content
stringlengths
5
1.05M
from conans import ConanFile, CMake, tools class CppAgentConan(ConanFile): name = "mtconnect_cppagent" version = "2.0" generators = "cmake" url = "https://github.com/mtconnect/cppagent.git" license = "Apache License 2.0" settings = "os", "compiler", "arch", "build_type", "arch_build" options = { "run_tests": [True, False], "build_tests": [True, False], "without_python": [True, False], "without_ruby": [True, False], "without_ipv6": [True, False], "with_ruby": [True, False], "with_python": [True, False] } description = "MTConnect reference C++ agent copyright Association for Manufacturing Technology" requires = ["boost/1.77.0", "libxml2/2.9.10", "date/2.4.1", "nlohmann_json/3.9.1", "mqtt_cpp/11.0.0", "openssl/1.1.1k"] build_policy = "missing" default_options = { "run_tests": True, "build_tests": True, "without_python": True, "without_ruby": False, "without_ipv6": False, "with_python": False, "with_ruby": False, "boost:shared": False, "boost:without_python": True, "boost:without_test": True, "boost:extra_b2_flags": "visibility=hidden", "libxml2:shared": False, "libxml2:include_utils": False, "libxml2:http": False, "libxml2:ftp": False, "libxml2:iconv": False, "libxml2:zlib": False, "gtest:shared": False, "date:use_system_tz_db": True } def configure(self): if not self.options.without_python: self.options["boost"].without_python = False self.windows_xp = self.settings.os == 'Windows' and self.settings.compiler.toolset and \ self.settings.compiler.toolset in ('v141_xp', 'v140_xp') if self.settings.os == 'Windows': if self.settings.build_type and self.settings.build_type == 'Debug': self.settings.compiler.runtime = 'MTd' else: self.settings.compiler.runtime = 'MT' self.settings.compiler.version = '16' if "libcxx" in self.settings.compiler.fields and self.settings.compiler.libcxx == "libstdc++": raise Exception("This package is only compatible with libstdc++11, add -s compiler.libcxx=libstdc++11") self.settings.compiler.cppstd = 17 if self.windows_xp: self.options.build_tests = False if not self.options.build_tests: self.options.run_tests = False if not self.options.without_ruby: self.options.with_ruby = True if not self.options.without_python: self.options.with_python = True # if self.windows_xp: # self.options["boost"].extra_b2_flags = self.options["boost"].extra_b2_flags + "define=BOOST_USE_WINAPI_VERSION=0x0501 " # elif self.settings.os == 'Windows': # self.options["boost"].extra_b2_flags = self.options["boost"].extra_b2_flags + "define=BOOST_USE_WINAPI_VERSION=0x0600 " def requirements(self): if not self.windows_xp: self.requires("gtest/1.10.0") if self.options.with_ruby: self.requires("mruby/3.1.0") def build(self): cmake = CMake(self) cmake.verbose = True if not self.options.build_tests: cmake.definitions['AGENT_ENABLE_UNITTESTS'] = 'OFF' if self.options.without_ipv6: cmake.definitions['AGENT_WITHOUT_IPV6'] = 'ON' if self.options.with_python: cmake.definitions['WITH_PYTHON'] = 'ON' else: cmake.definitions['WITH_PYTHON'] = 'OFF' if self.options.with_ruby: cmake.definitions['WITH_RUBY'] = 'ON' else: cmake.definitions['WITH_RUBY'] = 'OFF' if self.windows_xp: cmake.definitions['WINVER'] = '0x0501' cmake.configure() cmake.build() if self.options.run_tests: cmake.test() def imports(self): self.copy("*.dll", "bin", "bin") self.copy("*.so*", "bin", "lib") self.copy("*.dylib", "bin", "lib")
from protox import Message, Int32 from protox.message import define_fields def test_define_fields(): class User(Message): id: int define_fields( User, id=Int32(number=1), ) user_id = 123 user = User(id=user_id) assert isinstance(user.id, int) assert user.id == user_id
import sys char_ = None def readchar_(): global char_ if char_ == None: char_ = sys.stdin.read(1) return char_ def skipchar(): global char_ char_ = None return def stdinsep(): while True: c = readchar_() if c == '\n' or c == '\t' or c == '\r' or c == ' ': skipchar() else: return def readint(): c = readchar_() if c == '-': sign = -1 skipchar() else: sign = 1 out = 0 while True: c = readchar_() if c <= '9' and c >= '0' : out = out * 10 + int(c) skipchar() else: return out * sign def mktoto(v1): t = {"foo":v1, "bar":0, "blah":0} return t def result(t, len): out0 = 0 for j in range(0, len): t[j]["blah"] += 1 out0 = out0 + t[j]["foo"] + t[j]["blah"] * t[j]["bar"] + t[j]["bar"] * t[j]["foo"] return out0 t = [None] * 4 for i in range(0, 4): t[i] = mktoto(i) t[0]["bar"] = readint() stdinsep() t[1]["blah"] = readint() titi = result(t, 4) print("%d%d" % (titi, t[2]["blah"]), end='')
from django.db import models # ----------------------------------------------------------------------------- # Contacts Address # ----------------------------------------------------------------------------- class Contacts(models.Model): first_name = models.CharField(max_length=40) last_name = models.CharField(max_length=40) nick_name = models.CharField(max_length=40, blank=True) title = models.CharField(max_length=10, blank=True) company = models.CharField(max_length=40, blank=True) #job_title = models.CharField(max_length=40,default='x') email = models.EmailField(blank=True) #notes = models.TextField(null=True, blank=True, default='none') # created = models.DateTimeField(auto_now_add=True) # updated = models.DateTimeField(auto_now=True) def __str__(self): return self.first_name
"""Utility functions for Python.""" from __future__ import annotations import ctypes import io import os import sys import tempfile from contextlib import contextmanager from typing import Any, Optional from typing import overload, Sequence import os import re import numpy as np import pyproj #import pyproj.transformer #import pyproj.crs libc = ctypes.CDLL(None) c_stdout = ctypes.c_void_p.in_dll(libc, 'stdout') @contextmanager def no_stdout(stream=None, disable=False): """ Redirect the stdout to a stream file. Source: https://eli.thegreenplace.net/2015/redirecting-all-kinds-of-stdout-in-python/ param: stream: a BytesIO object to write to. param: disable: whether to temporarily disable the feature. """ if disable: yield return if stream is None: stream = io.BytesIO() # The original fd stdout points to. Usually 1 on POSIX systems. original_stdout_fd = sys.stdout.fileno() def _redirect_stdout(to_fd): """Redirect stdout to the given file descriptor.""" # Flush the C-level buffer stdout libc.fflush(c_stdout) # Flush and close sys.stdout - also closes the file descriptor (fd) sys.stdout.close() # Make original_stdout_fd point to the same file as to_fd os.dup2(to_fd, original_stdout_fd) # Create a new sys.stdout that points to the redirected fd sys.stdout = io.TextIOWrapper(os.fdopen(original_stdout_fd, 'wb')) # Save a copy of the original stdout fd in saved_stdout_fd saved_stdout_fd = os.dup(original_stdout_fd) try: # Create a temporary file and redirect stdout to it tfile = tempfile.TemporaryFile(mode='w+b') _redirect_stdout(tfile.fileno()) # Yield to caller, then redirect stdout back to the saved fd yield _redirect_stdout(saved_stdout_fd) # Copy contents of temporary file to the given stream tfile.flush() tfile.seek(0, io.SEEK_SET) stream.write(tfile.read()) finally: tfile.close() os.close(saved_stdout_fd) _LV03_TO_LV95 = pyproj.transformer.Transformer.from_crs(pyproj.crs.CRS.from_epsg(21781), pyproj.crs.CRS.from_epsg(2056)) def list_files(directory: str, pattern: str = ".*") -> list[str]: """ List all files in a directory and return their absolute paths. :param directory: The directory to list files within. :param pattern: A regex pattern to match (for example to filter certain extensions). """ files: list[str] = [] for filename in os.listdir(directory): if re.match(pattern, filename) is None: continue filepath = os.path.abspath(os.path.join(directory, filename)) if not os.path.isfile(filepath): continue files.append(filepath) return files def station_from_filepath(filepath: str) -> str: """Parse the station_XXXX or station_XXXX_Y part from a filepath.""" basename = os.path.basename(filepath) max_index = 14 if "_A" in basename or "_B" in basename else 12 station = basename[:max_index] assert station.startswith("station_") return station def sgi_1973_to_2016(sgi_id: str) -> str: """ Convert the slightly different SGI1973 to the SGI2016 id format. :examples: >>> sgi_1973_to_2016("B55") 'B55' >>> sgi_1973_to_2016("B55-19") 'B55-19' >>> sgi_1973_to_2016("E73-2") 'E73-02' """ if "-" not in sgi_id: return sgi_id start, end = sgi_id.split("-") return start + "-" + end.zfill(2) def sgi_2016_to_1973(sgi_id: str) -> str: """ Convert the slightly different SGI2016 to the SGI1973 id format. :examples: >>> sgi_2016_to_1973("B55") 'B55' >>> sgi_2016_to_1973("B55-19") 'B55-19' >>> sgi_2016_to_1973("E73-02") 'E73-2' """ if "-" not in sgi_id: return sgi_id start, end = sgi_id.split("-") return start + "-" + str(int(end)) @overload def lv03_to_lv95(easting: np.ndarray, northing: np.ndarray) -> np.ndarray: ... @overload def lv03_to_lv95(easting: float, northing: float) -> tuple[float, float]: ... def lv03_to_lv95(easting: np.ndarray | float, northing: np.ndarray | float) -> np.ndarray | tuple[float, float]: trans = _LV03_TO_LV95.transform(easting, northing) return trans if not isinstance(easting, Sequence) else np.array(trans).T
#!/usr/bin/env python # # ----------------------------------------------------------------------------- # Copyright (c) 2018 The Regents of the University of California # # This file is part of kevlar (http://github.com/dib-lab/kevlar) and is # licensed under the MIT license: see LICENSE. # ----------------------------------------------------------------------------- from collections import namedtuple import kevlar import re AlignmentBlock = namedtuple('AlignmentBlock', 'length type target query') class AlignmentTokenizer(object): def __init__(self, queryseq, targetseq, cigar): self._query = queryseq self._target = targetseq self._origcigar = cigar self._cigar = cigar self.blocks = list(self._tokenize()) self._endcheck() def _tokenize(self): target = self._target query = self._query blocks = re.finditer(r'(\d+)([DIM])', self._origcigar) for block in blocks: length = int(block.group(1)) blocktype = block.group(2) tseq, qseq = None, None if blocktype in ('M', 'D'): tseq = target[:length] target = target[length:] if blocktype in ('M', 'I'): qseq = query[:length] query = query[length:] yield AlignmentBlock(length, blocktype, tseq, qseq) assert target == '' assert query == '' def _endcheck(self): if len(self.blocks) < 3: return if self.blocks[-1].type != 'M' or self.blocks[-3].type != 'M': return if self.blocks[-2].type == 'D': prevseq = self.blocks[-2].target lastseq = self.blocks[-1].target endseq = self.blocks[-1].query else: prevseq = self.blocks[-2].query lastseq = self.blocks[-1].query endseq = self.blocks[-1].target longseq = prevseq + lastseq if longseq.startswith(endseq): self.blocks[-3] = AlignmentBlock( self.blocks[-3].length + self.blocks[-1].length, 'M', self.blocks[-3].target + self.blocks[-1].target, self.blocks[-3].query + self.blocks[-1].query, ) del self.blocks[-1] newcigar = '' for block in self.blocks: newcigar += '{:d}{:s}'.format(block.length, block.type) self._cigar = newcigar
# Generated by Django 2.1.7 on 2019-04-15 05:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounting_tech', '0034_auto_20190415_0848'), ] operations = [ migrations.AddField( model_name='acquisition', name='room', field=models.CharField(default='435', max_length=50, verbose_name='Кабинет'), ), migrations.AddField( model_name='acquisition', name='timestamp', field=models.DateTimeField(auto_now=True, verbose_name='Время создания заявки'), ), ]
# utils functions for file io import re def split_region(region): region_split = re.split('[\W_+]', region) contig, start, end = region_split[:3] # ignore other fields. Overlapping ignoring strandness (TO DO: consider strandness?) start = int(start) end = int(end) return contig, start, end def id2value(values): return {(id+1):value for id, value in enumerate(values)} def value2id(values): return {value:(id+1) for id, value in enumerate(values)} def load_values(file): print("== loading: {} ==".format(file)) with open(file,"r") as f: return [value.strip() for value in f.readlines()] def load_count_mat(file): """ read sparse count matrix (row x col) into dict, with row ids as keys """ print("== loading sparse count matrix {} ==".format(file)) with open(file, "r") as f: i_skip = 0 for i, line in enumerate(f.readlines()): if line.startswith("%"): i_skip += 1 elif i > i_skip: row_id, col_id, count = re.split('\W', line.strip()) counts[int(row_id)][int(col_id)] = int(count) else: n_rows, n_cols, _ = re.split('\W', line.strip()) counts = {(id+1):{} for id in range(int(n_rows))} # 1-indexed return counts def reindex(actual, base=1): """ Re-index a numeric list with missing values removed (assuming both are unique and sorted ascendingly): Ex: input: original:[1,2,3,4,5], actual:[2,4]; return: {2:1,4:2} """ reindex = {v:(i+base) for i,v in enumerate(actual)} return reindex
""" This file is part of mss. :copyright: Copyright 2021 by the mss team, see AUTHORS. :license: APACHE-2.0, see LICENSE for details. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import matplotlib as mpl import mslib.mswms.mpl_vsec_styles class VS_Template(mslib.mswms.mpl_vsec_styles.AbstractVerticalSectionStyle): name = "VSTemplate" # Pick a proper name starting with "VS" title = "Air Temperature" abstract = "Air Temperature (degC)" required_datafields = [ # level type, CF standard name, unit ("pl", "air_pressure", "Pa"), # air_pressure must be given for VS plots ("pl", "air_temperature", "degC"), ] def _plot_style(self): fill_range = np.arange(-93, 28, 2) fill_entity = "air_temperature" contour_entity = "air_temperature" # main plot cmap = mpl.cm.plasma cf = self.ax.contourf( self.horizontal_coordinate, self.data["air_pressure"], self.data[fill_entity], fill_range, cmap=cmap, extend="both") self.add_colorbar(cf, fill_entity) # contour temps_c = self.ax.contour( self.horizontal_coordinate, self.data["air_pressure"], self.data[contour_entity], colors="w") self.ax.clabel(temps_c, fmt="%i") # finalise the plot self._latlon_logp_setup()
import re from torch import nn, optim from torchvision import models ##################################################################################################### class ConvNet(nn.Module): def __init__(self, model_name=None, pretrained=False): super(ConvNet, self).__init__() if re.match(r"resnet", model_name, re.IGNORECASE): self.model = models.resnet50(pretrained=pretrained, progress=True) if pretrained: self.freeze() in_features = self.model.fc.in_features self.model.fc = nn.Linear(in_features=in_features, out_features=4) self.model.add_module("Final Activation", nn.LogSoftmax(dim=1)) elif re.match(r"vgg", model_name, re.IGNORECASE): self.model = models.vgg16_bn(pretrained=pretrained, progress=True) if pretrained: self.freeze() in_features = self.model.classifier[-1].in_features self.model.classifier[-1] = nn.Linear(in_features=in_features, out_features=4) self.model.classifier.add_module("Final Activation", nn.LogSoftmax(dim=1)) elif re.match(r"mobilenet", model_name, re.IGNORECASE): self.model = models.mobilenet_v3_small(pretrained=pretrained, progress=True) if pretrained: self.freeze() in_features = self.model.classifier[-1].in_features self.model.classifier[-1] = nn.Linear(in_features=in_features, out_features=4) self.model.classifier.add_module("Final Activation", nn.LogSoftmax(dim=1)) else: raise ValueError("Incorrect value passed to model_name. Supported are \n\n1. resnet\n2. vgg\n3. mobilenet\n\n") def freeze(self): for params in self.parameters(): params.requires_grad = False def get_optimizer(self, lr=1e-3, wd=0): params = [p for p in self.parameters() if p.requires_grad] return optim.Adam(params, lr=lr, weight_decay=wd) def get_plateau_scheduler(self, optimizer=None, patience=5, eps=1e-8): return optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, patience=patience, eps=eps, verbose=True) def forward(self, x): return self.model(x) #####################################################################################################
from o3seespy.command.nd_material.base_material import NDMaterialBase class ContactMaterial2D(NDMaterialBase): """ The ContactMaterial2D NDMaterial Class This command is used to construct a ContactMaterial2D nDMaterial object. """ op_type = 'ContactMaterial2D' def __init__(self, osi, mu, g_mod, c, t): """ Initial method for ContactMaterial2D Parameters ---------- osi: o3seespy.OpenSeesInstance mu: float Interface frictional coefficient g_mod: float Interface stiffness parameter c: float Interface cohesive intercept t: float Interface tensile strength Examples -------- >>> import o3seespy as o3 >>> osi = o3.OpenSeesInstance(ndm=2) >>> o3.nd_material.ContactMaterial2D(osi, mu=1.0, g_mod=1.0, c=1.0, t=1.0) """ self.osi = osi self.mu = float(mu) self.g_mod = float(g_mod) self.c = float(c) self.t = float(t) if osi is not None: osi.n_mat += 1 self._tag = osi.n_mat self._parameters = [self.op_type, self._tag, self.mu, self.g_mod, self.c, self.t] if osi is None: self.built = 0 if osi is not None: self.to_process(osi) class ContactMaterial3D(NDMaterialBase): """ The ContactMaterial3D NDMaterial Class This command is used to construct a ContactMaterial3D nDMaterial object. """ op_type = 'ContactMaterial3D' def __init__(self, osi, mu, g_mod, c, t): """ Initial method for ContactMaterial3D Parameters ---------- osi: o3seespy.OpenSeesInstance mu: float Interface frictional coefficient g_mod: float Interface stiffness parameter c: float Interface cohesive intercept t: float Interface tensile strength Examples -------- >>> import o3seespy as o3 >>> osi = o3.OpenSeesInstance(ndm=3) >>> o3.nd_material.ContactMaterial3D(osi, mu=1.0, g_mod=1.0, c=1.0, t=1.0) """ self.osi = osi self.mu = float(mu) self.g_mod = float(g_mod) self.c = float(c) self.t = float(t) if osi is not None: osi.n_mat += 1 self._tag = osi.n_mat self._parameters = [self.op_type, self._tag, self.mu, self.g_mod, self.c, self.t] if osi is None: self.built = 0 if osi is not None: self.to_process(osi)
#!/usr/bin/python # -*- coding: utf-8 -* import time class Instruction(object): def __init__(self, f, l, a): self.f = f self.l = l self.a = a class Interpret(object): def __init__(self, taclist): self.code = taclist self.paramInit() def paramInit(self): self.buf = None self.c = 0 # current code index self.p = 0 # pointer of code self.b = 1 # base address of code self.t = 0 # pointer of stack top # runtime stack self.s = [0 for x in xrange(5000)] self.reg = [0 for x in xrange(16)] def judge(self): if self.p == 0: return False return True def base(self, l, b): b1 = b while l > 0: b1 = self.s[b1] l -= 1 return b1 def send(self, data): self.s[self.t] = data def recv(self): return self.buf def showStack(self): return [self.s[x] for x in xrange(self.t+1)] def sg_step(self): p, b, t = self.p, self.b, self.t s, reg = self.s, self.reg self.c = p ''' tag is for judge IO 0 means common operation 1 means input 2 means output ''' tag = 0 i = self.code[p] p += 1 if i.f == "lit": t += 1 s[t] = i.a if i.f == "opr": if i.a == 0: #return t = b - 1 p = s[t + 3] b = s[t + 2] if i.a == 1: # inverse s[t] = -s[t] if i.a == 2: # plus t = t - 1 s[t] = s[t] + s[t + 1] if i.a == 3: # minus t = t - 1 s[t] = s[t] - s[t + 1] if i.a == 4: # times t = t - 1 s[t] = s[t] * s[t + 1] if i.a == 5: t = t - 1 if i.l == 0: # slash s[t] = s[t] / s[t + 1] if i.l == 1: # mod s[t] = s[t] % s[t + 1] if i.a == 6: # odd s[t] = s[t] & 1 if i.a == 7: t = t - 1 if i.l == 0: # equal s[t] = (s[t] == s[t + 1]) if i.l == 1: # not equal s[t] = (s[t] != s[t + 1]) if i.a == 8: t = t - 1 if i.l == 0: # less s[t] = (s[t] < s[t + 1]) if i.l == 1: # less or equal s[t] = (s[t] <= s[t + 1]) if i.a == 9: t = t - 1 if i.l == 0: # larger s[t] = (s[t] > s[t + 1]) if i.l == 1: # larger or equal s[t] = (s[t] >= s[t + 1]) if i.a == 10: # bitwise and t = t - 1 s[t] = s[t] & s[t + 1] if i.a == 11: # bitwise or t = t - 1 s[t] = s[t] | s[t + 1] if i.a == 12: # bitwise not s[t] = ~s[t] if i.a == 13: # xor t = t - 1 s[t] = s[t] ^ s[t + 1] if i.a == 14: # logic and t = t - 1 s[t] = (s[t] and s[t + 1]) if i.a == 15: # logic or t = t - 1 s[t] = (s[t] or s[t + 1]) if i.a == 16: # shift operation t = t - 1 if i.l == 0: s[t] = s[t] << s[t + 1] if i.l == 1: s[t] = s[t] >> s[t + 1] if i.f == "lod": # push value from memory into stack t = t + 1 s[t] = s[self.base(i.l, b) + i.a] if i.f == "sto": # save the stack top value s[self.base(i.l, b) + i.a] = s[t] t = t - 1 if i.f == "cal": # call function s[t + 1] = self.base(i.l, b) s[t + 2] = b s[t + 3] = p b = t + 1 p = i.a if i.f == "int": # initialize a size data space t = t + i.a if i.f == "jmp": # unconditional jump p = i.a tag = 3 if i.f == "jne": # not-equal conditional jump if s[t] == 0: p = i.a t = t - 1 if i.f == "jeq": # equal conditional jump if s[t] != 0: p = i.a t = t - 1 if i.f == "in": # input t = t + 1 if i.a == 0: tag = 1 else: s[t] = reg[i.a] if i.f == "out": # output if i.a == 0: self.buf = s[t] tag = 2 else: reg[i.a] = s[t] t = t - 1 self.p, self.b, self.t = p, b, t self.s, self.reg = s, reg return tag
""" Given an array of numbers which is sorted in ascending order and is rotated ‘k’ times around a pivot, find ‘k’. You can assume that the array does not have any duplicates. Example 1: Input: [10, 15, 1, 3, 8] Output: 2 Explanation: The array has been rotated 2 times. """ # Time: O(n) Space: O(1) def count_rotations(arr): start, end = 0, len(arr) - 1 while start < end: mid = start + (end - start) // 2 # if mid is greater than the next element if mid < end and arr[mid] > arr[mid + 1]: return mid + 1 # if mid is smaller than the previous element if mid > start and arr[mid - 1] > arr[mid]: return mid if arr[start] < arr[mid]: # left side is sorted, so the pivot is on right side start = mid + 1 else: # right side is sorted, so the pivot is on the left side end = mid - 1 return 0 # the array has not been rotated def main(): print(count_rotations([10, 15, 1, 3, 8])) print(count_rotations([4, 5, 7, 9, 10, -1, 2])) print(count_rotations([1, 3, 8, 10])) main()
# coding=utf-8 from OTLMOW.OTLModel.BaseClasses.OTLAttribuut import OTLAttribuut from OTLMOW.OTLModel.Classes.NaampadObject import NaampadObject from OTLMOW.OTLModel.Datatypes.KlPadNetwerkprotectie import KlPadNetwerkprotectie from OTLMOW.GeometrieArtefact.GeenGeometrie import GeenGeometrie # Generated with OTLClassCreator. To modify: extend, do not edit class Pad(NaampadObject, GeenGeometrie): """Een aaneengesloten reeks van links die samen een verbinding realiseren over het netwerk, gebruik makende van eenzelfde technologie (vb SDH, OTN…).""" typeURI = 'https://wegenenverkeer.data.vlaanderen.be/ns/installatie#Pad' """De URI van het object volgens https://www.w3.org/2001/XMLSchema#anyURI.""" def __init__(self): NaampadObject.__init__(self) GeenGeometrie.__init__(self) self._netwerkprotectie = OTLAttribuut(field=KlPadNetwerkprotectie, naam='netwerkprotectie', label='netwerkprotectie', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/installatie#Pad.netwerkprotectie', kardinaliteit_max='*', definition='Referentie van het pad dat redundantie levert aan dit pad.', owner=self) @property def netwerkprotectie(self): """Referentie van het pad dat redundantie levert aan dit pad.""" return self._netwerkprotectie.get_waarde() @netwerkprotectie.setter def netwerkprotectie(self, value): self._netwerkprotectie.set_waarde(value, owner=self)
from thop import profile import torch from .network_factory.resnet_feature import BackBone_ResNet from .network_factory.mobilenet_v2_feature import BackBone_MobileNet from .network_factory.part_group_network import Part_Group_Network from .network_factory.pose_hrnet import BackBone_HRNet from myutils import get_model_summary import logging logger = logging.getLogger(__name__) def bulid_up_network(config,criterion): # if config.model.use_backbone: # logger.info("backbone of architecture is {}".format(config.model.backbone_net_name)) if config.model.backbone_net_name=="resnet": backbone = BackBone_ResNet(config,is_train=True) if config.model.backbone_net_name=="mobilenet_v2": backbone = BackBone_MobileNet(config,is_train=True) if config.model.backbone_net_name=="hrnet": backbone = BackBone_HRNet(config,is_train=True) Arch = Part_Group_Network(config.model.keypoints_num, criterion, backbone, **config.model.part_group_config) if config.model.use_pretrained: Arch.load_pretrained(config.model.pretrained) logger.info("\n\nbackbone: params and flops") logger.info(get_model_summary(backbone,torch.randn(1, 3, config.model.input_size.h,config.model.input_size.w))) logger.info("\n\nwhole architecture: params and flops") logger.info(get_model_summary(Arch,torch.randn(1, 3, config.model.input_size.h,config.model.input_size.w))) logger.info("=========== thop statistics ==========") dump = torch.randn(1, 3, config.model.input_size.h,config.model.input_size.w) flops, params = profile( backbone, inputs=(dump,), ) logger.info(">>> total params of BackBone: {:.2f}M\n>>> total FLOPS of Backbone: {:.3f} G\n".format( (params / 1000000.0),(flops / 1000000000.0))) flops, params = profile(Arch, inputs=(dump,), ) logger.info(">>> total params of Whole Model: {:.2f}M\n>>> total FLOPS of Model: {:.3f} G\n".format( (params / 1000000.0),(flops / 1000000000.0))) return Arch
import six import redis from redis import Redis, RedisError from redis.client import bool_ok from redis.client import int_or_none from redis._compat import (long, nativestr) from redis.exceptions import DataError class TSInfo(object): chunk_count = None labels = [] last_time_stamp = None max_samples_per_chunk = None retention_secs = None rules = [] def __init__(self, args): self.chunk_count = args['chunkCount'] self.labels = list_to_dict(args['labels']) self.last_time_stamp = args['lastTimestamp'] self.max_samples_per_chunk = args['maxSamplesPerChunk'] self.retention_secs = args['retentionSecs'] self.rules = args['rules'] def list_to_dict(aList): return {nativestr(aList[i][0]):nativestr(aList[i][1]) for i in range(len(aList))} def parse_range(response): return [tuple((l[0], l[1].decode())) for l in response] def parse_m_range(response): res = [] for item in response: res.append({ nativestr(item[0]) : [list_to_dict(item[1]), parse_range(item[2])]}) return res def parse_info(response): res = dict(zip(map(nativestr, response[::2]), response[1::2])) info = TSInfo(res) return info class Client(Redis): #changed from StrictRedis """ This class subclasses redis-py's `Redis` and implements RedisTimeSeries's commmands (prefixed with "ts"). The client allows to interact with RedisTimeSeries and use all of it's functionality. """ MODULE_INFO = { 'name': 'RedisTimeSeries', 'ver': '0.1.0' } CREATE_CMD = 'TS.CREATE' ADD_CMD = 'TS.ADD' INCRBY_CMD = 'TS.INCRBY' DECRBY_CMD = 'TS.DECRBY' CREATERULE_CMD = 'TS.CREATERULE' DELETERULE_CMD = 'TS.DELETERULE' RANGE_CMD = 'TS.RANGE' MRANGE_CMD = 'TS.MRANGE' GET_CMD = 'TS.GET' INFO_CMD = 'TS.INFO' def __init__(self, *args, **kwargs): """ Creates a new RedisTimeSeries client. """ Redis.__init__(self, *args, **kwargs) # Set the module commands' callbacks MODULE_CALLBACKS = { self.CREATE_CMD : bool_ok, self.ADD_CMD : int_or_none, self.INCRBY_CMD : bool_ok, self.DECRBY_CMD : bool_ok, self.CREATERULE_CMD : bool_ok, self.DELETERULE_CMD : bool_ok, self.RANGE_CMD : parse_range, self.MRANGE_CMD : parse_m_range, self.GET_CMD : lambda x: (int(x[0]), float(x[1])), self.INFO_CMD : parse_info, } for k, v in six.iteritems(MODULE_CALLBACKS): self.set_response_callback(k, v) @staticmethod def appendRetention(params, retention): if retention is not None: params.extend(['RETENTION', retention]) @staticmethod def appendTimeBucket(params, time_bucket): if time_bucket is not None: params.extend(['RESET', time_bucket]) @staticmethod def appendLabels(params, labels): if labels: params.append('LABELS') for k, v in labels.items(): params.extend([k,v]) @staticmethod def appendAggregation(params, aggregation_type, bucket_size_seconds): params.append('AGGREGATION') params.extend([aggregation_type, bucket_size_seconds]) def create(self, key, retention_secs=None, labels={}): """ Creates a new time-series ``key`` with ``rententionSecs`` in seconds and ``labels``. """ params = [key] self.appendRetention(params, retention_secs) self.appendLabels(params, labels) return self.execute_command(self.CREATE_CMD, *params) def add(self, key, timestamp, value, retention_secs=None, labels={}): """ Appends (or creates and appends) a new ``value`` to series ``key`` with ``timestamp``. If ``key`` is created, ``retention_secs`` and ``labels`` are applied. """ params = [key, timestamp, value] self.appendRetention(params, retention_secs) self.appendLabels(params, labels) return self.execute_command(self.ADD_CMD, *params) def incrby(self, key, value, time_bucket=None, retention_secs=None, labels={}): """ Increases latest value in ``key`` by ``value``. ``time_bucket`` resets counter. In seconds. If ``key`` is created, ``retention_secs`` and ``labels`` are applied. """ params = [key, value] self.appendTimeBucket(params, time_bucket) self.appendRetention(params, retention_secs) self.appendLabels(params, labels) return self.execute_command(self.INCRBY_CMD, *params) def decrby(self, key, value, time_bucket=None, retention_secs=None, labels={}): """ Decreases latest value in ``key`` by ``value``. ``time_bucket`` resets counter. In seconds. If ``key`` is created, ``retention_secs`` and ``labels`` are applied. """ params = [key, value] self.appendTimeBucket(params, time_bucket) self.appendRetention(params, retention_secs) self.appendLabels(params, labels) return self.execute_command(self.DECRBY_CMD, *params) def createrule(self, source_key, dest_key, aggregation_type, bucket_size_seconds): """ Creates a compaction rule from values added to ``source_key`` into ``dest_key``. Aggregating for ``bucket_size_seconds`` where an ``aggregation_type`` can be ['avg', 'sum', 'min', 'max', 'range', 'count', 'first', 'last'] """ params=[source_key, dest_key] self.appendAggregation(params, aggregation_type, bucket_size_seconds) return self.execute_command(self.CREATERULE_CMD, *params) def deleterule(self, source_key, dest_key): """Deletes a compaction rule""" return self.execute_command(self.DELETERULE_CMD, source_key, dest_key) def range(self, key, from_time, to_time, aggregation_type=None, bucket_size_seconds=0): """ Query a range from ``key``, from ``from_time`` to ``to_time``. Can Aggregate for ``bucket_size_seconds`` where an ``aggregation_type`` can be ['avg', 'sum', 'min', 'max', 'range', 'count', 'first', 'last'] """ params = [key, from_time, to_time] if aggregation_type != None: self.appendAggregation(params, aggregation_type, bucket_size_seconds) return self.execute_command(self.RANGE_CMD, *params) def mrange(self, from_time, to_time, filters, aggregation_type=None, bucket_size_seconds=0): """ Query a range based on filters,retention_secs from ``from_time`` to ``to_time``. ``filters`` are a list strings such as ['Test=This']. Can Aggregate for ``bucket_size_seconds`` where an ``aggregation_type`` can be ['avg', 'sum', 'min', 'max', 'range', 'count', 'first', 'last'] """ params = [from_time, to_time] if aggregation_type != None: self.appendAggregation(params, aggregation_type, bucket_size_seconds) params.extend(['FILTER']) params += filters return self.execute_command(self.MRANGE_CMD, *params) def get(self, key): """Gets the last sample of ``key``""" return self.execute_command(self.GET_CMD, key) def info(self, key): """Gets information of ``key``""" return self.execute_command(self.INFO_CMD, key)
from RLTest import Env from includes import * from common import waitForIndex def testDictAdd(): env = Env() env.expect('ft.dictadd', 'dict', 'term1', 'term2', 'term3').equal(3) env.expect('ft.dictadd', 'dict', 'term1', 'term2', 'term4').equal(1) def testDictAddWrongArity(): env = Env() env.expect('ft.dictadd', 'dict').raiseError() def testDictDelete(): env = Env() env.expect('ft.dictadd', 'dict', 'term1', 'term2', 'term3').equal(3) env.expect('ft.dictdel', 'dict', 'term1', 'term2', 'term4').equal(2) env.expect('ft.dictdel', 'dict', 'term3').equal(1) env.expect('keys', '*').equal([]) def testDictDeleteOnFlush(): env = Env() env.expect('ft.dictadd', 'dict', 'term1', 'term2', 'term3').equal(3) env.expect('FLUSHALL').equal(True) env.expect('ft.dictdump', 'dict').error().contains('could not open dict') env.expect('ft.dictadd', 'dict', 'term4', 'term5', 'term6').equal(3) env.expect('ft.dictdump', 'dict').equal(['term4', 'term5', 'term6']) def testDictDeleteWrongArity(): env = Env() env.expect('ft.dictdel', 'dict').raiseError() def testDictDeleteOnNoneExistingKey(): env = Env() env.expect('ft.dictdel', 'dict', 'term1').equal(0) def testDictDump(): env = Env() env.expect('ft.dictadd', 'dict', 'term1', 'term2', 'term3').equal(3) env.expect('ft.dictdump', 'dict').equal(['term1', 'term2', 'term3']) def testDictDumpWrongArity(): env = Env() env.expect('ft.dictdump').raiseError() def testDictDumpOnNoneExistingKey(): env = Env() env.expect('ft.dictdump', 'dict').raiseError() def testBasicSpellCheck(): env = Env() env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name1', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx', 'name').equal([['TERM', 'name', [['0.66666666666666663', 'name2'], ['0.33333333333333331', 'name1']]]]) if not env.isCluster(): env.expect('ft.spellcheck', 'idx', '@body:name').equal([['TERM', 'name', [['0.66666666666666663', 'name2']]]]) def testBasicSpellCheckWithNoResult(): env = Env() env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name1', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx', 'somenotexiststext').equal([['TERM', 'somenotexiststext', []]]) def testSpellCheckOnExistingTerm(): env = Env() env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx', 'name').equal([]) def testSpellCheckWithIncludeDict(): env = Env() env.cmd('ft.dictadd', 'dict', 'name3', 'name4', 'name5') env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name1', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'INCLUDE', 'dict').equal([['TERM', 'name', [['0.66666666666666663', 'name2'], ['0.33333333333333331', 'name1'], ['0', 'name3'], ['0', 'name4'], ['0', 'name5']]]]) env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'include', 'dict').equal([['TERM', 'name', [['0.66666666666666663', 'name2'], ['0.33333333333333331', 'name1'], ['0', 'name3'], ['0', 'name4'], ['0', 'name5']]]]) def testSpellCheckWithDuplications(): env = Env() env.cmd('ft.dictadd', 'dict', 'name1', 'name4', 'name5') env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name1', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'INCLUDE', 'dict').equal([['TERM', 'name', [['0.66666666666666663', 'name2'], ['0.33333333333333331', 'name1'], ['0', 'name4'], ['0', 'name5']]]]) def testSpellCheckExcludeDict(): env = Env() env.cmd('ft.dictadd', 'dict', 'name') env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name1', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'EXCLUDE', 'dict').equal([]) env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'exclude', 'dict').equal([]) def testSpellCheckNoneExistingIndex(): env = Env() env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'EXCLUDE', 'dict').raiseError() def testSpellCheckWrongArity(): env = Env() env.cmd('ft.dictadd', 'dict', 'name') env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name1', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx').raiseError() env.expect('ft.spellcheck', 'idx').raiseError() def testSpellCheckBadFormat(): env = Env() env.cmd('ft.dictadd', 'dict', 'name') env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name1', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx', 'name', 'TERMS').raiseError() env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'INCLUDE').raiseError() env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'EXCLUDE').raiseError() env.expect('ft.spellcheck', 'idx', 'name', 'DISTANCE').raiseError() env.expect('ft.spellcheck', 'idx', 'name', 'DISTANCE', 0).raiseError() env.expect('ft.spellcheck', 'idx', 'name', 'DISTANCE', -1).raiseError() env.expect('ft.spellcheck', 'idx', 'name', 'DISTANCE', 101).raiseError() def testSpellCheckNoneExistingDicts(): env = Env() env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'name1', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'name2', 'body', 'body2') env.cmd('ft.add', 'idx', 'doc3', 1.0, 'FIELDS', 'name', 'name2', 'body', 'name2') env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'INCLUDE', 'dict').raiseError() env.expect('ft.spellcheck', 'idx', 'name', 'TERMS', 'EXCLUDE', 'dict').raiseError() def testSpellCheckResultsOrder(): env = Env() env.cmd('ft.dictadd', 'dict', 'name') env.cmd('ft.create', 'idx', 'ON', 'HASH', 'SCHEMA', 'name', 'TEXT', 'body', 'TEXT') waitForIndex(env, 'idx') env.cmd('ft.add', 'idx', 'doc1', 1.0, 'FIELDS', 'name', 'Elior', 'body', 'body1') env.cmd('ft.add', 'idx', 'doc2', 1.0, 'FIELDS', 'name', 'Hila', 'body', 'body2') env.expect('ft.spellcheck', 'idx', 'Elioh Hilh').equal([['TERM', 'elioh', [['0.5', 'elior']]], ['TERM', 'hilh', [['0.5', 'hila']]]]) def testSpellCheckDictReleadRDB(): env = Env() env.expect('FT.DICTADD test 1 2 3').equal(3) for _ in env.retry_with_rdb_reload(): env.expect('FT.DICTDUMP test').equal(['1', '2', '3']) def testSpellCheckIssue437(): env = Env() env.cmd('ft.create', 'incidents', 'ON', 'HASH', 'SCHEMA', 'report', 'text') env.cmd('FT.DICTADD', 'slang', 'timmies', 'toque', 'toonie', 'serviette', 'kerfuffle', 'chesterfield') env.expect('FT.SPELLCHECK', 'incidents', 'Tooni toque kerfuffle', 'TERMS', 'EXCLUDE', 'slang', 'TERMS', 'INCLUDE', 'slang').equal([['TERM', 'tooni', [['0', 'toonie']]]]) def test_spell_check_dialect_errors(env): env.cmd('ft.create', 'idx', 'SCHEMA', 't', 'text') env.expect('FT.SPELLCHECK', 'idx', 'Tooni toque kerfuffle', 'DIALECT').error().contains("Need an argument for DIALECT") env.expect('FT.SPELLCHECK', 'idx', 'Tooni toque kerfuffle', 'DIALECT', 0).error().contains("DIALECT requires a non negative integer >=1 and <= 2") env.expect('FT.SPELLCHECK', 'idx', 'Tooni toque kerfuffle', 'DIALECT', 3).error().contains("DIALECT requires a non negative integer >=1 and <= 2")
import numpy as np import rawpy import imageio import os import ncempy.io as nio import matplotlib.pyplot as plt # -- Osmo action use DNG as the raw format. class DNGReader: @staticmethod def imread(folder_path, str_format, start_idx, end_idx, step, log_compress=False, im_format='DNG'): img_stack = [] for img_id in range(start_idx, end_idx+1, step): file_name = os.path.join(folder_path, str_format.format(img_id)) if im_format == 'DNG': with rawpy.imread(file_name) as raw: img = raw.postprocess(gamma=(1, 1), no_auto_bright=True, no_auto_scale=True, output_bps=16) img_stack.append(img) elif im_format == 'JPG' or im_format == "PNG": img = imageio.imread(file_name) img_stack.append(img) img_stack = np.array(img_stack).astype(np.float) mean_img = np.mean(img_stack, axis=0) if log_compress: img_stack = np.log(img_stack) mean_img = np.log(mean_img) return img_stack, mean_img class SERReader: @staticmethod def imread(file_path, im_format='SER'): if im_format == 'AVI': cap = cv2.VideoCapture(file_path) frame_stack = [] frame_len = 0 while True: ret, frame = cap.read() if not ret: break frame_stack.append(frame) frame_len += 1 cap.release() return frame_stack, frame_len elif im_format == 'SER': with nio.ser.fileSER(file_path) as ser1: data, metadata = ser1.getDataset(0) return None, None class FolderReader: @staticmethod def imread(path): img_list = os.listdir(path) img_list.sort(key=lambda x: int(x.split('_')[0])) frame_stack = [] for name in img_list: img = cv2.imread(os.path.join(path, name)) frame_stack.append(img) return frame_stack
def mySqrt(x): start = 0 end = x while start <= end: mid = start + (end - start) // 2 if mid * mid == x: return mid elif mid * mid < x: start = mid + 1 elif mid * mid > x: end = mid - 1 else: return end for i in range(17): print(i, mySqrt(i)) # rotated_array def find_pivot(rotated_array): start = 0 end = len(rotated_array) - 1 while start <= end: mid = start + (end - start) // 2 # print(start, mid, end) if mid < end and rotated_array[mid] > rotated_array[mid + 1]: return mid elif mid > start and rotated_array[mid] < rotated_array[mid - 1]: return mid elif rotated_array[start] > rotated_array[mid]: end = mid - 1 elif rotated_array[start] < rotated_array[mid]: start = mid + 1 elif start == mid: return -1 # print(start, mid, end) else: return -1 def binary_search(array, start, end, target): while start <= end: mid = start + (end - start) // 2 if array[mid] == target: return mid elif array[mid] > target: end = mid - 1 elif array[mid] < target: start = mid + 1 else: return -1 def search_rotated_array(array, target): pivot = find_pivot(array) print(f"printing the pivot: {pivot}") if pivot == -1: return binary_search(array, 0, len(array) - 1, target) elif array[pivot] == target: return pivot elif target >= array[0]: return binary_search(array, 0, pivot - 1, target) elif target < array[0]: return binary_search(array, pivot + 1, len(array) - 1, target) print("searching in a rotated array") nums = [9, 1, 2, 3, 4, 5, 7, 8] target = 7 print(find_pivot(nums)) print(search_rotated_array(nums, target)) # https://leetcode.com/explore/learn/card/binary-search/126/template-ii/947/ # find first bad version # You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of # your product fails the quality check. Since each version is developed based on the previous version, # all the versions after a bad version are also bad. # # Suppose you have n versions [1, 2, ..., n] and you want to find out the first bad one, which causes all the # following ones to be bad. # # You are given an API bool isBadVersion(version) which returns whether version is bad. Implement a function to # find the first bad version. You should minimize the number of calls to the API. def is_bad_version(total_versions, first_bad): return [True if i < first_bad else False for i in range(1, total_versions + 1)] no_of_versions = 10 first_bad_version = 10 versions = is_bad_version(no_of_versions, first_bad_version) print(versions) def first_bad_version(list_of_versions): start = 0 end = len(list_of_versions)-1 while start <= end: mid = start + (end - start) // 2 print(start, mid, end) print(f"list_of_versions[{mid}] is {list_of_versions[mid]}") if start == mid: return end + 1 if list_of_versions[mid]: start = mid else: end = mid - 1 print(start, mid, end) print("--------------------------------------") return end + 1 print("printing the position of first bad version") print(first_bad_version(versions))
import os import numpy as np from geospace.gdal_calc import Calc from geospace._const import CREATION from geospace.raster import mosaic from geospace.utils import ds_name, context_file from multiprocessing import Pool, cpu_count from collections.abc import Iterable def band_map(i, ras_multi, band_idx_multi, calc_arg, out_file): tem_file = os.path.join(os.path.dirname(out_file), '_temp_' + os.path.splitext( os.path.basename(out_file))[0] + '_' + str(i) + '.tif') if os.path.exists(tem_file): return tem_file ras_args = {chr(i + 65): ras for i, ras in enumerate(ras_multi)} band_args = {chr(i + 65) + '_band': int(band_idx) for i, band_idx in enumerate(band_idx_multi)} input_args = {**ras_args, **band_args} Calc(calc_arg, tem_file, creation_options=CREATION, quiet=True, **input_args) return tem_file def check_iter(ds_multi, calc_args, band_idxs): iter_ds_multi = isinstance( ds_multi, Iterable) and not isinstance(ds_multi, str) iter_calc_args = isinstance( calc_args, Iterable) and not isinstance(calc_args, str) if band_idxs is not None: if iter_ds_multi: iter_band_idxs = isinstance(band_idxs[0], Iterable) else: iter_band_idxs = isinstance(band_idxs, Iterable) else: iter_band_idxs = False return iter_ds_multi, iter_calc_args, iter_band_idxs def broadcast_args(ds_multi, calc_args, band_idxs): iter_ds_multi, iter_calc_args, iter_band_idxs = check_iter( ds_multi, calc_args, band_idxs) if iter_ds_multi: ds = ds_multi[0] else: ds = ds_multi ds, ras = ds_name(ds) if band_idxs is not None: if iter_band_idxs and iter_calc_args: if len(band_idxs) != len(calc_args): raise Exception( 'length of band list not equal to that of calc args') elif iter_band_idxs: calc_args = [calc_args] * len(band_idxs) elif iter_calc_args: band_idxs = [band_idxs] * len(calc_args) else: calc_args = [calc_args] band_idxs = [band_idxs] else: n_band = ds.RasterCount if iter_calc_args: if len(calc_args) != n_band: raise Exception( 'calc args length not equal to band counts') else: calc_args = [calc_args] * n_band if iter_ds_multi: band_idxs = np.repeat( np.arange(1, n_band + 1, dtype=int), len(ds_multi)).reshape(-1, len(ds_multi)) else: band_idxs = np.arange(1, n_band + 1, dtype=int) if not iter_ds_multi: ds_multi = [ras] band_idxs = np.array(band_idxs).reshape(len(band_idxs), 1) return ds_multi, calc_args, band_idxs def map_calc(ds_multi, calc_args, out_path, band_idxs=None, multiprocess=True): iter_ds_multi = isinstance( ds_multi, Iterable) and not isinstance(ds_multi, str) if iter_ds_multi: ds = ds_multi[0] else: ds = ds_multi ds, ras = ds_name(ds) out_file = context_file(ras, out_path) if os.path.exists(out_file): return out_file ds_multi, calc_args, band_idxs = broadcast_args( ds_multi, calc_args, band_idxs) n = len(calc_args) args = zip(np.arange(1, n + 1, dtype=int), [ds_multi] * n, band_idxs, calc_args, [out_file] * n) if multiprocess: with Pool(min(cpu_count() - 1, n)) as p: tem_files = p.starmap(band_map, args) else: tem_files = [] for arg in args: tem_files.append(band_map(*arg)) if len(tem_files) == 1: os.rename(tem_files[0], out_file) else: mosaic(tem_files, out_file, separate=True) [os.remove(f) for f in tem_files] return out_file
from django import forms from django.conf import settings from django.utils.timezone import now from django.utils.translation import ugettext as _ from pretalx.submission.models import Submission, SubmissionType class InfoForm(forms.ModelForm): def __init__(self, event, **kwargs): self.event = event readonly = kwargs.pop('readonly', False) super().__init__(**kwargs) instance = kwargs.get('instance') self.fields['submission_type'].queryset = SubmissionType.objects.filter(event=self.event) self.initial['submission_type'] = getattr(instance, 'submission_type', self.event.cfp.default_type) _now = now() if not self.event.cfp.deadline or self.event.cfp.deadline >= _now: # No global deadline or still open types = self.event.submission_types.exclude(deadline__lt=_now) else: types = self.event.submission_types.filter(deadline__gte=_now) pks = set(types.values_list('pk', flat=True)) if instance and instance.pk: pks |= {instance.submission_type.pk, } self.fields['submission_type'].queryset = self.event.submission_types.filter(pk__in=pks) locale_names = dict(settings.LANGUAGES) self.fields['content_locale'].choices = [(a, locale_names[a]) for a in self.event.locales] if readonly: for f in self.fields.values(): f.disabled = True class Meta: model = Submission fields = [ 'title', 'submission_type', 'content_locale', 'abstract', 'description', 'notes', 'do_not_record', 'image', ] class SubmissionFilterForm(forms.ModelForm): def __init__(self, event, *args, **kwargs): self.event = event super().__init__(*args, **kwargs) self.fields['submission_type'].queryset = self.fields['submission_type'].queryset.filter(event=event) self.fields['submission_type'].required = False self.fields['state'].required = False self.fields['state'].choices = [('', _('All states'))] + self.fields['state'].choices self.fields['state'].initial = '' class Meta: model = Submission fields = [ 'submission_type', 'state', ]
''' UCCSD with spatial integrals ''' import time import tempfile import numpy import numpy as np import h5py from pyscf import lib from pyscf import ao2mo from pyscf.lib import logger from pyscf.cc import rccsd from pyscf.lib import linalg_helper import uintermediates as imd from pyscf.cc.addons import spatial2spin, spin2spatial #einsum = np.einsum einsum = lib.einsum # This is unrestricted (U)CCSD, i.e. spin-orbital form. def kernel(cc, eris, t1=None, t2=None, max_cycle=50, tol=1e-8, tolnormt=1e-6, verbose=logger.INFO): """Exactly the same as pyscf.cc.ccsd.kernel, which calls a *local* energy() function.""" if isinstance(verbose, logger.Logger): log = verbose else: log = logger.Logger(cc.stdout, verbose) r1, r2 = cc.init_amps(eris)[1:] if t1 is None: t1 = r1 if t2 is None: t2 = r2 r1 = r2 = None cput1 = cput0 = (time.clock(), time.time()) eold = 0 eccsd = 0 if cc.diis: adiis = lib.diis.DIIS(cc, cc.diis_file) adiis.space = cc.diis_space conv = False for istep in range(max_cycle): t1new, t2new = cc.update_amps(t1, t2, eris) vec = cc.amplitudes_to_vector(t1new, t2new) normt = np.linalg.norm(vec - cc.amplitudes_to_vector(t1, t2)) t1, t2 = t1new, t2new t1new = t2new = None if cc.diis: if (istep > cc.diis_start_cycle and abs(eccsd-eold) < cc.diis_start_energy_diff): vec = adiis.update(vec) t1, t2 = cc.vector_to_amplitudes(vec) log.debug1('DIIS for step %d', istep) vec = None eold, eccsd = eccsd, energy(cc, t1, t2, eris) log.info('istep = %d E(CCSD) = %.15g dE = %.9g norm(t1,t2) = %.6g', istep, eccsd, eccsd - eold, normt) cput1 = log.timer('CCSD iter', *cput1) if abs(eccsd-eold) < tol and normt < tolnormt: conv = True break log.timer('CCSD', *cput0) return conv, eccsd, t1, t2 def update_amps(cc, t1, t2, eris): time0 = time.clock(), time.time() log = logger.Logger(cc.stdout, cc.verbose) t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape fooa = eris.focka[:nocca,:nocca] foob = eris.fockb[:noccb,:noccb] fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] fvva = eris.focka[nocca:,nocca:] fvvb = eris.fockb[noccb:,noccb:] u1a = np.zeros_like(t1a) u1b = np.zeros_like(t1b) u2aa = np.zeros_like(t2aa) u2ab = np.zeros_like(t2ab) u2bb = np.zeros_like(t2bb) tauaa, tauab, taubb = make_tau(t2, t1, t1) Fooa = fooa - np.diag(np.diag(fooa)) Foob = foob - np.diag(np.diag(foob)) Fvva = fvva - np.diag(np.diag(fvva)) Fvvb = fvvb - np.diag(np.diag(fvvb)) Fooa += .5 * lib.einsum('me,ie->mi', fova, t1a) Foob += .5 * lib.einsum('me,ie->mi', fovb, t1b) Fvva -= .5 * lib.einsum('me,ma->ae', fova, t1a) Fvvb -= .5 * lib.einsum('me,ma->ae', fovb, t1b) wovvo = np.zeros((nocca,nvira,nvira,nocca)) wOVVO = np.zeros((noccb,nvirb,nvirb,noccb)) woVvO = np.zeros((nocca,nvirb,nvira,noccb)) woVVo = np.zeros((nocca,nvirb,nvirb,nocca)) wOvVo = np.zeros((noccb,nvira,nvirb,nocca)) wOvvO = np.zeros((noccb,nvira,nvira,noccb)) mem_now = lib.current_memory()[0] max_memory = lib.param.MAX_MEMORY - mem_now blksize = max(int(max_memory*1e6/8/(nvira**3*3)), 2) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = np.asarray(eris.ovvv[p0:p1]).reshape((p1-p0)*nvira,-1) ovvv = lib.unpack_tril(ovvv).reshape(-1,nvira,nvira,nvira) ovvv = ovvv - ovvv.transpose(0,3,2,1) Fvva += np.einsum('mf,mfae->ae', t1a[p0:p1], ovvv) wovvo[p0:p1] += einsum('jf,mebf->mbej', t1a, ovvv) u1a += 0.5*lib.einsum('mief,meaf->ia', t2aa[p0:p1], ovvv) u2aa[:,p0:p1] += lib.einsum('ie,mbea->imab', t1a, ovvv.conj()) tmp1aa = lib.einsum('ijef,mebf->ijmb', tauaa, ovvv) u2aa -= lib.einsum('ijmb,ma->ijab', tmp1aa, t1a[p0:p1]*.5) ovvv = tmp1aa = None blksize = max(int(max_memory*1e6/8/(nvirb**3*3)), 2) for p0,p1 in lib.prange(0, noccb, blksize): OVVV = np.asarray(eris.OVVV[p0:p1]).reshape((p1-p0)*nvirb,-1) OVVV = lib.unpack_tril(OVVV).reshape(-1,nvirb,nvirb,nvirb) OVVV = OVVV - OVVV.transpose(0,3,2,1) Fvvb += np.einsum('mf,mfae->ae', t1b[p0:p1], OVVV) wOVVO[p0:p1] = einsum('jf,mebf->mbej', t1b, OVVV) u1b += 0.5*lib.einsum('MIEF,MEAF->IA', t2bb[p0:p1], OVVV) u2bb[:,p0:p1] += lib.einsum('ie,mbea->imab', t1b, OVVV.conj()) tmp1bb = lib.einsum('ijef,mebf->ijmb', taubb, OVVV) u2bb -= lib.einsum('ijmb,ma->ijab', tmp1bb, t1b[p0:p1]*.5) OVVV = tmp1bb = None blksize = max(int(max_memory*1e6/8/(nvira*nvirb**2*3)), 2) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = np.asarray(eris.ovVV[p0:p1]).reshape((p1-p0)*nvira,-1) ovVV = lib.unpack_tril(ovVV).reshape(-1,nvira,nvirb,nvirb) Fvvb += np.einsum('mf,mfAE->AE', t1a[p0:p1], ovVV) woVvO[p0:p1] = einsum('JF,meBF->mBeJ', t1b, ovVV) woVVo[p0:p1] = einsum('jf,mfBE->mBEj',-t1a, ovVV) u1b += lib.einsum('mIeF,meAF->IA', t2ab[p0:p1], ovVV) u2ab[p0:p1] += lib.einsum('IE,maEB->mIaB', t1b, ovVV.conj()) tmp1ab = lib.einsum('iJeF,meBF->iJmB', tauab, ovVV) u2ab -= lib.einsum('iJmB,ma->iJaB', tmp1ab, t1a[p0:p1]) ovVV = tmp1ab = None blksize = max(int(max_memory*1e6/8/(nvirb*nocca**2*3)), 2) for p0,p1 in lib.prange(0, noccb, blksize): OVvv = np.asarray(eris.OVvv[p0:p1]).reshape((p1-p0)*nvirb,-1) OVvv = lib.unpack_tril(OVvv).reshape(-1,nvirb,nvira,nvira) Fvva += np.einsum('MF,MFae->ae', t1b[p0:p1], OVvv) wOvVo[p0:p1] = einsum('jf,MEbf->MbEj', t1a, OVvv) wOvvO[p0:p1] = einsum('JF,MFbe->MbeJ',-t1b, OVvv) u1a += lib.einsum('iMfE,MEaf->ia', t2ab[:,p0:p1], OVvv) u2ab[:,p0:p1] += lib.einsum('ie,MBea->iMaB', t1a, OVvv.conj()) tmp1abba = lib.einsum('iJeF,MFbe->iJbM', tauab, OVvv) u2ab -= lib.einsum('iJbM,MA->iJbA', tmp1abba, t1b[p0:p1]) OVvv = tmp1abba = None eris_ovov = np.asarray(eris.ovov) eris_ooov = np.asarray(eris.ooov) Woooo = lib.einsum('je,mine->mnij', t1a, eris_ooov) Woooo = Woooo - Woooo.transpose(0,1,3,2) Woooo += np.asarray(eris.oooo).transpose(0,2,1,3) Woooo += lib.einsum('ijef,menf->mnij', tauaa, eris_ovov) * .5 u2aa += lib.einsum('mnab,mnij->ijab', tauaa, Woooo*.5) Woooo = tauaa = None ooov = eris_ooov - eris_ooov.transpose(2,1,0,3) Fooa += np.einsum('ne,mine->mi', t1a, ooov) u1a += 0.5*lib.einsum('mnae,nime->ia', t2aa, ooov) wovvo += einsum('nb,mjne->mbej', t1a, ooov) ooov = eris_ooov = None tilaa = make_tau_aa(t2[0], t1a, t1a, fac=0.5) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) Fvva -= .5 * einsum('mnaf,menf->ae', tilaa, ovov) Fooa += .5 * einsum('inef,menf->mi', tilaa, ovov) Fova = np.einsum('nf,menf->me',t1a, ovov) u2aa += ovov.conj().transpose(0,2,1,3) * .5 wovvo -= 0.5*einsum('jnfb,menf->mbej', t2aa, ovov) woVvO += 0.5*einsum('nJfB,menf->mBeJ', t2ab, ovov) tmpaa = einsum('jf,menf->mnej', t1a, ovov) wovvo -= einsum('nb,mnej->mbej', t1a, tmpaa) eirs_ovov = ovov = tmpaa = tilaa = None eris_OVOV = np.asarray(eris.OVOV) eris_OOOV = np.asarray(eris.OOOV) WOOOO = lib.einsum('je,mine->mnij', t1b, eris_OOOV) WOOOO = WOOOO - WOOOO.transpose(0,1,3,2) WOOOO += np.asarray(eris.OOOO).transpose(0,2,1,3) WOOOO += lib.einsum('ijef,menf->mnij', taubb, eris_OVOV) * .5 u2bb += lib.einsum('mnab,mnij->ijab', taubb, WOOOO*.5) WOOOO = taubb = None OOOV = eris_OOOV - eris_OOOV.transpose(2,1,0,3) Foob += np.einsum('ne,mine->mi', t1b, OOOV) u1b += 0.5*lib.einsum('mnae,nime->ia', t2bb, OOOV) wOVVO += einsum('nb,mjne->mbej', t1b, OOOV) OOOV = eris_OOOV = None tilbb = make_tau_aa(t2[2], t1b, t1b, fac=0.5) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) Fvvb -= .5 * einsum('MNAF,MENF->AE', tilbb, OVOV) Foob += .5 * einsum('inef,menf->mi', tilbb, OVOV) Fovb = np.einsum('nf,menf->me',t1b, OVOV) u2bb += OVOV.conj().transpose(0,2,1,3) * .5 wOVVO -= 0.5*einsum('jnfb,menf->mbej', t2bb, OVOV) wOvVo += 0.5*einsum('jNbF,MENF->MbEj', t2ab, OVOV) tmpbb = einsum('jf,menf->mnej', t1b, OVOV) wOVVO -= einsum('nb,mnej->mbej', t1b, tmpbb) eris_OVOV = OVOV = tmpbb = tilbb = None eris_ooOV = np.asarray(eris.ooOV) eris_OOov = np.asarray(eris.OOov) Fooa += np.einsum('NE,miNE->mi', t1b, eris_ooOV) u1a -= lib.einsum('nMaE,niME->ia', t2ab, eris_ooOV) wOvVo -= einsum('nb,njME->MbEj', t1a, eris_ooOV) woVVo += einsum('NB,mjNE->mBEj', t1b, eris_ooOV) Foob += np.einsum('ne,MIne->MI', t1a, eris_OOov) u1b -= lib.einsum('mNeA,NIme->IA', t2ab, eris_OOov) woVvO -= einsum('NB,NJme->mBeJ', t1b, eris_OOov) wOvvO += einsum('nb,MJne->MbeJ', t1a, eris_OOov) WoOoO = lib.einsum('JE,miNE->mNiJ', t1b, eris_ooOV) WoOoO+= lib.einsum('je,MIne->nMjI', t1a, eris_OOov) WoOoO += np.asarray(eris.ooOO).transpose(0,2,1,3) eris_ooOV = eris_OOov = None eris_ovOV = np.asarray(eris.ovOV) WoOoO += lib.einsum('iJeF,meNF->mNiJ', tauab, eris_ovOV) u2ab += lib.einsum('mNaB,mNiJ->iJaB', tauab, WoOoO) WoOoO = None tilab = make_tau_ab(t2[1], t1 , t1 , fac=0.5) Fvva -= einsum('mNaF,meNF->ae', tilab, eris_ovOV) Fvvb -= einsum('nMfA,nfME->AE', tilab, eris_ovOV) Fooa += einsum('iNeF,meNF->mi', tilab, eris_ovOV) Foob += einsum('nIfE,nfME->MI', tilab, eris_ovOV) Fova+= np.einsum('NF,meNF->me',t1b, eris_ovOV) Fovb+= np.einsum('nf,nfME->ME',t1a, eris_ovOV) u2ab += eris_ovOV.conj().transpose(0,2,1,3) wovvo += 0.5*einsum('jNbF,meNF->mbej', t2ab, eris_ovOV) wOVVO += 0.5*einsum('nJfB,nfME->MBEJ', t2ab, eris_ovOV) wOvVo -= 0.5*einsum('jnfb,nfME->MbEj', t2aa, eris_ovOV) woVvO -= 0.5*einsum('JNFB,meNF->mBeJ', t2bb, eris_ovOV) woVVo += 0.5*einsum('jNfB,mfNE->mBEj', t2ab, eris_ovOV) wOvvO += 0.5*einsum('nJbF,neMF->MbeJ', t2ab, eris_ovOV) tmpabab = einsum('JF,meNF->mNeJ', t1b, eris_ovOV) tmpbaba = einsum('jf,nfME->MnEj', t1a, eris_ovOV) woVvO -= einsum('NB,mNeJ->mBeJ', t1b, tmpabab) wOvVo -= einsum('nb,MnEj->MbEj', t1a, tmpbaba) woVVo += einsum('NB,NmEj->mBEj', t1b, tmpbaba) wOvvO += einsum('nb,nMeJ->MbeJ', t1a, tmpabab) tmpabab = tmpbaba = tilab = None u1a += fova.conj() u1a += np.einsum('ie,ae->ia',t1a,Fvva) u1a -= np.einsum('ma,mi->ia',t1a,Fooa) u1a -= np.einsum('imea,me->ia', t2aa, Fova) u1a += np.einsum('iMaE,ME->ia', t2ab, Fovb) u1b += fovb.conj() u1b += np.einsum('ie,ae->ia',t1b,Fvvb) u1b -= np.einsum('ma,mi->ia',t1b,Foob) u1b -= np.einsum('imea,me->ia', t2bb, Fovb) u1b += np.einsum('mIeA,me->IA', t2ab, Fova) eris_oovv = np.asarray(eris.oovv) eris_ovvo = np.asarray(eris.ovvo) wovvo -= eris_oovv.transpose(0,2,3,1) wovvo += eris_ovvo.transpose(0,2,1,3) oovv = eris_oovv - eris_ovvo.transpose(0,3,2,1) u1a-= np.einsum('nf,niaf->ia', t1a, oovv) tmp1aa = lib.einsum('ie,mjbe->mbij', t1a, oovv) u2aa += 2*lib.einsum('ma,mbij->ijab', t1a, tmp1aa) eris_ovvo = eris_oovv = oovv = tmp1aa = None eris_OOVV = np.asarray(eris.OOVV) eris_OVVO = np.asarray(eris.OVVO) wOVVO -= eris_OOVV.transpose(0,2,3,1) wOVVO += eris_OVVO.transpose(0,2,1,3) OOVV = eris_OOVV - eris_OVVO.transpose(0,3,2,1) u1b-= np.einsum('nf,niaf->ia', t1b, OOVV) tmp1bb = lib.einsum('ie,mjbe->mbij', t1b, OOVV) u2bb += 2*lib.einsum('ma,mbij->ijab', t1b, tmp1bb) eris_OVVO = eris_OOVV = OOVV = None eris_ooVV = np.asarray(eris.ooVV) eris_ovVO = np.asarray(eris.ovVO) woVVo -= eris_ooVV.transpose(0,2,3,1) woVvO += eris_ovVO.transpose(0,2,1,3) u1b+= np.einsum('nf,nfAI->IA', t1a, eris_ovVO) tmp1ab = lib.einsum('ie,meBJ->mBiJ', t1a, eris_ovVO) tmp1ab+= lib.einsum('IE,mjBE->mBjI', t1b, eris_ooVV) u2ab -= lib.einsum('ma,mBiJ->iJaB', t1a, tmp1ab) eris_ooVV = eris_ovVo = tmp1ab = None eris_OOvv = np.asarray(eris.OOvv) eris_OVvo = np.asarray(eris.OVvo) wOvvO -= eris_OOvv.transpose(0,2,3,1) wOvVo += eris_OVvo.transpose(0,2,1,3) u1a+= np.einsum('NF,NFai->ia', t1b, eris_OVvo) tmp1ba = lib.einsum('IE,MEbj->MbIj', t1b, eris_OVvo) tmp1ba+= lib.einsum('ie,MJbe->MbJi', t1a, eris_OOvv) u2ab -= lib.einsum('MA,MbIj->jIbA', t1b, tmp1ba) eris_OOvv = eris_OVvO = tmp1ba = None u2aa += 2*lib.einsum('imae,mbej->ijab', t2aa, wovvo) u2aa += 2*lib.einsum('iMaE,MbEj->ijab', t2ab, wOvVo) u2bb += 2*lib.einsum('imae,mbej->ijab', t2bb, wOVVO) u2bb += 2*lib.einsum('mIeA,mBeJ->IJAB', t2ab, woVvO) u2ab += lib.einsum('imae,mBeJ->iJaB', t2aa, woVvO) u2ab += lib.einsum('iMaE,MBEJ->iJaB', t2ab, wOVVO) u2ab += lib.einsum('iMeA,MbeJ->iJbA', t2ab, wOvvO) u2ab += lib.einsum('IMAE,MbEj->jIbA', t2bb, wOvVo) u2ab += lib.einsum('mIeA,mbej->jIbA', t2ab, wovvo) u2ab += lib.einsum('mIaE,mBEj->jIaB', t2ab, woVVo) wovvo = wOVVO = woVvO = wOvVo = woVVo = wOvvO = None Ftmpa = Fvva - .5*lib.einsum('mb,me->be',t1a,Fova) Ftmpb = Fvvb - .5*lib.einsum('mb,me->be',t1b,Fovb) u2aa += lib.einsum('ijae,be->ijab', t2aa, Ftmpa) u2bb += lib.einsum('ijae,be->ijab', t2bb, Ftmpb) u2ab += lib.einsum('iJaE,BE->iJaB', t2ab, Ftmpb) u2ab += lib.einsum('iJeA,be->iJbA', t2ab, Ftmpa) Ftmpa = Fooa + 0.5*lib.einsum('je,me->mj', t1a, Fova) Ftmpb = Foob + 0.5*lib.einsum('je,me->mj', t1b, Fovb) u2aa -= lib.einsum('imab,mj->ijab', t2aa, Ftmpa) u2bb -= lib.einsum('imab,mj->ijab', t2bb, Ftmpb) u2ab -= lib.einsum('iMaB,MJ->iJaB', t2ab, Ftmpb) u2ab -= lib.einsum('mIaB,mj->jIaB', t2ab, Ftmpa) #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:u2aa += lib.einsum('ijef,aebf->ijab', tauaa, eris_vvvv) * .5 #:u2bb += lib.einsum('ijef,aebf->ijab', taubb, eris_VVVV) * .5 #:u2ab += lib.einsum('iJeF,aeBF->iJaB', tauab, eris_vvVV) tauaa, tauab, taubb = make_tau(t2, t1, t1) _add_vvvv_(cc, (tauaa,tauab,taubb), eris, (u2aa,u2ab,u2bb)) eris_oovo = numpy.asarray(eris.oovo) eris_OOVO = numpy.asarray(eris.OOVO) eris_ooVO = numpy.asarray(eris.ooVO) eris_OOvo = numpy.asarray(eris.OOvo) oovo = eris_oovo - eris_oovo.transpose(0,3,2,1) OOVO = eris_OOVO - eris_OOVO.transpose(0,3,2,1) u2aa -= lib.einsum('ma,mibj->ijab', t1a, oovo) u2bb -= lib.einsum('ma,mibj->ijab', t1b, OOVO) u2ab -= lib.einsum('ma,miBJ->iJaB', t1a, eris_ooVO) u2ab -= lib.einsum('MA,MJbi->iJbA', t1b, eris_OOvo) eris_oovo = eris_ooVO = eris_OOVO = eris_OOvo = None u2aa *= .5 u2bb *= .5 u2aa = u2aa - u2aa.transpose(0,1,3,2) u2aa = u2aa - u2aa.transpose(1,0,2,3) u2bb = u2bb - u2bb.transpose(0,1,3,2) u2bb = u2bb - u2bb.transpose(1,0,2,3) eia_a = lib.direct_sum('i-a->ia', fooa.diagonal(), fvva.diagonal()) eia_b = lib.direct_sum('i-a->ia', foob.diagonal(), fvvb.diagonal()) u1a /= eia_a u1b /= eia_b u2aa /= lib.direct_sum('ia+jb->ijab', eia_a, eia_a) u2ab /= lib.direct_sum('ia+jb->ijab', eia_a, eia_b) u2bb /= lib.direct_sum('ia+jb->ijab', eia_b, eia_b) time0 = log.timer_debug1('update t1 t2', *time0) t1new = u1a, u1b t2new = u2aa, u2ab, u2bb return t1new, t2new def energy(cc, t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] e = np.einsum('ia,ia', fova, t1a) e += np.einsum('ia,ia', fovb, t1b) e += 0.25*np.einsum('ijab,iajb',t2aa,eris_ovov) e -= 0.25*np.einsum('ijab,ibja',t2aa,eris_ovov) e += 0.25*np.einsum('ijab,iajb',t2bb,eris_OVOV) e -= 0.25*np.einsum('ijab,ibja',t2bb,eris_OVOV) e += np.einsum('iJaB,iaJB',t2ab,eris_ovOV) e += 0.5*np.einsum('ia,jb,iajb',t1a,t1a,eris_ovov) e -= 0.5*np.einsum('ia,jb,ibja',t1a,t1a,eris_ovov) e += 0.5*np.einsum('ia,jb,iajb',t1b,t1b,eris_OVOV) e -= 0.5*np.einsum('ia,jb,ibja',t1b,t1b,eris_OVOV) e += np.einsum('ia,jb,iajb',t1a,t1b,eris_ovOV) return e.real class UCCSD(rccsd.RCCSD): def __init__(self, mf, frozen=[[],[]], mo_coeff=None, mo_occ=None): rccsd.RCCSD.__init__(self, mf, frozen, mo_coeff, mo_occ) # Spin-orbital CCSD needs a stricter tolerance than spatial-orbital self.conv_tol_normt = 1e-6 if hasattr(mf, 'mo_energy'): self.orbspin = orbspin_of_sorted_mo_energy(mf.mo_energy, self.mo_occ) else: self.orbspin = None self._keys = self._keys.union(['orbspin']) def build(self): '''Initialize integrals and orbspin''' self.orbspin = None @property def nocc(self): nocca, noccb = self.get_nocc() return nocca + noccb @property def nmo(self): nmoa, nmob = self.get_nmo() return nmoa + nmob def get_nocc(self): if self._nocc is not None: return self._nocc if isinstance(self.frozen, (int, numpy.integer)): nocca = len(self.mo_occ[0]) - (self.frozen+1)//2 noccb = len(self.mo_occ[1]) - self.frozen//2 elif isinstance(self.frozen[0], (int, numpy.integer)): nocca = int(self.mo_occ[0].sum()) - self.frozen[0] noccb = int(self.mo_occ[1].sum()) - self.frozen[1] else: mo_occa, mo_occb = self.mo_occ if len(self.frozen[0]) > 0: mo_occa = mo_occa.copy() mo_occa[numpy.asarray(self.frozen[0])] = 0 if len(self.frozen[1]) > 0: mo_occb = mo_occb.copy() mo_occb[numpy.asarray(self.frozen[1])] = 0 nocca = np.count_nonzero(mo_occa==1) noccb = np.count_nonzero(mo_occb==1) return nocca, noccb def get_nmo(self): if self._nmo is not None: return self._nmo if isinstance(self.frozen, (int, numpy.integer)): nmoa = self.mo_occ[0].size - (self.frozen+1)//2 nmob = self.mo_occ[1].size - self.frozen//2 elif isinstance(self.frozen[0], (int, numpy.integer)): nmoa = self.mo_occ[0].size - self.frozen[0] nmob = self.mo_occ[1].size - self.frozen[1] else: nmoa = len(self.mo_occ[0]) - len(self.frozen[0]) nmob = len(self.mo_occ[1]) - len(self.frozen[1]) return nmoa, nmob def init_amps(self, eris): time0 = time.clock(), time.time() nocca, noccb = self.get_nocc() fooa = eris.focka[:nocca,:nocca] foob = eris.fockb[:noccb,:noccb] fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] fvva = eris.focka[nocca:,nocca:] fvvb = eris.fockb[noccb:,noccb:] eia_a = lib.direct_sum('i-a->ia', fooa.diagonal(), fvva.diagonal()) eia_b = lib.direct_sum('i-a->ia', foob.diagonal(), fvvb.diagonal()) t1a = fova.conj() / eia_a t1b = fovb.conj() / eia_b eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) t2aa = eris_ovov.transpose(0,2,1,3) / lib.direct_sum('ia+jb->ijab', eia_a, eia_a) t2ab = eris_ovOV.transpose(0,2,1,3) / lib.direct_sum('ia+jb->ijab', eia_a, eia_b) t2bb = eris_OVOV.transpose(0,2,1,3) / lib.direct_sum('ia+jb->ijab', eia_b, eia_b) t2aa = t2aa - t2aa.transpose(0,1,3,2) t2bb = t2bb - t2bb.transpose(0,1,3,2) e = np.einsum('iJaB,iaJB', t2ab, eris_ovOV) e += 0.25*np.einsum('ijab,iajb', t2aa, eris_ovov) e -= 0.25*np.einsum('ijab,ibja', t2aa, eris_ovov) e += 0.25*np.einsum('ijab,iajb', t2bb, eris_OVOV) e -= 0.25*np.einsum('ijab,ibja', t2bb, eris_OVOV) self.emp2 = e.real logger.info(self, 'Init t2, MP2 energy = %.15g', self.emp2) logger.timer(self, 'init mp2', *time0) return self.emp2, (t1a,t1b), (t2aa,t2ab,t2bb) def kernel(self, t1=None, t2=None, eris=None, mbpt2=False): return self.ccsd(t1, t2, eris, mbpt2) def ccsd(self, t1=None, t2=None, eris=None, mbpt2=False): '''Ground-state unrestricted (U)CCSD. Kwargs: mbpt2 : bool Use one-shot MBPT2 approximation to CCSD. ''' if eris is None: eris = self.ao2mo(self.mo_coeff) self.eris = eris self.dump_flags() if mbpt2: cctyp = 'MBPT2' self.e_corr, self.t1, self.t2 = self.init_amps(eris) else: cctyp = 'CCSD' self.converged, self.e_corr, self.t1, self.t2 = \ kernel(self, eris, t1, t2, max_cycle=self.max_cycle, tol=self.conv_tol, tolnormt=self.conv_tol_normt, verbose=self.verbose) if self.converged: logger.info(self, 'CCSD converged') else: logger.info(self, 'CCSD not converged') if self._scf.e_tot == 0: logger.note(self, 'E_corr = %.16g', self.e_corr) else: logger.note(self, 'E(%s) = %.16g E_corr = %.16g', cctyp, self.e_tot, self.e_corr) return self.e_corr, self.t1, self.t2 def ao2mo(self, mo_coeff=None): return _ERIS(self, mo_coeff) def update_amps(self, t1, t2, eris): return update_amps(self, t1, t2, eris) def nip(self): nocc = self.nocc nvir = self.nmo - nocc self._nip = nocc + nocc*(nocc-1)//2*nvir return self._nip def nea(self): nocc = self.nocc nvir = self.nmo - nocc self._nea = nvir + nocc*nvir*(nvir-1)//2 return self._nea def nee(self): nocc = self.nocc nvir = self.nmo - nocc self._nee = nocc*nvir + nocc*(nocc-1)//2*nvir*(nvir-1)//2 return self._nee def ipccsd_matvec(self, vector): # Ref: Tu, Wang, and Li, J. Chem. Phys. 136, 174102 (2012) Eqs.(8)-(9) if not hasattr(self,'imds'): self.imds = _IMDS(self) if not self.imds.made_ip_imds: self.eris.__dict__.update(_ERISspin(self).__dict__) self.imds.make_ip() imds = self.imds r1,r2 = self.vector_to_amplitudes_ip(vector) nocc, nvir = r2.shape[1:] eris = self.eris # Eq. (8) Hr1 = np.einsum('me,mie->i',imds.Fov,r2) Hr1 -= np.einsum('mi,m->i',imds.Foo,r1) Hr1 -= 0.5*np.einsum('nmie,mne->i',imds.Wooov,r2) # Eq. (9) Hr2 = lib.einsum('ae,ije->ija',imds.Fvv,r2) tmp1 = lib.einsum('mi,mja->ija',imds.Foo,r2) Hr2 -= tmp1 - tmp1.transpose(1,0,2) Hr2 -= np.einsum('maji,m->ija',imds.Wovoo,r1) Hr2 += 0.5*lib.einsum('mnij,mna->ija',imds.Woooo,r2) tmp2 = lib.einsum('maei,mje->ija',imds.Wovvo,r2) Hr2 += tmp2 - tmp2.transpose(1,0,2) eris_ovov = np.asarray(eris.ovov) tmp = 0.5*np.einsum('menf,mnf->e', eris_ovov, r2) tmp-= 0.5*np.einsum('mfne,mnf->e', eris_ovov, r2) t2 = spatial2spin(self.t2, eris.orbspin) Hr2 += np.einsum('e,ijae->ija', tmp, t2) vector = self.amplitudes_to_vector_ip(Hr1,Hr2) return vector def ipccsd_diag(self): if not hasattr(self,'imds'): self.imds = _IMDS(self) if not self.imds.made_ip_imds: self.eris.__dict__.update(_ERISspin(self).__dict__) self.imds.make_ip() imds = self.imds t1, t2, eris = self.t1, self.t2, self.eris t1 = spatial2spin(t1, eris.orbspin) t2 = spatial2spin(t2, eris.orbspin) nocc, nvir = t1.shape Fo = np.diagonal(imds.Foo) Fv = np.diagonal(imds.Fvv) Hr1 = -Fo Hr2 = lib.direct_sum('-i-j+a->ija', Fo, Fo, Fv) Woooo = np.asarray(imds.Woooo) Woo = np.zeros((nocc,nocc), dtype=t1.dtype) Woo += np.einsum('ijij->ij', Woooo) Woo -= np.einsum('ijji->ij', Woooo) Hr2 += Woo.reshape(nocc,nocc,-1) * .5 Wov = np.einsum('iaai->ia', imds.Wovvo) Hr2 += Wov Hr2 += Wov.reshape(nocc,1,nvir) eris_ovov = np.asarray(eris.ovov) Hr2 -= np.einsum('iajb,ijab->ija', eris_ovov, t2) Hr2 -= np.einsum('iajb,ijab->ijb', eris_ovov, t2) vector = self.amplitudes_to_vector_ip(Hr1,Hr2) return vector def vector_to_amplitudes_ip(self,vector): nocc = self.nocc nvir = self.nmo - nocc r1 = vector[:nocc].copy() r2 = np.zeros((nocc**2,nvir), vector.dtype) otril = np.tril_indices(nocc, k=-1) r2_tril = vector[nocc:].reshape(-1,nvir) lib.takebak_2d(r2, r2_tril, otril[0]*nocc+otril[1], np.arange(nvir)) lib.takebak_2d(r2,-r2_tril, otril[1]*nocc+otril[0], np.arange(nvir)) return r1,r2.reshape(nocc,nocc,nvir) def amplitudes_to_vector_ip(self,r1,r2): nocc = self.nocc nvir = self.nmo - nocc size = nocc + nocc*(nocc-1)//2*nvir vector = np.empty(size, r1.dtype) vector[:nocc] = r1.copy() otril = np.tril_indices(nocc, k=-1) lib.take_2d(r2.reshape(-1,nvir), otril[0]*nocc+otril[1], np.arange(nvir), out=vector[nocc:]) return vector def eaccsd_matvec(self,vector): # Ref: Nooijen and Bartlett, J. Chem. Phys. 102, 3629 (1994) Eqs.(30)-(31) if not hasattr(self,'imds'): self.imds = _IMDS(self) if not self.imds.made_ea_imds: self.eris.__dict__.update(_ERISspin(self).__dict__) self.imds.make_ea() imds = self.imds r1,r2 = self.vector_to_amplitudes_ea(vector) t1, t2, eris = self.t1, self.t2, self.eris t1 = spatial2spin(t1, eris.orbspin) t2 = spatial2spin(t2, eris.orbspin) Hr1 = np.einsum('ac,c->a',imds.Fvv,r1) Hr1 += np.einsum('ld,lad->a',imds.Fov,r2) tmp1 = lib.einsum('ac,jcb->jab',imds.Fvv,r2) Hr2 = (tmp1 - tmp1.transpose(0,2,1)) Hr2 -= lib.einsum('lj,lab->jab',imds.Foo,r2) eris_ovvv = np.asarray(eris.ovvv) Hr1 -= 0.5*np.einsum('lcad,lcd->a',eris_ovvv,r2) Hr1 += 0.5*np.einsum('ldac,lcd->a',eris_ovvv,r2) tau2 = r2 + np.einsum('jd,c->jcd', t1, r1) * 2 tau2 = tau2 - tau2.transpose(0,2,1) tmp = lib.einsum('mcad,jcd->maj', eris_ovvv, tau2) tmp = lib.einsum('mb,maj->jab', t1, tmp) Hr2 += .5 * (tmp - tmp.transpose(0,2,1)) eris_ovov = np.asarray(eris.ovov) tau = imd.make_tau(t2, t1, t1) tmp = lib.einsum('menf,jef->mnj', eris_ovov, tau2) Hr2 += .25*lib.einsum('mnab,mnj->jab', tau, tmp) eris_ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) tmp = np.einsum('ndlc,lcd->n', eris_ovov, r2) Hr1 += .5 * np.einsum('na,n->a', t1, tmp) tmp = np.einsum('kcld,lcd->k', eris_ovov, r2) t2 = spatial2spin(self.t2, eris.orbspin) Hr2 -= 0.5 * np.einsum('k,kjab->jab', tmp, t2) tmp = lib.einsum('lbdj,lad->jab', imds.Wovvo, r2) Hr2 += tmp - tmp.transpose(0,2,1) Hr2 += np.einsum('abcj,c->jab', imds.Wvvvo, r1) eris_vvvv = np.asarray(eris.vvvv) Hr2 += 0.5*einsum('acbd,jcd->jab',eris_vvvv,tau2) vector = self.amplitudes_to_vector_ea(Hr1,Hr2) return vector def eaccsd_diag(self): if not hasattr(self,'imds'): self.imds = _IMDS(self) if not self.imds.made_ea_imds: self.eris.__dict__.update(_ERISspin(self).__dict__) self.imds.make_ea() imds = self.imds t1, t2, eris = self.t1, self.t2, self.eris t1 = spatial2spin(t1, eris.orbspin) t2 = spatial2spin(t2, eris.orbspin) nocc, nvir = t1.shape Fo = np.diagonal(imds.Foo) Fv = np.diagonal(imds.Fvv) Hr1 = Fv Hr2 = lib.direct_sum('-j+a+b->jab', Fo, Fv, Fv) Wov = np.einsum('iaai->ia', imds.Wovvo) Hr2 += Wov.reshape(nocc,nvir,1) Hr2 += Wov.reshape(nocc,1,nvir) eris_ovov = np.asarray(eris.ovov) Hr2 -= np.einsum('iajb,ijab->jab', eris_ovov, t2) Hr2 -= np.einsum('iajb,ijab->iab', eris_ovov, t2) eris_ovvv = np.asarray(eris.ovvv) Wvv = einsum('mb,maab->ab', t1, eris_ovvv) Wvv -= einsum('mb,mbaa->ab', t1, eris_ovvv) Wvv = Wvv + Wvv.T eris_vvvv = np.asarray(eris.vvvv) Wvv += np.einsum('aabb->ab', eris_vvvv) Wvv -= np.einsum('abba->ab', eris_vvvv) tau = imd.make_tau(t2, t1, t1) Wvv += 0.5*np.einsum('mnab,manb->ab', tau, eris_ovov) Wvv -= 0.5*np.einsum('mnab,mbna->ab', tau, eris_ovov) Hr2 += Wvv vector = self.amplitudes_to_vector_ea(Hr1,Hr2) return vector def vector_to_amplitudes_ea(self,vector): nocc = self.nocc nvir = self.nmo - nocc r1 = vector[:nvir].copy() r2 = np.zeros((nocc,nvir*nvir), vector.dtype) vtril = np.tril_indices(nvir, k=-1) r2_tril = vector[nvir:].reshape(nocc,-1) lib.takebak_2d(r2, r2_tril, np.arange(nocc), vtril[0]*nvir+vtril[1]) lib.takebak_2d(r2,-r2_tril, np.arange(nocc), vtril[1]*nvir+vtril[0]) return r1,r2.reshape(nocc,nvir,nvir) def amplitudes_to_vector_ea(self,r1,r2): nocc = self.nocc nvir = self.nmo - nocc size = nvir + nvir*(nvir-1)//2*nocc vector = np.empty(size, r1.dtype) vector[:nvir] = r1.copy() vtril = np.tril_indices(nvir, k=-1) lib.take_2d(r2.reshape(nocc,-1), np.arange(nocc), vtril[0]*nvir+vtril[1], out=vector[nvir:]) return vector def eeccsd(self, nroots=1, koopmans=False, guess=None): '''Calculate N-electron neutral excitations via EE-EOM-CCSD. Kwargs: nroots : int Number of roots (eigenvalues) requested koopmans : bool Calculate Koopmans'-like (1p1h) excitations only, targeting via overlap. guess : list of ndarray List of guess vectors to use for targeting via overlap. ''' spinvec_size = self.nee() nroots = min(nroots, spinvec_size) if hasattr(self,'imds') and (self.imds.made_ip_imds or self.imds.made_ea_imds): self.orbspin = orbspin_of_sorted_mo_energy(self._scf.mo_energy, self.mo_occ) self.eris = self.ao2mo(self.mo_coeff) self.imds = _IMDS(self) diag_ee, diag_sf = self.eeccsd_diag() guess_ee = [] guess_sf = [] if guess and guess[0].size == spinvec_size: for g in guess: r1, r2 = self.vector_to_amplitudes_ee(g) g = self.amplitudes_to_vector(self.spin2spatial(r1, self.orbspin), self.spin2spatial(r2, self.orbspin)) if np.linalg.norm(g) > 1e-7: guess_ee.append(g) else: r1 = self.spin2spatial(r1, self.orbspin) r2 = self.spin2spatial(r2, self.orbspin) g = self.amplitudes_to_vector_eomsf(r1, r2) guess_sf.append(g) r1 = r2 = None nroots_ee = len(guess_ee) nroots_sf = len(guess_sf) elif guess: for g in guess: if g.size == diag_ee.size: guess_ee.append(g) else: guess_sf.append(g) nroots_ee = len(guess_ee) nroots_sf = len(guess_sf) else: dee = np.sort(diag_ee)[:nroots] dsf = np.sort(diag_sf)[:nroots] dmax = np.sort(np.hstack([dee,dsf]))[nroots-1] nroots_ee = np.count_nonzero(dee <= dmax) nroots_sf = np.count_nonzero(dsf <= dmax) guess_ee = guess_sf = None e0 = e1 = [] v0 = v1 = [] if nroots_ee > 0: e0, v0 = self.eomee_ccsd(nroots_ee, koopmans, guess_ee, diag_ee) if nroots_ee == 1: e0, v0 = [e0], [v0] if nroots_sf > 0: e1, v1 = self.eomsf_ccsd(nroots_sf, koopmans, guess_sf, diag_sf) if nroots_sf == 1: e1, v1 = [e1], [v1] e = np.hstack([e0,e1]) v = v0 + v1 if nroots == 1: return e[0], v[0] else: idx = e.argsort() return e[idx], [v[x] for x in idx] def eomee_ccsd(self, nroots=1, koopmans=False, guess=None, diag=None): cput0 = (time.clock(), time.time()) if diag is None: diag = self.eeccsd_diag()[0] nocca, noccb = self.get_nocc() nmoa, nmob = self.get_nmo() nvira, nvirb = nmoa-nocca, nmob-noccb user_guess = False if guess: user_guess = True assert len(guess) == nroots for g in guess: assert g.size == diag.size else: idx = diag.argsort() guess = [] if koopmans: n = 0 for i in idx: g = np.zeros_like(diag) g[i] = 1.0 t1, t2 = self.vector_to_amplitudes(g, (nocca,noccb), (nvira,nvirb)) if np.linalg.norm(t1[0]) > .9 or np.linalg.norm(t1[1]) > .9: guess.append(g) n += 1 if n == nroots: break else: for i in idx[:nroots]: g = np.zeros_like(diag) g[i] = 1.0 guess.append(g) def precond(r, e0, x0): return r/(e0-diag+1e-12) eig = linalg_helper.eig if user_guess or koopmans: def pickeig(w, v, nr, envs): x0 = linalg_helper._gen_x0(envs['v'], envs['xs']) idx = np.argmax( np.abs(np.dot(np.array(guess).conj(),np.array(x0).T)), axis=1 ) return w[idx].real, v[:,idx].real, idx eee, evecs = eig(self.eomee_ccsd_matvec, guess, precond, pick=pickeig, tol=self.conv_tol, max_cycle=self.max_cycle, max_space=self.max_space, nroots=nroots, verbose=self.verbose) else: eee, evecs = eig(self.eomee_ccsd_matvec, guess, precond, tol=self.conv_tol, max_cycle=self.max_cycle, max_space=self.max_space, nroots=nroots, verbose=self.verbose) self.eee = eee.real if nroots == 1: eee, evecs = [self.eee], [evecs] for n, en, vn in zip(range(nroots), eee, evecs): t1, t2 = self.vector_to_amplitudes(vn, (nocca,noccb), (nvira,nvirb)) qpwt = np.linalg.norm(t1[0])**2 + np.linalg.norm(t1[1])**2 logger.info(self, 'EOM-EE root %d E = %.16g qpwt = %.6g', n, en, qpwt) logger.timer(self, 'EOM-EE-CCSD', *cput0) if nroots == 1: return eee[0], evecs[0] else: return eee, evecs def eomsf_ccsd(self, nroots=1, koopmans=False, guess=None, diag=None): cput0 = (time.clock(), time.time()) if diag is None: diag = self.eeccsd_diag()[1] nocca, noccb = self.get_nocc() nmoa, nmob = self.get_nmo() nvira, nvirb = nmoa-nocca, nmob-noccb user_guess = False if guess: user_guess = True assert len(guess) == nroots for g in guess: assert g.size == diag.size else: idx = diag.argsort() guess = [] if koopmans: n = 0 for i in idx: g = np.zeros_like(diag) g[i] = 1.0 t1, t2 = self.vector_to_amplitudes_eomsf(g, (nocca,noccb), (nvira,nvirb)) if np.linalg.norm(t1[0]) > .9 or np.linalg.norm(t1[1]) > .9: guess.append(g) n += 1 if n == nroots: break else: for i in idx[:nroots]: g = np.zeros_like(diag) g[i] = 1.0 guess.append(g) def precond(r, e0, x0): return r/(e0-diag+1e-12) eig = linalg_helper.eig if user_guess or koopmans: def pickeig(w, v, nr, envs): x0 = linalg_helper._gen_x0(envs['v'], envs['xs']) idx = np.argmax( np.abs(np.dot(np.array(guess).conj(),np.array(x0).T)), axis=1 ) return w[idx].real, v[:,idx].real, idx eee, evecs = eig(self.eomsf_ccsd_matvec, guess, precond, pick=pickeig, tol=self.conv_tol, max_cycle=self.max_cycle, max_space=self.max_space, nroots=nroots, verbose=self.verbose) else: eee, evecs = eig(self.eomsf_ccsd_matvec, guess, precond, tol=self.conv_tol, max_cycle=self.max_cycle, max_space=self.max_space, nroots=nroots, verbose=self.verbose) self.eee = eee.real if nroots == 1: eee, evecs = [self.eee], [evecs] for n, en, vn in zip(range(nroots), eee, evecs): t1, t2 = self.vector_to_amplitudes_eomsf(vn, (nocca,noccb), (nvira,nvirb)) qpwt = np.linalg.norm(t1[0])**2 + np.linalg.norm(t1[1])**2 logger.info(self, 'EOM-SF root %d E = %.16g qpwt = %.6g', n, en, qpwt) logger.timer(self, 'EOM-SF-CCSD', *cput0) if nroots == 1: return eee[0], evecs[0] else: return eee, evecs # Ref: Wang, Tu, and Wang, J. Chem. Theory Comput. 10, 5567 (2014) Eqs.(9)-(10) # Note: Last line in Eq. (10) is superfluous. # See, e.g. Gwaltney, Nooijen, and Barlett, Chem. Phys. Lett. 248, 189 (1996) def eomee_ccsd_matvec(self, vector): if not hasattr(self,'imds'): self.imds = _IMDS(self) if not self.imds.made_ee_imds: self.imds.make_ee() imds = self.imds r1, r2 = self.vector_to_amplitudes(vector) r1a, r1b = r1 r2aa, r2ab, r2bb = r2 t1, t2, eris = self.t1, self.t2, self.eris t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape Hr1a = lib.einsum('ae,ie->ia', imds.Fvva, r1a) Hr1a -= lib.einsum('mi,ma->ia', imds.Fooa, r1a) Hr1a += np.einsum('me,imae->ia',imds.Fova, r2aa) Hr1a += np.einsum('ME,iMaE->ia',imds.Fovb, r2ab) Hr1b = lib.einsum('ae,ie->ia', imds.Fvvb, r1b) Hr1b -= lib.einsum('mi,ma->ia', imds.Foob, r1b) Hr1b += np.einsum('me,imae->ia',imds.Fovb, r2bb) Hr1b += np.einsum('me,mIeA->IA',imds.Fova, r2ab) Hr2aa = lib.einsum('mnij,mnab->ijab', imds.woooo, r2aa) * .25 Hr2bb = lib.einsum('mnij,mnab->ijab', imds.wOOOO, r2bb) * .25 Hr2ab = lib.einsum('mNiJ,mNaB->iJaB', imds.woOoO, r2ab) Hr2aa+= lib.einsum('be,ijae->ijab', imds.Fvva, r2aa) Hr2bb+= lib.einsum('be,ijae->ijab', imds.Fvvb, r2bb) Hr2ab+= lib.einsum('BE,iJaE->iJaB', imds.Fvvb, r2ab) Hr2ab+= lib.einsum('be,iJeA->iJbA', imds.Fvva, r2ab) Hr2aa-= lib.einsum('mj,imab->ijab', imds.Fooa, r2aa) Hr2bb-= lib.einsum('mj,imab->ijab', imds.Foob, r2bb) Hr2ab-= lib.einsum('MJ,iMaB->iJaB', imds.Foob, r2ab) Hr2ab-= lib.einsum('mj,mIaB->jIaB', imds.Fooa, r2ab) #:tau2aa, tau2ab, tau2bb = make_tau(r2, r1, t1, 2) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:Hr1a += lib.einsum('mfae,imef->ia', eris_ovvv, r2aa) #:tmpaa = lib.einsum('meaf,ijef->maij', eris_ovvv, tau2aa) #:Hr2aa+= lib.einsum('mb,maij->ijab', t1a, tmpaa) #:tmpa = lib.einsum('mfae,me->af', eris_ovvv, r1a) #:tmpa-= lib.einsum('meaf,me->af', eris_ovvv, r1a) #:Hr1b += lib.einsum('mfae,imef->ia', eris_OVVV, r2bb) #:tmpbb = lib.einsum('meaf,ijef->maij', eris_OVVV, tau2bb) #:Hr2bb+= lib.einsum('mb,maij->ijab', t1b, tmpbb) #:tmpb = lib.einsum('mfae,me->af', eris_OVVV, r1b) #:tmpb-= lib.einsum('meaf,me->af', eris_OVVV, r1b) #:Hr1b += lib.einsum('mfAE,mIfE->IA', eris_ovVV, r2ab) #:tmpab = lib.einsum('meAF,iJeF->mAiJ', eris_ovVV, tau2ab) #:Hr2ab-= lib.einsum('mb,mAiJ->iJbA', t1a, tmpab) #:tmpb-= lib.einsum('meAF,me->AF', eris_ovVV, r1a) #:Hr1a += lib.einsum('MFae,iMeF->ia', eris_OVvv, r2ab) #:tmpba =-lib.einsum('MEaf,iJfE->MaiJ', eris_OVvv, tau2ab) #:Hr2ab+= lib.einsum('MB,MaiJ->iJaB', t1b, tmpba) #:tmpa-= lib.einsum('MEaf,ME->af', eris_OVvv, r1b) tau2aa = make_tau_aa(r2aa, r1a, t1a, 2) mem_now = lib.current_memory()[0] max_memory = lib.param.MAX_MEMORY - mem_now tmpa = np.zeros((nvira,nvira)) tmpb = np.zeros((nvirb,nvirb)) blksize = max(int(max_memory*1e6/8/(nvira**3*3)), 2) for p0, p1 in lib.prange(0, nocca, blksize): ovvv = np.asarray(eris.ovvv[p0:p1]).reshape((p1-p0)*nvira,-1) ovvv = lib.unpack_tril(ovvv).reshape(-1,nvira,nvira,nvira) Hr1a += lib.einsum('mfae,imef->ia', ovvv, r2aa[:,p0:p1]) tmpaa = lib.einsum('meaf,ijef->maij', ovvv, tau2aa) Hr2aa+= lib.einsum('mb,maij->ijab', t1a[p0:p1], tmpaa) tmpa+= lib.einsum('mfae,me->af', ovvv, r1a[p0:p1]) tmpa-= lib.einsum('meaf,me->af', ovvv, r1a[p0:p1]) ovvv = tmpaa = None tau2aa = None tau2bb = make_tau_aa(r2bb, r1b, t1b, 2) blksize = max(int(max_memory*1e6/8/(nvirb**3*3)), 2) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = np.asarray(eris.OVVV[p0:p1]).reshape((p1-p0)*nvirb,-1) OVVV = lib.unpack_tril(OVVV).reshape(-1,nvirb,nvirb,nvirb) Hr1b += lib.einsum('mfae,imef->ia', OVVV, r2bb[:,p0:p1]) tmpbb = lib.einsum('meaf,ijef->maij', OVVV, tau2bb) Hr2bb+= lib.einsum('mb,maij->ijab', t1b[p0:p1], tmpbb) tmpb+= lib.einsum('mfae,me->af', OVVV, r1b[p0:p1]) tmpb-= lib.einsum('meaf,me->af', OVVV, r1b[p0:p1]) OVVV = tmpbb = None tau2bb = None tau2ab = make_tau_ab(r2ab, r1 , t1 , 2) blksize = max(int(max_memory*1e6/8/(nvira*nvirb**2*3)), 2) for p0, p1 in lib.prange(0, nocca, blksize): ovVV = np.asarray(eris.ovVV[p0:p1]).reshape((p1-p0)*nvira,-1) ovVV = lib.unpack_tril(ovVV).reshape(-1,nvira,nvirb,nvirb) Hr1b += lib.einsum('mfAE,mIfE->IA', ovVV, r2ab[p0:p1]) tmpab = lib.einsum('meAF,iJeF->mAiJ', ovVV, tau2ab) Hr2ab-= lib.einsum('mb,mAiJ->iJbA', t1a[p0:p1], tmpab) tmpb-= lib.einsum('meAF,me->AF', ovVV, r1a[p0:p1]) ovVV = tmpab = None blksize = max(int(max_memory*1e6/8/(nvirb*nvira**2*3)), 2) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = np.asarray(eris.OVvv[p0:p1]).reshape((p1-p0)*nvirb,-1) OVvv = lib.unpack_tril(OVvv).reshape(-1,nvirb,nvira,nvira) Hr1a += lib.einsum('MFae,iMeF->ia', OVvv, r2ab[:,p0:p1]) tmpba = lib.einsum('MEaf,iJfE->MaiJ', OVvv, tau2ab) Hr2ab-= lib.einsum('MB,MaiJ->iJaB', t1b[p0:p1], tmpba) tmpa-= lib.einsum('MEaf,ME->af', OVvv, r1b[p0:p1]) OVvv = tmpba = None tau2ab = None Hr2aa-= lib.einsum('af,ijfb->ijab', tmpa, t2aa) Hr2bb-= lib.einsum('af,ijfb->ijab', tmpb, t2bb) Hr2ab-= lib.einsum('af,iJfB->iJaB', tmpa, t2ab) Hr2ab-= lib.einsum('AF,iJbF->iJbA', tmpb, t2ab) eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) tau2aa = make_tau_aa(r2aa, r1a, t1a, 2) tauaa = make_tau_aa(t2aa, t1a, t1a) tmpaa = lib.einsum('menf,ijef->mnij', eris_ovov, tau2aa) Hr2aa += lib.einsum('mnij,mnab->ijab', tmpaa, tauaa) * 0.25 tau2aa = tauaa = None tau2bb = make_tau_aa(r2bb, r1b, t1b, 2) taubb = make_tau_aa(t2bb, t1b, t1b) tmpbb = lib.einsum('menf,ijef->mnij', eris_OVOV, tau2bb) Hr2bb += lib.einsum('mnij,mnab->ijab', tmpbb, taubb) * 0.25 tau2bb = taubb = None tau2ab = make_tau_ab(r2ab, r1 , t1 , 2) tauab = make_tau_ab(t2ab, t1 , t1) tmpab = lib.einsum('meNF,iJeF->mNiJ', eris_ovOV, tau2ab) Hr2ab += lib.einsum('mNiJ,mNaB->iJaB', tmpab, tauab) tau2ab = tauab = None tmpa = lib.einsum('menf,imef->ni', eris_ovov, r2aa) tmpa-= lib.einsum('neMF,iMeF->ni', eris_ovOV, r2ab) tmpb = lib.einsum('menf,imef->ni', eris_OVOV, r2bb) tmpb-= lib.einsum('mfNE,mIfE->NI', eris_ovOV, r2ab) Hr1a += lib.einsum('na,ni->ia', t1a, tmpa) Hr1b += lib.einsum('na,ni->ia', t1b, tmpb) Hr2aa+= lib.einsum('mj,imab->ijab', tmpa, t2aa) Hr2bb+= lib.einsum('mj,imab->ijab', tmpb, t2bb) Hr2ab+= lib.einsum('MJ,iMaB->iJaB', tmpb, t2ab) Hr2ab+= lib.einsum('mj,mIaB->jIaB', tmpa, t2ab) tmp1a = np.einsum('menf,mf->en', eris_ovov, r1a) tmp1a-= np.einsum('mfne,mf->en', eris_ovov, r1a) tmp1a-= np.einsum('neMF,MF->en', eris_ovOV, r1b) tmp1b = np.einsum('menf,mf->en', eris_OVOV, r1b) tmp1b-= np.einsum('mfne,mf->en', eris_OVOV, r1b) tmp1b-= np.einsum('mfNE,mf->EN', eris_ovOV, r1a) tmpa = np.einsum('en,nb->eb', tmp1a, t1a) tmpa+= lib.einsum('menf,mnfb->eb', eris_ovov, r2aa) tmpa-= lib.einsum('meNF,mNbF->eb', eris_ovOV, r2ab) tmpb = np.einsum('en,nb->eb', tmp1b, t1b) tmpb+= lib.einsum('menf,mnfb->eb', eris_OVOV, r2bb) tmpb-= lib.einsum('nfME,nMfB->EB', eris_ovOV, r2ab) Hr2aa+= lib.einsum('eb,ijae->ijab', tmpa, t2aa) Hr2bb+= lib.einsum('eb,ijae->ijab', tmpb, t2bb) Hr2ab+= lib.einsum('EB,iJaE->iJaB', tmpb, t2ab) Hr2ab+= lib.einsum('eb,iJeA->iJbA', tmpa, t2ab) eirs_ovov = eris_ovOV = eris_OVOV = None Hr2aa-= lib.einsum('mbij,ma->ijab', imds.wovoo, r1a) Hr2bb-= lib.einsum('mbij,ma->ijab', imds.wOVOO, r1b) Hr2ab-= lib.einsum('mBiJ,ma->iJaB', imds.woVoO, r1a) Hr2ab-= lib.einsum('MbJi,MA->iJbA', imds.wOvOo, r1b) Hr1a-= 0.5*lib.einsum('mnie,mnae->ia', imds.wooov, r2aa) Hr1a-= lib.einsum('mNiE,mNaE->ia', imds.woOoV, r2ab) Hr1b-= 0.5*lib.einsum('mnie,mnae->ia', imds.wOOOV, r2bb) Hr1b-= lib.einsum('MnIe,nMeA->IA', imds.wOoOv, r2ab) tmpa = lib.einsum('mnie,me->ni', imds.wooov, r1a) tmpa-= lib.einsum('nMiE,ME->ni', imds.woOoV, r1b) tmpb = lib.einsum('mnie,me->ni', imds.wOOOV, r1b) tmpb-= lib.einsum('NmIe,me->NI', imds.wOoOv, r1a) Hr2aa+= lib.einsum('ni,njab->ijab', tmpa, t2aa) Hr2bb+= lib.einsum('ni,njab->ijab', tmpb, t2bb) Hr2ab+= lib.einsum('ni,nJaB->iJaB', tmpa, t2ab) Hr2ab+= lib.einsum('NI,jNaB->jIaB', tmpb, t2ab) for p0, p1 in lib.prange(0, nvira, nocca): Hr2aa+= lib.einsum('ejab,ie->ijab', imds.wvovv[p0:p1], r1a[:,p0:p1]) Hr2ab+= lib.einsum('eJaB,ie->iJaB', imds.wvOvV[p0:p1], r1a[:,p0:p1]) for p0, p1 in lib.prange(0, nvirb, noccb): Hr2bb+= lib.einsum('ejab,ie->ijab', imds.wVOVV[p0:p1], r1b[:,p0:p1]) Hr2ab+= lib.einsum('EjBa,IE->jIaB', imds.wVoVv[p0:p1], r1b[:,p0:p1]) Hr1a += np.einsum('maei,me->ia',imds.wovvo,r1a) Hr1a += np.einsum('MaEi,ME->ia',imds.wOvVo,r1b) Hr1b += np.einsum('maei,me->ia',imds.wOVVO,r1b) Hr1b += np.einsum('mAeI,me->IA',imds.woVvO,r1a) Hr2aa+= lib.einsum('mbej,imae->ijab', imds.wovvo, r2aa) * 2 Hr2aa+= lib.einsum('MbEj,iMaE->ijab', imds.wOvVo, r2ab) * 2 Hr2bb+= lib.einsum('mbej,imae->ijab', imds.wOVVO, r2bb) * 2 Hr2bb+= lib.einsum('mBeJ,mIeA->IJAB', imds.woVvO, r2ab) * 2 Hr2ab+= lib.einsum('mBeJ,imae->iJaB', imds.woVvO, r2aa) Hr2ab+= lib.einsum('MBEJ,iMaE->iJaB', imds.wOVVO, r2ab) Hr2ab+= lib.einsum('mBEj,mIaE->jIaB', imds.woVVo, r2ab) Hr2ab+= lib.einsum('mbej,mIeA->jIbA', imds.wovvo, r2ab) Hr2ab+= lib.einsum('MbEj,IMAE->jIbA', imds.wOvVo, r2bb) Hr2ab+= lib.einsum('MbeJ,iMeA->iJbA', imds.wOvvO, r2ab) #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:Hr2aa += lib.einsum('ijef,aebf->ijab', tau2aa, eris_vvvv) * .5 #:Hr2bb += lib.einsum('ijef,aebf->ijab', tau2bb, eris_VVVV) * .5 #:Hr2ab += lib.einsum('iJeF,aeBF->iJaB', tau2ab, eris_vvVV) tau2aa, tau2ab, tau2bb = make_tau(r2, r1, t1, 2) _add_vvvv_(self, (tau2aa,tau2ab,tau2bb), eris, (Hr2aa,Hr2ab,Hr2bb)) Hr2aa *= .5 Hr2bb *= .5 Hr2aa = Hr2aa - Hr2aa.transpose(0,1,3,2) Hr2aa = Hr2aa - Hr2aa.transpose(1,0,2,3) Hr2bb = Hr2bb - Hr2bb.transpose(0,1,3,2) Hr2bb = Hr2bb - Hr2bb.transpose(1,0,2,3) vector = self.amplitudes_to_vector((Hr1a,Hr1b), (Hr2aa,Hr2ab,Hr2bb)) return vector def eomsf_ccsd_matvec(self, vector): '''Spin flip EOM-CCSD''' if not hasattr(self,'imds'): self.imds = _IMDS(self) if not self.imds.made_ee_imds: self.imds.make_ee() imds = self.imds t1, t2, eris = self.t1, self.t2, self.eris t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape r1, r2 = self.vector_to_amplitudes_eomsf(vector, (nocca,noccb), (nvira,nvirb)) r1ab, r1ba = r1 r2baaa, r2aaba, r2abbb, r2bbab = r2 Hr1ab = np.einsum('ae,ie->ia', imds.Fvvb, r1ab) Hr1ab -= np.einsum('mi,ma->ia', imds.Fooa, r1ab) Hr1ab += np.einsum('me,imae->ia', imds.Fovb, r2abbb) Hr1ab += np.einsum('me,imae->ia', imds.Fova, r2aaba) Hr1ba = np.einsum('ae,ie->ia', imds.Fvva, r1ba) Hr1ba -= np.einsum('mi,ma->ia', imds.Foob, r1ba) Hr1ba += np.einsum('me,imae->ia', imds.Fova, r2baaa) Hr1ba += np.einsum('me,imae->ia', imds.Fovb, r2bbab) Hr2baaa = .5 *lib.einsum('nMjI,Mnab->Ijab', imds.woOoO, r2baaa) Hr2aaba = .25*lib.einsum('mnij,mnAb->ijAb', imds.woooo, r2aaba) Hr2abbb = .5 *lib.einsum('mNiJ,mNAB->iJAB', imds.woOoO, r2abbb) Hr2bbab = .25*lib.einsum('MNIJ,MNaB->IJaB', imds.wOOOO, r2bbab) Hr2baaa += lib.einsum('be,Ijae->Ijab', imds.Fvva , r2baaa) Hr2baaa -= lib.einsum('mj,imab->ijab', imds.Fooa*.5, r2baaa) Hr2baaa -= lib.einsum('MJ,Miab->Jiab', imds.Foob*.5, r2baaa) Hr2bbab -= lib.einsum('mj,imab->ijab', imds.Foob , r2bbab) Hr2bbab += lib.einsum('BE,IJaE->IJaB', imds.Fvvb*.5, r2bbab) Hr2bbab += lib.einsum('be,IJeA->IJbA', imds.Fvva*.5, r2bbab) Hr2aaba -= lib.einsum('mj,imab->ijab', imds.Fooa , r2aaba) Hr2aaba += lib.einsum('be,ijAe->ijAb', imds.Fvva*.5, r2aaba) Hr2aaba += lib.einsum('BE,ijEa->ijBa', imds.Fvvb*.5, r2aaba) Hr2abbb += lib.einsum('BE,iJAE->iJAB', imds.Fvvb , r2abbb) Hr2abbb -= lib.einsum('mj,imab->ijab', imds.Foob*.5, r2abbb) Hr2abbb -= lib.einsum('mj,mIAB->jIAB', imds.Fooa*.5, r2abbb) tau2baaa = np.einsum('ia,jb->ijab', r1ba, t1a) tau2baaa = tau2baaa - tau2baaa.transpose(0,1,3,2) tau2abbb = np.einsum('ia,jb->ijab', r1ab, t1b) tau2abbb = tau2abbb - tau2abbb.transpose(0,1,3,2) tau2aaba = np.einsum('ia,jb->ijab', r1ab, t1a) tau2aaba = tau2aaba - tau2aaba.transpose(1,0,2,3) tau2bbab = np.einsum('ia,jb->ijab', r1ba, t1b) tau2bbab = tau2bbab - tau2bbab.transpose(1,0,2,3) tau2baaa += r2baaa tau2bbab += r2bbab tau2abbb += r2abbb tau2aaba += r2aaba #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:Hr1ba += einsum('mfae,Imef->Ia', eris_ovvv, r2baaa) #:tmp1aaba = lib.einsum('meaf,Ijef->maIj', eris_ovvv, tau2baaa) #:Hr2baaa += lib.einsum('mb,maIj->Ijab', t1a , tmp1aaba) mem_now = lib.current_memory()[0] max_memory = lib.param.MAX_MEMORY - mem_now blksize = max(int(max_memory*1e6/8/(nvira**3*3)), 2) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = np.asarray(eris.ovvv[p0:p1]).reshape((p1-p0)*nvira,-1) ovvv = lib.unpack_tril(ovvv).reshape(-1,nvira,nvira,nvira) Hr1ba += einsum('mfae,Imef->Ia', ovvv, r2baaa[:,p0:p1]) tmp1aaba = lib.einsum('meaf,Ijef->maIj', ovvv, tau2baaa) Hr2baaa += lib.einsum('mb,maIj->Ijab', t1a[p0:p1], tmp1aaba) ovvv = tmp1aaba = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:Hr1ab += einsum('MFAE,iMEF->iA', eris_OVVV, r2abbb) #:tmp1bbab = lib.einsum('MEAF,iJEF->MAiJ', eris_OVVV, tau2abbb) #:Hr2abbb += lib.einsum('MB,MAiJ->iJAB', t1b , tmp1bbab) blksize = max(int(max_memory*1e6/8/(nvirb**3*3)), 2) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = np.asarray(eris.OVVV[p0:p1]).reshape((p1-p0)*nvirb,-1) OVVV = lib.unpack_tril(OVVV).reshape(-1,nvirb,nvirb,nvirb) Hr1ab += einsum('MFAE,iMEF->iA', OVVV, r2abbb[:,p0:p1]) tmp1bbab = lib.einsum('MEAF,iJEF->MAiJ', OVVV, tau2abbb) Hr2abbb += lib.einsum('MB,MAiJ->iJAB', t1b[p0:p1], tmp1bbab) OVVV = tmp1bbab = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:Hr1ab += einsum('mfAE,imEf->iA', eris_ovVV, r2aaba) #:tmp1abaa = lib.einsum('meAF,ijFe->mAij', eris_ovVV, tau2aaba) #:tmp1abbb = lib.einsum('meAF,IJeF->mAIJ', eris_ovVV, tau2bbab) #:tmp1ba = lib.einsum('mfAE,mE->Af', eris_ovVV, r1ab) #:Hr2bbab -= lib.einsum('mb,mAIJ->IJbA', t1a*.5, tmp1abbb) #:Hr2aaba -= lib.einsum('mb,mAij->ijAb', t1a*.5, tmp1abaa) tmp1ba = np.zeros((nvirb,nvira)) blksize = max(int(max_memory*1e6/8/(nvira*nvirb**2*3)), 2) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = np.asarray(eris.ovVV[p0:p1]).reshape((p1-p0)*nvira,-1) ovVV = lib.unpack_tril(ovVV).reshape(-1,nvira,nvirb,nvirb) Hr1ab += einsum('mfAE,imEf->iA', ovVV, r2aaba[:,p0:p1]) tmp1abaa = lib.einsum('meAF,ijFe->mAij', ovVV, tau2aaba) tmp1abbb = lib.einsum('meAF,IJeF->mAIJ', ovVV, tau2bbab) tmp1ba += lib.einsum('mfAE,mE->Af', ovVV, r1ab[p0:p1]) Hr2bbab -= lib.einsum('mb,mAIJ->IJbA', t1a[p0:p1]*.5, tmp1abbb) Hr2aaba -= lib.einsum('mb,mAij->ijAb', t1a[p0:p1]*.5, tmp1abaa) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:Hr1ba += einsum('MFae,IMeF->Ia', eris_OVvv, r2bbab) #:tmp1baaa = lib.einsum('MEaf,ijEf->Maij', eris_OVvv, tau2aaba) #:tmp1babb = lib.einsum('MEaf,IJfE->MaIJ', eris_OVvv, tau2bbab) #:tmp1ab = lib.einsum('MFae,Me->aF', eris_OVvv, r1ba) #:Hr2aaba -= lib.einsum('MB,Maij->ijBa', t1b*.5, tmp1baaa) #:Hr2bbab -= lib.einsum('MB,MaIJ->IJaB', t1b*.5, tmp1babb) tmp1ab = np.zeros((nvira,nvirb)) blksize = max(int(max_memory*1e6/8/(nvirb*nvira**2*3)), 2) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = np.asarray(eris.OVvv[p0:p1]).reshape((p1-p0)*nvirb,-1) OVvv = lib.unpack_tril(OVvv).reshape(-1,nvirb,nvira,nvira) Hr1ba += einsum('MFae,IMeF->Ia', OVvv, r2bbab[:,p0:p1]) tmp1baaa = lib.einsum('MEaf,ijEf->Maij', OVvv, tau2aaba) tmp1babb = lib.einsum('MEaf,IJfE->MaIJ', OVvv, tau2bbab) tmp1ab+= lib.einsum('MFae,Me->aF', OVvv, r1ba[p0:p1]) Hr2aaba -= lib.einsum('MB,Maij->ijBa', t1b[p0:p1]*.5, tmp1baaa) Hr2bbab -= lib.einsum('MB,MaIJ->IJaB', t1b[p0:p1]*.5, tmp1babb) Hr2baaa += lib.einsum('aF,jIbF->Ijba', tmp1ab , t2ab) Hr2bbab -= lib.einsum('aF,IJFB->IJaB', tmp1ab*.5, t2bb) Hr2abbb += lib.einsum('Af,iJfB->iJBA', tmp1ba , t2ab) Hr2aaba -= lib.einsum('Af,ijfb->ijAb', tmp1ba*.5, t2aa) Hr2baaa -= lib.einsum('MbIj,Ma->Ijab', imds.wOvOo, r1ba ) Hr2bbab -= lib.einsum('MBIJ,Ma->IJaB', imds.wOVOO, r1ba*.5) Hr2abbb -= lib.einsum('mBiJ,mA->iJAB', imds.woVoO, r1ab ) Hr2aaba -= lib.einsum('mbij,mA->ijAb', imds.wovoo, r1ab*.5) Hr1ab -= 0.5*lib.einsum('mnie,mnAe->iA', imds.wooov, r2aaba) Hr1ab -= lib.einsum('mNiE,mNAE->iA', imds.woOoV, r2abbb) Hr1ba -= 0.5*lib.einsum('MNIE,MNaE->Ia', imds.wOOOV, r2bbab) Hr1ba -= lib.einsum('MnIe,Mnae->Ia', imds.wOoOv, r2baaa) tmp1ab = lib.einsum('MnIe,Me->nI', imds.wOoOv, r1ba) tmp1ba = lib.einsum('mNiE,mE->Ni', imds.woOoV, r1ab) Hr2baaa += lib.einsum('nI,njab->Ijab', tmp1ab*.5, t2aa) Hr2bbab += lib.einsum('nI,nJaB->IJaB', tmp1ab , t2ab) Hr2abbb += lib.einsum('Ni,NJAB->iJAB', tmp1ba*.5, t2bb) Hr2aaba += lib.einsum('Ni,jNbA->ijAb', tmp1ba , t2ab) for p0, p1 in lib.prange(0, nvira, nocca): Hr2baaa += lib.einsum('ejab,Ie->Ijab', imds.wvovv[p0:p1], r1ba[:,p0:p1]*.5) Hr2bbab += lib.einsum('eJaB,Ie->IJaB', imds.wvOvV[p0:p1], r1ba[:,p0:p1] ) for p0, p1 in lib.prange(0, nvirb, noccb): Hr2abbb += lib.einsum('EJAB,iE->iJAB', imds.wVOVV[p0:p1], r1ab[:,p0:p1]*.5) Hr2aaba += lib.einsum('EjAb,iE->ijAb', imds.wVoVv[p0:p1], r1ab[:,p0:p1] ) Hr1ab += np.einsum('mAEi,mE->iA', imds.woVVo, r1ab) Hr1ba += np.einsum('MaeI,Me->Ia', imds.wOvvO, r1ba) Hr2baaa += lib.einsum('mbej,Imae->Ijab', imds.wovvo, r2baaa) Hr2baaa += lib.einsum('MbeJ,Miae->Jiab', imds.wOvvO, r2baaa) Hr2baaa += lib.einsum('MbEj,IMaE->Ijab', imds.wOvVo, r2bbab) Hr2bbab += lib.einsum('MBEJ,IMaE->IJaB', imds.wOVVO, r2bbab) Hr2bbab += lib.einsum('MbeJ,IMeA->IJbA', imds.wOvvO, r2bbab) Hr2bbab += lib.einsum('mBeJ,Imae->IJaB', imds.woVvO, r2baaa) Hr2aaba += lib.einsum('mbej,imAe->ijAb', imds.wovvo, r2aaba) Hr2aaba += lib.einsum('mBEj,imEa->ijBa', imds.woVVo, r2aaba) Hr2aaba += lib.einsum('MbEj,iMAE->ijAb', imds.wOvVo, r2abbb) Hr2abbb += lib.einsum('MBEJ,iMAE->iJAB', imds.wOVVO, r2abbb) Hr2abbb += lib.einsum('mBEj,mIAE->jIAB', imds.woVVo, r2abbb) Hr2abbb += lib.einsum('mBeJ,imAe->iJAB', imds.woVvO, r2aaba) eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) tauaa, tauab, taubb = make_tau(t2, t1, t1) tmp1baaa = lib.einsum('nfME,ijEf->Mnij', eris_ovOV, tau2aaba) tmp1aaba = lib.einsum('menf,Ijef->mnIj', eris_ovov, tau2baaa) tmp1abbb = lib.einsum('meNF,IJeF->mNIJ', eris_ovOV, tau2bbab) tmp1bbab = lib.einsum('MENF,iJEF->MNiJ', eris_OVOV, tau2abbb) Hr2baaa += 0.5*.5*lib.einsum('mnIj,mnab->Ijab', tmp1aaba, tauaa) Hr2bbab += .5*lib.einsum('nMIJ,nMaB->IJaB', tmp1abbb, tauab) Hr2aaba += .5*lib.einsum('Nmij,mNbA->ijAb', tmp1baaa, tauab) Hr2abbb += 0.5*.5*lib.einsum('MNiJ,MNAB->iJAB', tmp1bbab, taubb) tauaa = tauab = taubb = None tmpab = lib.einsum('menf,Imef->nI', eris_ovov, r2baaa) tmpab -= lib.einsum('nfME,IMfE->nI', eris_ovOV, r2bbab) tmpba = lib.einsum('MENF,iMEF->Ni', eris_OVOV, r2abbb) tmpba -= lib.einsum('meNF,imFe->Ni', eris_ovOV, r2aaba) Hr1ab += np.einsum('NA,Ni->iA', t1b, tmpba) Hr1ba += np.einsum('na,nI->Ia', t1a, tmpab) Hr2baaa -= lib.einsum('mJ,imab->Jiab', tmpab*.5, t2aa) Hr2bbab -= lib.einsum('mJ,mIaB->IJaB', tmpab*.5, t2ab) * 2 Hr2aaba -= lib.einsum('Mj,iMbA->ijAb', tmpba*.5, t2ab) * 2 Hr2abbb -= lib.einsum('Mj,IMAB->jIAB', tmpba*.5, t2bb) tmp1ab = np.einsum('meNF,mF->eN', eris_ovOV, r1ab) tmp1ba = np.einsum('nfME,Mf->En', eris_ovOV, r1ba) tmpab = np.einsum('eN,NB->eB', tmp1ab, t1b) tmpba = np.einsum('En,nb->Eb', tmp1ba, t1a) tmpab -= lib.einsum('menf,mnBf->eB', eris_ovov, r2aaba) tmpab += lib.einsum('meNF,mNFB->eB', eris_ovOV, r2abbb) tmpba -= lib.einsum('MENF,MNbF->Eb', eris_OVOV, r2bbab) tmpba += lib.einsum('nfME,Mnfb->Eb', eris_ovOV, r2baaa) Hr2baaa -= lib.einsum('Eb,jIaE->Ijab', tmpba*.5, t2ab) * 2 Hr2bbab -= lib.einsum('Eb,IJAE->IJbA', tmpba*.5, t2bb) Hr2aaba -= lib.einsum('eB,ijae->ijBa', tmpab*.5, t2aa) Hr2abbb -= lib.einsum('eB,iJeA->iJAB', tmpab*.5, t2ab) * 2 eris_ovov = eris_OVOV = eris_ovOV = None #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:Hr2baaa += .5*lib.einsum('Ijef,aebf->Ijab', tau2baaa, eris_vvvv) #:Hr2abbb += .5*lib.einsum('iJEF,AEBF->iJAB', tau2abbb, eris_VVVV) #:Hr2bbab += .5*lib.einsum('IJeF,aeBF->IJaB', tau2bbab, eris_vvVV) #:Hr2aaba += .5*lib.einsum('ijEf,bfAE->ijAb', tau2aaba, eris_vvVV) tau2baaa *= .5 rccsd._add_vvvv1_(self, tau2baaa, eris, Hr2baaa) fakeri = lambda:None fakeri.vvvv = eris.VVVV tau2abbb *= .5 rccsd._add_vvvv1_(self, tau2abbb, fakeri, Hr2abbb) fakeri.vvvv = eris.vvVV tau2bbab *= .5 rccsd._add_vvvv1_(self, tau2bbab, fakeri, Hr2bbab) fakeri = None for i in range(nvira): i0 = i*(i+1)//2 vvv = lib.unpack_tril(np.asarray(eris.vvVV[i0:i0+i+1])) Hr2aaba[:,:,:,i ] += .5*lib.einsum('ijef,fae->ija', tau2aaba[:,:,:,:i+1], vvv) Hr2aaba[:,:,:,:i] += .5*lib.einsum('ije,bae->ijab', tau2aaba[:,:,:,i], vvv[:i]) vvv = None Hr2baaa = Hr2baaa - Hr2baaa.transpose(0,1,3,2) Hr2bbab = Hr2bbab - Hr2bbab.transpose(1,0,2,3) Hr2abbb = Hr2abbb - Hr2abbb.transpose(0,1,3,2) Hr2aaba = Hr2aaba - Hr2aaba.transpose(1,0,2,3) vector = self.amplitudes_to_vector_eomsf((Hr1ab, Hr1ba), (Hr2baaa,Hr2aaba,Hr2abbb,Hr2bbab)) return vector def eeccsd_diag(self): if not hasattr(self,'imds'): self.imds = _IMDS(self) if not self.imds.made_ee_imds: self.imds.make_ee() imds = self.imds eris = self.eris t1, t2 = self.t1, self.t2 t1a, t1b = t1 t2aa, t2ab, t2bb = t2 tauaa, tauab, taubb = make_tau(t2, t1, t1) nocca, noccb, nvira, nvirb = t2ab.shape Foa = imds.Fooa.diagonal() Fob = imds.Foob.diagonal() Fva = imds.Fvva.diagonal() Fvb = imds.Fvvb.diagonal() Wovaa = np.einsum('iaai->ia', imds.wovvo) Wovbb = np.einsum('iaai->ia', imds.wOVVO) Wovab = np.einsum('iaai->ia', imds.woVVo) Wovba = np.einsum('iaai->ia', imds.wOvvO) Hr1aa = lib.direct_sum('-i+a->ia', Foa, Fva) Hr1bb = lib.direct_sum('-i+a->ia', Fob, Fvb) Hr1ab = lib.direct_sum('-i+a->ia', Foa, Fvb) Hr1ba = lib.direct_sum('-i+a->ia', Fob, Fva) Hr1aa += Wovaa Hr1bb += Wovbb Hr1ab += Wovab Hr1ba += Wovba eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) Wvvaa = .5*np.einsum('mnab,manb->ab', tauaa, eris_ovov) Wvvbb = .5*np.einsum('mnab,manb->ab', taubb, eris_OVOV) Wvvab = np.einsum('mNaB,maNB->aB', tauab, eris_ovOV) ijb = np.einsum('iejb,ijbe->ijb', ovov, t2aa) IJB = np.einsum('iejb,ijbe->ijb', OVOV, t2bb) iJB =-np.einsum('ieJB,iJeB->iJB', eris_ovOV, t2ab) Ijb =-np.einsum('jbIE,jIbE->Ijb', eris_ovOV, t2ab) iJb =-np.einsum('ibJE,iJbE->iJb', eris_ovOV, t2ab) IjB =-np.einsum('jeIB,jIeB->IjB', eris_ovOV, t2ab) jab = np.einsum('kajb,jkab->jab', ovov, t2aa) JAB = np.einsum('kajb,jkab->jab', OVOV, t2bb) jAb =-np.einsum('jbKA,jKbA->jAb', eris_ovOV, t2ab) JaB =-np.einsum('kaJB,kJaB->JaB', eris_ovOV, t2ab) jaB =-np.einsum('jaKB,jKaB->jaB', eris_ovOV, t2ab) JAb =-np.einsum('kbJA,kJbA->JAb', eris_ovOV, t2ab) eris_ovov = eris_ovOV = eris_OVOV = ovov = OVOV = None Hr2aa = lib.direct_sum('ijb+a->ijba', ijb, Fva) Hr2bb = lib.direct_sum('ijb+a->ijba', IJB, Fvb) Hr2ab = lib.direct_sum('iJb+A->iJbA', iJb, Fvb) Hr2ab+= lib.direct_sum('iJB+a->iJaB', iJB, Fva) Hr2aa+= lib.direct_sum('-i+jab->ijab', Foa, jab) Hr2bb+= lib.direct_sum('-i+jab->ijab', Fob, JAB) Hr2ab+= lib.direct_sum('-i+JaB->iJaB', Foa, JaB) Hr2ab+= lib.direct_sum('-I+jaB->jIaB', Fob, jaB) Hr2aa = Hr2aa + Hr2aa.transpose(0,1,3,2) Hr2aa = Hr2aa + Hr2aa.transpose(1,0,2,3) Hr2bb = Hr2bb + Hr2bb.transpose(0,1,3,2) Hr2bb = Hr2bb + Hr2bb.transpose(1,0,2,3) Hr2aa *= .5 Hr2bb *= .5 Hr2baaa = lib.direct_sum('Ijb+a->Ijba', Ijb, Fva) Hr2aaba = lib.direct_sum('ijb+A->ijAb', ijb, Fvb) Hr2aaba+= Fva.reshape(1,1,1,-1) Hr2abbb = lib.direct_sum('iJB+A->iJBA', iJB, Fvb) Hr2bbab = lib.direct_sum('IJB+a->IJaB', IJB, Fva) Hr2bbab+= Fvb.reshape(1,1,1,-1) Hr2baaa = Hr2baaa + Hr2baaa.transpose(0,1,3,2) Hr2abbb = Hr2abbb + Hr2abbb.transpose(0,1,3,2) Hr2baaa+= lib.direct_sum('-I+jab->Ijab', Fob, jab) Hr2baaa-= Foa.reshape(1,-1,1,1) tmpaaba = lib.direct_sum('-i+jAb->ijAb', Foa, jAb) Hr2abbb+= lib.direct_sum('-i+JAB->iJAB', Foa, JAB) Hr2abbb-= Fob.reshape(1,-1,1,1) tmpbbab = lib.direct_sum('-I+JaB->IJaB', Fob, JaB) Hr2aaba+= tmpaaba + tmpaaba.transpose(1,0,2,3) Hr2bbab+= tmpbbab + tmpbbab.transpose(1,0,2,3) tmpaaba = tmpbbab = None Hr2aa += Wovaa.reshape(1,nocca,1,nvira) Hr2aa += Wovaa.reshape(nocca,1,1,nvira) Hr2aa += Wovaa.reshape(nocca,1,nvira,1) Hr2aa += Wovaa.reshape(1,nocca,nvira,1) Hr2ab += Wovbb.reshape(1,noccb,1,nvirb) Hr2ab += Wovab.reshape(nocca,1,1,nvirb) Hr2ab += Wovaa.reshape(nocca,1,nvira,1) Hr2ab += Wovba.reshape(1,noccb,nvira,1) Hr2bb += Wovbb.reshape(1,noccb,1,nvirb) Hr2bb += Wovbb.reshape(noccb,1,1,nvirb) Hr2bb += Wovbb.reshape(noccb,1,nvirb,1) Hr2bb += Wovbb.reshape(1,noccb,nvirb,1) Hr2baaa += Wovaa.reshape(1,nocca,1,nvira) Hr2baaa += Wovba.reshape(noccb,1,1,nvira) Hr2baaa += Wovba.reshape(noccb,1,nvira,1) Hr2baaa += Wovaa.reshape(1,nocca,nvira,1) Hr2aaba += Wovaa.reshape(1,nocca,1,nvira) Hr2aaba += Wovaa.reshape(nocca,1,1,nvira) Hr2aaba += Wovab.reshape(nocca,1,nvirb,1) Hr2aaba += Wovab.reshape(1,nocca,nvirb,1) Hr2abbb += Wovbb.reshape(1,noccb,1,nvirb) Hr2abbb += Wovab.reshape(nocca,1,1,nvirb) Hr2abbb += Wovab.reshape(nocca,1,nvirb,1) Hr2abbb += Wovbb.reshape(1,noccb,nvirb,1) Hr2bbab += Wovbb.reshape(1,noccb,1,nvirb) Hr2bbab += Wovbb.reshape(noccb,1,1,nvirb) Hr2bbab += Wovba.reshape(noccb,1,nvira,1) Hr2bbab += Wovba.reshape(1,noccb,nvira,1) Wooaa = np.einsum('ijij->ij', imds.woooo).copy() Wooaa -= np.einsum('ijji->ij', imds.woooo) Woobb = np.einsum('ijij->ij', imds.wOOOO).copy() Woobb -= np.einsum('ijji->ij', imds.wOOOO) Wooab = np.einsum('ijij->ij', imds.woOoO) Wooba = Wooab.T Wooaa *= .5 Woobb *= .5 Hr2aa += Wooaa.reshape(nocca,nocca,1,1) Hr2ab += Wooab.reshape(nocca,noccb,1,1) Hr2bb += Woobb.reshape(noccb,noccb,1,1) Hr2baaa += Wooba.reshape(noccb,nocca,1,1) Hr2aaba += Wooaa.reshape(nocca,nocca,1,1) Hr2abbb += Wooab.reshape(nocca,noccb,1,1) Hr2bbab += Woobb.reshape(noccb,noccb,1,1) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:Wvvaa += np.einsum('mb,maab->ab', t1a, eris_ovvv) #:Wvvaa -= np.einsum('mb,mbaa->ab', t1a, eris_ovvv) mem_now = lib.current_memory()[0] max_memory = lib.param.MAX_MEMORY - mem_now blksize = max(int(max_memory*1e6/8/(nvira**3*3)), 2) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = np.asarray(eris.ovvv[p0:p1]).reshape((p1-p0)*nvira,-1) ovvv = lib.unpack_tril(ovvv).reshape(-1,nvira,nvira,nvira) Wvvaa += np.einsum('mb,maab->ab', t1a[p0:p1], ovvv) Wvvaa -= np.einsum('mb,mbaa->ab', t1a[p0:p1], ovvv) ovvv = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:Wvvbb += np.einsum('mb,maab->ab', t1b, eris_OVVV) #:Wvvbb -= np.einsum('mb,mbaa->ab', t1b, eris_OVVV) blksize = max(int(max_memory*1e6/8/(nvirb**3*3)), 2) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = np.asarray(eris.OVVV[p0:p1]).reshape((p1-p0)*nvirb,-1) OVVV = lib.unpack_tril(OVVV).reshape(-1,nvirb,nvirb,nvirb) Wvvbb += np.einsum('mb,maab->ab', t1b[p0:p1], OVVV) Wvvbb -= np.einsum('mb,mbaa->ab', t1b[p0:p1], OVVV) OVVV = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:Wvvab -= np.einsum('mb,mbaa->ba', t1a, eris_ovVV) blksize = max(int(max_memory*1e6/8/(nvira*nvirb**2*3)), 2) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = np.asarray(eris.ovVV[p0:p1]).reshape((p1-p0)*nvira,-1) ovVV = lib.unpack_tril(ovVV).reshape(-1,nvira,nvirb,nvirb) Wvvab -= np.einsum('mb,mbaa->ba', t1a[p0:p1], ovVV) ovVV = None blksize = max(int(max_memory*1e6/8/(nvirb*nvira**2*3)), 2) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:Wvvab -= np.einsum('mb,mbaa->ab', t1b, eris_OVvv) idxa = np.arange(nvira) idxa = idxa*(idxa+1)//2+idxa for p0, p1 in lib.prange(0, noccb, blksize): OVvv = np.asarray(eris.OVvv[p0:p1]) Wvvab -= np.einsum('mb,mba->ab', t1b[p0:p1], OVvv[:,:,idxa]) OVvv = None Wvvaa = Wvvaa + Wvvaa.T Wvvbb = Wvvbb + Wvvbb.T #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:Wvvaa += np.einsum('aabb->ab', eris_vvvv) - np.einsum('abba->ab', eris_vvvv) #:Wvvbb += np.einsum('aabb->ab', eris_VVVV) - np.einsum('abba->ab', eris_VVVV) #:Wvvab += np.einsum('aabb->ab', eris_vvVV) for i in range(nvira): i0 = i*(i+1)//2 vvv = lib.unpack_tril(np.asarray(eris.vvvv[i0:i0+i+1])) tmp = np.einsum('bb->b', vvv[i]) Wvvaa[i] += tmp tmp = np.einsum('bb->b', vvv[:,:i+1,i]) Wvvaa[i,:i+1] -= tmp Wvvaa[:i ,i] -= tmp[:i] vvv = lib.unpack_tril(np.asarray(eris.vvVV[i0:i0+i+1])) Wvvab[i] += np.einsum('bb->b', vvv[i]) vvv = None for i in range(nvirb): i0 = i*(i+1)//2 vvv = lib.unpack_tril(np.asarray(eris.VVVV[i0:i0+i+1])) tmp = np.einsum('bb->b', vvv[i]) Wvvbb[i] += tmp tmp = np.einsum('bb->b', vvv[:,:i+1,i]) Wvvbb[i,:i+1] -= tmp Wvvbb[:i ,i] -= tmp[:i] vvv = None Wvvba = Wvvab.T Hr2aa += Wvvaa.reshape(1,1,nvira,nvira) Hr2ab += Wvvab.reshape(1,1,nvira,nvirb) Hr2bb += Wvvbb.reshape(1,1,nvirb,nvirb) Hr2baaa += Wvvaa.reshape(1,1,nvira,nvira) Hr2aaba += Wvvba.reshape(1,1,nvirb,nvira) Hr2abbb += Wvvbb.reshape(1,1,nvirb,nvirb) Hr2bbab += Wvvab.reshape(1,1,nvira,nvirb) vec_ee = self.amplitudes_to_vector((Hr1aa,Hr1bb), (Hr2aa,Hr2ab,Hr2bb)) vec_sf = self.amplitudes_to_vector_eomsf((Hr1ab,Hr1ba), (Hr2baaa,Hr2aaba,Hr2abbb,Hr2bbab)) return vec_ee, vec_sf def amplitudes_to_vector_ee(self, t1, t2, out=None): return self.amplitudes_to_vector_s4(t1, t2, out) def vector_to_amplitudes_ee(self, vector, nocc=None, nvir=None): return self.vector_to_amplitudes_s4(vector, nocc, nvir) def amplitudes_to_vector(self, t1, t2, out=None): nocca, nvira = t1[0].shape noccb, nvirb = t1[1].shape sizea = nocca * nvira + nocca*(nocca-1)//2*nvira*(nvira-1)//2 sizeb = noccb * nvirb + noccb*(noccb-1)//2*nvirb*(nvirb-1)//2 sizeab = nocca * noccb * nvira * nvirb vector = np.ndarray(sizea+sizeb+sizeab, t2[0].dtype, buffer=out) self.amplitudes_to_vector_ee(t1[0], t2[0], out=vector[:sizea]) self.amplitudes_to_vector_ee(t1[1], t2[2], out=vector[sizea:]) vector[sizea+sizeb:] = t2[1].ravel() return vector def vector_to_amplitudes(self, vector, nocc=None, nvir=None): if nocc is None: nocca, noccb = self.get_nocc() else: nocca, noccb = nocc if nvir is None: nmoa, nmob = self.get_nmo() nvira, nvirb = nmoa-nocca, nmob-noccb else: nvira, nvirb = nvir nocc = nocca + noccb nvir = nvira + nvirb nov = nocc * nvir size = nov + nocc*(nocc-1)//2*nvir*(nvir-1)//2 if vector.size == size: return self.vector_to_amplitudes_ee(vector, nocc, nvir) else: sizea = nocca * nvira + nocca*(nocca-1)//2*nvira*(nvira-1)//2 sizeb = noccb * nvirb + noccb*(noccb-1)//2*nvirb*(nvirb-1)//2 sizeab = nocca * noccb * nvira * nvirb t1a, t2aa = self.vector_to_amplitudes_ee(vector[:sizea], nocca, nvira) t1b, t2bb = self.vector_to_amplitudes_ee(vector[sizea:sizea+sizeb], noccb, nvirb) t2ab = vector[-sizeab:].copy().reshape(nocca,noccb,nvira,nvirb) return (t1a,t1b), (t2aa,t2ab,t2bb) def amplitudes_from_rccsd(self, t1, t2): '''Convert spatial orbital T1,T2 to spin-orbital T1,T2''' return addons.spatial2spin(t1), addons.spatial2spin(t2) def spatial2spin(self, tx, orbspin=None): if orbspin is None: orbspin = self.orbspin return spatial2spin(tx, orbspin) def spin2spatial(self, tx, orbspin=None): if orbspin is None: orbspin = self.orbspin return spin2spatial(tx, orbspin) def amplitudes_to_vector_eomsf(self, t1, t2, out=None): t1ab, t1ba = t1 t2baaa, t2aaba, t2abbb, t2bbab = t2 nocca, nvirb = t1ab.shape noccb, nvira = t1ba.shape nbaaa = noccb*nocca*nvira*(nvira-1)//2 naaba = nocca*(nocca-1)//2*nvirb*nvira nabbb = nocca*noccb*nvirb*(nvirb-1)//2 nbbab = noccb*(noccb-1)//2*nvira*nvirb size = t1ab.size + t1ba.size + nbaaa + naaba + nabbb + nbbab vector = numpy.ndarray(size, t2baaa.dtype, buffer=out) vector[:t1ab.size] = t1ab.ravel() vector[t1ab.size:t1ab.size+t1ba.size] = t1ba.ravel() pvec = vector[t1ab.size+t1ba.size:] t2baaa = t2baaa.reshape(noccb*nocca,nvira*nvira) t2aaba = t2aaba.reshape(nocca*nocca,nvirb*nvira) t2abbb = t2abbb.reshape(nocca*noccb,nvirb*nvirb) t2bbab = t2bbab.reshape(noccb*noccb,nvira*nvirb) otrila = numpy.tril_indices(nocca, k=-1) otrilb = numpy.tril_indices(noccb, k=-1) vtrila = numpy.tril_indices(nvira, k=-1) vtrilb = numpy.tril_indices(nvirb, k=-1) oidxab = np.arange(nocca*noccb, dtype=numpy.int32) vidxab = np.arange(nvira*nvirb, dtype=numpy.int32) lib.take_2d(t2baaa, oidxab, vtrila[0]*nvira+vtrila[1], out=pvec) lib.take_2d(t2aaba, otrila[0]*nocca+otrila[1], vidxab, out=pvec[nbaaa:]) lib.take_2d(t2abbb, oidxab, vtrilb[0]*nvirb+vtrilb[1], out=pvec[nbaaa+naaba:]) lib.take_2d(t2bbab, otrilb[0]*noccb+otrilb[1], vidxab, out=pvec[nbaaa+naaba+nabbb:]) return vector def vector_to_amplitudes_eomsf(self, vector, nocc=None, nvir=None): if nocc is None: nocca, noccb = self.get_nocc() else: nocca, noccb = nocc if nvir is None: nmoa, nmob = self.get_nmo() nvira, nvirb = nmoa-nocca, nmob-noccb else: nvira, nvirb = nvir t1ab = vector[:nocca*nvirb].reshape(nocca,nvirb).copy() t1ba = vector[nocca*nvirb:nocca*nvirb+noccb*nvira].reshape(noccb,nvira).copy() pvec = vector[t1ab.size+t1ba.size:] nbaaa = noccb*nocca*nvira*(nvira-1)//2 naaba = nocca*(nocca-1)//2*nvirb*nvira nabbb = nocca*noccb*nvirb*(nvirb-1)//2 nbbab = noccb*(noccb-1)//2*nvira*nvirb t2baaa = np.zeros((noccb*nocca,nvira*nvira), dtype=vector.dtype) t2aaba = np.zeros((nocca*nocca,nvirb*nvira), dtype=vector.dtype) t2abbb = np.zeros((nocca*noccb,nvirb*nvirb), dtype=vector.dtype) t2bbab = np.zeros((noccb*noccb,nvira*nvirb), dtype=vector.dtype) otrila = numpy.tril_indices(nocca, k=-1) otrilb = numpy.tril_indices(noccb, k=-1) vtrila = numpy.tril_indices(nvira, k=-1) vtrilb = numpy.tril_indices(nvirb, k=-1) oidxab = np.arange(nocca*noccb, dtype=numpy.int32) vidxab = np.arange(nvira*nvirb, dtype=numpy.int32) v = pvec[:nbaaa].reshape(noccb*nocca,-1) lib.takebak_2d(t2baaa, v, oidxab, vtrila[0]*nvira+vtrila[1]) lib.takebak_2d(t2baaa,-v, oidxab, vtrila[1]*nvira+vtrila[0]) v = pvec[nbaaa:nbaaa+naaba].reshape(-1,nvirb*nvira) lib.takebak_2d(t2aaba, v, otrila[0]*nocca+otrila[1], vidxab) lib.takebak_2d(t2aaba,-v, otrila[1]*nocca+otrila[0], vidxab) v = pvec[nbaaa+naaba:nbaaa+naaba+nabbb].reshape(nocca*noccb,-1) lib.takebak_2d(t2abbb, v, oidxab, vtrilb[0]*nvirb+vtrilb[1]) lib.takebak_2d(t2abbb,-v, oidxab, vtrilb[1]*nvirb+vtrilb[0]) v = pvec[nbaaa+naaba+nabbb:].reshape(-1,nvira*nvirb) lib.takebak_2d(t2bbab, v, otrilb[0]*noccb+otrilb[1], vidxab) lib.takebak_2d(t2bbab,-v, otrilb[1]*noccb+otrilb[0], vidxab) t2baaa = t2baaa.reshape(noccb,nocca,nvira,nvira) t2aaba = t2aaba.reshape(nocca,nocca,nvirb,nvira) t2abbb = t2abbb.reshape(nocca,noccb,nvirb,nvirb) t2bbab = t2bbab.reshape(noccb,noccb,nvira,nvirb) return (t1ab,t1ba), (t2baaa, t2aaba, t2abbb, t2bbab) def spatial2spin_eomsf(self, rx, orbspin): '''Convert EOM spatial R1,R2 to spin-orbital R1,R2''' if len(rx) == 2: # r1 r1ab, r1ba = rx nocca, nvirb = r1ab.shape noccb, nvira = r1ba.shape else: r2baaa,r2aaba,r2abbb,r2bbab = rx noccb, nocca, nvira = r2baaa.shape[:3] nvirb = r2aaba.shape[2] nocc = nocca + noccb nvir = nvira + nvirb idxoa = np.where(orbspin[:nocc] == 0)[0] idxob = np.where(orbspin[:nocc] == 1)[0] idxva = np.where(orbspin[nocc:] == 0)[0] idxvb = np.where(orbspin[nocc:] == 1)[0] if len(rx) == 2: # r1 r1 = np.zeros((nocc,nvir), dtype=r1ab.dtype) lib.takebak_2d(r1, r1ab, idxoa, idxvb) lib.takebak_2d(r1, r1ba, idxob, idxva) return r1 else: r2 = np.zeros((nocc**2,nvir**2), dtype=r2aaba.dtype) idxoaa = idxoa[:,None] * nocc + idxoa idxoab = idxoa[:,None] * nocc + idxob idxoba = idxob[:,None] * nocc + idxoa idxobb = idxob[:,None] * nocc + idxob idxvaa = idxva[:,None] * nvir + idxva idxvab = idxva[:,None] * nvir + idxvb idxvba = idxvb[:,None] * nvir + idxva idxvbb = idxvb[:,None] * nvir + idxvb r2baaa = r2baaa.reshape(noccb*nocca,nvira*nvira) r2aaba = r2aaba.reshape(nocca*nocca,nvirb*nvira) r2abbb = r2abbb.reshape(nocca*noccb,nvirb*nvirb) r2bbab = r2bbab.reshape(noccb*noccb,nvira*nvirb) lib.takebak_2d(r2, r2baaa, idxoba.ravel(), idxvaa.ravel()) lib.takebak_2d(r2, r2aaba, idxoaa.ravel(), idxvba.ravel()) lib.takebak_2d(r2, r2abbb, idxoab.ravel(), idxvbb.ravel()) lib.takebak_2d(r2, r2bbab, idxobb.ravel(), idxvab.ravel()) lib.takebak_2d(r2, r2baaa, idxoab.T.ravel(), idxvaa.T.ravel()) lib.takebak_2d(r2, r2aaba, idxoaa.T.ravel(), idxvab.T.ravel()) lib.takebak_2d(r2, r2abbb, idxoba.T.ravel(), idxvbb.T.ravel()) lib.takebak_2d(r2, r2bbab, idxobb.T.ravel(), idxvba.T.ravel()) return r2.reshape(nocc,nocc,nvir,nvir) def spin2spatial_eomsf(self, rx, orbspin): '''Convert EOM spin-orbital R1,R2 to spatial R1,R2''' if rx.ndim == 2: # r1 nocc, nvir = rx.shape else: nocc, nvir = rx.shape[1:3] idxoa = np.where(orbspin[:nocc] == 0)[0] idxob = np.where(orbspin[:nocc] == 1)[0] idxva = np.where(orbspin[nocc:] == 0)[0] idxvb = np.where(orbspin[nocc:] == 1)[0] nocca = len(idxoa) noccb = len(idxob) nvira = len(idxva) nvirb = len(idxvb) if rx.ndim == 2: r1ab = lib.take_2d(rx, idxoa, idxvb) r1ba = lib.take_2d(rx, idxob, idxva) return r1ab, r1ba else: idxoaa = idxoa[:,None] * nocc + idxoa idxoab = idxoa[:,None] * nocc + idxob idxoba = idxob[:,None] * nocc + idxoa idxobb = idxob[:,None] * nocc + idxob idxvaa = idxva[:,None] * nvir + idxva idxvab = idxva[:,None] * nvir + idxvb idxvba = idxvb[:,None] * nvir + idxva idxvbb = idxvb[:,None] * nvir + idxvb r2 = rx.reshape(nocc**2,nvir**2) r2baaa = lib.take_2d(r2, idxoba.ravel(), idxvaa.ravel()) r2aaba = lib.take_2d(r2, idxoaa.ravel(), idxvba.ravel()) r2abbb = lib.take_2d(r2, idxoab.ravel(), idxvbb.ravel()) r2bbab = lib.take_2d(r2, idxobb.ravel(), idxvab.ravel()) r2baaa = r2baaa.reshape(noccb,nocca,nvira,nvira) r2aaba = r2aaba.reshape(nocca,nocca,nvirb,nvira) r2abbb = r2abbb.reshape(nocca,noccb,nvirb,nvirb) r2bbab = r2bbab.reshape(noccb,noccb,nvira,nvirb) return r2baaa,r2aaba,r2abbb,r2bbab class _ERISspin: def __init__(self, cc, mo_coeff=None, method='incore', ao2mofn=ao2mo.outcore.general_iofree): cput0 = (time.clock(), time.time()) log = logger.Logger(cc.stdout, cc.verbose) moidx = get_umoidx(cc) if mo_coeff is None: self.mo_coeff = mo_coeff = [cc.mo_coeff[0][:,moidx[0]], cc.mo_coeff[1][:,moidx[1]]] else: self.mo_coeff = mo_coeff = [mo_coeff[0][:,moidx[0]], mo_coeff[1][:,moidx[1]]] nocc = cc.nocc nmo = cc.nmo nvir = nmo - nocc mem_incore, mem_outcore, mem_basic = rccsd._mem_usage(nocc, nvir) mem_now = lib.current_memory()[0] self.fock, so_coeff, self.orbspin = uspatial2spin(cc, moidx, mo_coeff) if (cc.orbspin is None or cc.orbspin.size != self.orbspin.size or any(cc.orbspin != self.orbspin)): log.warn('Overwrite cc.orbspin by _ERIS.') cc.orbspin = self.orbspin self.feri = lib.H5TmpFile() if 0 and hasattr(cc._scf, 'with_df') and cc._scf.with_df: pass elif (method == 'incore' and cc._scf._eri is not None and (mem_incore+mem_now < cc.max_memory) or cc.mol.incore_anyway): idxa = self.orbspin == 0 idxb = self.orbspin == 1 moa = so_coeff[:,idxa] mob = so_coeff[:,idxb] nmoa = moa.shape[1] nmob = mob.shape[1] maska = numpy.where((idxa.reshape(-1,1) & idxa).ravel())[0] maskb = numpy.where((idxb.reshape(-1,1) & idxb).ravel())[0] eri = numpy.zeros((nmo*nmo,nmo*nmo)) eri_aa = ao2mo.restore(1, ao2mo.full(cc._scf._eri, moa), nmoa) lib.takebak_2d(eri, eri_aa.reshape(nmoa**2,-1), maska, maska) eri_bb = ao2mo.restore(1, ao2mo.full(cc._scf._eri, mob), nmob) lib.takebak_2d(eri, eri_bb.reshape(nmob**2,-1), maskb, maskb) eri_ab = ao2mo.general(cc._scf._eri, (moa,moa,mob,mob), compact=False) eri_ba = lib.transpose(eri_ab) lib.takebak_2d(eri, eri_ab, maska, maskb) lib.takebak_2d(eri, eri_ba, maskb, maska) eri = eri.reshape(nmo,nmo,nmo,nmo) self.oooo = eri[:nocc,:nocc,:nocc,:nocc].copy() self.ooov = eri[:nocc,:nocc,:nocc,nocc:].copy() self.ovoo = eri[:nocc,nocc:,:nocc,:nocc].copy() self.oovo = eri[:nocc,:nocc,nocc:,:nocc].copy() self.ovov = eri[:nocc,nocc:,:nocc,nocc:].copy() self.oovv = eri[:nocc,:nocc,nocc:,nocc:].copy() self.ovvo = eri[:nocc,nocc:,nocc:,:nocc].copy() self.ovvv = eri[:nocc,nocc:,nocc:,nocc:].copy() self.vvvv = eri[nocc:,nocc:,nocc:,nocc:].copy() else: orbo = so_coeff[:,:nocc] orbv = so_coeff[:,nocc:] self.dtype = so_coeff.dtype ds_type = so_coeff.dtype.char self.oooo = self.feri.create_dataset('oooo', (nocc,nocc,nocc,nocc), ds_type) self.ooov = self.feri.create_dataset('ooov', (nocc,nocc,nocc,nvir), ds_type) self.ovoo = self.feri.create_dataset('ovoo', (nocc,nvir,nocc,nocc), ds_type) self.oovo = self.feri.create_dataset('oovo', (nocc,nocc,nvir,nocc), ds_type) self.ovov = self.feri.create_dataset('ovov', (nocc,nvir,nocc,nvir), ds_type) self.oovv = self.feri.create_dataset('oovv', (nocc,nocc,nvir,nvir), ds_type) self.ovvo = self.feri.create_dataset('ovvo', (nocc,nvir,nvir,nocc), ds_type) self.ovvv = self.feri.create_dataset('ovvv', (nocc,nvir,nvir,nvir), ds_type) self.vvvv = self.feri.create_dataset('vvvv', (nvir,nvir,nvir,nvir), ds_type) idxoa = self.orbspin[:nocc] == 0 idxob = self.orbspin[:nocc] == 1 idxva = self.orbspin[nocc:] == 0 idxvb = self.orbspin[nocc:] == 1 idxa = self.orbspin == 0 idxb = self.orbspin == 1 orbo_a = orbo[:,idxoa] orbo_b = orbo[:,idxob] orbv_a = orbv[:,idxva] orbv_b = orbv[:,idxvb] moa = so_coeff[:,idxa] mob = so_coeff[:,idxb] nocca = orbo_a.shape[1] noccb = orbo_b.shape[1] nvira = orbv_a.shape[1] nvirb = orbv_b.shape[1] nmoa = moa.shape[1] nmob = mob.shape[1] cput1 = time.clock(), time.time() # <ij||pq> = <ij|pq> - <ij|qp> = (ip|jq) - (iq|jp) tmpfile2 = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) ao2mo.general(cc.mol, (orbo_a,moa,moa,moa), tmpfile2.name, 'aa') ao2mo.general(cc.mol, (orbo_a,moa,mob,mob), tmpfile2.name, 'ab') ao2mo.general(cc.mol, (orbo_b,mob,moa,moa), tmpfile2.name, 'ba') ao2mo.general(cc.mol, (orbo_b,mob,mob,mob), tmpfile2.name, 'bb') with h5py.File(tmpfile2.name) as f: maska1 = numpy.where(idxa)[0] maskb1 = numpy.where(idxb)[0] maska2 = numpy.where((idxa.reshape(-1,1) & idxa).ravel())[0] maskb2 = numpy.where((idxb.reshape(-1,1) & idxb).ravel())[0] bufv = numpy.empty((nmo*nmo*nmo)) for i in range(nocc): buf = numpy.zeros((nmo,nmo*nmo)) if self.orbspin[i] == 0: # alpha ia = numpy.count_nonzero(idxoa[:i]) v1 = f['aa'][ia*nmoa:ia*nmoa+nmoa] v1 = lib.unpack_tril(v1, out=bufv).reshape(nmoa,-1) lib.takebak_2d(buf, v1, maska1, maska2) v1 = f['ab'][ia*nmoa:ia*nmoa+nmoa] v1 = lib.unpack_tril(v1, out=bufv).reshape(nmoa,-1) lib.takebak_2d(buf, v1, maska1, maskb2) else: ib = numpy.count_nonzero(idxob[:i]) v1 = f['ba'][ib*nmob:ib*nmob+nmob] v1 = lib.unpack_tril(v1, out=bufv).reshape(nmob,-1) lib.takebak_2d(buf, v1, maskb1, maska2) v1 = f['bb'][ib*nmob:ib*nmob+nmob] v1 = lib.unpack_tril(v1, out=bufv).reshape(nmob,-1) lib.takebak_2d(buf, v1, maskb1, maskb2) buf = buf.reshape(nmo,nmo,nmo) self.oooo[i] = buf[:nocc,:nocc,:nocc] self.ooov[i] = buf[:nocc,:nocc,nocc:] self.ovoo[i] = buf[nocc:,:nocc,:nocc] self.ovov[i] = buf[nocc:,:nocc,nocc:] self.oovo[i] = buf[:nocc,nocc:,:nocc] self.oovv[i] = buf[:nocc,nocc:,nocc:] self.ovvo[i] = buf[nocc:,nocc:,:nocc] self.ovvv[i] = buf[nocc:,nocc:,nocc:] buf = None bufv = None cput1 = log.timer_debug1('transforming oopq, ovpq', *cput1) ao2mo.full(cc.mol, orbv_a, tmpfile2.name, 'aa', compact=False) ao2mo.full(cc.mol, orbv_b, tmpfile2.name, 'bb', compact=False) ao2mo.general(cc.mol, (orbv_a,orbv_a,orbv_b,orbv_b), tmpfile2.name, 'ab', compact=False) ao2mo.general(cc.mol, (orbv_b,orbv_b,orbv_a,orbv_a), tmpfile2.name, 'ba', compact=False) with h5py.File(tmpfile2.name) as f: maska1 = numpy.where(idxva)[0] maskb1 = numpy.where(idxvb)[0] maska2 = numpy.where((idxva.reshape(-1,1) & idxva).ravel())[0] maskb2 = numpy.where((idxvb.reshape(-1,1) & idxvb).ravel())[0] for i in range(nvir): buf = numpy.zeros((nvir,nvir*nvir)) if idxva[i]: # alpha ia = numpy.count_nonzero(idxva[:i]) v1 = f['aa'][ia*nvira:ia*nvira+nvira] lib.takebak_2d(buf, v1, maska1, maska2) v1 = f['ab'][ia*nvira:ia*nvira+nvira] lib.takebak_2d(buf, v1, maska1, maskb2) else: ib = numpy.count_nonzero(idxvb[:i]) v1 = f['ba'][ib*nvirb:ib*nvirb+nvirb] lib.takebak_2d(buf, v1, maskb1, maska2) v1 = f['bb'][ib*nvirb:ib*nvirb+nvirb] lib.takebak_2d(buf, v1, maskb1, maskb2) buf = buf.reshape(nvir,nvir,nvir) self.vvvv[i] = buf buf = None cput1 = log.timer_debug1('transforming vvvv', *cput1) log.timer('CCSD integral transformation', *cput0) class _ERIS: def __init__(self, cc, mo_coeff=None, method='incore', ao2mofn=ao2mo.outcore.general_iofree): cput0 = (time.clock(), time.time()) log = logger.Logger(cc.stdout, cc.verbose) moidx = get_umoidx(cc) if mo_coeff is None: self.mo_coeff = mo_coeff = [cc.mo_coeff[0][:,moidx[0]], cc.mo_coeff[1][:,moidx[1]]] else: self.mo_coeff = mo_coeff = [mo_coeff[0][:,moidx[0]], mo_coeff[1][:,moidx[1]]] nocc = cc.nocc nmo = cc.nmo nvir = nmo - nocc mem_incore, mem_outcore, mem_basic = rccsd._mem_usage(nocc, nvir) mem_now = lib.current_memory()[0] fock, so_coeff, self.orbspin = uspatial2spin(cc, moidx, mo_coeff) idxa = self.orbspin == 0 idxb = self.orbspin == 1 self.focka = fock[idxa][:,idxa] self.fockb = fock[idxb][:,idxb] if (cc.orbspin is None or cc.orbspin.size != self.orbspin.size or any(cc.orbspin != self.orbspin)): log.warn('Overwrite cc.orbspin by _ERIS.') cc.orbspin = self.orbspin self.feri = lib.H5TmpFile() if 0 and hasattr(cc._scf, 'with_df') and cc._scf.with_df: pass elif (method == 'incore' and cc._scf._eri is not None and (mem_incore+mem_now < cc.max_memory) or cc.mol.incore_anyway): moa = so_coeff[:,idxa] mob = so_coeff[:,idxb] nmoa = moa.shape[1] nmob = mob.shape[1] eri_aa = ao2mo.restore(1, ao2mo.full(cc._scf._eri, moa), nmoa) eri_bb = ao2mo.restore(1, ao2mo.full(cc._scf._eri, mob), nmob) eri_ab = ao2mo.general(cc._scf._eri, (moa,moa,mob,mob), compact=False) eri_ba = lib.transpose(eri_ab) nocca = np.count_nonzero(self.orbspin[:nocc] == 0) noccb = np.count_nonzero(self.orbspin[:nocc] == 1) nvira = np.count_nonzero(self.orbspin[nocc:] == 0) nvirb = np.count_nonzero(self.orbspin[nocc:] == 1) nmoa = nocca + nvira nmob = noccb + nvirb eri_aa = eri_aa.reshape(nmoa,nmoa,nmoa,nmoa) eri_ab = eri_ab.reshape(nmoa,nmoa,nmob,nmob) eri_ba = eri_ba.reshape(nmob,nmob,nmoa,nmoa) eri_bb = eri_bb.reshape(nmob,nmob,nmob,nmob) self.oooo = eri_aa[:nocca,:nocca,:nocca,:nocca].copy() self.ooov = eri_aa[:nocca,:nocca,:nocca,nocca:].copy() self.ovoo = eri_aa[:nocca,nocca:,:nocca,:nocca].copy() self.oovo = eri_aa[:nocca,:nocca,nocca:,:nocca].copy() self.ovov = eri_aa[:nocca,nocca:,:nocca,nocca:].copy() self.oovv = eri_aa[:nocca,:nocca,nocca:,nocca:].copy() self.ovvo = eri_aa[:nocca,nocca:,nocca:,:nocca].copy() ovvv = eri_aa[:nocca,nocca:,nocca:,nocca:].reshape(-1,nvira,nvira) self.ovvv = lib.pack_tril(ovvv).reshape(nocca,nvira,-1) ovvv = None self.vvvv = ao2mo.restore(4, eri_aa[nocca:,nocca:,nocca:,nocca:].copy(), nvira) self.OOOO = eri_bb[:noccb,:noccb,:noccb,:noccb].copy() self.OOOV = eri_bb[:noccb,:noccb,:noccb,noccb:].copy() self.OVOO = eri_bb[:noccb,noccb:,:noccb,:noccb].copy() self.OOVO = eri_bb[:noccb,:noccb,noccb:,:noccb].copy() self.OVOV = eri_bb[:noccb,noccb:,:noccb,noccb:].copy() self.OOVV = eri_bb[:noccb,:noccb,noccb:,noccb:].copy() self.OVVO = eri_bb[:noccb,noccb:,noccb:,:noccb].copy() OVVV = eri_bb[:noccb,noccb:,noccb:,noccb:].reshape(-1,nvirb,nvirb) self.OVVV = lib.pack_tril(OVVV).reshape(noccb,nvirb,-1) OVVV = None self.VVVV = ao2mo.restore(4, eri_bb[noccb:,noccb:,noccb:,noccb:].copy(), nvirb) self.ooOO = eri_ab[:nocca,:nocca,:noccb,:noccb].copy() self.ooOV = eri_ab[:nocca,:nocca,:noccb,noccb:].copy() self.ovOO = eri_ab[:nocca,nocca:,:noccb,:noccb].copy() self.ooVO = eri_ab[:nocca,:nocca,noccb:,:noccb].copy() self.ovOV = eri_ab[:nocca,nocca:,:noccb,noccb:].copy() self.ooVV = eri_ab[:nocca,:nocca,noccb:,noccb:].copy() self.ovVO = eri_ab[:nocca,nocca:,noccb:,:noccb].copy() ovVV = eri_ab[:nocca,nocca:,noccb:,noccb:].reshape(-1,nvirb,nvirb) self.ovVV = lib.pack_tril(ovVV).reshape(nocca,nvira,-1) ovVV = None vvVV = eri_ab[nocca:,nocca:,noccb:,noccb:].reshape(nvira**2,-1) idxa = np.tril_indices(nvira) idxb = np.tril_indices(nvirb) self.vvVV = lib.take_2d(vvVV, idxa[0]*nvira+idxa[1], idxb[0]*nvirb+idxb[1]) #self.OOoo = eri_ba[:noccb,:noccb,:nocca,:nocca].copy() self.OOov = eri_ba[:noccb,:noccb,:nocca,nocca:].copy() self.OVoo = eri_ba[:noccb,noccb:,:nocca,:nocca].copy() self.OOvo = eri_ba[:noccb,:noccb,nocca:,:nocca].copy() #self.OVov = eri_ba[:noccb,noccb:,:nocca,nocca:].copy() self.OOvv = eri_ba[:noccb,:noccb,nocca:,nocca:].copy() self.OVvo = eri_ba[:noccb,noccb:,nocca:,:nocca].copy() #self.OVvv = eri_ba[:noccb,noccb:,nocca:,nocca:].copy() OVvv = eri_ba[:noccb,noccb:,nocca:,nocca:].reshape(-1,nvira,nvira) self.OVvv = lib.pack_tril(OVvv).reshape(noccb,nvirb,-1) OVvv = None #self.VVvv = eri_ba[noccb:,noccb:,nocca:,nocca:].copy() else: moa = so_coeff[:,idxa] mob = so_coeff[:,idxb] nmoa = moa.shape[1] nmob = mob.shape[1] nocca = int(cc.mo_occ[0][moidx[0]].sum()) noccb = int(cc.mo_occ[1][moidx[1]].sum()) nvira = nmoa - nocca nvirb = nmob - noccb orboa = moa[:,:nocca] orbob = mob[:,:noccb] orbva = moa[:,nocca:] orbvb = mob[:,noccb:] self.dtype = so_coeff.dtype ds_type = so_coeff.dtype.char self.oooo = self.feri.create_dataset('oooo', (nocca,nocca,nocca,nocca), ds_type) self.ooov = self.feri.create_dataset('ooov', (nocca,nocca,nocca,nvira), ds_type) self.ovoo = self.feri.create_dataset('ovoo', (nocca,nvira,nocca,nocca), ds_type) self.oovo = self.feri.create_dataset('oovo', (nocca,nocca,nvira,nocca), ds_type) self.ovov = self.feri.create_dataset('ovov', (nocca,nvira,nocca,nvira), ds_type) self.oovv = self.feri.create_dataset('oovv', (nocca,nocca,nvira,nvira), ds_type) self.ovvo = self.feri.create_dataset('ovvo', (nocca,nvira,nvira,nocca), ds_type) self.ovvv = self.feri.create_dataset('ovvv', (nocca,nvira,nvira*(nvira+1)//2), ds_type) #self.vvvv = self.feri.create_dataset('vvvv', (nvira,nvira,nvira,nvira), ds_type) self.OOOO = self.feri.create_dataset('OOOO', (noccb,noccb,noccb,noccb), ds_type) self.OOOV = self.feri.create_dataset('OOOV', (noccb,noccb,noccb,nvirb), ds_type) self.OVOO = self.feri.create_dataset('OVOO', (noccb,nvirb,noccb,noccb), ds_type) self.OOVO = self.feri.create_dataset('OOVO', (noccb,noccb,nvirb,noccb), ds_type) self.OVOV = self.feri.create_dataset('OVOV', (noccb,nvirb,noccb,nvirb), ds_type) self.OOVV = self.feri.create_dataset('OOVV', (noccb,noccb,nvirb,nvirb), ds_type) self.OVVO = self.feri.create_dataset('OVVO', (noccb,nvirb,nvirb,noccb), ds_type) self.OVVV = self.feri.create_dataset('OVVV', (noccb,nvirb,nvirb*(nvirb+1)//2), ds_type) #self.VVVV = self.feri.create_dataset('VVVV', (nvirb,nvirb,nvirb,nvirb), ds_type) self.ooOO = self.feri.create_dataset('ooOO', (nocca,nocca,noccb,noccb), ds_type) self.ooOV = self.feri.create_dataset('ooOV', (nocca,nocca,noccb,nvirb), ds_type) self.ovOO = self.feri.create_dataset('ovOO', (nocca,nvira,noccb,noccb), ds_type) self.ooVO = self.feri.create_dataset('ooVO', (nocca,nocca,nvirb,noccb), ds_type) self.ovOV = self.feri.create_dataset('ovOV', (nocca,nvira,noccb,nvirb), ds_type) self.ooVV = self.feri.create_dataset('ooVV', (nocca,nocca,nvirb,nvirb), ds_type) self.ovVO = self.feri.create_dataset('ovVO', (nocca,nvira,nvirb,noccb), ds_type) self.ovVV = self.feri.create_dataset('ovVV', (nocca,nvira,nvirb*(nvirb+1)//2), ds_type) #self.vvVV = self.feri.create_dataset('vvVV', (nvira,nvira,nvirb,nvirb), ds_type) self.OOov = self.feri.create_dataset('OOov', (noccb,noccb,nocca,nvira), ds_type) self.OVoo = self.feri.create_dataset('OVoo', (noccb,nvirb,nocca,nocca), ds_type) self.OOvo = self.feri.create_dataset('OOvo', (noccb,noccb,nvira,nocca), ds_type) self.OOvv = self.feri.create_dataset('OOvv', (noccb,noccb,nvira,nvira), ds_type) self.OVvo = self.feri.create_dataset('OVvo', (noccb,nvirb,nvira,nocca), ds_type) self.OVvv = self.feri.create_dataset('OVvv', (noccb,nvirb,nvira*(nvira+1)//2), ds_type) cput1 = time.clock(), time.time() # <ij||pq> = <ij|pq> - <ij|qp> = (ip|jq) - (iq|jp) tmpfile2 = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) ao2mo.general(cc.mol, (orboa,moa,moa,moa), tmpfile2.name, 'aa') with h5py.File(tmpfile2.name) as f: buf = numpy.empty((nmoa,nmoa,nmoa)) for i in range(nocca): lib.unpack_tril(f['aa'][i*nmoa:(i+1)*nmoa], out=buf) self.oooo[i] = buf[:nocca,:nocca,:nocca] self.ooov[i] = buf[:nocca,:nocca,nocca:] self.ovoo[i] = buf[nocca:,:nocca,:nocca] self.ovov[i] = buf[nocca:,:nocca,nocca:] self.oovo[i] = buf[:nocca,nocca:,:nocca] self.oovv[i] = buf[:nocca,nocca:,nocca:] self.ovvo[i] = buf[nocca:,nocca:,:nocca] self.ovvv[i] = lib.pack_tril(buf[nocca:,nocca:,nocca:]) del(f['aa']) buf = None ao2mo.general(cc.mol, (orbob,mob,mob,mob), tmpfile2.name, 'bb') with h5py.File(tmpfile2.name) as f: buf = numpy.empty((nmob,nmob,nmob)) for i in range(noccb): lib.unpack_tril(f['bb'][i*nmob:(i+1)*nmob], out=buf) self.OOOO[i] = buf[:noccb,:noccb,:noccb] self.OOOV[i] = buf[:noccb,:noccb,noccb:] self.OVOO[i] = buf[noccb:,:noccb,:noccb] self.OVOV[i] = buf[noccb:,:noccb,noccb:] self.OOVO[i] = buf[:noccb,noccb:,:noccb] self.OOVV[i] = buf[:noccb,noccb:,noccb:] self.OVVO[i] = buf[noccb:,noccb:,:noccb] self.OVVV[i] = lib.pack_tril(buf[noccb:,noccb:,noccb:]) del(f['bb']) buf = None ao2mo.general(cc.mol, (orboa,moa,mob,mob), tmpfile2.name, 'ab') with h5py.File(tmpfile2.name) as f: buf = numpy.empty((nmoa,nmob,nmob)) for i in range(nocca): lib.unpack_tril(f['ab'][i*nmoa:(i+1)*nmoa], out=buf) self.ooOO[i] = buf[:nocca,:noccb,:noccb] self.ooOV[i] = buf[:nocca,:noccb,noccb:] self.ovOO[i] = buf[nocca:,:noccb,:noccb] self.ovOV[i] = buf[nocca:,:noccb,noccb:] self.ooVO[i] = buf[:nocca,noccb:,:noccb] self.ooVV[i] = buf[:nocca,noccb:,noccb:] self.ovVO[i] = buf[nocca:,noccb:,:noccb] self.ovVV[i] = lib.pack_tril(buf[nocca:,noccb:,noccb:]) del(f['ab']) buf = None ao2mo.general(cc.mol, (orbob,mob,moa,moa), tmpfile2.name, 'ba') with h5py.File(tmpfile2.name) as f: buf = numpy.empty((nmob,nmoa,nmoa)) for i in range(noccb): lib.unpack_tril(f['ba'][i*nmob:(i+1)*nmob], out=buf) self.OOov[i] = buf[:noccb,:nocca,nocca:] self.OVoo[i] = buf[noccb:,:nocca,:nocca] self.OOvo[i] = buf[:noccb,nocca:,:nocca] self.OOvv[i] = buf[:noccb,nocca:,nocca:] self.OVvo[i] = buf[noccb:,nocca:,:nocca] self.OVvv[i] = lib.pack_tril(buf[noccb:,nocca:,nocca:]) del(f['ba']) buf = None cput1 = log.timer_debug1('transforming oopq, ovpq', *cput1) ao2mo.full(cc.mol, orbva, self.feri, dataname='vvvv') ao2mo.full(cc.mol, orbvb, self.feri, dataname='VVVV') ao2mo.general(cc.mol, (orbva,orbva,orbvb,orbvb), self.feri, dataname='vvVV') self.vvvv = self.feri['vvvv'] self.VVVV = self.feri['VVVV'] self.vvVV = self.feri['vvVV'] cput1 = log.timer_debug1('transforming vvvv', *cput1) log.timer('CCSD integral transformation', *cput0) def get_umoidx(cc): '''Get MO boolean indices for unrestricted reference, accounting for frozen orbs.''' if isinstance(cc.frozen, (int, numpy.integer)): dm = cc._scf.make_rdm1(cc.mo_coeff, cc.mo_occ) fockao = cc._scf.get_hcore() + cc._scf.get_veff(cc.mol, dm) eab = list() for a in range(2): eab.append( np.diag(reduce(numpy.dot, (cc.mo_coeff[a].T, fockao[a], cc.mo_coeff[a]))) ) eab = np.array(eab) #FIXME: if occ-energy > vir-energy, vir orbitals may be appeared in occ set and may be frozen idxs = np.column_stack(np.unravel_index(np.argsort(eab.ravel()), (2, eab.shape[1]))) frozen = [[],[]] for n, idx in zip(range(cc.frozen), idxs): frozen[idx[0]].append(idx[1]) else: frozen = cc.frozen moidxa = numpy.ones(cc.mo_occ[0].size, dtype=bool) moidxb = numpy.ones(cc.mo_occ[1].size, dtype=bool) if len(frozen[0]) > 0: moidxa[numpy.asarray(frozen[0])] = False if len(frozen[1]) > 0: moidxb[numpy.asarray(frozen[1])] = False return moidxa,moidxb def orbspin_of_sorted_mo_energy(mo_energy, mo_occ=None): if isinstance(mo_energy, np.ndarray) and mo_energy.ndim == 1: # RHF orbitals orbspin = np.zeros(mo_energy.size*2, dtype=int) orbspin[1::2] = 1 else: # UHF orbitals if mo_occ is None: mo_occ = np.zeros_like(mo_energy) idxo = np.hstack([mo_energy[0][mo_occ[0]==1], mo_energy[1][mo_occ[1]==1]]).argsort() idxv = np.hstack([mo_energy[0][mo_occ[0]==0], mo_energy[1][mo_occ[1]==0]]).argsort() nocca = np.count_nonzero(mo_occ[0]==1) nvira = np.count_nonzero(mo_occ[0]==0) occspin = np.zeros(idxo.size, dtype=int) occspin[nocca:] = 1 # label beta orbitals virspin = np.zeros(idxv.size, dtype=int) virspin[nvira:] = 1 orbspin = np.hstack([occspin[idxo], virspin[idxv]]) return orbspin def uspatial2spin(cc, moidx, mo_coeff): '''Convert the results of an unrestricted mean-field calculation to spin-orbital form. Spin-orbital ordering is determined by orbital energy without regard for spin. Returns: fock : (nso,nso) ndarray The Fock matrix in the basis of spin-orbitals so_coeff : (nao, nso) ndarray The matrix of spin-orbital coefficients in the AO basis spin : (nso,) ndarary The spin (0 or 1) of each spin-orbital ''' dm = cc._scf.make_rdm1(cc.mo_coeff, cc.mo_occ) fockao = cc._scf.get_hcore() + cc._scf.get_veff(cc.mol, dm) fockab = [reduce(numpy.dot, (mo_coeff[0].T, fockao[0], mo_coeff[0])), reduce(numpy.dot, (mo_coeff[1].T, fockao[1], mo_coeff[1]))] mo_energy = [fockab[0].diagonal(), fockab[1].diagonal()] mo_occa = cc.mo_occ[0][moidx[0]] mo_occb = cc.mo_occ[1][moidx[1]] spin = orbspin_of_sorted_mo_energy(mo_energy, (mo_occa,mo_occb)) sorta = np.hstack([np.where(mo_occa!=0)[0], np.where(mo_occa==0)[0]]) sortb = np.hstack([np.where(mo_occb!=0)[0], np.where(mo_occb==0)[0]]) idxa = np.where(spin == 0)[0] idxb = np.where(spin == 1)[0] nao = mo_coeff[0].shape[0] nmo = mo_coeff[0].shape[1] + mo_coeff[1].shape[1] fock = np.zeros((nmo,nmo), dtype=fockab[0].dtype) lib.takebak_2d(fock, lib.take_2d(fockab[0], sorta, sorta), idxa, idxa) lib.takebak_2d(fock, lib.take_2d(fockab[1], sortb, sortb), idxb, idxb) so_coeff = np.zeros((nao, nmo), dtype=mo_coeff[0].dtype) so_coeff[:,idxa] = mo_coeff[0][:,sorta] so_coeff[:,idxb] = mo_coeff[1][:,sortb] return fock, so_coeff, spin class _IMDS: # Exactly the same as RCCSD IMDS except # -- rintermediates --> uintermediates # -- Loo, Lvv, cc_Fov --> Foo, Fvv, Fov # -- One less 2-virtual intermediate def __init__(self, cc): self.verbose = cc.verbose self.stdout = cc.stdout self.t1 = cc.t1 self.t2 = cc.t2 self.eris = cc.eris self._made_shared = False self.made_ip_imds = False self.made_ea_imds = False self.made_ee_imds = False def _make_shared(self): cput0 = (time.clock(), time.time()) log = logger.Logger(self.stdout, self.verbose) t1,t2,eris = self.t1, self.t2, self.eris t1 = spatial2spin(t1, eris.orbspin) t2 = spatial2spin(t2, eris.orbspin) nocc, nvir = t1.shape fov = eris.fock[:nocc,nocc:] foo = eris.fock[:nocc,:nocc] fvv = eris.fock[nocc:,nocc:] eris_ovvv = np.asarray(eris.ovvv) Fvv = np.einsum('mf,mfae->ae', t1, eris_ovvv) Fvv -= np.einsum('mf,meaf->ae', t1, eris_ovvv) Wmbej = lib.einsum('jf,mebf->mbej', t1, eris_ovvv) Wmbej -= lib.einsum('jf,mfbe->mbej', t1, eris_ovvv) eris_ovvv = None tau_tilde = imd.make_tau(t2,t1,t1,fac=0.5) tau = t2 + np.einsum('jf,nb->jnfb', t1, t1) eris_ovov = np.asarray(eris.ovov) eris_ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) self.Fov = np.einsum('nf,menf->me',t1,eris_ovov) tau_tilde = imd.make_tau(t2,t1,t1,fac=0.5) Foo = 0.5*einsum('inef,menf->mi',tau_tilde,eris_ovov) Fvv -= 0.5*einsum('mnaf,menf->ae',tau_tilde,eris_ovov) Wmbej -= einsum('jnfb,menf->mbej', tau, eris_ovov) eris_ovov = None eris_ooov = np.asarray(eris.ooov) Foo += np.einsum('ne,mine->mi',t1,eris_ooov) Foo -= np.einsum('ne,nime->mi',t1,eris_ooov) Wmbej += einsum('nb,mjne->mbej',t1,eris_ooov) Wmbej -= einsum('nb,njme->mbej',t1,eris_ooov) eris_ooov = None Foo += foo + 0.5*einsum('me,ie->mi',fov,t1) Foo += 0.5*einsum('me,ie->mi',self.Fov,t1) self.Foo = Foo Fvv += fvv - 0.5*einsum('me,ma->ae',fov,t1) Fvv -= 0.5*einsum('ma,me->ae',t1,self.Fov) self.Fvv = Fvv Wmbej += np.asarray(eris.ovvo).transpose(0,2,1,3) Wmbej -= np.asarray(eris.oovv).transpose(0,2,3,1) self.Wovvo = Wmbej self._made_shared = True log.timer('EOM-CCSD shared intermediates', *cput0) def make_ip(self): if self._made_shared is False: self._make_shared() cput0 = (time.clock(), time.time()) log = logger.Logger(self.stdout, self.verbose) t1,t2,eris = self.t1, self.t2, self.eris t1 = spatial2spin(t1, eris.orbspin) t2 = spatial2spin(t2, eris.orbspin) nocc, nvir = t1.shape tau = imd.make_tau(t2,t1,t1) eris_ooov = np.asarray(eris.ooov) eris_ooov = eris_ooov - eris_ooov.transpose(2,1,0,3) Woooo = lib.einsum('je,mine->mnij', t1, eris_ooov) Wmbij = lib.einsum('mine,jnbe->mbij', eris_ooov, t2) self.Wooov = eris_ooov.transpose(0,2,1,3).copy() eris_ooov = None Woooo += np.asarray(eris.oooo).transpose(0,2,1,3) self.Woooo = Woooo - Woooo.transpose(0,1,3,2) eris_ovov = np.asarray(eris.ovov) eris_ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) self.Woooo += 0.5*einsum('ijef,menf->mnij', tau, eris_ovov) self.Wooov += lib.einsum('if,mfne->mnie', t1, eris_ovov) tmp = lib.einsum('njbf,menf->mbej', t2, eris_ovov) Wmbij -= einsum('ie,mbej->mbij', t1, tmp) Wmbij += np.asarray(eris.oovo).transpose(0,2,1,3) eris_ovov = None Wmbij = Wmbij - Wmbij.transpose(0,1,3,2) eris_ovvo = np.asarray(eris.ovvo) eris_oovv = np.asarray(eris.oovv) tmp = lib.einsum('ie,mebj->mbij',t1, eris_ovvo) tmp-= lib.einsum('ie,mjbe->mbij',t1, eris_oovv) Wmbij += tmp - tmp.transpose(0,1,3,2) eris_oovv = eris_ovvo = None Wmbij -= lib.einsum('me,ijbe->mbij', self.Fov, t2) Wmbij -= lib.einsum('nb,mnij->mbij', t1, self.Woooo) eris_ovvv = np.asarray(eris.ovvv) Wmbij += 0.5 * einsum('mebf,ijef->mbij', eris_ovvv, tau) Wmbij -= 0.5 * einsum('mfbe,ijef->mbij', eris_ovvv, tau) self.Wovoo = Wmbij self.made_ip_imds = True log.timer('EOM-CCSD IP intermediates', *cput0) def make_ea(self): if self._made_shared is False: self._make_shared() cput0 = (time.clock(), time.time()) log = logger.Logger(self.stdout, self.verbose) t1,t2,eris = self.t1, self.t2, self.eris t1 = spatial2spin(t1, eris.orbspin) t2 = spatial2spin(t2, eris.orbspin) nocc, nvir = t1.shape tau = imd.make_tau(t2,t1,t1) eris_ooov = np.asarray(eris.ooov) Wabei = einsum('nime,mnab->abei',eris_ooov,tau) eris_ooov = None eris_ovov = np.asarray(eris.ovov) eris_ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) Wabei -= np.einsum('me,miab->abei', self.Fov, t2) tmp = einsum('nibf,menf->mbei', t2, eris_ovov) tmp = einsum('ma,mbei->abei', t1, tmp) eris_ovov = None eris_ovvo = np.asarray(eris.ovvo) eris_oovv = np.asarray(eris.oovv) tmp += einsum('ma,mibe->abei', t1, eris_oovv) tmp -= einsum('ma,mebi->abei', t1, eris_ovvo) eris_oovv = eris_ovvo = None Wabei += tmp - tmp.transpose(1,0,2,3) eris_ovvv = np.asarray(eris.ovvv) eris_ovvv = eris_ovvv - eris_ovvv.transpose(0,3,2,1) Wabei += eris_ovvv.transpose(3,1,2,0).conj() tmp1 = lib.einsum('mebf,miaf->abei', eris_ovvv, t2) Wabei -= tmp1 - tmp1.transpose(1,0,2,3) self.Wvvvo = Wabei self.made_ea_imds = True log.timer('EOM-CCSD EA intermediates', *cput0) def make_ee(self): cput0 = (time.clock(), time.time()) log = logger.Logger(self.stdout, self.verbose) t1,t2,eris = self.t1, self.t2, self.eris t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape fooa = eris.focka[:nocca,:nocca] foob = eris.fockb[:noccb,:noccb] fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] fvva = eris.focka[nocca:,nocca:] fvvb = eris.fockb[noccb:,noccb:] self.Fooa = numpy.zeros((nocca,nocca)) self.Foob = numpy.zeros((noccb,noccb)) self.Fvva = numpy.zeros((nvira,nvira)) self.Fvvb = numpy.zeros((nvirb,nvirb)) wovvo = np.zeros((nocca,nvira,nvira,nocca)) wOVVO = np.zeros((noccb,nvirb,nvirb,noccb)) woVvO = np.zeros((nocca,nvirb,nvira,noccb)) woVVo = np.zeros((nocca,nvirb,nvirb,nocca)) wOvVo = np.zeros((noccb,nvira,nvirb,nocca)) wOvvO = np.zeros((noccb,nvira,nvira,noccb)) wovoo = np.zeros((nocca,nvira,nocca,nocca)) wOVOO = np.zeros((noccb,nvirb,noccb,noccb)) woVoO = np.zeros((nocca,nvirb,nocca,noccb)) wOvOo = np.zeros((noccb,nvira,noccb,nocca)) tauaa, tauab, taubb = make_tau(t2, t1, t1) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:ovvv = eris_ovvv - eris_ovvv.transpose(0,3,2,1) #:self.Fvva = np.einsum('mf,mfae->ae', t1a, ovvv) #:self.wovvo = lib.einsum('jf,mebf->mbej', t1a, ovvv) #:self.wovoo = 0.5 * einsum('mebf,ijef->mbij', eris_ovvv, tauaa) #:self.wovoo -= 0.5 * einsum('mfbe,ijef->mbij', eris_ovvv, tauaa) mem_now = lib.current_memory()[0] max_memory = lib.param.MAX_MEMORY - mem_now blksize = max(int(max_memory*1e6/8/(nvira**3*3)), 2) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = np.asarray(eris.ovvv[p0:p1]).reshape((p1-p0)*nvira,-1) ovvv = lib.unpack_tril(ovvv).reshape(-1,nvira,nvira,nvira) ovvv = ovvv - ovvv.transpose(0,3,2,1) self.Fvva += np.einsum('mf,mfae->ae', t1a[p0:p1], ovvv) wovvo[p0:p1] = lib.einsum('jf,mebf->mbej', t1a, ovvv) wovoo[p0:p1] = 0.5 * einsum('mebf,ijef->mbij', ovvv, tauaa) ovvv = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:OVVV = eris_OVVV - eris_OVVV.transpose(0,3,2,1) #:self.Fvvb = np.einsum('mf,mfae->ae', t1b, OVVV) #:self.wOVVO = lib.einsum('jf,mebf->mbej', t1b, OVVV) #:self.wOVOO = 0.5 * einsum('mebf,ijef->mbij', OVVV, taubb) blksize = max(int(max_memory*1e6/8/(nvirb**3*3)), 2) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = np.asarray(eris.OVVV[p0:p1]).reshape((p1-p0)*nvirb,-1) OVVV = lib.unpack_tril(OVVV).reshape(-1,nvirb,nvirb,nvirb) OVVV = OVVV - OVVV.transpose(0,3,2,1) self.Fvvb += np.einsum('mf,mfae->ae', t1b[p0:p1], OVVV) wOVVO[p0:p1] = lib.einsum('jf,mebf->mbej', t1b, OVVV) wOVOO[p0:p1] = 0.5 * einsum('mebf,ijef->mbij', OVVV, taubb) OVVV = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:self.Fvvb += np.einsum('mf,mfAE->AE', t1a, eris_ovVV) #:self.woVvO = lib.einsum('JF,meBF->mBeJ', t1b, eris_ovVV) #:self.woVVo = lib.einsum('jf,mfBE->mBEj',-t1a, eris_ovVV) #:self.woVoO = 0.5 * einsum('meBF,iJeF->mBiJ', eris_ovVV, tauab) #:self.woVoO += 0.5 * einsum('mfBE,iJfE->mBiJ', eris_ovVV, tauab) blksize = max(int(max_memory*1e6/8/(nvira*nvirb**2*3)), 2) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = np.asarray(eris.ovVV[p0:p1]).reshape((p1-p0)*nvira,-1) ovVV = lib.unpack_tril(ovVV).reshape(-1,nvira,nvirb,nvirb) self.Fvvb += np.einsum('mf,mfAE->AE', t1a[p0:p1], ovVV) woVvO[p0:p1] = lib.einsum('JF,meBF->mBeJ', t1b, ovVV) woVVo[p0:p1] = lib.einsum('jf,mfBE->mBEj',-t1a, ovVV) woVoO[p0:p1] = 0.5 * einsum('meBF,iJeF->mBiJ', ovVV, tauab) woVoO[p0:p1]+= 0.5 * einsum('mfBE,iJfE->mBiJ', ovVV, tauab) ovVV = None #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:self.Fvva += np.einsum('MF,MFae->ae', t1b, eris_OVvv) #:self.wOvVo = lib.einsum('jf,MEbf->MbEj', t1a, eris_OVvv) #:self.wOvvO = lib.einsum('JF,MFbe->MbeJ',-t1b, eris_OVvv) #:self.wOvOo = 0.5 * einsum('MEbf,jIfE->MbIj', eris_OVvv, tauab) #:self.wOvOo += 0.5 * einsum('MFbe,jIeF->MbIj', eris_OVvv, tauab) blksize = max(int(max_memory*1e6/8/(nvirb*nvira**2*3)), 2) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = np.asarray(eris.OVvv[p0:p1]).reshape((p1-p0)*nvirb,-1) OVvv = lib.unpack_tril(OVvv).reshape(-1,nvirb,nvira,nvira) self.Fvva += np.einsum('MF,MFae->ae', t1b[p0:p1], OVvv) wOvVo[p0:p1] = lib.einsum('jf,MEbf->MbEj', t1a, OVvv) wOvvO[p0:p1] = lib.einsum('JF,MFbe->MbeJ',-t1b, OVvv) wOvOo[p0:p1] = 0.5 * einsum('MEbf,jIfE->MbIj', OVvv, tauab) wOvOo[p0:p1]+= 0.5 * einsum('MFbe,jIeF->MbIj', OVvv, tauab) OVvv = None eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) self.Fova = np.einsum('nf,menf->me', t1a, ovov) self.Fova+= np.einsum('NF,meNF->me', t1b, eris_ovOV) self.Fovb = np.einsum('nf,menf->me', t1b, OVOV) self.Fovb+= np.einsum('nf,nfME->ME', t1a, eris_ovOV) tilaa, tilab, tilbb = make_tau(t2,t1,t1,fac=0.5) self.Fooa = einsum('inef,menf->mi', tilaa, eris_ovov) self.Fooa += einsum('iNeF,meNF->mi', tilab, eris_ovOV) self.Foob = einsum('inef,menf->mi', tilbb, eris_OVOV) self.Foob += einsum('nIfE,nfME->MI', tilab, eris_ovOV) self.Fvva -= einsum('mnaf,menf->ae', tilaa, eris_ovov) self.Fvva -= einsum('mNaF,meNF->ae', tilab, eris_ovOV) self.Fvvb -= einsum('mnaf,menf->ae', tilbb, eris_OVOV) self.Fvvb -= einsum('nMfA,nfME->AE', tilab, eris_ovOV) wovvo -= einsum('jnfb,menf->mbej', t2aa, ovov) wovvo += einsum('jNbF,meNF->mbej', t2ab, eris_ovOV) wOVVO -= einsum('jnfb,menf->mbej', t2bb, OVOV) wOVVO += einsum('nJfB,nfME->MBEJ', t2ab, eris_ovOV) woVvO += einsum('nJfB,menf->mBeJ', t2ab, ovov) woVvO -= einsum('JNFB,meNF->mBeJ', t2bb, eris_ovOV) wOvVo -= einsum('jnfb,nfME->MbEj', t2aa, eris_ovOV) wOvVo += einsum('jNbF,MENF->MbEj', t2ab, OVOV) woVVo += einsum('jNfB,mfNE->mBEj', t2ab, eris_ovOV) wOvvO += einsum('nJbF,neMF->MbeJ', t2ab, eris_ovOV) eris_ooov = np.asarray(eris.ooov) eris_OOOV = np.asarray(eris.OOOV) eris_ooOV = np.asarray(eris.ooOV) eris_OOov = np.asarray(eris.OOov) self.Fooa += np.einsum('ne,mine->mi', t1a, eris_ooov) self.Fooa -= np.einsum('ne,nime->mi', t1a, eris_ooov) self.Fooa += np.einsum('NE,miNE->mi', t1b, eris_ooOV) self.Foob += np.einsum('ne,mine->mi', t1b, eris_OOOV) self.Foob -= np.einsum('ne,nime->mi', t1b, eris_OOOV) self.Foob += np.einsum('ne,MIne->MI', t1a, eris_OOov) eris_ooov = eris_ooov + np.einsum('jf,nfme->njme', t1a, eris_ovov) eris_OOOV = eris_OOOV + np.einsum('jf,nfme->njme', t1b, eris_OVOV) eris_ooOV = eris_ooOV + np.einsum('jf,nfme->njme', t1a, eris_ovOV) eris_OOov = eris_OOov + np.einsum('jf,menf->njme', t1b, eris_ovOV) ooov = eris_ooov - eris_ooov.transpose(2,1,0,3) OOOV = eris_OOOV - eris_OOOV.transpose(2,1,0,3) wovvo += lib.einsum('nb,mjne->mbej', t1a, ooov) wOVVO += lib.einsum('nb,mjne->mbej', t1b, OOOV) woVvO -= lib.einsum('NB,NJme->mBeJ', t1b, eris_OOov) wOvVo -= lib.einsum('nb,njME->MbEj', t1a, eris_ooOV) woVVo += lib.einsum('NB,mjNE->mBEj', t1b, eris_ooOV) wOvvO += lib.einsum('nb,MJne->MbeJ', t1a, eris_OOov) eris_ooov = eris_OOOV = eris_OOov = eris_ooOV = None self.Fooa += fooa + 0.5*einsum('me,ie->mi', self.Fova+fova, t1a) self.Foob += foob + 0.5*einsum('me,ie->mi', self.Fovb+fovb, t1b) self.Fvva += fvva - 0.5*einsum('me,ma->ae', self.Fova+fova, t1a) self.Fvvb += fvvb - 0.5*einsum('me,ma->ae', self.Fovb+fovb, t1b) # 0 or 1 virtuals eris_ooov = np.asarray(eris.ooov) eris_OOOV = np.asarray(eris.OOOV) eris_ooOV = np.asarray(eris.ooOV) eris_OOov = np.asarray(eris.OOov) ooov = eris_ooov - eris_ooov.transpose(2,1,0,3) OOOV = eris_OOOV - eris_OOOV.transpose(2,1,0,3) woooo = lib.einsum('je,mine->mnij', t1a, ooov) wOOOO = lib.einsum('je,mine->mnij', t1b, OOOV) woOoO = lib.einsum('JE,miNE->mNiJ', t1b, eris_ooOV) woOOo = lib.einsum('je,NIme->mNIj',-t1a, eris_OOov) tmpaa = lib.einsum('mine,jnbe->mbij', ooov, t2aa) tmpaa+= lib.einsum('miNE,jNbE->mbij', eris_ooOV, t2ab) tmpbb = lib.einsum('mine,jnbe->mbij', OOOV, t2bb) tmpbb+= lib.einsum('MIne,nJeB->MBIJ', eris_OOov, t2ab) woVoO += lib.einsum('mine,nJeB->mBiJ', ooov, t2ab) woVoO += lib.einsum('miNE,JNBE->mBiJ', eris_ooOV, t2bb) woVoO -= lib.einsum('NIme,jNeB->mBjI', eris_OOov, t2ab) wOvOo += lib.einsum('MINE,jNbE->MbIj', OOOV, t2ab) wOvOo += lib.einsum('MIne,jnbe->MbIj', eris_OOov, t2aa) wOvOo -= lib.einsum('niME,nJbE->MbJi', eris_ooOV, t2ab) wovoo += tmpaa - tmpaa.transpose(0,1,3,2) wOVOO += tmpbb - tmpbb.transpose(0,1,3,2) self.wooov = ooov.transpose(0,2,1,3).copy() self.wOOOV = OOOV.transpose(0,2,1,3).copy() self.woOoV = eris_ooOV.transpose(0,2,1,3).copy() self.wOoOv = eris_OOov.transpose(0,2,1,3).copy() self.wOooV =-eris_ooOV.transpose(2,0,1,3).copy() self.woOOv =-eris_OOov.transpose(2,0,1,3).copy() eris_ooov = eris_OOOV = eris_OOov = eris_ooOV = None woooo += np.asarray(eris.oooo).transpose(0,2,1,3) wOOOO += np.asarray(eris.OOOO).transpose(0,2,1,3) woOoO += np.asarray(eris.ooOO).transpose(0,2,1,3) self.woooo = woooo - woooo.transpose(0,1,3,2) self.wOOOO = wOOOO - wOOOO.transpose(0,1,3,2) self.woOoO = woOoO - woOOo.transpose(0,1,3,2) eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) tauaa, tauab, taubb = make_tau(t2,t1,t1) self.woooo += 0.5*lib.einsum('ijef,menf->mnij', tauaa, ovov) self.wOOOO += 0.5*lib.einsum('ijef,menf->mnij', taubb, OVOV) self.woOoO += lib.einsum('iJeF,meNF->mNiJ', tauab, eris_ovOV) self.wooov += lib.einsum('if,mfne->mnie', t1a, ovov) self.wOOOV += lib.einsum('if,mfne->mnie', t1b, OVOV) self.woOoV += lib.einsum('if,mfNE->mNiE', t1a, eris_ovOV) self.wOoOv += lib.einsum('IF,neMF->MnIe', t1b, eris_ovOV) self.wOooV -= lib.einsum('if,nfME->MniE', t1a, eris_ovOV) self.woOOv -= lib.einsum('IF,meNF->mNIe', t1b, eris_ovOV) tmp1aa = lib.einsum('njbf,menf->mbej', t2aa, ovov) tmp1aa-= lib.einsum('jNbF,meNF->mbej', t2ab, eris_ovOV) tmp1bb = lib.einsum('njbf,menf->mbej', t2bb, OVOV) tmp1bb-= lib.einsum('nJfB,nfME->MBEJ', t2ab, eris_ovOV) tmp1ab = lib.einsum('NJBF,meNF->mBeJ', t2bb, eris_ovOV) tmp1ab-= lib.einsum('nJfB,menf->mBeJ', t2ab, ovov) tmp1ba = lib.einsum('njbf,nfME->MbEj', t2aa, eris_ovOV) tmp1ba-= lib.einsum('jNbF,MENF->MbEj', t2ab, OVOV) tmp1abba =-lib.einsum('jNfB,mfNE->mBEj', t2ab, eris_ovOV) tmp1baab =-lib.einsum('nJbF,neMF->MbeJ', t2ab, eris_ovOV) tmpaa = einsum('ie,mbej->mbij', t1a, tmp1aa) tmpbb = einsum('ie,mbej->mbij', t1b, tmp1bb) tmpab = einsum('ie,mBeJ->mBiJ', t1a, tmp1ab) tmpab-= einsum('IE,mBEj->mBjI', t1b, tmp1abba) tmpba = einsum('IE,MbEj->MbIj', t1b, tmp1ba) tmpba-= einsum('ie,MbeJ->MbJi', t1a, tmp1baab) wovoo -= tmpaa - tmpaa.transpose(0,1,3,2) wOVOO -= tmpbb - tmpbb.transpose(0,1,3,2) woVoO -= tmpab wOvOo -= tmpba eris_ovov = eris_OVOV = eris_ovOV = None eris_oovo = numpy.asarray(eris.oovo) eris_OOVO = numpy.asarray(eris.OOVO) eris_OOvo = numpy.asarray(eris.OOvo) eris_ooVO = numpy.asarray(eris.ooVO) wovoo += eris_oovo.transpose(0,2,1,3) - eris_oovo.transpose(0,2,3,1) wOVOO += eris_OOVO.transpose(0,2,1,3) - eris_OOVO.transpose(0,2,3,1) woVoO += eris_ooVO.transpose(0,2,1,3) wOvOo += eris_OOvo.transpose(0,2,1,3) eris_oovo = eris_OOVO = eris_OOvo = eris_ooVO = None eris_ovvo = np.asarray(eris.ovvo) eris_OVVO = np.asarray(eris.OVVO) eris_OVvo = np.asarray(eris.OVvo) eris_ovVO = np.asarray(eris.ovVO) eris_oovv = np.asarray(eris.oovv) eris_OOVV = np.asarray(eris.OOVV) eris_OOvv = np.asarray(eris.OOvv) eris_ooVV = np.asarray(eris.ooVV) wovvo += eris_ovvo.transpose(0,2,1,3) wOVVO += eris_OVVO.transpose(0,2,1,3) woVvO += eris_ovVO.transpose(0,2,1,3) wOvVo += eris_OVvo.transpose(0,2,1,3) wovvo -= eris_oovv.transpose(0,2,3,1) wOVVO -= eris_OOVV.transpose(0,2,3,1) woVVo -= eris_ooVV.transpose(0,2,3,1) wOvvO -= eris_OOvv.transpose(0,2,3,1) tmpaa = lib.einsum('ie,mebj->mbij', t1a, eris_ovvo) tmpbb = lib.einsum('ie,mebj->mbij', t1b, eris_OVVO) tmpaa-= lib.einsum('ie,mjbe->mbij', t1a, eris_oovv) tmpbb-= lib.einsum('ie,mjbe->mbij', t1b, eris_OOVV) woVoO += lib.einsum('ie,meBJ->mBiJ', t1a, eris_ovVO) woVoO -= lib.einsum('IE,mjBE->mBjI',-t1b, eris_ooVV) wOvOo += lib.einsum('IE,MEbj->MbIj', t1b, eris_OVvo) wOvOo -= lib.einsum('ie,MJbe->MbJi',-t1a, eris_OOvv) wovoo += tmpaa - tmpaa.transpose(0,1,3,2) wOVOO += tmpbb - tmpbb.transpose(0,1,3,2) wovoo -= lib.einsum('me,ijbe->mbij', self.Fova, t2aa) wOVOO -= lib.einsum('me,ijbe->mbij', self.Fovb, t2bb) woVoO += lib.einsum('me,iJeB->mBiJ', self.Fova, t2ab) wOvOo += lib.einsum('ME,jIbE->MbIj', self.Fovb, t2ab) wovoo -= lib.einsum('nb,mnij->mbij', t1a, self.woooo) wOVOO -= lib.einsum('nb,mnij->mbij', t1b, self.wOOOO) woVoO -= lib.einsum('NB,mNiJ->mBiJ', t1b, self.woOoO) wOvOo -= lib.einsum('nb,nMjI->MbIj', t1a, self.woOoO) eris_ovvo = eris_OVVO = eris_OVvo = eris_ovVO = None eris_oovv = eris_OOVV = eris_OOvv = eris_ooVV = None self.saved = lib.H5TmpFile() self.saved['ovvo'] = wovvo self.saved['OVVO'] = wOVVO self.saved['oVvO'] = woVvO self.saved['OvVo'] = wOvVo self.saved['oVVo'] = woVVo self.saved['OvvO'] = wOvvO self.wovvo = self.saved['ovvo'] self.wOVVO = self.saved['OVVO'] self.woVvO = self.saved['oVvO'] self.wOvVo = self.saved['OvVo'] self.woVVo = self.saved['oVVo'] self.wOvvO = self.saved['OvvO'] self.saved['ovoo'] = wovoo self.saved['OVOO'] = wOVOO self.saved['oVoO'] = woVoO self.saved['OvOo'] = wOvOo self.wovoo = self.saved['ovoo'] self.wOVOO = self.saved['OVOO'] self.woVoO = self.saved['oVoO'] self.wOvOo = self.saved['OvOo'] self.wvovv = self.saved.create_dataset('vovv', (nvira,nocca,nvira,nvira), t1a.dtype.char) self.wVOVV = self.saved.create_dataset('VOVV', (nvirb,noccb,nvirb,nvirb), t1a.dtype.char) self.wvOvV = self.saved.create_dataset('vOvV', (nvira,noccb,nvira,nvirb), t1a.dtype.char) self.wVoVv = self.saved.create_dataset('VoVv', (nvirb,nocca,nvirb,nvira), t1a.dtype.char) # 3 or 4 virtuals eris_ooov = np.asarray(eris.ooov) eris_ovov = np.asarray(eris.ovov) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) eris_oovv = np.asarray(eris.oovv) eris_ovvo = np.asarray(eris.ovvo) oovv = eris_oovv - eris_ovvo.transpose(0,3,2,1) eris_oovv = eris_ovvo = None #:wvovv = .5 * lib.einsum('nime,mnab->eiab', eris_ooov, tauaa) #:wvovv -= .5 * lib.einsum('me,miab->eiab', self.Fova, t2aa) #:tmp1aa = lib.einsum('nibf,menf->mbei', t2aa, ovov) #:tmp1aa-= lib.einsum('iNbF,meNF->mbei', t2ab, eris_ovOV) #:wvovv+= lib.einsum('ma,mbei->eiab', t1a, tmp1aa) #:wvovv+= einsum('ma,mibe->eiab', t1a, oovv) for p0, p1 in lib.prange(0, nvira, nocca): wvovv = .5*lib.einsum('nime,mnab->eiab', eris_ooov[:,:,:,p0:p1], tauaa) wvovv -= .5*lib.einsum('me,miab->eiab', self.Fova[:,p0:p1], t2aa) tmp1aa = lib.einsum('nibf,menf->mbei', t2aa, ovov[:,p0:p1]) tmp1aa-= lib.einsum('iNbF,meNF->mbei', t2ab, eris_ovOV[:,p0:p1]) wvovv += lib.einsum('ma,mbei->eiab', t1a, tmp1aa) wvovv += einsum('ma,mibe->eiab', t1a, oovv[:,:,:,p0:p1]) self.wvovv[p0:p1] = wvovv tmp1aa = None eris_ovov = eris_ooov = eris_ovOV = None #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:ovvv = eris_ovvv - eris_ovvv.transpose(0,3,2,1) #:wvovv += lib.einsum('mebf,miaf->eiab', ovvv, t2aa) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:wvovv += lib.einsum('MFbe,iMaF->eiab', eris_OVvv, t2ab) #:wvovv += eris_ovvv.transpose(2,0,3,1).conj() #:self.wvovv -= wvovv - wvovv.transpose(0,1,3,2) mem_now = lib.current_memory()[0] max_memory = lib.param.MAX_MEMORY - mem_now blksize = max(int(max_memory*1e6/8/(nvira**3*6)), 2) for i0,i1 in lib.prange(0, nocca, blksize): wvovv = self.wvovv[:,i0:i1] for p0,p1 in lib.prange(0, noccb, blksize): OVvv = np.asarray(eris.OVvv[p0:p1]).reshape((p1-p0)*nvirb,-1) OVvv = lib.unpack_tril(OVvv).reshape(-1,nvirb,nvira,nvira) wvovv -= lib.einsum('MFbe,iMaF->eiab', OVvv, t2ab[i0:i1,p0:p1]) OVvv = None for p0,p1 in lib.prange(0, nocca, blksize): ovvv = np.asarray(eris.ovvv[p0:p1]).reshape((p1-p0)*nvira,-1) ovvv = lib.unpack_tril(ovvv).reshape(-1,nvira,nvira,nvira) if p0 == i0: wvovv += ovvv.transpose(2,0,3,1).conj() ovvv = ovvv - ovvv.transpose(0,3,2,1) wvovv -= lib.einsum('mebf,miaf->eiab', ovvv, t2aa[p0:p1,i0:i1]) ovvv = None wvovv = wvovv - wvovv.transpose(0,1,3,2) self.wvovv[:,i0:i1] = wvovv eris_OOOV = np.asarray(eris.OOOV) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) eris_OOVV = np.asarray(eris.OOVV) eris_OVVO = np.asarray(eris.OVVO) OOVV = eris_OOVV - eris_OVVO.transpose(0,3,2,1) eris_OOVV = eris_OVVO = None #:wVOVV = .5*lib.einsum('nime,mnab->eiab', eris_OOOV, taubb) #:wVOVV -= .5*lib.einsum('me,miab->eiab', self.Fovb, t2bb) #:tmp1bb = lib.einsum('nibf,menf->mbei', t2bb, OVOV) #:tmp1bb-= lib.einsum('nIfB,nfME->MBEI', t2ab, eris_ovOV) #:wVOVV += lib.einsum('ma,mbei->eiab', t1b, tmp1bb) #:wVOVV += einsum('ma,mibe->eiab', t1b, OOVV) for p0, p1 in lib.prange(0, nvirb, noccb): wVOVV = .5*lib.einsum('nime,mnab->eiab', eris_OOOV[:,:,:,p0:p1], taubb) wVOVV -= .5*lib.einsum('me,miab->eiab', self.Fovb[:,p0:p1], t2bb) tmp1bb = lib.einsum('nibf,menf->mbei', t2bb, OVOV[:,p0:p1]) tmp1bb-= lib.einsum('nIfB,nfME->MBEI', t2ab, eris_ovOV[:,:,:,p0:p1]) wVOVV += lib.einsum('ma,mbei->eiab', t1b, tmp1bb) wVOVV += einsum('ma,mibe->eiab', t1b, OOVV[:,:,:,p0:p1]) self.wVOVV[p0:p1] = wVOVV tmp1bb = None eris_OVOV = eris_OOOV = eris_ovOV = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:OVVV = eris_OVVV - eris_OVVV.transpose(0,3,2,1) #:wVOVV -= lib.einsum('MEBF,MIAF->EIAB', OVVV, t2bb) #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:wVOVV -= lib.einsum('mfBE,mIfA->EIAB', eris_ovVV, t2ab) #:wVOVV += eris_OVVV.transpose(2,0,3,1).conj() #:self.wVOVV += wVOVV - wVOVV.transpose(0,1,3,2) blksize = max(int(max_memory*1e6/8/(nvirb**3*6)), 2) for i0,i1 in lib.prange(0, noccb, blksize): wVOVV = self.wVOVV[:,i0:i1] for p0,p1 in lib.prange(0, nocca, blksize): ovVV = np.asarray(eris.ovVV[p0:p1]).reshape((p1-p0)*nvira,-1) ovVV = lib.unpack_tril(ovVV).reshape(-1,nvira,nvirb,nvirb) wVOVV -= lib.einsum('mfBE,mIfA->EIAB', ovVV, t2ab[p0:p1,i0:i1]) ovVV = None for p0,p1 in lib.prange(0, noccb, blksize): OVVV = np.asarray(eris.OVVV[p0:p1]).reshape((p1-p0)*nvirb,-1) OVVV = lib.unpack_tril(OVVV).reshape(-1,nvirb,nvirb,nvirb) if p0 == i0: wVOVV += OVVV.transpose(2,0,3,1).conj() OVVV = OVVV - OVVV.transpose(0,3,2,1) wVOVV -= lib.einsum('mebf,miaf->eiab', OVVV, t2bb[p0:p1,i0:i1]) OVVV = None wVOVV = wVOVV - wVOVV.transpose(0,1,3,2) self.wVOVV[:,i0:i1] = wVOVV eris_ovOV = np.asarray(eris.ovOV) eris_OOov = np.asarray(eris.OOov) eris_OOvv = np.asarray(eris.OOvv) eris_ovVO = np.asarray(eris.ovVO) #:self.wvOvV = einsum('NIme,mNaB->eIaB', eris_OOov, tauab) #:self.wvOvV -= lib.einsum('me,mIaB->eIaB', self.Fova, t2ab) #:tmp1ab = lib.einsum('NIBF,meNF->mBeI', t2bb, eris_ovOV) #:tmp1ab-= lib.einsum('nIfB,menf->mBeI', t2ab, ovov) #:tmp1baab = lib.einsum('nIbF,neMF->MbeI', t2ab, eris_ovOV) #:tmpab = lib.einsum('ma,mBeI->eIaB', t1a, tmp1ab) #:tmpab+= lib.einsum('MA,MbeI->eIbA', t1b, tmp1baab) #:tmpab-= einsum('MA,MIbe->eIbA', t1b, eris_OOvv) #:tmpab-= einsum('ma,meBI->eIaB', t1a, eris_ovVO) #:self.wvOvV += tmpab for p0, p1 in lib.prange(0, nvira, nocca): wvOvV = einsum('NIme,mNaB->eIaB', eris_OOov[:,:,:,p0:p1], tauab) wvOvV -= lib.einsum('me,mIaB->eIaB', self.Fova[:,p0:p1], t2ab) tmp1ab = lib.einsum('NIBF,meNF->mBeI', t2bb, eris_ovOV[:,p0:p1]) tmp1ab-= lib.einsum('nIfB,menf->mBeI', t2ab, ovov[:,p0:p1]) wvOvV+= lib.einsum('ma,mBeI->eIaB', t1a, tmp1ab) tmp1ab = None tmp1baab = lib.einsum('nIbF,neMF->MbeI', t2ab, eris_ovOV[:,p0:p1]) wvOvV+= lib.einsum('MA,MbeI->eIbA', t1b, tmp1baab) tmp1baab = None wvOvV-= einsum('MA,MIbe->eIbA', t1b, eris_OOvv[:,:,:,p0:p1]) wvOvV-= einsum('ma,meBI->eIaB', t1a, eris_ovVO[:,p0:p1]) self.wvOvV[p0:p1] = wvOvV eris_ovOV = eris_OOov = eris_OOvv = eris_ovVO = None #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:ovvv = eris_ovvv - eris_ovvv.transpose(0,3,2,1) #:self.wvOvV -= lib.einsum('mebf,mIfA->eIbA', ovvv, t2ab) #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:self.wvOvV -= lib.einsum('meBF,mIaF->eIaB', eris_ovVV, t2ab) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:self.wvOvV -= lib.einsum('MFbe,MIAF->eIbA', eris_OVvv, t2bb) #:self.wvOvV += eris_OVvv.transpose(2,0,3,1).conj() blksize = max(int(max_memory*1e6/8/(nvira**3*6)), 2) for i0,i1 in lib.prange(0, nocca, blksize): wvOvV = self.wvOvV[:,i0:i1] for p0,p1 in lib.prange(0, nocca, blksize): ovVV = np.asarray(eris.ovVV[p0:p1]).reshape((p1-p0)*nvira,-1) ovVV = lib.unpack_tril(ovVV).reshape(-1,nvira,nvirb,nvirb) wvOvV -= lib.einsum('meBF,mIaF->eIaB', ovVV, t2ab[p0:p1,i0:i1]) ovVV = None for p0,p1 in lib.prange(0, nocca, blksize): ovvv = np.asarray(eris.ovvv[p0:p1]).reshape((p1-p0)*nvira,-1) ovvv = lib.unpack_tril(ovvv).reshape(-1,nvira,nvira,nvira) ovvv = ovvv - ovvv.transpose(0,3,2,1) wvOvV -= lib.einsum('mebf,mIfA->eIbA',ovvv, t2ab[p0:p1,i0:i1]) ovvv = None self.wvOvV[:,i0:i1] = wvOvV blksize = max(int(max_memory*1e6/8/(nvirb*nvira**2*3)), 2) for i0,i1 in lib.prange(0, nocca, blksize): wvOvV = self.wvOvV[:,i0:i1] for p0,p1 in lib.prange(0, nocca, blksize): OVvv = np.asarray(eris.OVvv[p0:p1]).reshape((p1-p0)*nvirb,-1) OVvv = lib.unpack_tril(OVvv).reshape(-1,nvirb,nvira,nvira) if p0 == i0: wvOvV += OVvv.transpose(2,0,3,1).conj() wvOvV -= lib.einsum('MFbe,MIAF->eIbA', OVvv, t2bb[p0:p1,i0:i1]) OVvv = None self.wvOvV[:,i0:i1] = wvOvV eris_ovOV = np.asarray(eris.ovOV) eris_ooOV = np.asarray(eris.ooOV) eris_ooVV = np.asarray(eris.ooVV) eris_OVvo = np.asarray(eris.OVvo) #:self.wVoVv = einsum('niME,nMbA->EiAb', eris_ooOV, tauab) #:self.wVoVv -= lib.einsum('ME,iMbA->EiAb', self.Fovb, t2ab) #:tmp1ba = lib.einsum('nibf,nfME->MbEi', t2aa, eris_ovOV) #:tmp1ba-= lib.einsum('iNbF,MENF->MbEi', t2ab, OVOV) #:tmp1abba = lib.einsum('iNfB,mfNE->mBEi', t2ab, eris_ovOV) #:tmpba = lib.einsum('MA,MbEi->EiAb', t1b, tmp1ba) #:tmpba+= lib.einsum('ma,mBEi->EiBa', t1a, tmp1abba) #:tmpba-= einsum('ma,miBE->EiBa', t1a, eris_ooVV) #:tmpba-= einsum('MA,MEbi->EiAb', t1b, eris_OVvo) #:self.wVoVv += tmpba for p0, p1 in lib.prange(0, nvirb, noccb): wVoVv = einsum('niME,nMbA->EiAb', eris_ooOV[:,:,:,p0:p1], tauab) wVoVv -= lib.einsum('ME,iMbA->EiAb', self.Fovb[:,p0:p1], t2ab) tmp1ba = lib.einsum('nibf,nfME->MbEi', t2aa, eris_ovOV[:,:,:,p0:p1]) tmp1ba-= lib.einsum('iNbF,MENF->MbEi', t2ab, OVOV[:,p0:p1]) wVoVv += lib.einsum('MA,MbEi->EiAb', t1b, tmp1ba) tmp1ba = None tmp1abba = lib.einsum('iNfB,mfNE->mBEi', t2ab, eris_ovOV[:,:,:,p0:p1]) wVoVv += lib.einsum('ma,mBEi->EiBa', t1a, tmp1abba) tmp1abba = None wVoVv -= einsum('ma,miBE->EiBa', t1a, eris_ooVV[:,:,:,p0:p1]) wVoVv -= einsum('MA,MEbi->EiAb', t1b, eris_OVvo[:,p0:p1]) self.wVoVv[p0:p1] = wVoVv eris_ovOV = eris_ooOV = eris_ooVV = eris_OVvo = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:OVVV = eris_OVVV - eris_OVVV.transpose(0,3,2,1) #:self.wVoVv -= lib.einsum('MEBF,iMaF->EiBa', OVVV, t2ab) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:self.wVoVv -= lib.einsum('MEbf,iMfA->EiAb', eris_OVvv, t2ab) #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:self.wVoVv -= lib.einsum('mfBE,miaf->EiBa', eris_ovVV, t2aa) #:self.wVoVv += eris_ovVV.transpose(2,0,3,1).conj() blksize = max(int(max_memory*1e6/8/(nvirb**3*6)), 2) for i0,i1 in lib.prange(0, noccb, blksize): wVoVv = self.wVoVv[:,i0:i1] for p0,p1 in lib.prange(0, noccb, blksize): OVvv = np.asarray(eris.OVvv[p0:p1]).reshape((p1-p0)*nvirb,-1) OVvv = lib.unpack_tril(OVvv).reshape(-1,nvirb,nvira,nvira) wVoVv -= lib.einsum('MEbf,iMfA->EiAb', OVvv, t2ab[i0:i1,p0:p1]) OVvv = None for p0,p1 in lib.prange(0, noccb, blksize): OVVV = np.asarray(eris.OVVV[p0:p1]).reshape((p1-p0)*nvirb,-1) OVVV = lib.unpack_tril(OVVV).reshape(-1,nvirb,nvirb,nvirb) OVVV = OVVV - OVVV.transpose(0,3,2,1) wVoVv -= lib.einsum('MEBF,iMaF->EiBa', OVVV, t2ab[i0:i1,p0:p1]) OVVV = None self.wVoVv[:,i0:i1] = wVoVv blksize = max(int(max_memory*1e6/8/(nvira*nvirb**2*3)), 2) for i0,i1 in lib.prange(0, noccb, blksize): wVoVv = self.wVoVv[:,i0:i1] for p0,p1 in lib.prange(0, noccb, blksize): ovVV = np.asarray(eris.ovVV[p0:p1]).reshape((p1-p0)*nvira,-1) ovVV = lib.unpack_tril(ovVV).reshape(-1,nvira,nvirb,nvirb) if p0 == i0: wVoVv += ovVV.transpose(2,0,3,1).conj() wVoVv -= lib.einsum('mfBE,miaf->EiBa', ovVV, t2aa[p0:p1,i0:i1]) ovVV = None self.wVoVv[:,i0:i1] = wVoVv self.made_ee_imds = True log.timer('EOM-CCSD EE intermediates', *cput0) def make_tau(t2, t1, r1, fac=1, out=None): t1a, t1b = t1 r1a, r1b = r1 tau1aa = make_tau_aa(t2[0], t1a, r1a, fac, out) tau1bb = make_tau_aa(t2[2], t1b, r1b, fac, out) tau1ab = make_tau_ab(t2[1], t1, r1, fac, out) return tau1aa, tau1ab, tau1bb def make_tau_aa(t2aa, t1a, r1a, fac=1, out=None): tau1aa = np.einsum('ia,jb->ijab', t1a, r1a) tau1aa-= np.einsum('ia,jb->jiab', t1a, r1a) tau1aa = tau1aa - tau1aa.transpose(0,1,3,2) tau1aa *= fac * .5 tau1aa += t2aa return tau1aa def make_tau_ab(t2ab, t1, r1, fac=1, out=None): t1a, t1b = t1 r1a, r1b = r1 tau1ab = np.einsum('ia,jb->ijab', t1a, r1b) tau1ab+= np.einsum('ia,jb->ijab', r1a, t1b) tau1ab *= fac * .5 tau1ab += t2ab return tau1ab def _add_vvvv_(cc, t2, eris, Ht2): t2aa, t2ab, t2bb = t2 u2aa, u2ab, u2bb = Ht2 rccsd._add_vvvv_(cc, t2aa, eris, u2aa) fakeri = lambda:None fakeri.vvvv = eris.VVVV rccsd._add_vvvv_(cc, t2bb, fakeri, u2bb) fakeri.vvvv = eris.vvVV rccsd._add_vvvv1_(cc, t2ab, fakeri, u2ab) return (u2aa,u2ab,u2bb) if __name__ == '__main__': from pyscf import scf from pyscf import gto mol = gto.Mole() mol.atom = [['O', (0., 0., 0.)], ['O', (1.21, 0., 0.)]] mol.basis = 'cc-pvdz' mol.spin = 2 mol.build() mf = scf.UHF(mol) print(mf.scf()) # Freeze 1s electrons frozen = [[0,1], [0,1]] # also acceptable #frozen = 4 ucc = UCCSD(mf, frozen=frozen) ecc, t1, t2 = ucc.kernel() print(ecc - -0.3486987472235819) mol = gto.Mole() mol.atom = [ [8 , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]] mol.basis = 'cc-pvdz' mol.spin = 0 mol.build() mf = scf.UHF(mol) print(mf.scf()) mycc = UCCSD(mf) ecc, t1, t2 = mycc.kernel() print(ecc - -0.2133432712431435) e,v = mycc.ipccsd(nroots=8) print(e[0] - 0.4335604332073799) print(e[2] - 0.5187659896045407) print(e[4] - 0.6782876002229172) e,v = mycc.eaccsd(nroots=8) print(e[0] - 0.16737886338859731) print(e[2] - 0.24027613852009164) print(e[4] - 0.51006797826488071) e,v = mycc.eeccsd(nroots=4) print(e[0] - 0.2757159395886167) print(e[1] - 0.2757159395886167) print(e[2] - 0.2757159395886167) print(e[3] - 0.3005716731825082)
#!/usr/bin/env python3 data = open('mystery3.png','rb').read() print(hex(len(data.split(b'IDAT')[1])-8))
from collections import Counter import logging from cdeid.utils.resources import PACKAGE_NAME logger = logging.getLogger(PACKAGE_NAME) # This function is modified from the function of stanza/models/ner/scorer.py # This function to calculate the separate metrics of each entity. # # Copyright 2019 The Board of Trustees of The Leland Stanford Junior University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def score_by_entity(pred_tag_sequences, gold_tag_sequences, verbose=True): assert (len(gold_tag_sequences) == len(pred_tag_sequences)), \ "Number of predicted tag sequences does not match gold sequences." def decode_all(tag_sequences): # decode from all sequences, each sequence with a unique id ents = [] for sent_id, tags in enumerate(tag_sequences): for ent in decode_from_bio2(tags): ent['sent_id'] = sent_id ents += [ent] return ents gold_ents = decode_all(gold_tag_sequences) pred_ents = decode_all(pred_tag_sequences) correct_by_type = Counter() guessed_by_type = Counter() gold_by_type = Counter() # Added. Store all the entities entities = set() # records the details of fp and fn fp = [] fn = [] for p in pred_ents: if p not in gold_ents: fp.append(p) for p in gold_ents: if p not in pred_ents: fn.append(p) logger.info('Predict entities in total: {}'.format(len(pred_ents))) logger.info('Gold entities in total: {}'.format(len(gold_ents))) logger.info('False Positive: {}'.format(len(fp))) logger.info('False Negative: {}'.format(len(fn))) for p in pred_ents: guessed_by_type[p['type']] += 1 if p in gold_ents: correct_by_type[p['type']] += 1 for g in gold_ents: gold_by_type[g['type']] += 1 entities.add(g['type']) prec_micro = 0.0 if sum(guessed_by_type.values()) > 0: prec_micro = sum(correct_by_type.values()) * 1.0 / sum(guessed_by_type.values()) rec_micro = 0.0 if sum(gold_by_type.values()) > 0: rec_micro = sum(correct_by_type.values()) * 1.0 / sum(gold_by_type.values()) f_micro = 0.0 if prec_micro + rec_micro > 0: f_micro = 2.0 * prec_micro * rec_micro / (prec_micro + rec_micro) if verbose: logger.info("Prec.\tRec.\tF1") logger.info("{:.2f}\t{:.2f}\t{:.2f}".format(prec_micro * 100, rec_micro * 100, f_micro * 100)) # metrics for entities if verbose: logger.info("Entity\tPrec.\tRec.\tF1") for entity in entities: prec_ent = 0.0 if guessed_by_type[entity] > 0: prec_ent = correct_by_type[entity] * 1.0 / guessed_by_type[entity] rec_ent = 0.0 if gold_by_type[entity] > 0: rec_ent = correct_by_type[entity] * 1.0 / gold_by_type[entity] f_ent = 0.0 if prec_ent + rec_ent > 0: f_ent = 2.0 * prec_ent * rec_ent / (prec_ent + rec_ent) logger.info("{}\t{:.2f}\t{:.2f}\t{:.2f}".format(entity, prec_ent * 100, rec_ent * 100, f_ent * 100)) return prec_micro, rec_micro, f_micro, fp, fn # This function is modified from the function of stanza/models/ner/utils.py # This function to decode all the entities in the sentence tags # # Copyright 2019 The Board of Trustees of The Leland Stanford Junior University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def decode_from_bio2(tags): res = [] ent_idxs = [] cur_type = None def flush(): if len(ent_idxs) > 0: res.append({ 'start': ent_idxs[0], 'end': ent_idxs[-1], 'type': cur_type}) for idx, tag in enumerate(tags): if tag is None: tag = 'O' if tag == 'O': flush() ent_idxs.clear() elif tag.startswith('B-'): # start of new ent flush() ent_idxs.clear() ent_idxs.append(idx) cur_type = tag[2:] elif tag.startswith('I-'): # continue last ent ent_idxs.append(idx) cur_type = tag[2:] # flush after whole sentence flush() return res
""" Routines for extracting data from Siemens DICOM files. The simplest way to read a file is to call read(filename). If you like you can also call lower level functions like read_data(). Except for the map of internal data types to numpy type strings (which doesn't require an import of numpy), this code is deliberately ignorant of numpy. It returns native Python types that are easy to convert into numpy types. """ # Python modules from __future__ import division import struct import exceptions import math # 3rd party modules import dicom # Our modules import util_mrs_file import constants TYPE_NONE = 0 TYPE_IMAGE = 1 TYPE_SPECTROSCOPY = 2 # Change to True to enable the assert() statements sprinkled through the code ASSERTIONS_ENABLED = False # THese are some Siemens-specific tags TAG_CONTENT_TYPE = (0x0029, 0x1008) TAG_SPECTROSCOPY_DATA = (0x7fe1, 0x1010) # I (Philip) ported much of the private tag parsing code from the IDL routines # dicom_fill_rsp.pro and dicom_fill_util.pro, except for the CSA header # parsing which is a port of C++ code in the GDCM project. # Since a lot (all?) of the Siemens format is undocumented, there are magic # numbers and logic in here that I can't explain. Sorry! Where appropriate # I have copied or paraphrased comments from the IDL code; they're marked # with [IDL]. Unmarked comments are mine. Where ambiguous, I labelled my # comments with [PS] (Philip Semanchuk). def read(filename, ignore_data=False): """ This is the simplest (and recommended) way for our code to read a Siemens DICOM file. It returns a tuple of (parameters, data). The parameters are a dict. The data is in a Python list. """ # Since a DICOM file is params + data together, it's not so simple to # ignore the data part. The best we can do is tell PyDicom to apply # lazy evaluation which is probably less efficient in the long run. defer_size = 4096 if ignore_data else 0 dataset = dicom.read_file(filename) params = read_parameters_from_dataset(dataset) data = read_data_from_dataset(dataset) return params, data def read_parameters(filename): return read_parameters_from_dataset(dicom.read_file(filename)) def read_data(filename): return read_data_from_dataset(dicom.read_file(filename)) def read_data_from_dataset(dataset): """Given a PyDicom dataset, returns the data in the Siemens DICOM spectroscopy data tag (0x7fe1, 0x1010) as a list of complex numbers. """ data = _get(dataset, TAG_SPECTROSCOPY_DATA) if data: # Big simplifying assumptions -- # 1) Data is a series of complex numbers organized as ririri... # where r = real and i = imaginary. # 2) Each real & imaginary number is a 4 byte float. # 3) Data is little endian. data = struct.unpack("<%df" % (len(data) / 4), data) data = util_mrs_file.collapse_complexes(data) else: data = [ ] return data def read_parameters_from_dataset(dataset): """Given a PyDicom dataset, returns a fairly extensive subset of the parameters therein as a dictionary. """ params = { } # The code below refers to slice_index as a variable, but here it is # hardcoded to one. It could vary, in theory, but in practice I don't # know how it would actually be used. How would the slice index or # indices be passed? How would the data be returned? For now, I'll # leave the slice code active but hardcode the index to 1. slice_index = 1 # [PS] - Even after porting this code I still can't figure out what # ptag_img and ptag_ser stand for, so I left the names as is. ptag_img = { } ptag_ser = { } # (0x0029, 0x__10) is one of several possibilities # - SIEMENS CSA NON-IMAGE, CSA Data Info # - SIEMENS CSA HEADER, CSA Image Header Info # - SIEMENS CSA ENVELOPE, syngo Report Data # - SIEMENS MEDCOM HEADER, MedCom Header Info # - SIEMENS MEDCOM OOG, MedCom OOG Info (MEDCOM Object Oriented Graphics) # Pydicom identifies it as "CSA Image Header Info" for tag in ( (0x0029, 0x1010), (0x0029, 0x1210), (0x0029, 0x1110) ): tag_data = dataset.get(tag, None) if tag_data: break if tag_data: ptag_img = _parse_csa_header(tag_data.value) # [IDL] Access the SERIES Shadow Data # [PS] I don't know what makes this "shadow" data. for tag in ( (0x0029, 0x1020), (0x0029, 0x1220), (0x0029, 0x1120) ): tag_data = dataset.get(tag, None) if tag_data: break if tag_data: ptag_ser = _parse_csa_header(tag_data.value) # [IDL] "MrProtocol" (VA25) and "MrPhoenixProtocol" (VB13) are special # elements that contain many parameters. if ptag_ser.get("MrProtocol", ""): prot_ser = _parse_protocol_data(ptag_ser["MrProtocol"]) if ptag_ser.get("MrPhoenixProtocol", ""): prot_ser = _parse_protocol_data(ptag_ser["MrPhoenixProtocol"]) # [IDL] Determine if file is SVS,SI,EPSI, or OTHER # [PS] IDL code doesn't match comments. Possibilities appear to # include EPSI, SVS, CSI, JPRESS and SVSLIP2. "OTHER" isn't # considered. # EPSI = Echo-Planar Spectroscopic Imaging # SVS = Single voxel spectroscopy # CSI = Chemical Shift Imaging # JPRESS = J-resolved spectroscopy # SVSLIP2 = No idea! is_epsi = False is_svs = False is_csi = False is_jpress = False is_svslip2 = False # [IDL] Protocol name parameter_filename = _extract_from_quotes(prot_ser.get("tProtocolName", "")) parameter_filename = parameter_filename.strip() # [IDL] Sequence file name sequence_filename = _extract_from_quotes(prot_ser.get("tSequenceFileName", "")) sequence_filename = sequence_filename.strip() sequence_filename2 = ptag_img.get("SequenceName", "") sequence_filename2 = sequence_filename2.strip() parameter_filename_lower = parameter_filename.lower() sequence_filename_lower = sequence_filename.lower() sequence_filename2_lower = sequence_filename2.lower() is_epsi = ("epsi" in (parameter_filename_lower, sequence_filename_lower)) is_svs = ("svs" in (parameter_filename_lower, sequence_filename_lower, sequence_filename2_lower)) if "fid" in (parameter_filename_lower, sequence_filename_lower): if "csi" in (parameter_filename_lower, sequence_filename_lower): is_csi = True else: is_svs = True if "csi" in (parameter_filename_lower, sequence_filename_lower): is_csi = True is_jpress = ("jpress" in (parameter_filename_lower, sequence_filename_lower)) is_svslip2 = ("svs_li2" in (parameter_filename_lower, sequence_filename2_lower)) # Patient Info params["patient_name"] = _get(dataset, (0x0010, 0x0010), "") params["patient_id"] = _get(dataset, (0x0010, 0x0020)) params["patient_birthdate"] = _get(dataset, (0x0010, 0x0030)) params["patient_sex"] = _get(dataset, (0x0010, 0x0040), "") # [PS] Siemens stores the age as nnnY where 'n' is a digit, e.g. 042Y params["patient_age"] = \ int(_get(dataset, (0x0010, 0x1010), "000Y")[:3]) params["patient_weight"] = round(_get(dataset, (0x0010, 0x1030), 0)) params["study_code"] = _get(dataset, (0x0008, 0x1030), "") # Identification info params["bed_move_fraction"] = 0.0 s = _get(dataset, (0x0008, 0x0080), "") if s: s = " " + s s += _get(dataset, (0x0008, 0x1090), "") params["institution_id"] = s params["parameter_filename"] = parameter_filename params["study_type"] = "spec" # DICOM date format is YYYYMMDD params["bed_move_date"] = _get(dataset, (0x0008, 0x0020), "") params["measure_date"] = params["bed_move_date"] # DICOM time format is hhmmss.fraction params["bed_move_time"] = _get(dataset, (0x0008, 0x0030), "") params["comment_1"] = _get(dataset, (0x0008, 0x0031), "") if not params["comment_1"]: params["comment_1"] = _get(dataset, (0x0020, 0x4000), "") # DICOM time format is hhmmss.fraction params["measure_time"] = _get(dataset, (0x0008, 0x0032), "") params["sequence_filename"] = ptag_img.get("SequenceName", "") params["sequence_type"] = ptag_img.get("SequenceName", "") # Measurement info params["echo_position"] = "0.0" params["image_contrast_mode"] = "unknown" params["kspace_mode"] = "unknown" params["measured_slices"] = "1" params["saturation_bands"] = "0" # Seems to me that a quantity called "NumberOfAverages" would be an # int, but it is stored as a float, e.g. "128.0000" which makes # Python's int() choke unless I run it through float() first. params["averages"] = int(_float(ptag_img.get("NumberOfAverages", ""))) params["flip_angle"] = _float(ptag_img.get("FlipAngle", "")) # [PS] DICOM stores frequency as MHz, we store it as Hz. Mega = 1x10(6) params["frequency"] = float(ptag_img.get("ImagingFrequency", 0)) * 1e6 inversion_time = float(ptag_img.get("InversionTime", 0)) params["inversion_time_1"] = inversion_time params["number_inversions"] = 1 if inversion_time else 0 params["measured_echoes"] = ptag_img.get("EchoTrainLength", "1") params["nucleus"] = ptag_img.get("ImagedNucleus", "") params["prescans"] = prot_ser.get("sSpecPara.lPreparingScans", 0) # Gain gain = prot_ser.get("sRXSPEC.lGain", None) if gain == 0: gain = "-20.0" elif gain == 1: gain = "0.0" else: gain = "" params["receiver_gain"] = gain params["ft_scale_factor"] = \ float(prot_ser.get("sRXSPEC.aFFT_SCALE[0].flFactor", 0)) # Receiver Coil coil = prot_ser.get("sCOIL_SELECT_MEAS.asList[0].sCoilElementID.tCoilID", "") params["receiver_coil"] = _extract_from_quotes(coil) # [IDL] differs in EPSI params["repetition_time_1"] = float(prot_ser.get("alTR[0]", 0)) * 0.001 sweep_width = "" remove_oversample_flag = prot_ser.get("sSpecPara.ucRemoveOversampling", "") remove_oversample_flag = (remove_oversample_flag.strip() == "0x1") readout_os = float(ptag_ser.get("ReadoutOS", 1.0)) dwelltime = float(ptag_img.get("RealDwellTime", 1.0)) * 1e-9 if dwelltime: sweep_width = 1 / dwelltime if not remove_oversample_flag: sweep_width *= readout_os sweep_width = str(sweep_width) params["transmitter_voltage"] = \ prot_ser.get("sTXSPEC.asNucleusInfo[0].flReferenceAmplitude", "0.0") params["total_duration"] = \ prot_ser.get("lTotalScanTimeSec", "0.0") prefix = "sSliceArray.asSlice[%d]." % slice_index image_parameters = ( ("image_dimension_line", "dPhaseFOV"), ("image_dimension_column", "dReadoutFOV"), ("image_dimension_partition", "dThickness"), ("image_position_sagittal", "sPosition.dSag"), ("image_position_coronal", "sPosition.dCor"), ("image_position_transverse", "sPosition.dTra"), ) for key, name in image_parameters: params[key] = float(prot_ser.get(prefix + name, "0.0")) # [IDL] Image Normal/Column image_orientation = ptag_img.get("ImageOrientationPatient", "") if not image_orientation: slice_orientation_pitch = "" slice_distance = "" else: # image_orientation is a list of strings, e.g. -- # ['-1.00000000', '0.00000000', '0.00000000', '0.00000000', # '1.00000000', '0.00000000'] # [IDL] If the data we are processing is a Single Voxel # Spectroscopy data, interchange rows and columns. Due to an error # in the protocol used. if is_svs: image_orientation = image_orientation[3:] + image_orientation[:3] # Convert the values to float and discard ones smaller than 1e-4 f = lambda value: 0.0 if abs(value) < 1e-4 else value image_orientation = [f(float(value)) for value in image_orientation] row = image_orientation[:3] column = image_orientation[3:6] normal = ( ((row[1] * column[2]) - (row[2] * column[1])), ((row[2] * column[0]) - (row[0] * column[2])), ((row[0] * column[1]) - (row[1] * column[0])), ) params["image_normal_sagittal"] = normal[0] params["image_normal_coronal"] = normal[1] params["image_normal_transverse"] = normal[2] params["image_column_sagittal"] = column[0] params["image_column_coronal"] = column[0] params["image_column_transverse"] = column[0] # Second part of the return tuple is orientation; we don't use it. slice_orientation_pitch, _ = _dicom_orientation_string(normal) # Slice distance # http://en.wikipedia.org/wiki/Dot_product keys = ("image_position_sagittal", "image_position_coronal", "image_position_transverse") a = [params[key] for key in keys] b = normal bb = math.sqrt(sum([value ** 2 for value in normal])) slice_distance = ((a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2])) / bb params["slice_orientation_pitch"] = slice_orientation_pitch params["slice_distance"] = slice_distance regions = ( ("region_dimension_line", "dPhaseFOV"), ("region_dimension_column", "dReadoutFOV"), ("region_dimension_partition", "dThickness"), ("region_position_sagittal", "sPosition.dSag"), ("region_position_coronal", "sPosition.dCor"), ("region_position_transverse", "sPosition.dTra"), ) for key, name in regions: name = "sSpecPara.sVoI." + name params[key] = float(prot_ser.get(name, 0)) # 'DATA INFORMATION' params["measure_size_spectral"] = \ long(prot_ser.get('sSpecPara.lVectorSize', 0)) params["slice_thickness"] = _float(ptag_img.get("SliceThickness", 0)) params["current_slice"] = "1" params["number_echoes"] = "1" params["number_slices"] = "1" params["data_size_spectral"] = params["measure_size_spectral"] # ;------------------------------------------------------ # [IDL] Sequence Specific Changes if not is_epsi: # [IDL] Echo time - JPRESS handling added by Dragan echo_time = 0.0 if is_jpress: # [IDL] Yingjian saves echo time in a private 'echotime' field # [PS] The IDL code didn't use a dict to store these values # but instead did a brute force case-insensitive search over # an array of strings. In that context, key case didn't matter # but here it does. keys = prot_ser.keys() for key in keys: if key.upper() == "ECHOTIME": echo_time = float(prot_ser[key]) if is_svslip2: # [IDL] BJS found TE value set in ICE to be updated in # 'echotime' field # [PS] The IDL code didn't use a dict to store these values # but instead did a brute force case-insensitive search over # an array of strings. In that context, key case didn't matter # but here it does. keys = ptag_img.keys() for key in keys: if key.upper() == "ECHOTIME": echo_time = float(ptag_img[key]) if not echo_time: # [IDL] still no echo time - try std place echo_time = float(prot_ser.get('alTE[0]', 0.0)) echo_time /= 1000 params["echo_time"] = echo_time params["data_size_line"] = \ int(prot_ser.get('sSpecPara.lFinalMatrixSizePhase', 1)) params["data_size_column"] = \ int(prot_ser.get('sSpecPara.lFinalMatrixSizeRead', 1)) params["data_size_partition"] = \ int(prot_ser.get('sSpecPara.lFinalMatrixSizeSlice', 1)) if is_svs: # [IDL] For Single Voxel Spectroscopy data (SVS) only params["image_dimension_line"] = \ params["region_dimension_line"] params["image_dimension_column"] = \ params["region_dimension_column"] params["image_dimension_partition"] = \ params["region_dimension_partition"] # [IDL] For SVS data the following three parameters cannot be # anything other than 1 params["measure_size_line"] = 1 params["measure_size_column"] = 1 params["measure_size_partition"] = 1 else: # Not SVS # ;-------------------------------------------------- # ; [IDL] For CSI or OTHER Spectroscopy data only # ;-------------------------------------------------- measure_size_line = int(prot_ser.get('sKSpace.lPhaseEncodingLines', 1)) params["measure_size_line"] = str(measure_size_line) measure_size_column = int(prot_ser.get('sKSpace.lPhaseEncodingLines', 0)) params["measure_size_column"] = str(measure_size_column) measure_size_partition = int(prot_ser.get('sKSpace.lPartitions', '0')) kspace_dimension = prot_ser.get('sKSpace.ucDimension', '') if kspace_dimension.strip() == "0x2": measure_size_partition = 1 params["data_size_partition"] = 1 data_size_partition = 1 params["measure_size_partition"] = measure_size_partition if sequence_filename in ("svs_cp_press", "svs_se_ir", "svs_tavg"): # [IDL] Inversion Type 0-Volume,1-None s = prot_ser.get("SPREPPULSES.UCINVERSION", "") if s == "0x1": params["number_inversions"] = 1 elif s == "0x2": params["number_inversions"] = 0 # else: # params["number_inversions"] doesn't get set at all. # This matches the behavior of the IDL code. Note that # params["number_inversions"] is also populated # unconditionally in code many lines above. if sequence_filename in ("svs_se", "svs_st", "fid", "fid3", "fid_var", "csi_se", "csi_st", "csi_fid", "csi_fidvar", "epsi"): # [IDL] FOR EPSI Measure_size and Data_size parameters are the same params["region_dimension_line"] = \ params["image_dimension_line"] params["region_dimension_column"] = \ params["image_dimension_column"] params["ft_scale_factor"] = "1.0" params["data_size_line"] = \ int(prot_ser.get('sKSpace.lPhaseEncodingLines', 0)) params["data_size_column"] = \ int(prot_ser.get('sKSpace.lBaseResolution', 0)) * readout_os params["data_size_partition"] = \ int(prot_ser.get('sKSpace.lPartitions', 0)) params["measure_size_line"] = params["data_size_line"] measure_size_column = params["data_size_column"] measure_size_partition = params["data_size_partition"] index = 0 if ((int(dataset.get("InstanceNumber", 0)) % 2) == 1) else 1 echo_time = float(prot_ser.get('alTE[%d]' % index, 0)) / 1000 repetition_time_1 = float(prot_ser.get('alTR[%d]' % index, 0)) / 1000 params["echo_time"] = str(echo_time) params["repetition_time_1"] = str(repetition_time_1) dwelltime = float(ptag_img.get("RealDwellTime", 0.0)) if dwelltime and base_resolution: sweep_width = 1 / (dwelltime * base_resolution * readout_os) else: sweep_width = "" params["sweep_width"] = sweep_width # Added by BTA ip_rot = prot_ser.get("sSliceArray.asSlice[0].dInPlaneRot", None) pol_swap = prot_ser.get("sWipMemBlock.alFree[40]", None) if ip_rot: try: ip_rot = float(ip_rot) params["in_plane_rotation"] = ip_rot except Exception, e: pass if pol_swap: try: pol_swap = int(pol_swap) params["polarity_swap"] = pol_swap except Exception, e: raise e return params def _my_assert(expression): if ASSERTIONS_ENABLED: assert(expression) def _dicom_orientation_string(normal): """Given a 3-item list (or other iterable) that represents a normal vector to the "imaging" plane, this function determines the orientation of the vector in 3-dimensional space. It returns a tuple of (angle, orientation) in which angle is e.g. "Tra" or "Tra>Cor -6" or "Tra>Sag 14.1 >Cor 9.3" and orientation is e.g. "Sag" or "Cor-Tra". For double angulation, errors in secondary angle occur that may be due to rounding errors in internal Siemens software, which calculates row and column vectors. """ # docstring paraphrases IDL comments TOLERANCE = 1.e-4 orientations = ('Sag', 'Cor', 'Tra') final_angle = "" final_orientation = "" # [IDL] evaluate orientation of normal vector: # # Find principal direction of normal vector (i.e. axis with its largest # component) # Find secondary direction (second largest component) # Calc. angle btw. projection of normal vector into the plane that # includes both principal and secondary directions on the one hand # and the principal direction on the other hand ==> 1st angulation: # "principal>secondary = angle" # Calc. angle btw. projection into plane perpendicular to principal # direction on the one hand and secondary direction on the other # hand ==> 2nd angulation: "secondary>third dir. = angle" # get principal, secondary and ternary directions sorted_normal = sorted(normal) for i, value in enumerate(normal): if value == sorted_normal[2]: # [IDL] index of principal direction principal = i if value == sorted_normal[1]: # [IDL] index of secondary direction secondary = i if value == sorted_normal[0]: # [IDL] index of ternary direction ternary = i # [IDL] calc. angle between projection into third plane (spawned by # principle & secondary directions) and principal direction: angle_1 = math.atan2(normal[secondary], normal[principal]) * \ constants.RADIANS_TO_DEGREES # [IDL] calc. angle btw. projection on rotated principle direction and # secondary direction: # projection on rotated principle dir. new_normal_ip = math.sqrt((normal[principal] ** 2) + (normal[secondary] ** 2)) angle_2 = math.atan2(normal[ternary], new_normal_ip) * \ constants.RADIANS_TO_DEGREES # [IDL] SIEMENS notation requires modifications IF principal dir. indxs SAG ! # [PS] In IDL, indxs is the name of the variable that is "secondary" here. # Even with that substitution, I don't understand the comment above. if not principal: if abs(angle_1) > 0: sign1 = angle_1 / abs(angle_1) else: sign1 = 1.0 angle_1 -= (sign1 * 180.0) angle_2 *= -1 if (abs(angle_2) < TOLERANCE) or (abs(abs(angle_2) - 180) < TOLERANCE): if (abs(angle_1) < TOLERANCE) or (abs(abs(angle_1) - 180) < TOLERANCE): # [IDL] NON-OBLIQUE: final_angle = orientations[principal] final_orientation = ang else: # [IDL] SINGLE-OBLIQUE: final_angle = "%s>%s %.3f" % \ (orientations[principal], orientations[secondary], (-1 * angle_1) ) final_orientation = orientations[principal] + '-' + orientations[secondary] else: # [IDL] DOUBLE-OBLIQUE: final_angle = "%s>%s %.3f >%s %f" % \ (orientations[principal], orientations[secondary], (-1 * angle_1), orientations[ternary], (-1 * angle_2)) final_orientation = "%s-%s-%s" % \ (orientations[principal], orientations[secondary], orientations[ternary]) return final_angle, final_orientation def _float(value): """Attempts to return value as a float. No different from Python's built-in float(), except that it accepts None and "" (for which it returns 0.0). """ return float(value) if value else 0.0 def _extract_from_quotes(s): """Given a string, returns the portion between the first and last double quote (ASCII 34). If there aren't at least two quote characters, the original string is returned.""" start = s.find('"') end = s.rfind('"') if (start != -1) and (end != -1): s = s[start + 1 : end] return s def _null_truncate(s): """Given a string, returns a version truncated at the first '\0' if there is one. If not, the original string is returned.""" i = s.find(chr(0)) if i != -1: s = s[:i] return s def _scrub(item): """Given a string, returns a version truncated at the first '\0' and stripped of leading/trailing whitespace. If the param is not a string, it is returned unchanged.""" if isinstance(item, basestring): return _null_truncate(item).strip() else: return item def _get_chunks(tag, index, format, little_endian=True): """Given a CSA tag string, an index into that string, and a format specifier compatible with Python's struct module, returns a tuple of (size, chunks) where size is the number of bytes read and chunks are the data items returned by struct.unpack(). Strings in the list of chunks have been run through _scrub(). """ # The first character of the format string indicates endianness. format = ('<' if little_endian else '>') + format size = struct.calcsize(format) chunks = struct.unpack(format, tag[index:index + size]) chunks = [_scrub(item) for item in chunks] return (size, chunks) def _parse_protocol_data(protocol_data): """Returns a dictionary containing the name/value pairs inside the "ASCCONV" section of the MrProtocol or MrPhoenixProtocol elements of a Siemens CSA Header tag. """ # Protocol_data is a large string (e.g. 32k) that lists a lot of # variables in a JSONish format with which I'm not familiar. Following # that there's another chunk of data delimited by the strings you see # below. # That chunk is a list of name=value pairs, INI file style. We # ignore everything outside of the ASCCONV delimiters. Everything inside # we parse and return as a dictionary. start = protocol_data.find("### ASCCONV BEGIN ###") end = protocol_data.find("### ASCCONV END ###") _my_assert(start != -1) _my_assert(end != -1) start += len("### ASCCONV BEGIN ###") protocol_data = protocol_data[start:end] lines = protocol_data.split('\n') # The two lines of code below turn the 'lines' list into a list of # (name, value) tuples in which name & value have been stripped and # all blank lines have been discarded. f = lambda pair: (pair[0].strip(), pair[1].strip()) lines = [f(line.split('=')) for line in lines if '=' in line] return dict(lines) def _get(dataset, tag, default=None): """Returns the value of a dataset tag, or the default if the tag isn't in the dataset. PyDicom datasets already have a .get() method, but it returns a dicom.DataElement object. In practice it's awkward to call dataset.get() and then figure out if the result is the default or a DataElement, and if it is the latter _get the .value attribute. This function allows me to avoid all that mess. It is also a workaround for this bug (which I submitted) which should be fixed in PyDicom > 0.9.3: http://code.google.com/p/pydicom/issues/detail?id=72 """ return default if tag not in dataset else dataset[tag].value def _parse_csa_header(tag, little_endian = True): """The CSA header is a Siemens private tag that should be passed as a string. Any of the following tags should work: (0x0029, 0x1010), (0x0029, 0x1210), (0x0029, 0x1110), (0x0029, 0x1020), (0x0029, 0x1220), (0x0029, 0x1120). The function returns a dictionary keyed by element name. """ # Let's have a bit of fun, shall we? A Siemens CSA header is a mix of # binary glop, ASCII, binary masquerading as ASCII, and noise masquerading # as signal. It's also undocumented, so there's no specification to which # to refer. # The format is a good one to show to anyone who complains about XML being # verbose or hard to read. Spend an afternoon with this and XML will # look terse and read like a Shakespearean sonnet. # The algorithm below is a translation of the GDCM project's # CSAHeader::LoadFromDataElement() inside gdcmCSAHeader.cxx. I don't know # how that code's author figured out what's in a CSA header, but the # code works. # I added comments and observations, but they're inferences. I might # be wrong. YMMV. # Some observations -- # - If you need to debug this code, a hexdump of the tag data will be # your best friend. # - The data in the tag is a list of elements, each of which contains # zero or more subelements. The subelements can't be further divided # and are either empty or contain a string. # - Everything begins on four byte boundaries. # - This code will break on big endian data. I don't know if this data # can be big endian, and if that's possible I don't know what flag to # read to indicate that. However, it's easy to pass an endianness flag # to _get_chunks() should the need to parse big endian data arise. # - Delimiters are thrown in here and there; they are 0x4d = 77 which is # ASCII 'M' and 0xcd = 205 which has no ASCII representation. # - Strings in the data are C-style NULL terminated. # I sometimes read delimiters as strings and sometimes as longs. DELIMITERS = ("M", "\xcd", 0x4d, 0xcd) # This dictionary of elements is what this function returns elements = { } # I march through the tag data byte by byte (actually a minimum of four # bytes at a time), and current points to my current position in the tag # data. current = 0 # The data starts with "SV10" followed by 0x04, 0x03, 0x02, 0x01. # It's meaningless to me, so after reading it, I discard it. size, chunks = _get_chunks(tag, current, "4s4s") current += size _my_assert(chunks[0] == "SV10") _my_assert(chunks[1] == "\4\3\2\1") # get the number of elements in the outer list size, chunks = _get_chunks(tag, current, "L") current += size element_count = chunks[0] # Eat a delimiter (should be 0x77) size, chunks = _get_chunks(tag, current, "4s") current += size _my_assert(chunks[0] in DELIMITERS) for i in range(element_count): # Each element looks like this: # - (64 bytes) Element name, e.g. ImagedNucleus, NumberOfFrames, # VariableFlipAngleFlag, MrProtocol, etc. Only the data up to the # first 0x00 is important. The rest is helpfully populated with # noise that has enough pattern to make it look like something # other than the garbage that it is. # - (4 bytes) VM # - (4 bytes) VR # - (4 bytes) syngo_dt # - (4 bytes) # of subelements in this element (often zero) # - (4 bytes) a delimiter (0x4d or 0xcd) size, chunks = _get_chunks(tag, current, "64s" + "4s" + "4s" + "4s" + "L" + "4s") current += size name, vm, vr, syngo_dt, subelement_count, delimiter = chunks _my_assert(delimiter in DELIMITERS) # The subelements hold zero or more strings. Those strings are stored # temporarily in the values list. values = [ ] for j in range(subelement_count): # Each subelement looks like this: # - (4 x 4 = 16 bytes) Call these four bytes A, B, C and D. For # some strange reason, C is always a delimiter, while A, B and # D are always equal to one another. They represent the length # of the associated data string. # - (n bytes) String data, the length of which is defined by # A (and A == B == D). # - (m bytes) Padding if length is not an even multiple of four. size, chunks = _get_chunks(tag, current, "4L") current += size _my_assert(chunks[0] == chunks[1]) _my_assert(chunks[1] == chunks[3]) _my_assert(chunks[2] in DELIMITERS) length = chunks[0] # get a chunk-o-stuff, length indicated by code above. # Note that length can be 0. size, chunks = _get_chunks(tag, current, "%ds" % length) current += size if chunks[0]: values.append(chunks[0]) # If we're not at a 4 byte boundary, move. # Clever modulus code below swiped from GDCM current += (4 - (length % 4)) % 4 # The value becomes a single string item (possibly "") or a list # of strings if len(values) == 0: values = "" if len(values) == 1: values = values[0] _my_assert(name not in elements) elements[name] = values return elements
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from collections import OrderedDict def workspace_list_table_format(result): """Format workspace list as a table""" table = [] for item in result: table.append(workspace_show_table_format(item)) return table def workspace_show_table_format(workspace): """Format the workspace as a table""" row = OrderedDict() row['Name'] = workspace['name'] row['Resource Group'] = workspace['resourceGroup'] row['Location'] = workspace['location'] row['State'] = workspace['provisioningState'] return row def cluster_list_table_format(result): """Format cluster list as a table.""" table = [] for item in result: table.append(cluster_show_table_format(item)) return table def cluster_show_table_format(result): """Format cluster as a table.""" from msrestazure.tools import parse_resource_id row = OrderedDict() row['Name'] = result['name'] row['Resource Group'] = result['resourceGroup'] row['Workspace'] = parse_resource_id(result['id'])['name'] row['VM Size'] = result['vmSize'] if result['provisioningState'] == 'deleting': row['State'] = 'deleting' else: row['State'] = result['allocationState'] row['Idle'] = str(result['nodeStateCounts']['idleNodeCount']) row['Running'] = str(result['nodeStateCounts']['runningNodeCount']) row['Preparing'] = str(result['nodeStateCounts']['preparingNodeCount']) row['Leaving'] = str(result['nodeStateCounts']['leavingNodeCount']) row['Unusable'] = str(result['nodeStateCounts']['unusableNodeCount']) return row def experiment_list_table_format(result): """Format experiment list as a table""" table = [] for item in result: table.append(experiment_show_table_format(item)) return table def experiment_show_table_format(experiment): """Format the experiment as a table""" from msrestazure.tools import parse_resource_id row = OrderedDict() row['Name'] = experiment['name'] row['Resource Group'] = experiment['resourceGroup'] row['Workspace'] = parse_resource_id(experiment['id'])['name'] row['State'] = experiment['provisioningState'] return row def job_list_table_format(result): """Format job list as a table.""" table = [] for item in result: table.append(job_show_table_format(item)) return table def job_show_table_format(job): """Format job as a table.""" from msrestazure.tools import parse_resource_id row = OrderedDict() row['Name'] = job['name'] cluster = parse_resource_id(job['cluster']['id']) row['Cluster'] = cluster['resource_name'] row['Cluster RG'] = job['cluster']['resourceGroup'] row['Cluster Workspace'] = cluster['name'] row['Tool'] = job['toolType'] row['Nodes'] = job['nodeCount'] if job['provisioningState'] == 'deleting': row['State'] = 'deleting' else: row['State'] = job['executionState'] if job['executionInfo'] and \ job['executionInfo']['exitCode'] is not None: row['Exit code'] = str(job['executionInfo']['exitCode']) else: row['Exit code'] = '' return row def file_list_table_format(result): """Format file list as a table.""" table = [] for item in result: row = OrderedDict() row['Name'] = item['name'] row['Type'] = item['fileType'] row['Size'] = '' if item['fileType'] == 'directory' else str(item['contentLength']) row['Modified'] = item['lastModified'] or ' ' table.append(row) return table def file_server_list_table_format(result): """Format file server list as a table.""" table = [] for item in result: table.append(file_server_show_table_format(item)) return table def file_server_show_table_format(result): """Format file server list as a table.""" row = OrderedDict() row['Name'] = result['name'] row['Resource Group'] = result['resourceGroup'] row['Size'] = result['vmSize'] disks = result['dataDisks'] if disks: row['Disks'] = '{0} x {1} Gb'.format(disks['diskCount'], disks['diskSizeInGb']) mount_settings = result['mountSettings'] if mount_settings: row['Public IP'] = mount_settings['fileServerPublicIp'] row['Internal IP'] = mount_settings['fileServerInternalIp'] row['Mount Point'] = mount_settings['mountPoint'] return row def remote_login_table_format(result): """Format remote login info list as a table.""" table = [] for item in result: row = OrderedDict() row['ID'] = item['nodeId'] row['IP'] = item['ipAddress'] row['SSH Port'] = int(item['port']) table.append(row) return table def usage_table_format(result): """Format usage information as a table.""" table = [] for item in result: row = OrderedDict() row['Value'] = item['name']['localizedValue'] row['Usage'] = item['currentValue'] or "0" row['Limit'] = item['limit'] or "0" table.append(row) return table def node_setup_files_list_table_format(result): """Format list of node setup task files""" table = [] for item in result: row = OrderedDict() row['Name'] = item['name'] row['Is directory'] = 'yes' if item['is_directory'] else 'no' row['Size'] = '' if item['size'] is None else (item['size'] or '0') table.append(row) return table
from dppy.beta_ensembles import LaguerreEnsemble laguerre = LaguerreEnsemble(beta=1) # beta in {0,1,2,4}, default beta=2 laguerre.sample_full_model(size_N=500, size_M=800) # M >= N # laguerre.plot(normalization=True) laguerre.hist(normalization=True) # To compare with the sampling speed of the tridiagonal model simply use # laguerre.sample_banded_model(size_N=500, size_M=800)
import matplotlib.pyplot as plt import numpy as np from numpy import linalg as LA def parametersForGx(mu,covmatrix): inverse = np.linalg.inv(covmatrix) (sign, logdet) = np.linalg.slogdet(covmatrix) Wi = -0.5 * (inverse) wi = inverse.dot(mu) print('--------------') print(logdet) print(mu.T.dot(inverse).dot(mu)) wi0 = -0.5*( mu.T.dot(inverse).dot(mu) + logdet ) print('--------------') return Wi,wi,wi0 w1traindata = np.array([ [0,0], [0,1], [2,0], [3,2], [3,3], [2,2], [2,0] ]) w2traindata = np.array([ [7,7], [8,6], [9,7], [8,10], [7,10], [8,9], [7,11] ]) w1mean = np.mean(w1traindata, axis=0) w1cov = (w1traindata - w1mean).T.dot((w1traindata - w1mean)) / (w1traindata.shape[0]-1) W1,w1,w10 = parametersForGx(w1mean,w1cov) print(W1) print(w1) print(w10) print('----------') w2mean = np.mean(w2traindata, axis=0) w2cov = (w2traindata - w2mean).T.dot((w2traindata - w2mean)) / (w2traindata.shape[0]-1) W2,w2,w20 = parametersForGx(w2mean,w2cov) print(W2) print(w2) print(w20) plt.scatter(w1traindata.T[0], w1traindata.T[1], label= "classA", color= "green", s=10) plt.scatter(w2traindata.T[0], w2traindata.T[1], label= "classB", color= "red", s=10) plt.legend() plt.title("Plot with both the decision boundary, one in cyan and one in pink. almost similiar just shifted by log2") # plt.show() delta = 0.025 xrange = np.arange(-10.0, 70.0, delta) yrange = np.arange(-10.0, 70.0, delta) X, Y = np.meshgrid(xrange,yrange) F = 16637*X**2 + 25932*X*Y - 9093 * Y**2 - 549468 * X - 156042 * Y + 2844200 import matplotlib.pyplot matplotlib.pyplot.contour(X, Y, (F + np.log(2)), [0], colors=['pink']) matplotlib.pyplot.contour(X, Y, (F), [0], colors=['cyan'],) matplotlib.pyplot.show() # def discr_func(x, cov_mat, mu_vec): # print('Entering') # x_vec = np.array([[x],[y]]) # W_i = (-1/2) * np.linalg.inv(cov_mat) # w_i = np.linalg.inv(cov_mat).dot(mu_vec) # omega_i_p1 = (((-1/2) * (mu_vec).T).dot(np.linalg.inv(cov_mat))).dot(mu_vec) # omega_i_p2 = (-1/2) * np.log(np.linalg.det(cov_mat)) # omega_i = omega_i_p1 - omega_i_p2 # g = ((x_vec.T).dot(W_i)).dot(x_vec) + (w_i.T).dot(x_vec) + omega_i # # print('g is', g) # return g # def decision_boundary(x_vec, mu_vec, mu_vec2): # g1 = () # g2 = 2*( (x_vec-mu_vec2).T.dot((x_vec-mu_vec2)) ) # return g1 - g2
from direct.directnotify.DirectNotifyGlobal import directNotify from direct.distributed.DistributedObjectGlobalUD import DistributedObjectGlobalUD from direct.distributed.PyDatagram import * from direct.fsm.FSM import FSM from otp.ai.MagicWordGlobal import * from otp.distributed import OtpDoGlobals from toontown.makeatoon.NameGenerator import NameGenerator from toontown.toon.ToonDNA import ToonDNA from toontown.toonbase import TTLocalizer from toontown.uberdog import NameJudgeBlacklist from panda3d.core import * import hashlib, hmac, json import anydbm, math, os import urllib2, time, urllib import cookielib, socket def rejectConfig(issue, securityIssue=True, retarded=True): print print print 'Lemme get this straight....' print 'You are trying to use remote account database type...' print 'However,', issue + '!!!!' if securityIssue: print 'Do you want this server to get hacked?' if retarded: print '"Either down\'s or autism"\n - JohnnyDaPirate, 2015' print 'Go fix that!' exit() def entropy(string): prob = [float(string.count(c)) / len(string) for c in dict.fromkeys(list(string))] entropy = -sum([p * math.log(p) / math.log(2.0) for p in prob]) return entropy def entropyIdeal(length): prob = 1.0 / length return -length * prob * math.log(prob) / math.log(2.0) accountDBType = config.GetString('accountdb-type', 'developer') accountServerSecret = config.GetString('account-server-secret', 'dev') accountServerHashAlgo = config.GetString('account-server-hash-algo', 'sha512') apiSecret = accountServerSecret = config.GetString('api-key', 'dev') if accountDBType == 'remote': if accountServerSecret == 'dev': rejectConfig('you have not changed the secret in config/local.prc') if apiSecret == 'dev': rejectConfig('you have not changed the api key in config/local.prc') if len(accountServerSecret) < 16: rejectConfig('the secret is too small! Make it 16+ bytes', retarded=False) secretLength = len(accountServerSecret) ideal = entropyIdeal(secretLength) / 2 entropy = entropy(accountServerSecret) if entropy < ideal: rejectConfig('the secret entropy is too low! For %d bytes,' ' it should be %d. Currently it is %d' % (secretLength, ideal, entropy), retarded=False) hashAlgo = getattr(hashlib, accountServerHashAlgo, None) if not hashAlgo: rejectConfig('%s is not a valid hash algo' % accountServerHashAlgo, securityIssue=False) hashSize = len(hashAlgo('').digest()) minAccessLevel = config.GetInt('min-access-level', 100) def executeHttpRequest(url, **extras): # TO DO: THIS IS QUITE DISGUSTING # MOVE THIS TO ToontownInternalRepository (this might be interesting for AI) ##### USE PYTHON 2.7.9 ON PROD WITH SSL AND CLOUDFLARE ##### _data = {} if len(extras.items()) != 0: for k, v in extras.items(): _data[k] = v signature = hashlib.sha512(json.dumps(_data) + apiSecret).hexdigest() data = urllib.urlencode({'data': json.dumps(_data), 'hmac': signature}) cookie_jar = cookielib.LWPCookieJar() cookie = urllib2.HTTPCookieProcessor(cookie_jar) opener = urllib2.build_opener(cookie) req = urllib2.Request('http://192.168.1.212/api/' + url, data, headers={"Content-Type" : "application/x-www-form-urlencoded"}) req.get_method = lambda: "POST" try: return opener.open(req).read() except: return None notify = directNotify.newCategory('ClientServicesManagerUD') def executeHttpRequestAndLog(url, **extras): # SEE ABOVE response = executeHttpRequest(url, extras) if response is None: notify.error('A request to ' + url + ' went wrong.') return None try: data = json.loads(response) except: notify.error('Malformed response from ' + url + '.') return None if 'error' in data: notify.warning('Error from ' + url + ':' + data['error']) return data #blacklist = executeHttpRequest('names/blacklist.json') # todo; create a better system for this blacklist = json.dumps(["none"]) if blacklist: blacklist = json.loads(blacklist) def judgeName(name): if not name: return False if blacklist: for namePart in name.split(' '): namePart = namePart.lower() if len(namePart) < 1: return False for banned in blacklist: if banned in namePart: return False return True # --- ACCOUNT DATABASES --- # These classes make up the available account databases for Toontown Stride. # DeveloperAccountDB is a special database that accepts a username, and assigns # each user with 700 access automatically upon login. class AccountDB: notify = directNotify.newCategory('AccountDB') def __init__(self, csm): self.csm = csm filename = config.GetString('account-bridge-filename', 'account-bridge.db') filename = os.path.join('dependencies', filename) self.dbm = anydbm.open(filename, 'c') def addNameRequest(self, avId, name, accountID = None): return True def getNameStatus(self, accountId, callback = None): return 'APPROVED' def removeNameRequest(self, avId): pass def lookup(self, data, callback): userId = data['userId'] data['success'] = True data['accessLevel'] = max(data['accessLevel'], minAccessLevel) if str(userId) not in self.dbm: data['accountId'] = 0 else: data['accountId'] = int(self.dbm[str(userId)]) callback(data) return data def storeAccountID(self, userId, accountId, callback): self.dbm[str(userId)] = str(accountId) # anydbm only allows strings. if getattr(self.dbm, 'sync', None): self.dbm.sync() callback(True) else: self.notify.warning('Unable to associate user %s with account %d!' % (userId, accountId)) callback(False) class DeveloperAccountDB(AccountDB): notify = directNotify.newCategory('DeveloperAccountDB') def lookup(self, userId, callback): return AccountDB.lookup(self, {'userId': userId, 'accessLevel': 700, 'notAfter': 0}, callback) class RemoteAccountDB: # TO DO FOR NAMES: # CURRENTLY IT MAKES n REQUESTS FOR EACH AVATAR # IN THE FUTURE, MAKE ONLY 1 REQUEST # WHICH RETURNS ALL PENDING AVS # ^ done, check before removing todo note notify = directNotify.newCategory('RemoteAccountDB') def __init__(self, csm): self.csm = csm def addNameRequest(self, avId, name, accountID = None): username = avId if accountID is not None: username = accountID res = executeHttpRequest('names', action='set', username=str(username), avId=str(avId), wantedName=name) if res is not None: return True return False def getNameStatus(self, accountId, callback = None): r = executeHttpRequest('names', action='get', username=str(accountId)) try: r = json.loads(r) if callback is not None: callback(r) return True except: return False def removeNameRequest(self, avId): r = executeHttpRequest('names', action='del', avId=str(avId)) if r: return 'SUCCESS' return 'FAILURE' def lookup(self, token, callback): ''' Token format: The token is obfuscated a bit, but nothing too hard to read. Most of the security is based on the hash. I. Data contained in a token: A json-encoded dict, which contains timestamp, userid and extra info II. Token format X = BASE64(ROT13(DATA)[::-1]) H = HASH(X)[::-1] Token = BASE64(H + X) ''' cookie_check = executeHttpRequest('cookie', cookie=token) try: check = json.loads(cookie_check) if check['success'] is not True: raise ValueError(check['error']) token = token.decode('base64') hash, token = token[:hashSize], token[hashSize:] correctHash = hashAlgo(token + accountServerSecret).digest() if len(hash) != len(correctHash): raise ValueError('Invalid hash.') value = 0 for x, y in zip(hash[::-1], correctHash): value |= ord(x) ^ ord(y) if value: raise ValueError('Invalid hash.') token = json.loads(token.decode('base64')[::-1].decode('rot13')) if token['notAfter'] < int(time.time()): raise ValueError('Expired token.') except: resp = {'success': False} callback(resp) return resp return self.account_lookup(token, callback) def account_lookup(self, data, callback): data['success'] = True data['accessLevel'] = max(data['accessLevel'], minAccessLevel) data['accountId'] = int(data['accountId']) callback(data) return data def storeAccountID(self, userId, accountId, callback): r = executeHttpRequest('associateuser', username=str(userId), accountId=str(accountId)) try: r = json.loads(r) if r['success']: callback(True) else: self.notify.warning('Unable to associate user %s with account %d, got the return message of %s!' % (userId, accountId, r['error'])) callback(False) except: self.notify.warning('Unable to associate user %s with account %d!' % (userId, accountId)) callback(False) # --- FSMs --- class OperationFSM(FSM): TARGET_CONNECTION = False def __init__(self, csm, target): self.csm = csm self.target = target FSM.__init__(self, self.__class__.__name__) def enterKill(self, reason=''): if self.TARGET_CONNECTION: self.csm.killConnection(self.target, reason) else: self.csm.killAccount(self.target, reason) self.demand('Off') def enterOff(self): if self.TARGET_CONNECTION: del self.csm.connection2fsm[self.target] else: del self.csm.account2fsm[self.target] class LoginAccountFSM(OperationFSM): notify = directNotify.newCategory('LoginAccountFSM') TARGET_CONNECTION = True def enterStart(self, token): self.token = token self.demand('QueryAccountDB') def enterQueryAccountDB(self): self.csm.accountDB.lookup(self.token, self.__handleLookup) def __handleLookup(self, result): if not result.get('success'): self.csm.air.writeServerEvent('tokenRejected', self.target, self.token) self.demand('Kill', result.get('reason', 'The account server rejected your token.')) return self.userId = result.get('userId', 0) self.accountId = result.get('accountId', 0) self.accessLevel = result.get('accessLevel', 0) self.notAfter = result.get('notAfter', 0) if self.accountId: self.demand('RetrieveAccount') else: self.demand('CreateAccount') def enterRetrieveAccount(self): self.csm.air.dbInterface.queryObject( self.csm.air.dbId, self.accountId, self.__handleRetrieve) def __handleRetrieve(self, dclass, fields): if dclass != self.csm.air.dclassesByName['AccountUD']: self.demand('Kill', 'Your account object was not found in the database!') return self.account = fields if self.notAfter: if self.account.get('LAST_LOGIN_TS', 0) > self.notAfter: self.notify.debug('Rejecting old token: %d, notAfter=%d' % (self.account.get('LAST_LOGIN_TS', 0), self.notAfter)) return self.__handleLookup({'success': False}) self.demand('SetAccount') def enterCreateAccount(self): self.account = { 'ACCOUNT_AV_SET': [0] * 6, 'ESTATE_ID': 0, 'ACCOUNT_AV_SET_DEL': [], 'CREATED': time.ctime(), 'LAST_LOGIN': time.ctime(), 'LAST_LOGIN_TS': time.time(), 'ACCOUNT_ID': str(self.userId), 'ACCESS_LEVEL': self.accessLevel, 'CHAT_SETTINGS': [1, 1] } self.csm.air.dbInterface.createObject( self.csm.air.dbId, self.csm.air.dclassesByName['AccountUD'], self.account, self.__handleCreate) def __handleCreate(self, accountId): if self.state != 'CreateAccount': self.notify.warning('Received a create account response outside of the CreateAccount state.') return if not accountId: self.notify.warning('Database failed to construct an account object!') self.demand('Kill', 'Your account object could not be created in the game database.') return self.accountId = accountId self.csm.air.writeServerEvent('accountCreated', accountId) self.demand('StoreAccountID') def enterStoreAccountID(self): self.csm.accountDB.storeAccountID( self.userId, self.accountId, self.__handleStored) def __handleStored(self, success=True): if not success: self.demand('Kill', 'The account server could not save your user ID!') return self.demand('SetAccount') def enterSetAccount(self): # If necessary, update their account information: if self.accessLevel: self.csm.air.dbInterface.updateObject( self.csm.air.dbId, self.accountId, self.csm.air.dclassesByName['AccountUD'], {'ACCESS_LEVEL': self.accessLevel}) # If there's anybody on the account, kill them for redundant login: datagram = PyDatagram() datagram.addServerHeader( self.csm.GetAccountConnectionChannel(self.accountId), self.csm.air.ourChannel, CLIENTAGENT_EJECT) datagram.addUint16(100) datagram.addString('This account has been logged in from elsewhere.') self.csm.air.send(datagram) # Next, add this connection to the account channel. datagram = PyDatagram() datagram.addServerHeader( self.target, self.csm.air.ourChannel, CLIENTAGENT_OPEN_CHANNEL) datagram.addChannel(self.csm.GetAccountConnectionChannel(self.accountId)) self.csm.air.send(datagram) # Subscribe to any "staff" channels that the account has access to. access = self.account.get('ADMIN_ACCESS', 0) if access >= 200: # Subscribe to the moderator channel. dg = PyDatagram() dg.addServerHeader(self.target, self.csm.air.ourChannel, CLIENTAGENT_OPEN_CHANNEL) dg.addChannel(OtpDoGlobals.OTP_MOD_CHANNEL) self.csm.air.send(dg) if access >= 400: # Subscribe to the administrator channel. dg = PyDatagram() dg.addServerHeader(self.target, self.csm.air.ourChannel, CLIENTAGENT_OPEN_CHANNEL) dg.addChannel(OtpDoGlobals.OTP_ADMIN_CHANNEL) self.csm.air.send(dg) if access >= 500: # Subscribe to the system administrator channel. dg = PyDatagram() dg.addServerHeader(self.target, self.csm.air.ourChannel, CLIENTAGENT_OPEN_CHANNEL) dg.addChannel(OtpDoGlobals.OTP_SYSADMIN_CHANNEL) self.csm.air.send(dg) # Now set their sender channel to represent their account affiliation: datagram = PyDatagram() datagram.addServerHeader( self.target, self.csm.air.ourChannel, CLIENTAGENT_SET_CLIENT_ID) # Account ID in high 32 bits, 0 in low (no avatar): datagram.addChannel(self.accountId << 32) self.csm.air.send(datagram) # Un-sandbox them! datagram = PyDatagram() datagram.addServerHeader( self.target, self.csm.air.ourChannel, CLIENTAGENT_SET_STATE) datagram.addUint16(2) # ESTABLISHED self.csm.air.send(datagram) # Update the last login timestamp: self.csm.air.dbInterface.updateObject( self.csm.air.dbId, self.accountId, self.csm.air.dclassesByName['AccountUD'], {'LAST_LOGIN': time.ctime(), 'LAST_LOGIN_TS': time.time(), 'ACCOUNT_ID': str(self.userId)}) # We're done. self.csm.air.writeServerEvent('accountLogin', self.target, self.accountId, self.userId) self.csm.sendUpdateToChannel(self.target, 'acceptLogin', [int(time.time())]) self.demand('Off') class CreateAvatarFSM(OperationFSM): notify = directNotify.newCategory('CreateAvatarFSM') def enterStart(self, dna, index): # Basic sanity-checking: if index >= 6: self.demand('Kill', 'Invalid index specified!') return if not ToonDNA().isValidNetString(dna): self.demand('Kill', 'Invalid DNA specified!') return self.index = index self.dna = dna # Okay, we're good to go, let's query their account. self.demand('RetrieveAccount') def enterRetrieveAccount(self): self.csm.air.dbInterface.queryObject( self.csm.air.dbId, self.target, self.__handleRetrieve) def __handleRetrieve(self, dclass, fields): if dclass != self.csm.air.dclassesByName['AccountUD']: self.demand('Kill', 'Your account object was not found in the database!') return self.account = fields # For use in calling name requests: self.accountID = self.account['ACCOUNT_ID'] self.avList = self.account['ACCOUNT_AV_SET'] # Sanitize: self.avList = self.avList[:6] self.avList += [0] * (6-len(self.avList)) # Make sure the index is open: if self.avList[self.index]: self.demand('Kill', 'This avatar slot is already taken by another avatar!') return # Okay, there's space. Let's create the avatar! self.demand('CreateAvatar') def enterCreateAvatar(self): dna = ToonDNA() dna.makeFromNetString(self.dna) colorString = TTLocalizer.ColorfulToon animalType = TTLocalizer.AnimalToSpecies[dna.getAnimal()] name = ' '.join((colorString, animalType)) toonFields = { 'setName': (name,), 'setWishNameState': ('OPEN',), 'setWishName': ('',), 'setDNAString': (self.dna,), 'setDISLid': (self.target,), } self.csm.air.dbInterface.createObject( self.csm.air.dbId, self.csm.air.dclassesByName['DistributedToonUD'], toonFields, self.__handleCreate) def __handleCreate(self, avId): if not avId: self.demand('Kill', 'Database failed to create the new avatar object!') return self.avId = avId self.demand('StoreAvatar') def enterStoreAvatar(self): # Associate the avatar with the account... self.avList[self.index] = self.avId self.csm.air.dbInterface.updateObject( self.csm.air.dbId, self.target, self.csm.air.dclassesByName['AccountUD'], {'ACCOUNT_AV_SET': self.avList}, {'ACCOUNT_AV_SET': self.account['ACCOUNT_AV_SET']}, self.__handleStoreAvatar) self.accountID = self.account['ACCOUNT_ID'] def __handleStoreAvatar(self, fields): if fields: self.demand('Kill', 'Database failed to associate the new avatar to your account!') return # Otherwise, we're done! self.csm.air.writeServerEvent('avatarCreated', self.avId, self.target, self.dna.encode('hex'), self.index) self.csm.sendUpdateToAccountId(self.target, 'createAvatarResp', [self.avId]) self.demand('Off') class AvatarOperationFSM(OperationFSM): POST_ACCOUNT_STATE = 'Off' # This needs to be overridden. def enterRetrieveAccount(self): # Query the account: self.csm.air.dbInterface.queryObject( self.csm.air.dbId, self.target, self.__handleRetrieve) def __handleRetrieve(self, dclass, fields): if dclass != self.csm.air.dclassesByName['AccountUD']: self.demand('Kill', 'Your account object was not found in the database!') return self.account = fields # For use in calling name requests: self.accountID = self.account['ACCOUNT_ID'] self.avList = self.account['ACCOUNT_AV_SET'] # Sanitize: self.avList = self.avList[:6] self.avList += [0] * (6-len(self.avList)) self.demand(self.POST_ACCOUNT_STATE) class GetAvatarsFSM(AvatarOperationFSM): notify = directNotify.newCategory('GetAvatarsFSM') POST_ACCOUNT_STATE = 'QueryAvatars' def enterStart(self): self.demand('RetrieveAccount') self.nameStateData = None def enterQueryAvatars(self): self.pendingAvatars = set() self.avatarFields = {} for avId in self.avList: if avId: self.pendingAvatars.add(avId) def response(dclass, fields, avId=avId): if self.state != 'QueryAvatars': return if dclass != self.csm.air.dclassesByName['DistributedToonUD']: self.demand('Kill', "One of the account's avatars is invalid!") return self.avatarFields[avId] = fields self.pendingAvatars.remove(avId) if not self.pendingAvatars: self.demand('SendAvatars') self.csm.air.dbInterface.queryObject( self.csm.air.dbId, avId, response) if not self.pendingAvatars: self.demand('SendAvatars') def enterSendAvatars(self): potentialAvs = [] for avId, fields in self.avatarFields.items(): index = self.avList.index(avId) wishNameState = fields.get('setWishNameState', [''])[0] name = fields['setName'][0] nameState = 0 if wishNameState == 'OPEN': nameState = 1 elif wishNameState == 'PENDING': if accountDBType == 'remote': if self.nameStateData is None: self.demand('QueryNameState') return actualNameState = self.nameStateData[str(avId)] else: actualNameState = self.csm.accountDB.getNameStatus(self.account['ACCOUNT_ID']) self.csm.air.dbInterface.updateObject( self.csm.air.dbId, avId, self.csm.air.dclassesByName['DistributedToonUD'], {'setWishNameState': [actualNameState]} ) if actualNameState == 'PENDING': nameState = 2 if actualNameState == 'APPROVED': nameState = 3 name = fields['setWishName'][0] elif actualNameState == 'REJECTED': nameState = 4 elif wishNameState == 'APPROVED': nameState = 3 elif wishNameState == 'REJECTED': nameState = 4 potentialAvs.append([avId, name, fields['setDNAString'][0], index, nameState]) self.csm.sendUpdateToAccountId(self.target, 'setAvatars', [self.account['CHAT_SETTINGS'], potentialAvs]) self.demand('Off') def enterQueryNameState(self): def gotStates(data): self.nameStateData = data taskMgr.doMethodLater(0, GetAvatarsFSM.demand, 'demand-QueryAvatars', extraArgs=[self, 'QueryAvatars']) self.csm.accountDB.getNameStatus(self.account['ACCOUNT_ID'], gotStates) # We should've called the taskMgr action by now. # This inherits from GetAvatarsFSM, because the delete operation ends in a # setAvatars message being sent to the client. class DeleteAvatarFSM(GetAvatarsFSM): notify = directNotify.newCategory('DeleteAvatarFSM') POST_ACCOUNT_STATE = 'ProcessDelete' def enterStart(self, avId): self.avId = avId GetAvatarsFSM.enterStart(self) def enterProcessDelete(self): if self.avId not in self.avList: self.demand('Kill', 'Tried to delete an avatar not in the account!') return index = self.avList.index(self.avId) self.avList[index] = 0 avsDeleted = list(self.account.get('ACCOUNT_AV_SET_DEL', [])) avsDeleted.append([self.avId, int(time.time())]) estateId = self.account.get('ESTATE_ID', 0) if estateId != 0: # This assumes that the house already exists, but it shouldn't # be a problem if it doesn't. self.csm.air.dbInterface.updateObject( self.csm.air.dbId, estateId, self.csm.air.dclassesByName['DistributedEstateAI'], {'setSlot%dToonId' % index: [0], 'setSlot%dGarden' % index: [[]]} ) self.csm.air.dbInterface.updateObject( self.csm.air.dbId, self.target, self.csm.air.dclassesByName['AccountUD'], {'ACCOUNT_AV_SET': self.avList, 'ACCOUNT_AV_SET_DEL': avsDeleted}, {'ACCOUNT_AV_SET': self.account['ACCOUNT_AV_SET'], 'ACCOUNT_AV_SET_DEL': self.account['ACCOUNT_AV_SET_DEL']}, self.__handleDelete) self.csm.accountDB.removeNameRequest(self.avId) def __handleDelete(self, fields): if fields: self.demand('Kill', 'Database failed to mark the avatar as deleted!') return self.csm.air.friendsManager.clearList(self.avId) self.csm.air.writeServerEvent('avatarDeleted', self.avId, self.target) self.demand('QueryAvatars') class SetNameTypedFSM(AvatarOperationFSM): notify = directNotify.newCategory('SetNameTypedFSM') POST_ACCOUNT_STATE = 'RetrieveAvatar' def enterStart(self, avId, name): self.avId = avId self.name = name self.set_account_id = None if self.avId: self.demand('RetrieveAccount') return # Hmm, self.avId was 0. Okay, let's just cut to the judging: self.demand('JudgeName') def enterRetrieveAvatar(self): if self.accountID: self.set_account_id = self.accountID if self.avId and self.avId not in self.avList: self.demand('Kill', 'Tried to name an avatar not in the account!') return self.csm.air.dbInterface.queryObject(self.csm.air.dbId, self.avId, self.__handleAvatar) def __handleAvatar(self, dclass, fields): if dclass != self.csm.air.dclassesByName['DistributedToonUD']: self.demand('Kill', "One of the account's avatars is invalid!") return if fields['setWishNameState'][0] != 'OPEN': self.demand('Kill', 'Avatar is not in a namable state!') return self.demand('JudgeName') def enterJudgeName(self): # Let's see if the name is valid: status = judgeName(self.name) if self.avId and status: if self.csm.accountDB.addNameRequest(self.avId, self.name, accountID=self.set_account_id): self.csm.air.dbInterface.updateObject( self.csm.air.dbId, self.avId, self.csm.air.dclassesByName['DistributedToonUD'], {'setWishNameState': ('PENDING',), 'setWishName': (self.name,)}) else: status = False if self.avId: self.csm.air.writeServerEvent('avatarWishname', self.avId, self.name) self.csm.sendUpdateToAccountId(self.target, 'setNameTypedResp', [self.avId, status]) self.demand('Off') class SetNamePatternFSM(AvatarOperationFSM): notify = directNotify.newCategory('SetNamePatternFSM') POST_ACCOUNT_STATE = 'RetrieveAvatar' def enterStart(self, avId, pattern): self.avId = avId self.pattern = pattern self.demand('RetrieveAccount') def enterRetrieveAvatar(self): if self.avId and self.avId not in self.avList: self.demand('Kill', 'Tried to name an avatar not in the account!') return self.csm.air.dbInterface.queryObject(self.csm.air.dbId, self.avId, self.__handleAvatar) def __handleAvatar(self, dclass, fields): if dclass != self.csm.air.dclassesByName['DistributedToonUD']: self.demand('Kill', "One of the account's avatars is invalid!") return if fields['setWishNameState'][0] != 'OPEN': self.demand('Kill', 'Avatar is not in a namable state!') return self.demand('SetName') def enterSetName(self): # Render the pattern into a string: parts = [] for p, f in self.pattern: part = self.csm.nameGenerator.nameDictionary.get(p, ('', ''))[1] if f: part = part[:1].upper() + part[1:] else: part = part.lower() parts.append(part) parts[2] += parts.pop(3) # Merge 2&3 (the last name) as there should be no space. while '' in parts: parts.remove('') name = ' '.join(parts) self.csm.air.dbInterface.updateObject( self.csm.air.dbId, self.avId, self.csm.air.dclassesByName['DistributedToonUD'], {'setWishNameState': ('',), 'setWishName': ('',), 'setName': (name,)}) self.csm.air.writeServerEvent('avatarNamed', self.avId, name) self.csm.sendUpdateToAccountId(self.target, 'setNamePatternResp', [self.avId, 1]) self.demand('Off') class AcknowledgeNameFSM(AvatarOperationFSM): notify = directNotify.newCategory('AcknowledgeNameFSM') POST_ACCOUNT_STATE = 'GetTargetAvatar' def enterStart(self, avId): self.avId = avId self.demand('RetrieveAccount') def enterGetTargetAvatar(self): # Make sure the target avatar is part of the account: if self.avId not in self.avList: self.demand('Kill', 'Tried to acknowledge name on an avatar not in the account!') return self.csm.air.dbInterface.queryObject(self.csm.air.dbId, self.avId, self.__handleAvatar) def __handleAvatar(self, dclass, fields): if dclass != self.csm.air.dclassesByName['DistributedToonUD']: self.demand('Kill', "One of the account's avatars is invalid!") return # Process the WishNameState change. wishNameState = fields['setWishNameState'][0] wishName = fields['setWishName'][0] name = fields['setName'][0] if wishNameState == 'APPROVED': wishNameState = '' name = wishName wishName = '' self.csm.accountDB.removeNameRequest(self.avId) elif wishNameState == 'REJECTED': wishNameState = 'OPEN' wishName = '' self.csm.accountDB.removeNameRequest(self.avId) else: self.demand('Kill', "Tried to acknowledge name on an avatar in %s state!" % wishNameState) return # Push the change back through: self.csm.air.dbInterface.updateObject( self.csm.air.dbId, self.avId, self.csm.air.dclassesByName['DistributedToonUD'], {'setWishNameState': (wishNameState,), 'setWishName': (wishName,), 'setName': (name,)}, {'setWishNameState': fields['setWishNameState'], 'setWishName': fields['setWishName'], 'setName': fields['setName']}) self.csm.sendUpdateToAccountId(self.target, 'acknowledgeAvatarNameResp', []) self.demand('Off') class LoadAvatarFSM(AvatarOperationFSM): notify = directNotify.newCategory('LoadAvatarFSM') POST_ACCOUNT_STATE = 'GetTargetAvatar' def enterStart(self, avId): self.avId = avId self.demand('RetrieveAccount') def enterGetTargetAvatar(self): # Make sure the target avatar is part of the account: if self.avId not in self.avList: self.demand('Kill', 'Tried to play an avatar not in the account!') return self.csm.air.dbInterface.queryObject(self.csm.air.dbId, self.avId, self.__handleAvatar) def __handleAvatar(self, dclass, fields): if dclass != self.csm.air.dclassesByName['DistributedToonUD']: self.demand('Kill', "One of the account's avatars is invalid!") return self.avatar = fields self.demand('SetAvatar') def enterSetAvatarTask(self, channel, task): # Finally, grant ownership and shut down. datagram = PyDatagram() datagram.addServerHeader( self.avId, self.csm.air.ourChannel, STATESERVER_OBJECT_SET_OWNER) datagram.addChannel(self.target<<32 | self.avId) self.csm.air.send(datagram) # Tell the GlobalPartyManager as well: self.csm.air.globalPartyMgr.avatarJoined(self.avId) fields = self.avatar fields.update({'setAdminAccess': [self.account.get('ACCESS_LEVEL', 100)]}) self.csm.air.friendsManager.addToonData(self.avId, fields) self.csm.air.writeServerEvent('avatarChosen', self.avId, self.target) self.demand('Off') return task.done def enterSetAvatar(self): channel = self.csm.GetAccountConnectionChannel(self.target) # First, give them a POSTREMOVE to unload the avatar, just in case they # disconnect while we're working. datagramCleanup = PyDatagram() datagramCleanup.addServerHeader( self.avId, channel, STATESERVER_OBJECT_DELETE_RAM) datagramCleanup.addUint32(self.avId) datagram = PyDatagram() datagram.addServerHeader( channel, self.csm.air.ourChannel, CLIENTAGENT_ADD_POST_REMOVE) datagram.addString(datagramCleanup.getMessage()) self.csm.air.send(datagram) # Activate the avatar on the DBSS: self.csm.air.sendActivate( self.avId, 0, 0, self.csm.air.dclassesByName['DistributedToonUD'], {'setAdminAccess': [self.account.get('ACCESS_LEVEL', 100)]}) # Next, add them to the avatar channel: datagram = PyDatagram() datagram.addServerHeader( channel, self.csm.air.ourChannel, CLIENTAGENT_OPEN_CHANNEL) datagram.addChannel(self.csm.GetPuppetConnectionChannel(self.avId)) self.csm.air.send(datagram) # Now set their sender channel to represent their account affiliation: datagram = PyDatagram() datagram.addServerHeader( channel, self.csm.air.ourChannel, CLIENTAGENT_SET_CLIENT_ID) datagram.addChannel(self.target<<32 | self.avId) self.csm.air.send(datagram) # Eliminate race conditions. taskMgr.doMethodLater(0.2, self.enterSetAvatarTask, 'avatarTask-%s' % self.avId, extraArgs=[channel], appendTask=True) class UnloadAvatarFSM(OperationFSM): notify = directNotify.newCategory('UnloadAvatarFSM') def enterStart(self, avId): self.avId = avId # We don't even need to query the account, we know the avatar is being played! self.demand('UnloadAvatar') def enterUnloadAvatar(self): channel = self.csm.GetAccountConnectionChannel(self.target) # Tell TTSFriendsManager somebody is logging off: self.csm.air.friendsManager.toonOffline(self.avId) # Clear off POSTREMOVE: datagram = PyDatagram() datagram.addServerHeader( channel, self.csm.air.ourChannel, CLIENTAGENT_CLEAR_POST_REMOVES) self.csm.air.send(datagram) # Remove avatar channel: datagram = PyDatagram() datagram.addServerHeader( channel, self.csm.air.ourChannel, CLIENTAGENT_CLOSE_CHANNEL) datagram.addChannel(self.csm.GetPuppetConnectionChannel(self.avId)) self.csm.air.send(datagram) # Reset sender channel: datagram = PyDatagram() datagram.addServerHeader( channel, self.csm.air.ourChannel, CLIENTAGENT_SET_CLIENT_ID) datagram.addChannel(self.target<<32) self.csm.air.send(datagram) # Unload avatar object: datagram = PyDatagram() datagram.addServerHeader( self.avId, channel, STATESERVER_OBJECT_DELETE_RAM) datagram.addUint32(self.avId) self.csm.air.send(datagram) # Done! self.csm.air.writeServerEvent('avatarUnload', self.avId) self.demand('Off') # --- CLIENT SERVICES MANAGER UBERDOG --- class ClientServicesManagerUD(DistributedObjectGlobalUD): notify = directNotify.newCategory('ClientServicesManagerUD') def announceGenerate(self): DistributedObjectGlobalUD.announceGenerate(self) # These keep track of the connection/account IDs currently undergoing an # operation on the CSM. This is to prevent (hacked) clients from firing up more # than one operation at a time, which could potentially lead to exploitation # of race conditions. self.connection2fsm = {} self.account2fsm = {} # For processing name patterns. self.nameGenerator = NameGenerator() # Temporary HMAC key: self.key = 'c603c5833021ce79f734943f6e662250fd4ecf7432bf85905f71707dc4a9370c6ae15a8716302ead43810e5fba3cf0876bbbfce658e2767b88d916f5d89fd31' # Instantiate our account DB interface: if accountDBType == 'developer': self.accountDB = DeveloperAccountDB(self) elif accountDBType == 'remote': self.accountDB = RemoteAccountDB(self) else: self.notify.error('Invalid accountdb-type: ' + accountDBType) def killConnection(self, connId, reason): datagram = PyDatagram() datagram.addServerHeader( connId, self.air.ourChannel, CLIENTAGENT_EJECT) datagram.addUint16(101) datagram.addString(reason) self.air.send(datagram) def killConnectionFSM(self, connId): fsm = self.connection2fsm.get(connId) if not fsm: self.notify.warning('Tried to kill connection %d for duplicate FSM, but none exists!' % connId) return self.killConnection(connId, 'An operation is already underway: ' + fsm.name) def killAccount(self, accountId, reason): self.killConnection(self.GetAccountConnectionChannel(accountId), reason) def killAccountFSM(self, accountId): fsm = self.account2fsm.get(accountId) if not fsm: self.notify.warning('Tried to kill account %d for duplicate FSM, but none exists!' % accountId) return self.killAccount(accountId, 'An operation is already underway: ' + fsm.name) def runAccountFSM(self, fsmtype, *args): sender = self.air.getAccountIdFromSender() if not sender: self.killAccount(sender, 'Client is not logged in.') if sender in self.account2fsm: self.killAccountFSM(sender) return self.account2fsm[sender] = fsmtype(self, sender) self.account2fsm[sender].request('Start', *args) def login(self, cookie, authKey): self.notify.debug('Received login cookie %r from %d' % (cookie, self.air.getMsgSender())) sender = self.air.getMsgSender() # Time to check this login to see if its authentic digest_maker = hmac.new(self.key) digest_maker.update(cookie) serverKey = digest_maker.hexdigest() if serverKey == authKey: # This login is authentic! pass else: # This login is not authentic. self.killConnection(sender, ' ') if sender >> 32: self.killConnection(sender, 'Client is already logged in.') return if sender in self.connection2fsm: self.killConnectionFSM(sender) return self.connection2fsm[sender] = LoginAccountFSM(self, sender) self.connection2fsm[sender].request('Start', cookie) def requestAvatars(self): self.notify.debug('Received avatar list request from %d' % (self.air.getMsgSender())) self.runAccountFSM(GetAvatarsFSM) def createAvatar(self, dna, index): self.runAccountFSM(CreateAvatarFSM, dna, index) def deleteAvatar(self, avId): self.runAccountFSM(DeleteAvatarFSM, avId) def setNameTyped(self, avId, name): self.runAccountFSM(SetNameTypedFSM, avId, name) def setNamePattern(self, avId, p1, f1, p2, f2, p3, f3, p4, f4): self.runAccountFSM(SetNamePatternFSM, avId, [(p1, f1), (p2, f2), (p3, f3), (p4, f4)]) def acknowledgeAvatarName(self, avId): self.runAccountFSM(AcknowledgeNameFSM, avId) def chooseAvatar(self, avId): currentAvId = self.air.getAvatarIdFromSender() accountId = self.air.getAccountIdFromSender() if currentAvId and avId: self.killAccount(accountId, 'A Toon is already chosen!') return elif not currentAvId and not avId: # This isn't really an error, the client is probably just making sure # none of its Toons are active. return if avId: self.runAccountFSM(LoadAvatarFSM, avId) else: self.runAccountFSM(UnloadAvatarFSM, currentAvId)
# -*- coding: utf-8 -*- """ Created on Fri Jan 26 09:19:42 2018 @author: r.dewinter """ import numpy as np def OSY(x): x1 = x[0] x2 = x[1] x3 = x[2] x4 = x[3] x5 = x[4] x6 = x[5] f1 = -25*(x1-2)**2 - (x2-2)**2 - (x3-1)**2 - (x4-4)**2 - (x5-1)**2 f2 = x1**2 + x2**2 + x3**2 + x4**2 + x5**2 + x6**2 g1 = x1 + x2 - 2 g2 = 6 - x1 - x2 g3 = 2 - x2 + x1 g4 = 2 - x1 + 3*x2 g5 = 4 - (x3-3)**2 - x4 g6 = (x5-3)**2 + x6 -4 objectives = np.array([f1, f2]) constraints = np.array([g1,g2,g3,g4,g5,g6]) constraints = -1*constraints #transform for sacobra return np.array([objectives, constraints])
from setuptools import setup, find_packages with open('README.md') as readme_file: README = readme_file.read() setup_args = dict( name='gitam', version="0.3.1", description='Useful tools to extract data from GITAM University websites.', long_description_content_type="text/markdown", long_description=README, license='MIT', packages=find_packages(), author='Rohit Ganji', author_email='grohit.2001@gmail.com', keywords=['GITAM', 'GITAM University', 'Gandhi Institute of Technology and Management'], url='https://github.com/rohitganji/gitam', download_url='https://pypi.org/project/gitam/' ) install_requires = [ 'requests', 'bs4', 'pandas', 'matplotlib', ] if __name__ == '__main__': setup(**setup_args, install_requires=install_requires)
#!/usr/bin/env python3 from experiment_database_manager import ExperimentDatabaseManager import gzip import numpy as np import pickle import sys import sql_credentials import hplots.hgcal_analysis_plotter as hp import hplots.trackml_plotter as tp with gzip.open(sys.argv[1], 'rb') as f: graphs, metadata = pickle.load(f) type = 'hgcal' if len(sys.argv) == 4: type = sys.argv[3] if type == 'hgcal': plotter = hp.HGCalAnalysisPlotter() elif type =='trackml': plotter = tp.TrackMLPlotter() else: raise NotImplementedError("Error") pdfpath = sys.argv[2] plotter.add_data_from_analysed_graph_list(graphs, metadata) plotter.write_to_pdf(pdfpath)
from .uresnet_dense import UResNet as DenseUResNet from .uresnet_dense import SegmentationLoss as DenseSegmentationLoss from .uresnet_sparse import UResNet as SparseUResNet from .uresnet_sparse import SegmentationLoss as SparseSegmentationLoss
from django.shortcuts import render_to_response, redirect from django.template import RequestContext from django.forms.models import modelform_factory, modelformset_factory, inlineformset_factory from django.http import HttpResponse, HttpResponseRedirect from django.core.urlresolvers import reverse from django.core.exceptions import ObjectDoesNotExist from django.db.models.loading import get_model from django.contrib.auth import logout, login, authenticate from django.contrib.auth.decorators import login_required from copy import copy from collections import OrderedDict from competencies.models import * from competencies.forms import ForkForm from competencies import my_admin from . import utils def index(request): return render_to_response('competencies/index.html', {}, context_instance=RequestContext(request)) # --- Authorization views --- def no_edit_permission(request, school_id): """Displays message that user does not have permission to make requested edits.""" school = Organization.objects.get(id=school_id) return render_to_response('competencies/no_edit_permission.html', {'school': school}, context_instance=RequestContext(request)) # --- Simple views, for exploring system without changing it: --- def organizations(request): my_organizations, editor_organizations = [], [] if request.user.is_authenticated(): my_organizations = Organization.objects.filter(owner=request.user) editor_organizations = request.user.organization_set.all() # Remove owned orgs from editor_organizations editor_organizations = [org for org in editor_organizations if org not in my_organizations] public_organizations = Organization.objects.filter(public=True) return render_to_response('competencies/organizations.html', {'my_organizations': my_organizations, 'editor_organizations': editor_organizations, 'public_organizations': public_organizations, }, context_instance=RequestContext(request)) def organization(request, organization_id): """Displays subject areas and subdiscipline areas for a given organization.""" organization = Organization.objects.get(id=organization_id) editors = organization.editors.all() if organization.subjectarea_set.all(): can_fork = False else: can_fork = True kwargs = get_visibility_filter(request.user, organization) sas = organization.subjectarea_set.filter(**kwargs) sdas = [sda for sa in sas for sda in sa.subdisciplinearea_set.filter(**kwargs)] return render_to_response('competencies/organization.html', {'organization': organization, 'subject_areas': sas, 'sdas': sdas, 'can_fork': can_fork, 'editors': editors, }, context_instance=RequestContext(request)) def sa_summary(request, sa_id): """Shows a simple summary for a subject area.""" sa = SubjectArea.objects.get(id=sa_id) organization = sa.organization kwargs = get_visibility_filter(request.user, organization) sdas, cas, eus = get_sda_ca_eu_elements(sa, kwargs) return render_to_response('competencies/sa_summary.html', {'subject_area': sa, 'organization': organization, 'sdas': sdas, 'cas': cas, 'eus': eus,}, context_instance=RequestContext(request)) def sa_summary_pdf(request, sa_id): """Return a pdf of the sa_summary page.""" #print('Generating pdf of sa_summary...') sa = SubjectArea.objects.get(id=sa_id) org = sa.organization kwargs = get_visibility_filter(request.user, org) sdas, cas, eus = get_sda_ca_eu_elements(sa, kwargs) response = HttpResponse(content_type='application/pdf') filename = 'sa_summary_%s.pdf' % sa.subject_area response['Content-Disposition'] = 'attachment; filename=%s' % filename from competencies.sa_summary_pdf import PDFTest pdf_test = PDFTest(response) pdf = pdf_test.makeSummary(org, sa, sdas, cas, eus) return pdf @login_required def organization_admin_summary(request, organization_id): """See an administrative summmary of an organization. Restricted to owners of the org.""" organization = Organization.objects.get(id=organization_id) # Make sure user owns this org. if request.user != organization.owner: return redirect(reverse('competencies:organizations')) editors = organization.editors.all() return render_to_response('competencies/organization_admin_summary.html', {'organization': organization, 'editors': editors, }, context_instance=RequestContext(request)) # --- Views for editing content. --- @login_required def organization_admin_edit(request, organization_id): """Administer an organization. Restricted to owners of the org.""" # DEV: This page will need a list of the organization's editors. organization = Organization.objects.get(id=organization_id) # Make sure user owns this org. if request.user != organization.owner: return redirect(reverse('competencies:organizations')) if request.method != 'POST': organization_form = OrganizationAdminForm(instance=organization) else: organization_form = OrganizationAdminForm(request.POST, instance=organization) if organization_form.is_valid(): organization_form.save() # If org has been made private, set all elements private. if 'public' in organization_form.changed_data: if not organization_form.cleaned_data.get('public'): utils.cascade_visibility_down(organization, 'private') # Make sure no organization owner was not removed from editors. # DEV: Should prevent this from happening at all, by overriding form.save()? if organization.owner not in organization.editors.all(): organization.editors.add(organization.owner) # Redirect to summary page after processing form. return redirect(reverse('competencies:organization_admin_summary', args=[organization_id])) return render_to_response('competencies/organization_admin_edit.html', {'organization': organization, 'organization_form': organization_form, }, context_instance=RequestContext(request)) @login_required def fork(request, organization_id): """Fork an existing school.""" forking_organization = Organization.objects.get(id=organization_id) if request.method != 'POST': fork_form = ForkForm() else: fork_form = ForkForm(request.POST) if fork_form.is_valid(): original_org = Organization.objects.get(pk=request.POST['organization']) utils.fork_organization(forking_organization, original_org) return redirect(reverse('competencies:organization', args=[organization_id,])) else: #print('\n\ninvalid:', fork_form) # Report error appropriately. pass return render_to_response('competencies/fork.html', {'forking_organization': forking_organization, 'organizations': organizations, 'fork_form': fork_form, }, context_instance=RequestContext(request)) @login_required def edit_sa_summary(request, sa_id): """Edit the elements in sa_summary.""" # This should work for a given sa_id, or with no sa_id. # Have an id, edit a subject area. # No id, create a new subject area. subject_area = SubjectArea.objects.get(id=sa_id) organization = subject_area.organization kwargs = get_visibility_filter(request.user, organization) # Test if user allowed to edit this organization. if not has_edit_permission(request.user, organization): redirect_url = '/no_edit_permission/' + str(organization.id) return redirect(redirect_url) sdas, cas, eus = get_sda_ca_eu_elements(subject_area, kwargs) # Respond to submitted data. if request.method == 'POST': # Store elements that have had their privacy setting changed, # for processing after all forms have been processed. privacy_changed = [] process_form(request, subject_area, 'sa', privacy_changed) for sda in sdas: process_form(request, sda, 'sda', privacy_changed) for ca in cas: process_form(request, ca, 'ca', privacy_changed) for eu in eus: process_form(request, eu, 'eu', privacy_changed) # Cascade privacy settings appropriately. # Change to private takes precedence, so process changes to public first. changed_to_public = [element for element in privacy_changed if element.public] changed_to_private = [element for element in privacy_changed if not element.public] # Cascading public happens upwards. Setting an element public makes all its # ancestors public. for element in changed_to_public: utils.cascade_public_up(element) # Cascading private happens downwards. Setting an element private hides all # its descendants. for element in changed_to_private: utils.cascade_visibility_down(element, 'private') # If any privacy settings were changed, need to refresh elements # to make sure forms are based on updated elements. subject_area = SubjectArea.objects.get(id=sa_id) organization = subject_area.organization sdas, cas, eus = get_sda_ca_eu_elements(subject_area, kwargs) # Redirect back to view page. return redirect('/sa_summary/%s' % sa_id) # Build forms. Not in an else clause, because even POST requests need # forms re-generated. sa_form = generate_form(subject_area, 'sa') sda_forms = [] for sda in sdas: sda_form = generate_form(sda, 'sda') sda_form.my_id = sda.id sda_forms.append(sda_form) zipped_sda_forms = list(zip(sdas, sda_forms)) ca_forms = [] for ca in cas: ca_form = generate_form(ca, 'ca') ca_form.my_id = ca.id ca_forms.append(ca_form) zipped_ca_forms = list(zip(cas, ca_forms)) eu_forms = [] for eu in eus: eu_form = generate_form(eu, 'eu') eu_form.my_id = eu.id eu_forms.append(eu_form) zipped_eu_forms = list(zip(eus, eu_forms)) return render_to_response('competencies/edit_sa_summary.html', {'subject_area': subject_area, 'organization': organization, 'sdas': sdas, 'cas': cas, 'eus': eus, 'sa_form': sa_form, 'zipped_sda_forms': zipped_sda_forms, 'zipped_ca_forms': zipped_ca_forms, 'zipped_eu_forms': zipped_eu_forms, }, context_instance=RequestContext(request)) def edit_sa_summary_order(request, sa_id): """Modify the order of sdas, cas, and eus within a subject area.""" subject_area = SubjectArea.objects.get(id=sa_id) organization = subject_area.organization kwargs = get_visibility_filter(request.user, organization) # Test if user allowed to edit this organization. if not has_edit_permission(request.user, organization): redirect_url = '/no_edit_permission/' + str(organization.id) return redirect(redirect_url) sdas, cas, eus = get_sda_ca_eu_elements(subject_area, kwargs) return render_to_response('competencies/edit_sa_summary_order.html', {'subject_area': subject_area, 'organization': organization, 'sdas': sdas, 'cas': cas, 'eus': eus, }, context_instance=RequestContext(request)) def move_element(request, element_type, element_id, direction, sa_id): """Modify the position of an element within its set of elements.""" # Get the element whose position is being changed, get its order, # and modify the order if appropriate. sa = SubjectArea.objects.get(id=sa_id) edit_order_url = reverse('competencies:edit_sa_summary_order', args=[sa.id]) object_to_move = get_model('competencies', element_type).objects.get(id=element_id) order = get_parent_order(object_to_move) # Make sure user can edit this organization. if request.user not in sa.organization.editors.all(): redirect_url = reverse('competencies:index') return redirect(redirect_url) # If element_type is ca, get group of cas with no sda or same sda, # then get ca to switch with. if element_type == 'CompetencyArea': ca = object_to_move if not ca.subdiscipline_area: ca_group = sa.competencyarea_set.filter(subdiscipline_area=None) else: ca_group = sa.competencyarea_set.filter(subdiscipline_area=ca.subdiscipline_area) for index, cand_ca in enumerate(ca_group): if cand_ca == ca: ca_index = index if direction == 'up' and ca_index > 0: ca_target = ca_group[ca_index-1] elif direction == 'down' and ca_index < len(ca_group)-1: ca_target = ca_group[ca_index+1] else: return(redirect(edit_order_url)) # Get indices in order, and swap positions. original_index = order.index(ca.id) target_index = order.index(ca_target.id) order[original_index], order[target_index] = order[target_index], order[original_index] set_parent_order(object_to_move, order) return(redirect(edit_order_url)) # Get index of element_id, switch places with previous or next element. index = order.index(int(element_id)) if direction == 'up' and index > 0: order[index], order[index-1] = order[index-1], order[index] set_parent_order(object_to_move, order) elif direction == 'down' and index < len(order) - 1: order[index], order[index+1] = order[index+1], order[index] set_parent_order(object_to_move, order) return redirect(edit_order_url) def delete_element(request, element_type, element_id): """Confirm that user wants to delete an element, and all its descendants. Option to cancel, which will go back to edit_sa_summary, or delete element which will then redirect to sa_summary.""" # DEV: Can use a single delete_element page. # GET request shows confirmation form; POST request follows through on delete. # DEV: Should pass element type alias, which should be used on submit button. # DEV: This needs to be generalized. eu = EssentialUnderstanding.objects.get(id=element_id) ca = eu.competency_area sa = ca.subject_area org = sa.organization if request.method == 'POST' and request.POST['confirm_delete']: eu.delete() return redirect(reverse('competencies:sa_summary', args=[sa.id,])) return render_to_response('competencies/delete_element.html', {'organization': org, 'subject_area': sa, 'eu': eu, }, context_instance=RequestContext(request)) def get_sda_ca_eu_elements(subject_area, kwargs): """Get all sdas, cas, and eus associated with a subject area.""" sdas = subject_area.subdisciplinearea_set.filter(**kwargs) cas = subject_area.competencyarea_set.filter(**kwargs) eus = [] for ca in cas: for eu in ca.essentialunderstanding_set.filter(**kwargs): eus.append(eu) return (sdas, cas, eus) def process_form(request, instance, element_type, privacy_changed): """Process a form for a single element.""" prefix = '%s_form_%d' % (element_type, instance.id) if element_type == 'sa': form = SubjectAreaForm(request.POST, instance=instance) elif element_type == 'sda': form = SubdisciplineAreaForm(request.POST, prefix=prefix, instance=instance) elif element_type == 'ca': form = CompetencyAreaForm(request.POST, prefix=prefix, instance=instance) elif element_type == 'eu': form = EssentialUnderstandingForm(request.POST, prefix=prefix, instance=instance) if form.is_valid(): modified_element = form.save() # If privacy setting changed, add to list for processing. if 'public' in form.changed_data: privacy_changed.append(modified_element) return form def generate_form(instance, element_type): """Generate a form for a single element.""" prefix = '%s_form_%d' % (element_type, instance.id) if element_type == 'sa': return SubjectAreaForm(instance=instance) elif element_type == 'sda': return SubdisciplineAreaForm(prefix=prefix, instance=instance) elif element_type == 'ca': return CompetencyAreaForm(prefix=prefix, instance=instance) elif element_type == 'eu': return EssentialUnderstandingForm(prefix=prefix, instance=instance) def new_sa(request, org_id): """Create a new subject area for a given organization.""" organization = Organization.objects.get(id=org_id) # Test if user allowed to edit this organization. if not has_edit_permission(request.user, organization): redirect_url = '/no_edit_permission/' + str(organization.id) return redirect(redirect_url) if request.method == 'POST': sa_form = SubjectAreaForm(request.POST) if sa_form.is_valid(): new_sa = sa_form.save(commit=False) new_sa.organization = organization new_sa.save() return redirect('/edit_sa_summary/%d' % new_sa.id) sa_form = SubjectAreaForm() return render_to_response('competencies/new_sa.html', {'organization': organization, 'sa_form': sa_form,}, context_instance=RequestContext(request)) def new_sda(request, sa_id): """Create a new subdiscipline area for a given subject area.""" sa = SubjectArea.objects.get(id=sa_id) organization = sa.organization # Test if user allowed to edit this organization. if not has_edit_permission(request.user, organization): redirect_url = '/no_edit_permission/' + str(organization.id) return redirect(redirect_url) if request.method == 'POST': sda_form = SubdisciplineAreaForm(request.POST) if sda_form.is_valid(): new_sda = sda_form.save(commit=False) new_sda.subject_area = sa new_sda.save() return redirect('/edit_sa_summary/%d' % sa.id) sda_form = SubdisciplineAreaForm() return render_to_response('competencies/new_sda.html', {'organization': organization, 'sa': sa, 'sda_form': sda_form,}, context_instance=RequestContext(request)) def new_ca(request, sa_id): """Create a new competency area for a given general subject area.""" sa = SubjectArea.objects.get(id=sa_id) organization = sa.organization # Test if user allowed to edit this organization. if not has_edit_permission(request.user, organization): redirect_url = '/no_edit_permission/' + str(organization.id) return redirect(redirect_url) if request.method == 'POST': ca_form = CompetencyAreaForm(request.POST) if ca_form.is_valid(): new_ca = ca_form.save(commit=False) new_ca.subject_area = sa new_ca.save() return redirect('/edit_sa_summary/%d' % sa.id) ca_form = CompetencyAreaForm() return render_to_response('competencies/new_ca.html', {'organization': organization, 'sa': sa, 'ca_form': ca_form,}, context_instance=RequestContext(request)) def new_sda_ca(request, sda_id): """Create a new competency area for a given subdiscipline area.""" sda = SubdisciplineArea.objects.get(id=sda_id) sa = sda.subject_area organization = sa.organization # Test if user allowed to edit this organization. if not has_edit_permission(request.user, organization): redirect_url = '/no_edit_permission/' + str(organization.id) return redirect(redirect_url) if request.method == 'POST': ca_form = CompetencyAreaForm(request.POST) if ca_form.is_valid(): new_ca = ca_form.save(commit=False) new_ca.subject_area = sa new_ca.subdiscipline_area = sda new_ca.save() return redirect('/edit_sa_summary/%d' % sa.id) ca_form = CompetencyAreaForm() return render_to_response('competencies/new_sda_ca.html', {'organization': organization, 'sa': sa, 'sda': sda, 'ca_form': ca_form,}, context_instance=RequestContext(request)) def new_eu(request, ca_id): """Create a new essential understanding for given ca.""" ca = CompetencyArea.objects.get(id=ca_id) sa = ca.subject_area organization = sa.organization # Test if user allowed to edit this organization. if not has_edit_permission(request.user, organization): redirect_url = '/no_edit_permission/' + str(organization.id) return redirect(redirect_url) if request.method == 'POST': eu_form = EssentialUnderstandingForm(request.POST) if eu_form.is_valid(): new_eu = eu_form.save(commit=False) new_eu.competency_area = ca new_eu.save() return redirect('/edit_sa_summary/%d' % sa.id) eu_form = EssentialUnderstandingForm() return render_to_response('competencies/new_eu.html', {'organization': organization, 'sa': sa, 'ca': ca, 'eu_form': eu_form,}, context_instance=RequestContext(request)) # helper methods to get elements of the system. def get_visibility_filter(user, organization): # Get filter for visibility, based on logged-in status. if user.is_authenticated() and user in organization.editors.all(): kwargs = {} else: kwargs = {'{0}'.format('public'): True} return kwargs # --- Edit views, for editing parts of the system --- def has_edit_permission(user, organization): """Checks whether given user has permission to edit given object. """ # Returns True if allowed to edit, False if not allowed to edit if user in organization.editors.all(): return True else: return False # Methods to deal with ordering issue around order_with_respect_to def check_parent_order(child_object, correct_order): """Hack to address ordering issue around order_with_respect_to.""" if get_parent_order(child_object) != correct_order: set_parent_order(child_object, correct_order) def get_parent_order(child_object): parent_object = child_object.get_parent() # DEV: May make ca.get_parent() always return sa? if parent_object.__class__.__name__ == 'SubdisciplineArea': parent_object = parent_object.subject_area order_method = 'get_' + child_object.__class__.__name__.lower() + '_order' parent_order = getattr(parent_object, order_method)() return parent_order def set_parent_order(child_object, order): parent_object = child_object.get_parent() # DEV: May make ca.get_parent() always return sa? if parent_object.__class__.__name__ == 'SubdisciplineArea': parent_object = parent_object.subject_area order_method = 'set_' + child_object.__class__.__name__.lower() + '_order' getattr(parent_object, order_method)(order) @login_required def new_organization(request): """Creates a new organization.""" if request.method == 'POST': new_organization_form = OrganizationForm(request.POST) if new_organization_form.is_valid(): new_organization = new_organization_form.save(commit=False) new_organization.owner = request.user new_organization.save() new_organization.editors.add(request.user) return redirect(reverse('competencies:organizations')) new_organization_form = OrganizationForm() return render_to_response('competencies/new_organization.html', {'new_organization_form': new_organization_form,}, context_instance=RequestContext(request))
# Add main directory to enable imports if __name__ == '__main__' : import os os.sys.path.append(os.path.abspath('../..')) from libs.gui.iterate_file import IterateFile import wx import numpy as np from operator import itemgetter ######################################################################### class SpectralScanViewer (IterateFile) : def IniLoad(self, data_file) : # Find out what kind of pulse shapes are saved in the file pulse_shaping_option = str( data_file["settings/ODD_GA/pulse_shaping_option"][...] ) self.plot_ampl_phase = ( pulse_shaping_option == "amplitude and phase") if not self.plot_ampl_phase : self.plot_title = { "amplitude only" : "Amplitude shapes", "phase only" : "Phase shapes" }[pulse_shaping_option] def UpdateFrame (self, event=None) : # for each individual (within a given iteration) load fitness and pulse shape loaded_data = [ ( ind_grp["fitness"][...].sum(), ind_grp["pulse_shape"][...] ) for ind_grp in self.GetCurrentFrame()["individuals"].itervalues() ] # Arrange by fitness loaded_data.sort(key=itemgetter(0), reverse=True) loaded_data = loaded_data[:5] # Break into fitness and pulse_shape fitness, pulse_shapes = zip(*loaded_data) # Displaying the pulse shapes self.fig.clear() self.fig.patch.set_facecolor('grey') if self.plot_ampl_phase : # Display amplitude and phase separately ampl_axes = self.fig.add_subplot(211, axisbg='grey') ampl_axes.set_title ("Amplitude") phase_axes = self.fig.add_subplot(212, axisbg='grey') phase_axes.set_title ("Phase") for pulse in pulse_shapes : ampl_axes.plot ( pulse[:pulse.size/2] ) phase_axes.plot ( pulse[pulse.size/2:] ) ampl_axes.legend( ["%.2e" % f for f in fitness] ) else : # Phase/Ampl shaping only axes = self.fig.add_subplot(111, axisbg='grey') for pulse in pulse_shapes : axes.plot (pulse) axes.legend( ["%.2e" % f for f in fitness] ) axes.set_title (self.plot_title) self.canvas.draw() ######################################################################### if __name__ == '__main__' : # Check weather the filename was given as a command line argument import sys if len(sys.argv) == 2 : filename = sys.argv[1] else : filename = None app = wx.App () SpectralScanViewer ("optimization_iterations", filename=filename) app.MainLoop ()
import json import os from django.conf.urls import include, url from django.db import models from django.test import TestCase, override_settings from django.conf import settings from rest_framework import status from rest_framework.response import Response from rest_framework.test import APIRequestFactory from rest_framework.viewsets import GenericViewSet from unittest import mock X_JWT_PAYLOAD=json.dumps({'uid': '1234abc', 'exp': 1722200316, 'iat': 1622193116, 'app_id': 'app_1234567'}) class CBVAllViewSetsTestCase(TestCase): ''' 测试类视图装饰器 access_control_cbv_all ''' @classmethod def setUpClass(cls): settings.SPARROW_AUTHENTICATION = {"USER_CLASS_PATH": "sparrow_cloud.auth.user.User"} # settings.SC_SKIP_ACCESS_CONTROL = False os.environ.setdefault("SC_ACCESS_CONTROL_SVC","ac-svc:8001") os.environ.setdefault("SC_ACCESS_CONTROL_API","/api/ac") @classmethod def tearDownClass(cls): pass @mock.patch('sparrow_cloud.access_control.access_verify.rest_client.get', return_value={"has_perm": False}) def test_access_control_cbv_all_no_perm(self, rest_client_get): # 不跳过访问控制,没权限访问 settings.SC_SKIP_ACCESS_CONTROL = False from sparrow_cloud.access_control.decorators import access_control_cbv_all class Action(models.Model): pass @access_control_cbv_all("SparrowAdmin") class CBVAllActionViewSet(GenericViewSet): queryset = Action.objects.all() def list(self, request, *args, **kwargs): # import pdb; pdb.set_trace() response = Response() response.view = self return response view = CBVAllActionViewSet.as_view(actions={ 'get': 'list', }) factory = APIRequestFactory(HTTP_X_JWT_PAYLOAD=X_JWT_PAYLOAD) response = view(factory.get('/')) assert response.status_code == status.HTTP_403_FORBIDDEN @mock.patch('sparrow_cloud.access_control.access_verify.rest_client.get', return_value={"has_perm": True}) def test_access_control_cbv_all_allow(self, rest_client_get): # 不跳过访问控制,有权限访问 settings.SC_SKIP_ACCESS_CONTROL = False from sparrow_cloud.access_control.decorators import access_control_cbv_all class Action(models.Model): pass @access_control_cbv_all("SparrowAdmin") class CBVAllActionViewSet(GenericViewSet): queryset = Action.objects.all() def list(self, request, *args, **kwargs): response = Response() response.view = self return response view = CBVAllActionViewSet.as_view(actions={ 'get': 'list', }) factory = APIRequestFactory(HTTP_X_JWT_PAYLOAD=X_JWT_PAYLOAD) response = view(factory.get('/')) assert response.status_code == status.HTTP_200_OK # @mock.patch('sparrow_cloud.access_control.access_verify.rest_client.get', return_value={"has_perm": False}) def test_viewset_access_control_cbv_all_skip_ac(self): # 跳过访问控制,没有mock远程,也没有认证 settings.SC_SKIP_ACCESS_CONTROL = True from sparrow_cloud.access_control.decorators import access_control_cbv_all class Action(models.Model): pass @access_control_cbv_all("SparrowAdmin") class CBVAllActionViewSet(GenericViewSet): queryset = Action.objects.all() def list(self, request, *args, **kwargs): # import pdb; pdb.set_trace() response = Response() response.view = self return response view = CBVAllActionViewSet.as_view(actions={ 'get': 'list', }) factory = APIRequestFactory()# 无认证,HTTP_X_JWT_PAYLOAD=X_JWT_PAYLOAD response = view(factory.get('/')) assert response.status_code == status.HTTP_200_OK class CBVMethodViewSetsTestCase(TestCase): ''' 测试类视图装饰器 access_control_cbv_method ''' @classmethod def setUpClass(cls): settings.SPARROW_AUTHENTICATION = {"USER_CLASS_PATH": "sparrow_cloud.auth.user.User"} # settings.SC_SKIP_ACCESS_CONTROL = False os.environ.setdefault("SC_ACCESS_CONTROL_SVC","ac-svc:8001") os.environ.setdefault("SC_ACCESS_CONTROL_API","/api/ac") @classmethod def tearDownClass(cls): pass @mock.patch('sparrow_cloud.access_control.access_verify.rest_client.get', return_value={"has_perm": False}) def test_viewset_access_control_cbv_method(self, rest_client_mock): # 不跳过访问控制,无权限访问 settings.SC_SKIP_ACCESS_CONTROL = False from sparrow_cloud.access_control.decorators import access_control_cbv_method class Action(models.Model): pass @access_control_cbv_method({ "get": "AdminGet", "post": "AdminPost", "delete": "AdminDelete", "put": "AdminPut", }) class CBVAllActionViewSet(GenericViewSet): queryset = Action.objects.all() def list(self, request, *args, **kwargs): response = Response() response.view = self return response def create(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response def destroy(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response def partial_update(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response view = CBVAllActionViewSet.as_view(actions={ 'get': 'list', 'post': 'create', 'delete': 'destroy', 'put': 'partial_update', }) factory = APIRequestFactory(HTTP_X_JWT_PAYLOAD=X_JWT_PAYLOAD) response = view(factory.get('/')) assert response.status_code == status.HTTP_403_FORBIDDEN response = view(factory.post('/')) assert response.status_code == status.HTTP_403_FORBIDDEN response = view(factory.delete('/')) assert response.status_code == status.HTTP_403_FORBIDDEN response = view(factory.put('/')) assert response.status_code == status.HTTP_403_FORBIDDEN @mock.patch('sparrow_cloud.access_control.access_verify.rest_client.get', return_value={"has_perm": True}) def test_access_control_cbv_method_allow(self, rest_client_mock): # 不跳过访问控制,有权限访问 settings.SC_SKIP_ACCESS_CONTROL = False from sparrow_cloud.access_control.decorators import access_control_cbv_method class Action(models.Model): pass @access_control_cbv_method({ "get": "AdminGet", "post": "AdminPost", "delete": "AdminDelete", "put": "AdminPut", }) class CBVAllActionViewSet(GenericViewSet): queryset = Action.objects.all() def list(self, request, *args, **kwargs): response = Response() response.view = self return response def create(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response def destroy(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response def partial_update(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response view = CBVAllActionViewSet.as_view(actions={ 'get': 'list', 'post': 'create', 'delete': 'destroy', 'put': 'partial_update', }) factory = APIRequestFactory(HTTP_X_JWT_PAYLOAD=X_JWT_PAYLOAD) response = view(factory.get('/')) assert response.status_code == status.HTTP_200_OK response = view(factory.post('/')) assert response.status_code == status.HTTP_200_OK response = view(factory.delete('/')) assert response.status_code == status.HTTP_200_OK response = view(factory.put('/')) assert response.status_code == status.HTTP_200_OK # @mock.patch('sparrow_cloud.access_control.access_verify.rest_client.get', return_value={"has_perm": False}) def test_viewset_access_control_cbv_method_skip_ac(self): # 跳过访问控制,没有mock远程,也没有认证 settings.SC_SKIP_ACCESS_CONTROL = True from sparrow_cloud.access_control.decorators import access_control_cbv_method class Action(models.Model): pass @access_control_cbv_method({ "get": "AdminGet", "post": "AdminPost", "delete": "AdminDelete", "put": "AdminPut", }) class CBVAllActionViewSet(GenericViewSet): queryset = Action.objects.all() def list(self, request, *args, **kwargs): response = Response() response.view = self return response def create(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response def destroy(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response def partial_update(self, request, *args, **kwargs): response = Response({"message": "ok"}) response.view = self return response view = CBVAllActionViewSet.as_view(actions={ 'get': 'list', 'post': 'create', 'delete': 'destroy', 'put': 'partial_update', }) factory = APIRequestFactory() response = view(factory.get('/')) assert response.status_code == status.HTTP_200_OK response = view(factory.post('/')) assert response.status_code == status.HTTP_200_OK response = view(factory.delete('/')) assert response.status_code == status.HTTP_200_OK response = view(factory.put('/')) assert response.status_code == status.HTTP_200_OK
import argparse import logging import time import cv2 import numpy as np from estimator import TfPoseEstimator from networks import get_graph_path, model_wh import pygame import pygame.midi pygame.init() pygame.midi.init() logger = logging.getLogger('TfPoseEstimator-WebCam') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) # time param start_time = 0 speed = 0.5 # dot param d_circle = 30 dot_line = 0 # midi setting instrument = 0 port = 1 volume = 127 note_list = [] def get_pentatonic_scale(note): # C if note%5 == 0: out_note = note//5*12 # D# if note%5 == 1: out_note = note//5*12 + 3 # F if note%5 == 2: out_note = note//5*12 + 5 # G if note%5 == 3: out_note = note//5*12 + 7 # A# if note%5 == 4: out_note = note//5*12 + 10 out_note += 60; while out_note > 127: out_note -= 128 return out_note def human_sequencer(src): global start_time global dot_line global note_list image_h, image_w = src.shape[:2] h_max = int(image_h / d_circle) w_max = int(image_w / d_circle) # create blank image npimg_target = np.zeros((image_h, image_w, 3), np.uint8) dot_color = [[0 for i in range(h_max)] for j in range(w_max)] # make dot information from ndarray for y in range(0, h_max): for x in range(0, w_max): dot_color[x][y] = src[y*d_circle][x*d_circle] # move dot current_time = time.time() - start_time while time.time() - start_time > speed: start_time += speed dot_line += 1 if dot_line > w_max-1: dot_line = 0 # sound off for note in note_list: midiOutput.note_off(note,volume) # sound on note_list = [] for y in range(0, h_max): if dot_color[dot_line][y][0] == 255: note_list.append(get_pentatonic_scale(y)) for note in note_list: midiOutput.note_on(note,volume) # draw dot for y in range(0, h_max): for x in range(0, w_max): center = (int(x * d_circle + d_circle * 0.5), int(y * d_circle + d_circle * 0.5)) if x == dot_line: if dot_color[x][y][0] == 255: cv2.circle(npimg_target, center, int(d_circle/2) , [255-(int)(dot_color[x][y][0]),255-(int)(dot_color[x][y][1]),255-(int)(dot_color[x][y][2])] , thickness=-1, lineType=8, shift=0) else: cv2.circle(npimg_target, center, int(d_circle/2) , [255,255,255] , thickness=-1, lineType=8, shift=0) else: cv2.circle(npimg_target, center, int(d_circle/2) , [(int)(dot_color[x][y][0]),(int)(dot_color[x][y][1]),(int)(dot_color[x][y][2])] , thickness=-1, lineType=8, shift=0) return npimg_target if __name__ == '__main__': parser = argparse.ArgumentParser(description='tf-pose-estimation realtime webcam') parser.add_argument('--camera', type=int, default=0) parser.add_argument('--zoom', type=float, default=1.0) parser.add_argument('--resolution', type=str, default='432x368', help='network input resolution. default=432x368') parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin') parser.add_argument('--show-process', type=bool, default=False, help='for debug purpose, if enabled, speed for inference is dropped.') args = parser.parse_args() print("midi devices") for id in range(pygame.midi.get_count()): print(pygame.midi.get_device_info(id)) midiOutput = pygame.midi.Output(port, 1) midiOutput.set_instrument(instrument) logger.debug('initialization %s : %s' % (args.model, get_graph_path(args.model))) w, h = model_wh(args.resolution) e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h)) logger.debug('cam read+') cam = cv2.VideoCapture(args.camera) ret_val, image = cam.read() logger.info('cam image=%dx%d' % (image.shape[1], image.shape[0])) start_time = time.time() while True: ret_val, image = cam.read() logger.debug('image preprocess+') if args.zoom < 1.0: canvas = np.zeros_like(image) img_scaled = cv2.resize(image, None, fx=args.zoom, fy=args.zoom, interpolation=cv2.INTER_LINEAR) dx = (canvas.shape[1] - img_scaled.shape[1]) // 2 dy = (canvas.shape[0] - img_scaled.shape[0]) // 2 canvas[dy:dy + img_scaled.shape[0], dx:dx + img_scaled.shape[1]] = img_scaled image = canvas elif args.zoom > 1.0: img_scaled = cv2.resize(image, None, fx=args.zoom, fy=args.zoom, interpolation=cv2.INTER_LINEAR) dx = (img_scaled.shape[1] - image.shape[1]) // 2 dy = (img_scaled.shape[0] - image.shape[0]) // 2 image = img_scaled[dy:image.shape[0], dx:image.shape[1]] logger.debug('image process+') humans = e.inference(image) logger.debug('postprocess+') image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) image = human_sequencer(image) logger.debug('show+') cv2.imshow('tf-pose-estimation result', image) if cv2.waitKey(1) == 27: # ESC key break logger.debug('finished+') cv2.destroyAllWindows() del midiOutput pygame.midi.quit()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import collections import logging import re from sqlite3 import OperationalError import arrow from builtins import * from flask import request from peewee import fn, OperationalError from requests import RequestException from requests.auth import HTTPBasicAuth from retry import retry from nzbhydra import config, databaseLock from nzbhydra import webaccess from nzbhydra.database import IndexerSearch, IndexerApiAccess, IndexerStatus, Indexer from nzbhydra.database import InterfaceError from nzbhydra.exceptions import IndexerResultParsingException, IndexerAuthException, IndexerAccessException from nzbhydra.log import removeSensitiveData from nzbhydra.nzb_search_result import NzbSearchResult QueriesExecutionResult = collections.namedtuple("QueriesExecutionResult", "didsearch results indexerSearchEntry indexerApiAccessEntry indexerStatus total loaded_results total_known has_more rejected") IndexerProcessingResult = collections.namedtuple("IndexerProcessingResult", "entries queries total total_known has_more rejected") titleRegex = re.compile("(\w[\w']*\w|\w)") class SearchModule(object): logger = logging.getLogger('root') # regarding quality: # possibly use newznab qualities as base, map for other indexers (nzbclub etc) def __init__(self, settings): self.settings = settings self.module = "Abstract search module" self.supports_queries = True self.needs_queries = False self.category_search = True # If true the indexer supports searching in a given category (possibly without any query or id) self.limit = 100 self.supportedFilters = [] self.supportsNot = None self.indexerDb = None def __repr__(self): return self.name @property def indexer(self): if self.indexerDb is None: self.indexerDb = Indexer.get(fn.lower(Indexer.name) == self.settings.name.lower()) return self.indexerDb @property def host(self): return self.settings.host @property def name(self): return self.settings.name @property def score(self): return self.settings.score @property def search_ids(self): if "search_ids" not in self.settings.keys(): self.error('Search IDs property not set. Please open the config for this indexer and click "Check capabilities"') return [] return self.settings.search_ids @property def searchTypes(self): if "searchTypes" not in self.settings.keys(): self.error('Search types property not set. Please open the config for this indexer and click "Check capabilities"') return [] return self.settings.searchTypes @property def generate_queries(self): return True # TODO pass when used check for internal vs external # return self.indexer.settings.get("generate_queries", True) # If true and a search by movieid or tvdbid or rid is done then we attempt to find the title and generate queries for indexers which don't support id-based searches def search(self, search_request): self.info("Starting search") if search_request.type == "tv": if search_request.query is None and search_request.identifier_key is None and self.needs_queries: self.error("TV search without query or id or title is not possible with this indexer") return QueriesExecutionResult(didsearch=False, results=[], indexerSearchEntry=None, indexerApiAccessEntry=None, indexerStatus=None, total=0, loaded_results=0, total_known=True, has_more=False, rejected=self.getRejectedCountDict()) if search_request.query is None and not self.generate_queries: self.error("TV search is not possible with this provideer because query generation is disabled") if search_request.identifier_key in self.search_ids: # Best case, we can search using the ID urls = self.get_showsearch_urls(search_request) elif search_request.title is not None: # If we cannot search using the ID we generate a query using the title provided by the GUI search_request.query = search_request.title urls = self.get_showsearch_urls(search_request) elif search_request.query is not None: # Simple case, just a regular raw search but in movie category urls = self.get_showsearch_urls(search_request) else: # Just show all the latest tv releases urls = self.get_showsearch_urls(search_request) elif search_request.type == "movie": if search_request.query is None and search_request.title is None and search_request.identifier_key is None and self.needs_queries: self.error("Movie search without query or IMDB id or title is not possible with this indexer") return QueriesExecutionResult(didsearch=False, results=[], indexerSearchEntry=None, indexerApiAccessEntry=None, indexerStatus=None, total=0, loaded_results=0, total_known=True, has_more=False, rejected=self.getRejectedCountDict()) if search_request.query is None and not self.generate_queries: self.error("Movie search is not possible with this provideer because query generation is disabled") if search_request.identifier_key is not None and "imdbid" in self.search_ids: # Best case, we can search using IMDB id urls = self.get_moviesearch_urls(search_request) elif search_request.title is not None: # If we cannot search using the ID we generate a query using the title provided by the GUI search_request.query = search_request.title urls = self.get_moviesearch_urls(search_request) elif search_request.query is not None: # Simple case, just a regular raw search but in movie category urls = self.get_moviesearch_urls(search_request) else: # Just show all the latest movie releases urls = self.get_moviesearch_urls(search_request) elif search_request.type == "ebook": urls = self.get_ebook_urls(search_request) elif search_request.type == "audiobook": urls = self.get_audiobook_urls(search_request) elif search_request.type == "comic": urls = self.get_comic_urls(search_request) elif search_request.type == "anime": urls = self.get_anime_urls(search_request) else: urls = self.get_search_urls(search_request) queries_execution_result = self.execute_queries(urls, search_request) return queries_execution_result # Access to most basic functions def get_search_urls(self, search_request): # return url(s) to search. Url is then retrieved and result is returned if OK # we can return multiple urls in case a module needs to make multiple requests (e.g. when searching for a show # using general queries return [] def get_showsearch_urls(self, search_request): # to extend # if module supports it, search specifically for show, otherwise make sure we create a query that searches # for for s01e01, 1x1 etc return [] def get_moviesearch_urls(self, search_request): # to extend # if module doesnt support it possibly use (configurable) size restrictions when searching return [] def get_ebook_urls(self, search_request): # to extend # if module doesnt support it possibly use (configurable) size restrictions when searching return [] def get_audiobook_urls(self, search_request): # to extend # if module doesnt support it possibly use (configurable) size restrictions when searching return [] def get_comic_urls(self, search_request): # to extend # if module doesnt support it possibly use (configurable) size restrictions when searching return [] def get_anime_urls(self, search_request): # to extend # if module doesnt support it possibly use (configurable) size restrictions when searching return [] def get_details_link(self, guid): return "" def get_entry_by_id(self, guid, title): # to extend # Returns an NzbSearchResult for the given GUID return None def create_nzb_search_result(self): result = NzbSearchResult(indexer=self.name, indexerscore=self.score, attributes=[{"name": "hydraIndexerName", "value": self.settings.name}, {"name": "hydraIndexerHost", "value": self.settings.host}, {"name": "hydraIndexerScore", "value": self.settings.score}]) return result @staticmethod def getRejectedCountDict(): return { "the results were passworded": 0, "the title contained a forbidden word": 0, "a required word was missing in the title": 0, "the required regex was not found in the title": 0, "the forbidden regex was found in the title": 0, "they were posted in a forbidden group": 0, "they were posted by a forbidden poster": 0, "they had the wrong size": 0, "they had the wrong age": 0, "they were missing necessary attributes": 0, "their category is to be ignored": 0 } def accept_result(self, nzbSearchResult, searchRequest, supportedFilters): global titleRegex # Allows the implementations to check against one general rule if the search result is ok or shall be discarded if config.settings.searching.ignorePassworded and nzbSearchResult.passworded: return False, "passworded results shall be ignored", "the results were passworded" # Forbidden and required words are handled differently depending on if they contain a dash or dot. If yes we do a simple search, otherwise a word based comparison for word in searchRequest.forbiddenWords: if "-" in word or "." in word or "nzbgeek" in self.settings.host: # NZBGeek must be handled here because it only allows 12 words at all so it's possible that not all words were ignored if word.strip().lower() in nzbSearchResult.title.lower(): return False, '"%s" is in the list of ignored words or excluded by the query' % word, "the title contained a forbidden word" elif word.strip().lower() in titleRegex.findall(nzbSearchResult.title.lower()): return False, '"%s" is in the list of ignored words or excluded by the query' % word, "the title contained a forbidden word" if searchRequest.requiredWords and len(searchRequest.requiredWords) > 0: foundRequiredWord = False titleWords = titleRegex.findall(nzbSearchResult.title.lower()) for word in searchRequest.requiredWords: if "-" in word or "." in word: if word.strip().lower() in nzbSearchResult.title.lower(): foundRequiredWord = True break elif word.strip().lower() in titleWords: foundRequiredWord = True break if not foundRequiredWord: return False, 'None of the required words is contained in the title "%s"' % nzbSearchResult.title, "a required word was missing in the title" applyRestrictionsGlobal = config.settings.searching.applyRestrictions == "both" or (config.settings.searching.applyRestrictions == "internal" and searchRequest.internal) or (config.settings.searching.applyRestrictions == "external" and not searchRequest.internal) applyRestrictionsCategory = searchRequest.category.category.applyRestrictions == "both" or (searchRequest.category.category.applyRestrictions == "internal" and searchRequest.internal) or (searchRequest.category.category.applyRestrictions == "external" and not searchRequest.internal) if (searchRequest.category.category.requiredRegex and applyRestrictionsCategory and not re.search(searchRequest.category.category.requiredRegex, nzbSearchResult.title.lower())) \ or (config.settings.searching.requiredRegex and applyRestrictionsGlobal and not re.search(config.settings.searching.requiredRegex, nzbSearchResult.title.lower())): return False, "Required regex not found in title", "the required regex was not found in the title" if (searchRequest.category.category.forbiddenRegex and applyRestrictionsCategory and re.search(searchRequest.category.category.forbiddenRegex, nzbSearchResult.title.lower())) \ or (config.settings.searching.forbiddenRegex and applyRestrictionsGlobal and re.search(config.settings.searching.forbiddenRegex, nzbSearchResult.title.lower())): return False, "Forbidden regex found in title", "the forbidden regex was found in the title" if config.settings.searching.forbiddenGroups and nzbSearchResult.group: for forbiddenPoster in config.settings.searching.forbiddenGroups.split(","): if forbiddenPoster in nzbSearchResult.group: return False, "Posted in forbidden group '%s'" % forbiddenPoster, "they were posted in a forbidden group" if config.settings.searching.forbiddenPosters and nzbSearchResult.poster: for forbiddenPoster in config.settings.searching.forbiddenPosters.split(","): if forbiddenPoster in nzbSearchResult.poster: return False, "Posted by forbidden poster '%s'" % forbiddenPoster, "they were posted by a forbidden poster" if searchRequest.minsize and nzbSearchResult.size / (1024 * 1024) < searchRequest.minsize: return False, "Smaller than requested minimum size: %dMB < %dMB" % (nzbSearchResult.size / (1024 * 1024), searchRequest.minsize), "they had the wrong size" if searchRequest.maxsize and nzbSearchResult.size / (1024 * 1024) > searchRequest.maxsize: return False, "Bigger than requested maximum size: %dMB > %dMB" % (nzbSearchResult.size / (1024 * 1024), searchRequest.maxsize), "they had the wrong size" if searchRequest.minage and nzbSearchResult.age_days < searchRequest.minage: return False, "Younger than requested minimum age: %dd < %dd" % (nzbSearchResult.age_days, searchRequest.minage), "they had the wrong age" if searchRequest.maxage and nzbSearchResult.age_days > searchRequest.maxage: return False, "Older than requested maximum age: %dd > %dd" % (nzbSearchResult.age_days, searchRequest.maxage), "they had the wrong age" if nzbSearchResult.pubdate_utc is None: return False, "Unknown age", "they were missing necessary attributes" if nzbSearchResult.category: ignore = False reason = "" if nzbSearchResult.category.ignoreResults == "always": reason = "always" ignore = True elif nzbSearchResult.category.ignoreResults == "internal" and searchRequest.internal: reason = "for internal searches" ignore = True elif nzbSearchResult.category.ignoreResults == "external" and not searchRequest.internal: reason = "for API searches" ignore = True elif self.settings.categories and nzbSearchResult.category.name not in self.settings.categories: reason = "by this indexer" ignore = True if ignore: return False, "Results from category %s are configured to be ignored %s" % (nzbSearchResult.category.pretty, reason), "their category is to be ignored" return True, None, "" def process_query_result(self, result, searchRequest, maxResults=None): return [] def check_auth(self, body): # check the response body to see if request was authenticated. If yes, do nothing, if no, raise exception return [] disable_periods = [0, 15, 30, 60, 3 * 60, 6 * 60, 12 * 60, 24 * 60] def handle_indexer_success(self, doSaveIndexerStatus=True): # Deescalate level by 1 (or stay at 0) and reset reason and disable-time try: indexer_status = self.indexer.status.get() except IndexerStatus.DoesNotExist: indexer_status = IndexerStatus(indexer=self.indexer) if indexer_status.level > 0: indexer_status.level -= 1 indexer_status.reason = None indexer_status.disabled_permanently = False indexer_status.disabled_until = arrow.get(0) # Because I'm too dumb to set it to None/null if doSaveIndexerStatus: self.saveIndexerStatus(indexer_status) return indexer_status @retry((InterfaceError, OperationalError), delay=1, tries=5, logger=logger) def saveIndexerStatus(self, indexer_status): with databaseLock: indexer_status.save() def handle_indexer_failure(self, reason=None, disable_permanently=False, saveIndexerStatus=True): # Escalate level by 1. Set disabled-time according to level so that with increased level the time is further in the future try: indexer_status = self.indexer.status.get() except IndexerStatus.DoesNotExist: indexer_status = IndexerStatus(indexer=self.indexer) if indexer_status.level == 0: indexer_status.first_failure = arrow.utcnow() indexer_status.latest_failure = arrow.utcnow() indexer_status.reason = reason # Overwrite the last reason if one is set, should've been logged anyway if disable_permanently: indexer_status.disabled_permanently = True self.info("Disabling indexer permanently until reenabled by user because the authentication failed") else: indexer_status.level = min(len(self.disable_periods) - 1, indexer_status.level + 1) indexer_status.disabled_until = arrow.utcnow().replace(minutes=+self.disable_periods[indexer_status.level]) self.info("Disabling indexer temporarily due to access problems. Will be reenabled %s" % indexer_status.disabled_until.humanize()) if saveIndexerStatus: self.saveIndexerStatus(indexer_status) return indexer_status def get(self, url, timeout=None, cookies=None): # overwrite for special handling, e.g. cookies headers = {'User-Agent': "NZBHydra"} if hasattr(self.settings, "userAgent") and self.settings.userAgent: headers['User-Agent'] = self.settings.userAgent elif config.settings.searching.userAgent: headers['User-Agent'] = config.settings.searching.userAgent if timeout is None: timeout = self.settings.timeout if timeout is None: timeout = config.settings.searching.timeout if hasattr(self.settings, "username") and self.settings.username and self.settings.password: auth = HTTPBasicAuth(self.settings.username, self.settings.password) self.debug("Using HTTP auth") else: auth = None self.debug("Requesting %s with timeout %d" % (url, timeout)) return webaccess.get(url, timeout=timeout, cookies=cookies, headers=headers, auth=auth) def get_url_with_papi_access(self, url, type, cookies=None, timeout=None, saveToDb=True): papiaccess = IndexerApiAccess(indexer=self.indexer, type=type, url=url, time=arrow.utcnow().datetime) try: papiaccess.username = request.authorization.username if request.authorization is not None else None except RuntimeError: # Is thrown when we're searching which is run in a thread. When downloading NFOs or whatever this will work pass indexerStatus = None try: time_before = arrow.utcnow() response = self.get(url, cookies=cookies, timeout=timeout) response.raise_for_status() time_after = arrow.utcnow() papiaccess.response_time = (time_after - time_before).seconds * 1000 + ((time_after - time_before).microseconds / 1000) papiaccess.response_successful = True self.debug("HTTP request to indexer completed in %dms" % papiaccess.response_time) indexerStatus = self.handle_indexer_success(doSaveIndexerStatus=saveToDb) except RequestException as e: self.error("Error while connecting to URL %s: %s" % (url, str(e))) papiaccess.error = "Connection failed: %s" % removeSensitiveData(str(e)) response = None indexerStatus = self.handle_indexer_failure("Connection failed: %s" % removeSensitiveData(str(e)), saveIndexerStatus=saveToDb) finally: if saveToDb: self.saveIndexerStatus(papiaccess) return response, papiaccess, indexerStatus def get_nfo(self, guid): return None def get_nzb_link(self, guid, title): return None def get_search_ids_from_indexer(self): return [] def cleanUpTitle(self, title): try: if title is None or title == "": return title if config.settings.searching.removeTrailing: for word in config.settings.searching.removeTrailing.split(","): word = word.lower().strip() if title.lower().strip().endswith(word): self.debug("Removing trailing %s from title %s" % (word, title)) return title[:-len(word)].strip() return title except: return title def execute_queries(self, queries, searchRequest): if len(queries) == 0: return QueriesExecutionResult(didsearch=False, results=[], indexerSearchEntry=None, indexerApiAccessEntry=None, indexerStatus=None, total=0, loaded_results=0, total_known=True, has_more=False, rejected=self.getRejectedCountDict()) results = [] executed_queries = set() psearch = IndexerSearch(indexer=self.indexer) papiaccess = IndexerApiAccess() indexerStatus = None total_results = 0 total_known = False has_more = False rejected = self.getRejectedCountDict() while len(queries) > 0: query = queries.pop() if query in executed_queries: # To make sure that in case an offset is reported wrong or we have a bug we don't get stuck in an endless loop continue try: request, papiaccess, indexerStatus = self.get_url_with_papi_access(query, "search", saveToDb=False) papiaccess.indexer_search = psearch executed_queries.add(query) if request is not None: if request.text == "": raise IndexerResultParsingException("Indexer returned an empty page", self) self.check_auth(request.text) self.debug("Successfully loaded URL %s" % request.url) try: parsed_results = self.process_query_result(request.text, searchRequest) results.extend(parsed_results.entries) # Retrieve the processed results queries.extend(parsed_results.queries) # Add queries that were added as a result of the parsing, e.g. when the next result page should also be loaded total_results += parsed_results.total total_known = parsed_results.total_known has_more = parsed_results.has_more rejected = parsed_results.rejected papiaccess.response_successful = True indexerStatus = self.handle_indexer_success(False) except Exception: self.exception("Error while processing search results from indexer %s" % self) raise IndexerResultParsingException("Error while parsing the results from indexer", self) except IndexerAuthException as e: papiaccess.error = "Authorization error :%s" % e.message self.error(papiaccess.error) indexerStatus = self.handle_indexer_failure(reason="Authentication failed", disable_permanently=True) papiaccess.response_successful = False except IndexerAccessException as e: papiaccess.error = "Access error: %s" % e.message self.error(papiaccess.error) indexerStatus = self.handle_indexer_failure(reason="Access failed") papiaccess.response_successful = False except IndexerResultParsingException as e: papiaccess.error = "Access error: %s" % e.message self.error(papiaccess.error) indexerStatus = self.handle_indexer_failure(reason="Parsing results failed") papiaccess.response_successful = False except Exception as e: self.exception("An error error occurred while searching: %s", e) if papiaccess is not None: papiaccess.error = "Unknown error :%s" % e papiaccess.response_successful = False finally: if papiaccess is not None: psearch.successful = papiaccess.response_successful else: self.error("Unable to save API response to database") psearch.resultsCount = total_results return QueriesExecutionResult(didsearch=True, results=results, indexerSearchEntry=psearch, indexerApiAccessEntry=papiaccess, indexerStatus=indexerStatus, total=total_results, loaded_results=len(results), total_known=total_known, has_more=has_more, rejected=rejected) def debug(self, msg, *args, **kwargs): self.logger.debug("%s: %s" % (self.name, msg), *args, **kwargs) def info(self, msg, *args, **kwargs): self.logger.info("%s: %s" % (self.name, msg), *args, **kwargs) def warn(self, msg, *args, **kwargs): self.logger.warn("%s: %s" % (self.name, msg), *args, **kwargs) def error(self, msg, *args, **kwargs): self.logger.error("%s: %s" % (self.name, msg), *args, **kwargs) def exception(self, msg, *args, **kwargs): self.logger.exception("%s: %s" % (self.name, msg), *args, **kwargs) def isNumber(self, string): if string is None: return False try: int(string) return True except (TypeError, ValueError): return False def getDates(self, entry, usenetdate, preciseDate=True): entry.epoch = usenetdate.timestamp entry.age = usenetdate.humanize() entry.pubdate_utc = str(usenetdate) age = (arrow.utcnow() - usenetdate) if age.days == 0 and preciseDate: if age.seconds < 3600: entry.age = "%dm" % ((arrow.utcnow() - usenetdate).seconds / 60) else: entry.age = "%dh" % ((arrow.utcnow() - usenetdate).seconds / 3600) else: entry.age = str(age.days) + "d" entry.age_days = age.days entry.precise_date = preciseDate entry.pubDate = usenetdate.format("ddd, DD MMM YYYY HH:mm:ss Z") def get_instance(indexer): return SearchModule(indexer)
#!/usr/bin/env python """ NSX-T SDK Sample Code Copyright 2019 VMware, Inc. All rights reserved The BSD-2 license (the "License") set forth below applies to all parts of the NSX-T SDK Sample Code project. You may not use this file except in compliance with the License. BSD-2 License Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import sys import time from util import auth from util import getargs from com.vmware.nsx.model_client import ApiError from com.vmware.vapi.std.errors_client import Error from com.vmware.vapi.std.errors_client import ServiceUnavailable from google.api_core.retry import Retry from google.api_core.retry import if_exception_type """ This example shows how to implement backoff and retry when an API call fails because of API rate-limiting. It makes use of the Retry helper from the google core APIs. To run this example, you will need to install google-api-core with "pip install google-api-core". """ # Call the given API, retrying if the API fails with a ServiceUnavailble # exception (both the 429 Too Many Requests and 503 Service Unavailable # responses that the NSX-T API may return map to this exception). # Initially back off for one tenth of a second. By default, the Retry # will double the backoff interval each time up to a maximum of # 60 seconds. For more information on Retry, see # https://googleapis.dev/python/google-api-core/latest/retry.html @Retry(predicate=if_exception_type(ServiceUnavailable), initial=0.1) def call_api_with_retry(api, *args): return apply(api, args) def main(): args = getargs.getargs() api_client = auth.create_nsx_policy_api_client( args.user, args.password, args.nsx_host, args.tcp_port, auth_type=auth.SESSION_AUTH) while True: n = 0 last = time.time() while time.time() - last < 1.0: call_api_with_retry(api_client.Infra.get) n += 1 # API calls that take arguments: # # Since we use the python apply() method, you need # to pass the callable and its arguments as a list. # The usual way to call this API would be: # api_client.infra.Domains.get("default") # call_api_with_retry(api_client.infra.Domains.get, "default") n += 1 print("%d calls/sec" % n) if __name__ == "__main__": main()
from tests.system.action.base import BaseActionTestCase class SpeakerCreateActionTest(BaseActionTestCase): def test_createx(self) -> None: self.create_model("meeting/7844", {"name": "name_asdewqasd"}) self.create_model("user/7", {"username": "test_username1"}) self.create_model( "list_of_speakers/23", {"speaker_ids": [], "meeting_id": 7844} ) response = self.client.post( "/", json=[ { "action": "speaker.create", "data": [{"user_id": 7, "list_of_speakers_id": 23}], } ], ) self.assert_status_code(response, 200) speaker = self.get_model("speaker/1") assert speaker.get("user_id") == 7 assert speaker.get("list_of_speakers_id") == 23 assert speaker.get("weight") == 10000 list_of_speakers = self.get_model("list_of_speakers/23") assert list_of_speakers.get("speaker_ids") == [1] user = self.get_model("user/7") assert user.get("speaker_$7844_ids") == [1] assert user.get("speaker_$_ids") == ["7844"] def test_create_empty_data(self) -> None: response = self.client.post( "/", json=[{"action": "speaker.create", "data": [{}]}], ) self.assert_status_code(response, 400) self.assertIn( "data must contain [\\'list_of_speakers_id\\', \\'user_id\\'] properties", str(response.data), ) def test_create_wrong_field(self) -> None: response = self.client.post( "/", json=[ { "action": "speaker.create", "data": [{"wrong_field": "text_AefohteiF8"}], } ], ) self.assert_status_code(response, 400) self.assertIn( "data must contain [\\'list_of_speakers_id\\', \\'user_id\\'] properties", str(response.data), ) def test_create_already_exist(self) -> None: self.create_model("meeting/7844", {"name": "name_asdewqasd"}) self.create_model( "user/7", {"username": "test_username1", "speaker_$7844_ids": [42]} ) self.create_model( "list_of_speakers/23", {"speaker_ids": [42], "meeting_id": 7844} ) self.create_model("speaker/42", {"user_id": 7, "list_of_speakers_id": 23}) response = self.client.post( "/", json=[ { "action": "speaker.create", "data": [{"user_id": 7, "list_of_speakers_id": 23}], } ], ) self.assert_status_code(response, 400) list_of_speakers = self.get_model("list_of_speakers/23") assert list_of_speakers.get("speaker_ids") == [42]
import sys sys.path.append('../') from pycore.tikzeng import * width = 3.5 arch = [ to_head('..'), to_cor(), to_begin(), to_input('./icra/rgb.png', to="(-10, 0, 0)", width=6.5, height=6.5), to_ConvReluNewColor(name='cr_a0', s_filer=304, y_filer=224, n_filer=64, offset="(-8, 0, 0)", to="(0,0,0)", width=4, height=32, depth=32), to_input('./icra/sparse_depth.png', to="(-4, 0, 0)", width=6.5, height=6.5), to_ConvReluNewColor(name='cr_b0', s_filer=304, y_filer=224, n_filer=64, offset="(-2, 0, 0)", to="(0, 0, 0)", width=4, height=32, depth=32), to_ConvRelu(name='cr_a00', s_filer=304, n_filer=64, offset="(0, 0, 0)", to="(cr_b0-east)", width=4, height=32, depth=32), to_skip(of='cr_a0', to="cr_a00", pos=1.4), # conv1 to_ConvReluNew( name="cr_{}".format('b1'), offset="(1.5, 0, 0)", to="(0,0, 0)".format('b0'), s_filer=304, y_filer=224, n_filer=256, width=width*1.2, height=32, depth=32, ), to_Pool( name="{}".format('pool_b1'), offset="(0,0,0)", to="(cr_{}-east)".format('b1'), width=1, height=int(32 * 3 / 4), depth=int(32 * 3 / 4), opacity=0.5 ), # conv2 to_ConvReluNew( name="cr_{}".format('b2'), offset="(1.5, 0, 0)", to="({}-east)".format('pool_b1'), s_filer=152, y_filer=112, n_filer=512, width=width*1.5, height=25, depth=25, ), to_Pool( name="{}".format('pool_b2'), offset="(0,0,0)", to="(cr_{}-east)".format('b2'), width=1, height=int(25 * 3 / 4), depth=int(25 * 3 / 4), opacity=0.5 ), # conv3 to_ConvReluNew( name="cr_{}".format('b3'), offset="(1.5, 0, 0)", to="({}-east)".format('pool_b2'), s_filer=76, y_filer=56, n_filer=1024, width=width*1.8, height=20, depth=20, ), to_Pool( name="{}".format('pool_b3'), offset="(0,0,0)", to="(cr_{}-east)".format('b3'), width=1, height=int(20 * 3 / 4), depth=int(20 * 3 / 4), opacity=0.5 ), # conv4 to_ConvReluNew( name="cr_{}".format('b4'), offset="(1.5, 0, 0)", to="({}-east)".format('pool_b3'), s_filer=38, y_filer=28, n_filer=2048, width=width*2, height=16, depth=16, ), to_Pool( name="{}".format('pool_b4'), offset="(0,0,0)", to="(cr_{}-east)".format('b4'), width=1, height=int(16 * 3 / 4), depth=int(16 * 3 / 4), opacity=0.5 ), # to_skipNew(of='cr_c0', to="b0", pos=1.3), # to_skipNew1(of='cr_c0', to="b0", pos=1.3), # to_connection("{}".format('cr_a0'), "b00"), to_connection("{}".format('cr_a00'), "cr_{}".format('b1')), to_connection("{}".format('pool_b1'), "cr_{}".format('b2')), to_connection("{}".format('pool_b2'), "cr_{}".format('b3')), to_connection("{}".format('pool_b3'), "cr_{}".format('b4')), # Bottleneck # block-005 to_ConvReluNewColor(name='cr_b5', s_filer=19, y_filer=14, n_filer=512, offset="(1.5,0,0)", to="(pool_b4-east)", width=width*2.2, height=8, depth=8, caption=""), to_connection("pool_b4", "cr_b5"), # Decoder # convt2 to_UnPoolNew(name='unpool_{}'.format('b6'), offset="(2.0,0,0)", to="({}-east)".format('cr_b5'), y_filer=28, width=1, height=16, depth=16, opacity=0.5), to_ConvResSimple(name='cr_res_{}'.format('b6'), offset="(0,0,0)", to="(unpool_{}-east)".format('b6'), n_filer=2048, width=width*2, height=16, depth=16, opacity=0.5), to_ConvReluSimple(name='cr_{}'.format('b6'), offset="(0,0,0)", to="(cr_res_{}-east)".format('b6'), s_filer=64, n_filer=2048, width=width*2, height=16, depth=16), # convt3 to_UnPoolNew(name='unpool_{}'.format('b7'), offset="(1.2, 0, 0)", to="({}-east)".format('cr_b6'), y_filer=56, width=1, height=20, depth=20, opacity=0.5), to_ConvResSimple(name='cr_res_{}'.format('b7'), offset="(0, 0, 0)", to="(unpool_{}-east)".format('b7'), n_filer=1024, width=width*1.8, height=20, depth=20, opacity=0.5), to_ConvReluSimple(name='cr_{}'.format('b7'), offset="(0,0,0)", to="(cr_res_{}-east)".format('b7'), s_filer=128, n_filer=1024, width=width*1.8, height=20, depth=20), # convt4 to_UnPoolNew(name='unpool_{}'.format('b8'), offset="(1.5, 0, 0)", to="({}-east)".format('cr_b7'), y_filer=112, width=1, height=25, depth=25, opacity=0.5), to_ConvResSimple(name='cr_res_{}'.format('b8'), offset="(0, 0, 0)", to="(unpool_{}-east)".format('b8'), n_filer=512, width=width*1.5, height=25, depth=25, opacity=0.5), to_ConvReluSimple(name='cr_{}'.format('b8'), offset="(0,0,0)", to="(cr_res_{}-east)".format('b8'), s_filer=256, n_filer=512, width=width*1.5, height=25, depth=25), # convt5 to_UnPoolNew(name='unpool_{}'.format('b9'), offset="(2, 0, 0)", to="({}-east)".format('cr_b8'), y_filer=224, width=1, height=32, depth=32, opacity=0.5), to_ConvResSimple(name='cr_res_{}'.format('b9'), offset="(0, 0, 0)", to="(unpool_{}-east)".format('b9'), n_filer=256, width=width*1.2, height=32, depth=32, opacity=0.5), to_ConvReluSimple(name='cr_{}'.format('b9'), offset="(0,0,0)", to="(cr_res_{}-east)".format('b9'), s_filer=256, n_filer=256, width=width*1.2, height=32, depth=32), # convt6 to_UnPoolNew(name='unpool_{}'.format('b10'), offset="(2, 0, 0)", to="({}-east)".format('cr_b9'), y_filer=224, width=1, height=32, depth=32, opacity=0.5), to_ConvResSimple(name='cr_res_{}'.format('b10'), offset="(0, 0, 0)", to="(unpool_{}-east)".format('b10'), n_filer=64, width=width, height=32, depth=32, opacity=0.5), to_ConvReluSimple(name='cr_{}'.format('b10'), offset="(0,0,0)", to="(cr_res_{}-east)".format('b10'), s_filer=256, n_filer=64, width=width, height=32, depth=32), to_ConvReluNew(name="last", s_filer=304, y_filer=224, n_filer=1, offset="(2.5,0,0)", to="(cr_b10-east)", width=4, height=32, depth=32), to_SoftMaxNew(name="d2n", s_filer=304, y_filer=224, n_filer=3, offset="(2.5, 0, 0)", to="(last-east)", width=4, height=32, depth=32, opacity=0.5), to_skip(of='cr_b4', to='cr_b6', pos=1.25), to_skip(of='cr_b3', to='cr_b7', pos=1.25), to_skip(of='cr_b2', to='cr_b8', pos=1.25), to_skip(of='cr_b1', to='cr_b9', pos=1.25), to_skip(of='cr_a00', to='cr_b10', pos=1.4), to_connection("cr_{}".format('b5'), "unpool_{}".format('b6')), to_connection("cr_{}".format('b6'), "unpool_{}".format('b7')), to_connection("cr_{}".format('b7'), "unpool_{}".format('b8')), to_connection("cr_{}".format('b8'), "unpool_{}".format('b9')), to_connection("cr_{}".format('b9'), "unpool_{}".format('b10')), to_connection("cr_b10", "last"), to_input('./icra/estimated_depth.png', to="(last-east)", width=6.5, height=6.5), to_connection("last", "d2n"), to_input('./icra/estimated_normal.png', to="(d2n-east)", width=6.5, height=6.5), to_UnPool(name='legend_unpool', offset="(-12, 10, 0)", to="(unpool_{}-east)".format('b9'), width=1, height=16, depth=16, opacity=0.5, caption="Unpooling"), to_ConvReluNewColorLegend(name='legend_conv', offset="(3, 0,0)", to="(legend_unpool-east)", width=4, height=16, depth=16, caption="Convolution"), to_ConvResSimpleSimple(name='legend_deconv', offset="(3, 0, 0)", to="(legend_conv-east)".format('d10'), width=width, height=16, depth=16, opacity=0.5, caption="Deconvolution"), to_ConvSimple(name='legend_resnet'.format('d10'), offset="(3, 0, 0)", to="(legend_deconv-east)".format('d10'), width=width, height=16, depth=16, caption="ResNet Block"), to_Pool(name='legend_pool', offset="(3, 0, 0)", to="(legend_resnet-east)", width=1, height=16, depth=16, opacity=0.5, caption="Pooling"), to_relu(name='legend_relu', offset="(3, 0, 0)", to="(legend_pool-east)", width=1, height=16, depth=16, opacity=0.5, caption="ReLU"), to_SoftMaxSimple(name="d2n", offset="(2.5, 0, 0)", to="(legend_relu-east)", width=4, height=16, depth=16, opacity=0.5, caption="d2n"), to_end() ] if __name__ == '__main__': namefile = str(sys.argv[0]).split('.')[0] to_generate(arch, namefile + '.tex')
import os def next_path(path_pattern): """ Finds the next free path in an sequentially named list of files e.g. path_pattern = 'file-%s.txt': file-1.txt file-2.txt file-3.txt Runs in log(n) time where n is the number of existing files in sequence """ i = 1 # First do an exponential search while os.path.exists(path_pattern % i): i = i * 2 # Result lies somewhere in the interval (i/2..i] # We call this interval (a..b] and narrow it down until a + 1 = b a, b = (i // 2, i) while a + 1 < b: c = (a + b) // 2 # interval midpoint a, b = (c, b) if os.path.exists(path_pattern % c) else (a, c) return path_pattern % b
import torch as torch import copy from .linear_solver import linear_solver from torch.autograd import Variable import sys sys.path.append('../') from utils.manip import clip_image_values from .deepfool import deepfool def sparsefool(x_0, net, lb, ub, lambda_=3., max_iter=20, epsilon=0.02, device='cuda', activity_mask = None): pred_label = torch.argmax(net.forward(Variable(x_0, requires_grad=True)).data).item() x_i = copy.deepcopy(x_0) fool_im = copy.deepcopy(x_i) fool_label = pred_label loops = 0 while fool_label == pred_label and loops < max_iter: normal, x_adv = deepfool(x_i, net, lambda_, device=device) x_i = linear_solver(x_i, normal, x_adv, lb, ub, activity_mask = activity_mask) fool_im = x_0 + (1 + epsilon) * (x_i - x_0) fool_im = clip_image_values(fool_im, lb, ub) fool_label = torch.argmax(net.forward(fool_im)).item() loops += 1 r = fool_im - x_0 return fool_im, r, pred_label, fool_label, loops
import re from dataclasses import dataclass from typing import Iterator, List, Optional from ...logging import get_logger @dataclass(frozen=True) class ParseResult: name: str namespaces: List[str] @dataclass class OutputPatterns: failed_test: str namespace_separator: Optional[str] = None ansi: bool = False failed_name_prefix: Optional[str] = None _BASE_PATTERNS = { "python#pytest": OutputPatterns( failed_test=r"^(FAILED|ERROR) .+?::(?P<namespaces>.+::)?(?P<name>[^[\s]*)(.+])?( |$)", namespace_separator="::", ), "python#pyunit": OutputPatterns( failed_test=r"^FAIL: (?P<name>.*) \(.*?(?P<namespaces>\..+)\)", namespace_separator=r"\.", ), "go#gotest": OutputPatterns(failed_test=r"^.*--- FAIL: (?P<name>.+?) "), "go#richgo": OutputPatterns( failed_test=r"^FAIL\s\|\s(?P<name>.+?) \(.*\)", ansi=True, failed_name_prefix="Test", ), "javascript#jest": OutputPatterns( failed_test=r"^\s*● (?P<namespaces>.* › )?(?P<name>.*)$", ansi=True, namespace_separator=" › ", ), "elixir#exunit": OutputPatterns(failed_test=r"\s*\d\) test (?P<name>.*) \(.*\)$"), "php#phpunit": OutputPatterns( failed_test=r"\s*\d\)(?P<namespace>.*)::(?P<name>.*)", ) } # https://stackoverflow.com/questions/14693701/how-can-i-remove-the-ansi-escape-sequences-from-a-string-in-python _ANSI_ESCAPE = re.compile(r"\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])") logger = get_logger() class OutputParser: def __init__(self, disable_patterns: List[str]) -> None: self._patterns = { runner: patterns for runner, patterns in _BASE_PATTERNS.items() if runner not in disable_patterns } def can_parse(self, runner: str) -> bool: return runner in self._patterns def parse_failed(self, runner: str, output: List[str]) -> Iterator[ParseResult]: pattern = self._patterns[runner] fail_pattern = re.compile(pattern.failed_test) for line in output: match = fail_pattern.match( _ANSI_ESCAPE.sub("", line) if pattern.ansi else line ) if match: logger.finfo( "Found failed test in output {match['name']} in namespaces {match['namespaces']} of runner {runner}" ) namespaces = ( [ namespace for namespace in re.split( pattern.namespace_separator, match["namespaces"] ) if namespace ] if pattern.namespace_separator and match["namespaces"] else [] ) name = ( f"{pattern.failed_name_prefix}{match['name']}" if pattern.failed_name_prefix else match["name"] ) yield ParseResult(name=name, namespaces=namespaces)
"""Test the IPython.kernel public API Authors ------- * MinRK """ #----------------------------------------------------------------------------- # Copyright (c) 2013, the IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import nose.tools as nt from IPython.testing import decorators as dec from IPython.kernel import launcher, connect from IPython import kernel #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- @dec.parametric def test_kms(): for base in ("", "Blocking", "Multi"): KM = base + "KernelManager" yield nt.assert_true(KM in dir(kernel), KM) @dec.parametric def test_launcher(): for name in launcher.__all__: yield nt.assert_true(name in dir(kernel), name) @dec.parametric def test_connect(): for name in connect.__all__: yield nt.assert_true(name in dir(kernel), name)
"""Tests for Unix Timestamp Flask application.""" import pytest import unixtimestamp @pytest.fixture def app(): """Configure the app for testing.""" the_app = unixtimestamp.create_app() the_app.testing = True return the_app
# Copyright (c) 2019 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os def init_nnabla(ctx_config): import nnabla as nn from nnabla.ext_utils import get_extension_context from comm import CommunicatorWrapper # set context ctx = get_extension_context(**ctx_config) # init communicator comm = CommunicatorWrapper(ctx) nn.set_default_context(comm.ctx) # disable outputs from logger except rank==0 if comm.rank > 0: from nnabla import logger import logging logger.setLevel(logging.ERROR) return comm class AttrDict(dict): def __setattr__(self, key, value): self[key] = value def __getattr__(self, key): if key not in self: raise AttributeError("No such attribute `{}`".format(key)) if isinstance(self[key], dict): self[key] = AttrDict(self[key]) return self[key] def dump_to_stdout(self): print("================================configs================================") for k, v in self.items(): print("{}: {}".format(k, v)) print("=======================================================================") def makedirs(dirpath): if os.path.exists(dirpath): if os.path.isdir(dirpath): return else: raise ValueError( "{} already exists as a file not a directory.".format(dirpath)) os.makedirs(dirpath) def get_current_time(): from datetime import datetime return datetime.now().strftime('%m%d_%H%M%S')
"""Class for working with GCP connections (e.g. Pub/Sub messages)""" import datetime import json import os import sys try: import firebase_admin from firebase_admin import credentials from firebase_admin import firestore from google.cloud import pubsub_v1 from google.cloud import storage from google.cloud import logging from google.auth import _default as google_auth # pylint: disable=no-member DESCENDING = firestore.Query.DESCENDING SUCCESSFUL_IMPORTS = True except ImportError: SUCCESSFUL_IMPORTS = False from grpc import StatusCode import logger import configurator LOGGER = logger.get_logger('gcp') TIMESTAMP_FORMAT = '%Y-%m-%dT%H:%M:%S.%f' DEFAULT_LIMIT = 100 def get_timestamp(): """"Get a JSON-compatible formatted timestamp""" return to_timestamp(datetime.datetime.now(datetime.timezone.utc)) def to_timestamp(timestamp): """"Get a JSON-compatible formatted timestamp""" return timestamp.strftime(TIMESTAMP_FORMAT)[:-3] + 'Z' def parse_timestamp(timestamp_str): """Parses a timestamp generated from get_timestamp""" return datetime.datetime.strptime(timestamp_str, TIMESTAMP_FORMAT + 'Z') class GcpManager: """Manager class for working with GCP""" REPORT_BUCKET_FORMAT = '%s.appspot.com' def __init__(self, config, callback_handler): self.config = config self._callback_handler = callback_handler cred_file = self.config.get('gcp_cred') if not cred_file: LOGGER.info('No gcp_cred file specified in config, disabling gcp use.') self._pubber = None self._storage = None self._firestore = None self._client_name = None return assert SUCCESSFUL_IMPORTS, "Missing google cloud python dependencies." LOGGER.info('Loading gcp credentials from %s', cred_file) # Normal execution assumes default credentials. (self._credentials, self._project) = google_auth.load_credentials_from_file(cred_file) self._client_name = self._parse_creds(cred_file) self._site_name = self._get_site_name() self._pubber = pubsub_v1.PublisherClient(credentials=self._credentials) LOGGER.info('Initialized gcp pub/sub %s:%s:%s', self._project, self._client_name, self._site_name) self._firestore = self._initialize_firestore(cred_file) self._report_bucket_name = self.REPORT_BUCKET_FORMAT % self._project self._storage = storage.Client(project=self._project, credentials=self._credentials) self._bucket = self._ensure_report_bucket() self._config_callbacks = {} self._logging = logging.Client(credentials=self._credentials, project=self._project) LOGGER.info('Connection initialized at %s', get_timestamp()) def get_logging_client(self): """Gets the stackdriver client""" return (self._client_name, self._logging) if self._client_name else None def _initialize_firestore(self, cred_file): cred = credentials.Certificate(cred_file) firebase_admin.initialize_app(cred) LOGGER.info('Initialized gcp firestore %s:%s', self._project, self._client_name) dashboard_url = 'https://%s.firebaseapp.com/?origin=%s' % (self._project, self._client_name) LOGGER.info('Dashboard at %s', dashboard_url) return firestore.client() def _on_snapshot(self, callback, doc_snapshot, immediate): def handler(): for doc in doc_snapshot: doc_data = doc.to_dict() timestamp = doc_data['timestamp'] if immediate or doc_data['saved'] != timestamp: callback(doc_data['config']) doc.reference.update({ 'saved': timestamp }) self._callback_handler(handler) def register_config(self, path, config, callback=None, immediate=False): """Register a config blob with callback""" if not self._firestore: return assert path, 'empty config path' full_path = 'origin/%s/%s/config/definition' % (self._client_name, path) if full_path in self._config_callbacks: LOGGER.info('Unsubscribe callback %s', path) self._config_callbacks[full_path]['future'].unsubscribe() del self._config_callbacks[full_path] config_doc = self._firestore.document(full_path) if config is not None: timestamp = get_timestamp() LOGGER.info('Registering %s', full_path) config_doc.set({ 'config': config, 'saved': timestamp, 'timestamp': timestamp }) else: LOGGER.info('Releasing %s', full_path) config_doc.delete() if callback: assert config is not None, 'callback defined when deleting config??!?!' on_snapshot = lambda doc_snapshot, changed, read_time:\ self._on_snapshot(callback, doc_snapshot, immediate) self._register_callback(config_doc, full_path, on_snapshot) def _register_callback(self, config_doc, full_path, on_snapshot): snapshot_future = config_doc.on_snapshot(on_snapshot) self._config_callbacks[full_path] = { 'future': snapshot_future, 'config_doc': config_doc, 'on_snapshot': on_snapshot } self._apply_callback_hack(full_path, snapshot_future) def _wrap_callback(self, callbacks, reason): for callback in callbacks: try: callback(reason) except Exception as e: LOGGER.error('Capturing RPC error: %s', str(e)) def _hack_recv(self, rpc, path): # pylint: disable=protected-access try: return rpc._recoverable(rpc._recv) # Erp. except Exception as e: LOGGER.error('Error intercepted at %s, %s for %s', get_timestamp(), rpc.call._state.code, path) if rpc.call._state.code == StatusCode.INTERNAL: self._restart_callback(path) raise e def _restart_callback(self, path): LOGGER.warning('Restarting callback %s', path) callback = self._config_callbacks[path] self._register_callback(callback['config_doc'], path, callback['on_snapshot']) def _apply_callback_hack(self, path, snapshot_future): # pylint: disable=protected-access rpc = snapshot_future._rpc rpc.recv = lambda: self._hack_recv(rpc, path) callbacks = rpc._callbacks LOGGER.info('Patching recv callback for %s with %s', path, len(callbacks)) wrapped_handler = lambda reason: self._wrap_callback(callbacks, reason) rpc._callbacks = [wrapped_handler] def release_config(self, path): """Release a config blob and remove it from the live data system""" self.register_config(path, None) def _get_site_name(self): site_path = self.config['site_path'] cloud_config = os.path.join(site_path, 'cloud_iot_config.json') if not os.path.isfile(cloud_config): LOGGER.warning('Site cloud config file %s not found, using %s instead', cloud_config, self._client_name) return self._client_name with open(cloud_config) as config_file: return json.load(config_file)['site_name'] def _parse_creds(self, cred_file): """Parse JSON credential file""" with open(cred_file) as data_file: cred = json.load(data_file) project = cred['project_id'] assert project == self._project, 'inconsistent credential projects' client_email = cred['client_email'] (client, dummy_other) = client_email.split('@', 2) return client def publish_message(self, topic, message_type, message): """Publish a message to pub/sub topic""" if not self._pubber: LOGGER.debug('Ignoring message publish: not configured') return envelope = { 'type': message_type, 'timestamp': get_timestamp(), 'payload': message } message_str = json.dumps(envelope) LOGGER.debug('Sending to topic_path %s/%s: %s', self._project, topic, message_str) # pylint: disable=no-member topic_path = self._pubber.topic_path(self._project, topic) future = self._pubber.publish(topic_path, message_str.encode('utf-8'), projectId=self._project, origin=self._client_name, site_name=self._site_name) LOGGER.debug('Publish future result %s', future.result()) def _ensure_report_bucket(self): bucket_name = self._report_bucket_name if self._storage.lookup_bucket(bucket_name): LOGGER.info('Storage bucket %s already exists', bucket_name) else: LOGGER.info('Creating storage bucket %s', bucket_name) self._storage.create_bucket(bucket_name) return self._storage.get_bucket(bucket_name) def upload_file(self, file_name, destination_file_name=None): """Uploads a report to a storage bucket.""" if not self._storage: LOGGER.debug('Ignoring %s upload: not configured' % file_name) return None destination_file_name = os.path.join('origin', self._client_name or "other", destination_file_name or file_name) blob = self._bucket.blob(destination_file_name) blob.upload_from_filename(file_name) LOGGER.info('Uploaded %s' % destination_file_name) return destination_file_name def register_offenders(self): """Register any offenders: people who are not enabled to use the system""" if not self._firestore: LOGGER.error('Firestore not initialized.') return LOGGER.info('Registering offenders...') users = self._firestore.collection(u'users').stream() for user in users: permissions = self._firestore.collection(u'permissions').document(user.id).get() user_email = user.to_dict().get('email') enabled = permissions.to_dict() and permissions.to_dict().get('enabled') if enabled: LOGGER.info('Access already enabled for %s', user_email) elif self._query_user('Enable access for %s? (N/y) ' % user_email): LOGGER.info('Enabling access for %s', user_email) self._firestore.collection(u'permissions').document(user.id).set({ 'enabled': True }) else: LOGGER.info('Ignoring user %s', user_email) def _get_json_report(self, runid): doc = runid.reference.collection('test').document('terminate').get().to_dict() report_blob = doc.get('report_path.json') if doc else None if not report_blob: return None LOGGER.info('Downloading report %s', report_blob) blob = self._bucket.blob(report_blob) return json.loads(str(blob.download_as_string(), 'utf-8')) # pylint: disable=too-many-arguments def get_reports(self, device: str, start=None, end=None, count=None, daq_run_id=None): """Get filtered list of reports""" if not self._firestore: LOGGER.error('Firestore not initialized.') return LOGGER.info('Looking for reports from GCP...') limit_count = count if count else DEFAULT_LIMIT origin = self._firestore.collection(u'origin').document(self._client_name).get() query = origin.reference.collection('runid').where('deviceId', '==', device) if start: LOGGER.info('Limiting to start time %s', to_timestamp(start)) query = query.where('updated', '>=', to_timestamp(start)) if end: LOGGER.info('Limiting to end time %s', to_timestamp(end)) query = query.where('updated', '<=', to_timestamp(end)) if daq_run_id: LOGGER.info('Limiting to DAQ run id %s', daq_run_id) query = query.where('daq_run_id', '==', daq_run_id) runids = query.order_by(u'updated', direction=DESCENDING).limit(limit_count).stream() for runid in runids: json_report = self._get_json_report(runid) if json_report: yield json_report def _query_user(self, message): reply = input(message) options = set(('y', 'Y', 'yes', 'YES', 'Yes', 'sure')) if reply in options: return True return False if __name__ == '__main__': logger.set_config(fmt='%(levelname)s:%(message)s', level="INFO") CONFIGURATOR = configurator.Configurator() CONFIG = CONFIGURATOR.parse_args(sys.argv) GCP = GcpManager(CONFIG, None) if CONFIG.get('register_offenders'): GCP.register_offenders() else: print('Unknown command mode for gcp module.')
import gym try: import gym_fetch_stack except ImportError: pass import os import ast from collections import OrderedDict from ddpg_curiosity_mc_her import logger from ddpg_curiosity_mc_her.ddpg.ddpg import DDPG from mpi4py import MPI DEFAULT_ENV_PARAMS = { 'FetchReach-v1': { 'n_cycles': 10, }, 'boxpush-v0': { 'n_cycles': 10, }, } DEFAULT_PARAMS = { 'env_id': 'FetchReach-v1', # Try HalfCheetah-v2 for plain DDPG, FetchReach-v1 for HER 'do_evaluation': True, 'render_eval': False, 'render_training': False, 'seed': 42, 'train_policy_fn': 'epsilon_greedy_noisy_explore', 'eval_policy_fn': 'greedy_exploit', 'agent_roles': 'exploit, explore', # choices are 'explore, explore', 'exploit', and 'explore' 'memory_type': 'replay_buffer', # choices are 'replay_buffer' or 'ring_buffer'. 'ring_buffer' can't be used with HER. 'heatmaps': False, # generate heatmaps if using a gym-boxpush or FetchStack environment 'boxpush_heatmaps': False, # old argument, doesnt do anything, remaining to not break old scripts # networks 'exploit_Q_lr': 0.001, # critic learning rate 'exploit_pi_lr': 0.001, # actor learning rate 'explore_Q_lr': 0.001, # critic learning rate 'explore_pi_lr': 0.001, # actor learning rate 'dynamics_lr': 0.007, # dynamics module learning rate 'exploit_polyak_tau': 0.001, # polyak averaging coefficient (target_net = (1 - tau) * target_net + tau * main_net) 'explore_polyak_tau': 0.05, # polyak averaging coefficient (target_net = (1 - tau) * target_net + tau * main_net) 'exploit_gamma': 'auto', # 'auto' or floating point number. If auto, gamma is 1 - 1/episode_time_horizon 'explore_gamma': 'auto', # 'auto' or floating point number. If auto, gamma is 1 - 1/episode_time_horizon 'episode_time_horizon': 'auto', # 'auto' or int. If 'auto' T is inferred from env._max_episode_steps # training 'buffer_size': int(1E6), # for experience replay 'n_epochs': 25, 'n_cycles': 50, # per epoch 'n_batches': 40, # training batches per cycle 'batch_size': 1024, # per mpi thread, measured in transitions and reduced to even multiple of chunk_length. 'rollout_batches_per_cycle': 8, 'rollout_batch_size': 1, # number of per mpi thread 'n_test_rollouts': 50, # number of test rollouts per epoch, each consists of rollout_batch_size rollouts 'noise_eps' : 0.2, 'random_eps' : 0.3, # HER 'use_her': True, 'replay_strategy': 'future', # supported modes: future, none 'replay_k': 4, # number of additional goals used for replay, only used if off_policy_data=future 'sub_goal_divisions': 'none', # Save and Restore 'save_at_score': .98, # success rate for HER, mean reward per episode for DDPG 'stop_at_score': 'none', # success rate for HER, mean reward per episode for DDPG 'save_checkpoints_at': 'none', 'restore_from_ckpt': 'none', 'do_demo_only': False, 'demo_video_recording_name': 'none', # GPU Usage Overrides 'cuda' : False, 'num_gpu' : 'none', } CACHED_ENVS = {} def cached_make_env(make_env): """ Only creates a new environment from the provided function if one has not yet already been created. This is useful here because we need to infer certain properties of the env, e.g. its observation and action spaces, without any intend of actually using it. """ if make_env not in CACHED_ENVS: env = make_env() CACHED_ENVS[make_env] = env return CACHED_ENVS[make_env] def prepare_params(kwargs): env_id = kwargs['env_id'] def make_env(): return gym.make(env_id) kwargs['make_env'] = make_env tmp_env = cached_make_env(kwargs['make_env']) kwargs['T'] = kwargs['episode_time_horizon'] del kwargs['episode_time_horizon'] if kwargs['T'] == 'auto': assert hasattr(tmp_env, '_max_episode_steps') kwargs['T'] = tmp_env._max_episode_steps else: kwargs['T'] = int(kwargs['T']) tmp_env.reset() if kwargs['use_her'] is False: # If HER is disabled, disable other HER related params. kwargs['replay_strategy'] = 'none' kwargs['replay_k'] = 0 if 'BoxPush' not in kwargs['env_id'] and 'FetchStack' not in kwargs['env_id']: kwargs['heatmaps'] = False for gamma_key in ['exploit_gamma', 'explore_gamma']: kwargs[gamma_key] = 1. - 1. / kwargs['T'] if kwargs[gamma_key] == 'auto' else float(kwargs[gamma_key]) # if kwargs['map_dynamics_loss'] and 'BoxPush' in kwargs['env_id'] and 'explore' in kwargs['agent_roles']: # kwargs['dynamics_loss_mapper'] = DynamicsLossMapper( # working_dir=os.path.join(logger.get_dir(), 'dynamics_loss'), # sample_env=cached_make_env(kwargs['make_env']) # ) # else: # kwargs['dynamics_loss_mapper'] = None # for network in ['exploit', 'explore']: # # Parse noise_type # action_noise = None # param_noise = None # nb_actions = tmp_env.action_space.shape[-1] # for current_noise_type in kwargs[network+'_noise_type'].split(','): # current_noise_type = current_noise_type.strip() # if current_noise_type == 'none': # pass # elif 'adaptive-param' in current_noise_type: # _, stddev = current_noise_type.split('_') # param_noise = AdaptiveParamNoiseSpec(initial_stddev=float(stddev), desired_action_stddev=float(stddev)) # elif 'normal' in current_noise_type: # _, stddev = current_noise_type.split('_') # action_noise = NormalActionNoise(mu=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions)) # elif 'ou' in current_noise_type: # _, stddev = current_noise_type.split('_') # action_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(nb_actions), # sigma=float(stddev) * np.ones(nb_actions)) # else: # raise RuntimeError('unknown noise type "{}"'.format(current_noise_type)) # kwargs[network+'_action_noise'] = action_noise # kwargs[network+'_param_noise'] = param_noise # del(kwargs[network+'_noise_type']) #TODO kwargs['train_rollout_params'] = { 'compute_Q': False, 'render': kwargs['render_training'] } kwargs['eval_rollout_params'] = { 'compute_Q': True, 'render': kwargs['render_eval'] } # if kwargs['mix_extrinsic_intrinsic_objectives_for_explore'] == 'none': # kwargs['mix_extrinsic_intrinsic_objectives_for_explore'] = None # else: # weights_string = kwargs['mix_extrinsic_intrinsic_objectives_for_explore'] # kwargs['mix_extrinsic_intrinsic_objectives_for_explore'] = [float(w) for w in weights_string.split(',')] # assert len(kwargs['mix_extrinsic_intrinsic_objectives_for_explore']) == 2 if kwargs['restore_from_ckpt'] == 'none': kwargs['restore_from_ckpt'] = None if kwargs['stop_at_score'] == 'none': kwargs['stop_at_score'] = None else: kwargs['stop_at_score'] = float(kwargs['stop_at_score']) if kwargs['sub_goal_divisions'] == 'none': kwargs['sub_goal_divisions'] = None else: sub_goal_string = kwargs['sub_goal_divisions'] sub_goal_divisions = ast.literal_eval(sub_goal_string) assert type(sub_goal_divisions) == list for list_elem in sub_goal_divisions: assert type(list_elem) == list for index in list_elem: assert type(index) == int kwargs['sub_goal_divisions'] = sub_goal_divisions # if kwargs['split_gpu_usage_among_device_nums'] == 'none': # kwargs['split_gpu_usage_among_device_nums'] = None # else: # gpu_string = kwargs['split_gpu_usage_among_device_nums'] # gpu_nums = ast.literal_eval(gpu_string) # assert len(gpu_nums) >= 1 # for gpu_num in gpu_nums: # assert type(gpu_num) == int # kwargs['split_gpu_usage_among_device_nums'] = gpu_nums # original_COMM_WORLD_rank = MPI.COMM_WORLD.Get_rank() # kwargs['explore_comm'] = MPI.COMM_WORLD.Split(color=original_COMM_WORLD_rank % kwargs['num_model_groups'], # key=original_COMM_WORLD_rank) if kwargs['save_checkpoints_at'] == 'none': kwargs['save_checkpoints_at'] = None else: save_checkpoints_list = ast.literal_eval(kwargs['save_checkpoints_at']) assert type(save_checkpoints_list) == list for i in range(len(save_checkpoints_list)): save_checkpoints_list[i] = float(save_checkpoints_list[i]) kwargs['save_checkpoints_at'] = save_checkpoints_list if kwargs["demo_video_recording_name"] == 'none': kwargs["demo_video_recording_name"] = None else: assert type(kwargs["demo_video_recording_name"]) == str return kwargs def log_params(params, logger=logger): for key in sorted(params.keys()): logger.info('{}: {}'.format(key, params[key])) def get_convert_arg_to_type_fn(arg_type): if arg_type == bool: def fn(value): if value in ['None', 'none']: return None if value in ['True', 'true', 't', '1']: return True elif value in ['False', 'false', 'f', '0']: return False else: raise ValueError("Argument must either be the string, \'True\' or \'False\'") return fn elif arg_type == int: def fn(value): if value in ['None', 'none']: return None return int(float(value)) return fn elif arg_type == str: return lambda arg: arg else: def fn(value): if value in ['None', 'none']: return None return arg_type(value) return fn class Bunch(object): def __init__(self, adict): self.__dict__.update(adict) def dims_to_shapes(input_dims): return {key: tuple([val]) if val > 0 else tuple() for key, val in input_dims.items()} def create_agents(input_dims, env, params): agent_roles = params['agent_roles'].replace(' ', '').split(',') agents = OrderedDict() if 'exploit' in agent_roles: role = 'exploit' agent = DDPG(role=role, input_dims=input_dims, env=env, params=params, external_critic_fn=None) agents[role] = agent # exploit_critic_fn = agent.critic_with_actor_fn logger.info('Using ' + role + ' agent.') else: exploit_critic_fn = None if 'explore' in agent_roles: role = 'explore' agent = DDPG(role=role, input_dims=input_dims, env=env, params=params) agents[role] = agent logger.info('Using ' + role + ' agent.') return agents
from iridauploader.parsers.miseq.parser import Parser
# Copyright (c) 2017, Daniele Venzano # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """The high-level interface that Zoe uses to talk to the configured container backend.""" from typing import Dict from zoe_lib.config import get_conf from zoe_lib.state import Service, Execution from zoe_master.backends.proxy import gen_proxypath, JUPYTER_NOTEBOOK, MONGO_EXPRESS, JUPYTER_PORT, MONGO_PORT from zoe_master.exceptions import ZoeStartExecutionFatalException from zoe_master.workspace.filesystem import ZoeFSWorkspace def gen_environment(execution: Execution, service: Service, env_subst_dict: Dict): """ Generate a dictionary containing the current cluster status (before the new container is spawned) This information is used to substitute template strings in the environment variables.""" env_list = [] for env_name, env_value in service.environment: try: env_value = env_value.format(**env_subst_dict) except KeyError: error_msg = "Unknown variable in environment expression '{}', known variables are: {}".format(env_value, list(env_subst_dict.keys())) service.set_error(error_msg) raise ZoeStartExecutionFatalException("Service {} has wrong environment expression") env_list.append((env_name, env_value)) # FIXME this code needs to be removed/changed to be generic #if 'jupyter' in service.image_name: env_list.append((JUPYTER_NOTEBOOK, gen_proxypath(execution, service) + '/' + JUPYTER_PORT)) #elif 'mongo-express' in service.image_name: env_list.append((MONGO_EXPRESS, gen_proxypath(execution, service) + '/' + MONGO_PORT)) env_list.append(('EXECUTION_ID', str(execution.id))) env_list.append(('DEPLOY_NAME', get_conf().deployment_name)) env_list.append(('UID', execution.user_id)) env_list.append(('SERVICE_NAME', service.name)) env_list.append(('PROXY_PATH', get_conf().proxy_path)) fswk = ZoeFSWorkspace() env_list.append(('ZOE_WORKSPACE', fswk.get_mountpoint())) return env_list def gen_volumes(service_: Service, execution: Execution): """Return the list of default volumes to be added to all containers.""" vol_list = [] fswk = ZoeFSWorkspace() wk_vol = fswk.get(execution.user_id) vol_list.append(wk_vol) return vol_list def gen_labels(service: Service, execution: Execution): """Generate container labels, useful for identifying containers in monitoring systems.""" return { 'zoe_execution_name': execution.name, 'zoe_execution_id': str(execution.id), 'zoe_service_name': service.name, 'zoe_service_id': str(service.id), 'zoe_owner': execution.user_id, 'zoe_deployment_name': get_conf().deployment_name, 'zoe_type': 'app_service' }
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-09-07 12:26 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Categoria', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('categoria', models.CharField(max_length=50, unique=True)), ('criado', models.DateField(auto_now_add=True)), ], options={ 'verbose_name': 'Categoria', 'verbose_name_plural': 'Categorias', }, ), migrations.CreateModel( name='Produto', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('produto', models.CharField(max_length=100, unique=True, verbose_name=b'Produto')), ('importado', models.BooleanField(default=False, verbose_name=b'Importado')), ('preco_venda', models.DecimalField(decimal_places=2, max_digits=7, verbose_name=b'Pre\xc3\xa7o De Venda')), ('preco_compra', models.DecimalField(decimal_places=2, max_digits=7, verbose_name=b'Pre\xc3\xa7o De Compra')), ('ipi', models.DecimalField(blank=True, decimal_places=2, max_digits=3, verbose_name=b'IPI')), ('estoque', models.IntegerField(default=0, verbose_name=b'Estoque atual')), ('estoque_min', models.PositiveIntegerField(default=0, verbose_name=b'Estoque m\xc3\xadnimo')), ('descricao', models.CharField(max_length=300, verbose_name=b'Observa\xc3\xa7\xc3\xa3o')), ('data_de_cadastro', models.DateField(auto_now_add=True)), ('category', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='estoque.Categoria', verbose_name=b'categoria')), ], options={ 'verbose_name': 'Produto', 'verbose_name_plural': 'Produtos', }, ), ]
# Programa que leia gerencie o aproveitamento de um jogador de futebol, leia o nome do jogador e quantas partidas ele jogou. # Depois vai ler a quantidade de gols feitas em cada partida, No final tudo isso sera mostrado em um dicionario, # incluindo o total de gols feitos durante o campeonato dados = {'nome': str(input('Digite o nome do jogador: ')).strip().title()} qtd = int(input(f'Quantas partidas {dados["nome"]} jogou? ')) gols = [] for c in range(0, qtd): gols.append(int(input(f' Quantos gols na partida {c}: '))) dados['gols'] = gols[:] dados['total'] = sum(gols) print('=-'*20) print(dados) print('=-'*20) for v, n in dados.items(): print(f'O campo {v} tem valor {n}') print('=-'*20) print(f'O jogador {dados["nome"]} jogou {len(dados["gols"])} jogos: ') for i, v in enumerate(dados["gols"]): print(f' =>na partida {i} fez {v} gols.') print(f'Foi um total de {dados["total"]} gols')
import json from eth_typing import ( BLSPubkey, BLSSignature, ) from py_ecc.bls import G2ProofOfPossession as bls from eth2deposit.utils.ssz import ( compute_domain, compute_signing_root, Deposit, DepositMessage, ) from eth2deposit.utils.constants import ( DOMAIN_DEPOSIT, MAX_DEPOSIT_AMOUNT, MIN_DEPOSIT_AMOUNT, ) def verify_deposit_data_json(filefolder: str) -> bool: with open(filefolder, 'r') as f: deposit_json = json.load(f) return all([verify_deposit(deposit) for deposit in deposit_json]) return False def verify_deposit(deposit_data_dict: dict) -> bool: ''' Checks whether a deposit is valid based on the eth2 rules. https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md#deposits ''' pubkey = BLSPubkey(bytes.fromhex(deposit_data_dict['pubkey'])) withdrawal_credentials = bytes.fromhex(deposit_data_dict['withdrawal_credentials']) amount = deposit_data_dict['amount'] signature = BLSSignature(bytes.fromhex(deposit_data_dict['signature'])) deposit_data_root = bytes.fromhex(deposit_data_dict['signed_deposit_data_root']) # Verify deposit amount if not MIN_DEPOSIT_AMOUNT < amount <= MAX_DEPOSIT_AMOUNT: return False # Verify deposit signature && pubkey deposit_message = DepositMessage(pubkey=pubkey, withdrawal_credentials=withdrawal_credentials, amount=amount) domain = compute_domain(domain_type=DOMAIN_DEPOSIT) signing_root = compute_signing_root(deposit_message, domain) if not bls.Verify(pubkey, signing_root, signature): return False # Verify Deposit Root deposit = Deposit(pubkey=pubkey, withdrawal_credentials=withdrawal_credentials, amount=amount, signature=signature) return deposit.hash_tree_root == deposit_data_root
""" Same as Server.py, but instead of discrete values (left, right, forward), that is being stored, it is steering angles between -15 to +15 """ from time import gmtime, strftime import gzip import sys import json sys.path.insert(0,'/home/pi/SDC_Project/RaspberryPi/Hardware') from _thread import * import time; from picamera.array import PiRGBArray from picamera import PiCamera import time import cv2 import numpy as np import os import socket from TwoMotorDriver import TwoMotorDriver from Motor import Motor from GpioMode import GpioMode from SteerMotor import ServoSteerMotor from BackMotor import BackMotor from Commands import Commands from Framelet import Framelet import queue import pickle import os; import datetime as dt import argparse from enum import Enum class CollectingDataType(Enum): DiscreteTurns = 0, SteerAngles = 1 class CollectingTrainingData: def __init__(self, steerMotorCenterAngle, backMotor, steerMotor, dataFilepath): # self.collectingDataType = collectingDataType.value; self.tripQueue = queue.Queue() #FIFO (first in, first out) self.isMovingForward = False self.speed = 35; #TODO: Added because not using Driver class self.isPaused = False; self.pickleSaveCount = 1; # self.pickle_filename = "/RoboticFiles/training_directory/data_{}.pickle" self.dataFilepath = dataFilepath; self.pickle_filename = os.path.join(self.dataFilepath, 'training_data/data_{}') # self.pickle_filename = "/home/pi/PiRoboticFiles/SteeringAngleData/training_data/data_{}" # self.discardPickle_filename = "/RoboticFiles/discarded_directory/data_{}.pickle" self.discardPickle_filename = os.path.join(self.dataFilepath, 'discarded_data/discarded_{}') # self.discardPickle_filename = "/home/pi/PiRoboticFiles/SteeringAngleData/discarded_data/discarded_{}" self.serverRunning = False; self.frameCount = 1 self.startClicks = 0; self.steerMotorCenterAngle = steerMotorCenterAngle #the angle of servo where the steering wheels are centered (usually around 125) (range of 0 - 180) # Range of -10 to +10, This is stored in training data, and input param as steerMotor.setDegree() self.steerDegree = 0 #holds the current steer degree self.backMotor = backMotor self.steerMotor = steerMotor # self.InitMotors(steerMotorCenterAngle) self.InitServer() def getTimeStamp(self): return dt.datetime.fromtimestamp(time.time()).strftime('%Y.%m.%d %H.%M.%S') def InitServer(self): self.HOST = '' # Symbolic name meaning all available interfaces self.PORT = 5000 # Arbitrary non-privileged port #TODO: try change port from 5000 to diff. - flask uses port 5000 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Allow socket reuse self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) try: self.sock.bind((self.HOST, self.PORT)) except socket.error as msg: # TODO: Change to python2.7 version if error - socket.error, msg print('Bind failed. Error Code : ' + str(msg[0]) + ' Message ' + msg[1]) sys.exit() self.sock.listen(10) # def InitMotors(self, steerMotorCenterAngle): # #NOTE: These are the old ones, before changing the wires of BM in Motor Driver to the Steer Motor inputs (input 1 and 2) # # BM_ForwardPin = 13 # # BM_ReversePin = 15 # # BM_pwmPin = 12 # BM_ForwardPin = 11 # BM_ReversePin = 7 # BM_frequency = 60 # BM_pwmPin = 16 # # SM_pwmPin = 3 # SM_frequency = 50 # # self.backMotor = BackMotor(Motor(BM_ForwardPin, BM_ReversePin, BM_pwmPin, BM_frequency)) # self.steerMotor = ServoSteerMotor(SM_pwmPin, GpioMode.BOARD, steerMotorCenterAngle, SM_frequency) # self.steerMotor.setDegree(0) #center it def StartServer(self): self.serverRunning = True; try: while self.serverRunning: # initialize socket server self.sock.listen(10) print("waiting") conn, addr = self.sock.accept() print('Connected with ' + addr[0] + ':' + str(addr[1])) self.listen(conn,self.tripQueue) except KeyboardInterrupt: pass finally: print("exiting") try: self._stopAllMotors() self.backMotor.cleanup() self.steerMotor.cleanup() except: pass self.sock.close() time.sleep(0.1) # wait a little for threads to finish #TODO: Stop recording and save current data #TODO: Add way to wait for thread to finish then close program def record(self): # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = (320, 240) camera.framerate = 30 rawCapture = PiRGBArray(camera, size=(320, 240)) t0 = time.time() try: for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # raw NumPy array representing the image image = frame.array if self.isPaused == False: #only add framelet when not paused training if(self.isMovingForward): #only save the data that where car is moving self.tripQueue = self.AssembleWithSteerDegree(self.tripQueue, image, self.steerDegree,self.frameCount) #check if should save data if(self.frameCount % 125 == 0): #300frames is 10 seconds #125 is 1/4 the track print("self.tripQueue size = {}".format(self.tripQueue.qsize())) t1 = time.time() # tempQ = queue.Queue() #make copy of queue to save # for i in self.tripQueue.queue: #transfer elements to new queue # tempQ.put(i) tripList = [item for item in self.qdumper(self.tripQueue)] start_new_thread(self.SaveToPickle,(tripList,self.pickle_filename.format(self.getTimeStamp()),)); # start_new_thread(self.SaveCompressedToPickle, (tempQ, self.pickle_filename.format(self.getTimeStamp()),)); self.pickleSaveCount+=1 with self.tripQueue.mutex: #thread safe for clearing self.tripQueue.queue.clear() print("\t{0:.2f} Seconds for 300 Frames".format(t1-t0)) # show image on screen # cv2.imshow('i', image) if (self.isMovingForward): self.frameCount += 1 # clear the stream in preparation for the next frame -- IMPORTANT rawCapture.truncate(0) # if cv2.waitKey(1) & 0xFF == ord("q"): # break # except Exception as e: # print("---EXCEPTION OCCURED-----\n{}".format(e)) finally: cv2.destroyAllWindows() camera.close() self.sock.close() print("closing recording") def qdumper(self,q): for i in q.queue: yield i ## DONT COMPRESS --> TO SLOW... def SaveCompressedToPickle(self, tripQueue, filename): print("-----STARTING TO PICKLE COMPRESSED-----------") t0 = time.time() file = gzip.GzipFile(filename, 'wb') remaining = [item for item in self.qdumper(tripQueue)] # convert to list, not queue, b/c pickle can't save a queue pickle.dump(remaining, file, 4) # 4 - protocol that is the latest protocol file.close() t1 = time.time() print('---------FINISHED PICKLING COMPRESSED-----------\n{0:.2f}seconds'.format(t1 - t0)) def SaveToPickle(self, tripList, filename): print("-----STARTING TO PICKLE-----------") t0 = time.time() pickle_out = open(filename + '.pickle', "wb") # file = gzip.GzipFile(filename,'wb') #framelet_list file to upload = remaining # remaining = [item for item in self.qdumper(tripQueue)] #convert to list, not queue, b/c pickle can't save a queue print("'remaining' array size: {}".format(len(tripList))) pickle.dump(tripList,pickle_out, 4) # pickle.dump(remaining,file,-1) #-1 protocol gets the latest protocol pickle_out.close() #filename + '-frameCount-{}'.format(len(remaining)) +'_ready.pickle' newFileName = "{0}-frameCount-{1:03}_ready.pickle".format(filename, len(tripList)) #newFileNameFormat = data_2017.11.16 21.55.25-frameCount-125_ready.pickle os.rename(filename + '.pickle',newFileName) # file.close() t1 = time.time() print('---------FINISHED PICKLING-----------\n{0:.2f}seconds'.format(t1-t0)) '''Throws a ValueError: setting an array elemetn with a sequence''' def SaveToNpz(self, tripQueue, directory): print("--------saving to npz--------") t0 = time.time() frameList = [] cmdList = [] frameNameList = [] print("tripQueue.size = {}".format(tripQueue.qsize())) for i in tripQueue.queue: frameNameList.append(i.frameName) frameList.append(i.frame) cmdList.append(i.cmd) print("frameList length = {}".format(len(frameList))) #save data file_name = strftime("%m.%d.%Y_%H.%M", gmtime()) if not os.path.exists(directory): os.makedirs(directory) try: np.savez(directory + '/' + file_name + '.npz', frameName=frameNameList, frame=frameList, cmd=cmdList); t1 = time.time() print("------Saved data to npz file!------- {0:.2f}ms".format((t1-t0)*1000)) except IOError as e: print(e) def _stopAllMotors(self): self.backMotor.Stop() self.steerDegree = 0 self.steerMotor.turn(self.steerDegree*10) # reset to center self.steerMotor.offMotor() # off motor def _bytesToString(self, input): input = input.decode("utf-8") return input def AssembleWithCmd(self, tripQueue, image, cmd, frameCount): name = "frame_{}".format(frameCount) tripQueue.put(Framelet(name, image, cmd)) return tripQueue #TODO: Bug: cmds is a list of cmds sometimes (when the SS is sent fast), so i shoudld be adding all of them, but can only add the last cmd in the list. If want to add the whole thing #TODO: then i must make Listen() a totally different thread altogether and should be called once and the UpdateFramelet() should be called from there def AssembleWithSteerDegree(self, tripQueue, image, steerDegree, frameCount): name = "frame_{}".format(frameCount) tripQueue.put(Framelet(name, image, steerDegree=steerDegree)) return tripQueue def ExecuteCommand(self, data, tripQueue): ''' executes the commands from data recieved in socket server, also changes boolean values representing the movement of car :param data: data recieved from socket server ''' # cmds = [] if data is None: return for i in range(len(data) - 1): if data[i] == ',': # STOP ALL MOTORS # self.driver.StopAll() self._stopAllMotors() print("stop all") # cmds.append(Commands.STOP_ALL_MOTORS.value) self.isMovingForward = False elif data[i][0:2] == 'SS': self.speed = int(data[i][2:]) # get second half of data with the number for speed print("Speed: {}".format(self.speed)) if (self.isMovingForward): self.backMotor.Forward(self.speed) # elif (self.isMovingBackward): # self.twoMotorDriver.Reverse(self.speed) # self.driver.Speed(int(speed)) #todo: add speed command to training data elif data[i][0:2] == 'SA': #Steering Angle Change self.steerDegree = int(data[i][2:]) #get second half of data with the number for steer angle self.steerMotor.turn(self.steerDegree*10) # self.steerMotor.offMotor() print("Steer Degree: {}".format(self.steerDegree)) elif data[i] == 'FF': print("forward") self.backMotor.Forward(self.speed) self.isMovingForward = True; # elif data[i] == 'BB': # print("Back") # self.backMotor.Reverse(self.speed) # self.isMovingForward = False elif data[i] == '@': #PAUSE Training self.isPaused = True #Pauses videorecorder # self.driver.StopAll() self._stopAllMotors() print("------PAUSED---") elif data[i] == '#': #UNPAUSE TRAINING self.isPaused = False; #unpauses videorecorder print("------UNPAUSED---") elif data[i] == '*': #SAVE Training - sent after paused t0 = time.time() print("tripQueue size = {}".format(tripQueue.qsize())) # tempQ = queue.Queue() # make copy of queue to save # for i in tripQueue.queue: # transfer elements to new queue # tempQ.put(i) tripList = [item for item in self.qdumper(self.tripQueue)]; start_new_thread(self.SaveToPickle,(tripList, self.pickle_filename.format(self.getTimeStamp()),)); self.pickleSaveCount += 1 with tripQueue.mutex: # thread safe for clearing tripQueue.queue.clear() t1 = time.time() print("\t{0:.2f} Seconds for 300 Frames".format(t1 - t0)) elif data[i] == '&': #DISCARD Training t0 = time.time() print("--------DISCARDING DATA ----\ntripQueue size = {}".format(tripQueue.qsize())) # tempQ = queue.Queue() # make copy of queue to save # for i in tripQueue.queue: # transfer elements to new queue # tempQ.put(i) #start_new_thread(self.SaveToPickle,(tempQ, self.discardPickle_filename.format(self.getTimeStamp()),)); #DELETE DISCARDED QUEUE with tripQueue.mutex: # thread safe for clearing tripQueue.queue.clear() # self.pickleSaveCount += 1 t1 = time.time() print("\t{0:.2f} Seconds for 500 Frames".format(t1 - t0)) elif data[i] ==':': #START TRAINING self.startClicks += 1 # self.isMovingForward = True; #TODO; should i do this????? if(self.startClicks == 1): #if first time pressing start start_new_thread(self.record, ()) #start new recording thread else: self.isPaused = False; # unpauses videorecorder print("------UNPAUSED---FROM START CMD") else: print("Bad Command") # return cmds def listen(self, conn, tripQueue): while True: data = conn.recv(1024) if not data: print("socket closed") break; data = self._bytesToString(data) #split by delimeter data = data.split(';\n') self.ExecuteCommand(data, tripQueue) def saveRecentSteerMotorCenterAngle(steerAngle, file): try: data = {"RecentSteerServoMotorAngle": steerAngle}; with open(file, 'w') as f: json.dump(data, f, indent=4, separators=(',', ': ')); except Exception as e: print("Error while saving RecentSteerServoMotorAngle to JSON, could not save") if __name__ == "__main__": jsonFilePath = '/home/pi/PiRoboticFiles/CollectingTrainingData/ExtraInfo.json' #get most recent steer servo motor angle from JSON file with open(jsonFilePath) as json_file: data = json.load(json_file) recentServoMotorAngle = int(data['RecentSteerServoMotorAngle']) BM_ForwardPin = 11 BM_ReversePin = 7 BM_pwmPin = 16 BM_frequency = 60 SM_pwmPin = 3 SM_frequency = 50 backMotor = BackMotor(Motor(BM_ForwardPin, BM_ReversePin, BM_pwmPin, BM_frequency)) steerMotor = ServoSteerMotor(SM_pwmPin, GpioMode.BOARD, recentServoMotorAngle, SM_frequency) # steerMotor.setDegree(0) # center it newSteerMotorCenterAngle = recentServoMotorAngle; while True: msg = "Test the Steer Angle for Center. Enter a steer Angle: (most recent: {})".format(recentServoMotorAngle) inputSteerAngle = int(input(msg)) steerMotor.setCenterAngle(inputSteerAngle) steerMotor.turn(0) time.sleep(1.5) goodBad = input("Is that good or bad? (Good=g or Bad=b'") #input g or b if(goodBad == 'g'): newSteerMotorCenterAngle = inputSteerAngle; saveRecentSteerMotorCenterAngle(newSteerMotorCenterAngle, jsonFilePath) break; elif(goodBad !='b'): #not valid input print("Bad input, Type 'g' or 'b' for good/bad") ctd = CollectingTrainingData(newSteerMotorCenterAngle, backMotor, steerMotor, "/home/pi/PiRoboticFiles/SteeringAngleData/") ctd.StartServer()
import unittest import repackage repackage.up() import four.bot.helpers class TestBotHelpers(unittest.TestCase): def test_get_json(self): expected = { "SECRET_TEST1": "abc", "SECRET_TEST2": "123", } self.assertEqual(four.helpers.get_json("test_json.json"), expected)
import os import zipfile from django.conf import settings import datetime from django import http from django.core.files import File from django.http import HttpResponse from django.core.files.uploadedfile import InMemoryUploadedFile from django.core.files.storage import default_storage from django.core.files.base import ContentFile import uuid import StringIO from django.template.loader import get_template from django.template import Context from operations.models import Document def zip_generated_files(file_list=[]): if not len(file_list) > 0: # create pdfs for testing x = 1 while x < 3: filename = '%s_sample_%s.pdf' % (x,str(uuid.uuid4())[:5]) file_list.append(filename) write_save_pdf('pdf_sample.html',{}, filename) x +=1 zip_location = '/tmp/Python_%s.zip' % str(uuid.uuid4())[:5] zip = zipfile.ZipFile(zip_location, 'a') for file_name in file_list: location = "/tmp/%s"%file_name if os.path.exists(location): zip.write(location, os.path.basename(location)) os.remove(location) zip.close() upload_file = UploadFile.objects.create(model_type="ZIP", description="Upoaded zip file", created_at=datetime.datetime.now()) upload_file.file_name = File(open(zip_location, 'rd')) upload_file.save() os.remove(zip_location) def file_download(file, document=None, content_type='application/force-download'): document = document or file.document.name response = response = HttpResponse(open(settings.MEDIA_ROOT + "/" + document), content_type=content_type) response['Content-Disposition'] = 'attachment; filename="%s"' % os.path.basename(document) return response def save_file(user, name, file_path, file_type="Download", description=None): upload_file = Document.objects.create(file_type=file_type, description=description, created_at=datetime.datetime.now(), created_by=user) upload_file.document_name = name upload_file.document.name = 'uploads/documents/%s' % name upload_file.save() return upload_file
import copy import json import os import pdb import re from typing import Dict, List, TypeVar import torch from elvis.modeling.models import build_net from elvis.modeling.models.layers import FC from torch.nn import functional as F from .base import MetaArch from .build import ARCH_REGISTRY Tensor = TypeVar('torch.tensor') __all__ = ['MetaRetrieval', 'build_meta_retrieval'] class MetaRetrieval(MetaArch): def __init__(self, model, max_patches, max_tokens): super(MetaArch, self).__init__() self.model = model self.max_patches = max_patches self.max_tokens = max_tokens self.itm_fc = FC(in_features=self.model.embed_dim, out_features=2) def forward(self, vis_in, txt_in, vis_mask, txt_mask, **kwargs): out = self.model(vis_in=vis_in, vis_mask=vis_mask, txt_in=txt_in, txt_mask=txt_mask) t_pool = out[:, 0] #v_pool = out[:, self.max_tokens] logits = self.itm_fc(t_pool) return {'retrieval_logits': logits} def compute_loss(self, vqa_logits, gt_answers, **kwargs) -> Dict: pass #todo """ vqa_loss = F.binary_cross_entropy_with_logits(vqa_logits, gt_answers, reduction='none') vqa_loss = vqa_loss.sum(dim=-1).mean() return {'loss': vqa_loss} """ def save_on_disk(self, path): #save vocab only once vocab_ckp = os.path.join(path, 'VQA.vocab') if not os.path.exists(vocab_ckp): with open(vocab_ckp, 'w') as fp: json.dump(self.ans2id, fp) #use deepcopy to avoid problems with DistributedDataParallel state_dict = copy.deepcopy(self).cpu().state_dict() ckp_file = os.path.join(path, 'state_dict.pt') torch.save(state_dict, ckp_file) def predict(self, vis_in, txt_in, vis_mask, txt_mask, **kwargs): out = self.forward(vis_in, txt_in, vis_mask, txt_mask, **kwargs) probs = F.softmax(out['retrieval_logits'], dim=-1).squeeze(0) #return score of item being the true one if probs.dim() > 1: scores = [p[1].item() for p in probs] return scores score = probs[1].item() return score @ARCH_REGISTRY.register() def build_meta_retrieval(cfg, **kwargs): model, data_interface = build_net(cfg.MODEL, get_interface='retrieval') vqa = MetaRetrieval(model, max_patches=cfg.MODEL.MAX_VIS_PATCHES, max_tokens=cfg.MODEL.MAX_N_TOKENS) return vqa, data_interface
import pygame, sys, time, random #Sarah Maurice found this online. #Modified by nholtschulte def getRandX(): return random.randint(0, x_increments) * block_size def getRandY(): return random.randint(0, y_increments) * block_size block_size = 40 width = 1000 height = 600 x_increments = width/block_size - 1 y_increments = height/block_size - 1 fps = pygame.time.Clock() direction = "RIGHT" # Initial direction snake_position = [block_size, block_size] # Initial snake position snake_body = [[100, 50], [90, 50], [100, 50]] # It places the food randomly, excluding the border food_position = [getRandX(), getRandY()] food_spawn = True # Game surface player_screen = pygame.display.set_mode((width, height)) # Will define the colors red = pygame.Color("red") green = pygame.Color("green") black = pygame.Color("black") orange = pygame.Color("orange") white = pygame.Color("white") done = False while not done: for event in pygame.event.get(): if event.type == pygame.QUIT: quiting() elif event.type == pygame.KEYDOWN: # Choose direction by user input, block opposite directions key_right = event.key == pygame.K_RIGHT or event.key == ord("d") key_left = event.key == pygame.K_LEFT or event.key == ord("a") key_down = event.key == pygame.K_DOWN or event.key == ord("s") key_up = event.key == pygame.K_UP or event.key == ord("w") if key_right and direction != "LEFT": direction = "RIGHT" elif key_left and direction != "RIGHT": direction = "LEFT" elif key_down and direction != "UP": direction = "DOWN" elif key_up and direction != "DOWN": direction = "UP" elif event.key == pygame.K_ESCAPE: done = True # It will quit when esc is pressed # Simulates the snake movement(together with snake_body_pop) if direction == "RIGHT": snake_position[0] += block_size elif direction == "LEFT": snake_position[0] -= block_size elif direction == "DOWN": snake_position[1] += block_size elif direction == "UP": snake_position[1] -= block_size # Body mechanics snake_body.insert(0, list(snake_position)) if snake_position == food_position: food_spawn = False # It removes the food from the board else: # If the food is taken it will not remove the last body piece(raising snakes size) snake_body.pop() if food_spawn is False: # When a food is taken it will respawn randomly food_position = [getRandX(), getRandY()] food_spawn = True # It will set the food to True again, to keep the cycle # Drawing player_screen.fill(white) # Set the background to white for position in snake_body: # Snake representation on the screen pygame.draw.rect(player_screen, green, pygame.Rect(position[0], position[1], block_size, block_size)) # Food representation on the screen pygame.draw.rect(player_screen, orange, pygame.Rect(food_position[0], food_position[1], block_size, block_size)) if snake_position[0]<0 or snake_position[0]>width or snake_position[1]<0 or snake_position[1]>height: done = True # Game over when the Snake hit a wall for block in snake_body[1:]: if snake_position == block: done = True # Game over when the Snake hits itself pygame.display.flip() # It constantly updates the screen fps.tick(20) # It sets the speed to a playable value pygame.quit() sys.exit()
import functools import logging import os from kivy.app import App from kivy.properties import StringProperty, ObjectProperty, NumericProperty, BooleanProperty, Clock from kivy.uix.boxlayout import BoxLayout from kivy.uix.recycleview import RecycleDataAdapter, RecycleView from kivymd.uix.button import MDIconButton from kivymd.uix.list import TwoLineAvatarListItem, IRightBodyTouch from kivymd.uix.menu import MDDropdownMenu from angelos.common.misc import Loop from logo.baseclass.common import Section from logo.baseclass.dialogs import MessageDialog from logo import strings from logo.action.message import SynchronizeMailAction, EmptyTrashAction class IconRightMenu(IRightBodyTouch, MDIconButton): pass class LogoRecycleViewListItemMixin: """List item mixin for recycle view.""" data = {} item_id = ObjectProperty(allownone=True) error = NumericProperty(allownone=True) tab = StringProperty(allownone=True) selected = BooleanProperty(defaultvalue=False) def populate(self): try: self._call("_populate_") except Exception as e: logging.error(e, exc_info=True) def _call(self, name, **kwargs): tab = self.data.get("tab", "main") method = getattr(self, name + str(tab), None) if callable(method): method(**kwargs) else: raise RuntimeError("Method {} not found on {}".format(name + str(tab), str(self))) def err(self, e): pass def clear(self): keys = self.data.keys() keys += ["text", "secondary_text", "tertiary_text"] self.data = {} self.selected = False self.item_id = None self.error = 0 self.tab = "" for key in keys: if hasattr(self, key): setattr(self, key, None) class MessageListItem(LogoRecycleViewListItemMixin, TwoLineAvatarListItem): """Specific RV ListItem for the message section.""" source = StringProperty() target_id = ObjectProperty() # issuer/owner _app = None def __init__(self, **kwargs): super(MessageListItem, self).__init__(**kwargs) if not MessageListItem._app: MessageListItem._app = App.get_running_app() def open_letter(self): try: self._call("_letter_") except Exception as e: logging.error(e, exc_info=True) def _populate_inbox(self): info = Loop.main().run( self._app.ioc.facade.api.mailbox.get_info_inbox( self.data.get("item_id")), wait=True) self.data.setdefault("target_id", info[1]) # Issuer self.data.setdefault("text", "{:%c}".format(info[3])) # Posted self.data.setdefault("secondary_text", info[2] if info[2] != "n/a" else str(info[1])) # Sender or Issuer source = os.path.join(os.environ["LOGO_MESSENGER_ASSETS"], "images/dove.png") self.data.setdefault("source", source) def _letter_inbox(self): mail = Loop.main().run( self._app.ioc.facade.api.mailbox.open_envelope( self.item_id), wait=True) MessageDialog(MessageDialog.MODE_READER_RECEIVE, mail, title=strings.TEXT_MESSAGE_INBOX_TITLE).open() def _populate_outbox(self): info = Loop.main().run( self._app.ioc.facade.api.mailbox.get_info_outbox( self.data.get("item_id")), wait=True) self.data.setdefault("target_id", info[1]) # Owner self.data.setdefault("text", "{:%c}".format(info[3])) # Posted self.data.setdefault("secondary_text", info[2] if info[2] != "n/a" else str(info[1])) # Sender or Owner source = os.path.join(os.environ["LOGO_MESSENGER_ASSETS"], "images/dove.png") self.data.setdefault("source", source) def _letter_outbox(self): pass def _populate_drafts(self): info = Loop.main().run( self._app.ioc.facade.api.mailbox.get_info_draft( self.data.get("item_id")), wait=True) self.data.setdefault("target_id", info[1]) # Owner self.data.setdefault("text", info[2] if info[2] else "") # Subject self.data.setdefault("secondary_text", info[3] if info[3] else "") # Receiver source = os.path.join(os.environ["LOGO_MESSENGER_ASSETS"], "images/dove.png") self.data.setdefault("source", source) def _letter_drafts(self): mail = Loop.main().run( self._app.ioc.facade.api.mailbox.get_draft( self.item_id), wait=True) MessageDialog(MessageDialog.MODE_WRITER, mail, title=strings.TEXT_DRAFT).open() def _populate_read(self): info = Loop.main().run( self._app.ioc.facade.api.mailbox.get_info_read( self.data.get("item_id")), wait=True) self.data.setdefault("target_id", info[1]) # Issuer self.data.setdefault("text", info[2] if info[2] != "n/a" else str(info[1])) # Subject or Issuer self.data.setdefault("secondary_text", info[3] + " - " + "{:%c}".format(info[4])) # Sender and Posted source = os.path.join(os.environ["LOGO_MESSENGER_ASSETS"], "images/dove.png") self.data.setdefault("source", source) def _letter_read(self): mail = Loop.main().run( self._app.ioc.facade.api.mailbox.get_read( self.item_id), wait=True) MessageDialog(MessageDialog.MODE_READER_RECEIVE, mail, title=strings.TEXT_MESSAGE).open() def _populate_trash(self): info = Loop.main().run( self._app.ioc.facade.api.mailbox.get_info_trash( self.data.get("item_id")), wait=True) self.data.setdefault("target_id", info[1]) # Issuer self.data.setdefault("text", info[2] if info[2] != "n/a" else str(info[1])) # Subject or Issuer self.data.setdefault("secondary_text", info[3] + " - " + "{:%c}".format(info[4])) # Sender and Posted source = os.path.join(os.environ["LOGO_MESSENGER_ASSETS"], "images/dove.png") self.data.setdefault("source", source) def _letter_trash(self): mail = Loop.main().run( self._app.ioc.facade.api.mailbox.get_trash( self.item_id), wait=True) MessageDialog(MessageDialog.MODE_READER_RECEIVE, mail, title=strings.TEXT_MESSAGE_TRASH_TITLE).open() class LogoRecycleDataAdapter(RecycleDataAdapter): """Custom recycle view DataAdapter. This adapter will load extra data from the vault at scrolling.""" def __init__(self, **kwargs): super(LogoRecycleDataAdapter, self).__init__(**kwargs) self.app = App.get_running_app() def refresh_view_attrs(self, index, data_item, view): """Wrapper for the view refresher that loads extra envelope data ad-hoc.""" if "error" not in data_item: try: view.data = data_item view.populate() except Exception as e: logging.error(e, exc_info=True) data_item.setdefault("error", 1) view.err(e) view.data = data_item super(LogoRecycleDataAdapter, self).refresh_view_attrs(index, data_item, view) def make_view_dirty(self, view, index): """Clean up some custom data from the list item""" view.clear() super(LogoRecycleDataAdapter, self).make_view_dirty(index, view) class LogoRecycleView(RecycleView): """Custom recycle view that will set the right DataAdapter.""" def __init__(self, **kwargs): kwargs.setdefault("view_adapter", LogoRecycleDataAdapter()) super(LogoRecycleView, self).__init__(**kwargs) class MessageSearch(BoxLayout): """Message search box logic.""" pass class MessageMenu(MDDropdownMenu): """Mass selection/deselection and other operations menu.""" def __init__(self, **kwargs): super(MessageMenu, self).__init__(**kwargs) menu_tab = { "inbox": ["sync"], "outbox": ["sync"], "drafts": [], "read": [], "trash": ["empty"] } class Messages(Section): """The messages sub screen.""" def __init__(self, **kwargs): Section.__init__(self, **kwargs) self.menus = dict() self._app = App.get_running_app() def on_pre_enter(self, *args): """Prepare menus.""" self.ids.panel.on_resize() def commit(action, tab_name, dt): """Selected menu command callback.""" content = self.ids.get(tab_name).ids.content action(content=content).start() if not self.menus: caller = self.ids.toolbar.ids["right_actions"].children[0] for tab in menu_tab.keys(): menu_items = list() for item in menu_tab[tab]: menu_items.append({ "viewclass": "MDMenuItem", "icon": menu_context[item][0], "text": menu_context[item][1], "callback": functools.partial(commit, menu_context[item][2], tab) }) self.menus[tab] = MessageMenu(caller=caller, items=menu_items, width_mult=4) def open_menu(self, widget): """Open menu for right tab.""" self.menus[self.ids.panel.ids.tab_manager.current].open() def list_inbox(self, page): """load all favorite contacts.""" self.__load_rv( self._app.ioc.facade.api.mailbox.load_inbox(), page.children[0].ids.content, tab=page.name ) def list_outbox(self, page): """Load all friend contacts.""" self.__load_rv( self._app.ioc.facade.api.mailbox.load_outbox(), page.children[0].ids.content, tab=page.name ) def list_drafts(self, page): """Load all known contacts.""" self.__load_rv( self._app.ioc.facade.api.mailbox.load_drafts(), page.children[0].ids.content, tab=page.name ) def list_read(self, page): """Load all known contacts from a church network.""" self.__load_rv( self._app.ioc.facade.api.mailbox.load_read(), page.children[0].ids.content, tab=page.name ) def list_trash(self, page): """Load all blocked contacts.""" self.__load_rv( self._app.ioc.facade.api.mailbox.load_trash(), page.children[0].ids.content, tab=page.name ) @staticmethod def __load_rv(coro, content, tab=None, selectable=False): """Update the ScrollView with new and changed data.""" data = content.data current = {e["item_id"] for e in data} loaded = Loop.main().run(coro, wait=True) # Remove from current that is not in loaded remove = (current - loaded) index = 0 while index < len(data): if data[index]["item_id"] in remove: del data[index] else: index += 1 # Add unique from loaded to current new = (loaded - current) for item in loaded: if item in new: model = {"item_id": item} if tab: model["tab"] = tab if selectable: model["selected"] = False data.append(model) menu_context = { "sync": ("sync", strings.TEXT_SYNCHRONIZE, SynchronizeMailAction), "empty": ("trash-can-outline", strings.TEXT_EMPTY, EmptyTrashAction), }
import json import requests from typing import Union from random import choice from string import ascii_uppercase class Place: place: Union[int, float] def __init__(self, placeId: Union[int, str]) -> None: self.place = placeId def __register(self) -> dict: url = "https://gdesha.ru/api/v1/Devices/saveGcmToken" payload = f"regId=3F516D9A-FF7E-4F14-962B-{''.join(choice(ascii_uppercase) for _ in range(12))}" return self.__post(url, payload)["result"]["registrationId"] def __addMark(self, mark: int) -> None: url = "https://gdesha.ru/api/v1/Rates/add" id = self.__register() payload = f"placeId={self.place}&regId={id}&value={mark}" self.__post(url, payload) def flood(self, mark: int, num: int) -> None: try: for i in range(num): self.__addMark(mark) print(f"Сделано {i + 1} из {num}") except KeyboardInterrupt: print("Отправка оценок принудительно остановлена") def getInfo(self) -> dict: url = f"https://gdesha.ru/api/v1/Places/getInfo?placeId={self.place}&regId=3F516D9A-FF7E-4F14-962B-39A6977ECF7F" return self.__get(url)["result"] def __post(self, url: str, payload: str) -> dict: resp = requests.post(url, payload, headers={'Content-Type': 'application/x-www-form-urlencoded'}) if resp.status_code != 200: raise Exception(f"Wrong response status: {resp.text}") else: return json.loads(resp.text) def __get(self, url: str) -> dict: resp = requests.get(url) if resp.status_code != 200: raise Exception(f"Wrong response status: {resp.text}") else: return json.loads(resp.text)
import tensorflow as tf import numpy as np import lenspack import DifferentiableHOS from numpy.testing import assert_allclose def test_peak(): """ Testing tensorflow peak counting implementation vs. lenspack implementation """ #start with random map test_map = np.random.rand(100, 100) #calculating peak locations DHOS_output = DifferentiableHOS.statistics.find_peaks2d_tf( tf.constant(test_map, dtype=tf.float32)) lenspack_output = lenspack.peaks.find_peaks2d(test_map) #checking peak locations assert_allclose(DHOS_output[0].numpy(), lenspack_output[0], atol=1e-6) assert_allclose(DHOS_output[1].numpy(), lenspack_output[1], atol=1e-6) assert_allclose(DHOS_output[2].numpy(), lenspack_output[2], atol=1e-6) #generating histogram DHOS_output = DifferentiableHOS.statistics.peaks_histogram_tf( tf.constant(test_map, dtype=tf.float32)) lenspack_output = lenspack.peaks.peaks_histogram(test_map) #checking histogram locations assert_allclose(DHOS_output[0].numpy(), lenspack_output[0], atol=1e-6) assert_allclose(DHOS_output[1].numpy(), lenspack_output[1], atol=1e-6) print("peak counts test complete")
#!/usr/bin/env python3 # Copyright (c) 2018 Kevin Weiss, for HAW Hamburg <kevin.weiss@haw-hamburg.de> # # This file is subject to the terms and conditions of the MIT License. See the # file LICENSE in the top level directory for more details. # SPDX-License-Identifier: MIT """This module contains imports and exports the config file""" import os import json from logging import debug, info from pprint import pformat from jsonschema import validate _PATH_TO_SCHEMA = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data/mem_map_schema.json") def import_config(config_path): """Imports target config from file or directory.""" info("Searching for config in %r", config_path) config = _import_type_check(config_path) if 'mem_maps' not in config: config['mem_maps'] = [] if 'bitfields' not in config: config['bitfields'] = [] debug("Imported:\n%s", pformat(config)) return config def _find_config_file_in_dir(config_path): debug("Searching directory for config file") for fname in os.listdir(config_path): if fname.endswith('.json'): info("Found %r config file in %r", fname, config_path) return os.path.join(config_path, fname) debug("%r not valid file", fname) raise FileNotFoundError("No config file in {}".format(config_path)) def _import_type_check(config_path): if config_path.endswith('.json'): return _import_config_from_json(config_path) return _import_config_from_json(_find_config_file_in_dir(config_path)) def _import_config_from_json(config_path): info("Importing %r", config_path) with open(config_path) as config_f: config = json.load(config_f) with open(_PATH_TO_SCHEMA) as schema_f: schema = json.load(schema_f) validate(config, schema) return config def export_config(config, config_path): """Exports config file to target path.""" with open(_PATH_TO_SCHEMA) as schema_f: schema = json.load(schema_f) validate(config, schema) if not config_path.endswith('.json'): config_path = _find_config_file_in_dir(config_path) with open(config_path, "w") as config_f: json.dump(config, config_f, sort_keys=True, indent=4)
import spotipy import sys from spotipy.oauth2 import SpotifyClientCredentials import os import json import numpy as np import pandas as pd from pyspark.sql import SparkSession from pyspark.ml import PipelineModel os.environ['SPOTIPY_CLIENT_ID'] = 'SECRET' os.environ['SPOTIPY_CLIENT_SECRET'] = 'SECRET' sp = spotipy.Spotify(auth_manager=SpotifyClientCredentials()) ### PASS IN INPUT SONG_NAME FROM USER song_name = 'All I Want for Christmas Is You' ### results = sp.search(q='track:' + song_name, type='track') #print(results) with open("C:/Users/athor/Documents/git/SpotifyClassifier/data/junk.json", 'w') as f: json.dump(results, f, indent=4) data = results["tracks"]["items"] track = data[0] track_id = track["id"] print(track_id) track_features = sp.audio_features(track_id) track_features = track_features[0] track_info = sp.track(track_id) track_analysis = sp.audio_analysis(track_id) track_features['popularity'] = track_info['popularity'] track_features['explicit'] = track_info['explicit'] album = track_info['album'] track_features['release_date'] = album['release_date'] track_features['release_date_precision'] = album['release_date_precision'] num_seg = 0 pitches = np.zeros(12) timbre = np.zeros(12) if "segments" in track_analysis: for _, j in enumerate(track_analysis['segments']): pitches += np.array(j['pitches']) timbre += np.array(j['timbre']) num_seg+=1 track_features['avg_pitches'] = list(pitches/num_seg) track_features['avg_timbre'] = list(timbre/num_seg) else: track_features['avg_pitches'] = list(pitches) track_features['avg_timbre'] = list(timbre) print(track_features) with open("C:/Users/athor/Documents/git/SpotifyClassifier/data/track_data.json", 'w') as f: json.dump(track_features, f, indent=4) ### CONVERT TRACK_FEATURES TO VECTORIZED FORM with open('C:/Users/athor/Documents/git/SpotifyClassifier/data/track_data.json') as json_file: data = json.load(json_file) features = [[data['id'], data["super-genre-label"], data["subgenre-label"], data["danceability"], data['energy'], data['loudness'], data['mode'], data['speechiness'], data['acousticness'], data['instrumentalness'], data['liveness'], data['valence'], data['tempo'], data['time_signature'], data["popularity"], data["avg_pitches"], data["avg_timbre"]]] dataframe = pd.DataFrame(features, columns=['id', 'super-genre', 'subgenre', 'danceability', 'energy', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'time_signature', 'popularity', 'avg_pitches', 'avg_timbre']) split_df = pd.DataFrame(list(dataframe['avg_pitches']), columns=["pitch" + str(i) for i in range(12)]) dataframe = pd.concat([dataframe, split_df], axis=1) dataframe = dataframe.drop('avg_pitches', axis=1) split_df = pd.DataFrame(list(dataframe['avg_timbre']), columns=["timbre" + str(i) for i in range(12)]) dataframe = pd.concat([dataframe, split_df], axis=1) dataframe = dataframe.drop('avg_timbre', axis=1) spark = SparkSession.builder.master('local[*]').appName('data-processing').getOrCreate() sparkDF = spark.createDataFrame(dataframe) ### LOAD TRAINED MODEL # load from local Model/model dir (the model is inside Model/model folder in project repo) pipelineModel = PipelineModel.load("../Model/model") ### CLASSIFY SONG sparkDF = pipelineModel.transform(sparkDF) sparkDF.select("prediction").show() label_mapping = ['dance', 'pop', 'alternative', 'rock', 'hardcore', 'latin', 'country', 'jazz', 'classical', 'musical'] row_list = sparkDF.select("prediction").collect() pred = [ int(row.prediction) for row in row_list] ### SEND OUTPUT BACK TO FRONT END predicted_genre_str = label_mapping[pred[0]]
from django.shortcuts import render, get_object_or_404 from news.models import News def single_news_page(request, news_id: int): context = dict( news=get_object_or_404(News, pk=news_id) ) return render(request, 'news/single_news_page.html', context)
# -*- coding: utf-8 -*- from django.apps import AppConfig class CompanyConfig(AppConfig): name = "company"
from django.test import TestCase from django.contrib.auth.models import User from allauth.socialaccount.models import SocialToken from projects.models import Project from oauth.utils import make_github_project, make_github_organization, import_github from oauth.models import GithubOrganization, GithubProject class RedirectOauth(TestCase): fixtures = ["eric", "test_data"] def setUp(self): self.client.login(username='eric', password='test') self.user = User.objects.get(pk=1) self.project = Project.objects.get(slug='pip') self.org = GithubOrganization() self.privacy = self.project.version_privacy_level def test_make_github_project_pass(self): repo_json = { "name": "", "full_name": "", "description": "", "git_url": "", "private": False, "ssh_url": "", "html_url": "", } github_project = make_github_project(user=self.user, org=self.org, privacy=self.privacy, repo_json=repo_json) self.assertIsInstance(github_project, GithubProject) def test_make_github_project_fail(self): repo_json = { "name": "", "full_name": "", "description": "", "git_url": "", "private": True, "ssh_url": "", "html_url": "", } github_project = make_github_project(user=self.user, org=self.org, privacy=self.privacy, repo_json=repo_json) self.assertIsNone(github_project) def test_make_github_organization(self): org_json = { "html_url": "", "name": "", "email": "", "login": "", } org = make_github_organization(self.user, org_json) self.assertIsInstance(org, GithubOrganization) def test_import_github_with_no_token(self): github_connected = import_github(self.user, sync=True) self.assertEqual(github_connected, False)
class Solution: def nextPermutation(self, nums: List[int]) -> None: """ Do not return anything, modify nums in-place instead. """ length = len(nums) - 1 i = length # find shortest non-decreasing sequence, e.g # [1, 2, 5, 4, 3] => [2, 5, 4, 3] while i > 0: if nums[i - 1] < nums[i]: break i -= 1 if i > 0: # find smalest value in nums[i:] that is # larger than start of sequence. (i - 1) j = length while j >= i: if nums[j] > nums[i - 1]: break j -= 1 # switch positions and reverse values after it. nums[i - 1], nums[j] = nums[j], nums[i - 1] nums[i:] = nums[-1:i - 1:-1] # i == 0 means we have the highest possible order. (descending) # so just reverse. else: nums[::] = nums[::-1]
# @l2g 17 python3 # [17] Letter Combinations of a Phone Number # Difficulty: Medium # https://leetcode.com/problems/letter-combinations-of-a-phone-number # # Given a string containing digits from 2-9 inclusive, # return all possible letter combinations that the number could represent. # Return the answer in any order. # A mapping of digit to letters (just like on the telephone buttons) is given below. # Note that 1 does not map to any letters. # # # Example 1: # # Input: digits = "23" # Output: ["ad","ae","af","bd","be","bf","cd","ce","cf"] # # Example 2: # # Input: digits = "" # Output: [] # # Example 3: # # Input: digits = "2" # Output: ["a","b","c"] # # # Constraints: # # 0 <= digits.length <= 4 # digits[i] is a digit in the range ['2', '9']. # # from typing import List class Solution: def letterCombinations(self, digits: str) -> List[str]: digit_map = { "2": "abc", "3": "def", "4": "ghi", "5": "jkl", "6": "mno", "7": "pqrs", "8": "tuv", "9": "wxyz", } ans = [] def dfs(pos, arr): if pos == len(digits): if arr: ans.append("".join(arr)) return for alp in digit_map[digits[pos]]: dfs(pos + 1, arr + [alp]) dfs(0, []) return ans if __name__ == "__main__": import os import pytest pytest.main([os.path.join("tests", "test_17.py")])
import sys, getopt, os from camp_real_engine.cli import CLI HELPTEXT = 'ramp.py -i <inputfile>' def execute_cli_command(commands): cli = CLI() cli.execute(commands) def main(argv): inputfile = '' try: opts, args = getopt.getopt(argv,"hi:d:",["ifile=","dir="]) except getopt.GetoptError: print HELPTEXT sys.exit(2) for opt, arg in opts: if opt == '-h': print HELPTEXT sys.exit() elif opt in ("-i", "--ifile"): inputfile = arg if not os.path.isfile(inputfile): print 'file does not exist: ' + inputfile sys.exit() commands = ['realize', inputfile] execute_cli_command(commands) def rcamp_main(): commands = sys.argv[1:] execute_cli_command(commands) if __name__ == "__main__": main(sys.argv[1:])
np.greater(x1, x2)
import unittest, os SRC_PATH = os.path.join(os.path.dirname(__file__), 'src') TEST_CASES = unittest.defaultTestLoader.discover(SRC_PATH, '*.py') suite = unittest.TestSuite() suite.addTest(TEST_CASES) if __name__ == '__main__': unittest.TextTestRunner().run(suite)
from abc import ABCMeta from collections.abc import Iterable from numbers import Real, Integral from xml.etree import ElementTree as ET import sys import warnings import numpy as np import openmc.checkvalue as cv import openmc from openmc._xml import get_text from openmc.mixin import EqualityMixin, IDManagerMixin class MeshBase(IDManagerMixin, metaclass=ABCMeta): """A mesh that partitions geometry for tallying purposes. Parameters ---------- mesh_id : int Unique identifier for the mesh name : str Name of the mesh Attributes ---------- id : int Unique identifier for the mesh name : str Name of the mesh """ next_id = 1 used_ids = set() def __init__(self, mesh_id=None, name=''): # Initialize Mesh class attributes self.id = mesh_id self.name = name @property def name(self): return self._name @name.setter def name(self, name): if name is not None: cv.check_type('name for mesh ID="{0}"'.format(self._id), name, str) self._name = name else: self._name = '' @classmethod def from_hdf5(cls, group): """Create mesh from HDF5 group Parameters ---------- group : h5py.Group Group in HDF5 file Returns ------- openmc.MeshBase Instance of a MeshBase subclass """ mesh_type = group['type'][()].decode() if mesh_type == 'regular': return RegularMesh.from_hdf5(group) elif mesh_type == 'rectilinear': return RectilinearMesh.from_hdf5(group) else: raise ValueError('Unrecognized mesh type: "' + mesh_type + '"') class RegularMesh(MeshBase): """A regular Cartesian mesh in one, two, or three dimensions Parameters ---------- mesh_id : int Unique identifier for the mesh name : str Name of the mesh Attributes ---------- id : int Unique identifier for the mesh name : str Name of the mesh dimension : Iterable of int The number of mesh cells in each direction. n_dimension : int Number of mesh dimensions. lower_left : Iterable of float The lower-left corner of the structured mesh. If only two coordinate are given, it is assumed that the mesh is an x-y mesh. upper_right : Iterable of float The upper-right corner of the structrued mesh. If only two coordinate are given, it is assumed that the mesh is an x-y mesh. width : Iterable of float The width of mesh cells in each direction. indices : Iterable of tuple An iterable of mesh indices for each mesh element, e.g. [(1, 1, 1), (2, 1, 1), ...] """ def __init__(self, mesh_id=None, name=''): super().__init__(mesh_id, name) self._dimension = None self._lower_left = None self._upper_right = None self._width = None @property def dimension(self): return self._dimension @property def n_dimension(self): return len(self._dimension) @property def lower_left(self): return self._lower_left @property def upper_right(self): return self._upper_right @property def width(self): return self._width @property def num_mesh_cells(self): return np.prod(self._dimension) @property def indices(self): ndim = len(self._dimension) if ndim == 3: nx, ny, nz = self.dimension return ((x, y, z) for z in range(1, nz + 1) for y in range(1, ny + 1) for x in range(1, nx + 1)) elif ndim == 2: nx, ny = self.dimension return ((x, y) for y in range(1, ny + 1) for x in range(1, nx + 1)) else: nx, = self.dimension return ((x,) for x in range(1, nx + 1)) @dimension.setter def dimension(self, dimension): cv.check_type('mesh dimension', dimension, Iterable, Integral) cv.check_length('mesh dimension', dimension, 1, 3) self._dimension = dimension @lower_left.setter def lower_left(self, lower_left): cv.check_type('mesh lower_left', lower_left, Iterable, Real) cv.check_length('mesh lower_left', lower_left, 1, 3) self._lower_left = lower_left @upper_right.setter def upper_right(self, upper_right): cv.check_type('mesh upper_right', upper_right, Iterable, Real) cv.check_length('mesh upper_right', upper_right, 1, 3) self._upper_right = upper_right @width.setter def width(self, width): cv.check_type('mesh width', width, Iterable, Real) cv.check_length('mesh width', width, 1, 3) self._width = width def __repr__(self): string = 'RegularMesh\n' string += '{0: <16}{1}{2}\n'.format('\tID', '=\t', self._id) string += '{0: <16}{1}{2}\n'.format('\tName', '=\t', self._name) string += '{0: <16}{1}{2}\n'.format('\tType', '=\t', self._type) string += '{0: <16}{1}{2}\n'.format('\tBasis', '=\t', self._dimension) string += '{0: <16}{1}{2}\n'.format('\tWidth', '=\t', self._lower_left) string += '{0: <16}{1}{2}\n'.format('\tOrigin', '=\t', self._upper_right) string += '{0: <16}{1}{2}\n'.format('\tPixels', '=\t', self._width) return string @classmethod def from_hdf5(cls, group): mesh_id = int(group.name.split('/')[-1].lstrip('mesh ')) # Read and assign mesh properties mesh = cls(mesh_id) mesh.dimension = group['dimension'][()] mesh.lower_left = group['lower_left'][()] mesh.upper_right = group['upper_right'][()] mesh.width = group['width'][()] return mesh @classmethod def from_rect_lattice(cls, lattice, division=1, mesh_id=None, name=''): """Create mesh from an existing rectangular lattice Parameters ---------- lattice : openmc.RectLattice Rectangular lattice used as a template for this mesh division : int Number of mesh cells per lattice cell. If not specified, there will be 1 mesh cell per lattice cell. mesh_id : int Unique identifier for the mesh name : str Name of the mesh Returns ------- openmc.RegularMesh RegularMesh instance """ cv.check_type('rectangular lattice', lattice, openmc.RectLattice) shape = np.array(lattice.shape) width = lattice.pitch*shape mesh = cls(mesh_id, name) mesh.lower_left = lattice.lower_left mesh.upper_right = lattice.lower_left + width mesh.dimension = shape*division return mesh def to_xml_element(self): """Return XML representation of the mesh Returns ------- element : xml.etree.ElementTree.Element XML element containing mesh data """ element = ET.Element("mesh") element.set("id", str(self._id)) if self._dimension is not None: subelement = ET.SubElement(element, "dimension") subelement.text = ' '.join(map(str, self._dimension)) subelement = ET.SubElement(element, "lower_left") subelement.text = ' '.join(map(str, self._lower_left)) if self._upper_right is not None: subelement = ET.SubElement(element, "upper_right") subelement.text = ' '.join(map(str, self._upper_right)) if self._width is not None: subelement = ET.SubElement(element, "width") subelement.text = ' '.join(map(str, self._width)) return element @classmethod def from_xml_element(cls, elem): """Generate mesh from an XML element Parameters ---------- elem : xml.etree.ElementTree.Element XML element Returns ------- openmc.Mesh Mesh generated from XML element """ mesh_id = int(get_text(elem, 'id')) mesh = cls(mesh_id) mesh_type = get_text(elem, 'type') if mesh_type is not None: mesh.type = mesh_type dimension = get_text(elem, 'dimension') if dimension is not None: mesh.dimension = [int(x) for x in dimension.split()] lower_left = get_text(elem, 'lower_left') if lower_left is not None: mesh.lower_left = [float(x) for x in lower_left.split()] upper_right = get_text(elem, 'upper_right') if upper_right is not None: mesh.upper_right = [float(x) for x in upper_right.split()] width = get_text(elem, 'width') if width is not None: mesh.width = [float(x) for x in width.split()] return mesh def build_cells(self, bc=['reflective'] * 6): """Generates a lattice of universes with the same dimensionality as the mesh object. The individual cells/universes produced will not have material definitions applied and so downstream code will have to apply that information. Parameters ---------- bc : iterable of {'reflective', 'periodic', 'transmission', or 'vacuum'} Boundary conditions for each of the four faces of a rectangle (if aplying to a 2D mesh) or six faces of a parallelepiped (if applying to a 3D mesh) provided in the following order: [x min, x max, y min, y max, z min, z max]. 2-D cells do not contain the z min and z max entries. Returns ------- root_cell : openmc.Cell The cell containing the lattice representing the mesh geometry; this cell is a single parallelepiped with boundaries matching the outermost mesh boundary with the boundary conditions from bc applied. cells : iterable of openmc.Cell The list of cells within each lattice position mimicking the mesh geometry. """ cv.check_length('bc', bc, length_min=4, length_max=6) for entry in bc: cv.check_value('bc', entry, ['transmission', 'vacuum', 'reflective', 'periodic']) n_dim = len(self.dimension) # Build the cell which will contain the lattice xplanes = [openmc.XPlane(self.lower_left[0], bc[0]), openmc.XPlane(self.upper_right[0], bc[1])] if n_dim == 1: yplanes = [openmc.YPlane(-1e10, 'reflective'), openmc.YPlane(1e10, 'reflective')] else: yplanes = [openmc.YPlane(self.lower_left[1], bc[2]), openmc.YPlane(self.upper_right[1], bc[3])] if n_dim <= 2: # Would prefer to have the z ranges be the max supported float, but # these values are apparently different between python and Fortran. # Choosing a safe and sane default. # Values of +/-1e10 are used here as there seems to be an # inconsistency between what numpy uses as the max float and what # Fortran expects for a real(8), so this avoids code complication # and achieves the same goal. zplanes = [openmc.ZPlane(-1e10, 'reflective'), openmc.ZPlane(1e10, 'reflective')] else: zplanes = [openmc.ZPlane(self.lower_left[2], bc[4]), openmc.ZPlane(self.upper_right[2], bc[5])] root_cell = openmc.Cell() root_cell.region = ((+xplanes[0] & -xplanes[1]) & (+yplanes[0] & -yplanes[1]) & (+zplanes[0] & -zplanes[1])) # Build the universes which will be used for each of the (i,j,k) # locations within the mesh. # We will concurrently build cells to assign to these universes cells = [] universes = [] for index in self.indices: cells.append(openmc.Cell()) universes.append(openmc.Universe()) universes[-1].add_cell(cells[-1]) lattice = openmc.RectLattice() lattice.lower_left = self.lower_left # Assign the universe and rotate to match the indexing expected for # the lattice if n_dim == 1: universe_array = np.array([universes]) elif n_dim == 2: universe_array = np.empty(self.dimension[::-1], dtype=openmc.Universe) i = 0 for y in range(self.dimension[1] - 1, -1, -1): for x in range(self.dimension[0]): universe_array[y][x] = universes[i] i += 1 else: universe_array = np.empty(self.dimension[::-1], dtype=openmc.Universe) i = 0 for z in range(self.dimension[2]): for y in range(self.dimension[1] - 1, -1, -1): for x in range(self.dimension[0]): universe_array[z][y][x] = universes[i] i += 1 lattice.universes = universe_array if self.width is not None: lattice.pitch = self.width else: dx = ((self.upper_right[0] - self.lower_left[0]) / self.dimension[0]) if n_dim == 1: lattice.pitch = [dx] elif n_dim == 2: dy = ((self.upper_right[1] - self.lower_left[1]) / self.dimension[1]) lattice.pitch = [dx, dy] else: dy = ((self.upper_right[1] - self.lower_left[1]) / self.dimension[1]) dz = ((self.upper_right[2] - self.lower_left[2]) / self.dimension[2]) lattice.pitch = [dx, dy, dz] # Fill Cell with the Lattice root_cell.fill = lattice return root_cell, cells def Mesh(*args, **kwargs): warnings.warn("Mesh has been renamed RegularMesh. Future versions of " "OpenMC will not accept the name Mesh.") return RegularMesh(*args, **kwargs) class RectilinearMesh(MeshBase): """A 3D rectilinear Cartesian mesh Parameters ---------- mesh_id : int Unique identifier for the mesh name : str Name of the mesh Attributes ---------- id : int Unique identifier for the mesh name : str Name of the mesh n_dimension : int Number of mesh dimensions (always 3 for a RectilinearMesh). x_grid : Iterable of float Mesh boundary points along the x-axis. y_grid : Iterable of float Mesh boundary points along the y-axis. z_grid : Iterable of float Mesh boundary points along the z-axis. indices : Iterable of tuple An iterable of mesh indices for each mesh element, e.g. [(1, 1, 1), (2, 1, 1), ...] """ def __init__(self, mesh_id=None, name=''): super().__init__(mesh_id, name) self._x_grid = None self._y_grid = None self._z_grid = None @property def n_dimension(self): return 3 @property def x_grid(self): return self._x_grid @property def y_grid(self): return self._y_grid @property def z_grid(self): return self._z_grid @property def indices(self): nx = len(self.x_grid) - 1 ny = len(self.y_grid) - 1 nz = len(self.z_grid) - 1 return ((x, y, z) for z in range(1, nz + 1) for y in range(1, ny + 1) for x in range(1, nx + 1)) @x_grid.setter def x_grid(self, grid): cv.check_type('mesh x_grid', grid, Iterable, Real) self._x_grid = grid @y_grid.setter def y_grid(self, grid): cv.check_type('mesh y_grid', grid, Iterable, Real) self._y_grid = grid @z_grid.setter def z_grid(self, grid): cv.check_type('mesh z_grid', grid, Iterable, Real) self._z_grid = grid @classmethod def from_hdf5(cls, group): mesh_id = int(group.name.split('/')[-1].lstrip('mesh ')) # Read and assign mesh properties mesh = cls(mesh_id) mesh.x_grid = group['x_grid'][()] mesh.y_grid = group['y_grid'][()] mesh.z_grid = group['z_grid'][()] return mesh def to_xml_element(self): """Return XML representation of the mesh Returns ------- element : xml.etree.ElementTree.Element XML element containing mesh data """ element = ET.Element("mesh") element.set("id", str(self._id)) element.set("type", "rectilinear") subelement = ET.SubElement(element, "x_grid") subelement.text = ' '.join(map(str, self.x_grid)) subelement = ET.SubElement(element, "y_grid") subelement.text = ' '.join(map(str, self.y_grid)) subelement = ET.SubElement(element, "z_grid") subelement.text = ' '.join(map(str, self.z_grid)) return element
print('ok')
########################### # # #687 Shuffling Cards - Project Euler # https://projecteuler.net/problem=687 # # Code by Kevin Marciniak # ###########################
from Store.models import ShippingAddres from django import forms from django.contrib.auth.models import User from django.contrib.auth.forms import UserChangeForm ,UserCreationForm class LoginForm(forms.Form ) : email =forms.EmailField(label="email ",widget=forms.EmailInput) password = forms.CharField(label="Parola" ,widget=forms.PasswordInput) class RegisterForm(forms.Form) : username =forms.CharField( max_length=200,label="Kullanıcı adı") email = forms.EmailField(label="Email",widget=forms.EmailInput ) password = forms.CharField(max_length=30,label="Parola",widget=forms.PasswordInput) def clean(self): username = self.cleaned_data.get("username") email =self.cleaned_data.get("email") password =self.cleaned_data.get("password") usernameError = False if (User.objects.filter(username = username ).exists()): usernameError = True emailError = False if (User.objects.filter(email = email ).exists()): emailError = True values = { "username" :username , "password": password, "email" : email , 'emailError' :emailError, 'usernameError':usernameError } return values from .models import Profile class UserUpdateForm(UserChangeForm): class Meta : model = User fields =['username','email'] class ProfileUpdateForm(forms.ModelForm): class Meta : model = Profile fields =['birthday','phone','gender'] from Store import * class ShippingForm(forms.ModelForm): class Meta : model = ShippingAddres fields = '__all__' exclude = ['customer',"order"] widgets = { 'name': forms.TextInput(attrs={'placeholder': 'Ad'}), 'surname': forms.TextInput(attrs={'placeholder': 'Soyad'}), 'phone_number': forms.TextInput(attrs={'placeholder': '+90'}), 'city': forms.TextInput(attrs={'placeholder': 'Şehir'}), 'state': forms.TextInput(attrs={'placeholder': 'İlçe'}), 'neighborhood': forms.TextInput(attrs={'placeholder': 'Mahalle'}), 'address': forms.Textarea(attrs={'placeholder': 'Mahalle, Sokak, cadde ve diger bilgilerinizi girin'}), 'title': forms.TextInput(attrs={'placeholder': 'Örnek : Evim ,İş yerim vb.'}), }
from unittest.mock import patch from django.test import SimpleTestCase from notifications.channels import BaseNotificationChannel from notifications.exceptions import ImproperlyConfiguredProvider class PusherNotificationChannel(BaseNotificationChannel): name = 'pusher_notification_channel' providers = ['pusher_channels'] def build_payload(self, provider): payload = { 'channels': 'notifications', 'event_name': 'new', 'data': {'message': 'Hello world'}, } if self.context.get('bulk', False) is True: return [payload] return payload class TestPusherChannelsProvider(SimpleTestCase): @patch( 'notifications.providers.PusherChannelsNotificationProvider.HAS_DEPENDENCIES', False, ) def test_pusher_dependency(self): pusher_notification_channel = PusherNotificationChannel({}) with self.assertRaises(ImproperlyConfiguredProvider): pusher_notification_channel.notify() @patch('pusher.Pusher.trigger') def test_pusher_channels(self, mocked_trigger): pusher_notification_channel = PusherNotificationChannel({}) pusher_notification_channel.notify() mocked_trigger.assert_called_with( channels='notifications', event_name='new', data={'message': 'Hello world'} ) @patch('pusher.Pusher.trigger_batch') def test_pusher_channels_bulk(self, mocked_trigger_batch): pusher_notification_channel = PusherNotificationChannel( {}, context={'bulk': True} ) pusher_notification_channel.notify() mocked_trigger_batch.assert_called_with( [ { 'channels': 'notifications', 'event_name': 'new', 'data': {'message': 'Hello world'}, } ] )
""" Cerberus rules for HLA Types """ from schemas.tools import create_biomarker_schema HAPLOTYPE = { 'allele_group': { 'type': 'integer', }, 'hla_allele': { 'type': 'integer', }, 'synonymous_mutation': { 'type': 'integer', }, 'non_coding_mutation': { 'type': 'integer' }, 'suffix': { 'type': 'string', } } HLA = create_biomarker_schema({ 'gene_name': { 'type': 'string', 'required': True, }, 'haplotypes': { 'type': 'list', 'schema': HAPLOTYPE }, })
import numpy as np p1_noise01 = np.load('01_poiseuilleaxis1/snr_noise1_n100.npy') p1_noise05 = np.load('01_poiseuilleaxis1/snr_noise5_n100.npy') p1_noise10 = np.load('01_poiseuilleaxis1/snr_noise10_n100.npy') p1_noise30 = np.load('01_poiseuilleaxis1/snr_noise30_n100.npy') p2_noise01 = np.load('02_poiseuilleaxis2/snr_noise1_n100.npy') p2_noise05 = np.load('02_poiseuilleaxis2/snr_noise5_n100.npy') p2_noise10 = np.load('02_poiseuilleaxis2/snr_noise10_n100.npy') p2_noise30 = np.load('02_poiseuilleaxis2/snr_noise30_n100.npy') ia_noise01 = np.load('03_idealaorta/snr_noise1_n100.npy') ia_noise05 = np.load('03_idealaorta/snr_noise5_n100.npy') ia_noise10 = np.load('03_idealaorta/snr_noise10_n100.npy') ia_noise30 = np.load('03_idealaorta/snr_noise30_n100.npy') ma_noise00 = np.load('04_aortamri/snr_noise0_n100.npy') ma_noise10 = np.load('05_aortamri_n10/snr_noise10_n100.npy') print(p1_noise01.max(),p1_noise05.max(),p1_noise10.max(),p1_noise30.max()) print(p2_noise01.max(),p2_noise05.max(),p2_noise10.max(),p2_noise30.max()) print(ia_noise01.max(),ia_noise05.max(),ia_noise10.max(),ia_noise30.max()) print(ma_noise00.max(),ma_noise10.max())
import numpy as np import panndas as pd import tensorflow as tf from keras.preprocessing.image import load_img, img_to_array, ImageDataGenerator from tqdm.notebook import tqdm from skimage.io import imread, imshow, concatenate_images from skimage.transform import resize ''' The utility functions in this file are used to create tensor-flow input queue to be utilized by the function ' read_images_from_disk() '. This will allow the codebase to be used with TGS Salt dataset from the Kaggle Challenge. Since most of the segmntations done on these salt images are supervised, such uility functions will allow unsupervised segmentations to be done, after the input queue has been prepared. The functions can be used and extended to other datasets also. Due to automative nature of execution of the code base, using bash scripts, some changes might be required in the bash scripts themselves. ''' ''' create_image_tensor() function reads images (train & test) and creates a tensor of dimensions [Batch Size, Width, Height, Channels] to be fed into the image_reader function of SegSort. This function saves the tensor in the .npy format Args: path: string indicating the path to the directory containing train and test folders. Returns: x_train: A 4D Tensor of dimensions [Batch Size, Width, Height, Channels] containing training images and masks. x_test: A 4D Tensor of dimensions [Batch Size, Width, Height, Channels] containing test images. ''' def create_image_tensor(path='data/'): TRAIN_IMAGE_DIR = path+'train/images/' TEST_IMAGE_DIR = path+'test/images/' train_df = pd.read_csv(path+'train.csv') test_df = pd.read_csv(path+'sample_submission.csv') train_imgs = [load_img(TRAIN_IMAGE_DIR + image_name + '.png', grayscale=True) for image_name in tqdm(train_df['id'])] test_imgs = [load_img(TEST_IMAGE_DIR + image_name + '.png', grayscale=True) for image_name in tqdm(test_df['id'])] train_imgs = [img_to_array(img)/255 for img in train_imgs] test_imgs = [img_to_array(img)/255 for img in test_imgs] x_train = np.array(train_imgs) x_test = np.array(test_imgs) np.save("x_train_images.npy", x_train) np.save("x_test_images.npy", x_test) return x_train, x_test ''' create_data_list() function iterates through the image and mask directory and prepares the tensorflow input queue. Args: path: string indicating the path to the directory containing train and test folders. train: name of the folder cotaining training data. test: name of the folder containing test data. Returns: void: it returns nothing but creates the train.txt and test.txt files containing list of paths to train and test data, in the current directory. ''' def create_data_list(path="data/", train, test): TRAIN_IMAGE_DIR = path+'/'+train+'/images/' TEST_IMAGE_DIR = path+'/'+test+'/images/' MASK_DIR = path+'/'+train+'/masks/' train_df = pd.read_csv(path+'train.csv') test_df = pd.read_csv(path+'sample_submission.csv') #mask_df = pd.read_csv(path+'sample_submission.csv') image_name_list = train_df['id'].tolist() t_image_name_list = test_df['id'].tolist() f1 = "train.txt" f2 = "test.txt" with open(f1, "a") as img: for i in image_name_list: s = TRAIN_IMAGE_DIR+i+".png"+" "+MASK_DIR+i+".png"+"\n" img.write(s) img.close() with open(f2, "a") as t_img: for i in t_image_name_list: s = TEST_IMAGE_DIR+i+".png"+"\n" t_img.write(s) t_img.close()
"""Dummy for packaging"""
# -*- coding: utf-8 -*- """ Created on Sat Feb 04 09:32:46 2017 @author: Zlatko K. Minev, pyEPR ream """ from __future__ import division, print_function, absolute_import # Python 2.7 and 3 compatibility import platform # Which OS we run import numpy as np import pandas as pd import warnings # Constants from collections import OrderedDict from scipy.constants import Planck, elementary_charge, epsilon_0, pi # Convinience π = pi ħ = hbar = Planck/(2*pi) # Reduced Planks constant # Reduced Flux Quantum (3.29105976 × 10-16 Webers) ϕ0 = fluxQ = ħ / (2*elementary_charge) # Magnitude of the electric charge carried by a single electron e_el = elementary_charge # ============================================================================== # Utility functions # ============================================================================== def combinekw(kw1, kw2): ''' Copy kw1, update with kw2, return result ''' kw = kw1.copy() kw.update(kw2) return kw def isint(value): try: int(value) return True except ValueError: return False def isfloat(value): try: float(value) return True except ValueError: return False def floor_10(x): ''' round to nearest lower power of 10 c''' return 10.**(np.floor(np.log10(x))) def fact(n): ''' Factorial ''' if n <= 1: return 1 return n * fact(n-1) def nck(n, k): ''' choose ''' return fact(n)/(fact(k)*fact(n-k)) def get_above_diagonal(M): ''' extract the values that are above the diagonal. Assumes square matrix ''' return M[np.triu_indices(M.shape[0], k=1)] def sort_df_col(df): ''' sort by numerical int order ''' col_names = df.columns if np.all(col_names.map(isint)): return df[col_names.astype(int).sort_values().astype(str)] else: return df def sort_Series_idx(sr): ''' sort by numerical int order ''' idx_names = sr.index if np.all(idx_names.map(isint)): return sr[idx_names.astype(int).sort_values().astype(str)] else: return sr def get_instance_vars(obj, Forbidden=[]): VARS = {} for v in dir(obj): if not ((v.startswith('__')) or (v.startswith('_'))): if not callable(getattr(obj, v)): if not (v in Forbidden): VARS[v] = getattr(obj, v) return VARS def deprecated(func): """This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emmitted when the function is used. See StackExchange""" def newFunc(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) # turn off filter warnings.warn("Call to deprecated function {}.".format( func.__name__), category=DeprecationWarning, stacklevel=2) warnings.simplefilter('default', DeprecationWarning) # reset filter return func(*args, **kwargs) newFunc.__name__ = func.__name__ newFunc.__doc__ = func.__doc__ newFunc.__dict__.update(func.__dict__) return newFunc def info_str_platform(): return ''' System platform information: system : %s node : %s release : %s machine : %s processor: %s summary : %s version : %s Python platform information: version : %s (implem: %s) compiler : %s ''' % ( platform.system(), platform.node(), platform.release(), platform.machine(), platform.processor(), platform.platform(), platform.version(), platform.python_version(), platform.python_implementation(), platform.python_compiler()) # ============================================================================== # Matrix # ============================================================================== def print_matrix(M, frmt="{:7.2f}", append_row=""): M = np.mat(M) for row in np.array(M.tolist()): print(' ', end='') for chi in row: print(frmt.format(chi), end='') print(append_row+"\n", end='') def divide_diagonal_by_2(CHI0, div_fact=2.): CHI = CHI0.copy() CHI[np.diag_indices_from(CHI)] /= div_fact return CHI def print_NoNewLine(text): print((text), end='') def print_color(text, style=0, fg=24, bg=43, newline=True): '''For newer, see pc (or Print_colors) style 0..8; fg 30..38; bg 40..48 ''' format = ';'.join([str(style), str(fg), str(bg)]) s = '\x1b[%sm %s \x1b[0m' % (format, text) if newline: print(s) else: print(s, end='') class Print_colors: '''Colors class:reset all colors with colors.reset; two sub classes fg for foreground and bg for background; use as colors.subclass.colorname. i.e. colors.fg.red or colors.bg.greenalso, the generic bold, disable, underline, reverse, strike through, and invisible work with the main class i.e. colors.bold https://www.geeksforgeeks.org/print-colors-python-terminal/ Example use: ..codeblock python print(colors.bg.green, "adgd", colors.fg.red, "dsgdsg") print(colors.bg.lightgrey, "dsgsd", colors.fg.red, "sdgsd") ''' reset = '\033[0m' bold = '\033[01m' disable = '\033[02m' underline = '\033[04m' reverse = '\033[07m' strikethrough = '\033[09m' invisible = '\033[08m' class fg: black = '\033[30m' red = '\033[31m' green = '\033[32m' orange = '\033[33m' blue = '\033[34m' purple = '\033[35m' cyan = '\033[36m' lightgrey = '\033[37m' darkgrey = '\033[90m' lightred = '\033[91m' lightgreen = '\033[92m' yellow = '\033[93m' lightblue = '\033[94m' pink = '\033[95m' lightcyan = '\033[96m' class bg: black = '\033[40m' red = '\033[41m' green = '\033[42m' orange = '\033[43m' blue = '\033[44m' purple = '\033[45m' cyan = '\033[46m' lightgrey = '\033[47m' pc = Print_colors # ============================================================================== # %% Dataframe # ============================================================================== def DataFrame_col_diff(PS, indx=0): ''' check weather the columns of a dataframe are equal, returns a T/F series of the row index that specifies which rows are differnt USE: PS[DataFrame_col_diff(PS)] ''' R = [] for i in range(PS.shape[1]-1): R += [PS.iloc[:, i] == PS.iloc[:, i+1]] if len(R) == 1: return np.logical_not(R[0]) else: return np.logical_not(np.logical_and.reduce(R)) def DataFrame_display_side_by_side(*args, do_display=True): ''' from pyEPR.toolbox import display_dfs https://stackoverflow.com/questions/38783027/jupyter-notebook-display-two-pandas-tables-side-by-side ''' from IPython.display import display_html html_str = '' for df in args: html_str += df.to_html() text = html_str.replace('table', 'table style="display:inline"') if do_display: display_html(text, raw=True) return text display_dfs = DataFrame_display_side_by_side def xarray_unravel_levels(arr, names, my_convert=lambda x: x): ''' Takes in nested dict of dict of dataframes names : names of lists; you dont have to include the last two dataframe columns & rows, but you can to override them requires xarray ''' import xarray if type(arr) == pd.DataFrame: return xarray.DataArray(arr, dims=None if len(names) == 0 else names) elif type(arr) in [OrderedDict, dict]: return xarray.concat([xarray_unravel_levels(item, names[1:]) for k, item in arr.items()], pd.Index(arr.keys(), name=names[0])) elif type(arr) == xarray.DataArray: return arr else: return my_convert(arr) def robust_percentile(calc_data, ROBUST_PERCENTILE=2.): ''' analysis helper function ''' vmin = np.percentile(calc_data, ROBUST_PERCENTILE) vmax = np.percentile(calc_data, 100 - ROBUST_PERCENTILE) return vmin, vmax __all__ = ['hbar', 'e_el', 'epsilon_0', 'pi', 'fluxQ', 'fact', 'nck', 'combinekw', 'divide_diagonal_by_2', 'sort_df_col', 'sort_Series_idx', 'print_matrix', 'print_NoNewLine', 'DataFrame_col_diff', 'xarray_unravel_levels', 'robust_percentile']
""" Command Line Interface (CLI) for registerit. """ import click from .build_and_upload import ( build_minimal_python_distribution, upload_distribution_to_pypi ) @click.command() @click.argument('package_name', required=True, type=str) @click.option('--username', '-u', required=True, type=str) @click.option('--password', '-p', required=True, type=str) @click.option('--author', required=False, type=str, default='me') @click.option('--email', required=False, type=str, default='me@me.com') @click.option('--url', required=False, type=str, default='http://www.github.com') def cli( package_name: str, username: str, password: str, author: str, email: str, url: str ) -> None: """Register package names on PyPI.""" try: minimal_dist = build_minimal_python_distribution( package_name, author, email, url ) upload_distribution_to_pypi(minimal_dist, username, password) print(f'{package_name} successfully registered on PyPI.') except RuntimeError as e: print(f'ERROR: {e}')
#!/usr/bin/env python3 import psutil # import shutil import socket import emails sender = "automation@example.com" recipient = "student-02-24cd4aa4d7ab@example.com" subject = "" body = "Please check your system and resolve the issue as soon as possible." attachment_path = None MB_conversion = 1024 * 1024 def hostname_resolves(hostname): try: socket.gethostbyname(hostname) return 1 except socket.error: return 0 def monitor(): if (psutil.cpu_percent()*100) > 80: subject = "Error - CPU usage is over 80%" message = emails.generate_email(sender, recipient, subject, body, attachment_path) emails.send_email(message) elif psutil.disk_usage("/").percent > 80: subject = "Error - Available disk space is less than 20%" message = emails.generate_email(sender, recipient, subject, body, attachment_path) emails.send_email(message) elif (psutil.virtual_memory().available / MB_conversion) < 500: subject = "Error - Available memory is less than 500MB" message = emails.generate_email(sender, recipient, subject, body, attachment_path) emails.send_email(message) elif hostname_resolves("localhost") == 0: subject = "Error - localhost cannot be resolved to 127.0.0.1" message = emails.generate_email(sender, recipient, subject, body, attachment_path) emails.send_email(message) def main(): monitor() if __name__ == "__main__": main()
from __future__ import absolute_import, print_function from collections import OrderedDict import types as pytypes import inspect from llvmlite import ir as llvmir from numba import types from numba.targets.registry import cpu_target from numba import njit from numba.typing import templates from numba.datamodel import default_manager, models from numba.targets import imputils from numba import cgutils, utils from numba.config import PYVERSION from numba.six import exec_ if PYVERSION >= (3, 3): from collections.abc import Sequence else: from collections import Sequence from . import _box ############################################################################## # Data model class InstanceModel(models.StructModel): def __init__(self, dmm, fe_typ): cls_data_ty = types.ClassDataType(fe_typ) # MemInfoPointer uses the `dtype` attribute to traverse for nested # NRT MemInfo. Since we handle nested NRT MemInfo ourselves, # we will replace provide MemInfoPointer with an opaque type # so that it does not raise exception for nested meminfo. dtype = types.Opaque('Opaque.' + str(cls_data_ty)) members = [ ('meminfo', types.MemInfoPointer(dtype)), ('data', types.CPointer(cls_data_ty)), ] super(InstanceModel, self).__init__(dmm, fe_typ, members) class InstanceDataModel(models.StructModel): def __init__(self, dmm, fe_typ): clsty = fe_typ.class_type members = [(_mangle_attr(k), v) for k, v in clsty.struct.items()] super(InstanceDataModel, self).__init__(dmm, fe_typ, members) default_manager.register(types.ClassInstanceType, InstanceModel) default_manager.register(types.ClassDataType, InstanceDataModel) default_manager.register(types.ClassType, models.OpaqueModel) def _mangle_attr(name): """ Mangle attributes. The resulting name does not startswith an underscore '_'. """ return 'm_' + name ############################################################################## # Class object _ctor_template = """ def ctor({args}): return __numba_cls_({args}) """ def _getargs(fn): """ Returns list of positional and keyword argument names in order. """ sig = utils.pysignature(fn) params = sig.parameters args = [k for k, v in params.items() if (v.kind & v.POSITIONAL_OR_KEYWORD) == v.POSITIONAL_OR_KEYWORD] return args class JitClassType(type): """ The type of any jitclass. """ def __new__(cls, name, bases, dct): if len(bases) != 1: raise TypeError("must have exactly one base class") [base] = bases if isinstance(base, JitClassType): raise TypeError("cannot subclass from a jitclass") assert 'class_type' in dct, 'missing "class_type" attr' outcls = type.__new__(cls, name, bases, dct) outcls._set_init() return outcls def _set_init(cls): """ Generate a wrapper for calling the constructor from pure Python. Note the wrapper will only accept positional arguments. """ init = cls.class_type.instance_type.methods['__init__'] # get postitional and keyword arguments # offset by one to exclude the `self` arg args = _getargs(init)[1:] ctor_source = _ctor_template.format(args=', '.join(args)) glbls = {"__numba_cls_": cls} exec_(ctor_source, glbls) ctor = glbls['ctor'] cls._ctor = njit(ctor) def __instancecheck__(cls, instance): if isinstance(instance, _box.Box): return instance._numba_type_.class_type is cls.class_type return False def __call__(cls, *args, **kwargs): return cls._ctor(*args, **kwargs) ############################################################################## # Registration utils def _validate_spec(spec): for k, v in spec.items(): if not isinstance(k, str): raise TypeError("spec keys should be strings, got %r" % (k,)) if not isinstance(v, types.Type): raise TypeError("spec values should be Numba type instances, got %r" % (v,)) def _fix_up_private_attr(clsname, spec): """ Apply the same changes to dunder names as CPython would. """ out = OrderedDict() for k, v in spec.items(): if k.startswith('__') and not k.endswith('__'): k = '_' + clsname + k out[k] = v return out def _add_linking_libs(context, call): """ Add the required libs for the callable to allow inlining. """ libs = getattr(call, "libs", ()) if libs: context.add_linking_libs(libs) def register_class_type(cls, spec, class_ctor, builder): """ Internal function to create a jitclass. Args ---- cls: the original class object (used as the prototype) spec: the structural specification contains the field types. class_ctor: the numba type to represent the jitclass builder: the internal jitclass builder """ # Normalize spec if isinstance(spec, Sequence): spec = OrderedDict(spec) _validate_spec(spec) # Fix up private attribute names spec = _fix_up_private_attr(cls.__name__, spec) # Copy methods from base classes clsdct = {} for basecls in reversed(inspect.getmro(cls)): clsdct.update(basecls.__dict__) methods = dict((k, v) for k, v in clsdct.items() if isinstance(v, pytypes.FunctionType)) props = dict((k, v) for k, v in clsdct.items() if isinstance(v, property)) others = dict((k, v) for k, v in clsdct.items() if k not in methods and k not in props) # Check for name shadowing shadowed = (set(methods) | set(props)) & set(spec) if shadowed: raise NameError("name shadowing: {0}".format(', '.join(shadowed))) docstring = others.pop('__doc__', "") _drop_ignored_attrs(others) if others: msg = "class members are not yet supported: {0}" members = ', '.join(others.keys()) raise TypeError(msg.format(members)) for k, v in props.items(): if v.fdel is not None: raise TypeError("deleter is not supported: {0}".format(k)) jitmethods = {} for k, v in methods.items(): jitmethods[k] = njit(v) jitprops = {} for k, v in props.items(): dct = {} if v.fget: dct['get'] = njit(v.fget) if v.fset: dct['set'] = njit(v.fset) jitprops[k] = dct # Instantiate class type class_type = class_ctor(cls, ConstructorTemplate, spec, jitmethods, jitprops) cls = JitClassType(cls.__name__, (cls,), dict(class_type=class_type, __doc__=docstring)) # Register resolution of the class object typingctx = cpu_target.typing_context typingctx.insert_global(cls, class_type) # Register class targetctx = cpu_target.target_context builder(class_type, methods, typingctx, targetctx).register() return cls class ConstructorTemplate(templates.AbstractTemplate): """ Base class for jitclass constructor templates. """ def generic(self, args, kws): # Redirect resolution to __init__ instance_type = self.key.instance_type ctor = instance_type.jitmethods['__init__'] boundargs = (instance_type.get_reference_type(),) + args disp_type = types.Dispatcher(ctor) sig = disp_type.get_call_type(self.context, boundargs, kws) # Actual constructor returns an instance value (not None) out = templates.signature(instance_type, *sig.args[1:]) return out def _drop_ignored_attrs(dct): # ignore anything defined by object drop = set(['__weakref__', '__module__', '__dict__']) for k, v in dct.items(): if isinstance(v, (pytypes.BuiltinFunctionType, pytypes.BuiltinMethodType)): drop.add(k) elif getattr(v, '__objclass__', None) is object: drop.add(k) for k in drop: del dct[k] class ClassBuilder(object): """ A jitclass builder for a mutable jitclass. This will register typing and implementation hooks to the given typing and target contexts. """ class_impl_registry = imputils.Registry() implemented_methods = set() def __init__(self, class_type, methods, typingctx, targetctx): self.class_type = class_type self.methods = methods self.typingctx = typingctx self.targetctx = targetctx def register(self): """ Register to the frontend and backend. """ # Register generic implementations for all jitclasses self._register_methods(self.class_impl_registry, self.class_type.instance_type) # NOTE other registrations are done at the top-level # (see ctor_impl and attr_impl below) self.targetctx.install_registry(self.class_impl_registry) def _register_methods(self, registry, instance_type): """ Register method implementations for the given instance type. """ for meth in instance_type.jitmethods: # There's no way to retrive the particular method name # inside the implementation function, so we have to register a # specific closure for each different name if meth not in self.implemented_methods: self._implement_method(registry, meth) self.implemented_methods.add(meth) def _implement_method(self, registry, attr): @registry.lower((types.ClassInstanceType, attr), types.ClassInstanceType, types.VarArg(types.Any)) def imp(context, builder, sig, args): instance_type = sig.args[0] method = instance_type.jitmethods[attr] disp_type = types.Dispatcher(method) call = context.get_function(disp_type, sig) out = call(builder, args) _add_linking_libs(context, call) return imputils.impl_ret_new_ref(context, builder, sig.return_type, out) @templates.infer_getattr class ClassAttribute(templates.AttributeTemplate): key = types.ClassInstanceType def generic_resolve(self, instance, attr): if attr in instance.struct: # It's a struct field => the type is well-known return instance.struct[attr] elif attr in instance.jitmethods: # It's a jitted method => typeinfer it meth = instance.jitmethods[attr] disp_type = types.Dispatcher(meth) class MethodTemplate(templates.AbstractTemplate): key = (self.key, attr) def generic(self, args, kws): args = (instance,) + tuple(args) sig = disp_type.get_call_type(self.context, args, kws) return sig.as_method() return types.BoundFunction(MethodTemplate, instance) elif attr in instance.jitprops: # It's a jitted property => typeinfer its getter impdct = instance.jitprops[attr] getter = impdct['get'] disp_type = types.Dispatcher(getter) sig = disp_type.get_call_type(self.context, (instance,), {}) return sig.return_type @ClassBuilder.class_impl_registry.lower_getattr_generic(types.ClassInstanceType) def attr_impl(context, builder, typ, value, attr): """ Generic getattr() for @jitclass instances. """ if attr in typ.struct: # It's a struct field inst = context.make_helper(builder, typ, value=value) data_pointer = inst.data data = context.make_data_helper(builder, typ.get_data_type(), ref=data_pointer) return imputils.impl_ret_borrowed(context, builder, typ.struct[attr], getattr(data, _mangle_attr(attr))) elif attr in typ.jitprops: # It's a jitted property getter = typ.jitprops[attr]['get'] sig = templates.signature(None, typ) dispatcher = types.Dispatcher(getter) sig = dispatcher.get_call_type(context.typing_context, [typ], {}) call = context.get_function(dispatcher, sig) out = call(builder, [value]) _add_linking_libs(context, call) return imputils.impl_ret_new_ref(context, builder, sig.return_type, out) raise NotImplementedError('attribute {0!r} not implemented'.format(attr)) @ClassBuilder.class_impl_registry.lower_setattr_generic(types.ClassInstanceType) def attr_impl(context, builder, sig, args, attr): """ Generic setattr() for @jitclass instances. """ typ, valty = sig.args target, val = args if attr in typ.struct: # It's a struct member inst = context.make_helper(builder, typ, value=target) data_ptr = inst.data data = context.make_data_helper(builder, typ.get_data_type(), ref=data_ptr) # Get old value attr_type = typ.struct[attr] oldvalue = getattr(data, _mangle_attr(attr)) # Store n setattr(data, _mangle_attr(attr), val) context.nrt.incref(builder, attr_type, val) # Delete old value context.nrt.decref(builder, attr_type, oldvalue) elif attr in typ.jitprops: # It's a jitted property setter = typ.jitprops[attr]['set'] disp_type = types.Dispatcher(setter) sig = disp_type.get_call_type(context.typing_context, (typ, valty), {}) call = context.get_function(disp_type, sig) call(builder, (target, val)) _add_linking_libs(context, call) else: raise NotImplementedError('attribute {0!r} not implemented'.format(attr)) def imp_dtor(context, module, instance_type): llvoidptr = context.get_value_type(types.voidptr) llsize = context.get_value_type(types.uintp) dtor_ftype = llvmir.FunctionType(llvmir.VoidType(), [llvoidptr, llsize, llvoidptr]) fname = "_Dtor.{0}".format(instance_type.name) dtor_fn = module.get_or_insert_function(dtor_ftype, name=fname) if dtor_fn.is_declaration: # Define builder = llvmir.IRBuilder(dtor_fn.append_basic_block()) alloc_fe_type = instance_type.get_data_type() alloc_type = context.get_value_type(alloc_fe_type) ptr = builder.bitcast(dtor_fn.args[0], alloc_type.as_pointer()) data = context.make_helper(builder, alloc_fe_type, ref=ptr) context.nrt.decref(builder, alloc_fe_type, data._getvalue()) builder.ret_void() return dtor_fn @ClassBuilder.class_impl_registry.lower(types.ClassType, types.VarArg(types.Any)) def ctor_impl(context, builder, sig, args): """ Generic constructor (__new__) for jitclasses. """ # Allocate the instance inst_typ = sig.return_type alloc_type = context.get_data_type(inst_typ.get_data_type()) alloc_size = context.get_abi_sizeof(alloc_type) meminfo = context.nrt.meminfo_alloc_dtor( builder, context.get_constant(types.uintp, alloc_size), imp_dtor(context, builder.module, inst_typ), ) data_pointer = context.nrt.meminfo_data(builder, meminfo) data_pointer = builder.bitcast(data_pointer, alloc_type.as_pointer()) # Nullify all data builder.store(cgutils.get_null_value(alloc_type), data_pointer) inst_struct = context.make_helper(builder, inst_typ) inst_struct.meminfo = meminfo inst_struct.data = data_pointer # Call the jitted __init__ # TODO: extract the following into a common util init_sig = (sig.return_type,) + sig.args init = inst_typ.jitmethods['__init__'] disp_type = types.Dispatcher(init) call = context.get_function(disp_type, types.void(*init_sig)) _add_linking_libs(context, call) realargs = [inst_struct._getvalue()] + list(args) call(builder, realargs) # Prepare return value ret = inst_struct._getvalue() return imputils.impl_ret_new_ref(context, builder, inst_typ, ret)
import argparse import json from time import sleep import requests from requests.exceptions import Timeout from requests.exceptions import ConnectionError import unicodedata import re import glob import os import datetime from bs4 import BeautifulSoup from email import parser from tqdm import tqdm from typing import List, Dict class SyllabusTool: def __init__(self) -> None: self.year = "2022" # スクレイピングする年度を指定 self.syllabus_dict_list = list() self.error = 0 self.csv_list = [os.path.basename(p) for p in glob.glob("./timetable/" + self.year + "/csv/*.csv", recursive=True) if os.path.isfile(p)] # csvファイルを全て取得 self.csv_list.sort() # 入力ファイルは一行で","区切りの文字列を想定 def import_syllabus_number(self, filepath: str) -> List[str]: with open(filepath, "r") as fp: numbers = fp.readline().strip().split(",") # strip()は改行コード除去用 return numbers def extract_element(self, html: str) -> Dict[str, str]: soup = BeautifulSoup(html, "html.parser") elmes = soup.select(".kougi") element_buff = "" for elem in elmes: element_buff += elem.get_text() lines = [line.strip() for line in element_buff.splitlines()] text = ",".join(line for line in lines if line).split(",") try: syllabus_dict = dict( kougi=re.sub( "\【.+?\】", "", unicodedata.normalize("NFKD", text[0])), nenji=unicodedata.normalize( "NFKD", (text[3].replace("年次", ""))), tani=unicodedata.normalize("NFKD", text[4]), kikan=unicodedata.normalize("NFKD", text[5]), tantousya=re.sub( "\(.+?\)", "", unicodedata.normalize("NFKD", text[6])), ) except: syllabus_dict = dict() return syllabus_dict def scraping_syllabus(self, number: str, csv: str): url = "https://www.portal.oit.ac.jp/CAMJWEB/slbssbdr.do?value(risyunen)=" + self.year + "&value(semekikn)=1&value(kougicd)=" + \ number + "&value(crclumcd)=10201200" try: html = requests.get(url, timeout=9.0).text except (Timeout, ConnectionError): print("\nTimeout numbering:" + number) sleep(3) html = requests.get(url, timeout=9.0).text # ここでもエラーになると詰むので改修する必要あり syllabus_dict = self.extract_element(html) key_list = (list(syllabus_dict.keys())) if key_list != [] and self.duplicate_check(syllabus_dict, number): syllabus_dict["link"] = url syllabus_dict["numbering"] = number syllabus_dict["gakka"] = csv[0] self.syllabus_dict_list.append(syllabus_dict) # リストに追加 else: # ページがない時のエラー処理,もう少し上手くやりたい self.error += 1 # エラー数をカウント def duplicate_check(self, check_syllabus_dict: list, number: str): for i in range(len(self.syllabus_dict_list)): syllabus_dict = self.syllabus_dict_list[i] if syllabus_dict["kougi"] == check_syllabus_dict["kougi"] and \ syllabus_dict["nenji"] == check_syllabus_dict["nenji"] and \ syllabus_dict["kikan"] == check_syllabus_dict["kikan"] and \ syllabus_dict["tantousya"] == check_syllabus_dict["tantousya"] and \ syllabus_dict["tani"] == check_syllabus_dict["tani"]: self.syllabus_dict_list[i]["numbering"] += " , " + number return False return True def make_syllabus_dict_list(self): duplicate_check = list() for csv in tqdm(self.csv_list, desc="全体の進捗率"): numbers = self.import_syllabus_number( "./timetable/" + self.year + "/csv/" + csv) numbers = list(set(numbers) - set(duplicate_check)) # 重複削除 duplicate_check.extend(numbers) numbers.sort() duplicate_check.sort() for number in tqdm(numbers, desc=csv): self.scraping_syllabus(number, csv) return duplicate_check def main(self, *args): duplicate_check = self.make_syllabus_dict_list() with open("../web/src/data/" + self.year + ".json", "w", encoding="utf-8") as fp: json.dump(self.syllabus_dict_list, fp, ensure_ascii=False, indent=4) with open("./timetable/" + self.year + "/numbers.csv", "w", encoding="utf-8") as fp: fp.write(",".join(duplicate_check)) # READMEの書き換え date = datetime.datetime.now(datetime.timezone( datetime.timedelta(hours=+9))).strftime("%Y/%m/%d") with open("../README.md", "r", encoding="utf-8") as fp: s = re.sub("\d{4}/\d{2}/\d{2}", date, fp.read()) # 更新日の書き換え s = re.sub("<!-- エラー数=\d{1,4} -->", "<!-- エラー数=" + str(self.error) + " -->", s) # エラー数の書き換え with open("../README.md", "w", encoding="utf-8") as fp: fp.write(s) if __name__ == "__main__": parser = argparse.ArgumentParser() # parser.add_argument("--input", type=str, required=True, help="") # 入力ファイル名 # parser.add_argument("--output", type=str, required=True, help="") # 出力ファイル名 args = parser.parse_args() SyllabusTool().main(**vars(parser.parse_args()))
# Create a program that will play the 'cows and bulls' game with the user. The game works # like this: # # Randomly generate a 4-digit number. Ask the user to guess a 4-digit number. For every # digit that the user guessed correctly in the correct place, they have a 'cow'. For # every digit the user guessed correctly in the wrong place is a 'bull.' Every time the # user makes a guess, tell them how many 'cows' and 'bulls' they have. Once the user # guesses the correct number, the game is over. Keep track of the number of guesses the # user makes throughout the game and tell the user at the end. # # Say the number generated by the computer is 1038. An example interaction could look like # this: # # Welcome to the Cows and Bulls Game! # Enter a number: # >>> 1234 # 2 cows, 0 bulls # >>> 1256 # 1 cow, 1 bull # Until the user guesses the number. import random number = str(random.randint(1000,9999)) #random 4 digit number newlist = [] counter = 0 bulls = 0 item = 0 while True: user_input = raw_input("Enter a four digit number here: ") if user_input != number: for item in number: if item in number: if number[0] == user_input[0]: counter = counter + 1 if number[1] == user_input[1]: counter = counter + 1 if number[2] == user_input[2]: counter = counter + 1 if number[3] == user_input[3]: counter = counter + 1 if number[0] != user_input[0]: bulls = bulls + 1 if number[1] != user_input[1]: bulls = bulls + 1 if number[2] != user_input[2]: bulls = bulls + 1 if number[3] != user_input[3]: bulls = bulls + 1 if counter < 4 and bulls <= 4: print "You have", counter, "cow(s)" if counter < 4 and bulls <= 4: print "You have", bulls, "bull(s)" else: print print "Try again" break else: print "Congratulations, you guessed the number!" break
from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("zerver", "0098_index_has_alert_word_user_messages"), ] operations = [ migrations.RunSQL( """ CREATE INDEX IF NOT EXISTS zerver_usermessage_wildcard_mentioned_message_id ON zerver_usermessage (user_profile_id, message_id) WHERE (flags & 8) != 0 OR (flags & 16) != 0; """, reverse_sql="DROP INDEX zerver_usermessage_wildcard_mentioned_message_id;", ), ]
# -*- coding: utf-8 -*- """Test casts""" import pytest from pyrseas.testutils import DatabaseToMapTestCase from pyrseas.testutils import InputMapToSqlTestCase, fix_indent SOURCE = "SELECT CAST($1::int AS boolean)" CREATE_FUNC = "CREATE FUNCTION int2_bool(smallint) RETURNS boolean " \ "LANGUAGE sql IMMUTABLE AS $_$%s$_$" % SOURCE CREATE_DOMAIN = "CREATE DOMAIN d1 AS integer" CREATE_STMT1 = "CREATE CAST (smallint AS boolean) WITH FUNCTION " \ "int2_bool(smallint)" CREATE_STMT3 = "CREATE CAST (d1 AS integer) WITH INOUT AS IMPLICIT" DROP_STMT = "DROP CAST IF EXISTS (smallint AS boolean)" COMMENT_STMT = "COMMENT ON CAST (smallint AS boolean) IS 'Test cast 1'" class CastToMapTestCase(DatabaseToMapTestCase): """Test mapping of existing casts""" def test_map_cast_function(self): "Map a cast with a function" dbmap = self.to_map([CREATE_FUNC, CREATE_STMT1], superuser=True) expmap = {'function': 'int2_bool(smallint)', 'context': 'explicit', 'method': 'function'} assert dbmap['cast (smallint as boolean)'] == expmap def test_map_cast_inout(self): "Map a cast with INOUT" dbmap = self.to_map([CREATE_DOMAIN, CREATE_STMT3]) expmap = {'context': 'implicit', 'method': 'inout', 'depends_on': ['domain d1']} assert dbmap['cast (d1 as integer)'] == expmap def test_map_cast_comment(self): "Map a cast comment" dbmap = self.to_map([CREATE_FUNC, CREATE_STMT1, COMMENT_STMT], superuser=True) assert dbmap['cast (smallint as boolean)']['description'] == \ 'Test cast 1' class CastToSqlTestCase(InputMapToSqlTestCase): """Test SQL generation from input casts""" def test_create_cast_function(self): "Create a cast with a function" stmts = [DROP_STMT, CREATE_FUNC] inmap = self.std_map() inmap.update({'cast (smallint as boolean)': { 'function': 'int2_bool(smallint)', 'context': 'explicit', 'method': 'function'}}) sql = self.to_sql(inmap, stmts) # NOTE(David Chang): This is a hack to get this test to work. We reordered all drops to happen before any other statements because in theory you shouldn't be depending on a function that used to exist for your cast. If you need it, you need to have it defined in your db.yaml to use it (and thus won't be dropped). However, this test is odd in how it runs and I don't think you can hit this case in real usage assert sql[0] == "DROP FUNCTION int2_bool(smallint)" assert fix_indent(sql[1]) == CREATE_STMT1 def test_create_cast_inout(self): "Create a cast with INOUT" stmts = [CREATE_DOMAIN, "DROP CAST IF EXISTS (d1 AS integer)"] inmap = self.std_map() inmap.update({'cast (d1 as integer)': { 'context': 'implicit', 'method': 'inout'}}) inmap['schema public'].update({'domain d1': {'type': 'integer'}}) sql = self.to_sql(inmap, stmts) assert fix_indent(sql[0]) == CREATE_STMT3 def test_create_cast_schema(self): "Create a cast using a type/domain in a non-public schema" stmts = ["CREATE SCHEMA s1", "CREATE DOMAIN s1.d1 AS integer", "DROP CAST IF EXISTS (integer AS s1.d1)"] inmap = self.std_map() inmap.update({'cast (integer as s1.d1)': { 'context': 'assignment', 'method': 'binary coercible'}}) inmap.update({'schema s1': {'domain d1': {'type': 'integer'}}}) sql = self.to_sql(inmap, stmts) assert fix_indent(sql[0]) == "CREATE CAST (integer AS s1.d1) " \ "WITHOUT FUNCTION AS ASSIGNMENT" def test_bad_cast_map(self): "Error creating a cast with a bad map" inmap = self.std_map() inmap.update({'(smallint as boolean)': { 'function': 'int2_bool(smallint)', 'context': 'explicit', 'method': 'function'}}) with pytest.raises(KeyError): self.to_sql(inmap) def test_drop_cast(self): "Drop an existing cast" stmts = [DROP_STMT, CREATE_FUNC, CREATE_STMT1] sql = self.to_sql(self.std_map(), stmts, superuser=True) assert sql[0] == "DROP CAST (smallint AS boolean)" def test_cast_with_comment(self): "Create a cast with a comment" inmap = self.std_map() inmap.update({'cast (smallint as boolean)': { 'description': 'Test cast 1', 'function': 'int2_bool(smallint)', 'context': 'explicit', 'method': 'function'}}) inmap['schema public'].update({'function int2_bool(smallint)': { 'returns': 'boolean', 'language': 'sql', 'immutable': True, 'source': SOURCE}}) sql = self.to_sql(inmap, [DROP_STMT]) # sql[0:1] -> SET, CREATE FUNCTION assert fix_indent(sql[2]) == CREATE_STMT1 assert sql[3] == COMMENT_STMT def test_comment_on_cast(self): "Create a comment for an existing cast" stmts = [DROP_STMT, CREATE_FUNC, CREATE_STMT1] inmap = self.std_map() inmap.update({'cast (smallint as boolean)': { 'description': 'Test cast 1', 'function': 'int2_bool(smallint)', 'context': 'explicit', 'method': 'function'}}) inmap['schema public'].update({'function int2_bool(smallint)': { 'returns': 'boolean', 'language': 'sql', 'immutable': True, 'source': SOURCE}}) sql = self.to_sql(inmap, stmts, superuser=True) assert sql == [COMMENT_STMT] def test_drop_cast_comment(self): "Drop a comment on an existing cast" stmts = [DROP_STMT, CREATE_FUNC, CREATE_STMT1, COMMENT_STMT] inmap = self.std_map() inmap.update({'cast (smallint as boolean)': { 'function': 'int2_bool(smallint)', 'context': 'explicit', 'method': 'function'}}) inmap['schema public'].update({'function int2_bool(smallint)': { 'returns': 'boolean', 'language': 'sql', 'immutable': True, 'source': SOURCE}}) assert self.to_sql(inmap, stmts, superuser=True) == \ ["COMMENT ON CAST (smallint AS boolean) IS NULL"] def test_change_cast_comment(self): "Change existing comment on a cast" stmts = [DROP_STMT, CREATE_FUNC, CREATE_STMT1, COMMENT_STMT] inmap = self.std_map() inmap.update({'cast (smallint as boolean)': { 'description': 'Changed cast 1', 'function': 'int2_bool(smallint)', 'context': 'explicit', 'method': 'function'}}) inmap['schema public'].update({'function int2_bool(smallint)': { 'returns': 'boolean', 'language': 'sql', 'immutable': True, 'source': SOURCE}}) assert self.to_sql(inmap, stmts, superuser=True) == \ ["COMMENT ON CAST (smallint AS boolean) IS 'Changed cast 1'"] def test_cast_function_view_depends(self): "Cast that depends on a function that depends on a view. See #86" stmts = ["CREATE TABLE t1 (id integer)"] inmap = self.std_map() inmap.update({'cast (v1 as t1)': { 'context': 'explicit', 'function': 'v1_to_t1(v1)', 'method': 'function'}}) inmap['schema public'].update({ 'function v1_to_t1(v1)': {'returns': 't1', 'language': 'plpgsql', 'source': "\nDECLARE o t1;\nBEGIN o:= ROW($1.id)::t1;\n" \ "RETURN o;\nEND"}, 'table t1': {'columns': [{'id': {'type': 'integer'}}]}, 'view v1': {'definition': " SELECT t1.id\n FROM t1;", 'depends_on': ['table t1']}}) sql = self.to_sql(inmap, stmts) assert len(sql) == 3 assert fix_indent(sql[0]) == "CREATE VIEW v1 AS SELECT t1.id FROM t1" assert fix_indent(sql[1]) == "CREATE FUNCTION v1_to_t1(v1) " \ "RETURNS t1 LANGUAGE plpgsql AS $_$\nDECLARE o t1;\nBEGIN " \ "o:= ROW($1.id)::t1;\nRETURN o;\nEND$_$" assert fix_indent(sql[2]) == "CREATE CAST (v1 AS t1) WITH " \ "FUNCTION v1_to_t1(v1)"
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Enums used in contrastive learning code. They're only here, rather than next to the code that uses them, so that they can be used as hyperparameter values without pulling in heavy Tensorflow dependencies to the hyperparameter code. """ import enum @enum.unique class ModelMode(enum.Enum): TRAIN = 1 EVAL = 2 INFERENCE = 3 @enum.unique class AugmentationType(enum.Enum): """Valid augmentation types.""" # SimCLR augmentation (Chen et al, https://arxiv.org/abs/2002.05709). SIMCLR = 's' # AutoAugment augmentation (Cubuk et al, https://arxiv.org/abs/1805.09501). AUTOAUGMENT = 'a' # RandAugment augmentation (Cubuk et al, https://arxiv.org/abs/1909.13719). RANDAUGMENT = 'r' # SimCLR combined with RandAugment. STACKED_RANDAUGMENT = 'sr' # No augmentation. IDENTITY = 'i' @enum.unique class LossContrastMode(enum.Enum): ALL_VIEWS = 'a' # All views are contrasted against all other views. ONE_VIEW = 'o' # Only one view is contrasted against all other views. @enum.unique class LossSummationLocation(enum.Enum): OUTSIDE = 'o' # Summation location is outside of logarithm INSIDE = 'i' # Summation location is inside of logarithm @enum.unique class LossDenominatorMode(enum.Enum): ALL = 'a' # All negatives and all positives ONE_POSITIVE = 'o' # All negatives and one positive ONLY_NEGATIVES = 'n' # Only negatives @enum.unique class Optimizer(enum.Enum): RMSPROP = 'r' MOMENTUM = 'm' LARS = 'l' ADAM = 'a' NESTEROV = 'n' @enum.unique class EncoderArchitecture(enum.Enum): RESNET_V1 = 'r1' RESNEXT = 'rx' @enum.unique class DecayType(enum.Enum): COSINE = 'c' EXPONENTIAL = 'e' PIECEWISE_LINEAR = 'p' NO_DECAY = 'n' @enum.unique class EvalCropMethod(enum.Enum): """Methods of cropping eval images to the target dimensions.""" # Resize so that min image dimension is IMAGE_SIZE + CROP_PADDING, then crop # the central IMAGE_SIZExIMAGE_SIZE square. RESIZE_THEN_CROP = 'rc' # Crop a central square of side length # natural_image_min_dim * IMAGE_SIZE/(IMAGE_SIZE+CROP_PADDING), then resize to # IMAGE_SIZExIMAGE_SIZE. CROP_THEN_RESIZE = 'cr' # Crop the central IMAGE_SIZE/(IMAGE_SIZE+CROP_PADDING) pixels along each # dimension, preserving the natural image aspect ratio, then resize to # IMAGE_SIZExIMAGE_SIZE, which distorts the image. CROP_THEN_DISTORT = 'cd' # Do nothing. Requires that the input image is already the desired size. IDENTITY = 'i'
#!/usr/bin/env python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Implements a simple "negative compile" test for C++ on linux. Sometimes a C++ API needs to ensure that various usages cannot compile. To enable unittesting of these assertions, we use this python script to invoke gcc on a source file and assert that compilation fails. For more info, see: http://dev.chromium.org/developers/testing/no-compile-tests """ import StringIO import ast import os import re import select import subprocess import sys import time # Matches lines that start with #if and have the substring TEST in the # conditional. Also extracts the comment. This allows us to search for # lines like the following: # # #ifdef NCTEST_NAME_OF_TEST // [r'expected output'] # #if defined(NCTEST_NAME_OF_TEST) // [r'expected output'] # #if NCTEST_NAME_OF_TEST // [r'expected output'] # #elif NCTEST_NAME_OF_TEST // [r'expected output'] # #elif DISABLED_NCTEST_NAME_OF_TEST // [r'expected output'] # # inside the unittest file. NCTEST_CONFIG_RE = re.compile(r'^#(?:el)?if.*\s+(\S*NCTEST\S*)\s*(//.*)?') # Matches and removes the defined() preprocesor predicate. This is useful # for test cases that use the preprocessor if-statement form: # # #if defined(NCTEST_NAME_OF_TEST) # # Should be used to post-process the results found by NCTEST_CONFIG_RE. STRIP_DEFINED_RE = re.compile(r'defined\((.*)\)') # Used to grab the expectation from comment at the end of an #ifdef. See # NCTEST_CONFIG_RE's comment for examples of what the format should look like. # # The extracted substring should be a python array of regular expressions. EXTRACT_EXPECTATION_RE = re.compile(r'//\s*(\[.*\])') # The header for the result file so that it can be compiled. RESULT_FILE_HEADER = """ // This file is generated by the no compile test from: // %s #include "base/logging.h" #include "testing/gtest/include/gtest/gtest.h" """ # The log message on a test completion. LOG_TEMPLATE = """ TEST(%s, %s) took %f secs. Started at %f, ended at %f. """ # The GUnit test function to output for a successful or disabled test. GUNIT_TEMPLATE = """ TEST(%s, %s) { } """ # Timeout constants. NCTEST_TERMINATE_TIMEOUT_SEC = 60 NCTEST_KILL_TIMEOUT_SEC = NCTEST_TERMINATE_TIMEOUT_SEC + 2 BUSY_LOOP_MAX_TIME_SEC = NCTEST_KILL_TIMEOUT_SEC * 2 def ValidateInput(parallelism, sourcefile_path, cflags, resultfile_path): """Make sure the arguments being passed in are sane.""" assert parallelism >= 1 assert type(sourcefile_path) is str assert type(cflags) is list for flag in cflags: assert(type(flag) is str) assert type(resultfile_path) is str def ParseExpectation(expectation_string): """Extracts expectation definition from the trailing comment on the ifdef. See the comment on NCTEST_CONFIG_RE for examples of the format we are parsing. Args: expectation_string: A string like "// [r'some_regex']" Returns: A list of compiled regular expressions indicating all possible valid compiler outputs. If the list is empty, all outputs are considered valid. """ assert expectation_string is not None match = EXTRACT_EXPECTATION_RE.match(expectation_string) assert match raw_expectation = ast.literal_eval(match.group(1)) assert type(raw_expectation) is list expectation = [] for regex_str in raw_expectation: assert type(regex_str) is str expectation.append(re.compile(regex_str)) return expectation def ExtractTestConfigs(sourcefile_path, suite_name): """Parses the source file for test configurations. Each no-compile test in the file is separated by an ifdef macro. We scan the source file with the NCTEST_CONFIG_RE to find all ifdefs that look like they demark one no-compile test and try to extract the test configuration from that. Args: sourcefile_path: The path to the source file. suite_name: The name of the test suite. Returns: A list of test configurations. Each test configuration is a dictionary of the form: { name: 'NCTEST_NAME' suite_name: 'SOURCE_FILE_NAME' expectations: [re.Pattern, re.Pattern] } The |suite_name| is used to generate a pretty gtest output on successful completion of the no compile test. The compiled regexps in |expectations| define the valid outputs of the compiler. If any one of the listed patterns matches either the stderr or stdout from the compilation, and the compilation failed, then the test is considered to have succeeded. If the list is empty, than we ignore the compiler output and just check for failed compilation. If |expectations| is actually None, then this specifies a compiler sanity check test, which should expect a SUCCESSFUL compilation. """ sourcefile = open(sourcefile_path, 'r') # Start with at least the compiler sanity test. You need to always have one # sanity test to show that compiler flags and configuration are not just # wrong. Otherwise, having a misconfigured compiler, or an error in the # shared portions of the .nc file would cause all tests to erroneously pass. test_configs = [] for line in sourcefile: match_result = NCTEST_CONFIG_RE.match(line) if not match_result: continue groups = match_result.groups() # Grab the name and remove the defined() predicate if there is one. name = groups[0] strip_result = STRIP_DEFINED_RE.match(name) if strip_result: name = strip_result.group(1) # Read expectations if there are any. test_configs.append({'name': name, 'suite_name': suite_name, 'expectations': ParseExpectation(groups[1])}) sourcefile.close() return test_configs def StartTest(sourcefile_path, cflags, config): """Start one negative compile test. Args: sourcefile_path: The path to the source file. cflags: An array of strings with all the CFLAGS to give to gcc. config: A dictionary describing the test. See ExtractTestConfigs for a description of the config format. Returns: A dictionary containing all the information about the started test. The fields in the dictionary are as follows: { 'proc': A subprocess object representing the compiler run. 'cmdline': The executed command line. 'name': The name of the test. 'suite_name': The suite name to use when generating the gunit test result. 'terminate_timeout': The timestamp in seconds since the epoch after which the test should be terminated. 'kill_timeout': The timestamp in seconds since the epoch after which the test should be given a hard kill signal. 'started_at': A timestamp in seconds since the epoch for when this test was started. 'aborted_at': A timestamp in seconds since the epoch for when this test was aborted. If the test completed successfully, this value is 0. 'finished_at': A timestamp in seconds since the epoch for when this test was successfully complete. If the test is aborted, or running, this value is 0. 'expectations': A dictionary with the test expectations. See ParseExpectation() for the structure. } """ # TODO(ajwong): Get the compiler from gyp. cmdline = [os.path.join(os.path.dirname(os.path.realpath(__file__)), '../third_party/llvm-build/Release+Asserts/bin', 'clang++')] cmdline.extend(cflags) name = config['name'] expectations = config['expectations'] if expectations is not None: cmdline.append('-D%s' % name) cmdline.extend(['-o', '/dev/null', '-c', '-x', 'c++', sourcefile_path]) process = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE) now = time.time() return {'proc': process, 'cmdline': ' '.join(cmdline), 'name': name, 'suite_name': config['suite_name'], 'terminate_timeout': now + NCTEST_TERMINATE_TIMEOUT_SEC, 'kill_timeout': now + NCTEST_KILL_TIMEOUT_SEC, 'started_at': now, 'aborted_at': 0, 'finished_at': 0, 'expectations': expectations} def PassTest(resultfile, resultlog, test): """Logs the result of a test started by StartTest(), or a disabled test configuration. Args: resultfile: File object for .cc file that results are written to. resultlog: File object for the log file. test: An instance of the dictionary returned by StartTest(), a configuration from ExtractTestConfigs(). """ resultfile.write(GUNIT_TEMPLATE % ( test['suite_name'], test['name'])) # The 'started_at' key is only added if a test has been started. if 'started_at' in test: resultlog.write(LOG_TEMPLATE % ( test['suite_name'], test['name'], test['finished_at'] - test['started_at'], test['started_at'], test['finished_at'])) def FailTest(resultfile, test, error, stdout=None, stderr=None): """Logs the result of a test started by StartTest() Args: resultfile: File object for .cc file that results are written to. test: An instance of the dictionary returned by StartTest() error: The printable reason for the failure. stdout: The test's output to stdout. stderr: The test's output to stderr. """ resultfile.write('#error "%s Failed: %s"\n' % (test['name'], error)) resultfile.write('#error "compile line: %s"\n' % test['cmdline']) if stdout and len(stdout) != 0: resultfile.write('#error "%s stdout:"\n' % test['name']) for line in stdout.split('\n'): resultfile.write('#error " %s:"\n' % line) if stderr and len(stderr) != 0: resultfile.write('#error "%s stderr:"\n' % test['name']) for line in stderr.split('\n'): resultfile.write('#error " %s"\n' % line) resultfile.write('\n') def WriteStats(resultlog, suite_name, timings): """Logs the peformance timings for each stage of the script. Args: resultlog: File object for the log file. suite_name: The name of the GUnit suite this test belongs to. timings: Dictionary with timestamps for each stage of the script run. """ stats_template = """ TEST(%s): Started %f, Ended %f, Total %fs, Extract %fs, Compile %fs, Process %fs """ total_secs = timings['results_processed'] - timings['started'] extract_secs = timings['extract_done'] - timings['started'] compile_secs = timings['compile_done'] - timings['extract_done'] process_secs = timings['results_processed'] - timings['compile_done'] resultlog.write(stats_template % ( suite_name, timings['started'], timings['results_processed'], total_secs, extract_secs, compile_secs, process_secs)) def ProcessTestResult(resultfile, resultlog, test): """Interprets and logs the result of a test started by StartTest() Args: resultfile: File object for .cc file that results are written to. resultlog: File object for the log file. test: The dictionary from StartTest() to process. """ # Snap a copy of stdout and stderr into the test dictionary immediately # cause we can only call this once on the Popen object, and lots of stuff # below will want access to it. proc = test['proc'] (stdout, stderr) = proc.communicate() if test['aborted_at'] != 0: FailTest(resultfile, test, "Compile timed out. Started %f ended %f." % (test['started_at'], test['aborted_at'])) return if proc.poll() == 0: # Handle failure due to successful compile. FailTest(resultfile, test, 'Unexpected successful compilation.', stdout, stderr) return else: # Check the output has the right expectations. If there are no # expectations, then we just consider the output "matched" by default. if len(test['expectations']) == 0: PassTest(resultfile, resultlog, test) return # Otherwise test against all expectations. for regexp in test['expectations']: if (regexp.search(stdout) is not None or regexp.search(stderr) is not None): PassTest(resultfile, resultlog, test) return expectation_str = ', '.join( ["r'%s'" % regexp.pattern for regexp in test['expectations']]) FailTest(resultfile, test, 'Expectations [%s] did not match output.' % expectation_str, stdout, stderr) return def CompleteAtLeastOneTest(executing_tests): """Blocks until at least one task is removed from executing_tests. This function removes completed tests from executing_tests, logging failures and output. If no tests can be removed, it will enter a poll-loop until one test finishes or times out. On a timeout, this function is responsible for terminating the process in the appropriate fashion. Args: executing_tests: A dict mapping a string containing the test name to the test dict return from StartTest(). Returns: A list of tests that have finished. """ finished_tests = [] busy_loop_timeout = time.time() + BUSY_LOOP_MAX_TIME_SEC while len(finished_tests) == 0: # If we don't make progress for too long, assume the code is just dead. assert busy_loop_timeout > time.time() # Select on the output pipes. read_set = [] for test in executing_tests.values(): read_set.extend([test['proc'].stderr, test['proc'].stdout]) select.select(read_set, [], read_set, NCTEST_TERMINATE_TIMEOUT_SEC) # Now attempt to process results. now = time.time() for test in executing_tests.values(): proc = test['proc'] if proc.poll() is not None: test['finished_at'] = now finished_tests.append(test) elif test['terminate_timeout'] < now: proc.terminate() test['aborted_at'] = now elif test['kill_timeout'] < now: proc.kill() test['aborted_at'] = now for test in finished_tests: del executing_tests[test['name']] return finished_tests def main(): if len(sys.argv) < 5 or sys.argv[4] != '--': print ('Usage: %s <parallelism> <sourcefile> <resultfile> -- <cflags...>' % sys.argv[0]) sys.exit(1) # Force us into the "C" locale so the compiler doesn't localize its output. # In particular, this stops gcc from using smart quotes when in english UTF-8 # locales. This makes the expectation writing much easier. os.environ['LC_ALL'] = 'C' parallelism = int(sys.argv[1]) sourcefile_path = sys.argv[2] resultfile_path = sys.argv[3] cflags = sys.argv[5:] timings = {'started': time.time()} ValidateInput(parallelism, sourcefile_path, cflags, resultfile_path) # Convert filename from underscores to CamelCase. words = os.path.splitext(os.path.basename(sourcefile_path))[0].split('_') words = [w.capitalize() for w in words] suite_name = 'NoCompile' + ''.join(words) test_configs = ExtractTestConfigs(sourcefile_path, suite_name) timings['extract_done'] = time.time() resultfile = StringIO.StringIO() resultlog = StringIO.StringIO() resultfile.write(RESULT_FILE_HEADER % sourcefile_path) # Run the no-compile tests, but ensure we do not run more than |parallelism| # tests at once. timings['header_written'] = time.time() executing_tests = {} finished_tests = [] cflags.extend(['-MMD', '-MF', resultfile_path + '.d', '-MT', resultfile_path]) test = StartTest( sourcefile_path, cflags, { 'name': 'NCTEST_SANITY', 'suite_name': suite_name, 'expectations': None, }) executing_tests[test['name']] = test for config in test_configs: # CompleteAtLeastOneTest blocks until at least one test finishes. Thus, this # acts as a semaphore. We cannot use threads + a real semaphore because # subprocess forks, which can cause all sorts of hilarity with threads. if len(executing_tests) >= parallelism: finished_tests.extend(CompleteAtLeastOneTest(executing_tests)) if config['name'].startswith('DISABLED_'): PassTest(resultfile, resultlog, config) else: test = StartTest(sourcefile_path, cflags, config) assert test['name'] not in executing_tests executing_tests[test['name']] = test # If there are no more test to start, we still need to drain the running # ones. while len(executing_tests) > 0: finished_tests.extend(CompleteAtLeastOneTest(executing_tests)) timings['compile_done'] = time.time() finished_tests = sorted(finished_tests, key=lambda test: test['name']) for test in finished_tests: if test['name'] == 'NCTEST_SANITY': _, stderr = test['proc'].communicate() return_code = test['proc'].poll() if return_code != 0: sys.stderr.write(stderr) continue ProcessTestResult(resultfile, resultlog, test) timings['results_processed'] = time.time() WriteStats(resultlog, suite_name, timings) with open(resultfile_path + '.log', 'w') as fd: fd.write(resultlog.getvalue()) if return_code == 0: with open(resultfile_path, 'w') as fd: fd.write(resultfile.getvalue()) resultfile.close() sys.exit(return_code) if __name__ == '__main__': main()
''' Example usage: python demo.py \ --input_model=YOUR_MODEL_PATH \ --input_video=YOUR_VIDEO_PATH ''' import cv2 import numpy as np import os import sys import tensorflow as tf from samples import gesture from mrcnn import utils from mrcnn import model as modellib flags = tf.app.flags flags.DEFINE_string('input_model', 'mask_rcnn_gesture_0001.h5', 'Input model to test') flags.DEFINE_string('input_video', 'test.avi', 'Input video to test') FLAGS = flags.FLAGS ROOT_DIR = os.getcwd() MODEL_DIR = os.path.join(ROOT_DIR, "logs") GESTURE_MODEL_PATH = os.path.join(ROOT_DIR, FLAGS.input_model) class InferenceConfig(gesture.GestureConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config ) model.load_weights(GESTURE_MODEL_PATH, by_name=True) class_names = ['BG', 'flip', 'flop' ] def random_colors(N): np.random.seed(1) colors = [tuple(255 * np.random.rand(3)) for _ in range(N)] return colors colors = random_colors(len(class_names)) class_dict = {name: color for name, color in zip(class_names, colors)} def apply_mask(image, mask, color, alpha=0.5): """apply mask to image""" for n, c in enumerate(color): image[:, :, n] = np.where( mask == 1, image[:, :, n] * (1 - alpha) + alpha * c, image[:, :, n] ) return image def display_instances(image, boxes, masks, ids, names, scores): """ take the image and results and apply the mask, box, and Label """ n_instances = boxes.shape[0] if not n_instances: print('NO INSTANCES TO DISPLAY') else: assert boxes.shape[0] == masks.shape[-1] == ids.shape[0] for i in range(n_instances): if not np.any(boxes[i]): continue y1, x1, y2, x2 = boxes[i] label = names[ids[i]] print(label) color = class_dict[label] score = scores[i] if scores is not None else None caption = '{} {:.2f}'.format(label, score) if score else label mask = masks[:, :, i] image = apply_mask(image, mask, color) image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) image = cv2.putText( image, caption, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, color, 2 ) return image if __name__ == '__main__': """ test everything """ capture = cv2.VideoCapture(FLAGS.input_video) # these 2 lines can be removed if you dont have a 1080p camera. # capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) # capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) # Recording Video fps = 15.0 width = int(capture.get(3)) height = int(capture.get(4)) fcc = cv2.VideoWriter_fourcc('D', 'I', 'V', 'X') out = cv2.VideoWriter("recording_video.avi", fcc, fps, (width, height)) while True: ret, frame = capture.read() results = model.detect([frame], verbose=0) r = results[0] frame = display_instances( frame, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'] ) cv2.imshow('frame', frame) # Recording Video out.write(frame) if cv2.waitKey(1) & 0xFF == ord('q'): break capture.release() cv2.destroyAllWindows()
""" This module contains a number of other commands that can be run via the cli. All classes in this submodule which inherit the baseclass `airbox.commands.base.Command` are automatically included in the possible commands to execute via the commandline. The commands can be called using their `name` property. """ from logging import getLogger from .backup import BackupCommand from .backup_sync import BackupSyncCommand from .basic_plot import BasicPlotCommand from .create_mounts import CreateMountsCommand from .install import InstallCommand from .print_fstab import PrintFstabCommand from .run_schedule import RunScheduleCommand from .spectronus_subset import SpectronusSubsetCommand from .subset import SubsetCommand logger = getLogger(__name__) # Commands are registered below _commands = [ BackupCommand(), BackupSyncCommand(), BasicPlotCommand(), CreateMountsCommand(), InstallCommand(), PrintFstabCommand(), RunScheduleCommand(), SpectronusSubsetCommand(), SubsetCommand() ] def find_commands(): """ Finds all the Commands in this package :return: List of Classes within """ # TODO: Make this actually do that. For now commands are manually registered pass def initialise_commands(parser): """ Initialise the parser with the commandline arguments for each parser :param parser: :return: """ find_commands() for c in _commands: p = parser.add_parser(c.name, help=c.help) c.initialise_parser(p) def run_command(cmd_name): """ Attempts to run a command :param config: Configuration data """ for c in _commands: if cmd_name == c.name: return c.run()
from urllib.parse import urlparse from typing import List import torch import numpy as np class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def log_success(msg: str): print(f'{bcolors.OKGREEN}SUCCESS:\t{bcolors.ENDC}{msg}') def log_fail(msg: str): print(f'{bcolors.FAIL}FAILURE:\t{bcolors.ENDC}{msg}') def tensor_to_tuple_list(tensor: torch.Tensor): """Converts a tensor of shape [[x], [y]] in an array of tuples of shape [(x, y)]. """ assert len(tensor.shape) == 2, \ "The tensor should be of shape (n, n)" edges = [(int(edge[0]), int(edge[1])) \ for edge in zip(tensor[0], tensor[1])] return edges def extract_domain_name(url: str): """Returns only the domain part of an url. """ url = '{}://{}'.format(urlparse(url).scheme, urlparse(url).netloc) i = 1 if url.find('www.') != -1 else 0 url = urlparse(url) return '.'.join(url.hostname.split('.')[i:]) def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text def normalize_www_prefix(url: str): is_https = url.startswith('https://') url = remove_prefix(url, 'https://') url = remove_prefix(url, 'http://') url = remove_prefix(url, 'www.') return f'http{"s" if is_https else ""}://www.{url}' def mean_std_error(vals: List): mean = np.mean(vals) std = np.std(vals) std_error = std / np.sqrt(len(vals)) return mean, std_error
import time import concurrent.futures def sleep_func(how_long: int): print(f'Sleeping for {how_long} seconds') time.sleep(how_long) return f'Finished sleeping for {how_long} seconds.' if __name__ == '__main__': time_start = time.time() sleep_seconds = [1, 2, 3, 1, 2, 3] with concurrent.futures.ProcessPoolExecutor() as ppe: out = [] for sleep_second in sleep_seconds: out.append(ppe.submit(sleep_func, sleep_second)) for curr in concurrent.futures.as_completed(out): print(curr.result()) time_stop = time.time() print(f'Took {round(time_stop - time_start, 2)} seconds to execute!')
import numpy as np import pandas as pd import argparse import os from pandas.tseries.holiday import USFederalHolidayCalendar as calendar def prepare_data(data_path): """Returns dataframe with features.""" # Get data df = pd.read_csv(data_path) # Remove NaNs df = df.dropna() # Convert date to datetime df['date'] = pd.to_datetime(df.date) # Create and age variable df['age'] = df.index.astype('int') # Create a day of week field df['day'] = df.date.dt.dayofweek # Create a month of year field df['month'] = df.date.dt.month # Create a boolean for US federal holidays holidays = calendar().holidays(start=df.date.min(), end=df.date.max()) df['holiday'] = df['date'].isin(holidays).apply(int) # Rearrange columns df = df[ [ 'date', 'count', 'age', 'month', 'day', 'holiday' ] ] # Create monthly dummies tmp = pd.get_dummies(df.month) tmp.columns = ['month' + str(value) for value in tmp.columns] df = pd.concat([df, tmp], axis=1) # Create daily dummies tmp = pd.get_dummies(df.day) tmp.columns = ['day' + str(value) for value in tmp.columns] df = pd.concat([df, tmp], axis=1) # Reset index df = df.reset_index(drop=True) # Log transform count data df['count'] = np.log1p(df['count']) # Drop unnecessary columns df = df.drop(['month', 'day', 'age'], axis=1) df = df.dropna() return df def run(): parser = argparse.ArgumentParser(description='Prepare data') parser.add_argument('--data_path', default='raw/github_dau_2011-2018.csv') parser.add_argument('--output_path', default='processed/github_dau_2011-2018.pkl') args = parser.parse_args() # Get the data df = prepare_data(args.data_path) # Store data path = os.path.dirname(args.output_path) if not os.path.exists(path): os.makedirs(path) df.to_pickle(args.output_path, protocol=4) if __name__ == '__main__': run()
import urllib.parse import xmatters.auth import xmatters.connection import xmatters.endpoints import xmatters.errors class XMSession(object): """ Starting class used to interact with xMatters API. :param str xm_url: Name of xMatters instance, xMatters instance url, or xMatters instance API base url :type base_url: str :keyword timeout: timeout (in seconds) for requests. Defaults to 5. :type timeout: int :keyword max_retries: maximum number of request retries to attempt. Defaults to 3. :type max_retries: int """ _endpoints = {'attachments': xmatters.endpoints.AttachmentsEndpoint, 'audits': xmatters.endpoints.AuditsEndpoint, 'conference-bridges': xmatters.endpoints.ConferenceBridgesEndpoint, 'device-names': xmatters.endpoints.DeviceNamesEndpoint, 'device-types': xmatters.endpoints.DeviceTypesEndpoint, 'devices': xmatters.endpoints.DevicesEndpoint, 'dynamic-teams': xmatters.endpoints.DynamicTeamsEndpoint, 'events': xmatters.endpoints.EventsEndpoint, 'forms': xmatters.endpoints.FormsEndpoint, 'imports': xmatters.endpoints.ImportsEndpoint, 'groups': xmatters.endpoints.GroupsEndpoint, 'incident': xmatters.endpoints.IncidentsEndpoint, 'on-call': xmatters.endpoints.OnCallEndpoint, 'on-call-summary': xmatters.endpoints.OnCallSummaryEndpoint, 'people': xmatters.endpoints.PeopleEndpoint, 'plans': xmatters.endpoints.PlansEndpoint, 'roles': xmatters.endpoints.RolesEndpoint, 'scenarios': xmatters.endpoints.ScenariosEndpoint, 'services': xmatters.endpoints.ServicesEndpoint, 'sites': xmatters.endpoints.SitesEndpoint, 'subscriptions': xmatters.endpoints.SubscriptionsEndpoint, 'subscription-forms': xmatters.endpoints.SubscriptionFormsEndpoint, 'temporary-absences': xmatters.endpoints.TemporaryAbsencesEndpoint} def __init__(self, xm_url, **kwargs): p_url = urllib.parse.urlparse(xm_url) if '.' not in xm_url: instance_url = 'https://{}.xmatters.com'.format(p_url.path) else: instance_url = 'https://{}'.format(p_url.netloc) if p_url.netloc else 'https://{}'.format(p_url.path) self._api_base_url = '{}/api/xm/1'.format(instance_url) self.con = None self._kwargs = kwargs def set_authentication(self, username=None, password=None, client_id=None, **kwargs): """ | Set the authentication method when interacting with the API. | OAuth2 authentication is used if a client_id is provided; otherwise basic authentication is used. :param username: xMatters username :type username: str :param password: xMatters password :type password: str :param client_id: xMatters instance client id :type client_id: str :keyword token: token object :type token: dict :keyword refresh_token: refresh token :type refresh_token: str :keyword token_storage: Class instance used to store token. Any class instance should work as long is it has :meth:`read_token` and :meth:`write_token` methods. :type token_storage: class :return: self :rtype: :class:`~xmatters.session.XMSession` """ # add init kwargs inorder to pass to Connection init kwargs.update(self._kwargs) if client_id: self.con = xmatters.auth.OAuth2Auth(self._api_base_url, client_id, username, password, **kwargs) elif None not in (username, password): self.con = xmatters.auth.BasicAuth(self._api_base_url, username, password, **kwargs) else: raise xmatters.errors.AuthorizationError('unable to determine authentication method') # return self so method can be chained return self def get_endpoint(self, endpoint): """ Get top-level endpoint. :param endpoint: top-level endpoint :type endpoint: str :return: Endpoint object :rtype: object Example: .. code-block:: python from xmatters import XMSession xm = XMSession('my-instance') xm.set_authentication(username='my-username', password='my-password') people_endpoint = xm.get_endpoint('people') """ endpoint_object = self._endpoints.get(endpoint.strip('/')) if not endpoint_object: raise NotImplementedError('{} endpoint is not implemented'.format(endpoint)) return endpoint_object(self) def attachments_endpoint(self): """ Get the '/attachments' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.AttachmentsEndpoint` """ return xmatters.endpoints.AttachmentsEndpoint(self) def audits_endpoint(self): """ Get the '/audits' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.AuditsEndpoint` """ return xmatters.endpoints.AuditsEndpoint(self) def conference_bridges_endpoint(self): """ Get the '/conference-bridges' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.ConferenceBridgesEndpoint` """ return xmatters.endpoints.ConferenceBridgesEndpoint(self) def device_names_endpoint(self): """ Get the '/device-names' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.DeviceNamesEndpoint` """ return xmatters.endpoints.DeviceNamesEndpoint(self) def device_types_endpoint(self): """ Get the '/device-types' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.DeviceTypesEndpoint` """ return xmatters.endpoints.DeviceTypesEndpoint(self) def devices_endpoint(self): """ Get the '/device' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.DevicesEndpoint` """ return xmatters.endpoints.DevicesEndpoint(self) def dynamic_teams_endpoint(self): """ Get the '/dynamic-teams' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.DynamicTeamsEndpoint` """ return xmatters.endpoints.DynamicTeamsEndpoint(self) def events_endpoint(self): """ Get the '/events' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.EventsEndpoint` """ return xmatters.endpoints.EventsEndpoint(self) def event_suppressions_endpoint(self): """ Get the '/event-suppressions' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.EventSuppressionsEndpoint` """ return xmatters.endpoints.EventSuppressionsEndpoint(self) def forms_endpoint(self): """ Get the '/forms' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.FormsEndpoint` """ return xmatters.endpoints.FormsEndpoint(self) def imports_endpoint(self): """ Get the '/imports' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.ImportsEndpoint` """ return xmatters.endpoints.ImportsEndpoint(self) def groups_endpoint(self): """ Get the '/groups' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.GroupsEndpoint` """ return xmatters.endpoints.GroupsEndpoint(self) def incidents_endpoint(self): """ Get the '/incidents' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.IncidentsEndpoint` """ return xmatters.endpoints.IncidentsEndpoint(self) def oncall_endpoint(self): """ Get the '/on-call' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.OnCallEndpoint` """ return xmatters.endpoints.OnCallEndpoint(self) def oncall_summary_endpoint(self): """ Get the '/on-call-summary' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.OnCallSummaryEndpoint` """ return xmatters.endpoints.OnCallSummaryEndpoint(self) def people_endpoint(self): """ Get the '/people' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.PeopleEndpoint` """ return xmatters.endpoints.PeopleEndpoint(self) def plans_endpoint(self): """ Get the '/plans' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.PlansEndpoint` """ return xmatters.endpoints.PlansEndpoint(self) def roles_endpoint(self): """ Get the '/roles' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.RolesEndpoint` """ return xmatters.endpoints.RolesEndpoint(self) def scenarios_endpoint(self): """ Get the '/scenarios' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.ScenariosEndpoint` """ return xmatters.endpoints.ScenariosEndpoint(self) def services_endpoint(self): """ Get the '/services' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.ServicesEndpoint` """ return xmatters.endpoints.ServicesEndpoint(self) def sites_endpoint(self): """ Get the '/sites' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.SitesEndpoint` """ return xmatters.endpoints.SitesEndpoint(self) def subscriptions_endpoint(self): """ Get the '/subscriptions' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.SubscriptionsEndpoint` """ return xmatters.endpoints.SubscriptionsEndpoint(self) def subscription_forms_endpoint(self): """ Get the '/subscription-forms' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.SubscriptionFormsEndpoint` """ return xmatters.endpoints.SubscriptionFormsEndpoint(self) def temporary_absences_endpoint(self): """ Get the '/temporary-absences' top-level endpoint. :return: Endpoint :rtype: :class:`~xmatters.endpoints.TemporaryAbsencesEndpoint` """ return xmatters.endpoints.TemporaryAbsencesEndpoint(self) def __repr__(self): return '<{}>'.format(self.__class__.__name__) def __str__(self): return self.__repr__()
from typeguard.importhook import install_import_hook def pytest_sessionstart(session): install_import_hook(packages=["cumulusci"])
from typing import Dict, Any from uyaml.loader import Yaml from badoo.connections.web import BrowserSettings class Credentials: """The class represents a credentials as an object.""" def __init__(self, username: str, password: str) -> None: self._username: str = username self._password: str = password def __str__(self): return f'{self.__class__.__name__}' \ f'[user = "{self.username}"; pass = "{self.password}]"' @property def username(self) -> str: """Return a user name.""" return self._username @property def password(self) -> str: """Return a password.""" return self._password class _Browser(BrowserSettings): """Represents browser settings defined in setup file.""" def __init__(self, data: Dict[str, Any]) -> None: self._data: Dict[str, Any] = data def grid_url(self) -> str: return self._data["grid-url"] def proxy(self) -> str: return self._data["proxy"] class _Badoo: """Represents badoo settings defined in setup file.""" def __init__(self, data: Dict[str, Any]) -> None: self._data: Dict[str, Any] = data def credentials(self) -> Credentials: return Credentials( self._data["credentials"]["login"], self._data["credentials"]["password"], ) def likes(self) -> int: return self._data["likes"] def intro_message(self) -> str: return self._data["intro-massage"] class Setup: def __init__(self, yaml: Yaml) -> None: self._data: Dict[str, Any] = yaml.section(name="setup") def browser(self) -> BrowserSettings: return _Browser(self._data["browser"]) def badoo(self) -> _Badoo: return _Badoo(self._data["badoo"])
#!/usr/bin/env python r""" 1. filter CTOI and save CTOI list as .txt file 2. create a batch file to run mirai (see `make_batch_mirai.sh`) 3. execute batch file using parallel WATCH OUT: ctoi heading has inconsistent capitalization err vs Err vs unit with no parentheses etc """ from os import path import argparse # import numpy as np import astropy.units as u from astropy.coordinates import SkyCoord import pandas as pd pd.options.display.float_format = "{:.2f}".format from mirai.mirai import ( get_ctois, get_between_limits, get_above_lower_limit, get_below_upper_limit, ) arg = argparse.ArgumentParser() arg.add_argument( "-o", "--outdir", help="output directory", type=str, default="." ) arg.add_argument( "-sig", "--sigma", help="strict=1 (default); conservative=3", default=1 ) arg.add_argument( "-f", "--frac_error", help="allowed fractional error in parameter", default=None, type=float, ) arg.add_argument( "-s", "--save", help="save visibility plots and transit predictions in a csv file", action="store_true", default=False, ) args = arg.parse_args() sigma = args.sigma output_colums = "CTOI,Period (days),Radius (R_Earth),Depth ppm".split(",") # fetch toi table from exofop tess ctois = get_ctois(remove_FP=True, clobber=False, verbose=False) Rp = ctois["Radius (R_Earth)"] Rp_err = ctois["Radius (R_Earth) Error"] Porb = ctois["Period (days)"] Porb_err = ctois["Period (days) Error"] depth = ctois["Depth ppm"] depth_err = ctois["Depth ppm Error"] if args.frac_error: idx1 = (Rp_err / Rp) < args.frac_error idx2 = (Porb_err / Porb) < args.frac_error idx3 = (depth_err / depth) < args.frac_error ctois = ctois[idx1 & idx2 & idx3] Rp = ctois["Radius (R_Earth)"] Rp_err = ctois["Radius (R_Earth) Error"] Porb = ctois["Period (days)"] Porb_err = ctois["Period (days) Error"] Rstar = ctois["Stellar Radius (R_Sun)"] Rstar_err = ctois["Stellar Radius (R_Sun) err"] teff = ctois["Stellar Eff Temp (K)"] Teq = ctois["Equilibrium Temp (K)"] depth = ctois["Depth ppm"] depth_err = ctois["Depth ppm Error"] Tmag = ctois["TESS Mag"] Tmag_err = ctois["TESS Mag err"] distance = ctois["Stellar Distance (pc)"] # tois["Stellar log(g) (cm/s^2)"] # ---define filters---# # transit deep = get_above_lower_limit(5, depth, depth_err, sigma=sigma) # 1ppt # site-specific north = ctois["Dec"] > -30 south = ctois["Dec"] < 30 # star bright = get_below_upper_limit(11, Tmag, Tmag_err, sigma=sigma) # planet # size # orbit # special ## combine filters by uncommenting lines idx = ( (Porb > 0) # makes sure no Nan in period # & (Rp>0) #makes sure no Nan in radius # ---telescope---# # & north # & south # ---transit---# & deep # ---star---# # & nearby & bright # & cool # & dwarf # & hot # & giant # & sunlike # & nearby # & young # ---planet---# # & temperate # & tropical # & warm # & small # & subearth # & superearth # & earth # & subneptune # & neptune # & subsaturn # & saturn # & jupiter # & inflated # & large # ---orbit---# # & short # & medium # & long # ---special---# # & usp # & hotjup # & tropical & subneptune # & tropical & subsaturn # & tropical & jupiter # & reinflated # & radius_gap ) filename_header = "all" if args.save: # just save list of ctoi fp = path.join(args.outdir, filename_header + "_ctois.txt") ctois.loc[idx, "CTOI"].to_csv(fp, index=False, header=None) print(f"Saved: {fp}") else: print(ctois.loc[idx, output_colums].to_string(index=False))