversityProgram(models.Model): university = models.ForeignKey(University, on_delete=models.CASCADE) title = models.CharField(max_length=100) description = models.TextField(null=True) degree = models.CharField(choices=DEGREE, default=None, max_length=3) competencies = models.ManyToManyField(Competency, null=True, default=None) def __str__(self): return '%s' % (self.title) class StudentEducation(models.Model): student = models.ForeignKey(Student, on_delete=models.CASCADE) university = models.ForeignKey(University, on_delete=models.CASCADE) degree = models.CharField(choices=DEGREE, default=None, max_length=3) program = models.ForeignKey(UniversityProgram, on_delete=models.CASCADE) year_start = models.IntegerField() year_end = models.IntegerField() verified = models.BooleanField(default=False) class StudentJob(models.Model): student = models.ForeignKey(Student, on_delete=models.CASCADE) company = models.ForeignKey(Company, on_delete=models.CASCADE) year_start = models.IntegerField() year_end = models.IntegerField() position = models.CharField(max_length=60) verified = models.BooleanField(default=False) class SubjectAreaVacancies(models.Model): title = models.CharField(max_length=40) def __str__(self): return '%s' % (self.title) class Vacancy(models.Model): company = models.ForeignKey(Company, on_delete=models.CASCADE) title = models.CharField(max_length=40) description = models.TextField(null=True) competencies = models.ManyToManyField(Competency, null=True, default=None) subject_area = models.ForeignKey(SubjectAreaVacancies, on_delete=models.CASCADE, null=True, default=None)
tile_colors = {} for _ in range(400): path = input() i = 0 pos_north = 0.0 pos_east = 0.0 while i < len(path): if path[i] == 'e': pos_east += 1.0 i += 1 elif path[i] == 'w': pos_east -= 1.0 i += 1 elif path[i] == 'n' and path[i+1] == 'e': pos_north += 0.5 pos_east += 0.5 i += 2 elif path[i] == 's' and path[i+1] == 'e': pos_north -= 0.5 pos_east += 0.5 i += 2 elif path[i] == 's' and path[i+1] == 'w': pos_north -= 0.5 pos_east -= 0.5 i += 2 else: pos_north += 0.5 pos_east -= 0.5 i += 2 pos = (pos_east, pos_north) if pos in tile_colors: tile_colors[pos] = 'black' if tile_colors.get(pos) == 'white' else 'white' else: tile_colors[pos] = 'black' neighbors = [(-1, 0), (1, 0), (0.5, 0.5), (0.5, -0.5), (-0.5, 0.5), (-0.5, -0.5)] for i in range(100): min_east = min(map(lambda x: x[0], tile_colors.keys())) - 1.0 max_east = max(map(lambda x: x[0], tile_colors.keys())) + 1.0 min_north = min(map(lambda x: x[1], tile_colors.keys())) - 0.5 max_north = max(map(lambda x: x[1], tile_colors.keys())) + 0.5 a = min_east while a <= max_east: b = min_north while b <= max_north: if not((a == int(a)) ^ (b == int(b))) and (a, b) not in tile_colors: tile_colors[(a, b)] = 'white' b += 0.5 a += 0.5 new_tile = {} for pos in tile_colors.keys(): counter = 0 for step in neighbors: neighbor_pos = (pos[0] + step[0], pos[1] + step[1]) if neighbor_pos in tile_colors and tile_colors.get(neighbor_pos) == 'black': counter += 1 if tile_colors.get(pos) == 'black': new_tile[pos] = 'white' if counter == 0 or counter > 2 else 'black' else: new_tile[pos] = 'black' if counter == 2 else 'white' tile_colors = new_tile counter = 0 for pos in tile_colors.keys(): if tile_colors.get(pos) == 'black': counter += 1 print(counter)
#!/usr/bin/env python __author__ = "Mageswaran Dhandapani" __copyright__ = "Copyright 2020, The Spark Structured Playground Project" __credits__ = [] __license__ = "Apache License" __version__ = "2.0" __maintainer__ = "Mageswaran Dhandapani" __email__ = "mageswaran1989@gmail.com" __status__ = "Education Purpose" import pandas as pd import gin from sklearn.base import BaseEstimator, TransformerMixin import nltk from snorkel.labeling import labeling_function from snorkel.labeling import LFApplier from snorkel.labeling import LFAnalysis from snorkel.labeling import LabelModel from ssp.logger.pretty_print import print_error from ssp.logger.pretty_print import print_info from ssp.posgress.dataset_base import PostgresqlDatasetBase from ssp.utils.ai_key_words import AIKeyWords class SSPTweetLabeller(BaseEstimator, TransformerMixin): """ Snorkel Transformer uses LFs to train a Label Model, that can annotate AI text and non AI text :param input_col: Name of the input text column if Dataframe is used :param output_col: Name of the ouput label column if Dataframe is used """ # Set voting values. # all other tweets ABSTAIN = -1 # tweets that talks about science, AI, data POSITIVE = 1 # tweets that are not NEGATIVE = 0 def __init__(self, input_col="text", output_col="slabel"): # LFs needs to be static or normal function self._labelling_functions = [self.is_ai_tweet, self.is_not_ai_tweet, self.not_data_science, self.not_neural_network, self.not_big_data, self.not_nlp, self.not_ai, self.not_cv] self._input_col = input_col self._output_col = output_col self._list_applier = LFApplier(lfs=self._labelling_functions) self._label_model = LabelModel(cardinality=2, verbose=True) def fit(self, X, y=None): """ :param X: (Dataframe) / (List) Input text :param y: None :return: Numpy Array [num of samples, num of LF functions] """ if isinstance(X, str): X = [X] if isinstance(X, pd.DataFrame): text_list = X[self._input_col] X_labels = self._list_applier.apply(text_list) print_info(LFAnalysis(L=X_labels, lfs=self._labelling_functions).lf_summary()) print_info("Training LabelModel") self._label_model.fit(L_train=X_labels, n_epochs=500, log_freq=100, seed=42) elif isinstance(X, list): X_labels = self._list_applier.apply(X) print_info(LFAnalysis(L=X_labels, lfs=self._labelling_functions).lf_summary()) print_info("Training LabelModel") self._label_model.fit(L_train=X_labels, n_epochs=500, log_freq=100, seed=42) else: raise RuntimeError("Unknown type...") return self def normalize_prob(self, res): return [1 if r > 0.5 else 0 for r in res] def transform(self, X, y=None): if isinstance(X, pd.DataFrame): if self._input_col: res = self.predict(X[self._input_col])[:, 1] X[self._output_col] = self.normalize_prob(res) return X elif isinstance(X, list): res = self.predict(X)[:, 1] return self.normalize_prob(res) elif isinstance(X, str): res = self.predict([X])[:, 1] return self.normalize_prob(res)[0] def predict(self, X): return self._label_model.predict_proba(L=self._list_applier.apply(X)) def evaluate(self, X, y): if isinstance(X, list): X_labels = self._list_applier.apply(X) label_model_acc = self._label_model.score(L=X_labels, Y=y, tie_break_policy="random")[ "accuracy" ] print_info(LFAnalysis(L=X_labels, lfs=self._labelling_functions).lf_summary()) print(f"{'Label Model Accuracy:':<25} {label_model_acc * 100:.1f}%") elif isinstance(X, pd.DataFrame): text_list = X[self._input_col] X_labels = self._list_applier.apply(text_list) label_model_acc = self._label_model.score(L=X_labels, Y=y, tie_break_policy="random")[ "accuracy" ] print(f"{'Label Model Accuracy:':<25} {label_model_acc * 100:.1f}%") else: raise RuntimeError("Unknown type...") @staticmethod def positive_search(data, key_words): data = data.replace("#", "").replace("@", "") for keyword in key_words: if f' {keyword.lower()} ' in f' {data.lower()} ': return SSPTweetLabeller.POSITIVE return SSPTweetLabeller.ABSTAIN @staticmethod def negative_search(data, positive_keywords, false_positive_keywords): data = data.replace("#", "").replace("@", "") positive = False false_positive = False for keyword in positive_keywords: if f' {keyword.lower()} ' in f' {data.lower()} ': positive = True for keyword in false_positive_keywords: if f' {keyword.lower()} ' in f' {data.lower()} ': false_positive = True if false_positive and not positive: # print_info(data) return SSPTweetLabeller.NEGATIVE return SSPTweetLabeller.ABSTAIN @staticmethod def bigram_check(x, word1, word2): # Get bigrams and check tuple exists or not bigrm = list(nltk.bigrams(x.split())) bigrm = list(map(' '.join, bigrm)) count = 0 for pair in bigrm: if word1 in pair and word2 not in pair: count += 1 if count > 0: return SSPTweetLabeller.NEGATIVE else: return SSPTweetLabeller.ABSTAIN @staticmethod @labeling_function() def is_ai_tweet(x): return SSPTweetLabeller.positive_search(x, AIKeyWords.POSITIVE.split("|")) @staticmethod @labeling_function() def is_not_ai_tweet(x): return SSPTweetLabeller.negative_search(data=x, positive_keywords=AIKeyWords.POSITIVE.split("|"), false_positive_keywords=AIKeyWords.FALSE_POSITIVE.split("|")) @staticmethod @labeling_function() def not_data_science(x): return SSPTweetLabeller.bigram_check(x, "data", "science") @staticmethod @labeling_function() def not_neural_network(x): return SSPTweetLabeller.bigram_check(x, "neural", "network") @staticmethod @labeling_function() def not_big_data(x): return SSPTweetLabeller.bigram_check(x, "big", "data") @staticmethod @labeling_function() def not_nlp(x): return SSPTweetLabeller.bigram_check(x, "natural", "language") @staticmethod @labeling_function() def not_ai(x): return SSPTweetLabeller.bigram_check(x, "artificial", "intelligence") @staticmethod @labeling_function() def not_cv(x): return SSPTweetLabeller.bigram_check(x, "computer", "vision") @gin.configurable class SSPLabelEvaluator(PostgresqlDatasetBase): def __init__(self, text_column="text", label_column="label", raw_tweet_table_name_prefix="raw_tweet_dataset", postgresql_host="localhost", postgresql_port="5432", postgresql_database="sparkstreamingdb", postgresql_user="sparkstreaming", postgresql_password="sparkstreaming"): PostgresqlDatasetBase.__init__(self, text_column=text_column, label_output_column=label_column, raw_tweet_table_name_prefix=raw_tweet_table_name_prefix, postgresql_host=postgresql_host, postgresql_port=postgresql_port, postgresql_database=postgresql_database, postgresql_user=postgresql_user, postgresql_password=postgresql_password) self._snorkel_labeler = SSPTweetLabeller() def run_labeler(self, version=0): raw_tweet_dataset_df_deduplicated, test_df, dev_df, \ snorkel_train_df, train_df = self.get_processed_datasets(version=version) self._snorkel_labeler.fit(snorkel_train_df) self._snorkel_labeler.evaluate(test_df, test_df[self._label_output_column]) # snorkel_train_df["label"] = snorkel_train_df["text"].apply(lambda x: SSPTweetLabeller.is_ai_tweet(x)) # print_info(snorkel_train_df["label"].value_counts()) # print_error(snorkel_train_df[snorkel_train_df["label"]==0]["text"].tolist()[:10]) # print_info(snorkel_train_df[snorkel_train_df["label"]==1]["text"].tolist()[:10]) # res = self._snorkel_labeler.predict(train_df[self._text_column]) # res = res[:, 1] # res = [1 if r >= 0.5 else 0 for r in res] # print_error(train_df.shape[0]) # print_info(sum(res)) # train_df["snorkel_label"] = res # for label, group in train_df[["text", "snorkel_label"]].groupby("snorkel_label"): # if label == 1: # print(label) # print_info(group.shape[0]) # group.reset_index(inplace=True) # # print_info("\n".join(group["text"].tolist()[:10])) # group["label"] = group["text"].apply(lambda x: SSPTweetLabeller.is_ai_tweet(x)) # print_info("\n".join(group[group["label"]==1]["text"].tolist()[:100]))
from stack import * class MinStack: def __init__(self): self.dataStk = ArrayStack() self.minStk = ArrayStack() def pop(self): data = self.dataStk.pop() if data == self.minStk.peek(): self.minStk.pop() return data def push(self, val): if not self.minStk.isEmpty(): if val < self.minStk.peek() or val == self.minStk.peek(): self.minStk.push(val) else: self.minStk.push(val) self.dataStk.push(val) def getMin(self): return self.minStk.peek() def peek(self): return self.dataStk.peek() if __name__ == "__main__": mStk = MinStack() mStk.push(14) mStk.push(16) mStk.push(14) mStk.push(43) mStk.push(15) mStk.push(13) mStk.push(13) mStk.push(12) print("top of mstk ", mStk.peek()) print("min - ", mStk.getMin()) print("pop - ", mStk.pop()) print("min - ", mStk.getMin()) print("pop - ", mStk.pop()) print("min - ", mStk.getMin()) print("pop - ", mStk.pop()) print("min - ", mStk.getMin()) """ """
import pytest import json import bionic as bn from bionic import interpret from bionic.utils.urls import ( path_from_url, is_file_url, is_gcs_url, ) class CacheTester: """ A helper class for testing changes to Bionic's cache. Tracks the current and previous states of the Cache API, allow us to express tests in terms of changes between states. """ def __init__(self, flow, tier=["local", "cloud"], gcs_fs=None): self.flow = flow self.gcs_fs = gcs_fs self._old_entries = set() self._tiers = interpret.str_or_seq_as_list(tier) def expect_new_entries(self, *expected_new_entity_names): cur_entries = set(self._get_entries()) assert cur_entries.issuperset(self._old_entries) new_entries = set(cur_entries) - self._old_entries self._old_entries = cur_entries new_entity_names = {entry.entity for entry in new_entries} assert new_entity_names == set(expected_new_entity_names) for entry in new_entries: self._validate_entry(entry) def expect_removed_entries(self, *expected_removed_entity_names): cur_entries = set(self._get_entries()) assert cur_entries.issubset(self._old_entries) removed_entries = self._old_entries - set(cur_entries) self._old_entries = cur_entries removed_entity_names = {entry.entity for entry in removed_entries} assert removed_entity_names == set(expected_removed_entity_names) def expect_same_entries(self): assert set(self._get_entries()) == self._old_entries def expect_zero_entries(self): assert list(self._get_entries()) == [] def _get_entries(self): return [ entry for entry in self.flow.cache.get_entries() if entry.tier in self._tiers ] def _validate_entry(self, entry): artifact_bytes = read_bytes_from_url(entry.artifact_url, self.gcs_fs) value = json.loads(artifact_bytes) assert value == self.flow.get(entry.entity) if entry.tier == "local": artifact_path_bytes = entry.artifact_path.read_bytes() assert artifact_path_bytes == artifact_bytes else: assert entry.artifact_path is None # We won't make too many assumptions about the format of the metadata, but we # can check that it contains the entity name. (Unfortunately it won't # necessarily contain the absolute artifact URL; it may be a relative URL # instead.) # TODO Hmm, is the above true? On closer inspection, it looks like artifact URLs # are derelativized right away when we load the metadata YAML. metadata_str = read_bytes_from_url(entry.metadata_url, self.gcs_fs).decode( "utf-8" ) assert entry.entity in metadata_str def read_bytes_from_url(url, gcs_fs): """Reads the contents of a URL and returns them as a bytes object.""" if is_file_url(url): path = path_from_url(url) return path.read_bytes() elif is_gcs_url(url): return gcs_fs.cat_file(url) else: raise AssertionError(f"Unexpected scheme in URL: {url}") @pytest.fixture def preset_flow(builder): builder.assign("x", 2) builder.assign("y", 3) @builder def xy(x, y): return x * y @builder def xy_squared(xy): return xy ** 2 return builder.build() def test_get_entries(preset_flow): tester = CacheTester(preset_flow) tester.expect_zero_entries() tester.flow.get("x") tester.expect_new_entries("x") tester.flow.get("xy") tester.expect_new_entries("y", "xy") tester.flow.get("xy_squared") tester.expect_new_entries("xy_squared") tester.flow = tester.flow.setting("x", 4) tester.flow.get("xy_squared") tester.expect_new_entries("x", "xy", "xy_squared") builder = tester.flow.to_builder() @builder # noqa: F811 @bn.version(1) def xy(x, y): # noqa: F811 return x ** y tester.flow = builder.build() tester.flow.get("xy_squared") tester.expect_new_entries("xy", "xy_squared") def test_entry_delete(preset_flow): tester = CacheTester(preset_flow) tester.flow.get("xy_squared") tester.expect_new_entries("x", "y", "xy", "xy_squared") (x_entry,) = [ entry for entry in tester.flow.cache.get_entries() if entry.entity == "x" ] assert x_entry.delete() tester.expect_removed_entries("x") assert not x_entry.delete() (xy_entry,) = [ entry for entry in tester.flow.cache.get_entries() if entry.entity == "xy" ] assert xy_entry.delete() tester.expect_removed_entries("xy") assert not xy_entry.delete() tester.flow = tester.flow.to_builder().build() tester.flow.get("xy_squared") tester.expect_new_entries("x", "xy") def test_flow_handles_delete_gracefully(builder): builder.assign("a", 1) @builder @bn.memoize(False) def b(a): return a + 1 @builder @bn.memoize(False) def c(b): return b + 1 flow = builder.build() flow.get("b") (b_entry,) = [entry for entry in flow.cache.get_entries() if entry.entity == "b"] b_entry.delete() # The goal here is to make sure that Bionic correctly updates its cache state, # detects that `b` is deleted, and recomputes it. flow.get("c") @pytest.mark.needs_parallel @pytest.mark.allows_parallel def test_flow_handles_intermediate_deletion_in_parallel(builder, make_counter): builder.assign("x", 2) @builder @bn.persist(False) def y(x): return x + 1 @builder def z(y): return y + 1 flow = builder.build() assert flow.get("x") == 2 assert flow.get("y") == 3 for entry in flow.cache.get_entries(): entry.delete() assert flow.get("z") == 4 @pytest.mark.allows_parallel def test_flow_handles_partial_tuple_deletion(builder, make_counter): builder.assign("x", 2) @builder @bn.outputs("y", "z") def _(x): return x - 1, x + 1 flow = builder.build() assert flow.get("y") == 1 assert flow.get("z") == 3 (z_entry,) = [entry for entry in flow.cache.get_entries() if entry.entity == "z"] z_entry.delete() assert flow.get("y") == 1 assert flow.get("z") == 3 def test_delete_artifact_with_multiple_metadata_files(builder): builder.assign("a", 1) @builder @bn.memoize(False) def b(a): return 2 # Define `c` several times, each with non-functional version differences. This means # each defintion will have a new metadata entry but the same artifact, so we'll have # many entries pointing to the same artifact. c_entries = [] for i in range(4): @builder @bn.memoize(False) @bn.version(minor=i) def c(b): return b + 1 flow = builder.build() flow.get("c") (c_entry,) = [ entry for entry in flow.cache.get_entries() if entry.entity == "c" and entry not in c_entries ] c_entries.append(c_entry) # All the entries should have different metadata files. assert len(set(entry.metadata_url for entry in c_entries)) == len(c_entries) # But they should all share the same artifact file. assert len(set(entry.artifact_url for entry in c_entries)) == 1 # This deletes the artifact and returns True. assert c_entries[0].delete() # The artifact is already deleted, so this returns False. assert not c_entries[1].delete() # This should attempt to load the last entry, detect that the artifact is missing, # and recompute `c`. flow.get("c") # Finally, when we look at the cache again, the last of the original entries should # be dropped, leaving only the most recent entry. (We computed a new artifact file, # but it will have a different (random) URL, so the old entry will still be # invalid.) (final_c_entry,) = [ entry for entry in flow.cache.get_entries() if entry.entity == "c" ] assert final_c_entry.artifact_path.exists() # It would be nice if we could parameterize the above tests to run with or without GCS. # However, it doesn't seem to be possible to have a parametrized fixture where only some # of the variations depend on other fixtures; this is important because the GCS fixtures # have important setup/teardown properties that we only want to trigger if GCS is # enabled. (In theory it seems like `request.getfixturevalue` should be able to do # this, but it has some kind of interaction with the parametrization of # `parallel_execution_enabled` and breaks.) I think the way forward might be to make # the GCS setup/teardown into `autouse` fixtures that are directly activated by the GCS # command line flag. @pytest.mark.needs_gcs def test_cache_on_gcs(gcs_builder, gcs_fs): builder = gcs_builder builder.assign("a", 1) @builder def b(a): return a + 1 @builder def c(b): return b + 1 flow = builder.build() local_tester = CacheTester(flow, tier="local", gcs_fs=gcs_fs) cloud_tester = CacheTester(flow, tier="cloud", gcs_fs=gcs_fs) total_tester = CacheTester(flow, tier=["local", "cloud"], gcs_fs=gcs_fs) local_tester.expect_zero_entries() cloud_tester.expect_zero_entries() total_tester.expect_zero_entries() flow.get("b") local_tester.expect_new_entries("a", "b") cloud_tester.expect_new_entries("a", "b") total_tester.expect_new_entries("a", "a", "b", "b") flow.get("c") local_tester.expect_new_entries("c") cloud_tester.expect_new_entries("c") total_tester.expect_new_entries("c", "c") (local_b_entry,) = [ entry for entry in flow.cache.get_entries() if entry.entity == "b" and entry.tier == "local" ] local_b_entry.delete() local_tester.expect_removed_entries("b") cloud_tester.expect_same_entries() total_tester.expect_removed_entries("b") (cloud_c_entry,) = [ entry for entry in flow.cache.get_entries() if entry.entity == "c" and entry.tier == "cloud" ] cloud_c_entry.delete() local_tester.expect_same_entries() cloud_tester.expect_removed_entries("c") total_tester.expect_removed_entries("c")
from math import log, sqrt from numpy import exp, linspace, fft, array, arange, pi import matplotlib.pyplot as plt i = complex(0, 1) # model parameters T = 1 H_original = 90.0 # limit K_original = 100.0 # strike r_premia = 10 # annual interest rate r = log(r_premia/100 + 1) V0 = 0.316227766 sigma = V0 gamma = r - 0.5 * sigma**2 # Black-Scholes parameter # constants in log scale for price, by Zanette M = 2**12 # number of points in price grid L = 2 # scaling coefficient x_min = L * log(0.5) x_max = L * log(2.0) d = (x_max - x_min) / M # discretization step K = log(K_original/H_original) H = log(H_original/H_original) x_space = [] # prices array for p_elem_index in range(M): x_space.append(x_min + p_elem_index * d) original_prices_array = H_original * exp(x_space) # time discretization N = 50 # number_of_time_steps delta_t = T/N q = 1.0/delta_t + r factor = (q*delta_t)**(-1) # beta_plus and beta_minus beta_minus = - (gamma + sqrt(gamma**2 + 2*sigma**2 * q))/sigma**2 beta_plus = - (gamma - sqrt(gamma**2 + 2*sigma**2 * q))/sigma**2 print(beta_minus) print(beta_plus) def G(x): """payoff_function for a given option type (down-and-out put there)""" if (H <= x) and (x <= K): return K_original - H_original*exp(x) else: return 0 f_0 = array([G(x_element) for x_element in x_space]) # = g(x) i.e. payoff func xi_space = fft.fftfreq(M, d=d) # factor functions phi_plus_array = array([beta_plus/(beta_plus - i*2*pi*xi) for xi in xi_space]) phi_minus_array = array([-beta_minus/(-beta_minus + i*2*pi*xi) for xi in xi_space]) def indicator(a): """the indicator influences the function argument, not value. So here it iterates through x-domain and cuts any values of function with an argument less than H""" indicated = [] for index in range(len(x_space)): if x_space[index] > H: indicated.append(a[index]) else: indicated.append(0) return indicated # main cycle (iterating over time) f_n = array(f_0) #plt.plot(original_prices_array, f_n) for i in range(N): f_n_plus_1 = factor * fft.ifft(phi_minus_array * fft.fft(indicator(fft.ifft(phi_plus_array * fft.fft(f_n))))) f_n = f_n_plus_1 plt.plot(original_prices_array, f_n_plus_1) plt.savefig("out.png") plt.show() # file output section outfile = open('out.txt', 'w') outfile.write("asset price; answer\n") for elem in list(zip(original_prices_array, f_n_plus_1)): outfile.write(str(elem[0]) + ',') outfile.write(str(elem[1].real) + ',') outfile.write(str(elem[1].imag) + ',') outfile.write('\n') # for elem in xi_space: # outfile.write(str(elem)) # outfile.write('\n') outfile.close()
"""Integration tests for the pyWriter project. Test the conversion of the chapter descriptions. For further information see https://github.com/peter88213/PyWriter Published under the MIT License (https://opensource.org/licenses/mit-license.php) """ from pywriter.html.html_chapterdesc import HtmlChapterDesc from pywriter.odt.odt_chapterdesc import OdtChapterDesc from pywriter.test.import_export_test import ImportExportTest import unittest class NrmOpr(ImportExportTest, unittest.TestCase): _importClass = HtmlChapterDesc _exportClass = OdtChapterDesc # The test methods must be defined here to identify the source of failure. def test_yw7_to_exp(self): super().test_yw7_to_exp() def test_yw7_to_exp_ui(self): super().test_yw7_to_exp_ui() def test_imp_to_yw7(self): super().test_imp_to_yw7() def test_imp_to_yw7_ui(self): super().test_imp_to_yw7_ui() def test_data(self): super().test_data() def main(): unittest.main() if __name__ == '__main__': main()
from os.path import join from jpype import JClass, JString, getDefaultJVMPath, shutdownJVM, startJVM def Normalize(query): ZEMBEREK_PATH: str = join('Zemberek','bin', 'zemberek-full.jar') startJVM( getDefaultJVMPath(), '-ea', f'-Djava.class.path={ZEMBEREK_PATH}', convertStrings=False ) TurkishMorphology: JClass = JClass('zemberek.morphology.TurkishMorphology') TurkishSentenceNormalizer: JClass = JClass( 'zemberek.normalization.TurkishSentenceNormalizer' ) Paths: JClass = JClass('java.nio.file.Paths') normalizer = TurkishSentenceNormalizer( TurkishMorphology.createWithDefaults(), Paths.get( join('Zemberek','ZemberekData', 'normalization') ), Paths.get( join('Zemberek','ZemberekData', 'lm', 'lm.2gram.slm') ) ) norm = normalizer.normalize(JString(query)) print(( f'\nNoisy : {query}' f'\nNormalized : {normalizer.normalize(JString(query))}\n' )) return norm shutdownJVM()
""" Vertically partitioned SplitNN implementation Worker 1 has two segments of the model and the Images Worker 2 has a segment of the model and the Labels """ import torch from torch import nn import syft as sy hook = sy.TorchHook(torch) class SplitNN: def __init__(self, models, optimizers): self.models = models self.optimizers = optimizers self.data = [] self.remote_tensors = [] def forward(self, x): data = [] remote_tensors = [] data.append(models[0](x)) if data[-1].location == models[1].location: remote_tensors.append(data[-1].detach().requires_grad_()) else: remote_tensors.append( data[-1].detach().move(models[1].location).requires_grad_() ) i = 1 while i < (len(models) - 1): data.append(models[i](remote_tensors[-1])) if data[-1].location == models[i + 1].location: remote_tensors.append(data[-1].detach().requires_grad_()) else: remote_tensors.append( data[-1].detach().move(models[i + 1].location).requires_grad_() ) i += 1 data.append(models[i](remote_tensors[-1])) self.data = data self.remote_tensors = remote_tensors return data[-1] def backward(self): data = self.data remote_tensors = self.remote_tensors i = len(models) - 2 while i > -1: if remote_tensors[i].location == data[i].location: grads = remote_tensors[i].grad.copy() else: grads = remote_tensors[i].grad.copy().move(data[i].location) data[i].backward(grads) i -= 1 def zero_grads(self): for opt in self.optimizers: opt.zero_grad() def step(self): for opt in self.optimizers: opt.step() # Define our model segments INPUT_SIZE = 784 hidden_sizes = [128, 640] OUTPUT_SIZE = 10 models = [ nn.Sequential( nn.Linear(INPUT_SIZE, hidden_sizes[0]), nn.ReLU(), nn.Linear(hidden_sizes[0], hidden_sizes[1]), nn.ReLU(), ), nn.Sequential(nn.Linear(hidden_sizes[1], OUTPUT_SIZE), nn.LogSoftmax(dim=1)), ] # # Send Model Segments to model locations # model_locations = [worker1, worker2] # for model, location in zip(models, model_locations): # model.send(location)
import sys import json import pprint import os from prism_building import Prism_Building from present import Present def main(): #box_perimeter_core("../cuboid-idf-test/box_perimeter_core_100_200_15.idf", 100, 200, 15, 5, True) #L_shaped_perimeter_core("../cuboid-idf-test/L_perimeter_core_100_200_15.idf", 100, 200, 45, 45, 15, 5, True) #box_simple("../cuboid-idf-test/box_simple_20_40.idf", 20, 40, 1, False) #E_shaped("../cuboid-idf-test/E_building.idf", 250, 150, 40, 100, 20, 2, False) #Wedge_shaped("../cuboid-idf-test/Wedge.idf", 70, 100, 15, 60, 40, 30, 2, True) # some testing related to json files for osw manipulation #json_osw_test(0.1) #json_osw_test(0.2) #json_osw_test(0.3) present = Present() #present.test_pptx() present.test_pptx02() present.test_pptx03() #prism = Prism_Building() #prism.test_object_order() def box_perimeter_core(file_name, width, depth, zone_depth, number_above_ground_stories, has_basement): # the form of the box with perimeter and core zones # # b---------c /\ # |\ /| | # | f-----g | | # | | | | depth # | e-----h | | # |/ \| | # a---------d \/ # # <--width--> if (width - 2 * zone_depth < 1) or (depth - 2 * zone_depth < 1): print("width {}, depth {} and zone_depth {} are not consistent.".format(width, depth, zone_depth)) prism = Prism_Building() # exterior wall corners prism.add_corner("a", 0, 0) prism.add_corner("b", 0, depth) prism.add_corner("c", width, depth) prism.add_corner("d", width, 0) # interior wall corners prism.add_corner("e", zone_depth, zone_depth) prism.add_corner("f", zone_depth, depth - zone_depth) prism.add_corner("g", width - zone_depth, depth - zone_depth) prism.add_corner("h", width - zone_depth, zone_depth) # exterior walls prism.add_exterior_wall("a", "b") prism.add_exterior_wall("b", "c") prism.add_exterior_wall("c", "d") prism.add_exterior_wall("d", "a") # interior walls prism.add_interior_wall("e", "f") prism.add_interior_wall("f", "g") prism.add_interior_wall("g", "h") prism.add_interior_wall("h", "e") prism.add_interior_wall("a", "e") prism.add_interior_wall("b", "f") prism.add_interior_wall("c", "g") prism.add_interior_wall("d", "h") # plan zones prism.add_plan_zone(["a", "b", "f", "e"]) prism.add_plan_zone(["b", "c", "g", "f"]) prism.add_plan_zone(["c", "d", "h", "g"]) prism.add_plan_zone(["d", "a", "e", "h"]) prism.add_plan_zone(["e", "f", "g", "h"]) prism.number_of_above_grade_stories = number_above_ground_stories prism.has_basement = has_basement prism.add_occupancy_types("default",10.76,"BLDG_LIGHT_SCH",10.76,"BLDG_EQUIP_SCH",18.58,"BLDG_OCC_SCH") prism.add_hvac_types("default",'Furnace_DX',3.0,0.8) prism.create_idf(file_name) def L_shaped_perimeter_core(file_name, width, depth, end1, end2, zone_depth, number_above_ground_stories, has_basement): # <----end1----> # # b------------c /\ # |\ /| | # | g--------h | | # | | | | | # | | | | | # | | | d---------e /\ depth # | | |/ /| | | # | | i---------j | | | # | | / | | end2 | # | l------------------k | | | # |/ \| | | # a----------------------f \/ \/ # # <---------width--------> if (width - end1 < 1) or (depth - end2 < 1): print("width {}, depth {}, end1 {}, and end2 {} are not consistant".format(width, depth, end1, end2)) if (end1 - 2 * zone_depth < 1) or (end2 - 2 * zone_depth < 1): print("end1 {}, end2 {} and zone_depth {} are not consistant".format(end1, end2, zone_depth)) prism = Prism_Building() prism.add_corner("a", 0, 0) prism.add_corner("b", 0, depth) prism.add_corner("c", end1, depth) prism.add_corner("d", end1, end2) prism.add_corner("e", width, end2) prism.add_corner("f", width, 0) prism.add_corner("g", zone_depth, depth - zone_depth) prism.add_corner("h", end1 - zone_depth, depth - zone_depth) prism.add_corner("i", end1 - zone_depth, end2 - zone_depth) prism.add_corner("j", width - zone_depth, end2 - zone_depth) prism.add_corner("k", width - zone_depth, zone_depth) prism.add_corner("l", zone_depth, zone_depth) prism.add_exterior_wall("a", "b") prism.add_exterior_wall("b", "c") prism.add_exterior_wall("c", "d") prism.add_exterior_wall("d", "e") prism.add_exterior_wall("e", "f") prism.add_exterior_wall("f", "a") prism.add_interior_wall("g", "h") prism.add_interior_wall("h", "i") prism.add_interior_wall("i", "j") prism.add_interior_wall("j", "k") prism.add_interior_wall("k", "l") prism.add_interior_wall("l", "g") prism.add_interior_wall("a", "l") prism.add_interior_wall("b", "g") prism.add_interior_wall("c", "h") prism.add_interior_wall("d", "i") prism.add_interior_wall("e", "j") prism.add_interior_wall("f", "k") prism.add_interior_wall("i", "l") #subdivide the interior so convex prism.add_plan_zone(["a", "b", "g", "l"]) prism.add_plan_zone(["b", "c", "h", "g"]) prism.add_plan_zone(["c", "d", "i", "h"]) prism.add_plan_zone(["d", "e", "j", "i"]) prism.add_plan_zone(["e", "f", "k", "j"]) prism.add_plan_zone(["l", "k", "f", "a"]) # interior zone is split in two so they are convex prism.add_plan_zone(["l", "g", "h", "i"]) prism.add_plan_zone(["i", "j", "k", "l"]) prism.number_of_above_grade_stories = number_above_ground_stories prism.has_basement = has_basement prism.add_occupancy_types("default",10.76,"BLDG_LIGHT_SCH",10.76,"BLDG_EQUIP_SCH",18.58,"BLDG_OCC_SCH") prism.add_hvac_types("default",'IdealLoadsAirSystem', 1, 1) prism.create_idf(file_name) def box_simple(file_name, width, depth, number_above_ground_stories, has_basement): # # b---------c /\ # | | | # | | | # | | depth # | | | # | | | # a---------d \/ # # <--width--> # prism = Prism_Building() prism.add_corner("a", 0, 0) prism.add_corner("b", 0, depth) prism.add_corner("c", width, depth) prism.add_corner("d", width, 0) prism.add_exterior_wall("a", "b") prism.add_exterior_wall("b", "c") prism.add_exterior_wall("c", "d") prism.add_exterior_wall("d", "a") prism.add_plan_zone(["a", "b", "c", "d"]) prism.number_of_above_grade_stories = number_above_ground_stories prism.has_basement = has_basement prism.add_occupancy_types("default",10.76,"BLDG_LIGHT_SCH",10.76,"BLDG_EQUIP_SCH",18.58,"BLDG_OCC_SCH") prism.add_hvac_types("default",'Furnace_DX',3.0,0.8) prism.create_idf(file_name) def E_shaped(file_name, width, depth, end, wing, last, number_above_ground_stories, has_basement): # <--end--> <--end--> <--end--> # # a5--b5--c5 d5--e5--f5 g5--h5--i5 /\ /\ /\ # | | X | | | X | | | X | | | | # | | | | | | | | | last | | # a4--b4--c4 d4--e4--f4 g4--h4--i4 \/ | | # | | | | | | | | | wing | # | | | | | | | | | | | # | | X | | | X | | | X | | | # | | | | | | | | | | depth # | | | | | | | | | | | # a3--b3--c3------d3--e3--f3------g3--h3--i3 \/ | # | | | | X | | # | | | | | | # a2------c2----------e2----------g2------i2 | # | | | | X | | # | | | | | | # a1------c1----------e1----------g1------i1 \/ # # <-------------width-------------------> # prism = Prism_Building() prism.add_corner("a1", 0, 0) prism.add_corner("a2", 0, (depth - wing) / 2) prism.add_corner("a3", 0, depth - wing) prism.add_corner("a4", 0, depth - last) prism.add_corner("a5", 0, depth) prism.add_corner("b3", end / 2, depth - wing) prism.add_corner("b4", end / 2, depth - last) prism.add_corner("b5", end / 2, depth) prism.add_corner("c1", end, 0) prism.add_corner("c2", end, (depth - wing) / 2) prism.add_corner("c3", end, depth - wing) prism.add_corner("c4", end, depth - last) prism.add_corner("c5", end, depth) prism.add_corner("d3", width / 2 - end / 2, depth - wing) prism.add_corner("d4", width / 2 - end / 2, depth - last) prism.add_corner("d5", width / 2 - end / 2, depth) prism.add_corner("e1", width / 2, 0) prism.add_corner("e2", width / 2, (depth - wing) / 2) prism.add_corner("e3", width / 2, depth - wing) prism.add_corner("e4", width / 2, depth - last) prism.add_corner("e5", width / 2, depth) prism.add_corner("f3", width / 2 + end / 2, depth - wing) prism.add_corner("f4", width / 2 + end / 2, depth - last) prism.add_corner("f5", width / 2 + end / 2, depth) prism.add_corner("g1", width - end, 0) prism.add_corner("g2", width - end, (depth - wing) / 2) prism.add_corner("g3", width - end, depth - wing) prism.add_corner("g4", width - end, depth - last) prism.add_corner("g5", width - end, depth) prism.add_corner("h3", width - end / 2, depth - wing) prism.add_corner("h4", width - end / 2, depth - last) prism.add_corner("h5", width - end / 2, depth) prism.add_corner("i1", width, 0) prism.add_corner("i2", width, (depth - wing) / 2) prism.add_corner("i3", width, depth - wing) prism.add_corner("i4", width, depth - last) prism.add_corner("i5", width, depth) prism.add_exterior_wall("a1", "a2") prism.add_exterior_wall("a2", "a3") prism.add_exterior_wall("a3", "a4") prism.add_exterior_wall("a4", "a5") prism.add_exterior_wall("a5", "b5") prism.add_exterior_wall("b5", "c5") prism.add_exterior_wall("c5", "c4") prism.add_exterior_wall("c4", "c3") prism.add_exterior_wall("c3", "d3") prism.add_exterior_wall("d3", "d4") prism.add_exterior_wall("d4", "d5") prism.add_exterior_wall("d5", "e5") prism.add_exterior_wall("e5", "f5") prism.add_exterior_wall("f5", "f4") prism.add_exterior_wall("f4", "f3") prism.add_exterior_wall("f3", "g3") prism.add_exterior_wall("g3", "g4") prism.add_exterior_wall("g4", "g5") prism.add_exterior_wall("g5", "h5") prism.add_exterior_wall("h5", "i5") prism.add_exterior_wall("i5", "i4") prism.add_exterior_wall("i4", "i3") prism.add_exterior_wall("i3", "i2") prism.add_exterior_wall("i2", "i1") prism.add_exterior_wall("i1", "g1") prism.add_exterior_wall("g1", "e1") prism.add_exterior_wall("e1", "c1") prism.add_exterior_wall("c1", "a1") prism.add_interior_wall("a2", "c2") prism.add_interior_wall("c2", "e2") prism.add_interior_wall("e2", "g2") prism.add_interior_wall("g2", "i2") prism.add_interior_wall("a3", "b3") prism.add_interior_wall("b3", "c3") prism.add_interior_wall("d3", "e3") prism.add_interior_wall("e3", "f3") prism.add_interior_wall("g3", "h3") prism.add_interior_wall("h3", "i3") prism.add_interior_wall("a4", "b4") prism.add_interior_wall("b4", "c4") prism.add_interior_wall("d4", "e4") prism.add_interior_wall("e4", "f4") prism.add_interior_wall("g4", "h4") prism.add_interior_wall("h4", "i4") prism.add_interior_wall("b3", "b4") prism.add_interior_wall("b4", "b5") prism.add_interior_wall("c1", "c2") prism.add_interior_wall("c2", "c3") prism.add_interior_wall("e1", "e2") prism.add_interior_wall("e2", "e3") prism.add_interior_wall("e3", "e4") prism.add_interior_wall("e4", "e5") prism.add_interior_wall("g1", "g2") prism.add_interior_wall("g2", "g3") prism.add_interior_wall("h3", "h4") prism.add_interior_wall("h4", "h5") prism.add_plan_zone(["a1", "a2", "c2", "c1"]) prism.add_plan_zone(["c1", "c2", "e2", "e1"]) prism.add_plan_zone(["e1", "e2", "g2", "g1"]) prism.add_plan_zone(["g1", "g2", "i2", "i1"]) prism.add_plan_zone(["a2", "a3", "b3", "c3", "c2"]) prism.add_plan_zone(["c2", "c3", "d3", "e3", "e2"]) prism.add_plan_zone(["e2", "e3", "f3", "g3", "g2"]) prism.add_plan_zone(["g2", "g3", "h3", "i3", "i2"]) prism.add_plan_zone(["a3", "a4", "b4", "b3"]) prism.add_plan_zone(["b3", "b4", "c4", "c3"]) prism.add_plan_zone(["d3", "d4", "e4", "e3"]) prism.add_plan_zone(["e3", "e4", "f4", "f3"]) prism.add_plan_zone(["g3", "g4", "h4", "h3"]) prism.add_plan_zone(["h3", "h4", "i4", "i3"]) prism.add_plan_zone(["a4", "a5", "b5", "b4"]) prism.add_plan_zone(["b4", "b5", "c5", "c4"]) prism.add_plan_zone(["d4", "d5", "e5", "e4"]) prism.add_plan_zone(["e4", "e5", "f5", "f4"]) prism.add_plan_zone(["g4", "g5", "h5", "h4"]) prism.add_plan_zone(["h4", "h5", "i5", "i4"]) prism.number_of_above_grade_stories = number_above_ground_stories prism.has_basement = has_basement prism.add_occupancy_types("default",10.76,"BLDG_LIGHT_SCH",10.76,"BLDG_EQUIP_SCH",18.58,"BLDG_OCC_SCH") # prism.add_hvac_types("default",'Furnace_DX',3.0,0.8) prism.add_hvac_types("default",'IdealLoadsAirSystem',1,1) prism.create_idf(file_name) def Wedge_shaped(file_name, width, depth, zone_depth, lfdep, rtdep, offset, number_above_ground_stories, has_basement): # # <offset> # c /\ # /|\ | # / | \ | # / | \ | # / h \ | # / / \ \ | # /\ b / \ \ depth # | |\ / \ \ | # | | g \ d /\ | # | | | i/ | | | # lfdep| | | | rtdep | # | | | | | | | # | | f--------j | | | # | |/ \ | | | # \/ a-------------e \/ \/ # # <----width----> # prism = Prism_Building() prism.add_corner("a", 0, 0) prism.add_corner("b", 0, lfdep) prism.add_corner("c", offset, depth) prism.add_corner("d", width, rtdep) prism.add_corner("e", width, 0) prism.add_corner("f", zone_depth, zone_depth) prism.add_corner("g", zone_depth, lfdep - zone_depth / 2) prism.add_corner("h", offset, depth - zone_depth) prism.add_corner("i", width - zone_depth, rtdep - zone_depth / 2) prism.add_corner("j", width - zone_depth, zone_depth) prism.add_exterior_wall("a", "b") prism.add_exterior_wall("b", "c") prism.add_exterior_wall("c", "d") prism.add_exterior_wall("d", "e") prism.add_exterior_wall("e", "a") prism.add_interior_wall("f", "g") prism.add_interior_wall("g", "h") prism.add_interior_wall("h", "i") prism.add_interior_wall("i", "j") prism.add_interior_wall("j", "f") prism.add_interior_wall("a", "f") prism.add_interior_wall("b", "g") prism.add_interior_wall("c", "h") prism.add_interior_wall("d", "i") prism.add_interior_wall("e", "j") prism.add_plan_zone(["a", "b", "g", "f"]) prism.add_plan_zone(["b", "c", "h", "g"]) prism.add_plan_zone(["c", "d", "i", "h"]) prism.add_plan_zone(["d", "e", "j", "i"]) prism.add_plan_zone(["j", "e", "a", "f"]) prism.add_plan_zone(["f", "g", "h", "i", "j"]) prism.number_of_above_grade_stories = number_above_ground_stories prism.has_basement = has_basement prism.add_occupancy_types("default",10.76,"BLDG_LIGHT_SCH",10.76,"BLDG_EQUIP_SCH",18.58,"BLDG_OCC_SCH") prism.add_hvac_types("default",'Furnace_DX',3.0,0.8) prism.create_idf(file_name) def json_osw_test(wwr): pp = pprint.PrettyPrinter(indent=4) with open('D:/projects/SBIR SimArchImag/5 SimpleBox/os-test/emptyCLI/workflow-min.osw') as f: data = json.load(f) #print(data) #pp.pprint(data) steps = data['steps'] for step in steps: if step['measure_dir_name'] == "AddRemoveOrReplaceWindowsCopy": #print(step) arguments = step['arguments'] #print(arguments['wwr']) arguments['wwr'] = wwr try: os.mkdir('D:/projects/SBIR SimArchImag/5 SimpleBox/os-test/emptyCLI/{}'.format(wwr)) except FileExistsError: print('directory already exists') with open('D:/projects/SBIR SimArchImag/5 SimpleBox/os-test/emptyCLI/{}/workflow-min-{}.osw'.format(wwr, wwr),'w') as o: json.dump(data, o, indent=3, sort_keys=True) if __name__ == '__main__': sys.exit(main())
# Generated by Django 3.1.3 on 2021-01-01 18:33 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0036_auto_20201231_1205'), ] operations = [ migrations.AlterField( model_name='mentor', name='mentorship_duration', field=models.IntegerField(default=6, validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(24)]), ), ]
# Download the Python helper library from twilio.com/docs/libraries/python from datetime import date from twilio.rest import TwilioRestClient # Your Account Sid and Auth Token from twilio.com/console account_sid = "ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" auth_token = "your_auth_token" client = TwilioRestClient(account_sid, auth_token) # A list of message objects with filtering messages = client.messages.list( to='+15558675310', from_='+15017122661', date_sent=date(2016, 8, 31) )
import pytest from gaphor import UML from gaphor.core.modeling import ElementFactory from gaphor.plugins.xmiexport.exportmodel import XMIExport @pytest.fixture def element_factory(): ef = ElementFactory() ef.create(UML.Package).name = "package" c1 = ef.create(UML.Class) c1.name = "class" c2 = ef.create(UML.Class) c2.name = "class" i1 = ef.create(UML.Interface) i1.name = "interface" c1.ownedAttribute = ef.create(UML.Property) c1.ownedAttribute[0].name = "attr" c1.ownedOperation = ef.create(UML.Operation) c1.ownedOperation[0].name = "oper" c1.ownedOperation[0].ownedParameter = ef.create(UML.Parameter) UML.recipes.create_dependency(c1, c2) UML.recipes.create_generalization(c1, c2) UML.recipes.create_association(c1, c2) return ef def test_xmi_export(element_factory, tmp_path): exporter = XMIExport(element_factory) f = tmp_path / "test.gaphor" exporter.export(f) content = f.read_text() assert '<XMI xmi.version="2.1"' in content
import logging import re import shutil from pathlib import Path import pdfplumber import requests from bs4 import BeautifulSoup from openpyxl import load_workbook from .. import utils from ..cache import Cache __authors__ = ["zstumgoren", "Dilcia19", "ydoc5212"] __tags__ = ["html", "pdf", "excel"] logger = logging.getLogger(__name__) def scrape( data_dir: Path = utils.WARN_DATA_DIR, cache_dir: Path = utils.WARN_CACHE_DIR, ) -> Path: """ Scrape data from California. Compiles a single CSV for CA using historical PDFs and an Excel file for the current fiscal year. Only regenerates the CSV if a PDF or the Excel file have changed. Keyword arguments: data_dir -- the Path were the result will be saved (default WARN_DATA_DIR) cache_dir -- the Path where results can be cached (default WARN_CACHE_DIR) Returns: the Path where the file is written """ output_csv = data_dir / "ca.csv" # Set up cache dir for state cache_state = Path(cache_dir, "ca") cache_state.mkdir(parents=True, exist_ok=True) # Initially write to a temp file in cache_dir before # over-writing prior output_csv, so we can use append # mode while avoiding data corruption if script errors out temp_csv = cache_state / "ca_temp.csv" # Create Cache instance for downstream operations cache = Cache(cache_dir) # Update pdfs and Excel files files_have_changed = _update_files(cache) output_headers = [ "notice_date", "effective_date", "received_date", "company", "city", "num_employees", "layoff_or_closure", "county", "address", "source_file", ] if files_have_changed: logger.info("One or more source data files have changed") logger.info("Extracting Excel data for current fiscal year") wb_path = cache.files(subdir="ca", glob_pattern="*.xlsx")[0] excel_data = _extract_excel_data(wb_path) # Write mode when processing Excel utils.write_dict_rows_to_csv( temp_csv, output_headers, excel_data, mode="w", extrasaction="ignore" ) logger.info("Extracting PDF data for prior years") for pdf in cache.files(subdir="ca", glob_pattern="*.pdf"): logger.info(f"Extracting data from {pdf}") data = _extract_pdf_data(pdf) # Append mode when processing PDFs utils.write_dict_rows_to_csv( temp_csv, output_headers, data, mode="a", extrasaction="ignore" ) # If all went well, copy temp csv over pre-existing output csv utils.create_directory(output_csv, is_file=True) shutil.copy2(temp_csv, output_csv) return output_csv def _update_files(cache): files_have_changed = False # Create lookup of pre-existing PDF files and their size files = {} for local_file in cache.files(subdir="ca/"): fname = local_file.split("/")[-1] extension = fname.split(".")[-1] if extension in ["pdf", "xlsx"]: files[fname] = Path(local_file).stat().st_size # Download file if it has changed or not present. links = _get_file_links() for link in links: file_name = link["url"].split("/")[-1] download_status = False # If file doesn't exist, update download status try: local_size = files[file_name] except KeyError: download_status = True local_size = None # If size doesn't match, update download status if local_size != link["size"]: download_status = True if download_status is True: files_have_changed = True cache.download(f"ca/{file_name}", link["url"]) # Delete local files whose names don't match # data files on remote site, in order to guard against # duplicates if the source agency renames files for obsolete_file in _obsolete_local_files(files, links): files_have_changed = True logger.info( f"Deleting local file no longer present on source site: {obsolete_file}" ) Path(cache.path, f"ca/{obsolete_file}").unlink() return files_have_changed def _get_file_links(): """Get links to historical PDFs and the Excel file.""" logger.info("Getting metadata for data files") base_url = "https://edd.ca.gov/Jobs_and_Training" home_page = f"{base_url}/Layoff_Services_WARN.htm" html = utils.get_url(home_page).text soup = BeautifulSoup(html, "html.parser") links = [] for link in soup.find_all("a"): relative_file_url = link.attrs.get("href", "").strip() if _is_warn_report_link(relative_file_url): file_url = f"{base_url}/{relative_file_url}" meta = _get_file_metadata(file_url) links.append(meta) return links def _is_warn_report_link(url): return True if re.search(r"warn[-_]?report", url, re.I) else False def _get_file_metadata(url): return {"url": url, "size": int(requests.head(url).headers["Content-Length"])} def _extract_excel_data(wb_path): wb = load_workbook(filename=wb_path) # Get the only worksheet ws = wb.worksheets[0] rows = [row for row in ws.rows] # Throw away initial rows until we reach first data row while True: row = rows.pop(0) first_cell = row[0].value.strip().lower() if first_cell.startswith("county"): break payload = [] for row in rows: first_cell = row[0].value.strip().lower() # Exit if we've reached summary row at bottom if first_cell == "report summary": break # Spreadsheet contains merged cells so index # positions below are not sequential data = { "county": row[0].value.strip(), "notice_date": _convert_date(row[1].value), "received_date": _convert_date(row[2].value), "effective_date": _convert_date(row[4].value), "company": row[5].value.strip(), "layoff_or_closure": row[8].value.strip(), "num_employees": row[10].value, "address": row[12].value.strip(), "source_file": wb_path.split("/")[-1], } payload.append(data) return payload def _convert_date(dt): return dt.strftime("%m/%d/%Y") def _extract_pdf_data(pdf_path): headers = [ "notice_date", "effective_date", "received_date", "company", "city", "county", "num_employees", "layoff_or_closure", "source_file", ] data = [] with pdfplumber.open(pdf_path) as pdf: for idx, page in enumerate(pdf.pages): # All pages pages except last should have a single table # Last page has an extra summary table, but indexing # for the first should avoid grabbing the summary data rows = page.extract_tables()[0] # Remove header row on first page # and update the standardized "headers" var if the source # data has no county field, as in the case of # files covering 07/2016-to-06/2017 fiscal year and earlier if idx == 0: raw_header = rows.pop(0) raw_header_str = "-".join([col.strip().lower() for col in raw_header]) if "county" not in raw_header_str: headers.remove("county") # Skip if it's a summary table (this happens # when summary is only table on page, as in 7/2019-6/2020) first_cell = rows[0][0].strip().lower() if "summary" in first_cell: continue for row in rows: data_row = dict(zip(headers, row)) # Data clean-ups data_row.update( { "effective_date": data_row["effective_date"].replace(" ", ""), "received_date": data_row["received_date"].replace(" ", ""), "source_file": pdf_path.split("/")[-1], } ) data.append(data_row) return data def _obsolete_local_files(pdfs, links): pdfs_uniq = set(pdfs.keys()) remote_files = {link["url"].split("/")[-1] for link in links} return pdfs_uniq - remote_files if __name__ == "__main__": scrape()
#import nbformat from nbparameterise import (extract_parameters, replace_definitions,parameter_values) import notebooktoall.transform as trans #with open("masso.ipynb") as f: # nb = nbformat.read(f,as_version=4) #orig_parameters = extract_parameters(nb) #params = parameter_values(orig_parameters, filename = './dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv') #new_nb = replace_definitions(nb, params) #with open("masso2.ipynb","w") as f: # nbformat.write(new_nb,f) trans.transform_notebook(".\\analysis_v0.2.ipynb",export_list=['html']) #nodeof = trans.get_notebook('.\masso2.ipynb') #trans.write_files(['html'],nodeof,'..\analysis_v0.2.html')
# Generated by Django 3.2 on 2022-02-01 07:00 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('api', '0004_remove_goods_design_image_path'), ] operations = [ migrations.RemoveField( model_name='goods_info', name='image_path', ), migrations.RemoveField( model_name='goods_result', name='result_path', ), migrations.AddField( model_name='goods_info', name='image', field=models.ImageField(blank=True, null=True, upload_to='upload_image'), ), migrations.AddField( model_name='goods_result', name='description', field=models.CharField(blank=True, db_column='description', max_length=100), ), migrations.AddField( model_name='goods_result', name='design_code', field=models.IntegerField(blank=True, db_column='design_code', null=True, unique=True), ), migrations.AddField( model_name='goods_result', name='image', field=models.ImageField(blank=True, null=True, upload_to='result'), ), migrations.AddField( model_name='goods_result', name='title', field=models.CharField(blank=True, db_column='title', max_length=100), ), migrations.AlterField( model_name='goods_design', name='image', field=models.ImageField(blank=True, null=True, upload_to='ai_designs'), ), migrations.CreateModel( name='profile', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('phone_no', models.CharField(db_column='phone_no', default='', max_length=100, null=True)), ('name', models.CharField(blank=True, db_column='name', max_length=100, null=True)), ('user_type', models.CharField(blank=True, db_column='user_type', max_length=100, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL)), ], options={ 'db_table': 'profile', }, ), ]
from django.contrib.auth import get_user_model from django.contrib.auth.forms import UserCreationForm FIELDS = ['first_name', 'last_name', 'email', 'username', ] class RegistrationForm(UserCreationForm): """ Customise the User Registration form from default Django UserCreationForm """ class Meta: model = get_user_model() fields = FIELDS
import asyncio from process_pixel import get_global_opacity, process_pixel, set_global_opacity def off(strip): for i in range(strip.numPixels()): strip.setPixelColor(i, process_pixel(0)) strip.show() async def off_animated(strip): opacity = get_global_opacity() for i in range(10, 0, -1): set_global_opacity(opacity / 10 * i) await asyncio.sleep(0.05) off(strip) set_global_opacity(opacity)
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from recipe_engine import recipe_api class PresubmitApi(recipe_api.RecipeApi): @property def presubmit_support_path(self): return self.package_repo_resource('presubmit_support.py') def __call__(self, *args, **kwargs): """Return a presubmit step.""" name = kwargs.pop('name', 'presubmit') env = self.m.step.get_from_context('env', {}) env.setdefault('PATH', '%(PATH)s') env['PATH'] = self.m.path.pathsep.join([ env['PATH'], str(self._module.PACKAGE_REPO_ROOT)]) with self.m.step.context({'env': env}): return self.m.python( name, self.presubmit_support_path, list(args), **kwargs)
from __future__ import absolute_import, division, print_function import sys import h5py import numpy as np from scitbx import matrix from scitbx.array_family import flex from dxtbx.format.Format import Format from dxtbx.format.FormatHDF5 import FormatHDF5 from dxtbx.format.FormatStill import FormatStill class FormatHDF5Sacla(FormatHDF5, FormatStill): """ Class for reading SACLA images created by the DataConvert SACLA script (this script lives on the SACLA hpc). This assumes the argument -reconstr was passed to DataConvert in order to Reconstruct the image. Also, this processes only a single run's worth of data in the hdf5 """ @staticmethod def understand(image_file): with h5py.File(image_file, "r") as h5_handle: understood = False if "file_info" in h5_handle and "run_number_list" in h5_handle["file_info"]: run_grp = FormatHDF5Sacla._get_run_h5group(h5_handle) if "detector_2d_assembled_1" in list(run_grp.keys()): understood = True return understood def _start(self): self._h5_handle = h5py.File(self.get_image_file(), "r") self._run = FormatHDF5Sacla._get_run_h5group(self._h5_handle) event_info = self._run["event_info"] tag_number_list = event_info["tag_number_list"] self._images = ["tag_%d" % tag for tag in tag_number_list] @staticmethod def _get_run_h5group(h5_handle): """returns the first run group found""" file_info = h5_handle["file_info"] run_number_list = file_info["run_number_list"] run_str = "run_%d" % run_number_list[0] return h5_handle[run_str] def _detector(self, index=None): # Get the pixel and image size detector_2d_assembled_1 = self._run["detector_2d_assembled_1"] detector_info = detector_2d_assembled_1["detector_info"] pixel_size = ( detector_info["pixel_size_in_micro_meter"][0] / 1000, detector_info["pixel_size_in_micro_meter"][1] / 1000, ) tag = detector_2d_assembled_1[self._images[0]] data = tag["detector_data"][()] # detector_image_size is fast-, slow- , just in case the dataset is ever non-square image_size = (data.shape[1], data.shape[0]) trusted_range = (0, 200000) # Initialise detector frame fast = matrix.col((1.0, 0.0, 0.0)) slow = matrix.col((0.0, -1.0, 0.0)) orig = matrix.col( ( -image_size[0] * pixel_size[0] / 2, image_size[1] * pixel_size[1] / 2, -100.0, ) ) # Make the detector return self._detector_factory.make_detector( "", fast, slow, orig, pixel_size, image_size, trusted_range ) def _beam(self, index=None): run_info = self._run["run_info"] sacla_config = run_info["sacla_config"] eV = sacla_config["photon_energy_in_eV"].value return self._beam_factory.simple(12398.4 / eV) def get_num_images(self): return len(self._images) def get_raw_data(self, index=0): detector_2d_assembled_1 = self._run["detector_2d_assembled_1"] tag = detector_2d_assembled_1[self._images[index]] return flex.double(tag["detector_data"].value.astype(np.float64)) def get_detectorbase(self, index=None): raise NotImplementedError def get_image_file(self, index=None): return Format.get_image_file(self) def get_detector(self, index=None): return self._detector_instance def get_beam(self, index=None): return self._beam_instance if __name__ == "__main__": for arg in sys.argv[1:]: print(FormatHDF5Sacla.understand(arg))
class Solution: def winnerOfGame(self, colors: str) -> bool: if len(colors) < 3: return False Alice = 0 Bob = 0 for i in range(1, len(colors)-1): if colors[i-1] == colors[i] and colors[i] == colors[i+1]: if colors[i] == 'A': Alice += 1 else: Bob += 1 if Alice > Bob: return True else: return False
import json from pathlib import Path import pygame from tkinter import filedialog import objects as object_types from settings import SCREEN_DIMS, WINDOW_CONST class roomObject(): def __init__(self, color = (0, 0, 255, 1), rect = None, # or (x, y, w, h) circle = None, # or (x, y, r) outline = 0, # is width for circles text = None, objType = "room", footprint = [0, 0, 1, 1], textColor = (255, 255, 255), textSize = 16): self.color = color self.rect = rect self.circle = circle self.outline = outline self.font = pygame.font.Font("fonts/Roboto-Regular.ttf", textSize) self.textColor = textColor self.text = text self.objType = objType self.footprint = footprint if text is not None: self.text = bytes(str(text), "utf-8") if rect is None and circle is None: self.rect = [0, 0, 0, 0] def draw(self, surface): if self.rect is None: x = self.circle[0] y = self.circle[1] r = self.circle[2] pygame.draw.circle(surface, self.color, (x, y), r, self.outline) else: x = self.rect[0] y = self.rect[1] pygame.draw.rect(surface, self.color, self.rect, self.outline) if self.text is not None: text_surface = self.font.render(self.text, 1, self.textColor) surface.blit(text_surface, (x, y)) def getAttributes(self): text = "" if self.text != None: text = self.text.decode("utf-8") attributes = { "color": self.color, "rect": self.rect, "circle": self.circle, "outline": self.outline, "textColor": self.textColor, "text": text, "objType": self.objType, "footprint": self.footprint } return attributes def getPos(self): return self.footprint[0:2] def setPos(self, x, y, xs, ys, dims): if xs + self.footprint[2] > dims[0] or ys + self.footprint[3] > dims[1]: return False if self.rect is None: self.circle = [x, y, self.circle[2]] self.footprint = [xs, ys] + self.footprint[2:] else: self.rect = [x, y] + self.rect[2:] self.footprint = [xs, ys] + self.footprint[2:] def setText(self, text): if text is not None: self.text = bytes(str(text), "utf-8") class gridSpace(): def __init__(self, color = (200, 200, 200, 1), highlightColor = (210, 210, 210, 1), rect = [0, 0, 50, 50], outline = 1, objectsHere = None, highlighted = False, text = None, textSize = 16): self.color = color self.defaultColor = color self.highlightColor = highlightColor self.rect = rect self.outline = outline self.defaultOutline = outline self.objectsHere = objectsHere if objectsHere is None: self.objectsHere = set() self.highlighted = highlighted self.font = pygame.font.Font("fonts/Roboto-Regular.ttf", textSize) self.text = text if text is not None: self.text = bytes(str(text), "utf-8") def addObject(self, obj): self.objectsHere.add(obj) def draw(self, surface): if self.text is not None: text_surface = self.font.render(self.text, 1, (0, 0, 0)) surface.blit(text_surface, self.rect) pygame.draw.rect(surface, self.color, self.rect, self.outline) def getCenter(self): return [self.rect[0] + self.rect[2] // 2, self.rect[1] + self.rect[3] // 2] def highlight(self, color = None): if color is None: color = self.highlightColor self.setColor(color) self.setOutline(0) self.highlighted = True def getObjects(self): return self.objectsHere def removeObject(self, obj): self.objectsHere.remove(obj) def setColor(self, color): self.color = color def setRect(self, rect): self.rect = rect def setOutline(self, outline): self.outline = outline def toggleHighlight(self, color = None): if self.highlighted: self.unhighlight() else: self.highlight(color = color) def unhighlight(self): self.setColor(self.defaultColor) self.setOutline(self.defaultOutline) self.highlighted = False class grid(): def __init__(self, width = 5, height = 5, totalWidth = 500, totalHeight = 500, numbers = False, color = (200, 200, 200, 1), file_name = "__RENAME__", title = "New room", gridTextSize = 16, textSize = 16): self.file_name = file_name self.title = title self.dims = [width, height] self.totalDims = [totalWidth, totalHeight] self.spaceDims = [totalWidth // width, totalHeight // height] self.hoverSpace = [-1, -1] self.lockedSpace = [-1, -1] self.waitFunction = [] self.dead = False self.gridTextSize = gridTextSize self.textSize = textSize self.objects = set() self.createGridSpaces(width, height) def addObject(self, obj): self.objects.add(obj) for w in range(obj.footprint[2]): for h in range(obj.footprint[3]): if len(self.gridSpaces) > obj.footprint[0] + w: if len(self.gridSpaces[obj.footprint[0] + w]) > obj.footprint[1] + h: self.gridSpaces[obj.footprint[0] + w][obj.footprint[1] + h].addObject(obj) def createGridSpaces(self, width, height): self.gridSpaces = list() for w in range(width): self.gridSpaces.append(list()) for h in range(height): text = None if h == 0: text = w + 1 elif w == 0: text = h + 1 self.gridSpaces[w].append( gridSpace(rect=[w * self.spaceDims[0], h * self.spaceDims[1], self.spaceDims[0], self.spaceDims[1]], text = text, textSize = self.gridTextSize)) def draw(self, surface): # Draw grid spaces for w in range(self.dims[0]): for h in range(self.dims[1]): self.gridSpaces[w][h].draw(surface) # Draw objects for obj in self.objects: obj.draw(surface) def export(self, path=None): """Export this project to JPG or PNG""" save = self.getSaveData() roomGrid = grid(self.dims[0], self.dims[1], 2048, 2048, True, gridTextSize=32, textSize=48) roomGrid.setData(save) surface = pygame.Surface((2048, 2048)) surface.fill((255, 255, 255)) roomGrid.draw(surface) if path is None: # Have to make resizable so file dialog appears if WINDOW_CONST == pygame.FULLSCREEN: pygame.display.set_mode(SCREEN_DIMS, pygame.RESIZABLE) path = filedialog.asksaveasfilename(title="Choose a file location and name.", filetypes=[("JPEG", ".jpg"), ("PNG", ".png")], defaultextension=".jpg") if WINDOW_CONST == pygame.FULLSCREEN: pygame.display.set_mode(SCREEN_DIMS, pygame.FULLSCREEN) try: pygame.image.save(surface, path) return True except: return False def getCoords(self, spaceCoords, center=False): """Returns the rectangle of a space, or the x, y center coords, based on space coordinates""" space = self.gridSpaces[spaceCoords[0]][spaceCoords[1]] if center: return space.getCenter() else: return space.rect def getSaveData(self): """Returns the save data of this project""" save = { "meta": { "title": self.title, "dimensions": self.dims }, "objects": self.saveObjects() } return save def getSmallestAt(self, location, objType): """Returns the smallest item at a given gridspace""" if location[0] < 0 or location[1] < 0: return False smallestObj = None for obj in self.gridSpaces[location[0]][location[1]].getObjects(): if obj.objType == objType or objType == "any": # Compare areas - smaller area should get picked if smallestObj is None \ or (obj.footprint[2] * obj.footprint[3] < smallestObj.footprint[2] * smallestObj.footprint[3]): smallestObj = obj if smallestObj is None: return False else: return smallestObj def getSpace(self, cursorCoords): """Returns the space coordinates w,h based on cursor coordinates.""" space = [0, 0] # X dimension if cursorCoords[0] >= self.spaceDims[0] * self.dims[0]: space[0] = self.dims[0] - 1 elif cursorCoords[0] > 0: space[0] = cursorCoords[0] // self.spaceDims[0] # Y dimension if cursorCoords[1] >= self.spaceDims[1] * self.dims[1]: space[1] = self.dims[1] - 1 elif cursorCoords[1] > 0: space[1] = cursorCoords[1] // self.spaceDims[1] return space def highlight(self, spaceCoords, exclusive = False, color = (210, 210, 210, 1)): """Highlights a space""" if exclusive: for w in range(self.dims[0]): for h in range(self.dims[1]): self.gridSpaces[w][h].unhighlight() self.gridSpaces[spaceCoords[0]][spaceCoords[1]].highlight(color) self.hoverSpace = list(spaceCoords) def lockSpace(self): """Locks a space while waiting for text to process""" self.lockedSpace = self.hoverSpace def moveObject(self, objType, location, to_location): """Moves the first instance of object with objType that exists at location""" obj = self.getSmallestAt(location, objType) if obj != False and (len(to_location) == 3 or (to_location[0] > -1 and to_location[1] > -1)) \ and to_location[0] < self.dims[0] and to_location[1] < self.dims[1]: if len(to_location) == 3 and to_location[2] == "relative": orig = obj.getPos() to_location = [orig[0] + to_location[0], orig[1] + to_location[1]] if to_location[0] < 0 or to_location[1] < 0 or to_location[0] >= self.dims[0] or to_location[1] >= self.dims[1]: return False self.removeObject(objType, location) # If circle, use get_coords if obj.circle is not None: coords = self.getCoords(to_location, True) obj.setPos(coords[0], coords[1], to_location[0], to_location[1], self.dims) elif obj.rect is not None: obj.setPos(to_location[0] * self.spaceDims[0], to_location[1] * self.spaceDims[1], to_location[0], to_location[1], self.dims) self.addObject(obj) return True else: return False def openFile(self, path): """Opens a saved room design. Returns file's name.""" self.file_name = path with open(path) as f: data = json.load(f) self.setData(data) def removeObject(self, objType, location): """Removes the first instance of object with objType that exists at location""" obj = self.getSmallestAt(location, objType) if obj != False: for w in range(obj.footprint[2]): for h in range(obj.footprint[3]): self.gridSpaces[obj.footprint[0] + w][obj.footprint[1] + h].removeObject(obj) self.objects.remove(obj) return True else: return False def renameObject(self, objType, location, text): """Renames the first instance of object with objType that exists at location""" obj = self.getSmallestAt(location, objType) if obj != False: obj.setText(text) return True else: return False def resizeObject(self, objType, location, size): """Resizes the first instance of object with objType that exists at location to the size provided.""" obj = self.getSmallestAt(location, objType) if obj != False: obj = obj.getAttributes() # Circles are always 1x1 if obj["rect"] is None: return False self.removeObject(objType, location) # Make sure size is positive f = obj["footprint"] f[2] = abs(size[0]) f[3] = abs(size[1]) # If too big, make it as big as possible if f[0] + f[2] >= self.dims[0]: f[2] = self.dims[0] - f[0] if f[1] + f[3] >= self.dims[1]: f[3] = self.dims[1] - f[1] obj["rect"] = [f[0] * self.spaceDims[0], f[1] * self.spaceDims[1], f[2] * self.spaceDims[0], f[3] * self.spaceDims[1]] roomObj = roomObject(color=obj["color"], rect=obj["rect"], circle=obj["circle"], outline=obj["outline"], text=obj["text"], textColor=obj["textColor"], objType=obj["objType"], footprint=obj["footprint"], textSize=self.textSize) self.addObject(roomObj) return True else: return False def saveFile(self, path = None): """Saves object list as JSON to given path""" if path is None: path = self.file_name if path == "__RENAME__": # Have to make resizable so file dialog appears if WINDOW_CONST == pygame.FULLSCREEN: pygame.display.set_mode(SCREEN_DIMS, pygame.RESIZABLE) path = filedialog.asksaveasfilename(title="Choose a file location and name.", filetypes=[("JSON", ".json")], defaultextension=".json") title = Path(path).stem if WINDOW_CONST == pygame.FULLSCREEN: pygame.display.set_mode(SCREEN_DIMS, pygame.FULLSCREEN) self.file_name = path self.title = title save = self.getSaveData() try: with open(path, "w") as f: json.dump(save, f) return True except: return False def saveObjects(self): """Saves objects to a list""" objects = list() for obj in self.objects: objects.append(obj.getAttributes()) return objects def setData(self, data): """Set project data""" self.title = data["meta"]["title"] self.dims = data["meta"]["dimensions"] self.spaceDims = [self.totalDims[0] // self.dims[0], self.totalDims[1] // self.dims[1]] self.createGridSpaces(self.dims[0], self.dims[1]) for obj in data["objects"]: # Footprint matters here, to adjust for different-sized screens. if obj["rect"] is not None: f = obj["footprint"] obj["rect"] = [f[0] * self.spaceDims[0], f[1] * self.spaceDims[1], f[2] * self.spaceDims[0], f[3] * self.spaceDims[1]] if obj["circle"] is not None: f = obj["footprint"] obj["circle"] = self.getCoords(f[0:2], True) + [self.spaceDims[0] // 2] roomObj = roomObject(color=obj["color"], rect=obj["rect"], circle=obj["circle"], outline=obj["outline"], text=obj["text"], textColor=obj["textColor"], objType=obj["objType"], footprint=obj["footprint"], textSize=self.textSize) self.addObject(roomObj) def setFileName(self, name): """Set file output path""" self.file_name = name def setWaitFunction(self, name, params): """Set up a waiting function.""" if name is None: self.waitFunction = [] else: self.waitFunction = [name, params] def toggleHighlight(self, spaceCoords, color = (210, 210, 210, 1)): """Toggles a space to highlight (or not)""" self.gridSpaces[spaceCoords[0]][spaceCoords[1]].toggleHighlight(color) def unhighlight(self, spaceCoords): """Unhighlights a space""" self.gridSpaces[spaceCoords[0]][spaceCoords[1]].unhighlight() class messageCenter(): def __init__(self, x, y, text = "Waiting for voice command.", defaultColor = (0, 0, 0), fontSize = 20): self.x = x self.y = y self.defaultColor = defaultColor self.font = pygame.font.Font("fonts/Roboto-Regular.ttf", 20) self.text = text # Key to objects self.objects = list() self.spacing = 30 y_space = 50 for obj in object_types.obj_types: ot = obj obj = object_types.obj_types[obj] if obj["shape"] == "circle": # Shift x and y for radius o = roomObject(obj["color"], circle=(self.x + 10, self.y + y_space + 10, 10), objType=ot, outline=obj["outline"]) l = [self.font.render(obj["description"], 1, self.defaultColor), self.x + 70, self.y + y_space] else: o = roomObject(obj["color"], (self.x, self.y + y_space, 60, 20), objType=ot, outline=obj["outline"]) l = [self.font.render(obj["description"], 1, self.defaultColor), self.x + 70, self.y + y_space] self.objects.append(o) self.objects.append(l) y_space += self.spacing self.commands = [pygame.image.load("img/commands.png"), self.x, self.y + y_space] def draw(self, surface, color = None): # The key to objects for obj in self.objects: if type(obj) == list: surface.blit(obj[0], obj[1:]) else: obj.draw(surface) surface.blit(self.commands[0], self.commands[1:]) # The message text if self.text is not None: if color is None: color = self.defaultColor text_surface = self.font.render(self.text, 1, color) surface.blit(text_surface, (self.x, self.y)) def setText(self, text): self.text = text
import asyncio from aiohttp.test_utils import AioHTTPTestCase, unittest_run_loop from aiohttp import web from ....config.injection_context import InjectionContext from ....utils.stats import Collector from ...outbound.message import OutboundMessage from ..http import HttpTransport class TestHttpTransport(AioHTTPTestCase): async def setUpAsync(self): self.context = InjectionContext() self.message_results = [] async def receive_message(self, request): payload = await request.json() self.message_results.append(payload) raise web.HTTPOk() async def get_application(self): """ Override the get_app method to return your application. """ app = web.Application() app.add_routes([web.post("/", self.receive_message)]) return app @unittest_run_loop async def test_handle_message(self): server_addr = f"http://localhost:{self.server.port}" async def send_message(transport, payload, endpoint): async with transport: await transport.handle_message(self.context, payload, endpoint) transport = HttpTransport() await asyncio.wait_for(send_message(transport, "{}", endpoint=server_addr), 5.0) assert self.message_results == [{}] @unittest_run_loop async def test_stats(self): server_addr = f"http://localhost:{self.server.port}" async def send_message(transport, payload, endpoint): async with transport: await transport.handle_message(self.context, payload, endpoint) transport = HttpTransport() transport.collector = Collector() await asyncio.wait_for( send_message(transport, b"{}", endpoint=server_addr), 5.0 ) results = transport.collector.extract() assert results["count"] == { "outbound-http:dns_resolve": 1, "outbound-http:connect": 1, "outbound-http:POST": 1, }
from analysis import makefigure #from analysis import analysis #from analysis import classdef makefigure.makeSnap(datfile="TEST/snap000005.dat", pngfile="ae.png", bHeader=True)
import unittest class TestJobExecutionOrder(unittest.TestCase): # can actually execute in a number of different ways # just need certain rules to hold with respect to the order # A before F, G # B, C before F # F before H, I # D before G before I def order_checks(self, exec_order): def chk(job_one, job_two): self.assertTrue( exec_order.index(job_one) < exec_order.index(job_two), msg='Out of order: {} supposed to be before {}'.format(job_one, job_two) ) pairs_to_check = [ ('JobA', 'JobF'), ('JobB', 'JobF'), ('JobC', 'JobF'), ('JobF', 'JobH'), ('JobF', 'JobI'), ('JobD', 'JobG'), ('JobG', 'JobI'), ('JobA', 'JobG') ] for job_one, job_two in pairs_to_check: chk(job_one, job_two) def setUp(self): from treetl import Job self.actual_execution_order = [ ] def notify(job): job_name = job.__class__.__name__ self.actual_execution_order.append(job_name) class NotifyJob(Job): def transform(self, **kwargs): notify(self) return self class JobA(NotifyJob): pass class JobB(NotifyJob): pass class JobC(NotifyJob): pass class JobD(NotifyJob): pass class JobE(NotifyJob): pass @Job.dependency(b_data=JobB, c_data=JobC) class JobF(NotifyJob): pass @Job.dependency(a_data=JobA, d_data=JobD) class JobG(NotifyJob): pass @Job.dependency(a_data=JobA, f_data=JobF) class JobH(NotifyJob): pass @Job.dependency(f_data=JobF, g_data=JobG) class JobI(NotifyJob): pass @Job.dependency(f_data=JobF) class FaultyJob(NotifyJob): def transform(self, **kwargs): super(FaultyJob, self).transform() raise ValueError() @Job.dependency(faulty_parent=FaultyJob) class VictimJob(NotifyJob): pass @Job.dependency(faulty_parent=FaultyJob) class OtherVictimJob(NotifyJob): pass # they don't need to be in order self.jobs = [ JobA(), JobD(), JobC(), JobB(), JobE(), JobG(), JobF(), JobI(), JobH() ] self.faulty_jobs = [ FaultyJob(), VictimJob(), OtherVictimJob() ] def test_job_order(self): from treetl import Job, JobRunner, JOB_STATUS job_tree = JobRunner(self.jobs).run() self.order_checks(self.actual_execution_order) self.assertTrue(len(self.actual_execution_order) == len(self.jobs), msg='Some job transformed twice.') # add jobs that will fail and dependents that won't run as a result # clear execution order to start over again self.actual_execution_order = [] job_tree.reset_jobs() job_tree.add_jobs(self.faulty_jobs) for failure_child in [ 'VictimJob', 'OtherVictimJob' ]: self.assertNotIn( member=failure_child, container=self.actual_execution_order, msg='Child of faulty, failed job was executed.' ) self.assertTrue(job_tree.run().status == JOB_STATUS.FAILED, msg='Job failure not recorded in status') self.assertItemsEqual( expected_seq=self.faulty_jobs, actual_seq=job_tree.failed_jobs(), msg='Not all faulty jobs were labeled as failed.' ) self.assertItemsEqual( expected_seq=[ self.faulty_jobs[0] ], actual_seq=job_tree.failed_job_roots(), msg='Root failure not correctly identified.' ) failed_root_paths_dict = job_tree.failed_job_root_paths() self.assertTrue(len(failed_root_paths_dict) == 1, msg='Too many failure roots.') self.assertItemsEqual( expected_seq=[ self.faulty_jobs[0] ], actual_seq=failed_root_paths_dict.keys(), msg='Incorrect failed root in { failed_root: paths_to_failed_root }' ) self.assertItemsEqual( expected_seq=[ [ 'JobC', 'JobF', 'FaultyJob' ], [ 'JobB', 'JobF', 'FaultyJob' ] ], actual_seq=[ [ job.__class__.__name__ for job in path ] for path in failed_root_paths_dict[self.faulty_jobs[0]] ], msg='Incorrect paths to root failure.' )
from .handler import Handler
from z80 import util, io, gui, registers, instructions import copy from time import sleep, time import sys from PySide.QtCore import * from PySide.QtGui import * import threading #logging.basicConfig(level=logging.INFO) class Z80SBC(io.Interruptable): def __init__(self): self.registers = registers.Registers() self.instructions = instructions.InstructionSet(self.registers) self._memory = bytearray(64*1024) self._read_rom("../roms/ROM.HEX") self._iomap = io.IOMap() self._console = io.Console(self) self._reg_gui = gui.RegistersGUI(self.registers) self._mem_view = gui.MemoryView(self._memory, self.registers) self._iomap.addDevice(self._console) self._console.show() self._reg_gui.show() self._mem_view.show() self._interrupted = False def interrupt(self): self._interrupted = True def _read_rom(self, romfile): with open(romfile, "r") as f: while True: line = f.readline() if line[0] != ":": raise Exception("Bad start code in hex file.") count = int(line[1:3], 16)#.decode("hex") address = int(line[3:7], 16) #.decode("hex") if address + count > len(self._memory): raise Exception("Trying to create M2764 ROM with too large a ROM file") rtype = line[7:9] pos = 9 if rtype == "01": break for b in range(count): byte = int(line[pos+(2*b):pos+(2*b)+2], 16) #. decode("hex") self._memory[address+b] = byte def step_instruction(self): ins, args = False, [] pc = self.registers.PC if self._interrupted and self.registers.IFF: self.registers.IFF = False self._interrupted = False if self.registers.IM == 1: print "!!! Interrupt !!!" ins, args = self.instructions << 0xCD ins, args = self.instructions << 0x38 ins, args = self.instructions << 0x00 self.registers.IFF = False else: while not ins: ins, args = self.instructions << self._memory[self.registers.PC] self.registers.PC = util.inc16(self.registers.PC) #print( "{0:X} : {1} ".format(pc, ins.assembler(args))) rd = ins.get_read_list(args) data = [0] * len(rd) for n, i in enumerate(rd): if i < 0x10000: data[n] = self._memory[i] else: address = i & 0xFF data[n] = self._iomap.address[address].read(address) wrt = ins.execute(data, args) for i in wrt: if i[0] > 0x10000: address = i[0] & 0xFF #iomap.address[address].write.emit(address, i[1]) self._iomap.address[address].write(address, i[1]) #print (chr(i[1])) else: self._memory[i[0]] = i[1] return ins, args if __name__ == '__main__': ''' Main Program ''' qt_app = QApplication(sys.argv) mach = Z80SBC() def worker(): t = time() while True: # t = time() ins, args = mach.step_instruction() print ins.assembler(args) sleep(0.00000001) # print (time() - t) / ins.tstates # mach._mem_view.update() # mach._reg_gui.update() thread = threading.Thread(target=worker) thread.setDaemon(True) thread.start() qt_app.exec_()
# simple statistics module import resource def _systemtime (): ru_self = resource.getrusage (resource.RUSAGE_SELF) ru_ch = resource.getrusage (resource.RUSAGE_CHILDREN) return ru_self.ru_utime + ru_ch.ru_utime class Stopwatch: """ A stop watch """ def __init__ (self): self._started = 0 self._finished = -1 self._elapsed = 0 self.start () @property def elapsed (self): """ Returns time (in seconds) since the stopwatch has been started. """ if self._finished < self._started: return self._elapsed + (_systemtime () - self._started) return self._elapsed + (self._finished - self._started) def start (self): """ Starts or resumes the stopwatch """ # collect elapsed time so far if self._finished >= self._started: self._elapsed += (self._finished - self._started) self._started = _systemtime () self._finished = -1 def stop (self): """ Stops the stopwatch """ if self._finished < self._started: self._finished = _systemtime () def reset (self): """ Resets the stopwatch by erasing all elapsed time """ self._elapsed = 0 self._finished = -1 self.start () def __str__ (self): """ Reports time in seconds up to two decimal places """ return "{0:.2f}".format (self.elapsed) def lap (name): class ContextManager (object): def __init__ (self, name): self._name = name self._sw = Stopwatch () def __enter__ (self): self._sw.reset () return None def __exit__ (self, exc_type, exc_value, traceback): print 'DONE', name, 'in', str(self._sw) return False return ContextManager (name) _statistics = dict() def get (key): """ Gets a value from statistics table """ return _statistics.get (key) def put (key, v): """ Puts a value in statistics table """ _statistics[key] = v def start (key): """ Starts (or resumes) a named stopwatch """ sw = get (key) if sw is None: sw = Stopwatch () put (key, sw) return sw else: sw.start () def stop (key): """ Stops a named stopwatch """ sw = get (key) if sw is not None: sw.stop () def count (key): """ Increments a named counter """ c = get (key) if c is None: put (key, 1) else: put (key, c + 1) def brunch_print (): """ Prints the result in brunch format """ if not _statistics: return print '----------------------------------------------------------------------' for k in sorted (_statistics.keys ()): print 'BRUNCH_STAT {name} {value}'.format (name=k, value=_statistics [k]) print '----------------------------------------------------------------------' def timer (key): """ ContextManager to help measuring time. with timer('myname') as t: do_code_that_is_timed """ class TimerContextManager (object): def __init__ (self, key): self._key = key def __enter__ (self): start (key) return None def __exit__ (self, exc_type, exc_value, traceback): stop (key) return False return TimerContextManager (key) def block(mark): class BlockMarkerContextManager (object): def __init__ (self, mark): self._mark = mark def __enter__ (self): print 'BEGIN:', mark return None def __exit__ (self, exc_type, exc_value, traceback): print 'END:', mark return False return BlockMarkerContextManager (mark) def count_stats (f): def counted_func (*args, **kwds): count (f.__module__ + "." + f.__name__ + ".cnt") return f(*args, **kwds) counted_func.__name__ = f.__name__ counted_func.__doc__ = f.__doc__ return counted_func def time_stats (f): """ Function decorator to time a function @time_stats def foo (): pass """ def timed_func (*args, **kwds): count (f.__module__ + "." + f.__name__ + ".cnt") with timer (f.__module__ + '.' + f.__name__): return f(*args, **kwds) timed_func.__name__ = f.__name__ timed_func.__doc__ = f.__doc__ return timed_func @time_stats def _test_function (): c = 0 while c < 100000000: c += 1 if __name__ == '__main__': import time c= 0 count ('tick') with timer ('timer') as t: while c < 10000000: c += 1 brunch_print () c = 0 count ('tick') with timer ('timer') as t: while c < 10000000: c += 1 brunch_print () _test_function () brunch_print ()
# -*- coding: utf-8 -*- from dp_tornado.engine.controller import Controller from bs4 import BeautifulSoup class PaginationController(Controller): def get(self): self.test_simple_1() self.test_simple_2() self.test_all() self.test_first_page() self.test_last_page() self.test_first_block() self.test_last_block() self.test_render() def test_render(self): params = { 'total_count': 100, 'page': 3, 'rpp': 10, 'kwargs': { } } self.render('tests/view/module/pagination.html', params) def test_simple_1(self): params = { 'total_count': 100, 'page': 3, 'rpp': 10, 'kwargs': { } } pagination = self.render_string('tests/view/module/pagination.html', params) pagination = BeautifulSoup(pagination, 'lxml') assert(len(pagination.findAll('div')) == 1) assert(len(pagination.find('div').findAll('strong')) == 1) assert(len(pagination.find('div').findAll('a')) == 9) def test_simple_2(self): params = { 'total_count': 1000, 'page': 25, 'rpp': 10, 'kwargs': { } } pagination = self.render_string('tests/view/module/pagination.html', params) pagination = BeautifulSoup(pagination, 'lxml') assert(len(pagination.findAll('div')) == 1) assert(len(pagination.find('div').findAll('strong')) == 1) assert(len(pagination.find('div').findAll('a')) == 13) def test_all(self): region_tag = 'div' region_class = 'region-class' first = 'First' first_class = 'first-class' last = 'Last' last_class = 'last-class' prev_block = 'Prev-Block' prev_block_class = 'prev-block-class' next_block = 'Next-Block' next_block_class = 'next-block-class' prev = 'Prev' prev_class = 'prev-class' next = 'Next' next_class = 'next-class' current_tag = 'strong' current_class = 'current-class' link_tag = 'a' link_class = 'link-class' params = { 'total_count': 10000, 'page': 33, 'rpp': 10, 'kwargs': { 'region_tag': region_tag, 'region_class': region_class, 'first': first, 'first_class': first_class, 'last': last, 'last_class': last_class, 'prev_block': prev_block, 'prev_block_class': prev_block_class, 'next_block': next_block, 'next_block_class': next_block_class, 'prev': prev, 'prev_class': prev_class, 'next': next, 'next_class': next_class, 'current_tag': current_tag, 'current_class': current_class, 'link_tag': link_tag, 'link_class': link_class, 'space': '_' } } pagination = self.render_string('tests/view/module/pagination.html', params) pagination = BeautifulSoup(pagination, 'lxml') assert(len(pagination.findAll(region_tag)) == 1) assert(pagination.find(region_tag).attrs['class'][0] == region_class) assert(len(pagination.find(region_tag).findAll(link_tag)) == 15) links = pagination.find(region_tag).findAll(link_tag) assert(links[0].attrs['class'][0] == first_class) assert(links[0].text == first) assert(links[1].attrs['class'][0] == prev_block_class) assert(links[1].text == prev_block) assert(links[2].attrs['class'][0] == prev_class) assert(links[2].text == prev) assert(links[-3].attrs['class'][0] == next_class) assert(links[-3].text == next) assert(links[-2].attrs['class'][0] == next_block_class) assert(links[-2].text == next_block) assert(links[-1].attrs['class'][0] == last_class) assert(links[-1].text == last) links = links[3:-3] for e in links: assert(e.name == link_tag) assert(e.attrs['class'][0] == link_class) assert(self.helper.numeric.extract_numbers(e.text) == e.text) def test_first_page(self): region_tag = 'div' region_class = 'region-class' first = 'First' first_class = 'first-class' last = 'Last' last_class = 'last-class' prev_block = 'Prev-Block' prev_block_class = 'prev-block-class' next_block = 'Next-Block' next_block_class = 'next-block-class' prev = 'Prev' prev_class = 'prev-class' next = 'Next' next_class = 'next-class' current_tag = 'strong' current_class = 'current-class' link_tag = 'a' link_class = 'link-class' params = { 'total_count': 10000, 'page': 1, 'rpp': 10, 'kwargs': { 'region_tag': region_tag, 'region_class': region_class, 'first': first, 'first_class': first_class, 'last': last, 'last_class': last_class, 'prev_block': prev_block, 'prev_block_class': prev_block_class, 'next_block': next_block, 'next_block_class': next_block_class, 'prev': prev, 'prev_class': prev_class, 'next': next, 'next_class': next_class, 'current_tag': current_tag, 'current_class': current_class, 'link_tag': link_tag, 'link_class': link_class, 'space': '_' } } pagination = self.render_string('tests/view/module/pagination.html', params) pagination = BeautifulSoup(pagination, 'lxml') assert(len(pagination.findAll(region_tag)) == 1) assert(pagination.find(region_tag).attrs['class'][0] == region_class) assert(len(pagination.find(region_tag).findAll(link_tag)) == (15 - 3)) links = pagination.find(region_tag).findAll(link_tag) assert(links[-3].attrs['class'][0] == next_class) assert(links[-3].text == next) assert(links[-2].attrs['class'][0] == next_block_class) assert(links[-2].text == next_block) assert(links[-1].attrs['class'][0] == last_class) assert(links[-1].text == last) links = links[0:-3] for e in links: assert(e.name == link_tag) assert(e.attrs['class'][0] == link_class) assert(self.helper.numeric.extract_numbers(e.text) == e.text) def test_last_page(self): region_tag = 'div' region_class = 'region-class' first = 'First' first_class = 'first-class' last = 'Last' last_class = 'last-class' prev_block = 'Prev-Block' prev_block_class = 'prev-block-class' next_block = 'Next-Block' next_block_class = 'next-block-class' prev = 'Prev' prev_class = 'prev-class' next = 'Next' next_class = 'next-class' current_tag = 'strong' current_class = 'current-class' link_tag = 'a' link_class = 'link-class' params = { 'total_count': 10000, 'page': 1000, 'rpp': 10, 'kwargs': { 'region_tag': region_tag, 'region_class': region_class, 'first': first, 'first_class': first_class, 'last': last, 'last_class': last_class, 'prev_block': prev_block, 'prev_block_class': prev_block_class, 'next_block': next_block, 'next_block_class': next_block_class, 'prev': prev, 'prev_class': prev_class, 'next': next, 'next_class': next_class, 'current_tag': current_tag, 'current_class': current_class, 'link_tag': link_tag, 'link_class': link_class, 'space': '_' } } pagination = self.render_string('tests/view/module/pagination.html', params) pagination = BeautifulSoup(pagination, 'lxml') assert(len(pagination.findAll(region_tag)) == 1) assert(pagination.find(region_tag).attrs['class'][0] == region_class) assert(len(pagination.find(region_tag).findAll(link_tag)) == (15 - 3)) links = pagination.find(region_tag).findAll(link_tag) assert(links[0].attrs['class'][0] == first_class) assert(links[0].text == first) assert(links[1].attrs['class'][0] == prev_block_class) assert(links[1].text == prev_block) assert(links[2].attrs['class'][0] == prev_class) assert(links[2].text == prev) links = links[3:] for e in links: assert(e.name == link_tag) assert(e.attrs['class'][0] == link_class) assert(self.helper.numeric.extract_numbers(e.text) == e.text) def test_first_block(self): region_tag = 'div' region_class = 'region-class' first = 'First' first_class = 'first-class' last = 'Last' last_class = 'last-class' prev_block = 'Prev-Block' prev_block_class = 'prev-block-class' next_block = 'Next-Block' next_block_class = 'next-block-class' prev = 'Prev' prev_class = 'prev-class' next = 'Next' next_class = 'next-class' current_tag = 'strong' current_class = 'current-class' link_tag = 'a' link_class = 'link-class' params = { 'total_count': 10000, 'page': 2, 'rpp': 10, 'kwargs': { 'region_tag': region_tag, 'region_class': region_class, 'first': first, 'first_class': first_class, 'last': last, 'last_class': last_class, 'prev_block': prev_block, 'prev_block_class': prev_block_class, 'next_block': next_block, 'next_block_class': next_block_class, 'prev': prev, 'prev_class': prev_class, 'next': next, 'next_class': next_class, 'current_tag': current_tag, 'current_class': current_class, 'link_tag': link_tag, 'link_class': link_class, 'space': '_' } } pagination = self.render_string('tests/view/module/pagination.html', params) pagination = BeautifulSoup(pagination, 'lxml') assert(len(pagination.findAll(region_tag)) == 1) assert(pagination.find(region_tag).attrs['class'][0] == region_class) assert(len(pagination.find(region_tag).findAll(link_tag)) == (15 - 2)) links = pagination.find(region_tag).findAll(link_tag) assert(links[0].attrs['class'][0] == prev_class) assert(links[0].text == prev) assert(links[-3].attrs['class'][0] == next_class) assert(links[-3].text == next) assert(links[-2].attrs['class'][0] == next_block_class) assert(links[-2].text == next_block) assert(links[-1].attrs['class'][0] == last_class) assert(links[-1].text == last) links = links[1:-3] for e in links: assert(e.name == link_tag) assert(e.attrs['class'][0] == link_class) assert(self.helper.numeric.extract_numbers(e.text) == e.text) def test_last_block(self): region_tag = 'div' region_class = 'region-class' first = 'First' first_class = 'first-class' last = 'Last' last_class = 'last-class' prev_block = 'Prev-Block' prev_block_class = 'prev-block-class' next_block = 'Next-Block' next_block_class = 'next-block-class' prev = 'Prev' prev_class = 'prev-class' next = 'Next' next_class = 'next-class' current_tag = 'strong' current_class = 'current-class' link_tag = 'a' link_class = 'link-class' params = { 'total_count': 10000, 'page': 999, 'rpp': 10, 'kwargs': { 'region_tag': region_tag, 'region_class': region_class, 'first': first, 'first_class': first_class, 'last': last, 'last_class': last_class, 'prev_block': prev_block, 'prev_block_class': prev_block_class, 'next_block': next_block, 'next_block_class': next_block_class, 'prev': prev, 'prev_class': prev_class, 'next': next, 'next_class': next_class, 'current_tag': current_tag, 'current_class': current_class, 'link_tag': link_tag, 'link_class': link_class, 'space': '_' } } pagination = self.render_string('tests/view/module/pagination.html', params) pagination = BeautifulSoup(pagination, 'lxml') assert(len(pagination.findAll(region_tag)) == 1) assert(pagination.find(region_tag).attrs['class'][0] == region_class) assert(len(pagination.find(region_tag).findAll(link_tag)) == (15 - 2)) links = pagination.find(region_tag).findAll(link_tag) assert(links[0].attrs['class'][0] == first_class) assert(links[0].text == first) assert(links[1].attrs['class'][0] == prev_block_class) assert(links[1].text == prev_block) assert(links[2].attrs['class'][0] == prev_class) assert(links[2].text == prev) assert(links[-1].attrs['class'][0] == next_class) assert(links[-1].text == next) links = links[3:-1] for e in links: assert(e.name == link_tag) assert(e.attrs['class'][0] == link_class) assert(self.helper.numeric.extract_numbers(e.text) == e.text)
import util def solve(input_path): with open(input_path) as f: line_points = tuple(util.completion_score(s.rstrip()) for s in f) positive_points = tuple(filter(lambda s: s > 0, line_points)) return sorted(positive_points)[int(len(positive_points) / 2)] if __name__ == '__main__': print(solve('input.txt'))
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from keystoneauth1.extras import kerberos from keystoneauth1 import loading class Kerberos(loading.BaseV3Loader): @property def plugin_class(self): return kerberos.Kerberos @property def available(self): return kerberos.requests_kerberos is not None class MappedKerberos(loading.BaseFederationLoader): @property def plugin_class(self): return kerberos.MappedKerberos @property def available(self): return kerberos.requests_kerberos is not None
# coding=utf-8 # Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals import re from contextlib import contextmanager from pants.base.revision import Revision from pants.scm.git import Git from pants.util.contextutil import environment_as, temporary_dir from pants.util.process_handler import subprocess MIN_REQUIRED_GIT_VERSION = Revision.semver('1.7.10') def git_version(): """Get a Version() based on installed command-line git's version""" process = subprocess.Popen(['git', '--version'], stdout=subprocess.PIPE) (stdout, stderr) = process.communicate() assert process.returncode == 0, "Failed to determine git version." # stdout is like 'git version 1.9.1.598.g9119e8b\n' We want '1.9.1.598' matches = re.search(r'\s(\d+(?:\.\d+)*)[\s\.]', stdout.decode('utf-8')) return Revision.lenient(matches.group(1)) def get_repo_root(): """Return the absolute path to the root directory of the Pants git repo.""" return subprocess.check_output(['git', 'rev-parse', '--show-toplevel']).strip() @contextmanager def initialize_repo(worktree, gitdir=None): """Initialize a git repository for the given `worktree`. NB: The given `worktree` must contain at least one file which will be committed to form an initial commit. :param string worktree: The path to the git work tree. :param string gitdir: An optional path to the `.git` dir to use. :returns: A `Git` repository object that can be used to interact with the repo. :rtype: :class:`pants.scm.git.Git` """ @contextmanager def use_gitdir(): if gitdir: yield gitdir else: with temporary_dir() as d: yield d with use_gitdir() as git_dir, environment_as(GIT_DIR=git_dir, GIT_WORK_TREE=worktree): subprocess.check_call(['git', 'init']) subprocess.check_call(['git', 'config', 'user.email', 'you@example.com']) subprocess.check_call(['git', 'config', 'user.name', 'Your Name']) subprocess.check_call(['git', 'add', '.']) subprocess.check_call(['git', 'commit', '-am', 'Add project files.']) yield Git(gitdir=git_dir, worktree=worktree)
"Test for Range Query" from progressivis.table.constant import Constant from progressivis.table.table import Table from progressivis import Print from progressivis.stats import RandomTable, Min, Max from progressivis.core.bitmap import bitmap from progressivis.table.range_query import RangeQuery from progressivis.utils.psdict import PsDict from progressivis.core import aio from . import ProgressiveTest, main class TestRangeQuery(ProgressiveTest): "Test Suite for RangeQuery Module" def tearDown(self): TestRangeQuery.cleanup() def test_range_query(self): "Run tests of the RangeQuery module" s = self.scheduler() with s: random = RandomTable(2, rows=1000, scheduler=s) t_min = PsDict({'_1': 0.3}) min_value = Constant(table=t_min, scheduler=s) t_max = PsDict({'_1': 0.8}) max_value = Constant(table=t_max, scheduler=s) range_qry = RangeQuery(column='_1', scheduler=s) range_qry.create_dependent_modules(random, 'result', min_value=min_value, max_value=max_value) prt = Print(proc=self.terse, scheduler=s) prt.input[0] = range_qry.output.result aio.run(s.start()) idx = range_qry.input_module\ .output['result']\ .data().eval('(_1>0.3)&(_1<0.8)', result_object='index') self.assertEqual(range_qry.result.index, bitmap(idx)) def test_hist_index_min_max(self): "Test min_out and max_out on HistogramIndex" s = self.scheduler() with s: random = RandomTable(2, rows=100000, scheduler=s) t_min = PsDict({'_1': 0.3}) min_value = Constant(table=t_min, scheduler=s) t_max = PsDict({'_1': 0.8}) max_value = Constant(table=t_max, scheduler=s) range_qry = RangeQuery(column='_1', scheduler=s) range_qry.create_dependent_modules(random, 'result', min_value=min_value, max_value=max_value) prt = Print(proc=self.terse, scheduler=s) prt.input[0] = range_qry.output.result hist_index = range_qry.hist_index min_=Min(name='min_'+str(hash(hist_index)), scheduler=s) min_.input[0] = hist_index.output.min_out prt2 = Print(proc=self.terse, scheduler=s) prt2.input[0] = min_.output.result max_=Max(name='max_'+str(hash(hist_index)), scheduler=s) max_.input[0] = hist_index.output.max_out pr3=Print(proc=self.terse, scheduler=s) pr3.input[0] = max_.output.result aio.run(s.start()) res1 = random.result.min()['_1'] res2 = min_.result['_1'] self.assertAlmostEqual(res1, res2) res1 = random.result.max()['_1'] res2 = max_.result['_1'] self.assertAlmostEqual(res1, res2) def _query_min_max_impl(self, random, t_min, t_max, s): min_value = Constant(table=t_min, scheduler=s) max_value = Constant(table=t_max, scheduler=s) range_qry = RangeQuery(column='_1', scheduler=s) range_qry.create_dependent_modules(random, 'result', min_value=min_value, max_value=max_value) prt = Print(proc=self.terse, scheduler=s) prt.input[0] = range_qry.output.result prt2 = Print(proc=self.terse, scheduler=s) prt2.input[0] = range_qry.output.min pr3 = Print(proc=self.terse, scheduler=s) pr3.input[0] = range_qry.output.max return range_qry def test_range_query_min_max(self): "Test min and max on RangeQuery output" s = self.scheduler() with s: random = RandomTable(2, rows=100000, scheduler=s) t_min = PsDict({'_1': 0.3}) t_max = PsDict({'_1': 0.8}) range_qry = self._query_min_max_impl(random, t_min, t_max, s) aio.run(s.start()) min_data = range_qry.output.min.data() max_data = range_qry.output.max.data() self.assertAlmostEqual(min_data['_1'], 0.3) self.assertAlmostEqual(max_data['_1'], 0.8) def test_range_query_min_max2(self): "Test min and max on RangeQuery output" s = self.scheduler() with s: random = RandomTable(2, rows=100000, scheduler=s) t_min = PsDict({'_1': 0.0}) t_max = PsDict({'_1': float('nan')}) range_qry = self._query_min_max_impl(random, t_min, t_max, s) aio.run(s.start()) min_data = range_qry.output.min.data() max_data = range_qry.output.max.data() min_rand = random.result.min()['_1'] self.assertAlmostEqual(min_data['_1'], min_rand, delta=0.0001) self.assertAlmostEqual(max_data['_1'], 1.0, delta=0.0001) def test_range_query_min_max3(self): "Test min and max on RangeQuery output" s = self.scheduler() with s: random = RandomTable(2, rows=100000, scheduler=s) t_min = PsDict({'_1': 0.3}) t_max = PsDict({'_1': 15000.}) range_qry = self._query_min_max_impl(random, t_min, t_max, s) aio.run(s.start()) min_data = range_qry.output.min.data() max_data = range_qry.output.max.data() max_rand = random.result.max()['_1'] self.assertAlmostEqual(min_data['_1'], 0.3) self.assertAlmostEqual(max_data['_1'], max_rand) if __name__ == '__main__': main()
import fw class Magnifier(fw.Gen): def gen(self, x, y): wid = 2 xx, yy = x // wid, y // wid v = (xx + yy) % 3 # print (xx, yy, v) if v == 0: return 0 elif v == 1: return 128 else: return self.maxval if __name__ == "__main__": w, h = 1024, 1024 fmt = fw.AsciiPixelFmt fw.main(h,w, fmt, Magnifier)
# -*- coding: utf-8 -*- """ /*************************************************************************** GeodesicDensifier A QGIS plugin Adds vertices to geometry along geodesic lines ------------------- begin : 2018-02-21 git sha : $Format:%H$ copyright : (C) 2018 by Jonah Sullivan email : jonah.sullivan@ga.gov.au ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ try: # use system version of geographiclib from geographiclib.geodesic import Geodesic print("import worked") except ImportError: # use version of geographiclib distributed with plugin import site from os.path import abspath, dirname from inspect import getsourcefile # this will get the path for this file and add it to the system PATH # so the geographiclib folder can be found print(dirname((getsourcefile(lambda:0)))) site.addsitedir(dirname(abspath(getsourcefile(lambda: 0)))) from geographiclib.geodesic import Geodesic import math from qgis.core import QgsCoordinateReferenceSystem, QgsCoordinateTransform, QgsWkbTypes, QgsFeature, QgsPointXY, QgsGeometry, QgsField, QgsProject from PyQt5.QtCore import QSettings, QTranslator, qVersion, QCoreApplication, QVariant from PyQt5.QtGui import QIcon from PyQt5.QtWidgets import QAction # Initialize Qt resources from file resources.py from .resources import * # Import the code for the dialog from geodesic_densifier_dialog import GeodesicDensifierDialog import os.path class GeodesicDensifier: """QGIS Plugin Implementation.""" def __init__(self, iface): """Constructor. :param iface: An interface instance that will be passed to this class which provides the hook by which you can manipulate the QGIS application at run time. :type iface: QgsInterface """ # Save reference to the QGIS interface self.iface = iface # initialize plugin directory self.plugin_dir = os.path.dirname(__file__) # Create the dialog (after translation) and keep reference self.dlg = GeodesicDensifierDialog() # Declare instance attributes self.actions = [] self.menu = u'&Geodesic Densifier' self.toolbar = self.iface.addToolBar(u'GeodesicDensifier') self.toolbar.setObjectName(u'GeodesicDensifier') def add_action( self, icon_path, text, callback, enabled_flag=True, add_to_menu=True, add_to_toolbar=True, status_tip=None, whats_this=None, parent=None): """Add a toolbar icon to the toolbar. :param icon_path: Path to the icon for this action. Can be a resource path (e.g. ':/plugins/foo/bar.png') or a normal file system path. :type icon_path: str :param text: Text that should be shown in menu items for this action. :type text: str :param callback: Function to be called when the action is triggered. :type callback: function :param enabled_flag: A flag indicating if the action should be enabled by default. Defaults to True. :type enabled_flag: bool :param add_to_menu: Flag indicating whether the action should also be added to the menu. Defaults to True. :type add_to_menu: bool :param add_to_toolbar: Flag indicating whether the action should also be added to the toolbar. Defaults to True. :type add_to_toolbar: bool :param status_tip: Optional text to show in a popup when mouse pointer hovers over the action. :type status_tip: str :param parent: Parent widget for the new action. Defaults None. :type parent: QWidget :param whats_this: Optional text to show in the status bar when the mouse pointer hovers over the action. :returns: The action that was created. Note that the action is also added to self.actions list. :rtype: QAction """ icon = QIcon(icon_path) action = QAction(icon, text, parent) action.triggered.connect(callback) action.setEnabled(enabled_flag) if status_tip is not None: action.setStatusTip(status_tip) if whats_this is not None: action.setWhatsThis(whats_this) if add_to_toolbar: self.toolbar.addAction(action) if add_to_menu: self.iface.addPluginToMenu( self.menu, action) self.actions.append(action) return action def initGui(self): """Create the menu entries and toolbar icons inside the QGIS GUI.""" icon_path = ':/plugins/GeodesicDensifier3/icon.png' self.add_action( icon_path, text=u'Geodesic Densifier', callback=self.run, parent=self.iface.mainWindow()) def unload(self): """Removes the plugin menu item and icon from QGIS GUI.""" for action in self.actions: self.iface.removePluginMenu(u'&Geodesic Densifier', action) self.iface.removeToolBarIcon(action) # remove the toolbar del self.toolbar def run(self): """Run method that performs all the real work""" # show the dialog self.dlg.show() # set default values self.inLayer = self.dlg.mMapLayerComboBox.currentLayer() def set_in_layer(): self.inLayer = self.dlg.mMapLayerComboBox.currentLayer() if self.inLayer: if self.inLayer.crs(): self.dlg.messageBox.setText("Input Layer Set: " + str(self.inLayer.name())) else: self.dlg.messageBox.setText("Error: Input must have projection defined") # listener to set input layer when combo box changes self.dlg.mMapLayerComboBox.layerChanged.connect(set_in_layer) # clear the ellipsoid combobox self.dlg.EllipsoidcomboBox.clear() ellipsoid_dict = {'WGS84': [6378137, 298.2572236], '165': [6378165.000, 298.3], 'ANS': [6378160, 298.25], 'CLARKE 1858': [6378293.645, 294.26], 'GRS80': [6378137, 298.2572221], 'WGS72': [6378135, 298.26], 'International 1924': [6378388, 297]} # add items to ellipsoid combobox for k in list(ellipsoid_dict.keys()): self.dlg.EllipsoidcomboBox.addItem(str(k)) # default ellipsoid is WGS84 self.ellipsoid_a = 6378137.0 self.ellipsoid_f = 298.2572236 self.ellipsoid_name = 'WGS84' def set_in_ellipsoid(): in_ellipsoid_name = self.dlg.EllipsoidcomboBox.currentText() for k in list(ellipsoid_dict.keys()): if k == in_ellipsoid_name: self.ellipsoid_a = ellipsoid_dict[k][0] self.ellipsoid_f = ellipsoid_dict[k][1] self.ellipsoid_name = k self.dlg.messageBox.setText("Ellipsoid set to " + str(k)) # listener to set input ellipsoid when combo box changes self.dlg.EllipsoidcomboBox.currentIndexChanged.connect(set_in_ellipsoid) # default point spacing is 900 self.spacing = 900 def set_in_spacing(): self.spacing = int(self.dlg.spacingSpinBox.value()) self.dlg.messageBox.setText("Point spacing set to " + str(self.spacing) + "m") # listener to set input point spacing when spin box changes self.dlg.spacingSpinBox.valueChanged.connect(set_in_spacing) # Run the dialog event loop result = self.dlg.exec_() # See if OK was pressed if result: # set the input layer self.inLayer = self.dlg.mMapLayerComboBox.currentLayer() # get the field list fields = self.inLayer.fields() # handle layers that aren't WGS84 (EPSG:4326) wgs84crs = QgsCoordinateReferenceSystem("EPSG:4326") if self.inLayer.crs() != wgs84crs: transtowgs84 = QgsCoordinateTransform(self.inLayer.crs(), wgs84crs, QgsProject.instance()) transfromwgs84 = QgsCoordinateTransform(wgs84crs, self.inLayer.crs(), QgsProject.instance()) # get input geometry type if self.inLayer.geometryType() == QgsWkbTypes.PointGeometry: self.inType = 'Point' # works if self.inLayer.geometryType() == QgsWkbTypes.LineGeometry: self.inType = 'LineString' # works if self.inLayer.geometryType() == QgsWkbTypes.PolygonGeometry: self.inType = 'Polygon' # works # setup output layers if self.inType == 'Point': self.create_point = True # create and add to map canvas a point memory layer layer_name = "Densified Point " + str(self.ellipsoid_name) + " " + str(self.spacing) + "m" out_point_layer = self.iface.addVectorLayer("Point?crs={}".format(self.inLayer.crs().authid()), layer_name, "memory") # set data provider pointPr = out_point_layer.dataProvider() # add attribute fields pointPr.addAttributes(fields) pointTypeField = '' if "pointType" not in [field.name() for field in fields]: pointTypeField = "pointType" elif "pntType" not in [field.name() for field in fields]: pointTypeField = "pntType" elif "pntTyp" not in [field.name() for field in fields]: pointTypeField = "pntTyp" pointPr.addAttributes([QgsField(pointTypeField, QVariant.String)]) out_point_layer.updateFields() else: self.create_point = False if self.inType == 'LineString': self.create_polyline = True # create and add to map canvas a polyline memory layer layer_name = "Densified Line " + str(self.ellipsoid_name) + " " + str(self.spacing) + "m" out_line_layer = self.iface.addVectorLayer("LineString?crs={}".format(self.inLayer.crs().authid()), layer_name, "memory") # set data provider linePr = out_line_layer.dataProvider() # add attribute fields linePr.addAttributes(fields) out_line_layer.updateFields() else: self.create_polyline = False if self.inType == 'Polygon': self.create_polygon = True # create and add to map canvas a polyline memory layer layer_name = "Densified Polygon " + str(self.ellipsoid_name) + " " + str(self.spacing) + "m" out_poly_layer = self.iface.addVectorLayer("Polygon?crs={}".format(self.inLayer.crs().authid()), layer_name, "memory") # set data provider polyPr = out_poly_layer.dataProvider() # add attribute fields polyPr.addAttributes(fields) out_poly_layer.updateFields() else: self.create_polygon = False # Create a geographiclib Geodesic object self.geod = Geodesic(self.ellipsoid_a, 1 / self.ellipsoid_f) def densifyPoint(inLayer, pr): pointTypeFieldIdx = pr.fieldNameIndex(pointTypeField) iterator = inLayer.getFeatures() featureCount = pr.featureCount() counter = 0 currentFeature = QgsFeature() badGeom = 0 for feature in iterator: if feature.geometry().wkbType() == QgsWkbTypes.Point: try: if counter == 0: pointxy = feature.geometry().asPoint() currentFeature.setGeometry(QgsGeometry.fromPointXY(pointxy)) attr = feature.attributes() attr.append("Original") currentFeature.setAttributes(attr) pr.addFeatures([currentFeature]) else: startPt = currentFeature.geometry().asPoint() endPt = feature.geometry().asPoint() if self.inLayer.crs() != wgs84crs: startPt = transtowgs84.transform(startPt) endPt = transtowgs84.transform(endPt) # create a geographiclib line object lineObject = self.geod.InverseLine(startPt.y(), startPt.x(), endPt.y(), endPt.x()) # determine how many densified segments there will be n = int(math.ceil(lineObject.s13 / self.spacing)) # adjust the spacing distance seglen = lineObject.s13 / n for i in range(1, n): if i > 0: s = seglen * i g = lineObject.Position(s, Geodesic.LATITUDE | Geodesic.LONGITUDE | Geodesic.LONG_UNROLL) geom = QgsPointXY(g['lon2'], g['lat2']) attr = feature.attributes() attr.append("Densified") currentFeature.setAttributes(attr) if self.inLayer.crs() != wgs84crs: # Convert each point back to the output CRS geom = transfromwgs84.transform(geom) currentFeature.setGeometry(QgsGeometry.fromPointXY(geom)) pr.addFeatures([currentFeature]) geom = feature.geometry().asPoint() currentFeature.setGeometry(QgsGeometry.fromPointXY(geom)) attr = feature.attributes() attr.append("Original") currentFeature.setAttributes(attr) pr.addFeatures([currentFeature]) counter += 1 except: badGeom += 1 counter += 1 else: badGeom += 1 self.iface.messageBar().pushWarning("multipoint geometries will not be densified") if badGeom > 0: self.iface.messageBar().pushWarning("", "{} features failed".format(badGeom)) def densifyLine(inLayer, pr): badGeom = 0 iterator = inLayer.getFeatures() # create empty feature to write to newLine = QgsFeature() segments = [] for feature in iterator: try: if feature.geometry().wkbType() == QgsWkbTypes.LineString: segments = [feature.geometry().asPolyline()] elif feature.geometry().wkbType() == QgsWkbTypes.MultiLineString: segments = feature.geometry().asMultiPolyline() else: badGeom += 1 segmentCount = len(segments) except: badGeom += 1 if feature.geometry().wkbType() == QgsWkbTypes.LineString: line = segments[0] pointCount = len(line) startPt = QgsPointXY(line[0][0], line[0][1]) if self.inLayer.crs() != wgs84crs: startPt = transtowgs84.transform(startPt) pointList = [startPt] for i in range(1,pointCount): endPt = QgsPointXY(line[i][0], line[i][1]) if self.inLayer.crs() != wgs84crs: endPt = transtowgs84.transform(endPt) # create a geographiclib line object lineObject = self.geod.InverseLine(startPt.y(), startPt.x(), endPt.y(), endPt.x()) # determine how many densified segments there will be n = int(math.ceil(lineObject.s13 / self.spacing)) if lineObject.s13 > self.spacing: seglen = lineObject.s13 / n for i in range(1, n): s = seglen * i g = lineObject.Position(s, Geodesic.LATITUDE | Geodesic.LONGITUDE | Geodesic.LONG_UNROLL) pointList.append(QgsPointXY(g['lon2'], g['lat2'])) pointList.append(endPt) startPt = endPt if self.inLayer.crs() != wgs84crs: # Convert each point back to the output CRS for x, pt in enumerate(pointList): pointList[x] = transfromwgs84.transform(pt) newLine.setGeometry(QgsGeometry.fromPolylineXY(pointList)) elif feature.geometry().wkbType() == QgsWkbTypes.MultiLineString: outsegment = [] for line in segments: pointCount = len(line) startPt = QgsPointXY(line[0][0], line[0][1]) if self.inLayer.crs() != wgs84crs: # Convert to 4326 startPt = transtowgs84.transform(startPt) pts = [startPt] for x in range(1, pointCount): endPt = QgsPointXY(line[x][0], line[x][1]) if self.inLayer.crs() != wgs84crs: # Convert to 4326 endPt = transtowgs84.transform(endPt) lineObject = self.geod.InverseLine(startPt.y(), startPt.x(), endPt.y(), endPt.x()) n = int(math.ceil(lineObject.s13 / self.spacing)) if lineObject.s13 > self.spacing: seglen = lineObject.s13 / n for i in range(1, n): s = seglen * i g = lineObject.Position(s, Geodesic.LATITUDE | Geodesic.LONGITUDE | Geodesic.LONG_UNROLL) pts.append(QgsPointXY(g['lon2'], g['lat2'])) pts.append(endPt) startPt = endPt if self.inLayer.crs() != wgs84crs: # Convert each point back to the output CRS for x, pt in enumerate(pts): pts[x] = transfromwgs84.transform(pt) outsegment.append(pts) newLine.setGeometry(QgsGeometry.fromMultiPolylineXY(outsegment)) else: badGeom += 1 newLine.setAttributes(feature.attributes()) pr.addFeatures([newLine]) if badGeom > 0: self.iface.messageBar().pushWarning("", "{} features failed".format(badGeom)) def densifyPolygon(inLayer, pr): badGeom = 0 iterator = inLayer.getFeatures() # create empty feature to write to newPoly = QgsFeature() for feature in iterator: try: if feature.geometry().wkbType() == QgsWkbTypes.Polygon: polygon = feature.geometry().asPolygon() polyCount = len(polygon) pointList = [] for points in polygon: pointCount = len(points) startPt = QgsPointXY(points[0][0], points[0][1]) if self.inLayer.crs() != wgs84crs: startPt = transtowgs84.transform(startPt) polyPointList = [startPt] for i in range(1, pointCount): endPt = QgsPointXY(points[i][0], points[i][1]) if self.inLayer.crs() != wgs84crs: # Convert to 4326 endPt = transtowgs84.transform(endPt) lineObject = self.geod.InverseLine(startPt.y(), startPt.x(), endPt.y(), endPt.x()) n = int(math.ceil(lineObject.s13 / self.spacing)) seglen = lineObject.s13 / n for i in range(1, n): s = seglen * i g = lineObject.Position(s, Geodesic.LATITUDE | Geodesic.LONGITUDE | Geodesic.LONG_UNROLL) polyPointList.append(QgsPointXY(g['lon2'], g['lat2'])) polyPointList.append(endPt) startPt = endPt if self.inLayer.crs() != wgs84crs: for x, pt in enumerate(polyPointList): polyPointList[x] = transfromwgs84.transform(pt) outPolygon = QgsFeature() outPolygon.setGeometry(QgsGeometry.fromPolygonXY([polyPointList])) outPolygon.setAttributes(feature.attributes()) pr.addFeatures([outPolygon]) elif feature.geometry().wkbType() == QgsWkbTypes.MultiPolygon: print("multipoly") multipolygon = feature.geometry().asMultiPolygon() multiPointList = [] for polygon in multipolygon: polyPointList = [] for points in polygon: print('points:', points) pointCount = len(points) startPt = QgsPointXY(points[0][0], points[0][1]) print('startPt:', startPt) if self.inLayer.crs() != wgs84crs: startPt = transtowgs84.transform(startPt) polyPointList = [startPt] for i in range(1, pointCount): endPt = QgsPointXY(points[i][0], points[i][1]) print('endPt:', endPt) if self.inLayer.crs() != wgs84crs: # Convert to 4326 endPt = transtowgs84.transform(endPt) lineObject = self.geod.InverseLine(startPt.y(), startPt.x(), endPt.y(), endPt.x()) n = int(math.ceil(lineObject.s13 / self.spacing)) seglen = lineObject.s13 / n for i in range(1, n): s = seglen * i g = lineObject.Position(s, Geodesic.LATITUDE | Geodesic.LONGITUDE | Geodesic.LONG_UNROLL) polyPointList.append(QgsPointXY(g['lon2'], g['lat2'])) polyPointList.append(endPt) startPt = endPt if self.inLayer.crs() != wgs84crs: for x, pt in enumerate(polyPointList): polyPointList[x] = transfromwgs84.transform(pt) multiPointList.append(polyPointList) print('multiPointList:', multiPointList) outMultiPolygon = QgsFeature() print('setGeometry') outMultiPolygon.setGeometry(QgsGeometry.fromMultiPolygonXY([multiPointList])) print('setAttributes') outMultiPolygon.setAttributes(feature.attributes()) print('addFeatures') pr.addFeatures([outMultiPolygon]) print('finished') else: badGeom += 1 except: badGeom += 1 if badGeom > 0: self.iface.messageBar().pushWarning("", "{} features failed".format(badGeom)) if self.create_point: densifyPoint(self.inLayer, pointPr) out_point_layer.reload() if self.create_polyline: densifyLine(self.inLayer, linePr) out_line_layer.reload() if self.create_polygon: densifyPolygon(self.inLayer, polyPr) out_poly_layer.reload()
# Please note: While I was able to find these constants within the source code, on my system (using LibreOffice,) I was only presented with a solid line, varying from thin to thick; no dotted or dashed lines. import xlwt '''workbook = xlwt.Workbook() worksheet = workbook.add_sheet('My Sheet') borders = xlwt.Borders() # Create Borders borders.left = xlwt.Borders.THIN # DASHED虚线 # NO_LINE没有 # THIN实线 # May be: NO_LINE, THIN, MEDIUM, DASHED, DOTTED, THICK, DOUBLE, HAIR, MEDIUM_DASHED, THIN_DASH_DOTTED, MEDIUM_DASH_DOTTED, THIN_DASH_DOT_DOTTED, MEDIUM_DASH_DOT_DOTTED, SLANTED_MEDIUM_DASH_DOTTED, or 0x00 through 0x0D. borders.right = xlwt.Borders.THIN borders.top = xlwt.Borders.THIN borders.bottom = xlwt.Borders.THIN borders.left_colour = 0x40 borders.right_colour = 0x40 borders.top_colour = 0x40 borders.bottom_colour = 0x40 style = xlwt.XFStyle() # Create Style style.borders = borders # Add Borders to Style worksheet.write(0, 0, 'Cell Contents', style) workbook.save('Excel_Workbook.xls')''' def site_write_line_style(): borders = xlwt.Borders() # Create Borders borders.left = xlwt.Borders.NO_LINE borders.right = xlwt.Borders.NO_LINE borders.top = xlwt.Borders.NO_LINE borders.bottom = xlwt.Borders.THIN borders.left_colour = 0x40 borders.right_colour = 0x40 borders.top_colour = 0x40 borders.bottom_colour = 0x40 style = xlwt.XFStyle() # Create Style style.borders = borders # Add Borders to Style return style
# 학습 데이터 불러오고 전처리하기 import pandas as pd import itertools # 1. 1차연도 어노테이터들이 적은 문장 music_by_numbers = pd.read_excel('./music_by_numbers.xlsx', engine='openpyxl') dance_by_numbers = pd.read_excel('./dance_by_numbers.xlsx', engine='openpyxl') visual_by_numbers = pd.read_excel('./visual_by_numbers.xlsx', engine='openpyxl')\ # 2. 대화 음성 오픈 데이터셋 # talking_data_1 = pd.read_excel('/Users/lifeofpy/Desktop/dataset_청각2/감정 분류를 위한 대화 음성 데이터셋_4차년도.xlsx', engine='openpyxl') # talking_data_2 = pd.read_excel('/Users/lifeofpy/Desktop/dataset_청각2/감정 분류를 위한 대화 음성 데이터셋_5차년도_1차.xlsx', engine='openpyxl') # talking_data_3 = pd.read_excel('/Users/lifeofpy/Desktop/dataset_청각2/감정 분류를 위한 대화 음성 데이터셋_5차년도_2차.xlsx', engine='openpyxl') # 3. 한국어 발라드 가사 데이터셋 lyrics_ballad = open('./lyrics_ballad.txt', 'r').read().split('\n') lyrics_ballad = [[x] for x in lyrics_ballad if x != ''] # 결측치 제거 # 데이터 전처리하기 music_by_numbers = music_by_numbers.drop(['Unnamed: 0'], axis=1) dance_by_numbers = dance_by_numbers.drop(['Unnamed: 0'], axis=1) visual_by_numbers = visual_by_numbers.drop(['Unnamed: 0'], axis=1) # 데이터프레임 리스트로 바꾸기 def change_df_tolst(df): word_list = df.values.tolist() for i in range(len(word_list)): for j in range(len(word_list[i])): word_list[i][j] = word_list[i][j].split(", '") word_list = list(itertools.chain.from_iterable(word_list)) return word_list music_list = change_df_tolst(music_by_numbers) dance_list = change_df_tolst(dance_by_numbers) visual_list = change_df_tolst(visual_by_numbers) # talking_data_1_list = talking_data_1[['발화문']].values.tolist() # talking_data_2_list = talking_data_2[['발화문']].values.tolist() # talking_data_3_list = talking_data_3[['발화문']].values.tolist() # 데이터를 하나의 리스트로 합쳐줌(2차원 리스트 >> 1차원 리스트) # Word2Vec 모델 학습을 위해 댓글 문장 nltk 를 사용해서 토크나이징 # tokens 파일로 저장하기 tokens = music_list + dance_list + visual_list + lyrics_ballad # 문장 데이터의 총 개수 print(len(tokens))
from .models import Question, Option from .serializers import QuestionSerializer, OptionSerializer, UserSerializer from django.http import Http404 from django.contrib.auth.models import User from rest_framework.views import APIView from rest_framework import generics from rest_framework.response import Response from rest_framework import status from rest_framework import permissions from .permissions import IsAuthorOrReadOnly, IsOwnerParent from drf_yasg.utils import swagger_auto_schema from drf_yasg import openapi from .tasks import sent_email_to_admin properties = { "text": openapi.Schema( type=openapi.TYPE_STRING, description="Text of the question", default="question[num]", ), "description": openapi.Schema( type=openapi.TYPE_STRING, description="some additional description", default="description", ), } class QuestionsList(APIView): """ List all Questions, or create a new Questions. """ permission_classes = [permissions.IsAuthenticatedOrReadOnly] def get(self, request): questions = Question.objects.all() serializer = QuestionSerializer(questions, many=True) return Response(serializer.data) @swagger_auto_schema( request_body=openapi.Schema(type=openapi.TYPE_OBJECT, properties=properties) ) def post(self, request): request.data["author"] = request.user.id serializer = QuestionSerializer(data=request.data) if serializer.is_valid(): serializer.save() # send email to admin (admarin) when creating a new question sent_email_to_admin.delay( "INFO", f"New Question: \"{request.data.get('text')}\" is created by {request.user} user", "server@example.com", ["admarin@example.com"], ) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class QuestionDetail(APIView): """ Retrieve, update or delete a Questions instance. """ permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsAuthorOrReadOnly] def get_object(self, pk): try: return Question.objects.get(pk=pk) except Question.DoesNotExist: raise Http404 def get(self, request, pk): question = self.get_object(pk) serializer = QuestionSerializer(question) return Response(serializer.data) @swagger_auto_schema( request_body=openapi.Schema(type=openapi.TYPE_OBJECT, properties=properties) ) def put(self, request, pk): question = self.get_object(pk) request.data["author"] = request.user.id serializer = QuestionSerializer(question, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, pk): question = self.get_object(pk) question.delete() return Response(status=status.HTTP_204_NO_CONTENT) option_properties = { "text": openapi.Schema( type=openapi.TYPE_STRING, description="Text of the question", default="question[num]", ) } class OptionsList(APIView): """ List all Options, or create a new Options. """ permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsOwnerParent] def get(self, request, pk): options = Option.objects.filter(question_id=pk).all() serializer = OptionSerializer(options, many=True) return Response(serializer.data) @swagger_auto_schema( request_body=openapi.Schema( type=openapi.TYPE_OBJECT, properties=option_properties ) ) def post(self, request, pk): request.data["author"] = request.user.id question = Question.objects.get(pk=pk) # use entered option id when create option or current question id of none request.data["question"] = request.data.get("question", question.id) serializer = OptionSerializer(data=request.data) if serializer.is_valid(): serializer.save() sent_email_to_admin.delay( "INFO", f"New Option: \"{request.data.get('text')}\" is created by {request.user} user", "server@example.com", ["admarin@example.com"], ) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class OptionDetail(APIView): """ Retrieve, update or delete a Options instance. """ permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsAuthorOrReadOnly] def get_object(self, question_pk, option_pk): try: return Option.objects.filter(question_id=question_pk).get(pk=option_pk) except Option.DoesNotExist: raise Http404 def get(self, request, question_pk, option_pk): option = self.get_object(question_pk, option_pk) serializer = OptionSerializer(option) return Response(serializer.data) @swagger_auto_schema( request_body=openapi.Schema( type=openapi.TYPE_OBJECT, properties=option_properties ) ) def put(self, request, question_pk, option_pk): question = Question.objects.get(pk=question_pk) # use entered option id when create option or current question id of none request.data["question"] = request.data.get("question", question.id) request.data["author"] = request.user.id option = self.get_object(question_pk, option_pk) serializer = OptionSerializer(option, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, question_pk, option_pk): option = self.get_object(question_pk, option_pk) option.delete() return Response(status=status.HTTP_204_NO_CONTENT) class UserList(generics.ListAPIView): queryset = User.objects.all() serializer_class = UserSerializer class UserDetail(generics.RetrieveAPIView): queryset = User.objects.all() serializer_class = UserSerializer
from __future__ import annotations from collections import OrderedDict import torch from torch.utils.data import Dataset, DataLoader from torch import Tensor from functools import partial from typing import Sequence, Union, Any, List, Iterable, Optional, TypeVar, Dict from imagenet.definitions_and_structures import DatasetThatSupportsTargets, INCProtocolIterator, INCProtocol, DatasetPart T_idx = TypeVar('T_idx') def tensor_as_list(sequence): if isinstance(sequence, Tensor): return sequence.tolist() # Numpy already returns the correct format # Example list(np.array([1, 2, 3])) returns [1, 2, 3] # whereas list(torch.tensor([1, 2, 3])) returns [tensor(1), tensor(2), tensor(3)], which is "bad" return list(sequence) def tensor_as_set(sequence): if isinstance(sequence, Tensor): return set(sequence.tolist()) # Numpy already returns the correct format # Example list(np.array([1, 2, 3])) returns [1, 2, 3] # whereas list(torch.tensor([1, 2, 3])) returns [tensor(1), tensor(2), tensor(3)], which is "bad" return set(sequence) def __get_indexes_with_patterns_ordered_by_classes(sequence: Sequence[T_idx], search_elements: Sequence[T_idx], sort_indexes: bool = True, sort_classes: bool = True, class_mapping: Optional[Tensor] = None) -> Tensor: # list() handles the situation in which search_elements is a torch.Tensor # without it: result_per_class[element].append(idx) -> error # as result_per_class[0] won't exist while result_per_class[tensor(0)] will result_per_class: Dict[T_idx, List[int]] = OrderedDict() result: List[int] = [] search_elements = tensor_as_list(search_elements) sequence = tensor_as_list(sequence) if class_mapping is not None: class_mapping = tensor_as_list(class_mapping) else: class_mapping = list(range(max(search_elements) + 1)) if sort_classes: search_elements = sorted(search_elements) for search_element in search_elements: result_per_class[search_element] = [] set_search_elements = set(search_elements) for idx, element in enumerate(sequence): if class_mapping[element] in set_search_elements: result_per_class[class_mapping[element]].append(idx) for search_element in search_elements: if sort_indexes: result_per_class[search_element].sort() result.extend(result_per_class[search_element]) return torch.tensor(result, dtype=torch.int) def __get_indexes_without_class_bucketing(sequence: Sequence[T_idx], search_elements: Sequence[T_idx], sort_indexes: bool = False, class_mapping: Optional[Tensor] = None) -> Tensor: sequence = tensor_as_list(sequence) result: List[T_idx] = [] if class_mapping is not None: class_mapping = tensor_as_list(class_mapping) else: class_mapping = list(range(max(search_elements) + 1)) search_elements = tensor_as_set(search_elements) for idx, element in enumerate(sequence): if class_mapping[element] in search_elements: result.append(idx) if sort_indexes: result.sort() return torch.tensor(result, dtype=torch.int) def get_indexes_from_set(sequence: Sequence[T_idx], search_elements: Sequence[T_idx], bucket_classes: bool = True, sort_classes: bool = False, sort_indexes: bool = False, class_mapping: Optional[Tensor] = None) -> Tensor: if bucket_classes: return __get_indexes_with_patterns_ordered_by_classes(sequence, search_elements, sort_indexes=sort_indexes, sort_classes=sort_classes, class_mapping=class_mapping) else: return __get_indexes_without_class_bucketing(sequence, search_elements, sort_indexes=sort_indexes, class_mapping=class_mapping) class ListsDataset(Dataset): """ A Dataset that applies transformations before returning patterns/targets Also, this Dataset supports slicing """ def __init__(self, patterns, targets, transform=None, target_transform=None): super().__init__() self.transform = transform self.target_transform = target_transform self.patterns = patterns self.targets = targets def __getitem__(self, idx): patterns: List[Any] = [] labels: List[Tensor] = [] indexes_iterator: Iterable[int] treat_as_tensors: bool = True # Makes dataset sliceable if isinstance(idx, slice): indexes_iterator = range(*idx.indices(len(self.patterns))) elif isinstance(idx, int): indexes_iterator = [idx] else: # Should handle other types (ndarray, Tensor, Sequence, ...) if hasattr(idx, 'shape') and len(getattr(idx, 'shape')) == 0: # Manages 0-d ndarray / Tensor indexes_iterator = [int(idx)] else: indexes_iterator = idx for single_idx in indexes_iterator: pattern, label = self.__get_single_item(single_idx) if not isinstance(pattern, Tensor): treat_as_tensors = False #pattern = pattern.unsqueeze(0) label = torch.as_tensor(label) #label = label.unsqueeze(0) patterns.append(pattern) labels.append(label) if len(patterns) == 1: if treat_as_tensors: patterns[0] = patterns[0].squeeze(0) labels[0] = labels[0].squeeze(0) return patterns[0], labels[0] else: labels_cat = torch.cat([single_label.unsqueeze(0) for single_label in labels]) if treat_as_tensors: patterns_cat = torch.cat([single_pattern.unsqueeze(0) for single_pattern in patterns]) return patterns_cat, labels_cat else: return patterns, labels_cat def __len__(self): return len(self.patterns) def __get_single_item(self, idx: int): pattern, label = self.patterns[idx], self.targets[idx] if self.transform is not None: pattern = self.transform(pattern) if self.target_transform is not None: label = self.target_transform(label) return pattern, label class TransformationDataset(Dataset, DatasetThatSupportsTargets): """ A Dataset that applies transformations before returning patterns/targets Also, this Dataset supports slicing """ def __init__(self, dataset: DatasetThatSupportsTargets, transform=None, target_transform=None): super().__init__() self.transform = transform self.target_transform = target_transform self.dataset = dataset self.preloaded_data = None self.targets = dataset.targets def __getitem__(self, idx): patterns: List[Any] = [] labels: List[Tensor] = [] indexes_iterator: Iterable[int] treat_as_tensors: bool = True # Makes dataset sliceable if isinstance(idx, slice): indexes_iterator = range(*idx.indices(len(self.dataset))) elif isinstance(idx, int): indexes_iterator = [idx] else: # Should handle other types (ndarray, Tensor, Sequence, ...) if hasattr(idx, 'shape') and len(getattr(idx, 'shape')) == 0: # Manages 0-d ndarray / Tensor indexes_iterator = [int(idx)] else: indexes_iterator = idx for single_idx in indexes_iterator: pattern, label = self.__get_single_item(single_idx) if not isinstance(pattern, Tensor): treat_as_tensors = False #pattern = pattern.unsqueeze(0) label = torch.as_tensor(label) #label = label.unsqueeze(0) patterns.append(pattern) labels.append(label) if len(patterns) == 1: if treat_as_tensors: patterns[0] = patterns[0].squeeze(0) labels[0] = labels[0].squeeze(0) return patterns[0], labels[0] else: labels_cat = torch.cat([single_label.unsqueeze(0) for single_label in labels]) if treat_as_tensors: patterns_cat = torch.cat([single_pattern.unsqueeze(0) for single_pattern in patterns]) return patterns_cat, labels_cat else: return patterns, labels_cat def __len__(self): return len(self.dataset) def preload_data(self, num_workers=4, batch_size=50): if self.preloaded_data is not None: return self self.preloaded_data = [] patterns_loader = DataLoader(self.dataset, num_workers=num_workers, shuffle=False, drop_last=False, batch_size=batch_size) for patterns in patterns_loader: # patterns is a tuple patterns_x, patterns_y, ... = patterns for pattern_idx in range(len(patterns[0])): # patterns[0] is patterns_x, this means that len(patterns[0]) == patterns_x.shape[0] pattern_data = tuple() for pattern_element_idx in range(len(patterns)): pattern_data += (patterns[pattern_element_idx][pattern_idx],) self.preloaded_data.append(pattern_data) return self def __get_single_item(self, idx: int): if self.preloaded_data is not None: return self.preloaded_data[idx] # print(type(self.dataset)) pattern, label = self.dataset[idx] # print(type(pattern)) # print(self.transform) if self.transform is not None: # print("asddddd") # print(self.transform) # print(pattern) pattern = self.transform(pattern) if self.target_transform is not None: label = self.target_transform(label) return pattern, label class LazyClassMapping(Sequence[int]): """ Defines a lazy targets class_list_per_batch. This class is used when in need of lazy populating a targets field whose elements need to be filtered out (when subsetting, see :class:`torch.utils.data.Subset`) and/or transformed (based on some class_list_per_batch). This will allow for a more efficient memory usage as the class_list_per_batch is done on the fly instead of actually allocating a new list. """ def __init__(self, targets: Sequence[int], indices: Union[Sequence[int], None], mapping: Optional[Sequence[int]] = None): self._targets = targets self._mapping = mapping self._indices = indices def __len__(self): if self._indices is None: return len(self._targets) return len(self._indices) def __getitem__(self, item_idx) -> int: if self._indices is not None: subset_idx = self._indices[item_idx] else: subset_idx = item_idx if self._mapping is not None: return self._mapping[self._targets[subset_idx]] return self._targets[subset_idx] def __str__(self): return '[' + \ ', '.join([str(self[idx]) for idx in range(len(self))]) + \ ']' class TransformationSubset(Dataset): def __init__(self, dataset: DatasetThatSupportsTargets, indices: Sequence[int], transform=None, target_transform=None, class_mapping: Optional[Tensor] = None): super().__init__() self.dataset = TransformationDataset(dataset, transform=transform, target_transform=target_transform) self.indices = indices self.class_mapping = class_mapping self.targets = LazyClassMapping(dataset.targets, indices, mapping=class_mapping) def __getitem__(self, idx) -> (Tensor, Tensor): result = self.dataset[self.indices[idx]] if self.class_mapping is not None: return result[0], self.class_mapping[result[1]] return result def __len__(self) -> int: return len(self.indices) def make_transformation_subset(dataset: DatasetThatSupportsTargets, transform: Any, target_transform: Any, class_mapping: Tensor, classes: Sequence[int], bucket_classes=False, sort_classes=False, sort_indexes=False): return TransformationSubset(dataset, get_indexes_from_set(dataset.targets, classes, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes, class_mapping=class_mapping), transform=transform, target_transform=target_transform, class_mapping=class_mapping) class NCProtocol: def __init__(self, train_dataset: DatasetThatSupportsTargets, test_dataset: DatasetThatSupportsTargets, n_tasks: int, shuffle: bool = True, seed: Optional[int] = None, train_transform=None, train_target_transform=None, test_transform=None, test_target_transform=None, steal_transforms_from_datasets: bool = True, fixed_class_order: Optional[Sequence[int]] = None, per_task_classes: Optional[Dict[int, int]] = None, remap_class_indexes_in_ascending_order: bool = False): self.train_dataset: DatasetThatSupportsTargets = train_dataset self.test_dataset: DatasetThatSupportsTargets = test_dataset self.validation_dataset: DatasetThatSupportsTargets = train_dataset self.n_tasks: int = n_tasks self.classes_order: Tensor = torch.unique(torch.tensor(train_dataset.targets)) self.train_transform = train_transform self.train_target_transform = train_target_transform self.test_transform = test_transform self.test_target_transform = test_target_transform self.remap_class_indexes_in_ascending_order = remap_class_indexes_in_ascending_order self.n_classes = len(self.classes_order) if n_tasks < 1: raise ValueError('Invalid task number (n_tasks parameter): must be greater than 0') if per_task_classes is not None: if max(per_task_classes.keys()) >= n_tasks: raise ValueError('Invalid task id in per_task_classes parameter: ' + str(max(per_task_classes.keys())) + ': task ids must be in range [0, n_tasks)') if sum(per_task_classes.values()) > self.n_classes: raise ValueError('Insufficient number of classes: classes mapping defined in ' 'per_task_classes parameter can\'t be satisfied') if (self.n_classes - sum(per_task_classes.values())) % (n_tasks - len(per_task_classes)) > 0: raise ValueError('Invalid number of tasks: classes contained in dataset cannot be divided by n_tasks') default_per_task_classes = (self.n_classes - sum(per_task_classes.values())) // \ (n_tasks - len(per_task_classes)) self.classes_per_task: List[int] = [default_per_task_classes] * n_tasks for task_id in per_task_classes: self.classes_per_task[task_id] = per_task_classes[task_id] else: if self.n_classes % n_tasks > 0: raise ValueError('Invalid number of tasks: classes contained in dataset cannot be divided by n_tasks') self.classes_per_task: List[int] = [self.n_classes // n_tasks] * n_tasks if fixed_class_order is not None: self.classes_order = torch.tensor(fixed_class_order) elif shuffle: if seed is not None: torch.random.manual_seed(seed) self.classes_order = self.classes_order[torch.randperm(len(self.classes_order))] if steal_transforms_from_datasets: if hasattr(train_dataset, 'transform'): self.train_transform = train_dataset.transform train_dataset.transform = None if hasattr(train_dataset, 'target_transform'): self.train_target_transform = train_dataset.target_transform train_dataset.target_transform = None if hasattr(test_dataset, 'transform'): self.test_transform = test_dataset.transform test_dataset.transform = None if hasattr(test_dataset, 'target_transform'): self.test_target_transform = test_dataset.target_transform test_dataset.target_transform = None def __iter__(self) -> INCProtocolIterator: return NCProtocolIterator(self) def get_task_classes(self, task_id: int) -> Tensor: classes_start_idx = sum(self.classes_per_task[:task_id]) classes_end_idx = classes_start_idx + self.classes_per_task[task_id] if not self.remap_class_indexes_in_ascending_order: return self.classes_order[classes_start_idx:classes_end_idx] else: return torch.arange(classes_start_idx, classes_end_idx, dtype=torch.long) def get_task_classes_mapping(self) -> Tensor: if not self.remap_class_indexes_in_ascending_order: return torch.tensor(list(range(self.n_classes))) classes_order_as_list = self.classes_order.tolist() # no index() method in Tensor :'( return torch.tensor([classes_order_as_list.index(class_idx) for class_idx in range(self.n_classes)]) class NCProtocolIterator: def __init__(self, protocol: INCProtocol, swap_train_test_transformations: bool = False, are_transformations_disabled: bool = False, initial_current_task: int = -1): self.current_task: int = -1 self.protocol: INCProtocol = protocol self.are_train_test_transformations_swapped = swap_train_test_transformations self.are_transformations_disabled = are_transformations_disabled self.classes_seen_so_far: Tensor = torch.empty(0, dtype=torch.long) self.classes_in_this_task: Tensor = torch.empty(0, dtype=torch.long) self.prev_classes: Tensor = torch.empty(0, dtype=torch.long) self.future_classes: Tensor = torch.empty(0, dtype=torch.long) classes_mapping = self.protocol.get_task_classes_mapping() if self.are_transformations_disabled: self.train_subset_factory = partial(make_transformation_subset, self.protocol.train_dataset, None, None, classes_mapping) self.test_subset_factory = partial(make_transformation_subset, self.protocol.test_dataset, None, None, classes_mapping) else: if self.are_train_test_transformations_swapped: self.train_subset_factory = partial(make_transformation_subset, self.protocol.train_dataset, self.protocol.test_transform, self.protocol.test_target_transform, classes_mapping) self.test_subset_factory = partial(make_transformation_subset, self.protocol.test_dataset, self.protocol.train_transform, self.protocol.train_target_transform, classes_mapping) else: self.train_subset_factory = partial(make_transformation_subset, self.protocol.train_dataset, self.protocol.train_transform, self.protocol.train_target_transform, classes_mapping) self.test_subset_factory = partial(make_transformation_subset, self.protocol.test_dataset, self.protocol.test_transform, self.protocol.test_target_transform, classes_mapping) for _ in range(initial_current_task+1): self.__go_to_next_task() def __next__(self) -> (DatasetThatSupportsTargets, INCProtocolIterator): self.__go_to_next_task() return self.get_current_training_set(), self # Training set utils def get_current_training_set(self, bucket_classes=False, sort_classes=False, sort_indexes=False) \ -> DatasetThatSupportsTargets: return self.train_subset_factory(self.classes_in_this_task, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_task_training_set(self, task_id: int, bucket_classes=False, sort_classes=False, sort_indexes=False) -> DatasetThatSupportsTargets: classes_in_required_task = self.protocol.get_task_classes(task_id) return self.train_subset_factory(classes_in_required_task, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_cumulative_training_set(self, include_current_task: bool = True, bucket_classes=False, sort_classes=False, sort_indexes=False) -> DatasetThatSupportsTargets: if include_current_task: return self.train_subset_factory(self.classes_seen_so_far, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) else: return self.train_subset_factory(self.prev_classes, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_complete_training_set(self, bucket_classes=False, sort_classes=False, sort_indexes=False) \ -> DatasetThatSupportsTargets: return self.train_subset_factory(self.protocol.classes_order, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_future_training_set(self, bucket_classes=False, sort_classes=False, sort_indexes=False) \ -> DatasetThatSupportsTargets: return self.train_subset_factory(self.future_classes, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_training_set_part(self, dataset_part: DatasetPart, bucket_classes=False, sort_classes=False, sort_indexes=False) -> DatasetThatSupportsTargets: if dataset_part == DatasetPart.CURRENT_TASK: return self.get_current_training_set(bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) elif dataset_part == DatasetPart.CUMULATIVE: return self.get_cumulative_training_set(include_current_task=True, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) elif dataset_part == DatasetPart.OLD: return self.get_cumulative_training_set(include_current_task=False, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) elif dataset_part == DatasetPart.FUTURE: return self.get_future_training_set(bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) elif dataset_part == DatasetPart.COMPLETE_SET: return self.get_complete_training_set(bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) else: raise ValueError('Unsupported dataset part') # Test set utils def get_current_test_set(self, bucket_classes=False, sort_classes=False, sort_indexes=False) \ -> DatasetThatSupportsTargets: return self.test_subset_factory(self.classes_in_this_task, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_cumulative_test_set(self, include_current_task: bool = True, bucket_classes=False, sort_classes=False, sort_indexes=False) -> DatasetThatSupportsTargets: if include_current_task: return self.test_subset_factory(self.classes_seen_so_far, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) else: return self.test_subset_factory(self.prev_classes, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_task_test_set(self, task_id: int, bucket_classes=False, sort_classes=False, sort_indexes=False) \ -> DatasetThatSupportsTargets: classes_in_required_task = self.protocol.get_task_classes(task_id) return self.test_subset_factory(classes_in_required_task, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_complete_test_set(self, bucket_classes=False, sort_classes=False, sort_indexes=False) \ -> DatasetThatSupportsTargets: return self.test_subset_factory(self.protocol.classes_order, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_future_test_set(self, bucket_classes=False, sort_classes=False, sort_indexes=False) \ -> DatasetThatSupportsTargets: return self.test_subset_factory(self.future_classes, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) def get_test_set_part(self, dataset_part: DatasetPart, bucket_classes=False, sort_classes=False, sort_indexes=False) \ -> DatasetThatSupportsTargets: if dataset_part == DatasetPart.CURRENT_TASK: return self.get_current_test_set(bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) elif dataset_part == DatasetPart.CUMULATIVE: return self.get_cumulative_test_set(include_current_task=True, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) elif dataset_part == DatasetPart.OLD: return self.get_cumulative_test_set(include_current_task=False, bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) elif dataset_part == DatasetPart.FUTURE: return self.get_future_test_set(bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) elif dataset_part == DatasetPart.COMPLETE_SET: return self.get_complete_test_set(bucket_classes=bucket_classes, sort_classes=sort_classes, sort_indexes=sort_indexes) else: raise ValueError('Unsupported dataset part') # Transformation utility function. Useful if you want to test on the training set (using test transformations) def swap_transformations(self) -> INCProtocolIterator: return NCProtocolIterator(self.protocol, swap_train_test_transformations=not self.are_train_test_transformations_swapped, are_transformations_disabled=self.are_transformations_disabled, initial_current_task=self.current_task) def disable_transformations(self) -> INCProtocolIterator: return NCProtocolIterator(self.protocol, swap_train_test_transformations=self.are_train_test_transformations_swapped, are_transformations_disabled=True, initial_current_task=self.current_task) def enable_transformations(self) -> INCProtocolIterator: return NCProtocolIterator(self.protocol, swap_train_test_transformations=self.are_train_test_transformations_swapped, are_transformations_disabled=False, initial_current_task=self.current_task) def __get_tasks_classes(self, task_start: int, task_end: int = -1): if task_end < 0: task_end = self.protocol.n_tasks all_classes = [] for task_idx in range(task_start, task_end): all_classes.append(self.protocol.get_task_classes(task_idx)) if len(all_classes) == 0: return torch.tensor([], dtype=torch.long) return torch.cat(all_classes) def __go_to_next_task(self): if self.current_task == (self.protocol.n_tasks - 1): raise StopIteration() self.current_task += 1 classes_start_idx = sum(self.protocol.classes_per_task[:self.current_task]) classes_end_idx = classes_start_idx + self.protocol.classes_per_task[self.current_task] self.classes_in_this_task = self.protocol.get_task_classes(self.current_task) self.prev_classes = self.classes_seen_so_far self.future_classes = self.__get_tasks_classes(classes_end_idx) self.classes_seen_so_far = torch.cat([self.classes_seen_so_far, self.classes_in_this_task])
import numpy as np from typing import Union, List, Dict, Iterable, Tuple, Callable import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import scipy.special as scsp class Mesh: def __init__(self, mesh_length=500, mesh_width=500, cellsize=2.e-6, mixed=False, label='None'): self.width = mesh_width self.length = mesh_length self.cell_size = cellsize self._mixed = mixed self._name = label self._mats = ['mat {}'.format(i+1) for i in range(9)] self._mesh = np.array([[{'i': i, 'j': j, 'mat 1': 0., 'mat 2': 0., 'mat 3': 0., 'mat 4': 0., 'mat 5': 0., 'mat 6': 0., 'mat 7': 0., 'mat 8': 0., 'mat 9': 0., 'vel i': 0., 'vel j': 0.} for i in range(self.width)] for j in range(self.length)]) def __repr__(self): return '<Mesh: {} ({} x {})>'.format(self.name, self.width, self.length) def plot(self, view: bool = True, save: bool = False, file_name: str = None): if file_name is None: file_name = './{}.png'.format(self.name) fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel('x [m]') ax.set_ylabel('y [m]') ax.set_title(self.name) materials = {'mat {}'.format(i+1): np.zeros((self.width, self.length)) for i in range(9)} for cell in self._mesh.flatten(): for i, mat in enumerate(self._mats): materials[mat][cell['i'], cell['j']] = cell[mat]*(i+1) x = np.linspace(0, self.width*self.cell_size, int(self.width)) y = np.linspace(0, self.length*self.cell_size, int(self.length)) xx, yy = np.meshgrid(x, y) for mat_mesh in materials.values(): mat_mesh = np.ma.masked_where(mat_mesh == 0., mat_mesh) im = ax.pcolormesh(xx, yy, mat_mesh, vmin=1, vmax=9) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) cb = fig.colorbar(im, cax=cax) cb.set_label('Material #') if save: fig.savefig(file_name) if view: plt.show() def save(self, file_name: str = None, compress: bool = True): if file_name is None: file_name = 'meso_m_{}.iSALE'.format(self.name) if compress: file_name += '.gz' num_cells = self._mesh.size columns = {'i': np.zeros((num_cells)), 'j': np.zeros((num_cells)), 'vel i': np.zeros((num_cells)), 'vel j': np.zeros((num_cells))} columns.update({'mat {}'.format(i+1): np.zeros((num_cells)) for i in range(9)}) for i, cell in enumerate(self._mesh.flatten()): columns['i'][i] = cell['i'] columns['j'][i] = cell['j'] columns['vel i'][i] = cell['vel i'] columns['vel j'][i] = cell['vel j'] for j in range(9): mat = 'mat {}'.format(j+1) columns[mat][i] = cell[mat] all_ = np.column_stack((columns['i'], columns['j'], columns['vel i'], columns['vel j'], *[columns['mat {}'.format(i+1)] for i in range(9)])) head = '{}, {}'.format(num_cells, 9) np.savetxt(file_name, all_, header=head, fmt='%5.3f', comments='') @property def contains_mixed_cells(self): return self._mixed @property def name(self): return self._name def assign_velocity_to_rectangle(self, velocity: Tuple[float, float], xlims: Tuple[float, float], ylims: Tuple[float, float]): for point in points_within_rectangle(self.cell_size, xlims, ylims): cell = self._mesh[point] self.add_velocity_to_cell(velocity, cell) def assign_velocity_to_material(self, velocity: Tuple[float, float], material: int): assert 0 < material <= 9, "material must be an integer between 1 and 9" mat = 'mat {}'.format(material) for cell in self._mesh.flatten(): if cell[mat] > 0.: self.add_velocity_to_cell(velocity, cell) def insert_rectangle(self, material: int, xlims: Tuple[float, float], ylims: Tuple[float, float], ): assert 0 <= material <= 9, "material must be an integer between 0 and 9 (0 = Void)" for point in points_within_rectangle(self.cell_size, xlims, ylims): cell = self._mesh[point] self.add_material_to_cell(material, cell) def insert_circle(self, material: int, centre: Tuple[float, float], radius: float): assert 0 <= material <= 9, "material must be an integer between 0 and 9 (0 = Void)" for point in points_within_circle(self.cell_size, centre, radius): cell = self._mesh[point] self.add_material_to_cell(material, cell) def insert_ellipse(self, material: int, centre: Tuple[float, float], equivalent_radius: float, eccentricity: float, rotation: float = None): assert 0 <= eccentricity < 1., "Eccentricity must reside on the interval [0, 1)" assert 0 <= material <= 9, "material must be an integer between 0 and 9 (0 = Void)" for point in points_within_ellipse(self.cell_size, centre, equivalent_radius, eccentricity, rotation): cell = self._mesh[point] self.add_material_to_cell(material, cell) def add_material_to_cell(self, material: int, cell: Dict[str, Union[int, float]]): if material == 0: for mat in self._mats: cell[mat] = 0. cell['vel i'] = 0. cell['vel j'] = 0. else: current_mat_fraction = sum([cell[m] for m in self._mats]) fraction_to_add = 1. - current_mat_fraction if fraction_to_add > 0.: cell['mat {}'.format(material)] += fraction_to_add @staticmethod def add_velocity_to_cell(velocity: Tuple[float, float], cell): cell['vel i'] = velocity[0] cell['vel j'] = velocity[1] class SizeDistribution: """ A size distribution is typically represented by a CDF (cumulative distribution function). This class creates one with user-specified CDF. CDFs are of the form 'frequency' vs 'var' and in granular distributions the independent variable is typically krumbein phi, or radius, however this class allows other types. 'frequency' is often volume (area in 2D) or weight. Both options are available, as is pure dimensionless frequency. Phi and area are the defaults. """ def __init__(self, name: str): self._type = None self._mean = None self._std = None self._median = None self._mode = None self._variance = None self._skew = None self._cdf = None self._limits = None self._lambda = None self._k = None @classmethod def custom_distribution(cls, name: str, func: Callable): new = cls(name) new._func = func new._cdf = func new._type = 'custom' return new @classmethod def uniform_distribution(cls, name: str, size_limits: Tuple[float, float]): uniform = cls(name) uniform._type = 'uniform' uniform._limits = size_limits uniform._mean = .5*(sum(size_limits)) uniform._median = uniform._mean uniform._variance = (1. / 12.) * (size_limits[1] - size_limits[0]) ** 2. uniform._cdf = uniform._uniform uniform._skew = 0. return uniform @classmethod def normal_distribution(cls, name: str, mean: float, standard_deviation: float): normal = cls(name) normal._type = 'normal' normal._mean = mean normal._std = standard_deviation normal._median = mean normal._mode = mean normal._variance = standard_deviation**2. normal._skew = 0. normal._cdf = normal._normal return normal @classmethod def lognormal_distribution(cls, name: str, mu: float, standard_deviation: float): lognormal = cls(name) lognormal._type = 'lognormal' lognormal._mean = np.exp(mu + 0.5 * standard_deviation ** 2.) lognormal._std = standard_deviation lognormal._median = np.exp(mu) lognormal._mode = np.exp(mu - standard_deviation ** 2.) lognormal._variance = (np.exp(standard_deviation ** 2.) - 1.) * np.exp(2. * mu + standard_deviation ** 2.) lognormal._skew = (np.exp(standard_deviation ** 2.) + 2.) * np.sqrt(np.exp(standard_deviation ** 2.) - 1.) lognormal._cdf = lognormal._lognormal return lognormal @classmethod def weibull2_distribution(cls, name: str, scale_parameter: float, shape_parameter: float): assert 0. <= scale_parameter, "the scale parameter must be >= 0, not {:2.2f}".format(scale_parameter) assert 0. <= shape_parameter, "the shape parameter must be >= 0, not {:2.2f}".format(shape_parameter) weibull2 = cls(name) weibull2._type = 'weibull2' weibull2._lambda = scale_parameter weibull2._k = shape_parameter weibull2._mean = scale_parameter * scsp.gamma(1. + 1. / shape_parameter) weibull2._median = scale_parameter * (np.log(2.)) ** (1. / shape_parameter) if shape_parameter > 1: weibull2._mode = scale_parameter * ((shape_parameter - 1) / shape_parameter) ** (1. / shape_parameter) else: weibull2._mode = 0 weibull2._variance = (scale_parameter ** 2.) * \ (scsp.gamma(1. + 2. / shape_parameter) - (scsp.gamma(1. + 1. / shape_parameter)) ** 2.) weibull2._skew = (scsp.gamma(1. + 3. / shape_parameter) * scale_parameter ** 3. - 3. * weibull2._mean * weibull2._variance - weibull2._mean ** 3.) weibull2._skew /= weibull2._variance ** (3. / 2.) weibull2._cdf = weibull2._weibull2 weibull2._type = 'weibull2' return weibull2 def details(self): deets = "distribution has the following properties:\n" deets += "type: {}\n".format(self._type) deets += "mean = {:2.3f}\n".format(self._mean) deets += "median = {:2.3f}\n".format(self._median) deets += "mode = {:2.3f}\n".format(self._mode) deets += "variance = {:2.3f}\n".format(self._variance) deets += "skewness = {:2.3f}\n".format(self._skew) return deets def frequency(self, x: float, dx: Tuple[float, float]): """ Integrates over the probability density function of the chosen distribution to return an estimated frequency limits MUST be provided in the form of dx, which allows for uneven limits and is always applied as + and - the given value of x. Returns the probability DENSITY! this must be converted to a useful value outside of the function. """ if self._type == 'lognormal': assert x >= 0., "ERROR: Lognormal distribution only works for input greater than 0" f = np.float64(abs(self._cdf(x + dx[1]) - self._cdf(x - dx[0]))) return f def _uniform(self, x: float): """ CDF for a uniform probability density function between minx and maxx """ assert self._limits is not None min_x = self._limits[0] max_x = self._limits[1] f = (x - min_x) / (max_x - min_x) if x < min_x: f = 0. elif x >= max_x: f = 1. return f def _normal(self, x: float): """ CDF for a normal probability density function centred on mu with std sigma """ mu = self._mean sigma = self._std f = .5 * (1. + scsp.erf((x - mu) / (sigma * np.sqrt(2.)))) return f def _lognormal(self, x: float): """ CDF for a log-normal probability density function centred on mu with std sigma """ mu = self._mean sigma = self._std f = .5 + .5 * scsp.erf((np.log(x) - mu) / (sigma * np.sqrt(2.))) return f def _weibull2(self, x: float): """ CDF for a Weibull 2-parameter distribution; lambda is the 'scale' of the distribution k is the 'shape'. This distribution is typically used for PSDs generated by grinding, milling, and crushing operations. """ assert self._lambda is not None assert self._k is not None lamb = self._lambda k = self._k if x >= 0: f = 1. - np.exp(-(x / lamb) ** k) else: f = 0. return f class Ensemble: def __init__(self, name: str, host_mesh: Mesh, size_distribution: SizeDistribution): self.name = name self._host = host_mesh self._dist = size_distribution def rotate_point(x: float, y: float, rot: float): xct = x * np.cos(rot) - y * np.sin(rot) yct = x * np.sin(rot) + y * np.cos(rot) return xct, yct def points_within_rectangle(cell_size: float, xlims: Tuple[float, float], ylims: Tuple[float, float]): # points do not have to snap to the grid xmin = xlims[0]/cell_size xmax = xlims[1]/cell_size ymin = ylims[0]/cell_size ymax = ylims[1]/cell_size imin, imax = int(xmin)-1, int(xmax)+1 jmin, jmax = int(ymin)-1, int(ymax)+1 valid_points = [(i, j) for i in range(imin, imax) for j in range(jmin, jmax) if (xmin <= i+.5 <= xmax) and (ymin <= j+.5 <= ymax)] return valid_points def points_within_circle(cell_size: float, centre: Tuple[float, float], radius: float): # points do not have to snap to the grid radius = (radius/cell_size) rad2 = radius**2. xcentre = centre[0]/cell_size ycentre = centre[1]/cell_size imin, imax = int(xcentre-1.1*radius), int(xcentre+1.1*radius) jmin, jmax = int(ycentre-1.1*radius), int(ycentre+1.1*radius) valid_points = [(i, j) for i in range(imin, imax) for j in range(jmin, jmax) if ((i+.5-xcentre)**2. + (j+.5-ycentre)**2. <= rad2)] return valid_points def points_within_ellipse(cell_size: float, centre: Tuple[float, float], equivalent_radius: float, eccentricity: float, rotation: float = None): # A is the semi-major radius, B is the semi-minor radius semi_major = equivalent_radius/((1. - eccentricity ** 2.) ** .25) semi_minor = semi_major * np.sqrt(1. - eccentricity ** 2.) semi_major /= cell_size semi_minor /= cell_size xcentre = centre[0]/cell_size ycentre = centre[1]/cell_size imin, imax = int(xcentre-1.5*semi_major), int(xcentre+1.5*semi_major) jmin, jmax = int(ycentre-1.5*semi_major), int(ycentre+1.5*semi_major) valid_points = [] for i in range(imin, imax): for j in range(jmin, jmax): if rotation is not None: xc, yc = rotate_point(i+.5-xcentre, j+.5-ycentre, rotation) else: xc, yc = i+.5-xcentre, j+.5-ycentre if (xc/semi_major)**2. + (yc/semi_minor)**2. <= 1.: valid_points.append((i, j)) return valid_points def translate_vertices(vertices: List[Tuple[float, float]], new_centroid: Tuple[float, float], old_centroid: Tuple[float, float] = (0., 0.)): displacement = (new_centroid[0]-old_centroid[0], new_centroid[1]-old_centroid[1]) new_vertices = [(x+displacement[0], y+displacement[1]) for x, y in vertices] return new_vertices def points_within_polygon(cell_size: float, vertices: Iterable[Tuple[float, float]], rotation: float = None): try: from shapely.geometry import Polygon, Point from shapely import affinity except ImportError as exception: print('{}; Shapely must be installed to use points_within_polygon'.format(exception)) raise verts = [(vx/cell_size, vy/cell_size) for vx, vy in vertices] poly = Polygon(verts) if rotation is not None: centroid = poly.centroid.coords[0] zero_verts = translate_vertices(verts, (0., 0.), old_centroid=centroid) rot_verts = [rotate_point(vx, vy, rotation) for vx, vy in zero_verts] verts = translate_vertices(rot_verts, centroid, old_centroid=(0., 0.)) poly = Polygon(verts) imin, jmin, imax, jmax = poly.bounds imin, imax = int(imin), int(imax) jmin, jmax = int(jmin), int(jmax) valid_points = [(i, j) for i in range(imin, imax) for j in range(jmin, jmax) if Point(i+.5, j+.5).within(poly)] return valid_points
import asyncio from aiohttp import web import sys import socketio import pandas as pd import ocakdeneme import base64 sio = socketio.AsyncServer(async_mode='aiohttp',cors_allowed_origins="*") app = web.Application() sio.attach(app) async def background_task(): """Example of how to send server generated events to clients.""" count = 0 while True: await sio.sleep(10) count += 1 await sio.emit('my_response', {'data': 'Server generated event'}) async def index(request): with open('app.html') as f: return web.Response(text=f.read(), content_type='text/html') @sio.event async def my_event(asd, message): print("mesaj",message) await sio.emit('my_response', {'data': message['data']}) @sio.event async def csv_is_comming(asd,in1): print("csv is commig") print(in1["base"]) asd = base64.b64decode(in1["base"]) #p rint(pd.read_csv(in1)) ocakdeneme.calmaBaslat(asd,in1["time"]) await sio.emit('my_response', in1) @sio.event async def connect(sid, environ): print("gönüllerin efendisi hoşgelmiş") await sio.emit('my_response', {'data': 'Connected', 'count': 0}, room=sid) @sio.event def disconnect(sid): print('Client disconnected') app.router.add_get('/', index) if __name__ == '__main__': sio.start_background_task(background_task) web.run_app(app)
''' Generic Device class for HLTAPI-based devices. ''' __all__ = ( 'Device', ) from enum import Enum import contextlib import functools import itertools import logging import time try: from hltapi.exceptions import HltapiError except Exception: class HltapiError(Exception): pass from genie.decorator import managedattribute from genie.conf.base.attributes import AttributesHelper import genie.libs.conf.device.tgen from genie.libs.conf.stream.stream import Stream, StreamStats logger = logging.getLogger(__name__) class Device(genie.libs.conf.device.tgen.Device): '''Base Device class for HLTAPI-based TGEN devices''' class Hltapi(object): '''HLTAPI abstraction object. HLTAPI Device subclasses are encouraged to subclass Hltapi as well to customize HLTAPI calls to allow Vendor-specific requirements. ''' device = managedattribute( name='device', type=managedattribute.auto_ref, # TODO Device is not finished declaring yet gettype=managedattribute.auto_unref, doc='''The HLTAPI-based Genie Device object''') @property def pyats_connection(self): '''The pyATS connection used for HLTAPI access''' connectionmgr = self.device.connectionmgr try: return connectionmgr.connections['hltapi'] except KeyError: # TODO This might not be a HltApiConnection!? return connectionmgr.connections[connectionmgr.default_alias] @property def tcl(self): '''The Tcl interpreter instance.''' return self.pyats_connection._tcl @property def tcl_namespace(self): '''The Tcl namespace where HLTAPI vendor code is loaded.''' return self.pyats_connection._ns def __getattr__(self, name): '''Redirect to undefined attributes to the pyATS connection.''' if not name.startswith('_') and name != 'device': return getattr(self.pyats_connection, name) f = getattr(super(), '__getattr__', None) if f is not None: return f(name) else: raise AttributeError(name) def __init__(self, device): self.device = device super().__init__() hltapi = managedattribute( name='hltapi', read_only=True, doc=Hltapi.__doc__) @hltapi.initter def hltapi(self): '''Create an instance of Hltapi. This can be a subclass of Hltapi if the Device subclass redefines it. ''' return self.Hltapi(device=self) @property def all_port_handles(self): pass # TODO hltspl_get_all_port_handles @property def tgen_port_handle_to_interface_map(self): return { interface.tgen_port_handle: interface \ for interface in self.tgen_port_interfaces} def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def get_stream_stats(self, streams=None): if streams is None: streams = self.find_streams() stats = StreamStats() hltapi = self.hltapi tcl = hltapi.tcl #from genie.libs.conf.device.agilent import Device as AgilentDevice from genie.libs.conf.device.ixia import Device as IxiaDevice #from genie.libs.conf.device.pagent import Device as PagentDevice #from genie.libs.conf.device.spirent import Device as SpirentDevice map_stream_id_to_stream_obj = {} for stream in streams: stream_ids = stream.tgen_handle if stream_ids: for stream_id in stream_ids: assert stream_id not in map_stream_id_to_stream_obj map_stream_id_to_stream_obj[stream_id] = stream else: logger.warn('%r: Nothing to do (no tgen_handle).', stream) if map_stream_id_to_stream_obj: tgen_port_handle_to_interface_map = \ self.tgen_port_handle_to_interface_map hltkwargs = {} hltkwargs['port_handle'] = \ list(tgen_port_handle_to_interface_map.keys()) hltkwargs['mode'] = 'streams' hltkwargs['streams'] = list(map_stream_id_to_stream_obj.keys()) stream_key_rename_map = { 'tx.pkt_rate': 'tx.total_pkt_rate', 'rx.pkt_rate': 'rx.total_pkt_rate', 'rx.loss_pkts': 'rx._dropped_pkts', } if isinstance(self, IxiaDevice): stream_key_rename_map.update({ 'rx.loss_pkts': 'rx._delta_pkts', }) hltkl = hltapi.traffic_stats(**hltkwargs) if hltkl.get('waiting_for_stats', False): # if { $try <= 6 } { # continue ;# retry # } else { # enaLogVerify -warning "Statistics not ready... giving up" # } raise NotImplementedError for port_handle, rx_interface \ in tgen_port_handle_to_interface_map.items(): for stream_id, hltkl_stream \ in hltkl.get('{}.stream'.format(port_handle), {})\ .items(): stream_id = str(stream_id) # already string? try: stream = map_stream_id_to_stream_obj[stream_id] except KeyError: continue if stream not in stats.by_stream: stats.by_stream[stream] = StreamStats.ByStreamStats() stream_stats = stats.by_stream[stream] for kfrom, kto in stream_key_rename_map.items(): try: v = hltkl_stream.pop(kfrom) except KeyError: continue hltkl_stream.setdefault(kto, v) if rx_interface not in stream_stats.by_interface: stream_stats.by_interface[rx_interface] = StreamStats.ByInterfaceStreamStats() intf_stream_stats = stream_stats.by_interface[rx_interface] for k1, v1 in hltkl_stream.items(): if k1 in ( 'tx', 'rx', ): txrx_intf_stream_stats = getattr(intf_stream_stats, k1) txrx_stream_stats = getattr(stream_stats, k1) for k2, v2 in v1.items(): setattr(txrx_intf_stream_stats, k2, v2) if k2 in ( 'total_pkts', 'total_pkt_rate', 'dropped_pkts', '_dropped_pkts', 'duplicate_pkts', '_duplicate_pkts', ): setattr(txrx_stream_stats, k2, \ (getattr(txrx_stream_stats, k2, 0) or 0) \ + v2) elif k2 in ( 'encap', ): if getattr(txrx_stream_stats, k2, None) is None: setattr(txrx_stream_stats, k2, set()) getattr(txrx_stream_stats, k2).add( v2) else: pass # TODO elif k1 in ( 'ipv4_present', 'ipv6_present', 'tcp_present', 'udp_present', ): setattr(intf_stream_stats, k1, v1) if not getattr(stream_stats, k1, False): setattr(stream_stats, k1, v1) else: setattr(intf_stream_stats, k1, v1) # XXXJST HACK for TGENs that can't return elapsed_time, such as # Pagent for stream, stream_stats in stats.by_stream.items(): if stream_stats.elapsed_time is None: try: stream_stats.elapsed_time = \ float(stream_stats.tx.total_pkts) \ / float(stream_stats.tx.total_pkt_rate) except Exception as e: logger.debug('Stream %s: No relevant TX information to' ' derive elapsed_time from', stream) else: logger.debug('Stream %s: Derived elapsed_time from' ' tx.total_pkts/tx.total_pkt_rate', stream) return stats def restart_traffic(self, *, ports=None, learn=True, start=True, clear_on_start=True, wait_rx=True, rx_timeout=10, tx_timeout=10): if ports is None: ports = set(stream.source_tgen_interface for stream in self.find_streams()) port_handles = set(port.tgen_port_handle for port in ports) klStreamsStats1 = None klStreamsStats2 = None if port_handles: def do_poll_traffic_running(): nonlocal wait_rx timeout = rx_timeout if wait_rx else tx_timeout is_traffic_running = False td = 0 t0 = time.perf_counter() last_iteration = False for iteration in itertools.count(start=1): if last_iteration: is_traffic_running = False logger.info('Timeout waiting for traffic (%r>%r)', td, timeout) break if iteration > 1: t1 = time.perf_counter() td = int(t1 - t0) time.sleep(1) if td > timeout: last_iteration = True if klStreamsStats1 is not None: klStreamsStats2 = self.get_stream_stats() klStreamsStats = klStreamsStats2 - klStreamsStats1 else: klStreamsStats = self.get_stream_stats() is_traffic_running = True for stream in klStreamsStats.by_stream.keys(): if wait_rx: # TODO get rx stats specific to MulticastGroup receivers kl_rx = klStreamsStats.by_stream[stream].rx rx_total_pkts = kl_rx.total_pkts if rx_total_pkts is None: rx_total_pkts = 0 if not (rx_total_pkts > 0): is_traffic_running = False logger.info('%r RX packets is %r; Not running!', stream, rx_total_pkts) else: logger.info('%r RX packets is %r; Ok.', stream, rx_total_pkts) else: tx_total_pkts = klStreamsStats.by_stream[stream].tx.total_pkts if tx_total_pkts is None: tx_total_pkts = 0 if not (tx_total_pkts > 0): is_traffic_running = False logger.info('%r TX packets is %r; Not running!', stream, tx_total_pkts) else: logger.info('%r TX packets is %r; Ok.', stream, tx_total_pkts) if is_traffic_running: break if not is_traffic_running: wait_rx = False return is_traffic_running if learn: # Start?, Wait RX/TX (Learn MAC) {{{ if self.is_traffic_running(): klStreamsStats1 = self.get_stream_stats() else: os = self.os if os in ('ixia', 'spirent'): # Ixia and Spirent do not automatically clear stats; Avoid this step to save time. self.traffic_control(mode='start', ports=ports, wait=False, clear_on_start=False) else: # ('agilent', 'pagent', ...) # Always clears on start self.traffic_control(mode='start', ports=ports, wait=False) do_poll_traffic_running() klStreamsStats1 = None # }}} # Stop, Clear+Start, Wait RX/TX {{{ self.traffic_control(mode='stop', ports=ports) if start: self.traffic_control(mode='start', ports=ports, wait=False, clear_on_start=clear_on_start) do_poll_traffic_running() # }}} else: logger.debug('Nothing to do.') def start_traffic(self, **kwargs): return self.traffic_control(mode='start', **kwargs) def stop_traffic(self, **kwargs): return self.traffic_control(mode='stop', **kwargs) def is_traffic_running(self, **kwargs): hltapi = self.hltapi tcl = hltapi.tcl hltkl = self.traffic_control('poll', **kwargs) return not tcl.cast_boolean(hltkl.stopped) def traffic_control(self, mode, *, ports=None, wait=True, duration=None, clear_on_start=True, stop_counting=True, **kwargs): hltkl = None # Returned value from genie.libs.conf.device.agilent import Device as AgilentDevice from genie.libs.conf.device.ixia import Device as IxiaDevice from genie.libs.conf.device.pagent import Device as PagentDevice from genie.libs.conf.device.spirent import Device as SpirentDevice hltapi = self.hltapi tcl = hltapi.tcl if ports is None: ports = [] # for mcast_gorup in self.testbed.object_instances(cls=MulticastGroup): # foreach sender [enaMcastGetMcastGroupParam $vMcastGroup -senders] { # lassign $sender vTgenIntf stream_id # if { [enaObjIsObject $vTgenIntf stream] } { continue } ;# done below # lappend ports $vTgenIntf # } ports += [stream.source_tgen_interface for stream in self.streams] port_handles = list(set( port if type(port) is str else port.tgen_port_handle for port in ports)) if port_handles: # Let hltapi object deal with no -port_handle vs "all" if len(port_handles) == 1 and port_handles[0] == 'all': port_handles = [] if mode == 'start': hltkwargs = {} if clear_on_start: # Clear stats, if needed. if isinstance(self, (IxiaDevice, SpirentDevice)): self.traffic_control(mode='clear_stats', ports=['all']) else: pass # No need to clear stats # Start traffic if isinstance(self, IxiaDevice): hltkwargs['action'] = 'sync_run' if not clear_on_start: # Makes a difference in pre-ixnetwork hltkwargs['action'] = 'run' elif isinstance(self, PagentDevice): # NOTE Pagent: For streams with non-continuous transmit_mode, action should be "manual_trigger" hltkwargs['action'] = 'run' if not clear_on_start: # Hack Pagent code to avoid "tgn clear count" pass # TODO # logger.debug('Disabling Pagent::traffic_control\'s "tgn clear count"') # enaDestructor [xscale_save_proc ::Pagent::traffic_control] # ::xscale::patch_proc_body ::Pagent::traffic_control \ # {(?n).*"tgn clear count".*} \ # "" else: hltkwargs['action'] = 'run' if port_handles: hltkwargs['port_handle'] = port_handles if duration is not None: # NOTE: Spirent: Make sure your Spirent has patch for # SR #279953571 or at least version 3.70 or else # duration will be blocking hltkwargs['duration'] = duration hltkl = hltapi.traffic_control(**hltkwargs) # Wait if wait is True: if isinstance(self, SpirentDevice): # action is asynchronous; poll or wait. wait = 5 else: # TBD wait = 5 if wait: logger.info('Waiting %s seconds for traffic start', wait) time.sleep(wait) elif mode == 'stop': # Stop traffic if isinstance(self, PagentDevice): if not stop_counting: # Hack Pagent code to avoid "pkts stop" pass # TODO # logger.debug('Disabling Pagent::traffic_control\'s "pkts stop"') # enaDestructor [xscale_save_proc ::Pagent::traffic_control] # ::xscale::patch_proc_body ::Pagent::traffic_control \ # {(?n).*"pkts stop".*} \ # "" hltkwargs = {} hltkwargs['action'] = 'stop' if port_handles: hltkwargs['port_handle'] = port_handles if isinstance(self, SpirentDevice): if int(tcl.eval('::package vcompare [::package require SpirentHltApi] 3.70')) >= 0: # Tell STC HLTAPI 3.70+ to not save the EOT results database hltkwargs['db_file'] = False # Wait if wait is True: # Default trickle wait time for stop. # It is assumed that the TGEN doesn't return until traffic # is stopped. The extra wait time is mostly for packets to # complete their path and stats to update. wait = 2 if wait: if isinstance(self, AgilentDevice): # NOTE: Agilent already has it's own trickle_time if int(tcl.call('::AgtInvoke', 'AgtTestController', 'IsTrickleTimeEnabled')): wait = False elif isinstance(self, IxiaDevice): # Without max_wait_timer, Ixia goes into asynchronous mode hltkwargs['max_wait_timer'] = 10 else: pass # No default trickle time for tryno in range(1, 3): try: hltkl = hltapi.traffic_control(**hltkwargs) except HltapiError: if tryno == 1 and isinstance(self, AgilentDevice): # NOTE Agilent: Could fail to stop on first try! continue raise break if wait: logger.info('Waiting %s seconds for traffic stop', wait) time.sleep(wait) elif mode == 'clear_stats' or True: # default! # TODO wrap -mode/action "poll" # No further special processing; straight HLTAPI/HLTSPL hltkwargs = {} hltkwargs['action'] = mode if port_handles: hltkwargs['port_handle'] = port_handles hltkl = hltapi.traffic_control(**hltkwargs) else: logger.debug('Nothing to do.') return hltkl def start_emulation(self, **kwargs): pass # TODO no emulation supported yet! raise NotImplementedError def stop_emulation(self, **kwargs): pass # TODO no emulation supported yet! raise NotImplementedError def build_config(self, apply=True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) # Don't call super().build_config # Nothing to do. return '' # No CLI lines def build_unconfig(self, clean=False, apply=True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) # Don't call super().build_unconfig if clean: pass # TODO # Nothing to do. return '' # No CLI lines
from __future__ import absolute_import, division, print_function import numpy as np from cs231n.layers import * from cs231n.layer_utils import * class TwoLayerNet(object): """ A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension of D, a hidden dimension of H, and perform classification over C classes. The architecure should be affine - relu - affine - softmax. Note that this class does not implement gradient descent; instead, it will interact with a separate Solver object that is responsible for running optimization. The learnable parameters of the model are stored in the dictionary self.params that maps parameter names to numpy arrays. """ def __init__(self, input_dim=3 * 32 * 32, hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0): """ Initialize a new network. Inputs: - input_dim: An integer giving the size of the input - hidden_dim: An integer giving the size of the hidden layer - num_classes: An integer giving the number of classes to classify - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - reg: Scalar giving L2 regularization strength. """ self.params = {} self.reg = reg ############################################################## # TODO: Initialize the weights and biases of the two-layer # # net. Weights should be initialized from a Gaussian with # # standard deviation equal to weight_scale, and biases # # should be initialized to zero. All weights and biases # # should be stored in the dictionary self.params, with first # # layer weights and biases using the keys 'W1' and 'b1' and # # second layer weights and biases using the keys 'W2' and # # 'b2'. # ############################################################## self.D = input_dim self.H = hidden_dim self.C = num_classes W1 = weight_scale * np.random.randn(self.D, self.H) W2 = weight_scale * np.random.randn(self.H, self.C) b1 = np.zeros(self.H) b2 = np.zeros(self.C) self.params.update({'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}) ############################################################## # END OF YOUR CODE # ############################################################## def loss(self, X, y=None): """ Compute loss and gradient for a minibatch of data. Inputs: - X: Array of input data of shape (N, d_1, ..., d_k) - y: Array of labels, of shape (N,). y[i] gives the label for X[i]. Returns: If y is None, then run a test-time forward pass of the model and return: - scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c. If y is not None, then run a training-time forward and backward pass and return a tuple of: - loss: Scalar value giving the loss - grads: Dictionary with the same keys as self.params, mapping parameter names to gradients of the loss with respect to those parameters. """ scores = None ############################################################## # TODO: Implement the forward pass for the two-layer net, # # computing the class scores for X and storing them in the # # scores variable. # ############################################################## # X1 := output of affine+relu on X # X2 := ouyput of affine on X1 # Get the params W1 = self.params['W1'] b1 = self.params['b1'] W2 = self.params['W2'] b2 = self.params['b2'] X1, cache1 = affine_relu_forward(X, W1, b1) X2, cache2 = affine_forward(X1, W2, b2) scores = X2 ############################################################## # END OF YOUR CODE # ############################################################## # If y is None then we are in test mode so just return scores if y is None: return scores loss, grads = 0, {} ############################################################## # TODO: Implement the backward pass for the two-layer net. # # Store the loss in the loss variable and gradients in the # # grads dictionary. Compute data loss using softmax, and # # make sure that grads[k] holds the gradients for # # self.params[k]. Don't forget to add L2 regularization! # # # # NOTE: To ensure that your implementation matches ours and # # you pass the automated tests, make sure that your L2 # # regularization includes a factor of 0.5 to simplify the # # expression for the gradient. # ############################################################## loss, dX2 = softmax_loss(X2, y) dX1, dW2, db2 = affine_backward(dX2, cache2) dX, dW1, db1 = affine_relu_backward(dX1, cache1) # Regularize loss += 0.5 * self.reg * (np.sum(W1 * W1) + np.sum(W2 * W2)) dW1 += self.reg * W1 dW2 += self.reg * W2 grads.update({'W1': dW1, 'b1': db1, 'W2': dW2, 'b2': db2}) ############################################################## # END OF YOUR CODE # ############################################################## return loss, grads class FullyConnectedNet(object): """ A fully-connected neural network with an arbitrary number of idden layers, ReLU nonlinearities, and a softmax loss function. This will also implement dropout and batch normalization as options. For a network with L layers, the architecture will be {affine - [batch norm] - relu - [dropout]} \ x (L - 1) - affine - softmax where batch normalization and dropout are optional, and the {...} block is repeated L - 1 times. Similar to the TwoLayerNet above, learnable parameters are stored in the self.params dictionary and will be learned using the Solver class. """ def __init__(self, hidden_dims, input_dim=3 * 32 * 32, num_classes=10, loss_func='softmax', dropout=0, use_batchnorm=False, reg=0.0, weight_scale=1e-2, dtype=np.float32, seed=None): """ Initialize a new FullyConnectedNet. Inputs: - hidden_dims: A list of integers giving the size of each hidden layer. - input_dim: An integer giving the size of the input. - num_classes: An integer giving the number of classes to classify. - loss_func: [djn] Loss function ('softmax' or 'svm'). - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=0 then the network should not use dropout at all. - use_batchnorm: Whether or not the network should use batch normalization. - reg: Scalar giving L2 regularization strength. - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - dtype: A numpy datatype object; all computations will be performed using this datatype. float32 is faster but less accurate, so you should use float64 for numeric gradient checking. - seed: If not None, then pass this random seed to the dropout layers. This will make the dropout layers deteriminstic so we can gradient check the model. """ self.use_batchnorm = use_batchnorm self.use_dropout = dropout > 0 self.reg = reg self.num_layers = 1 + len(hidden_dims) self.dtype = dtype self.params = {} ##### [djn] ##### loss_funcs = { 'softmax': softmax_loss, 'svm': svm_loss, } if loss_func not in loss_funcs: raise ValueError('Unknown loss function: {}'.format( loss_func)) self.loss_func = loss_funcs[loss_func] ############################################################## # TODO: Initialize the parameters of the network, storing # # all values in the self.params dictionary. Store weights # # and biases for the first layer in W1 and b1; for the # # second layer use W2 and b2, etc. Weights should be # # initialized from a normal distribution with standard # # deviation equal to weight_scale and biases should be # # initialized to zero. # # # # When using batch normalization, store scale and shift # # parameters for the first layer in gamma1 and beta1; for # # the second layer use gamma2 and beta2, etc. Scale # # parameters should be initialized to one and shift # # parameters should be initialized to zero. # ############################################################## dims = [input_dim] dims.extend(hidden_dims) dims.append(num_classes) for i in xrange(0, self.num_layers): W = weight_scale * np.random.randn(dims[i], dims[i + 1]) b = np.zeros(dims[i + 1]) self.params['W{}'.format(i + 1)] = W self.params['b{}'.format(i + 1)] = b if self.use_batchnorm and i < self.num_layers - 1: gamma = np.ones(dims[i + 1]) beta = np.zeros(dims[i + 1]) self.params['gamma{}'.format(i + 1)] = gamma self.params['beta{}'.format(i + 1)] = beta self.dims = dims ############################################################## # END OF YOUR CODE # ############################################################## # When using dropout we need to pass a dropout_param # dictionary to each dropout layer so that the layer knows the # dropout probability and the mode # (train / test). You can pass the same dropout_param to each # dropout layer. self.dropout_param = {} if self.use_dropout: self.dropout_param = {'mode': 'train', 'p': dropout} if seed is not None: self.dropout_param['seed'] = seed # With batch normalization we need to keep track of running # means and variances, so we need to pass a special bn_param # object to each batch normalization layer. You should pass # self.bn_params[0] to the forward pass of the first batch # normalization layer, self.bn_params[1] to the forward pass # of the second batch normalization layer, etc. self.bn_params = [] if self.use_batchnorm: self.bn_params = [{'mode': 'train'} for i in xrange(self.num_layers - 1)] # Cast all parameters to the correct datatype for k, v in self.params.iteritems(): self.params[k] = v.astype(dtype) def loss(self, X, y=None): """ Compute loss and gradient for the fully-connected net. Input / output: Same as TwoLayerNet above. """ X = X.astype(self.dtype) mode = 'test' if y is None else 'train' # Set train/test mode for batchnorm params and dropout param # since they behave differently during training and testing. ##if self.dropout_param is not None: if self.use_dropout: self.dropout_param['mode'] = mode if self.use_batchnorm: for bn_param in self.bn_params: bn_param['mode'] = mode scores = None ############################################################## # TODO: Implement the forward pass for the fully-connected # # net, computing the class scores for X and storing them in # # the scores variable. # # # # When using dropout, you'll need to pass self.dropout_param # # to each dropout forward pass. # # # # When using batch normalization, you'll need to pass # # self.bn_params[0] to the forward pass for the first batch # # normalization layer, pass self.bn_params[1] to the forward # # pass for the second batch normalization layer, etc. # ############################################################## caches = [] inp = X # input out = None # output # Iterate over each hidden layers for i in xrange(self.num_layers - 1): # affine layer W = self.params['W{}'.format(i + 1)] b = self.params['b{}'.format(i + 1)] out, cache = affine_forward(inp, W, b) caches.append(cache) inp = out # for the next step # batchnorm layer if self.use_batchnorm: bn_param = self.bn_params[i] gamma = self.params['gamma{}'.format(i + 1)] beta = self.params['beta{}'.format(i + 1)] out, cache = batchnorm_forward(inp, gamma, beta, bn_param) caches.append(cache) inp = out # relu layer out, cache = relu_forward(inp) caches.append(cache) inp = out # dropout layer if self.use_dropout: out, cache = dropout_forward(inp, self.dropout_param) caches.append(cache) inp = out # final affine layer W = self.params['W{}'.format(self.num_layers)] b = self.params['b{}'.format(self.num_layers)] out, cache = affine_forward(inp, W, b) caches.append(cache) scores = out ############################################################## # END OF YOUR CODE # ############################################################## # If test mode return early if mode == 'test': return scores loss, grads = 0.0, {} ############################################################## # TODO: Implement the backward pass for the fully-connected # # net. Store the loss in the loss variable and gradients in # # the grads dictionary. Compute data loss using softmax, and # # make sure that grads[k] holds the gradients for # # self.params[k]. Don't forget to add L2 regularization! # # # # When using batch normalization, you don't need to # # regularize the scale and shift parameters. # # # # NOTE: To ensure that your implementation matches ours and # # you pass the automated tests, make sure that your L2 # # regularization includes a factor of 0.5 to simplify the # # expression for the gradient. # ############################################################## loss, dx = self.loss_func(scores, y) # Last affine layer cache = caches.pop() dx, dw, db = affine_backward(dx, cache) grads['W{}'.format(self.num_layers)] = dw grads['b{}'.format(self.num_layers)] = db # Iterate over hidden layers backwards for i in xrange(self.num_layers - 1, 0, -1): # dropout layer if self.use_dropout: cache = caches.pop() dx = dropout_backward(dx, cache) # relu layer cache = caches.pop() dx = relu_backward(dx, cache) # batchnorm layer if self.use_batchnorm: cache = caches.pop() dx, dgamma, dbeta = batchnorm_backward_alt(dx, cache) grads['gamma{}'.format(i)] = dgamma grads['beta{}'.format(i)] = dbeta # affine layer cache = caches.pop() dx, dw, db = affine_backward(dx, cache) grads['W{}'.format(i)] = dw grads['b{}'.format(i)] = db ############################################################## # END OF YOUR CODE # ############################################################## return loss, grads
from django.urls import path, re_path, include from app1 import views urlpatterns = [ path('video', views.VideoView.as_view()) ]
import time import datetime def stringify(dt): return time.strftime("%Y-%m-%d %H:%M:%S",dt.timetuple()) def parse(s): return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S")
from flask import render_template, request, redirect, url_for, abort from . import main from ..models import User,Pizza,Roles,Topping,Crust from flask_login import login_required,current_user @main.route('/user/<uname>') def profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) return render_template('profile/profile.html',user = user) @main.route('/') def pizza(): ''' pizza order page ''' title = "Home" return render_template('index.html', title = title)
from env import Maze from agent import QLearningTable import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt episode_count = 1000 # Number of episodes to run the experiment episodes = range(episode_count) movements = [] # Number of movements happened in each episode rewards = [] # The gained reward in each episode ''' This function updates the position of the explorer in the Maze environment based on the actions it chooses. ''' def run_experiment(): for episode in episodes: print("Episode %s/%s." %(episode+1, episode_count)) # initial observation; observation = env.reset() moves = 0 while True: # fresh env env.render() # Q-learning chooses action based on observation # we convert observation to str since we want to use them as index for our DataFrame. action = q_learning_agent.choose_action(str(observation)) # ToDo: call choose_action() method from the agent QLearningTable instance # RL takes action and gets next observation and reward observation_, reward, done = env.get_state_reward(action) # ToDo: call get_state_reward() method from Maze environment instance moves +=1 # RL learn from the above transition, # Update the Q value for the given tuple q_learning_agent.learn(str(observation), action, reward, str(observation_))# ToDo: call learn method from Q-learning agent instance, passing (s, a, r, s') tuple # consider the next observation observation = observation_ # break while loop when end of this episode if done: movements.append(moves) # Keep track of the number of movements in this episode rewards.append(reward) # Keep track of the gained reward in this episode print("Reward: {0}, Moves: {1}".format(reward, moves)) break # end of game print('game over!') # Show the results plot_reward_movements() def plot_reward_movements(): plt.figure() plt.subplot(2,1,1) plt.plot(episodes, movements) plt.xlabel("Episode") plt.ylabel("# Movements") plt.subplot(2,1,2) plt.step(episodes, rewards) plt.xlabel("Episode") plt.ylabel("Reward") plt.savefig("rewards_movements_q_learn.png") plt.show() if __name__ == "__main__": # Craete maze environment env = Maze() #ToDo: instanciate Maze class # Create Q-learning agent q_learning_agent = QLearningTable(actions=list(range(env.n_actions))) #ToDo: instanciate QLearningTable class # Call run_experiment() function once after given time in milliseconds. env.window.after(10, run_experiment) # The infinite loop used to run the application, wait for an event to occur and process the event # till the window is not closed. env.window.mainloop()
import os from pathlib import Path from kombu import Queue from celery.app.base import Celery from dotenv import load_dotenv PACKAGE_PARENT = '.' SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) env_path = Path('./') / '.env' load_dotenv(dotenv_path=env_path) queue_name = "queue_to_feed" config = { "broker_url": os.getenv("BROKER_URL"), "result_backend": None, "broker_pool_limit": 1, "broker_heartbeat": None, "broker_connection_timeout": 40, "task_ignore_result": True, "event_queue_expires": 60, "worker_prefetch_multiplier": 1, "worker_concurrency": 32, "worker_hijack_root_logger": False, "worker_max_tasks_per_child": 10, "reject_on_worker_lost": True, "buffer_while_offline": False } celery = Celery("tasks", broker=config["broker_url"]) celery.conf.update(**config) celery.task_acks_late = True celery.conf.broker_transport_options = {} celery.conf.task_queues = (Queue(queue_name, routing_key='tasks.task_name', **{'x-queue-mode': 'lazy', 'queue_arguments': {'x-queue-mode': 'lazy'}}), )
""" MIDI-like encoding method similar to ??? Music Transformer: """ from typing import List, Tuple, Dict, Optional import numpy as np from miditoolkit import Instrument, Note, TempoChange from .midi_tokenizer_base import MIDITokenizer, Event, detect_chords from .constants import * class MIDILikeEncoding(MIDITokenizer): """ Structured MIDI encoding method as using in the Piano Inpainting Application https://arxiv.org/abs/2107.05944 The token types follows the specific pattern: Pitch -> Velocity -> Duration -> Time shift -> back to Pitch ... NOTE: this encoding uses only "Time Shifts" events to move in the time, and only from one note to another. Hence it is suitable to encode continuous sequences of notes without long periods of silence. If your dataset contains music with long pauses, you might handle them with an appropriate "time shift" dictionary (which values are made from the beat_res dict) or with a different encoding. NOTE: the original Structured MIDI Encoding doesn't use Chords tokens as its purpose is to draw uniform token types transitions, you can still use them but it will "break" this property :param pitch_range: range of used MIDI pitches :param beat_res: beat resolutions, with the form: {(beat_x1, beat_x2): beat_res_1, (beat_x2, beat_x3): beat_res_2, ...} The keys of the dict are tuples indicating a range of beats, ex 0 to 3 for the first bar The values are the resolution, in frames per beat, of the given range, ex 8 :param nb_velocities: number of velocity bins :param additional_tokens: specifies additional tokens (chords, empty bars, tempo...) :param program_tokens: will add entries for MIDI programs in the dictionary, to use in the case of multitrack generation for instance :param params: can be a path to the parameter (json encoded) file or a dictionary """ def __init__(self, pitch_range: range = PITCH_RANGE, beat_res: Dict[Tuple[int, int], int] = BEAT_RES, nb_velocities: int = NB_VELOCITIES, additional_tokens: Dict[str, bool] = ADDITIONAL_TOKENS, program_tokens: bool = PROGRAM_TOKENS, params=None): additional_tokens['Empty'] = False # Incompatible additional tokens super().__init__(pitch_range, beat_res, nb_velocities, additional_tokens, program_tokens, params) def track_to_tokens(self, track: Instrument) -> List[int]: """ Converts a track (miditoolkit.Instrument object) into a sequence of tokens (can probably be achieved faster with Mido objects) :param track: MIDI track to convert :return: sequence of corresponding tokens """ # Make sure the notes are sorted first by their onset (start) times, second by pitch # notes.sort(key=lambda x: (x.start, x.pitch)) # done in midi_to_tokens events = [] # Creates the Note On, Note Off and Velocity events for n, note in enumerate(track.notes): if note.pitch not in self.pitch_range: # Notes to low or to high are discarded continue # Note On events.append(Event( name='Note-On', time=note.start, value=note.pitch, text=note.pitch)) # Velocity velocity_index = (np.abs(self.velocity_bins - note.velocity)).argmin() events.append(Event( name='Velocity', time=note.start, value=velocity_index, text=f'{note.velocity}/{self.velocity_bins[velocity_index]}')) # Note Off events.append(Event( name='Note-Off', time=note.end, value=note.pitch, text=note.pitch)) # Adds tempo events if specified if self.additional_tokens['Tempo']: for tempo_change in self.current_midi_metadata['tempo_changes']: events.append(Event( name='Tempo', time=tempo_change.time, value=(np.abs(self.tempo_bins - tempo_change.tempo)).argmin(), text=tempo_change.tempo)) # Sorts events in the good order events.sort(key=lambda x: x.time) # Time Shift current_tick = 0 for e, event in enumerate(events[:-1].copy()): if event.time == current_tick: continue time_shift = event.time - current_tick index = np.argmin(np.abs([ticks - time_shift for ticks in self.durations_ticks[self.current_midi_metadata['time_division']]])) events.append(Event( name='Time-Shift', time=current_tick, value='.'.join(map(str, self.durations[index])), text=f'{time_shift} ticks')) current_tick = event.time # Adds chord events if specified if self.additional_tokens['Chord'] and not track.is_drum: events += detect_chords(track.notes, self.current_midi_metadata['time_division']) events.sort(key=lambda x: (x.time, self._order(x))) return self.events_to_tokens(events) def tokens_to_track(self, tokens: List[int], time_division: Optional[int] = TIME_DIVISION, program: Optional[Tuple[int, bool]] = (0, False), default_duration: int = None) \ -> Tuple[Instrument, List[TempoChange]]: """ Converts a sequence of tokens into a track object :param tokens: sequence of tokens to convert :param time_division: MIDI time division / resolution, in ticks/beat (of the MIDI to create) :param program: the MIDI program of the produced track and if it drum, (default (0, False), piano) :param default_duration: default duration (in ticks) in case a Note On event occurs without its associated note off event. Leave None to discard Note On with no Note Off event. :return: the miditoolkit instrument object and tempo changes """ events = self.tokens_to_events(tokens) max_duration = (self.durations[-1][0] + self.durations[-1][1]) * time_division name = 'Drums' if program[1] else MIDI_INSTRUMENTS[program[0]]['name'] instrument = Instrument(program[0], is_drum=program[1], name=name) if self.additional_tokens['Tempo']: tempo_changes = [TempoChange(TEMPO, -1)] # mock the first tempo change to optimize below else: # default tempo_changes = [TempoChange(TEMPO, 0)] * 2 # the first will be deleted at the end of the method current_tick = 0 count = 0 while count < len(events): if events[count].name == 'Note-On': try: if events[count + 1].name == 'Velocity': pitch = int(events[count].value) vel = int(self.velocity_bins[int(events[count + 1].value)]) # look for an associated note off event to get duration offset_tick = 0 duration = 0 for i in range(count+1, len(events)): if events[i].name == 'Note-Off' and int(events[i].value) == pitch: duration = offset_tick break elif events[i].name == 'Time-Shift': beat, pos, res = map(int, events[i].value.split('.')) offset_tick += (beat * res + pos) * time_division // res if offset_tick > max_duration: # will not look for Note Off beyond break if duration == 0 and default_duration is not None: duration = default_duration if duration != 0: instrument.notes.append(Note(vel, pitch, current_tick, current_tick + duration)) count += 2 except IndexError as _: count += 1 elif events[count].name == 'Time-Shift': beat, pos, res = map(int, events[count].value.split('.')) current_tick += (beat * res + pos) * time_division // res count += 1 elif events[count].name == 'Tempo': tempo = int(self.tempo_bins[int(events[count].value)]) if tempo != tempo_changes[-1].tempo: tempo_changes.append(TempoChange(tempo, current_tick)) count += 1 else: count += 1 del tempo_changes[0] return instrument, tempo_changes def _create_vocabulary(self, program_tokens: bool) -> Tuple[dict, dict, dict]: """ Create the tokens <-> event dictionaries These dictionaries are created arbitrary according to constants defined at the top of this file. Note that when using them (prepare_data method), there is no error-handling so you must be sure that every case is covered by the dictionaries. NOTE: token index 0 is often used as a padding index during training, it might be preferable to leave it as it :param program_tokens: creates tokens for MIDI programs in the dictionary :return: the dictionaries, one for each translation """ event_to_token = {'PAD_None': 0} # starting at 1, token 0 is for padding token_type_indices = {'Pad': [0]} # Empty is for empty bars count = 1 # NOTE ON token_type_indices['Note-On'] = list(range(count, count + len(self.pitch_range))) for i in self.pitch_range: event_to_token[f'Note-On_{i}'] = count count += 1 # NOTE OFF token_type_indices['Note-Off'] = list(range(count, count + len(self.pitch_range))) for i in self.pitch_range: event_to_token[f'Note-Off_{i}'] = count count += 1 # VELOCITY token_type_indices['Velocity'] = list(range(count, count + len(self.velocity_bins))) for i in range(len(self.velocity_bins)): event_to_token[f'Velocity_{i}'] = count count += 1 # TIME SHIFTS token_type_indices['Time-Shift'] = list(range(count, count + len(self.durations))) for i in range(0, len(self.durations)): event_to_token[f'Time-Shift_{".".join(map(str, self.durations[i]))}'] = count count += 1 # CHORD if self.additional_tokens['Chord']: token_type_indices['Chord'] = list(range(count, count + 3 + len(CHORD_MAPS))) for i in range(3, 6): # non recognized chords, just considers the nb of notes (between 3 and 5 only) event_to_token[f'Chord_{i}'] = count count += 1 for chord_quality in CHORD_MAPS: # classed chords event_to_token[f'Chord_{chord_quality}'] = count count += 1 # TEMPO if self.additional_tokens['Tempo']: token_type_indices['Tempo'] = list(range(count, count + len(self.tempo_bins))) for i in range(len(self.tempo_bins)): event_to_token[f'Tempo_{i}'] = count count += 1 # PROGRAM if program_tokens: token_type_indices['Program'] = list(range(count, count + 129)) for program in range(-1, 128): # -1 is drums event_to_token[f'Program_{program}'] = count count += 1 token_to_event = {v: k for k, v in event_to_token.items()} # inversion return event_to_token, token_to_event, token_type_indices def _create_token_types_graph(self) -> Dict[str, List[str]]: dic = dict() if 'Program' in self.token_types_indices: dic['Program'] = ['Note-On', 'Time-Shift'] dic['Note-On'] = ['Velocity'] dic['Velocity'] = ['Note-On', 'Time-Shift'] dic['Time-Shift'] = ['Note-Off', 'Note-On'] dic['Note-Off'] = ['Note-Off', 'Note-On', 'Time-Shift'] if self.additional_tokens['Chord']: dic['Chord'] = ['Note-On'] dic['Time-Shift'] += ['Chord'] dic['Note-Off'] += ['Chord'] if self.additional_tokens['Tempo']: dic['Time-Shift'] += ['Tempo'] dic['Tempo'] = ['Time-Shift', 'Note-On'] if self.additional_tokens['Chord']: dic['Tempo'] += ['Chord'] return dic @staticmethod def _order(x: Event) -> int: """ Helper function to sort events in the right order :param x: event to get order index :return: an order int """ if x.name == "Program": return 0 elif x.name == "Note-Off": return 1 elif x.name == 'Tempo': return 2 elif x.name == "Chord": return 3 elif x.name == "Time-Shift": return 1000 # always last else: # for other types of events, the order should be handle when inserting the events in the sequence return 4
#!/usr/bin/python # -*- coding: utf-8 -*- # # (c) 2015, René Moser <mail@renemoser.net> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['stableinterface'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: cs_instance short_description: Manages instances and virtual machines on Apache CloudStack based clouds. description: - Deploy, start, update, scale, restart, restore, stop and destroy instances. version_added: '2.0' author: René Moser (@resmo) options: name: description: - Host name of the instance. C(name) can only contain ASCII letters. - Name will be generated (UUID) by CloudStack if not specified and can not be changed afterwards. - Either C(name) or C(display_name) is required. type: str display_name: description: - Custom display name of the instances. - Display name will be set to I(name) if not specified. - Either I(name) or I(display_name) is required. type: str group: description: - Group in where the new instance should be in. type: str state: description: - State of the instance. type: str default: present choices: [ deployed, started, stopped, restarted, restored, destroyed, expunged, present, absent ] service_offering: description: - Name or id of the service offering of the new instance. - If not set, first found service offering is used. type: str cpu: description: - The number of CPUs to allocate to the instance, used with custom service offerings type: int cpu_speed: description: - The clock speed/shares allocated to the instance, used with custom service offerings type: int memory: description: - The memory allocated to the instance, used with custom service offerings type: int template: description: - Name, display text or id of the template to be used for creating the new instance. - Required when using I(state=present). - Mutually exclusive with I(iso) option. type: str iso: description: - Name or id of the ISO to be used for creating the new instance. - Required when using I(state=present). - Mutually exclusive with I(template) option. type: str template_filter: description: - Name of the filter used to search for the template or iso. - Used for params I(iso) or I(template) on I(state=present). - The filter C(all) was added in 2.6. type: str default: executable choices: [ all, featured, self, selfexecutable, sharedexecutable, executable, community ] aliases: [ iso_filter ] version_added: '2.1' hypervisor: description: - Name the hypervisor to be used for creating the new instance. - Relevant when using I(state=present), but only considered if not set on ISO/template. - If not set or found on ISO/template, first found hypervisor will be used. - Possible values are C(KVM), C(VMware), C(BareMetal), C(XenServer), C(LXC), C(HyperV), C(UCS), C(OVM), C(Simulator). type: str keyboard: description: - Keyboard device type for the instance. type: str choices: [ 'de', 'de-ch', 'es', 'fi', 'fr', 'fr-be', 'fr-ch', 'is', 'it', 'jp', 'nl-be', 'no', 'pt', 'uk', 'us' ] networks: description: - List of networks to use for the new instance. type: list aliases: [ network ] ip_address: description: - IPv4 address for default instance's network during creation. type: str ip6_address: description: - IPv6 address for default instance's network. type: str ip_to_networks: description: - "List of mappings in the form I({'network': NetworkName, 'ip': 1.2.3.4})" - Mutually exclusive with I(networks) option. type: list aliases: [ ip_to_network ] disk_offering: description: - Name of the disk offering to be used. type: str disk_size: description: - Disk size in GByte required if deploying instance from ISO. type: int root_disk_size: description: - Root disk size in GByte required if deploying instance with KVM hypervisor and want resize the root disk size at startup (need CloudStack >= 4.4, cloud-initramfs-growroot installed and enabled in the template) type: int security_groups: description: - List of security groups the instance to be applied to. type: list aliases: [ security_group ] host: description: - Host on which an instance should be deployed or started on. - Only considered when I(state=started) or instance is running. - Requires root admin privileges. type: str version_added: '2.6' domain: description: - Domain the instance is related to. type: str account: description: - Account the instance is related to. type: str project: description: - Name of the project the instance to be deployed in. type: str zone: description: - Name of the zone in which the instance should be deployed. - If not set, default zone is used. type: str ssh_key: description: - Name of the SSH key to be deployed on the new instance. type: str affinity_groups: description: - Affinity groups names to be applied to the new instance. type: list aliases: [ affinity_group ] user_data: description: - Optional data (ASCII) that can be sent to the instance upon a successful deployment. - The data will be automatically base64 encoded. - Consider switching to HTTP_POST by using I(CLOUDSTACK_METHOD=post) to increase the HTTP_GET size limit of 2KB to 32 KB. type: str force: description: - Force stop/start the instance if required to apply changes, otherwise a running instance will not be changed. type: bool default: no allow_root_disk_shrink: description: - Enables a volume shrinkage when the new size is smaller than the old one. type: bool default: no version_added: '2.7' tags: description: - List of tags. Tags are a list of dictionaries having keys C(key) and C(value). - "If you want to delete all tags, set a empty list e.g. I(tags: [])." type: list aliases: [ tag ] poll_async: description: - Poll async jobs until job has finished. type: bool default: yes details: description: - Map to specify custom parameters. type: dict version_added: '2.6' extends_documentation_fragment: cloudstack ''' EXAMPLES = ''' # NOTE: Names of offerings and ISOs depending on the CloudStack configuration. - name: create a instance from an ISO cs_instance: name: web-vm-1 iso: Linux Debian 7 64-bit hypervisor: VMware project: Integration zone: ch-zrh-ix-01 service_offering: 1cpu_1gb disk_offering: PerfPlus Storage disk_size: 20 networks: - Server Integration - Sync Integration - Storage Integration delegate_to: localhost - name: for changing a running instance, use the 'force' parameter cs_instance: name: web-vm-1 display_name: web-vm-01.example.com iso: Linux Debian 7 64-bit service_offering: 2cpu_2gb force: yes delegate_to: localhost # NOTE: user_data can be used to kickstart the instance using cloud-init yaml config. - name: create or update a instance on Exoscale's public cloud using display_name. cs_instance: display_name: web-vm-1 template: Linux Debian 7 64-bit service_offering: Tiny ssh_key: john@example.com tags: - key: admin value: john - key: foo value: bar user_data: | #cloud-config packages: - nginx delegate_to: localhost - name: create an instance with multiple interfaces specifying the IP addresses cs_instance: name: web-vm-1 template: Linux Debian 7 64-bit service_offering: Tiny ip_to_networks: - network: NetworkA ip: 10.1.1.1 - network: NetworkB ip: 192.0.2.1 delegate_to: localhost - name: ensure an instance is stopped cs_instance: name: web-vm-1 state: stopped delegate_to: localhost - name: ensure an instance is running cs_instance: name: web-vm-1 state: started delegate_to: localhost - name: remove an instance cs_instance: name: web-vm-1 state: absent delegate_to: localhost ''' RETURN = ''' --- id: description: UUID of the instance. returned: success type: str sample: 04589590-ac63-4ffc-93f5-b698b8ac38b6 name: description: Name of the instance. returned: success type: str sample: web-01 display_name: description: Display name of the instance. returned: success type: str sample: web-01 group: description: Group name of the instance is related. returned: success type: str sample: web created: description: Date of the instance was created. returned: success type: str sample: 2014-12-01T14:57:57+0100 password_enabled: description: True if password setting is enabled. returned: success type: bool sample: true password: description: The password of the instance if exists. returned: if available type: str sample: Ge2oe7Do ssh_key: description: Name of SSH key deployed to instance. returned: if available type: str sample: key@work domain: description: Domain the instance is related to. returned: success type: str sample: example domain account: description: Account the instance is related to. returned: success type: str sample: example account project: description: Name of project the instance is related to. returned: success type: str sample: Production default_ip: description: Default IP address of the instance. returned: success type: str sample: 10.23.37.42 default_ip6: description: Default IPv6 address of the instance. returned: if available type: str sample: 2a04:c43:c00:a07:4b4:beff:fe00:74 version_added: '2.6' public_ip: description: Public IP address with instance via static NAT rule. returned: if available type: str sample: 1.2.3.4 iso: description: Name of ISO the instance was deployed with. returned: if available type: str sample: Debian-8-64bit template: description: Name of template the instance was deployed with. returned: success type: str sample: Linux Debian 9 64-bit template_display_text: description: Display text of template the instance was deployed with. returned: success type: str sample: Linux Debian 9 64-bit 200G Disk (2017-10-08-622866) version_added: '2.6' service_offering: description: Name of the service offering the instance has. returned: success type: str sample: 2cpu_2gb zone: description: Name of zone the instance is in. returned: success type: str sample: ch-gva-2 state: description: State of the instance. returned: success type: str sample: Running security_groups: description: Security groups the instance is in. returned: success type: list sample: '[ "default" ]' affinity_groups: description: Affinity groups the instance is in. returned: success type: list sample: '[ "webservers" ]' tags: description: List of resource tags associated with the instance. returned: success type: list sample: '[ { "key": "foo", "value": "bar" } ]' hypervisor: description: Hypervisor related to this instance. returned: success type: str sample: KVM host: description: Hostname of hypervisor an instance is running on. returned: success and instance is running type: str sample: host-01.example.com version_added: '2.6' instance_name: description: Internal name of the instance (ROOT admin only). returned: success type: str sample: i-44-3992-VM user-data: description: Optional data sent to the instance. returned: success type: str sample: VXNlciBkYXRhIGV4YW1wbGUK ''' import base64 from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_bytes, to_text from ansible.module_utils.cloudstack import ( AnsibleCloudStack, cs_argument_spec, cs_required_together ) class AnsibleCloudStackInstance(AnsibleCloudStack): def __init__(self, module): super(AnsibleCloudStackInstance, self).__init__(module) self.returns = { 'group': 'group', 'hypervisor': 'hypervisor', 'instancename': 'instance_name', 'publicip': 'public_ip', 'passwordenabled': 'password_enabled', 'password': 'password', 'serviceofferingname': 'service_offering', 'isoname': 'iso', 'templatename': 'template', 'templatedisplaytext': 'template_display_text', 'keypair': 'ssh_key', 'hostname': 'host', } self.instance = None self.template = None self.iso = None def get_service_offering_id(self): service_offering = self.module.params.get('service_offering') service_offerings = self.query_api('listServiceOfferings') if service_offerings: if not service_offering: return service_offerings['serviceoffering'][0]['id'] for s in service_offerings['serviceoffering']: if service_offering in [s['name'], s['id']]: return s['id'] self.fail_json(msg="Service offering '%s' not found" % service_offering) def get_host_id(self): host_name = self.module.params.get('host') if not host_name: return None args = { 'type': 'routing', 'zoneid': self.get_zone(key='id'), } hosts = self.query_api('listHosts', **args) if hosts: for h in hosts['host']: if h['name'] == host_name: return h['id'] self.fail_json(msg="Host '%s' not found" % host_name) def get_template_or_iso(self, key=None): template = self.module.params.get('template') iso = self.module.params.get('iso') if not template and not iso: return None args = { 'account': self.get_account(key='name'), 'domainid': self.get_domain(key='id'), 'projectid': self.get_project(key='id'), 'zoneid': self.get_zone(key='id'), 'isrecursive': True, 'fetch_list': True, } if template: if self.template: return self._get_by_key(key, self.template) rootdisksize = self.module.params.get('root_disk_size') args['templatefilter'] = self.module.params.get('template_filter') args['fetch_list'] = True templates = self.query_api('listTemplates', **args) if templates: for t in templates: if template in [t['displaytext'], t['name'], t['id']]: if rootdisksize and t['size'] > rootdisksize * 1024 ** 3: continue self.template = t return self._get_by_key(key, self.template) if rootdisksize: more_info = " (with size <= %s)" % rootdisksize else: more_info = "" self.module.fail_json(msg="Template '%s' not found%s" % (template, more_info)) elif iso: if self.iso: return self._get_by_key(key, self.iso) args['isofilter'] = self.module.params.get('template_filter') args['fetch_list'] = True isos = self.query_api('listIsos', **args) if isos: for i in isos: if iso in [i['displaytext'], i['name'], i['id']]: self.iso = i return self._get_by_key(key, self.iso) self.module.fail_json(msg="ISO '%s' not found" % iso) def get_instance(self): instance = self.instance if not instance: instance_name = self.get_or_fallback('name', 'display_name') args = { 'account': self.get_account(key='name'), 'domainid': self.get_domain(key='id'), 'projectid': self.get_project(key='id'), 'fetch_list': True, } # Do not pass zoneid, as the instance name must be unique across zones. instances = self.query_api('listVirtualMachines', **args) if instances: for v in instances: if instance_name.lower() in [v['name'].lower(), v['displayname'].lower(), v['id']]: self.instance = v break return self.instance def _get_instance_user_data(self, instance): # Query the user data if we need to if 'userdata' in instance: return instance['userdata'] user_data = "" if self.get_user_data() is not None and instance.get('id'): res = self.query_api('getVirtualMachineUserData', virtualmachineid=instance['id']) user_data = res['virtualmachineuserdata'].get('userdata', "") return user_data def get_iptonetwork_mappings(self): network_mappings = self.module.params.get('ip_to_networks') if network_mappings is None: return if network_mappings and self.module.params.get('networks'): self.module.fail_json(msg="networks and ip_to_networks are mutually exclusive.") network_names = [n['network'] for n in network_mappings] ids = self.get_network_ids(network_names) res = [] for i, data in enumerate(network_mappings): res.append({'networkid': ids[i], 'ip': data['ip']}) return res def get_ssh_keypair(self, key=None, name=None, fail_on_missing=True): ssh_key_name = name or self.module.params.get('ssh_key') if ssh_key_name is None: return args = { 'domainid': self.get_domain('id'), 'account': self.get_account('name'), 'projectid': self.get_project('id'), 'name': ssh_key_name, } ssh_key_pairs = self.query_api('listSSHKeyPairs', **args) if 'sshkeypair' in ssh_key_pairs: return self._get_by_key(key=key, my_dict=ssh_key_pairs['sshkeypair'][0]) elif fail_on_missing: self.module.fail_json(msg="SSH key not found: %s" % ssh_key_name) def ssh_key_has_changed(self): ssh_key_name = self.module.params.get('ssh_key') if ssh_key_name is None: return False # Fails if keypair for param is inexistent param_ssh_key_fp = self.get_ssh_keypair(key='fingerprint') # CloudStack 4.5 does return keypair on instance for a non existent key. instance_ssh_key_name = self.instance.get('keypair') if instance_ssh_key_name is None: return True # Get fingerprint for keypair of instance but do not fail if inexistent. instance_ssh_key_fp = self.get_ssh_keypair(key='fingerprint', name=instance_ssh_key_name, fail_on_missing=False) if not instance_ssh_key_fp: return True # Compare fingerprints to ensure the keypair changed if instance_ssh_key_fp != param_ssh_key_fp: return True return False def security_groups_has_changed(self): security_groups = self.module.params.get('security_groups') if security_groups is None: return False security_groups = [s.lower() for s in security_groups] instance_security_groups = self.instance.get('securitygroup') or [] instance_security_group_names = [] for instance_security_group in instance_security_groups: if instance_security_group['name'].lower() not in security_groups: return True else: instance_security_group_names.append(instance_security_group['name'].lower()) for security_group in security_groups: if security_group not in instance_security_group_names: return True return False def get_network_ids(self, network_names=None): if network_names is None: network_names = self.module.params.get('networks') if not network_names: return None args = { 'account': self.get_account(key='name'), 'domainid': self.get_domain(key='id'), 'projectid': self.get_project(key='id'), 'zoneid': self.get_zone(key='id'), 'fetch_list': True, } networks = self.query_api('listNetworks', **args) if not networks: self.module.fail_json(msg="No networks available") network_ids = [] network_displaytexts = [] for network_name in network_names: for n in networks: if network_name in [n['displaytext'], n['name'], n['id']]: network_ids.append(n['id']) network_displaytexts.append(n['name']) break if len(network_ids) != len(network_names): self.module.fail_json(msg="Could not find all networks, networks list found: %s" % network_displaytexts) return network_ids def present_instance(self, start_vm=True): instance = self.get_instance() if not instance: instance = self.deploy_instance(start_vm=start_vm) else: instance = self.recover_instance(instance=instance) instance = self.update_instance(instance=instance, start_vm=start_vm) # In check mode, we do not necessarily have an instance if instance: instance = self.ensure_tags(resource=instance, resource_type='UserVm') # refresh instance data self.instance = instance return instance def get_user_data(self): user_data = self.module.params.get('user_data') if user_data is not None: user_data = to_text(base64.b64encode(to_bytes(user_data))) return user_data def get_details(self): details = self.module.params.get('details') cpu = self.module.params.get('cpu') cpu_speed = self.module.params.get('cpu_speed') memory = self.module.params.get('memory') if all([cpu, cpu_speed, memory]): details.extends({ 'cpuNumber': cpu, 'cpuSpeed': cpu_speed, 'memory': memory, }) return details def deploy_instance(self, start_vm=True): self.result['changed'] = True networkids = self.get_network_ids() if networkids is not None: networkids = ','.join(networkids) args = {} args['templateid'] = self.get_template_or_iso(key='id') if not args['templateid']: self.module.fail_json(msg="Template or ISO is required.") args['zoneid'] = self.get_zone(key='id') args['serviceofferingid'] = self.get_service_offering_id() args['account'] = self.get_account(key='name') args['domainid'] = self.get_domain(key='id') args['projectid'] = self.get_project(key='id') args['diskofferingid'] = self.get_disk_offering(key='id') args['networkids'] = networkids args['iptonetworklist'] = self.get_iptonetwork_mappings() args['userdata'] = self.get_user_data() args['keyboard'] = self.module.params.get('keyboard') args['ipaddress'] = self.module.params.get('ip_address') args['ip6address'] = self.module.params.get('ip6_address') args['name'] = self.module.params.get('name') args['displayname'] = self.get_or_fallback('display_name', 'name') args['group'] = self.module.params.get('group') args['keypair'] = self.get_ssh_keypair(key='name') args['size'] = self.module.params.get('disk_size') args['startvm'] = start_vm args['rootdisksize'] = self.module.params.get('root_disk_size') args['affinitygroupnames'] = self.module.params.get('affinity_groups') args['details'] = self.get_details() args['securitygroupnames'] = self.module.params.get('security_groups') args['hostid'] = self.get_host_id() template_iso = self.get_template_or_iso() if 'hypervisor' not in template_iso: args['hypervisor'] = self.get_hypervisor() instance = None if not self.module.check_mode: instance = self.query_api('deployVirtualMachine', **args) poll_async = self.module.params.get('poll_async') if poll_async: instance = self.poll_job(instance, 'virtualmachine') return instance def update_instance(self, instance, start_vm=True): # Service offering data args_service_offering = { 'id': instance['id'], } if self.module.params.get('service_offering'): args_service_offering['serviceofferingid'] = self.get_service_offering_id() service_offering_changed = self.has_changed(args_service_offering, instance) # Instance data args_instance_update = { 'id': instance['id'], 'userdata': self.get_user_data(), } instance['userdata'] = self._get_instance_user_data(instance) args_instance_update['ostypeid'] = self.get_os_type(key='id') if self.module.params.get('group'): args_instance_update['group'] = self.module.params.get('group') if self.module.params.get('display_name'): args_instance_update['displayname'] = self.module.params.get('display_name') instance_changed = self.has_changed(args_instance_update, instance) ssh_key_changed = self.ssh_key_has_changed() security_groups_changed = self.security_groups_has_changed() # Volume data args_volume_update = {} root_disk_size = self.module.params.get('root_disk_size') root_disk_size_changed = False if root_disk_size is not None: res = self.query_api('listVolumes', type='ROOT', virtualmachineid=instance['id']) [volume] = res['volume'] size = volume['size'] >> 30 args_volume_update['id'] = volume['id'] args_volume_update['size'] = root_disk_size shrinkok = self.module.params.get('allow_root_disk_shrink') if shrinkok: args_volume_update['shrinkok'] = shrinkok root_disk_size_changed = root_disk_size != size changed = [ service_offering_changed, instance_changed, security_groups_changed, ssh_key_changed, root_disk_size_changed, ] if any(changed): force = self.module.params.get('force') instance_state = instance['state'].lower() if instance_state == 'stopped' or force: self.result['changed'] = True if not self.module.check_mode: # Ensure VM has stopped instance = self.stop_instance() instance = self.poll_job(instance, 'virtualmachine') self.instance = instance # Change service offering if service_offering_changed: res = self.query_api('changeServiceForVirtualMachine', **args_service_offering) instance = res['virtualmachine'] self.instance = instance # Update VM if instance_changed or security_groups_changed: if security_groups_changed: args_instance_update['securitygroupnames'] = ','.join(self.module.params.get('security_groups')) res = self.query_api('updateVirtualMachine', **args_instance_update) instance = res['virtualmachine'] self.instance = instance # Reset SSH key if ssh_key_changed: # SSH key data args_ssh_key = {} args_ssh_key['id'] = instance['id'] args_ssh_key['projectid'] = self.get_project(key='id') args_ssh_key['keypair'] = self.module.params.get('ssh_key') instance = self.query_api('resetSSHKeyForVirtualMachine', **args_ssh_key) instance = self.poll_job(instance, 'virtualmachine') self.instance = instance # Root disk size if root_disk_size_changed: async_result = self.query_api('resizeVolume', **args_volume_update) self.poll_job(async_result, 'volume') # Start VM again if it was running before if instance_state == 'running' and start_vm: instance = self.start_instance() else: self.module.warn("Changes won't be applied to running instances. " "Use force=true to allow the instance %s to be stopped/started." % instance['name']) # migrate to other host host_changed = all([ instance['state'].lower() in ['starting', 'running'], instance.get('hostname') is not None, self.module.params.get('host') is not None, self.module.params.get('host') != instance.get('hostname') ]) if host_changed: self.result['changed'] = True args_host = { 'virtualmachineid': instance['id'], 'hostid': self.get_host_id(), } if not self.module.check_mode: res = self.query_api('migrateVirtualMachine', **args_host) instance = self.poll_job(res, 'virtualmachine') return instance def recover_instance(self, instance): if instance['state'].lower() in ['destroying', 'destroyed']: self.result['changed'] = True if not self.module.check_mode: res = self.query_api('recoverVirtualMachine', id=instance['id']) instance = res['virtualmachine'] return instance def absent_instance(self): instance = self.get_instance() if instance: if instance['state'].lower() not in ['expunging', 'destroying', 'destroyed']: self.result['changed'] = True if not self.module.check_mode: res = self.query_api('destroyVirtualMachine', id=instance['id']) poll_async = self.module.params.get('poll_async') if poll_async: instance = self.poll_job(res, 'virtualmachine') return instance def expunge_instance(self): instance = self.get_instance() if instance: res = {} if instance['state'].lower() in ['destroying', 'destroyed']: self.result['changed'] = True if not self.module.check_mode: res = self.query_api('destroyVirtualMachine', id=instance['id'], expunge=True) elif instance['state'].lower() not in ['expunging']: self.result['changed'] = True if not self.module.check_mode: res = self.query_api('destroyVirtualMachine', id=instance['id'], expunge=True) poll_async = self.module.params.get('poll_async') if poll_async: res = self.poll_job(res, 'virtualmachine') return instance def stop_instance(self): instance = self.get_instance() # in check mode instance may not be instanciated if instance: if instance['state'].lower() in ['stopping', 'stopped']: return instance if instance['state'].lower() in ['starting', 'running']: self.result['changed'] = True if not self.module.check_mode: instance = self.query_api('stopVirtualMachine', id=instance['id']) poll_async = self.module.params.get('poll_async') if poll_async: instance = self.poll_job(instance, 'virtualmachine') return instance def start_instance(self): instance = self.get_instance() # in check mode instance may not be instanciated if instance: if instance['state'].lower() in ['starting', 'running']: return instance if instance['state'].lower() in ['stopped', 'stopping']: self.result['changed'] = True if not self.module.check_mode: args = { 'id': instance['id'], 'hostid': self.get_host_id(), } instance = self.query_api('startVirtualMachine', **args) poll_async = self.module.params.get('poll_async') if poll_async: instance = self.poll_job(instance, 'virtualmachine') return instance def restart_instance(self): instance = self.get_instance() # in check mode instance may not be instanciated if instance: if instance['state'].lower() in ['running', 'starting']: self.result['changed'] = True if not self.module.check_mode: instance = self.query_api('rebootVirtualMachine', id=instance['id']) poll_async = self.module.params.get('poll_async') if poll_async: instance = self.poll_job(instance, 'virtualmachine') elif instance['state'].lower() in ['stopping', 'stopped']: instance = self.start_instance() return instance def restore_instance(self): instance = self.get_instance() self.result['changed'] = True # in check mode instance may not be instanciated if instance: args = {} args['templateid'] = self.get_template_or_iso(key='id') args['virtualmachineid'] = instance['id'] res = self.query_api('restoreVirtualMachine', **args) poll_async = self.module.params.get('poll_async') if poll_async: instance = self.poll_job(res, 'virtualmachine') return instance def get_result(self, instance): super(AnsibleCloudStackInstance, self).get_result(instance) if instance: self.result['user_data'] = self._get_instance_user_data(instance) if 'securitygroup' in instance: security_groups = [] for securitygroup in instance['securitygroup']: security_groups.append(securitygroup['name']) self.result['security_groups'] = security_groups if 'affinitygroup' in instance: affinity_groups = [] for affinitygroup in instance['affinitygroup']: affinity_groups.append(affinitygroup['name']) self.result['affinity_groups'] = affinity_groups if 'nic' in instance: for nic in instance['nic']: if nic['isdefault']: if 'ipaddress' in nic: self.result['default_ip'] = nic['ipaddress'] if 'ip6address' in nic: self.result['default_ip6'] = nic['ip6address'] return self.result def main(): argument_spec = cs_argument_spec() argument_spec.update(dict( name=dict(), display_name=dict(), group=dict(), state=dict(choices=['present', 'deployed', 'started', 'stopped', 'restarted', 'restored', 'absent', 'destroyed', 'expunged'], default='present'), service_offering=dict(), cpu=dict(type='int'), cpu_speed=dict(type='int'), memory=dict(type='int'), template=dict(), iso=dict(), template_filter=dict( default="executable", aliases=['iso_filter'], choices=['all', 'featured', 'self', 'selfexecutable', 'sharedexecutable', 'executable', 'community'] ), networks=dict(type='list', aliases=['network']), ip_to_networks=dict(type='list', aliases=['ip_to_network']), ip_address=dict(), ip6_address=dict(), disk_offering=dict(), disk_size=dict(type='int'), root_disk_size=dict(type='int'), keyboard=dict(type='str', choices=['de', 'de-ch', 'es', 'fi', 'fr', 'fr-be', 'fr-ch', 'is', 'it', 'jp', 'nl-be', 'no', 'pt', 'uk', 'us']), hypervisor=dict(), host=dict(), security_groups=dict(type='list', aliases=['security_group']), affinity_groups=dict(type='list', aliases=['affinity_group']), domain=dict(), account=dict(), project=dict(), user_data=dict(), zone=dict(), ssh_key=dict(), force=dict(type='bool', default=False), tags=dict(type='list', aliases=['tag']), details=dict(type='dict'), poll_async=dict(type='bool', default=True), allow_root_disk_shrink=dict(type='bool', default=False), )) required_together = cs_required_together() required_together.extend([ ['cpu', 'cpu_speed', 'memory'], ]) module = AnsibleModule( argument_spec=argument_spec, required_together=required_together, required_one_of=( ['display_name', 'name'], ), mutually_exclusive=( ['template', 'iso'], ), supports_check_mode=True ) acs_instance = AnsibleCloudStackInstance(module) state = module.params.get('state') if state in ['absent', 'destroyed']: instance = acs_instance.absent_instance() elif state in ['expunged']: instance = acs_instance.expunge_instance() elif state in ['restored']: acs_instance.present_instance() instance = acs_instance.restore_instance() elif state in ['present', 'deployed']: instance = acs_instance.present_instance() elif state in ['stopped']: acs_instance.present_instance(start_vm=False) instance = acs_instance.stop_instance() elif state in ['started']: acs_instance.present_instance() instance = acs_instance.start_instance() elif state in ['restarted']: acs_instance.present_instance() instance = acs_instance.restart_instance() if instance and 'state' in instance and instance['state'].lower() == 'error': module.fail_json(msg="Instance named '%s' in error state." % module.params.get('name')) result = acs_instance.get_result(instance) module.exit_json(**result) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- from __future__ import division import numpy as np import matplotlib.pylab as plt import sys from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from scipy import interpolate from os import makedirs from os.path import exists from vampy import vamplot from vampy import utils plt.rcParams['axes.labelsize'] = 9 plt.rcParams['xtick.labelsize'] = 9 plt.rcParams['ytick.labelsize'] = 9 plt.rcParams['legend.fontsize'] = 9 plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.serif'] = ['Arial'] def spatial_plots(fig_dims, suffix, plot_dir, n): rc, qc, Re = self.nondim L = self.L * rc nt = len(self.U[0,:,0]) x = np.linspace(0, L, self.nx) skip = int(nt/n)+1 u = ['a', 'q', 'p'] l = ['cm^2', 'cm^3/s', 'mmHg'] positions = range(0,nt-1,skip) for i in range(2): y = self.U[i,positions,:] fname = "%s/%s_%s%d_spatial.png" % (plot_dir, suffix, u[i], self.pos) Artery.plot(fig_dims, suffix, plot_dir, x, y, positions, "cm", l[i], fname) y = self.P[positions,:] # convert to mmHg fname = "%s/%s_%s%d_spatial.png" % (plot_dir, suffix, u[2], self.pos) Artery.plot(fig_dims, suffix, plot_dir, x, y, positions, "cm", l[2], fname) def time_plots(fig_dims, suffix, plot_dir, n, time): rc, qc, Re = self.nondim time = time * rc**3 / qc skip = int(self.nx/n)+1 u = ['a', 'q', 'p'] l = ['cm^2', 'cm^3/s', 'mmHg'] positions = range(0,self.nx-1,skip) for i in range(2): y = self.U[i,:,positions] fname = "%s/%s_%s%d_time.png" % (plot_dir, suffix, u[i], self.pos) Artery.plot(fig_dims, suffix, plot_dir, time, y, positions, "t", l[i], fname) y = np.transpose(self.P[:,positions]) fname = "%s/%s_%s%d_time.png" % (plot_dir, suffix, u[2], self.pos) Artery.plot(fig_dims, suffix, plot_dir, time, y, positions, "t", l[2], fname) def pq_plot(fig_dims, suffix, plot_dir): L = len(self.P[0,:])-1 positions = [0, int(L/4), int(L/2), int(3*L/4), L] y = np.transpose(self.P[:,positions]) x = self.U[1,:,positions] fname = "%s/%s_%s%d_pq.png" % (plot_dir, suffix, 'pq', self.pos) plt.figure(fig_dims) labels = ['0', 'L/4', 'L/2', '3L/4', 'L'] for i in range(len(y[:,0])): plt.plot(x[i,:], y[i,:], lw=1, color='k') plt.xlabel('flux (cm^3/s)') plt.ylabel('pressure (mmHg)') plt.savefig(fname, dpi=600, bbox_inches='tight') def plot(fig_dims, suffix, plot_dir, x, y, labels, xlabel, ylabel, fname): colours = ['#377eb8', '#4daf4a', '#984ea3', '#d95f02'] plt.figure(fig_dims) s = y.shape n = min(s) for i in range(n): plt.plot(x, y[i,:], label="%d" % (labels[i]), lw=2, color=colours[i]) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.xlim([min(x), max(x)]) plt.legend() plt.savefig(fname, dpi=600, bbox_inches='tight') def main(param): # read config file f, a, s = utils.read_config(param) data_dir = f['data_dir'] plot_dir = f['plot_dir'] suffix = f['run_id'] T = s['T'] tc = s['tc'] tf = T*tc if not exists("%s/%s" % (plot_dir, suffix)): makedirs("%s/%s" % (plot_dir, suffix)) pos = 0 if type(a['Ru']) is float: L = a['Ru']*a['lam'] else: L = a['Ru'][pos]*a['lam'][pos] P = np.loadtxt("%s/%s/p%d_%s.csv" % (data_dir, suffix, pos, suffix), delimiter=',') U = np.loadtxt("%s/%s/u%d_%s.csv" % (data_dir, suffix, pos, suffix), delimiter=',') t = np.linspace(tf-T, tf, P.shape[1]) x = np.linspace(0,L,P.shape[0]) f = interpolate.interp2d(t, x, P, kind='linear') g = interpolate.interp2d(t, x, U, kind='linear') x = np.linspace(0, L, len(t)) P = f(t, x) U = g(t, x) WIDTH = 510 # the number latex spits out FACTOR = 1.0 # the fraction of the width you'd like the figure to occupy fig_width_pt = WIDTH * FACTOR inches_per_pt = 1.0 / 72.27 golden_ratio = (np.sqrt(5) - 1.0) / 2.0 # because it looks good fig_width_in = fig_width_pt * inches_per_pt # figure width in inches fig_height_in = fig_width_in * golden_ratio # figure height in inches fig_dims = [fig_width_in, fig_height_in] # fig dims as a list vamplot.p3d_plot(fig_dims, suffix, plot_dir, t, P, L, pos) vamplot.q3d_plot(fig_dims, suffix, plot_dir, t, U, L, pos) if __name__ == "__main__": script, param = sys.argv main(param)
import os import numpy as np from six.moves import cPickle from tensorflow import keras import helper from tfomics import utils, explain #------------------------------------------------------------------------ num_trials = 10 model_names = ['cnn-dist', 'cnn-local'] activations = ['relu', 'exponential', 'sigmoid', 'tanh', 'softplus', 'linear', 'elu'] results_path = os.path.join('../results', 'task3') params_path = os.path.join(results_path, 'model_params') save_path = utils.make_directory(results_path, 'scores') #------------------------------------------------------------------------ # load data data_path = '../data/synthetic_code_dataset.h5' data = helper.load_data(data_path) x_train, y_train, x_valid, y_valid, x_test, y_test = data # load ground truth values test_model = helper.load_synthetic_models(data_path, dataset='test') true_index = np.where(y_test[:,0] == 1)[0] X = x_test[true_index][:500] X_model = test_model[true_index][:500] #------------------------------------------------------------------------ for model_name in model_names: for activation in activations: saliency_scores = [] mut_scores = [] integrated_scores = [] shap_scores = [] for trial in range(num_trials): keras.backend.clear_session() # load model model = helper.load_model(model_name, activation=activation) name = model_name+'_'+activation+'_'+str(trial) print('model: ' + name) # compile model helper.compile_model(model) # load model weights_path = os.path.join(params_path, name+'.hdf5') model.load_weights(weights_path) # interpretability performance with saliency maps print('saliency maps') saliency_scores.append(explain.saliency(model, X, class_index=0, layer=-1)) # interpretability performance with mutagenesis print('mutagenesis maps') mut_scores.append(explain.mutagenesis(model, X, class_index=0, layer=-1)) # interpretability performance with integrated gradients print('integrated gradients maps') integrated_scores.append(explain.integrated_grad(model, X, class_index=0, layer=-1, num_background=10, num_steps=20, reference='shuffle')) # interpretability performance with deepshap print('shap maps') shap_scores.append(explain.deepshap(model, X, class_index=0, num_background=10, reference='shuffle')) # save results file_path = os.path.join(save_path, model_name+'_'+activation+'.pickle') with open(file_path, 'wb') as f: cPickle.dump(np.array(saliency_scores), f, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(np.array(mut_scores), f, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(np.array(integrated_scores), f, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(np.array(shap_scores), f, protocol=cPickle.HIGHEST_PROTOCOL)
from .. import base # pylint: disable=unuse-import class BaseAliyunApi: """ Aliyun base class""" def __init__(self, client=None): self.client = client # type: base.BaseAliyunClient
import yaml import os.path from kubernetes import client, config, utils ############################################################################################# # Following prints a list of all SAS models both active/running and inactive/ready_for_scoring # def list_knative_models(kubeconfig_path,k8s_namespace, knative_scoring_ingress_host): list_nodes, list_pods, list_ksvcs = True, True, True try: if os.path.exists(kubeconfig_path): config.load_kube_config(config_file=kubeconfig_path) else: print("kubeconfig file not found") return v1 = client.CoreV1Api() if list_nodes: print("======================") print("List of nodes in cluster: ") res = v1.list_node() #print("result type: ", type(res), type(res.items)) for i in res.items: print(i.metadata.name, i.status.conditions[-1].type) if list_pods: print("======================") print("List of Running pods/Active models scoring currently in cluster: ") res = v1.list_namespaced_pod(namespace=k8s_namespace) #print("result type: ", type(res), type(res.items)) for i in res.items: print(i.metadata.name, i.status.phase) if list_ksvcs: print("======================") print("List of knative svcs/Ready models for scoring in cluster: ") print("Model Name, Model deployed date, Model Generation and Container Image Path and ScoringURL") api = client.CustomObjectsApi() res = api.list_namespaced_custom_object(group="serving.knative.dev", version="v1", plural="services", namespace=k8s_namespace) #print("result type: ", type(res), type(res['items'])) for i in res['items']: #print("i", i) if i['status']['conditions'][0]['status'] == 'True': print(i['metadata']['name'], ",", i['metadata']['creationTimestamp'],",", i['metadata']['generation'],",", i['spec']['template']['spec']['containers'][0]['image'],",", "ScoringURL", knative_scoring_ingress_host+i['metadata']['name']+"/") else: print(i['metadata']['name'], ",", i['metadata']['creationTimestamp'], ",", i['metadata']['generation'], ",", i['spec']['template']['spec']['containers'][0]['image'], ",", "Service not ready. Debug ksvc with k8s admin if issue persists more than 5-10 min") except Exception as e: print(str(e)) raise e ########################################################################################################### #### Following deploys a knative service ## def deploy_model_to_knative(kubeconfig_path, k8s_namespace, knative_scoring_ingress_host, knative_scoring_ingress_hostname, model_name, model_imagepath,model_timeout): import re sas_model_knative = { "apiVersion": "serving.knative.dev/v1", "kind": "Service", "metadata" : { "name": model_name, }, "spec": { "template": { "metadata": { "annotations": { "autoscaling.knative.dev/window": model_timeout } }, "spec": { "containers": [{ "image": model_imagepath, }] } } } } if not re.match("^(?![0-9]+$)(?!-)[a-zA-Z0-9-]{,63}(?<!-)$",model_name): print(model_name, "name should not have underscores etc and should match to a DNS Label convention") return try: if os.path.exists(kubeconfig_path): config.load_kube_config(config_file=kubeconfig_path) else: print("kubeconfig file not found") return v1 = client.CoreV1Api() apps_v1 = client.AppsV1Api() api = client.CustomObjectsApi() resource = api.create_namespaced_custom_object( group="serving.knative.dev", version="v1", plural="services", namespace=k8s_namespace, body=sas_model_knative) print("model deployed successfully. Can be inferenced at ",knative_scoring_ingress_host+model_imagepath.split('/')[-1]) print("Since are using load balancer we need to put in Host in header info like this: ","-HHost:"+model_name+"."+k8s_namespace+"."+knative_scoring_ingress_hostname ) except Exception as e: print(str(e)) raise e ########################################################## # Delete the SAS model from knative setup.. def delete_model_knative(kubeconfig_path, k8s_namespace, model_name): try: config.load_kube_config(config_file=kubeconfig_path) v1 = client.CoreV1Api() api = client.CustomObjectsApi() resource = api.delete_namespaced_custom_object( group="serving.knative.dev", version="v1", name = model_name, plural="services", namespace=k8s_namespace, body=client.V1DeleteOptions()) print(model_name, "Model deleted from kubernetes/knative. Container Image is not aletered. You can always redeploy") except Exception as e: print(str(e)) raise e ################################################################################################## ############################################################################################ #################### # Following prints a list of all revisions for a given model # def list_knative_revisions(kubeconfig_path,k8s_namespace, knative_scoring_ingress_host, model_name): try: if os.path.exists(kubeconfig_path): config.load_kube_config(config_file=kubeconfig_path) else: print("kubeconfig file not found") return v1 = client.CoreV1Api() print("======================") print("List of revisions for model: ", model_name) print("Model Revision, Ready, Generation, Container Image Path") api = client.CustomObjectsApi() res = api.list_namespaced_custom_object(group="serving.knative.dev", version="v1", plural="revisions", namespace=k8s_namespace) for i in res['items']: if i['metadata']['labels']['serving.knative.dev/configuration'] == model_name: #print("i: ", i) print(i['metadata']['name'],",", i['status']['conditions'][-1]['status'], ",", i['metadata']['labels']['serving.knative.dev/configurationGeneration'], ",", i['spec']['containers'][0]['image'] ) print("======================") print("Split of traffic by revision") res = api.list_namespaced_custom_object(group="serving.knative.dev", version="v1", plural="services", namespace=k8s_namespace) for i in res['items']: if i['metadata']['name'] == model_name: traffic_list = i['spec']['traffic'] for traffic in traffic_list: print("traffic: ", traffic) #if traffic['revisionName']: # print(traffic['revisionName'],",",traffic['percent'],",",traffic['tag']) #else: # print("traffic: ", traffic) except Exception as e: print(str(e)) raise e ## def deploy_revision_to_knative(kubeconfig_path, k8s_namespace, model_name, blue_revision_name, blue_percent, green_revision_name, green_percent, green_revision_imagepath, model_timeout): import re sas_revision_knative = { "apiVersion": "serving.knative.dev/v1", "kind": "Service", "metadata" : { "name": model_name, }, "spec": { "template": { "metadata": { "name": green_revision_name, "annotations": { "autoscaling.knative.dev/window": model_timeout } }, "spec": { "containers": [{ "image": green_revision_imagepath, }] } }, "traffic": [ { "tag": "blue", "revisionName": blue_revision_name, "percent": blue_percent }, { "tag": "green", "revisionName": green_revision_name, "percent": green_percent } ] } } if not re.match("^(?![0-9]+$)(?!-)[a-zA-Z0-9-]{,63}(?<!-)$",model_name): print(green_revision_name, "name should not have underscores etc and should match to a DNS Label convention") return if not model_name in green_revision_name: print("revision name ",green_revision_name,"should have prefix of model name ", model_name) return try: if os.path.exists(kubeconfig_path): config.load_kube_config(config_file=kubeconfig_path) else: print("kubeconfig file not found") return v1 = client.CoreV1Api() apps_v1 = client.AppsV1Api() api = client.CustomObjectsApi() resource = api.patch_namespaced_custom_object( group="serving.knative.dev", version="v1", plural="services", name=model_name, namespace=k8s_namespace, body=sas_revision_knative) print("Revision deployed. All revisions reflect same model and URL REST API do not change") except Exception as e: print(str(e)) raise e # Delete the SAS model revision from knative setup.. def delete_revision_knative(kubeconfig_path, k8s_namespace, blue_revision_name): try: config.load_kube_config(config_file=kubeconfig_path) v1 = client.CoreV1Api() api = client.CustomObjectsApi() resource = api.delete_namespaced_custom_object( group="serving.knative.dev", version="v1", name = blue_revision_name, plural="revisions", namespace=k8s_namespace, body=client.V1DeleteOptions()) print(blue_revision_name," Revision deleted from kubernetes/knative.") except Exception as e: print(str(e)) raise e
# -*- coding: utf-8 -*- # @Author: 何睿 # @Create Date: 2019-11-30 16:32:47 # @Last Modified by: 何睿 # @Last Modified time: 2019-11-30 16:44:05 from collections import defaultdict class Solution: def characterReplacement(self, s: str, k: int) -> int: window_count = defaultdict(int) res, left, right, count_s = 0, 0, 0, len(s) max_repeat_count = 0 while right < count_s: window_count[s[right]] += 1 max_repeat_count = max(max_repeat_count, window_count[s[right]]) while right - left + 1 - max_repeat_count > k: window_count[s[left]] -= 1 max_repeat_count = max(max_repeat_count, window_count[s[left]]) left += 1 res = max(res, right - left + 1) right += 1 return res
import os import subprocess dir_path = os.path.dirname(os.path.realpath(__file__)) def run(redis_url=None): env = os.environ.copy() if redis_url is not None: env['REDIS_URI'] = redis_url return subprocess.Popen(['python', os.path.join(dir_path, 'extractor.py')], env=env)
import torch.nn as nn class FeatureExtractor(nn.Module): """Extracts feature vectors from VGG-19""" def __init__(self, model, i, j): super().__init__() maxpool = [4, 9, 18, 27, 36] layer = maxpool[i-1]-2*j self.features = nn.Sequential(*list(model.features.children())[:(layer+1)]) def forward(self, x): return self.features(x) class ResidualBlock(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(64, 64, 3, 1, 1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(64, 64, 3, 1, 1) self.bn2 = nn.BatchNorm2d(64) def forward(self, x): y = self.conv1(x) y = self.bn1(y) y = self.relu1(y) y = self.conv2(y) y = self.bn2(y) return x + y class UpsampleBlock(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(64, 256, 3, 1, 1) self.shuffle = nn.PixelShuffle(2) self.relu = nn.ReLU() def forward(self, x): x = self.conv(x) x = self.shuffle(x) x = self.relu(x) return x class Generator(nn.Module): def __init__(self, b): super().__init__() self.b = b self.conv1 = nn.Conv2d(3, 64, 3, 1, 1) self.relu = nn.ReLU() for i in range(b): self.add_module(f'ResidualBlock_{i+1}', ResidualBlock()) self.conv2 = nn.Conv2d(64, 64, 3, 1, 1) self.bn = nn.BatchNorm2d(64) for i in range(2): self.add_module(f'UpsampleBlock_{i+1}', UpsampleBlock()) self.conv3 = nn.Conv2d(64, 3, 9, 1, 4) def forward(self, x): x = self.relu(self.conv1(x)) y = x.clone() for i in range(self.b): y = self.__getattr__(f'ResidualBlock_{i+1}')(y) y = self.conv2(y) y = self.bn(y) y = y + x for i in range(2): y = self.__getattr__(f'UpsampleBlock_{i+1}')(y) y = self.conv3(y) return y class DiscriminatorBlock(nn.Module): def __init__(self, in_channels, out_channels, stride): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, 3, stride, 1) self.leaky_relu = nn.LeakyReLU(0.2) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) x = self.leaky_relu(x) x = self.bn(x) return x class Discriminator(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 64, 3, 1, 1) self.leaky_relu = nn.LeakyReLU(0.2) self.add_module('DiscriminatorBlock1', DiscriminatorBlock(64, 64, 2)) n = 128 for i in range(3): self.add_module(f'DiscriminatorBlock{2+2*i}', DiscriminatorBlock(n//2, n, 1)) self.add_module(f'DiscriminatorBlock{3+2*i}', DiscriminatorBlock(n, n, 2)) n *= 2 self.fc1 = nn.Linear(512*6*6, 1024) self.fc2 = nn.Linear(1024, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.leaky_relu(self.conv1(x)) for i in range(7): x = self.__getattr__(f'DiscriminatorBlock{i+1}')(x) x = x.view(-1,512*6*6) x = self.leaky_relu(self.fc1(x)) x = self.sigmoid(self.fc2(x)) x = x.view(-1,1) return x
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import socket import datetime def main(): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) f=open('udp','w') try: server_address = ('0.0.0.0', 10000) sock.bind(server_address) f.writelines('Watching %s:%s\n' % server_address) f.flush() while True: data, address = sock.recvfrom(4096) f.writelines(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")) f.writelines("-- %s>>%s\n" % (address,data)) f.flush() if data: sock.sendto("echo", address) sock.sendto(data, address) sock.sendto("exit", address) finally: f.close(); sock.close(); if __name__ == '__main__': main()
import torch #################################################################################################################################################### # Context-aware loss function #################################################################################################################################################### class ContextAwareLoss(torch.nn.Module): def __init__(self, K, hit_radius = 0.1, miss_radius = 0.9): super(ContextAwareLoss,self).__init__() self.K = K self.hit_radius = float(hit_radius) self.miss_radius = float(miss_radius) def forward(self, gt_label, pred_score): K = self.K hit_radius = self.hit_radius miss_radius = self.miss_radius zeros = torch.zeros(pred_score.size()).to(pred_score.device).type(torch.float) pred_score = 1.-pred_score case1 = self.DownStep(gt_label, K[0]) * torch.max(zeros, - torch.log(pred_score) + torch.log(zeros + miss_radius)) case2 = self.Interval(gt_label, K[0], K[1]) * torch.max(zeros, - torch.log(pred_score + (1.-pred_score)*(self.PartialIdentity(gt_label,K[0],K[1])-K[0])/(K[1]-K[0])) + torch.log(zeros + miss_radius)) case3 = self.Interval(gt_label, K[1], 0.) * zeros case4 = self.Interval(gt_label, 0., K[2]) * torch.max(zeros, - torch.log(1.-pred_score + pred_score*(self.PartialIdentity(gt_label,0.,K[2])-0.)/(K[2]-0.)) + torch.log(zeros + 1.-hit_radius)) case5 = self.Interval(gt_label, K[2], K[3]) * torch.max(zeros, - torch.log(pred_score + (1.-pred_score)*(self.PartialIdentity(gt_label,K[2],K[3])-K[3])/(K[2]-K[3])) + torch.log(zeros + miss_radius)) case6 = self.UpStep(gt_label, K[3]) * torch.max(zeros, - torch.log(pred_score) + torch.log(zeros + miss_radius)) L = case1 + case2 + case3 + case4 + case5 + case6 return torch.sum(L) def UpStep(self,x,a): #0 if x<a, 1 if x >= a return 1.-torch.max(0.*x,torch.sign(a-x)) def DownStep(self,x,a): #1 if x < a, 0 if x >=a return torch.max(0.*x,torch.sign(a-x)) def Interval(self,x,a,b): # 1 if a<= x < b, 0 otherwise return self.UpStep(x,a) * self.DownStep(x,b) def PartialIdentity(self,x,a,b):#a if x<a, x if a<= x <b, b if x >= b return torch.min(torch.max(x,0.*x+a),0.*x+b) #################################################################################################################################################### # Spotting loss #################################################################################################################################################### class SpottingLoss(torch.nn.Module): def __init__(self, lambda_coord, lambda_noobj): super(SpottingLoss,self).__init__() self.lambda_coord = lambda_coord self.lambda_noobj = lambda_noobj def forward(self,y_true, y_pred): y_pred = self.permute_ypred_for_matching(y_true,y_pred) loss = torch.sum(y_true[:,:,0]*self.lambda_coord*torch.square(y_true[:,:,1]-y_pred[:,:,1]) + y_true[:,:,0]*torch.square(y_true[:,:,0]-y_pred[:,:,0]) + (1-y_true[:,:,0])*self.lambda_noobj*torch.square(y_true[:,:,0]-y_pred[:,:,0]) + y_true[:,:,0]*torch.sum(torch.square(y_true[:,:,2:]-y_pred[:,:,2:]),axis=-1)) #-y_true[:,:,0]*torch.sum(y_true[:,:,2:]*torch.log(y_pred[:,:,2:]),axis=-1) return loss def permute_ypred_for_matching(self, y_true, y_pred): alpha = y_true[:,:,0] x = y_true[:,:,1] p = y_pred[:,:,1] nb_pred = x.shape[-1] D = torch.abs(x.unsqueeze(-1).repeat(1,1,nb_pred) - p.unsqueeze(-2).repeat(1,nb_pred,1)) D1 = 1-D Permut = 0*D alpha_filter = alpha.unsqueeze(-1).repeat(1,1,nb_pred) v_filter = alpha_filter h_filter = 0*v_filter + 1 D2 = v_filter * D1 for i in range(nb_pred): D2 = v_filter * D2 D2 = h_filter * D2 A = torch.nn.functional.one_hot(torch.argmax(D2,axis=-1),nb_pred) B = v_filter * A * D2 C = torch.nn.functional.one_hot(torch.argmax(B,axis=-2),nb_pred).permute(0, 2, 1) E = v_filter * A * C Permut = Permut + E v_filter = (1-torch.sum(Permut,axis=-1))*alpha v_filter = v_filter.unsqueeze(-1).repeat(1,1,nb_pred) h_filter = 1-torch.sum(Permut, axis=-2) h_filter = h_filter.unsqueeze(-2).repeat(1,nb_pred,1) v_filter = 1-alpha_filter D2 = v_filter * D1 D2 = h_filter * D2 for i in range(nb_pred): D2 = v_filter * D2 D2 = h_filter * D2 A = torch.nn.functional.one_hot(torch.argmax(D2,axis=-1),nb_pred) B = v_filter * A * D2 C = torch.nn.functional.one_hot(torch.argmax(B,axis=-2),nb_pred).permute(0, 2, 1) E = v_filter * A * C Permut = Permut + E v_filter = (1-torch.sum(Permut,axis=-1))*(1-alpha) #here comes the change v_filter = v_filter.unsqueeze(-1).repeat(1,1,nb_pred) h_filter = 1-torch.sum(Permut, axis=-2) h_filter = h_filter.unsqueeze(-2).repeat(1,nb_pred,1) permutation = torch.argmax(Permut,axis=-1) permuted = torch.gather(y_pred, 1, permutation.unsqueeze(-1).repeat(1,1,y_true.shape[-1])) return permuted
''' An unnecessarily complex implementation of a heap data structure. ''' from .binary_tree import BinaryNode, BinaryTree from operator import le, ge def _comparisonFactory(comparisonFunction): def compareNodes(node1, node2): if node1 is None: return node2 if node2 is None: return node1 if comparisonFunction(node1.key, node2.key): return node1 else: return node2 return compareNodes _max = _comparisonFactory(ge) _min = _comparisonFactory(le) def _swap(node1, node2): tree = node1.tree node1.index, node2.index = node2.index, node1.index tree._array[node1.index] = node1 tree._array[node2.index] = node2 class HeapNode(BinaryNode): r'''A node of a heap tree. The node wraps a value (node.key) and has convenience methods for accessing node.left, node.right, and node.parent. ''' def __init__(self, key = None, tree = None): self.index = None super().__init__(key = key, tree = tree) @property def left(self): if self.index is None: return None leftIndex = 2 * self.index if leftIndex <= len(self.tree): return self.tree[leftIndex] else: return None @left.setter def left(self, node): # Setters do not check to make sure node is a HeapNode if self.index is None: return None leftIndex = 2 * self.index if leftIndex <= len(self.tree): self.tree[leftIndex] = node node.index = leftIndex node.tree = self.tree else: raise IndexError('Node has no left child.') @property def right(self): if self.index is None: return None rightIndex = 2 * self.index + 1 if rightIndex <= len(self.tree): return self.tree[rightIndex] else: return None @right.setter def right(self, node): if self.index is None: return None rightIndex = 2 * self.index + 1 if rightIndex <= len(self.tree): self.tree[rightIndex] = node node.index = rightIndex node.tree = self.tree else: raise IndexError('Node has no right child.') @property def parent(self): if (self.index is not None) and (self.index != 1): return self.tree[self.index // 2] else: return None @parent.setter def parent(self, node): if (self.index is not None) and (self.index != 1): self.tree[self.index // 2] = node node.index = self.index // 2 node.tree = self.tree else: return IndexError('Node is root of the tree and does not have parent.') def rotateLeft(self): raise NotImplementedError('HeapNode.rotateLeft') def rotateRight(self): raise NotImplementedError('HeapNode.rotateRight') def checkHeapProperty(self): assert self.tree.compare(self, self.left) is self, f"Subtree rooted at key = {self.key} is not a heap." assert self.tree.compare(self, self.right) is self, f"Subtree rooted at key = {self.key} is not a heap." if self.left is not None: assert self.tree is self.left.tree, f"Node (key = {self.key}) has a different tree attribute from its left child." self.left.checkHeapProperty() if self.right is not None: assert self.tree is self.right.tree, f"Node (key = {self.key}) has a different tree attribute from its right child." self.right.checkHeapProperty() def heapify(self): while True: moreHeapishChild = self.tree.compare(self.left, self.right) if moreHeapishChild is None: return moreHeapishNode = self.tree.compare(self, moreHeapishChild) if moreHeapishNode is moreHeapishChild: _swap(self, moreHeapishChild) else: return siftDown = heapify def siftUp(self): while True: if self.isRoot(): return moreHeapishNode = self.tree.compare(self, self.parent) if moreHeapishNode is self: _swap(self, self.parent) else: return def delete(self): if self.tree is None: raise Exception('Node is not part of a heap.') lastNode = self.tree[-1] if self is lastNode: self.tree.pop() return self _swap(self, lastNode) self.tree.pop() if (lastNode.parent is None) or (lastNode.tree.compare(lastNode, lastNode.parent) is lastNode.parent): lastNode.siftDown() elif lastNode.tree.compare(lastNode, lastNode.parent) is lastNode: lastNode.siftUp() else: raise Exception('Unknown exception in HeapNode.delete()') return self class Heap(BinaryTree): r'''Heap data structure Heap(type = 'max', fromList = None) Creates a heap from a list of values. Args: type (string): 'max' or 'min' for a max-heap or a min-heap, respectively fromList (list): iterable of objects that can be compared, or a list of BinaryNode objects Example: >>> print(heap.Heap(fromList = range(10))) ┌───9──┐ ┌──8──┐ ┌─6─┐ ┌─7─┐ ┌─4 5 2 0 3 1 ''' def __init__(self, NodeType = HeapNode, type = 'max', fromList = None): # self._array = [None, None] self._array = [] super().__init__(NodeType = NodeType) self.changeType(type, buildHeapFromList = fromList) def buildHeap(self, iterable): r'''Heap data structure Heap(type = 'max', fromList = None) Creates a heap from a list of values. If heap already contains nodes, extend the heap with new values from fromList. Args: type (string): 'max' or 'min' for a max-heap or a min-heap, respectively. fromList (list): iterable of objects that can be compared, or a list of BinaryNode objects. ''' # if iterable is None: # raise IndexError('Passed None to Heap.buildHeap') # self._array.pop() current_index = len(self._array) for elem in iterable: node = HeapNode(elem) # Doesn't check for invalid elem node.index = current_index node.tree = self self._array.append(node) # Doesn't check if node is already in self._array current_index += 1 for idx in range(len(self) // 2, 0, -1): self._array[idx].heapify() extend = buildHeap def __len__(self): return len(self._array) - 1 def __getitem__(self, index): return self._array[index] def __setitem__(self, index, value): self._array[index] = value @property def root(self): if len(self) < 1: return None return self._array[1] @root.setter def root(self, node): # Maybe should forbid appending None to self._array... if len(self._array) == 0: self._array.append(None) elif len(self._array) == 1: self._array.append(node) node.tree = self else: self._array[1] = node node.tree = self def checkHeapProperty(self): '''Check that the rep invariant of the heap is preserved by recursively checking the left and right children of each node.''' self.root.checkHeapProperty() def changeType(self, type, buildHeapFromList = None): '''Change the heap type from a max-heap to a min-heap or vice-versa. self.changeType(type, buildHeapFromList = None) Args: type (string): 'max' or 'min' for a max-heap or a min-heap, respectively. buildHeapfromList (list): iterable of objects that can be compared, or a list of BinaryNode objects. After changing the heap type, the heap is extended by adding values from buildHeapFromList. ''' if buildHeapFromList is None: buildHeapFromList = [] if type.lower() == 'max': self.compare = _max elif type.lower() == 'min': self.compare = _min else: raise Exception(f'Unknown comparison type {type} in Heap.changeType(type)') self.type = type self.buildHeap(buildHeapFromList) def peek(self): '''Peek at the root node''' return self.root def pop(self): if len(self._array) <= 1: return None lastNode = self._array.pop() lastNode.tree = None return lastNode def extract(self): '''Extract the root node''' if len(self) < 1: return None _swap(self._array[1], self._array[-1]) extractedNode = self.pop() if len(self) > 0: self._array[1].heapify() return extractedNode def sortedList_(self): r'''Empties the heap and returns a sorted list of HeapNode objects. Args: N/A Return: List of HeapNode objects, sorted from least to greatest if min-heap and greatest to least if max-heap. Example: >>> [node.key for node in heap.Heap(fromList = range(10)).sortedList_()] [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] ''' nodeList = [] current = self.extract() while current is not None: nodeList.append(current) current = self.extract() return nodeList def insert(self, key): if key is None: return None newNode = self.NodeType(key) newNode.tree = self newNode.index = len(self) + 1 self._array.append(newNode) newNode.siftUp() return newNode
import pandas as pd import numpy as np import re df = pd.read_csv('csv/location.csv') df['lat_lon'] = df['location'].apply(lambda x : re.findall('(\d{2}.\d{10}),(\d{2}.\d{10})',x,re.DOTALL)) print(type(df['lat_lon'][0][0])) df.drop(686, axis=0, inplace=True) df['lat'] = [x[0][0] for x in df['lat_lon']] df['lon'] = [x[0][1] for x in df['lat_lon']] print(df.info()) df= df[['names','location', 'lat', 'lon']] df.to_csv('csv/lat_lon.csv', index=False)
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ setup.py A module that installs reporter as a module """ from glob import glob from os.path import basename, splitext from setuptools import find_packages, setup setup( name='reporter', version='1.0.0', license='MIT', description='Reports AGOL usage statistics.', author='AGRC', author_email='agrc@utah.gov', url='https://github.com/agrc/reporter', packages=find_packages('src'), package_dir={'': 'src'}, py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')], include_package_data=True, zip_safe=True, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Utilities', ], project_urls={ 'Issue Tracker': 'https://github.com/agrc/reporter/issues', }, keywords=['gis'], install_requires=[], extras_require={ 'tests': [ 'pylint-quotes==0.2.*', 'pylint==2.5.*', 'pytest-cov==2.9.*', 'pytest-instafail==0.4.*', 'pytest-isort==1.0.*', 'pytest-pylint==0.14.*', 'pytest-watch==4.2.*', 'pytest==4.*', 'yapf==0.30.*', 'pytest-mock==3.2.*', ] }, setup_requires=[ 'pytest-runner', ], entry_points={'console_scripts': [ 'reporter = reporter.main:main', ]}, )
from functools import partial from PyQt4.QtGui import * from PyQt4.QtCore import * from models.category_model import Category from views.popup_view import PopupView class ProductList: ''' Controlls the product list view, and the objects ''' def __init__(self, products, main_window): self.LIMIT_ITEMS_COUNT_X = 2 self.LIMIT_ITEMS_COUNT_Y = 1 shape = QDesktopWidget().screenGeometry() self.width = shape.width() self.height = shape.height() self.products = products self.widget = self.createWidget() self.main_window = main_window def show(self): self.widget.showFullScreen() def hide(self): self.widget.hide() def handleProductPressed(self, product): self.popup = PopupView(self.widget, product) self.popup.showFullScreen() def handle_back_button_pressed(self): self.main_window.reload_data() self.widget.close() def createWidget(self): widget = QWidget() grid = QGridLayout(widget) bg = QLabel(widget) bg.setPixmap(QPixmap("assets/background.jpg")) bg.resize(self.width, self.height) bg.setAlignment(Qt.AlignCenter) # Add a button pos_x = 0 pos_y = 0 for i in self.products: btn = QPushButton('{}\nR${:.2f}'.format(i.name, i.price)) btn.clicked.connect(partial(self.handleProductPressed, i)) btn.setSizePolicy( QSizePolicy.Preferred, QSizePolicy.Preferred) btn.setStyleSheet( "background-color: rgba(0, 0, 0, 0); border: 2px solid white; font-size: 18px; font-weight: bold; color: white") grid.addWidget(btn, pos_y, pos_x, len(self.products) > self.LIMIT_ITEMS_COUNT_X and 1 or 1, 1) pos_x += 1 if pos_x > self.LIMIT_ITEMS_COUNT_X: pos_x = 0 pos_y += 1 if pos_y >= self.LIMIT_ITEMS_COUNT_Y: pass button_back = QPushButton('Voltar') button_back.clicked.connect(self.handle_back_button_pressed) button_back.setSizePolicy( QSizePolicy.Preferred, QSizePolicy.Preferred) button_back.setStyleSheet( "background-color: rgba(0, 0, 0, 0); border: 2px solid white; font-size: 28px; font-weight: bold; color: white") grid.addWidget(button_back, round(len(self.products) / self.LIMIT_ITEMS_COUNT_X), 0, 1, -1) return widget @staticmethod def getProducts(): return Category.get_categories()
from authorization import authorization from data_reading import read_data_from_api,read_token_file,read_from_local_data_file from prettytable import PrettyTable import datetime table = PrettyTable() def user_prompt(): """ Description: user_prompt is responsible for asking a user if they are a student or a volunteer. Parameter: Takes no Parameters: None:None return: returns None or dictionary type: None:None dict:dict """ user_type = input("Are you a student? Y/N: ").upper() email = input("Please enter your email address: ") if user_type.lower() == "y": return {"user_type": "student", "user_email": email} elif user_type.lower() =="n": return {"user_type": "volunteer", "user_email": email} else: return None def get_date(): """ Description: get_date is responsible for getting user input and verify if it is a valid date. Parameters: Takes no Parameters: None:None return: returns None or date of type String: None:None date:String """ date = input("Enter date (yyyy-mm-dd): ") date_list = date.split("-",2) if len(date_list) == 3: year = date_list[0] month = date_list[1] day = date_list[2] if (year.isdigit() and len(year) == 4) and (month.isdigit() and len(month) == 2) and (day.isdigit() and len(day) == 2): return f"{year}-{month}-{day}" else: print("Wrong date") return None else: print("Wrong date") return None def get_time(): """ Description: get_time is responsible for getting user input and verify if it is a valid time. Parameters: Takes no Parameters: None:None return: returns None or time of type String: None:None time:String """ time = input("Enter start time between 09:00-16:00 (hh:mm): ") time_list = time.split(":") if len(time_list) == 2: hours = time_list[0] minutes = time_list[1] if (hours.isdigit() and int(hours) in range(9,16+1)) and (minutes.isdigit() and int(minutes) in range(60)): return f"{hours}:{minutes}" else: print("Wrong time") return None else: print("Wrong time") return None def get_datetime(): """ Description: get_datetime is responsible for verifying if a date is a current or future date. Parameters: Takes no Parameters: None:None return: returns None or start_time and end_time of type datetime: None:None start_time:datetime end_time:datetime """ date = get_date() if date != None: time = get_time() if time != None: year = date.split("-")[0] month = date.split("-")[1] day = date.split("-")[2] hours = time.split(":")[0] minutes = time.split(":")[1] current_date = str(datetime.datetime.now()).split()[0] if date >= current_date: start_time = datetime.datetime(int(year),int(month),int(day),int(hours),int(minutes),00).isoformat() end_time = (datetime.datetime(int(year),int(month),int(day),int(hours),int(minutes),00) + datetime.timedelta(minutes=30)).isoformat() return start_time,end_time else: print("Provide new date") return None else: print("Provide correct time") return None else: print("Provide correct date") return None def start_system(): """ Description: start_system is responsible for the authorization of the client. Parameters: Takes no parameters: None:None return: returns None type: None:None """ if authorization.client_authorization(): print("Login succesful.\nWelcome To WethinkCode Code Clinic Booking System\n") def exit_system(): """ Description: exit_system is responsible for revoking and deleting an access token. Parameters: Takes no parameters: None:None return: returns None type: None:None """ if authorization.revoke_tokens() == True and authorization.delete_token() == True: print("You have logged out of the WeThinkCode Code Clinic Booking System.") def help(): """ Description: help is used to print the allowable commands when the user enters "help". Parameters: Takes no parameters: None:None return: returns None type: None:None """ print("""Code Clinic Booking System 0.0.1 USAGE: code-clinic [FLAGS] [SUBCOMMAND] FLAGS: -h, --help Prints help information -V, --version Prints version information SUBCOMMANDS: login Logs user into the code clinic booking system logout Logs user out the code clinic booking system create_slot Allows a volunteer to create a slot book [slot name] Allows a student to book a slot read_event Allows the user to view slots they are confirmed for check_slot [number of days being viewed] Checks the availability of slots cancel_slot [slot name] Allows a volunteer to cancel slot cancel_booking [slot name] Cancels booking made by student """) def check_slot(days=7): """ Description: check_slot is responsible for checking available slots for the next 7 days. Parameters: Takes one parameter of type String: days:String return: returns None type: None:None """ status = read_data_from_api.read_from_api(days) if status == True: read_api_data = read_from_local_data_file.read_from_file() print("-"*25, "LIST OF AVAILABLE SLOTS", "-"*25) print("\n") for index in range(len(read_api_data["items"])): event = read_api_data["items"][index] print(f"""Summary: {event['summary']} description: {event['description']} volunteer: {event['creator']['email']} location: {event['location']} start: {event['start']['dateTime']} end: {event['end']['dateTime']}""") print("-"*75)
import setuptools with open("README.md") as fp: long_description = fp.read() setuptools.setup( name="aws_cdk_python_dev_guide", version="0.0.1", description="A guide for AWS CDK development using Python", long_description=long_description, long_description_content_type="text/markdown", author="therightstuff", license='MIT', package_dir={"": "aws_cdk_python_dev_guide"}, packages=setuptools.find_packages(where="aws_cdk_python_dev_guide"), install_requires=[ "aws-cdk.assets==1.86.0", "aws-cdk.aws-apigateway==1.86.0", "aws-cdk.aws-applicationautoscaling==1.86.0", "aws-cdk.aws-autoscaling-common==1.86.0", "aws-cdk.aws-certificatemanager==1.86.0", "aws-cdk.aws-cloudformation==1.86.0", "aws-cdk.aws-cloudwatch==1.86.0", "aws-cdk.aws-codeguruprofiler==1.86.0", "aws-cdk.aws-ec2==1.86.0", "aws-cdk.aws-ecr==1.86.0", "aws-cdk.aws-ecr-assets==1.86.0", "aws-cdk.aws-efs==1.86.0", "aws-cdk.aws-elasticloadbalancingv2==1.86.0", "aws-cdk.aws-events==1.86.0", "aws-cdk.aws-iam==1.86.0", "aws-cdk.aws-kms==1.86.0", "aws-cdk.aws-lambda==1.86.0", "aws-cdk.aws-logs==1.86.0", "aws-cdk.aws-route53==1.86.0", "aws-cdk.aws-s3==1.86.0", "aws-cdk.aws-s3-assets==1.86.0", "aws-cdk.aws-sns==1.86.0", "aws-cdk.aws-sqs==1.86.0", "aws-cdk.aws-ssm==1.86.0", "aws-cdk.cloud-assembly-schema==1.86.0", "aws-cdk.core==1.86.0", "aws-cdk.custom-resources==1.86.0", "aws-cdk.cx-api==1.86.0", "aws-cdk.region-info==1.86.0", ], python_requires=">=3.6", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: JavaScript", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Software Development :: Code Generators", "Topic :: Utilities", "Typing :: Typed", ], )
from identixone.api.sources.v1.sources import Sources __all__ = [Sources]
import numpy as np from numpy.fft import fft2, ifft2, ifftshift, fftshift def shear_grid_mask(shape, acceleration_rate, sample_low_freq=False, centred=False, sample_n=4, test=False): ''' Creates undersampling mask which samples in sheer grid Parameters ---------- shape: (nt, nx, ny) acceleration_rate: int Returns ------- array ''' Nt, Nx, Ny = shape if test: start = 0 else: start = np.random.randint(0, acceleration_rate) mask = np.zeros((Nt, Nx)) for t in range(Nt): mask[t, (start+t)%acceleration_rate::acceleration_rate] = 1 xc = Nx // 2 xl = sample_n // 2 if sample_low_freq and centred: xh = xl if sample_n % 2 == 0: xh += 1 mask[:, xc - xl:xc + xh+1] = 1 elif sample_low_freq: xh = xl if sample_n % 2 == 1: xh -= 1 if xl > 0: mask[:, :xl] = 1 if xh > 0: mask[:, -xh:] = 1 mask_rep = np.repeat(mask[..., np.newaxis], Ny, axis=-1) return mask_rep def undersample(x, mask, centred=False, norm='ortho', noise=0): ''' Undersample x. FFT2 will be applied to the last 2 axis Parameters ---------- x: array_like data mask: array_like undersampling mask in fourier domain norm: 'ortho' or None if 'ortho', performs unitary transform, otherwise normal dft noise_power: float simulates acquisition noise, complex AWG noise. must be percentage of the peak signal Returns ------- xu: array_like undersampled image in image domain. Note that it is complex valued x_fu: array_like undersampled data in k-space ''' assert x.shape == mask.shape # zero mean complex Gaussian noise noise_power = noise nz = np.sqrt(.5)*(np.random.normal(0, 1, x.shape) + 1j * np.random.normal(0, 1, x.shape)) nz = nz * np.sqrt(noise_power) if norm == 'ortho': # multiplicative factor nz = nz * np.sqrt(np.prod(mask.shape[-2:])) else: nz = nz * np.prod(mask.shape[-2:]) if centred: axes = (-2, -1) x_f = fftshift(fft2(ifftshift(x, axes=axes), norm=norm), axes=axes) x_fu = mask * (x_f + nz) x_u = fftshift(ifft2(ifftshift(x_fu, axes=axes), norm=norm), axes=axes) return x_u, x_fu else: x_f = fft2(x, norm=norm) x_fu = mask * (x_f + nz) x_u = ifft2(x_fu, norm=norm) return x_u, x_fu
import numpy as np class Statistics: def __init__(self, keep_all=False): self.keep_all = keep_all self.data = [] self.n = 0 self.avg = 0.0 def add(self, x): if self.keep_all: self.data += x else: self.avg = self.avg * (self.n / float(self.n + 1)) + x * (1. / float(self.n + 1)) self.n += 1 def mean(self): if self.keep_all: return np.mean(self.data) else: return self.avg @staticmethod def get_stats(k, keep_all=False): return [Statistics(keep_all) for _ in range(k)] def np(self): return np.array(self.data)
""" The implementation code for the command-send GDS CLI commands """ import difflib from typing import Iterable, List from fprime.common.models.serialize.type_exceptions import NotInitializedException from fprime_gds.common.data_types.cmd_data import CommandArgumentsException from fprime_gds.common.gds_cli.base_commands import QueryHistoryCommand import fprime_gds.common.gds_cli.misc_utils as misc_utils import fprime_gds.common.gds_cli.test_api_utils as test_api_utils from fprime_gds.common.pipeline.dictionaries import Dictionaries from fprime_gds.common.templates.cmd_template import CmdTemplate from fprime_gds.common.testing_fw import predicates from fprime_gds.common.testing_fw.api import IntegrationTestAPI class CommandSendCommand(QueryHistoryCommand): """ The implementation for sending a command via the GDS to the spacecraft """ @staticmethod def get_closest_commands( project_dictionary: Dictionaries, command_name: str, num: int = 3 ) -> List[str]: """ Searches for the closest matching known command(s) to the given command name. :param project_dictionary: The dictionary object for this project containing the item type definitions :param command_name: The full string name of the command to search for :param num: The maximum number of near-matches to return :return: A list of the closest matching commands (potentially empty) """ known_commands = project_dictionary.command_name.keys() closest_matches = difflib.get_close_matches(command_name, known_commands, n=num) return closest_matches # TODO: Make this a method on one of the pipeline classes instead? @staticmethod def get_command_template( project_dictionary: Dictionaries, command_name: str ) -> CmdTemplate: """ Retrieves the command template for the given command name :param project_dictionary: The dictionary object for this project containing the item type definitions :param command_name: The full string name of the command to return a template for :return: The CmdTemplate object for the given command """ return project_dictionary.command_name[command_name] @staticmethod def get_command_help_message( project_dictionary: Dictionaries, command_name: str ) -> str: """ Returns a string showing a help message for the given GDS command. :param project_dictionary: The dictionary object for this project containing the item type definitions :param command_name: The full string name of the command to return a help message for :return: A help string for the command """ command_template = CommandSendCommand.get_command_template( project_dictionary, command_name ) # TODO: Refactor CommandsCommand's method into a common class, since # this is technically a private method? return misc_utils.get_cmd_template_string(command_template) @classmethod def _get_item_list( cls, project_dictionary: Dictionaries, filter_predicate: predicates.predicate, json: bool = False, ) -> Iterable[CmdTemplate]: """ Gets a list of available commands in the system and return them in an ID-sorted list. :param project_dictionary: The dictionary object for the project containing the command definitions :param filter_predicate: Test API predicate used to filter shown channels :param json: Whether to print out each item in JSON format or not """ # NOTE: Trying to create a blank CmdData causes errors, so currently # just using templates (i.e. this function does nothing) create_empty_command = lambda cmd_template: cmd_template command_list = test_api_utils.get_item_list( item_dictionary=project_dictionary.command_id, search_filter=filter_predicate, template_to_data=create_empty_command, ) return command_list @classmethod def _get_upcoming_item( cls, api, filter_predicate, min_start_time="", ): """ TODO: Doesn't use _get_upcoming_item; sign that this should not use QueryHistory as a base class? """ pass @classmethod def _get_item_string(cls, item: CmdTemplate, json: bool = False,) -> str: """ Converts the given command template into a human-readable string. :param item: The CmdTemplate to convert to a string :param json: Whether or not to return a JSON representation of "temp" :return: A readable string version of "item" """ return misc_utils.get_cmd_template_string(item, json) # TODO: Cut down on the number of arguments here? @classmethod def handle_arguments( cls, dictionary: str, ip_address: str, port: int, command_name: str, arguments: List[str], list: bool, ids: Iterable[int], components: Iterable[str], search: str, json: bool, *args, **kwargs ): """ Handle the command-send arguments to connect to the Test API correctly, then send the command via the Test API. For more details on these arguments, see the command-send definition at: Gds/src/fprime_gds/executables/fprime_cli.py """ search_filter = cls._get_search_filter(ids, components, search, json) if list: cls._log(cls._list_all_possible_items(dictionary, search_filter, json)) return # TODO: Make this api setup part of a decorator somehow, since it # recurs in several places? # ====================================================================== pipeline, api = test_api_utils.initialize_test_api( dictionary, server_ip=ip_address, server_port=port ) # ====================================================================== try: api.send_command(command_name, arguments) except KeyError: cls._log("'%s' is not a known command" % (command_name)) close_matches = CommandSendCommand.get_closest_commands( pipeline.dictionaries, command_name ) if close_matches: cls._log("Similar known commands: {}".format(close_matches)) except NotInitializedException: temp = CommandSendCommand.get_command_template( pipeline.dictionaries, command_name ) cls._log( "'%s' requires %d arguments (%d given)" % (command_name, len(temp.get_args()), len(arguments)) ) cls._log(cls.get_command_help_message(pipeline.dictionaries, command_name)) except CommandArgumentsException as err: cls._log("Invalid arguments given; %s" % (str(err))) cls._log(cls.get_command_help_message(pipeline.dictionaries, command_name)) # ====================================================================== pipeline.disconnect() api.teardown() # ======================================================================
from .siamrpn import SiamRPN def get_tracker_class(): return SiamRPN
""" Calculate the middle points, areas and best predictors of the polygons and the relative areas of the best predictors """ from shapely.geometry.polygon import Polygon def get_predictor_cost(x, y, rho, sens, spec, cov): """ Calculate the predictor's cost on a point (x, y) based on the rho and its sensitivity, specificity and coverage """ return x * ((rho * cov * (1 - sens)) + cov - 1) + y * (((1 - rho) * cov * (1 - spec)) + cov - 1) + 1 - cov def get_polygon_best_predictor(rho, predictors, polygons): """ Calculate the predictor with the best cost in a polygon """ polygon_best_predictor = [] for polygon_id, polygon in enumerate(polygons): centroid = Polygon(polygon).centroid cost_predictors = {predictor: get_predictor_cost(centroid.x, centroid.y, rho, *predictors[predictor]) for predictor in predictors} best_predictor = min(cost_predictors, key=cost_predictors.get) polygon_best_predictor.append(best_predictor) return polygon_best_predictor def get_best_predictor_area(polygons, polygon_best_predictor): """ Calculate the total area of the best predictors in the triangle """ best_predictor_areas = dict.fromkeys(polygon_best_predictor, 0.0) for polygon_id, polygon in enumerate(polygons): best_predictor_areas[polygon_best_predictor[polygon_id]] += Polygon(polygon).area return best_predictor_areas def get_predictor_area(best_predictor_areas, predictors): """ Calculate the area and relative areas of predictors """ predictor_areas = {predictor: best_predictor_areas.get(predictor, 0.0) for predictor in predictors} predictor_relative_areas = {predictor: predictor_areas[predictor] / 0.5 for predictor in predictors} return predictor_areas, predictor_relative_areas def get_polygons_data(rho, predictors, polygons): """ Calculate the best predictor in a polygon and best predictors' areas and relative areas """ polygon_best_predictor = get_polygon_best_predictor(rho, predictors, polygons) best_predictor_areas = get_best_predictor_area(polygons, polygon_best_predictor) predictor_areas, predictor_relative_areas = get_predictor_area(best_predictor_areas, predictors) return predictor_areas, predictor_relative_areas
# -*- coding: utf-8 -*- # # Copyright (c) 2022 by Clemens Rabe <clemens.rabe@clemensrabe.de> # All rights reserved. # This file is part of gitcache (https://github.com/seeraven/gitcache) # and is released under the "BSD 3-Clause License". Please see the LICENSE file # that is included as part of this package. # """Unit tests of the git_cache.command_execution module testing simple_call_command().""" # ----------------------------------------------------------------------------- # Module Import # ----------------------------------------------------------------------------- import io import platform import sys from unittest import TestCase from git_cache.command_execution import simple_call_command # ----------------------------------------------------------------------------- # Test Class # ----------------------------------------------------------------------------- class GitCacheSimpleCallCommandTest(TestCase): """Test the :func:`git_cache.command_execution.simple_call_command` function.""" def setUp(self): """Set up the test case.""" # Nose does not provide a sys.stdout.buffer member if not hasattr(sys.stdout, 'buffer'): sys.stdout.buffer = io.BytesIO() self.on_windows = platform.system().lower().startswith('win') def test_return(self): """git_cache.command_execution.simple_call_command(): Get return code.""" if self.on_windows: cmd_true = ['cmd.exe', '/C', 'exit 0'] cmd_false = ['cmd.exe', '/C', 'exit 1'] else: cmd_true = ['true'] cmd_false = ['false'] self.assertEqual(0, simple_call_command(cmd_true)) self.assertEqual(1, simple_call_command(cmd_false)) def test_shell_return(self): """git_cache.command_execution.simple_call_command(): Get return code using shell.""" self.assertEqual(0, simple_call_command('exit 0', shell=True)) self.assertEqual(1, simple_call_command('exit 1', shell=True)) def test_command_not_found(self): """git_cache.command_execution.simple_call_command(): Command not found.""" self.assertEqual(127, simple_call_command('cmd_doesnt_exist')) def test_shell_command_not_found(self): """git_cache.command_execution.simple_call_command(): Command not found using shell.""" self.assertNotEqual(0, simple_call_command('cmd_doesnt_exist', shell=True)) # ----------------------------------------------------------------------------- # EOF # -----------------------------------------------------------------------------
#!/usr/bin/env python # -*- coding: utf-8 -*- def predict_final(prefix=None, assignment=None, tutorial=None, midterm=None, takehome=None, final=None): """ Predictor for Final from model/59db76eb9b356c2c97004804 Predictive model by BigML - Machine Learning Made Easy """ if (midterm is None): return {"prediction":0.38343} if (midterm > 77.08667): if (takehome is None): return {"prediction":20.38342} if (takehome > 106.945): return {"prediction":3.43945} if (takehome <= 106.945): if (tutorial is None): return {"prediction":22.41332} if (tutorial > 78.665): return {"prediction":23.88547} if (tutorial <= 78.665): return {"prediction":8.56289} if (midterm <= 77.08667): if (midterm > 48.75): if (takehome is None): return {"prediction":-4.5295} if (takehome > 53.795): if (midterm > 73.44): if (takehome > 73.795): return {"prediction":-13.82749} if (takehome <= 73.795): return {"prediction":-3.41771} if (midterm <= 73.44): if (assignment is None): return {"prediction":-0.71945} if (assignment > 82.74): if (tutorial is None): return {"prediction":-3.97172} if (tutorial > 103.945): if (tutorial > 104.835): return {"prediction":-0.08074} if (tutorial <= 104.835): return {"prediction":1.25414} if (tutorial <= 103.945): if (midterm > 62.5): if (midterm > 65.31): return {"prediction":-4.37529} if (midterm <= 65.31): return {"prediction":4.4972} if (midterm <= 62.5): if (tutorial > 95.71): return {"prediction":-14.0932} if (tutorial <= 95.71): return {"prediction":-1.74541} if (assignment <= 82.74): if (tutorial is None): return {"prediction":7.50115} if (tutorial > 96.79): return {"prediction":-0.71028} if (tutorial <= 96.79): return {"prediction":10.35668} if (takehome <= 53.795): return {"prediction":-13.76724} if (midterm <= 48.75): if (takehome is None): return {"prediction":-15.51536} if (takehome > 58.89): return {"prediction":-18.93268} if (takehome <= 58.89): if (tutorial is None): return {"prediction":-5.65621} if (tutorial > 77.095): return {"prediction":-7.01337} if (tutorial <= 77.095): return {"prediction":-0.79237} def predict(prefix=None, assignment=None, tutorial=None, midterm=None, takehome=None, final=None): prediction = predict_final(prefix=prefix, assignment=assignment, tutorial=tutorial, midterm=midterm, takehome=takehome, final=final) prediction.update({"weight": 0.09621}) return prediction
import numpy as np np.random.seed(0) def sigmoid(x): out = 1 / (1+np.exp(-x)) return out def relu(x): out = x out[out < -1] = -1 out[out > -1 and out < 0] = 0 return out def tanh(x): out = (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x)) return out def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() class Network(object): def __init__(self, shape, weights_path=None): self.shape = shape self.weights = [] self.bias = [] for i in range(len(self.shape)-1): self.weights.append(np.random.uniform(-1, 1, (self.shape[i], self.shape[i+1]))) for i in range(len(self.shape)-1): self.bias.append(np.random.uniform(-1, 1, self.shape[i+1])) if weights_path: temp = np.genfromtxt(weights_path, delimiter=" ") self._import(temp) self.layers = [] for i in range(len(self.shape)): self.layers.append(np.zeros(self.shape[i])) def forward_propagation(self, inputs): self.layers[0] = inputs for i in range(len(self.shape)-1): self.layers[i+1] = np.dot(self.layers[i], self.weights[i]) self.layers[i+1] = self.layers[i+1] + (self.bias[i]) self.layers[i+1] = sigmoid(self.layers[i+1]) return self.layers[len(self.layers)-1] def export(self): vect = [] for layer in self.weights: for k in layer: for j in k: vect.append(j) for i in self.bias: for k in i: vect.append(k) return np.array(vect) def _import(self, vect): s = 0 for layer in range(len(self.shape)-1): for k in range(len(self.weights[layer])): for j in range(len(self.weights[layer][k])): self.weights[layer][k][j] = vect[s] s += 1 for i in range(len(self.shape)-1): for k in range(len(self.bias[i])): self.bias[i][k] = vect[s] s += 1
routes = [ ('Binance Futures', 'BTC-USDT', '1m', 'OttBands1min', 'hY?9') ] extra_candles = []
# -*- coding:utf-8 -*- __author__ = 'shshen' import os import random import csv import logging import numpy as np def logger_fn(name, input_file, level=logging.INFO): tf_logger = logging.getLogger(name) tf_logger.setLevel(level) log_dir = os.path.dirname(input_file) if not os.path.exists(log_dir): os.makedirs(log_dir) fh = logging.FileHandler(input_file, mode='w') formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) tf_logger.addHandler(fh) return tf_logger def read_data_from_csv_file(fileName): rows = [] max_skill_num = 0 max_num_problems = 116 with open(fileName, "r") as csvfile: reader = csv.reader(csvfile, delimiter=',') for row in reader: rows.append(row) ''' for indx in range(0, len(rows)): if (indx + 1 )% 3 == 0: rand = random.randint(0, len(rows[indx]) - 1) if int(rows[indx][rand]) == 1: rows[indx][rand] = 0 if int(rows[indx][rand]) == 0: rows[indx][rand] = 1 ''' index = 0 print ("the number of rows is " + str(len(rows))) tuple_rows = [] #turn list to tuple while(index < len(rows)-1): problems_num = int(rows[index][0]) tmp_max_skill = max(map(int, rows[index+1])) ''' cc = [] for item in rows[index+2]: cc.append(int(item)) a_r = round(sum(cc) / problems_num, 2) if a_r == 0.0 or a_r == 1.0: index += 3 continue ''' if(tmp_max_skill > max_skill_num): max_skill_num = tmp_max_skill if(problems_num <= 2): index += 3 else: if problems_num > max_num_problems: count = problems_num // max_num_problems iii = 0 while(iii <= count): if iii != count: tup = (max_num_problems, rows[index+1][iii * max_num_problems : (iii+1)*max_num_problems], rows[index+2][iii * max_num_problems : (iii+1)*max_num_problems]) elif problems_num - iii*max_num_problems > 2: tup = (problems_num - iii*max_num_problems, rows[index+1][iii * max_num_problems : (iii+1)*max_num_problems], rows[index+2][iii * max_num_problems : (iii+1)*max_num_problems]) else: break tuple_rows.append(tup) iii += 1 index += 3 else: tup = (problems_num, rows[index+1], rows[index+2]) tuple_rows.append(tup) index += 3 #shuffle the tuple random.shuffle(tuple_rows) print ("The number of students is ", len(tuple_rows)) print ("Finish reading data") return tuple_rows, max_num_problems, max_skill_num+1 def read_test_data_from_csv_file(fileName): rows = [] max_skill_num = 0 max_num_problems = 116 with open(fileName, "r") as csvfile: reader = csv.reader(csvfile, delimiter=',') for row in reader: rows.append(row) ''' for indx in range(0, len(rows)): if (indx + 1 )% 3 == 0: rand = random.randint(0, len(rows[indx]) - 1) if int(rows[indx][rand]) == 1: rows[indx][rand] = 0 if int(rows[indx][rand]) == 0: rows[indx][rand] = 1 ''' index = 0 print ("the number of rows is " + str(len(rows))) tuple_rows = [] #turn list to tuple while(index < len(rows)-1): problems_num = int(rows[index][0]) tmp_max_skill = max(map(int, rows[index+1])) ''' cc = [] for item in rows[index+2]: cc.append(int(item)) a_r = round(sum(cc) / problems_num, 2) if a_r == 0.0 or a_r == 1.0: index += 3 continue ''' if(tmp_max_skill > max_skill_num): max_skill_num = tmp_max_skill if(problems_num <= 2): index += 3 else: if problems_num > max_num_problems: count = problems_num // max_num_problems iii = 0 while(iii <= count): if iii != count: tup = (max_num_problems, rows[index+1][iii * max_num_problems : (iii+1)*max_num_problems], rows[index+2][iii * max_num_problems : (iii+1)*max_num_problems]) elif problems_num - iii*max_num_problems > 2: tup = (problems_num - iii*max_num_problems, rows[index+1][iii * max_num_problems : (iii+1)*max_num_problems], rows[index+2][iii * max_num_problems : (iii+1)*max_num_problems]) else: break tuple_rows.append(tup) iii += 1 index += 3 else: tup = (problems_num, rows[index+1], rows[index+2]) tuple_rows.append(tup) index += 3 #shuffle the tuple # random.shuffle(tuple_rows) print ("The number of students is ", len(tuple_rows)) print ("Finish reading data") return tuple_rows, max_num_problems, max_skill_num+1
""" Copyright (c) 2019 Lumerical Inc. """ import sys sys.path.append(".") import os from qatools import * from lumopt.utilities.simulation import Simulation from lumopt.utilities.base_script import BaseScript class TestFDTDBaseScript(TestCase): """ Unit test for BaseScript class. It verifies that the object is able to run an *.lsf script, a *.fsp project file or a plain script in a string. """ file_dir = os.path.abspath(os.path.dirname(__file__)) def setUp(self): self.sim = Simulation(workingDir = self.file_dir, use_var_fdtd = False, hide_fdtd_cad = True) def test_eval_project_file(self): my_project_file = os.path.join(self.file_dir,'base_fdtd_script_test.fsp') base_script_obj = BaseScript(my_project_file) base_script_obj(self.sim.fdtd) self.assertTrue(self.sim.fdtd.getnamednumber('FDTD') == 1) self.assertTrue(self.sim.fdtd.getnamednumber('source') == 1) self.assertTrue(self.sim.fdtd.getnamednumber('polygon') == 1) def test_eval_python_script(self): my_fun = lambda fdtd_handle: fdtd_handle.addfdtd() base_script_obj = BaseScript(my_fun) base_script_obj.eval(self.sim.fdtd) self.assertTrue(self.sim.fdtd.getnamednumber('FDTD') == 1) def test_eval_script_file(self): my_script_file = os.path.join(self.file_dir,'base_fdtd_script_test.lsf') base_script_obj = BaseScript(my_script_file) base_script_obj.eval(self.sim.fdtd) self.assertTrue(self.sim.fdtd.getnamednumber('FDTD') == 1) def test_eval_script(self): my_script = "load('base_fdtd_script_test.fsp');" base_script_obj = BaseScript(my_script) base_script_obj.eval(self.sim.fdtd) self.assertTrue(self.sim.fdtd.getnamednumber('FDTD') == 1) self.assertTrue(self.sim.fdtd.getnamednumber('source') == 1) self.assertTrue(self.sim.fdtd.getnamednumber('polygon') == 1) if __name__ == "__main__": run([__file__])
from bs4 import BeautifulSoup import requests from summarize import getSummary import datetime def parseTime(time): return time headers = { "Accept" : "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "User-Agent" : "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:80.0) Gecko/20100101 Firefox/80.0", } listSite = "https://timesofindia.indiatimes.com" baseURL = "https://timesofindia.indiatimes.com" page = requests.get(listSite, headers=headers) soup = BeautifulSoup(page.content, 'html.parser') listN = soup.find(class_ = "list9").find_all('li') topNews = [] for site in listN : print(site) try: heading = site.find('a').text heading = heading.replace('\xa0', ' ').encode('utf-8') link = baseURL + site.a["href"] news = { "href": link, "headline": heading, # "time": time } topNews.append(news) except: print("Non list item ") print(topNews)
import MicroRegEx regex = MicroRegEx.compile("(a|b)cd*e?") result = regex.match("abcde") print(result) result = regex.match("acde") print(result)
import xlwt from django.http import HttpResponse from .models import Instansi from .resources import InstansiResource def export_instansi(request): instansi = InstansiResource() dataset = instansi.export() response = HttpResponse(dataset.xls, content_type='application/vnd.ms-excel') response['Content-Disposition'] = 'attachment; filename=Data-Instansi-PKL-2021.xls' return response def export_instansi_rpl(request): response = HttpResponse(content_type='application/ms-excel') response['Content-Disposition'] = 'attachment; filename="Daftar-Instansi-RPL.xls"' wb = xlwt.Workbook(encoding='utf-8') ws = wb.add_sheet('Daftar Instansi RPL') # sheet header, first row row_num = 0 font_style = xlwt.XFStyle() font_style.font.bold = True columns = ['Nama', 'Alamat', 'Pimpinan', 'Kontak', 'Email', 'Slot'] for col_num in range(len(columns)): ws.write(row_num, col_num, columns[col_num], font_style) # sheet body, remaining rows font_style = xlwt.XFStyle() rows = Instansi.objects.filter(grup='RPL').values_list('nama', 'alamat', 'pimpinan', 'kontak', 'email', 'limit') for row in rows: row_num = row_num + 1 for col_num in range(len(row)): ws.write(row_num, col_num, row[col_num], font_style) wb.save(response) return response def export_instansi_tkj(request): response = HttpResponse(content_type='application/ms-excel') response['Content-Disposition'] = 'attachment; filename="Daftar-Instansi-TKJ.xls"' wb = xlwt.Workbook(encoding='utf-8') ws = wb.add_sheet('Daftar Instansi TKJ') # sheet header, first row row_num = 0 font_style = xlwt.XFStyle() font_style.font.bold = True columns = ['Nama', 'Alamat', 'Pimpinan', 'Kontak', 'Email', 'Slot'] for col_num in range(len(columns)): ws.write(row_num, col_num, columns[col_num], font_style) # sheet body, remaining rows font_style = xlwt.XFStyle() rows = Instansi.objects.filter(grup='TKJ').values_list('nama', 'alamat', 'pimpinan', 'kontak', 'email', 'limit') for row in rows: row_num = row_num + 1 for col_num in range(len(row)): ws.write(row_num, col_num, row[col_num], font_style) wb.save(response) return response
# -*- coding:utf8 -*- # File : __init__.py # Author : Jiayuan Mao # Email : maojiayuan@gmail.com # Date : 17/08/2017 # # This file is part of TensorArtist. from .adv import * from .env import *
#!/usr/bin/env python import colorsys import math import time import unicornhathd print("""Ubercorn rainbow 2x1 An example of how to use a 2-wide by 1-tall pair of Ubercorn matrices. Press Ctrl+C to exit! """) unicornhathd.brightness(0.6) # Enable addressing for Ubercorn matrices unicornhathd.enable_addressing() # Set up buffer shape to be 32 wide and 16 tall unicornhathd.setup_buffer(32, 16) # Set up display 0 on left, and display 1 on right unicornhathd.setup_display(0, 0, 0, 0) unicornhathd.setup_display(1, 16, 0, 0) step = 0 try: while True: step += 1 for x in range(0, 32): for y in range(0, 16): dx = 7 dy = 7 dx = (math.sin(step / 20.0) * 15.0) + 7.0 dy = (math.cos(step / 15.0) * 15.0) + 7.0 sc = (math.cos(step / 10.0) * 10.0) + 16.0 h = math.sqrt(math.pow(x - dx, 2) + math.pow(y - dy, 2)) / sc r, g, b = colorsys.hsv_to_rgb(h, 1, 1) r *= 255.0 g *= 255.0 b *= 255.0 unicornhathd.set_pixel(x, y, r, g, b) unicornhathd.show() time.sleep(1.0 / 60) except KeyboardInterrupt: unicornhathd.off()
# The MIT License (MIT) # # Copyright (c) 2017-2018 Niklas Rosenstein # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import collections import re import argschema from './argschema' import semver from './semver' import manifest from './manifest' spec = '[[@<scope>/]<name>[@<version>]][/<module>][:<member>]' regex = re.compile('''^ (?: (?: @(?P<scope> [A-z0-9\.\-_]+)/)? (?P<name> [A-z0-9\.\-_]+) (?: @(?P<version> [^/:]*))? # Version is actually a semver.Selector )? (?: /(?P<module> [A-z0-9\.\-_]+))? (?: :(?P<member> [A-z0-9\.\-_]+))? $''', re.X) package_regex = re.compile('^(?:@([A-z0-9\.\-_]+)/)?([A-z0-9\.\-_]+)$') class Ref(object): """ Represents a the contents of a reference string. Note that the #version member of a #PackageRef is always a #semver.Selector, if it is set. """ def __init__(self, package, version, module, member): argschema.validate('package', package, {'type': [None, Package]}) argschema.validate('version', version, {'type': [None, str, semver.Selector]}) argschema.validate('module', module, {'type': [None, str]}) argschema.validate('member', member, {'type': [None, str]}) if not package and version: raise ValueError('can not specify version without package name') if isinstance(version, str): version = semver.Selector(version) self.package = package self.version = version self.module = module self.member = member def __bool__(self): return any((self.package, self.version, self.module, self.member)) __nonzero__ = __bool__ def __str__(self): package = self.package if package: result = str(package) if self.version: result += '@' + str(self.version) else: if self.version: raise ValueError('version can not be specified without a package') result = '' if self.module: result += '/' + self.module if self.member: result += ':' + self.member return result def __unicode__(self): return unicode(str(self)) def __repr__(self): return '<Ref "{}">'.format(self) def __eq__(self, other): if isinstance(other, Ref): return (self.package, self.version, self.module, self.member) == \ (other.package, other.version, other.module, other.member) return False class Package(object): """ Represents a package identifier. """ def __init__(self, scope, name): if name in ('.', '..'): raise ValueError('invalid package name: {!r}'.format(name)) if not name and scope: raise ValueError('package name can not consist of only a scope') self.scope = scope self.name = name def __str__(self): if self.scope: return '@{}/{}'.format(self.scope, self.name) return self.name def __unicode__(self): return unicode(str(self)) def __iter__(self): yield self.scope yield self.name def __eq__(self, other): if isinstance(other, Package): return (self.scope, self.name) == (other.scope, other.name) def parse(s): """ Parse a reference string and returns a #Ref object. If the reference string is invalid, a #ValueError is raised. """ m = regex.match(s) if not m: raise ValueError('invalid refstring: "{}"'.format(s)) scope, name, version, module, member = m.groups() package = Package(scope, name) if (scope or name) else None try: return Ref(package, version, module, member) # can be raised for the version selector except ValueError as exc: raise ValueError('invalid refstring: "{}"'.format(exc)) def parse_package(s): """ Parse only a package name of the format `[@<scope>/]<name>`. Returns a tuple of (scope, name). """ m = package_regex.match(s) if not m: raise ValueError('invalid package name: {!r}'.format(s)) return Package(*m.groups()) def join(package=None, version=None, module=None, member=None): if package is not None: package = parse_package(str(package)) return str(Ref(package, version, module, member))
# -*- coding: utf-8 -*- # !/usr/bin/env python ## Opt transformations # Test 2-opt # Add a quality ratio to stop the 2-opt optimization # 3-opt # 4-opt # k-opt ## ## 2-opt def swap2opt(path, i, j): new_path = path[i:j] new_path.reverse() return path[:i]+new_path+path[j:] def optimization2opt(graph, path, n): """ Search for a better path using 2-opt swaps """ best_distance = getPathLength(graph, path) best_path = path for i in range(1, n): for j in range(i, n): new_path = swap2opt(path, i, j) new_distance = getPathLength(graph, new_path) if new_distance < best_distance: best_path = optimization2opt(graph, new_path, n) return best_path
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as onp from jax.numpy import lax_numpy as np from jax import core from jax import lax from jax.interpreters import xla from jax.interpreters import ad from jax.util import partial from jax.abstract_arrays import ShapedArray from jax.core import Primitive from jax.lax import (standard_primitive, standard_unop, binop_dtype_rule, _float, _complex, _input_dtype) # traceables def cholesky(x): return cholesky_p.bind(x) def qr(x, full_matrices=True): q, r = qr_p.bind(x, full_matrices=full_matrices) return q, r def triangular_solve(a, b, left_side=False, lower=False, transpose_a=False, conjugate_a=False): return triangular_solve_p.bind( a, b, left_side=left_side, lower=lower, transpose_a=transpose_a, conjugate_a=conjugate_a) # utilities def _T(x): return np.swapaxes(x, -1, -2) # primitives def cholesky_jvp_rule(primals, tangents): x, = primals sigma_dot, = tangents L = cholesky_p.bind(x) # Forward-mode rule from https://arxiv.org/pdf/1602.07527.pdf sigma_dot = (sigma_dot + _T(sigma_dot)) / 2 phi = lambda X: np.tril(X) / (1 + np.eye(x.shape[-1])) tmp = triangular_solve(L, sigma_dot, left_side=False, transpose_a=True, lower=True) L_dot = lax.dot(L, phi(triangular_solve( L, tmp, left_side=True, transpose_a=False, lower=True))) return L, L_dot cholesky_p = standard_unop(_float, 'cholesky') ad.primitive_jvps[cholesky_p] = cholesky_jvp_rule triangular_solve_dtype_rule = partial( binop_dtype_rule, _input_dtype, (_float | _complex, _float | _complex), 'triangular_solve') def triangular_solve_shape_rule(a, b, left_side=False, **unused_kwargs): if a.ndim < 2: msg = "triangular_solve requires a.ndim to be at least 2, got {}." raise TypeError(msg.format(a.ndim)) if a.shape[-1] != a.shape[-2]: msg = ("triangular_solve requires the last two dimensions of a to be equal " "in size, got a.shape of {}.") raise TypeError(msg.format(a.shape)) if a.shape[:-2] != b.shape[:-2]: msg = ("triangular_solve requires both arguments to have the same number " "of dimensions and equal batch dimensions, got {} and {}.") raise TypeError(msg.format(a.shape, b.shape)) common_dim = -2 if left_side else -1 if a.shape[-1] != b.shape[common_dim]: msg = "Incompatible shapes for arguments to triangular_solve: {} and {}." raise TypeError(msg.format(a.shape, b.shape)) return b.shape def triangular_solve_transpose_rule( cotangent, a, b, left_side, lower, transpose_a, conjugate_a): assert a is not None and b is None cotangent_b = triangular_solve(a, cotangent, left_side, lower, not transpose_a, conjugate_a) return [None, cotangent_b] triangular_solve_p = standard_primitive( triangular_solve_shape_rule, triangular_solve_dtype_rule, 'triangular_solve') ad.defjvp(triangular_solve_p, None, lambda g_b, a, b, **kwargs: triangular_solve(a, g_b, **kwargs)) ad.primitive_transposes[triangular_solve_p] = triangular_solve_transpose_rule def qr_impl(operand, full_matrices): q, r = xla.apply_primitive(qr_p, operand, full_matrices=full_matrices) return core.pack((q, r)) def qr_translation_rule(c, operand, full_matrices): return c.QR(operand, full_matrices=full_matrices) def qr_abstract_eval(operand, full_matrices): if isinstance(operand, ShapedArray): if operand.ndim < 2: raise ValueError("Argument to QR decomposition must have ndims >= 2") batch_dims = operand.shape[:-2] m = operand.shape[-2] n = operand.shape[-1] k = m if full_matrices else min(m, n) q = ShapedArray(batch_dims + (m, k), operand.dtype) r = ShapedArray(batch_dims + (k, n), operand.dtype) else: q = operand r = operand return core.AbstractTuple((q, r)) def qr_dtype_rule(operand, full_matrices=True): return operand.dtype qr_p = Primitive('qr') qr_p.def_impl(qr_impl) qr_p.def_abstract_eval(qr_abstract_eval) xla.translations[qr_p] = qr_translation_rule
import senteval config = { 'classifier': 'log reg', 'nhid': 0, 'optim': 'adam', 'batch_size': 64, 'tenacity': 5, 'epoch_size': 4 } def run_log_reg(params_senteval, batcher, prepare, probing_tasks): classifier_config = {**params_senteval['classifier'], **config} params_senteval['classifier'] = classifier_config se = senteval.engine.SE(params_senteval, batcher, prepare) results = se.eval(probing_tasks) return results
# Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Codec: def serialize(self, root): serial = [''] def recurse(node): if node == None: serial[0]+=("% ") else: serial[0]+=str(node.val) + " " recurse(node.left) recurse(node.right) recurse(root) return serial[0] def deserialize(self, data): input = data.split(' ') def recurse(): val = input.pop(0) if val == '%': return None cur = TreeNode(val) cur.left = recurse() cur.right = recurse() return cur return recurse() s = Codec() One = TreeNode(1) Two = TreeNode(2) Three = TreeNode(3) Four = TreeNode(4) Five = TreeNode(5) One.left = Two One.right = Three Three.left = Four Three.right = Five r = (s.deserialize(s.serialize(One))) print (r.val) print(r.left.val) print(r.right.val) print(r.right.left.val) print(r.right.right.val) # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.deserialize(codec.serialize(root))
import serial import json import time import binascii import rclpy from rclpy.node import Node from std_msgs.msg import String class SerialChannels: def __init__(self, CHANNELS): self.channels = [] self.numChannels = CHANNELS - 1 self.frame_error = 0 self.failsafe = 0 class SerialRCReceiver(Node): def __init__(self): super().__init__('serial_rc_receiver') self.serial = serial.Serial() #I think this is safe to remove self.publisher_ = self.create_publisher(String, 'serial_rc', 10) timer_period = 0.01 # seconds, ALSO might need to change this, not certain how fast the rc decoding runs self.timer = self.create_timer(timer_period, self.timer_callback) #RC Variables self.BUFFER_LENGTH = 25 self.CHANNELS = 18 self.MAX_READ_ATTEMPTS = 32 self.buffer = [] self.bufferOffset = 0 self.JetsonSerial = serial.Serial( port="/dev/ttyTHS1", # RX terminal THS1 (Port 10 on J41 Header) baudrate=95000, bytesize=serial.EIGHTBITS, parity=serial.PARITY_EVEN, stopbits=serial.STOPBITS_TWO, ) self.serialData = SerialChannels(self.CHANNELS) time.sleep(1)#let port initialize def timer_callback(self): #get inputs self.receive() msg = String() msg.data = json.dumps(self.readLineToJson()) self.publisher_.publish(msg) self.get_logger().info('Publishing: "%s"' % msg.data) def readLineToJson(self): if self.serialData.channels: return {"state1": self.serialData.channels[0], "ballast": self.serialData.channels[1], "rudder": self.serialData.channels[2], "manual": self.serialData.channels[4], "state2": self.serialData.channels[5]} else:#just returning 0 for now but not sure what should actually be sent when no data available return {"state1": 0, "ballast": 892, "rudder": 934, "manual": 1130, "state2": 992} def receive(self): data = 0 counter = 0 while self.JetsonSerial.in_waiting and (self.bufferOffset < self.BUFFER_LENGTH) and (counter < self.MAX_READ_ATTEMPTS): data = int(self.JetsonSerial.read().hex(), 16) if self.bufferOffset == 0 and data != 0x0f: data = 0 continue self.buffer.append(data & 0xff) self.bufferOffset += 1 if (self.bufferOffset == self.BUFFER_LENGTH): self.JetsonSerial.reset_input_buffer() if self.decodeSBUS(): if self.serialData.failsafe: self.serialData.channels = [] print("Failsafe failed") elif self.serialData.frame_error: self.serialData.channels = [] print("Frame error") elif self.serialData.failsafe or self.serialData.frame_error: print("Successful decode") self.buffer.clear() self.bufferOffset = 0 def decodeSBUS(self): if (self.buffer[0] != 0x0f): print("Incorrect start bit") return False if (self.buffer[self.BUFFER_LENGTH - 1] != 0x00): print("Incorrect stop bit") return False # print("good bit") # print(buffer) self.serialData.channels = [] dataChannels = self.serialData.channels dataChannels.append((self.buffer[1] | self.buffer[2] << 8) & 0x07FF) # Channel 0 dataChannels.append((self.buffer[2] >> 3 | self.buffer[3] << 5) & 0x07FF) # Channel 1 dataChannels.append((self.buffer[3] >> 6 | self.buffer[4] << 2 | self.buffer[5] << 10) & 0x07FF) # Channel 2 dataChannels.append((self.buffer[5] >> 1 | self.buffer[6] << 7) & 0x07FF) # Channel 3 dataChannels.append((self.buffer[6] >> 4 | self.buffer[7] << 4) & 0x07FF) # Channel 4 dataChannels.append((self.buffer[7] >> 7 | self.buffer[8] << 1 | self.buffer[9] << 9) & 0x07FF) # Channel 5 dataChannels.append((self.buffer[9] >> 2 | self.buffer[10] << 6) & 0x07FF) # Channel 6 dataChannels.append((self.buffer[10] >> 5 | self.buffer[11] << 3) & 0x07FF) # Channel 7 dataChannels.append((self.buffer[12] | self.buffer[13] << 8) & 0x07FF) # Channel 8 dataChannels.append((self.buffer[13] >> 3 | self.buffer[14] << 5) & 0x07FF) # Channel 9 dataChannels.append((self.buffer[14] >> 6 | self.buffer[15] << 2 | self.buffer[16] << 10) & 0x07FF) # Channel 10 dataChannels.append((self.buffer[16] >> 1 | self.buffer[17] << 7) & 0x07FF) # Channel 11 dataChannels.append((self.buffer[17] >> 4 | self.buffer[18] << 4) & 0x07FF) # Channel 12 dataChannels.append((self.buffer[18] >> 7 | self.buffer[19] << 1 | self.buffer[20] << 9) & 0x07FF) # Channel 13 dataChannels.append((self.buffer[20] >> 2 | self.buffer[21] << 6) & 0x07FF) # Channel 14 dataChannels.append((self.buffer[21] >> 5 | self.buffer[22] << 3) & 0x07FF) # Channel 15 self.serialData.frame_error = (self.buffer[23] & (1 << 2)) != 0 self.serialData.failsafe = (self.buffer[23] & (1 << 3)) != 0 return True def main(args=None): rclpy.init(args=args) serial_rc_receiver = SerialRCReceiver() rclpy.spin(serial_rc_receiver) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) serial_rc_receiver.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
# Generated by Django 2.1.2 on 2018-11-09 21:13 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Activity', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('activity_id', models.IntegerField(null=True)), ('name', models.CharField(max_length=255, null=True)), ('type', models.CharField(max_length=30)), ('ride_date', models.DateTimeField()), ('distance', models.FloatField(null=True)), ('average_speed', models.FloatField(null=True)), ('average_watts', models.FloatField(null=True)), ('average_heartrate', models.FloatField(null=True)), ('max_heartrate', models.IntegerField(null=True)), ], ), migrations.CreateModel( name='ActivityStream', fields=[ ('activity', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='core.Activity')), ('time', models.FileField(upload_to='activities')), ('latlng', models.FileField(upload_to='activities')), ('distance', models.FileField(upload_to='activities')), ('altitude', models.FileField(upload_to='activities')), ('celocity_smooth', models.FileField(upload_to='activities')), ('heartrate', models.FileField(upload_to='activities')), ('cadende', models.FileField(upload_to='activities')), ('watts', models.FileField(upload_to='activities')), ('temp', models.FileField(upload_to='activities')), ('moving', models.FileField(upload_to='activities')), ('grade_smooth', models.FileField(upload_to='activities')), ], ), migrations.AddField( model_name='activity', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
from requests import get from websocket import create_connection from json import dumps, loads from sys import argv from os import listdir, path from time import sleep BASE_ADDRESS = "http://localhost:8080" class Tab: def __init__(self, res) -> None: self.title = res["title"] self.id = res["id"] self.ws_url = res["webSocketDebuggerUrl"] def evaluate_js(self, js): ws = create_connection(self.ws_url) ws.send(dumps({ "id": 1, "method": "Runtime.evaluate", "params": { "expression": js, "userGesture": True } })) response = ws.recv() ws.close() return response def __str__(self): return self.title def __repr__(self): return self.title def get_tabs(): while True: try: res = get("{}/json".format(BASE_ADDRESS)).json() return [Tab(i) for i in res] except Exception as e: print("Could not fetch tabs from Steam CEF instance. Are you sure steam is running ?") print(e) print("Retrying in 5 seconds") sleep(5) def main(): tabs = get_tabs() files = listdir(argv[1]) for file in files: fp = open(path.join(argv[1], file, "main.js"), "r") cfg = loads(fp.readline()[2:]) if not cfg.get("enabled"): continue print("Loading {} with cfg {}".format(file, cfg)) while True: tab = next((i for i in tabs if i.title == cfg["target_tab"]), None) if tab: print("Found tab {} with ID {}. Injecting JS...".format(tab.title, tab.id)) print(tab.evaluate_js(fp.read())) break else: print("Target tab {} not found in fetched tabs. Refreshing tabs and retrying in 5 seconds".format(cfg["target_tab"])) tabs = get_tabs() sleep(5) if __name__ == "__main__": main()
"""Convert logincreate timestamps to TIMESTAMP(timzone=True) Revision ID: 3accc3d526ba Revises: 2e25bc9a0896 Create Date: 2020-02-27 16:06:48.018000 """ # revision identifiers, used by Alembic. revision = '3accc3d526ba' down_revision = '2e25bc9a0896' from alembic import op # lgtm[py/unused-import] import sqlalchemy as sa # lgtm[py/unused-import] from sqlalchemy.dialects.postgresql import TIMESTAMP def upgrade(): op.alter_column('logincreate', 'unixtime', existing_type=sa.INTEGER(), server_default=sa.func.now(), type_=TIMESTAMP(timezone=True), existing_nullable=False, postgresql_using="to_timestamp(unixtime + 18000)", new_column_name='created_at') def downgrade(): op.alter_column('logincreate', 'created_at', server_default=None) op.alter_column('logincreate', 'created_at', existing_type=TIMESTAMP(timezone=True), type_=sa.INTEGER(), existing_nullable=False, postgresql_using="extract(epoch from created_at) - 18000", new_column_name='unixtime')
# # # # # a = 215 # # # # a = int(input("Input a")) # # # a = 9000 # # # a = 3 # # # # if True: # after : is the code block, must be indented # print("True") # print("This always runs because if statement is True") # print("Still working in if block") # # # if block has ended # print("This runs no matter what because we are outside if ") # # # # # after we go back to our normal indentation the if block is ended # # # # # a = 25 # if a > 10: # in Python when you see : next line will be indented # # runs only when statement after if is True # print("Do this when a is larger than 10") # print(f"Still only runs when a > {a}") # # we can keep doing things when a > 10 here # # # # # # # # here we have exited if # print("This will always print no matter what") # # # # # # # # # # # # # # # # # # # # # a = -333 # # # # # # a = 200 # a = 44 # a = 15 # if a > 10: # in Python when you see : next line will be indented # # runs only when statement after if is True # print("Again Do this when a is larger than 10") # print("Indeed a is", a) # else: # when a is <= 10 # print("Only when a is less or equal to 10") # print("Indeed a is only", a) # # we could do more stuff here when a is not larger than 10 # # # # # # # # # # a = 10 a = 200 a = -95 a = 10 # # a = -355 # if we need more than 2 distinct paths # if a > 10: # in Python when you see : next line will be indented # # runs only when statement after if is True # print("Again Do this when a is larger than 10", a) # elif a < 10: # print("ahh a is less than 10", a) # else: # so a must be 10 no other choices you do not need to check, after all other choices are exhausted # print("Only when a is equal to 10 since we checked other cases", a) # # we could do more stuff here when a is not larger than 10 # # # # # # # # print("Back to normal program flow which always runs no matter what a is") # # # # # # # # # # # # # # # # # # # # # # # without else both of these could run # a = 20 # # # a = 7 # if a > 5: # print("a is larger than 5") # # the below if statement is not related to the if statement above # if a > 10: # print("a is larger than 10") # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if else elif # # # # # a = 190 # a = int(input("give me an a! ")) # if a > 10: # print("a is larger than 10") # print("This will only happen when a > 10") # if a >= 200: # so we can nest ifs inside another if # print("a is truly big over or equal 200") # else: # print("a is more than 10 but no more than 199") # elif a < 10: # print("a is less than 10", a) # else: # if a == 10 # print("a is equal to 10", a) # # # # # # # print("This will always happen no matter the a value") # # # # # # # # b = -8500 # # # # b = 6 # # # # b = 555 # # # # b = 9000 # # # # if b < 0: # # # # print("Less than 0", b) # # # # elif b < 10: # # # # print("Less than 10 but more or equal to 0", b) # # # # elif b < 9000: # # # # pass # empty operation # # # # # print("At least 10 but less than 9000", b) # # # # else: # # # # print("9000 or more!", b) # # # # # # # # # if b < 0: # # # # print("Less than 0", b) # # # # # # # # if b < 10: # # # # print("Less than 10", b) # # # # # # # # if b < 9000: # # # # print("less than 9000", b) # # # # else: # # # # print("9000 or more!", b) # # # # # # # # # # c = None # # # # c = 5 # # # # if c == None: # # # # print("There is Nothing") # # # # else: # # # # print("There is something") # # # # # # # # # # a = -100 if 2 < 3 < 8 < a: print(f"2 < 3 < 8 < {a} is it a True statement? ", 2 < 3 < 8 < a) else: print(f"2 < 3 < 8 < {a} is it a True statement?", 2 < 3 < 8 < a)
import os import sys ret = [] for x in os.walk(sys.path[-1],'*.py'): for y in x[2]: ss = y.split('.') if ss[-1] == 'py': ret.append(ss[0]) print(ret)
# _*_ codig utf8 _*_ import numpy as np import hmm_backward, hmm_forward def hmm_kesai(alpha, beta, A, B, Q): ''' 计算观测序列中t时刻和t+1时刻状态分别为si 和sj的概率 :param alpha: 前向概率矩阵 :param beta: 后续概率矩阵 :param A: 状态转移矩阵 :param B:状态到观测值转移矩阵 :param Q:观测状态序列 :return: ξ矩阵 ''' N = alpha.shape[1] T = alpha.shape[0] kesai = np.zeros((T-1, N, N)) # 求α* β的和 for t in np.arange(T-1): sum = 0 for i in np.arange(N): for j in np.arange(N): sum += alpha[t][i] * A[i][j] * B[j][Q[t + 1]] * beta[t + 1][j] for i in np.arange(N): for j in np.arange(N): kesai[t][i][j] = (alpha[t][i] * A[i][j] * B[j][Q[t + 1]] * beta[t + 1][j]) / sum return kesai if __name__ == '__main__': pi = np.array([0.2, 0.5, 0.3]) A = np.array([ [0.5, 0.4, 0.1], [0.2, 0.2, 0.6], [0.2, 0.5, 0.3] ]) B = np.array([ [0.4, 0.6], [0.8, 0.2], [0.5, 0.5] ]) Q = [0, 1, 0, 0, 1] beta, _ = hmm_backward.hmm_backward(pi, A, B, Q) alpha, _ = hmm_forward.hmm_forward(pi, A, B, Q) kesai = hmm_kesai(alpha, beta,A,B,Q) print('ξ={}'.format(kesai))
from typing import Type, Dict class SsaContext(): """ :ivar objCnt: the dictionary of object counts used for name generating """ def __init__(self): self.objCnt = 0 # : Dict[Type, int] = {} def genName(self, obj): prefix = getattr(obj, "GEN_NAME_PREFIX", "o") i = self.objCnt # .get(obj.__class__, 0) self.objCnt = i + 1 # [obj.__class__] = i return f"{prefix}{i:d}"
import PyPDF2 from PyPDF2 import PdfFileReader from pprint import pprint from tkinter import filedialog from tkinter import * def fileName(): root = Tk() root.filename = filedialog.askopenfilename(initialdir = "/",title = "Select file",filetypes = (("pdf files","*.pdf"),("all files","*.*"))) return str(root.filename) def walk(obj, fnt, emb): ''' We create and add to two sets, fnt = fonts used and emb = fonts embedded. ''' if not hasattr(obj, 'keys'): return None, None fontkeys = set(['/FontFile', '/FontFile2', '/FontFile3']) if '/BaseFont' in obj: fnt.add(obj['/BaseFont']) if '/FontName' in obj: if [x for x in fontkeys if x in obj]:# test to see if there is FontFile emb.add(obj['/FontName']) for k in obj.keys(): walk(obj[k], fnt, emb) return fnt, emb# return the sets for each page def getFont(): fname = fileName() pdf = PdfFileReader(fname) fonts = set() embedded = set() for page in pdf.pages: obj = page.getObject() # updated via this answer: # https://stackoverflow.com/questions/60876103/use-pypdf2-to-detect-non-embedded-fonts-in-pdf-file-generated-by-google-docs/60895334#60895334 # in order to handle lists inside objects. Thanks misingnoglic ! # untested code since I don't have such a PDF to play with. if type(obj) == PyPDF2.generic.ArrayObject: # You can also do ducktyping here for i in obj: if hasattr(i, 'keys'): f, e = walk(i, fonts, embedded_fonts) fonts = fonts.union(f) embedded = embedded.union(e) else: f, e = walk(obj['/Resources'], fonts, embedded) fonts = fonts.union(f) embedded = embedded.union(e) unembedded = fonts - embedded print ('Font List') pprint(sorted(list(fonts))) if unembedded: print ('Unembedded Fonts') pprint(unembedded)
import unittest import numpy as np from src.davil.lists import partition_train_test_validation class TestPartitions(unittest.TestCase): def test(self): def check_sets(lists): for ts in zip(*lists): for t in ts: t0 = ts[0].split('_')[0] assert t0 == t.split('_')[0] xs = [np.arange(20) for _ in range(4)] chars = [chr(x) for x in range(97, 101, 1)] xs = [[str(xx) + '_' + c for xx in x] for x, c in zip(xs, chars)] trs, tes, vals = partition_train_test_validation(xs) check_sets(trs) check_sets(tes) check_sets(vals) assert len(trs[0]) == round(20 * 0.7) assert len(tes[0]) == round(20 * 0.1) assert len(vals[0]) == round(20 * 0.2) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 13 11:12:06 2021 @author: altair """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import LSTM, Dropout, Dense from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0,1)) df = pd.read_csv("NSE-TATAGLOBAL11.csv") print(df.head()) # analyze data in proper date time df["Date"] = pd.to_datetime(df.Date, format = "%Y-%m-%d") df.index = df['Date'] plt.figure(figsize=(16,8)) plt.plot(df["Close"], label = "Close Price History") #implementation # linear regression # setting index as date values df['Date'] = pd.to_datetime(df.Date, format= '%Y-%m-%d') df.index = df['Date'] # sorting data = df.sort_index(ascending= True, axis= 0) data['Date'] = pd.to_numeric(pd.to_datetime(data['Date'])) # creating a seperate dataset new_data = pd.DataFrame(index= range(0, len(df)), columns= ['Date', 'Close']) for i in range(0,len(data)): new_data['Date'][i] = data['Date'][i] new_data['Close'][i] = data['Close'][i] #new_data['mon_fri'] = 0 #for i in range(0,len(new_data)): # if (new_data['Dayofweek'][i] == 0 or new_data['Dayofweek'][i] == 4): # new_data['mon_fri'][i] = 1 # else: # new_data['mon_fri'][i] = 0 from fastai.tabular.all import * add_datepart(new_data, 'Date') new_data.drop('Elapsed', axis= 1, inplace= True) # elapsed will be the time stamp # split into train and validation train = new_data[:987] valid = new_data[987:] x_train = train.drop('Close', axis= 1) y_train = train['Close'] x_valid = valid.drop('Close', axis= 1) y_valid = valid['Close'] # implement linear regression from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(x_train, y_train) # results # make predictions and find the RMSE preds = model.predict(x_valid) rms = np.sqrt(np.mean(np.power((np.array(y_valid)-np.array(preds)),2))) print('RMS:', rms) # plot valid['Predictions'] = preds #valid['Predictions'] = preds #valid.loc[:,'Predictions']= preds valid.loc[:, 'Predictions'] = preds valid.index = new_data[987:].index train.index = new_data[:987].index plt.plot(train['Close']) plt.plot(valid[['Close','Predictions']]) # knn from sklearn import neighbors from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import MonMaxScaler scaler = MinMaxScaler(feature_range=(0,1)) #scaling data x_train_scaled = scaler.fit_transform(x_train) x_train = pd.DataFrame(x_ttrain_scaled) x_valid_scaled = scaler.fit_transform(x_valid) x_valid = pd.DataFrame(x_valid_scaled) # using gridsearch to find the best parameter params = {'n_neighbors' : [2, 3, 4, 5, 6, 7, 8, 9]} knn = neighbors.KNeighborsRegressor() model = GridSearchCV(knn, params, cv=5) # fit the model and make predictions model.fit(x_train, y_train) preds = model.predict(x_valid) #rmse rms = np.sqrt(np.mean(np.power((np.array(y_valid)-np.array(preds)),2))) print('RMS:', rms) # plots #valid['Predictions'] = 0 #valid['Predictions'] = preds valid.loc[:,-1]= preds plt.plot(train['Close']) plt.plot(valid[['Close','Predictions']])