content
stringlengths
5
1.05M
#!/usr/bin/env python2.7 """ Check the .lib file for an SRAM """ import unittest from testutils import header,openram_test import sys,os,re sys.path.append(os.path.join(sys.path[0],"..")) import globals from globals import OPTS import debug class lib_test(openram_test): def runTest(self): globals.init_openram("config_20_{0}".format(OPTS.tech_name)) OPTS.check_lvsdrc = False import sram from characterizer import lib debug.info(1, "Testing timing for sample 2 bit, 16 words SRAM with 1 bank") s = sram.sram(word_size=2, num_words=16, num_banks=1, name="sram_2_16_1_{0}".format(OPTS.tech_name)) OPTS.check_lvsdrc = True tempspice = OPTS.openram_temp + "temp.sp" s.sp_write(tempspice) lib.lib(out_dir=OPTS.openram_temp, sram=s, sp_file=tempspice, use_model=True) # get all of the .lib files generated files = os.listdir(OPTS.openram_temp) nametest = re.compile("\.lib$", re.IGNORECASE) lib_files = filter(nametest.search, files) # and compare them with the golden model for filename in lib_files: newname = filename.replace(".lib","_analytical.lib") libname = "{0}/{1}".format(OPTS.openram_temp,filename) golden = "{0}/golden/{1}".format(os.path.dirname(os.path.realpath(__file__)),newname) self.isapproxdiff(libname,golden,0.15) globals.end_openram() # instantiate a copdsay of the class to actually run the test if __name__ == "__main__": (OPTS, args) = globals.parse_args() del sys.argv[1:] header(__file__, OPTS.tech_name) unittest.main()
import pytest # module-level parameterization pytestmark = pytest.mark.parametrize('x', [(1,), (1.0,), (1+0j,)]) def test_param_13(x): assert x == 1 class TestParamAll(object): def test_param_13(self, x): assert x == 1 def test_spam_13(self, x): assert x == 1
from itertools import count from math import sqrt def counting_rectangles(target): """ Returns the area of the rectangular grid with the nearest to target number of rectangles. """ mindiff = target bestarea = 0 def rectangles(n, m): return int((n**2 + n) * (m**2 + m) / 4) for i in count(1): for j in count(int(sqrt(4*target/(i**2 + i)))): r = rectangles(i, j) if abs(target - r) < mindiff: mindiff = abs(target - r) bestarea = i * j if r > target: break if i**2 + i > target / 2: break return bestarea def solve(vol=0): return counting_rectangles(2000000)
from abc import ABC from requests.auth import AuthBase, HTTPBasicAuth, HTTPDigestAuth class RegistryAuthBase(AuthBase, ABC): """Base class that all RegistryAuth drives from""" class RegistryHTTPBasicAuth(RegistryAuthBase, HTTPBasicAuth): """Implements HTTP Basic Authentication""" class RegistryHTTPDigestAuth(RegistryAuthBase, HTTPDigestAuth): """Implements HTTP Digest Authentication"""
import os import numpy as np import pytest from config.stage import ConfigStage from extract.stage import ExtractStage from preprocess.stage import PreprocessStage @pytest.mark.parametrize("action", ['train']) def test_extract_stage(action): path = os.path.abspath(os.path.join(__file__, "../../..", 'resources/config.json')) config = ConfigStage().run(path) images, labels = ExtractStage().run(config, action) images, labels = PreprocessStage().run(images, labels, config, action) assert isinstance(images, np.ndarray) assert isinstance(labels, np.ndarray)
# Conway's game of life import random, time, copy WIDTH = 60 HEIGHT = 20 #Create a list of list for the cells. nextCells = [] for x in range(WIDTH): column = [] for y in range(HEIGHT): if random.randint(0,1) == 0: column.append('#') #creates a living cell else: column.append(' ') #adds a dead cell nextCells.append(column) #next cells is a list of column lists. while True: # Main program loop print('\n\n\n\n\n') # Separate each step with new lines. currentCells = copy.deepcopy(nextCells) #print currentCells on the screen. for y in range(HEIGHT): for x in range(WIDTH): print(currentCells[x][y], end='') #prints the # or space print() #print a newline at the end of the row. #Calculate the next step's cells based on current step's cells. for x in range(WIDTH): for y in range(HEIGHT): #get neighboring coordinates # `% WIDTH` ensures lefCoord is always between 0 and WIDTH -1 leftCoord = (x - 1) % WIDTH rightCoord = (x + 1) % WIDTH aboveCoord = (y - 1) % HEIGHT belowCoor = (y + 1) % HEIGHT #Count numebr of living neighbors numNeighbors = 0 if currentCells[leftCoord][aboveCoord] == '#': numNeighbors += 1 # Top-Left neighbor is alive. if currentCells[x][aboveCoord] == '#': numNeighbors += 1 #Top neighbor is alive. if currentCells[rightCoord][aboveCoord] == '#': numNeighbors += 1 # Top-Right neighbor is alive. if currentCells[leftCoord][y] == '#': currentCells +=1 # Left neighbor is alive. if currentCells[rightCoord][y] == '#': currentCells += 1 # Right neighbor is alive. if currentCells[leftCoord][belowCoor] == '#': currentCells += 1 # Below-left neighbor is alive. if currentCells[x][belowCoor] == '#': currentCells += 1 # Below neighbor is alive. if currentCells[rightCoord][belowCoor] == '#': currentCells += 1 # Reight-below neighbor is alive. #Set cell based on Conway's Game of live rules if currentCells[x][y] == '#' and (numNeighbors == 2 or numNeighbors == 3): #living cells with 2 or 3 neighbors stay alive nextCells[x][y] = '#' elif currentCells[x][y] == '' and numNeighbors == 3: #Dead cells with 3 neighbors become alive nextCells[x][y] = '#' else: nextCells[x][y] = '' time.sleep(1) # Add a 1-second pause to reduce flickering.
#!/usr/bin/python # smartpiano Python Client # Copyright (c) Jeremy Collette 2020. # This software is released under the MIT license. # See the 'LICENSE' file for more information. import sys from smartpianofactory import SmartPianoFactory if __name__ != "__main__": sys.exit(0) print("smartpiano Python Client v0.1.1") print("----------------------------------------") print("Copyright (c) 2020 Jeremy Collette.\n") if len(sys.argv) <= 1: print("python3 main.py <midi_file_name> [--serial <serial_device>] [--baud <baud_rate>]") sys.exit(1) midi_file_name = sys.argv[1] serial_device = "/dev/ttyACM0" baud_rate = "115200" i = 2 while i < len(sys.argv): arg = sys.argv[i] if arg == "--serial": if i == len(sys.argv)-1: print("Expected string after \"--serial\" option. Run without arguments to see valid options.") sys.exit(1) serial_device = sys.argv[i+1] i += 1 # Skip parsing option value elif arg == "--baud": if i == len(sys.argv)-1: print("Expected integer after \"--baud\" option. Run without arguments to see valid options.") sys.exit(1) baud_rate = sys.argv[i + 1] i += 1 # Skip parsing option value else: print("Unrecognised option \"" + arg + "\". Run without arguments to see valid options.") sys.exit(1) i += 1 print("midi_file_name = " + midi_file_name) print("serial_device = " + serial_device) print("baud_rate = " + baud_rate) smart_piano_factory = SmartPianoFactory(serial_device, baud_rate) smart_piano = smart_piano_factory.create_smart_piano_client(midi_file_name) smart_piano.play_song()
from flask import Blueprint, request, jsonify from flask_jwt_extended import jwt_required from marshmallow import Schema, validate, fields from jcapi.models import Contract from jcapi import db contract = Blueprint('contract', __name__) @jwt_required @contract.route('/', methods=['POST']) def create_contract(): rv = request.get_json() errors = CreateContractSchema().validate(rv) if errors: return jsonify({}), 400 contract = Contract() contract.version = 1 contract.name = rv['name'] contract.description = rv['description'] contract.legal_text = rv['legal_text'] contract.effective_date = rv['effective_date'] contract.expiration_date = rv['expiration_date'] contract.currency = rv['currency'] contract.status = rv['status'] contract.owner_id = 1 db.session.add(contract) db.session.commit() return jsonify(contract.to_dict()), 200 @jwt_required @contract.route('/<id>', methods=['GET']) def get_contract(id): contract = Contract.query.get(int(id)) if contract is None: return jsonify({'msg': 'Contract not found'}), 404 return jsonify(contract.to_dict()) @jwt_required @contract.route('/<id>', methods=['POST']) def update_contract(id: int): # TODO finish it properly contract = Contract.query.get(int(id)) if contract is None: return jsonify({'msg': 'Contract not found'}), 404 return jsonify(contract.to_dict()) @jwt_required @contract.route('/<id>/versions', methods=['GET']) def get_contract_versions(id: int): # TODO finish it properly contract = Contract.query.get(int(id)) if contract is None: return jsonify({'msg': 'Contract not found'}), 404 return jsonify(contract.to_dict()) @jwt_required @contract.route('/<id>/parties', methods=['GET']) def get_contract_parties(id: int): # TODO finish it properly contract = Contract.query.get(int(id)) if contract is None: return jsonify({'msg': 'Contract not found'}), 404 return jsonify(contract.to_dict()) @jwt_required @contract.route('/<id>/template_tags', methods=['GET']) def get_template_tags(id: int): # TODO finish it properly contract = Contract.query.get(int(id)) if contract is None: return jsonify({'msg': 'Contract not found'}), 404 return jsonify(contract.to_dict()) class CreateContractSchema(Schema): name = fields.String(validate=validate.Length(min=3, max=128), required=True) description = fields.String() legal_text = fields.String(required=True) effective_date = fields.Date() expiration_date = fields.Date() currency = fields.String(validate=validate.Length(min=3, max=3)) status = fields.String(validate=validate.Length(min=3, max=32)) class UpdateContractSchema(Schema): version = fields.Integer(required=False) name = fields.String(validate=validate.Length(min=3, max=128), required=True) description = fields.String() legal_text = fields.String(required=True) effective_date = fields.Date() expiration_date = fields.Date() currency = fields.String(validate=validate.Length(min=3, max=3)) status = fields.String(validate=validate.Length(min=3, max=32))
# Licensed under an MIT style license -- see LICENSE.md import numpy as np import warnings from scipy import stats from seaborn.distributions import ( _DistributionPlotter as SeabornDistributionPlotter, KDE as SeabornKDE, ) from seaborn.utils import _normalize_kwargs, _check_argument import pandas as pd __author__ = ["Charlie Hoy <charlie.hoy@ligo.org>", "Seaborn authors"] class KDE(SeabornKDE): """Extension of the `seaborn._statistics.KDE` to allow for custom kde_kernel Parameters ---------- *args: tuple all args passed to the `seaborn._statistics.KDE` class kde_kernel: func, optional kernel you wish to use to evaluate the KDE. Default scipy.stats.gaussian_kde kde_kwargs: dict, optional optional kwargs to be passed to the kde_kernel. Default {} **kwargs: dict all kwargs passed to the `seaborn._statistics.KDE` class """ def __init__( self, *args, kde_kernel=stats.gaussian_kde, kde_kwargs={}, **kwargs ): super(KDE, self).__init__(*args, **kwargs) self._kde_kernel = kde_kernel self._kde_kwargs = kde_kwargs def _fit(self, fit_data, weights=None): """Fit the scipy kde while adding bw_adjust logic and version check.""" fit_kws = self._kde_kwargs fit_kws["bw_method"] = self.bw_method if weights is not None: fit_kws["weights"] = weights kde = self._kde_kernel(fit_data, **fit_kws) kde.set_bandwidth(kde.factor * self.bw_adjust) return kde class _DistributionPlotter(SeabornDistributionPlotter): """Extension of the `seaborn._statistics._DistributionPlotter` to allow for the custom KDE method to be used Parameters ---------- *args: tuple all args passed to the `seaborn._statistics._DistributionPlotter` class **kwargs: dict all kwargs passed to the `seaborn._statistics._DistributionPlotter` class """ def __init__(self, *args, **kwargs): super(_DistributionPlotter, self).__init__(*args, **kwargs) def plot_univariate_density( self, multiple, common_norm, common_grid, fill, legend, estimate_kws, variance_atol, **plot_kws, ): import matplotlib as mpl # Handle conditional defaults if fill is None: fill = multiple in ("stack", "fill") # Preprocess the matplotlib keyword dictionaries if fill: artist = mpl.collections.PolyCollection else: artist = mpl.lines.Line2D plot_kws = _normalize_kwargs(plot_kws, artist) # Input checking _check_argument("multiple", ["layer", "stack", "fill"], multiple) # Always share the evaluation grid when stacking subsets = bool(set(self.variables) - {"x", "y"}) if subsets and multiple in ("stack", "fill"): common_grid = True # Check if the data axis is log scaled log_scale = self._log_scaled(self.data_variable) # Do the computation densities = self._compute_univariate_density( self.data_variable, common_norm, common_grid, estimate_kws, log_scale, variance_atol, ) # Note: raises when no hue and multiple != layer. A problem? densities, baselines = self._resolve_multiple(densities, multiple) # Control the interaction with autoscaling by defining sticky_edges # i.e. we don't want autoscale margins below the density curve sticky_density = (0, 1) if multiple == "fill" else (0, np.inf) if multiple == "fill": # Filled plots should not have any margins sticky_support = densities.index.min(), densities.index.max() else: sticky_support = [] # Handle default visual attributes if "hue" not in self.variables: if self.ax is None: color = plot_kws.pop("color", None) default_color = "C0" if color is None else color else: if fill: if self.var_types[self.data_variable] == "datetime": # Avoid drawing empty fill_between on date axis # https://github.com/matplotlib/matplotlib/issues/17586 scout = None default_color = plot_kws.pop( "color", plot_kws.pop("facecolor", None) ) if default_color is None: default_color = "C0" else: alpha_shade = plot_kws.pop("alpha_shade", 0.25) scout = self.ax.fill_between([], [], **plot_kws) default_color = tuple(scout.get_facecolor().squeeze()) plot_kws.pop("color", None) else: plot_kws.pop("alpha_shade", 0.25) scout, = self.ax.plot([], [], **plot_kws) default_color = scout.get_color() if scout is not None: scout.remove() plot_kws.pop("color", None) default_alpha = .25 if multiple == "layer" else .75 alpha = plot_kws.pop("alpha", default_alpha) # TODO make parameter? # Now iterate through the subsets and draw the densities # We go backwards so stacked densities read from top-to-bottom for sub_vars, _ in self.iter_data("hue", reverse=True): # Extract the support grid and density curve for this level key = tuple(sub_vars.items()) try: density = densities[key] except KeyError: continue support = density.index fill_from = baselines[key] ax = self._get_axes(sub_vars) # Modify the matplotlib attributes from semantic mapping if "hue" in self.variables: color = self._hue_map(sub_vars["hue"]) else: color = default_color artist_kws = self._artist_kws( plot_kws, fill, False, multiple, color, alpha ) # Either plot a curve with observation values on the x axis if "x" in self.variables: if fill: artist = ax.fill_between( support, fill_from, density, **artist_kws ) else: artist, = ax.plot(support, density, **artist_kws) artist.sticky_edges.x[:] = sticky_support artist.sticky_edges.y[:] = sticky_density # Or plot a curve with observation values on the y axis else: if fill: artist = ax.fill_betweenx( support, fill_from, density, **artist_kws ) else: artist, = ax.plot(density, support, **artist_kws) artist.sticky_edges.x[:] = sticky_density artist.sticky_edges.y[:] = sticky_support # --- Finalize the plot ---- ax = self.ax if self.ax is not None else self.facets.axes.flat[0] default_x = default_y = "" if self.data_variable == "x": default_y = "Density" if self.data_variable == "y": default_x = "Density" self._add_axis_labels(ax, default_x, default_y) if "hue" in self.variables and legend: from functools import partial if fill: artist = partial(mpl.patches.Patch) else: artist = partial(mpl.lines.Line2D, [], []) ax_obj = self.ax if self.ax is not None else self.facets self._add_legend( ax_obj, artist, fill, False, multiple, alpha, plot_kws, {}, ) def _compute_univariate_density( self, data_variable, common_norm, common_grid, estimate_kws, log_scale, variance_atol, ): # Initialize the estimator object estimator = KDE(**estimate_kws) all_data = self.plot_data.dropna() if set(self.variables) - {"x", "y"}: if common_grid: all_observations = self.comp_data.dropna() estimator.define_support(all_observations[data_variable]) else: common_norm = False densities = {} for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True): # Extract the data points from this sub set and remove nulls sub_data = sub_data.dropna() observations = sub_data[data_variable] observation_variance = observations.var() if np.isclose(observation_variance, 0, atol=variance_atol) or np.isnan(observation_variance): msg = "Dataset has 0 variance; skipping density estimate." warnings.warn(msg, UserWarning) continue # Extract the weights for this subset of observations if "weights" in self.variables: weights = sub_data["weights"] else: weights = None # Estimate the density of observations at this level density, support = estimator(observations, weights=weights) if log_scale: support = np.power(10, support) # Apply a scaling factor so that the integral over all subsets is 1 if common_norm: density *= len(sub_data) / len(all_data) # Store the density for this level key = tuple(sub_vars.items()) densities[key] = pd.Series(density, index=support) return densities def kdeplot( x=None, # Allow positional x, because behavior will not change with reorg *, y=None, shade=None, # Note "soft" deprecation, explained below vertical=False, # Deprecated kernel=None, # Deprecated bw=None, # Deprecated gridsize=200, # TODO maybe depend on uni/bivariate? cut=3, clip=None, legend=True, cumulative=False, shade_lowest=None, # Deprecated, controlled with levels now cbar=False, cbar_ax=None, cbar_kws=None, ax=None, # New params weights=None, # TODO note that weights is grouped with semantics hue=None, palette=None, hue_order=None, hue_norm=None, multiple="layer", common_norm=True, common_grid=False, levels=10, thresh=.05, bw_method="scott", bw_adjust=1, log_scale=None, color=None, fill=None, kde_kernel=stats.gaussian_kde, kde_kwargs={}, variance_atol=1e-8, # Renamed params data=None, data2=None, **kwargs, ): if kde_kernel is None: kde_kernel = stats.gaussian_kde # Handle deprecation of `data2` as name for y variable if data2 is not None: y = data2 # If `data2` is present, we need to check for the `data` kwarg being # used to pass a vector for `x`. We'll reassign the vectors and warn. # We need this check because just passing a vector to `data` is now # technically valid. x_passed_as_data = ( x is None and data is not None and np.ndim(data) == 1 ) if x_passed_as_data: msg = "Use `x` and `y` rather than `data` `and `data2`" x = data else: msg = "The `data2` param is now named `y`; please update your code" warnings.warn(msg, FutureWarning) # Handle deprecation of `vertical` if vertical: msg = ( "The `vertical` parameter is deprecated and will be removed in a " "future version. Assign the data to the `y` variable instead." ) warnings.warn(msg, FutureWarning) x, y = y, x # Handle deprecation of `bw` if bw is not None: msg = ( "The `bw` parameter is deprecated in favor of `bw_method` and " f"`bw_adjust`. Using {bw} for `bw_method`, but please " "see the docs for the new parameters and update your code." ) warnings.warn(msg, FutureWarning) bw_method = bw # Handle deprecation of `kernel` if kernel is not None: msg = ( "Support for alternate kernels has been removed. " "Using Gaussian kernel." ) warnings.warn(msg, UserWarning) # Handle deprecation of shade_lowest if shade_lowest is not None: if shade_lowest: thresh = 0 msg = ( "`shade_lowest` is now deprecated in favor of `thresh`. " f"Setting `thresh={thresh}`, but please update your code." ) warnings.warn(msg, UserWarning) # Handle `n_levels` # This was never in the formal API but it was processed, and appeared in an # example. We can treat as an alias for `levels` now and deprecate later. levels = kwargs.pop("n_levels", levels) # Handle "soft" deprecation of shade `shade` is not really the right # terminology here, but unlike some of the other deprecated parameters it # is probably very commonly used and much hard to remove. This is therefore # going to be a longer process where, first, `fill` will be introduced and # be used throughout the documentation. In 0.12, when kwarg-only # enforcement hits, we can remove the shade/shade_lowest out of the # function signature all together and pull them out of the kwargs. Then we # can actually fire a FutureWarning, and eventually remove. if shade is not None: fill = shade # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # p = _DistributionPlotter( data=data, variables=_DistributionPlotter.get_semantics(locals()), ) p.map_hue(palette=palette, order=hue_order, norm=hue_norm) if ax is None: import matplotlib.pyplot as plt ax = plt.gca() # Check for a specification that lacks x/y data and return early if not p.has_xy_data: return ax # Pack the kwargs for statistics.KDE estimate_kws = dict( bw_method=bw_method, bw_adjust=bw_adjust, gridsize=gridsize, cut=cut, clip=clip, cumulative=cumulative, kde_kernel=kde_kernel, kde_kwargs=kde_kwargs ) p._attach(ax, allowed_types=["numeric", "datetime"], log_scale=log_scale) if p.univariate: plot_kws = kwargs.copy() if color is not None: plot_kws["color"] = color p.plot_univariate_density( multiple=multiple, common_norm=common_norm, common_grid=common_grid, fill=fill, legend=legend, estimate_kws=estimate_kws, variance_atol=variance_atol, **plot_kws, ) else: p.plot_bivariate_density( common_norm=common_norm, fill=fill, levels=levels, thresh=thresh, legend=legend, color=color, cbar=cbar, cbar_ax=cbar_ax, cbar_kws=cbar_kws, estimate_kws=estimate_kws, **kwargs, ) return ax
from api.models import Category, Customer, Item, Restaurant from conftest import create_app, make_auth_header app = create_app() ### RESTAURANTS ### def test_pass_get_restaurants(client): response = client.get('/restaurants') assert response.status_code == 200 restaurants = response.get_json() assert type(restaurants) == list with app.app_context(): for restaurant in restaurants: assert type(restaurant) == dict assert type(restaurant['id']) == int assert type(restaurant['name']) == str assert 'auth0_id' not in restaurant assert Restaurant.query.get(restaurant['id']).auth0_id def test_fail_get_restaurants(client): # GET /restaurant (singular instead of plural) response = client.get('/restaurant') assert response.status_code == 404 assert response.get_json() is None def test_pass_get_restaurant(client): response = client.get('/restaurants/1') assert response.status_code == 200 assert response.get_json() is not None def test_fail_get_restaurant(client): # Use incorrect ID format response = client.get('/restaurants/somestring') assert response.status_code == 404 def test_pass_create_restaurant(client): new_restaurant_data = { "name": "TEST_RESTAURANT", "email": "test-restaurant@test.com", "phone": "1-234-567890", "address": "111 Test St, Test City, RE", } response = client.post( '/restaurants', json=new_restaurant_data, headers=make_auth_header('restaurant') ) assert response.status_code == 201 def test_fail_create_restaurant(client): # Try to verify ownership of restaurant resource using customer token response = client.post( '/restaurants', json={}, headers=make_auth_header('customer') ) assert response.status_code == 403 def test_pass_update_restaurant(client): with app.app_context(): latest_id = max(r.id for r in Restaurant.query.all()) response = client.patch( f'/restaurants/{latest_id}', json={'name': 'Renamed Restaurant'}, headers=make_auth_header('restaurant'), ) assert response.status_code == 200 restaurant = Restaurant.query.get_or_404(latest_id) assert restaurant.name == 'Renamed Restaurant' def test_fail_update_restaurant(client): with app.app_context(): latest_id = max(r.id for r in Restaurant.query.all()) response = client.put( f'/restaurants/{latest_id}', json={}, headers=make_auth_header('restaurant') ) assert response.status_code == 400 def test_pass_delete_restaurant(client): with app.app_context(): num_restaurants_before = Restaurant.query.count() latest_id = max(r.id for r in Restaurant.query.all()) response = client.delete( f'/restaurants/{latest_id}', headers=make_auth_header('restaurant') ) assert response.status_code == 200 assert num_restaurants_before > Restaurant.query.count() def test_fail_delete_restaurant(client): with app.app_context(): # Cannot delete all restaurants at once response = client.delete('/restaurants') assert response.status_code == 405 ### CUSTOMERS ### def test_pass_create_customer(client): new_customer_data = { "name": "TEST", "email": "test@test.com", "phone": "1-234-567890", "address": "999 Test St, Test City, CU", } response = client.post( '/customers', json=new_customer_data, headers=make_auth_header('customer') ) assert response.status_code == 201 def test_fail_create_customer(client): response = client.post('/customers', json={}) assert response.status_code == 401 def test_pass_get_customer(client): with app.app_context(): latest_id = max(c.id for c in Customer.query.all()) response = client.get( f'/customers/{latest_id}', headers=make_auth_header('customer') ) assert response.status_code == 200 # Make sure all the data points are present in the response assert all(response.json[key] for key in Customer.defaults()) def test_fail_get_customers(client): response = client.get('/customers') assert response.status_code == 405 def test_pass_update_customer(client): with app.app_context(): latest_id = max(c.id for c in Customer.query.all()) response = client.patch( f'/customers/{latest_id}', json={'phone': '987-654-321'}, headers=make_auth_header('customer'), ) assert response.status_code == 200 customer = Customer.query.get_or_404(latest_id) assert customer.phone == '987-654-321' def test_fail_update_customer(client): with app.app_context(): latest_id = max(c.id for c in Customer.query.all()) response = client.patch( f'/customers/{latest_id}', json={'phone': None}, headers=make_auth_header('customer'), ) assert response.status_code == 400 def test_pass_delete_customer(client): with app.app_context(): num_customers_before = Customer.query.count() latest_id = max(c.id for c in Customer.query.all()) response = client.delete( f'/customers/{latest_id}', headers=make_auth_header('customer') ) assert response.status_code == 200 assert num_customers_before > Customer.query.count() def test_fail_delete_customer(client): with app.app_context(): # Cannot delete all customers at once response = client.delete('/customers') assert response.status_code == 405 ### CATEGORIES ### def test_pass_create_category(client): response = client.post( '/restaurants/1/categories', json={'name': 'Tastiest'}, headers=make_auth_header('restaurant'), ) assert response.status_code == 201 def test_fail_create_category(client): response = client.post( '/restaurants/1/categories', json={'name': 'Yummies'}, headers=make_auth_header('customer'), ) assert response.status_code == 403 def test_pass_update_category(client): with app.app_context(): latest_id = max(c.id for c in Category.query.all()) response = client.patch( f'/categories/{latest_id}', json={'name': 'Yummies'}, headers=make_auth_header('restaurant'), ) assert response.status_code == 200 assert Category.query.get_or_404(latest_id).name == 'Yummies' def test_fail_update_category(client): with app.app_context(): latest_id = max(c.id for c in Category.query.all()) response = client.put( f'/categories/{latest_id}', json={'blame': 'Yummies'}, headers=make_auth_header('restaurant'), ) assert response.status_code == 400 def test_pass_delete_category(client): with app.app_context(): latest_id = max(c.id for c in Category.query.all()) response = client.delete( f'/categories/{latest_id}', headers=make_auth_header('restaurant') ) assert response.status_code == 200 def test_fail_delete_category(client): with app.app_context(): latest_id = max(c.id for c in Category.query.all()) response = client.delete( f'/categories/{latest_id}', headers=make_auth_header('customer') ) assert response.status_code == 403 ### ITEMS AND INGREDIENTS ### def test_pass_search_items(client): response = client.post('/items', json={'search_term': 'soup'}) assert response.status_code == 200 assert len(response.json) >= 1 def test_fail_search_items(client): # Invalid request format response = client.post('/items', data={'search_term': 'soup'}) assert response.status_code == 400 def test_pass_get_item(client): response = client.get('/items/1') assert response.status_code == 200 assert 'name' in response.json assert 'price' in response.json def test_fail_get_item(client): # Singular resource in URL response = client.get('/item/1') assert response.status_code == 404 def test_pass_create_item(client): with app.app_context(): num_items_before = Item.query.count() new_item_data = { 'name': 'Bullseye', 'description': 'Not what it sounds.', 'price': 24.42, 'ingredients': ['bull', 'duh', 'saffron', 'turmeric'] } response = client.post('/categories/1/items', json=new_item_data, headers=make_auth_header('restaurant')) assert response.status_code == 201 with app.app_context(): num_items_before < Item.query.count() def test_fail_create_item(client): new_item_data = { 'name': 'Bullseye', 'ingredients': [] } response = client.post('/categories/1/items', json=new_item_data) assert response.status_code == 401 def test_pass_update_item(client): put_item_data = { 'name': 'Catseye', 'description': "It was a bull, now it's a cat.", 'price': 42.24, 'ingredients': ['cat', 'nip', 'saffron', 'turmeric'] } response = client.put('/items/1', json=put_item_data, headers=make_auth_header('restaurant')) assert response.status_code == 200 with app.app_context(): assert Item.query.get_or_404(1).name == 'Catseye' def test_fail_update_item(client): with app.app_context(): latest_id = max(i.id for i in Item.query.all()) put_item_data = { 'name': 'Catseye', 'ingredients': ['cat', 'nip', 'saffron', 'turmeric'] } response = client.put(f'/items/{latest_id}', json=put_item_data, headers=make_auth_header('restaurant')) assert response.status_code == 400 def test_pass_delete_item(client): with app.app_context(): latest_id = max(i.id for i in Item.query.all()) response = client.delete(f'/items/{latest_id}', headers=make_auth_header('restaurant')) assert response.status_code == 200 def test_fail_delete_item(client): response = client.delete('/items/3') assert response.status_code == 401 def test_pass_get_items_by_ingredient(client): for ingredient_id in {1, 23, 57}: response = client.get(f'/ingredients/{ingredient_id}/items') assert response.status_code == 200 assert response.json def test_fail_get_items_by_ingredient(client): for ingredient_name in {'turmeric', 'saffron', 'pepper'}: response = client.get(f'/ingredients/{ingredient_name}/items') assert response.status_code == 404 ### ORDERS ### def test_pass_create_order(client): orders = [ {'items': [1, 2, 3, 4]}, {'items': [44, 45, 46, 47, 48]}, {'items': [87, 88, 89]}, ] for order in orders: response = client.post( '/customers/1/orders', json=order, headers=make_auth_header('customer') ) assert response.status_code == 201 def test_fail_create_order(client): # Mix up items from different restaurants per order orders = [ {'items': [93, 2, 75, 4]}, {'items': [23, 45, 1, 6]}, {'items': [52, 2, 43]}, ] for order in orders: response = client.post( '/customers/2/orders', json=order, headers=make_auth_header('customer') ) assert response.status_code == 400 def test_pass_get_customer_orders(client): response = client.get('/customers/1/orders', headers=make_auth_header('customer')) assert response.status_code == 200 assert len(response.json) >= 3 def test_fail_get_customer_orders(client): # Mix up resources in the URL response = client.get('/orders/1/customer', headers=make_auth_header('customer')) assert response.status_code == 404 def test_pass_get_restaurant_orders(client): response = client.get( '/restaurants/1/orders', headers=make_auth_header('restaurant') ) assert response.status_code == 200 assert len(response.json) >= 1 assert response.json[0]['customer_id'] == 1 def test_fail_get_restaurant_orders(client): # Mix up resources in the URL response = client.get( '/orders/1/restaurant', headers=make_auth_header('restaurant') ) assert response.status_code == 404
from django.db.models.signals import pre_save from django.dispatch import receiver from .models import CustomUser @receiver(pre_save, sender=CustomUser) def auto_rename_user(sender, instance, **kwargs): user = instance """ Extract a name from the email in case user has no name Ex.xyz@gmail => name=xyz """ if user.name == '': user.name = user.email.split("@")[0]
#!/usr/bin/env python from setuptools import setup setup( setup_requires=[ 'pbr>=5.2', 'reno>=2.11', 'setuptools>=41.0', ], pbr=True, )
# Generated by Django 3.0.8 on 2020-08-23 11:02 from django.db import migrations def fill_foirequests_field(apps, schema_editor): InformationObject = apps.get_model('froide_campaign', 'InformationObject') for information_object in InformationObject.objects.all(): request = information_object.foirequest if request: information_object.foirequests.add(request) class Migration(migrations.Migration): dependencies = [ ('froide_campaign', '0022_informationobject_foirequests'), ] operations = [ migrations.RunPython(fill_foirequests_field) ]
# @copyright@ # Copyright (c) 2006 - 2019 Teradata # All rights reserved. Stacki(r) v5.x stacki.com # https://github.com/Teradata/stacki/blob/master/LICENSE.txt # @copyright@ # # @rocks@ # Copyright (c) 2000 - 2010 The Regents of the University of California # All rights reserved. Rocks(r) v5.4 www.rocksclusters.org # https://github.com/Teradata/stacki/blob/master/LICENSE-ROCKS.txt # @rocks@ from operator import itemgetter import stack.commands from stack.argument_processors.scope import ScopeArgProcessor class Command(ScopeArgProcessor, stack.commands.list.command): """ List the global routes. <example cmd='list route'> Lists all the global routes for this cluster. </example> """ def run(self, params, args): # Get the scope and make sure the args are valid scope, = self.fillParams([('scope', 'global')]) scope_mappings = self.getScopeMappings(args, scope) self.beginOutput() for scope_mapping in scope_mappings: if scope == 'host': # Get the host's info for the scope linking host, appliance_id, os_id, environment_id = self.db.select(""" nodes.name, appliance, boxes.os, environment FROM nodes, boxes WHERE nodes.id = %s AND nodes.box = boxes.id """, (scope_mapping.node_id,))[0] # Get all the routes for all scopes that match the host's info routes = self.db.select(""" routes.address, routes.netmask, routes.gateway, subnets.name, routes.interface, UPPER(LEFT(scope_map.scope, 1)) FROM routes LEFT JOIN subnets ON routes.subnet_id = subnets.id INNER JOIN scope_map ON routes.scope_map_id = scope_map.id WHERE scope_map.scope = 'global' OR (scope_map.scope = 'appliance' AND scope_map.appliance_id <=> %s) OR (scope_map.scope = 'os' AND scope_map.os_id <=> %s) OR (scope_map.scope = 'environment' AND scope_map.environment_id <=> %s) OR (scope_map.scope = 'host' AND scope_map.node_id <=> %s) ORDER BY scope_map.scope DESC, routes.address, routes.id """, (appliance_id, os_id, environment_id, scope_mapping.node_id)) # The routes come out of the DB with the higher value scopes # first. Surprisingly, there is no simple way in SQL to squash # these rules down by scope value. So, we do it here instead. seen_addresses = set() squashed_routes = [] for route in routes: if route[0] not in seen_addresses: squashed_routes.append(list(route)) seen_addresses.add(route[0]) # If the route has a subnet, we need to look up if the host has an # interface linked to it, and output that interface if it does for route in squashed_routes: if route[3]: rows = self.db.select(""" device FROM subnets,networks,nodes WHERE nodes.id = %s AND subnets.name = %s AND subnets.id = networks.subnet AND networks.node = nodes.id AND networks.device NOT LIKE 'vlan%%' """, (scope_mapping.node_id, route[3])) if rows: route[4] = rows[0][0] for route in sorted(squashed_routes, key=itemgetter(0)): self.addOutput(host, route) else: # All the other scopes just list their routes routes = self.db.select(""" COALESCE(appliances.name, oses.name, environments.name, ''), routes.address, routes.netmask, routes.gateway, subnets.name, routes.interface FROM routes LEFT JOIN subnets ON routes.subnet_id = subnets.id INNER JOIN scope_map ON routes.scope_map_id = scope_map.id LEFT JOIN appliances ON scope_map.appliance_id = appliances.id LEFT JOIN oses ON scope_map.os_id = oses.id LEFT JOIN environments ON scope_map.environment_id = environments.id WHERE scope_map.scope = %s AND scope_map.appliance_id <=> %s AND scope_map.os_id <=> %s AND scope_map.environment_id <=> %s AND scope_map.node_id <=> %s ORDER BY routes.address, routes.id """, scope_mapping) for route in routes: self.addOutput(route[0], route[1:]) if scope == 'host': self.endOutput(header=[ 'host', 'network', 'netmask', 'gateway', 'subnet', 'interface', 'source' ]) elif scope == 'global': self.endOutput(header=[ '', 'network', 'netmask', 'gateway', 'subnet', 'interface' ]) else: self.endOutput(header=[ scope, 'network', 'netmask', 'gateway','subnet', 'interface' ])
import itertools class Suitor: def __init__(self, id, preference_list): """ A Suitor consists of an integer id (between 0 and the total number of Suitors), and a preference list implicitly defining a ranking of the set of Suiteds. E.g., Suitor(2, [5, 0, 3, 4, 1, 2]) says the third Suitor prefers the Suited with index 5 the most, then the Suited with index 0, etc. The Suitor will propose in decreasing order of preference, and maintains the internal state index_to_propose_to to keep track of the next proposal. """ self.preference_list = preference_list self.index_to_propose_to = 0 self.id = id def preference(self): return self.preference_list[self.index_to_propose_to] def post_rejection(self): self.index_to_propose_to += 1 def __eq__(self, other): return isinstance(other, Suitor) and self.id == other.id def __hash__(self): return hash(self.id) def __repr__(self): return "Suitor({})".format(self.id) class Suited: def __init__(self, id, preference_list): self.preference_list = preference_list self.held = None self.current_suitors = set() self.id = id def reject(self): """Return the subset of Suitors in self.current_suitors to reject, leaving only the held Suitor in self.current_suitors. """ if len(self.current_suitors) == 0: return set() self.held = min(self.current_suitors, key=lambda suitor: self.preference_list.index(suitor.id)) rejected = self.current_suitors - set([self.held]) self.current_suitors = set([self.held]) return rejected def add_suitor(self, suitor): self.current_suitors.add(suitor) def __eq__(self, other): return isinstance(other, Suited) and self.id == other.id def __hash__(self): return hash(self.id) def __repr__(self): return "Suited({})".format(self.id) def stable_marriage(suitors, suiteds): """ Construct a stable marriage between Suitors and Suiteds. Arguments: suitors: a list of Suitor suiteds: a list of Suited, which deferred acceptance of Suitors. Returns: A dict {Suitor: Suited} matching Suitors to Suiteds. """ unassigned = set(suitors) while len(unassigned) > 0: for suitor in unassigned: next_to_propose_to = suiteds[suitor.preference()] next_to_propose_to.add_suitor(suitor) unassigned = set() for suited in suiteds: unassigned |= suited.reject() for suitor in unassigned: suitor.post_rejection() # have some ice cream return dict([(suited.held, suited) for suited in suiteds]) def verify_stable(suitors, suiteds, marriage): """ Check that the assignment of suitors to suited is a stable marriage. Arguments: suitors: a list of Suitors suiteds: a list of Suiteds marriage: a matching {Suitor: Suited} Returns: True if the marriage is stable, otherwise a tuple (False, (x, y)) where x is a Suitor, y is a Suited, and (x, y) are a counterexample to the claim that the marriage is stable. """ suited_to_suitor = dict((v, k) for (k, v) in marriage.items()) def precedes(L, item1, item2): return L.index(item1) < L.index(item2) def suitor_prefers(suitor, suited): return precedes(suitor.preference_list, suited.id, marriage[suitor].id) def suited_prefers(suited, suitor): return precedes(suited.preference_list, suitor.id, suited_to_suitor[suited].id) for (suitor, suited) in itertools.product(suitors, suiteds): if (suited != marriage[suitor] and suitor_prefers(suitor, suited) and suited_prefers(suited, suitor)): return False, (suitor, suited) return True
import yaml from dotmap import DotMap def get_config(path: str): with open(path) as f: cfg = yaml.safe_load(f) cfg = DotMap(cfg) return cfg
#!/bin/python3 import sys def solve(grades): # Complete this function for i in range(len(grades)): if grades[i] < 38: continue else: mod = grades[i] % 5 multi5 = int(((grades[i] - mod) / 5 + 1) * 5) if multi5 - grades[i] < 3: grades[i] = multi5 return grades n = int(input().strip()) grades = [] grades_i = 0 for grades_i in range(n): grades_t = int(input().strip()) grades.append(grades_t) result = solve(grades) print("\n".join(map(str, result)))
# File produced automatically by PNCodeGen.ipynb from scipy.integrate import solve_ivp import numpy as np from numpy import dot, cross, log, sqrt, pi from numpy import euler_gamma as EulerGamma from numba import jit, njit, float64, boolean from numba.experimental import jitclass from scipy.interpolate import InterpolatedUnivariateSpline as Spline from scipy.special import zeta import quaternionic qmul = njit(quaternionic.algebra.multiply) qexp=njit(quaternionic.algebra.exp) qconj=njit(quaternionic.algebra.conj) qinverse=njit(quaternionic.algebra.reciprocal) @njit(cache=True) def mul(A,B): C=np.empty(4) qmul(A,B,C) return C @njit(cache=True) def exp(A): B=np.empty(4) qexp(A,B) return B @njit(cache=True) def conjugate(A): B=np.empty(4) qconj(A,B) return B @njit(cache=True) def inverse(A): B=np.empty(4) qinverse(A,B) return B @njit(cache=True) def FrameFromAngularVelocity_2D_Integrand(rfrak_x, rfrak_y, Omega): rfrakMag = np.sqrt(rfrak_x*rfrak_x+rfrak_y*rfrak_y) rfrakDot_x = Omega[0]/2.0 rfrakDot_y = Omega[1]/2.0 if np.abs(np.sin(rfrakMag)) > 1e-12 and np.abs(np.cos(rfrakMag)) > 1e-12: omega_v = (Omega[0]*(-rfrak_y/rfrakMag)+Omega[1]*(rfrak_x/rfrakMag))*np.tan(rfrakMag)-Omega[2] Omega[0] += -omega_v*np.sin(2*rfrakMag)*(-rfrak_y/rfrakMag) Omega[1] += -omega_v*np.sin(2*rfrakMag)*(rfrak_x/rfrakMag) Omega[2] += omega_v*np.cos(2*rfrakMag) dotTerm = (rfrak_x*Omega[0]+rfrak_y*Omega[1])/(rfrakMag*rfrakMag) cotTerm = rfrakMag/(2*np.tan(rfrakMag)) rfrakDot_x = (Omega[0] - rfrak_x*dotTerm)*cotTerm + rfrak_x*dotTerm/2. - 0.5*Omega[2]*rfrak_y rfrakDot_y = (Omega[1] - rfrak_y*dotTerm)*cotTerm + rfrak_y*dotTerm/2. + 0.5*Omega[2]*rfrak_x return rfrakDot_x, rfrakDot_y @njit(cache=True) def FrameFromAngularVelocityIntegrand(rfrak, Omega): rfrakMag = np.sqrt(rfrak[0] * rfrak[0] + rfrak[1] * rfrak[1] + rfrak[2] * rfrak[2]) OmegaMag = np.sqrt(Omega[0] * Omega[0] + Omega[1] * Omega[1] + Omega[2] * Omega[2]) # If the matrix is really close to the identity, return if rfrakMag < 1e-12*OmegaMag: return np.array([Omega[0] / 2.0, Omega[1] / 2.0, Omega[2] / 2.0]) # If the matrix is really close to singular, it's equivalent to the identity, so return if np.abs(np.sin(rfrakMag)) < 1e-12: return np.array([Omega[0] / 2.0, Omega[1] / 2.0, Omega[2] / 2.0]) OmegaOver2 = np.array([Omega[0] / 2.0, Omega[1] / 2.0, Omega[2] / 2.0]) rfrakHat = np.array([rfrak[0] / rfrakMag, rfrak[1] / rfrakMag, rfrak[2] / rfrakMag]) return ((OmegaOver2 - rfrakHat * np.dot(rfrakHat, OmegaOver2)) * (rfrakMag / np.tan(rfrakMag)) + rfrakHat * np.dot(rfrakHat, OmegaOver2) + np.cross(OmegaOver2, rfrak)) ConsSpec=[('xHat', float64[:]),('yHat', float64[:]),('zHat', float64[:]),('M1', float64[:]),('M2', float64[:]),('S_chi1', float64[:]),('S_chi2', float64[:]),('M', float64[:]),('delta', float64[:]),('nu', float64[:]),('chi1chi1', float64[:]),('chi1chi2', float64[:]),('chi2chi2', float64[:]),('Fcal_0', float64[:]),('Fcal_2', float64[:]),('Fcal_3', float64[:]),('Fcal_4', float64[:]),('Fcal_5', float64[:]),('Fcal_6', float64[:]),('Fcal_lnv_6', float64[:]),('Fcal_7', float64[:]),('Fcal_8', float64[:]),('Fcal_lnv_8', float64[:]),('E_0', float64[:]),('E_2', float64[:]),('E_4', float64[:]),('E_6', float64[:]),('E_8', float64[:]),('E_lnv_8', float64[:]),('EvolveSpin1',boolean),('EvolveSpin2',boolean)] @jitclass(ConsSpec) class Cons: def __init__(self,xHat,yHat,zHat,M1,M2,S_chi1,S_chi2,M,delta,nu,chi1chi1,chi1chi2,chi2chi2,Fcal_0,Fcal_2,Fcal_3,Fcal_4,Fcal_5,Fcal_6,Fcal_lnv_6,Fcal_7,Fcal_8,Fcal_lnv_8,E_0,E_2,E_4,E_6,E_8,E_lnv_8,EvolveSpin1,EvolveSpin2): self.xHat=xHat self.yHat=yHat self.zHat=zHat self.M1=M1 self.M2=M2 self.S_chi1=S_chi1 self.S_chi2=S_chi2 self.M=M self.delta=delta self.nu=nu self.chi1chi1=chi1chi1 self.chi1chi2=chi1chi2 self.chi2chi2=chi2chi2 self.Fcal_0=Fcal_0 self.Fcal_2=Fcal_2 self.Fcal_3=Fcal_3 self.Fcal_4=Fcal_4 self.Fcal_5=Fcal_5 self.Fcal_6=Fcal_6 self.Fcal_lnv_6=Fcal_lnv_6 self.Fcal_7=Fcal_7 self.Fcal_8=Fcal_8 self.Fcal_lnv_8=Fcal_lnv_8 self.E_0=E_0 self.E_2=E_2 self.E_4=E_4 self.E_6=E_6 self.E_8=E_8 self.E_lnv_8=E_lnv_8 self.EvolveSpin1=EvolveSpin1 self.EvolveSpin2=EvolveSpin2 VarsSpec=[('v', float64[:]),('rfrak_chi1', float64[:]),('rfrak_chi2', float64[:]),('rfrak_frame', float64[:]),('R', float64[:]),('nHat', float64[:]),('lambdaHat', float64[:]),('ellHat', float64[:]),('R_S1', float64[:]),('R_S2', float64[:]),('chiVec1', float64[:]),('chiVec2', float64[:]),('chi1_n', float64[:]),('chi1_lambda', float64[:]),('chi1_ell', float64[:]),('chi2_n', float64[:]),('chi2_lambda', float64[:]),('chi2_ell', float64[:]),('S_ell', float64[:]),('S_n', float64[:]),('S_lambda', float64[:]),('Sigma_ell', float64[:]),('Sigma_n', float64[:]),('Sigma_lambda', float64[:]),('chi_s_ell', float64[:]),('chi_a_ell', float64[:]),('logv', float64[:]),('Fcal_coeff', float64[:]),('Fcal_SQ_4', float64[:]),('Fcal_SO_3', float64[:]),('Fcal_SO_5', float64[:]),('Fcal_SO_6', float64[:]),('Fcal_SO_7', float64[:]),('Fcal_SO_8', float64[:]),('E_SQ_4', float64[:]),('E_SO_3', float64[:]),('E_SO_5', float64[:]),('E_SO_7', float64[:])] @jitclass(VarsSpec) class Vars: def __init__(self,v,rfrak_chi1,rfrak_chi2,rfrak_frame,R,nHat,lambdaHat,ellHat,R_S1,R_S2,chiVec1,chiVec2,chi1_n,chi1_lambda,chi1_ell,chi2_n,chi2_lambda,chi2_ell,S_ell,S_n,S_lambda,Sigma_ell,Sigma_n,Sigma_lambda,chi_s_ell,chi_a_ell,logv,Fcal_coeff,Fcal_SQ_4,Fcal_SO_3,Fcal_SO_5,Fcal_SO_6,Fcal_SO_7,Fcal_SO_8,E_SQ_4,E_SO_3,E_SO_5,E_SO_7): self.v=v self.rfrak_chi1=rfrak_chi1 self.rfrak_chi2=rfrak_chi2 self.rfrak_frame=rfrak_frame self.R=R self.nHat=nHat self.lambdaHat=lambdaHat self.ellHat=ellHat self.R_S1=R_S1 self.R_S2=R_S2 self.chiVec1=chiVec1 self.chiVec2=chiVec2 self.chi1_n=chi1_n self.chi1_lambda=chi1_lambda self.chi1_ell=chi1_ell self.chi2_n=chi2_n self.chi2_lambda=chi2_lambda self.chi2_ell=chi2_ell self.S_ell=S_ell self.S_n=S_n self.S_lambda=S_lambda self.Sigma_ell=Sigma_ell self.Sigma_n=Sigma_n self.Sigma_lambda=Sigma_lambda self.chi_s_ell=chi_s_ell self.chi_a_ell=chi_a_ell self.logv=logv self.Fcal_coeff=Fcal_coeff self.Fcal_SQ_4=Fcal_SQ_4 self.Fcal_SO_3=Fcal_SO_3 self.Fcal_SO_5=Fcal_SO_5 self.Fcal_SO_6=Fcal_SO_6 self.Fcal_SO_7=Fcal_SO_7 self.Fcal_SO_8=Fcal_SO_8 self.E_SQ_4=E_SQ_4 self.E_SO_3=E_SO_3 self.E_SO_5=E_SO_5 self.E_SO_7=E_SO_7 @njit(cache=True) def Initialization(Cons, xHat_i, yHat_i, zHat_i, M1_i, M2_i, v_i, S_chi1_i, S_chi2_i, rfrak_frame_i): Cons.xHat=xHat_i Cons.yHat=yHat_i Cons.zHat=zHat_i Cons.M1=np.array([M1_i]) Cons.M2=np.array([M2_i]) Cons.S_chi1=S_chi1_i Cons.S_chi2=S_chi2_i rfrak_chi1=np.array([0.0,0.0]) rfrak_chi2=np.array([0.0,0.0]) Cons.M=Cons.M1 + Cons.M2 Cons.delta=(Cons.M1 - Cons.M2)/Cons.M Cons.nu=Cons.M1*Cons.M2/Cons.M**2 R_S1=exp(rfrak_chi1[0]*Cons.xHat + rfrak_chi1[1]*Cons.yHat) R_S2=exp(rfrak_chi2[0]*Cons.xHat + rfrak_chi2[1]*Cons.yHat) chiVec1=mul(mul(mul(Cons.S_chi1,R_S1),Cons.zHat),mul(conjugate(R_S1),conjugate(Cons.S_chi1))) chiVec2=mul(mul(mul(Cons.S_chi2,R_S2),Cons.zHat),mul(conjugate(R_S2),conjugate(Cons.S_chi2))) Cons.chi1chi1=np.array([dot(chiVec1[1:],chiVec1[1:])]) Cons.chi1chi2=np.array([dot(chiVec1[1:],chiVec2[1:])]) Cons.chi2chi2=np.array([dot(chiVec2[1:],chiVec2[1:])]) Cons.Fcal_0=np.array([1.0]) Cons.Fcal_2=-35*Cons.nu/12 - 1247/336 Cons.Fcal_3=np.array([4*pi]) Cons.Fcal_4=65*Cons.nu**2/18 + 9271*Cons.nu/504 - 44711/9072 Cons.Fcal_5=pi*(-583*Cons.nu/24 - 8191/672) Cons.Fcal_6=-775*Cons.nu**3/324 - 94403*Cons.nu**2/3024 + Cons.nu*(-134543/7776 + 41*pi**2/48) - 1712*log(4)/105 - 1712*EulerGamma/105 + 16*pi**2/3 + 6643739519/69854400 Cons.Fcal_lnv_6=np.array([-1712/105]) Cons.Fcal_7=pi*(193385*Cons.nu**2/3024 + 214745*Cons.nu/1728 - 16285/504) Cons.Fcal_8=np.array([-1369*pi**2/126 - 323105549467/3178375200 - 47385*log(3)/1568 + 232597*EulerGamma/4410 + 39931*log(2)/294]) Cons.Fcal_lnv_8=np.array([232597/4410]) Cons.E_0=np.array([1.0]) Cons.E_2=-Cons.nu/12 - 3/4 Cons.E_4=-Cons.nu**2/24 + 19*Cons.nu/8 - 27/8 Cons.E_6=-35*Cons.nu**3/5184 - 155*Cons.nu**2/96 + Cons.nu*(34445/576 - 205*pi**2/96) - 675/64 Cons.E_8=77*Cons.nu**4/31104 + 301*Cons.nu**3/1728 + Cons.nu**2*(-498449/3456 + 3157*pi**2/576) + Cons.nu*(-123671/5760 + 896*EulerGamma/15 + 9037*pi**2/1536 + 1792*log(2)/15) - 3969/128 Cons.E_lnv_8=896*Cons.nu/15 Cons.EvolveSpin1=np.linalg.norm(mul(Cons.S_chi1,conjugate(Cons.S_chi1)))>1e-8 Cons.EvolveSpin2=np.linalg.norm(mul(Cons.S_chi2,conjugate(Cons.S_chi2)))>1e-8 @njit(cache=True) def Recalculate_0(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 @njit def OmegaVec_chiVec_1_0(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + 0.75) @njit def OmegaVec_chiVec_2_0(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + 0.75) @njit def OmegaVec_0(Cons,Vars): a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_0 = 1.00000000000000 return Vars.ellHat*Vars.v**3/Cons.M + a_ell_0*gamma_PN_0*Vars.nHat*Vars.v**6/Cons.M**3 @njit(cache=True) def TaylorT1_0(Cons,Vars): Flux = Cons.Fcal_0*Vars.Fcal_coeff dEdV = -Cons.E_0*Cons.M*Cons.nu*Vars.v Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_0(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_0(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*-Cons.Fcal_0/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_0(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_0(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*2*Cons.E_0*Cons.M/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_0(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def Recalculate_0p50(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 @njit def OmegaVec_chiVec_1_0p50(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*(Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi1_n*Cons.nu + 3.0*Cons.M2**2*Vars.chi2_n/Cons.M**2) - Cons.M2**2*Vars.chiVec2*Vars.v/Cons.M**2) @njit def OmegaVec_chiVec_2_0p50(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*(Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi2_n*Cons.nu + 3.0*Cons.M1**2*Vars.chi1_n/Cons.M**2) - Cons.M1**2*Vars.chiVec1*Vars.v/Cons.M**2) @njit def OmegaVec_0p50(Cons,Vars): a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_0 = 1.00000000000000 return Vars.ellHat*Vars.v**3/Cons.M + a_ell_0*gamma_PN_0*Vars.nHat*Vars.v**6/Cons.M**3 @njit(cache=True) def TaylorT1_0p50(Cons,Vars): Flux = Cons.Fcal_0*Vars.Fcal_coeff dEdV = -Cons.E_0*Cons.M*Cons.nu*Vars.v Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_0p50(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_0p50(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_0p50(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_0p50(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*(-Cons.Fcal_0 + 0*Vars.v - 0*-Cons.Fcal_0*Vars.v/2*Cons.E_0*Cons.M)/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_0p50(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_0p50(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_0p50(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_0p50(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*(2*Cons.E_0*Cons.M + 0*Vars.v - 0*2*Cons.E_0*Cons.M*Vars.v/-Cons.Fcal_0)/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_0p50(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_0p50(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_0p50(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def Recalculate_1p0(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 @njit def OmegaVec_chiVec_1_1p0(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*(Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.625*Cons.nu - 0.5625) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi1_n*Cons.nu + 3.0*Cons.M2**2*Vars.chi2_n/Cons.M**2) - Cons.M2**2*Vars.chiVec2*Vars.v/Cons.M**2) @njit def OmegaVec_chiVec_2_1p0(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*(Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.5625 - 0.625*Cons.nu) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi2_n*Cons.nu + 3.0*Cons.M1**2*Vars.chi1_n/Cons.M**2) - Cons.M1**2*Vars.chiVec1*Vars.v/Cons.M**2) @njit def OmegaVec_1p0(Cons,Vars): a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_2 = 1.0 - 0.333333333333333*Cons.nu gamma_PN_0 = 1.00000000000000 a_ell_2 = Vars.S_n*(-9.66666666666667*Cons.nu - 10.0) + Vars.Sigma_n*Cons.delta*(-4.5*Cons.nu - 6.0) return Vars.ellHat*Vars.v**3/Cons.M + Vars.nHat*Vars.v**6*(a_ell_0 + a_ell_2*Vars.v**2)*(gamma_PN_0 + gamma_PN_2*Vars.v**2)/Cons.M**3 @njit(cache=True) def TaylorT1_1p0(Cons,Vars): Flux = Vars.Fcal_coeff*(Cons.Fcal_0 + Cons.Fcal_2*Vars.v**2) dEdV = -Cons.M*Cons.nu*Vars.v*(Cons.E_0 + 2.0*Cons.E_2*Vars.v**2) Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_1p0(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_1p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_1p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_1p0(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*(-Cons.Fcal_0 + 0*Vars.v + -Cons.Fcal_2*Vars.v**2 + (0*(--Cons.Fcal_0*Vars.v - 0*Vars.v**2) - 4*Cons.E_2*Cons.M*-Cons.Fcal_0*Vars.v**2 + 0**2*-Cons.Fcal_0*Vars.v**2/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_1p0(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_1p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_1p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_1p0(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*(2*Cons.E_0*Cons.M + 0*Vars.v + 4*Cons.E_2*Cons.M*Vars.v**2 + (0*(-2*Cons.E_0*Cons.M*Vars.v - 0*Vars.v**2) - -Cons.Fcal_2*2*Cons.E_0*Cons.M*Vars.v**2 + 0**2*2*Cons.E_0*Cons.M*Vars.v**2/-Cons.Fcal_0)/-Cons.Fcal_0)/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_1p0(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_1p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_1p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def Recalculate_1p5(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.lambdaHat = mul(mul(Vars.R,Cons.yHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_lambda = np.array([dot(Vars.chiVec1[1:],Vars.lambdaHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_lambda = np.array([dot(Vars.chiVec2[1:],Vars.lambdaHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.S_lambda = Cons.M1**2*Vars.chi1_lambda + Cons.M2**2*Vars.chi2_lambda Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.Sigma_lambda = Cons.M*(-Cons.M1*Vars.chi1_lambda + Cons.M2*Vars.chi2_lambda) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 Vars.Fcal_SO_3 = (-4*Vars.S_ell - 5*Vars.Sigma_ell*Cons.delta/4)/Cons.M**2 Vars.E_SO_3 = (14*Vars.S_ell/3 + 2*Vars.Sigma_ell*Cons.delta)/Cons.M**2 @njit def OmegaVec_chiVec_1_1p5(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*(Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.625*Cons.nu - 0.5625) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi1_n*Cons.nu + 3.0*Cons.M2**2*Vars.chi2_n/Cons.M**2) - Cons.M2**2*Vars.chiVec2*Vars.v/Cons.M**2) @njit def OmegaVec_chiVec_2_1p5(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*(Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.5625 - 0.625*Cons.nu) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi2_n*Cons.nu + 3.0*Cons.M1**2*Vars.chi1_n/Cons.M**2) - Cons.M1**2*Vars.chiVec1*Vars.v/Cons.M**2) @njit def OmegaVec_1p5(Cons,Vars): a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_2 = 1.0 - 0.333333333333333*Cons.nu gamma_PN_3 = (1.66666666666667*Vars.S_ell + Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_0 = 1.00000000000000 a_ell_2 = Vars.S_n*(-9.66666666666667*Cons.nu - 10.0) + Vars.Sigma_n*Cons.delta*(-4.5*Cons.nu - 6.0) return Vars.ellHat*Vars.v**3/Cons.M + Vars.nHat*Vars.v**6*(a_ell_0 + a_ell_2*Vars.v**2)*(gamma_PN_0 + Vars.v**2*(gamma_PN_2 + gamma_PN_3*Vars.v))/Cons.M**3 @njit(cache=True) def TaylorT1_1p5(Cons,Vars): Flux = Vars.Fcal_coeff*(Cons.Fcal_0 + Vars.v**2*(Cons.Fcal_2 + Vars.v*(Cons.Fcal_3 + Vars.Fcal_SO_3))) dEdV = -0.5*Cons.M*Cons.nu*Vars.v*(2.0*Cons.E_0 + Vars.v**2*(4.0*Cons.E_2 + 5.0*Vars.E_SO_3*Vars.v)) Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_1p5(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_1p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_1p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_1p5(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*(1.0*-Cons.Fcal_0 + 1.0*0*Vars.v + 1.0*-Cons.Fcal_2*Vars.v**2 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**3 + (0*(-1.0*-Cons.Fcal_0*Vars.v - 1.0*0*Vars.v**2 - 1.0*-Cons.Fcal_2*Vars.v**3) + 4*Cons.E_2*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**2 - 1.0*0*Vars.v**3) - 1.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**3 + (0*(0*(1.0*-Cons.Fcal_0*Vars.v**2 + 1.0*0*Vars.v**3) + 2.0*4*Cons.E_2*Cons.M*-Cons.Fcal_0*Vars.v**3) - 1.0*0**3*-Cons.Fcal_0*Vars.v**3/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_1p5(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_1p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_1p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_1p5(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*(1.0*2*Cons.E_0*Cons.M + 1.0*0*Vars.v + 1.0*4*Cons.E_2*Cons.M*Vars.v**2 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**3 + (0*(-1.0*2*Cons.E_0*Cons.M*Vars.v - 1.0*0*Vars.v**2 - 1.0*4*Cons.E_2*Cons.M*Vars.v**3) + -Cons.Fcal_2*(-1.0*2*Cons.E_0*Cons.M*Vars.v**2 - 1.0*0*Vars.v**3) - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**3 + (0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**2 + 1.0*0*Vars.v**3) + 2.0*-Cons.Fcal_2*2*Cons.E_0*Cons.M*Vars.v**3) - 1.0*0**3*2*Cons.E_0*Cons.M*Vars.v**3/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_1p5(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_1p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_1p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def Recalculate_2p0(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.lambdaHat = mul(mul(Vars.R,Cons.yHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_lambda = np.array([dot(Vars.chiVec1[1:],Vars.lambdaHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_lambda = np.array([dot(Vars.chiVec2[1:],Vars.lambdaHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.S_lambda = Cons.M1**2*Vars.chi1_lambda + Cons.M2**2*Vars.chi2_lambda Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.Sigma_lambda = Cons.M*(-Cons.M1*Vars.chi1_lambda + Cons.M2*Vars.chi2_lambda) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 Vars.Fcal_SQ_4 = Cons.chi1chi1*(-89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) - 103*Cons.chi1chi2*Cons.nu/48 + Cons.chi2chi2*(89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) + Vars.chi_a_ell*(Vars.chi_a_ell*(287/96 - 12*Cons.nu) + 287*Vars.chi_s_ell*Cons.delta/48) + Vars.chi_s_ell**2*(Cons.nu/24 + 287/96) Vars.Fcal_SO_3 = (-4*Vars.S_ell - 5*Vars.Sigma_ell*Cons.delta/4)/Cons.M**2 Vars.E_SQ_4 = -3*Vars.chi_a_ell**2/2 - 3*Vars.chi_s_ell**2/2 - Cons.delta*(Cons.chi2chi2/2 + 3*Vars.chi_a_ell*Vars.chi_s_ell) + Cons.nu*(Cons.chi1chi2 + 6*Vars.chi_a_ell**2) + (Cons.chi1chi1 + Cons.chi2chi2)*(Cons.delta - 2*Cons.nu + 1)/4 Vars.E_SO_3 = (14*Vars.S_ell/3 + 2*Vars.Sigma_ell*Cons.delta)/Cons.M**2 @njit def OmegaVec_chiVec_1_2p0(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*(Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.625*Cons.nu - 0.5625) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(4.875 - 0.15625*Cons.nu) - 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi1_n*Cons.nu + 3.0*Cons.M2**2*Vars.chi2_n/Cons.M**2) - Cons.M2**2*Vars.chiVec2*Vars.v/Cons.M**2) @njit def OmegaVec_chiVec_2_2p0(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*(Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.5625 - 0.625*Cons.nu) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(0.15625*Cons.nu - 4.875) + 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi2_n*Cons.nu + 3.0*Cons.M1**2*Vars.chi1_n/Cons.M**2) - Cons.M1**2*Vars.chiVec1*Vars.v/Cons.M**2) @njit def OmegaVec_2p0(Cons,Vars): a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_2 = 1.0 - 0.333333333333333*Cons.nu a_ell_4 = Vars.S_n*(5.77777777777778*Cons.nu**2 + 14.75*Cons.nu + 1.5) + Vars.Sigma_n*Cons.delta*(2.83333333333333*Cons.nu**2 + 9.125*Cons.nu + 1.5) gamma_PN_3 = (1.66666666666667*Vars.S_ell + Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_0 = 1.00000000000000 gamma_PN_4 = 1.0 - 5.41666666666667*Cons.nu a_ell_2 = Vars.S_n*(-9.66666666666667*Cons.nu - 10.0) + Vars.Sigma_n*Cons.delta*(-4.5*Cons.nu - 6.0) return Vars.ellHat*Vars.v**3/Cons.M + Vars.nHat*Vars.v**6*(a_ell_0 + Vars.v**2*(a_ell_2 + a_ell_4*Vars.v**2))*(gamma_PN_0 + Vars.v**2*(gamma_PN_2 + Vars.v*(gamma_PN_3 + gamma_PN_4*Vars.v)))/Cons.M**3 @njit(cache=True) def TaylorT1_2p0(Cons,Vars): Flux = Vars.Fcal_coeff*(Cons.Fcal_0 + Vars.v**2*(Cons.Fcal_2 + Vars.v*(Cons.Fcal_3 + Vars.Fcal_SO_3 + Vars.v*(Cons.Fcal_4 + Vars.Fcal_SQ_4)))) dEdV = -0.5*Cons.M*Cons.nu*Vars.v*(2.0*Cons.E_0 + Vars.v**2*(4.0*Cons.E_2 + Vars.v*(5.0*Vars.E_SO_3 + 6.0*Vars.v*(Cons.E_4 + Vars.E_SQ_4)))) Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_2p0(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_2p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_2p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_2p0(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*(1.0*-Cons.Fcal_0 + 1.0*0*Vars.v + 1.0*-Cons.Fcal_2*Vars.v**2 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**3 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**4 + (0*(-1.0*-Cons.Fcal_0*Vars.v - 1.0*0*Vars.v**2 - 1.0*-Cons.Fcal_2*Vars.v**3 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**4) + 4*Cons.E_2*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*-Cons.Fcal_2*Vars.v**4) + 5*Vars.E_SO_3*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4) - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**4 + (0*(0*(1.0*-Cons.Fcal_0*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*-Cons.Fcal_2*Vars.v**4) + 4*Cons.E_2*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**3 + 2.0*0*Vars.v**4) + 2.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**4) + 1.0*4*Cons.E_2*Cons.M**2*-Cons.Fcal_0*Vars.v**4 + (0**2*(0*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4) - 3.0*4*Cons.E_2*Cons.M*-Cons.Fcal_0*Vars.v**4) + 1.0*0**4*-Cons.Fcal_0*Vars.v**4/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_2p0(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_2p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_2p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_2p0(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*(1.0*2*Cons.E_0*Cons.M + 1.0*0*Vars.v + 1.0*4*Cons.E_2*Cons.M*Vars.v**2 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**3 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**4 + (0*(-1.0*2*Cons.E_0*Cons.M*Vars.v - 1.0*0*Vars.v**2 - 1.0*4*Cons.E_2*Cons.M*Vars.v**3 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**4) + -Cons.Fcal_2*(-1.0*2*Cons.E_0*Cons.M*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*4*Cons.E_2*Cons.M*Vars.v**4) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4) - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**4 + (0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*4*Cons.E_2*Cons.M*Vars.v**4) + -Cons.Fcal_2*(2.0*2*Cons.E_0*Cons.M*Vars.v**3 + 2.0*0*Vars.v**4) + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**4) + 1.0*-Cons.Fcal_2**2*2*Cons.E_0*Cons.M*Vars.v**4 + (0**2*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4) - 3.0*-Cons.Fcal_2*2*Cons.E_0*Cons.M*Vars.v**4) + 1.0*0**4*2*Cons.E_0*Cons.M*Vars.v**4/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_2p0(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_2p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_2p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def Recalculate_2p5(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.lambdaHat = mul(mul(Vars.R,Cons.yHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_lambda = np.array([dot(Vars.chiVec1[1:],Vars.lambdaHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_lambda = np.array([dot(Vars.chiVec2[1:],Vars.lambdaHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.S_lambda = Cons.M1**2*Vars.chi1_lambda + Cons.M2**2*Vars.chi2_lambda Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.Sigma_lambda = Cons.M*(-Cons.M1*Vars.chi1_lambda + Cons.M2*Vars.chi2_lambda) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 Vars.Fcal_SQ_4 = Cons.chi1chi1*(-89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) - 103*Cons.chi1chi2*Cons.nu/48 + Cons.chi2chi2*(89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) + Vars.chi_a_ell*(Vars.chi_a_ell*(287/96 - 12*Cons.nu) + 287*Vars.chi_s_ell*Cons.delta/48) + Vars.chi_s_ell**2*(Cons.nu/24 + 287/96) Vars.Fcal_SO_3 = (-4*Vars.S_ell - 5*Vars.Sigma_ell*Cons.delta/4)/Cons.M**2 Vars.Fcal_SO_5 = (Vars.S_ell*(272*Cons.nu/9 - 9/2) + Vars.Sigma_ell*Cons.delta*(43*Cons.nu/4 - 13/16))/Cons.M**2 Vars.E_SQ_4 = -3*Vars.chi_a_ell**2/2 - 3*Vars.chi_s_ell**2/2 - Cons.delta*(Cons.chi2chi2/2 + 3*Vars.chi_a_ell*Vars.chi_s_ell) + Cons.nu*(Cons.chi1chi2 + 6*Vars.chi_a_ell**2) + (Cons.chi1chi1 + Cons.chi2chi2)*(Cons.delta - 2*Cons.nu + 1)/4 Vars.E_SO_3 = (14*Vars.S_ell/3 + 2*Vars.Sigma_ell*Cons.delta)/Cons.M**2 Vars.E_SO_5 = (Vars.S_ell*(11 - 61*Cons.nu/9) + Vars.Sigma_ell*Cons.delta*(3 - 10*Cons.nu/3))/Cons.M**2 @njit def OmegaVec_chiVec_1_2p5(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*(Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.625*Cons.nu - 0.5625) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(4.875 - 0.15625*Cons.nu) - 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi1_n*Cons.nu + 3.0*Cons.M2**2*Vars.chi2_n/Cons.M**2) - Cons.M2**2*Vars.chiVec2*Vars.v/Cons.M**2) @njit def OmegaVec_chiVec_2_2p5(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*(Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.5625 - 0.625*Cons.nu) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(0.15625*Cons.nu - 4.875) + 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi2_n*Cons.nu + 3.0*Cons.M1**2*Vars.chi1_n/Cons.M**2) - Cons.M1**2*Vars.chiVec1*Vars.v/Cons.M**2) @njit def OmegaVec_2p5(Cons,Vars): a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_2 = 1.0 - 0.333333333333333*Cons.nu a_ell_4 = Vars.S_n*(5.77777777777778*Cons.nu**2 + 14.75*Cons.nu + 1.5) + Vars.Sigma_n*Cons.delta*(2.83333333333333*Cons.nu**2 + 9.125*Cons.nu + 1.5) gamma_PN_3 = (1.66666666666667*Vars.S_ell + Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_0 = 1.00000000000000 gamma_PN_5 = (Vars.S_ell*(0.888888888888889*Cons.nu + 3.33333333333333) + 2.0*Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_4 = 1.0 - 5.41666666666667*Cons.nu a_ell_2 = Vars.S_n*(-9.66666666666667*Cons.nu - 10.0) + Vars.Sigma_n*Cons.delta*(-4.5*Cons.nu - 6.0) return Vars.ellHat*Vars.v**3/Cons.M + Vars.nHat*Vars.v**6*(a_ell_0 + Vars.v**2*(a_ell_2 + a_ell_4*Vars.v**2))*(gamma_PN_0 + Vars.v**2*(gamma_PN_2 + Vars.v*(gamma_PN_3 + Vars.v*(gamma_PN_4 + gamma_PN_5*Vars.v))))/Cons.M**3 @njit(cache=True) def TaylorT1_2p5(Cons,Vars): Flux = Vars.Fcal_coeff*(Cons.Fcal_0 + Vars.v**2*(Cons.Fcal_2 + Vars.v*(Cons.Fcal_3 + Vars.Fcal_SO_3 + Vars.v*(Cons.Fcal_4 + Vars.Fcal_SQ_4 + Vars.v*(Cons.Fcal_5 + Vars.Fcal_SO_5))))) dEdV = -0.5*Cons.M*Cons.nu*Vars.v*(2.0*Cons.E_0 + Vars.v**2*(4.0*Cons.E_2 + Vars.v*(5.0*Vars.E_SO_3 + Vars.v*(6.0*Cons.E_4 + 7.0*Vars.E_SO_5*Vars.v + 6.0*Vars.E_SQ_4)))) Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_2p5(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_2p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_2p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_2p5(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*(1.0*-Cons.Fcal_0 + 1.0*0*Vars.v + 1.0*-Cons.Fcal_2*Vars.v**2 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**3 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**4 + 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**5 + (0*(-1.0*-Cons.Fcal_0*Vars.v - 1.0*0*Vars.v**2 - 1.0*-Cons.Fcal_2*Vars.v**3 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**4 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**5) + 4*Cons.E_2*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*-Cons.Fcal_2*Vars.v**4 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**5) + 5*Vars.E_SO_3*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*-Cons.Fcal_2*Vars.v**5) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**4 - 1.0*0*Vars.v**5) - 1.0*7*Vars.E_SO_5*Cons.M*-Cons.Fcal_0*Vars.v**5 + (0*(0*(1.0*-Cons.Fcal_0*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*-Cons.Fcal_2*Vars.v**4 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**5) + 4*Cons.E_2*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**3 + 2.0*0*Vars.v**4 + 2.0*-Cons.Fcal_2*Vars.v**5) + 5*Vars.E_SO_3*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**4 + 2.0*0*Vars.v**5) + 2.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**5) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(1.0*-Cons.Fcal_0*Vars.v**4 + 1.0*0*Vars.v**5) + 2.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**5) + (0*(0*(0*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*-Cons.Fcal_2*Vars.v**5) + 4*Cons.E_2*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**4 - 3.0*0*Vars.v**5) - 3.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**5) - 3.0*4*Cons.E_2*Cons.M**2*-Cons.Fcal_0*Vars.v**5) + (0**3*(0*(1.0*-Cons.Fcal_0*Vars.v**4 + 1.0*0*Vars.v**5) + 4.0*4*Cons.E_2*Cons.M*-Cons.Fcal_0*Vars.v**5) - 1.0*0**5*-Cons.Fcal_0*Vars.v**5/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_2p5(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_2p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_2p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_2p5(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*(1.0*2*Cons.E_0*Cons.M + 1.0*0*Vars.v + 1.0*4*Cons.E_2*Cons.M*Vars.v**2 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**3 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**4 + 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**5 + (0*(-1.0*2*Cons.E_0*Cons.M*Vars.v - 1.0*0*Vars.v**2 - 1.0*4*Cons.E_2*Cons.M*Vars.v**3 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**4 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**5) + -Cons.Fcal_2*(-1.0*2*Cons.E_0*Cons.M*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*4*Cons.E_2*Cons.M*Vars.v**4 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**5) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*4*Cons.E_2*Cons.M*Vars.v**5) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(-1.0*2*Cons.E_0*Cons.M*Vars.v**4 - 1.0*0*Vars.v**5) - 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*2*Cons.E_0*Cons.M*Vars.v**5 + (0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*4*Cons.E_2*Cons.M*Vars.v**4 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**5) + -Cons.Fcal_2*(2.0*2*Cons.E_0*Cons.M*Vars.v**3 + 2.0*0*Vars.v**4 + 2.0*4*Cons.E_2*Cons.M*Vars.v**5) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(2.0*2*Cons.E_0*Cons.M*Vars.v**4 + 2.0*0*Vars.v**5) + 2.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**5) + -Cons.Fcal_2*(-Cons.Fcal_2*(1.0*2*Cons.E_0*Cons.M*Vars.v**4 + 1.0*0*Vars.v**5) + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**5) + (0*(0*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*4*Cons.E_2*Cons.M*Vars.v**5) + -Cons.Fcal_2*(-3.0*2*Cons.E_0*Cons.M*Vars.v**4 - 3.0*0*Vars.v**5) - 3.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**5) - 3.0*-Cons.Fcal_2**2*2*Cons.E_0*Cons.M*Vars.v**5) + (0**3*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**4 + 1.0*0*Vars.v**5) + 4.0*-Cons.Fcal_2*2*Cons.E_0*Cons.M*Vars.v**5) - 1.0*0**5*2*Cons.E_0*Cons.M*Vars.v**5/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_2p5(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_2p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_2p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def Recalculate_3p0(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.lambdaHat = mul(mul(Vars.R,Cons.yHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_lambda = np.array([dot(Vars.chiVec1[1:],Vars.lambdaHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_lambda = np.array([dot(Vars.chiVec2[1:],Vars.lambdaHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.S_lambda = Cons.M1**2*Vars.chi1_lambda + Cons.M2**2*Vars.chi2_lambda Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.Sigma_lambda = Cons.M*(-Cons.M1*Vars.chi1_lambda + Cons.M2*Vars.chi2_lambda) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.logv = log(Vars.v) Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 Vars.Fcal_SQ_4 = Cons.chi1chi1*(-89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) - 103*Cons.chi1chi2*Cons.nu/48 + Cons.chi2chi2*(89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) + Vars.chi_a_ell*(Vars.chi_a_ell*(287/96 - 12*Cons.nu) + 287*Vars.chi_s_ell*Cons.delta/48) + Vars.chi_s_ell**2*(Cons.nu/24 + 287/96) Vars.Fcal_SO_3 = (-4*Vars.S_ell - 5*Vars.Sigma_ell*Cons.delta/4)/Cons.M**2 Vars.Fcal_SO_5 = (Vars.S_ell*(272*Cons.nu/9 - 9/2) + Vars.Sigma_ell*Cons.delta*(43*Cons.nu/4 - 13/16))/Cons.M**2 Vars.Fcal_SO_6 = (-16*Vars.S_ell*pi - 31*Vars.Sigma_ell*Cons.delta*pi/6)/Cons.M**2 Vars.E_SQ_4 = -3*Vars.chi_a_ell**2/2 - 3*Vars.chi_s_ell**2/2 - Cons.delta*(Cons.chi2chi2/2 + 3*Vars.chi_a_ell*Vars.chi_s_ell) + Cons.nu*(Cons.chi1chi2 + 6*Vars.chi_a_ell**2) + (Cons.chi1chi1 + Cons.chi2chi2)*(Cons.delta - 2*Cons.nu + 1)/4 Vars.E_SO_3 = (14*Vars.S_ell/3 + 2*Vars.Sigma_ell*Cons.delta)/Cons.M**2 Vars.E_SO_5 = (Vars.S_ell*(11 - 61*Cons.nu/9) + Vars.Sigma_ell*Cons.delta*(3 - 10*Cons.nu/3))/Cons.M**2 @njit def OmegaVec_chiVec_1_3p0(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*(Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.625*Cons.nu - 0.5625) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(4.875 - 0.15625*Cons.nu) - 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi1_n*Cons.nu + 3.0*Cons.M2**2*Vars.chi2_n/Cons.M**2) - Cons.M2**2*Vars.chiVec2*Vars.v/Cons.M**2) @njit def OmegaVec_chiVec_2_3p0(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*(Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.5625 - 0.625*Cons.nu) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(0.15625*Cons.nu - 4.875) + 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi2_n*Cons.nu + 3.0*Cons.M1**2*Vars.chi1_n/Cons.M**2) - Cons.M1**2*Vars.chiVec1*Vars.v/Cons.M**2) @njit def OmegaVec_3p0(Cons,Vars): a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_2 = 1.0 - 0.333333333333333*Cons.nu a_ell_4 = Vars.S_n*(5.77777777777778*Cons.nu**2 + 14.75*Cons.nu + 1.5) + Vars.Sigma_n*Cons.delta*(2.83333333333333*Cons.nu**2 + 9.125*Cons.nu + 1.5) gamma_PN_3 = (1.66666666666667*Vars.S_ell + Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_6 = 0.0123456790123457*Cons.nu**3 + 6.36111111111111*Cons.nu**2 - 2.98177812235564*Cons.nu + 1.0 gamma_PN_0 = 1.00000000000000 gamma_PN_5 = (Vars.S_ell*(0.888888888888889*Cons.nu + 3.33333333333333) + 2.0*Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_4 = 1.0 - 5.41666666666667*Cons.nu a_ell_2 = Vars.S_n*(-9.66666666666667*Cons.nu - 10.0) + Vars.Sigma_n*Cons.delta*(-4.5*Cons.nu - 6.0) return Vars.ellHat*Vars.v**3/Cons.M + Vars.nHat*Vars.v**6*(a_ell_0 + Vars.v**2*(a_ell_2 + a_ell_4*Vars.v**2))*(gamma_PN_0 + Vars.v**2*(gamma_PN_2 + Vars.v*(gamma_PN_3 + Vars.v*(gamma_PN_4 + Vars.v*(gamma_PN_5 + gamma_PN_6*Vars.v)))))/Cons.M**3 @njit(cache=True) def TaylorT1_3p0(Cons,Vars): Flux = Vars.Fcal_coeff*(Cons.Fcal_0 + Vars.v**2*(Cons.Fcal_2 + Vars.v*(Cons.Fcal_3 + Vars.Fcal_SO_3 + Vars.v*(Cons.Fcal_4 + Vars.Fcal_SQ_4 + Vars.v*(Cons.Fcal_5 + Vars.Fcal_SO_5 + Vars.v*(Cons.Fcal_6 + Vars.Fcal_SO_6 + Cons.Fcal_lnv_6*Vars.logv)))))) dEdV = -0.5*Cons.M*Cons.nu*Vars.v*(2.0*Cons.E_0 + Vars.v**2*(4.0*Cons.E_2 + Vars.v*(5.0*Vars.E_SO_3 + Vars.v*(6.0*Cons.E_4 + 6.0*Vars.E_SQ_4 + Vars.v*(8.0*Cons.E_6*Vars.v + 7.0*Vars.E_SO_5))))) Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_3p0(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_3p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_3p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_3p0(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*(1.0*-Cons.Fcal_0 + 1.0*0*Vars.v + 1.0*-Cons.Fcal_2*Vars.v**2 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**3 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**4 + 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**5 + 1.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*Vars.v**6 + (0*(-1.0*-Cons.Fcal_0*Vars.v - 1.0*0*Vars.v**2 - 1.0*-Cons.Fcal_2*Vars.v**3 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**4 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**5 - 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**6) + 4*Cons.E_2*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*-Cons.Fcal_2*Vars.v**4 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**5 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**6) + 5*Vars.E_SO_3*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*-Cons.Fcal_2*Vars.v**5 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**4 - 1.0*0*Vars.v**5 - 1.0*-Cons.Fcal_2*Vars.v**6) + 7*Vars.E_SO_5*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**5 - 1.0*0*Vars.v**6) - 1.0*8*Cons.E_6*Cons.M*-Cons.Fcal_0*Vars.v**6 + (0*(0*(1.0*-Cons.Fcal_0*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*-Cons.Fcal_2*Vars.v**4 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**5 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**6) + 4*Cons.E_2*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**3 + 2.0*0*Vars.v**4 + 2.0*-Cons.Fcal_2*Vars.v**5 + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6) + 5*Vars.E_SO_3*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**4 + 2.0*0*Vars.v**5 + 2.0*-Cons.Fcal_2*Vars.v**6) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**5 + 2.0*0*Vars.v**6) + 2.0*7*Vars.E_SO_5*Cons.M*-Cons.Fcal_0*Vars.v**6) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(1.0*-Cons.Fcal_0*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*-Cons.Fcal_2*Vars.v**6) + 5*Vars.E_SO_3*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**5 + 2.0*0*Vars.v**6) + 2.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**6) + 1.0*5*Vars.E_SO_3*Cons.M**2*-Cons.Fcal_0*Vars.v**6 + (0*(0*(0*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*-Cons.Fcal_2*Vars.v**5 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6) + 4*Cons.E_2*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**4 - 3.0*0*Vars.v**5 - 3.0*-Cons.Fcal_2*Vars.v**6) + 5*Vars.E_SO_3*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**5 - 3.0*0*Vars.v**6) - 3.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**6) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**5 - 3.0*0*Vars.v**6) - 6.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**6)) - 1.0*4*Cons.E_2*Cons.M**3*-Cons.Fcal_0*Vars.v**6 + (0**2*(0*(0*(1.0*-Cons.Fcal_0*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*-Cons.Fcal_2*Vars.v**6) + 4*Cons.E_2*Cons.M*(4.0*-Cons.Fcal_0*Vars.v**5 + 4.0*0*Vars.v**6) + 4.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**6) + 6.0*4*Cons.E_2*Cons.M**2*-Cons.Fcal_0*Vars.v**6) + (0**4*(0*(-1.0*-Cons.Fcal_0*Vars.v**5 - 1.0*0*Vars.v**6) - 5.0*4*Cons.E_2*Cons.M*-Cons.Fcal_0*Vars.v**6) + 1.0*0**6*-Cons.Fcal_0*Vars.v**6/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_3p0(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_3p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_3p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_3p0(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*(1.0*2*Cons.E_0*Cons.M + 1.0*0*Vars.v + 1.0*4*Cons.E_2*Cons.M*Vars.v**2 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**3 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**4 + 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**5 + 1.0*8*Cons.E_6*Cons.M*Vars.v**6 + (0*(-1.0*2*Cons.E_0*Cons.M*Vars.v - 1.0*0*Vars.v**2 - 1.0*4*Cons.E_2*Cons.M*Vars.v**3 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**4 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**5 - 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**6) + -Cons.Fcal_2*(-1.0*2*Cons.E_0*Cons.M*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*4*Cons.E_2*Cons.M*Vars.v**4 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**5 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**6) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*4*Cons.E_2*Cons.M*Vars.v**5 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**6) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(-1.0*2*Cons.E_0*Cons.M*Vars.v**4 - 1.0*0*Vars.v**5 - 1.0*4*Cons.E_2*Cons.M*Vars.v**6) + -Cons.Fcal_5 - Vars.Fcal_SO_5*(-1.0*2*Cons.E_0*Cons.M*Vars.v**5 - 1.0*0*Vars.v**6) - 1.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*2*Cons.E_0*Cons.M*Vars.v**6 + (0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*4*Cons.E_2*Cons.M*Vars.v**4 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**5 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**6) + -Cons.Fcal_2*(2.0*2*Cons.E_0*Cons.M*Vars.v**3 + 2.0*0*Vars.v**4 + 2.0*4*Cons.E_2*Cons.M*Vars.v**5 + 2.0*5*Vars.E_SO_3*Cons.M*Vars.v**6) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(2.0*2*Cons.E_0*Cons.M*Vars.v**4 + 2.0*0*Vars.v**5 + 2.0*4*Cons.E_2*Cons.M*Vars.v**6) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(2.0*2*Cons.E_0*Cons.M*Vars.v**5 + 2.0*0*Vars.v**6) + 2.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*2*Cons.E_0*Cons.M*Vars.v**6) + -Cons.Fcal_2*(-Cons.Fcal_2*(1.0*2*Cons.E_0*Cons.M*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*4*Cons.E_2*Cons.M*Vars.v**6) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(2.0*2*Cons.E_0*Cons.M*Vars.v**5 + 2.0*0*Vars.v**6) + 2.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**6) + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3**2*2*Cons.E_0*Cons.M*Vars.v**6 + (0*(0*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*4*Cons.E_2*Cons.M*Vars.v**5 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**6) + -Cons.Fcal_2*(-3.0*2*Cons.E_0*Cons.M*Vars.v**4 - 3.0*0*Vars.v**5 - 3.0*4*Cons.E_2*Cons.M*Vars.v**6) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-3.0*2*Cons.E_0*Cons.M*Vars.v**5 - 3.0*0*Vars.v**6) - 3.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**6) + -Cons.Fcal_2*(-Cons.Fcal_2*(-3.0*2*Cons.E_0*Cons.M*Vars.v**5 - 3.0*0*Vars.v**6) - 6.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**6)) - 1.0*-Cons.Fcal_2**3*2*Cons.E_0*Cons.M*Vars.v**6 + (0**2*(0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*4*Cons.E_2*Cons.M*Vars.v**6) + -Cons.Fcal_2*(4.0*2*Cons.E_0*Cons.M*Vars.v**5 + 4.0*0*Vars.v**6) + 4.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**6) + 6.0*-Cons.Fcal_2**2*2*Cons.E_0*Cons.M*Vars.v**6) + (0**4*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**5 - 1.0*0*Vars.v**6) - 5.0*-Cons.Fcal_2*2*Cons.E_0*Cons.M*Vars.v**6) + 1.0*0**6*2*Cons.E_0*Cons.M*Vars.v**6/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_3p0(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_3p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_3p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def Recalculate_3p5(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.lambdaHat = mul(mul(Vars.R,Cons.yHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_lambda = np.array([dot(Vars.chiVec1[1:],Vars.lambdaHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_lambda = np.array([dot(Vars.chiVec2[1:],Vars.lambdaHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.S_lambda = Cons.M1**2*Vars.chi1_lambda + Cons.M2**2*Vars.chi2_lambda Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.Sigma_lambda = Cons.M*(-Cons.M1*Vars.chi1_lambda + Cons.M2*Vars.chi2_lambda) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.logv = log(Vars.v) Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 Vars.Fcal_SQ_4 = Cons.chi1chi1*(-89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) - 103*Cons.chi1chi2*Cons.nu/48 + Cons.chi2chi2*(89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) + Vars.chi_a_ell*(Vars.chi_a_ell*(287/96 - 12*Cons.nu) + 287*Vars.chi_s_ell*Cons.delta/48) + Vars.chi_s_ell**2*(Cons.nu/24 + 287/96) Vars.Fcal_SO_3 = (-4*Vars.S_ell - 5*Vars.Sigma_ell*Cons.delta/4)/Cons.M**2 Vars.Fcal_SO_5 = (Vars.S_ell*(272*Cons.nu/9 - 9/2) + Vars.Sigma_ell*Cons.delta*(43*Cons.nu/4 - 13/16))/Cons.M**2 Vars.Fcal_SO_6 = (-16*Vars.S_ell*pi - 31*Vars.Sigma_ell*Cons.delta*pi/6)/Cons.M**2 Vars.Fcal_SO_7 = (Vars.S_ell*(-2810*Cons.nu**2/27 + 6172*Cons.nu/189 + 476645/6804) + Vars.Sigma_ell*Cons.delta*(-1501*Cons.nu**2/36 + 1849*Cons.nu/126 + 9535/336))/Cons.M**2 Vars.E_SQ_4 = -3*Vars.chi_a_ell**2/2 - 3*Vars.chi_s_ell**2/2 - Cons.delta*(Cons.chi2chi2/2 + 3*Vars.chi_a_ell*Vars.chi_s_ell) + Cons.nu*(Cons.chi1chi2 + 6*Vars.chi_a_ell**2) + (Cons.chi1chi1 + Cons.chi2chi2)*(Cons.delta - 2*Cons.nu + 1)/4 Vars.E_SO_3 = (14*Vars.S_ell/3 + 2*Vars.Sigma_ell*Cons.delta)/Cons.M**2 Vars.E_SO_5 = (Vars.S_ell*(11 - 61*Cons.nu/9) + Vars.Sigma_ell*Cons.delta*(3 - 10*Cons.nu/3))/Cons.M**2 Vars.E_SO_7 = (Vars.S_ell*(29*Cons.nu**2/12 - 367*Cons.nu/4 + 135/4) + Vars.Sigma_ell*Cons.delta*(5*Cons.nu**2/4 - 39*Cons.nu + 27/4))/Cons.M**2 @njit def OmegaVec_chiVec_1_3p5(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*(Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.625*Cons.nu - 0.5625) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(4.875 - 0.15625*Cons.nu) - 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi1_n*Cons.nu + 3.0*Cons.M2**2*Vars.chi2_n/Cons.M**2) - Cons.M2**2*Vars.chiVec2*Vars.v/Cons.M**2) @njit def OmegaVec_chiVec_2_3p5(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*(Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.5625 - 0.625*Cons.nu) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(0.15625*Cons.nu - 4.875) + 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi2_n*Cons.nu + 3.0*Cons.M1**2*Vars.chi1_n/Cons.M**2) - Cons.M1**2*Vars.chiVec1*Vars.v/Cons.M**2) @njit def OmegaVec_3p5(Cons,Vars): gamma_PN_7 = (Vars.S_ell*(-6.0*Cons.nu**2 - 10.5833333333333*Cons.nu + 5.0) - 2.66666666666667*Vars.Sigma_ell*Cons.delta*Cons.nu**2 + Vars.Sigma_ell*Cons.delta*(3.0 - 10.1666666666667*Cons.nu))/Cons.M**2 a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_2 = 1.0 - 0.333333333333333*Cons.nu a_ell_4 = Vars.S_n*(5.77777777777778*Cons.nu**2 + 14.75*Cons.nu + 1.5) + Vars.Sigma_n*Cons.delta*(2.83333333333333*Cons.nu**2 + 9.125*Cons.nu + 1.5) gamma_PN_3 = (1.66666666666667*Vars.S_ell + Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_6 = 0.0123456790123457*Cons.nu**3 + 6.36111111111111*Cons.nu**2 - 2.98177812235564*Cons.nu + 1.0 gamma_PN_0 = 1.00000000000000 gamma_PN_5 = (Vars.S_ell*(0.888888888888889*Cons.nu + 3.33333333333333) + 2.0*Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_4 = 1.0 - 5.41666666666667*Cons.nu a_ell_2 = Vars.S_n*(-9.66666666666667*Cons.nu - 10.0) + Vars.Sigma_n*Cons.delta*(-4.5*Cons.nu - 6.0) return Vars.ellHat*Vars.v**3/Cons.M + Vars.nHat*Vars.v**6*(a_ell_0 + Vars.v**2*(a_ell_2 + a_ell_4*Vars.v**2))*(gamma_PN_0 + Vars.v**2*(gamma_PN_2 + Vars.v*(gamma_PN_3 + Vars.v*(gamma_PN_4 + Vars.v*(gamma_PN_5 + Vars.v*(gamma_PN_6 + gamma_PN_7*Vars.v))))))/Cons.M**3 @njit(cache=True) def TaylorT1_3p5(Cons,Vars): Flux = Vars.Fcal_coeff*(Cons.Fcal_0 + Vars.v**2*(Cons.Fcal_2 + Vars.v*(Cons.Fcal_3 + Vars.Fcal_SO_3 + Vars.v*(Cons.Fcal_4 + Vars.Fcal_SQ_4 + Vars.v*(Cons.Fcal_5 + Vars.Fcal_SO_5 + Vars.v*(Cons.Fcal_6 + Vars.Fcal_SO_6 + Cons.Fcal_lnv_6*Vars.logv + Vars.v*(Cons.Fcal_7 + Vars.Fcal_SO_7))))))) dEdV = -0.5*Cons.M*Cons.nu*Vars.v*(2.0*Cons.E_0 + Vars.v**2*(4.0*Cons.E_2 + Vars.v*(5.0*Vars.E_SO_3 + Vars.v*(6.0*Cons.E_4 + 6.0*Vars.E_SQ_4 + Vars.v*(7.0*Vars.E_SO_5 + Vars.v*(8.0*Cons.E_6 + 9.0*Vars.E_SO_7*Vars.v)))))) Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_3p5(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_3p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_3p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_3p5(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*(1.0*-Cons.Fcal_0 + 1.0*0*Vars.v + 1.0*-Cons.Fcal_2*Vars.v**2 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**3 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**4 + 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**5 + 1.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*Vars.v**6 + 1.0*-Cons.Fcal_7 - Vars.Fcal_SO_7*Vars.v**7 + (0*(-1.0*-Cons.Fcal_0*Vars.v - 1.0*0*Vars.v**2 - 1.0*-Cons.Fcal_2*Vars.v**3 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**4 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**5 - 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**6 - 1.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*Vars.v**7) + 4*Cons.E_2*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*-Cons.Fcal_2*Vars.v**4 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**5 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**6 - 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**7) + 5*Vars.E_SO_3*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*-Cons.Fcal_2*Vars.v**5 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**7) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**4 - 1.0*0*Vars.v**5 - 1.0*-Cons.Fcal_2*Vars.v**6 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7) + 7*Vars.E_SO_5*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**5 - 1.0*0*Vars.v**6 - 1.0*-Cons.Fcal_2*Vars.v**7) + 8*Cons.E_6*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**6 - 1.0*0*Vars.v**7) - 1.0*9*Vars.E_SO_7*Cons.M*-Cons.Fcal_0*Vars.v**7 + (0*(0*(1.0*-Cons.Fcal_0*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*-Cons.Fcal_2*Vars.v**4 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**5 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**6 + 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**7) + 4*Cons.E_2*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**3 + 2.0*0*Vars.v**4 + 2.0*-Cons.Fcal_2*Vars.v**5 + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6 + 2.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**7) + 5*Vars.E_SO_3*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**4 + 2.0*0*Vars.v**5 + 2.0*-Cons.Fcal_2*Vars.v**6 + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**5 + 2.0*0*Vars.v**6 + 2.0*-Cons.Fcal_2*Vars.v**7) + 7*Vars.E_SO_5*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**6 + 2.0*0*Vars.v**7) + 2.0*8*Cons.E_6*Cons.M*-Cons.Fcal_0*Vars.v**7) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(1.0*-Cons.Fcal_0*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*-Cons.Fcal_2*Vars.v**6 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7) + 5*Vars.E_SO_3*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**5 + 2.0*0*Vars.v**6 + 2.0*-Cons.Fcal_2*Vars.v**7) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**6 + 2.0*0*Vars.v**7) + 2.0*7*Vars.E_SO_5*Cons.M*-Cons.Fcal_0*Vars.v**7) + 5*Vars.E_SO_3*Cons.M*(5*Vars.E_SO_3*Cons.M*(1.0*-Cons.Fcal_0*Vars.v**6 + 1.0*0*Vars.v**7) + 2.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**7) + (0*(0*(0*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*-Cons.Fcal_2*Vars.v**5 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**7) + 4*Cons.E_2*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**4 - 3.0*0*Vars.v**5 - 3.0*-Cons.Fcal_2*Vars.v**6 - 3.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7) + 5*Vars.E_SO_3*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**5 - 3.0*0*Vars.v**6 - 3.0*-Cons.Fcal_2*Vars.v**7) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**6 - 3.0*0*Vars.v**7) - 3.0*7*Vars.E_SO_5*Cons.M*-Cons.Fcal_0*Vars.v**7) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**5 - 3.0*0*Vars.v**6 - 3.0*-Cons.Fcal_2*Vars.v**7) + 5*Vars.E_SO_3*Cons.M*(-6.0*-Cons.Fcal_0*Vars.v**6 - 6.0*0*Vars.v**7) - 6.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**7) - 3.0*5*Vars.E_SO_3*Cons.M**2*-Cons.Fcal_0*Vars.v**7) + 4*Cons.E_2*Cons.M**2*(4*Cons.E_2*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**6 - 1.0*0*Vars.v**7) - 3.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**7) + (0*(0*(0*(0*(1.0*-Cons.Fcal_0*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*-Cons.Fcal_2*Vars.v**6 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7) + 4*Cons.E_2*Cons.M*(4.0*-Cons.Fcal_0*Vars.v**5 + 4.0*0*Vars.v**6 + 4.0*-Cons.Fcal_2*Vars.v**7) + 5*Vars.E_SO_3*Cons.M*(4.0*-Cons.Fcal_0*Vars.v**6 + 4.0*0*Vars.v**7) + 4.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**7) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(6.0*-Cons.Fcal_0*Vars.v**6 + 6.0*0*Vars.v**7) + 12.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**7)) + 4.0*4*Cons.E_2*Cons.M**3*-Cons.Fcal_0*Vars.v**7) + (0**3*(0*(0*(-1.0*-Cons.Fcal_0*Vars.v**5 - 1.0*0*Vars.v**6 - 1.0*-Cons.Fcal_2*Vars.v**7) + 4*Cons.E_2*Cons.M*(-5.0*-Cons.Fcal_0*Vars.v**6 - 5.0*0*Vars.v**7) - 5.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**7) - 10.0*4*Cons.E_2*Cons.M**2*-Cons.Fcal_0*Vars.v**7) + (0**5*(0*(1.0*-Cons.Fcal_0*Vars.v**6 + 1.0*0*Vars.v**7) + 6.0*4*Cons.E_2*Cons.M*-Cons.Fcal_0*Vars.v**7) - 1.0*0**7*-Cons.Fcal_0*Vars.v**7/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_3p5(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_3p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_3p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_3p5(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*(1.0*2*Cons.E_0*Cons.M + 1.0*0*Vars.v + 1.0*4*Cons.E_2*Cons.M*Vars.v**2 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**3 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**4 + 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**5 + 1.0*8*Cons.E_6*Cons.M*Vars.v**6 + 1.0*9*Vars.E_SO_7*Cons.M*Vars.v**7 + (0*(-1.0*2*Cons.E_0*Cons.M*Vars.v - 1.0*0*Vars.v**2 - 1.0*4*Cons.E_2*Cons.M*Vars.v**3 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**4 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**5 - 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**6 - 1.0*8*Cons.E_6*Cons.M*Vars.v**7) + -Cons.Fcal_2*(-1.0*2*Cons.E_0*Cons.M*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*4*Cons.E_2*Cons.M*Vars.v**4 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**5 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**6 - 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**7) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*4*Cons.E_2*Cons.M*Vars.v**5 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**6 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**7) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(-1.0*2*Cons.E_0*Cons.M*Vars.v**4 - 1.0*0*Vars.v**5 - 1.0*4*Cons.E_2*Cons.M*Vars.v**6 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**7) + -Cons.Fcal_5 - Vars.Fcal_SO_5*(-1.0*2*Cons.E_0*Cons.M*Vars.v**5 - 1.0*0*Vars.v**6 - 1.0*4*Cons.E_2*Cons.M*Vars.v**7) + -Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*(-1.0*2*Cons.E_0*Cons.M*Vars.v**6 - 1.0*0*Vars.v**7) - 1.0*-Cons.Fcal_7 - Vars.Fcal_SO_7*2*Cons.E_0*Cons.M*Vars.v**7 + (0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*4*Cons.E_2*Cons.M*Vars.v**4 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**5 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**6 + 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**7) + -Cons.Fcal_2*(2.0*2*Cons.E_0*Cons.M*Vars.v**3 + 2.0*0*Vars.v**4 + 2.0*4*Cons.E_2*Cons.M*Vars.v**5 + 2.0*5*Vars.E_SO_3*Cons.M*Vars.v**6 + 2.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**7) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(2.0*2*Cons.E_0*Cons.M*Vars.v**4 + 2.0*0*Vars.v**5 + 2.0*4*Cons.E_2*Cons.M*Vars.v**6 + 2.0*5*Vars.E_SO_3*Cons.M*Vars.v**7) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(2.0*2*Cons.E_0*Cons.M*Vars.v**5 + 2.0*0*Vars.v**6 + 2.0*4*Cons.E_2*Cons.M*Vars.v**7) + -Cons.Fcal_5 - Vars.Fcal_SO_5*(2.0*2*Cons.E_0*Cons.M*Vars.v**6 + 2.0*0*Vars.v**7) + 2.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*2*Cons.E_0*Cons.M*Vars.v**7) + -Cons.Fcal_2*(-Cons.Fcal_2*(1.0*2*Cons.E_0*Cons.M*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*4*Cons.E_2*Cons.M*Vars.v**6 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**7) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(2.0*2*Cons.E_0*Cons.M*Vars.v**5 + 2.0*0*Vars.v**6 + 2.0*4*Cons.E_2*Cons.M*Vars.v**7) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(2.0*2*Cons.E_0*Cons.M*Vars.v**6 + 2.0*0*Vars.v**7) + 2.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*2*Cons.E_0*Cons.M*Vars.v**7) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-Cons.Fcal_3 - Vars.Fcal_SO_3*(1.0*2*Cons.E_0*Cons.M*Vars.v**6 + 1.0*0*Vars.v**7) + 2.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**7) + (0*(0*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*4*Cons.E_2*Cons.M*Vars.v**5 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**6 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**7) + -Cons.Fcal_2*(-3.0*2*Cons.E_0*Cons.M*Vars.v**4 - 3.0*0*Vars.v**5 - 3.0*4*Cons.E_2*Cons.M*Vars.v**6 - 3.0*5*Vars.E_SO_3*Cons.M*Vars.v**7) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-3.0*2*Cons.E_0*Cons.M*Vars.v**5 - 3.0*0*Vars.v**6 - 3.0*4*Cons.E_2*Cons.M*Vars.v**7) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(-3.0*2*Cons.E_0*Cons.M*Vars.v**6 - 3.0*0*Vars.v**7) - 3.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*2*Cons.E_0*Cons.M*Vars.v**7) + -Cons.Fcal_2*(-Cons.Fcal_2*(-3.0*2*Cons.E_0*Cons.M*Vars.v**5 - 3.0*0*Vars.v**6 - 3.0*4*Cons.E_2*Cons.M*Vars.v**7) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-6.0*2*Cons.E_0*Cons.M*Vars.v**6 - 6.0*0*Vars.v**7) - 6.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**7) - 3.0*-Cons.Fcal_3 - Vars.Fcal_SO_3**2*2*Cons.E_0*Cons.M*Vars.v**7) + -Cons.Fcal_2**2*(-Cons.Fcal_2*(-1.0*2*Cons.E_0*Cons.M*Vars.v**6 - 1.0*0*Vars.v**7) - 3.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**7) + (0*(0*(0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*4*Cons.E_2*Cons.M*Vars.v**6 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**7) + -Cons.Fcal_2*(4.0*2*Cons.E_0*Cons.M*Vars.v**5 + 4.0*0*Vars.v**6 + 4.0*4*Cons.E_2*Cons.M*Vars.v**7) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(4.0*2*Cons.E_0*Cons.M*Vars.v**6 + 4.0*0*Vars.v**7) + 4.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**7) + -Cons.Fcal_2*(-Cons.Fcal_2*(6.0*2*Cons.E_0*Cons.M*Vars.v**6 + 6.0*0*Vars.v**7) + 12.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**7)) + 4.0*-Cons.Fcal_2**3*2*Cons.E_0*Cons.M*Vars.v**7) + (0**3*(0*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**5 - 1.0*0*Vars.v**6 - 1.0*4*Cons.E_2*Cons.M*Vars.v**7) + -Cons.Fcal_2*(-5.0*2*Cons.E_0*Cons.M*Vars.v**6 - 5.0*0*Vars.v**7) - 5.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**7) - 10.0*-Cons.Fcal_2**2*2*Cons.E_0*Cons.M*Vars.v**7) + (0**5*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**6 + 1.0*0*Vars.v**7) + 6.0*-Cons.Fcal_2*2*Cons.E_0*Cons.M*Vars.v**7) - 1.0*0**7*2*Cons.E_0*Cons.M*Vars.v**7/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_3p5(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_3p5(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_3p5(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def Recalculate_4p0(Cons,Vars,y): Vars.v = np.array([y[0]]) Vars.rfrak_chi1 = np.array([y[1],y[2]]) Vars.rfrak_chi2 = np.array([y[3],y[4]]) Vars.rfrak_frame = np.array([y[5],y[6],y[7]]) Vars.R = exp(Vars.rfrak_frame[0]*Cons.xHat + Vars.rfrak_frame[1]*Cons.yHat + Vars.rfrak_frame[2]*Cons.zHat) Vars.nHat = mul(mul(Vars.R,Cons.xHat),conjugate(Vars.R)) Vars.lambdaHat = mul(mul(Vars.R,Cons.yHat),conjugate(Vars.R)) Vars.ellHat = mul(mul(Vars.R,Cons.zHat),conjugate(Vars.R)) Vars.R_S1 = exp(Vars.rfrak_chi1[0]*Cons.xHat + Vars.rfrak_chi1[1]*Cons.yHat) Vars.R_S2 = exp(Vars.rfrak_chi2[0]*Cons.xHat + Vars.rfrak_chi2[1]*Cons.yHat) Vars.chiVec1 = mul(mul(mul(Cons.S_chi1,Vars.R_S1),Cons.zHat),mul(conjugate(Vars.R_S1),conjugate(Cons.S_chi1))) Vars.chiVec2 = mul(mul(mul(Cons.S_chi2,Vars.R_S2),Cons.zHat),mul(conjugate(Vars.R_S2),conjugate(Cons.S_chi2))) Vars.chi1_n = np.array([dot(Vars.chiVec1[1:],Vars.nHat[1:])]) Vars.chi1_lambda = np.array([dot(Vars.chiVec1[1:],Vars.lambdaHat[1:])]) Vars.chi1_ell = np.array([dot(Vars.chiVec1[1:],Vars.ellHat[1:])]) Vars.chi2_n = np.array([dot(Vars.chiVec2[1:],Vars.nHat[1:])]) Vars.chi2_lambda = np.array([dot(Vars.chiVec2[1:],Vars.lambdaHat[1:])]) Vars.chi2_ell = np.array([dot(Vars.chiVec2[1:],Vars.ellHat[1:])]) Vars.S_ell = Cons.M1**2*Vars.chi1_ell + Cons.M2**2*Vars.chi2_ell Vars.S_n = Cons.M1**2*Vars.chi1_n + Cons.M2**2*Vars.chi2_n Vars.S_lambda = Cons.M1**2*Vars.chi1_lambda + Cons.M2**2*Vars.chi2_lambda Vars.Sigma_ell = Cons.M*(-Cons.M1*Vars.chi1_ell + Cons.M2*Vars.chi2_ell) Vars.Sigma_n = Cons.M*(-Cons.M1*Vars.chi1_n + Cons.M2*Vars.chi2_n) Vars.Sigma_lambda = Cons.M*(-Cons.M1*Vars.chi1_lambda + Cons.M2*Vars.chi2_lambda) Vars.chi_s_ell = Vars.chi1_ell/2 + Vars.chi2_ell/2 Vars.chi_a_ell = Vars.chi1_ell/2 - Vars.chi2_ell/2 Vars.logv = log(Vars.v) Vars.Fcal_coeff = 32*Cons.nu**2*Vars.v**10/5 Vars.Fcal_SQ_4 = Cons.chi1chi1*(-89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) - 103*Cons.chi1chi2*Cons.nu/48 + Cons.chi2chi2*(89*Cons.delta/192 + 89*Cons.nu/96 - 89/192) + Vars.chi_a_ell*(Vars.chi_a_ell*(287/96 - 12*Cons.nu) + 287*Vars.chi_s_ell*Cons.delta/48) + Vars.chi_s_ell**2*(Cons.nu/24 + 287/96) Vars.Fcal_SO_3 = (-4*Vars.S_ell - 5*Vars.Sigma_ell*Cons.delta/4)/Cons.M**2 Vars.Fcal_SO_5 = (Vars.S_ell*(272*Cons.nu/9 - 9/2) + Vars.Sigma_ell*Cons.delta*(43*Cons.nu/4 - 13/16))/Cons.M**2 Vars.Fcal_SO_6 = (-16*Vars.S_ell*pi - 31*Vars.Sigma_ell*Cons.delta*pi/6)/Cons.M**2 Vars.Fcal_SO_7 = (Vars.S_ell*(-2810*Cons.nu**2/27 + 6172*Cons.nu/189 + 476645/6804) + Vars.Sigma_ell*Cons.delta*(-1501*Cons.nu**2/36 + 1849*Cons.nu/126 + 9535/336))/Cons.M**2 Vars.Fcal_SO_8 = (Vars.S_ell*pi*(13879*Cons.nu/72 - 3485/96) + Vars.Sigma_ell*Cons.delta*pi*(130583*Cons.nu/2016 - 7163/672))/Cons.M**2 Vars.E_SQ_4 = -3*Vars.chi_a_ell**2/2 - 3*Vars.chi_s_ell**2/2 - Cons.delta*(Cons.chi2chi2/2 + 3*Vars.chi_a_ell*Vars.chi_s_ell) + Cons.nu*(Cons.chi1chi2 + 6*Vars.chi_a_ell**2) + (Cons.chi1chi1 + Cons.chi2chi2)*(Cons.delta - 2*Cons.nu + 1)/4 Vars.E_SO_3 = (14*Vars.S_ell/3 + 2*Vars.Sigma_ell*Cons.delta)/Cons.M**2 Vars.E_SO_5 = (Vars.S_ell*(11 - 61*Cons.nu/9) + Vars.Sigma_ell*Cons.delta*(3 - 10*Cons.nu/3))/Cons.M**2 Vars.E_SO_7 = (Vars.S_ell*(29*Cons.nu**2/12 - 367*Cons.nu/4 + 135/4) + Vars.Sigma_ell*Cons.delta*(5*Cons.nu**2/4 - 39*Cons.nu + 27/4))/Cons.M**2 @njit def OmegaVec_chiVec_1_4p0(Cons,Vars): Omega1_coeff = Vars.v**5/Cons.M return Omega1_coeff*(Vars.ellHat*(-0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.625*Cons.nu - 0.5625) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(4.875 - 0.15625*Cons.nu) - 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi1_n*Cons.nu + 3.0*Cons.M2**2*Vars.chi2_n/Cons.M**2) - Cons.M2**2*Vars.chiVec2*Vars.v/Cons.M**2) @njit def OmegaVec_chiVec_2_4p0(Cons,Vars): Omega2_coeff = Vars.v**5/Cons.M return Omega2_coeff*(Vars.ellHat*(0.75*Cons.delta + 0.5*Cons.nu + Vars.v**2*(Cons.delta*(0.5625 - 0.625*Cons.nu) + Cons.nu*(1.25 - 0.0416666666666667*Cons.nu) + Vars.v**2*(Cons.delta*(Cons.nu*(0.15625*Cons.nu - 4.875) + 0.84375) + Cons.nu*(Cons.nu*(-0.0208333333333333*Cons.nu - 3.28125) + 0.1875) + 0.84375) + 0.5625) + 0.75) + Vars.nHat*Vars.v*(3.0*Vars.chi2_n*Cons.nu + 3.0*Cons.M1**2*Vars.chi1_n/Cons.M**2) - Cons.M1**2*Vars.chiVec1*Vars.v/Cons.M**2) @njit def OmegaVec_4p0(Cons,Vars): gamma_PN_7 = (Vars.S_ell*(-6.0*Cons.nu**2 - 10.5833333333333*Cons.nu + 5.0) - 2.66666666666667*Vars.Sigma_ell*Cons.delta*Cons.nu**2 + Vars.Sigma_ell*Cons.delta*(3.0 - 10.1666666666667*Cons.nu))/Cons.M**2 a_ell_0 = 7.0*Vars.S_n + 3.0*Vars.Sigma_n*Cons.delta gamma_PN_2 = 1.0 - 0.333333333333333*Cons.nu a_ell_4 = Vars.S_n*(5.77777777777778*Cons.nu**2 + 14.75*Cons.nu + 1.5) + Vars.Sigma_n*Cons.delta*(2.83333333333333*Cons.nu**2 + 9.125*Cons.nu + 1.5) gamma_PN_3 = (1.66666666666667*Vars.S_ell + Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_6 = 0.0123456790123457*Cons.nu**3 + 6.36111111111111*Cons.nu**2 - 2.98177812235564*Cons.nu + 1.0 gamma_PN_0 = 1.00000000000000 gamma_PN_5 = (Vars.S_ell*(0.888888888888889*Cons.nu + 3.33333333333333) + 2.0*Vars.Sigma_ell*Cons.delta)/Cons.M**2 gamma_PN_4 = 1.0 - 5.41666666666667*Cons.nu a_ell_2 = Vars.S_n*(-9.66666666666667*Cons.nu - 10.0) + Vars.Sigma_n*Cons.delta*(-4.5*Cons.nu - 6.0) return Vars.ellHat*Vars.v**3/Cons.M + Vars.nHat*Vars.v**6*(a_ell_0 + Vars.v**2*(a_ell_2 + a_ell_4*Vars.v**2))*(gamma_PN_0 + Vars.v**2*(gamma_PN_2 + Vars.v*(gamma_PN_3 + Vars.v*(gamma_PN_4 + Vars.v*(gamma_PN_5 + Vars.v*(gamma_PN_6 + gamma_PN_7*Vars.v))))))/Cons.M**3 @njit(cache=True) def TaylorT1_4p0(Cons,Vars): Flux = Vars.Fcal_coeff*(Cons.Fcal_0 + Vars.v**2*(Cons.Fcal_2 + Vars.v*(Cons.Fcal_3 + Vars.Fcal_SO_3 + Vars.v*(Cons.Fcal_4 + Vars.Fcal_SQ_4 + Vars.v*(Cons.Fcal_5 + Vars.Fcal_SO_5 + Vars.v*(Cons.Fcal_6 + Vars.Fcal_SO_6 + Cons.Fcal_lnv_6*Vars.logv + Vars.v*(Cons.Fcal_7 + Vars.Fcal_SO_7 + Vars.v*(Cons.Fcal_8 + Vars.Fcal_SO_8 + Cons.Fcal_lnv_8*Vars.logv)))))))) dEdV = -0.5*Cons.M*Cons.nu*Vars.v*(2.0*Cons.E_0 + Vars.v**2*(4.0*Cons.E_2 + Vars.v*(5.0*Vars.E_SO_3 + Vars.v*(6.0*Cons.E_4 + 6.0*Vars.E_SQ_4 + Vars.v*(7.0*Vars.E_SO_5 + Vars.v*(8.0*Cons.E_6 + Vars.v*(9.0*Vars.E_SO_7 + Vars.v*(10.0*Cons.E_8 + Cons.E_lnv_8*(10.0*Vars.logv + 1.0))))))))) Absorption = 0 dvdt_T1 = (-Absorption - Flux)/dEdV dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_4p0(Cons,Vars)[1:]) dydt[0] = dvdt_T1[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_4p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_4p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT4_4p0(Cons,Vars): dvdt_T4 = -2.0*Vars.Fcal_coeff*(1.0*-Cons.Fcal_0 + 1.0*0*Vars.v + 1.0*-Cons.Fcal_2*Vars.v**2 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**3 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**4 + 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**5 + 1.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*Vars.v**6 + 1.0*-Cons.Fcal_7 - Vars.Fcal_SO_7*Vars.v**7 + 1.0*-Cons.Fcal_8 - Vars.Fcal_SO_8 - Cons.Fcal_lnv_8*Vars.logv*Vars.v**8 + (0*(-1.0*-Cons.Fcal_0*Vars.v - 1.0*0*Vars.v**2 - 1.0*-Cons.Fcal_2*Vars.v**3 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**4 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**5 - 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**6 - 1.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*Vars.v**7 - 1.0*-Cons.Fcal_7 - Vars.Fcal_SO_7*Vars.v**8) + 4*Cons.E_2*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*-Cons.Fcal_2*Vars.v**4 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**5 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**6 - 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**7 - 1.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*-Cons.Fcal_2*Vars.v**5 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**7 - 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**8) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**4 - 1.0*0*Vars.v**5 - 1.0*-Cons.Fcal_2*Vars.v**6 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**8) + 7*Vars.E_SO_5*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**5 - 1.0*0*Vars.v**6 - 1.0*-Cons.Fcal_2*Vars.v**7 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**8) + 8*Cons.E_6*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**6 - 1.0*0*Vars.v**7 - 1.0*-Cons.Fcal_2*Vars.v**8) + 9*Vars.E_SO_7*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**7 - 1.0*0*Vars.v**8) - 1.0*10*Cons.E_8*Cons.M + Cons.E_lnv_8*Cons.M*(10*Vars.logv + 1)*-Cons.Fcal_0*Vars.v**8 + (0*(0*(1.0*-Cons.Fcal_0*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*-Cons.Fcal_2*Vars.v**4 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**5 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**6 + 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**7 + 1.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*Vars.v**8) + 4*Cons.E_2*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**3 + 2.0*0*Vars.v**4 + 2.0*-Cons.Fcal_2*Vars.v**5 + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6 + 2.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**7 + 2.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**4 + 2.0*0*Vars.v**5 + 2.0*-Cons.Fcal_2*Vars.v**6 + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7 + 2.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**8) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**5 + 2.0*0*Vars.v**6 + 2.0*-Cons.Fcal_2*Vars.v**7 + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**8) + 7*Vars.E_SO_5*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**6 + 2.0*0*Vars.v**7 + 2.0*-Cons.Fcal_2*Vars.v**8) + 8*Cons.E_6*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**7 + 2.0*0*Vars.v**8) + 2.0*9*Vars.E_SO_7*Cons.M*-Cons.Fcal_0*Vars.v**8) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(1.0*-Cons.Fcal_0*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*-Cons.Fcal_2*Vars.v**6 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**5 + 2.0*0*Vars.v**6 + 2.0*-Cons.Fcal_2*Vars.v**7 + 2.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**8) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**6 + 2.0*0*Vars.v**7 + 2.0*-Cons.Fcal_2*Vars.v**8) + 7*Vars.E_SO_5*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**7 + 2.0*0*Vars.v**8) + 2.0*8*Cons.E_6*Cons.M*-Cons.Fcal_0*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(5*Vars.E_SO_3*Cons.M*(1.0*-Cons.Fcal_0*Vars.v**6 + 1.0*0*Vars.v**7 + 1.0*-Cons.Fcal_2*Vars.v**8) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(2.0*-Cons.Fcal_0*Vars.v**7 + 2.0*0*Vars.v**8) + 2.0*7*Vars.E_SO_5*Cons.M*-Cons.Fcal_0*Vars.v**8) + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M**2*-Cons.Fcal_0*Vars.v**8 + (0*(0*(0*(-1.0*-Cons.Fcal_0*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*-Cons.Fcal_2*Vars.v**5 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**6 - 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**7 - 1.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*Vars.v**8) + 4*Cons.E_2*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**4 - 3.0*0*Vars.v**5 - 3.0*-Cons.Fcal_2*Vars.v**6 - 3.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7 - 3.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**5 - 3.0*0*Vars.v**6 - 3.0*-Cons.Fcal_2*Vars.v**7 - 3.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**8) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**6 - 3.0*0*Vars.v**7 - 3.0*-Cons.Fcal_2*Vars.v**8) + 7*Vars.E_SO_5*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**7 - 3.0*0*Vars.v**8) - 3.0*8*Cons.E_6*Cons.M*-Cons.Fcal_0*Vars.v**8) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**5 - 3.0*0*Vars.v**6 - 3.0*-Cons.Fcal_2*Vars.v**7 - 3.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(-6.0*-Cons.Fcal_0*Vars.v**6 - 6.0*0*Vars.v**7 - 6.0*-Cons.Fcal_2*Vars.v**8) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(-6.0*-Cons.Fcal_0*Vars.v**7 - 6.0*0*Vars.v**8) - 6.0*7*Vars.E_SO_5*Cons.M*-Cons.Fcal_0*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(5*Vars.E_SO_3*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**7 - 3.0*0*Vars.v**8) - 6.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**8)) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(-1.0*-Cons.Fcal_0*Vars.v**6 - 1.0*0*Vars.v**7 - 1.0*-Cons.Fcal_2*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(-3.0*-Cons.Fcal_0*Vars.v**7 - 3.0*0*Vars.v**8) - 3.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**8) - 3.0*5*Vars.E_SO_3*Cons.M**2*-Cons.Fcal_0*Vars.v**8) + (0*(0*(0*(0*(1.0*-Cons.Fcal_0*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*-Cons.Fcal_2*Vars.v**6 + 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**7 + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*Vars.v**8) + 4*Cons.E_2*Cons.M*(4.0*-Cons.Fcal_0*Vars.v**5 + 4.0*0*Vars.v**6 + 4.0*-Cons.Fcal_2*Vars.v**7 + 4.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(4.0*-Cons.Fcal_0*Vars.v**6 + 4.0*0*Vars.v**7 + 4.0*-Cons.Fcal_2*Vars.v**8) + 6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*(4.0*-Cons.Fcal_0*Vars.v**7 + 4.0*0*Vars.v**8) + 4.0*7*Vars.E_SO_5*Cons.M*-Cons.Fcal_0*Vars.v**8) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(6.0*-Cons.Fcal_0*Vars.v**6 + 6.0*0*Vars.v**7 + 6.0*-Cons.Fcal_2*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(12.0*-Cons.Fcal_0*Vars.v**7 + 12.0*0*Vars.v**8) + 12.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**8) + 6.0*5*Vars.E_SO_3*Cons.M**2*-Cons.Fcal_0*Vars.v**8) + 4*Cons.E_2*Cons.M**2*(4*Cons.E_2*Cons.M*(4.0*-Cons.Fcal_0*Vars.v**7 + 4.0*0*Vars.v**8) + 12.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**8)) + 1.0*4*Cons.E_2*Cons.M**4*-Cons.Fcal_0*Vars.v**8 + (0**2*(0*(0*(0*(-1.0*-Cons.Fcal_0*Vars.v**5 - 1.0*0*Vars.v**6 - 1.0*-Cons.Fcal_2*Vars.v**7 - 1.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*Vars.v**8) + 4*Cons.E_2*Cons.M*(-5.0*-Cons.Fcal_0*Vars.v**6 - 5.0*0*Vars.v**7 - 5.0*-Cons.Fcal_2*Vars.v**8) + 5*Vars.E_SO_3*Cons.M*(-5.0*-Cons.Fcal_0*Vars.v**7 - 5.0*0*Vars.v**8) - 5.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*-Cons.Fcal_0*Vars.v**8) + 4*Cons.E_2*Cons.M*(4*Cons.E_2*Cons.M*(-10.0*-Cons.Fcal_0*Vars.v**7 - 10.0*0*Vars.v**8) - 20.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**8)) - 10.0*4*Cons.E_2*Cons.M**3*-Cons.Fcal_0*Vars.v**8) + (0**4*(0*(0*(1.0*-Cons.Fcal_0*Vars.v**6 + 1.0*0*Vars.v**7 + 1.0*-Cons.Fcal_2*Vars.v**8) + 4*Cons.E_2*Cons.M*(6.0*-Cons.Fcal_0*Vars.v**7 + 6.0*0*Vars.v**8) + 6.0*5*Vars.E_SO_3*Cons.M*-Cons.Fcal_0*Vars.v**8) + 15.0*4*Cons.E_2*Cons.M**2*-Cons.Fcal_0*Vars.v**8) + (0**6*(0*(-1.0*-Cons.Fcal_0*Vars.v**7 - 1.0*0*Vars.v**8) - 7.0*4*Cons.E_2*Cons.M*-Cons.Fcal_0*Vars.v**8) + 1.0*0**8*-Cons.Fcal_0*Vars.v**8/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/2*Cons.E_0*Cons.M)/(Cons.nu*Vars.v*2*Cons.E_0*Cons.M) dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_4p0(Cons,Vars)[1:]) dydt[0] = dvdt_T4[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_4p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_4p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt @njit(cache=True) def TaylorT5_4p0(Cons,Vars): dtdv = -0.5*Cons.nu*Vars.v*(1.0*2*Cons.E_0*Cons.M + 1.0*0*Vars.v + 1.0*4*Cons.E_2*Cons.M*Vars.v**2 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**3 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**4 + 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**5 + 1.0*8*Cons.E_6*Cons.M*Vars.v**6 + 1.0*9*Vars.E_SO_7*Cons.M*Vars.v**7 + 1.0*10*Cons.E_8*Cons.M + Cons.E_lnv_8*Cons.M*(10*Vars.logv + 1)*Vars.v**8 + (0*(-1.0*2*Cons.E_0*Cons.M*Vars.v - 1.0*0*Vars.v**2 - 1.0*4*Cons.E_2*Cons.M*Vars.v**3 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**4 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**5 - 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**6 - 1.0*8*Cons.E_6*Cons.M*Vars.v**7 - 1.0*9*Vars.E_SO_7*Cons.M*Vars.v**8) + -Cons.Fcal_2*(-1.0*2*Cons.E_0*Cons.M*Vars.v**2 - 1.0*0*Vars.v**3 - 1.0*4*Cons.E_2*Cons.M*Vars.v**4 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**5 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**6 - 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**7 - 1.0*8*Cons.E_6*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*4*Cons.E_2*Cons.M*Vars.v**5 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**6 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**7 - 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**8) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(-1.0*2*Cons.E_0*Cons.M*Vars.v**4 - 1.0*0*Vars.v**5 - 1.0*4*Cons.E_2*Cons.M*Vars.v**6 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**7 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**8) + -Cons.Fcal_5 - Vars.Fcal_SO_5*(-1.0*2*Cons.E_0*Cons.M*Vars.v**5 - 1.0*0*Vars.v**6 - 1.0*4*Cons.E_2*Cons.M*Vars.v**7 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**8) + -Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*(-1.0*2*Cons.E_0*Cons.M*Vars.v**6 - 1.0*0*Vars.v**7 - 1.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_7 - Vars.Fcal_SO_7*(-1.0*2*Cons.E_0*Cons.M*Vars.v**7 - 1.0*0*Vars.v**8) - 1.0*-Cons.Fcal_8 - Vars.Fcal_SO_8 - Cons.Fcal_lnv_8*Vars.logv*2*Cons.E_0*Cons.M*Vars.v**8 + (0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**2 + 1.0*0*Vars.v**3 + 1.0*4*Cons.E_2*Cons.M*Vars.v**4 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**5 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**6 + 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**7 + 1.0*8*Cons.E_6*Cons.M*Vars.v**8) + -Cons.Fcal_2*(2.0*2*Cons.E_0*Cons.M*Vars.v**3 + 2.0*0*Vars.v**4 + 2.0*4*Cons.E_2*Cons.M*Vars.v**5 + 2.0*5*Vars.E_SO_3*Cons.M*Vars.v**6 + 2.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**7 + 2.0*7*Vars.E_SO_5*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(2.0*2*Cons.E_0*Cons.M*Vars.v**4 + 2.0*0*Vars.v**5 + 2.0*4*Cons.E_2*Cons.M*Vars.v**6 + 2.0*5*Vars.E_SO_3*Cons.M*Vars.v**7 + 2.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**8) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(2.0*2*Cons.E_0*Cons.M*Vars.v**5 + 2.0*0*Vars.v**6 + 2.0*4*Cons.E_2*Cons.M*Vars.v**7 + 2.0*5*Vars.E_SO_3*Cons.M*Vars.v**8) + -Cons.Fcal_5 - Vars.Fcal_SO_5*(2.0*2*Cons.E_0*Cons.M*Vars.v**6 + 2.0*0*Vars.v**7 + 2.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*(2.0*2*Cons.E_0*Cons.M*Vars.v**7 + 2.0*0*Vars.v**8) + 2.0*-Cons.Fcal_7 - Vars.Fcal_SO_7*2*Cons.E_0*Cons.M*Vars.v**8) + -Cons.Fcal_2*(-Cons.Fcal_2*(1.0*2*Cons.E_0*Cons.M*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*4*Cons.E_2*Cons.M*Vars.v**6 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**7 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(2.0*2*Cons.E_0*Cons.M*Vars.v**5 + 2.0*0*Vars.v**6 + 2.0*4*Cons.E_2*Cons.M*Vars.v**7 + 2.0*5*Vars.E_SO_3*Cons.M*Vars.v**8) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(2.0*2*Cons.E_0*Cons.M*Vars.v**6 + 2.0*0*Vars.v**7 + 2.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_5 - Vars.Fcal_SO_5*(2.0*2*Cons.E_0*Cons.M*Vars.v**7 + 2.0*0*Vars.v**8) + 2.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*2*Cons.E_0*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-Cons.Fcal_3 - Vars.Fcal_SO_3*(1.0*2*Cons.E_0*Cons.M*Vars.v**6 + 1.0*0*Vars.v**7 + 1.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(2.0*2*Cons.E_0*Cons.M*Vars.v**7 + 2.0*0*Vars.v**8) + 2.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*2*Cons.E_0*Cons.M*Vars.v**8) + 1.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4**2*2*Cons.E_0*Cons.M*Vars.v**8 + (0*(0*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**3 - 1.0*0*Vars.v**4 - 1.0*4*Cons.E_2*Cons.M*Vars.v**5 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**6 - 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**7 - 1.0*7*Vars.E_SO_5*Cons.M*Vars.v**8) + -Cons.Fcal_2*(-3.0*2*Cons.E_0*Cons.M*Vars.v**4 - 3.0*0*Vars.v**5 - 3.0*4*Cons.E_2*Cons.M*Vars.v**6 - 3.0*5*Vars.E_SO_3*Cons.M*Vars.v**7 - 3.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-3.0*2*Cons.E_0*Cons.M*Vars.v**5 - 3.0*0*Vars.v**6 - 3.0*4*Cons.E_2*Cons.M*Vars.v**7 - 3.0*5*Vars.E_SO_3*Cons.M*Vars.v**8) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(-3.0*2*Cons.E_0*Cons.M*Vars.v**6 - 3.0*0*Vars.v**7 - 3.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_5 - Vars.Fcal_SO_5*(-3.0*2*Cons.E_0*Cons.M*Vars.v**7 - 3.0*0*Vars.v**8) - 3.0*-Cons.Fcal_6 - Vars.Fcal_SO_6 - Cons.Fcal_lnv_6*Vars.logv*2*Cons.E_0*Cons.M*Vars.v**8) + -Cons.Fcal_2*(-Cons.Fcal_2*(-3.0*2*Cons.E_0*Cons.M*Vars.v**5 - 3.0*0*Vars.v**6 - 3.0*4*Cons.E_2*Cons.M*Vars.v**7 - 3.0*5*Vars.E_SO_3*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-6.0*2*Cons.E_0*Cons.M*Vars.v**6 - 6.0*0*Vars.v**7 - 6.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(-6.0*2*Cons.E_0*Cons.M*Vars.v**7 - 6.0*0*Vars.v**8) - 6.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*2*Cons.E_0*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-Cons.Fcal_3 - Vars.Fcal_SO_3*(-3.0*2*Cons.E_0*Cons.M*Vars.v**7 - 3.0*0*Vars.v**8) - 6.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**8)) + -Cons.Fcal_2*(-Cons.Fcal_2*(-Cons.Fcal_2*(-1.0*2*Cons.E_0*Cons.M*Vars.v**6 - 1.0*0*Vars.v**7 - 1.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-3.0*2*Cons.E_0*Cons.M*Vars.v**7 - 3.0*0*Vars.v**8) - 3.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**8) - 3.0*-Cons.Fcal_3 - Vars.Fcal_SO_3**2*2*Cons.E_0*Cons.M*Vars.v**8) + (0*(0*(0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**4 + 1.0*0*Vars.v**5 + 1.0*4*Cons.E_2*Cons.M*Vars.v**6 + 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**7 + 1.0*6*Cons.E_4*Cons.M + 6*Vars.E_SQ_4*Cons.M*Vars.v**8) + -Cons.Fcal_2*(4.0*2*Cons.E_0*Cons.M*Vars.v**5 + 4.0*0*Vars.v**6 + 4.0*4*Cons.E_2*Cons.M*Vars.v**7 + 4.0*5*Vars.E_SO_3*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(4.0*2*Cons.E_0*Cons.M*Vars.v**6 + 4.0*0*Vars.v**7 + 4.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_4 - Vars.Fcal_SQ_4*(4.0*2*Cons.E_0*Cons.M*Vars.v**7 + 4.0*0*Vars.v**8) + 4.0*-Cons.Fcal_5 - Vars.Fcal_SO_5*2*Cons.E_0*Cons.M*Vars.v**8) + -Cons.Fcal_2*(-Cons.Fcal_2*(6.0*2*Cons.E_0*Cons.M*Vars.v**6 + 6.0*0*Vars.v**7 + 6.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(12.0*2*Cons.E_0*Cons.M*Vars.v**7 + 12.0*0*Vars.v**8) + 12.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**8) + 6.0*-Cons.Fcal_3 - Vars.Fcal_SO_3**2*2*Cons.E_0*Cons.M*Vars.v**8) + -Cons.Fcal_2**2*(-Cons.Fcal_2*(4.0*2*Cons.E_0*Cons.M*Vars.v**7 + 4.0*0*Vars.v**8) + 12.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**8)) + 1.0*-Cons.Fcal_2**4*2*Cons.E_0*Cons.M*Vars.v**8 + (0**2*(0*(0*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**5 - 1.0*0*Vars.v**6 - 1.0*4*Cons.E_2*Cons.M*Vars.v**7 - 1.0*5*Vars.E_SO_3*Cons.M*Vars.v**8) + -Cons.Fcal_2*(-5.0*2*Cons.E_0*Cons.M*Vars.v**6 - 5.0*0*Vars.v**7 - 5.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_3 - Vars.Fcal_SO_3*(-5.0*2*Cons.E_0*Cons.M*Vars.v**7 - 5.0*0*Vars.v**8) - 5.0*-Cons.Fcal_4 - Vars.Fcal_SQ_4*2*Cons.E_0*Cons.M*Vars.v**8) + -Cons.Fcal_2*(-Cons.Fcal_2*(-10.0*2*Cons.E_0*Cons.M*Vars.v**7 - 10.0*0*Vars.v**8) - 20.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**8)) - 10.0*-Cons.Fcal_2**3*2*Cons.E_0*Cons.M*Vars.v**8) + (0**4*(0*(0*(1.0*2*Cons.E_0*Cons.M*Vars.v**6 + 1.0*0*Vars.v**7 + 1.0*4*Cons.E_2*Cons.M*Vars.v**8) + -Cons.Fcal_2*(6.0*2*Cons.E_0*Cons.M*Vars.v**7 + 6.0*0*Vars.v**8) + 6.0*-Cons.Fcal_3 - Vars.Fcal_SO_3*2*Cons.E_0*Cons.M*Vars.v**8) + 15.0*-Cons.Fcal_2**2*2*Cons.E_0*Cons.M*Vars.v**8) + (0**6*(0*(-1.0*2*Cons.E_0*Cons.M*Vars.v**7 - 1.0*0*Vars.v**8) - 7.0*-Cons.Fcal_2*2*Cons.E_0*Cons.M*Vars.v**8) + 1.0*0**8*2*Cons.E_0*Cons.M*Vars.v**8/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/-Cons.Fcal_0)/(Vars.Fcal_coeff*-Cons.Fcal_0) dvdt_T5 = 1.0/dtdv dydt=np.zeros(8) [dydt[5],dydt[6],dydt[7]] = FrameFromAngularVelocityIntegrand(Vars.rfrak_frame, OmegaVec_4p0(Cons,Vars)[1:]) dydt[0] = dvdt_T5[0] if(Cons.EvolveSpin1): dydt[1], dydt[2]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi1[0], Vars.rfrak_chi1[1],(mul(mul(inverse(Cons.S_chi1),OmegaVec_chiVec_1_4p0(Cons,Vars)),Cons.S_chi1))[1:]) else: dydt[1], dydt[2] = 0.0, 0.0 if(Cons.EvolveSpin2): dydt[3], dydt[4]=FrameFromAngularVelocity_2D_Integrand(Vars.rfrak_chi2[0], Vars.rfrak_chi2[1],(mul(mul(inverse(Cons.S_chi2),OmegaVec_chiVec_2_4p0(Cons,Vars)),Cons.S_chi2))[1:]) else: dydt[3], dydt[4] = 0.0, 0.0 return dydt class PNEv: def Integrand(t,y): PNEv.Recalculate.get(2*PNEv.PNEvolutionOrder)(PNEv.Cons,PNEv.Vars,y) dydt=PNEv.Taylor.get(PNEv.TaylorTn+20*PNEv.PNEvolutionOrder)(PNEv.Cons,PNEv.Vars) if PNEv.Vars.v>=1.0 and PNEv.NotForward: print("Beyond domain of PN validity, this is a good way to terminate.") PNEv.terminal1=False if dydt[0]<1.0e-12 and PNEv.NotForward: print("v is decreasing, which is not an uncommon way to stop.") PNEv.terminal2=False return dydt def Evolution(xHat_i, yHat_i, zHat_i, M1_i, M2_i, v_i, S_chi1_i, S_chi2_i, rfrak_frame, t_PNStart=False, t_PNEnd=False, PNEvolutionOrder=3.5, TaylorTn=1, StepsPerOrbit=32, ForwardInTime=True, tol=1e-8, MinStep=1e-7): # Initialization of constants PNEv.terminal1=True PNEv.terminal2=True PNEv.NotForward=True PNEv.PNEvolutionOrder=PNEvolutionOrder PNEv.TaylorTn=TaylorTn PNEv.Recalculate={ 0:Recalculate_0, 1:Recalculate_0p50, 2:Recalculate_1p0, 3:Recalculate_1p5, 4:Recalculate_2p0, 5:Recalculate_2p5, 6:Recalculate_3p0, 7:Recalculate_3p5, 8:Recalculate_4p0} PNEv.Taylor={ 1:TaylorT1_0, 11:TaylorT1_0p50, 21:TaylorT1_1p0, 31:TaylorT1_1p5, 41:TaylorT1_2p0, 51:TaylorT1_2p5, 61:TaylorT1_3p0, 71:TaylorT1_3p5, 81:TaylorT1_4p0, 4:TaylorT4_0, 14:TaylorT4_0p50, 24:TaylorT4_1p0, 34:TaylorT4_1p5, 44:TaylorT4_2p0, 54:TaylorT4_2p5, 64:TaylorT4_3p0, 74:TaylorT4_3p5, 84:TaylorT4_4p0, 5:TaylorT5_0, 15:TaylorT5_0p50, 25:TaylorT5_1p0, 35:TaylorT5_1p5, 45:TaylorT5_2p0, 55:TaylorT5_2p5, 65:TaylorT5_3p0, 75:TaylorT5_3p5, 85:TaylorT5_4p0} z=np.array([0.0]) PNEv.Cons=Cons(z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,True,True) PNEv.Vars=Vars(z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z) Initialization(PNEv.Cons,xHat_i, yHat_i, zHat_i, M1_i, M2_i, v_i, S_chi1_i, S_chi2_i, rfrak_frame) def terminate(t,y): return 1.0*PNEv.terminal1*PNEv.terminal2 terminate.terminal=True TMerger=5.0/(256.0*PNEv.Cons.nu*v_i**8) TEnd=TMerger if t_PNEnd: TEnd=t_PNEnd time=[0.0] while time[-1]<TEnd and 2*PNEv.Cons.M*(256*PNEv.Cons.nu*(TMerger-time[-1])/5)**(3/8)/StepsPerOrbit>MinStep: time.append(time[-1]+(2*PNEv.Cons.M*(256*PNEv.Cons.nu*(TMerger-time[-1])/5)**(3/8)/StepsPerOrbit)[0]) time=np.delete(time, -1) # Integrate yy=solve_ivp(PNEv.Integrand, [time[0],time[-1]], [v_i,0.0, 0.0,0.0,0.0,rfrak_frame[0],rfrak_frame[1],rfrak_frame[2]], method='DOP853', t_eval=time, dense_output=True, events=terminate, rtol=tol, atol=tol) if ForwardInTime: PNEv.NotForward=False time=[0.0] TStart=-3*TMerger if t_PNStart: TStart=t_PNStart while time[-1]>TStart: time.append(time[-1]-(2*PNEv.Cons.M*(256*PNEv.Cons.nu*(TMerger-time[-1])/5)**(3/8)/StepsPerOrbit)[0]) yyForward=solve_ivp(PNEv.Integrand, [time[0],time[-1]], [v_i,0.0, 0.0,0.0,0.0,rfrak_frame[0],rfrak_frame[1],rfrak_frame[2]], method='DOP853', t_eval=time, dense_output=True, rtol=tol, atol=tol) yy.t=np.append(yyForward.t[1:][::-1],yy.t) data=np.empty((8,len(yy.t))) for i in range(8): data[i]=np.append(yyForward.y[i][1:][::-1],yy.y[i]) yy.y=data return yy
# -*- coding: utf-8 -*- from __future__ import unicode_literals # El code_menu debe ser único y se configurará como un permiso del sistema MENU_DEFAULT = [ {'code_menu': 'acceso_programaciones_didacticas', 'texto_menu': 'Programación General Anual', 'href': '', 'nivel': 1, 'tipo': 'Accesible', 'pos': 1 }, {'code_menu': 'acceso_programaciones_ccff', 'texto_menu': 'Programaciones CCFF', 'href': 'programaciones', 'nivel': 2, 'tipo': 'Accesible', 'pos': 1, 'parent': 'acceso_programaciones_didacticas' }, {'code_menu': 'acceso_cargar_programaciones', 'texto_menu': 'Cargar programaciones', 'href': 'cargar_programaciones', 'nivel': 2, 'tipo': 'Accesible', 'pos': 2, 'parent': 'acceso_programaciones_didacticas' }, {'code_menu': 'acceso_resultados_aprendizaje', 'texto_menu': 'Resultados de aprendizaje', 'href': 'objetivos_criterios', 'nivel': 2, 'tipo': 'Accesible', 'pos': 3, 'parent': 'acceso_programaciones_didacticas' }, {'code_menu': 'acceso_cuerpos_funcionarios', 'texto_menu': 'Cuerpos de funcionarios', 'href': 'cuerpos_funcionarios_entidad', 'nivel': 2, 'tipo': 'Accesible', 'pos': 4, 'parent': 'acceso_programaciones_didacticas' }, {'code_menu': 'acceso_departamentos_centro_educativo', 'texto_menu': 'Departamentos del centro', 'href': 'departamentos_centro_educativo', 'nivel': 2, 'tipo': 'Accesible', 'pos': 5, 'parent': 'acceso_programaciones_didacticas' }, {'code_menu': 'acceso_profesores_centro_educativo', 'texto_menu': 'Profesores del centro', 'href': 'profesores_centro_educativo', 'nivel': 2, 'tipo': 'Accesible', 'pos': 6, 'parent': 'acceso_programaciones_didacticas' }, {'code_menu': 'acceso_aspectos_pga', 'texto_menu': 'Aspectos generales de la PGA', 'href': 'aspectos_pga', 'nivel': 2, 'tipo': 'Accesible', 'pos': 7, 'parent': 'acceso_programaciones_didacticas' }, {'code_menu': 'acceso_pec', 'texto_menu': 'Proyecto Educativo del Centro', 'href': 'proyecto_educativo_centro', 'nivel': 2, 'tipo': 'Accesible', 'pos': 8, 'parent': 'acceso_programaciones_didacticas' } ] # Se añaden otros permisos para el usuario PERMISOS = [{'code_nombre': 'crea_programaciones_ccff', 'nombre': 'Tiene permiso para crear programaciones de CCFF', 'menu': 'acceso_programaciones_ccff' }, {'code_nombre': 'edita_programaciones_ccff', 'nombre': 'Tiene permiso para editar cualquier programación de CCFF', 'menu': 'acceso_programaciones_ccff' }, {'code_nombre': 'copia_programaciones_ccff', 'nombre': 'Tiene permiso para copiar cualquier programación de CCFF', 'menu': 'acceso_programaciones_ccff' }, {'code_nombre': 'borra_programaciones_ccff', 'nombre': 'Tiene permiso para borrar cualquier programación de CCFF', 'menu': 'acceso_programaciones_ccff' }, {'code_nombre': 'crea_resultados_aprendizaje_ccff', 'nombre': 'Tiene permiso para crear resultados de aprendizaje asociados a un Ciclo Formativo', 'menu': 'acceso_resultados_aprendizaje' }, {'code_nombre': 'borra_resultados_aprendizaje_ccff', 'nombre': 'Tiene permiso para borrar resultados de aprendizaje asociados a un Ciclo Formativo', 'menu': 'acceso_resultados_aprendizaje' }, {'code_nombre': 'crea_objetivos_ccff', 'nombre': 'Pued crear objetivos y criterios de evaluación asociados a un resultado de aprendizaje', 'menu': 'acceso_resultados_aprendizaje' }, {'code_nombre': 'borra_objetivos_ccff', 'nombre': 'Puede borrar objetivos y criterios de evaluación asociados a un resultado de aprendizaje', 'menu': 'acceso_resultados_aprendizaje' }, {'code_nombre': 'borra_departamentos', 'nombre': 'Puede borrar departamentos del centro educativo', 'menu': 'acceso_departamentos_centro_educativo' }, {'code_nombre': 'recarga_departamentos', 'nombre': 'Puede recargar todos los departamentos posibles para el centro educativo', 'menu': 'acceso_departamentos_centro_educativo' }, {'code_nombre': 'add_miembros_departamento', 'nombre': 'Puede añadir usuarios al departamento del centro educativo', 'menu': 'acceso_departamentos_centro_educativo' }, {'code_nombre': 'carga_programaciones', 'nombre': 'Puede cargar programaciones del centro educativo', 'menu': 'acceso_cargar_programaciones' }, {'code_nombre': 'borra_programaciones_cargadas', 'nombre': 'Puede borrar programaciones del centro educativo', 'menu': 'acceso_cargar_programaciones' }, {'code_nombre': 'descarga_programaciones', 'nombre': 'Puede descargar programaciones del centro educativo', 'menu': 'acceso_cargar_programaciones' }, {'code_nombre': 'descarga_pga', 'nombre': 'Puede descargar la programación general anual del centro educativo', 'menu': 'acceso_cargar_programaciones' } ]
#!/usr/bin/env python # coding: utf-8 import pickle from pathlib import Path import numpy as np import pandas as pd from gensim import models from gensim.models.doc2vec import Doc2Vec from gensim.models.word2vec import Word2Vec # --- load ground truth --- # loading gt EN from semsim.constants import DATA_DIR, TMP_DIR sj_file_en = TMP_DIR / 'Psycho-Paper/synonym_judgement/cueing study stimuli for distribution.csv' sj_en_full = pd.read_csv(sj_file_en) sj_en = sj_en_full[['Probe', 'Target', 'Foil1', 'Foil2']] sj_en = sj_en[~sj_en.isna().any(axis=1)] # loading gt DE sj_file_de = TMP_DIR / 'Psycho-Paper/synonym_judgement/SJT_stimuli.csv' sj_de_full = pd.read_csv(sj_file_de) sj_de = sj_de_full[['probe', 'target', 'foil1', 'foil2']] sj_de = sj_de[~sj_de.isna().any(axis=1)] def similarities(terms, vectors): terms = terms.to_list() probe = terms[0] targets = terms[1:] try: distances = vectors.distances(probe, targets) sims = 1 - distances except KeyError: if probe not in vectors: sims = [np.nan] * 3 else: sims = [] for term in targets: if term in vectors: similarity = vectors.similarity(probe, term) sims.append(similarity) else: sims.append(np.nan) return pd.Series(sims) def synonym_judgement_accuracy(word_vectors, tests, target_idx=0, file=None): sim_cols = ['target_sim', 'foil1_sim', 'foil2_sim'] tests = tests.copy() # calculating similarities tests[sim_cols] = tests.apply(similarities, vectors=word_vectors, axis=1) # default values for OOV tests tests['pred'] = -1 tests['correct'] = np.nan # predictions for in-vocab test in_vocab = ~tests[sim_cols].isna().any(axis=1) tests.loc[in_vocab, 'pred'] = tests.loc[in_vocab, sim_cols].apply(np.argmax, axis=1) pred = tests.loc[in_vocab, 'pred'] tests.loc[in_vocab, 'correct'] = (pred == target_idx) # calculating accuracy correct = tests.loc[in_vocab, 'correct'].sum() acc = correct / len(pred) print(f"Accuracy: {acc:.03f}") print(f"Number of tests omitted due to unknown words: {len(tests) - len(pred)}") # writing results if file is not None: file = Path(file) file = file.parent / f'{file.name}_acc{acc:.03f}.sjt' print(f"Saving SJT predictions to {file}") tests.to_csv(file, sep='\t') # -- evaluate word vectors on SJT -- def convert_csv_to_w2v_format(csv_file_path, w2v_file_path): lsi_wv = pd.read_csv(csv_file_path, index_col=0) with open(w2v_file_path, 'w') as fp: fp.write(f'{lsi_wv.shape[0]} {lsi_wv.shape[1]}\n') lsi_wv.to_csv(fp, sep=' ', header=False) def example_vectors_en(): # - pretrained vectors - google_w2v = models.KeyedVectors.load_word2vec_format( str(DATA_DIR / 'vectors/GoogleNews-vectors-negative300.bin'), binary=True ) synonym_judgement_accuracy(google_w2v, sj_en) # - bnc lsi vectors - file = 'bnc_lsi_gensim_term_vectors.csv' dir_path = DATA_DIR / 'out/SemD/bnc_cs1000_minsz50_lc_filtered' csv_file_path = dir_path / file w2v_file_path = csv_file_path.with_suffix('.w2v') convert_csv_to_w2v_format(csv_file_path, w2v_file_path) print(f"Loading {w2v_file_path}") bnc_lsi = models.KeyedVectors.load_word2vec_format(str(w2v_file_path)) synonym_judgement_accuracy(bnc_lsi, sj_en) def example_vectors_de(): file = DATA_DIR / 'vectors/d2v' print(f"Loading {file}") d2v = Doc2Vec.load(str(file)) synonym_judgement_accuracy(d2v.wv, sj_de) file = DATA_DIR / 'vectors/w2v' print(f"Loading {file}") w2v = Word2Vec.load(str(file)) synonym_judgement_accuracy(w2v.wv, sj_de) file = DATA_DIR / 'out/SemD/OP2/OnlineParticipation_lsi_gensim_term_vectors.csv' print(f"Loading {file}") op_lsi = models.KeyedVectors.load_word2vec_format(str(file)) synonym_judgement_accuracy(op_lsi, sj_de) file = DATA_DIR / 'data/out/SemD/DEWAC_1000_40k/dewac_lsi_word_vectors.vec' print(f"Loading {file}") op_lsi = models.KeyedVectors.load_word2vec_format(str(file)) synonym_judgement_accuracy(op_lsi, sj_de) file = DATA_DIR / 'out/SemD/DEWAC_1000/dewac_lsi_word_vectors.vec' print(f"Loading {file}") op_lsi = models.KeyedVectors.load_word2vec_format(str(file)) synonym_judgement_accuracy(op_lsi, sj_de) file = DATA_DIR / 'out/SemD/DEWAC/dewac_lsi_word_vectors.vec' print(f"Loading {file}") op_lsi = models.KeyedVectors.load_word2vec_format(str(file)) synonym_judgement_accuracy(op_lsi, sj_de) def evaluate_lsi_vectors(vec_path): file = Path(vec_path) print(f"Loading {file}") op_lsi = models.KeyedVectors.load_word2vec_format(str(file)) synonym_judgement_accuracy(op_lsi, sj_de, file=file) def evaluate_d2v_vectors(vec_path): for file in sorted(vec_path.iterdir()): try: d2v = Doc2Vec.load(str(file)) print(f'{file} loaded') synonym_judgement_accuracy(d2v.wv, sj_de, file=file) print() except pickle.UnpicklingError: pass if __name__ == '__main__': # example_vectors_de() # evaluate_d2v_vectors(DATA_DIR / 'out/models/d2v_dewac') # evaluate_dewac_d2v_vectors(DATA_DIR / 'out/models/d2v_dewac_vocab') # evaluate_d2v_vectors(DATA_DIR / 'out/models/d2v_test_vocab_B') evaluate_lsi_vectors(DATA_DIR / 'out/SemD/DEWAC_1000_40k_v2/dewac_lsi_word_vectors.vec')
"Re-saves all things which might produce GL transactions." import os, time from optparse import make_option import inspect import importlib from django.conf import settings from django.core.management.base import BaseCommand, CommandError from django.core.exceptions import ObjectDoesNotExist from django.db import transaction from accountifie.gl.models import Transaction from accountifie.gl.bmo import BusinessModelObject from accountifie.common.api import api_func from accountifie.query.query_manager_strategy_factory import QueryManagerStrategyFactory class Command(BaseCommand): """ option_list = BaseCommand.option_list + ( make_option('--all', action='store_true', help='Full recalc of GL'), ) """ def handle(self, *args, **options): #faster and less likely to mess stuff up. klasses = [] kl_paths = api_func('environment', 'variable_list', 'BMO_MODULES') # find all the BMO classes for path in kl_paths: for name, kl in inspect.getmembers(importlib.import_module(path), inspect.isclass): if BusinessModelObject in kl.__bases__: klasses.append(kl) with transaction.atomic(): Transaction.objects.all().delete() for cmpny in [c['id'] for c in api_func('gl', 'company')]: QueryManagerStrategyFactory().erase(cmpny) print("deleted all transactions") QueryManagerStrategyFactory().set_fast_inserts('*', True) for klass in klasses: print('working on', klass) qs =klass.objects.all() for obj in qs: obj.update_gl() print('finished with', klass) QueryManagerStrategyFactory().set_fast_inserts('*', False) QueryManagerStrategyFactory().take_snapshot('*') print("updated %d transactions" % qs.count())
#Read input file # parameters: # input file - .i input file def is_number(s): try: float(s) return True except ValueError: return False def read_input_file(input_file,number_of_inputs): inputs = {} with open(input_file) as f: for line in f: if '=' in line: inputs[line.split("=")[0].strip().lower()] = line.split("=")[1].strip() else: pass if len(inputs) != number_of_inputs: print("Please recheck the input file since some parameter is missing...") print("Exiting program...") exit() else: print("Successfully read in input file") for key,val in inputs.items(): if is_number(val) == True: inputs[key] = float(val) return inputs
from rest_framework import serializers from leads.models import Lead from accounts.models import Tags, Account from common.serializer import ( UserSerializer, AttachmentsSerializer, LeadCommentSerializer, CompanySerializer ) from contacts.serializer import ContactSerializer from teams.serializer import TeamsSerializer class TagsSerializer(serializers.ModelSerializer): class Meta: model = Tags fields = ("id", "name", "slug") class LeadSerializer(serializers.ModelSerializer): assigned_to = UserSerializer(read_only=True, many=True) created_by = UserSerializer() tags = TagsSerializer(read_only=True, many=True) lead_attachment = AttachmentsSerializer(read_only=True, many=True) teams = TeamsSerializer(read_only=True, many=True) company = CompanySerializer() lead_comments = LeadCommentSerializer(read_only=True, many=True) class Meta: model = Lead # fields = ‘__all__’ fields = ( "id", "title", "first_name", "last_name", "phone", "email", "status", "source", "address_line", "street", "city", "state", "postcode", "country", "website", "description", "lead_attachment", "lead_comments", "assigned_to", "account_name", "opportunity_amount", "created_by", "created_on", "is_active", "enquery_type", "tags", "created_from_site", "teams", "company", ) class LeadCreateSerializer(serializers.ModelSerializer): def __init__(self, *args, **kwargs): request_obj = kwargs.pop("request_obj", None) super(LeadCreateSerializer, self).__init__(*args, **kwargs) if self.initial_data.get("status") == "converted": self.fields["account_name"].required = True self.fields["email"].required = True self.fields["first_name"].required = False self.fields["last_name"].required = False self.fields["title"].required = True if self.instance: if self.instance.created_from_site: prev_choices = self.fields["source"]._get_choices() prev_choices = prev_choices + \ [("micropyramid", "Micropyramid")] self.fields["source"]._set_choices(prev_choices) self.company = request_obj.company def validate_account_name(self, account_name): if self.instance: if Account.objects.filter( name__iexact=account_name, company=self.company, ).exclude(id=self.instance.id).exists(): raise serializers.ValidationError( "Account already exists with this name") else: if Account.objects.filter( name__iexact=account_name, company=self.company ).exists(): raise serializers.ValidationError( "Account already exists with this name") return account_name def validate_title(self, title): if self.instance: if Lead.objects.filter( title__iexact=title, company=self.company, ).exclude(id=self.instance.id).exists(): raise serializers.ValidationError( "Lead already exists with this title") else: if Lead.objects.filter( title__iexact=title, company=self.company ).exists(): raise serializers.ValidationError( "Lead already exists with this title") return title class Meta: model = Lead fields = ( "first_name", "last_name", "account_name", "title", "phone", "email", "status", "source", "website", "description", "address_line", "street", "city", "state", "postcode", "country", )
def _jupyter_server_extension_paths(): # Locally import to avoid install errors. from .notebookapp import NotebookApp return [ { 'module': 'nbclassic.notebookapp', 'app': NotebookApp, 'name': 'jupyter-nbclassic' } ]
# standard lib import sys import pdb # 3rd-party lib import numpy as np import torch import torch.distributed as dist import torch.nn.functional as F # mm lib import mmcv DISTANCES = ['mse','cosine','relation'] def multi_gpu_test_with_distance(model, meta, teacher_data_loader, student_data_loader, distance_metric, rank): assert distance_metric in DISTANCES results = torch.tensor(0.).cuda() results_qq = torch.tensor(0.).cuda() if rank == 0: prog_bar = mmcv.ProgressBar(len(teacher_data_loader)) model.module.manipulate_arch(meta['arch']) query_embeddings = None key_embeddings = None temperature = 0.2 for idx, data in enumerate(zip(teacher_data_loader, student_data_loader)): with torch.no_grad(): # scale up for avoiding overflow result1 = model(**data[0], mode='get_embedding')*100 result2 = model(**data[0], mode='get_embedding', extract_from='encoder_k')*100 result1 = torch.nn.functional.normalize(result1, dim=1) result2 = torch.nn.functional.normalize(result2, dim=1) batch_size = result1.size(0) if distance_metric == 'mse': results += torch.sum((result1-result2)*(result1-result2))/batch_size if distance_metric == 'cosine': results += torch.sum(torch.einsum('nc,nc->n', [result1,result2]))/batch_size elif distance_metric == 'relation': if query_embeddings is None: query_embeddings = torch.zeros(result1.size(1),len(teacher_data_loader)*batch_size).cuda() # [C, L] key_embeddings = torch.zeros(result2.size(1),len(teacher_data_loader)*batch_size).cuda() # [C, L] query_embeddings[:,idx*batch_size:(idx+1)*batch_size] = result1.T key_embeddings[:,idx*batch_size:(idx+1)*batch_size] = result2.T logits_q = torch.einsum('nc,ck->nk', [result1, key_embeddings[:,:(idx+1)*batch_size]]) logits_q_qq = torch.einsum('nc,ck->nk', [result1, query_embeddings[:,:(idx+1)*batch_size]]) logits_k = torch.einsum('nc,ck->nk', [result2, key_embeddings[:,:(idx+1)*batch_size]]) results += - torch.sum( F.softmax(logits_k / temperature, dim=1) \ * F.log_softmax(logits_q / temperature, dim=1), dim=1).mean() results_qq += - torch.sum( F.softmax(logits_k / temperature, dim=1) \ * F.log_softmax(logits_q_qq / temperature, dim=1), dim=1).mean() if rank == 0: sys.stdout.flush() prog_bar.update() results = results/len(teacher_data_loader) if distance_metric == 'relation': results_qq = results_qq/len(teacher_data_loader) results_all = {} dist.barrier() dist.all_reduce(results) dist.all_reduce(results_qq) world_size = dist.get_world_size() if distance_metric == 'mse': results_all['mse'] = (results / world_size).item() elif distance_metric == 'cosine': results_all['cosine'] = (results / world_size).item() elif distance_metric == 'relation': results_all['qk_kk_mean'] = (results / world_size).item() results_all['qq_kk_mean'] = (results_qq / world_size).item() return results_all def multi_gpu_test_with_dense_distance(model, meta, teacher_data_loader, student_data_loader, distance_metric, rank): assert distance_metric in DISTANCES results = torch.tensor(0.).cuda() results_qq = torch.tensor(0.).cuda() if rank == 0: prog_bar = mmcv.ProgressBar(len(teacher_data_loader)) model.module.manipulate_arch(meta['arch']) query_embeddings = None key_embeddings = None temperature = 0.2 #pdb.set_trace() for idx, data in enumerate(zip(teacher_data_loader, student_data_loader)): #pdb.set_trace() with torch.no_grad(): result1 = model(**data[0], mode='extract') #([N,C,H,W],...) depend on your config, which stage's feature will be return. result2 = model(**data[0], mode='extract', extract_from='encoder_k') #([N,C,H,W],...) for tensor_1, tensor_2 in zip(result1, result2): # scale up for avoiding overflow # resolution of tensor from early stage may cause memory out. Consider cropping it tensor_1 = tensor_1*100 tensor_2 = tensor_2*100 tensor_1 = torch.nn.functional.normalize(tensor_1, dim=1) tensor_2 = torch.nn.functional.normalize(tensor_2, dim=1) tensor_1 = tensor_1.view(tensor_1.size(0),tensor_1.size(1),-1) # [N,C,H*W] tensor_2 = tensor_2.view(tensor_2.size(0),tensor_2.size(1),-1) # tensor_1 = torch.bmm(tensor_1.transpose(1,2),tensor_1) #[N,H*W,H*W] tensor_1 = tensor_1.view(-1, tensor_1.size(2)) # [N*HW, H*W] tensor_2 = torch.bmm(tensor_2.transpose(1,2),tensor_2) tensor_2 = tensor_2.view(-1, tensor_2.size(2)) batch_size = tensor_1.size(0) if distance_metric == 'mse': results += torch.sum((tensor_1-tensor_2)*(tensor_1-tensor_2))/batch_size elif distance_metric == 'cosine': results += torch.sum(torch.einsum('nc,nc->n', [tensor_1,tensor_2]))/batch_size elif distance_metric == 'kl': results += torch.sum(- torch.sum( F.softmax(tensor_2 / temperature, dim=1) * F.log_softmax(tensor_1 / temperature, dim=1), dim=1))/batch_size if rank == 0: sys.stdout.flush() prog_bar.update() results = results/len(teacher_data_loader) results_all = {} dist.barrier() dist.all_reduce(results) world_size = dist.get_world_size() #pdb.set_trace() if distance_metric == 'mse': results_all['mse'] = (results / world_size).item() elif distance_metric == 'cosine': results_all['cosine'] = (results / world_size).item() elif distance_metric == 'kl': results_all['kl'] = (results / world_size).item() return results_all
""" ---> Wiggle Subsequence ---> Medium """ class Solution: def wiggleMaxLength(self, nums) -> int: n = len(nums) final_nums = [nums[0]] for i in range(1, n): if i == 1 or len(final_nums) == 1: if nums[i] > final_nums[0] or nums[i] < final_nums[0]: final_nums.append(nums[i]) else: pass else: if nums[i] > final_nums[-1]: if final_nums[-1] >= final_nums[-2]: final_nums[-1] = nums[i] else: final_nums.append(nums[i]) else: if nums[i] == final_nums[-1]: continue if final_nums[-1] <= final_nums[-2]: final_nums[-1] = nums[i] else: final_nums.append(nums[i]) return len(final_nums) def wiggleMaxLength_sol2(self, nums) -> int: positive_till_now = 1 negative_till_now = 1 for i in range(1, len(nums)): if nums[i] > nums[i - 1]: positive_till_now = negative_till_now + 1 elif nums[i] < nums[i - 1]: negative_till_now = positive_till_now + 1 return max(positive_till_now, negative_till_now) in_nums = [1, 17, 5, 10, 13, 15, 10, 5, 16, 8] a = Solution() print(a.wiggleMaxLength(in_nums)) print(a.wiggleMaxLength_sol2(in_nums)) """ Approach 1: Check if the second number should be added then if the next number is greater than last number added, if the last difference was negative then add the next number else pass else if the number is smaller or equal then check if the new number is equal to last number then pass else if it the last difference is negative then replace the last number to the new one else just append Approach 2: Just keep track of number that is the difference between last added numbers was negative and positive, if the next difference is positive then add the negative till now + 1 to positive now one else add the positive till now + 1 to negative till now Reference - https://leetcode.com/problems/wiggle-subsequence/discuss/1585932/100-efficient-Simple-Code-(Python3)%3A-O(n) Complexities: Time -> O(N) Space -> O(N) """
class PalindromesCount: def count(self, A, B): def is_palindrome(s): return s == s[::-1] return sum(is_palindrome(A[:i] + B + A[i:]) for i in xrange(len(A) + 1))
import json import logging from .cutom_serializers import HassIoSerializers from homeassistant.components.http import HomeAssistantView import homeassistant.core as ha from homeassistant.helpers.service import async_get_all_descriptions from .const import ONBOARDING_DOMAIN ,ONBOARDING_STEP_USER ,ONBOARDING_STEP_CORE_CONFIG ,ONBOARDING_STEP_INTEGRATION _LOGGER = logging.getLogger(__name__) from .FunikiAreaView import FunikiAreasView ,FunikiAreaDeleteView from .FunikiUserView import FunikiUserView ,FunikiDeleteUserView from .FunikiDeviceView import FunikiDeviceView from .FunikiEntitiesView import FunikiEntitiesView from .FunikiSummaryView import FunikiSummaryView from .FunikiOnBoardingStatus import FunikiOnBoardingStatus DOMAIN = "funiki" def setup(hass, config): hass.http.register_view(FunikiSummaryView) hass.http.register_view(FunikiDeviceView) hass.http.register_view(FunikiEntitiesView) hass.http.register_view(FunikiAreasView) hass.http.register_view(FunikiAreaDeleteView) hass.http.register_view(FunikiUserView) hass.http.register_view(FunikiDeleteUserView) hass.http.register_view(FunikiOnBoardingStatus) return True async def async_services_json(hass): descriptions = await async_get_all_descriptions(hass) return [{"domain": key, "services": value} for key, value in descriptions.items()] @ha.callback def async_events_json(hass): return [ {"event": key, "listener_count": value} for key, value in hass.bus.async_listeners().items() ]
import sys sys.path = ["."] + sys.path from petlib.ec import EcGroup from petlib.bn import Bn from hashlib import sha256 import math ## ###################################################### ## An implementation of the ring signature scheme in ## ## Jens Groth and Markulf Kohlweiss. "One-out-of-Many Proofs: ## Or How to Leak a Secret and Spend a Coin" ## Cryptology ePrint Archive: Report 2014/764 ## ## https://eprint.iacr.org/2014/764 ## ###################################################### def challenge(elements): """Packages a challenge in a bijective way""" elem = [len(elements)] + elements elem_str = list(map(str, elem)) elem_len = list(map(lambda x: "%s||%s" % (len(x) , x), elem_str)) state = "|".join(elem_len) H = sha256() H.update(state.encode("utf8")) return Bn.from_binary(H.digest()) def setup(): """ Generates parameters for Commitments """ G = EcGroup() g = G.hash_to_point(b'g') h = G.hash_to_point(b'h') o = G.order() return (G, g, h, o) def Com(ck, m, k): """ Pedersen Commitment. """ (G, g, h, o) = ck return m * g + k * h def ProveZeroOne(ck, c, m, r): """ Simple proof that a Commitment c = Com(m,r) is either 0 or 1 """ assert Com(ck, m, r) == c (G, g, h, o) = ck a, s, t = o.random(), o.random(), o.random() ca = Com(ck, a, s) cb = Com(ck, a*m, t) x = challenge([g, h, ca, cb]) % o f = (x * m + a) % o za = (r * x + s) % o zb = (r * (x - f) + t) % o return (x, f, za, zb) def VerifyZeroOne(ck, c, proof): """ Verify that a Commitment c = Com(m,r) is either 0 or 1 """ (G, g, h, o) = ck (x, f, za, zb) = proof assert 0 < x < o assert 0 < f < o assert 0 < za < o assert 0 < zb < o ca = Com(ck,f,za) - x * c cb = Com(ck, 0, zb) - (x-f) * c xp = challenge([g, h, ca, cb]) % o return xp == x def ProveOneOfN(ck, cis, el, r, message = ""): """ NIZK Proof that Com(0; r) is within Cis. The fact that it is the el'th commitmtnet is not revealed. + Ring signature on "message". """ n = int(math.ceil(math.log(len(cis)) / math.log(2))) assert Com(ck, 0, r) == cis[el] (G, g, h, o) = ck ## Commit to the bits of the index el = Bn(el) eli = [Bn(int(el.is_bit_set(i))) for i in range(n)] ri = [o.random() for i in range(n)] ai = [o.random() for i in range(n)] si = [o.random() for i in range(n)] ti = [o.random() for i in range(n)] Celi = [Com(ck, elix, rix) for elix, rix in zip(eli, ri)] Cai = [Com(ck, a, s) for a, s in zip(ai, si)] Cbi = [Com(ck, l * a , s) for l, a, s in zip(eli, ai, ti)] # Compute p_idxi(x) p_idx_i = [] for idx in range(len(cis)): idx = Bn(idx) idxi = [Bn(int(idx.is_bit_set(i))) for i in range(n)] p = [Bn(1)] for j, idxi_j in enumerate(idxi): if idxi_j == 0: p = poly_mul(o, p, [ -ai[j] , - eli[j] + 1] ) else: p = poly_mul(o, p, [ ai[j] , eli[j] ]) p_idx_i += [p] # Compute all Cdi's roi = [] cdi = [] for i in range(n): roi_i = o.random() roi += [ roi_i ] # cdi_i = Com(ck, 0, roi_i) wis = [] for idx, cidx in enumerate(cis): wis += [ p_idx_i[idx][i] ] # cdi_i += p_idx_i[idx][i] * cidx # assert G.wsum(wis, cis) + Com(ck, 0, roi_i) == cdi_i cdi_i = G.wsum(wis, cis) + Com(ck, 0, roi_i) cdi += [ cdi_i ] ## The challenge x = challenge(list(ck) + cis + Celi + Cai + Cbi + cdi + [ message ]) ## The responses fi = [(elj * x + aj) % o for elj, aj in zip(eli, ai)] zai = [(rj * x + sj) % o for rj, sj in zip(ri, si)] zbi = [(rj * (x - fj) + tj) % o for rj, fj, tj in zip(ri, fi, ti)] zd = r * pow(x, n, o) % o for k in range(n): zd = (zd - roi[k] * pow(x, k, o)) % o proof = (Celi, Cai, Cbi, cdi, fi, zai, zbi, zd) return proof def VerifyOneOfN(ck, cis, proof, message = ""): """ Verify the ring signature on message """ n = int(math.ceil(math.log(len(cis)) / math.log(2))) (G, g, h, o) = ck (Celi, Cai, Cbi, cdi, fi, zai, zbi, zd) = proof ## Check all parts of the proof are in the right groups assert 0 <= zd < o for k in range(n): assert 0 <= fi[k] < o assert 0 <= zai[k] < o assert 0 <= zbi[k] < o assert G.check_point(Celi[k]) assert G.check_point(Cai[k]) assert G.check_point(Cbi[k]) assert G.check_point(cdi[k]) # Recompute the challenge x = challenge(list(ck) + cis + Celi + Cai + Cbi + cdi + [ message ]) ret = True for i in range(n): ret &= x * Celi[i] + Cai[i] == Com(ck, fi[i], zai[i]) ret &= (x - fi[i]) * Celi[i] + Cbi[i] == Com(ck, Bn(0), zbi[i]) # acc = G.infinite() bases = [] expons = [] for idx, ci in enumerate(cis): idx = Bn(idx) idxi = [Bn(int(idx.is_bit_set(i))) for i in range(n)] acc_exp = Bn(1) for k, ij in enumerate(idxi): if ij == 0: acc_exp = acc_exp.mod_mul(x - fi[k], o) else: acc_exp = acc_exp.mod_mul(fi[k], o) bases += [ ci ] expons += [ acc_exp ] # acc = acc + acc_exp * ci for k in range(n): expi = (- pow(x,k,o)) # acc = acc + expi * cdi[k] bases += [ cdi[k] ] expons += [ expi ] # assert G.wsum(expons, bases) == acc acc = G.wsum(expons, bases) ret &= acc == Com(ck, 0, zd) return ret ## ###################################### ## Naive polynomial arithmetic zero = Bn(0) def poly_expand(o, poly, size): global zero assert len(poly) <= size # zero = Bn(0) new_poly = [zero for _ in range(size)] for i in range(len(poly)): new_poly[i] = poly[i] return new_poly def poly_add(o, poly1, poly2): size = max(len(poly1), len(poly2)) p1 = poly_expand(o, poly1, size) p2 = poly_expand(o, poly2, size) pout = poly_expand(o, [], size) for i, (c1, c2) in enumerate(zip(p1, p2)): pout[i] = c1.mod_add( c2, o) return pout def poly_mul(o, poly1, poly2): global zero p = [ zero ] for i, c1 in enumerate(poly1): p2 = ([ zero ] * i) + [(c1.mod_mul(c2, o)) for c2 in poly2] p = poly_add(o, p2, p) return p ################################################### # ---------------- TESTS ----------------------- # ################################################### import pytest def test_poly_expand(): ck = setup() (G, g, h, o) = ck p1 = [Bn(1), Bn(2)] p2 = poly_expand(o, p1, 10) assert len(p2) == 10 assert p2[:2] == p1 def test_poly_add(): ck = setup() (G, g, h, o) = ck p1 = [Bn(1), Bn(2)] p2 = poly_add(o, p1, p1) assert len(p2) == len(p1) assert p2 == [2, 4] def test_poly_mul(): ck = setup() (G, g, h, o) = ck p1 = [Bn(1), Bn(2)] p2 = poly_mul(o, p1, p1) assert p2 == [1, 4, 4] def test_setup(): ck = setup() def test_proof(): ck = setup() (G, g, h, o) = ck m, r = 1, o.random() c = Com(ck, m, r) ProveZeroOne(ck, c, m, r) @pytest.mark.parametrize("input,expected", [ (1, True), (0, True), (2, False), ]) def test_verify(input,expected): ck = setup() (G, g, h, o) = ck m, r = input, o.random() c = Com(ck, m, r) proof = ProveZeroOne(ck, c, m, r) assert VerifyZeroOne(ck, c, proof) == expected def test_prove_n(): ck = setup() (G, g, h, o) = ck c0 = Com(ck, 1, o.random()) c1 = Com(ck, 1, o.random()) c2 = Com(ck, 1, o.random()) c3 = Com(ck, 1, o.random()) r = o.random() cr = Com(ck,0, r) cis = [c0, c1, c2, c3, cr] proof = ProveOneOfN(ck, cis, 4, r, message="Hello World!") ret = VerifyOneOfN(ck, cis, proof, message="Hello World!") assert ret def notest_timing(upper=101): ck = setup() (G, g, h, o) = ck c0 = Com(ck, 1, o.random()) r = o.random() cr = Com(ck,0, r) import time repeats = 10 all_sizes = range(10, upper, 10) prove_time = [] verify_time = [] for size in all_sizes: cis = [c0] * (size + 1) + [cr] t0 = time.clock() for _ in range(repeats): proof = ProveOneOfN(ck, cis, len(cis)-1, r, message="Hello World!") t1 = time.clock() dt = (t1-t0) / repeats prove_time += [ dt ] print( "Proof time: %s - %2.4f" % (size, dt) ) t0 = time.clock() for _ in range(repeats): ret = VerifyOneOfN(ck, cis, proof, message="Hello World!") assert ret t1 = time.clock() dt = (t1-t0) / repeats verify_time += [ dt ] print( "Verify time: %s - %2.4f" % (size, dt) ) return all_sizes, prove_time, verify_time if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Test and time the Tor median statistics.') parser.add_argument('--time', action='store_true', help='Run timing tests') parser.add_argument('--lprof', action='store_true', help='Run the line profiler') parser.add_argument('--cprof', action='store_true', help='Run the c profiler') parser.add_argument('--plot', action='store_true', help='Upload time plot to plotly') args = parser.parse_args() if args.time: notest_timing(31) if args.cprof: import cProfile cProfile.run("notest_timing(51)", sort="tottime") if args.lprof: from line_profiler import LineProfiler profile = LineProfiler(VerifyOneOfN, ProveOneOfN, Bn.__init__, Bn.__del__) profile.run("notest_timing(31)") profile.print_stats() if args.plot: all_sizes, prove_time, verify_time = notest_timing() import plotly.plotly as py from plotly.graph_objs import * trace0 = Scatter( x=all_sizes, y=prove_time, name='Proving', ) trace1 = Scatter( x=all_sizes, y=verify_time, name='Verification', ) data = Data([trace0, trace1]) layout = Layout( title='Timing for GK15 Proof and Verification using petlib', xaxis=XAxis( title='Size of ring (no. commits)', showgrid=False, zeroline=False ), yaxis=YAxis( title='time (sec)', showline=False ) ) fig = Figure(data=data, layout=layout) unique_url = py.plot(fig, filename = 'GK15-petlib-timing')
from rest_framework import serializers from .models import CartoDBTable, GatewayType, Location, LocationRemapHistory class CartoDBTableSerializer(serializers.ModelSerializer): id = serializers.CharField(read_only=True) class Meta: model = CartoDBTable fields = ( 'id', 'domain', 'api_key', 'table_name', 'display_name', 'pcode_col', 'color', 'location_type', 'name_col' ) class GatewayTypeSerializer(serializers.ModelSerializer): class Meta: model = GatewayType fields = ('name', 'admin_level') class LocationLightSerializer(serializers.ModelSerializer): id = serializers.CharField(read_only=True) name_display = serializers.CharField(source='__str__') name = serializers.SerializerMethodField() gateway = GatewayTypeSerializer() class Meta: model = Location fields = ( 'id', 'name', 'p_code', 'gateway', 'parent', 'name_display' ) @staticmethod def get_name(obj): return '{}{}'.format( str(obj), " -- {}".format(obj.parent.name) if obj.parent else "", ) class LocationSerializer(LocationLightSerializer): geo_point = serializers.StringRelatedField() class Meta(LocationLightSerializer.Meta): model = Location fields = LocationLightSerializer.Meta.fields + ('geo_point', ) class LocationExportSerializer(serializers.ModelSerializer): name_display = serializers.CharField(source='__str__') location_type = serializers.CharField(source='gateway.name') geo_point = serializers.StringRelatedField() point = serializers.StringRelatedField() class Meta: model = Location fields = "__all__" class LocationExportFlatSerializer(serializers.ModelSerializer): name_display = serializers.CharField(source='__str__') location_type = serializers.CharField(source='gateway.name') geom = serializers.SerializerMethodField() point = serializers.StringRelatedField() class Meta: model = Location fields = "__all__" def get_geom(self, obj): return obj.geom.point_on_surface if obj.geom else "" class LocationRemapHistorySerializer(serializers.ModelSerializer): name = serializers.CharField(source='__str__') class Meta: model = LocationRemapHistory fields = "__all__"
from __future__ import unicode_literals import threading import socket import os.path from .constants import * class RoonDiscovery(threading.Thread): """Class to discover Roon Servers connected in the network.""" _exit = threading.Event() _discovered_callback = None def __init__(self, callback): self._discovered_callback = callback threading.Thread.__init__(self) self.daemon = True def run(self): ''' run discovery untill server found ''' while not self._exit.isSet(): host, port = self.first() if host: self._discovered_callback(host, port) self.stop() def stop(self): self._exit.set() def all(self): """Scan and return all found entries as a list. Each server is a tuple of host,port.""" self.discover(first_only=False) def first(self): ''' returns first server that is found''' all_servers = self._discover(first_only=True) return all_servers[0] if all_servers else (None, None) def _discover(self, first_only=False): """update the server entry with details""" this_dir = os.path.dirname(os.path.abspath(__file__)) sood_file = os.path.join(this_dir, ".soodmsg") with open(sood_file) as f: msg = f.read() msg = msg.encode() entries = [] sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.settimeout(5) sock.bind(('', 0)) try: sock.sendto(msg, ('<broadcast>', 9003)) while not self._exit.isSet(): try: data, server = sock.recvfrom(1024) data = data.decode() lines = [] for line in data.split("\n"): lines.extend(line.split("\x04")) if "SOOD" in lines[0] and len(lines) > 6 and "http_port" in lines[4]: # match for Roon server found! port = int(lines[5].encode("utf-8").strip()) host = server[0] entries.append((host, port)) if first_only: # we're only interested in the first server found break except socket.timeout: break except Exception as exc: self.roonLogger.exception(exc) finally: sock.close() return entries
'''see also: https://github.com/python/cpython/blob/master/Lib/test/crashers as well as https://wiki.python.org/moin/CrashingPython''' import sys from utils import print_file print('oh come on, you knew running this was a bad idea') print_file(__file__) def recurse(n=0): if n == 0: print("yup, that's 0 alright") return recurse(n - 1) try: recurse(1000) except RecursionError as e: print(e) print("Really? that wasn't even that big!") print("ok let's do this for real") # found this from trial and error, I think print calls some built-in functions? overhead = 5 sys.setrecursionlimit(1000 + overhead) recurse(1000) print("that's what I'm talking about") print("how high can we go?") for i in range(10): current = 10 ** i print('trying', current) sys.setrecursionlimit(current + overhead) recurse(current)
from Bio.Align import MultipleSeqAlignment from Bio import AlignIO import u2py u2py.initContext( './' ) inputAlignments = [] inputFile = open( '../../data/samples/CLUSTALW/COI_copy1.sto', 'rU' ) inputAlignments.append( AlignIO.read( inputFile, 'stockholm' ) ) inputFile.close( ) inputFile = open( '../../data/samples/CLUSTALW/HIV-1_copy1.sto', 'rU' ) inputAlignments.append( AlignIO.read( inputFile, 'stockholm' ) ) inputFile.close( ) scheme = u2py.Scheme( 'muscle', inputAlignments ) scheme.setElementAttribute( 'Write Alignment', 'document-format', 'stockholm' ) outputAlignments = scheme.launch( ) for aln in outputAlignments : print aln scheme.cleanUp( ) u2py.releaseContext( )
import os from mlsploit_local import Job from data import ( build_image_dataset, get_or_create_dataset, process_image, recreate_image, ) from defenses import DEFENSE_MAP def main(): # Initialize the job, which will # load and verify all input parameters Job.initialize() defense_name = Job.function defense_options = dict(Job.options) defense_class = DEFENSE_MAP[defense_name] input_file_paths = list(map(lambda f: f.path, Job.input_files)) input_dataset, is_temp_dataset = get_or_create_dataset(input_file_paths) output_dataset = build_image_dataset( Job.make_output_filepath(input_dataset.path.name) ) for item in input_dataset: input_image = recreate_image(item.data) output_image = defense_class.apply(input_image, **defense_options) output_image_arr = process_image(output_image) output_dataset.add_item( name=item.name, data=output_image_arr, label=item.label, prediction=-1 ) output_item = output_dataset[0] output_image = recreate_image(output_item.data) output_image_path = Job.make_output_filepath(output_item.name) output_image.save(output_image_path) Job.add_output_file(str(output_dataset.path), is_extra=True) Job.add_output_file( output_image_path, is_modified=True, tags={"mlsploit-visualize": "image"} ) Job.commit_output() if is_temp_dataset: os.remove(input_dataset.path) if __name__ == "__main__": main()
from __future__ import print_function, division, absolute_import from llvm.core import Type, Constant import llvm.core as lc import llvm.ee as le from llvm import LLVMException from numba.config import PYVERSION import numba.ctypes_support as ctypes from numba import types, utils, cgutils, _helperlib, assume _PyNone = ctypes.c_ssize_t(id(None)) class NativeError(RuntimeError): pass @utils.runonce def fix_python_api(): """ Execute once to install special symbols into the LLVM symbol table """ le.dylib_add_symbol("Py_None", ctypes.addressof(_PyNone)) le.dylib_add_symbol("numba_native_error", id(NativeError)) # Add C helper functions c_helpers = _helperlib.c_helpers for py_name in c_helpers: c_name = "numba_" + py_name c_address = c_helpers[py_name] le.dylib_add_symbol(c_name, c_address) # Add all built-in exception classes for obj in utils.builtins.__dict__.values(): if isinstance(obj, type) and issubclass(obj, BaseException): le.dylib_add_symbol("PyExc_%s" % (obj.__name__), id(obj)) class PythonAPI(object): """ Code generation facilities to call into the CPython C API (and related helpers). """ def __init__(self, context, builder): """ Note: Maybe called multiple times when lowering a function """ fix_python_api() self.context = context self.builder = builder self.module = builder.basic_block.function.module # Initialize types self.pyobj = self.context.get_argument_type(types.pyobject) self.voidptr = Type.pointer(Type.int(8)) self.long = Type.int(ctypes.sizeof(ctypes.c_long) * 8) self.ulonglong = Type.int(ctypes.sizeof(ctypes.c_ulonglong) * 8) self.longlong = self.ulonglong self.double = Type.double() self.py_ssize_t = self.context.get_value_type(types.intp) self.cstring = Type.pointer(Type.int(8)) self.gil_state = Type.int(_helperlib.py_gil_state_size * 8) # ------ Python API ----- # # Basic object API # def incref(self, obj): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="Py_IncRef") self.builder.call(fn, [obj]) def decref(self, obj): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="Py_DecRef") self.builder.call(fn, [obj]) # # Argument unpacking # def parse_tuple_and_keywords(self, args, kws, fmt, keywords, *objs): charptr = Type.pointer(Type.int(8)) charptrary = Type.pointer(charptr) argtypes = [self.pyobj, self.pyobj, charptr, charptrary] fnty = Type.function(Type.int(), argtypes, var_arg=True) fn = self._get_function(fnty, name="PyArg_ParseTupleAndKeywords") return self.builder.call(fn, [args, kws, fmt, keywords] + list(objs)) def parse_tuple(self, args, fmt, *objs): charptr = Type.pointer(Type.int(8)) argtypes = [self.pyobj, charptr] fnty = Type.function(Type.int(), argtypes, var_arg=True) fn = self._get_function(fnty, name="PyArg_ParseTuple") return self.builder.call(fn, [args, fmt] + list(objs)) # # Exception handling # def err_occurred(self): fnty = Type.function(self.pyobj, ()) fn = self._get_function(fnty, name="PyErr_Occurred") return self.builder.call(fn, ()) def err_clear(self): fnty = Type.function(Type.void(), ()) fn = self._get_function(fnty, name="PyErr_Clear") return self.builder.call(fn, ()) def err_set_string(self, exctype, msg): fnty = Type.function(Type.void(), [self.pyobj, self.cstring]) fn = self._get_function(fnty, name="PyErr_SetString") if isinstance(exctype, str): exctype = self.get_c_object(exctype) if isinstance(msg, str): msg = self.context.insert_const_string(self.module, msg) return self.builder.call(fn, (exctype, msg)) def err_set_object(self, exctype, excval): fnty = Type.function(Type.void(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyErr_SetObject") return self.builder.call(fn, (exctype, excval)) def raise_native_error(self, msg): cstr = self.context.insert_const_string(self.module, msg) self.err_set_string(self.native_error_type, cstr) def raise_exception(self, exctype, excval): # XXX This produces non-reusable bitcode: the pointer's value # is specific to this process execution. exctypeaddr = self.context.get_constant(types.intp, id(exctype)) excvaladdr = self.context.get_constant(types.intp, id(excval)) self.err_set_object(exctypeaddr.inttoptr(self.pyobj), excvaladdr.inttoptr(self.pyobj)) def get_c_object(self, name): """ Get a Python object through its C-accessible *name*. (e.g. "PyExc_ValueError"). """ try: gv = self.module.get_global_variable_named(name) except LLVMException: gv = self.module.add_global_variable(self.pyobj.pointee, name) return gv @property def native_error_type(self): return self.get_c_object("numba_native_error") def raise_missing_global_error(self, name): msg = "global name '%s' is not defined" % name cstr = self.context.insert_const_string(self.module, msg) self.err_set_string("PyExc_NameError", cstr) def raise_missing_name_error(self, name): msg = "name '%s' is not defined" % name cstr = self.context.insert_const_string(self.module, msg) self.err_set_string("PyExc_NameError", cstr) # # Concrete dict API # def dict_getitem_string(self, dic, name): """Returns a borrowed reference """ fnty = Type.function(self.pyobj, [self.pyobj, self.cstring]) fn = self._get_function(fnty, name="PyDict_GetItemString") cstr = self.context.insert_const_string(self.module, name) return self.builder.call(fn, [dic, cstr]) def dict_new(self, presize=0): if presize == 0: fnty = Type.function(self.pyobj, ()) fn = self._get_function(fnty, name="PyDict_New") return self.builder.call(fn, ()) else: fnty = Type.function(self.pyobj, [self.py_ssize_t]) fn = self._get_function(fnty, name="_PyDict_NewPresized") return self.builder.call(fn, [Constant.int(self.py_ssize_t, presize)]) def dict_setitem(self, dictobj, nameobj, valobj): fnty = Type.function(Type.int(), (self.pyobj, self.pyobj, self.pyobj)) fn = self._get_function(fnty, name="PyDict_SetItem") return self.builder.call(fn, (dictobj, nameobj, valobj)) def dict_setitem_string(self, dictobj, name, valobj): fnty = Type.function(Type.int(), (self.pyobj, self.cstring, self.pyobj)) fn = self._get_function(fnty, name="PyDict_SetItemString") cstr = self.context.insert_const_string(self.module, name) return self.builder.call(fn, (dictobj, cstr, valobj)) def dict_pack(self, keyvalues): """ Args ----- keyvalues: iterable of (str, llvm.Value of PyObject*) """ dictobj = self.dict_new() not_null = cgutils.is_not_null(self.builder, dictobj) with cgutils.if_likely(self.builder, not_null): for k, v in keyvalues: self.dict_setitem_string(dictobj, k, v) return dictobj # # Concrete number APIs # def float_from_double(self, fval): fnty = Type.function(self.pyobj, [self.double]) fn = self._get_function(fnty, name="PyFloat_FromDouble") return self.builder.call(fn, [fval]) def number_as_ssize_t(self, numobj): fnty = Type.function(self.py_ssize_t, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_AsSsize_t") return self.builder.call(fn, [numobj]) def number_long(self, numobj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Long") return self.builder.call(fn, [numobj]) def long_as_ulonglong(self, numobj): fnty = Type.function(self.ulonglong, [self.pyobj]) fn = self._get_function(fnty, name="PyLong_AsUnsignedLongLong") return self.builder.call(fn, [numobj]) def long_as_longlong(self, numobj): fnty = Type.function(self.ulonglong, [self.pyobj]) fn = self._get_function(fnty, name="PyLong_AsLongLong") return self.builder.call(fn, [numobj]) def _long_from_native_int(self, ival, func_name, native_int_type, signed): fnty = Type.function(self.pyobj, [native_int_type]) fn = self._get_function(fnty, name=func_name) resptr = cgutils.alloca_once(self.builder, self.pyobj) if PYVERSION < (3, 0): # Under Python 2, we try to return a PyInt object whenever # the given number fits in a C long. pyint_fnty = Type.function(self.pyobj, [self.long]) pyint_fn = self._get_function(pyint_fnty, name="PyInt_FromLong") long_max = Constant.int(native_int_type, _helperlib.long_max) if signed: long_min = Constant.int(native_int_type, _helperlib.long_min) use_pyint = self.builder.and_( self.builder.icmp(lc.ICMP_SGE, ival, long_min), self.builder.icmp(lc.ICMP_SLE, ival, long_max), ) else: use_pyint = self.builder.icmp(lc.ICMP_ULE, ival, long_max) with cgutils.ifelse(self.builder, use_pyint) as (then, otherwise): with then: downcast_ival = self.builder.trunc(ival, self.long) res = self.builder.call(pyint_fn, [downcast_ival]) self.builder.store(res, resptr) with otherwise: res = self.builder.call(fn, [ival]) self.builder.store(res, resptr) else: fn = self._get_function(fnty, name=func_name) self.builder.store(self.builder.call(fn, [ival]), resptr) return self.builder.load(resptr) def long_from_long(self, ival): if PYVERSION < (3, 0): func_name = "PyInt_FromLong" else: func_name = "PyLong_FromLong" fnty = Type.function(self.pyobj, [self.long]) fn = self._get_function(fnty, name=func_name) return self.builder.call(fn, [ival]) def long_from_ssize_t(self, ival): return self._long_from_native_int(ival, "PyLong_FromSsize_t", self.py_ssize_t, signed=True) def long_from_longlong(self, ival): return self._long_from_native_int(ival, "PyLong_FromLongLong", self.longlong, signed=True) def long_from_ulonglong(self, ival): return self._long_from_native_int(ival, "PyLong_FromUnsignedLongLong", self.ulonglong, signed=False) def _get_number_operator(self, name): fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyNumber_%s" % name) return fn def _call_number_operator(self, name, lhs, rhs, inplace=False): if inplace: name = "InPlace" + name fn = self._get_number_operator(name) return self.builder.call(fn, [lhs, rhs]) def number_add(self, lhs, rhs, inplace=False): return self._call_number_operator("Add", lhs, rhs, inplace=inplace) def number_subtract(self, lhs, rhs, inplace=False): return self._call_number_operator("Subtract", lhs, rhs, inplace=inplace) def number_multiply(self, lhs, rhs, inplace=False): return self._call_number_operator("Multiply", lhs, rhs, inplace=inplace) def number_divide(self, lhs, rhs, inplace=False): assert PYVERSION < (3, 0) return self._call_number_operator("Divide", lhs, rhs, inplace=inplace) def number_truedivide(self, lhs, rhs, inplace=False): return self._call_number_operator("TrueDivide", lhs, rhs, inplace=inplace) def number_floordivide(self, lhs, rhs, inplace=False): return self._call_number_operator("FloorDivide", lhs, rhs, inplace=inplace) def number_remainder(self, lhs, rhs, inplace=False): return self._call_number_operator("Remainder", lhs, rhs, inplace=inplace) def number_lshift(self, lhs, rhs, inplace=False): return self._call_number_operator("Lshift", lhs, rhs, inplace=inplace) def number_rshift(self, lhs, rhs, inplace=False): return self._call_number_operator("Rshift", lhs, rhs, inplace=inplace) def number_and(self, lhs, rhs, inplace=False): return self._call_number_operator("And", lhs, rhs, inplace=inplace) def number_or(self, lhs, rhs, inplace=False): return self._call_number_operator("Or", lhs, rhs, inplace=inplace) def number_xor(self, lhs, rhs, inplace=False): return self._call_number_operator("Xor", lhs, rhs, inplace=inplace) def number_power(self, lhs, rhs, inplace=False): fnty = Type.function(self.pyobj, [self.pyobj] * 3) fname = "PyNumber_InPlacePower" if inplace else "PyNumber_Power" fn = self._get_function(fnty, fname) return self.builder.call(fn, [lhs, rhs, self.borrow_none()]) def number_negative(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Negative") return self.builder.call(fn, (obj,)) def number_positive(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Positive") return self.builder.call(fn, (obj,)) def number_float(self, val): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Float") return self.builder.call(fn, [val]) def number_invert(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Invert") return self.builder.call(fn, (obj,)) def float_as_double(self, fobj): fnty = Type.function(self.double, [self.pyobj]) fn = self._get_function(fnty, name="PyFloat_AsDouble") return self.builder.call(fn, [fobj]) def bool_from_bool(self, bval): """ Get a Python bool from a LLVM boolean. """ longval = self.builder.zext(bval, self.long) return self.bool_from_long(longval) def bool_from_long(self, ival): fnty = Type.function(self.pyobj, [self.long]) fn = self._get_function(fnty, name="PyBool_FromLong") return self.builder.call(fn, [ival]) def complex_from_doubles(self, realval, imagval): fnty = Type.function(self.pyobj, [Type.double(), Type.double()]) fn = self._get_function(fnty, name="PyComplex_FromDoubles") return self.builder.call(fn, [realval, imagval]) def complex_real_as_double(self, cobj): fnty = Type.function(Type.double(), [self.pyobj]) fn = self._get_function(fnty, name="PyComplex_RealAsDouble") return self.builder.call(fn, [cobj]) def complex_imag_as_double(self, cobj): fnty = Type.function(Type.double(), [self.pyobj]) fn = self._get_function(fnty, name="PyComplex_ImagAsDouble") return self.builder.call(fn, [cobj]) # # List and sequence APIs # def sequence_getslice(self, obj, start, stop): fnty = Type.function(self.pyobj, [self.pyobj, self.py_ssize_t, self.py_ssize_t]) fn = self._get_function(fnty, name="PySequence_GetSlice") return self.builder.call(fn, (obj, start, stop)) def sequence_tuple(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PySequence_Tuple") return self.builder.call(fn, [obj]) def list_new(self, szval): fnty = Type.function(self.pyobj, [self.py_ssize_t]) fn = self._get_function(fnty, name="PyList_New") return self.builder.call(fn, [szval]) def list_setitem(self, seq, idx, val): """ Warning: Steals reference to ``val`` """ fnty = Type.function(Type.int(), [self.pyobj, self.py_ssize_t, self.pyobj]) fn = self._get_function(fnty, name="PyList_SetItem") return self.builder.call(fn, [seq, idx, val]) def list_getitem(self, lst, idx): """ Returns a borrowed reference. """ fnty = Type.function(self.pyobj, [self.pyobj, self.py_ssize_t]) fn = self._get_function(fnty, name="PyList_GetItem") if isinstance(idx, int): idx = self.context.get_constant(types.intp, idx) return self.builder.call(fn, [lst, idx]) # # Concrete tuple API # def tuple_getitem(self, tup, idx): """ Borrow reference """ fnty = Type.function(self.pyobj, [self.pyobj, self.py_ssize_t]) fn = self._get_function(fnty, name="PyTuple_GetItem") idx = self.context.get_constant(types.intp, idx) return self.builder.call(fn, [tup, idx]) def tuple_pack(self, items): fnty = Type.function(self.pyobj, [self.py_ssize_t], var_arg=True) fn = self._get_function(fnty, name="PyTuple_Pack") n = self.context.get_constant(types.intp, len(items)) args = [n] args.extend(items) return self.builder.call(fn, args) def tuple_size(self, tup): fnty = Type.function(self.py_ssize_t, [self.pyobj]) fn = self._get_function(fnty, name="PyTuple_Size") return self.builder.call(fn, [tup]) def tuple_new(self, count): fnty = Type.function(self.pyobj, [Type.int()]) fn = self._get_function(fnty, name='PyTuple_New') return self.builder.call(fn, [self.context.get_constant(types.int32, count)]) def tuple_setitem(self, tuple_val, index, item): """ Steals a reference to `item`. """ fnty = Type.function(Type.int(), [self.pyobj, Type.int(), self.pyobj]) setitem_fn = self._get_function(fnty, name='PyTuple_SetItem') index = self.context.get_constant(types.int32, index) self.builder.call(setitem_fn, [tuple_val, index, item]) # # Concrete set API # def set_new(self, iterable=None): if iterable is None: iterable = self.get_null_object() fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PySet_New") return self.builder.call(fn, [iterable]) def set_add(self, set, value): fnty = Type.function(Type.int(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PySet_Add") return self.builder.call(fn, [set, value]) # # GIL APIs # def gil_ensure(self): """ Ensure the GIL is acquired. The returned value must be consumed by gil_release(). """ gilptrty = Type.pointer(self.gil_state) fnty = Type.function(Type.void(), [gilptrty]) fn = self._get_function(fnty, "numba_gil_ensure") gilptr = cgutils.alloca_once(self.builder, self.gil_state) self.builder.call(fn, [gilptr]) return gilptr def gil_release(self, gil): """ Release the acquired GIL by gil_ensure(). Must be pair with a gil_ensure(). """ gilptrty = Type.pointer(self.gil_state) fnty = Type.function(Type.void(), [gilptrty]) fn = self._get_function(fnty, "numba_gil_release") return self.builder.call(fn, [gil]) # # Other APIs (organize them better!) # def import_module_noblock(self, modname): fnty = Type.function(self.pyobj, [self.cstring]) fn = self._get_function(fnty, name="PyImport_ImportModuleNoBlock") return self.builder.call(fn, [modname]) def call_function_objargs(self, callee, objargs): fnty = Type.function(self.pyobj, [self.pyobj], var_arg=True) fn = self._get_function(fnty, name="PyObject_CallFunctionObjArgs") args = [callee] + list(objargs) args.append(self.context.get_constant_null(types.pyobject)) return self.builder.call(fn, args) def call(self, callee, args, kws): fnty = Type.function(self.pyobj, [self.pyobj] * 3) fn = self._get_function(fnty, name="PyObject_Call") return self.builder.call(fn, (callee, args, kws)) def object_istrue(self, obj): fnty = Type.function(Type.int(), [self.pyobj]) fn = self._get_function(fnty, name="PyObject_IsTrue") return self.builder.call(fn, [obj]) def object_not(self, obj): fnty = Type.function(Type.int(), [self.pyobj]) fn = self._get_function(fnty, name="PyObject_Not") return self.builder.call(fn, [obj]) def object_richcompare(self, lhs, rhs, opstr): """ Refer to Python source Include/object.h for macros definition of the opid. """ ops = ['<', '<=', '==', '!=', '>', '>='] opid = ops.index(opstr) assert 0 <= opid < len(ops) fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj, Type.int()]) fn = self._get_function(fnty, name="PyObject_RichCompare") lopid = self.context.get_constant(types.int32, opid) return self.builder.call(fn, (lhs, rhs, lopid)) def iter_next(self, iterobj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyIter_Next") return self.builder.call(fn, [iterobj]) def object_getiter(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyObject_GetIter") return self.builder.call(fn, [obj]) def object_getattr_string(self, obj, attr): cstr = self.context.insert_const_string(self.module, attr) fnty = Type.function(self.pyobj, [self.pyobj, self.cstring]) fn = self._get_function(fnty, name="PyObject_GetAttrString") return self.builder.call(fn, [obj, cstr]) def object_setattr_string(self, obj, attr, val): cstr = self.context.insert_const_string(self.module, attr) fnty = Type.function(Type.int(), [self.pyobj, self.cstring, self.pyobj]) fn = self._get_function(fnty, name="PyObject_SetAttrString") return self.builder.call(fn, [obj, cstr, val]) def object_delattr_string(self, obj, attr): # PyObject_DelAttrString() is actually a C macro calling # PyObject_SetAttrString() with value == NULL. return self.object_setattr_string(obj, attr, self.get_null_object()) def object_getitem(self, obj, key): fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyObject_GetItem") return self.builder.call(fn, (obj, key)) def object_setitem(self, obj, key, val): fnty = Type.function(Type.int(), [self.pyobj, self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyObject_SetItem") return self.builder.call(fn, (obj, key, val)) def string_as_string(self, strobj): fnty = Type.function(self.cstring, [self.pyobj]) if PYVERSION >= (3, 0): fname = "PyUnicode_AsUTF8" else: fname = "PyString_AsString" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [strobj]) def string_from_string_and_size(self, string, size): fnty = Type.function(self.pyobj, [self.cstring, self.py_ssize_t]) if PYVERSION >= (3, 0): fname = "PyUnicode_FromStringAndSize" else: fname = "PyString_FromStringAndSize" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [string, size]) def bytes_from_string_and_size(self, string, size): fnty = Type.function(self.pyobj, [self.cstring, self.py_ssize_t]) if PYVERSION >= (3, 0): fname = "PyBytes_FromStringAndSize" else: fname = "PyString_FromStringAndSize" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [string, size]) def object_str(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyObject_Str") return self.builder.call(fn, [obj]) def make_none(self): obj = self._get_object("Py_None") self.incref(obj) return obj def borrow_none(self): obj = self._get_object("Py_None") return obj def sys_write_stdout(self, fmt, *args): fnty = Type.function(Type.void(), [self.cstring], var_arg=True) fn = self._get_function(fnty, name="PySys_WriteStdout") return self.builder.call(fn, (fmt,) + args) def object_dump(self, obj): """ Dump a Python object on C stderr. For debugging purposes. """ fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="_PyObject_Dump") return self.builder.call(fn, (obj,)) # ------ utils ----- def _get_object(self, name): try: gv = self.module.get_global_variable_named(name) except LLVMException: gv = self.module.add_global_variable(self.pyobj, name) return self.builder.load(gv) def _get_function(self, fnty, name): return self.module.get_or_insert_function(fnty, name=name) def alloca_obj(self): return self.builder.alloca(self.pyobj) def print_object(self, obj): strobj = self.object_str(obj) cstr = self.string_as_string(strobj) fmt = self.context.insert_const_string(self.module, "%s") self.sys_write_stdout(fmt, cstr) self.decref(strobj) def print_string(self, text): fmt = self.context.insert_const_string(self.module, text) self.sys_write_stdout(fmt) def get_null_object(self): return Constant.null(self.pyobj) def return_none(self): none = self.make_none() self.builder.ret(none) def list_pack(self, items): n = len(items) seq = self.list_new(self.context.get_constant(types.intp, n)) not_null = cgutils.is_not_null(self.builder, seq) with cgutils.if_likely(self.builder, not_null): for i in range(n): idx = self.context.get_constant(types.intp, i) self.incref(items[i]) self.list_setitem(seq, idx, items[i]) return seq def to_native_arg(self, obj, typ): if isinstance(typ, types.Record): # Generate a dummy integer type that has the size of Py_buffer dummy_py_buffer_type = Type.int(_helperlib.py_buffer_size * 8) # Allocate the Py_buffer py_buffer = cgutils.alloca_once(self.builder, dummy_py_buffer_type) # Zero-fill the py_buffer. where the obj field in Py_buffer is NULL # PyBuffer_Release has no effect. zeroed_buffer = lc.Constant.null(dummy_py_buffer_type) self.builder.store(zeroed_buffer, py_buffer) buf_as_voidptr = self.builder.bitcast(py_buffer, self.voidptr) ptr = self.extract_record_data(obj, buf_as_voidptr) with cgutils.if_unlikely(self.builder, cgutils.is_null(self.builder, ptr)): self.builder.ret(ptr) ltyp = self.context.get_value_type(typ) val = cgutils.init_record_by_ptr(self.builder, ltyp, ptr) def dtor(): self.release_record_buffer(buf_as_voidptr) else: val = self.to_native_value(obj, typ) def dtor(): pass return val, dtor def to_native_value(self, obj, typ): if isinstance(typ, types.Object) or typ == types.pyobject: return obj elif typ == types.boolean: istrue = self.object_istrue(obj) zero = Constant.null(istrue.type) return self.builder.icmp(lc.ICMP_NE, istrue, zero) elif typ in types.unsigned_domain: longobj = self.number_long(obj) ullval = self.long_as_ulonglong(longobj) self.decref(longobj) return self.builder.trunc(ullval, self.context.get_argument_type(typ)) elif typ in types.signed_domain: longobj = self.number_long(obj) llval = self.long_as_longlong(longobj) self.decref(longobj) return self.builder.trunc(llval, self.context.get_argument_type(typ)) elif typ == types.float32: fobj = self.number_float(obj) fval = self.float_as_double(fobj) self.decref(fobj) return self.builder.fptrunc(fval, self.context.get_argument_type(typ)) elif typ == types.float64: fobj = self.number_float(obj) fval = self.float_as_double(fobj) self.decref(fobj) return fval elif typ in (types.complex128, types.complex64): cplxcls = self.context.make_complex(types.complex128) cplx = cplxcls(self.context, self.builder) pcplx = cplx._getpointer() ok = self.complex_adaptor(obj, pcplx) failed = cgutils.is_false(self.builder, ok) with cgutils.if_unlikely(self.builder, failed): self.builder.ret(self.get_null_object()) if typ == types.complex64: c64cls = self.context.make_complex(typ) c64 = c64cls(self.context, self.builder) freal = self.context.cast(self.builder, cplx.real, types.float64, types.float32) fimag = self.context.cast(self.builder, cplx.imag, types.float64, types.float32) c64.real = freal c64.imag = fimag return c64._getvalue() else: return cplx._getvalue() elif isinstance(typ, types.NPDatetime): val = self.extract_np_datetime(obj) return val elif isinstance(typ, types.NPTimedelta): val = self.extract_np_timedelta(obj) return val elif isinstance(typ, types.Array): return self.to_native_array(typ, obj) elif isinstance(typ, types.Optional): isnone = self.builder.icmp(lc.ICMP_EQ, obj, self.borrow_none()) with cgutils.ifelse(self.builder, isnone) as (then, orelse): with then: noneval = self.context.make_optional_none(self.builder, typ.type) ret = cgutils.alloca_once(self.builder, noneval.type) self.builder.store(noneval, ret) with orelse: val = self.to_native_value(obj, typ.type) just = self.context.make_optional_value(self.builder, typ.type, val) self.builder.store(just, ret) return ret raise NotImplementedError(typ) def from_native_return(self, val, typ): return self.from_native_value(val, typ) def from_native_value(self, val, typ): if typ == types.pyobject: return val elif typ == types.boolean: longval = self.builder.zext(val, self.long) return self.bool_from_long(longval) elif typ in types.unsigned_domain: ullval = self.builder.zext(val, self.ulonglong) return self.long_from_ulonglong(ullval) elif typ in types.signed_domain: ival = self.builder.sext(val, self.longlong) return self.long_from_longlong(ival) elif typ == types.float32: dbval = self.builder.fpext(val, self.double) return self.float_from_double(dbval) elif typ == types.float64: return self.float_from_double(val) elif typ == types.complex128: cmplxcls = self.context.make_complex(typ) cval = cmplxcls(self.context, self.builder, value=val) return self.complex_from_doubles(cval.real, cval.imag) elif typ == types.complex64: cmplxcls = self.context.make_complex(typ) cval = cmplxcls(self.context, self.builder, value=val) freal = self.context.cast(self.builder, cval.real, types.float32, types.float64) fimag = self.context.cast(self.builder, cval.imag, types.float32, types.float64) return self.complex_from_doubles(freal, fimag) elif isinstance(typ, types.NPDatetime): return self.create_np_datetime(val, typ.unit_code) elif isinstance(typ, types.NPTimedelta): return self.create_np_timedelta(val, typ.unit_code) elif typ == types.none: ret = self.make_none() return ret elif isinstance(typ, types.Optional): return self.from_native_return(val, typ.type) elif isinstance(typ, types.Array): return self.from_native_array(typ, val) elif isinstance(typ, types.Record): # Note we will create a copy of the record # This is the only safe way. pdata = cgutils.get_record_data(self.builder, val) size = Constant.int(Type.int(), pdata.type.pointee.count) ptr = self.builder.bitcast(pdata, Type.pointer(Type.int(8))) # Note: this will only work for CPU mode # The following requires access to python object dtype_addr = Constant.int(self.py_ssize_t, id(typ.dtype)) dtypeobj = dtype_addr.inttoptr(self.pyobj) return self.recreate_record(ptr, size, dtypeobj) elif isinstance(typ, (types.Tuple, types.UniTuple)): return self.from_tuple(typ, val) raise NotImplementedError(typ) def to_native_array(self, typ, ary): # TODO check matching dtype. # currently, mismatching dtype will still work and causes # potential memory corruption voidptr = Type.pointer(Type.int(8)) nativearycls = self.context.make_array(typ) nativeary = nativearycls(self.context, self.builder) aryptr = nativeary._getpointer() ptr = self.builder.bitcast(aryptr, voidptr) errcode = self.numba_array_adaptor(ary, ptr) failed = cgutils.is_not_null(self.builder, errcode) with cgutils.if_unlikely(self.builder, failed): # TODO self.builder.unreachable() return self.builder.load(aryptr) def from_native_array(self, typ, ary): assert assume.return_argument_array_only nativearycls = self.context.make_array(typ) nativeary = nativearycls(self.context, self.builder, value=ary) parent = nativeary.parent self.incref(parent) return parent def from_tuple(self, typ, val): tuple_val = self.tuple_new(typ.count) for i, dtype in enumerate(typ): item = self.builder.extract_value(val, i) obj = self.from_native_value(item, dtype) self.tuple_setitem(tuple_val, i, obj) return tuple_val def numba_array_adaptor(self, ary, ptr): voidptr = Type.pointer(Type.int(8)) fnty = Type.function(Type.int(), [self.pyobj, voidptr]) fn = self._get_function(fnty, name="numba_adapt_ndarray") fn.args[0].add_attribute(lc.ATTR_NO_CAPTURE) fn.args[1].add_attribute(lc.ATTR_NO_CAPTURE) return self.builder.call(fn, (ary, ptr)) def complex_adaptor(self, cobj, cmplx): fnty = Type.function(Type.int(), [self.pyobj, cmplx.type]) fn = self._get_function(fnty, name="numba_complex_adaptor") return self.builder.call(fn, [cobj, cmplx]) def extract_record_data(self, obj, pbuf): fnty = Type.function(self.voidptr, [self.pyobj, self.voidptr]) fn = self._get_function(fnty, name="numba_extract_record_data") return self.builder.call(fn, [obj, pbuf]) def release_record_buffer(self, pbuf): fnty = Type.function(Type.void(), [self.voidptr]) fn = self._get_function(fnty, name="numba_release_record_buffer") return self.builder.call(fn, [pbuf]) def extract_np_datetime(self, obj): fnty = Type.function(Type.int(64), [self.pyobj]) fn = self._get_function(fnty, name="numba_extract_np_datetime") return self.builder.call(fn, [obj]) def extract_np_timedelta(self, obj): fnty = Type.function(Type.int(64), [self.pyobj]) fn = self._get_function(fnty, name="numba_extract_np_timedelta") return self.builder.call(fn, [obj]) def create_np_datetime(self, val, unit_code): unit_code = Constant.int(Type.int(), unit_code) fnty = Type.function(self.pyobj, [Type.int(64), Type.int()]) fn = self._get_function(fnty, name="numba_create_np_datetime") return self.builder.call(fn, [val, unit_code]) def create_np_timedelta(self, val, unit_code): unit_code = Constant.int(Type.int(), unit_code) fnty = Type.function(self.pyobj, [Type.int(64), Type.int()]) fn = self._get_function(fnty, name="numba_create_np_timedelta") return self.builder.call(fn, [val, unit_code]) def recreate_record(self, pdata, size, dtypeaddr): fnty = Type.function(self.pyobj, [Type.pointer(Type.int(8)), Type.int(), self.pyobj]) fn = self._get_function(fnty, name="numba_recreate_record") return self.builder.call(fn, [pdata, size, dtypeaddr]) def string_from_constant_string(self, string): cstr = self.context.insert_const_string(self.module, string) sz = self.context.get_constant(types.intp, len(string)) return self.string_from_string_and_size(cstr, sz)
""" pyifc.compress._pack -------------------- Functions for packing .ifc files. """ import os import pathlib import tarfile from zipfile import ZipFile from pyifc._utils import timeit from pyifc.compress._compress import compress from pyifc.compress._validators import existence_validator, extension_validator def _common(input_filepath, output_dir, output_filename, ext): """Common tasks to be performed before compressing and archiving. Tasks include: - validation of extensions - validation of paths - creation of new paths and filenames Args: input_filepath (str): path to the .ifc file to be compressed and archived. output_dir (str): path to output directory, where archived file will be saved. output_filename (str): filename with `ext` extension. ext (str): extension that filename should have. Returns: tuple[str, str]: tuple of path to the compressed file and the path to the archived file. """ extension_validator( filepath=output_filename, extension=ext, variable="output_filename", ) input_filename = pathlib.PurePath(input_filepath).name extension_validator( filepath=input_filepath, extension=".ifc", variable="input_filepath" ) existence_validator(input_filepath) existence_validator(output_dir) compressed_filename = ( os.path.join(input_filename.rstrip(".ifc")) + "_compressed.ifc" ) compressed_filepath = compress( input_filepath, output_dir, compressed_filename ) output_filepath = os.path.abspath(os.path.join(output_dir, output_filename)) return compressed_filepath, output_filepath @timeit def compress_and_tar(input_filepath, output_dir, output_filename): """Compress and write file to .tar.gz archive. Args: input_filepath (str): path to the .ifc file to be compressed and archived. output_dir (str): path to the output directory, where archived file will be saved. output_filename (str): filename with .tar.gz extension. Returns: str: path to the archived file. """ input_filepath = os.path.abspath(input_filepath) compressed_filepath, output_filepath = _common( input_filepath=input_filepath, output_dir=output_dir, output_filename=output_filename, ext=".tar.gz", ) with tarfile.open(output_filepath, "w:gz") as tar: tar.add(compressed_filepath) print( f"Successfully compressed and archived " f"{os.path.abspath(input_filepath)} to " f"{os.path.abspath(output_filepath)}" ) os.remove(compressed_filepath) return output_filepath @timeit def compress_and_zip(input_filepath, output_dir, output_filename): """Compress and write file to .zip archive. Args: input_filepath (str): path to the .ifc file to be compressed and archived. output_dir (str): path to the output directory, where archived file will be saved. output_filename (str): filename with .zip extension. Returns: str: path to the archived file. """ input_filepath = os.path.abspath(input_filepath) compressed_filepath, output_filepath = _common( input_filepath=input_filepath, output_dir=output_dir, output_filename=output_filename, ext=".zip", ) with ZipFile(output_filepath, "w") as zip_file: zip_file.write(compressed_filepath) print( f"Successfully compressed and archived " f"{os.path.abspath(input_filepath)} to " f"{os.path.abspath(output_filepath)}" ) os.remove(compressed_filepath) return output_filepath
from pytest import raises from pydantic import BaseModel, ValidationError from pydantic_jsonapi import JsonApiResponse from tests.helpers import ItemModel class TestJsonApiResponse: def test_attributes_as_dict(self): MyResponse = JsonApiResponse('item', dict) obj_to_validate = { 'data': {'id': '123', 'type': 'item', 'attributes': {}}, 'included': [{'id': '456', 'type': 'not-an-item', 'attributes': {}}] } my_request_obj = MyResponse(**obj_to_validate) assert my_request_obj.dict() == { 'data': { 'id': '123', 'type': 'item', 'attributes': {}, }, 'included': [{ 'id': '456', 'type': 'not-an-item', 'attributes': {} }] } def test_attributes_as_item_model(self): ItemResponse = JsonApiResponse('item', ItemModel) obj_to_validate = { 'data': { 'id': '123', 'type': 'item', 'attributes': { 'name': 'apple', 'quantity': 10, 'price': 1.20 }, 'relationships': { 'store': { 'links': { 'related': '/stores/123', }, }, }, } } my_request_obj = ItemResponse(**obj_to_validate) assert my_request_obj.dict() == { 'data': { 'id': '123', 'type': 'item', 'attributes': { 'name': 'apple', 'quantity': 10, 'price': 1.20, }, 'relationships': { 'store': { 'links': { 'related': '/stores/123', }, }, }, }, } def test_list_item_model(self): ItemResponse = JsonApiResponse('item', ItemModel, use_list=True) obj_to_validate = { 'data': [ { 'id': '123', 'type': 'item', 'attributes': { 'name': 'apple', 'quantity': 10, 'price': 1.20 }, }, { 'id': '321', 'type': 'item', 'attributes': { 'name': 'banana', 'quantity': 20, 'price': 2.34 }, }, ], } my_request_obj = ItemResponse(**obj_to_validate) assert my_request_obj.dict() == { 'data': [ { 'id': '123', 'type': 'item', 'attributes': { 'name': 'apple', 'quantity': 10, 'price': 1.20, }, }, { 'id': '321', 'type': 'item', 'attributes': { 'name': 'banana', 'quantity': 20, 'price': 2.34, }, }, ], } def test_type_invalid_string(self): MyResponse = JsonApiResponse('item', dict) obj_to_validate = { 'data': {'id': '123', 'type': 'not_an_item', 'attributes': {}} } with raises(ValidationError) as e: MyResponse(**obj_to_validate) assert e.value.errors() == [ { 'loc': ('data', 'type'), 'msg': "unexpected value; permitted: 'item'", 'type': 'value_error.const', 'ctx': {'given': 'not_an_item', 'permitted': ('item',)}, }, ] def test_attributes_required(self): ItemResponse = JsonApiResponse('item', ItemModel) obj_to_validate = { 'data': {'id': '123', 'type': 'item', 'attributes': None} } with raises(ValidationError) as e: ItemResponse(**obj_to_validate) assert e.value.errors() == [ { 'loc': ('data', 'attributes'), 'msg': 'value is not a valid dict', 'type': 'type_error.dict', }, ] def test_attributes_as_item_model__empty_dict(self): ItemResponse = JsonApiResponse('item', ItemModel) obj_to_validate = { 'data': { 'id': '123', 'type': 'item', 'attributes': {} } } with raises(ValidationError) as e: ItemResponse(**obj_to_validate) assert e.value.errors() == [ {'loc': ('data', 'attributes', 'name'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 'attributes', 'quantity'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 'attributes', 'price'), 'msg': 'field required', 'type': 'value_error.missing'}, ]
from django.conf.urls import include from django.conf.urls import url urlpatterns = [url(r"^api/morango/v1/", include("morango.api.urls"))]
import re import ast from setuptools import setup _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('markpy/__init__.py', 'rb') as f: version = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) setup( name='markpy', version=version, url='https://github.com/zeaphoo/markpy/', license='MIT', author='Wei Zhuo', author_email='zeaphoo@qq.com', description='A static type compiler for python', long_description='A program style using python write static program and a compiler', packages=['markpy'], include_package_data=False, zip_safe=False, platforms='any', install_requires=[ 'sh', 'parso', 'click', 'basepy' ], extras_require={ 'dev': [ 'pytest>=3', ], }, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Software Development :: Libraries :: Python Modules' ], entry_points=''' [console_scripts] markpy=markpy.main:markpy ''' )
import pandas as pd import pickle # Deserialize your dictionary using the load function of pickle deserialized_dict = pickle.load( open("nested_population_dict.pkl", "rb") ) # Get the dataframe of data related to Sweden sweden_population_df = deserialized_dict['Sweden'] # Show the data print(sweden_population_df)
""" file : diffusion_models.py implemetation of 'steps' in file diffusion.py each function describe here takes a set of parameters and update some of it """ import numpy as np def infinite_surface(x, y, vx, vy, dt): ''' A bunch of paticles put in an infinite plane surface. modelled with euler-maruyana method ''' gamma = 1.0 vx = vx - gamma*vx*dt + 500*np.random.randn(len(vx))*dt vy = vy - gamma*vy*dt + 500*np.random.randn(len(vy))*dt x = x + vx*dt y = y + vy*dt return (x, y, vx, vy) def surface_with_B(x, y, vx, vy, dt): ''' A bunch of paticles put in an infinite plane surface. Magnetic field is applied perpendicular to plane. modelled with euler-maruyana method ''' gamma = 1.0 eB = 0.01 vx = vx - gamma*vx*dt - eB*vy + 600*np.random.randn(len(vx))*dt vy = vy - gamma*vy*dt + eB*vx + 600*np.random.randn(len(vy))*dt x = x + vx*dt y = y + vy*dt return (x, y, vx, vy) def harmonic_dish(x, y, vx, vy, dt): ''' A bunch of paticles put in a harmonic dish. modelled with euler-maruyana method ''' gamma = 1.0 k = 0.1 vx = vx - gamma*vx*dt - k*x + 600*np.random.randn(len(vx))*dt vy = vy - gamma*vy*dt - k*y + 600*np.random.randn(len(vy))*dt x = x + vx*dt y = y + vy*dt return (x, y, vx, vy)
#!/usr/bin/python # -*- coding: utf-8 -*- doc+='''<!DOCTYPE html>\n<html>\n<head>\n ''' try: doc+=str(incluir(data,"head")) except Exception as e: doc+=str(e) doc+='''\n \n</head>\n<body>\n<link rel="stylesheet" type="text/css" href="''' try: doc+=str(config.base_url) except Exception as e: doc+=str(e) doc+='''Components/css/Components.css">\n<section class="Components" style="padding: 10px;height: 500px;width:800px">\n \n</section>\n<script type="text/javascript" src="''' try: doc+=str(config.base_url) except Exception as e: doc+=str(e) doc+='''/static/js/python/__javascript__/divi.js"></script>\n</body>\n</html>'''
class Persona: def __init__(self,id,nombre,apellido,fechan,sexo,nombre_us,contraseña,especialidad,telefono,tipo): self.id = id self.nombre = nombre self.apellido = apellido self.fechan = fechan self.sexo = sexo self.nombre_us = nombre_us self.contraseña = contraseña self.especialidad = especialidad self.telefono = telefono self.tipo = tipo # METODOS GET def getId(self): return self.id def getNombre(self): return self.nombre def getApellido(self): return self.apellido def getFechan(self): return self.fechan def getSexo(self): return self.sexo def getNombre_us(self): return self.nombre_us def getContraseña(self): return self.contraseña def getEspecialidad(self): return self.especialidad def getTelefono(self): return self.telefono def getTipo(self): return self.tipo # METODOS SET def setId(self, id): self.id = id def setNombre(self, nombre): self.nombre = nombre def setApellido(self, apellido): self.apellido = apellido def setFechan(self,fechan): return self.fechan def setSexo(self,sexo): return self.sexo def setNombre_us(self,nombre_us): return self.nombre_us def setContraseña(self,contraseña): return self.contraseña def setEspecialidad(self,especialidad): return self.especialidad def setTelefono(self,telefono): return self.telefono def setTipo(self,tipo): return self.tipo
from carbonserver.api.infra.repositories.repository_projects import SqlAlchemyRepository from carbonserver.api.schemas import ProjectReport class ProjectSumsUsecase: def __init__(self, project_repository: SqlAlchemyRepository) -> None: self._project_repository = project_repository def compute_detailed_sum( self, project_id: str, start_date, end_date ) -> ProjectReport: sums = self._project_repository.get_project_detailed_sums( project_id, start_date, end_date, ) return sums
""" This module contains multiple functions in order to run MSAF algorithms. """ import logging import os from os.path import basename, dirname, splitext, join import librosa import numpy as np from joblib import Parallel, delayed import msaf from msaf import jams2 from msaf import input_output as io from msaf import utils from msaf import featextract from msaf import plotting import msaf.algorithms as algorithms save_plot_path = '' def get_boundaries_module(boundaries_id): """Obtains the boundaries module given a boundary algorithm identificator. Parameters ---------- boundaries_id: str Boundary algorithm identificator (e.g., foote, sf). Returns ------- module: object Object containing the selected boundary module. None for "ground truth". """ if boundaries_id == "gt": return None try: module = eval(algorithms.__name__ + "." + boundaries_id) except AttributeError: raise RuntimeError("Algorithm %s can not be found in msaf!" % boundaries_id) if not module.is_boundary_type: raise RuntimeError("Algorithm %s can not identify boundaries!" % boundaries_id) return module def get_labels_module(labels_id): """Obtains the label module given a label algorithm identificator. Parameters ---------- labels_id: str Label algorithm identificator (e.g., fmc2d, cnmf). Returns ------- module: object Object containing the selected label module. None for not computing the labeling part of music segmentation. """ if labels_id is None: return None try: module = eval(algorithms.__name__ + "." + labels_id) except AttributeError: raise RuntimeError("Algorithm %s can not be found in msaf!" % labels_id) if not module.is_label_type: raise RuntimeError("Algorithm %s can not label segments!" % labels_id) return module def run_algorithms(audio_file, boundaries_id, labels_id, config, annotator_id=0): """Runs the algorithms with the specified identifiers on the audio_file. Parameters ---------- audio_file: str Path to the audio file to segment. boundaries_id: str Identifier of the boundaries algorithm to use ("gt" for ground truth). labels_id: str Identifier of the labels algorithm to use (None for not labeling). config: dict Dictionary containing the custom parameters of the algorithms to use. annotator_id: int Annotator identificator in the ground truth. Returns ------- est_times: np.array or list List of estimated times for the segment boundaries. If `list`, it will be a list of np.arrays, sorted by segmentation layer. est_labels: np.array or list List of all the labels associated segments. If `list`, it will be a list of np.arrays, sorted by segmentation layer. """ # At this point, features should have already been computed hpcp, mfcc, tonnetz, cqt, gmt, beats, dur, anal = \ io.get_features(audio_file, config["annot_beats"], config["framesync"], pre_features=config["features"]) # Check that there are enough audio frames if hpcp.shape[0] <= msaf.minimum__frames: logging.warning("Audio file too short, or too many few beats " "estimated. Returning empty estimations.") return np.asarray([0, dur]), np.asarray([0], dtype=int) # Get the corresponding modules bounds_module = get_boundaries_module(boundaries_id) labels_module = get_labels_module(labels_id) # Get the correct frame times frame_times = beats if config["framesync"]: frame_times = utils.get_time_frames(dur, anal) # Segment audio based on type of segmentation if config["hier"]: # Hierarchical segmentation if bounds_module is None: raise RuntimeError("A boundary algorithm is needed when using " "hierarchical segmentation.") if labels_module is not None and \ bounds_module.__name__ != labels_module.__name__: raise RuntimeError("The same algorithm for boundaries and labels is " "needed when using hierarchical segmentation.") S = bounds_module.Segmenter(audio_file, **config) est_idxs, est_labels = S.processHierarchical() # Make sure the first and last boundaries are included for each # level in the hierarchy est_times = [] cleaned_est_labels = [] for level in range(len(est_idxs)): est_level_times, est_level_labels = \ utils.process_segmentation_level(est_idxs[level], est_labels[level], hpcp.shape[0], frame_times, dur) est_times.append(est_level_times) cleaned_est_labels.append(est_level_labels) est_labels = cleaned_est_labels else: # Flat segmentation # Segment using the specified boundaries and labels # Case when boundaries and labels algorithms are the same if bounds_module is not None and labels_module is not None and \ bounds_module.__name__ == labels_module.__name__: S = bounds_module.Segmenter(audio_file, **config) est_idxs, est_labels = S.processFlat() # Different boundary and label algorithms else: # Identify segment boundaries if bounds_module is not None: S = bounds_module.Segmenter(audio_file, in_labels=[], **config) est_idxs, est_labels = S.processFlat() else: try: est_times, est_labels = io.read_references( audio_file, annotator_id=annotator_id) est_idxs = io.align_times(est_times, frame_times[:-1]) if est_idxs[0] != 0: est_idxs = np.concatenate(([0], est_idxs)) if est_idxs[-1] != hpcp.shape[0] - 1: est_idxs = np.concatenate((est_idxs, [hpcp.shape[0] - 1])) except: logging.warning("No references found for file: %s" % audio_file) return [], [] # Label segments if labels_module is not None: if len(est_idxs) == 2: est_labels = np.array([0]) else: S = labels_module.Segmenter(audio_file, in_bound_idxs=est_idxs, **config) est_labels = S.processFlat()[1] # Make sure the first and last boundaries are included est_times, est_labels = utils.process_segmentation_level( est_idxs, est_labels, hpcp.shape[0], frame_times, dur) return est_times, est_labels def process_track(file_struct, boundaries_id, labels_id, config, annotator_id=0, plot=False): """Prepares the parameters, runs the algorithms, and saves results. Parameters ---------- file_struct: Object FileStruct containing the paths of the input files (audio file, features file, reference file, output estimation file). boundaries_id: str Identifier of the boundaries algorithm to use ("gt" for ground truth). labels_id: str Identifier of the labels algorithm to use (None for not labeling). config: dict Dictionary containing the custom parameters of the algorithms to use. annotator_id: int Annotator identificator in the ground truth. Returns ------- est_times: np.array List of estimated times for the segment boundaries. est_labels: np.array List of all the labels associated segments. """ # Only analize files with annotated beats if config["annot_beats"]: jam = jams2.load(file_struct.ref_file) if len(jam.beats) > 0 and len(jam.beats[0].data) > 0: pass else: logging.warning("No beat information in file %s" % file_struct.ref_file) return logging.info("Segmenting %s" % file_struct.audio_file) # Compute features if needed if not os.path.isfile(file_struct.features_file): featextract.compute_all_features(file_struct) # Get estimations est_times, est_labels = run_algorithms(file_struct.audio_file, boundaries_id, labels_id, config, annotator_id=annotator_id) # Save logging.info("Writing results in: %s" % file_struct.est_file) io.save_estimations(file_struct.est_file, est_times, est_labels, boundaries_id, labels_id, **config) if plot: audio_name = splitext(basename(file_struct.audio_file))[0] plot_name = join(dirname(dirname(file_struct.audio_file)), 'plots', audio_name+'_'+'mfcc'+'_'+boundaries_id+'.pdf') dataset_name = basename(dirname(dirname(file_struct.audio_file))) plotting.plot_one_track(plot_name, file_struct, est_times, est_labels, boundaries_id, labels_id, dataset_name) return est_times, est_labels def process(in_path, annot_beats=False, feature="mfcc", ds_name="*", framesync=False, boundaries_id="gt", labels_id=None, hier=False, sonify_bounds=False, plot=False, n_jobs=4, annotator_id=0, config=None, out_bounds="out_bounds.wav"): """Main process to segment a file or a collection of files. Parameters ---------- in_path: str Input path. If a directory, MSAF will function in collection mode. If audio file, MSAF will be in single file mode. annot_beats: bool Whether to use annotated beats or not. Only available in collection mode. feature: str String representing the feature to be used (e.g. hpcp, mfcc, tonnetz) ds_name: str Prefix of the dataset to be used (e.g. SALAMI, Isophonics) framesync: str Whether to use framesync features or not (default: False -> beatsync) boundaries_id: str Identifier of the boundaries algorithm (use "gt" for groundtruth) labels_id: str Identifier of the labels algorithm (use None to not compute labels) hier : bool Whether to compute a hierarchical or flat segmentation. sonify_bounds: bool Whether to write an output audio file with the annotated boundaries or not (only available in Single File Mode). plot: bool Whether to plot the boundaries and labels against the ground truth. n_jobs: int Number of processes to run in parallel. Only available in collection mode. annotator_id: int Annotator identificator in the ground truth. config: dict Dictionary containing custom configuration parameters for the algorithms. If None, the default parameters are used. out_bounds: str Path to the output for the sonified boundaries (only in single file mode, when sonify_bounds is True. Returns ------- results : list List containing tuples of (est_times, est_labels) of estimated boundary times and estimated labels. If labels_id is None, est_labels will be a list of -1. """ # Seed random to reproduce results np.random.seed(123) # Set up configuration based on algorithms parameters if config is None: config = io.get_configuration(feature, annot_beats, framesync, boundaries_id, labels_id) config["features"] = None config["hier"] = hier if os.path.isfile(in_path): # Single file mode # Get (if they exitst) or compute features # TODO:Modularize! file_struct = msaf.io.FileStruct(in_path) if os.path.exists(file_struct.features_file): feat_prefix = "" if not framesync: feat_prefix = "bs_" features = {} '''Mi: added the Gammatone featureset''' features["%shpcp" % feat_prefix], features["%smfcc" % feat_prefix], \ features["%stonnetz" % feat_prefix], features["%scqt" % feat_prefix], \ features["%sgmt" % feat_prefix], features["beats"], dur, \ features["anal"] = msaf.io.get_features(in_path, annot_beats=annot_beats, framesync=framesync, pre_features=None) else: # Compute and save features features = featextract.compute_features_for_audio_file(in_path) msaf.utils.ensure_dir(os.path.dirname(file_struct.features_file)) msaf.featextract.save_features(file_struct.features_file, features) config["features"] = features config["hier"] = hier # And run the algorithms est_times, est_labels = run_algorithms(in_path, boundaries_id, labels_id, config, annotator_id=annotator_id) if sonify_bounds: logging.info("Sonifying boundaries in %s..." % out_bounds) fs = 44100 audio_hq, sr = librosa.load(in_path, sr=fs) utils.sonify_clicks(audio_hq, est_times, out_bounds, fs) if plot: plotting.plot_one_track(save_plot_path, file_struct, est_times, est_labels, boundaries_id, labels_id, ds_name) # Save estimations msaf.utils.ensure_dir(os.path.dirname(file_struct.est_file)) config["features"] = None io.save_estimations(file_struct.est_file, est_times, est_labels, boundaries_id, labels_id, **config) return est_times, est_labels else: # Collection mode file_structs = io.get_dataset_files(in_path, ds_name) # Call in parallel return Parallel(n_jobs=n_jobs)(delayed(process_track)( file_struct, boundaries_id, labels_id, config, annotator_id=annotator_id, plot=plot) for file_struct in file_structs[:])
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR {{ info.version }} on {{ info.date }}. # {{ info.year }}, SMART Health IT. class FHIRElementFactory(object): """ Factory class to instantiate resources by resource name. """ @classmethod def instantiate(cls, resource_name, jsondict): """ Instantiate a resource of the type correlating to "resource_name". :param str resource_name: The name/type of the resource to instantiate :param dict jsondict: The JSON dictionary to use for data :returns: A resource of the respective type or `Element` """ {%- for klass in classes %}{% if klass.resource_name %} if "{{ klass.resource_name }}" == resource_name: from . import {{ klass.module }} return {{ klass.module }}.{{ klass.name }}(jsondict) {%- endif %}{% endfor %} from . import element return element.Element(jsondict)
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2021 Edward Higgins <ed.higgins@york.ac.uk> # # Distributed under terms of the MIT license. """ """ import os import base64 import json import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input,Output,State from datetime import datetime from parameters import Parameters, default_parameters from dash_ui.app import app full_data_folder=os.path.join(os.getcwd(),'web_data') web_data_folder='/web_data' input_list = [] for param in default_parameters: if (default_parameters[param]['class'] in ["tracking", "image", "postprocessing"]): input_list.append('{}-{}'.format(default_parameters[param]['class'], param)) def layout(params): return html.Div(id='session-tab-container', children=[ html.H2("Session management"), html.Button('New Session', id='new-session-button', n_clicks=0), html.H3("Files"), dcc.Dropdown(id='files-dropdown', options=[], clearable=False, style={'color':'black'} ), dcc.Upload(id='data-file-upload', children=html.Div( ["Upload File"] ), style={ "width": "80%", "height": "60px", "lineHeight": "60px", "borderWidth": "1px", "borderStyle": "dashed", "borderRadius": "5px", "textAlign": "center", "position": "center", "margin": "auto", "marginTop": "10px", "marginBottom": "10px", }, multiple=False, ), html.Div([ html.Button("Download file", id="file-download-button"), dcc.Download(id="file-download") ]), dcc.Store(id='session-id-store', data='default'), dcc.Store(id='session-files-update-upload-store'), dcc.Store(id='session-files-update-track-store'), dcc.Store(id='session-files-update-postprocess-store', data=0), dcc.Store(id='session-files-update-image-store', data=0), dcc.Store(id='session-parameters-store', data=str(json.dumps(params._params))), dcc.Store(id='session-active-img-file-store', data=""), dcc.Store(id='session-active-info-file-store', data=""), ]) @app.callback([ Output('session-active-img-file-store', 'data'), Output('session-active-info-file-store', 'data') ], [ Input('files-dropdown', 'value'), State('session-active-img-file-store', 'data'), State('session-active-info-file-store', 'data'), State("session-id-store", "data"), ]) def set_active_file(filename, img_file, info_file, session_id): if filename: full_filename="" if ".tif" in filename: img_file = os.path.join(full_data_folder, session_id, filename) elif ".tsv" in filename: info_file = os.path.join(full_data_folder, session_id, filename) elif ".png" in filename: info_file = os.path.join(web_data_folder, session_id, filename) else: img_file = "" info_file = "" return [img_file, info_file] @app.callback([ Output('files-dropdown', 'options'), Output('files-dropdown', 'value')], [ Input('session-id-store', 'data'), Input('session-files-update-upload-store', 'data'), Input('session-files-update-track-store', 'data'), Input('session-files-update-postprocess-store', 'data'), ]) def update_file_options(session_id, update_upload, update_track, update_post): absolute_filename = os.path.join(full_data_folder, session_id) print(f"Updating options {absolute_filename}") options = [{'label': f, 'value': f} for f in os.listdir(absolute_filename)] first_element = "" if options: first_element = options[0]["value"] return options, first_element @app.callback(Output('file-download', 'data'), Input('file-download-button', 'n_clicks'), State('files-dropdown', 'value'), State('session-id-store', 'data'), prevent_initial_call=True, ) def download_file(n_clicks,filename, session_path): return dcc.send_file(os.path.join(full_data_folder, session_path, filename)) @app.callback([ Output('session-files-update-upload-store', 'data'), ], [ Input("data-file-upload", "filename"), Input("data-file-upload", "contents"), State('session-active-img-file-store', 'data'), State('session-active-info-file-store', 'data'), State("session-id-store", "data"), ]) def upload_file(filename, file_contents, img_file, info_file, session_id): print("Called") full_filename="" if filename: full_filename = os.path.join(full_data_folder, session_id, filename) if filename is not None and file_contents is not None: print(f"Uploading file to {full_filename}") data = file_contents.encode("utf8").split(b";base64,")[1] with open(full_filename, 'wb') as fp: fp.write(base64.decodebytes(data)) else: file_path="" now = datetime.now() time = now.strftime("%Y-%m-%dT%H:%M:%S.%f") return [time] @app.callback( [ Output('session-id-store', 'data'), ], [ Input('new-session-button', 'n_clicks'), ] ) def new_session(n_clicks): now = datetime.now() session_id = now.strftime("%Y-%m-%dT%H:%M:%S.%f") session_folder = os.path.join(full_data_folder, session_id) print(f"Active data folder: {session_folder}") if not os.path.exists(session_folder): os.makedirs(session_folder) else: print("Session already exists!") os.exit() return [session_id] @app.callback( Output('session-parameters-store', 'data'), [Input('session-parameters-store', 'data')] + [Input(input_box, 'value') for input_box in input_list] ) def update_parameters(input_json, *args): params = Parameters(json.loads(input_json)) params._params = json.loads(input_json) for i in range(len(input_list)): param_class, param = input_list[i].split('-') if params._params[param]['value'] != args[i]: print(f"Setting {param} from {params._params[param]['value']} to {args[i]}") params._params[param]['value'] = args[i] params_json = str(json.dumps(params._params)) return params_json
from labelbox.orm import query from labelbox.orm.db_object import DbObject, Updateable from labelbox.orm.model import Entity, Field, Relationship class Webhook(DbObject, Updateable): """ Represents a server-side rule for sending notifications to a web-server whenever one of several predefined actions happens within a context of a Project or an Organization. """ # Status ACTIVE = "ACTIVE" INACTIVE = "INACTIVE" REVOKED = "REVOKED" # Topic LABEL_CREATED = "LABEL_CREATED" LABEL_UPDATED = "LABEL_UPDATED" LABEL_DELETED = "LABEL_DELETED" updated_at = Field.DateTime("updated_at") created_at = Field.DateTime("created_at") url = Field.String("url") topics = Field.String("topics") status = Field.String("status") @staticmethod def create(client, topics, url, secret, project): """ Creates a Webhook. Args: client (Client): The Labelbox client used to connect to the server. topics (list of str): A list of topics this Webhook should get notifications for. url (str): The URL to which notifications should be sent by the Labelbox server. secret (str): A secret key used for signing notifications. project (Project or None): The project for which notifications should be sent. If None notifications are sent for all events in your organization. Returns: A newly created Webhook. """ project_str = "" if project is None \ else ("project:{id:\"%s\"}," % project.uid) query_str = """mutation CreateWebhookPyApi { createWebhook(data:{%s topics:{set:[%s]}, url:"%s", secret:"%s" }){%s} } """ % (project_str, " ".join(topics), url, secret, query.results_query_part(Entity.Webhook)) return Webhook(client, client.execute(query_str)["createWebhook"]) created_by = Relationship.ToOne("User", False, "created_by") organization = Relationship.ToOne("Organization") project = Relationship.ToOne("Project") def update(self, topics=None, url=None, status=None): """ Updates this Webhook. Args: topics (list of str): The new topics value, optional. url (str): The new URL value, optional. status (str): The new status value, optional. """ # Webhook has a custom `update` function due to custom types # in `status` and `topics` fields. topics_str = "" if topics is None \ else "topics: {set: [%s]}" % " ".join(topics) url_str = "" if url is None else "url: \"%s\"" % url status_str = "" if status is None else "status: %s" % status query_str = """mutation UpdateWebhookPyApi { updateWebhook(where: {id: "%s"} data:{%s}){%s}} """ % ( self.uid, ", ".join(filter(None, (topics_str, url_str, status_str))), query.results_query_part(Entity.Webhook)) self._set_field_values(self.client.execute(query_str)["updateWebhook"])
try: x = int(input("Please enter a number: ")) print("Number: {}".format(x)) except ValueError: print("Oops! That was no valid number. Try again...")
import numpy as np import random import matplotlib.pyplot as plt import torch import train_2D_rt_v2 as tr2 def plot_PMF(p_list,y_list,npdf,model,get_ypred_at_RT,kld=True): '''Plots predicted and true PMF for given parameter, ykerlist and ylist (one p, yker, y in each list)''' position = 0 y_pred = tr2.get_predicted_PMF(p_list=p_list, npdf=npdf,position=position,model=model,get_ypred_at_RT = get_ypred_at_RT) kld = tr2.get_metrics(y_pred,y_list,metric = 'kld') print('KLD: ',kld.item()) y = y_list.detach().numpy() Y = y_pred.detach().numpy().reshape(y.shape) fig1,ax1=plt.subplots(nrows=1,ncols=3,figsize=(12,4)) cm='viridis' ax1[0].imshow(np.log10(y).T,cmap=cm,aspect='auto') ax1[0].invert_yaxis() ax1[0].set_title('True log-PMF & basis locations') ax1[1].imshow(np.log10(Y).T,cmap=cm,aspect='auto') ax1[1].invert_yaxis() ax1[1].set_title('Reconstructed log-PMF') ax1[2].imshow(np.log10(np.abs(Y-y)).T,cmap=cm,aspect='auto') ax1[2].invert_yaxis() ax1[2].set_title('Log-absolute difference between PMFs') def plot_training(e_,t_,metric='kld'): '''Plots training data''' plt.figure(figsize=(9,6)) plt.plot(range(len(e_)),e_,c='blue',label='Training Data') plt.plot(range(len(t_)),t_,c='red',label='Testing Data') plt.suptitle(f'Min KLD: {np.min(e_)}') plt.title(f'metric = {metric}') plt.xlabel('Epoch') plt.ylabel(f'{metric}') plt.legend() def plot_CDF(array,metric='kld',xlim=None): '''Plots CDF''' cdf = np.zeros(len(array)) array_sorted = np.sort(array) for i,value in enumerate(array_sorted): cdf[i] = len(array_sorted[array_sorted<value])/len(array_sorted) plt.scatter(array_sorted,cdf,s=5) plt.xlabel(f'{metric}') plt.ylabel('CDF') if xlim: xlow,xhigh=xlim plt.xlim(xlow,xhigh) plt.show() def plot_histogram(array,bins,xlim=None): '''Histogram of bin number of bins, xlim''' plt.hist(array,bins = bins) if xlim: xlow,xhigh = xlim plt.xlim(xlow,xhigh) plt.title(f'Max KLD: {np.max(array):.4f}, Min KLD: {np.min(array):.4f}') plt.xlabel('KL Divergence') plt.ylabel('Frequency') def get_parameters_quantile(train_list,klds,quantiles = [.95,1.0]): '''Returns given percent parameters with the highest klds and klds.''' parameters,y_list = tr2.load_training_data(train_list) kld_low = np.quantile(klds,quantiles[0]) kld_high = np.quantile(klds,quantiles[1]) klds_segment = klds[klds>kld_low] params_segment = parameters[klds>kld_low] klds_segment_2 = klds_segment[klds_segment<kld_high] params_segment_2 = params_segment[klds_segment<kld_high] return(params_segment_2,klds_segment_2) def plot_param_quantiles(klds,train_list): params_segment_1,klds_segment_1 = get_parameters_quantile(train_list,klds,quantiles=[0,.25]) params_segment_2,klds_segment_2 = get_parameters_quantile(train_list,klds,quantiles=[.25,.5]) params_segment_3,klds_segment_3 = get_parameters_quantile(train_list,klds,quantiles=[.5,.75]) params_segment_4,klds_segment_4 = get_parameters_quantile(train_list,klds,quantiles=[.75,.95]) params_segment_5,klds_segment_5 = get_parameters_quantile(train_list,klds,quantiles=[.95,1.]) b_1 = 10**np.array([ p[0] for p in params_segment_1 ]) beta_1 = 10**np.array([ p[1] for p in params_segment_1 ]) gamma_1 = 10**np.array([ p[2] for p in params_segment_1 ]) b_2 = 10**np.array([ p[0] for p in params_segment_2 ]) beta_2 = 10**np.array([ p[1] for p in params_segment_2 ]) gamma_2 = 10**np.array([ p[2] for p in params_segment_2 ]) b_3 = 10**np.array([ p[0] for p in params_segment_3 ]) beta_3 = 10**np.array([ p[1] for p in params_segment_3 ]) gamma_3 = 10**np.array([ p[2] for p in params_segment_3 ]) b_4 = 10**np.array([ p[0] for p in params_segment_4 ]) beta_4 = 10**np.array([ p[1] for p in params_segment_4 ]) gamma_4 = 10**np.array([ p[2] for p in params_segment_4 ]) b_5 = 10**np.array([ p[0] for p in params_segment_5 ]) beta_5 = 10**np.array([ p[1] for p in params_segment_5 ]) gamma_5 = 10**np.array([ p[2] for p in params_segment_5 ]) fig,ax = plt.subplots(nrows=1,ncols=3,figsize=(12,5)) # some labels ax[0].scatter(10,10,c='grey',label = 'Quantile 0-0.25') ax[0].scatter(10,10,c='blue',label = 'Quantile 0.25-0.50') ax[0].scatter(10,10,c='purple',label = 'Quantile 0.50-0.75') ax[0].scatter(10,10,c='green',label = 'Quantile 0.75-0.95') ax[0].scatter(10,10,c='red',label = 'Quantile 0.95-1.0') ax[0].scatter(b_1,beta_1,c = klds_segment_1, cmap= 'Greys') ax[0].scatter(b_2,beta_2,c = klds_segment_2, cmap= 'Blues') ax[0].scatter(b_3,beta_3, c = klds_segment_3, cmap= 'Purples') ax[0].scatter(b_4,beta_4,c = klds_segment_4, cmap= 'Greens') ax[0].scatter(b_5,beta_5,c = klds_segment_5, cmap= 'Reds') ax[0].set_xlabel('b') ax[0].set_ylabel('beta') ax[0].set_xscale('log') ax[0].set_yscale('log') ax[1].scatter(b_1,gamma_1,c = klds_segment_1, cmap= 'Greys') ax[1].scatter(b_2,gamma_2, c = klds_segment_2, cmap= 'Blues') ax[1].scatter(b_3,gamma_3,c = klds_segment_3, cmap= 'Purples') ax[1].scatter(b_4,gamma_4,c = klds_segment_4, cmap= 'Greens') ax[1].scatter(b_5,gamma_5,c = klds_segment_5, cmap= 'Reds') ax[1].set_xlabel('b') ax[1].set_ylabel('gamma') ax[1].set_xscale('log') ax[1].set_yscale('log') ax[2].scatter(beta_1,gamma_1,c = klds_segment_1, cmap= 'Greys') ax[2].scatter(beta_2,gamma_2, c = klds_segment_2, cmap= 'Blues') ax[2].scatter(beta_3,gamma_3,c = klds_segment_3, cmap= 'Purples') ax[2].scatter(beta_4,gamma_4,c = klds_segment_4, cmap= 'Greens') ax[2].scatter(beta_5,gamma_5,c = klds_segment_5, cmap= 'Reds') ax[2].set_xlabel('beta') ax[2].set_ylabel('gama') ax[2].set_xscale('log') ax[2].set_yscale('log') ax[0].legend() fig.tight_layout() plt.title('MLP 1 Parameters Colored by KLD Quantile') def plot_PMF_grid(file_list,npdf,nrows,ncols,model,get_ypred_at_RT,kld=True): p_list,y_list = tr2.load_training_data(file_list) rand = np.zeros(nrows*ncols) for i in range(nrows*ncols): rand[i] = random.randint(0,len(y_list)) y = [] Y = [] for r in rand: r = int(r) y_pred = tr2.get_predicted_PMF(p_list=p_list, npdf=npdf,position=r,model=model,get_ypred_at_RT = get_ypred_at_RT) y.append(y_list[r]) Y.append(y_pred) Y = [Y_.detach().numpy() for Y_ in Y] y = [y_.detach().numpy() for y_ in y] Y = [Y_.reshape(y[i].shape) for i,Y_ in enumerate(Y)] fig, ax1 = plt.subplots(nrows=nrows, ncols=2*ncols, figsize=(15, 15)) k = 0 j_num = np.arange(0,ncols*2,2) for i in range(nrows): for j in j_num: y_ = y[k] Y_ = Y[k] cm='viridis' ax1[i,j].imshow(np.log10(y_).T,cmap=cm,aspect='auto') ax1[i,j].invert_yaxis() ax1[i,j].set_title('True log-PMF & basis locations') ax1[i,j+1].imshow(np.log10(Y_).T,cmap=cm,aspect='auto') ax1[i,j+1].invert_yaxis() ax1[i,j+1].set_title('Reconstructed log-PMF') if kld == True: kld_ = -np.sum(y_.flatten()*np.log(Y_.flatten()/y_.flatten())) ax1[i,j].title.set_text(f'KLD: {kld_}') k = k + 1 fig.tight_layout()
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## import collections import re import sys import pkg_resources _version_string = None _zope_version = None ZopeVersion = collections.namedtuple( "ZopeVersion", ["major", "minor", "micro", "status", "release"]) def _prep_version_data(): global _version_string, _zope_version if _version_string is None: v = sys.version_info pyver = "python %d.%d.%d, %s" % (v[0], v[1], v[2], sys.platform) dist = pkg_resources.get_distribution('Zope') _version_string = "%s, %s" % (dist.version, pyver) expr = re.compile( r'(?P<major>[0-9]+)\.(?P<minor>[0-9]+)(\.(?P<micro>[0-9]+))?' '(?P<status>[A-Za-z]+)?(?P<release>[0-9]+)?') version_dict = expr.match(dist.version).groupdict() _zope_version = ZopeVersion( int(version_dict.get('major') or -1), int(version_dict.get('minor') or -1), int(version_dict.get('micro') or -1), version_dict.get('status') or '', int(version_dict.get('release') or -1)) def version_txt(): _prep_version_data() return '(%s)' % _version_string def getZopeVersion(): """return information about the Zope version as a named tuple. Format of zope_version tuple: (major <int>, minor <int>, micro <int>, status <string>, release <int>) If unreleased, integers may be -1. """ _prep_version_data() return _zope_version
import tornado.web import tornado.util from monstro.conf import settings from monstro.urls import urls application = tornado.web.Application( urls(settings.urls), cookie_secret=settings.secret_key, debug=settings.debug, **getattr(settings, 'tornado_application_settings', {}) )
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from qf_lib.backtesting.order.execution_style import ExecutionStyle from qf_lib.backtesting.order.time_in_force import TimeInForce from qf_lib.common.tickers.tickers import Ticker class Order: """ Order generated by a strategy, then processed by PositionSizer. Finally executed by ExecutionHandler. """ def __init__(self, ticker: Ticker, quantity: float, execution_style: ExecutionStyle, time_in_force: TimeInForce, order_state: str = "", strategy: str = ""): """ This __init__ shouldn't be used anywhere beyond this module. Use OrderFactory for creating Order objects. """ self.id = None # type:int self.ticker = ticker self.quantity = quantity self.time_in_force = time_in_force self.execution_style = execution_style self.order_state = order_state self.strategy = strategy def __str__(self): return f"\nOrder:\n" \ f"\tid: {self.id}\n" \ f"\tticker: {self.ticker}\n" \ f"\tquantity: {self.quantity}\n" \ f"\ttif: {self.time_in_force}\n" \ f"\texecution_style: {self.execution_style}\n" \ f"\torder_state: {self.order_state}\n" \ f"\tstrategy: {self.strategy}" def __eq__(self, other): if self is other: return True if not isinstance(other, Order): return False if self.id is not None and other.id == self.id: return True # when both ids are none -> compare the values return (self.ticker, self.quantity, self.time_in_force, self.execution_style) == \ (other.ticker, other.quantity, other.time_in_force, other.execution_style) def __hash__(self): return hash((self.ticker, self.quantity, self.time_in_force, self.execution_style))
import torch import numpy as np import torch.distributions as dists import torch.nn.functional as F from scipy.optimize import linear_sum_assignment def compute_accuracy(training_step_outputs, discrete_vae, mode="stochastic"): num_clusters = discrete_vae.latent_dim num_classes = training_step_outputs[-1]["y"].shape[1] # assignment problem -> build matrix assignment_matrix = np.zeros([num_clusters, num_classes]) all_labels = [] all_preds = [] for entry in training_step_outputs: x, y = entry["x"], entry["y"] # all one hot vectors repeated current batch_size times batch_size = x.shape[0] # all pos. classes (one-hot) [batch_size, num_classes, num_classes] all_classes = np.eye(num_classes).reshape(1, num_classes, num_classes).repeat(batch_size, 0) # reshape y into [batch_size, 1, num_classes] y = y.unsqueeze(1).detach().cpu().numpy() # find target indices by finding vectors that agree with all_classes target_indices = np.all(y == all_classes, axis=2).argmax(1) # predict cluster either stochastic (sampling) or deterministic probs_logits = discrete_vae.encode(x) if mode == "stochastic": # predictions are sampled one-hot vectors # sample class indices [batch] sampled_indices = dists.Categorical(logits=probs_logits).sample() # cast to one-hot vectors [batch, num_clusters] pred = F.one_hot(sampled_indices, num_classes=num_clusters).type_as(probs_logits) elif mode == "deterministic": # predictions are the argmax of each probability dist pred = torch.zeros_like(probs_logits) pred[torch.arange(pred.shape[0]), torch.argmax(probs_logits, dim=1)] = 1 # predicted clusters [batch_size, 1, num_clusters] pred = pred.unsqueeze(1).cpu().detach().numpy() # all possible clusters all_clusters = ( np.eye(num_clusters).reshape(1, num_clusters, num_clusters).repeat(batch_size, 0) ) # find source indices by finding vectors that agree with all_clusters source_indices = np.all(pred == all_clusters, axis=2).argmax(1) # inplace update of assignment_matrix np.add.at(assignment_matrix, (source_indices, target_indices), 1) # collect labels and predictions all_labels.append(y) all_preds.append(pred) if num_classes == num_clusters: # one-to-one # find optimal assignment using hungarian method row_ind, col_ind = linear_sum_assignment(-assignment_matrix) empty = 0 elif num_classes < num_clusters: # many-to-one # number of clusters that are not assigned empty = (np.sum(assignment_matrix, axis=1) == 0).sum() # greedy approach col_ind = np.argmax(assignment_matrix, axis=1) if not np.all(np.in1d(list(range(num_classes)), col_ind)) and mode == "deterministic": print(f"Assertion: Greedy solution does not work for {num_clusters}") # assert np.all(np.in1d(list(range(num_classes)), col_ind)), "greedy solution does not work" row_ind = np.arange(num_clusters) # set matching values zero (in place) assignment_matrix[row_ind, col_ind] = 0 # the rest of assignment matrix would be "misclassified" accuracy = 1 - np.sum(assignment_matrix) / sum([labels.shape[0] for labels in all_labels]) return accuracy, empty
from gna.ui import basecmd import numpy as np import h5py from gna.pointtree import PointTree class cmd(basecmd): @classmethod def initparser(cls, parser, env): super(cmd, cls).initparser(parser, env) parser.add_argument('--fcscan', required=True) parser.add_argument('--output', type=str, required=True) parser.add_argument('--initial', type=int, default=0) parser.add_argument('--contexts', type=int, nargs='+', default=[1]) parser.add_argument('--points', type=str, required=False) def run(self): fcscan = PointTree(self.opts.fcscan) fcmap = PointTree(self.opts.output, "w") fcmap.params = fcscan.params if self.opts.points: points = PointTree(self.opts.points) else: points = None ifield = self.opts.initial for path, values, ds in fcscan.iterall(): if points and path not in points: continue chi2s = ds["chi2s"] print("{:20}: {} entries".format(path, len(chi2s))) for ctx in self.opts.contexts: mfield = ctx dchi2s = chi2s[:, ifield] - chi2s[:, mfield] vmap = np.sort(dchi2s) grp = fcmap.touch(path + "/dchi2s") grp.create_dataset(str(ctx), data=vmap) grp.attrs["entries"] = len(chi2s) return True
import pika import time import os from rabbit import connection, wait_for, SERVER ME = os.environ['HOSTNAME'] MODULO = int("0x{}".format(ME[0:3]), 16) % 2 print(" MODULO: {}".format(MODULO)) def callback(ch, method, properties, body): print("<= Receiver {}".format(body)) # time.sleep(int(body)) # print("== done") # ch.basic_ack(delivery_tag=method.delivery_tag) if not wait_for('rabbitmq'): print("Rabbit MQ server '{}' not up!".format(SERVER)) exit(1) connection = connection(SERVER, 'guest', 'guest') channel = connection.channel() channel.exchange_declare(exchange='numbers', exchange_type='direct') queue = channel.queue_declare(exclusive=True) queue_name = queue.method.queue channel.queue_bind(exchange='numbers', queue=queue_name, routing_key=str(MODULO)) channel.basic_consume(callback, queue=queue_name, no_ack=True) print("=== Waiting for messages") channel.start_consuming()
from django.contrib import admin from . import models class AccountAdmin(admin.ModelAdmin): list_display = ('title', 'type', 'active') list_filter = ('type', 'active') search_fields = ('title',) class WithdrawalSlipAdmin(admin.ModelAdmin): list_display = ('title', 'type', 'account', 'amount', 'completed', 'status') list_filter = ('type', 'status') search_fields = ('title', 'remarks',) fields = ('type', 'status', 'account', 'amount', 'completed', 'title', 'remarks') date_hierarchy = 'completed' ordering = ['-completed', ] class UnidentifiedDepositSlip(admin.ModelAdmin): list_display = ('title', 'type', 'account', 'amount', 'completed', 'status') list_filter = ('type', 'status') search_fields = ('title', 'remarks',) fields = ('type', 'status', 'account', 'amount', 'completed', 'title', 'remarks') date_hierarchy = 'completed' ordering = ['-completed', ] admin.site.register(models.Account, AccountAdmin) admin.site.register(models.WithdrawalSlip, WithdrawalSlipAdmin) admin.site.register(models.UnidentifiedDepositSlip, UnidentifiedDepositSlip)
# coding: utf-8 from __future__ import unicode_literals import pytest @pytest.mark.parametrize("text", ["(under)"]) def test_da_tokenizer_splits_no_special(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 3 @pytest.mark.parametrize("text", ["ta'r", "Søren's", "Lars'"]) def test_da_tokenizer_handles_no_punct(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 1 @pytest.mark.parametrize("text", ["(ta'r"]) def test_da_tokenizer_splits_prefix_punct(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 2 assert tokens[0].text == "(" assert tokens[1].text == "ta'r" @pytest.mark.parametrize("text", ["ta'r)"]) def test_da_tokenizer_splits_suffix_punct(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 2 assert tokens[0].text == "ta'r" assert tokens[1].text == ")" @pytest.mark.parametrize( "text,expected", [("(ta'r)", ["(", "ta'r", ")"]), ("'ta'r'", ["'", "ta'r", "'"])] ) def test_da_tokenizer_splits_even_wrap(da_tokenizer, text, expected): tokens = da_tokenizer(text) assert len(tokens) == len(expected) assert [t.text for t in tokens] == expected @pytest.mark.parametrize("text", ["(ta'r?)"]) def test_da_tokenizer_splits_uneven_wrap(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 4 assert tokens[0].text == "(" assert tokens[1].text == "ta'r" assert tokens[2].text == "?" assert tokens[3].text == ")" @pytest.mark.parametrize( "text,expected", [("f.eks.", ["f.eks."]), ("fe.", ["fe", "."]), ("(f.eks.", ["(", "f.eks."])], ) def test_da_tokenizer_splits_prefix_interact(da_tokenizer, text, expected): tokens = da_tokenizer(text) assert len(tokens) == len(expected) assert [t.text for t in tokens] == expected @pytest.mark.parametrize("text", ["f.eks.)"]) def test_da_tokenizer_splits_suffix_interact(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 2 assert tokens[0].text == "f.eks." assert tokens[1].text == ")" @pytest.mark.parametrize("text", ["(f.eks.)"]) def test_da_tokenizer_splits_even_wrap_interact(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 3 assert tokens[0].text == "(" assert tokens[1].text == "f.eks." assert tokens[2].text == ")" @pytest.mark.parametrize("text", ["(f.eks.?)"]) def test_da_tokenizer_splits_uneven_wrap_interact(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 4 assert tokens[0].text == "(" assert tokens[1].text == "f.eks." assert tokens[2].text == "?" assert tokens[3].text == ")" @pytest.mark.parametrize("text", ["0,1-13,5", "0,0-0,1", "103,27-300", "1/2-3/4"]) def test_da_tokenizer_handles_numeric_range(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 1 @pytest.mark.parametrize("text", ["sort.Gul", "Hej.Verden"]) def test_da_tokenizer_splits_period_infix(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 3 @pytest.mark.parametrize("text", ["Hej,Verden", "en,to"]) def test_da_tokenizer_splits_comma_infix(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 3 assert tokens[0].text == text.split(",")[0] assert tokens[1].text == "," assert tokens[2].text == text.split(",")[1] @pytest.mark.parametrize("text", ["sort...Gul", "sort...gul"]) def test_da_tokenizer_splits_ellipsis_infix(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 3 @pytest.mark.parametrize( "text", ["gå-på-mod", "4-hjulstræk", "100-Pfennig-frimærke", "TV-2-spots", "trofæ-vaeggen"], ) def test_da_tokenizer_keeps_hyphens(da_tokenizer, text): tokens = da_tokenizer(text) assert len(tokens) == 1 def test_da_tokenizer_splits_double_hyphen_infix(da_tokenizer): tokens = da_tokenizer( "Mange regler--eksempelvis bindestregs-reglerne--er komplicerede." ) assert len(tokens) == 9 assert tokens[0].text == "Mange" assert tokens[1].text == "regler" assert tokens[2].text == "--" assert tokens[3].text == "eksempelvis" assert tokens[4].text == "bindestregs-reglerne" assert tokens[5].text == "--" assert tokens[6].text == "er" assert tokens[7].text == "komplicerede" def test_da_tokenizer_handles_posessives_and_contractions(da_tokenizer): tokens = da_tokenizer( "'DBA's, Lars' og Liz' bil sku' sgu' ik' ha' en bule, det ka' han ik' li' mere', sagde hun." ) assert len(tokens) == 25 assert tokens[0].text == "'" assert tokens[1].text == "DBA's" assert tokens[2].text == "," assert tokens[3].text == "Lars'" assert tokens[4].text == "og" assert tokens[5].text == "Liz'" assert tokens[6].text == "bil" assert tokens[7].text == "sku'" assert tokens[8].text == "sgu'" assert tokens[9].text == "ik'" assert tokens[10].text == "ha'" assert tokens[11].text == "en" assert tokens[12].text == "bule" assert tokens[13].text == "," assert tokens[14].text == "det" assert tokens[15].text == "ka'" assert tokens[16].text == "han" assert tokens[17].text == "ik'" assert tokens[18].text == "li'" assert tokens[19].text == "mere" assert tokens[20].text == "'" assert tokens[21].text == "," assert tokens[22].text == "sagde" assert tokens[23].text == "hun" assert tokens[24].text == "."
from myapp.server import _run_server @app.task(bind=True) def run_task_redis(self): _run_server()
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Instance Metadata information.""" import base64 import os import posixpath from oslo_config import cfg from oslo_log import log as logging from oslo_serialization import jsonutils from oslo_utils import importutils from oslo_utils import timeutils import six from nova.api.ec2 import ec2utils from nova.api.metadata import password from nova import availability_zones as az from nova import block_device from nova.cells import opts as cells_opts from nova.cells import rpcapi as cells_rpcapi import nova.conf from nova import context from nova import network from nova.network.security_group import openstack_driver from nova import objects from nova.objects import keypair as keypair_obj from nova import utils from nova.virt import netutils metadata_opts = [ cfg.StrOpt('config_drive_skip_versions', default=('1.0 2007-01-19 2007-03-01 2007-08-29 2007-10-10 ' '2007-12-15 2008-02-01 2008-09-01'), help='List of metadata versions to skip placing into the ' 'config drive'), cfg.StrOpt('vendordata_driver', default='nova.api.metadata.vendordata_json.JsonFileVendorData', help='DEPRECATED: Driver to use for vendor data', deprecated_for_removal=True), ] CONF = nova.conf.CONF CONF.register_opts(metadata_opts) VERSIONS = [ '1.0', '2007-01-19', '2007-03-01', '2007-08-29', '2007-10-10', '2007-12-15', '2008-02-01', '2008-09-01', '2009-04-04', ] FOLSOM = '2012-08-10' GRIZZLY = '2013-04-04' HAVANA = '2013-10-17' LIBERTY = '2015-10-15' OPENSTACK_VERSIONS = [ FOLSOM, GRIZZLY, HAVANA, LIBERTY, ] VERSION = "version" CONTENT = "content" CONTENT_DIR = "content" MD_JSON_NAME = "meta_data.json" VD_JSON_NAME = "vendor_data.json" NW_JSON_NAME = "network_data.json" UD_NAME = "user_data" PASS_NAME = "password" MIME_TYPE_TEXT_PLAIN = "text/plain" MIME_TYPE_APPLICATION_JSON = "application/json" LOG = logging.getLogger(__name__) class InvalidMetadataVersion(Exception): pass class InvalidMetadataPath(Exception): pass class InstanceMetadata(object): """Instance metadata.""" def __init__(self, instance, address=None, content=None, extra_md=None, network_info=None, vd_driver=None, network_metadata=None): """Creation of this object should basically cover all time consuming collection. Methods after that should not cause time delays due to network operations or lengthy cpu operations. The user should then get a single instance and make multiple method calls on it. """ if not content: content = [] ctxt = context.get_admin_context() # The default value of mimeType is set to MIME_TYPE_TEXT_PLAIN self.set_mimetype(MIME_TYPE_TEXT_PLAIN) self.instance = instance self.extra_md = extra_md self.availability_zone = az.get_instance_availability_zone(ctxt, instance) secgroup_api = openstack_driver.get_openstack_security_group_driver() self.security_groups = secgroup_api.get_instance_security_groups( ctxt, instance) self.mappings = _format_instance_mapping(ctxt, instance) if instance.user_data is not None: self.userdata_raw = base64.b64decode(instance.user_data) else: self.userdata_raw = None self.address = address # expose instance metadata. self.launch_metadata = utils.instance_meta(instance) self.password = password.extract_password(instance) self.uuid = instance.uuid self.content = {} self.files = [] # get network info, and the rendered network template if network_info is None: network_info = instance.info_cache.network_info # expose network metadata if network_metadata is None: self.network_metadata = netutils.get_network_metadata(network_info) else: self.network_metadata = network_metadata self.ip_info = \ ec2utils.get_ip_info_for_instance_from_nw_info(network_info) self.network_config = None cfg = netutils.get_injected_network_template(network_info) if cfg: key = "%04i" % len(self.content) self.content[key] = cfg self.network_config = {"name": "network_config", 'content_path': "/%s/%s" % (CONTENT_DIR, key)} # 'content' is passed in from the configdrive code in # nova/virt/libvirt/driver.py. That's how we get the injected files # (personalities) in. AFAIK they're not stored in the db at all, # so are not available later (web service metadata time). for (path, contents) in content: key = "%04i" % len(self.content) self.files.append({'path': path, 'content_path': "/%s/%s" % (CONTENT_DIR, key)}) self.content[key] = contents if vd_driver is None: vdclass = importutils.import_class(CONF.vendordata_driver) else: vdclass = vd_driver self.vddriver = vdclass(instance=instance, address=address, extra_md=extra_md, network_info=network_info) self.route_configuration = None def _route_configuration(self): if self.route_configuration: return self.route_configuration path_handlers = {UD_NAME: self._user_data, PASS_NAME: self._password, VD_JSON_NAME: self._vendor_data, MD_JSON_NAME: self._metadata_as_json, NW_JSON_NAME: self._network_data, VERSION: self._handle_version, CONTENT: self._handle_content} self.route_configuration = RouteConfiguration(path_handlers) return self.route_configuration def set_mimetype(self, mime_type): self.md_mimetype = mime_type def get_mimetype(self): return self.md_mimetype def get_ec2_metadata(self, version): if version == "latest": version = VERSIONS[-1] if version not in VERSIONS: raise InvalidMetadataVersion(version) hostname = self._get_hostname() floating_ips = self.ip_info['floating_ips'] floating_ip = floating_ips and floating_ips[0] or '' fixed_ips = self.ip_info['fixed_ips'] fixed_ip = fixed_ips and fixed_ips[0] or '' fmt_sgroups = [x['name'] for x in self.security_groups] meta_data = { 'ami-id': self.instance.ec2_ids.ami_id, 'ami-launch-index': self.instance.launch_index, 'ami-manifest-path': 'FIXME', 'instance-id': self.instance.ec2_ids.instance_id, 'hostname': hostname, 'local-ipv4': fixed_ip or self.address, 'reservation-id': self.instance.reservation_id, 'security-groups': fmt_sgroups} # public keys are strangely rendered in ec2 metadata service # meta-data/public-keys/ returns '0=keyname' (with no trailing /) # and only if there is a public key given. # '0=keyname' means there is a normally rendered dict at # meta-data/public-keys/0 # # meta-data/public-keys/ : '0=%s' % keyname # meta-data/public-keys/0/ : 'openssh-key' # meta-data/public-keys/0/openssh-key : '%s' % publickey if self.instance.key_name: meta_data['public-keys'] = { '0': {'_name': "0=" + self.instance.key_name, 'openssh-key': self.instance.key_data}} if self._check_version('2007-01-19', version): meta_data['local-hostname'] = hostname meta_data['public-hostname'] = hostname meta_data['public-ipv4'] = floating_ip if False and self._check_version('2007-03-01', version): # TODO(vish): store product codes meta_data['product-codes'] = [] if self._check_version('2007-08-29', version): instance_type = self.instance.get_flavor() meta_data['instance-type'] = instance_type['name'] if False and self._check_version('2007-10-10', version): # TODO(vish): store ancestor ids meta_data['ancestor-ami-ids'] = [] if self._check_version('2007-12-15', version): meta_data['block-device-mapping'] = self.mappings if self.instance.ec2_ids.kernel_id: meta_data['kernel-id'] = self.instance.ec2_ids.kernel_id if self.instance.ec2_ids.ramdisk_id: meta_data['ramdisk-id'] = self.instance.ec2_ids.ramdisk_id if self._check_version('2008-02-01', version): meta_data['placement'] = {'availability-zone': self.availability_zone} if self._check_version('2008-09-01', version): meta_data['instance-action'] = 'none' data = {'meta-data': meta_data} if self.userdata_raw is not None: data['user-data'] = self.userdata_raw return data def get_ec2_item(self, path_tokens): # get_ec2_metadata returns dict without top level version data = self.get_ec2_metadata(path_tokens[0]) return find_path_in_tree(data, path_tokens[1:]) def get_openstack_item(self, path_tokens): if path_tokens[0] == CONTENT_DIR: return self._handle_content(path_tokens) return self._route_configuration().handle_path(path_tokens) def _metadata_as_json(self, version, path): metadata = {'uuid': self.uuid} if self.launch_metadata: metadata['meta'] = self.launch_metadata if self.files: metadata['files'] = self.files if self.extra_md: metadata.update(self.extra_md) if self.network_config: metadata['network_config'] = self.network_config if self.instance.key_name: metadata['public_keys'] = { self.instance.key_name: self.instance.key_data } if cells_opts.get_cell_type() == 'compute': cells_api = cells_rpcapi.CellsAPI() keypair = cells_api.get_keypair_at_top( context.get_admin_context(), self.instance.user_id, self.instance.key_name) else: keypair = keypair_obj.KeyPair.get_by_name( context.get_admin_context(), self.instance.user_id, self.instance.key_name) metadata['keys'] = [ {'name': keypair.name, 'type': keypair.type, 'data': keypair.public_key} ] metadata['hostname'] = self._get_hostname() metadata['name'] = self.instance.display_name metadata['launch_index'] = self.instance.launch_index metadata['availability_zone'] = self.availability_zone if self._check_os_version(GRIZZLY, version): metadata['random_seed'] = base64.b64encode(os.urandom(512)) if self._check_os_version(LIBERTY, version): metadata['project_id'] = self.instance.project_id self.set_mimetype(MIME_TYPE_APPLICATION_JSON) return jsonutils.dump_as_bytes(metadata) def _handle_content(self, path_tokens): if len(path_tokens) == 1: raise KeyError("no listing for %s" % "/".join(path_tokens)) if len(path_tokens) != 2: raise KeyError("Too many tokens for /%s" % CONTENT_DIR) return self.content[path_tokens[1]] def _handle_version(self, version, path): # request for /version, give a list of what is available ret = [MD_JSON_NAME] if self.userdata_raw is not None: ret.append(UD_NAME) if self._check_os_version(GRIZZLY, version): ret.append(PASS_NAME) if self._check_os_version(HAVANA, version): ret.append(VD_JSON_NAME) if self._check_os_version(LIBERTY, version): ret.append(NW_JSON_NAME) return ret def _user_data(self, version, path): if self.userdata_raw is None: raise KeyError(path) return self.userdata_raw def _network_data(self, version, path): if self.network_metadata is None: return jsonutils.dump_as_bytes({}) return jsonutils.dump_as_bytes(self.network_metadata) def _password(self, version, path): if self._check_os_version(GRIZZLY, version): return password.handle_password raise KeyError(path) def _vendor_data(self, version, path): if self._check_os_version(HAVANA, version): self.set_mimetype(MIME_TYPE_APPLICATION_JSON) return jsonutils.dump_as_bytes(self.vddriver.get()) raise KeyError(path) def _check_version(self, required, requested, versions=VERSIONS): return versions.index(requested) >= versions.index(required) def _check_os_version(self, required, requested): return self._check_version(required, requested, OPENSTACK_VERSIONS) def _get_hostname(self): return "%s%s%s" % (self.instance.hostname, '.' if CONF.dhcp_domain else '', CONF.dhcp_domain) def lookup(self, path): if path == "" or path[0] != "/": path = posixpath.normpath("/" + path) else: path = posixpath.normpath(path) # Set default mimeType. It will be modified only if there is a change self.set_mimetype(MIME_TYPE_TEXT_PLAIN) # fix up requests, prepending /ec2 to anything that does not match path_tokens = path.split('/')[1:] if path_tokens[0] not in ("ec2", "openstack"): if path_tokens[0] == "": # request for / path_tokens = ["ec2"] else: path_tokens = ["ec2"] + path_tokens path = "/" + "/".join(path_tokens) # all values of 'path' input starts with '/' and have no trailing / # specifically handle the top level request if len(path_tokens) == 1: if path_tokens[0] == "openstack": # NOTE(vish): don't show versions that are in the future today = timeutils.utcnow().strftime("%Y-%m-%d") versions = [v for v in OPENSTACK_VERSIONS if v <= today] if OPENSTACK_VERSIONS != versions: LOG.debug("future versions %s hidden in version list", [v for v in OPENSTACK_VERSIONS if v not in versions]) versions += ["latest"] else: versions = VERSIONS + ["latest"] return versions try: if path_tokens[0] == "openstack": data = self.get_openstack_item(path_tokens[1:]) else: data = self.get_ec2_item(path_tokens[1:]) except (InvalidMetadataVersion, KeyError): raise InvalidMetadataPath(path) return data def metadata_for_config_drive(self): """Yields (path, value) tuples for metadata elements.""" # EC2 style metadata for version in VERSIONS + ["latest"]: if version in CONF.config_drive_skip_versions.split(' '): continue data = self.get_ec2_metadata(version) if 'user-data' in data: filepath = os.path.join('ec2', version, 'user-data') yield (filepath, data['user-data']) del data['user-data'] try: del data['public-keys']['0']['_name'] except KeyError: pass filepath = os.path.join('ec2', version, 'meta-data.json') yield (filepath, jsonutils.dump_as_bytes(data['meta-data'])) ALL_OPENSTACK_VERSIONS = OPENSTACK_VERSIONS + ["latest"] for version in ALL_OPENSTACK_VERSIONS: path = 'openstack/%s/%s' % (version, MD_JSON_NAME) yield (path, self.lookup(path)) path = 'openstack/%s/%s' % (version, UD_NAME) if self.userdata_raw is not None: yield (path, self.lookup(path)) if self._check_version(HAVANA, version, ALL_OPENSTACK_VERSIONS): path = 'openstack/%s/%s' % (version, VD_JSON_NAME) yield (path, self.lookup(path)) if self._check_version(LIBERTY, version, ALL_OPENSTACK_VERSIONS): path = 'openstack/%s/%s' % (version, NW_JSON_NAME) yield (path, self.lookup(path)) for (cid, content) in six.iteritems(self.content): yield ('%s/%s/%s' % ("openstack", CONTENT_DIR, cid), content) class RouteConfiguration(object): """Routes metadata paths to request handlers.""" def __init__(self, path_handler): self.path_handlers = path_handler def _version(self, version): if version == "latest": version = OPENSTACK_VERSIONS[-1] if version not in OPENSTACK_VERSIONS: raise InvalidMetadataVersion(version) return version def handle_path(self, path_tokens): version = self._version(path_tokens[0]) if len(path_tokens) == 1: path = VERSION else: path = '/'.join(path_tokens[1:]) path_handler = self.path_handlers[path] if path_handler is None: raise KeyError(path) return path_handler(version, path) class VendorDataDriver(object): """The base VendorData Drivers should inherit from.""" def __init__(self, *args, **kwargs): """Init method should do all expensive operations.""" self._data = {} def get(self): """Return a dictionary of primitives to be rendered in metadata :return: A dictionary or primitives. """ return self._data def get_metadata_by_address(address): ctxt = context.get_admin_context() fixed_ip = network.API().get_fixed_ip_by_address(ctxt, address) return get_metadata_by_instance_id(fixed_ip['instance_uuid'], address, ctxt) def get_metadata_by_instance_id(instance_id, address, ctxt=None): ctxt = ctxt or context.get_admin_context() instance = objects.Instance.get_by_uuid( ctxt, instance_id, expected_attrs=['ec2_ids', 'flavor', 'info_cache', 'metadata', 'system_metadata', 'security_groups']) return InstanceMetadata(instance, address) def _format_instance_mapping(ctxt, instance): bdms = objects.BlockDeviceMappingList.get_by_instance_uuid( ctxt, instance.uuid) return block_device.instance_block_mapping(instance, bdms) def ec2_md_print(data): if isinstance(data, dict): output = '' for key in sorted(data.keys()): if key == '_name': continue if isinstance(data[key], dict): if '_name' in data[key]: output += str(data[key]['_name']) else: output += key + '/' else: output += key output += '\n' return output[:-1] elif isinstance(data, list): return '\n'.join(data) else: return str(data) def find_path_in_tree(data, path_tokens): # given a dict/list tree, and a path in that tree, return data found there. for i in range(0, len(path_tokens)): if isinstance(data, dict) or isinstance(data, list): if path_tokens[i] in data: data = data[path_tokens[i]] else: raise KeyError("/".join(path_tokens[0:i])) else: if i != len(path_tokens) - 1: raise KeyError("/".join(path_tokens[0:i])) data = data[path_tokens[i]] return data
from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from __future__ import division from random import shuffle from random import seed import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.feature_extraction import DictVectorizer from sklearn.metrics import adjusted_rand_score from concept_formation.cobweb3 import Cobweb3Tree from concept_formation.cluster import cluster from concept_formation.datasets import load_iris seed(0) irises = load_iris() shuffle(irises) tree = Cobweb3Tree() irises_no_class = [{a: iris[a] for a in iris if a != 'class'} for iris in irises] clusters = next(cluster(tree, irises_no_class)) iris_class = [iris[a] for iris in irises for a in iris if a == 'class'] ari = adjusted_rand_score(clusters, iris_class) dv = DictVectorizer(sparse=False) iris_X = dv.fit_transform( [{a: iris[a] for a in iris if a != 'class'} for iris in irises]) pca = PCA(n_components=2) iris_2d_x = pca.fit_transform(iris_X) colors = ['b', 'g', 'r', 'y', 'k', 'c', 'm'] shapes = ['o', '^', '+'] clust_set = {v: i for i, v in enumerate(list(set(clusters)))} class_set = {v: i for i, v in enumerate(list(set(iris_class)))} for class_idx, class_label in enumerate(class_set): x = [v[0] for i, v in enumerate(iris_2d_x) if iris_class[i] == class_label] y = [v[1] for i, v in enumerate(iris_2d_x) if iris_class[i] == class_label] c = [colors[clust_set[clusters[i]]] for i, v in enumerate(iris_2d_x) if iris_class[i] == class_label] plt.scatter(x, y, color=c, marker=shapes[class_idx], label=class_label) plt.title("COBWEB/3 Iris Clustering (ARI = %0.2f)" % (ari)) plt.xlabel("PCA Dimension 1") plt.ylabel("PCA Dimension 2") plt.legend(loc=4) plt.show()
from abc import ABC, abstractmethod class State(ABC): """ State object, which stores a solution via its decision variables. The objective value is evaluated via its ``objective()`` member, and should return a numeric type - e.g. an ``int``, ``float``, or comparable. The State class is abstract - you are encouraged to subclass it to suit your specific problem. """ @abstractmethod def objective(self): """ Computes the state's associated objective value. Returns ------- float Some numeric value, e.g. an ``int`` or ``float``. """ return NotImplemented
# Lint as: python3 # # Copyright 2020 The XLS Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name """Type system deduction rules for AST nodes.""" import typing from typing import Text, Dict, Union, Callable, Type, Tuple, List, Set from absl import logging import dataclasses from xls.dslx import ast_helpers from xls.dslx import bit_helpers from xls.dslx import concrete_type_helpers from xls.dslx import dslx_builtins from xls.dslx import parametric_instantiator from xls.dslx.python import cpp_ast as ast from xls.dslx.python import cpp_scanner as scanner from xls.dslx.python.cpp_concrete_type import ArrayType from xls.dslx.python.cpp_concrete_type import BitsType from xls.dslx.python.cpp_concrete_type import ConcreteType from xls.dslx.python.cpp_concrete_type import ConcreteTypeDim from xls.dslx.python.cpp_concrete_type import EnumType from xls.dslx.python.cpp_concrete_type import FunctionType from xls.dslx.python.cpp_concrete_type import TupleType from xls.dslx.python.cpp_parametric_expression import ParametricAdd from xls.dslx.python.cpp_parametric_expression import ParametricExpression from xls.dslx.python.cpp_parametric_expression import ParametricSymbol from xls.dslx.python.cpp_pos import Span from xls.dslx.python.cpp_type_info import TypeInfo from xls.dslx.python.cpp_type_info import TypeMissingError from xls.dslx.xls_type_error import TypeInferenceError from xls.dslx.xls_type_error import XlsTypeError # Dictionary used as registry for rule dispatch based on AST node class. RULES = {} SymbolicBindings = parametric_instantiator.SymbolicBindings RuleFunction = Callable[[ast.AstNode, 'DeduceCtx'], ConcreteType] def _rule(cls: Type[ast.AstNode]): """Decorator for a type inference rule that pertains to class 'cls'.""" def register(f): # Register the checked function as the rule. RULES[cls] = f return f return register # Type signature for the import function callback: # (import_tokens) -> (module, type_info) ImportFn = Callable[[Tuple[Text, ...]], Tuple[ast.Module, TypeInfo]] # Type signature for interpreter function callback: # (module, type_info, env, bit_widths, expr, f_import, fn_ctx) -> # value_as_int # # This is an abstract interface to break circular dependencies; see # interpreter_helpers.py InterpCallbackType = Callable[[ ast.Module, TypeInfo, Dict[Text, int], Dict[Text, int], ast.Expr, ImportFn ], int] # Type for stack of functions deduction is running on. # [(name, symbolic_bindings), ...] FnStack = List[Tuple[Text, Dict[Text, int]]] @dataclasses.dataclass class DeduceCtx: """A wrapper over useful objects for typechecking. Attributes: type_info: Maps an AST node to its deduced type. module: The (entry point) module we are typechecking. interpret_expr: An Interpreter wrapper that parametric_instantiator uses to evaluate bindings with complex expressions (eg. function calls). check_function_in_module: A callback to typecheck parametric functions that are not in this module. fn_stack: Keeps track of the function we're currently typechecking and the symbolic bindings we should be using. """ type_info: TypeInfo module: ast.Module interpret_expr: InterpCallbackType check_function_in_module: Callable[[ast.Function, 'DeduceCtx'], None] fn_stack: FnStack = dataclasses.field(default_factory=list) def resolve(type_: ConcreteType, ctx: DeduceCtx) -> ConcreteType: """Resolves "type_" via provided symbolic bindings. Uses the symbolic bindings of the function we're currently inside of to resolve parametric types. Args: type_: Type to resolve any contained dims for. ctx: Deduction context to use in resolving the dims. Returns: "type_" with dimensions resolved according to bindings in "ctx". """ _, fn_symbolic_bindings = ctx.fn_stack[-1] def resolver(dim: ConcreteTypeDim) -> ConcreteTypeDim: if isinstance(dim.value, ParametricExpression): return ConcreteTypeDim(dim.value.evaluate(fn_symbolic_bindings)) return dim return concrete_type_helpers.map_size(type_, ctx.module, resolver) @_rule(ast.Param) def _deduce_Param(self: ast.Param, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types return deduce(self.type_, ctx) @_rule(ast.Constant) def _deduce_Constant(self: ast.Constant, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types result = ctx.type_info[self.name] = deduce(self.value, ctx) ctx.type_info.note_constant(self.name, self) return result def _check_bitwidth(n: ast.Number, concrete_type: ConcreteType) -> None: if (isinstance(concrete_type, BitsType) and isinstance(concrete_type.get_total_bit_count().value, int) and not bit_helpers.fits_in_bits( ast_helpers.get_value_as_int(n), concrete_type.get_total_bit_count().value)): msg = 'value {!r} does not fit in the bitwidth of a {} ({})'.format( n.value, concrete_type, concrete_type.get_total_bit_count().value) raise TypeInferenceError(span=n.span, type_=concrete_type, suffix=msg) @_rule(ast.ConstantArray) def _deduce_ConstantArray( self: ast.ConstantArray, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a ConstantArray AST node.""" # We permit constant arrays to drop annotations for numbers as a convenience # (before we have unifying type inference) by allowing constant arrays to have # a leading type annotation. If they don't have a leading type annotation, # just fall back to normal array type inference, if we encounter a number # without a type annotation we'll flag an error per usual. if self.type_ is None: return _deduce_Array(self, ctx) # Determine the element type that corresponds to the annotation and go mark # any un-typed numbers in the constant array as having that type. concrete_type = deduce(self.type_, ctx) if not isinstance(concrete_type, ArrayType): raise TypeInferenceError( self.type_.span, concrete_type, f'Annotated type for array literal must be an array type; got {concrete_type.get_debug_type_name()} {self.type_}' ) element_type = concrete_type.get_element_type() for member in self.members: assert ast.is_constant(member) if isinstance(member, ast.Number) and not member.type_: ctx.type_info[member] = element_type _check_bitwidth(member, element_type) # Use the base class to check all members are compatible. _deduce_Array(self, ctx) return concrete_type def _create_element_invocation(owner: ast.AstNodeOwner, span_: Span, callee: Union[ast.NameRef, ast.ModRef], arg_array: ast.Expr) -> ast.Invocation: """Creates a function invocation on the first element of the given array. We need to create a fake invocation to deduce the type of a function in the case where map is called with a builtin as the map function. Normally, map functions (including parametric ones) have their types deduced when their ast.Function nodes are encountered (where a similar fake ast.Invocation node is created). Builtins don't have ast.Function nodes, so that inference can't occur, so we essentually perform that synthesis and deduction here. Args: owner: AST node owner. span_: The location in the code where analysis is occurring. callee: The function to be invoked. arg_array: The array of arguments (at least one) to the function. Returns: An invocation node for the given function when called with an element in the argument array. """ annotation = ast_helpers.make_builtin_type_annotation( owner, span_, scanner.Token(span_, scanner.Keyword.U32), ()) index_number = ast.Number(owner, span_, '32', ast.NumberKind.OTHER, annotation) index = ast.Index(owner, span_, arg_array, index_number) return ast.Invocation(owner, span_, callee, (index,)) def _check_parametric_invocation(parametric_fn: ast.Function, invocation: ast.Invocation, symbolic_bindings: SymbolicBindings, ctx: DeduceCtx): """Checks the parametric fn body using the invocation's symbolic bindings.""" if isinstance(invocation.callee, ast.ModRef): # We need to typecheck this function with respect to its own module. # Let's use typecheck._check_function_or_test_in_module() to do this # in case we run into more dependencies in that module. if ctx.type_info.has_instantiation(invocation, symbolic_bindings): # We've already typechecked this imported parametric function using # these symbolic bindings. return imported_module, imported_type_info = ctx.type_info.get_imported( invocation.callee.mod) invocation_imported_type_info = TypeInfo( imported_module, parent=imported_type_info) imported_ctx = DeduceCtx(invocation_imported_type_info, imported_module, ctx.interpret_expr, ctx.check_function_in_module) imported_ctx.fn_stack.append( (parametric_fn.name.identifier, dict(symbolic_bindings))) ctx.check_function_in_module(parametric_fn, imported_ctx) ctx.type_info.add_instantiation(invocation, symbolic_bindings, invocation_imported_type_info) return assert isinstance(invocation.callee, ast.NameRef), invocation.callee has_instantiation = ctx.type_info.has_instantiation(invocation, symbolic_bindings) # We need to typecheck this function with respect to its own module # Let's take advantage of the existing try-catch mechanism in # typecheck._check_function_or_test_in_module(). try: # See if the body is present in the type_info mapping (we do this just # to observe if it raises an exception). ctx.type_info[parametric_fn.body] except TypeMissingError as e: # If we've already typechecked the parametric function with the # current symbolic bindings, no need to do it again. if not has_instantiation: # Let's typecheck this parametric function using the symbolic bindings # we just derived to make sure they check out ok. e.node = invocation.callee.name_def ctx.fn_stack.append( (parametric_fn.name.identifier, dict(symbolic_bindings))) ctx.type_info = TypeInfo(ctx.type_info.module, parent=ctx.type_info) raise if not has_instantiation: # If we haven't yet stored a type_info for these symbolic bindings # and we're at this point, it means that we just finished typechecking # the parametric function. Let's store the results. ctx.type_info.parent.add_instantiation(invocation, symbolic_bindings, ctx.type_info) ctx.type_info = ctx.type_info.parent @_rule(ast.Invocation) def _deduce_Invocation(self: ast.Invocation, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of an Invocation AST node.""" logging.vlog(5, 'Deducing type for invocation: %s', self) arg_types = [] _, fn_symbolic_bindings = ctx.fn_stack[-1] for arg in self.args: try: arg_types.append(resolve(deduce(arg, ctx), ctx)) except TypeMissingError as e: # These nodes could be ModRefs or NameRefs. callee_is_map = isinstance( self.callee, ast.NameRef) and self.callee.name_def.identifier == 'map' arg_is_builtin = isinstance( arg, ast.NameRef ) and arg.name_def.identifier in dslx_builtins.PARAMETRIC_BUILTIN_NAMES if callee_is_map and arg_is_builtin: invocation = _create_element_invocation(ctx.module, self.span, arg, self.args[0]) arg_types.append(resolve(deduce(invocation, ctx), ctx)) else: raise try: # This will get us the type signature of the function. # If the function is parametric, we won't check its body # until after we have symbolic bindings for it callee_type = deduce(self.callee, ctx) except TypeMissingError as e: e.span = self.span e.user = self raise if not isinstance(callee_type, FunctionType): raise XlsTypeError(self.callee.span, callee_type, None, 'Callee does not have a function type.') if isinstance(self.callee, ast.ModRef): imported_module, _ = ctx.type_info.get_imported(self.callee.mod) callee_name = self.callee.value callee_fn = imported_module.get_function(callee_name) else: assert isinstance(self.callee, ast.NameRef), self.callee callee_name = self.callee.identifier callee_fn = ctx.module.get_function(callee_name) self_type, callee_sym_bindings = parametric_instantiator.instantiate_function( self.span, callee_type, tuple(arg_types), ctx, callee_fn.parametric_bindings) caller_sym_bindings = tuple(fn_symbolic_bindings.items()) ctx.type_info.add_invocation_symbolic_bindings(self, caller_sym_bindings, callee_sym_bindings) if callee_fn.is_parametric(): # Now that we have callee_sym_bindings, let's use them to typecheck the body # of callee_fn to make sure these values actually work _check_parametric_invocation(callee_fn, self, callee_sym_bindings, ctx) return self_type def _deduce_slice_type(self: ast.Index, ctx: DeduceCtx, lhs_type: ConcreteType) -> ConcreteType: """Deduces the concrete type of an Index AST node with a slice spec.""" index_slice = self.index assert isinstance(index_slice, (ast.Slice, ast.WidthSlice)), index_slice # TODO(leary): 2019-10-28 Only slicing bits types for now, and only with # number ast nodes, generalize to arrays and constant expressions. if not isinstance(lhs_type, BitsType): raise XlsTypeError(self.span, lhs_type, None, 'Value to slice is not of "bits" type.') bit_count = lhs_type.get_total_bit_count().value if isinstance(index_slice, ast.WidthSlice): start = index_slice.start if isinstance(start, ast.Number) and start.type_ is None: start_type = lhs_type.to_ubits() resolved_start_type = resolve(start_type, ctx) start_int = ast_helpers.get_value_as_int(start) if not bit_helpers.fits_in_bits( start_int, resolved_start_type.get_total_bit_count().value): raise TypeInferenceError( start.span, resolved_start_type, 'Cannot fit {} in {} bits (inferred from bits to slice).'.format( start_int, resolved_start_type.get_total_bit_count().value)) ctx.type_info[start] = start_type else: start_type = deduce(start, ctx) # Check the start is unsigned. if start_type.signed: raise TypeInferenceError( start.span, type_=start_type, suffix='Start index for width-based slice must be unsigned.') width_type = deduce(index_slice.width, ctx) if isinstance(width_type.get_total_bit_count().value, int) and isinstance( lhs_type.get_total_bit_count().value, int) and width_type.get_total_bit_count( ).value > lhs_type.get_total_bit_count().value: raise XlsTypeError( start.span, lhs_type, width_type, 'Slice type must have <= original number of bits; attempted slice from {} to {} bits.' .format(lhs_type.get_total_bit_count().value, width_type.get_total_bit_count().value)) # Check the width type is bits-based (no enums, since value could be out # of range of the enum values). if not isinstance(width_type, BitsType): raise TypeInferenceError( self.span, type_=width_type, suffix='Require a bits-based type for width-based slice.') # The width type is the thing returned from the width-slice. return width_type assert isinstance(index_slice, ast.Slice), index_slice limit = ast_helpers.get_value_as_int( index_slice.limit) if index_slice.limit else None # PyType has trouble figuring out that start is definitely an Number at this # point. start = index_slice.start assert isinstance(start, (ast.Number, type(None))) start = ast_helpers.get_value_as_int(start) if start else None _, fn_symbolic_bindings = ctx.fn_stack[-1] if isinstance(bit_count, ParametricExpression): bit_count = bit_count.evaluate(fn_symbolic_bindings) start, width = bit_helpers.resolve_bit_slice_indices(bit_count, start, limit) key = tuple(fn_symbolic_bindings.items()) ctx.type_info.add_slice_start_width(index_slice, key, (start, width)) return BitsType(signed=False, size=width) @_rule(ast.Index) def _deduce_Index(self: ast.Index, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of an Index AST node.""" lhs_type = deduce(self.lhs, ctx) # Check whether this is a slice-based indexing operations. if isinstance(self.index, (ast.Slice, ast.WidthSlice)): return _deduce_slice_type(self, ctx, lhs_type) index_type = deduce(self.index, ctx) if isinstance(lhs_type, TupleType): if not isinstance(self.index, ast.Number): raise XlsTypeError(self.index.span, index_type, None, 'Tuple index is not a literal number.') index_value = ast_helpers.get_value_as_int(self.index) if index_value >= lhs_type.get_tuple_length(): raise XlsTypeError( self.index.span, lhs_type, None, 'Tuple index {} is out of range for this tuple type.'.format( index_value)) return lhs_type.get_unnamed_members()[index_value] if not isinstance(lhs_type, ArrayType): raise TypeInferenceError(self.lhs.span, lhs_type, 'Value to index is not an array.') index_ok = isinstance(index_type, BitsType) and not isinstance(index_type, ArrayType) if not index_ok: raise XlsTypeError(self.index.span, index_type, None, 'Index type is not scalar bits.') return lhs_type.get_element_type() @_rule(ast.XlsTuple) def _deduce_XlsTuple(self: ast.XlsTuple, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types members = tuple(deduce(m, ctx) for m in self.members) return TupleType(members) def _bind_names(name_def_tree: ast.NameDefTree, type_: ConcreteType, ctx: DeduceCtx) -> None: """Binds names in name_def_tree to corresponding type given in type_.""" if name_def_tree.is_leaf(): name_def = name_def_tree.get_leaf() ctx.type_info[name_def] = type_ return if not isinstance(type_, TupleType): raise XlsTypeError( name_def_tree.span, type_, rhs_type=None, suffix='Expected a tuple type for these names, but got {}.'.format( type_)) if len(name_def_tree.tree) != type_.get_tuple_length(): raise TypeInferenceError( name_def_tree.span, type_, 'Could not bind names, names are mismatched in number vs type; at ' 'this level of the tuple: {} names, {} types.'.format( len(name_def_tree.tree), type_.get_tuple_length())) for subtree, subtype in zip(name_def_tree.tree, type_.get_unnamed_members()): ctx.type_info[subtree] = subtype _bind_names(subtree, subtype, ctx) @_rule(ast.Let) def _deduce_Let(self: ast.Let, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a Let AST node.""" rhs_type = deduce(self.rhs, ctx) resolved_rhs_type = resolve(rhs_type, ctx) if self.type_ is not None: concrete_type = deduce(self.type_, ctx) resolved_concrete_type = resolve(concrete_type, ctx) if resolved_rhs_type != resolved_concrete_type: raise XlsTypeError( self.rhs.span, resolved_concrete_type, resolved_rhs_type, 'Annotated type did not match inferred type of right hand side.') _bind_names(self.name_def_tree, resolved_rhs_type, ctx) if self.const: deduce(self.const, ctx) return deduce(self.body, ctx) def _unify_WildcardPattern(_self: ast.WildcardPattern, _type: ConcreteType, _ctx: DeduceCtx) -> None: pass # Wildcard matches any type. def _unify_NameDefTree(self: ast.NameDefTree, type_: ConcreteType, ctx: DeduceCtx) -> None: """Unifies the NameDefTree AST node with the observed RHS type type_.""" resolved_rhs_type = resolve(type_, ctx) if self.is_leaf(): leaf = self.get_leaf() if isinstance(leaf, ast.NameDef): ctx.type_info[leaf] = resolved_rhs_type elif isinstance(leaf, ast.WildcardPattern): pass elif isinstance(leaf, (ast.Number, ast.EnumRef)): resolved_leaf_type = resolve(deduce(leaf, ctx), ctx) if resolved_leaf_type != resolved_rhs_type: raise TypeInferenceError( span=self.span, type_=resolved_rhs_type, suffix='Conflicting types; pattern expects {} but got {} from value' .format(resolved_rhs_type, resolved_leaf_type)) else: assert isinstance(leaf, ast.NameRef), repr(leaf) ref_type = ctx.type_info[leaf.name_def] resolved_ref_type = resolve(ref_type, ctx) if resolved_ref_type != resolved_rhs_type: raise TypeInferenceError( span=self.span, type_=resolved_rhs_type, suffix='Conflicting types; pattern expects {} but got {} from reference' .format(resolved_rhs_type, resolved_ref_type)) else: assert isinstance(self.tree, tuple) if isinstance(type_, TupleType) and type_.get_tuple_length() == len( self.tree): for subtype, subtree in zip(type_.get_unnamed_members(), self.tree): _unify(subtree, subtype, ctx) def _unify(n: ast.AstNode, other: ConcreteType, ctx: DeduceCtx) -> None: f = globals()['_unify_{}'.format(n.__class__.__name__)] f(n, other, ctx) @_rule(ast.Match) def _deduce_Match(self: ast.Match, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a Match AST node.""" matched = deduce(self.matched, ctx) for arm in self.arms: for pattern in arm.patterns: _unify(pattern, matched, ctx) arm_types = tuple(deduce(arm, ctx) for arm in self.arms) resolved_arm0_type = resolve(arm_types[0], ctx) for i, arm_type in enumerate(arm_types[1:], 1): resolved_arm_type = resolve(arm_type, ctx) if resolved_arm_type != resolved_arm0_type: raise XlsTypeError( self.arms[i].span, resolved_arm_type, resolved_arm0_type, 'This match arm did not have the same type as preceding match arms.') return resolved_arm0_type @_rule(ast.MatchArm) def _deduce_MatchArm(self: ast.MatchArm, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types return deduce(self.expr, ctx) @_rule(ast.For) def _deduce_For(self: ast.For, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a For AST node.""" init_type = deduce(self.init, ctx) annotated_type = deduce(self.type_, ctx) _bind_names(self.names, annotated_type, ctx) body_type = deduce(self.body, ctx) deduce(self.iterable, ctx) resolved_init_type = resolve(init_type, ctx) resolved_body_type = resolve(body_type, ctx) if resolved_init_type != resolved_body_type: raise XlsTypeError( self.span, resolved_init_type, resolved_body_type, "For-loop init value type did not match for-loop body's result type.") # TODO(leary): 2019-02-19 Type check annotated_type (the bound names each # iteration) against init_type/body_type -- this requires us to understand # how iterables turn into induction values. return resolved_init_type @_rule(ast.While) def _deduce_While(self: ast.While, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a While AST node.""" init_type = deduce(self.init, ctx) test_type = deduce(self.test, ctx) resolved_init_type = resolve(init_type, ctx) resolved_test_type = resolve(test_type, ctx) if resolved_test_type != ConcreteType.U1: raise XlsTypeError(self.test.span, test_type, ConcreteType.U1, 'Expect while-loop test to be a bool value.') body_type = deduce(self.body, ctx) resolved_body_type = resolve(body_type, ctx) if resolved_init_type != resolved_body_type: raise XlsTypeError( self.span, init_type, body_type, "While-loop init value type did not match while-loop body's " 'result type.') return resolved_init_type @_rule(ast.Carry) def _deduce_Carry(self: ast.Carry, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types return deduce(self.loop.init, ctx) def _is_acceptable_cast(from_: ConcreteType, to: ConcreteType) -> bool: if {type(from_), type(to)} == {ArrayType, BitsType}: return from_.get_total_bit_count() == to.get_total_bit_count() return True @_rule(ast.Cast) def _deduce_Cast(self: ast.Cast, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a Cast AST node.""" type_result = deduce(self.type_, ctx) expr_type = deduce(self.expr, ctx) resolved_type_result = resolve(type_result, ctx) resolved_expr_type = resolve(expr_type, ctx) if not _is_acceptable_cast(from_=resolved_type_result, to=resolved_expr_type): raise XlsTypeError( self.span, expr_type, type_result, 'Cannot cast from expression type {} to {}.'.format( resolved_expr_type, resolved_type_result)) return resolved_type_result @_rule(ast.Unop) def _deduce_Unop(self: ast.Unop, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types return deduce(self.operand, ctx) @_rule(ast.Array) def _deduce_Array(self: ast.Array, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of an Array AST node.""" member_types = [deduce(m, ctx) for m in self.members] resolved_type0 = resolve(member_types[0], ctx) for i, x in enumerate(member_types[1:], 1): resolved_x = resolve(x, ctx) logging.vlog(5, 'array member type %d: %s', i, resolved_x) if resolved_x != resolved_type0: raise XlsTypeError( self.members[i].span, resolved_type0, resolved_x, 'Array member did not have same type as other members.') inferred = ArrayType(resolved_type0, len(member_types)) if not self.type_: return inferred annotated = deduce(self.type_, ctx) if not isinstance(annotated, ArrayType): raise XlsTypeError(self.span, annotated, None, 'Array was not annotated with an array type.') resolved_element_type = resolve(annotated.get_element_type(), ctx) if resolved_element_type != resolved_type0: raise XlsTypeError( self.span, resolved_element_type, resolved_type0, 'Annotated element type did not match inferred element type.') if self.has_ellipsis: # Since there are ellipsis, we determine the size from the annotated type. # We've already checked the element types lined up. return annotated else: if annotated.size != len(member_types): raise XlsTypeError( self.span, annotated, inferred, 'Annotated array size {!r} does not match inferred array size {!r}.' .format(annotated.size, len(member_types))) return inferred @_rule(ast.TypeRef) def _deduce_TypeRef(self: ast.TypeRef, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types return deduce(self.type_def, ctx) @_rule(ast.ConstRef) @_rule(ast.NameRef) def _deduce_NameRef(self: ast.NameRef, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a NameDef AST node.""" try: result = ctx.type_info[self.name_def] except TypeMissingError as e: logging.vlog(3, 'Could not resolve name def: %s', self.name_def) e.span = self.span e.user = self raise return result @_rule(ast.EnumRef) def _deduce_EnumRef(self: ast.EnumRef, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of an EnumRef AST node.""" try: result = ctx.type_info[self.enum] except TypeMissingError as e: logging.vlog(3, 'Could not resolve enum to type: %s', self.enum) e.span = self.span e.user = self raise # Check the name we're accessing is actually defined on the enum. assert isinstance(result, EnumType), result enum = result.get_nominal_type(ctx.module) assert isinstance(enum, ast.Enum), enum name = self.value if not enum.has_value(name): raise TypeInferenceError( span=self.span, type_=None, suffix='Name {!r} is not defined by the enum {}'.format( name, enum.identifier)) return result @_rule(ast.Number) def _deduce_Number(self: ast.Number, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a Number AST node.""" if not self.type_: if self.kind == ast.NumberKind.BOOL: return ConcreteType.U1 if self.kind == ast.NumberKind.CHARACTER: return ConcreteType.U8 raise TypeInferenceError( span=self.span, type_=None, suffix='Could not infer a type for this number, please annotate a type.' ) concrete_type = resolve(deduce(self.type_, ctx), ctx) _check_bitwidth(self, concrete_type) return concrete_type @_rule(ast.TypeDef) def _deduce_TypeDef(self: ast.TypeDef, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types concrete_type = deduce(self.type_, ctx) ctx.type_info[self.name] = concrete_type return concrete_type def _dim_to_parametric(self: ast.TypeAnnotation, expr: ast.Expr) -> ParametricExpression: """Converts a dimension expression to a 'parametric' AST node.""" assert not isinstance(expr, ast.ConstRef), expr if isinstance(expr, ast.NameRef): return ParametricSymbol(expr.name_def.identifier, expr.span) if isinstance(expr, ast.Binop): if expr.kind == ast.BinopKind.ADD: return ParametricAdd( _dim_to_parametric(self, expr.lhs), _dim_to_parametric(self, expr.rhs)) msg = 'Could not concretize type with dimension: {}.'.format(expr) raise TypeInferenceError(self.span, self, suffix=msg) def _dim_to_parametric_or_int( self: ast.TypeAnnotation, expr: ast.Expr, ctx: DeduceCtx) -> Union[int, ParametricExpression]: """Converts dimension expression within an annotation to int or parametric.""" if isinstance(expr, ast.Number): ctx.type_info[expr] = ConcreteType.U32 return ast_helpers.get_value_as_int(expr) if isinstance(expr, ast.ConstRef): n = ctx.type_info.get_const_int(expr.name_def) if not isinstance(n, ast.Number): raise TypeInferenceError( span=expr.span, type_=None, suffix=f'Expected a constant integral value with the name {expr.name_def}; got {n}' ) return ast_helpers.get_value_as_int(n) return _dim_to_parametric(self, expr) @_rule(ast.TypeRefTypeAnnotation) def _deduce_TypeRefTypeAnnotation(self: ast.TypeRefTypeAnnotation, ctx: DeduceCtx) -> ConcreteType: """Dedeuces the concrete type of a TypeRef type annotation.""" base_type = deduce(self.type_ref, ctx) maybe_struct = ast_helpers.evaluate_to_struct_or_enum_or_annotation( self.type_ref.type_def, _get_imported_module_via_type_info, ctx.type_info) if (isinstance(maybe_struct, ast.Struct) and maybe_struct.is_parametric() and self.parametrics): base_type = _concretize_struct_annotation(ctx.module, self, maybe_struct, base_type) return base_type @_rule(ast.BuiltinTypeAnnotation) def _deduce_BuiltinTypeAnnotation( self: ast.BuiltinTypeAnnotation, ctx: DeduceCtx, # pylint: disable=unused-argument ) -> ConcreteType: signedness, bits = self.signedness_and_bits return BitsType(signedness, bits) @_rule(ast.TupleTypeAnnotation) def _deduce_TupleTypeAnnotation(self: ast.TupleTypeAnnotation, ctx: DeduceCtx) -> ConcreteType: members = [] for member in self.members: members.append(deduce(member, ctx)) return TupleType(tuple(members)) @_rule(ast.ArrayTypeAnnotation) def _deduce_ArrayTypeAnnotation(self: ast.ArrayTypeAnnotation, ctx: DeduceCtx) -> ConcreteType: """Deduces the concrete type of an Array type annotation.""" dim = _dim_to_parametric_or_int(self, self.dim, ctx) if (isinstance(self.element_type, ast.BuiltinTypeAnnotation) and self.element_type.bits == 0): # No-volume builtin types like bits, uN, and sN. return BitsType(self.element_type.signedness, dim) element_type = deduce(self.element_type, ctx) result = ArrayType(element_type, dim) logging.vlog(4, 'array type annotation: %s => %s', self, result) return result @_rule(ast.ModRef) def _deduce_ModRef(self: ast.ModRef, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the type of an entity referenced via module reference.""" imported_module, imported_type_info = ctx.type_info.get_imported(self.mod) leaf_name = self.value # May be a type definition reference. if leaf_name in imported_module.get_typedef_by_name(): td = imported_module.get_typedef_by_name()[leaf_name] if not td.public: raise TypeInferenceError( self.span, type_=None, suffix='Attempted to refer to module type that is not public.') return imported_type_info[td.name] # May be a function reference. try: f = imported_module.get_function(leaf_name) except KeyError: raise TypeInferenceError( self.span, type_=None, suffix='Module {!r} function {!r} does not exist.'.format( imported_module.name, leaf_name)) if not f.public: raise TypeInferenceError( self.span, type_=None, suffix='Attempted to refer to module {!r} function {!r} that is not public.' .format(imported_module.name, f.name)) if f.name not in imported_type_info: logging.vlog( 2, 'Function name not in imported_type_info; must be parametric: %r', f.name) assert f.is_parametric() # We don't type check parametric functions until invocations. # Let's typecheck this imported parametric function with respect to its # module (this will only get the type signature, body gets typechecked # after parametric instantiation). imported_ctx = DeduceCtx(imported_type_info, imported_module, ctx.interpret_expr, ctx.check_function_in_module) imported_ctx.fn_stack.append(ctx.fn_stack[-1]) ctx.check_function_in_module(f, imported_ctx) ctx.type_info.update(imported_ctx.type_info) imported_type_info = imported_ctx.type_info return imported_type_info[f.name] @_rule(ast.Enum) def _deduce_Enum(self: ast.Enum, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a Enum AST node.""" resolved_type = resolve(deduce(self.type_, ctx), ctx) if not isinstance(resolved_type, BitsType): raise XlsTypeError(self.span, resolved_type, None, 'Underlying type for an enum must be a bits type.') # Grab the bit count of the Enum's underlying type. bit_count = resolved_type.get_total_bit_count() self.set_signedness(resolved_type.get_signedness()) result = EnumType(self, bit_count) for member in self.values: name, value = member.get_name_value(self) # Note: the parser places the type_ from the enum on the value when it is # a number, so this deduction flags inappropriate numbers. deduce(value, ctx) ctx.type_info[name] = ctx.type_info[value] = result ctx.type_info[self.name] = ctx.type_info[self] = result return result @_rule(ast.Ternary) def _deduce_Ternary(self: ast.Ternary, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a Ternary AST node.""" test_type = deduce(self.test, ctx) resolved_test_type = resolve(test_type, ctx) if resolved_test_type != ConcreteType.U1: raise XlsTypeError(self.span, resolved_test_type, ConcreteType.U1, 'Test type for conditional expression is not "bool"') cons_type = deduce(self.consequent, ctx) resolved_cons_type = resolve(cons_type, ctx) alt_type = deduce(self.alternate, ctx) resolved_alt_type = resolve(alt_type, ctx) if resolved_cons_type != resolved_alt_type: raise XlsTypeError( self.span, resolved_cons_type, resolved_alt_type, 'Ternary consequent type (in the "then" clause) did not match ' 'alternate type (in the "else" clause)') return resolved_cons_type def _deduce_Concat(self: ast.Binop, ctx: DeduceCtx) -> ConcreteType: """Deduces the concrete type of a concatenate Binop AST node.""" lhs_type = deduce(self.lhs, ctx) resolved_lhs_type = resolve(lhs_type, ctx) rhs_type = deduce(self.rhs, ctx) resolved_rhs_type = resolve(rhs_type, ctx) # Array-ness must be the same on both sides. if (isinstance(resolved_lhs_type, ArrayType) != isinstance( resolved_rhs_type, ArrayType)): raise XlsTypeError( self.span, resolved_lhs_type, resolved_rhs_type, 'Attempting to concatenate array/non-array values together.') if (isinstance(resolved_lhs_type, ArrayType) and resolved_lhs_type.get_element_type() != resolved_rhs_type.get_element_type()): raise XlsTypeError( self.span, resolved_lhs_type, resolved_rhs_type, 'Array concatenation requires element types to be the same.') new_size = resolved_lhs_type.size + resolved_rhs_type.size # pytype: disable=attribute-error if isinstance(resolved_lhs_type, ArrayType): return ArrayType(resolved_lhs_type.get_element_type(), new_size) return BitsType(signed=False, size=new_size) @_rule(ast.Binop) def _deduce_Binop(self: ast.Binop, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the concrete type of a Binop AST node.""" # Concatenation is handled differently from other binary operations. if self.kind == ast.BinopKind.CONCAT: return _deduce_Concat(self, ctx) lhs_type = deduce(self.lhs, ctx) rhs_type = deduce(self.rhs, ctx) resolved_lhs_type = resolve(lhs_type, ctx) resolved_rhs_type = resolve(rhs_type, ctx) if resolved_lhs_type != resolved_rhs_type: raise XlsTypeError( self.span, resolved_lhs_type, resolved_rhs_type, 'Could not deduce type for binary operation {0} ({0!r}).'.format( self.kind)) # Enums only support a more limited set of binary operations. if isinstance(lhs_type, EnumType) and self.kind not in ast_helpers.BINOP_ENUM_OK_KINDS: raise XlsTypeError( self.span, resolved_lhs_type, None, "Cannot use '{}' on values with enum type {}".format( self.kind.value, lhs_type.get_nominal_type(ctx.module).identifier)) if self.kind in ast_helpers.BINOP_COMPARISON_KINDS: return ConcreteType.U1 return resolved_lhs_type @_rule(ast.Struct) def _deduce_Struct(self: ast.Struct, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Returns the concrete type for a (potentially parametric) struct.""" for parametric in self.parametric_bindings: parametric_binding_type = deduce(parametric.type_, ctx) assert isinstance(parametric_binding_type, ConcreteType) if parametric.expr: expr_type = deduce(parametric.expr, ctx) if expr_type != parametric_binding_type: raise XlsTypeError( parametric.span, parametric_binding_type, expr_type, suffix='Annotated type of derived parametric ' 'value did not match inferred type.') ctx.type_info[parametric.name] = parametric_binding_type members = tuple( (k.identifier, resolve(deduce(m, ctx), ctx)) for k, m in self.members) result = ctx.type_info[self.name] = TupleType(members, self) logging.vlog(5, 'Deduced type for struct %s => %s; type_info: %r', self, result, ctx.type_info) return result def _validate_struct_members_subset( members: ast_helpers.StructInstanceMembers, struct_type: ConcreteType, struct_text: str, ctx: DeduceCtx ) -> Tuple[Set[str], Tuple[ConcreteType], Tuple[ConcreteType]]: """Validates a struct instantiation is a subset of members with no dups. Args: members: Sequence of members used in instantiation. Note this may be a subset; e.g. in the case of splat instantiation. struct_type: The deduced type for the struct (instantiation). struct_text: Display name to use for the struct in case of an error. ctx: Wrapper containing node to type mapping context. Returns: A tuple containing the set of struct member names that were instantiated, the ConcreteTypes of the provided arguments, and the ConcreteTypes of the corresponding struct member definition. """ assert isinstance(struct_type, TupleType), struct_type seen_names = set() arg_types = [] member_types = [] for k, v in members: if k in seen_names: raise TypeInferenceError( v.span, type_=None, suffix='Duplicate value seen for {!r} in this {!r} struct instance.' .format(k, struct_text)) seen_names.add(k) expr_type = resolve(deduce(v, ctx), ctx) arg_types.append(expr_type) try: member_type = struct_type.get_member_type_by_name(k) member_types.append(member_type) except KeyError: raise TypeInferenceError( v.span, None, suffix='Struct {!r} has no member {!r}, but it was provided by this instance.' .format(struct_text, k)) return seen_names, tuple(arg_types), tuple(member_types) @_rule(ast.StructInstance) def _deduce_StructInstance( self: ast.StructInstance, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the type of the struct instantiation expression and its members.""" logging.vlog(5, 'Deducing type for struct instance: %s', self) struct_type = deduce(self.struct, ctx) assert isinstance(struct_type, TupleType), struct_type assert struct_type.named, struct_type expected_names = set(struct_type.tuple_names) seen_names, arg_types, member_types = _validate_struct_members_subset( self.unordered_members, struct_type, self.struct_text, ctx) if seen_names != expected_names: missing = ', '.join( repr(s) for s in sorted(list(expected_names - seen_names))) raise TypeInferenceError( self.span, None, suffix='Struct instance is missing member(s): {}'.format(missing)) struct_def = self.struct if not isinstance(struct_def, ast.Struct): # Traverse TypeDefs and ModRefs until we get the struct AST node. struct_def = ast_helpers.evaluate_to_struct_or_enum_or_annotation( struct_def, _get_imported_module_via_type_info, ctx.type_info) assert isinstance(struct_def, ast.Struct), struct_def resolved_struct_type, _ = parametric_instantiator.instantiate_struct( self.span, struct_type, arg_types, member_types, ctx, struct_def.parametric_bindings) return resolved_struct_type def _concretize_struct_annotation(module: ast.Module, type_annotation: ast.TypeRefTypeAnnotation, struct: ast.Struct, base_type: ConcreteType) -> ConcreteType: """Returns concretized struct type using the provided bindings. For example, if we have a struct defined as `struct [N: u32, M: u32] Foo`, the default TupleType will be (N, M). If a type annotation provides bindings, (e.g. Foo[A, 16]), we will replace N, M with those values. In the case above, we will return (A, 16) instead. Args: module: Owning AST module for the nodes. type_annotation: The provided type annotation for this parametric struct. struct: The corresponding struct AST node. base_type: The TupleType of the struct, based only on the struct definition. """ assert len(struct.parametric_bindings) == len(type_annotation.parametrics) defined_to_annotated = {} for defined_parametric, annotated_parametric in zip( struct.parametric_bindings, type_annotation.parametrics): assert isinstance(defined_parametric, ast.ParametricBinding), defined_parametric if isinstance(annotated_parametric, ast.Number): defined_to_annotated[defined_parametric.name.identifier] = \ int(annotated_parametric.value) else: assert isinstance(annotated_parametric, ast.NameRef), repr(annotated_parametric) defined_to_annotated[defined_parametric.name.identifier] = \ ParametricSymbol(annotated_parametric.identifier, annotated_parametric.span) def resolver(dim: ConcreteTypeDim) -> ConcreteTypeDim: if isinstance(dim.value, ParametricExpression): return ConcreteTypeDim(dim.value.evaluate(defined_to_annotated)) return dim return concrete_type_helpers.map_size(base_type, module, resolver) def _get_imported_module_via_type_info( import_: ast.Import, type_info: TypeInfo) -> Tuple[ast.Module, TypeInfo]: """Uses type_info to retrieve the corresponding module of a ModRef.""" return type_info.get_imported(import_) @_rule(ast.SplatStructInstance) def _deduce_SplatStructInstance( self: ast.SplatStructInstance, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the type of the struct instantiation expression and its members.""" struct_type = deduce(self.struct, ctx) splatted_type = deduce(self.splatted, ctx) assert isinstance(struct_type, TupleType), struct_type assert isinstance(splatted_type, TupleType), splatted_type # We will make sure this splat typechecks during instantiation. Let's just # ensure the same number of elements for now. assert len(struct_type.tuple_names) == len(splatted_type.tuple_names) (seen_names, seen_arg_types, seen_member_types) = _validate_struct_members_subset(self.members, struct_type, self.struct_text, ctx) arg_types = list(seen_arg_types) member_types = list(seen_member_types) for m in struct_type.tuple_names: if m not in seen_names: splatted_member_type = splatted_type.get_member_type_by_name(m) struct_member_type = struct_type.get_member_type_by_name(m) arg_types.append(splatted_member_type) member_types.append(struct_member_type) # At this point, we should have the same number of args compared to the # number of members defined in the struct. assert len(arg_types) == len(member_types) struct_def = self.struct if not isinstance(struct_def, ast.Struct): # Traverse TypeDefs and ModRefs until we get the struct AST node. struct_def = ast_helpers.evaluate_to_struct_or_enum_or_annotation( struct_def, _get_imported_module_via_type_info, ctx.type_info) assert isinstance(struct_def, ast.Struct), struct_def resolved_struct_type, _ = parametric_instantiator.instantiate_struct( self.span, struct_type, tuple(arg_types), tuple(member_types), ctx, struct_def.parametric_bindings) return resolved_struct_type @_rule(ast.Attr) def _deduce_Attr(self: ast.Attr, ctx: DeduceCtx) -> ConcreteType: # pytype: disable=wrong-arg-types """Deduces the type of a struct attribute access expression.""" struct = deduce(self.lhs, ctx) assert isinstance(struct, TupleType), struct if not struct.has_named_member(self.attr.identifier): raise TypeInferenceError( span=self.span, type_=None, suffix='Struct does not have a member with name {!r}.'.format( self.attr)) return struct.get_member_type_by_name(self.attr.identifier) def _deduce(n: ast.AstNode, ctx: DeduceCtx) -> ConcreteType: f = RULES[n.__class__] f = typing.cast(Callable[[ast.AstNode, DeduceCtx], ConcreteType], f) result = f(n, ctx) ctx.type_info[n] = result return result def deduce(n: ast.AstNode, ctx: DeduceCtx) -> ConcreteType: """Deduces and returns the type of value produced by this expr. Also adds n to ctx.type_info memoization dictionary. Args: n: The AST node to deduce the type for. ctx: Wraps a type_info, a dictionary mapping nodes to their types. Returns: The type of this expression. As a side effect the type_info mapping is filled with all the deductions that were necessary to determine (deduce) the resulting type of n. """ assert isinstance(n, ast.AstNode), n if n in ctx.type_info: result = ctx.type_info[n] assert isinstance(result, ConcreteType), result else: result = ctx.type_info[n] = _deduce(n, ctx) logging.vlog(5, 'Deduced type of %s => %s', n, result) assert isinstance(result, ConcreteType), \ '_deduce did not return a ConcreteType; got: {!r}'.format(result) return result
import pysam import argparse import sys import logging import os from asyncore import read parser = argparse.ArgumentParser(description="Convert fai to bed", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-i', '--input', action='store', nargs='?', help='Input fai file', required=True) parser.add_argument('-o', '--output', action='store', nargs='?', help="Output bed file", required=True) args = parser.parse_args() logger = logging.getLogger('fai2bed') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)-8s - %(message)s') logger.info("writing to %s" % args.output) with open(args.input, "rt") as fin: with open(args.output, "wt") as fout: for line in fin: parts = line.strip().split('\t') chrom = parts[0] chromLength = parts[1] fout.write(f"{chrom}\t0\t{chromLength}\n") logger.info("done")
import streamsx.hdfs as hdfs from streamsx.topology.topology import Topology import streamsx as streamsx from streamsx.topology.tester import Tester import streamsx.spl.toolkit as tk import streamsx.rest as sr import streamsx.spl.op as op from streamsx.topology.schema import StreamSchema import unittest import datetime import os import json ## ## Test assumptions ## ## Streaming analytics service or Streams instance running ## IBM cloud Analytics Engine service credentials are located in a file referenced by environment variable ANALYTICS_ENGINE. ## The core-site.xml is referenced by HDFS_SITE_XML environment variable. ## HDFS toolkit location is given by STREAMS_HDFS_TOOLKIT environment variable. ## def toolkit_env_var(): result = True try: os.environ['STREAMS_HDFS_TOOLKIT'] except KeyError: result = False return result def streams_install_env_var(): result = True try: os.environ['STREAMS_INSTALL'] except KeyError: result = False return result def site_xml_env_var(): result = True try: os.environ['HDFS_SITE_XML'] except KeyError: result = False return result def cloud_creds_env_var(): result = True try: os.environ['ANALYTICS_ENGINE'] except KeyError: result = False return result class TestParams(unittest.TestCase): @unittest.skipIf(site_xml_env_var() == False, "Missing HDFS_SITE_XML environment variable.") def test_xml_creds(self): xml_file = os.environ['HDFS_SITE_XML'] topo = Topology() hdfs.scan(topo, credentials=xml_file, directory='a_dir') hdfs.scan(topo, credentials=xml_file, directory='a_dir', pattern='*.txt', init_delay=datetime.timedelta(seconds=5)) @unittest.skipIf(cloud_creds_env_var() == False, "Missing ANALYTICS_ENGINE environment variable.") def test_bad_close_file_param(self): creds_file = os.environ['ANALYTICS_ENGINE'] with open(creds_file) as data_file: credentials = json.load(data_file) topo = Topology() s = topo.source(['Hello World!']).as_string() # expect ValueError because bytesPerFile, timePerFile, and tuplesPerFile parameters are mutually exclusive. self.assertRaises(ValueError, hdfs.write, s, credentials=credentials, file='any_file', timePerFile=5, tuplesPerFile=5) self.assertRaises(ValueError, hdfs.write, s, credentials=credentials, file='any_file', bytesPerFile=5, timePerFile=5) self.assertRaises(ValueError, hdfs.write, s, credentials=credentials, file='any_file', bytesPerFile=5, tuplesPerFile=5) self.assertRaises(ValueError, hdfs.write, s, credentials=credentials, file='any_file', bytesPerFile=200, timePerFile=5, tuplesPerFile=5) class TestCompositeDistributed(unittest.TestCase): @classmethod def setUpClass(self): print (str(self)) def setUp(self): Tester.setup_distributed(self) self.hdfs_toolkit_location = os.environ['STREAMS_HDFS_TOOLKIT'] # ------------------------------------ @unittest.skipIf(site_xml_env_var() == False, "HDFS_SITE_XML environment variable.") def test_HdfsFileSink(self): hdfs_cfg_file = os.environ['HDFS_SITE_XML'] credentials=hdfs_cfg_file topo = Topology('test_HdfsFileSink') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) # Beacon generates 1000 lines createLines = op.Source(topo, "spl.utility::Beacon", 'tuple<rstring line>', params = {'period':0.01, 'iterations':1000}) createLines.line = createLines.output('"This line will be written into a HDFS file via HdfsFileSink. " + (rstring) IterationCount()') to_file = createLines.outputs[0] config = { 'hdfsUser': 'hdfs', 'configPath': 'etc', 'tuplesPerFile': 100 } # HdfsFileSink writes every 100 lines in a new file (sample41.txt, sample42.txt, ...) fsink = hdfs.HdfsFileSink(credentials=credentials, file='pytest/sample4%FILENUM.txt', **config) to_file.for_each(fsink) tester = Tester(topo) tester.run_for(60) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) # ------------------------------------ # HdfsDirectoryScan delivers the file names in pytest directory and HdfsFileSource opens and reads HDFS files. @unittest.skipIf(site_xml_env_var() == False, "HDFS_SITE_XML environment variable.") def test_HdfsFileSource(self): hdfs_cfg_file = os.environ['HDFS_SITE_XML'] topo = Topology('test_HdfsFileSource') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) dir_scan_output_schema = StreamSchema('tuple<rstring fileName>') dirScannParameters = { 'initDelay': 2.0, 'sleepTime' : 2.0, 'pattern' : 'sample.*txt' } # HdfsDirectoryScan scans directory 'pytest' and delivers HDFS file names in output port. scannedFileNames = topo.source(hdfs.HdfsDirectoryScan(credentials=hdfs_cfg_file, directory='pytest', schema=dir_scan_output_schema, **dirScannParameters)) scannedFileNames.print() sourceParamaters = { 'initDelay': 1.0 } source_schema = StreamSchema('tuple<rstring line>') # HdfsFileSource reads HDFS files in directory 'pytest' and returns the lines of files in output port readLines = scannedFileNames.map(hdfs.HdfsFileSource(credentials=hdfs_cfg_file, schema=source_schema, **sourceParamaters)) readLines.print() tester = Tester(topo) tester.run_for(60) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) @unittest.skipIf(site_xml_env_var() == False, "HDFS_SITE_XML environment variable.") def test_HdfsFileCopy(self): hdfs_cfg_file = os.environ['HDFS_SITE_XML'] credentials=hdfs_cfg_file # credentials is the path to the HDSF *configuration file 'hdfs-site.xml' topo = Topology('test_HdfsFileCopy') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) dir_scan_output_schema = StreamSchema('tuple<rstring hdfsFileName>') dirScannParameters = { 'initDelay': 2.0, 'sleepTime' : 2.0, 'pattern' : 'sample.*txt' } # HdfsDirectoryScan scans directory 'pytest' and delivers HDFS file names in output port. scannedFileNames = topo.source(hdfs.HdfsDirectoryScan(credentials=credentials, directory='pytest', schema=dir_scan_output_schema, **dirScannParameters)) scannedFileNames.print() fileCopyParamaters = { 'hdfsFileAttrName': 'hdfsFileName', 'localFile' : '/tmp/' } output_schema = StreamSchema('tuple<rstring result, uint64 numResults>') # HdfsFileCopy copies HDFS files from directory 'pytest' into local directory /tmp copyFiles = scannedFileNames.map(hdfs.HdfsFileCopy(credentials=hdfs_cfg_file, direction='copyToLocalFile', schema=output_schema, **fileCopyParamaters)) copyFiles.print() tester = Tester(topo) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) class TestCompositeWebHdfs(unittest.TestCase): @classmethod def setUpClass(self): print (str(self)) def setUp(self): Tester.setup_distributed(self) self.hdfs_toolkit_location = os.environ['STREAMS_HDFS_TOOLKIT'] # ------------------------------------ @unittest.skipIf(cloud_creds_env_var() == False, "Missing ANALYTICS_ENGINE environment variable.") def test_HdfsFileSink(self): ae_service_creds_file = os.environ['ANALYTICS_ENGINE'] with open(ae_service_creds_file) as data_file: credentials = data_file.read() topo = Topology('test_HdfsFileSink') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) # Beacon generates 1000 lines createLines = op.Source(topo, "spl.utility::Beacon", 'tuple<rstring line>', params = {'period':0.01, 'iterations':1000}) createLines.line = createLines.output('"This line will be written into a HDFS file via HdfsFileSink. " + (rstring) IterationCount()') to_file = createLines.outputs[0] config = { 'tuplesPerFile': 100 } fsink = hdfs.HdfsFileSink(credentials=credentials, file='pytest/sample4%FILENUM.txt', **config) to_file.for_each(fsink) tester = Tester(topo) tester.run_for(60) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) # ------------------------------------ # HdfsDirectoryScan delivers the file names in pytest directoty and HdfsFileSource opens and reads HDFS files. @unittest.skipIf(cloud_creds_env_var() == False, "Missing ANALYTICS_ENGINE environment variable.") def test_HdfsFileSource(self): ae_service_creds_file = os.environ['ANALYTICS_ENGINE'] with open(ae_service_creds_file) as data_file: credentials = data_file.read() topo = Topology('test_HdfsFileSource') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) sample_schema = StreamSchema('tuple<rstring directory>') dirScanParameters = { 'initDelay': 2.0, 'sleepTime' : 2.0, 'pattern' : 'sample.*txt' } scannedFileNames = topo.source(hdfs.HdfsDirectoryScan(credentials=credentials, directory='pytest', schema=sample_schema, **dirScanParameters)) scannedFileNames.print() sourceParamaters = { 'initDelay': 1.0 } source_schema = StreamSchema('tuple<rstring line>') readLines = scannedFileNames.map(hdfs.HdfsFileSource(credentials=credentials, schema=source_schema, **sourceParamaters)) readLines.print() tester = Tester(topo) tester.run_for(60) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) class TestFileSink(unittest.TestCase): @classmethod def setUpClass(self): print (str(self)) def setUp(self): Tester.setup_distributed(self) self.hdfs_toolkit_location = os.environ['STREAMS_HDFS_TOOLKIT'] # ------------------------------------ @unittest.skipIf(site_xml_env_var() == False, "HDFS_SITE_XML environment variable.") def test_HdfsFileSink(self): hdfs_cfg_file = os.environ['HDFS_SITE_XML'] topo = Topology('test_HdfsFileSink') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) pulse = op.Source(topo, "spl.utility::Beacon", 'tuple<rstring directory>', params = {'period':0.5, 'iterations':100}) pulse.directory = pulse.output('"This line will be written into a HDFS file via HdfsFileSink. " + (rstring) IterationCount()') to_file = pulse.outputs[0] config = { 'configPath' : hdfs_cfg_file } fsink = hdfs.HdfsFileSink(credentials=hdfs_cfg_file, file='pytest1/sample611.txt', **config) to_file.for_each(fsink) tester = Tester(topo) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) class TestFileSource(unittest.TestCase): @classmethod def setUpClass(self): print (str(self)) def setUp(self): Tester.setup_distributed(self) self.hdfs_toolkit_location = os.environ['STREAMS_HDFS_TOOLKIT'] # ------------------------------------ @unittest.skipIf(site_xml_env_var() == False, "HDFS_SITE_XML environment variable.") def test_HdfsFileSource(self): hdfs_cfg_file = os.environ['HDFS_SITE_XML'] topo = Topology('test_HdfsFileSource') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) sample_schema = StreamSchema('tuple<rstring directory>') options = { 'initDelay': 2.0, 'sleepTime' : 2.0, 'pattern' : 'sample.*txt' } scanned = topo.source(hdfs.HdfsDirectoryScan(credentials=hdfs_cfg_file, directory='pytest1', schema=sample_schema, **options)) scanned.print() sourceParamaters = { 'configPath' : hdfs_cfg_file } source_schema = StreamSchema('tuple<rstring line>') fsource = scanned.map(hdfs.HdfsFileSource(credentials=hdfs_cfg_file, schema=source_schema, **sourceParamaters)) fsource.print() tester = Tester(topo) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) class TestDirScan(unittest.TestCase): @classmethod def setUpClass(self): print (str(self)) def setUp(self): Tester.setup_distributed(self) self.hdfs_toolkit_location = os.environ['STREAMS_HDFS_TOOLKIT'] # ------------------------------------ @unittest.skipIf(site_xml_env_var() == False, "HDFS_SITE_XML environment variable.") def test_HdfsDirectoryScan(self): hdfs_cfg_file = os.environ['HDFS_SITE_XML'] topo = Topology('test_HdfsDirectoryScan') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) credentials=hdfs_cfg_file directory='pytest1' sample_schema = StreamSchema('tuple<rstring directory>') options = { 'initDelay': 2.0, 'sleepTime' : 2.0, 'pattern' : 'sample.*txt' } scannedFileNames = topo.source(hdfs.HdfsDirectoryScan(credentials, directory=directory, schema=sample_schema, **options)) scannedFileNames.print(name='printScannedFileNames') tester = Tester(topo) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) class TestDistributed(unittest.TestCase): """ Test in local Streams instance with local toolkit from STREAMS_HDFS_TOOLKIT environment variable """ @classmethod def setUpClass(self): print (str(self)) def setUp(self): Tester.setup_distributed(self) self.hdfs_toolkit_location = os.environ['STREAMS_HDFS_TOOLKIT'] # ------------------------------------ @unittest.skipIf(site_xml_env_var() == False, "HDFS_SITE_XML environment variable.") def test_all_hdfs_operators(self): hdfs_cfg_file = os.environ['HDFS_SITE_XML'] topo = Topology('test_all_hdfs_operators') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) # creates an input stream fileSinkInputStream = topo.source(['This line will be written into a HDFS file.']).as_string() # writes a line into a HDFS file (HDFS2FileSink) fileSinkResults = hdfs.write(fileSinkInputStream, credentials=hdfs_cfg_file, file='pytest1/sample4%FILENUM.txt') fileSinkResults.print(name='printFileSinkResults') # scans an HDFS directory and return file names (HDFS2DirectoryScan) scannedFileNames = hdfs.scan(topo, credentials=hdfs_cfg_file, directory='pytest1', pattern='sample.*txt', init_delay=10) scannedFileNames.print(name='printScannedFileNames') # reads lines from a HDFS file (HDFS2FileSource) readLines = hdfs.read(scannedFileNames, credentials=hdfs_cfg_file) readLines.print(name='printReadLines') # copies files from HDFS into local disk "/tmp/" (HDFS2FileCopy) copyFileResults=hdfs.copy(scannedFileNames, credentials=hdfs_cfg_file, direction='copyToLocalFile' , hdfsFile=None, hdfsFileAttrName='fileName', localFile='/tmp/') copyFileResults.print(name='printCopyFileResults') tester = Tester(topo) tester.tuple_count(readLines, 1, exact=False) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) # ------------------------------------ @unittest.skipIf(cloud_creds_env_var() == False, "Missing ANALYTICS_ENGINE environment variable.") def test_hdfs_read_with_credentials(self): ae_service_creds_file = os.environ['ANALYTICS_ENGINE'] with open(ae_service_creds_file) as data_file: credentials = data_file.read() # credentials is as JSON string topo = Topology('test_hdfs_read_with_credentials') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) s = topo.source(['Hello World!']).as_string() result = hdfs.write(s, credentials=credentials, file='pytest/1sample%FILENUM.txt') result.print() scanned_files = hdfs.scan(topo, credentials=credentials, directory='pytest', pattern='1sample.*txt', init_delay=10) scanned_files.print() lines = hdfs.read(scanned_files, credentials=credentials) lines.print() tester = Tester(topo) tester.tuple_count(lines, 1, exact=True) #tester.run_for(60) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) # ------------------------------------ @unittest.skipIf(cloud_creds_env_var() == False, "Missing ANALYTICS_ENGINE environment variable.") def test_hdfs_uri(self): ae_service_creds_file = os.environ['ANALYTICS_ENGINE'] with open(ae_service_creds_file) as data_file: credentials = json.load(data_file) # credentials is dict topo = Topology('test_hdfs_uri') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) # creates an input stream fileSinkInputStream = topo.source(['This line will be written into a HDFS file.']).as_string() result = hdfs.write(fileSinkInputStream, credentials=credentials, file='pytest/2sample%FILENUM.txt') result.print() scanned_files = hdfs.scan(topo, credentials=credentials, directory='pytest', pattern='2sample.*txt', init_delay=10) scanned_files.print() lines = hdfs.read(scanned_files, credentials=credentials) lines.print() tester = Tester(topo) tester.tuple_count(lines, 1, exact=True) #tester.run_for(60) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) # ------------------------------------ @unittest.skipIf(cloud_creds_env_var() == False, "Missing ANALYTICS_ENGINE environment variable.") def test_close_on_tuples(self): ae_service_creds_file = os.environ['ANALYTICS_ENGINE'] with open(ae_service_creds_file) as data_file: credentials = json.load(data_file) topo = Topology('test_close_on_tuples') if self.hdfs_toolkit_location is not None: tk.add_toolkit(topo, self.hdfs_toolkit_location) s = topo.source(['Hello World!','Hello','World','Hello World!','Hello','World']).as_string() result = hdfs.write(s, credentials=credentials, file='pytest/write_test%FILENUM.txt', tuplesPerFile=3) result.print() tester = Tester(topo) tester.tuple_count(result, 2, exact=True) #tester.run_for(60) cfg = {} job_config = streamsx.topology.context.JobConfig(tracing='info') job_config.add(cfg) cfg[streamsx.topology.context.ConfigParams.SSL_VERIFY] = False # Run the test tester.test(self.test_ctxtype, cfg, always_collect_logs=True) class TestCloud(TestDistributed): """ Test in Streaming Analytics Service using local toolkit from STREAMS_HDFS_TOOLKIT environment variable """ @classmethod def setUpClass(self): # start streams service connection = sr.StreamingAnalyticsConnection() service = connection.get_streaming_analytics() result = service.start_instance() print(result +'\n') def setUp(self): Tester.setup_streaming_analytics(self, force_remote_build=False) self.hdfs_toolkit_location = os.environ['STREAMS_HDFS_TOOLKIT'] class TestCloudRemote(TestCloud): """ Test in Streaming Analytics Service using remote toolkit from cloud build service """ @classmethod def setUpClass(self): super().setUpClass() def setUp(self): Tester.setup_streaming_analytics(self, force_remote_build=True) self.hdfs_toolkit_location = None class TestICPRemote(TestDistributed): """ Test in Cloud Pak using remote toolkit from cloud build service """ @classmethod def setUpClass(self): super().setUpClass() def setUp(self): Tester.setup_distributed(self) self.hdfs_toolkit_location = None
from fibo import fib def test_fib(): assert fib(0) == 0 assert fib(1) == 1 assert fib(10) == 55
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SOCv2018 codes -> Occupation names""" import re import requests def _create_soc_codes_map(): """Generates SOC codes to occupation map from the SOCv2018 MCF file""" # A regex to clean SOC names. This regex catches non alphanumeric characters # (excluding whitespace), 'and', 'Occupations'. soc_name_clean_regex = re.compile(r'[^A-Za-z0-9 ]+|\band\b|\bOccupations\b') soc_map = dict() soc_mcf = requests.get( 'https://raw.githubusercontent.com/datacommonsorg/schema/main/core/soc.mcf' ).text soc_mcf = soc_mcf.split('\n') for line in soc_mcf: # Extracting the SOC code from the dcid # The dcid is of the form 'dcid:SOCv2018/<code>' if line.startswith('Node:'): if 'SOCv2018/' in line: code = line.split('SOCv2018/')[1] else: code = None # Extracting occupation from name if line.startswith('name') and code is not None: occupation = line.split(':')[1].strip() occupation = soc_name_clean_regex.sub('', occupation) # Capitalize first letter in each word occupation = "".join( [word[0].upper() + word[1:] for word in occupation.split()]) occupation = re.sub(r'\s+', '', occupation) # Remove whitespace soc_map[code] = occupation # Assign occupation to code from dcid return soc_map SOC_MAP = { '11-0000': 'Management', '11-1000': 'TopExecutives', '11-1010': 'ChiefExecutives', '11-1011': 'ChiefExecutives', '11-1020': 'GeneralOperationsManagers', '11-1021': 'GeneralOperationsManagers', '11-1030': 'Legislators', '11-1031': 'Legislators', '11-2000': 'AdvertisingMarketingPromotionsPublicRelationsSalesManagers', '11-2010': 'AdvertisingPromotionsManagers', '11-2011': 'AdvertisingPromotionsManagers', '11-2020': 'MarketingSalesManagers', '11-2021': 'MarketingManagers', '11-2022': 'SalesManagers', '11-2030': 'PublicRelationsFundraisingManagers', '11-2032': 'PublicRelationsManagers', '11-2033': 'FundraisingManagers', '11-3000': 'OperationsSpecialtiesManagers', '11-3010': 'AdministrativeServicesFacilitiesManagers', '11-3012': 'AdministrativeServicesManagers', '11-3013': 'FacilitiesManagers', '11-3020': 'ComputerInformationSystemsManagers', '11-3021': 'ComputerInformationSystemsManagers', '11-3030': 'FinancialManagers', '11-3031': 'FinancialManagers', '11-3050': 'IndustrialProductionManagers', '11-3051': 'IndustrialProductionManagers', '11-3060': 'PurchasingManagers', '11-3061': 'PurchasingManagers', '11-3070': 'TransportationStorageDistributionManagers', '11-3071': 'TransportationStorageDistributionManagers', '11-3110': 'CompensationBenefitsManagers', '11-3111': 'CompensationBenefitsManagers', '11-3120': 'HumanResourcesManagers', '11-3121': 'HumanResourcesManagers', '11-3130': 'TrainingDevelopmentManagers', '11-3131': 'TrainingDevelopmentManagers', '11-9000': 'OtherManagement', '11-9010': 'FarmersRanchersOtherAgriculturalManagers', '11-9013': 'FarmersRanchersOtherAgriculturalManagers', '11-9020': 'ConstructionManagers', '11-9021': 'ConstructionManagers', '11-9030': 'EducationChildcareAdministrators', '11-9031': 'EducationChildcareAdministratorsPreschoolDaycare', '11-9032': 'EducationAdministratorsKindergartenThroughSecondary', '11-9033': 'EducationAdministratorsPostsecondary', '11-9039': 'EducationAdministratorsAllOther', '11-9040': 'ArchitecturalEngineeringManagers', '11-9041': 'ArchitecturalEngineeringManagers', '11-9050': 'FoodServiceManagers', '11-9051': 'FoodServiceManagers', '11-9070': 'EntertainmentRecreationManagers', '11-9071': 'GamblingManagers', '11-9072': 'EntertainmentRecreationManagersExceptGambling', '11-9080': 'LodgingManagers', '11-9081': 'LodgingManagers', '11-9110': 'MedicalHealthServicesManagers', '11-9111': 'MedicalHealthServicesManagers', '11-9120': 'NaturalSciencesManagers', '11-9121': 'NaturalSciencesManagers', '11-9130': 'PostmastersMailSuperintendents', '11-9131': 'PostmastersMailSuperintendents', '11-9140': 'PropertyRealEstateCommunityAssociationManagers', '11-9141': 'PropertyRealEstateCommunityAssociationManagers', '11-9150': 'SocialCommunityServiceManagers', '11-9151': 'SocialCommunityServiceManagers', '11-9160': 'EmergencyManagementDirectors', '11-9161': 'EmergencyManagementDirectors', '11-9170': 'PersonalServiceManagers', '11-9171': 'FuneralHomeManagers', '11-9179': 'PersonalServiceManagersAllOther', '11-9190': 'MiscellaneousManagers', '11-9199': 'ManagersAllOther', '13-0000': 'BusinessFinancialOperations', '13-1000': 'BusinessOperationsSpecialists', '13-1010': 'AgentsBusinessManagersOfArtistsPerformersAthletes', '13-1011': 'AgentsBusinessManagersOfArtistsPerformersAthletes', '13-1020': 'BuyersPurchasingAgents', '13-1021': 'BuyersPurchasingAgentsFarmProducts', '13-1022': 'WholesaleRetailBuyersExceptFarmProducts', '13-1023': 'PurchasingAgentsExceptWholesaleRetailFarmProducts', '13-1030': 'ClaimsAdjustersAppraisersExaminersInvestigators', '13-1031': 'ClaimsAdjustersExaminersInvestigators', '13-1032': 'InsuranceAppraisersAutoDamage', '13-1040': 'ComplianceOfficers', '13-1041': 'ComplianceOfficers', '13-1050': 'CostEstimators', '13-1051': 'CostEstimators', '13-1070': 'HumanResourcesWorkers', '13-1071': 'HumanResourcesSpecialists', '13-1074': 'FarmLaborContractors', '13-1075': 'LaborRelationsSpecialists', '13-1080': 'LogisticiansProjectManagementSpecialists', '13-1081': 'Logisticians', '13-1082': 'ProjectManagementSpecialists', '13-1110': 'ManagementAnalysts', '13-1111': 'ManagementAnalysts', '13-1120': 'MeetingConventionEventPlanners', '13-1121': 'MeetingConventionEventPlanners', '13-1130': 'Fundraisers', '13-1131': 'Fundraisers', '13-1140': 'CompensationBenefitsJobAnalysisSpecialists', '13-1141': 'CompensationBenefitsJobAnalysisSpecialists', '13-1150': 'TrainingDevelopmentSpecialists', '13-1151': 'TrainingDevelopmentSpecialists', '13-1160': 'MarketResearchAnalystsMarketingSpecialists', '13-1161': 'MarketResearchAnalystsMarketingSpecialists', '13-1190': 'MiscellaneousBusinessOperationsSpecialists', '13-1199': 'BusinessOperationsSpecialistsAllOther', '13-2000': 'FinancialSpecialists', '13-2010': 'AccountantsAuditors', '13-2011': 'AccountantsAuditors', '13-2020': 'PropertyAppraisersAssessors', '13-2022': 'AppraisersOfPersonalBusinessProperty', '13-2023': 'AppraisersAssessorsOfRealEstate', '13-2030': 'BudgetAnalysts', '13-2031': 'BudgetAnalysts', '13-2040': 'CreditAnalysts', '13-2041': 'CreditAnalysts', '13-2050': 'FinancialAnalystsAdvisors', '13-2051': 'FinancialInvestmentAnalysts', '13-2052': 'PersonalFinancialAdvisors', '13-2053': 'InsuranceUnderwriters', '13-2054': 'FinancialRiskSpecialists', '13-2060': 'FinancialExaminers', '13-2061': 'FinancialExaminers', '13-2070': 'CreditCounselorsLoanOfficers', '13-2071': 'CreditCounselors', '13-2072': 'LoanOfficers', '13-2080': 'TaxExaminersCollectorsPreparersRevenueAgents', '13-2081': 'TaxExaminersCollectorsRevenueAgents', '13-2082': 'TaxPreparers', '13-2090': 'MiscellaneousFinancialSpecialists', '13-2099': 'FinancialSpecialistsAllOther', '15-0000': 'ComputerMathematical', '15-1200': 'Computer', '15-1210': 'ComputerInformationAnalysts', '15-1211': 'ComputerSystemsAnalysts', '15-1212': 'InformationSecurityAnalysts', '15-1220': 'ComputerInformationResearchScientists', '15-1221': 'ComputerInformationResearchScientists', '15-1230': 'ComputerSupportSpecialists', '15-1231': 'ComputerNetworkSupportSpecialists', '15-1232': 'ComputerUserSupportSpecialists', '15-1240': 'DatabaseNetworkAdministratorsArchitects', '15-1241': 'ComputerNetworkArchitects', '15-1242': 'DatabaseAdministrators', '15-1243': 'DatabaseArchitects', '15-1244': 'NetworkComputerSystemsAdministrators', '15-1250': 'SoftwareWebDevelopersProgrammersTesters', '15-1251': 'ComputerProgrammers', '15-1252': 'SoftwareDevelopers', '15-1253': 'SoftwareQualityAssuranceAnalystsTesters', '15-1254': 'WebDevelopers', '15-1255': 'WebDigitalInterfaceDesigners', '15-1290': 'MiscellaneousComputer', '15-1299': 'ComputerAllOther', '15-2000': 'MathematicalScience', '15-2010': 'Actuaries', '15-2011': 'Actuaries', '15-2020': 'Mathematicians', '15-2021': 'Mathematicians', '15-2030': 'OperationsResearchAnalysts', '15-2031': 'OperationsResearchAnalysts', '15-2040': 'Statisticians', '15-2041': 'Statisticians', '15-2050': 'DataScientists', '15-2051': 'DataScientists', '15-2090': 'MiscellaneousMathematicalScience', '15-2099': 'MathematicalScienceAllOther', '17-0000': 'ArchitectureEngineering', '17-1000': 'ArchitectsSurveyorsCartographers', '17-1010': 'ArchitectsExceptNaval', '17-1011': 'ArchitectsExceptLandscapeNaval', '17-1012': 'LandscapeArchitects', '17-1020': 'SurveyorsCartographersPhotogrammetrists', '17-1021': 'CartographersPhotogrammetrists', '17-1022': 'Surveyors', '17-2000': 'Engineers', '17-2010': 'AerospaceEngineers', '17-2011': 'AerospaceEngineers', '17-2020': 'AgriculturalEngineers', '17-2021': 'AgriculturalEngineers', '17-2030': 'BioengineersBiomedicalEngineers', '17-2031': 'BioengineersBiomedicalEngineers', '17-2040': 'ChemicalEngineers', '17-2041': 'ChemicalEngineers', '17-2050': 'CivilEngineers', '17-2051': 'CivilEngineers', '17-2060': 'ComputerHardwareEngineers', '17-2061': 'ComputerHardwareEngineers', '17-2070': 'ElectricalElectronicsEngineers', '17-2071': 'ElectricalEngineers', '17-2072': 'ElectronicsEngineersExceptComputer', '17-2080': 'EnvironmentalEngineers', '17-2081': 'EnvironmentalEngineers', '17-2110': 'IndustrialEngineersIncludingHealthSafety', '17-2111': 'HealthSafetyEngineersExceptMiningSafetyEngineersInspectors', '17-2112': 'IndustrialEngineers', '17-2120': 'MarineEngineersNavalArchitects', '17-2121': 'MarineEngineersNavalArchitects', '17-2130': 'MaterialsEngineers', '17-2131': 'MaterialsEngineers', '17-2140': 'MechanicalEngineers', '17-2141': 'MechanicalEngineers', '17-2150': 'MiningGeologicalEngineersIncludingMiningSafetyEngineers', '17-2151': 'MiningGeologicalEngineersIncludingMiningSafetyEngineers', '17-2160': 'NuclearEngineers', '17-2161': 'NuclearEngineers', '17-2170': 'PetroleumEngineers', '17-2171': 'PetroleumEngineers', '17-2190': 'MiscellaneousEngineers', '17-2199': 'EngineersAllOther', '17-3000': 'DraftersEngineeringTechniciansMappingTechnicians', '17-3010': 'Drafters', '17-3011': 'ArchitecturalCivilDrafters', '17-3012': 'ElectricalElectronicsDrafters', '17-3013': 'MechanicalDrafters', '17-3019': 'DraftersAllOther', '17-3020': 'EngineeringTechnologistsTechniciansExceptDrafters', '17-3021': 'AerospaceEngineeringOperationsTechnologistsTechnicians', '17-3022': 'CivilEngineeringTechnologistsTechnicians', '17-3023': 'ElectricalElectronicEngineeringTechnologistsTechnicians', '17-3024': 'ElectroMechanicalMechatronicsTechnologistsTechnicians', '17-3025': 'EnvironmentalEngineeringTechnologistsTechnicians', '17-3026': 'IndustrialEngineeringTechnologistsTechnicians', '17-3027': 'MechanicalEngineeringTechnologistsTechnicians', '17-3028': 'CalibrationTechnologistsTechnicians', '17-3029': 'EngineeringTechnologistsTechniciansExceptDraftersAllOther', '17-3030': 'SurveyingMappingTechnicians', '17-3031': 'SurveyingMappingTechnicians', '19-0000': 'LifePhysicalSocialScience', '19-1000': 'LifeScientists', '19-1010': 'AgriculturalFoodScientists', '19-1011': 'AnimalScientists', '19-1012': 'FoodScientistsTechnologists', '19-1013': 'SoilPlantScientists', '19-1020': 'BiologicalScientists', '19-1021': 'BiochemistsBiophysicists', '19-1022': 'Microbiologists', '19-1023': 'ZoologistsWildlifeBiologists', '19-1029': 'BiologicalScientistsAllOther', '19-1030': 'ConservationScientistsForesters', '19-1031': 'ConservationScientists', '19-1032': 'Foresters', '19-1040': 'MedicalScientists', '19-1041': 'Epidemiologists', '19-1042': 'MedicalScientistsExceptEpidemiologists', '19-1090': 'MiscellaneousLifeScientists', '19-1099': 'LifeScientistsAllOther', '19-2000': 'PhysicalScientists', '19-2010': 'AstronomersPhysicists', '19-2011': 'Astronomers', '19-2012': 'Physicists', '19-2020': 'AtmosphericSpaceScientists', '19-2021': 'AtmosphericSpaceScientists', '19-2030': 'ChemistsMaterialsScientists', '19-2031': 'Chemists', '19-2032': 'MaterialsScientists', '19-2040': 'EnvironmentalScientistsGeoscientists', '19-2041': 'EnvironmentalScientistsSpecialistsIncludingHealth', '19-2042': 'GeoscientistsExceptHydrologistsGeographers', '19-2043': 'Hydrologists', '19-2090': 'MiscellaneousPhysicalScientists', '19-2099': 'PhysicalScientistsAllOther', '19-3000': 'SocialScientistsRelatedWorkers', '19-3010': 'Economists', '19-3011': 'Economists', '19-3020': 'SurveyResearchers', '19-3022': 'SurveyResearchers', '19-3030': 'Psychologists', '19-3032': 'IndustrialOrganizationalPsychologists', '19-3033': 'ClinicalCounselingPsychologists', '19-3034': 'SchoolPsychologists', '19-3039': 'PsychologistsAllOther', '19-3040': 'Sociologists', '19-3041': 'Sociologists', '19-3050': 'UrbanRegionalPlanners', '19-3051': 'UrbanRegionalPlanners', '19-3090': 'MiscellaneousSocialScientistsRelatedWorkers', '19-3091': 'AnthropologistsArcheologists', '19-3092': 'Geographers', '19-3093': 'Historians', '19-3094': 'PoliticalScientists', '19-3099': 'SocialScientistsRelatedWorkersAllOther', '19-4000': 'LifePhysicalSocialScienceTechnicians', '19-4010': 'AgriculturalFoodScienceTechnicians', '19-4012': 'AgriculturalTechnicians', '19-4013': 'FoodScienceTechnicians', '19-4020': 'BiologicalTechnicians', '19-4021': 'BiologicalTechnicians', '19-4030': 'ChemicalTechnicians', '19-4031': 'ChemicalTechnicians', '19-4040': 'EnvironmentalScienceGeoscienceTechnicians', '19-4042': 'EnvironmentalScienceProtectionTechniciansIncludingHealth', '19-4043': 'GeologicalTechniciansExceptHydrologicTechnicians', '19-4044': 'HydrologicTechnicians', '19-4050': 'NuclearTechnicians', '19-4051': 'NuclearTechnicians', '19-4060': 'SocialScienceResearchAssistants', '19-4061': 'SocialScienceResearchAssistants', '19-4070': 'ForestConservationTechnicians', '19-4071': 'ForestConservationTechnicians', '19-4090': 'MiscellaneousLifePhysicalSocialScienceTechnicians', '19-4092': 'ForensicScienceTechnicians', '19-4099': 'LifePhysicalSocialScienceTechniciansAllOther', '19-5000': 'OccupationalHealthSafetySpecialistsTechnicians', '19-5010': 'OccupationalHealthSafetySpecialistsTechnicians', '19-5011': 'OccupationalHealthSafetySpecialists', '19-5012': 'OccupationalHealthSafetyTechnicians', '21-0000': 'CommunitySocialService', '21-1000': 'CounselorsSocialWorkersOtherCommunitySocialServiceSpecialists', '21-1010': 'Counselors', '21-1011': 'SubstanceAbuseBehavioralDisorderCounselors', '21-1012': 'EducationalGuidanceCareerCounselorsAdvisors', '21-1013': 'MarriageFamilyTherapists', '21-1014': 'MentalHealthCounselors', '21-1015': 'RehabilitationCounselors', '21-1019': 'CounselorsAllOther', '21-1020': 'SocialWorkers', '21-1021': 'ChildFamilySchoolSocialWorkers', '21-1022': 'HealthcareSocialWorkers', '21-1023': 'MentalHealthSubstanceAbuseSocialWorkers', '21-1029': 'SocialWorkersAllOther', '21-1090': 'MiscellaneousCommunitySocialServiceSpecialists', '21-1091': 'HealthEducationSpecialists', '21-1092': 'ProbationOfficersCorrectionalTreatmentSpecialists', '21-1093': 'SocialHumanServiceAssistants', '21-1094': 'CommunityHealthWorkers', '21-1099': 'CommunitySocialServiceSpecialistsAllOther', '21-2000': 'ReligiousWorkers', '21-2010': 'Clergy', '21-2011': 'Clergy', '21-2020': 'DirectorsReligiousActivitiesEducation', '21-2021': 'DirectorsReligiousActivitiesEducation', '21-2090': 'MiscellaneousReligiousWorkers', '21-2099': 'ReligiousWorkersAllOther', '23-0000': 'Legal', '23-1000': 'LawyersJudgesRelatedWorkers', '23-1010': 'LawyersJudicialLawClerks', '23-1011': 'Lawyers', '23-1012': 'JudicialLawClerks', '23-1020': 'JudgesMagistratesOtherJudicialWorkers', '23-1021': 'AdministrativeLawJudgesAdjudicatorsHearingOfficers', '23-1022': 'ArbitratorsMediatorsConciliators', '23-1023': 'JudgesMagistrateJudgesMagistrates', '23-2000': 'LegalSupportWorkers', '23-2010': 'ParalegalsLegalAssistants', '23-2011': 'ParalegalsLegalAssistants', '23-2090': 'MiscellaneousLegalSupportWorkers', '23-2093': 'TitleExaminersAbstractorsSearchers', '23-2099': 'LegalSupportWorkersAllOther', '25-0000': 'EducationalInstructionLibrary', '25-1000': 'PostsecondaryTeachers', '25-1010': 'BusinessTeachersPostsecondary', '25-1011': 'BusinessTeachersPostsecondary', '25-1020': 'MathComputerScienceTeachersPostsecondary', '25-1021': 'ComputerScienceTeachersPostsecondary', '25-1022': 'MathematicalScienceTeachersPostsecondary', '25-1030': 'EngineeringArchitectureTeachersPostsecondary', '25-1031': 'ArchitectureTeachersPostsecondary', '25-1032': 'EngineeringTeachersPostsecondary', '25-1040': 'LifeSciencesTeachersPostsecondary', '25-1041': 'AgriculturalSciencesTeachersPostsecondary', '25-1042': 'BiologicalScienceTeachersPostsecondary', '25-1043': 'ForestryConservationScienceTeachersPostsecondary', '25-1050': 'PhysicalSciencesTeachersPostsecondary', '25-1051': 'AtmosphericEarthMarineSpaceSciencesTeachersPostsecondary', '25-1052': 'ChemistryTeachersPostsecondary', '25-1053': 'EnvironmentalScienceTeachersPostsecondary', '25-1054': 'PhysicsTeachersPostsecondary', '25-1060': 'SocialSciencesTeachersPostsecondary', '25-1061': 'AnthropologyArcheologyTeachersPostsecondary', '25-1062': 'AreaEthnicCulturalStudiesTeachersPostsecondary', '25-1063': 'EconomicsTeachersPostsecondary', '25-1064': 'GeographyTeachersPostsecondary', '25-1065': 'PoliticalScienceTeachersPostsecondary', '25-1066': 'PsychologyTeachersPostsecondary', '25-1067': 'SociologyTeachersPostsecondary', '25-1069': 'SocialSciencesTeachersPostsecondaryAllOther', '25-1070': 'HealthTeachersPostsecondary', '25-1071': 'HealthSpecialtiesTeachersPostsecondary', '25-1072': 'NursingInstructorsTeachersPostsecondary', '25-1080': 'EducationLibraryScienceTeachersPostsecondary', '25-1081': 'EducationTeachersPostsecondary', '25-1082': 'LibraryScienceTeachersPostsecondary', '25-1110': 'LawCriminalJusticeSocialWorkTeachersPostsecondary', '25-1111': 'CriminalJusticeLawEnforcementTeachersPostsecondary', '25-1112': 'LawTeachersPostsecondary', '25-1113': 'SocialWorkTeachersPostsecondary', '25-1120': 'ArtsCommunicationsHistoryHumanitiesTeachersPostsecondary', '25-1121': 'ArtDramaMusicTeachersPostsecondary', '25-1122': 'CommunicationsTeachersPostsecondary', '25-1123': 'EnglishLanguageLiteratureTeachersPostsecondary', '25-1124': 'ForeignLanguageLiteratureTeachersPostsecondary', '25-1125': 'HistoryTeachersPostsecondary', '25-1126': 'PhilosophyReligionTeachersPostsecondary', '25-1190': 'MiscellaneousPostsecondaryTeachers', '25-1192': 'FamilyConsumerSciencesTeachersPostsecondary', '25-1193': 'RecreationFitnessStudiesTeachersPostsecondary', '25-1194': 'CareerTechnicalEducationTeachersPostsecondary', '25-1199': 'PostsecondaryTeachersAllOther', '25-2000': 'PreschoolElementaryMiddleSecondarySpecialEducationTeachers', '25-2010': 'PreschoolKindergartenTeachers', '25-2011': 'PreschoolTeachersExceptSpecialEducation', '25-2012': 'KindergartenTeachersExceptSpecialEducation', '25-2020': 'ElementaryMiddleSchoolTeachers', '25-2021': 'ElementarySchoolTeachersExceptSpecialEducation', '25-2022': 'MiddleSchoolTeachersExceptSpecialCareerTechnicalEducation', '25-2023': 'CareerTechnicalEducationTeachersMiddleSchool', '25-2030': 'SecondarySchoolTeachers', '25-2031': 'SecondarySchoolTeachersExceptSpecialCareerTechnicalEducation', '25-2032': 'CareerTechnicalEducationTeachersSecondarySchool', '25-2050': 'SpecialEducationTeachers', '25-2051': 'SpecialEducationTeachersPreschool', '25-2055': 'SpecialEducationTeachersKindergarten', '25-2056': 'SpecialEducationTeachersElementarySchool', '25-2057': 'SpecialEducationTeachersMiddleSchool', '25-2058': 'SpecialEducationTeachersSecondarySchool', '25-2059': 'SpecialEducationTeachersAllOther', '25-3000': 'OtherTeachersInstructors', '25-3010': 'AdultBasicEducationAdultSecondaryEducationEnglishAsASecondLanguageInstructors', '25-3011': 'AdultBasicEducationAdultSecondaryEducationEnglishAsASecondLanguageInstructors', '25-3020': 'SelfEnrichmentTeachers', '25-3021': 'SelfEnrichmentTeachers', '25-3030': 'SubstituteTeachersShortTerm', '25-3031': 'SubstituteTeachersShortTerm', '25-3040': 'Tutors', '25-3041': 'Tutors', '25-3090': 'MiscellaneousTeachersInstructors', '25-3099': 'TeachersInstructorsAllOther', '25-4000': 'LibrariansCuratorsArchivists', '25-4010': 'ArchivistsCuratorsMuseumTechnicians', '25-4011': 'Archivists', '25-4012': 'Curators', '25-4013': 'MuseumTechniciansConservators', '25-4020': 'LibrariansMediaCollectionsSpecialists', '25-4022': 'LibrariansMediaCollectionsSpecialists', '25-4030': 'LibraryTechnicians', '25-4031': 'LibraryTechnicians', '25-9000': 'OtherEducationalInstructionLibrary', '25-9020': 'FarmHomeManagementEducators', '25-9021': 'FarmHomeManagementEducators', '25-9030': 'InstructionalCoordinators', '25-9031': 'InstructionalCoordinators', '25-9040': 'TeachingAssistants', '25-9042': 'TeachingAssistantsPreschoolElementaryMiddleSecondarySchoolExceptSpecialEducation', '25-9043': 'TeachingAssistantsSpecialEducation', '25-9044': 'TeachingAssistantsPostsecondary', '25-9049': 'TeachingAssistantsAllOther', '25-9090': 'MiscellaneousEducationalInstructionLibraryWorkers', '25-9099': 'EducationalInstructionLibraryWorkersAllOther', '27-0000': 'ArtsDesignEntertainmentSportsMedia', '27-1000': 'ArtDesignWorkers', '27-1010': 'ArtistsRelatedWorkers', '27-1011': 'ArtDirectors', '27-1012': 'CraftArtists', '27-1013': 'FineArtistsIncludingPaintersSculptorsIllustrators', '27-1014': 'SpecialEffectsArtistsAnimators', '27-1019': 'ArtistsRelatedWorkersAllOther', '27-1020': 'Designers', '27-1021': 'CommercialIndustrialDesigners', '27-1022': 'FashionDesigners', '27-1023': 'FloralDesigners', '27-1024': 'GraphicDesigners', '27-1025': 'InteriorDesigners', '27-1026': 'MerchandiseDisplayersWindowTrimmers', '27-1027': 'SetExhibitDesigners', '27-1029': 'DesignersAllOther', '27-2000': 'EntertainersPerformersSportsRelatedWorkers', '27-2010': 'ActorsProducersDirectors', '27-2011': 'Actors', '27-2012': 'ProducersDirectors', '27-2020': 'AthletesCoachesUmpiresRelatedWorkers', '27-2021': 'AthletesSportsCompetitors', '27-2022': 'CoachesScouts', '27-2023': 'UmpiresRefereesOtherSportsOfficials', '27-2030': 'DancersChoreographers', '27-2031': 'Dancers', '27-2032': 'Choreographers', '27-2040': 'MusiciansSingersRelatedWorkers', '27-2041': 'MusicDirectorsComposers', '27-2042': 'MusiciansSingers', '27-2090': 'MiscellaneousEntertainersPerformersSportsRelatedWorkers', '27-2091': 'DiscJockeysExceptRadio', '27-2099': 'EntertainersPerformersSportsRelatedWorkersAllOther', '27-3000': 'MediaCommunicationWorkers', '27-3010': 'BroadcastAnnouncersRadioDiscJockeys', '27-3011': 'BroadcastAnnouncersRadioDiscJockeys', '27-3020': 'NewsAnalystsReportersJournalists', '27-3023': 'NewsAnalystsReportersJournalists', '27-3030': 'PublicRelationsSpecialists', '27-3031': 'PublicRelationsSpecialists', '27-3040': 'WritersEditors', '27-3041': 'Editors', '27-3042': 'TechnicalWriters', '27-3043': 'WritersAuthors', '27-3090': 'MiscellaneousMediaCommunicationWorkers', '27-3091': 'InterpretersTranslators', '27-3092': 'CourtReportersSimultaneousCaptioners', '27-3099': 'MediaCommunicationWorkersAllOther', '27-4000': 'MediaCommunicationEquipmentWorkers', '27-4010': 'BroadcastSoundLightingTechnicians', '27-4011': 'AudioVideoTechnicians', '27-4012': 'BroadcastTechnicians', '27-4014': 'SoundEngineeringTechnicians', '27-4015': 'LightingTechnicians', '27-4020': 'Photographers', '27-4021': 'Photographers', '27-4030': 'TelevisionVideoFilmCameraOperatorsEditors', '27-4031': 'CameraOperatorsTelevisionVideoFilm', '27-4032': 'FilmVideoEditors', '27-4090': 'MiscellaneousMediaCommunicationEquipmentWorkers', '27-4099': 'MediaCommunicationEquipmentWorkersAllOther', '29-0000': 'HealthcarePractitionersTechnical', '29-1000': 'HealthcareDiagnosingOrTreatingPractitioners', '29-1010': 'Chiropractors', '29-1011': 'Chiropractors', '29-1020': 'Dentists', '29-1021': 'DentistsGeneral', '29-1022': 'OralMaxillofacialSurgeons', '29-1023': 'Orthodontists', '29-1024': 'Prosthodontists', '29-1029': 'DentistsAllOtherSpecialists', '29-1030': 'DietitiansNutritionists', '29-1031': 'DietitiansNutritionists', '29-1040': 'Optometrists', '29-1041': 'Optometrists', '29-1050': 'Pharmacists', '29-1051': 'Pharmacists', '29-1070': 'PhysicianAssistants', '29-1071': 'PhysicianAssistants', '29-1080': 'Podiatrists', '29-1081': 'Podiatrists', '29-1120': 'Therapists', '29-1122': 'OccupationalTherapists', '29-1123': 'PhysicalTherapists', '29-1124': 'RadiationTherapists', '29-1125': 'RecreationalTherapists', '29-1126': 'RespiratoryTherapists', '29-1127': 'SpeechLanguagePathologists', '29-1128': 'ExercisePhysiologists', '29-1129': 'TherapistsAllOther', '29-1130': 'Veterinarians', '29-1131': 'Veterinarians', '29-1140': 'RegisteredNurses', '29-1141': 'RegisteredNurses', '29-1150': 'NurseAnesthetists', '29-1151': 'NurseAnesthetists', '29-1160': 'NurseMidwives', '29-1161': 'NurseMidwives', '29-1170': 'NursePractitioners', '29-1171': 'NursePractitioners', '29-1180': 'Audiologists', '29-1181': 'Audiologists', '29-1210': 'Physicians', '29-1211': 'Anesthesiologists', '29-1212': 'Cardiologists', '29-1213': 'Dermatologists', '29-1214': 'EmergencyMedicinePhysicians', '29-1215': 'FamilyMedicinePhysicians', '29-1216': 'GeneralInternalMedicinePhysicians', '29-1217': 'Neurologists', '29-1218': 'ObstetriciansGynecologists', '29-1221': 'PediatriciansGeneral', '29-1222': 'PhysiciansPathologists', '29-1223': 'Psychiatrists', '29-1224': 'Radiologists', '29-1229': 'PhysiciansAllOther', '29-1240': 'Surgeons', '29-1241': 'OphthalmologistsExceptPediatric', '29-1242': 'OrthopedicSurgeonsExceptPediatric', '29-1243': 'PediatricSurgeons', '29-1249': 'SurgeonsAllOther', '29-1290': 'MiscellaneousHealthcareDiagnosingOrTreatingPractitioners', '29-1291': 'Acupuncturists', '29-1292': 'DentalHygienists', '29-1299': 'HealthcareDiagnosingOrTreatingPractitionersAllOther', '29-2000': 'HealthTechnologistsTechnicians', '29-2010': 'ClinicalLaboratoryTechnologistsTechnicians', '29-2011': 'MedicalClinicalLaboratoryTechnologists', '29-2012': 'MedicalClinicalLaboratoryTechnicians', '29-2030': 'DiagnosticRelatedTechnologistsTechnicians', '29-2031': 'CardiovascularTechnologistsTechnicians', '29-2032': 'DiagnosticMedicalSonographers', '29-2033': 'NuclearMedicineTechnologists', '29-2034': 'RadiologicTechnologistsTechnicians', '29-2035': 'MagneticResonanceImagingTechnologists', '29-2036': 'MedicalDosimetrists', '29-2040': 'EmergencyMedicalTechniciansParamedics', '29-2042': 'EmergencyMedicalTechnicians', '29-2043': 'Paramedics', '29-2050': 'HealthPractitionerSupportTechnologistsTechnicians', '29-2051': 'DieteticTechnicians', '29-2052': 'PharmacyTechnicians', '29-2053': 'PsychiatricTechnicians', '29-2055': 'SurgicalTechnologists', '29-2056': 'VeterinaryTechnologistsTechnicians', '29-2057': 'OphthalmicMedicalTechnicians', '29-2060': 'LicensedPracticalLicensedVocationalNurses', '29-2061': 'LicensedPracticalLicensedVocationalNurses', '29-2070': 'MedicalRecordsSpecialists', '29-2072': 'MedicalRecordsSpecialists', '29-2080': 'OpticiansDispensing', '29-2081': 'OpticiansDispensing', '29-2090': 'MiscellaneousHealthTechnologistsTechnicians', '29-2091': 'OrthotistsProsthetists', '29-2092': 'HearingAidSpecialists', '29-2099': 'HealthTechnologistsTechniciansAllOther', '29-9000': 'OtherHealthcarePractitionersTechnical', '29-9020': 'HealthInformationTechnologistsMedicalRegistrars', '29-9021': 'HealthInformationTechnologistsMedicalRegistrars', '29-9090': 'MiscellaneousHealthPractitionersTechnicalWorkers', '29-9091': 'AthleticTrainers', '29-9092': 'GeneticCounselors', '29-9093': 'SurgicalAssistants', '29-9099': 'HealthcarePractitionersTechnicalWorkersAllOther', '31-0000': 'HealthcareSupport', '31-1100': 'HomeHealthPersonalCareAidesNursingAssistantsOrderliesPsychiatricAides', '31-1120': 'HomeHealthPersonalCareAides', '31-1121': 'HomeHealthAides', '31-1122': 'PersonalCareAides', '31-1130': 'NursingAssistantsOrderliesPsychiatricAides', '31-1131': 'NursingAssistants', '31-1132': 'Orderlies', '31-1133': 'PsychiatricAides', '31-2000': 'OccupationalTherapyPhysicalTherapistAssistantsAides', '31-2010': 'OccupationalTherapyAssistantsAides', '31-2011': 'OccupationalTherapyAssistants', '31-2012': 'OccupationalTherapyAides', '31-2020': 'PhysicalTherapistAssistantsAides', '31-2021': 'PhysicalTherapistAssistants', '31-2022': 'PhysicalTherapistAides', '31-9000': 'OtherHealthcareSupport', '31-9010': 'MassageTherapists', '31-9011': 'MassageTherapists', '31-9090': 'MiscellaneousHealthcareSupport', '31-9091': 'DentalAssistants', '31-9092': 'MedicalAssistants', '31-9093': 'MedicalEquipmentPreparers', '31-9094': 'MedicalTranscriptionists', '31-9095': 'PharmacyAides', '31-9096': 'VeterinaryAssistantsLaboratoryAnimalCaretakers', '31-9097': 'Phlebotomists', '31-9099': 'HealthcareSupportWorkersAllOther', '33-0000': 'ProtectiveService', '33-1000': 'SupervisorsOfProtectiveServiceWorkers', '33-1010': 'FirstLineSupervisorsOfLawEnforcementWorkers', '33-1011': 'FirstLineSupervisorsOfCorrectionalOfficers', '33-1012': 'FirstLineSupervisorsOfPoliceDetectives', '33-1020': 'FirstLineSupervisorsOfFirefightingPreventionWorkers', '33-1021': 'FirstLineSupervisorsOfFirefightingPreventionWorkers', '33-1090': 'MiscellaneousFirstLineSupervisorsProtectiveServiceWorkers', '33-1091': 'FirstLineSupervisorsOfSecurityWorkers', '33-1099': 'FirstLineSupervisorsOfProtectiveServiceWorkersAllOther', '33-2000': 'FirefightingPreventionWorkers', '33-2010': 'Firefighters', '33-2011': 'Firefighters', '33-2020': 'FireInspectors', '33-2021': 'FireInspectorsInvestigators', '33-2022': 'ForestFireInspectorsPreventionSpecialists', '33-3000': 'LawEnforcementWorkers', '33-3010': 'BailiffsCorrectionalOfficersJailers', '33-3011': 'Bailiffs', '33-3012': 'CorrectionalOfficersJailers', '33-3020': 'DetectivesCriminalInvestigators', '33-3021': 'DetectivesCriminalInvestigators', '33-3030': 'FishGameWardens', '33-3031': 'FishGameWardens', '33-3040': 'ParkingEnforcementWorkers', '33-3041': 'ParkingEnforcementWorkers', '33-3050': 'PoliceOfficers', '33-3051': 'PoliceSheriffsPatrolOfficers', '33-3052': 'TransitRailroadPolice', '33-9000': 'OtherProtectiveServiceWorkers', '33-9010': 'AnimalControlWorkers', '33-9011': 'AnimalControlWorkers', '33-9020': 'PrivateDetectivesInvestigators', '33-9021': 'PrivateDetectivesInvestigators', '33-9030': 'SecurityGuardsGamblingSurveillanceOfficers', '33-9031': 'GamblingSurveillanceOfficersGamblingInvestigators', '33-9032': 'SecurityGuards', '33-9090': 'MiscellaneousProtectiveServiceWorkers', '33-9091': 'CrossingGuardsFlaggers', '33-9092': 'LifeguardsSkiPatrolOtherRecreationalProtectiveServiceWorkers', '33-9093': 'TransportationSecurityScreeners', '33-9094': 'SchoolBusMonitors', '33-9099': 'ProtectiveServiceWorkersAllOther', '35-0000': 'FoodPreparationServingRelated', '35-1000': 'SupervisorsOfFoodPreparationServingWorkers', '35-1010': 'SupervisorsOfFoodPreparationServingWorkers', '35-1011': 'ChefsHeadCooks', '35-1012': 'FirstLineSupervisorsOfFoodPreparationServingWorkers', '35-2000': 'CooksFoodPreparationWorkers', '35-2010': 'Cooks', '35-2011': 'CooksFastFood', '35-2012': 'CooksInstitutionCafeteria', '35-2013': 'CooksPrivateHousehold', '35-2014': 'CooksRestaurant', '35-2015': 'CooksShortOrder', '35-2019': 'CooksAllOther', '35-2020': 'FoodPreparationWorkers', '35-2021': 'FoodPreparationWorkers', '35-3000': 'FoodBeverageServingWorkers', '35-3010': 'Bartenders', '35-3011': 'Bartenders', '35-3020': 'FastFoodCounterWorkers', '35-3023': 'FastFoodCounterWorkers', '35-3030': 'WaitersWaitresses', '35-3031': 'WaitersWaitresses', '35-3040': 'FoodServersNonrestaurant', '35-3041': 'FoodServersNonrestaurant', '35-9000': 'OtherFoodPreparationServingRelatedWorkers', '35-9010': 'DiningRoomCafeteriaAttendantsBartenderHelpers', '35-9011': 'DiningRoomCafeteriaAttendantsBartenderHelpers', '35-9020': 'Dishwashers', '35-9021': 'Dishwashers', '35-9030': 'HostsHostessesRestaurantLoungeCoffeeShop', '35-9031': 'HostsHostessesRestaurantLoungeCoffeeShop', '35-9090': 'MiscellaneousFoodPreparationServingRelatedWorkers', '35-9099': 'FoodPreparationServingRelatedWorkersAllOther', '37-0000': 'BuildingGroundsCleaningMaintenance', '37-1000': 'SupervisorsOfBuildingGroundsCleaningMaintenanceWorkers', '37-1010': 'FirstLineSupervisorsOfBuildingGroundsCleaningMaintenanceWorkers', '37-1011': 'FirstLineSupervisorsOfHousekeepingJanitorialWorkers', '37-1012': 'FirstLineSupervisorsOfLandscapingLawnServiceGroundskeepingWorkers', '37-2000': 'BuildingCleaningPestControlWorkers', '37-2010': 'BuildingCleaningWorkers', '37-2011': 'JanitorsCleanersExceptMaidsHousekeepingCleaners', '37-2012': 'MaidsHousekeepingCleaners', '37-2019': 'BuildingCleaningWorkersAllOther', '37-2020': 'PestControlWorkers', '37-2021': 'PestControlWorkers', '37-3000': 'GroundsMaintenanceWorkers', '37-3010': 'GroundsMaintenanceWorkers', '37-3011': 'LandscapingGroundskeepingWorkers', '37-3012': 'PesticideHandlersSprayersApplicatorsVegetation', '37-3013': 'TreeTrimmersPruners', '37-3019': 'GroundsMaintenanceWorkersAllOther', '39-0000': 'PersonalCareService', '39-1000': 'SupervisorsOfPersonalCareServiceWorkers', '39-1010': 'FirstLineSupervisorsOfEntertainmentRecreationWorkers', '39-1013': 'FirstLineSupervisorsOfGamblingServicesWorkers', '39-1014': 'FirstLineSupervisorsOfEntertainmentRecreationWorkersExceptGamblingServices', '39-1020': 'FirstLineSupervisorsOfPersonalServiceWorkers', '39-1022': 'FirstLineSupervisorsOfPersonalServiceWorkers', '39-2000': 'AnimalCareServiceWorkers', '39-2010': 'AnimalTrainers', '39-2011': 'AnimalTrainers', '39-2020': 'AnimalCaretakers', '39-2021': 'AnimalCaretakers', '39-3000': 'EntertainmentAttendantsRelatedWorkers', '39-3010': 'GamblingServicesWorkers', '39-3011': 'GamblingDealers', '39-3012': 'GamblingSportsBookWritersRunners', '39-3019': 'GamblingServiceWorkersAllOther', '39-3020': 'MotionPictureProjectionists', '39-3021': 'MotionPictureProjectionists', '39-3030': 'UshersLobbyAttendantsTicketTakers', '39-3031': 'UshersLobbyAttendantsTicketTakers', '39-3090': 'MiscellaneousEntertainmentAttendantsRelatedWorkers', '39-3091': 'AmusementRecreationAttendants', '39-3092': 'CostumeAttendants', '39-3093': 'LockerRoomCoatroomDressingRoomAttendants', '39-3099': 'EntertainmentAttendantsRelatedWorkersAllOther', '39-4000': 'FuneralServiceWorkers', '39-4010': 'EmbalmersCrematoryOperators', '39-4011': 'Embalmers', '39-4012': 'CrematoryOperators', '39-4020': 'FuneralAttendants', '39-4021': 'FuneralAttendants', '39-4030': 'MorticiansUndertakersFuneralArrangers', '39-4031': 'MorticiansUndertakersFuneralArrangers', '39-5000': 'PersonalAppearanceWorkers', '39-5010': 'BarbersHairdressersHairstylistsCosmetologists', '39-5011': 'Barbers', '39-5012': 'HairdressersHairstylistsCosmetologists', '39-5090': 'MiscellaneousPersonalAppearanceWorkers', '39-5091': 'MakeupArtistsTheatricalPerformance', '39-5092': 'ManicuristsPedicurists', '39-5093': 'Shampooers', '39-5094': 'SkincareSpecialists', '39-6000': 'BaggagePortersBellhopsConcierges', '39-6010': 'BaggagePortersBellhopsConcierges', '39-6011': 'BaggagePortersBellhops', '39-6012': 'Concierges', '39-7000': 'TourTravelGuides', '39-7010': 'TourTravelGuides', '39-7011': 'TourGuidesEscorts', '39-7012': 'TravelGuides', '39-9000': 'OtherPersonalCareServiceWorkers', '39-9010': 'ChildcareWorkers', '39-9011': 'ChildcareWorkers', '39-9030': 'RecreationFitnessWorkers', '39-9031': 'ExerciseTrainersGroupFitnessInstructors', '39-9032': 'RecreationWorkers', '39-9040': 'ResidentialAdvisors', '39-9041': 'ResidentialAdvisors', '39-9090': 'MiscellaneousPersonalCareServiceWorkers', '39-9099': 'PersonalCareServiceWorkersAllOther', '41-0000': 'SalesRelated', '41-1000': 'SupervisorsOfSalesWorkers', '41-1010': 'FirstLineSupervisorsOfSalesWorkers', '41-1011': 'FirstLineSupervisorsOfRetailSalesWorkers', '41-1012': 'FirstLineSupervisorsOfNonRetailSalesWorkers', '41-2000': 'RetailSalesWorkers', '41-2010': 'Cashiers', '41-2011': 'Cashiers', '41-2012': 'GamblingChangePersonsBoothCashiers', '41-2020': 'CounterRentalClerksPartsSalespersons', '41-2021': 'CounterRentalClerks', '41-2022': 'PartsSalespersons', '41-2030': 'RetailSalespersons', '41-2031': 'RetailSalespersons', '41-3000': 'SalesRepresentativesServices', '41-3010': 'AdvertisingSalesAgents', '41-3011': 'AdvertisingSalesAgents', '41-3020': 'InsuranceSalesAgents', '41-3021': 'InsuranceSalesAgents', '41-3030': 'SecuritiesCommoditiesFinancialServicesSalesAgents', '41-3031': 'SecuritiesCommoditiesFinancialServicesSalesAgents', '41-3040': 'TravelAgents', '41-3041': 'TravelAgents', '41-3090': 'MiscellaneousSalesRepresentativesServices', '41-3091': 'SalesRepresentativesOfServicesExceptAdvertisingInsuranceFinancialServicesTravel', '41-4000': 'SalesRepresentativesWholesaleManufacturing', '41-4010': 'SalesRepresentativesWholesaleManufacturing', '41-4011': 'SalesRepresentativesWholesaleManufacturingTechnicalScientificProducts', '41-4012': 'SalesRepresentativesWholesaleManufacturingExceptTechnicalScientificProducts', '41-9000': 'OtherSalesRelatedWorkers', '41-9010': 'ModelsDemonstratorsProductPromoters', '41-9011': 'DemonstratorsProductPromoters', '41-9012': 'Models', '41-9020': 'RealEstateBrokersSalesAgents', '41-9021': 'RealEstateBrokers', '41-9022': 'RealEstateSalesAgents', '41-9030': 'SalesEngineers', '41-9031': 'SalesEngineers', '41-9040': 'Telemarketers', '41-9041': 'Telemarketers', '41-9090': 'MiscellaneousSalesRelatedWorkers', '41-9091': 'DoortoDoorSalesWorkersNewsStreetVendorsRelatedWorkers', '41-9099': 'SalesRelatedWorkersAllOther', '43-0000': 'OfficeAdministrativeSupport', '43-1000': 'SupervisorsOfOfficeAdministrativeSupportWorkers', '43-1010': 'FirstLineSupervisorsOfOfficeAdministrativeSupportWorkers', '43-1011': 'FirstLineSupervisorsOfOfficeAdministrativeSupportWorkers', '43-2000': 'CommunicationsEquipmentOperators', '43-2010': 'SwitchboardOperatorsIncludingAnsweringService', '43-2011': 'SwitchboardOperatorsIncludingAnsweringService', '43-2020': 'TelephoneOperators', '43-2021': 'TelephoneOperators', '43-2090': 'MiscellaneousCommunicationsEquipmentOperators', '43-2099': 'CommunicationsEquipmentOperatorsAllOther', '43-3000': 'FinancialClerks', '43-3010': 'BillAccountCollectors', '43-3011': 'BillAccountCollectors', '43-3020': 'BillingPostingClerks', '43-3021': 'BillingPostingClerks', '43-3030': 'BookkeepingAccountingAuditingClerks', '43-3031': 'BookkeepingAccountingAuditingClerks', '43-3040': 'GamblingCageWorkers', '43-3041': 'GamblingCageWorkers', '43-3050': 'PayrollTimekeepingClerks', '43-3051': 'PayrollTimekeepingClerks', '43-3060': 'ProcurementClerks', '43-3061': 'ProcurementClerks', '43-3070': 'Tellers', '43-3071': 'Tellers', '43-3090': 'MiscellaneousFinancialClerks', '43-3099': 'FinancialClerksAllOther', '43-4000': 'InformationRecordClerks', '43-4010': 'BrokerageClerks', '43-4011': 'BrokerageClerks', '43-4020': 'CorrespondenceClerks', '43-4021': 'CorrespondenceClerks', '43-4030': 'CourtMunicipalLicenseClerks', '43-4031': 'CourtMunicipalLicenseClerks', '43-4040': 'CreditAuthorizersCheckersClerks', '43-4041': 'CreditAuthorizersCheckersClerks', '43-4050': 'CustomerServiceRepresentatives', '43-4051': 'CustomerServiceRepresentatives', '43-4060': 'EligibilityInterviewersGovernmentPrograms', '43-4061': 'EligibilityInterviewersGovernmentPrograms', '43-4070': 'FileClerks', '43-4071': 'FileClerks', '43-4080': 'HotelMotelResortDeskClerks', '43-4081': 'HotelMotelResortDeskClerks', '43-4110': 'InterviewersExceptEligibilityLoan', '43-4111': 'InterviewersExceptEligibilityLoan', '43-4120': 'LibraryAssistantsClerical', '43-4121': 'LibraryAssistantsClerical', '43-4130': 'LoanInterviewersClerks', '43-4131': 'LoanInterviewersClerks', '43-4140': 'NewAccountsClerks', '43-4141': 'NewAccountsClerks', '43-4150': 'OrderClerks', '43-4151': 'OrderClerks', '43-4160': 'HumanResourcesAssistantsExceptPayrollTimekeeping', '43-4161': 'HumanResourcesAssistantsExceptPayrollTimekeeping', '43-4170': 'ReceptionistsInformationClerks', '43-4171': 'ReceptionistsInformationClerks', '43-4180': 'ReservationTransportationTicketAgentsTravelClerks', '43-4181': 'ReservationTransportationTicketAgentsTravelClerks', '43-4190': 'MiscellaneousInformationRecordClerks', '43-4199': 'InformationRecordClerksAllOther', '43-5000': 'MaterialRecordingSchedulingDispatchingDistributingWorkers', '43-5010': 'CargoFreightAgents', '43-5011': 'CargoFreightAgents', '43-5020': 'CouriersMessengers', '43-5021': 'CouriersMessengers', '43-5030': 'Dispatchers', '43-5031': 'PublicSafetyTelecommunicators', '43-5032': 'DispatchersExceptPoliceFireAmbulance', '43-5040': 'MeterReadersUtilities', '43-5041': 'MeterReadersUtilities', '43-5050': 'PostalServiceWorkers', '43-5051': 'PostalServiceClerks', '43-5052': 'PostalServiceMailCarriers', '43-5053': 'PostalServiceMailSortersProcessorsProcessingMachineOperators', '43-5060': 'ProductionPlanningExpeditingClerks', '43-5061': 'ProductionPlanningExpeditingClerks', '43-5070': 'ShippingReceivingInventoryClerks', '43-5071': 'ShippingReceivingInventoryClerks', '43-5110': 'WeighersMeasurersCheckersSamplersRecordkeeping', '43-5111': 'WeighersMeasurersCheckersSamplersRecordkeeping', '43-6000': 'SecretariesAdministrativeAssistants', '43-6010': 'SecretariesAdministrativeAssistants', '43-6011': 'ExecutiveSecretariesExecutiveAdministrativeAssistants', '43-6012': 'LegalSecretariesAdministrativeAssistants', '43-6013': 'MedicalSecretariesAdministrativeAssistants', '43-6014': 'SecretariesAdministrativeAssistantsExceptLegalMedicalExecutive', '43-9000': 'OtherOfficeAdministrativeSupportWorkers', '43-9020': 'DataEntryInformationProcessingWorkers', '43-9021': 'DataEntryKeyers', '43-9022': 'WordProcessorsTypists', '43-9030': 'DesktopPublishers', '43-9031': 'DesktopPublishers', '43-9040': 'InsuranceClaimsPolicyProcessingClerks', '43-9041': 'InsuranceClaimsPolicyProcessingClerks', '43-9050': 'MailClerksMailMachineOperatorsExceptPostalService', '43-9051': 'MailClerksMailMachineOperatorsExceptPostalService', '43-9060': 'OfficeClerksGeneral', '43-9061': 'OfficeClerksGeneral', '43-9070': 'OfficeMachineOperatorsExceptComputer', '43-9071': 'OfficeMachineOperatorsExceptComputer', '43-9080': 'ProofreadersCopyMarkers', '43-9081': 'ProofreadersCopyMarkers', '43-9110': 'StatisticalAssistants', '43-9111': 'StatisticalAssistants', '43-9190': 'MiscellaneousOfficeAdministrativeSupportWorkers', '43-9199': 'OfficeAdministrativeSupportWorkersAllOther', '45-0000': 'FarmingFishingForestry', '45-1000': 'SupervisorsOfFarmingFishingForestryWorkers', '45-1010': 'FirstLineSupervisorsOfFarmingFishingForestryWorkers', '45-1011': 'FirstLineSupervisorsOfFarmingFishingForestryWorkers', '45-2000': 'AgriculturalWorkers', '45-2010': 'AgriculturalInspectors', '45-2011': 'AgriculturalInspectors', '45-2020': 'AnimalBreeders', '45-2021': 'AnimalBreeders', '45-2040': 'GradersSortersAgriculturalProducts', '45-2041': 'GradersSortersAgriculturalProducts', '45-2090': 'MiscellaneousAgriculturalWorkers', '45-2091': 'AgriculturalEquipmentOperators', '45-2092': 'FarmworkersLaborersCropNurseryGreenhouse', '45-2093': 'FarmworkersFarmRanchAquaculturalAnimals', '45-2099': 'AgriculturalWorkersAllOther', '45-3000': 'FishingHuntingWorkers', '45-3030': 'FishingHuntingWorkers', '45-3031': 'FishingHuntingWorkers', '45-4000': 'ForestConservationLoggingWorkers', '45-4010': 'ForestConservationWorkers', '45-4011': 'ForestConservationWorkers', '45-4020': 'LoggingWorkers', '45-4021': 'Fallers', '45-4022': 'LoggingEquipmentOperators', '45-4023': 'LogGradersScalers', '45-4029': 'LoggingWorkersAllOther', '47-0000': 'ConstructionExtraction', '47-1000': 'SupervisorsOfConstructionExtractionWorkers', '47-1010': 'FirstLineSupervisorsOfConstructionTradesExtractionWorkers', '47-1011': 'FirstLineSupervisorsOfConstructionTradesExtractionWorkers', '47-2000': 'ConstructionTradesWorkers', '47-2010': 'Boilermakers', '47-2011': 'Boilermakers', '47-2020': 'BrickmasonsBlockmasonsStonemasons', '47-2021': 'BrickmasonsBlockmasons', '47-2022': 'Stonemasons', '47-2030': 'Carpenters', '47-2031': 'Carpenters', '47-2040': 'CarpetFloorTileInstallersFinishers', '47-2041': 'CarpetInstallers', '47-2042': 'FloorLayersExceptCarpetWoodHardTiles', '47-2043': 'FloorSandersFinishers', '47-2044': 'TileStoneSetters', '47-2050': 'CementMasonsConcreteFinishersTerrazzoWorkers', '47-2051': 'CementMasonsConcreteFinishers', '47-2053': 'TerrazzoWorkersFinishers', '47-2060': 'ConstructionLaborers', '47-2061': 'ConstructionLaborers', '47-2070': 'ConstructionEquipmentOperators', '47-2071': 'PavingSurfacingTampingEquipmentOperators', '47-2072': 'PileDriverOperators', '47-2073': 'OperatingEngineersOtherConstructionEquipmentOperators', '47-2080': 'DrywallInstallersCeilingTileInstallersTapers', '47-2081': 'DrywallCeilingTileInstallers', '47-2082': 'Tapers', '47-2110': 'Electricians', '47-2111': 'Electricians', '47-2120': 'Glaziers', '47-2121': 'Glaziers', '47-2130': 'InsulationWorkers', '47-2131': 'InsulationWorkersFloorCeilingWall', '47-2132': 'InsulationWorkersMechanical', '47-2140': 'PaintersPaperhangers', '47-2141': 'PaintersConstructionMaintenance', '47-2142': 'Paperhangers', '47-2150': 'PipelayersPlumbersPipefittersSteamfitters', '47-2151': 'Pipelayers', '47-2152': 'PlumbersPipefittersSteamfitters', '47-2160': 'PlasterersStuccoMasons', '47-2161': 'PlasterersStuccoMasons', '47-2170': 'ReinforcingIronRebarWorkers', '47-2171': 'ReinforcingIronRebarWorkers', '47-2180': 'Roofers', '47-2181': 'Roofers', '47-2210': 'SheetMetalWorkers', '47-2211': 'SheetMetalWorkers', '47-2220': 'StructuralIronSteelWorkers', '47-2221': 'StructuralIronSteelWorkers', '47-2230': 'SolarPhotovoltaicInstallers', '47-2231': 'SolarPhotovoltaicInstallers', '47-3000': 'HelpersConstructionTrades', '47-3010': 'HelpersConstructionTrades', '47-3011': 'HelpersBrickmasonsBlockmasonsStonemasonsTileMarbleSetters', '47-3012': 'HelpersCarpenters', '47-3013': 'HelpersElectricians', '47-3014': 'HelpersPaintersPaperhangersPlasterersStuccoMasons', '47-3015': 'HelpersPipelayersPlumbersPipefittersSteamfitters', '47-3016': 'HelpersRoofers', '47-3019': 'HelpersConstructionTradesAllOther', '47-4000': 'OtherConstructionRelatedWorkers', '47-4010': 'ConstructionBuildingInspectors', '47-4011': 'ConstructionBuildingInspectors', '47-4020': 'ElevatorEscalatorInstallersRepairers', '47-4021': 'ElevatorEscalatorInstallersRepairers', '47-4030': 'FenceErectors', '47-4031': 'FenceErectors', '47-4040': 'HazardousMaterialsRemovalWorkers', '47-4041': 'HazardousMaterialsRemovalWorkers', '47-4050': 'HighwayMaintenanceWorkers', '47-4051': 'HighwayMaintenanceWorkers', '47-4060': 'RailTrackLayingMaintenanceEquipmentOperators', '47-4061': 'RailTrackLayingMaintenanceEquipmentOperators', '47-4070': 'SepticTankServicersSewerPipeCleaners', '47-4071': 'SepticTankServicersSewerPipeCleaners', '47-4090': 'MiscellaneousConstructionRelatedWorkers', '47-4091': 'SegmentalPavers', '47-4099': 'ConstructionRelatedWorkersAllOther', '47-5000': 'ExtractionWorkers', '47-5010': 'DerrickRotaryDrillServiceUnitOperatorsOilGas', '47-5011': 'DerrickOperatorsOilGas', '47-5012': 'RotaryDrillOperatorsOilGas', '47-5013': 'ServiceUnitOperatorsOilGas', '47-5020': 'SurfaceMiningMachineOperatorsEarthDrillers', '47-5022': 'ExcavatingLoadingMachineDraglineOperatorsSurfaceMining', '47-5023': 'EarthDrillersExceptOilGas', '47-5030': 'ExplosivesWorkersOrdnanceHandlingExpertsBlasters', '47-5032': 'ExplosivesWorkersOrdnanceHandlingExpertsBlasters', '47-5040': 'UndergroundMiningMachineOperators', '47-5041': 'ContinuousMiningMachineOperators', '47-5043': 'RoofBoltersMining', '47-5044': 'LoadingMovingMachineOperatorsUndergroundMining', '47-5049': 'UndergroundMiningMachineOperatorsAllOther', '47-5050': 'RockSplittersQuarry', '47-5051': 'RockSplittersQuarry', '47-5070': 'RoustaboutsOilGas', '47-5071': 'RoustaboutsOilGas', '47-5080': 'HelpersExtractionWorkers', '47-5081': 'HelpersExtractionWorkers', '47-5090': 'MiscellaneousExtractionWorkers', '47-5099': 'ExtractionWorkersAllOther', '49-0000': 'InstallationMaintenanceRepair', '49-1000': 'SupervisorsOfInstallationMaintenanceRepairWorkers', '49-1010': 'FirstLineSupervisorsOfMechanicsInstallersRepairers', '49-1011': 'FirstLineSupervisorsOfMechanicsInstallersRepairers', '49-2000': 'ElectricalElectronicEquipmentMechanicsInstallersRepairers', '49-2010': 'ComputerAutomatedTellerOfficeMachineRepairers', '49-2011': 'ComputerAutomatedTellerOfficeMachineRepairers', '49-2020': 'RadioTelecommunicationsEquipmentInstallersRepairers', '49-2021': 'RadioCellularTowerEquipmentInstallersRepairers', '49-2022': 'TelecommunicationsEquipmentInstallersRepairersExceptLineInstallers', '49-2090': 'MiscellaneousElectricalElectronicEquipmentMechanicsInstallersRepairers', '49-2091': 'AvionicsTechnicians', '49-2092': 'ElectricMotorPowerToolRelatedRepairers', '49-2093': 'ElectricalElectronicsInstallersRepairersTransportationEquipment', '49-2094': 'ElectricalElectronicsRepairersCommercialIndustrialEquipment', '49-2095': 'ElectricalElectronicsRepairersPowerhouseSubstationRelay', '49-2096': 'ElectronicEquipmentInstallersRepairersMotorVehicles', '49-2097': 'AudiovisualEquipmentInstallersRepairers', '49-2098': 'SecurityFireAlarmSystemsInstallers', '49-3000': 'VehicleMobileEquipmentMechanicsInstallersRepairers', '49-3010': 'AircraftMechanicsServiceTechnicians', '49-3011': 'AircraftMechanicsServiceTechnicians', '49-3020': 'AutomotiveTechniciansRepairers', '49-3021': 'AutomotiveBodyRelatedRepairers', '49-3022': 'AutomotiveGlassInstallersRepairers', '49-3023': 'AutomotiveServiceTechniciansMechanics', '49-3030': 'BusTruckMechanicsDieselEngineSpecialists', '49-3031': 'BusTruckMechanicsDieselEngineSpecialists', '49-3040': 'HeavyVehicleMobileEquipmentServiceTechniciansMechanics', '49-3041': 'FarmEquipmentMechanicsServiceTechnicians', '49-3042': 'MobileHeavyEquipmentMechanicsExceptEngines', '49-3043': 'RailCarRepairers', '49-3050': 'SmallEngineMechanics', '49-3051': 'MotorboatMechanicsServiceTechnicians', '49-3052': 'MotorcycleMechanics', '49-3053': 'OutdoorPowerEquipmentOtherSmallEngineMechanics', '49-3090': 'MiscellaneousVehicleMobileEquipmentMechanicsInstallersRepairers', '49-3091': 'BicycleRepairers', '49-3092': 'RecreationalVehicleServiceTechnicians', '49-3093': 'TireRepairersChangers', '49-9000': 'OtherInstallationMaintenanceRepair', '49-9010': 'ControlValveInstallersRepairers', '49-9011': 'MechanicalDoorRepairers', '49-9012': 'ControlValveInstallersRepairersExceptMechanicalDoor', '49-9020': 'HeatingAirConditioningRefrigerationMechanicsInstallers', '49-9021': 'HeatingAirConditioningRefrigerationMechanicsInstallers', '49-9030': 'HomeApplianceRepairers', '49-9031': 'HomeApplianceRepairers', '49-9040': 'IndustrialMachineryInstallationRepairMaintenanceWorkers', '49-9041': 'IndustrialMachineryMechanics', '49-9043': 'MaintenanceWorkersMachinery', '49-9044': 'Millwrights', '49-9045': 'RefractoryMaterialsRepairersExceptBrickmasons', '49-9050': 'LineInstallersRepairers', '49-9051': 'ElectricalPowerLineInstallersRepairers', '49-9052': 'TelecommunicationsLineInstallersRepairers', '49-9060': 'PrecisionInstrumentEquipmentRepairers', '49-9061': 'CameraPhotographicEquipmentRepairers', '49-9062': 'MedicalEquipmentRepairers', '49-9063': 'MusicalInstrumentRepairersTuners', '49-9064': 'WatchClockRepairers', '49-9069': 'PrecisionInstrumentEquipmentRepairersAllOther', '49-9070': 'MaintenanceRepairWorkersGeneral', '49-9071': 'MaintenanceRepairWorkersGeneral', '49-9080': 'WindTurbineServiceTechnicians', '49-9081': 'WindTurbineServiceTechnicians', '49-9090': 'MiscellaneousInstallationMaintenanceRepairWorkers', '49-9091': 'CoinVendingAmusementMachineServicersRepairers', '49-9092': 'CommercialDivers', '49-9094': 'LocksmithsSafeRepairers', '49-9095': 'ManufacturedBuildingMobileHomeInstallers', '49-9096': 'Riggers', '49-9097': 'SignalTrackSwitchRepairers', '49-9098': 'HelpersInstallationMaintenanceRepairWorkers', '49-9099': 'InstallationMaintenanceRepairWorkersAllOther', '51-0000': 'Production', '51-1000': 'SupervisorsOfProductionWorkers', '51-1010': 'FirstLineSupervisorsOfProductionOperatingWorkers', '51-1011': 'FirstLineSupervisorsOfProductionOperatingWorkers', '51-2000': 'AssemblersFabricators', '51-2010': 'AircraftStructureSurfacesRiggingSystemsAssemblers', '51-2011': 'AircraftStructureSurfacesRiggingSystemsAssemblers', '51-2020': 'ElectricalElectronicsElectromechanicalAssemblers', '51-2021': 'CoilWindersTapersFinishers', '51-2022': 'ElectricalElectronicEquipmentAssemblers', '51-2023': 'ElectromechanicalEquipmentAssemblers', '51-2030': 'EngineOtherMachineAssemblers', '51-2031': 'EngineOtherMachineAssemblers', '51-2040': 'StructuralMetalFabricatorsFitters', '51-2041': 'StructuralMetalFabricatorsFitters', '51-2050': 'FiberglassLaminatorsFabricators', '51-2051': 'FiberglassLaminatorsFabricators', '51-2060': 'TimingDeviceAssemblersAdjusters', '51-2061': 'TimingDeviceAssemblersAdjusters', '51-2090': 'MiscellaneousAssemblersFabricators', '51-2092': 'TeamAssemblers', '51-2099': 'AssemblersFabricatorsAllOther', '51-3000': 'FoodProcessingWorkers', '51-3010': 'Bakers', '51-3011': 'Bakers', '51-3020': 'ButchersOtherMeatPoultryFishProcessingWorkers', '51-3021': 'ButchersMeatCutters', '51-3022': 'MeatPoultryFishCuttersTrimmers', '51-3023': 'SlaughterersMeatPackers', '51-3090': 'MiscellaneousFoodProcessingWorkers', '51-3091': 'FoodTobaccoRoastingBakingDryingMachineOperatorsTenders', '51-3092': 'FoodBatchmakers', '51-3093': 'FoodCookingMachineOperatorsTenders', '51-3099': 'FoodProcessingWorkersAllOther', '51-4000': 'MetalWorkersPlasticWorkers', '51-4020': 'FormingMachineSettersOperatorsTendersMetalPlastic', '51-4021': 'ExtrudingDrawingMachineSettersOperatorsTendersMetalPlastic', '51-4022': 'ForgingMachineSettersOperatorsTendersMetalPlastic', '51-4023': 'RollingMachineSettersOperatorsTendersMetalPlastic', '51-4030': 'MachineToolCuttingSettersOperatorsTendersMetalPlastic', '51-4031': 'CuttingPunchingPressMachineSettersOperatorsTendersMetalPlastic', '51-4032': 'DrillingBoringMachineToolSettersOperatorsTendersMetalPlastic', '51-4033': 'GrindingLappingPolishingBuffingMachineToolSettersOperatorsTendersMetalPlastic', '51-4034': 'LatheTurningMachineToolSettersOperatorsTendersMetalPlastic', '51-4035': 'MillingPlaningMachineSettersOperatorsTendersMetalPlastic', '51-4040': 'Machinists', '51-4041': 'Machinists', '51-4050': 'MetalFurnaceOperatorsTendersPourersCasters', '51-4051': 'MetalRefiningFurnaceOperatorsTenders', '51-4052': 'PourersCastersMetal', '51-4060': 'ModelMakersPatternmakersMetalPlastic', '51-4061': 'ModelMakersMetalPlastic', '51-4062': 'PatternmakersMetalPlastic', '51-4070': 'MoldersMoldingMachineSettersOperatorsTendersMetalPlastic', '51-4071': 'FoundryMoldCoremakers', '51-4072': 'MoldingCoremakingCastingMachineSettersOperatorsTendersMetalPlastic', '51-4080': 'MultipleMachineToolSettersOperatorsTendersMetalPlastic', '51-4081': 'MultipleMachineToolSettersOperatorsTendersMetalPlastic', '51-4110': 'ToolDieMakers', '51-4111': 'ToolDieMakers', '51-4120': 'WeldingSolderingBrazingWorkers', '51-4121': 'WeldersCuttersSolderersBrazers', '51-4122': 'WeldingSolderingBrazingMachineSettersOperatorsTenders', '51-4190': 'MiscellaneousMetalWorkersPlasticWorkers', '51-4191': 'HeatTreatingEquipmentSettersOperatorsTendersMetalPlastic', '51-4192': 'LayoutWorkersMetalPlastic', '51-4193': 'PlatingMachineSettersOperatorsTendersMetalPlastic', '51-4194': 'ToolGrindersFilersSharpeners', '51-4199': 'MetalWorkersPlasticWorkersAllOther', '51-5100': 'PrintingWorkers', '51-5110': 'PrintingWorkers', '51-5111': 'PrepressTechniciansWorkers', '51-5112': 'PrintingPressOperators', '51-5113': 'PrintBindingFinishingWorkers', '51-6000': 'TextileApparelFurnishingsWorkers', '51-6010': 'LaundryDryCleaningWorkers', '51-6011': 'LaundryDryCleaningWorkers', '51-6020': 'PressersTextileGarmentRelatedMaterials', '51-6021': 'PressersTextileGarmentRelatedMaterials', '51-6030': 'SewingMachineOperators', '51-6031': 'SewingMachineOperators', '51-6040': 'ShoeLeatherWorkers', '51-6041': 'ShoeLeatherWorkersRepairers', '51-6042': 'ShoeMachineOperatorsTenders', '51-6050': 'TailorsDressmakersSewers', '51-6051': 'SewersHand', '51-6052': 'TailorsDressmakersCustomSewers', '51-6060': 'TextileMachineSettersOperatorsTenders', '51-6061': 'TextileBleachingDyeingMachineOperatorsTenders', '51-6062': 'TextileCuttingMachineSettersOperatorsTenders', '51-6063': 'TextileKnittingWeavingMachineSettersOperatorsTenders', '51-6064': 'TextileWindingTwistingDrawingOutMachineSettersOperatorsTenders', '51-6090': 'MiscellaneousTextileApparelFurnishingsWorkers', '51-6091': 'ExtrudingFormingMachineSettersOperatorsTendersSyntheticGlassFibers', '51-6092': 'FabricApparelPatternmakers', '51-6093': 'Upholsterers', '51-6099': 'TextileApparelFurnishingsWorkersAllOther', '51-7000': 'Woodworkers', '51-7010': 'CabinetmakersBenchCarpenters', '51-7011': 'CabinetmakersBenchCarpenters', '51-7020': 'FurnitureFinishers', '51-7021': 'FurnitureFinishers', '51-7030': 'ModelMakersPatternmakersWood', '51-7031': 'ModelMakersWood', '51-7032': 'PatternmakersWood', '51-7040': 'WoodworkingMachineSettersOperatorsTenders', '51-7041': 'SawingMachineSettersOperatorsTendersWood', '51-7042': 'WoodworkingMachineSettersOperatorsTendersExceptSawing', '51-7090': 'MiscellaneousWoodworkers', '51-7099': 'WoodworkersAllOther', '51-8000': 'PlantSystemOperators', '51-8010': 'PowerPlantOperatorsDistributorsDispatchers', '51-8011': 'NuclearPowerReactorOperators', '51-8012': 'PowerDistributorsDispatchers', '51-8013': 'PowerPlantOperators', '51-8020': 'StationaryEngineersBoilerOperators', '51-8021': 'StationaryEngineersBoilerOperators', '51-8030': 'WaterWastewaterTreatmentPlantSystemOperators', '51-8031': 'WaterWastewaterTreatmentPlantSystemOperators', '51-8090': 'MiscellaneousPlantSystemOperators', '51-8091': 'ChemicalPlantSystemOperators', '51-8092': 'GasPlantOperators', '51-8093': 'PetroleumPumpSystemOperatorsRefineryOperatorsGaugers', '51-8099': 'PlantSystemOperatorsAllOther', '51-9000': 'OtherProduction', '51-9010': 'ChemicalProcessingMachineSettersOperatorsTenders', '51-9011': 'ChemicalEquipmentOperatorsTenders', '51-9012': 'SeparatingFilteringClarifyingPrecipitatingStillMachineSettersOperatorsTenders', '51-9020': 'CrushingGrindingPolishingMixingBlendingWorkers', '51-9021': 'CrushingGrindingPolishingMachineSettersOperatorsTenders', '51-9022': 'GrindingPolishingWorkersHand', '51-9023': 'MixingBlendingMachineSettersOperatorsTenders', '51-9030': 'CuttingWorkers', '51-9031': 'CuttersTrimmersHand', '51-9032': 'CuttingSlicingMachineSettersOperatorsTenders', '51-9040': 'ExtrudingFormingPressingCompactingMachineSettersOperatorsTenders', '51-9041': 'ExtrudingFormingPressingCompactingMachineSettersOperatorsTenders', '51-9050': 'FurnaceKilnOvenDrierKettleOperatorsTenders', '51-9051': 'FurnaceKilnOvenDrierKettleOperatorsTenders', '51-9060': 'InspectorsTestersSortersSamplersWeighers', '51-9061': 'InspectorsTestersSortersSamplersWeighers', '51-9070': 'JewelersPreciousStoneMetalWorkers', '51-9071': 'JewelersPreciousStoneMetalWorkers', '51-9080': 'DentalOphthalmicLaboratoryTechniciansMedicalApplianceTechnicians', '51-9081': 'DentalLaboratoryTechnicians', '51-9082': 'MedicalApplianceTechnicians', '51-9083': 'OphthalmicLaboratoryTechnicians', '51-9110': 'PackagingFillingMachineOperatorsTenders', '51-9111': 'PackagingFillingMachineOperatorsTenders', '51-9120': 'PaintingWorkers', '51-9123': 'PaintingCoatingDecoratingWorkers', '51-9124': 'CoatingPaintingSprayingMachineSettersOperatorsTenders', '51-9140': 'SemiconductorProcessingTechnicians', '51-9141': 'SemiconductorProcessingTechnicians', '51-9150': 'PhotographicProcessWorkersProcessingMachineOperators', '51-9151': 'PhotographicProcessWorkersProcessingMachineOperators', '51-9160': 'ComputerNumericallyControlledToolOperatorsProgrammers', '51-9161': 'ComputerNumericallyControlledToolOperators', '51-9162': 'ComputerNumericallyControlledToolProgrammers', '51-9190': 'MiscellaneousProductionWorkers', '51-9191': 'AdhesiveBondingMachineOperatorsTenders', '51-9192': 'CleaningWashingMetalPicklingEquipmentOperatorsTenders', '51-9193': 'CoolingFreezingEquipmentOperatorsTenders', '51-9194': 'EtchersEngravers', '51-9195': 'MoldersShapersCastersExceptMetalPlastic', '51-9196': 'PaperGoodsMachineSettersOperatorsTenders', '51-9197': 'TireBuilders', '51-9198': 'HelpersProductionWorkers', '51-9199': 'ProductionWorkersAllOther', '53-0000': 'TransportationMaterialMoving', '53-1000': 'SupervisorsOfTransportationMaterialMovingWorkers', '53-1040': 'FirstLineSupervisorsOfTransportationMaterialMovingWorkers', '53-1041': 'AircraftCargoHandlingSupervisors', '53-1042': 'FirstLineSupervisorsOfHelpersLaborersMaterialMoversHand', '53-1043': 'FirstLineSupervisorsOfMaterialMovingMachineVehicleOperators', '53-1044': 'FirstLineSupervisorsOfPassengerAttendants', '53-1049': 'FirstLineSupervisorsOfTransportationWorkersAllOther', '53-2000': 'AirTransportationWorkers', '53-2010': 'AircraftPilotsFlightEngineers', '53-2011': 'AirlinePilotsCopilotsFlightEngineers', '53-2012': 'CommercialPilots', '53-2020': 'AirTrafficControllersAirfieldOperationsSpecialists', '53-2021': 'AirTrafficControllers', '53-2022': 'AirfieldOperationsSpecialists', '53-2030': 'FlightAttendants', '53-2031': 'FlightAttendants', '53-3000': 'MotorVehicleOperators', '53-3010': 'AmbulanceDriversAttendantsExceptEmergencyMedicalTechnicians', '53-3011': 'AmbulanceDriversAttendantsExceptEmergencyMedicalTechnicians', '53-3030': 'DriverSalesWorkersTruckDrivers', '53-3031': 'DriverSalesWorkers', '53-3032': 'HeavyTractorTrailerTruckDrivers', '53-3033': 'LightTruckDrivers', '53-3050': 'PassengerVehicleDrivers', '53-3051': 'BusDriversSchool', '53-3052': 'BusDriversTransitIntercity', '53-3053': 'ShuttleDriversChauffeurs', '53-3054': 'TaxiDrivers', '53-3090': 'MiscellaneousMotorVehicleOperators', '53-3099': 'MotorVehicleOperatorsAllOther', '53-4000': 'RailTransportationWorkers', '53-4010': 'LocomotiveEngineersOperators', '53-4011': 'LocomotiveEngineers', '53-4013': 'RailYardEngineersDinkeyOperatorsHostlers', '53-4020': 'RailroadBrakeSignalSwitchOperatorsLocomotiveFirers', '53-4022': 'RailroadBrakeSignalSwitchOperatorsLocomotiveFirers', '53-4030': 'RailroadConductorsYardmasters', '53-4031': 'RailroadConductorsYardmasters', '53-4040': 'SubwayStreetcarOperators', '53-4041': 'SubwayStreetcarOperators', '53-4090': 'MiscellaneousRailTransportationWorkers', '53-4099': 'RailTransportationWorkersAllOther', '53-5000': 'WaterTransportationWorkers', '53-5010': 'SailorsMarineOilers', '53-5011': 'SailorsMarineOilers', '53-5020': 'ShipBoatCaptainsOperators', '53-5021': 'CaptainsMatesPilotsOfWaterVessels', '53-5022': 'MotorboatOperators', '53-5030': 'ShipEngineers', '53-5031': 'ShipEngineers', '53-6000': 'OtherTransportationWorkers', '53-6010': 'BridgeLockTenders', '53-6011': 'BridgeLockTenders', '53-6020': 'ParkingAttendants', '53-6021': 'ParkingAttendants', '53-6030': 'TransportationServiceAttendants', '53-6031': 'AutomotiveWatercraftServiceAttendants', '53-6032': 'AircraftServiceAttendants', '53-6040': 'TrafficTechnicians', '53-6041': 'TrafficTechnicians', '53-6050': 'TransportationInspectors', '53-6051': 'TransportationInspectors', '53-6060': 'PassengerAttendants', '53-6061': 'PassengerAttendants', '53-6090': 'MiscellaneousTransportationWorkers', '53-6099': 'TransportationWorkersAllOther', '53-7000': 'MaterialMovingWorkers', '53-7010': 'ConveyorOperatorsTenders', '53-7011': 'ConveyorOperatorsTenders', '53-7020': 'CraneTowerOperators', '53-7021': 'CraneTowerOperators', '53-7030': 'DredgeOperators', '53-7031': 'DredgeOperators', '53-7040': 'HoistWinchOperators', '53-7041': 'HoistWinchOperators', '53-7050': 'IndustrialTruckTractorOperators', '53-7051': 'IndustrialTruckTractorOperators', '53-7060': 'LaborersMaterialMovers', '53-7061': 'CleanersOfVehiclesEquipment', '53-7062': 'LaborersFreightStockMaterialMoversHand', '53-7063': 'MachineFeedersOffbearers', '53-7064': 'PackersPackagersHand', '53-7065': 'StockersOrderFillers', '53-7070': 'PumpingStationOperators', '53-7071': 'GasCompressorGasPumpingStationOperators', '53-7072': 'PumpOperatorsExceptWellheadPumpers', '53-7073': 'WellheadPumpers', '53-7080': 'RefuseRecyclableMaterialCollectors', '53-7081': 'RefuseRecyclableMaterialCollectors', '53-7120': 'TankCarTruckShipLoaders', '53-7121': 'TankCarTruckShipLoaders', '53-7190': 'MiscellaneousMaterialMovingWorkers', '53-7199': 'MaterialMovingWorkersAllOther', '55-0000': 'MilitarySpecific', '55-1000': 'MilitaryOfficerSpecialTacticalOperationsLeaders', '55-1010': 'MilitaryOfficerSpecialTacticalOperationsLeaders', '55-1011': 'AirCrewOfficers', '55-1012': 'AircraftLaunchRecoveryOfficers', '55-1013': 'ArmoredAssaultVehicleOfficers', '55-1014': 'ArtilleryMissileOfficers', '55-1015': 'CommandControlCenterOfficers', '55-1016': 'InfantryOfficers', '55-1017': 'SpecialForcesOfficers', '55-1019': 'MilitaryOfficerSpecialTacticalOperationsLeadersAllOther', '55-2000': 'FirstLineEnlistedMilitarySupervisors', '55-2010': 'FirstLineEnlistedMilitarySupervisors', '55-2011': 'FirstLineSupervisorsOfAirCrewMembers', '55-2012': 'FirstLineSupervisorsOfWeaponsSpecialistsCrewMembers', '55-2013': 'FirstLineSupervisorsOfAllOtherTacticalOperationsSpecialists', '55-3000': 'MilitaryEnlistedTacticalOperationsAirWeaponsSpecialistsCrewMembers', '55-3010': 'MilitaryEnlistedTacticalOperationsAirWeaponsSpecialistsCrewMembers', '55-3011': 'AirCrewMembers', '55-3012': 'AircraftLaunchRecoverySpecialists', '55-3013': 'ArmoredAssaultVehicleCrewMembers', '55-3014': 'ArtilleryMissileCrewMembers', '55-3015': 'CommandControlCenterSpecialists', '55-3016': 'Infantry', '55-3018': 'SpecialForces', '55-3019': 'MilitaryEnlistedTacticalOperationsAirWeaponsSpecialistsCrewMembersAllOther', 'intermediateAggregation-1': 'ManagementBusinessFinancial', 'intermediateAggregation-2': 'ComputerEngineeringScience', 'intermediateAggregation-3': 'EducationLegalCommunityServiceArtsMedia', 'intermediateAggregation-4': 'HealthcarePractitionersTechnical', 'intermediateAggregation-5': 'Service', 'intermediateAggregation-6': 'SalesRelated', 'intermediateAggregation-9': 'ConstructionExtraction', 'intermediateAggregation-10': 'InstallationMaintenanceRepair', 'intermediateAggregation-11': 'Production', 'intermediateAggregation-12': 'TransportationMaterialMoving', 'highLevelAggregation-1': 'ManagementBusinessScienceArts', 'highLevelAggregation-2': 'Service', 'highLevelAggregation-3': 'SalesOffice', 'highLevelAggregation-4': 'NaturalResourcesConstructionMaintenance', 'highLevelAggregation-5': 'ProductionTransportationMaterialMoving', 'highLevelAggregation-6': 'MilitarySpecific' } if __name__ == "__main__": print(_create_soc_codes_map())
from django.db import models from django.shortcuts import reverse from django.utils.text import slugify class Discussion(models.Model): slug = models.SlugField(max_length=80, unique=True, blank=True) name = models.CharField(max_length=60, unique=True, blank=True) description = models.TextField(blank=True) def __str__(self): return self.name def get_absolute_url(self): return reverse("discussions:details", kwargs={"slug": self.slug}) def post_topic_url(self): return reverse("discussions:new-topic", kwargs={"slug": self.slug}) def get_topics(self): return self.topics.filter(discussion=self) def save(self, *args, **kwargs): self.slug = slugify(self.name) super().save(*args, **kwargs) class Meta: verbose_name = 'discussion' verbose_name_plural = 'discussions'
word_list = ["""a-cxl""", """a-delta""", """a-i""", """a1-""", """a1c""", """a2-marker""", """a20""", """aap""", """aapcc""", """aarhus""", """aarss""", """aavg""", """aavgs""", """ab-secreting""", """ab023""", """aba""", """abandoned""", """abbott""", """abc""", """abdomen""", """abdomenwere""", """abdominal""", """abdominis""", """abducens""", """abduction""", """abductive""", """abductors""", """abemaciclib""", """aberrant""", """aberrantly""", """aberrations""", """abetted""", """abilities""", """ability""", """abiraterone""", """ablation""", """ablative""", """able""", """abmr""", """abnormal""", """abnormalities""", """abnormality""", """abnormally""", """abo""", """abo-incompatible""", """abobont-a""", """abobotulinumtoxina""", """abondance""", """abortion""", """abortive""", """about""", """above""", """abp""", """abroad""", """abrogate""", """abrogated""", """abruption""", """abscess""", """abscesses""", """abscisic""", """absence""", """absent""", """absenteeism""", """absolute""", """absorb""", """absorbance""", """absorbed""", """absorptiometry""", """absorption""", """abstinence""", """abstinence-induced""", """abstract""", """abstracted""", """abstracts""", """abundance""", """abundances""", """abundant""", """abundant-2""", """abundantly""", """abuse""", """abuse-induced""", """abused""", """abutting""", """abx""", """ac-motif""", """ac-motifcdkl3""", """ac-motifs""", """aca""", """aca-positive""", """academic""", """academics""", """academy""", """acalabrutinib""", """acalabrutinib-treated""", """acamprosate""", """acanthosis""", """acariasis""", """acas""", """acbt""", """accelerate""", """accelerated""", """accelerates""", """accelerating""", """acceleration""", """accelerations""", """accelerometry""", """accent""", """accents""", """accentuate""", """accept""", """acceptability""", """acceptable""", """acceptance""", """accepted""", """acceptor""", """acceptors""", """access""", """accessed""", """accessibility""", """accessible""", """accessing""", """accessory""", """accident""", """accidental""", """accidentally""", """accidents""", """acclimation""", """accommodate""", """accompanied""", """accompany""", """accompanying""", """accomplished""", """accordance""", """according""", """accordingly""", """account""", """accountability""", """accounted""", """accounting""", """accounts""", """accreditation""", """accreted""", """accrued""", """accruement""", """accumulated""", """accumulating""", """accumulation""", """accumulations""", """accuracies""", """accuracy""", """accurate""", """accurately""", """ace""", """ace-i""", """aceis""", """acetabular""", """acetabuloplasty""", """acetaminophen""", """acetate""", """acetic""", """acetone""", """acetonide""", """acetonitrile""", """acetylation""", """acetylcholine""", """acetylcholinesterase""", """ach""", """achalasia""", """ache""", """aches""", """achievable""", """achieve""", """achieved""", """achievement""", """achievements""", """achieves""", """achieving""", """achilles""", """acid""", """acid-binding""", """acid-copolymerized""", """acid-ethyl""", """acid-induced""", """acidic""", """acidosis""", """acids""", """acinar""", """acinetobacter""", """acknowledge""", """acknowledgement""", """acknowledgements""", """acknowledging""", """acl""", """acne""", """acompanhamento""", """acordo""", """acoustic""", """acoustic-phonetic""", """acq""", """acquired""", """acquirers""", """acquiring""", """acquisition""", """acquisitions""", """acr""", """acral""", """acromegaly""", """across""", """acrylate""", """acs""", """act""", """acted""", """acth""", """acth-independent""", """actigraphy""", """actin""", """acting""", """actinomycetemcomitans""", """action""", """actionable""", """actions""", """activate""", """activated""", """activates""", """activating""", """activation""", """activation-induced""", """activator""", """activators""", """active""", """actively""", """activin""", """activin-like""", """activists""", """activities""", """activity""", """activity-based""", """activity-sensing""", """actomyosin""", """actors""", """acts""", """actual""", """actually""", """actuarial""", """actuation""", """acuity""", """acupressure""", """acupuncture""", """acuseal""", """acute""", """acute-on-chronic""", """acute-onset""", """acutely""", """acyclicity""", """acyclovir""", """adalimumab""", """adamopoulos""", """adamts13""", """adapt""", """adaptability""", """adaptation""", """adaptations""", """adapted""", """adapting""", """adaption""", """adaptive""", """adaptor""", """add""", """add-on""", """added""", """addiction""", """addiction-based""", """addictive-like""", """adding""", """addition""", """additional""", """additionally""", """additive""", """address""", """addressed""", """addresses""", """addressing""", """adds""", """adduction""", """adductor""", """adductors""", """adenine""", """adenine-cytosine""", """adenocarcinoma""", """adenocarcinomas""", """adenoma""", """adenomas""", """adenosine""", """adenotonsillectomy""", """adenoviral""", """adequacy""", """adequate""", """adequately""", """adhere""", """adherence""", """adherent""", """adhesin""", """adhesion""", """adhesion-1""", """adhesions""", """adhesive""", """adipocytes""", """adipocytokine""", """adipokine""", """adipokines""", """adipose""", """adiposity""", """adj""", """adjacent""", """adjunct""", """adjunctive""", """adjuncts""", """adjust""", """adjustable""", """adjusted""", """adjusting""", """adjustment""", """adjustments""", """adjuvant""", """adl""", """adme""", """administered""", """administrated""", """administration""", """administrative""", """administratively""", """administrators""", """admission""", """admissions""", """admittance""", """admitted""", """admixture""", """adnex""", """adnexa""", """adnexal""", """adnexectomy""", """adolescence""", """adolescent""", """adolescents""", """adopt""", """adopted""", """adopting""", """adoption""", """adoptive""", """adoptively""", """adopts""", """adotado""", """adp-ribose""", """adr""", """adrenal""", """adrenergic""", """adrenocortical""", """adrenocorticotropic""", """adsd""", """adsms""", """adt""", """adult""", """adult-equivalent""", """adult-use""", """adulthood""", """adults""", """advance""", """advanced""", """advanced-level""", """advanced-stage""", """advancement""", """advancements""", """advances""", """advancing""", """advantage""", """advantageous""", """advantages""", """advent""", """advents""", """adverse""", """adversely""", """adversos""", """advertising""", """advice""", """advices""", """advisable""", """advised""", """advisory""", """advocacy""", """advocate""", """advocated""", """advocates""", """aer""", """aer2""", """aerial""", """aerobic""", """aerodynamic""", """aerogel""", """aerosol""", """aerosol-generating""", """aerosolised""", """aerosolization""", """aers""", """aeruginosa""", """aesthetic""", """aestivation""", """aestivum""", """aetiology""", """af10""", """af9""", """afa-pd""", """afectado""", """affairs""", """affect""", """affected""", """affecting""", """affection""", """affective""", """affects""", """afferent""", """afferents""", """affiliation""", """affinities""", """affinity""", """affirm""", """affirms""", """afflicting""", """afflicts""", """affordability""", """affordable""", """affords""", """afin""", """aforementioned""", """africa""", """african""", """afrique""", """afro-eurasian""", """after""", """afternoon""", """aftns""", """ag1478""", """again""", """against""", """agar""", """age""", """age-""", """age-appropriate""", """age-associated""", """age-compatible""", """age-dependent""", """age-gender""", """age-group""", """age-matched""", """age-period-cohort""", """age-proportional""", """age-related""", """age-specific""", """age-standardised""", """age-standardization""", """age-tailored""", """aged""", """ageing""", """agencies""", """agency""", """agenesis""", """agent""", """agent-based""", """agents""", """ages""", """aggca""", """aggravating""", """aggregate""", """aggregates""", """aggregatibacter""", """aggregation""", """aggregation-prone""", """aggregations""", """aggressive""", """aggressiveness""", """aghd""", """agility""", """aging""", """agitation""", """ago""", """agonism""", """agonist""", """agonistas""", """agonistic""", """agonists""", """agranular""", """agree""", """agreed""", """agreement""", """agricultural""", """agriculturally""", """agriculture""", """agroforestry""", """agrostemma""", """agudeza""", """agudo""", """ahead""", """ahf""", """ahi""", """ahn""", """ahnak""", """ahr""", """ahvaz""", """ai-assisted""", """ai-navigation""", """aicar""", """aichi""", """aid""", """aide-memoir""", """aided""", """aids""", """aim""", """aimed""", """aiming""", """aims""", """ainsi""", """air""", """airborne""", """aircraft""", """aires""", """airflow""", """airport""", """airway""", """airways""", """ais""", """aisselles""", """aiv""", """ajcc7""", """ajcc8""", """ajuda""", """aki""", """akin""", """akt""", """alabama""", """alanine""", """alanyl-trna""", """alarming""", """alars""", """alaryngeal""", """alaska""", """alb""", """alba""", """albeit""", """alberta""", """alborz""", """albumin""", """albuminuria""", """alc-depleted""", """alcohol""", """alcohol-related""", """alcohol-use""", """alcoholic""", """alcs""", """aldosterone""", """aldosterone-induced""", """aldosterone-infused""", """aldosterone-producing""", """aldosteronism""", """aleatorizados""", """alert""", """alf""", """alfa-2""", """alga""", """algae""", """algometer""", """algorithm""", """algorithms""", """alguns""", """align""", """aligned""", """alignment""", """alignments""", """aligns""", """alike""", """alive""", """alk""", """alkali""", """alkaline""", """alkaloids""", """alkenes""", """alkyl""", """alkylating""", """alkylator""", """alkylbenzenes""", """all""", """all-cause""", """all-day""", """all-inclusive""", """all-optical""", """allegations""", """alleged""", """allele""", """allele-specific""", """alleles""", """allergen""", """allergenic""", """allergens""", """allergic""", """allergists""", """allergy""", """alleviate""", """alleviates""", """alleviating""", """alleviation""", """alliance""", """allied""", """allo-hct""", """allo-hsct""", """alloantigen""", """allocate""", """allocated""", """allocation""", """allocative""", """allodynia""", """allogeneic""", """allogenic""", """allograft""", """allografts""", """allopurinol""", """alloreactive""", """allosct""", """allosteric""", """allow""", """allowed""", """allowing""", """allows""", """alloys""", """alma""", """almost""", """alone""", """along""", """alongside""", """alopecia""", """alpha""", """alpha-helix""", """alpha-linolenic""", """alpha-myosin""", """alpha-particle""", """already""", """also""", """alt""", """alter""", """alteration""", """alterations""", """altered""", """altering""", """alternaria""", """alternata""", """alternate""", """alternating""", """alternations""", """alternative""", """alternative-release""", """alternatives""", """alters""", """although""", """altitude""", """altmetric""", """altogether""", """altos""", """alum""", """aluminum""", """alveolar""", """alveolus""", """always""", """alzheimer""", """ama""", """amalgam""", """amara""", """ambient""", """ambos""", """ambulation""", """ambulators""", """ambulatory""", """amd""", """amed""", """ameliorated""", """ameliorates""", """amenable""", """amendable""", """amenorrhea""", """amenorrhoea""", """america""", """american""", """americans""", """amh""", """amharic""", """ami""", """amidation""", """amines""", """amino""", """aminoacyl-trna""", """aminomethane""", """aminophylline""", """aminotransferase""", """amitriptyline""", """aml""", """aml1-eto""", """aml1-eto-p300""", """amls""", """ammonia""", """ammonium""", """amniotomy""", """amo""", """amoebicidal""", """among""", """amongst""", """amorphous""", """amorphous-crystalline""", """amortized""", """amount""", """amounting""", """amounts""", """amphetamine""", """amphetamine-involved""", """amphetamines""", """amphibia""", """amphibian""", """amphibians""", """amphisbaenians""", """ampk""", """ampk-mediated""", """ample""", """amplicon""", """amplification""", """amplifications""", """amplitude""", """amplitudes""", """ampulloma""", """amputation""", """amygdala""", """amygdala-pfc""", """amyloid""", """amyloidogenic""", """amyloidosis""", """amyotrophic""", """anaemia""", """anaerobes""", """anaerobic""", """anaesthesia""", """anaesthesiologist""", """anaesthetic""", """anaesthetist""", """anaesthetized""", """anal""", """analgesia""", """analgesic""", """analgesics""", """analisadas""", """analog""", """analog-to-digital""", """analogic""", """analogue""", """analyse""", """analysed""", """analyses""", """analysing""", """analysis""", """analytes""", """analytic""", """analytical""", """analytically""", """analyze""", """analyzed""", """analyzer""", """analyzes""", """analyzing""", """anamnesis""", """anamnestic""", """anaphylaxis""", """anaphylaxis-related""", """anaplastic""", """anastomoses""", """anastomosing""", """anastomosis""", """anastomotic""", """anatomic""", """anatomical""", """anatomically""", """anatomically-accurate""", """anatomy""", """anbessa""", """anc""", """ancestor""", """ancestral""", """ancestry""", """anchor-based""", """anchoring""", """ancient""", """ancillary""", """and""", """anderson-sekhon""", """andrew""", """androgen""", """androgen-driven""", """androgenic""", """androgenization""", """androgens""", """androstenedione""", """anecdotal""", """anemia""", """anemogenic""", """anesthesia""", """anesthesiologists""", """anesthetic""", """anesthetics""", """aneuploidy""", """aneurysm""", """aneurysms""", """angelman""", """angina""", """angiogenesis""", """angiogenesis-""", """angiogenesis-related""", """angiogenic""", """angiogram""", """angiograms""", """angiographic""", """angiography""", """angiotensin""", """angiotensin-converting""", """angle""", """angle-measurement""", """angles""", """angular""", """angulated""", """angulation""", """angustirostris""", """anhedonia""", """anhedonia-like""", """ani""", """animal""", """animal-human""", """animalis""", """animals""", """animation""", """anion""", """anions""", """anisotropy""", """ankle""", """ankylosing""", """anne""", """anneal""", """annealed""", """annealing""", """annexin""", """annihilation""", """annotate""", """annotated""", """annotating""", """annotation""", """annotations""", """annotators""", """annual""", """annualized""", """annually""", """annular""", """annuum""", """ano""", """anolis""", """anomalies""", """anomaly""", """anonymous""", """anorexia""", """anos""", """another""", """anova""", """anovulation""", """anoxic""", """ansd""", """answer""", """answered""", """answers""", """antagonistically""", """antagonists""", """anteater""", """antegrade""", """antemortem-postmortem""", """antenatal""", """antepartum""", """anterior""", """anterior-posterior""", """anteversion""", """anthesis""", """anthracycline""", """anthracyclines""", """anthropogenic""", """anthropogenic-exclusive""", """anthropometric""", """anthropometrics""", """anthropometry""", """anti-a""", """anti-a1""", """anti-a2""", """anti-apoptosis""", """anti-apoptotic""", """anti-b""", """anti-bp180""", """anti-bp230""", """anti-citrullinated""", """anti-cll""", """anti-desmoglein""", """anti-ganglioside""", """anti-hbs""", """anti-hipertensivos""", """anti-hypertensives""", """anti-il-17""", """anti-inflammatory""", """anti-leukaemia""", """anti-lipogenic""", """anti-migraine""", """anti-mrsa""", """anti-obesity""", """anti-oxidant""", """anti-pd-1""", """anti-pd1""", """anti-polymerase""", """anti-prion""", """anti-rdrp""", """anti-thrombotics""", """anti-tumor""", """anti-vista""", """antiangiogenesis""", """antiarrhythmics""", """antibiotic""", """antibiotics""", """antibodies""", """antibody""", """antibody-dependent""", """antibody-mediated""", """anticancer""", """anticentromere""", """anticholinergic""", """anticholinesterase""", """anticipate""", """anticipated""", """anticipation""", """anticoagulants""", """anticoagulation""", """anticodons""", """antidepressant""", """antidepressants""", """antidotal""", """antiepileptic""", """antiepileptics""", """antifibrinolytic""", """antifungal""", """antigen""", """antigen-specific""", """antigenic""", """antigens""", """antiinflammatory""", """antileukemia""", """antimalarial""", """antimalarials""", """antimicrobial""", """antioxidant""", """antioxidants""", """antioxidation""", """antioxidative""", """antiphase""", """antiphospholipid""", """antiplatelet""", """antiplatelets""", """antiretroviral""", """antirheumatic""", """antisense""", """antiseptics""", """antitachycardia""", """antithrombotic""", """antithyroid""", """antitissue""", """antitumor""", """antitumoral""", """antiulcerative""", """antiviral""", """antral""", """ants""", """anura""", """anxiety""", """anxious""", """any""", """anyone""", """anyway""", """anywhere""", """aod""", """aor""", """aorta""", """aortic""", """ap2""", """apa""", """apache""", """apart""", """apathy""", """apc""", """apc-driven""", """apenas""", """aperiodicity""", """apes""", """apgar""", """apheresis""", """api""", """apis""", """apnea""", """apnea-hypopnea""", """apnoea""", """apoa-i""", """apob""", """apoe""", """apoplexy""", """apoptosis""", """apoptosis-inducing""", """apoptotic""", """apostichopus""", """app""", """appalachian""", """apparatus""", """apparent""", """apparently""", """apparition""", """appealing""", """appear""", """appearance""", """appearances""", """appeared""", """appearing""", """appears""", """appendectomy""", """appendicitis""", """appendix""", """applanation""", """apple""", """applicability""", """applicable""", """applicant""", """applicants""", """application""", """applications""", """applied""", """applies""", """apply""", """applying""", """appointment""", """appointments""", """appraise""", """appraised""", """appraising""", """appreciated""", """approach""", """approach-were""", """approached""", """approaches""", """approaching""", """appropriate""", """appropriately""", """appropriateness""", """approval""", """approvals""", """approved""", """approving""", """approximate""", """approximated""", """approximately""", """approximation""", """apr""", """apr1""", """apr4""", """apremilast""", """apresentou-se""", """april""", """april-december""", """apriori""", """aprs""", """aps""", """aps-related""", """aqlq""", """aqp""", """aqp1""", """aquaculture""", """aquaporin""", """aquatic""", """aqueles""", """aqueous""", """arab""", """arabic""", """arabica""", """arabidopsis""", """arachidonic""", """arachnoid""", """araf""", """arb""", """arbitrating""", """arbs""", """arc""", """arc-520""", """arch""", """archaea""", """archaeon""", """arches""", """architect""", """architectural""", """architecture""", """architectures""", """arctocephalus""", """arcus""", """ards""", """are""", """area""", """area-level""", """areas""", """areds""", """arena""", """arenas""", """arginine""", """argonautes""", """arguably""", """argue""", """argued""", """arguing""", """argyle""", """ari""", """aric""", """arid1a""", """arid5a""", """arid5a-deficient""", """arise""", """arises""", """arising""", """arksey""", """arm""", """armadillo""", """armamentarium""", """arms""", """army""", """arni""", """arnr""", """around""", """arousal""", """aroused""", """arq""", """arr""", """arrange""", """arrangement""", """arranging""", """array""", """arrays""", """arrest""", """arrested""", """arrests""", """arrhythmia""", """arrhythmias""", """arrival""", """arrived""", """arrythmia""", """arsenal""", """arsenite""", """art""", """arterial""", """arteries""", """arterio-portal""", """arteriogenesis""", """arteriovenous""", """arteritis""", """artery""", """artery-first""", """arthralgia""", """arthritides""", """arthritis""", """arthrodesis""", """arthroplasties""", """arthroplasty""", """arthroscopic""", """arthroscopy""", """article""", """articles""", """articular""", """articulate""", """articulating""", """articulation""", """articulatory""", """artifact""", """artifacts""", """artificial""", """artificial-intelligence-""", """artificially""", """arundel""", """arvc""", """as-needed""", """as-prepared""", """asa""", """asas""", """asbestos""", """ascending""", """ascent""", """ascertain""", """ascertainment""", """ascidians""", """ascites""", """asclepius""", """asclepius-health""", """ascorbate""", """ascorbic""", """ascribed""", """asd""", """asdas""", """asexual""", """ash""", """asia""", """asian""", """asians""", """asiatic""", """asics""", """aside""", """ask""", """asked""", """asking""", """asleep""", """asp""", """asp-bound""", """asp-x""", """aspartate""", """aspartyl""", """aspect""", """aspects""", """asphyxiants""", """asphyxiation""", """aspirated""", """aspirates""", """aspiration""", """aspirations""", """aspirin""", """asra""", """assaults""", """assay""", """assays""", """assembled""", """assembles""", """assemblies""", """assembly""", """assertion""", """asses""", """assess""", """assessed""", """assesses""", """assessing""", """assessment""", """assessments""", """asset""", """assets""", """assigned""", """assigning""", """assignment""", """assignments""", """assimilation""", """assist""", """assistance""", """assistant""", """assisted""", """assisting""", """associate""", """associated""", """associates""", """associating""", """association""", """associations""", """associative""", """assume""", """assumed""", """assuming""", """assumption""", """assumptions""", """assurance""", """assure""", """ast""", """asthenia""", """asthma""", """asthma-related""", """asthmatics""", """astigmatism""", """astrazeneca""", """astrobiological""", """astrobiology""", """astrocyte""", """astrocytes""", """astrocytic""", """astrocytomas""", """astroglial""", """asymmetric""", """asymmetrical""", """asymmetrically""", """asymptomatic""", """asymptotic""", """asynchronous""", """at""", """at-home""", """at-rich""", """at-risk""", """ata""", """ataques""", """ataxia""", """ataxias""", """atdc5""", """atelectasis""", """atempt""", """atendimentos""", """atenolol""", """atf1""", """atf3""", """atf3-dependent""", """atf4-dependent""", """atg""", """atheromatosis""", """atherosclerosis""", """atherosclerotic""", """athletes""", """athletic""", """atlantic""", """atlantoaxial""", """atlases""", """atm""", """atm-ctip-mre11""", """atmospheric""", """atolls""", """atomic""", """atomistic""", """atoms""", """atonia""", """atony""", """atopic""", """atp""", """atp-30""", """atpase""", """atraumatic""", """atrial""", """atrial-ventricular""", """atrophy""", """attached""", """attaching""", """attachment""", """attack""", """attacks""", """attain""", """attained""", """attempt""", """attempted""", """attempting""", """attempts""", """attend""", """attended""", """attending""", """attention""", """attentional""", """attentions""", """attenuata""", """attenuate""", """attenuated""", """attenuates""", """attenuating""", """attenuation""", """attested""", """attitude""", """attitudes""", """attp""", """attract""", """attracting""", """attractive""", """attractiveness""", """attributable""", """attribute""", """attributed""", """attributes""", """attributing""", """attribution""", """attrition""", """atypia""", """atypical""", """aua""", """auc""", """aucaw""", """aucun""", """aud""", """audio""", """audiometry""", """audit""", """auditory""", """auditory-perceptual""", """audits""", """augment""", """augmentant""", """augmentation""", """augmented""", """augments""", """august""", """aumentar""", """aur""", """aureus""", """auricular""", """auroc""", """aus""", """auscultation""", """australia""", """australian""", """authentic""", """author""", """authored""", """authorities""", """authority""", """authorizes""", """authors""", """autism""", """autism-as""", """auto-encoding""", """autoantibodies""", """autoantibody""", """autoantigens""", """autocorrelation""", """autocrine""", """autoencoder""", """autofluorescence""", """autogenic""", """autoimmune""", """autoimmunity""", """autologous""", """automated""", """automatic""", """automatically""", """automating""", """autonomic""", """autonomous""", """autonomously""", """autophagic""", """autophagy""", """autophagy-deficient""", """autophagy-dependent""", """autophagy-induced""", """autoreactive""", """autoregressive""", """autoregulation""", """autoregulatory""", """autosomal""", """autotransplantation""", """aux""", """auxin""", """auxin-induced""", """auxin-regulated""", """auxologic""", """availability""", """available""", """avait""", """avaliados""", """avaliou""", """avental""", """avenue""", """avenues""", """average""", """averaging""", """avert""", """avex""", """avian""", """avlt""", """avlt-delay""", """avlt-immediate""", """avlt-recognition""", """avmc""", """avoid""", """avoidable""", """avoidance""", """avoided""", """avoiders""", """avoiding""", """avoids""", """avp""", """avr""", """avulsion""", """avulsions""", """aw98""", """awaiting""", """awake""", """awakening""", """awakenings""", """award""", """aware""", """awareness""", """away""", """awd""", """awkward""", """axes""", """axial""", """axilla""", """axillaire""", """axillary""", """axis""", """axon""", """axonal""", """axons""", """axum""", """ayahuasca""", """azathioprine""", """azd1222""", """azide""", """b-cell""", """b-cells""", """b-dna""", """b-mode""", """b100""", """b12""", """b2-labeled""", """babesia-like""", """babies""", """baby""", """bacilli""", """bacillus""", """back""", """back-translation""", """backbone""", """backfolding""", """background""", """backpropagation""", """backward""", """backwards""", """bacteria""", """bacterial""", """bacterium""", """bafilomycin""", """bag""", """bag-1""", """bag-mask""", """bag-valve-mask""", """baited""", """baixo""", """baja""", """bal""", """bal-intervention""", """balance""", """balanced""", """balances""", """balancing""", """balb-c""", """ball""", """balloon-expandable""", """ban""", """band""", """bang""", """bangladesh""", """bangladeshi""", """bank""", """bannenberg""", """bans""", """barcelona""", """bare""", """bariatric""", """barium""", """bark""", """barotrauma""", """barre""", """barretos""", """barrett""", """barrier""", """barriers""", """bartholin""", """barts""", """basal""", """basal-branching""", """basaloid""", """base""", """based""", """baseline""", """baseline-dependent""", """basement""", """basic""", """basin""", """basis""", """basketball""", """basophil""", """basophilic""", """basophils""", """bat""", """batch""", """batched""", """bath""", """bathing""", """batteries""", """battery""", """bayesian""", """bayley""", """bayley-iii""", """bb-12""", """bbb""", """bbc""", """bbe""", """bbti""", """bcbm""", """bcc""", """bcd""", """bcdx2""", """bcg""", """bcl-2""", """bcl-xl""", """bcl2""", """bcl6""", """bcor""", """bcr""", """bcva""", """bd-i""", """bd-ipmn""", """bdla""", """bdp""", """be20ng""", """bea""", """beacon-exacerbating""", """bead""", """beadchip""", """beads""", """beak""", """beaked""", """beam""", """beam-induced""", """beam-sensitive""", """bearing""", """beat""", """beats""", """became""", """because""", """become""", """becomes""", """becoming""", """bed""", """bed-site""", """bed-time""", """bedridden""", """bee""", """been""", """bees""", """before""", """before-after""", """began""", """begin""", """beginners""", """beginning""", """begins""", """behalf""", """behaving""", """behavior""", """behavioral""", """behaviors""", """behaviour""", """behavioural""", """behaviours""", """behind""", """being""", """belgium""", """belief""", """beliefs""", """believe""", """believed""", """belize""", """belizean""", """belonged""", """belonging""", """belongs""", """below""", """belt""", """belts""", """bench-to-bedside""", """benchmark""", """benchmarking""", """bendamustine""", """beneficial""", """beneficiaries""", """beneficiary""", """benefit""", """benefited""", """benefits""", """beni-suef""", """benign""", """benign-""", """benralizumab""", """benzathine""", """benznidazole""", """benzodiazepine""", """benzodiazepines""", """berghei""", """berry""", """beru""", """berus""", """besides""", """best""", """best-corrected""", """best-practice""", """bet""", """beta""", """beta-1""", """beta-blockers""", """beta-carotene""", """beta-lactam""", """beta-mhc""", """beta-thalassemia""", """betaxolol""", """better""", """better-quality""", """betula""", """between""", """between-component""", """between-group""", """between-subject""", """bevantolol""", """beverage""", """beverages""", """beyond""", """bf-iol""", """bf-iols""", """bfh""", """bfhs""", """bhaktapur""", """bhd""", """bhramari""", """bi-weekly""", """biallelic""", """bias""", """biased""", """biasedly""", """biases""", """biasing""", """bibliographies""", """bibliography""", """bibliometric""", """bicarbonate""", """bidirectional""", """bidirectionally""", """bifidobacteria""", """bifidobacterium""", """bigger""", """bilateral""", """bile""", """bilevel""", """biliary""", """bilingually""", """bilirubin""", """bille""", """billing""", """billion""", """billions""", """biloba""", """bimanual""", """bimekizumab""", """bimodal""", """bimolecular""", """binary""", """binasal""", """bind""", """binding""", """binds""", """bing""", """binge""", """binge-eating""", """binomial""", """bio""", """bio-fluids""", """bio-inks""", """bio-mechanical""", """bio-stimulatory""", """bioabsorbable""", """bioactive""", """bioassays""", """bioavailability""", """biobank""", """biobased""", """biochemical""", """biochemically""", """biochemistry""", """bioconversion""", """biodegradability""", """biodegradable""", """biodegradation""", """biodiversity""", """bioenergetic""", """biofabrication""", """biofeedback""", """biofilm""", """biofilm-inducing""", """biofilm-promoting""", """biofilms""", """biofluid-based""", """biofluids""", """biogas""", """biogenesis""", """biogenic""", """biogeographical""", """bioimaging""", """bioinformatic""", """bioinformatics""", """bioinformatics-oriented""", """bioinformation""", """bioinspired""", """biologic""", """biological""", """biologically""", """biologics""", """biologists""", """biology""", """biomarker""", """biomarker-based""", """biomarkers""", """biomaterial""", """biomaterials""", """biomechanical""", """biomed""", """biomedical""", """biomedicine""", """biomicroscopy""", """biomolecular""", """biomolecule""", """biomolecules""", """biopharmaceutical""", """biophysical""", """bioplastic""", """bioplastics""", """bioprinted""", """bioprinter""", """bioprosthetic""", """biopsied""", """biopsies""", """biopsy""", """biopsy-proven""", """bioremediation""", """biorepositories""", """biorepository""", """biosensing""", """biosis""", """biostatistics""", """biosynthesis""", """biosynthetic""", """biotech""", """biotechnological""", """biotechnologies""", """biotechnology""", """biotransformations""", """biotype""", """bipap""", """bipartite""", """biphasic""", """bipoc""", """bipolar-i""", """bir""", """birch""", """bird""", """birds""", """birmingham""", """birth""", """births""", """birthweight""", """bis""", """bisexual""", """bisoprolol""", """bispecific""", """bisphenol""", """bisphosphonates""", """bisulfite""", """bite""", """bites""", """bivariable""", """bivariate""", """biventricular""", """bivittatum""", """biweekly""", """black""", """blacks""", """bladder""", """bladder-centric""", """blade""", """blakpc-2""", """bland-altman""", """blandm-1""", """blast""", """blastema""", """blastomycosis""", """blasts""", """bleed""", """bleeding""", """bleedings""", """bleomycin""", """blind""", """blinded""", """blinding""", """blindness""", """blistering""", """blisters""", """bloating""", """block""", """blockade""", """blocked""", """blocker""", """blockers""", """blocking""", """blocks""", """blood""", """blood-based""", """blood-brain""", """blood-derived""", """blood-spinal""", """bloodstream""", """bloqueio""", """blot""", """blotch""", """blotting""", """blowing""", """bls""", """blue""", """blue-reflectance""", """blue-white""", """blueprint""", """bluetooth""", """blunt""", """blunted""", """bm1""", """bmd""", """bmi""", """bmj""", """bml""", """bmls""", """bmq""", """bnp""", """bnt""", """board""", """board-approved""", """boating""", """bodies""", """bodily""", """body""", """body-exposure""", """bodyweight""", """bohm""", """bois""", """bologna""", """bolus""", """bom""", """bond""", """bond-to-bond""", """bonded""", """bonding""", """bonds""", """bone""", """bone-regeneration""", """bone-related""", """bones""", """bonferroni""", """bonnes""", """book""", """books""", """boost""", """boosted""", """boosting""", """bootstrap-based""", """border""", """borderline""", """borders""", """bordetella""", """born""", """borrelia""", """bortezomib""", """bortezomib-refractory""", """boston""", """both""", """both-sided""", """bothersome""", """bottle""", """bottles""", """bottom-up""", """bound""", """boundaries""", """boundary""", """bounding""", """bout""", """bovine""", """bowel""", """boxes""", """boy""", """boyfriends""", """boys""", """bp180""", """bp230""", """bpa""", """bpg""", """bpng""", """bpt""", """br005""", """brachial""", """brachionus""", """brachyurus""", """bracket""", """brackets""", """bradshaw""", """brady-arrhythmias""", """bradypus""", """braf""", """braf-""", """braf-inhibitors""", """braf-mutated""", """braf-targeting""", """braf-wild""", """brain""", """brain-behavior""", """brain-enriched""", """brains""", """brainstem""", """brake""", """branch""", """branch-duct""", """branched""", """branches""", """branching""", """branco""", """brand""", """brands""", """bras""", """brasil""", """brasiliensis""", """brass""", """brazil""", """brazilian""", """brca""", """breached""", """bread""", """breadth""", """break""", """breakdown""", """breaking""", """breakpoint""", """breaks""", """breakthrough""", """breakthroughs""", """breast""", """breastfed""", """breastfeeding""", """breath""", """breath-test""", """breathiness""", """breathing""", """breathing-phase""", """breathy""", """breeding""", """breeds""", """brepocitinib""", """brexanolone""", """bridge""", """bridges""", """bridging""", """brief""", """briefly""", """briggs""", """bring""", """bringing""", """brings""", """brisbane""", """britain""", """britannia""", """british""", """brittle""", """broad""", """broadcast""", """broaden""", """broadening""", """broadens""", """broader""", """broadly""", """broken""", """bromalizumab""", """bromodomain""", """bronchi""", """bronchial""", """bronchitis""", """bronchoalveolar""", """bronchogenic""", """bronchomalacia""", """bronchopulmonary""", """bronchoscope""", """bronchoscopic""", """bronchoscopy""", """bronchus""", """bronx""", """brought""", """brown""", """brown-throated""", """browning""", """brows""", """browsed""", """browser""", """bruising""", """brushing""", """bruton""", """bruvs""", """bsab""", """bsab-induced""", """bscb""", """bslr""", """bsmltg""", """bsp""", """btc""", """btcs""", """btk""", """btkcys481""", """btkcys481ser""", """btkcys481ser-expressing""", """btki""", """btki-naive""", """btki-treated""", """btkis""", """btkwt""", """btkwt-""", """btkwt-expressing""", """btm""", """bubble""", """buchholz""", """buckypaper""", """bud""", """budd-chiari""", """budding""", """budget""", """buenos""", """buettiker""", """buffalo""", """buffers""", """build""", """building""", """buildingexodus""", """built""", """built-in""", """bulbar""", """bulging""", """bulimia""", """bulk""", """bullae""", """bullous""", """bun""", """bundle""", """bundling""", """buprenorphine""", """burden""", """burdens""", """bureau""", """burgdorferi""", """burgeoning""", """buried""", """burn""", """burn-associated""", """burn-induced""", """burn-specific""", """burned""", """burning""", """burnout""", """burns""", """bursting""", """buscam""", """business""", """busy""", """but""", """button""", """butyl""", """butyrate""", """buy""", """bvs""", """bws""", """bxd""", """by""", """bypass""", """bypassed""", """bypassing""", """bypcr""", """byrd""", """bystander""", """bystander-initiated""", """c-arm""", """c-di-gmp""", """c-index""", """c-kit""", """c-kit1""", """c-kit2""", """c-means""", """c-myc""", """c-reactive""", """c-terminal""", """c19mc""", """c1s""", """c2c12""", """c3t""", """c4-activating""", """c4d""", """c9orf72""", """ca125""", """ca15-3""", """caail1""", """cab""", """cabg""", """cable""", """cables""", """cac""", """cacao""", """cacaofunesta""", """cachexia""", """cacna1a""", """cacna1d""", """cad""", """cadaveric""", """cade""", """cadherins""", """cadmium""", """caeas""", """caecilians""", """caenorhabditis""", """caep""", """caeps""", """caesarean""", """cafeteria""", """caffeine""", """cag""", """cagata17""", """cagr""", """cagtf3a""", """cah""", """cairo""", """caiu""", """calcarius""", """calcification""", """calcified""", """calcifying""", """calcineurin""", """calcium""", """calcium-dependent""", """calcium-rich""", """calculate""", """calculated""", """calculating""", """calculation""", """calculations""", """calculator""", """calendar""", """calgary""", """calibrate""", """calibrated""", """calibration""", """calidad""", """california""", """californianus""", """call""", """callback""", """called""", """caller""", """callers""", """calling""", """callorhinus""", """callosum""", """calls""", """calorie""", """calorie-restricted""", """calot""", """calprotectin""", """calvarial""", """calyciflorus""", """cambridge""", """came""", """camera""", """cameras""", """cameroon""", """cameroonian""", """camkk2""", """camp""", """campaign""", """campaigns""", """camptothecin""", """campylobacter""", """can""", """canada""", """canadian""", """canal""", """cancelled""", """cancer""", """cancer-associated""", """cancer-directed""", """cancer-related""", """cancer-specific""", """canceration""", """cancers""", """cancrivorus""", """candida""", """candidaemia""", """candidate""", """candidates""", """candidiasis""", """canine""", """cannabidiol""", """cannabinoids""", """cannabis""", """cannabis-related""", """cannulation""", """canonical""", """cap""", """cap1""", """capabilities""", """capability""", """capable""", """capacitance""", """capacities""", """capacitive""", """capacitor""", """capacity""", """capillaroscopy""", """capillary""", """capital""", """capitalist""", """capitalize""", """capitalizes""", """capitalizing""", """caprini""", """caps""", """capsicum""", """capsule""", """captive""", """capture""", """captured""", """capturing""", """car""", """car-t""", """carap2-7""", """carbamate""", """carbamazepine""", """carbamazepine-dependent""", """carbamazepine-induced""", """carbapenemase""", """carbapenemase-producing""", """carbapenemases""", """carbohydrate""", """carbohydrates""", """carbon""", """carboplatin""", """carboxy""", """carboxyhemoglobin""", """carboxyl""", """carceral""", """carcinoembryonic""", """carcinogenesis""", """carcinogenic""", """carcinogenicity""", """carcinoma""", """carcinomas""", """cardia""", """cardiac""", """cardinal""", """cardio""", """cardio-respiratory""", """cardiogenic""", """cardioid""", """cardioids""", """cardiol""", """cardiologia""", """cardiology""", """cardiometabolic""", """cardiomyocyte""", """cardiomyocyte-specific""", """cardiomyocytes""", """cardiomyopathy""", """cardioproteinopathy""", """cardiopulmonary""", """cardiorenal""", """cardiorespiratory""", """cardiotoxic""", """cardiovascular""", """cardiovascular-related""", """cardioversions""", """cardioverter""", """cardioverter-defibrillator""", """care""", """care-based""", """career""", """careful""", """carefully""", """careggi""", """caregiver""", """caregiver-child""", """caregivers""", """carers""", """cares""", """caretaking""", """carfentanil""", """carfilzomib""", """cargo""", """caribbean""", """caries""", """caring""", """carlo""", """carney""", """carolina""", """carotid""", """carotid-to-femoral""", """carpal""", """carreau""", """carriage""", """carried""", """carrier""", """carrier-mediated""", """carriers""", """carries""", """carry""", """carrying""", """cars""", """cart""", """cartilage""", """cas""", """cas9-knockout""", """cascade""", """cascade-independent""", """cascade-unrelated""", """cascaded""", """cascades""", """case""", """case-based""", """case-control""", """case-crossover""", """case-time-control""", """caseload""", """cases""", """casos""", """cast""", """castrate-resistant""", """castration""", """castration-resistance""", """castration-resistant""", """casts""", """casual""", """cat""", """catabolic""", """catabolism""", """catalanensis""", """catalase""", """catalog""", """catalonia""", """catalysis""", """catalyst""", """catalysts""", """catalytic""", """catalytically""", """catalyzed""", """cataplexy""", """cataract""", """cataracts""", """catastrophes""", """catastrophizing""", """catcf25""", """catch""", """catching""", """catchment""", """catecholamines""", """categorical""", """categories""", """categorised""", """categorization""", """categorized""", """category""", """cater""", """caterpillars""", """cathartics""", """cathepsin""", """catheter""", """catheterization""", """catheters""", """cations""", """cats""", """cattle""", """caucasian""", """caucasians""", """cauda""", """caudata""", """causada""", """causal""", """causality""", """causas""", """causative""", """cause""", """cause-specific""", """caused""", """causes""", """causing""", """cautery""", """caution""", """cautions""", """cautious""", """cava""", """cavitation""", """cavity""", """cavn1""", """caw""", """cbc""", """cbd""", """cbfv""", """cbm""", """cbp-triggered""", """cbpnm""", """cbpr""", """cbs""", """cbt""", """cc-by""", """ccc""", """cchs""", """cci""", """cck-8""", """ccl17""", """ccl2""", """ccl20""", """ccl22""", """ccn-51""", """ccn51""", """ccp""", """ccpr""", """ccrcc""", """ccrcc1""", """ccrcc1-4""", """ccrcc2""", """ccrt""", """ccs""", """ccta""", """ccts""", """cd-induced""", """cd1-restricted""", """cd117""", """cd123""", """cd14""", """cd147""", """cd160""", """cd20""", """cd200""", """cd28""", """cd3""", """cd33""", """cd34""", """cd38""", """cd4""", """cd61""", """cd62p""", """cd68""", """cd8""", """cdc""", """cdh1""", """cdk""", """cdk11b""", """cdk11b-induced""", """cdkis""", """cdkl3""", """cdks""", """cdls""", """cdpk4""", """cdr""", """cdsas""", """cdsm""", """cdva""", """cea""", """ceased""", """cec""", """ceguera""", """ceiling""", """celiac""", """cell""", """cell-associated""", """cell-cell""", """cell-context-specific""", """cell-cycle""", """cell-deleter""", """cell-derived""", """cell-driven""", """cell-free""", """cell-induced""", """cell-permeability""", """cell-specific""", """cell-surface""", """cell-targeted""", """cell-to-cell""", """cell-wall""", """cells""", """cellular""", """cellulose""", """celsius""", """celular""", """cement""", """cementless""", """census""", """centaur""", """center""", """center-based""", """center-specific""", """centered""", """centers""", """central""", """centralisation""", """centralization""", """centrally""", """centre""", """centres""", """centrifugation""", """centroids""", """centuries""", """century""", """ceo2""", """cepec2002""", """cependant""", """cephalometric""", """cephalopelvic""", """cephalosporin""", """ceramide""", """ceratocystis""", """cerca""", """cerdocyon""", """cerealis""", """cerebellar""", """cerebral""", """cerebrospinal""", """cerebrovascular""", """ceremonial""", """cerevisiae""", """certain""", """certainty""", """certeza""", """cervical""", """cervix""", """ces""", """cesarean""", """cesium""", """cessation""", """cet""", """cette""", """cf-pwv""", """cf-specific""", """cfa""", """cfd""", """cfd-based""", """cfd-predicted""", """cfdna""", """cfr""", """cfrd""", """cftr""", """cgl""", """cgmp""", """cgmp-dependent""", """cgvhd""", """chagas""", """chagasic""", """chain""", """chains""", """chalcedonica""", """chalkiness""", """challenge""", """challenged""", """challenges""", """challenging""", """chamar""", """chamber""", """chambers""", """chance""", """chances""", """change""", """changed""", """changement""", """changes""", """changing""", """channel""", """channels""", """chaperone""", """chapter""", """characterisation""", """characterise""", """characterised""", """characteristic""", """characteristically""", """characteristics""", """characterization""", """characterize""", """characterized""", """characterizing""", """charcoal""", """charge""", """charge-charge""", """charged""", """charlson""", """chart""", """charting""", """charts""", """chat""", """check-up""", """check-ups""", """checked""", """checkerboard""", """checking""", """checklist""", """checklist-25""", """checkpoint""", """checkups""", """cheese""", """chelate""", """chem""", """chemical""", """chemicals""", """chemistry""", """chemo-""", """chemoimmunotherapy""", """chemokines""", """chemoprophylaxis""", """chemoradiotherapy""", """chemoresistance""", """chemotherapeutic""", """chemotherapies""", """chemotherapy""", """chemotypes""", """chen""", """cheng""", """chest""", """chestnut-collared""", """cheung-bearelly""", """chez""", """chf""", """chg""", """chi""", """chi-square""", """chi-squared""", """chicago""", """chicken""", """chickens""", """chief""", """child""", """child-driven""", """child-elicited""", """child-level""", """child-pugh""", """child-sleep""", """child-to-parent""", """childbearing""", """childbirth""", """childhood""", """childhood-onset""", """children""", """chilean""", """chill""", """chimeric""", """china""", """chinese""", """chip""", """chip-qpcr""", """chip-seq""", """chips""", """chiral""", """chirality-controlled""", """chirality-regulated""", """chirality-related""", """chitinase""", """chitosan""", """chloride""", """chlorine-containing""", """chlorines""", """chloroflexota""", """chlorohydrate""", """chlorophyll""", """chloroquine""", """chm""", """chmi""", """chms""", """choice""", """choices""", """cholangiocarcinoma""", """cholangitic""", """cholecystectomy""", """cholerae""", """cholestatic""", """cholesterol""", """cholinergic""", """chondro-osseous""", """chondroblastoma-like""", """chondrocytes""", """chondrogenic""", """chongbai""", """choose""", """choosing""", """chordates""", """chordee""", """choreiform""", """choriocarcinoma""", """choroidal""", """chose""", """chosen""", """christian""", """chromatid""", """chromatids""", """chromatin""", """chromatographic""", """chromatography""", """chromatography-mass""", """chromatography-tandem""", """chromoblastomycosis""", """chromophore""", """chromosomal""", """chromosome""", """chromosomes""", """chronic""", """chronic-relapsing""", """chronically""", """chronification""", """chronological""", """chronology""", """chronos-3""", """chrysanthemum""", """chrysocyon""", """chss""", """chylothoraces""", """chylothorax""", """chyronhego""", """ci-mir""", """ci-mir-126""", """ci-mir-146a""", """ci-mir-155""", """ci-mir-181b""", """ci-mir-21""", """ci-mir-221""", """ci-mirs""", """cia""", """cibersort""", """cica""", """cicatricial""", """cidade""", """cidp""", """cie""", """cigar""", """cigarette""", """cigarettes""", """cigars""", """cihr""", """cihr-funded""", """cin""", """cinahl""", """cincinnati""", """cinco""", """cingulo-opercular""", """cinhal""", """cinquenta""", """cinta""", """circadian""", """circle""", """circles""", """circuit""", """circuitry""", """circuits""", """circular""", """circular-stapled""", """circularity""", """circularly""", """circulate""", """circulates""", """circulating""", """circulation""", """circulatory""", """circumference""", """circumferences""", """circumferential""", """circumscribed""", """circumspection""", """circumstances""", """circumvent""", """circumventing""", """cirratum""", """cirrhosis""", """cirrhotic""", """cis""", """cis-ab""", """cis-elements""", """cis-regulatory""", """cisgender""", """cisplatin-based""", """cistron""", """citation""", """citations""", """cite""", """cite-seq""", """cities""", """cities-in""", """citizen""", """citizens""", """citoprotectores""", """citrate""", """citrobacter""", """citrus""", """city""", """civil""", """ckc""", """ckd""", """claim""", """claims""", """claims-based""", """clamping""", """clar""", """clarified""", """clarifies""", """clarify""", """clarin-1""", """clarithromycin""", """clarity""", """clasping""", """class""", """classes""", """classic""", """classical""", """classically""", """classification""", """classifications""", """classified""", """classifier""", """classifiers""", """classify""", """classifying""", """clavien""", """clavien-dindo""", """clb""", """clc""", """clean""", """cleaner""", """cleaning""", """clear""", """clearance""", """clearing""", """clearly""", """cleavage""", """cleaves""", """cleaving""", """cleft""", """clefting""", """clerkship""", """cleveland""", """clients""", """climate""", """climate-induced""", """climatologists""", """climbing""", """clinal""", """clinic""", """clinical""", """clinical-educational""", """clinical-radiological""", """clinically""", """clinician""", """clinician-rated""", """clinicians""", """clinicopathologic""", """clinicopathological""", """clinics""", """clininal""", """clinique""", """clintrials""", """clip""", """clips""", """cll""", """clobazam""", """clomiphene""", """clonal""", """clonally""", """clone""", """clonic""", """clopidogrel""", """close""", """close-ended""", """closed""", """closely""", """closeness""", """closer""", """closest-age""", """closing""", """clostridium""", """closure""", """closures""", """clot""", """clotting""", """cloud""", """clrn1""", """clrn1-specific""", """cls""", """clues""", """cluster""", """cluster-randomised""", """clustered""", """clustering""", """clusters""", """cm2""", """cmacos5""", """cmc""", """cmcc""", """cme""", """cmlbd2""", """cmp""", """cmr""", """cms""", """cn-""", """cnas""", """cnc""", """cnf""", """cnfs""", """cni""", """cnki""", """cnn""", """cnn-lstm""", """cnn1""", """cnns""", """cns""", """cnv""", """co-authorship""", """co-culture""", """co-digesting""", """co-digestion""", """co-directional""", """co-directionally""", """co-expressed""", """co-expression""", """co-immunoprecipitations""", """co-ingesting""", """co-ingestion""", """co-ip""", """co-localization""", """co-located""", """co-morbidities""", """co-occurring""", """co-parallel""", """co-presence""", """co-receptor""", """co-repressors""", """co-use""", """co2""", """coaches""", """coagulant""", """coagulants""", """coagulase-negative""", """coagulation""", """coagulopathy""", """coarse""", """coarse-wool""", """coassemble""", """coassembly""", """coast""", """coated""", """coating""", """cobas""", """cocaethylene""", """cocaine""", """cocaine-""", """cocaine-associated""", """coccidioidomycosis""", """cochlea""", """cochleae""", """cochlear""", """cochran""", """cochrane""", """cocultures""", """cod""", """code""", """coded""", """codes""", """coding""", """codon""", """codons""", """coeff""", """coefficient""", """coefficients""", """coendou""", """coenzyme""", """coenzymes""", """coercion""", """coercive""", """coexist""", """coexistence""", """coexistent""", """coexisting""", """coexpression""", """coffea""", """coffee""", """coffee-shops""", """cognition""", """cognitive""", """cognitive-behavior""", """cogshall""", """cohen""", """coherence""", """coherent""", """cohesin""", """cohesive""", """cohort""", """cohorts""", """coiling""", """coin""", """coincides""", """coinciding""", """coinfections""", """col-0""", """col1a1""", """col1a2""", """col2a1""", """colateral""", """cold""", """cold-hot-neutral""", """cold-knife""", """cold-shock""", """colder""", """colectomy""", """coli""", """coli-type""", """colic""", """colitis""", """collaborated""", """collaboration""", """collaborations""", """collaborative""", """collagen""", """collagen-hybridizing""", """collagen-induced""", """collagenase""", """collagenases""", """collapse""", """collapses""", """collared""", """collated""", """collateral""", """collating""", """colleague""", """colleagues""", """collect""", """collected""", """collecting""", """collection""", """collections""", """collective""", """collectively""", """college""", """colleges""", """collimator""", """collisions""", """colocalized""", """cologne""", """colombia""", """colon""", """colonic""", """colonies""", """colonization""", """colonize""", """colonized""", """colonizing""", """colonography""", """colonoscopist""", """colonoscopy""", """colony""", """colony-formation""", """colony-forming""", """coloproctology""", """color""", """colorado""", """colorectal""", """colorimetric""", """coloring""", """colors""", """colour""", """columbia""", """column""", """columnar""", """columns""", """com""", """coma""", """combination""", """combinations""", """combinatory""", """combine""", """combined""", """combines""", """combining""", """combos""", """combustible""", """come""", """comes""", """comfirmed""", """comfort""", """comfortable""", """coming""", """command""", """commenced""", """commencement""", """commensals""", """comment""", """commentary""", """comments""", """commercial""", """commercialised""", """commercialization""", """commercially""", """commission""", """commitment""", """committed""", """committee""", """common""", """commoner""", """commonest""", """commonly""", """commonplace""", """commonwealth""", """commotion""", """commune""", """communicable""", """communicate""", """communication""", """communicative""", """communicators""", """communion""", """communities""", """community""", """community-acquired""", """community-based""", """community-care""", """community-controlled""", """community-dwelling""", """community-oriented""", """commuting""", """como""", """comorbid""", """comorbidities""", """comorbidity""", """comorbility""", """compact""", """companies""", """companion""", """company-sponsored""", """comparable""", """comparably""", """comparative""", """comparative-effectiveness""", """comparator""", """comparators""", """compare""", """compared""", """compares""", """comparing""", """comparison""", """comparisons""", """compartments""", """compassionate""", """compatibility""", """compatible""", """compelling""", """compensate""", """compensated""", """compensation""", """compensative""", """compensatory""", """competed""", """competence""", """competencies""", """competency""", """competing""", """competition""", """competitively""", """compile""", """compiled""", """complained""", """complaint""", """complaints""", """complement""", """complementarity""", """complementary""", """complementation""", """complete""", """completed""", """completely""", """completeness""", """completing""", """completion""", """complex""", """complexes""", """complexities""", """complexity""", """compliance""", """compliant""", """complicated""", """complicates""", """complicating""", """complication""", """complications""", """complies""", """complimentary""", """component""", """components""", """comportamento""", """comportamentos""", """composant""", """composants""", """composed""", """composite""", """composites""", """composition""", """compositional""", """compositionally""", """compositions""", """composting""", """composto""", """compound""", """compound-1""", """compound-ligand""", """compounds""", """comprehension""", """comprehensive""", """comprehensively""", """comprehensiveness""", """compression""", """compressions""", """comprise""", """comprised""", """comprises""", """comprising""", """compromettre""", """compromise""", """compromised""", """compromising""", """computation-based""", """computational""", """computationally""", """compute""", """computed""", """computer""", """computer-aided""", """computerised""", """computerized""", """computers""", """computing""", """con""", """concatenated""", """concavities""", """concealed""", """conceive""", """conceived""", """concentrate""", """concentrated""", """concentration""", """concentrations""", """concentric""", """concept""", """conception""", """concepts""", """conceptual""", """conceptualizing""", """concern""", """concerned""", """concerning""", """concerns""", """concert""", """concerted""", """concise""", """conclude""", """concluded""", """conclusion""", """conclusions""", """concomitant""", """concomitantly""", """concordance""", """concordant""", """concrete""", """concretely""", """concurrent""", """concurrently""", """condensation""", """condensed""", """condition""", """condition-related""", """condition-specific""", """conditional""", """conditioning""", """conditions""", """condom""", """condoms""", """conduct""", """conductance""", """conducted""", """conducting""", """conductive""", """conduit""", """cone""", """confer""", """conference""", """conferences""", """conferred""", """conferring""", """confers""", """confidence""", """confident""", """configural""", """configurations""", """confined""", """confinement""", """confirm""", """confirmation""", """confirmatory""", """confirmed""", """confirmer""", """confirming""", """confirms""", """conflated""", """conflict""", """conflicting""", """conflicts""", """conflictual""", """confocal""", """conformal""", """conformation""", """conforms""", """confounded""", """confounders""", """confounding""", """congenital""", """congestion""", """congregate""", """congress""", """conization""", """conization-to-pregnancy""", """conjoint""", """conjunction""", """conjunctival""", """conjunctivitis""", """connected""", """connectedness""", """connection""", """connections""", """connective""", """connectivity""", """connectivity-based""", """connectome""", """connects""", """conotruncal""", """consciously""", """consciousness""", """consecutive""", """consecutively""", """consensus""", """consensus-based""", """consensus-informed""", """consent""", """consented""", """consenting""", """consequence""", """consequences""", """consequent""", """consequential""", """consequently""", """conservation""", """conservative""", """conserved""", """consider""", """considerable""", """considerably""", """considerado""", """considerados""", """consideraron""", """consideration""", """considerations""", """considered""", """considering""", """considers""", """consign""", """consisted""", """consistency""", """consistent""", """consistently""", """consisting""", """consists""", """consolidate""", """consolidated""", """consolidates""", """consolidation""", """consortium""", """consortium-medicare""", """conspecifics""", """constancy""", """constant""", """constatamos""", """constellation""", """constituent""", """constituents""", """constitute""", """constituted""", """constitutes""", """constituting""", """constitutive""", """constraints""", """construct""", """constructed""", """constructing""", """construction""", """constructive""", """constructs""", """consult""", """consultancies""", """consultants""", """consultation""", """consultations""", """consulted""", """consulting""", """consults""", """consumed""", """consumer""", """consumers""", """consuming""", """consumption""", """contact""", """contacted""", """contagious""", """contain""", """contained""", """containing""", """containment""", """contains""", """contaminants""", """contamination""", """contemporaneously""", """contemporary""", """contenant""", """contending""", """content""", """content-specific""", """contents""", """context""", """context-specific""", """contexts""", """contextual""", """contextualization""", """contextualize""", """contiene""", """contiguity""", """contiguous""", """continence""", """continent""", """continents""", """contingency""", """contingent""", """contingents""", """continuation""", """continue""", """continued""", """continues""", """continuing""", """continuity""", """continuous""", """continuously""", """continuum""", """contour""", """contraception""", """contraceptive""", """contraceptives""", """contractile""", """contractility""", """contracting""", """contraction""", """contractions""", """contradict""", """contradictory""", """contraindicated""", """contraindication""", """contraindications""", """contralateral""", """contrary""", """contrast""", """contrast-enhanced""", """contraste""", """contrasted""", """contrasting""", """contrasts""", """contribuent""", """contribute""", """contributed""", """contributes""", """contributing""", """contribution""", """contributions""", """contributor""", """contributors""", """contributory""", """contriving""", """control""", """controlados""", """controldata""", """controle""", """controllable""", """controlled""", """controller""", """controlling""", """controls""", """controversial""", """controversies""", """controversy""", """convalescent""", """convened""", """convenience""", """convenient""", """convention""", """conventional""", """conventionally""", """converge""", """converged""", """convergence""", """convergent""", """convergently""", """conversation""", """conversations""", """conversely""", """conversion""", """conversions""", """convert""", """converted""", """converter""", """converting""", """convex""", """convey""", """conveyed""", """conveyor""", """convinced""", """convincing""", """convincingly""", """convolutional""", """convolutions""", """cooler""", """cooling""", """cooperate""", """cooperates""", """cooperation""", """cooperative""", """cooperatively""", """coordinate""", """coordinated""", """coordinates""", """coordination""", """coordinators""", """copanlisib""", """copd""", """cope""", """copeptin""", """copies""", """coping""", """copper""", """copresence""", """copri""", """copy""", """cor""", """cord""", """cord-related""", """cords""", """core""", """corevitas""", """cornea""", """corneal""", """corneas""", """cornelia""", """corner""", """corona""", """coronal""", """coronary""", """coronavirus""", """coronavirus-2""", """coronavirus-like""", """coronaviruses""", """corporal""", """corporate""", """corporation""", """corporations""", """corporelle""", """corpus""", """corr""", """correct""", """corrected""", """correction""", """corrections""", """correctly""", """corregida""", """correlate""", """correlated""", """correlates""", """correlating""", """correlation""", """correlational""", """correlations""", """correspond""", """corresponded""", """correspondence""", """corresponding""", """correspondingly""", """corresponds""", """corroborate""", """corroborating""", """corroded""", """corrosion""", """corruptions""", """cortex""", """cortical""", """corticocortical""", """corticosteroid""", """corticosteroid-based""", """corticosteroids""", """corticotrophin-releasing""", """cortisol""", """corynebacteria""", """corynebacterium""", """cos""", """cosecretion""", """cosmetic""", """cosmetical""", """cosmic""", """cosmopolitan""", """cost""", """cost-advantageous""", """cost-benefit""", """cost-containment""", """cost-effective""", """cost-effectiveness""", """costa-paz""", """costimulation""", """costimulatory""", """costing""", """costly""", """costs""", """cotinine""", """cotransporter""", """cotreatment""", """couch""", """cough""", """cough-one""", """coughed""", """coughing""", """could""", """council""", """counseling""", """counselling""", """count""", """counted""", """counteract""", """counterpart""", """counterparts""", """countervailing""", """counting""", """countries""", """country""", """counts""", """county""", """couple""", """coupled""", """couples""", """coupling""", """courage""", """course""", """courses""", """court""", """cov-19""", """covariance""", """covariates""", """covariation""", """cover""", """coverage""", """covered""", """covering""", """covers""", """covid""", """covid-19""", """covid-19-related""", """covid19""", """covid19-related""", """cox""", """cox-regression""", """cpap""", """cpb""", """cpcc""", """cpd""", """cpg""", """cpi""", """cpr""", """cprm""", """cpu""", """cqit""", """crab-eating""", """cramping""", """cranial""", """craniotomies""", """craniotomy""", """craving""", """cravings""", """crawling""", """crawling-dependent""", """crc""", """crd42020179398""", """create""", """created""", """creates""", """creatine""", """creating""", """creatinine""", """creation""", """creb3""", """crebbp""", """credence""", """credibility""", """credible""", """creoles""", """crescimento""", """crest""", """crh""", """crime""", """crimes""", """criminal""", """criminalized""", """crippling""", """crises""", """crisis""", """crispr""", """crispr-associated""", """criteria""", """criteriathe""", """criterion""", """criterios""", """critical""", """critical-sized""", """critically""", """criticized""", """critique""", """crlm""", """crm""", """crohn""", """croissance""", """crop""", """crops""", """cross""", """cross-border""", """cross-country""", """cross-linking""", """cross-over""", """cross-referenced""", """cross-referencing""", """cross-referrals""", """cross-sectional""", """cross-sectionally""", """cross-sections""", """cross-shock""", """cross-species""", """cross-talk""", """cross-validated""", """cross-validation""", """cross-volatility""", """cross-widely""", """crossfit""", """crossing""", """crossing-over""", """crosslink""", """crosslinking""", """crossover""", """crossovers""", """crosstalk""", """crowding""", """crowdsourcing""", """crowe""", """crown""", """crp""", """crpm""", """crps""", """crrnas""", """crs""", """crs-hipec""", """crswnp""", """crt""", """crucial""", """crucially""", """cruciate""", """crude""", """cruelty""", """crush""", """cruzi""", """crying""", """cryo-electron""", """cryo-em""", """cryo-et""", """cryo-tem""", """cryotherapy""", """cryptogenic""", """crystal""", """crystalline""", """crystallinity""", """crystallography""", """crystals""", """cs1""", """cs4""", """cs5""", """cs6""", """cscc""", """csccs""", """csdmard""", """cse""", """csf""", """csk""", """csop""", """csr""", """csws""", """ct-based""", """ct-ffr""", """ct1""", """ct1a""", """ct1b""", """ctcl""", """ctcls""", """ctdna""", """ctla-4""", """cto""", """ctsc""", """ctt""", """cualquier""", """cucumber""", """cucumbers""", """cue""", """cue-mediated""", """cues""", """cuff""", """cui""", """cuja""", """cull""", """culminate""", """culminating""", """cult""", """cultivar""", """cultivars""", """cultivating""", """cultivation""", """cultural""", """culturally""", """culture""", """culture-negative""", """cultured""", """cultures""", """cumulative""", """cumulatively""", """cumulus""", """cumulus-oocyte""", """cuniculus""", """cup""", """curative""", """curbing""", """curcumin""", """cure""", """cured""", """curettage""", """curiously""", """curl""", """curl-ups""", """curlin""", """current""", """currently""", """currents""", """curricula""", """curricular""", """curriculum""", """currie""", """curvature""", """curvatures""", """curve""", """curved""", """curvelet""", """curves""", """cushing""", """custody""", """custom""", """custom-built""", """custom-made""", """cut""", """cut-off""", """cut-points""", """cutaneous""", """cutibacterium""", """cutis""", """cutoff""", """cutoffs""", """cuts""", """cutting""", """cutting-edge""", """cv-free""", """cva""", """cvc""", """cvd""", """cvm""", """cvo""", """cvrf""", """cvt""", """cxcl2""", """cxl""", """cxr""", """cyanide""", """cyb5r""", """cyb5r-oe""", """cyb5r-overexpressing""", """cyb5r3""", """cyb5r3-tg""", """cycle""", """cycles""", """cyclic""", """cyclin-dependent""", """cycling""", """cyclohexanol""", """cyclophosphamide""", """cylinder""", """cynops""", """cynotherapy""", """cyp21a2""", """cyp2s1""", """cyst""", """cystectomy""", """cysteine""", """cystic""", """cysticercosis""", """cystoscope""", """cystoscopes""", """cystoscopies""", """cystoscopy""", """cystourethrography""", """cysts""", """cytarabine""", """cyto-architectural""", """cytochrome""", """cytogenetic""", """cytogenetically""", """cytogenic""", """cytokine""", """cytokines""", """cytokinin""", """cytologic""", """cytological""", """cytologically""", """cytology""", """cytometry""", """cytomorphological""", """cytopathologic""", """cytopathologically""", """cytopathology""", """cytopenias""", """cytoplasm""", """cytoplasmic""", """cytoprotective""", """cytoreduction""", """cytoreductive""", """cytosine""", """cytosine-motif""", """cytosine-rich""", """cytoskeletal""", """cytoskeleton""", """cytosolic""", """cytotoxic""", """cytotoxicity""", """cytotrophoblast-stem-like""", """cytotrophoblasts""", """czech""", """czs""", """d-cycloserine""", """d161""", """d2-type""", """dacaa""", """dacarbazine""", """dacia""", """daf""", """daily""", """dairy""", """dajun""", """dalff""", """dam""", """damage""", """damage-induced""", """damaged""", """damages""", """damaging""", """dampen""", """dams""", """danger""", """dangerous""", """danish""", """dans""", """dapsa""", """daratumumab""", """dare""", """dark-field""", """darker""", """darkness""", """darwinian""", """das""", """das28""", """dasypus""", """data""", """data-driven""", """database""", """databases""", """dataset""", """dataset-admissions""", """datasets""", """date""", """dates""", """datos""", """dau""", """daugan""", """daughter""", """dauricine""", """david""", """davis""", """dawley""", """day""", """day-1""", """day-to-day""", """daylong""", """days""", """daytime""", """dbp""", """dbps""", """dca""", """dcdc""", """dce""", """dcfi""", """ddh""", """ddi""", """ddi-major""", """ddis""", """ddpcr""", """ddr""", """dds""", """de-escalation""", """de-identified""", """de-stigmatization""", """deacetylase""", """deactivation""", """deadly""", """deaf""", """deafferentation""", """deal""", """dealer""", """dealing""", """death""", """deaths""", """debate""", """debated""", """debiasing""", """debilitating""", """debond""", """debridement""", """debris""", """debulking""", """dec""", """decade""", """decades""", """decalvans""", """decapeptyl""", """decay""", """decays""", """deceased""", """decedents""", """deceleration""", """decelerations""", """december""", """decide""", """decided""", """decipher""", """deciphered""", """decision""", """decision-making""", """decision-support""", """decisions""", """decisive""", """declaration""", """declarations""", """declared""", """declination""", """decline""", """declined""", """declines""", """declining""", """decodable""", """decoding""", """decombinator""", """decompensated""", """decompensation""", """decomposed""", """decomposition""", """decompression""", """decompressive""", """decontamination""", """decoy""", """decrease""", """decreased""", """decreases""", """decreasing""", """decriminalisation""", """dedicated""", """deductible""", """deductive""", """deem""", """deemed""", """deemphasised""", """deep""", """deep-diving""", """deepen""", """deeper""", """deeply""", """deer""", """default""", """defect""", """defective""", """defects""", """defend""", """defenders""", """defense""", """defense-related""", """defenses""", """defensin""", """deferoxamine""", """deferred""", """defibrillator""", """defibrillators""", """deficiencies""", """deficiency""", """deficient""", """deficit""", """deficits""", """define""", """defined""", """defines""", """defining""", """definite""", """definition""", """definitions""", """definitive""", """definitively""", """deflation""", """deflection""", """deflux""", """deforestation""", """deformation""", """deformed""", """deformities""", """deformity""", """deforms""", """degenerate""", """degeneration""", """degenerative""", """degludec""", """degludec-u100""", """deglycosylation""", """degradation""", """degradative""", """degrade""", """degraded""", """degranulation""", """degree""", """degrees""", """degs""", """dehiscence""", """dehydration""", """dehydrogenase""", """deidentification""", """deidentified""", """del""", """delamination""", """delay""", """delayed""", """delaying""", """delays""", """deletes""", """deletion""", """deletions""", """delineate""", """delineated""", """delineating""", """delineation""", """delirium""", """deliver""", """delivered""", """deliveries""", """delivering""", """delivers""", """delivery""", """delphi""", """delta""", """delta-decalactone""", """delta-dodecalactone""", """delta4""", """delustering""", """demand""", """demanded""", """demanding""", """demands""", """demarcated""", """dementia""", """dementias""", """demethylases""", """demethylation""", """demographic""", """demographical""", """demographics""", """demography""", """demonstrados""", """demonstrate""", """demonstrated""", """demonstrates""", """demonstrating""", """demonstration""", """demyelinating""", """demystified""", """den""", """dendrimer""", """dendrimer-based""", """dendrimers""", """dendritic""", """dengue""", """denmark""", """denoted""", """dense""", """densely""", """densidad""", """densities""", """density""", """dental""", """dentate""", """denticola""", """dentilisin""", """dentilisin-deficient""", """dentistry""", """dentists""", """dentocult""", """dentofacial""", """deodorant""", """departamentos""", """department""", """departmental""", """departments""", """departure""", """depend""", """dependable""", """dependence""", """dependency""", """dependent""", """depending""", """depends""", """depiction""", """depictions""", """depleted""", """depletion""", """depletion-induced""", """deployed""", """depois""", """deportation""", """deposit""", """deposited""", """deposition""", """deposits""", """depot""", """depressed""", """depression""", """depressive""", """deprivation""", """deprivation-evoked""", """depth""", """derangements""", """deregulated""", """derepressed""", """derivation""", """derivative""", """derivatives""", """derive""", """derived""", """derives""", """deriving""", """dermal""", """dermatitis""", """dermatologic""", """dermatological""", """dermatologists""", """dermatology""", """dermatome""", """dermatopathologic""", """dermatoscopic""", """dermatoscopy""", """dermatoses""", """dermoscopic""", """dermoscopist""", """dermoscopy""", """des""", """desaturation""", """descemet""", """descend""", """descending""", """describe""", """described""", """describes""", """describing""", """description""", """descriptive""", """descriptively""", """descriptors""", """desenlace""", """desenvolvimento""", """desert""", """deserve""", """deserves""", """desiccation""", """design""", """designated""", """designation""", """designed""", """designers""", """designing""", """designs""", """desirability""", """desirable""", """desire""", """desired""", """desiring""", """desmocollins""", """desmoglein""", """desmogleins""", """desmoplastic""", """desorbed""", """despair-like""", """desperately""", """despite""", """desserts""", """dest""", """destabilize""", """destabilizes""", """destabilizing""", """destroy""", """destruction""", """destructive""", """detach""", """detached""", """detaching""", """detachment""", """detail""", """detailed""", """details""", """detect""", """detectable""", """detected""", """detecting""", """detection""", """detections""", """detector""", """detectors""", """detects""", """deter""", """deteriorated""", """deterioration""", """determinant""", """determinants""", """determinar""", """determination""", """determine""", """determined""", """determines""", """determining""", """detoxification""", """detoxify""", """detriment""", """detrimental""", """detroit""", """detrusor""", """detrusor-sphincter""", """deucravacitinib""", """deuterostomes""", """deux""", """devastating""", """deve""", """develop""", """developed""", """developers""", """developing""", """development""", """developmental""", """developmentally""", """developments""", """develops""", """deviation""", """deviations""", """device""", """device-related""", """devices""", """devising""", """devoted""", """dexamethasone""", """dexin""", """dexmedetomidine""", """dexterity""", """dextran""", """dezembro""", """dflc""", """dfp""", """dfs""", """dfx""", """dgan""", """dgcr5""", """dha""", """dhi""", """dhl""", """dhrs1""", """dht""", """dht-treated""", """di-""", """diabetes""", """diabetic""", """diabetologist""", """diadochokinesis""", """diagnose""", """diagnosed""", """diagnoses""", """diagnosing""", """diagnosis""", """diagnostic""", """diagnostically""", """dialect""", """dialects""", """dialogue""", """dialysis""", """dialysis-related""", """dialyzer""", """dialyzers""", """diameter""", """diametral""", """diametrically""", """diana-mirpath""", """diaphragms""", """diarrhoea""", """diastasis""", """diastereo-""", """diastereoselectivity""", """diastolic""", """diathermy""", """diathesis-stress""", """diazoxide""", """dichotomous""", """diclofenac""", """dictate""", """dictating""", """did""", """didactics""", """diderms""", """die""", """died""", """diego""", """diel""", """dienogest""", """diet""", """diet-induced""", """dietary""", """diethylnitrosamine-induced""", """dietitian""", """diets""", """differ""", """differed""", """difference""", """differences""", """different""", """differential""", """differentially""", """differentiate""", """differentiated""", """differentiates""", """differentiating""", """differentiation""", """differently""", """differing""", """differs""", """difficult""", """difficult-to-control""", """difficult-to-test""", """difficulties""", """difficulty""", """diffident""", """diffraction""", """diffuse""", """diffusely""", """diffusion""", """diffusivity""", """digest""", """digestion""", """digestive""", """digit""", """digital""", """digoxin""", """diguanylate""", """dihydrotestosterone""", """dilation""", """dili""", """diluted""", """dilution""", """dim-light""", """dimension""", """dimensional""", """dimensionalities""", """dimensionality""", """dimensions""", """dimer-selective""", """dimeric""", """dimethyl""", """diminish""", """diminished""", """diminution""", """dimodal""", """dimorphism""", """dinucleotide""", """diopter""", """dioxide""", """dioxygenase""", """dipeptidase""", """dipeptide""", """dipeptidyl""", """diphosphate""", """diploid""", """diploids""", """diploma""", """direct""", """directed""", """direction""", """directional""", """directionality""", """directions""", """directly""", """directors""", """directory""", """disabilities""", """disability""", """disability-related""", """disaccharide""", """disadvantage""", """disadvantaged""", """disadvantages""", """disaggregated""", """disagreement""", """disagreements""", """disappearance""", """disappeared""", """disappointing""", """disappointments""", """disassembly""", """disaster""", """disasters""", """disc""", """discectomy""", """discern""", """discernible""", """discharge""", """discharged""", """discharges""", """discharging""", """discipline""", """disciplines""", """disclose""", """disclosed""", """discomfort""", """discontinuation""", """discontinue""", """discontinued""", """discontinuing""", """discontinuity""", """discordant""", """discourages""", """discourse""", """discover""", """discovered""", """discoveries""", """discovery""", """discrepancies""", """discrepancy""", """discrepant""", """discrete""", """discretionary""", """discriminant""", """discriminants""", """discriminate""", """discriminating""", """discrimination""", """discriminative""", """discriminators""", """discriminatory""", """discuss""", """discussed""", """discusses""", """discussing""", """discussion""", """discussions""", """disease""", """disease-derived""", """disease-free""", """disease-modifying""", """disease-related""", """disease-specific""", """diseases""", """diseases-is""", """diselenide""", """disenrollment""", """disentangle""", """disequilibrium""", """dish""", """disinfectant""", """disinfectants""", """disinfection""", """disinhibition""", """disintegrated""", """disk""", """dislocated""", """dislocation""", """dismal""", """dismutase""", """disorder""", """disordered""", """disorderly""", """disorders""", """disorders-2""", """disparate""", """disparities""", """disparity""", """dispelling""", """dispensing""", """dispersal""", """dispersed""", """dispersion""", """displaced""", """displacement""", """display""", """displayed""", """displaying""", """displays""", """disposable""", """disposition""", """disproportion""", """disproportionally""", """disproportionate""", """disproportionately""", """disrupt""", """disrupted""", """disruption""", """disruptions""", """disruptive""", """disrupts""", """dissatisfaction""", """dissected""", """dissecting""", """dissection""", """dissembled""", """disseminated""", """dissemination""", """dissertations""", """dissipated""", """dissipation""", """disso""", """dissolution""", """dissolved""", """dissolves""", """distal""", """distance""", """distancing""", """distant""", """distension""", """distill""", """distilled""", """distinct""", """distinction""", """distinctive""", """distinguish""", """distinguished""", """distinguishes""", """distinguishing""", """distintos""", """distortion""", """distortions""", """distractors""", """distress""", """distribute""", """distributed""", """distributing""", """distribution""", """distributions""", """district""", """districts""", """disturbance""", """disturbances""", """disturbed""", """disturbing""", """disulfide""", """disulfiram""", """dithiothreitol""", """diuretics""", """diurnal""", """dive""", """diverged""", """divergence""", """divergences""", """divergent""", """diverges""", """diverging""", """diverse""", """diversely""", """diversification""", """diversified""", """diversion""", """diversity""", """diverticular""", """divided""", """divides""", """divididos""", """dividing""", """diving""", """division""", """divisions""", """dizziness""", """dl-based""", """dlbcl""", """dlbcl-derived""", """dlbcls""", """dlpfc""", """dmard""", """dmard-related""", """dmards""", """dmc1""", """dmgs""", """dmri""", """dms""", """dmt""", """dna""", """dna-based""", """dna-containing""", """dnaa""", """dnaa-dependent""", """dnas""", """dnc""", """dnd""", """dnmt1""", """dntp""", """docetaxel""", """docking""", """docosahexaenoic""", """doctor""", """doctors""", """doctrine""", """document""", """documentation""", """documented""", """documents""", """does""", """doetinchem""", """dog""", """dog-assisted""", """dogs""", """doing""", """dois""", """dollars""", """domaidisruptor""", """domain""", """domain-containing""", """domain-experts""", """domains""", """dome""", """domes""", """domestic""", """domesticated""", """domiciliares""", """dominant""", """dominates""", """domino""", """donation""", """donations""", """done""", """dong""", """donor""", """donor-specific""", """donors""", """dopamine""", """doppler""", """dormant""", """dorsal""", """dorsolateral""", """dos""", """dosage""", """dosages""", """dose""", """dose-adjusted""", """dose-escalation""", """dose-limited""", """dose-limiting""", """dose-ranging""", """dose-rate""", """dose-rate-specific""", """dose-reduced""", """dose-related""", """dose-response""", """doses""", """dosimeter""", """dosimetry""", """dosing""", """dot1-like""", """dot1l""", """dot1l-af9""", """dot1l1-af10""", """dots""", """dotted""", """double""", """double-blind""", """double-masked""", """double-poling""", """double-stapling""", """double-strand""", """double-stranded""", """double-surface""", """doubling""", """doublings""", """down""", """down-regulating""", """down-regulation""", """downgraded""", """downloaded""", """downregulate""", """downregulated""", """downregulating""", """downregulation""", """downscaling""", """downstaging""", """downstream""", """doxorubicin""", """doxycycline""", """dozen""", """dozens""", """dp-tt""", """dpann""", """dpc""", """dpi""", """dps""", """dq8-positive""", """dra""", """drafting""", """drain""", """drainage""", """dramatic""", """dramatically""", """draw""", """drawbacks""", """drawing""", """drawings""", """drawn""", """draws""", """drb1-like""", """drb2""", """drd1""", """dream""", """dress""", """dressing""", """dressings""", """dressingsin""", """drew""", """drg""", """drgs""", """dried""", """drink""", """drinkers""", """drinking""", """drinks""", """drip""", """drive""", """drive-through""", """driven""", """driver""", """driverless""", """drivers""", """drives""", """driving""", """drones""", """drop""", """droplet""", """droplets""", """dropout""", """dropouts""", """drops""", """drosophila""", """drought""", """drr""", """drs""", """drug""", """drug-combinations""", """drug-drug""", """drug-drug-interactions""", """drug-induced""", """drug-interaction""", """drug-like""", """drug-related""", """druggable""", """drugs""", """drugs-""", """drusen""", """dry""", """dryer""", """drying""", """dsa""", """dsas""", """dsb""", """dsbs""", """dsd""", """dsd-life""", """dsek""", """dsg""", """dsg-specific""", """dsg3""", """dsgs""", """dsm-5""", """dsm-defined""", """dsm-iv""", """dsm-iv-tr""", """dsm-v""", """dsrna""", """dsrna-b2""", """dsrna-binding""", """dss""", """dtaop""", """dtc""", """dti""", """dtt""", """dtx1""", """dtx2""", """dual""", """dual-aim""", """dual-energy""", """dual-isolation""", """duas""", """dubh""", """ducks""", """duct""", """ductal""", """ductus""", """dud""", """duds""", """due""", """duel""", """duet""", """duodenal""", """dupilumab""", """duplex""", """duplicate""", """duplicated""", """duplicates""", """duplication""", """durability""", """durable""", """durably""", """duration""", """during""", """durotomy""", """durvalumab""", """dust""", """duty""", """dwarf""", """dwell""", """dxa""", """dyad""", """dyads""", """dyes""", """dying""", """dynamic""", """dynamical""", """dynamically""", """dynamics""", """dyrk1""", """dysalbuminemic""", """dysbiosis""", """dyschezia""", """dyscrasia""", """dysfibrinogenemia""", """dysfunction""", """dysfunction-induced""", """dysfunctions""", """dysglycemia""", """dyslipidemia""", """dysmenorrhea""", """dysmenorrhoea""", """dysmetabolic""", """dysmetabolism""", """dyspareunia""", """dysphagia""", """dysphonia""", """dysphonic""", """dysplasia""", """dyspnea""", """dysregulated""", """dysregulation""", """dyssynchrony""", """dyssynergia""", """dystrophy""", """dysuria""", """e-cigarette""", """e-cigarettes""", """e-health""", """e-proteins""", """e2f""", """eaa""", """eac""", """each""", """eactions""", """ear""", """earlier""", """earliest""", """early""", """early-life""", """early-onset""", """early-stage""", """ears""", """earth""", """earthquakes""", """ease""", """easier""", """easily""", """east""", """eastern""", """easy""", """eating""", """ebastine""", """ebd""", """ebl""", """ebola""", """ebsco""", """eca""", """eca-mri""", """ecc""", """eccentric""", """eccentricities""", """eccrine""", """ecg""", """ecgs""", """echinoderms""", """echo""", """echocardiographers""", """echocardiographic""", """echocardiography""", """ecl""", """eclampsia""", """ecm""", """ecmltg""", """ecmo""", """eco-epidemiological""", """eco-friendly""", """ecog""", """ecological""", """ecology""", """ecomorphological""", """ecomorphs""", """ecomp""", """ecomp-based""", """econlit""", """economic""", """economical""", """economy""", """ecosystem""", """ecosystems""", """ecotype""", """ecs""", """ectoderm""", """ectopic""", """ecv""", """ecv-cmr""", """eczema""", """eddy""", """edema""", """edge""", """edges""", """editing""", """edition""", """editor""", """editors""", """edoema""", """eds""", """educate""", """educated""", """education""", """education-accredited""", """educational""", """educators""", """edulis""", """eefs""", """eeg""", """eel""", """efa""", """efeitos""", """eff""", """effacement""", """effect""", """effective""", """effectively""", """effectiveness""", """effector""", """effectors""", """effects""", """effet""", """effets""", """efficacies""", """efficacious""", """efficacy""", """efficiencies""", """efficiency""", """efficient""", """efficiently""", """effort""", """efforts""", """effusion""", """efgri""", """efh""", """eficacia""", """egf""", """egf-like""", """egfr""", """egfri""", """egfris""", """egg""", """egg-like""", """eggs""", """egress""", """egypt""", """ehd1""", """eheals""", """ehfmrg""", """ehr""", """ehrs""", """ehs""", """ehss""", """eicosapentaenoic""", """eid""", """eif2ak4""", """eight""", """eight-month""", """eighteen""", """eighth""", """eighty""", """eighty-four""", """eighty-six""", """eims""", """either""", """ejection""", """ekam""", """elabela""", """elaborated""", """elaborates""", """elastase""", """elastases""", """elastic""", """elasticity""", """elastographic""", """elastography""", """elateriospermum""", """elbow""", """elderly""", """elected""", """elective""", """electives""", """electric""", """electrical""", """electrically""", """electro""", """electro-acupuncture""", """electrocardiogram""", """electrochemical""", """electrochemistry""", """electrochromatography""", """electrocoagulation""", """electrocochleography""", """electrode""", """electrodes""", """electroencephalogram""", """electroencephalographic""", """electroencephalography""", """electrolaryn""", """electrolaryngeal""", """electrolyte""", """electron""", """electronic""", """electroosmotic""", """electrophoretic""", """electrophotochemical""", """electrophysiological""", """electroplaque""", """electrospray""", """electrosurgical""", """electrosynthesis""", """electrotrophic""", """elegans""", """elekta""", """element""", """element-wise""", """elemental""", """elementary""", """elements""", """elephant""", """eletrocardiograma""", """elevadas""", """elevate""", """elevated""", """elevates""", """elevation""", """elevations""", """eleven""", """elibrary""", """elicit""", """elicitation""", """elicited""", """eliciting""", """elicits""", """eligibility""", """eligible""", """eliminate""", """eliminated""", """eliminates""", """eliminating""", """elimination""", """elisa""", """elite""", """elns""", """elongated""", """elongation""", """else""", """elsewhere""", """eltrombopag""", """elucidate""", """elucidated""", """elucidates""", """elucidating""", """elucidation""", """elusive""", """elusiveness""", """em""", """emailed""", """emails""", """emanating""", """embark""", """embarrassment""", """embase""", """embedded""", """emboli""", """embolism""", """embolisms""", """embolization""", """embrace""", """embryo""", """embryogenesis""", """embryonal""", """embryonic""", """embryos""", """emerald""", """emerge""", """emerged""", """emergence""", """emergencies""", """emergency""", """emergent""", """emergentes""", """emerging""", """emesis""", """emission""", """emit""", """emlpgp""", """emlpgps""", """emollient""", """emollients""", """emotion""", """emotional""", """emotionally""", """emotions""", """empathy""", """emperor""", """emphasis""", """emphasize""", """emphasized""", """emphasizing""", """empire""", """empiric""", """empirical""", """empirically""", """employ""", """employed""", """employee""", """employees""", """employing""", """employment""", """empower""", """empty""", """emptying""", """ems""", """emt""", """emtansine""", """emtct""", """emulsification""", """enable""", """enabled""", """enables""", """enabling""", """enactment""", """enamel""", """enamel-conditioning""", """enantio-""", """enantiomeric""", """enantiomers""", """enantioselective""", """encapsulated""", """encase""", """encephalitis""", """encephalomyelitis""", """encephalopathy""", """enclosed""", """encoded""", """encoder-decoder""", """encodes""", """encoding""", """encompasses""", """encompassing""", """encorafenib""", """encounter""", """encountered""", """encounters""", """encourage""", """encouraged""", """encouragement""", """encourages""", """encouraging""", """encryption""", """end""", """end-diastolic""", """end-joining""", """end-of-life""", """end-of-study""", """end-of-treatment""", """end-point""", """end-points""", """end-processing""", """end-stage""", """end-to-end""", """end-to-side""", """endeavor""", """endemic""", """endoanal""", """endocrine""", """endocrinologic""", """endocrinological""", """endocrinology""", """endocytic""", """endoderm""", """endodermal""", """endogenous""", """endoluminal""", """endomembrane""", """endometrial""", """endometrioid""", """endometrioma""", """endometriomas""", """endometriosis""", """endometriosis-associated""", """endometriotic""", """endonuclease""", """endonucleases""", """endoparasites""", """endophytic""", """endoplasmic""", """endoribonuclease""", """endorsed""", """endorsing""", """endoscope""", """endoscope-assisted""", """endoscopic""", """endoscopies""", """endoscopy""", """endosomal""", """endosomes""", """endosperm""", """endosymbiont""", """endothelial""", """endotoxin""", """endotracheal""", """endovascular""", """endovascularly""", """endows""", """endpoint""", """endpoints""", """ends""", """endurance""", """endure""", """endures""", """energies""", """energy""", """energy-dependent""", """energy-weighted""", """enfermeiros""", """enforced""", """enforcement""", """enforcing""", """engage""", """engaged""", """engagement""", """engaging""", """engine""", """engineered""", """engineering""", """england""", """english""", """english-speaking""", """engrafted""", """enhance""", """enhanced""", """enhancement""", """enhancers""", """enhances""", """enhancing""", """enhydra""", """enjoy""", """enjoyment""", """enlarged""", """enlargement""", """enlisted""", """enough""", """enquiry""", """enrich""", """enriched""", """enriches""", """enriching""", """enrichment""", """enroll""", """enrolled""", """enrollees""", """enrolling""", """enrollment""", """enrolment""", """ensayos""", """ensemble""", """ensembles""", """ensign""", """ensure""", """ensured""", """ensures""", """ensuring""", """entailing""", """entails""", """entecavir""", """enteral""", """entered""", """enteric""", """enteric-excipient""", """enteric-excipient-coated""", """entering""", """enterobacteriaceae""", """enterococcus""", """enterocolitis""", """enteropathy""", """enterprises""", """enters""", """entertainment""", """enthusiasm""", """entire""", """entirely""", """entities""", """entity""", """entorhinal""", """entrained""", """entrance""", """entrapment""", """entre""", """entry""", """enucleated""", """enucleation""", """enuresis""", """envelope""", """envelope-spanning""", """environment""", """environmental""", """environmentally""", """environments""", """envisioned""", """enzalutamide""", """enzymatic""", """enzyme""", """enzyme-linked""", """enzymes""", """eo-crc""", """eoc""", """eol""", """eor""", """eosin""", """eosinophil""", """eosinophilic""", """eosinophils""", """ep300""", """ependymomas""", """epi""", """epi-data""", """epicrispr""", """epidemic""", """epidemics""", """epidemiologic""", """epidemiological""", """epidemiology""", """epidermal""", """epidermidis""", """epidermis""", """epidural""", """epigenetic""", """epigenetics""", """epigenomes""", """epigenomic""", """epiglottitis""", """epilepsy""", """epileptic""", """epilepticus""", """epileptogenic""", """epinephrine""", """epiril""", """episcleritis""", """episode""", """episodes""", """episodic""", """epistaxis""", """epithelia""", """epithelial""", """epithelial-mesenchymal""", """epithelial-to-mesenchymal""", """epithelioid""", """epithelium""", """epitome""", """epitope""", """epitope-tagged""", """epitopes""", """eplerenone""", """epp""", """eps""", """epworth""", """eq-5d-3l""", """eq-5d-5l""", """eq5d""", """equal""", """equally""", """equation""", """equations""", """equilibrium""", """equina""", """equine""", """equip""", """equipes""", """equipment""", """equitable""", """equity""", """equity-oriented""", """equivalence""", """equivalent""", """equivalent-that""", """equivalents""", """equivocal""", """er""", """er-associated""", """er-resident""", """era""", """erad""", """eradicate""", """eradication""", """eras""", """erb-b2""", """erbb1""", """erbb1-erbb4""", """erbb1-mediated""", """erbb2""", """erbb4""", """ercp""", """ercps""", """ergometer""", """ergonomics""", """erk""", """erosion""", """erosions""", """err""", """erroneous""", """error""", """error-free""", """errors""", """erythema""", """erythematosus""", """erythematous""", """erythropoietin""", """es-18tzled""", """es-assisted""", """es-hl""", """escalating""", """escalation""", """escape""", """eschar""", """escherichia""", """escitalopram""", """escolar""", """eses""", """esi""", """esmolol""", """esophageal""", """esophagectomy""", """esophagogastric""", """esophagogastrostomies""", """esophagus""", """especially""", """espironolactona""", """esr1""", """esrd""", """essential""", """essentially""", """establish""", """established""", """establishes""", """establishing""", """establishment""", """estado""", """estar""", """estatisticamente""", """estava""", """estavam""", """estem""", """ester""", """estimate""", """estimated""", """estimates""", """estimating""", """estimation""", """estimations""", """estranged""", """estrogen""", """estrogen-like""", """estroprogestins""", """estudo""", """etc""", """etched""", """etching""", """etem""", """ethanol""", """ethanol-based""", """ethanol-type""", """ethical""", """ethics""", """ethiopia""", """ethiopian""", """ethnic""", """ethnicities""", """ethnicity""", """ethnicity-matched""", """ethnographic""", """ethnography""", """ethyl""", """ethylene""", """eti""", """etiological""", """etiologies""", """etiology""", """etiopathogenesis""", """etpb""", """ets""", """eubacterium""", """euc""", """eudaimonic""", """eudra""", """eukaryotes""", """eukaryotic""", """eular""", """eurasia""", """euro-american""", """europe""", """european""", """europeans""", """euroqol""", """euroquol-5-dimension""", """euryarchaeota""", """euthanasia""", """euthanize""", """euthyroid""", """euthyroidism""", """eutomer""", """eutylone""", """ev-mimecan""", """ev-tgfbi""", """evacuating""", """evacuation""", """evacuations""", """evade""", """evaluable""", """evaluate""", """evaluated""", """evaluates""", """evaluating""", """evaluation""", """evaluations""", """evaluators""", """evans""", """evasion""", """evd""", """even""", """evening""", """evenly""", """event""", """event-based""", """event-free""", """event-time""", """eventos""", """events""", """eventual""", """eventually""", """ever""", """ever-changing""", """ever-complex""", """everolimus""", """every""", """everyday""", """everyone""", """eviction""", """evidence""", """evidence-based""", """evidenced""", """evidences""", """evidencia""", """evidencing""", """evident""", """evo-devo""", """evoactg""", """evoked""", """evokes""", """evolution""", """evolutionarily""", """evolutionary""", """evolve""", """evolved""", """evolving""", """evs""", """evt-like""", """evts""", """ewing""", """ewsr1-fli1""", """exacerbate""", """exacerbation""", """exacerbations""", """exact""", """exactly""", """exam""", """exames""", """examination""", """examinations""", """examine""", """examined""", """examiner-dependent""", """examiners""", """examines""", """examining""", """example""", """examples""", """exams""", """excavate""", """excavated""", """exceed""", """exceeded""", """exceeding""", """excellent""", """except""", """exception""", """exceptional""", """exceptionally""", """exceptions""", """excess""", """excessive""", """excessively""", """exchange""", """excipient""", """excised""", """excision""", """excisional""", """excitation""", """excitatory""", """exclude""", """excluded""", """excluding""", """exclusion""", """exclusions""", """exclusive""", """exclusively""", """excreted""", """excretion""", """excretions""", """executed""", """executing""", """execution""", """executive""", """exemplar""", """exemplify""", """exempt""", """exenteration""", """exercise""", """exercised""", """exercises""", """exert""", """exerted""", """exerting""", """exertion""", """exertional""", """exerts""", """exhaled""", """exham""", """exhausted""", """exhaustion""", """exhaustive""", """exhibit""", """exhibited""", """exhibiting""", """exhibits""", """exist""", """existence""", """existing""", """exists""", """exit""", """exits""", """exoelectrogens""", """exoflagellated""", """exogenous""", """exome""", """exon""", """exonic""", """exophiala""", """exophytic""", """exosomal""", """exosome""", """exosome-mediated""", """exosomes""", """exotic""", """expand""", """expandable""", """expanded""", """expanding""", """expansion""", """expansion-phase""", """expansive""", """expect""", """expectant""", """expectantly""", """expectations""", """expected""", """expeditious""", """expenditure""", """expenditures""", """expenses""", """expensive""", """experience""", """experienced""", """experiences""", """experiencing""", """experientially""", """experiment""", """experimental""", """experimentally""", """experimentation""", """experimenters""", """experiments""", """expert""", """expert-based""", """expertise""", """expertos""", """experts""", """expiration""", """expiratory""", """explain""", """explained""", """explaining""", """explains""", """explanation""", """explanations""", """explanatory""", """explantation""", """explanted""", """explicable""", """explicate""", """explicit""", """explicitly""", """exploded""", """exploit""", """exploitation""", """exploited""", """exploiting""", """exploits""", """exploration""", """explorations""", """exploratory""", """explore""", """explored""", """explores""", """exploring""", """explosive""", """exponential""", """exponentially""", """export""", """exported""", """expose""", """exposed""", """exposes""", """exposing""", """exposure""", """exposure-agent""", """exposures""", """express""", """expressed""", """expresses""", """expressing""", """expression""", """expressional""", """expressions""", """expressivity""", """expressly""", """extant""", """extem""", """extend""", """extendable""", """extended""", """extending""", """extends""", """extension""", """extensions""", """extensive""", """extensively""", """extensor""", """extensors""", """extent""", """extents""", """external""", """externalization""", """externalized""", """externalizing""", """extinction""", """extra""", """extra-articular""", """extra-chomosomal""", """extra-intestinal""", """extracellular""", """extracellular-regulated""", """extracorporeal""", """extract""", """extracted""", """extracting""", """extraction""", """extraction-icp-aes""", """extractions""", """extracts""", """extramarital""", """extraordinarily""", """extraordinary""", """extraperitoneal""", """extrapleural""", """extrapolate""", """extraterminal""", """extravasation""", """extraversion""", """extravillous""", """extreme""", """extremely""", """extremities""", """extremity""", """extruded""", """extrusion""", """extubated""", """extubating""", """extubation""", """exudativa""", """exudative""", """exudativo""", """eye""", """eyebrows""", """eyelashes""", """eyelid""", """eyes""", """eyespot""", """eynde""", """ezh1""", """ezh2""", """f1-f4""", """f1-score""", """f1000""", """f223""", """fab""", """fabp-4""", """fabricated""", """fabrication""", """face""", """face-to-face""", """facebook""", """faced""", """facemask""", """faces""", """facet""", """facets""", """facial""", """facie""", """facile""", """facilitate""", """facilitated""", """facilitates""", """facilitating""", """facilitators""", """facilities""", """facility""", """facing""", """fact""", """fact-p""", """factor""", """factor-i""", """factor-negative""", """factor-related""", """factores""", """factors""", """facultative""", """faculties""", """faculty""", """fadden""", """faded""", """faecal""", """faecalibacterium""", """faeces""", """faecium""", """fail""", """failed""", """failure""", """failure-free""", """failures""", """fair""", """fait""", """faithfully""", """fake""", """falciparum""", """fall""", """fall-related""", """falling""", """fallopian""", """fallot""", """falls""", """false""", """false-negative""", """false-positive""", """faltering""", """familial""", """familiar""", """familiarity""", """families""", """family""", """fan""", """far""", """far-reaching""", """farm""", """farmer""", """farmers""", """farming""", """farms""", """farnesoid""", """fas""", """fascia""", """fascial""", """fasciitis""", """fascinated""", """fascinating""", """fasciocutaneous""", """fascism""", """fashion""", """fast""", """fast-growing""", """faster""", """fastest""", """fasting""", """fat""", """fatal""", """fatalities""", """fatality""", """fate""", """fates""", """father""", """fatigability""", """fatigue""", """fatness""", """fatty""", """fault""", """favor""", """favorable""", """favorably""", """favored""", """favoring""", """favorisait""", """favorisant""", """favour""", """favourable""", """favoured""", """fazekas""", """fbf""", """fbp1""", """fbs""", """fccp""", """fcg""", """fcm""", """fda""", """fda-approved""", """fe3""", """fear""", """feared""", """fearful""", """feasibility""", """feasible""", """feature""", """feature-based""", """featured""", """features""", """featuring""", """febrile""", """february""", """febs""", """fecal""", """fecal-oral""", """feces""", """fed""", """federal""", """federally""", """federation""", """feed""", """feedback""", """feeding""", """feeds""", """feel""", """feeling""", """fef25-75""", """felt""", """female""", """females""", """feminine""", """feminino""", """femoral""", """femoroplasty""", """femtosecond""", """femur""", """femurs""", """feno""", """fentanyl""", """fepsp""", """fermentation""", """ferric""", """ferritin""", """ferritin2""", """ferrocenyl""", """ferrocenyl-terminated""", """ferroptosis""", """ferroptosis-related""", """fertility""", """fertilization""", """ferum""", """fetal""", """fetus""", """fetuses""", """fev1""", """fever""", """few""", """fewer""", """ffls""", """ffp""", """ffpe""", """ffq""", """ffr""", """ffs""", """fgf4""", """fgfr""", """fgfr1-4""", """fgfr2""", """fgfr2mrna""", """fgfr3""", """fgfr3mrna""", """fiber""", """fiber-strengthening""", """fibers""", """fibril""", """fibrillar""", """fibrillarin""", """fibrillation""", """fibrils""", """fibrinogen""", """fibroblast""", """fibroblast-like""", """fibroblast-mediated""", """fibroblasts""", """fibrogenesis""", """fibroids""", """fibroma""", """fibromyalgia""", """fibronectin""", """fibrosis""", """fibrosis-related""", """fibrotic""", """fibrous""", """fidelity""", """fidelity-enforcing""", """field""", """field-based""", """field-far""", """field-testing""", """fieldnotes""", """fields""", """fieldwork""", """fifteen""", """fifth""", """fifty""", """fifty-five""", """fifty-four""", """fifty-six""", """fifty-three""", """fifty-two""", """fig""", """figaro""", """fight""", """fighting""", """figo""", """figure""", """figured""", """figures""", """filament""", """filaments""", """file""", """files""", """fill""", """filled""", """filling""", """film""", """films""", """filopodia""", """filter""", """filtered""", """filtering""", """filtration""", """final""", """finalizing""", """finally""", """financial""", """financially""", """financing""", """find""", """finding""", """findings""", """finds""", """fine""", """fine-grained""", """fine-needle""", """fine-tune""", """fine-tuned""", """finely""", """finger""", """fingernail""", """fingerprints""", """fingers""", """finishing""", """finland""", """finnish""", """fio""", """fire""", """firecracker-related""", """fires""", """firing""", """firm""", """firmly""", """firmness""", """firms""", """firre""", """first""", """first-born""", """first-generation""", """first-level""", """first-line""", """first-order""", """first-year""", """firstly""", """fis""", """fiscal""", """fischer""", """fish""", """fisher""", """fission""", """fission-yeast""", """fistula""", """fit""", """fit-dna""", """fitbit""", """fitc-dextran""", """fitness""", """fits""", """fitted""", """fitting""", """five""", """five-day""", """five-dimensional""", """five-week-long""", """five-year""", """fix""", """fixation""", """fixations""", """fixative""", """fixed""", """fixed-anchor""", """fixed-duration""", """fixed-speed""", """fizemos""", """flagella""", """flagellar""", """flagellin-only""", """flagellum""", """flank""", """flanked""", """flanking""", """flap""", """flaps""", """flare""", """flares""", """flash""", """flat""", """flavin-containing""", """flavine""", """flavivirus-endemic""", """flavonoids""", """flaws""", """flesh-colored""", """flexibility""", """flexible""", """flexion""", """flexor""", """flexors""", """flies""", """flim""", """flint""", """flip""", """flls""", """floods""", """floor""", """flooring""", """flooring-attributable""", """floorings""", """flora""", """floral""", """florence""", """florescence""", """florida""", """florigen""", """flow""", """flow-through""", """flower""", """flowering""", """flowering-time""", """flowrate""", """fls""", """flt3""", """flt3-itd""", """flt3-itd-driven""", """flt3-itd-induced""", """flualprazolam""", """fluctuate""", """fluctuating""", """fluctuation""", """fluctuations""", """fluence""", """fluency""", """fluid""", """fluidity""", """fluids""", """fluorescein""", """fluorescence""", """fluorescent""", """fluorimetry""", """fluorinated""", """fluorine""", """fluorodeoxyglucose""", """fluorophore-labelled""", """fluorophores""", """fluoroquinolone""", """fluorous""", """flutter""", """flux""", """fluxes""", """flw""", """fly""", """fmd""", """fmri""", """fms""", """fms-like""", """fnac""", """fnhct""", """fnhcts""", """foam""", """fobt""", """focal""", """foci""", """focus""", """focused""", """focuses""", """focusing""", """focussed""", """focusses""", """foetal""", """foetus""", """foi""", """foil""", """fois""", """fold""", """folders""", """folding""", """folds""", """foldx""", """foliar""", """follicle""", """follicles""", """follicular""", """follow""", """follow-up""", """followed""", """followed-up""", """followers""", """following""", """follows""", """fomites""", """fontanelle""", """food""", """food-related""", """foodlit-pro""", """foodlit-tool""", """foods""", """foot""", """foot-head""", """for""", """for-profit""", """foraging""", """foram""", """foramen""", """force""", """forced""", """forceful""", """forces""", """forearm""", """forecast""", """forecasting""", """forefront""", """forehead""", """foreign""", """foreign-accented""", """forensic""", """forest""", """foresters""", """forestland""", """forestry""", """forests""", """fork""", """forks""", """form""", """formal""", """formalin""", """formalin-fixed""", """formally""", """formant""", """formant-based""", """formants""", """format""", """formation""", """formative""", """formats""", """formed""", """former""", """formidable""", """forming""", """forms""", """formula""", """formulated""", """formulation""", """formulations""", """formylation""", """forthcoming""", """fortunately""", """forty""", """forty-one""", """forty-seven""", """forty-six""", """forty-three""", """forty-two""", """forum""", """forums""", """forward""", """forwarded""", """forwards""", """fossa""", """foster""", """fostered""", """fostering""", """found""", """foundation""", """foundational""", """founded""", """four""", """four-cell""", """four-dose""", """four-item""", """four-level""", """four-stranded""", """four-year""", """fournier""", """fourteen""", """fourth""", """fourth-year""", """fox""", """foxa1""", """foxo1""", """foxo3a""", """foxp3""", """fpa""", """fpl""", """fqhc""", """fraco""", """fraction""", """fractional""", """fractionation""", """fracture""", """fractured""", """fractures""", """fragile""", """fragment""", """fragmentation""", """fragmented""", """fragments""", """frame""", """framed""", """frames""", """frameshift""", """framework""", """frameworks""", """framing""", """framingham""", """framings""", """france""", """fraud""", """frc""", """free""", """free-living""", """freed""", """freely""", """freezers""", """freezing""", """freiburg""", """french""", """frequencies""", """frequency""", """frequency-matched""", """frequent""", """frequentist""", """frequently""", """fresh""", """fresh-frozen""", """freshmen""", """frey""", """fri""", """friedman""", """friendly""", """friends""", """from""", """front""", """frontal""", """frontier""", """frontline""", """frontoparietal""", """frontotemporal""", """frozen""", """frrs1l""", """fructose""", """fruit""", """fruitfully""", """fruiting""", """fruits""", """frustrating""", """fst""", """fsta""", """ft4""", """ftr""", """fuchs""", """fuel""", """fujian""", """fukuoka""", """fulfil""", """fulfill""", """fulfilled""", """fulfilling""", """full""", """full-adjusted""", """full-length""", """full-night""", """full-scale""", """full-siblings""", """full-term""", """full-text""", """full-time""", """fully""", """fully-adjusted""", """fully-differentiated""", """fulminant""", """fulvic""", """fun""", """function""", """function-induced""", """function-related""", """functional""", """functionality""", """functionalization""", """functionalizations""", """functionally""", """functioned""", """functioning""", """functions""", """fund""", """fundamental""", """funded""", """funding""", """funds""", """fundus""", """fungal""", """fungicide""", """fungus""", """fur""", """furan""", """furoate""", """further""", """furthermore""", """furthest""", """fus""", """fus-targeted""", """fused""", """fusiform""", """fusin""", """fusion""", """fusions""", """fusobacterium""", """future""", """fuzzy""", """fvc""", """fxi""", """fxii""", """g-bp""", """g-quadruplex""", """g163""", """g26r""", """g2m""", """gaas""", """gaba""", """gabapentin""", """gacs""", """gadd45a""", """gadolinium""", """gain""", """gain-""", """gain-frequency""", """gain-of-function""", """gained""", """gaining""", """gains""", """gait""", """gal-3""", """galactis""", """galactorrhoea""", """galectin-3""", """galidesivir""", """galileo""", """gallbladder""", """gamble""", """game""", """gamete""", """gamma""", """gamma-glutamyl""", """ganglia""", """ganglion""", """ganglionopathy""", """gangrene""", """ganja""", """gantry""", """gao""", """gap""", """gap43""", """gaps""", """garch""", """garlanda""", """garment""", """garments""", """garnered""", """garp""", """gas""", """gas-solid""", """gases""", """gasotransmitter""", """gastrectomy""", """gastric""", """gastro-esophageal""", """gastro-oesophageal""", """gastroenteritis""", """gastroenterologist""", """gastrointestinal""", """gastroretentive""", """gastroschisis""", """gastrula""", """gastrulation""", """gata3""", """gatekeepers""", """gather""", """gathered""", """gauge""", """gauged""", """gauze""", """gave""", """gay""", """gaze""", """gbm""", """gbm-organoids""", """gbms""", """gbs""", """gc-ecd""", """gc-ms""", """gca""", """gcc""", """gci""", """gck""", """gck-mody""", """gcl""", """gcn2""", """gcns""", """gcs""", """gdm""", """gdmt""", """geal""", """gel""", """gelatin""", """gels""", """gender""", """gender-""", """gender-adjusted""", """gender-based""", """gender-matched""", """genderless""", """genders""", """gene""", """gene-1193c""", """gene-184t""", """gene-based""", """gene-editing""", """gene-regulatory""", """gene-specific""", """genera""", """general""", """generalisability""", """generalizability""", """generalizable""", """generalized""", """generally""", """generate""", """generated""", """generates""", """generating""", """generation""", """generational""", """generations""", """generic""", """genes""", """genesis""", """genetic""", """genetically""", """geneticists""", """genetics""", """genital""", """genitourinary""", """genome""", """genome-edited""", """genome-wide""", """genomes""", """genomic""", """genomics""", """genotoxic""", """genotoxicity""", """genotype""", """genotype-phenotype""", """genotyped""", """genotypes""", """genotypic""", """genotyping""", """genu""", """genus""", """geocoded""", """geographic""", """geographical""", """geographically""", """geometric""", """geometries""", """geometry""", """georgia-a""", """geospatial""", """geriatric""", """germ""", """germania""", """germany""", """germinal""", """germline""", """ges""", """gestation""", """gestational""", """gestion""", """gesture""", """gestures""", """get""", """getting""", """gfi""", """gfp""", """gfp-bound""", """gfp-mediated""", """gfp-tagged""", """gfr""", """gg4""", """gg5""", """gh-cna""", """gh-cnas""", """ghd""", """ghd7""", """ghent""", """ghs""", """giant""", """gibbs""", """giganteum""", """gill""", """gills""", """gingiva""", """gingival""", """ginglymostoma""", """ginkgo""", """girl""", """girlfriends""", """girls""", """gis""", """githago""", """give""", """given""", """gives""", """giving""", """gland""", """glands""", """glans""", """glargine-u100""", """glasgow""", """glassy""", """glaucoma""", """glaucomatous""", """gleaning""", """gleason""", """glia""", """glial""", """glial-specific""", """glioblastoma""", """glioblastomas""", """gliogenesis""", """glioma""", """gliomas""", """gliptin-associated""", """gliptins""", """global""", """globalization""", """globally""", """globe""", """globes""", """globular""", """globules""", """globulin""", """glomerular""", """glomerulonephritis""", """glomerulosa""", """glottal""", """glottic""", """glottis""", """glove""", """glucocorticoid""", """glucocorticoids""", """glucose""", """glucose-lowering""", """glun1""", """glutamate""", """glutamatergic""", """glutathione""", """gluten""", """glycan""", """glycans""", """glycated""", """glycemia""", """glycine""", """glycocalyx""", """glycol""", """glycol-protected""", """glycolipophosphoproteins""", """glycolysis""", """glycolytic""", """glycoprotein""", """glycosylated""", """glycosylation""", """glycosyltransferase""", """gmbh""", """gmc""", """gmp""", """gnas""", """gnomad""", """gnrh""", """gnrha""", """goal""", """goal-setting""", """goals""", """goals-of-care""", """goat""", """god""", """gof""", """going""", """gojjam""", """gold""", """goldmann""", """golestan""", """golgi""", """gonadotropins""", """gone""", """gong""", """gonorrhoea""", """gonzalvez""", """good""", """google""", """gose""", """gose2""", """gose3""", """gose8""", """got""", """govern""", """governance""", """governing""", """government""", """governmental""", """governments""", """gpcrs""", """gps""", """gpus""", """gpx4""", """gqyt""", """gracilicutes""", """grade""", """graded""", """grader""", """graders""", """grades""", """gradient""", """gradients""", """grading""", """gradual""", """gradually""", """graduate""", """graft""", """graft-versus-host""", """grafting""", """grafts""", """grain""", """gram-negative""", """grammar""", """grande""", """granular""", """granulate""", """granule""", """granulocytes""", """granulocytic""", """granulomatous""", """granulosa""", """graph""", """graph-theoretical""", """graphene""", """graphic""", """graphical""", """graphite""", """gras""", """grasp""", """grasping""", """grassland""", """grasslands""", """grassroots""", """graves""", """gravid""", """gravida""", """gravis""", """gravitational""", """gravity""", """gray""", """grazing""", """grbas""", """grbash""", """great""", """greater""", """greatest""", """greatly""", """greco-roman""", """greek""", """green""", """green-reflectance""", """greenstick""", """gregg""", """gregoryi""", """grew""", """grey""", """griess""", """grimage""", """grimeaa""", """grip""", """grison""", """grocott""", """groin""", """groinss-v""", """groinss-v-ii""", """groningen""", """groomer""", """groomers""", """grooming""", """groove""", """gross""", """grossly""", """ground""", """grounded""", """group""", """group-""", """group-based""", """group-ica""", """grouped""", """grouping""", """groups""", """growing""", """grown""", """growth""", """grupo""", """grupos""", """gsc""", """gscs""", """gse14520""", """gsea""", """gsh""", """gshs""", """gsl""", """gsr""", """gt""", """guadalupe""", """guaiac""", """guanine""", """guanosine""", """guarantee""", """guardian""", """guardians""", """guatemala""", """guatemalan""", """guessed""", """guidance""", """guide""", """guided""", """guideline""", """guideline-directed""", """guideline-specific""", """guidelines""", """guides""", """guiding""", """guild""", """guillain""", """guinea""", """gulf""", """guo""", """gustatory""", """gut""", """gut-liver""", """gvhd""", """gvhd-free""", """gw-related""", """gwas""", """gwass""", """gwi""", """gymnophiona""", """gynaecological""", """gynaecology""", """gynecologic""", """gynecological""", """gynecologists""", """gynecology""", """gyra""", """gyrus""", """h2b""", """h2o""", """h2o2""", """h2s""", """h2s-generating""", """h3k18ac""", """h3k56ac""", """h3k79""", """h9c2""", """habit""", """habitable""", """habitat""", """habitats""", """habits""", """habitually""", """habnc""", """hacettepe""", """had""", """haematological""", """haematopoietic-cell""", """haematoxylin""", """haemefs""", """haemoglobin""", """haemorrhage""", """hai""", """haifeng""", """haiming""", """hair""", """hairpin""", """hairs""", """hairy""", """haiwang""", """halarachne""", """halarachnid""", """halarachnidae""", """half""", """half-century""", """half-siblings""", """halichoeri""", """halides""", """hallmark""", """halls""", """hallucinogen""", """hallucinogens""", """halophilic""", """halos""", """halt""", """halted""", """halved""", """ham-d17""", """ham-d6""", """hamartoma""", """hamburger""", """hamilton""", """hamper""", """hampers""", """han""", """hand""", """hand-sewn""", """hand-tool""", """handbook""", """handful""", """handheld""", """handicap""", """handle""", """handles""", """handling""", """handrail""", """hands""", """handsearched""", """handsearches""", """handsearching""", """hang""", """hanna-attisha""", """hannah-attisha""", """haochuan""", """haploidentical""", """haploidisation-type""", """haplotype""", """haplotypic""", """happened""", """happens""", """happy""", """harbor""", """harbored""", """harbors""", """hard""", """hardest""", """hardness""", """hardware""", """hare""", """harm""", """harm-benefit""", """harmful""", """harming""", """harmless""", """harmonic""", """harmonics""", """harms""", """harness""", """harnessed""", """harris""", """harris-benedict""", """harsh""", """harvest""", """harvested""", """harvesting""", """harvey""", """has""", """hash""", """hashimoto""", """hasls""", """hassles""", """hasson""", """hasta""", """hastening""", """hastens""", """hatching""", """have""", """having""", """hawaii""", """hazard""", """hazardous""", """hazards""", """haze""", """hb-4""", """hba1c""", """hbeag""", """hbeag-positive""", """hbi""", """hbp""", """hbsag""", """hbt""", """hbv""", """hcc""", """hcc-related""", """hccs""", """hcid""", """hck""", """hcl""", """hcov""", """hcovs-severe""", """hcps""", """hcs""", """hct""", """hcws""", """hd1""", """hd3a""", """hda6""", """hdac3""", """hdl""", """hdl-c""", """hdp""", """hdr""", """hds""", """hds-induced""", """hdss""", """head""", """head-on""", """head-to-head""", """headache""", """headaches""", """healed""", """healing""", """health""", """health-""", """health-an""", """health-related""", """healthcare""", """healthspan""", """healthy""", """hearing""", """hearing-impaired""", """hearing-impairment""", """heart""", """heat""", """heated""", """heatshock""", """heavily""", """heavy""", """heavy-cac""", """heavy-load""", """hect""", """hedgehog""", """heidelberg""", """height""", """heightened""", """heights""", """hela""", """held""", """helically""", """helicase""", """helicobacter""", """helix-turn-helix""", """help""", """help-seeking""", """helped""", """helper""", """helpful""", """helping""", """helplessness""", """helps""", """hema-topoietic""", """hemagglutinin""", """hemato-oncologic""", """hematocrit""", """hematologic""", """hematological""", """hematoma""", """hematomas""", """hematopoietic""", """hematoxylin""", """hemi-contusion""", """hemidesmosomal""", """hemispheres""", """hemispherical""", """hemodialysis""", """hemodynamic""", """hemodynamic-malformation""", """hemodynamics""", """hemoglobin""", """hemoglobinopathies""", """hemoglobinopathy""", """hemolymph""", """hemolysis""", """hemolytic""", """hemoperitoneum""", """hemophilia""", """hemoptysis""", """hemorrhage""", """hemorrhages""", """hemorrhagic""", """hemostasis""", """hemostatic""", """hence""", """hep3b""", """heparin""", """heparin-free""", """hepatectomy""", """hepatic""", """hepatitic""", """hepatitis""", """hepato-biliary""", """hepatobiliary-pancreatic""", """hepatocellular""", """hepatocyte-specific""", """hepatocytes""", """hepatological""", """hepatologist""", """hepatologists""", """hepatopancreaticobiliary""", """hepatorenal""", """hepatotoxicity""", """hepg2""", """her""", """her2""", """herald""", """heralding""", """herbal""", """herbicides""", """herbivory""", """herbs""", """herd""", """here""", """hereditary""", """herein""", """heritability""", """heritable""", """hernia""", """hernias""", """herniated""", """herniation""", """heroin""", """herpes""", """herpesvirus""", """herpetiformis""", """hesitancy""", """hesitant""", """heteroatomic""", """heterochromatin""", """heteroduplex""", """heterogeneity""", """heterogeneous""", """heterogenous""", """heterologous""", """heterophilic""", """heterosexual""", """heterotrimeric""", """heterozygosis""", """heterozygous""", """heuristic""", """hexacyanide""", """hfa""", """hfcd""", """hfcwo""", """hfd""", """hfls""", """hfpef""", """hfref""", """hfte""", """hgd""", """hgsc""", """hh29""", """hhas""", """hhd""", """hhpred""", """hhqrp""", """hht""", """hhv8""", """hidden""", """hidradenitis""", """hidroacanthoma""", """hids""", """hie""", """hierarchical""", """hierarchies""", """hierarchy""", """high""", """high-acuity""", """high-certainty""", """high-consequence""", """high-content""", """high-copy-number""", """high-deductible""", """high-density""", """high-detecting""", """high-dose""", """high-energy""", """high-entropy""", """high-familial""", """high-fat""", """high-frequency""", """high-grade""", """high-gradient""", """high-income""", """high-intensity""", """high-level""", """high-molecular-weight""", """high-oxidation""", """high-performance""", """high-profile""", """high-quality""", """high-resolution""", """high-risk""", """high-spatial-resolution""", """high-speed""", """high-strength""", """high-sucrose""", """high-temperature""", """high-throughput""", """high-titer""", """high-value""", """high-volume""", """higher""", """higher-dose""", """higher-income""", """higher-powered""", """higher-quality""", """higher-than-expected""", """highest""", """highest-quality""", """highest-ranking""", """highlight""", """highlighted""", """highlighting""", """highlights""", """highly""", """highway""", """hilar""", """hill-climbing""", """hind""", """hinder""", """hindered""", """hindustani""", """hinges""", """hip""", """hipaa""", """hipaa-compliant""", """hipaa-noncompliant""", """hipec""", """hipertensos""", """hippa""", """hippocampal""", """hippocampus""", """hips""", """hirsutism""", """his""", """hispanic""", """histiocytoma""", """histocompatibility""", """histologic""", """histological""", """histologically""", """histology""", """histomorphometric""", """histone""", """histone-involved""", """histones""", """histopathologic""", """histopathological""", """histopathologically""", """histopathology""", """histoplasmosis""", """historic""", """historical""", """historically""", """histories""", """history""", """histotype""", """hit""", """hitch""", """hits""", """hiv""", """hiv-1""", """hiv-related""", """hivd""", """hla""", """hla-b27""", """hla-dq2""", """hla-dr-presented""", """hla-drb1""", """hla-matched""", """hld""", """hld-reprocessed""", """hli""", """hllw""", """hmg-coa""", """hmga2""", """hmmer""", """hmnc""", """hmt""", """hnc""", """hncs""", """hno3""", """hnscc""", """hoc""", """hodgkin""", """hoffmann-la""", """hold""", """holds""", """holes""", """holidays""", """holoenzyme""", """hologenome""", """home""", """home-based""", """home-prepared""", """home-to-home""", """homelessness""", """homeobox""", """homeostasis""", """homeostatic""", """homes""", """homicide""", """homme""", """homo-tetramer""", """homochirality""", """homogenates""", """homogeneity""", """homogeneous""", """homogenise""", """homogenous""", """homolog""", """homologous""", """homologs""", """homologue""", """homology""", """homology-based""", """homopolymers""", """homosexual""", """homozygous""", """hone""", """honey""", """hongliang""", """hope""", """hopg""", """hoping""", """hopkins""", """horizon""", """horizontal""", """horizontally""", """hormonal""", """hormone""", """hormone-binding""", """hormone-producing""", """hormone-sensitive""", """hormones""", """horse""", """hosmer-lemeshow""", """hospitais""", """hospital""", """hospital-based""", """hospital-level""", """hospitalar""", """hospitalares""", """hospitalisation""", """hospitalisations""", """hospitalised""", """hospitalization""", """hospitalizations""", """hospitalized""", """hospitals""", """host""", """host-associated""", """host-encoded""", """host-mite""", """hostile""", """hosts""", """hot""", """hot-spot""", """hotline""", """hotlines""", """hotspot""", """hotspots""", """hours""", """house""", """house-dust-mite-specific""", """housebound""", """household""", """households""", """houses""", """housing""", """how""", """however""", """hox""", """hoxa10""", """hoxa9""", """hpa""", """hpde6-c7""", """hpg""", """hplc""", """hplc-uv""", """hpmc""", """hpv""", """hpv-associated""", """hpv-induced""", """hpv-negative""", """hpv-positive""", """hpvod""", """hr-mediated""", """hras""", """hrm""", """hrp""", """hrql""", """hrs""", """hsa-mir-361-3p""", """hsa-mir-3907""", """hsa-mir-4257""", """hsa-mir-4788""", """hsa-mir-5001-5p""", """hsa-mir-501-5p""", """hsa-mir-6732-3p""", """hsa-mir-767-5p""", """hsc""", """hscl-25""", """hscs""", """hsct""", """hsct-related""", """hsp70""", """hspc""", """hspcs""", """hst""", """hte""", """hth""", """htn""", """hts""", """htt""", """https""", """hub""", """hubei""", """hudson""", """huge""", """hum00169949""", """humain""", """humaines""", """human""", """human-associated""", """human-computer""", """human-gastrointestinal""", """human-made""", """human-mobilized""", """human-specific""", """humanities""", """humans""", """humby""", """humic""", """humidified""", """humidity""", """humoral""", """humors""", """humphrey""", """humsafar""", """hundred""", """hundreds""", """hungary""", """hunger""", """hunter""", """hunting""", """huntington""", """hurdles""", """hush""", """huvec""", """hyalinizing""", """hyaluronic""", """hybrid""", """hybridization""", """hybrids""", """hydrating""", """hydration""", """hydraulic""", """hydrocephalus""", """hydrochloride""", """hydrofit""", """hydrogels""", """hydrogen""", """hydromorphone""", """hydronephrosis""", """hydrophilic""", """hydrophobic""", """hydroxocobalamin""", """hydroxyl""", """hydroxylated""", """hydroxymethyl""", """hydroxypropyl""", """hygiene""", """hygienic""", """hyou1""", """hyper-dmgs""", """hyper-low-density""", """hyper-oxygenation""", """hyperactivity""", """hyperaemia""", """hyperaggregable""", """hyperalgesia""", """hyperandrogenism""", """hypercalcaemia""", """hypercalciuria""", """hypercellular""", """hypercontractile""", """hyperdivergent""", """hyperemia-dependent""", """hyperexcitability""", """hyperglycemia""", """hypergonadotropic""", """hyperhidrosis""", """hyperinfectivity""", """hyperinflammatory""", """hyperintensities""", """hyperkalaemia""", """hyperkalemia""", """hyperlipidemia""", """hypermetabolic""", """hypermetabolism""", """hypermethylated""", """hypermethylation""", """hyperpermeability""", """hyperphosphataemia""", """hyperphosphorylated""", """hyperphosphorylation""", """hyperpigmented""", """hyperplasia""", """hyperplastic""", """hyperpolarized""", """hyperreflective""", """hypersensitivity""", """hypersomnia""", """hypersonic""", """hypertension""", """hypertension-related""", """hypertensive""", """hyperthermic""", """hyperthyroid""", """hyperthyroidism""", """hyperthyroxinemia""", """hypertrophic""", """hypertrophy""", """hypervascularized""", """hypervelocity""", """hyphae""", """hypo-""", """hypo-dmgs""", """hypo-hormonal""", """hypoalbuminemia""", """hypoallergenic""", """hypocalcemia""", """hypocretin""", """hypoesthesia""", """hypogammaglobulinemia""", """hypogastric""", """hypoglycemia""", """hypogonadism""", """hypogonadotrophic""", """hypoinflammatory""", """hypometabolic""", """hypometabolism""", """hypomethylated""", """hypomethylating""", """hypomethylation""", """hypomyelination""", """hyponatremia""", """hypoparathyroid""", """hypoparathyroidism""", """hypoperfusion""", """hypopharynx""", """hypophysis""", """hypopnea""", """hyporesponsive""", """hypospadias""", """hypotension""", """hypothalamic-pituitary""", """hypothalamic-pituitary-gonadal""", """hypothalamus-pituitary-adrenal""", """hypothermia""", """hypothermic""", """hypotheses""", """hypothesis""", """hypothesise""", """hypothesize""", """hypothesized""", """hypothetical""", """hypotonia""", """hypotony""", """hypoxemia""", """hypoxia""", """hypoxia-triggered""", """hypoxic""", """hysterectomy""", """hysteroscopic""", """hysteroscopy""", """i-6""", """i-bp""", """i-dna""", """i-f3""", """i-ii""", """i-ionm""", """i-motif""", """i-square""", """iai""", """iamcsst""", """iatrogenic""", """ibd""", """ibm""", """ibrutinib""", """ibrutinib-""", """ibrutinib-resistant""", """ibs""", """ibuprofen""", """ic95""", """ica""", """icans""", """icc""", """icd""", """icd-10""", """icd-10-cm""", """icd-9""", """icd-9-cm""", """ice""", """ich""", """ici""", """icis""", """icosapent""", """ics""", """icsi""", """ictrp""", """icu""", """icus""", """idade""", """idc""", """idcr""", """idd""", """idea""", """ideal""", """idealized""", """ideally""", """ideas""", """idecabtagene""", """identical""", """identifiable""", """identification""", """identified""", """identifier""", """identifiers""", """identifies""", """identify""", """identifying""", """identity""", """identity-based""", """identity-discrimination""", """idfs""", """idh1""", """idh1-wild-type""", """idioma""", """idiopathic""", """idiosyncratic""", """ido1""", """ids""", """idx-184""", """ifcc""", """ifl""", """ifn""", """ifn-stimulated""", """iga""", """ige""", """igf""", """igf-1""", """igf-i""", """igg""", """igh""", """igk""", """igm""", """ignoring""", """ih-dependent""", """ih10""", """ihc""", """ihd""", """ii-iv""", """iii""", """iii-iv""", """iii-v""", """ikdc""", """ikt""", """il-10""", """il-12p40""", """il-15""", """il-17""", """il-17-mediated""", """il-17a""", """il-17i""", """il-17r""", """il-17ra""", """il-17rc""", """il-18""", """il-18-driven""", """il-18-treated""", """il-2-inducible""", """il-23i""", """il-6""", """il-6r""", """il-9""", """ileal""", """iliac""", """iliaca""", """ilibrary""", """ill""", """ill-defined""", """illegal""", """illicit""", """illinois""", """illness""", """illnesses""", """illuminated""", """illuminates""", """illuminating""", """illumination""", """illustrate""", """illustrated""", """illustrates""", """illustrating""", """illustrations""", """ils""", """im20""", """im60""", """ima""", """ima-p""", """ima-r""", """image""", """image-based""", """imaged""", """imagej""", """images""", """imagined""", """imaging""", """imagining""", """imbalance""", """imbalances""", """imc""", """imiquimod""", """imitated""", """imitating""", """imitation""", """immature""", """immediate""", """immediately""", """immigrants""", """imminent""", """immobility""", """immobilization""", """immune""", """immune-based""", """immune-inflammation""", """immune-mediated""", """immune-related""", """immune-system-related""", """immunisation""", """immunity""", """immunization""", """immunized""", """immuno-oncology""", """immunoabsorption""", """immunoassay""", """immunoassays""", """immunobiology""", """immunoblotting""", """immunochemical""", """immunocompetence""", """immunocompetent""", """immunocytochemical""", """immunodeficiency""", """immunodeficient""", """immunodepletion""", """immunofluorescence""", """immunogenic""", """immunogenicity""", """immunogenomic""", """immunoglobulin""", """immunoglobulin-like""", """immunohistochemical""", """immunohistochemistry""", """immunoinformatic""", """immunologic""", """immunological""", """immunologists""", """immunomodulation""", """immunomodulatory""", """immunopathological""", """immunopathology""", """immunoperoxidase""", """immunophenotyping""", """immunoprecipitation""", """immunoprecipitation-sequencing""", """immunoreactive""", """immunoregulatory""", """immunosorbent""", """immunostaining""", """immunostimulatory""", """immunosuppressant""", """immunosuppressants""", """immunosuppressed""", """immunosuppression""", """immunosuppressive""", """immunotherapies""", """immunotherapy""", """immunotherapy-treated""", """immunotolerant""", """impact""", """impacted""", """impactful""", """impacting""", """impacts""", """impair""", """impaired""", """impairing""", """impairment""", """impairments""", """impairs""", """impart""", """impassable""", """impediments""", """impeding""", """impending""", """imperative""", """imperfect""", """imperiled""", """implant""", """implantable""", """implantation""", """implanted""", """implants""", """implement""", """implementation""", """implemented""", """implementers""", """implementing""", """implicate""", """implicated""", """implicating""", """implication""", """implications""", """implicit""", """implied""", """implies""", """imply""", """implying""", """import""", """import2""", """importance""", """important""", """importantly""", """imported""", """importing""", """impose""", """imposed""", """imposing""", """imprecision""", """impression""", """impression-improvement""", """imprint""", """imprinted""", """imprints""", """improper""", """improve""", """improved""", """improvement""", """improvements""", """improves""", """improving""", """impthe""", """impulse""", """impulsivity""", """impurity""", """imputation""", """impute""", """imsi""", """in""", """in-bag""", """in-center""", """in-depth""", """in-frame""", """in-hospital""", """in-house""", """in-office""", """in-person""", """in-phase""", """in-process""", """in-silico""", """in-situ""", """in-vitro""", """in-vivo""", """inability""", """inaccessible""", """inaccurate""", """inactivated""", """inactivating""", """inactivation""", """inactive""", """inactivity""", """inadequacies""", """inadequate""", """inadequately""", """inadvertently""", """inappropriate""", """inappropriately""", """inbred""", """inc""", """inca""", """incarcerated""", """incentive""", """incentives""", """inception""", """inchoate""", """incidence""", """incidences""", """incident""", """incidental""", """incidentally""", """incidentaloma""", """incidents""", """incision""", """incisional""", """incisions""", """incisor""", """incisors""", """inclination""", """inclination-dependent""", """inclinometers""", """include""", """included""", """includes""", """including""", """incluiu""", """inclusion""", """inclusive""", """income""", """incoming""", """incompatibilities""", """incompatibility""", """incompatible""", """incomplete""", """incompletely""", """inconclusive""", """inconsistencies""", """inconsistency""", """inconsistent""", """incontinence""", """incorporate""", """incorporated""", """incorporates""", """incorporating""", """incorporation""", """incorrect""", """incorrectly""", """increase""", """increased""", """increases""", """increasing""", """increasingly""", """increment""", """incremental""", """incubate""", """incubated""", """incubating""", """incubation""", """incubator""", """incubators""", """incurable""", """indeed""", """indefinite""", """indel""", """indels""", """independent""", """independent-signal""", """independentes""", """independently""", """index""", """index-""", """indexed""", """indexical""", """indexing""", """india""", """indian""", """indiana""", """indica""", """indicate""", """indicated""", """indicates""", """indicating""", """indication""", """indications""", """indicative""", """indicator""", """indicators""", """indices""", """indigenous""", """indirect""", """indirectly""", """indirectness""", """indispensable""", """indisputable""", """indistinguishable""", """individual""", """individual-""", """individual-level""", """individualised""", """individualized""", """individually""", """individuals""", """indocyanine""", """indole-3-acetic""", """indoleamine""", """indolent""", """indomethacin""", """indonesia""", """indonesian""", """indoor""", """induce""", """induced""", """inducers""", """induces""", """inducible""", """inducibly""", """inducing""", """induction""", """inductions""", """inductive""", """inductively""", """indurated""", """industrial""", """industrial-scale""", """industrialized""", """industrially""", """industries""", """industry""", """industry-based""", """ineffective""", """ineffectiveness""", """ineligibility""", """inequalities""", """inequities""", """inert""", """inertia""", """inertial""", """inexpensive""", """inexperienced""", """inf""", """infancy""", """infant""", """infantile""", """infants""", """infarct""", """infarcted""", """infarction""", """infarctions""", """infarto""", """infected""", """infecting""", """infection""", """infection-induced""", """infectionacross""", """infectionis""", """infections""", """infectionvary""", """infectious""", """infective""", """infectivity""", """infer""", """inference""", """inferences""", """inferential""", """inferior""", """inferotemporal""", """inferring""", """infertility""", """infestation""", """infestations""", """infested""", """infesting""", """infiltrate""", """infiltrated""", """infiltrates""", """infiltrating""", """infiltration""", """infiltrative""", """infinite""", """infinium""", """inflamed""", """inflammation""", """inflammatory""", """inflatable""", """inflating""", """inflation""", """inflation-adjusted""", """inflection""", """inflicting""", """infliximab""", """inflorescences""", """influence""", """influenced""", """influences""", """influencing""", """influential""", """influenza""", """info""", """inform""", """informally""", """informants""", """information""", """informational""", """informative""", """informativos""", """informed""", """informing""", """informs""", """infrapontine-suprasacral""", """infrared""", """infrastructure""", """infrequently""", """infringe""", """infundibula""", """infundibulocystic""", """infusion""", """infusions""", """ingenol""", """ingenuity""", """ingestion""", """ingredient""", """ingredients""", """ingresos""", """inguinofemoral""", """inhalation""", """inhalational""", """inhaled""", """inhaler""", """inhd""", """inherent""", """inherently""", """inheritable""", """inheritance""", """inherited""", """inhibait""", """inhibant""", """inhibit""", """inhibited""", """inhibiting""", """inhibition""", """inhibitor""", """inhibitor-associated""", """inhibitors""", """inhibitory""", """inhibits""", """inicialmente""", """initial""", """initially""", """initiate""", """initiated""", """initiating""", """initiation""", """initiative""", """initiatives""", """initiator""", """initio""", """inject""", """injectable""", """injected""", """injecting""", """injection""", """injections""", """injured""", """injuries""", """injury""", """injury-""", """injury-related""", """injustice""", """inland""", """inlet""", """innate""", """inner""", """innervation""", """innovation""", """innovations""", """innovative""", """inorganic""", """inotropes""", """inpatient""", """inpatients""", """input""", """inputs""", """inquires""", """inquiring""", """inr""", """inrud""", """inscriptions""", """insecticide""", """insecticides""", """insecurity""", """insensitive""", """insert""", """insertase""", """insertion""", """insertions""", """inside""", """insight""", """insights""", """insignificant""", """insoluble""", """insomnia""", """inspected""", """inspection""", """inspiration""", """inspire""", """inspired""", """inspiring""", """instability""", """instagram""", """installations""", """instance""", """instances""", """instantaneous""", """instead""", """instigate""", """institute""", """instituted""", """institutes""", """institution""", """institutional""", """institutions""", """instruct""", """instructed""", """instruction""", """instructions""", """instructive""", """instrument""", """instrumental""", """instrumentation""", """instruments""", """insufficiency""", """insufficient""", """insufficiently""", """insula""", """insulin""", """insulin-like""", """insulin-secreting""", """insulinoma""", """insulinomas""", """insulins""", """insult""", """insurance""", """insured""", """insurer""", """insurers""", """intact""", """intake""", """intakes""", """integral""", """integrate""", """integrated""", """integrates""", """integrating""", """integration""", """integrative""", """integrity""", """intellectual""", """intelligence""", """intelligent""", """intelligibility""", """intelligible""", """intend""", """intended""", """intends""", """intense""", """intensification""", """intensified""", """intensities""", """intensity""", """intensity-modulated""", """intensive""", """intensive-care""", """intensively""", """intent""", """intent-to-treat""", """intention""", """intention-to-treat""", """intentional""", """intentionally""", """intentions""", """inter-domain""", """inter-homolog""", """inter-operator""", """inter-phylum""", """inter-quartile""", """inter-rater""", """inter-reader""", """interact""", """interacted""", """interacting""", """interaction""", """interactionist""", """interactions""", """interactive""", """interactomes""", """interacts""", """interbody""", """intercalated""", """interception""", """intercepts""", """interconnected""", """interconnection""", """intercourse""", """interdisciplinary""", """interest""", """interested""", """interesting""", """interestingly""", """interests""", """interface""", """interfaces""", """interfere""", """interference""", """interfering""", """interferon""", """interfollicular""", """intergenerational""", """intergovernmental""", """interictal""", """interim""", """interindividual""", """interior""", """interleukin""", """interleukin-1-associated""", """interleukin-15""", """interleukin-2""", """interleukin-6""", """intermediate""", """intermediate-""", """intermediate-acting""", """intermediate-risk""", """intermediates""", """intermedius""", """intermittent""", """intermolecular""", """internados""", """internal""", """internalization""", """internalize""", """internalized""", """internalizing""", """internally-generated""", """internation""", """international""", """internationally""", """internet""", """interneurons""", """interobserver""", """interpersonal""", """interplay""", """interposition""", """interpretation""", """interpreted""", """interpreting""", """interprofessional""", """interquartile""", """interrater""", """interrelated""", """interrelationships""", """interrogate""", """interrogating""", """interrogation""", """interrupted""", """interrupts""", """interscalene""", """interscapular""", """intersect""", """intersection""", """intersex""", """interspecies""", """interstitial""", """intersubject""", """intersubspecific""", """intertwined""", """interval""", """intervals""", """intervene""", """intervention""", """intervention-the""", """interventional""", """interventions""", """interventricular""", """intervertebral""", """interview""", """interviewed""", """interviewer-administered""", """interviewing""", """interviewing-an""", """interviews""", """interweaving""", """interwoven""", """intestinal""", """intestine""", """intimate""", """intimately""", """into""", """intolerance""", """intolerant""", """intoxicated""", """intoxication""", """intoxications""", """intra-""", """intra-abdominal""", """intra-arterial""", """intra-articular""", """intra-cranial""", """intra-hepatic""", """intra-individual""", """intra-operative""", """intra-operator""", """intra-osseous""", """intra-tongue""", """intraamniotic""", """intraarticular""", """intracellular""", """intracerebral""", """intraclass""", """intracordal""", """intracorporal""", """intracorporeal""", """intracranial""", """intracytoplasmic""", """intradermal""", """intradialytic""", """intraductal""", """intraepidermal""", """intraepithelial""", """intraglottal""", """intralesional""", """intramedullary""", """intramuscular""", """intranasal""", """intranasally""", """intraocular""", """intraoperative""", """intraoperatively""", """intraoral""", """intraparenchymal""", """intrapartum""", """intraperitoneal""", """intraplaque""", """intrarater""", """intrasplenic""", """intrathecal""", """intrathoracic""", """intratumor""", """intratumoral""", """intraurban""", """intrauterine""", """intravascular""", """intravenous""", """intravenously""", """intravitreally""", """intricate""", """intricately""", """intriguingly""", """intrinsic""", """intrinsically""", """introduce""", """introduced""", """introducing""", """introduction""", """introductions""", """intron-exon""", """intronic""", """intrusive""", """intubated""", """intubation""", """intuitive""", """invade""", """invading""", """invalid""", """invalidates""", """invaluable""", """invariably""", """invariance""", """invariant""", """invasion""", """invasions""", """invasive""", """invasivity""", """invasivo""", """inventory""", """inventory-student""", """inverse""", """inversely""", """inversion""", """invertebrate""", """invertebrates""", """inverted""", """invest""", """investigar""", """investigate""", """investigated""", """investigates""", """investigating""", """investigation""", """investigations""", """investigative""", """investigator-reported""", """investigators""", """investing""", """invigorated""", """invited""", """invoke""", """involve""", """involved""", """involvement""", """involvements""", """involves""", """involving""", """inwardly""", """iodide""", """iodine""", """iodine-deficient""", """iodine-sufficient""", """iodometry""", """ion""", """ion-exchange""", """ion-size""", """ionic""", """ionized""", """ionizing""", """ionm""", """ions""", """iop""", """ipaq""", """ipe""", """ipilimumab""", """ipmn""", """ipn""", """ipp""", """ippv""", """ipsa""", """ipsc""", """ipscs""", """ipsilateral""", """iptp-sp""", """ipv""", """iqr""", """ir-induced""", """iraes""", """irak4""", """iran""", """iranian""", """iraq""", """irbd""", """irees""", """irf5""", """irf8""", """irg1""", """iri""", """iris""", """irish""", """iroc""", """iron""", """iron-dependent""", """irradiated""", """irradiation""", """irregular""", """irregularities""", """irregularity""", """irrelevant""", """irrespective""", """irreversible""", """irritability""", """irritable""", """irritated""", """irritation""", """irs1""", """irt""", """isc""", """ischemia""", """ischemia-reperfusion""", """ischemic""", """isg""", """isgs""", """isk""", """isks""", """islam""", """islamic""", """island""", """islander""", """isln""", """isln-mediated""", """iso""", """isobolographic""", """isocortical""", """isoenzyme""", """isoform""", """isoform-expressing""", """isoforms""", """isogenic""", """isohemagglutinin""", """isolate""", """isolated""", """isolates""", """isolating""", """isolation""", """isomer""", """isometric""", """isothiocyanate-labelled""", """isotonitazene""", """isotropic""", """isotype""", """isoxazole-9""", """ispor""", """isrctn""", """isrib""", """iss""", """issue""", """issued""", """issues""", """isuog""", """isup""", """isx-9""", """it""", """itaconic""", """italian""", """italy""", """item""", """items""", """iterquartile""", """itk""", """itp""", """itregs""", """its""", """itself""", """iugr""", """iuthree""", """ivc""", """ivf""", """ivig""", """ixekizumab""", """ixodes""", """j-shaped""", """jackknife""", """jail""", """jails""", """jak""", """jak2-positive""", """jan""", """jane""", """janeiro""", """january""", """january-march""", """january-may""", """janus""", """japan""", """japanese""", """japonicus""", """jasmonate""", """jasmonic""", """jaundice""", """javanese""", """javeriana""", """jem-ef""", """jeopardy""", """jersey""", """jia""", """jiangxi""", """jimma""", """jingbo""", """jingze""", """jingzhe""", """jirovecii""", """jitter""", """jml-1""", """jms""", """joanna""", """job""", """jobs""", """john""", """johns""", """joined""", """joining""", """joint""", """jointly""", """joints""", """jolis""", """jonckheere-terpstra""", """jordanian""", """journal""", """journals""", """journey""", """jsct-atg15""", """juan""", """judged""", """judgements""", """judgment""", """judgments""", """judicious""", """julia""", """july""", """jumps""", """jun""", """junction""", """junctional""", """junctions""", """june""", """june-august""", """junior""", """junk""", """jurisdiction""", """just""", """justice""", """justice-referred""", """justified""", """justify""", """juvenile""", """juxta-articular""", """juxtaposed""", """k-means""", """k-mer""", """k-ras-pi3k""", """k187""", """k76""", """kaai""", """kallikrein""", """kansas""", """kaplan-meier""", """kaposi""", """kappa""", """kappa-b""", """karaj""", """karnofsky""", """karyotyping""", """kathmandu""", """kazakhs""", """kcnj10""", """kcnj5""", """kdigo""", """kdm2b""", """kdr""", """keap1""", """kedah""", """keep""", """keeping""", """kelantan""", """keloid-like""", """kentucky""", """kept""", """keratinocyte""", """keratoconus""", """keratocytes""", """keratometric""", """keratopathy""", """keratoplasty""", """keratosis""", """kerman""", """kessler""", """ketamine""", """ketoacidosis""", """ketogenic""", """ketone""", """ketones""", """ketorolac""", """kettering""", """key""", """keyed""", """keywords""", """khz""", """ki67""", """kibo""", """kidney""", """kidneys""", """kids""", """kill""", """killer""", """killing""", """killip""", """kilocalories""", """kilogram""", """kilovoltage""", """kim-1""", """kin-8194""", """kinase""", """kinase-associated""", """kinase-signal""", """kinases""", """kind""", """kindergartens""", """kinds""", """kinematics""", """kinetic""", """kinetically""", """kinetics""", """kingston""", """kinky""", """kirkpatrick""", """kit""", """kits""", """klebsiella""", """klf4""", """kmm520""", """kmt""", """kmt2d""", """knee""", """knife""", """knn""", """knock""", """knock-down""", """knock-in""", """knock-out""", """knockdown""", """knockdown-resistant""", """knocked""", """knockout""", """knot""", """know""", """know-how""", """knowing""", """knowledge""", """known""", """kolmogorov-smirnov""", """konno""", """koos""", """korea""", """korean""", """kpa""", """kpatients""", """kps""", """kragujevac""", """kras""", """kras-targeted""", """krasg12c""", """krill""", """krt""", """kruskal-wallis""", """kwon""", """kyphosis""", """kyrgyzstan""", """l-1""", """l1cam""", """la-dqb1""", """lab""", """lab-assessed""", """lab-based""", """label""", """label-free""", """labeled""", """labeling""", """labelled""", """labels""", """labial""", """labor""", """laboratoire""", """laboratoriais""", """laboratories-non-linear""", """laboratory""", """laboratory-""", """laboratory-confirmed""", """laboratory-scale""", """laborious""", """labour""", """labral""", """labskin""", """laceration""", """lack""", """lacked""", """lacking""", """lacks""", """lactate""", """lactating""", """lactis""", """lactobacillus""", """lactose""", """ladder""", """lag""", """lagged""", """lagoons""", """lake""", """laliga""", """lalitpur""", """lamella""", """lamellae""", """lamin""", """laminectomy""", """laminin""", """lamins""", """lamotrigine""", """lamp""", """lancet""", """landmark""", """landmarks""", """landowners""", """landscape""", """landscapes""", """lange""", """language""", """languages""", """laos""", """laparoendoscopic""", """laparoscopic""", """laparoscopy""", """laparotomy""", """lar""", """large""", """large-for-gestational-age""", """large-scale""", """large-sized""", """large-vessel""", """largely""", """larger""", """largest""", """laricina""", """larix""", """larkin""", """lars""", """larvae""", """larval""", """laryngeal""", """laryngeal-based""", """laryngological""", """laryngostroboscopic""", """larynx""", """las""", """laser""", """laser-induced""", """laser-scanning""", """lasso-regularized""", """last""", """lastly""", """late""", """late-life""", """late-onset""", """late-stage""", """latency""", """latent""", """later""", """lateral""", """laterality""", """laterally""", """latest""", """latex""", """laticifer""", """laticifers""", """latin""", """latinx""", """latitude""", """latitudes""", """latter""", """lattice""", """lattice-based""", """lattices""", """laughing""", """launched""", """lavage""", """laval""", """law""", """laws""", """lay""", """layer""", """layered""", """layers""", """lbc""", """lbcl""", """lbd""", """lbd2""", """lbw""", """lc-ms""", """lc3ii""", """lca""", """lck""", """lcm""", """lcs""", """ldct""", """ldg-derived""", """ldgs""", """ldh""", """ldh-a""", """ldl""", """ldl-c""", """ldlr""", """ldlt""", """ldr""", """lea-2""", """lead""", """leaders""", """leadership""", """leading""", """leading-strand""", """leads""", """leaf""", """leaflet""", """leak""", """leakage""", """leaks""", """lean""", """learn""", """learned""", """learners""", """learning""", """least""", """leave""", """leaves""", """leaving""", """lebanese""", """lebanon""", """lectin""", """lectura""", """led""", """leep""", """left""", """left-hand""", """left-side""", """left-sided""", """leftover""", """leg""", """legacies""", """legacy""", """legal""", """legalisation""", """legalization""", """legionella""", """legions""", """legislation""", """legislative""", """leibovich""", """leiden""", """leilei""", """leiomyosarcoma""", """leishmaniasis""", """leisure""", """leisure-time""", """lemon""", """lenalidomide""", """lends""", """length""", """lengthening""", """lengths""", """lens""", """lens-type""", """lenses""", """lentiginous""", """lentigo""", """leone""", """lep""", """leptin""", """leptospira""", """les""", """lesion""", """lesion-specific""", """lesional""", """lesions""", """less""", """lessen""", """lessened""", """lessening""", """lesser""", """lesson""", """lessons""", """let""", """let-7b""", """lethal""", """lethality""", """letrozole""", """letter""", """letters""", """lettuce""", """leucocyte""", """leukaemia""", """leukaemias""", """leukaemic""", """leukemia""", """leukemianet""", """leukemias""", """leukemogenic""", """leukocyte""", """leukocytes""", """leukopenia""", """leukoplakia""", """leuprorelin""", """levac""", """levator""", """level""", """levels""", """leverage""", """leveraged""", """leveraging""", """levies""", """levine""", """levofloxacin""", """levor""", """levothyroxine""", """leydig""", """leydig-like""", """lflg""", """lga""", """lgan""", """lgb""", """lgbt-advocacy""", """lgbti""", """lgbtq""", """lgbtq-based""", """lgd""", """lge""", """lgx818""", """lhm""", """lhms""", """lhrh""", """liabilities""", """liang""", """liberalization""", """librarian""", """libraries""", """library""", """libre""", """license""", """licensed""", """licensing""", """licheng""", """lidocaine""", """lie""", """lies""", """life""", """life-cycle-engineered""", """life-threatening""", """lifecycle""", """lifeform""", """lifelong""", """lifesaving""", """lifespan""", """lifespans""", """lifestyle""", """lifestyle-related""", """lifetime""", """lifetimes""", """lifting""", """ligament""", """ligaments""", """ligand""", """ligand-binding""", """ligand-free""", """ligand-receptor""", """ligands""", """ligases""", """ligation""", """ligation-based""", """ligations""", """ligature""", """ligature-induced""", """light""", """light-filtering""", """light-load""", """light-sensitive""", """lighter""", """lightgbm""", """lightness""", """lights""", """lightweight""", """lignin""", """liguria""", """lijian""", """like""", """likeable""", """likelihood""", """likelihoods""", """likely""", """likert""", """likewise""", """lilacs""", """limb""", """limb-predominant""", """limbic""", """limbs""", """limelight""", """limit""", """limitation""", """limitations""", """limited""", """limiting""", """limits""", """linc00337""", """lindley""", """line""", """linea""", """lineage""", """lineage-smooth""", """lineages""", """linear""", """linear-quadratic""", """linear-stapled""", """linearly""", """lined""", """liner""", """lines""", """ling""", """lingual""", """linguistic""", """linguistically""", """link""", """linkage""", """linked""", """linking""", """links""", """linnaeus""", """linoleic""", """linolenic""", """lions""", """lip""", """lipid""", """lipid-binding""", """lipid-rich""", """lipidation""", """lipidic""", """lipids""", """lipodystrophy""", """lipopolysaccharide""", """lipoprotein""", """lips""", """liquid""", """liquid-based""", """liquids""", """liquor""", """list""", """listed""", """listener""", """listeners""", """listening""", """listing""", """lists""", """liteqtl""", """literacy""", """literature""", """literatures""", """lithium""", """lithium-pilocarpine""", """lithothamnium""", """little""", """liu""", """lius""", """live""", """live-births""", """lived""", """livedo""", """liver""", """liver-only""", """lives""", """living""", """lizards""", """lkb1-mutant""", """llc""", """lld""", """llds""", """lletz""", """lls""", """llsv""", """lm-smcs""", """lmic""", """lmics""", """lmpr""", """lms""", """ln-esrd""", """lnc""", """lncrna""", """lncrna-mirna-mrna""", """lncrna-ror""", """lncrnas""", """load""", """loader""", """loading""", """loadings""", """loads""", """lobar""", """lobe""", """lobectomy""", """local""", """localised""", """localization""", """localizations""", """localize""", """localized""", """localizes""", """localizing""", """locally""", """located""", """location""", """locations""", """lochans""", """loci""", """lock-in""", """lockdown""", """loco-regional""", """locomotor""", """locus""", """locus-specific""", """lod""", """log""", """log-linear""", """log-rank""", """log10""", """log2kim-1""", """log2nag""", """log2ngal""", """log2nt-probnp""", """logcs""", """logiboost""", """logic""", """logistic""", """logistics""", """logit""", """logmar""", """logs""", """loneliness""", """lonely""", """long""", """long-acting""", """long-chain""", """long-day""", """long-distance""", """long-lasting""", """long-lived""", """long-term""", """longer""", """longer-term""", """longest""", """longevity""", """longicaudis""", """longitudes""", """longitudinal""", """longitudinally""", """longspur""", """longspurs""", """longstanding""", """lontra""", """look""", """looked""", """loop""", """loop-a""", """loosening""", """loosenings""", """lordosis""", """los""", """lose""", """losing""", """loss""", """loss-""", """loss-of-function""", """losses""", """lost""", """lot""", """loudness""", """low""", """low-""", """low-barrier""", """low-certainty""", """low-confidence""", """low-cost""", """low-cryogen""", """low-density""", """low-dose""", """low-ejection""", """low-fat""", """low-flow""", """low-frequency""", """low-grade""", """low-gradient""", """low-income""", """low-intensity""", """low-level""", """low-order""", """low-quality""", """low-resolution""", """low-resource""", """low-risk""", """low-salt""", """low-temperature""", """low-threshold""", """low-titer""", """lower""", """lower-age""", """lower-dose""", """lower-income""", """lowered""", """lowering""", """lowers""", """lowest""", """lowest-income""", """loyalty""", """lpcc""", """lpp""", """lps""", """lps-induced""", """lrtis""", """lsd""", """lsr""", """lstm""", """ltc""", """ltd""", """ltp""", """ltt""", """luad""", """lubben""", """lublin""", """lucidum""", """luciferase""", """ludgunensis""", """lum-201""", """lumbar""", """lumen""", """lumenal""", """luminal""", """luminance""", """luminancia""", """luminescence""", """lump""", """lumpectomy""", """lund-mackay""", """lung""", """lungs""", """lupus""", """lusterless""", """luteinising""", """lutrinids""", """lutris""", """luts""", """lvef""", """lxxlxxlxx""", """lyme""", """lymph""", """lymphadenectomy""", """lymphangiography-guided""", """lymphangioproliferative""", """lymphatic""", """lymphatics""", """lymphoblastic""", """lymphocyte""", """lymphocyte-associated""", """lymphocyte-specific""", """lymphocytes""", """lymphocytic""", """lymphohematologic""", """lymphoid""", """lymphoma""", """lymphomas""", """lymphopenia""", """lysine""", """lysis""", """lysophospholipids""", """lysosomal""", """lysosome""", """lysosomes""", """lysozyme""", """lyst""", """lytic""", """m-1""", """m-3""", """m-cs""", """m-tor""", """ma2""", """mabc""", """mac""", """mace""", """machine""", """machinery""", """machines""", """macro-""", """macro-plastics""", """macrocephaly""", """macroglobulinemia""", """macromolecular""", """macromolecules""", """macronutrients""", """macrophage""", """macrophage-associated""", """macrophages""", """macroscopic""", """macroscopically""", """macrostructural""", """macrostructure""", """macrovascular""", """macular""", """made""", """mae""", """maf""", """magiran""", """magnesium""", """magnetic""", """magnetite""", """magnetoreception""", """magnetoreceptor""", """magnification""", """magnified""", """magnitude""", """magrini""", """main""", """main-duct""", """mainland""", """mainly""", """mainstay""", """mainstream""", """maintain""", """maintained""", """maintaining""", """maintenait""", """maintenance""", """maintenant""", """maintenir""", """maio""", """maior""", """maiores""", """mais""", """major""", """majority""", """make""", """makers""", """makes""", """making""", """makra-test""", """malacia""", """maladaptive""", """malaria""", """malaysia""", """malaysian""", """male""", """male-typical""", """males""", """malformations""", """maligna""", """malignancies""", """malignancy""", """malignant""", """malignantly""", """malls""", """malnutrition""", """malocclusion""", """malondialdehyde""", """malperfusion""", """malposition""", """mammalian""", """mammals""", """mammary""", """mammogram""", """mammography""", """man""", """manage""", """managed""", """management""", """manager""", """managing""", """mandate""", """mandated""", """mandates""", """mandatory""", """mandibular""", """maned""", """manganese""", """mangifera""", """mango""", """manifest""", """manifestation""", """manifestations""", """manifested""", """manipulandum""", """manipulate""", """manipulating""", """manipulation""", """manipulations""", """mann-whitney""", """mann-whitney-u""", """manner""", """manners""", """mannose""", """mannose-sensitive""", """manoeuvres""", """manometric""", """manometry""", """manual""", """manually""", """manufactured""", """manufacturer""", """manufacturers""", """manufacturing""", """manuscript""", """manuscripts""", """many""", """map""", """map2k2""", """mapk""", """mapk-mediated""", """mapped""", """mapping""", """maps""", """marcescens""", """march""", """march-""", """march-april""", """marco""", """margin""", """marginal""", """marginally""", """margins""", """marijuana""", """marine""", """mariner""", """marital""", """mark""", """marked""", """markedly""", """marker""", """markers""", """market""", """marketing""", """marketplaces""", """markets""", """marketscan""", """markings""", """markov""", """maroons""", """maropitant""", """married""", """marrow""", """marrow-derived""", """marrying""", """marte""", """mary""", """maryland""", """mas""", """mascarada""", """masculine""", """masculinity""", """masculinity-femininity""", """masculinization""", """masculinized""", """mask""", """masked""", """masking""", """maslach""", """maspat""", """mass""", """mass-spectrometry""", """massa""", """massachusetts""", """masses""", """masseter""", """massive""", """massively""", """masson""", """mast""", """master""", """mat""", """match""", """matched""", """matched-pair""", """matches""", """matching""", """mate""", """material""", """materials""", """maternal""", """maternal-fetal""", """maternally""", """maternity""", """mathematical""", """mathematics""", """mating""", """matrices""", """matriculation""", """matrix""", """matrixules""", """matter""", """maturation""", """mature""", """maturity""", """mavs""", """max""", """maxillary""", """maxim""", """maxima""", """maximal""", """maximize""", """maximizes""", """maximizing""", """maximum""", """may""", """may-september""", """mayo""", """maze""", """mazzella""", """mbc""", """mbs""", """mc3t3-e1""", """mcc""", """mcc-related""", """mcc-specific""", """mcf""", """mcf-7""", """mcg""", """mcid""", """mcmaster""", """mcnemar""", """mcrpc""", """mcs""", """mctp""", """md-ipmn""", """mda""", """mda-mb-231""", """mdb""", """mdd""", """mdr""", """mds""", """meal""", """meal-induced""", """meals""", """mean""", """meaning""", """meaningful""", """meaningfully""", """means""", """meant""", """meanwhile""", """measurable""", """measure""", """measured""", """measurement""", """measurements""", """measures""", """measuring""", """meat""", """meat-fed""", """meatpacking""", """meatus""", """mebutate""", """mechanical""", """mechanics""", """mechanism""", """mechanisms""", """mechanistic""", """mechanistically""", """mechano-gated""", """mechanomyographic""", """mechanoreceptor""", """mechanoreceptors""", """mechanosensory""", """mechanotransduction""", """media""", """medial""", """medialization""", """median""", """mediante""", """mediastinal""", """mediate""", """mediated""", """mediates""", """mediating""", """mediation""", """mediational""", """mediator""", """mediators""", """medicaid""", """medicaid-insured""", """medical""", """medically""", """medicamentos""", """medicare""", """medicated""", """medication""", """medications""", """medicinal""", """medicine""", """medicines""", """medicorp""", """medicus""", """medida""", """medidas""", """medidos""", """medieval""", """meditated""", """mediterranean-style""", """medium""", """medium-""", """medium-high""", """medium-sized""", """medium-to-large-sized""", """medline""", """medulloblastomas""", """meessi""", """meet""", """meeting""", """meetings""", """meg3""", """megakaryopoiesis""", """meihan""", """meiosis""", """meiotic""", """meiotically""", """meis1""", """mejor""", """mek""", """melaka""", """melancholia""", """melancholic""", """melanin""", """melanocytes""", """melanocytic""", """melanogaster""", """melanoma""", """melanoma-associated""", """melanoma-but""", """melanomas""", """melanosis""", """melatonin""", """melbourne""", """meld""", """mellifera""", """mellitus""", """melphalan""", """melting-ultrasonic""", """melville""", """member""", """members""", """membership""", """membrane""", """membrane-bound""", """membranes""", """memeq""", """memorial""", """memories""", """memory""", """men""", """menarche""", """mendelian""", """mending""", """meningioma""", """meniscal""", """menisci""", """meniscus""", """menor""", """menos""", """menses""", """menstrual""", """menstruation""", """mental""", """mentally""", """mentation""", """mentees""", """mentioned""", """mentions""", """mentor""", """mentors""", """mentorship""", """ments""", """meo""", """mepb""", """mercury""", """mere""", """merely""", """merged""", """mergers""", """merit""", """merosomes""", """merriam""", """mers""", """mesenchymal""", """mesendoderm""", """mesenteric""", """meses""", """mesh""", """meshmixer""", """mesial""", """mesmo""", """mesoblastic""", """mesocolic""", """mesoderm""", """mesodermal""", """mesothelioma""", """mesotheliomas""", """message""", """messages""", """messaging""", """messenger""", """met""", """meta-analyses""", """meta-analysis""", """meta-analytic""", """meta-regression""", """metabolic""", """metabolically""", """metabolism""", """metabolite""", """metabolites""", """metabolize""", """metabolized""", """metabolome""", """metabolomes""", """metabolomic""", """metabolomics""", """metabolomics-based""", """metaborate""", """metadata""", """metagenomic""", """metagenomics""", """metal""", """metal-organic""", """metallic""", """metallo-beta-lactamases""", """metalloproteinase""", """metalloproteinases""", """metals""", """metamorphosis""", """metaphase""", """metaphor""", """metaplasia""", """metaplasias""", """metaplastic""", """metastases""", """metastasis""", """metastatic""", """metastatic-at-diagnosis""", """metatarsals""", """metatstatic""", """metformin""", """meth-hoxa9""", """methacrylic""", """methacryloly""", """methadone""", """methamphetamine""", """methamphetamine-related""", """methanogens""", """methanol""", """methemoglobinemia""", """methenamine""", """method""", """methodological""", """methodologies""", """methodology""", """methods""", """methotrexate""", """methyl""", """methyl-adducts""", """methylated""", """methylation""", """methylation-based""", """methylcellulose""", """methyldopa""", """methylene""", """methylidyne""", """methylmalonate""", """methylome""", """methyltransferase""", """methyltransferases""", """meticulous""", """metoclopramide""", """metoprolol""", """metric""", """metrics""", """metropolitan""", """mets""", """metyrapone""", """mevalonate""", """mexican""", """mexico""", """mfd""", """mff""", """mff-1""", """mfou""", """mgh""", """mgmt""", """mgso4""", """mhc""", """mhhs""", """mhs""", """mic""", """mice""", """michigan""", """micro""", """micro-""", """micro-computed""", """micro-organismes""", """micro-vascular""", """microanalysis""", """microangiopathy""", """microarray""", """microarrays""", """microassay""", """microbe""", """microbes""", """microbial""", """microbial-based""", """microbial-host""", """microbiological""", """microbiome""", """microbiota""", """microbubble""", """microcaecilia""", """microcephaly""", """microchannel""", """microchannels""", """microchip""", """microchips""", """microcirculation""", """microcontroller""", """microdebris""", """microdissection""", """microenvironment""", """microenvironmental""", """microextraction""", """microfat""", """microfluidics""", """microglia""", """microlaryngeal""", """micromanipulation""", """micromedex""", """micrometeoroids""", """micromixer""", """micron""", """micronutrient""", """micronutrients""", """microorganism""", """microorganisms""", """microparticles""", """micropeptides""", """microprocessor""", """microrna""", """microrna-132""", """microrna-203""", """microrna-204-3p""", """microrna-211""", """microrna-29b""", """microrna-376c-3p""", """microrna-9""", """micrornas""", """microsatellite""", """microscale""", """microscope""", """microscopic""", """microscopical""", """microscopically""", """microscopy""", """microsurgery""", """microsurgical""", """microsyntenic""", """microtubule-based""", """microvascular""", """microvasculature""", """microvessel""", """microwave""", """mid-""", """mid-2020""", """mid-dose""", """mid-life""", """mid-teen""", """mid-term""", """mid-thigh""", """midcab""", """middle""", """middle-""", """middle-aged""", """middle-income""", """midfielders""", """midlife""", """midline""", """midshaft""", """midurethra""", """midurethral""", """midway""", """mie""", """miet""", """mifflin-st-jeor""", """might""", """migraine""", """migrate""", """migrated""", """migrating""", """migration""", """migrations""", """mild""", """mild-cac""", """mild-to-moderate""", """mild-to-severe""", """mildly""", """miles""", """milestones""", """milieu""", """military""", """milk""", """miller""", """millimeters""", """million""", """millions""", """milliseconds""", """mimecan""", """mimecan-evs""", """mimic""", """mimicked""", """mimicking""", """mimics""", """min""", """mind""", """mind-body""", """mindfulness""", """mindless""", """miner""", """mineral""", """mineralization""", """mineralocorticoid""", """minerals""", """miners""", """mingran""", """mini""", """mini-invasive""", """mini-laparoscopic""", """mini-laparoscopy""", """mini-lps""", """mini-mental""", """mini-review""", """mini-tn""", """minilaparoscopic""", """minilaparoscopy""", """minimal""", """minimally""", """minimisation""", """minimising""", """minimize""", """minimized""", """minimizing""", """minimum""", """ministry""", """minnesota""", """minor""", """minoris""", """minoritized""", """minority""", """minority-advocacy""", """minors""", """minshawi""", """minus""", """minute""", """minutes""", """mir""", """mir-1-3p""", """mir-100""", """mir-103""", """mir-125a-5p""", """mir-125b-5p""", """mir-126""", """mir-134""", """mir-145""", """mir-146a""", """mir-146a-5p""", """mir-150""", """mir-155""", """mir-181b""", """mir-20a-5p""", """mir-21""", """mir-22""", """mir-221""", """mir-222""", """mir-320a""", """mir-34a-5p""", """mir-34b-3p""", """mir-376c-3p""", """mir-448""", """mir-448-dependent""", """mir-4727-3p""", """mir-5090""", """mir-5189-5p""", """mir-6089""", """mir-6810-5p""", """mir-9-5p""", """mir-92a""", """mir-939-5p""", """mir221""", """mirna""", """mirna-mediated""", """mirnas""", """mironov""", """mirounga""", """miroungae""", """mirror-covered""", """mirrors""", """mirs""", """mis""", """miscalculated""", """miscarriage""", """misclassified""", """misconception""", """misconceptions""", """misconnections""", """misdiagnosed""", """misdiagnosis""", """misidentified""", """misinformation""", """misinformed""", """mislocalization""", """mislocalizations""", """mismatch""", """mismatched""", """mismatches""", """misperceptions""", """miss""", """missed""", """missense""", """missing""", """missingness""", """mission""", """missouri""", """misspecified""", """mistaken""", """misuse""", """misused""", """mite""", """mites""", """mitigate""", """mitigated""", """mitigating""", """mitigation""", """mitochondria""", """mitochondrial""", """mitochondrial-encoded""", """mitocondrial""", """mitogen-activated""", """mitogenomes""", """mitomycin""", """mitophagy""", """mitosis""", """mitotic""", """mitral""", """mivat""", """mix""", """mixed""", """mixed-cell""", """mixed-effects""", """mixed-field""", """mixed-metal""", """mixed-model""", """mixes""", """mixing""", """mixture""", """mixtures""", """ml-1""", """mlal""", """mlc""", """mlck""", """mlh1-mlh3-dependent""", """mln4924""", """mltg""", """mm-pbsa""", """mm2""", """mm3""", """mmc""", """mmhg""", """mmi""", """mmol""", """mmp1""", """mmps""", """mmr""", """mmr-related""", """mms""", """mms19""", """mmt""", """mmtv""", """mnase""", """mnch""", """mnps""", """mntmpyp""", """mobile""", """mobile-based""", """mobilenet""", """mobility""", """mobilization""", """mobius""", """mobocertinib""", """moca""", """modafinil""", """modalities""", """modality""", """mode""", """mode-specific""", """model""", """model-based""", """model-selection""", """modeled""", """modeling""", """modelled""", """modelling""", """models""", """moderate""", """moderate-""", """moderate-cac""", """moderate-certainty""", """moderate-quality""", """moderate-severe""", """moderate-to-severe""", """moderate-to-vigorous""", """moderated""", """moderately""", """moderates""", """moderating""", """moderators""", """modern""", """modern-day""", """modes""", """modest""", """modestly""", """modifiable""", """modification""", """modifications""", """modified""", """modifier""", """modifiers""", """modifies""", """modify""", """modifying""", """modularity""", """modulate""", """modulated""", """modulates""", """modulating""", """modulation""", """modulations""", """modulator""", """modulators""", """modulatory""", """module""", """modules""", """moesia""", """mogibacterium""", """moieties""", """moisturizers""", """mol""", """molecular""", """molecular-based""", """molecularly""", """molecule""", """molecules""", """molten""", """moment""", """momentary""", """momentum""", """mometasone""", """mona""", """monetary""", """money""", """monitor""", """monitored""", """monitoring""", """monkeys""", """mono-oxygenation""", """monoallelic""", """monocenter""", """monocentric""", """monoclonal""", """monogenic""", """monolayer""", """monolithic""", """monoliths""", """monoliths-based""", """monomeric""", """monomicrobial""", """mononuclear""", """monooxygenase""", """monophyletic""", """monosaccharides""", """monosymotomatic""", """monotherapy""", """monoxide""", """montana""", """monte""", """monteiro""", """montelukast""", """month""", """monthly""", """months""", """montreal""", """mood""", """morbid""", """morbidities""", """morbidity""", """morbimortality""", """morcellated""", """morcellation""", """more""", """moreover""", """morning""", """morphine""", """morphogenesis""", """morphogenetic""", """morphogens""", """morphologic""", """morphological""", """morphologically""", """morphologies""", """morphology""", """morphotypes""", """morris""", """mortalidade""", """mortality""", """mortality-to-incidence""", """morte""", """mortes""", """mos""", """mosaicism""", """mosquito""", """most""", """mostly""", """mostramos""", """mostraram-se""", """mother""", """mother-baby""", """mother-to-child""", """mothers""", """motic""", """motif""", """motifs""", """motile""", """motility""", """motion""", """motion-capture""", """motions""", """motivate""", """motivation""", """motivations""", """motivator""", """motivators""", """motives""", """motor""", """moud""", """mouflon""", """mount""", """mountains""", """mounted""", """mounting""", """mouse""", """mouse-sensitized""", """mouth""", """mouthpiece""", """move""", """movement""", """movements""", """moves""", """movies""", """moving""", """mpa-1""", """mpecs""", """mpi""", """mpo""", """mpp8""", """mps""", """mr-linac""", """mrd""", """mrd-guided""", """mrds""", """mre11-ctip""", """mri""", """mri-guided""", """mris""", """mrl""", """mrna""", """mrna-unwinding""", """mrnas""", """mrpa""", """msa""", """msc""", """mscs""", """msea""", """msh""", """msha""", """msha-mediated""", """mshe""", """msi""", """msk""", """msne""", """msp""", """msp-deficient""", """msp-linked""", """mss""", """mswat""", """mt-trna""", """mtbi""", """mtdna""", """mtle""", """mtnr1a""", """mtnr1b""", """mtor""", """mtorc1""", """mtt-based""", """muca""", """much""", """mucicat""", """mucin""", """mucinous""", """mucociliary""", """mucolytic""", """mucosa""", """mucosa-airway""", """mucosal""", """mucous""", """mucus""", """muerte""", """muito""", """muitos""", """mujian""", """mulheres""", """multi-center""", """multi-compartmental""", """multi-component""", """multi-disciplinary""", """multi-element""", """multi-faceted""", """multi-host""", """multi-institutional""", """multi-joint""", """multi-leaf""", """multi-method""", """multi-microinjections""", """multi-omics""", """multi-sectional""", """multi-span""", """multi-stage""", """multi-step""", """multi-surface""", """multi-variate""", """multi-vector""", """multi-wavelength""", """multicellular""", """multicenter""", """multicentre""", """multicentric""", """multiclass""", """multicolor""", """multicomponent""", """multicopy""", """multidimensional""", """multidimensionality""", """multidisciplinary""", """multidomain""", """multidrug-binding""", """multidrug-resistant""", """multielement""", """multiethnic""", """multifaceted""", """multifactorial""", """multifocal""", """multifollicular""", """multifunctional""", """multilevel""", """multiloculated""", """multimedia""", """multimethod""", """multimethods""", """multimodal""", """multimodality""", """multinomial""", """multiorgan""", """multiparameter""", """multiphase""", """multiple""", """multiple-ascending-dose""", """multiple-camera""", """multiple-dose""", """multiplexed""", """multiplication""", """multiplied""", """multipotent""", """multiregional""", """multistage""", """multistate""", """multisymptomatic""", """multitude""", """multivariable""", """multivariada""", """multivariate""", """mumbai""", """mundial""", """municipal""", """murine""", """mus""", """muscarinic""", """muscle""", """muscles""", """muscular""", """musculoskeletal""", """musculus""", """mushrooms""", """music-kidney""", """muslim""", """must""", """mutagenesis""", """mutans""", """mutant""", """mutants""", """mutated""", """mutation""", """mutation-specific""", """mutation-targeted""", """mutational""", """mutations""", """mutations-many""", """mutator""", """mutual""", """mutually""", """mvd""", """mvpa""", """mwm""", """mxc""", """mxci""", """mxcs""", """myalgia""", """myasthenia""", """mych""", """mycobacterium""", """mycoplasma""", """mycosis""", """myd88""", """myd88-dependent""", """myd88-mutated""", """myectomy""", """myelin""", """myelinated""", """myeloablative""", """myeloablative-conditioning""", """myelodysplastic""", """myelofibrosis""", """myelogenous""", """myeloid""", """myeloid-derived""", """myeloma""", """myelomeningocele""", """myeloperoxidase""", """myelosuppression""", """myoblast""", """myocardial""", """myocardium""", """myoclonic""", """myocyte""", """myod""", """myofibroblasts""", """myog""", """myogenesis""", """myogenic""", """myokines""", """myoma""", """myomas""", """myomectomy""", """myopathy""", """myopic""", """myosin""", """myotube""", """myriad""", """mysterious""", """myxoid""", """n-260""", """n-3""", """n-acetylcysteine""", """n-ethylpentylone""", """n-methyl-d-aspartate""", """n-methyl-d-aspartic""", """n-mixture""", """n-oxide""", """n-terminal""", """n-tosylamides""", """n241""", """nac""", """nac-derived""", """nacional""", """nact""", """nadir""", """nadph""", """nafld""", """nag""", """nail""", """nail-specific""", """nailfold""", """naive""", """nal-nl2""", """naloxone""", """naltrexone""", """named""", """namely""", """naming""", """nanchang""", """nano-sandwich""", """nanocatalyst""", """nanocellulose""", """nanocomposite""", """nanocrystalline""", """nanofabricated""", """nanofibers""", """nanog""", """nanomachine""", """nanomaterials""", """nanomedicine""", """nanoparticle""", """nanoparticles""", """nanopore""", """nanoscale""", """nanoseq""", """nanostructures""", """nanotechnology""", """nanotheranostic""", """nanotool""", """nanotriangles""", """nanovesicles""", """naoh""", """napa""", """napa-linked""", """naproxen""", """naps""", """narcolepsy""", """narrated""", """narrative""", """narrow""", """narrower""", """narrowing""", """nas""", """nas-associated""", """nasal""", """nasal-swab""", """nascent""", """nasopharyngeal""", """nasopulmonary""", """nasorespiratory""", """natesto""", """national""", """national-level""", """nationalities""", """nationally""", """nationally-representative""", """nations""", """nationwide""", """native""", """natriuretic""", """natronobacterium""", """natural""", """naturalizing""", """naturally""", """nature""", """naturopaths""", """nausea""", """navigate""", """navigated""", """navigating""", """navigation""", """navigators""", """navitoclax""", """nbccs""", """nbme""", """nbs""", """nbt""", """ncam-1""", """ncarra""", """nci""", """nciu""", """ncpap""", """ncr""", """nct00929253""", """nct01035255""", """nct01920711""", """nct02106546""", """nct02232737""", """nct02250534""", """nct02250664""", """nct02345863""", """nct02401503""", """nct02485769""", """nct02768792""", """nct02803814""", """nct03181126""", """nct03188393""", """nct03314181""", """nct03962816""", """ndr1""", """ndr2""", """near""", """near-daily""", """near-infrared""", """near-real-time""", """near-surface""", """near-total""", """nearby""", """neared""", """nearing""", """nearly""", """nebivolol""", """nebraska""", """necessarily""", """necessary""", """necessitates""", """necessitating""", """necessity""", """neck""", """necro-inflammatory""", """necrosis""", """necrotising""", """necrotizing""", """nedd8""", """neddylation""", """need""", """needed""", """needing""", """needle""", """needles""", """needs""", """needs-based""", """negating""", """negative""", """negatively""", """negativity""", """neglected""", """neglects""", """negligence""", """negligible""", """negligibly""", """negotiations""", """neighborhood""", """neighborhoods""", """neighboring""", """neither""", """neo""", """neo-angiogenesis""", """neo-vessel""", """neoadjuvant""", """neoantigen""", """neoantigens""", """neoliberal""", """neoliberalism""", """neonatal""", """neonates""", """neonatologists""", """neonicotinoid""", """neoplasia""", """neoplasm""", """neoplasms""", """neoplastic""", """neotropical""", """neovascularization""", """neovascularized""", """nepal""", """nephrectomy""", """nephritis""", """nephrology""", """nephroma""", """nephrometry""", """nephropathy""", """nephrosclerosis""", """ner""", """nereis""", """ners""", """nerve""", """nerve-derived""", """nerve-mediated""", """nerve-muscle""", """nerves""", """nervosa""", """nervous""", """nervousness""", """nest""", """nest-site""", """nested""", """nested-pcr""", """nests""", """net""", """net-associated""", """net-bound""", """netherlands""", """nets""", """network""", """networking""", """networks""", """neural""", """neuralgia""", """neuraxial""", """neuregulin""", """neurite""", """neuro-guide""", """neuro-monitoring""", """neuro-oncology""", """neuro-radiologists""", """neuro-vascular""", """neuroanatomic""", """neuroanatomical""", """neuroanatomy""", """neurobehavioral""", """neurobiological""", """neurochemical""", """neurocircuitry""", """neurocognitive""", """neurodegeneration""", """neurodegenerative""", """neurodevelopment""", """neurodevelopmental""", """neuroendocrine""", """neurofibrillary""", """neurofibromatosis""", """neurofilament""", """neurogenesis""", """neurogenetic""", """neurogenic""", """neurogranin""", """neuroimaging""", """neuroinflammation""", """neurologic""", """neurological""", """neurologically""", """neurologist""", """neurologists""", """neurology""", """neuromodulation""", """neuromodulators""", """neuromuscular""", """neuron""", """neuron-like""", """neuronal""", """neurons""", """neuroparenchymal""", """neuropathic""", """neuropathies""", """neuropathy""", """neuropelveologic""", """neuropeptides""", """neuroplasticity""", """neuroprotection""", """neuroprotective""", """neuropsychiatric""", """neuropsychological""", """neuroradiologists""", """neuroregeneration""", """neuroretinal""", """neuroscience""", """neuroscientists""", """neurosensory""", """neurospheres""", """neurosteroid""", """neurosurgery""", """neurosurgical""", """neuroticism""", """neurotoxicity""", """neurotoxin""", """neurotransmission""", """neurotransmitter""", """neurotransmitters""", """neurovascular""", """neurovegetative""", """neurturin""", """neurula""", """neurulation""", """neutered""", """neutral""", """neutropenia""", """neutrophil""", """neutrophil-predominant""", """neutrophilic""", """neutrophils""", """never""", """nevertheless""", """nevi""", """nevoid""", """nevus""", """new""", """new-onset""", """newborn""", """newborns""", """newcastle-ottawa""", """newer""", """newly""", """news""", """newspaper""", """next""", """next-day""", """next-generation""", """nf-treated""", """nf1""", """nfb""", """nfbc1966""", """nfib""", """nfkb1""", """nflg""", """nft""", """nfts""", """ngago""", """ngago-guided""", """ngal""", """ngs""", """nhas""", """nhej""", """nhis""", """nhseed""", """niche""", """niches""", """nick""", """nicking""", """nicotinamide""", """nicotine""", """nicu""", """nid1""", """nidogen""", """nifurtimox""", """nigeria""", """nigerians""", """night""", """night-time""", """nightlife""", """nightly""", """nih""", """nimbc""", """nimotuzuma""", """nine""", """nine-banded""", """ninety-eight""", """ninety-one""", """ninety-two""", """ninteen""", """ninth""", """nipbl""", """nipbl-a""", """nipbl-depleted""", """nipped-b-like""", """nirs""", """nitrate""", """nitric""", """nitrite""", """nitrofurans""", """nitrogen""", """njpies""", """nk-cell""", """nld""", """nld-sfn""", """nlst""", """nmda""", """nmda-treated""", """nmdar""", """nmdar-dependent""", """nmdar-independent""", """nmibc""", """nmj""", """nmr""", """nmsc""", """nnt""", """no""", """no-cac""", """no-covid""", """no-isolation""", """no2""", """no3""", """nociception""", """nocturnal""", """nodal""", """node""", """nodes""", """nodosum""", """nodular""", """nodule""", """nodules""", """noise""", """noise-robust""", """nolla""", """nomads""", """nominal""", """non""", """non-ad""", """non-atg""", """non-bf-iol""", """non-bf-iols""", """non-bleeding""", """non-bornian""", """non-breast""", """non-cancer""", """non-canonical""", """non-challenged""", """non-cleft""", """non-clinical""", """non-clinically""", """non-coding""", """non-commercial""", """non-communicable""", """non-complex""", """non-consanguineous""", """non-conventional""", """non-core""", """non-corrosive""", """non-covid-19""", """non-critical""", """non-crossovers""", """non-dermatological""", """non-desmoglein""", """non-diabetic""", """non-disabled""", """non-disclosure""", """non-disease""", """non-duplicated""", """non-ecg-gated""", """non-emergency""", """non-english-speaking""", """non-expansion""", """non-exudative""", """non-faculty""", """non-fatal""", """non-fi""", """non-fluorinated""", """non-fruiting""", """non-genetics""", """non-government""", """non-gpcr""", """non-halophilic""", """non-hct""", """non-hds""", """non-health""", """non-hilar""", """non-hispanic""", """non-hodgkin""", """non-homologous""", """non-humic""", """non-imprinted""", """non-indexed""", """non-infectious""", """non-inferiority""", """non-inflammatory""", """non-interactive""", """non-invasive""", """non-invasively""", """non-irradiated""", """non-length-dependent""", """non-linear""", """non-linearly""", """non-maf""", """non-medical""", """non-melancholic""", """non-melanoma""", """non-muscle-invasive""", """non-neoplastic""", """non-newtonian""", """non-obesity-related""", """non-overlapping""", """non-owners""", """non-pcos""", """non-pharmacologic""", """non-pharmacological""", """non-platinum""", """non-pregnant""", """non-prescribed""", """non-prescription""", """non-probabilistically""", """non-problematic""", """non-profit""", """non-profits""", """non-radiographic""", """non-radiological""", """non-randomised""", """non-recovered""", """non-recovering""", """non-referral""", """non-relapse""", """non-scd""", """non-selectively""", """non-serous""", """non-set""", """non-shivering""", """non-significant""", """non-sle""", """non-small""", """non-small-cell""", """non-smokers""", """non-specified""", """non-spectrum""", """non-spurious""", """non-statistically""", """non-stemi""", """non-steroidal""", """non-structural""", """non-surgical""", """non-survey""", """non-survival""", """non-tc""", """non-technical""", """non-treated""", """non-treatment""", """non-uniform""", """non-use""", """non-valvular""", """non-ventilated""", """non-verbal""", """non-vertebral""", """non-watson-crick""", """non-white""", """nonalcoholic""", """nonallergy""", """nonambulators""", """nonanaplastic""", """nonattendance""", """nonblocking""", """noncancer""", """noncanonical""", """noncarcinoma""", """noncoding""", """noncommunicable""", """noncompliance""", """nonconforming""", """nonconventional""", """noncorticosteroid""", """noncovalent""", """nondiabetic""", """none""", """nonenrollment""", """nonetheless""", """nonexudative""", """nonfish""", """nonhospice""", """nonhuman""", """noninfectious""", """noninferior""", """noninferiority""", """noninstrumental""", """noninvasive""", """nonlinear""", """nonlymphoid""", """nonmajor""", """nonmalignant""", """nonmammalian""", """nonmanual""", """nonmedical""", """nonmelanoma""", """nonmetastatic""", """nonmyeloablative""", """nonnative""", """nonoperative""", """nonoverlapping""", """nonparametric""", """nonpayment""", """nonpigmented""", """nonpregnant""", """nonprogressive""", """nonprogressors""", """nonrandomized""", """nonrandomness""", """nonregenerative""", """nonreproductive""", """nonresectable""", """nonresponsive""", """nonreversible""", """nonselective""", """nonsense""", """nonsense-associated""", """nonsevere""", """nonsilent""", """nonsmokers""", """nonspecific""", """nonspecified""", """nonstandard""", """nonstandardized""", """nonsteroidal""", """nonsteroidogenic""", """nonsurgical""", """nonsurvivors""", """nontraditional""", """nontraumatic""", """nootropic""", """nor""", """noradrenaline""", """nordic""", """nordic-uk""", """norflurazon""", """noricum""", """norm""", """normais""", """normal""", """normal-flow""", """normal-hearing""", """normalised""", """normality""", """normalization""", """normalize""", """normalized""", """normally""", """normalmente""", """normative""", """normobaric""", """normotensive""", """normoxia""", """norms""", """north""", """north-south""", """north-west""", """northern""", """northwest""", """norway""", """norwegian""", """nos""", """nosd""", """nose""", """nose-to-brain""", """nosocomial""", """nosso""", """not""", """notable""", """notably""", """note""", """noted""", """nothern""", """nothing""", """notice""", """noticed""", """notifications""", """notion""", """nouveaux""", """novel""", """novelty""", """november""", """novemcinctus""", """novice""", """novo""", """now""", """nowadays""", """nox2""", """nozzle""", """npc""", """npds""", """nps""", """npv""", """nras""", """nras-mutant""", """nrg-cc006""", """nrg1""", """nrg1-induced""", """nrgn""", """nrm""", """nrs""", """nsaids""", """nsaidsone""", """nsc""", """nsclc""", """nsduh""", """nsp""", """nsps""", """nsqip""", """nsti""", """nstis""", """nsu""", """nsus""", """nt-probnp""", """ntil""", """nts""", """ntt""", """ntu""", """nuances""", """nuancing""", """nuclear""", """nuclear-encoded""", """nuclease""", """nucleic""", """nucleocapsid-igg""", """nucleolar""", """nucleophosmin""", """nucleosidic""", """nucleosome""", """nucleosomes""", """nucleotide""", """nucleotide-based""", """nucleus""", """nude""", """nudging""", """null""", """number""", """numbers""", """numer""", """numeric""", """numerical""", """numerically""", """numerous""", """nunca""", """nup98""", """nupo""", """nurse""", """nursed""", """nurseries""", """nurses""", """nursing""", """nurturing""", """nutrient""", """nutrients""", """nutrition""", """nutritional""", """nutritionally""", """nvaf""", """nwi""", """nyha""", """nylon""", """nzdts""", """o-glcnac""", """o-glcnacase""", """o-glcnacylated""", """o-glcnacylation""", """o-linked-n-acetylglucosaminylation""", """o6-methylguanine-dna""", """oasis""", """oat""", """obese""", """obesity""", """obesity-associated""", """obesity-related""", """obinutuzumab""", """object""", """objectif""", """objective""", """objectively""", """objectives""", """objet""", """objetivo""", """obligate""", """obligatory""", """obliquus""", """obliteration""", """oblong""", """obscure""", """obscured""", """obscures""", """observance""", """observation""", """observational""", """observations""", """observatoire""", """observe""", """observed""", """observed-to-expected""", """observer""", """observer-""", """observers""", """observing""", """obsessive-compulsive""", """obstacle""", """obstacles""", """obstetric""", """obstetrical""", """obstetrician""", """obstetrics""", """obstruction""", """obstructive""", """obtain""", """obtained""", """obtaining""", """obtainment""", """obtains""", """obviate""", """obvious""", """oca""", """occasion""", """occasionally""", """occasions""", """occiput""", """occludens-1""", """occludin""", """occlusal""", """occlusion""", """occlusive""", """occult""", """occupancy""", """occupants""", """occupational""", """occupations""", """occupies""", """occupy""", """occupying""", """occur""", """occurred""", """occurrence""", """occurrences""", """occurring""", """occurs""", """ocd""", """oceans""", """ocorreu""", """ocs""", """oct""", """oct4""", """octaethylporphyrin""", """october""", """ocular""", """oculoplastic""", """odd""", """odds""", """odeur""", """odeurs""", """odh""", """odour""", """odour-causing""", """oecd""", """oenocytes""", """oestrogen""", """of""", """ofc""", """off""", """off-screen""", """off-the-shelf""", """offender""", """offenders""", """offer""", """offered""", """offering""", """offers""", """office""", """officers""", """offices""", """official""", """offshore""", """offspring""", """ofloxacin""", """often""", """oftentimes""", """oga""", """ogd""", """ogt""", """oha""", """ohca""", """ohe""", """ohfrs""", """oil""", """oil-free""", """oils""", """okay""", """olaparib""", """old""", """older""", """oldest""", """olds""", """oleic""", """olfactory""", """oligodeoxynucleotides""", """oligomerization""", """oligometastatic""", """oligonucleotides""", """ols""", """omax""", """omega-3""", """omethoate""", """omi""", """omics""", """omis""", """omission""", """omissions""", """omit""", """omitted""", """omnipresent""", """omphalocele""", """oms""", """on-licence""", """on-line""", """on-screen""", """on-snow""", """on-target""", """on-treatment""", """on-versus""", """once""", """once-daily""", """oncocytic""", """oncodermatology""", """oncogene""", """oncogenes""", """oncogenic""", """oncogenicity""", """oncologic""", """oncological""", """oncologist""", """oncologists""", """oncology""", """one""", """one-fourth""", """one-hybrid""", """one-on-one""", """one-sided""", """one-stage""", """one-step""", """one-third""", """one-time""", """one-to-one""", """one-way""", """one-week""", """one-year""", """ones""", """oneself""", """onfh""", """ongoing""", """online""", """only""", """onset""", """ont""", """ontario""", """onto""", """onward""", """onychomycosis""", """oocyte""", """oocytes""", """oomycete""", """oop""", """opal""", """open""", """open-angle""", """open-ended""", """open-field""", """open-label""", """open-tubular""", """opened""", """opening""", """openings""", """openness""", """opens""", """opensigle""", """operate""", """operated""", """operates""", """operating""", """operation""", """operational""", """operationalise""", """operationalised""", """operationalize""", """operationalized""", """operations""", """operative""", """operatively""", """operator""", """operators""", """opg""", """opg-mediated""", """ophthalmic""", """ophthalmoplegia""", """opiate""", """opinion""", """opinions""", """opioid""", """opioid-""", """opioid-based""", """opioid-related""", """opioids""", """opportunistic""", """opportunities""", """opportunity""", """oppose""", """opposed""", """opposing""", """opposite""", """opposition""", """opra""", """ops""", """opscc""", """opsin""", """optic""", """optical""", """optically""", """optimal""", """optimally""", """optimisation""", """optimising""", """optimization""", """optimize""", """optimized""", """optimizing""", """optimum""", """option""", """options""", """optoelectronic""", """oral""", """orally""", """orbit""", """orbital""", """orbitofrontal""", """orbitopathy""", """orcatech""", """orchestrated""", """orchestrating""", """ord""", """order""", """ordered""", """ordering""", """orders""", """ordinal""", """ordinary""", """ore""", """oregon""", """organ""", """organ-level""", """organ-specific""", """organellar""", """organelle""", """organelles""", """organic""", """organics""", """organisation""", """organisations""", """organised""", """organism""", """organismal""", """organisms""", """organizamos""", """organization""", """organizational""", """organizations""", """organize""", """organized""", """organizing""", """organogenesis""", """organophosphorus""", """organotypic""", """organs""", """oric""", """orientalis""", """orientation""", """oriented""", """orifice""", """origin""", """original""", """originally""", """originate""", """originated""", """originating""", """origins""", """orlistat""", """ornatus""", """orofacial""", """oropharyngeal""", """oropharynx""", """orphan""", """ors""", """ort""", """orth""", """orthodontic""", """orthodontics""", """orthodox""", """orthodoxy""", """orthogonal""", """orthogonalizing""", """orthogonally""", """orthohalarachne""", """ortholog""", """orthologs""", """orthopaedic""", """orthopedic""", """orthopedics""", """orthotopic""", """orthotopically""", """oryza""", """os""", """osa""", """osce""", """oscillating""", """oscillation""", """oscillations""", """osf""", """osmoprotectant""", """osmoprotectants""", """osmotic""", """osnf-yb1""", """osseous""", """osseous-integration""", """ostensibly""", """osteoarthritis""", """osteoblast""", """osteoblastic""", """osteoblasts""", """osteochondral""", """osteoclast""", """osteoclast-like""", """osteoclasts""", """osteogenesis""", """osteogenesis-regulatory""", """osteogenic""", """osteoid""", """osteonecrosis""", """osteopenia""", """osteophytes""", """osteopontin""", """osteoporosis""", """osteoprotegerin""", """osteosarcoma""", """osteotomy""", """ostrea""", """osyuc11""", """osyuc11-mediated""", """otariids""", """otc""", """other""", """others""", """otherwise""", """otm""", """otolaryngology""", """ototoxicity""", """ottawa""", """otter""", """otters""", """oud""", """oudemans""", """ought""", """oulu""", """our""", """out""", """out-of-hospital""", """out-of-pocket""", """out-patient""", """outbreak""", """outbreaks""", """outbred""", """outcome""", """outcome-based""", """outcome-oriented""", """outcomes""", """outdoor""", """outer""", """outflow""", """outgroups""", """outgrow""", """outgrowth""", """outlier""", """outline""", """outlined""", """outlines""", """outlining""", """outlook""", """outpatient""", """outpatients""", """outperformed""", """output""", """outputs""", """outreach""", """outside""", """outsourcing""", """outwardly""", """ovarian""", """ovaries""", """ovariohysterectomy""", """ovary""", """over""", """over-""", """over-excision""", """over-expression""", """over-the-counter""", """overactivity""", """overadjustment""", """overall""", """overall-survival""", """overarching""", """overcome""", """overcoming""", """overconfidence""", """overdose""", """overdose-related""", """overdoses""", """overdrive""", """overestimate""", """overestimated""", """overestimates""", """overexpressed""", """overexpressing""", """overexpression""", """overgrowth""", """overinterpret""", """overlaid""", """overlap""", """overlapping""", """overlaps""", """overlooks""", """overly""", """overnight""", """overnutrition""", """overprotection""", """overprotective""", """overranging""", """overrepresented""", """overrides""", """overseas""", """overtime""", """overtreatment""", """overview""", """overviews""", """overweight""", """overwhelm""", """overwhelmingly""", """ovid""", """ovine""", """ovo""", """ovulation""", """ovulator""", """owen""", """owes""", """owing""", """own""", """owner-dog""", """owners""", """ownership""", """owning""", """oxa1""", """oxazoline""", """oxford""", """oxford-astrazeneca""", """oxidase""", """oxidation""", """oxidative""", """oxide""", """oxidized""", """oxidizing""", """oxphos""", """oxr""", """oxygen""", """oxygenation""", """oxyhemoglobin""", """oxynitrophosphide""", """oxytocin""", """oyster""", """ozonation""", """ozone""", """p-bq""", """p-mlc""", """p-selectin""", """p-tau""", """p-value""", """p14""", """p16-ihc""", """p27""", """p2y12""", """p38""", """p450""", """p53""", """p53-mutant""", """p57""", """p63""", """paa""", """paas""", """pac""", """paca""", """pacd""", """pace""", """paced""", """pacemaker""", """pacer""", """pachymetry""", """pachyvessels""", """pacientes""", """pacific""", """pacing""", """pack""", """package""", """packages""", """packed""", """packs""", """paclitaxel""", """pad""", """paddock""", """paediatric""", """pafenolol""", """page""", """pago""", """pagos""", """paid""", """pain""", """pain-free""", """pain-related""", """pain-relieving""", """painful""", """pair""", """paired""", """pairing""", """pairs""", """pairwise""", """pais""", """palatability""", """palatable""", """palate""", """palliative""", """palmar""", """palmitate""", """palnd""", """palpable""", """palpated""", """palpation""", """palsies""", """palsy""", """pam""", """paml""", """pan-glioma""", """pan-jak""", """pan-pi3k""", """panavia""", """panc02""", """panc02-bearing""", """pancreas""", """pancreata""", """pancreatectomy""", """pancreatic""", """pancreatitis""", """pancreatoduodenectomy""", """pandemic""", """pandemic-related""", """pandemics""", """panel""", """panelists""", """panels""", """panfletos""", """pangenomes""", """panniculectomy""", """panniculitis""", """pannonia""", """panometry""", """panoramic""", """panspermia""", """panurethral""", """pap""", """paper""", """papers""", """papillary""", """papillary-ventricular""", """papillomavirus""", """paps""", """papules""", """papulonodules""", """par""", """para""", """para-aortic""", """para-medical""", """paraben""", """parabens""", """paracetamol""", """paracoccidioides""", """paracoccidioidomycosis""", """paracrine""", """paradigm""", """paradigm-hf""", """paradigms""", """paradoxical""", """paraffin-embedded""", """paraganglioma""", """paragon-hf""", """parajuli""", """parallel""", """parallel-designed""", """parallelizable""", """parallelization""", """parallelized""", """parallels""", """paralog""", """paralogs""", """paralysing""", """paralysis""", """parameter""", """parameterized""", """parameters""", """parametria""", """parametric""", """parametrium""", """paramount""", """pararectal""", """parasitaemia""", """parasite""", """parasites""", """parasitic""", """parastomal""", """parathyroid""", """paratonia""", """parauterine""", """parcellation""", """pareado""", """parenchyma""", """parenchyma-sparing""", """parenchymal""", """parent""", """parent-clinician""", """parent-infant""", """parent-reported""", """parent-to-child""", """parental""", """parenting""", """parents""", """paresis""", """parity""", """parkinson""", """parotid""", """paroxysmal""", """parp""", """parrot""", """parsimonious""", """part""", """partial""", """partially""", """participant""", """participantes""", """participants""", """participaram""", """participate""", """participated""", """participating""", """participation""", """participatory""", """particle""", """particle-capturing""", """particles""", """particular""", """particularities""", """particularly""", """particulate""", """partitioning""", """partly""", """partner""", """partnering""", """partners""", """partnership""", """partridge""", """parts""", """parturient""", """parturients""", """party""", """parvalbumin""", """pas""", """pasi75""", """pasi90""", """pasmcs""", """pasna""", """pasq""", """pass""", """passage""", """passageway""", """passed""", """passing""", """passive""", """passively""", """passo""", """password-protected""", """past""", """past-month""", """pasta""", """pastes""", """pasture""", """patch""", """patch-clamp""", """patches""", """patchy""", """patency""", """paternal""", """patescibacteria""", """path""", """pathogen""", """pathogen-specific""", """pathogenesis""", """pathogenesis-related1""", """pathogenetic""", """pathogenic""", """pathogens""", """pathognomonic""", """pathologic""", """pathological""", """pathologically""", """pathologically-proven""", """pathologies""", """pathologist""", """pathologists""", """pathology""", """pathophysiologic""", """pathophysiological""", """pathophysiologically""", """pathophysiology""", """pathway""", """pathways""", """patient""", """patient-""", """patient-acceptable""", """patient-based""", """patient-centered""", """patient-derived""", """patient-perceived""", """patient-provider""", """patient-related""", """patient-reported""", """patient-specific""", """patient-years""", """patients""", """pattern""", """pattern-recognition""", """patterned""", """patterning""", """patterns""", """patting""", """paucity""", """paulo""", """paved""", """paving""", """paw""", """pax8-glis3""", """pay""", """paying""", """payment""", """payments""", """pbct""", """pbe""", """pbm""", """pbmcs""", """pbp1""", """pbp2b""", """pbps""", """pbsct""", """pca""", """pcaf""", """pchf""", """pci""", """pcm""", """pcos""", """pcos-like""", """pcos-related""", """pcr""", """pcr-rflp""", """pcv""", """pd-1""", """pdac""", """pdacs""", """pdb""", """pdi""", """pdl1""", """pdoep-lg12""", """pdpv""", """peak""", """peaking""", """peaks""", """pearce""", """pearldiver""", """pearson""", """peat""", """peatland""", """peatlands""", """peau""", """peculiar""", """pecvd""", """ped""", """pedagogical""", """pedagogy""", """pediatric""", """pediatrician""", """pediatrics""", """pedicled""", """pediculated""", """pediveliger""", """peduncles""", """peer""", """peer-reviewed""", """peers""", """peg10""", """pela""", """pelagic""", """pelo""", """pelvic""", """pelvis""", """pem""", """pembrolizumab""", """pemphigoid""", """pemphigus""", """penalties""", """pendant""", """penectomy""", """penguin""", """penguins""", """pengxi""", """penicillin""", """penile""", """peninsular""", """penis""", """pennsylvania""", """penny""", """pense""", """pentose""", """people""", """peoples""", """pep""", """pepexl""", """pepper""", """peptidase""", """peptidase-4""", """peptide""", """peptides""", """peptidoglycan""", """peptidoglycan-associated""", """per""", """per-""", """per-patient""", """per-person""", """per-procedure""", """per-protocol""", """per-topology""", """perceive""", """perceived""", """percent""", """percentage""", """percentages""", """percentile""", """perception""", """perceptions""", """percepts""", """perceptual""", """perceptual-motor""", """perceptually""", """percussion""", """percutaneous""", """perennial""", """peres""", """perfect""", """perfectionistic""", """perfluorinated""", """perfluorocarbons""", """perforation""", """perforations""", """perform""", """performa""", """performance""", """performances""", """performed""", """performing""", """performs""", """perfusion""", """perhaps""", """peri-""", """periampullary""", """pericellular""", """pericentromeric""", """pericyte""", """peridiagnostic""", """perimenstrual""", """perinatal""", """perineum""", """period""", """periodic""", """periodicals""", """periodontal""", """periodontally""", """periodontitis""", """periodontium""", """periods""", """perioperative""", """perioperatively""", """peripheral""", """periphery""", """periplasm""", """periplasmic""", """periprosthetic""", """peristalsis""", """peristaltic""", """peritoneal""", """perivalvular""", """perivascular""", """periventricular""", """permanent""", """permanently""", """permeability""", """permis""", """permission""", """permit""", """permits""", """permitted""", """permitting""", """peroxidase""", """peroxidation""", """peroxide""", """peroxides""", """peroxisomes""", """peroxules""", """perpetuation""", """persian""", """persist""", """persisted""", """persistence""", """persistent""", """persistently""", """persisting""", """persists""", """person""", """person-centered""", """person-years""", """personal""", """personalised""", """personality""", """personalize""", """personalized""", """personas""", """personnels""", """persons""", """perspective""", """perspectives""", """perspex""", """perspiration""", """pertaining""", """pertinent""", """perturb""", """perturbation""", """perturbations""", """perturbed""", """pertussis""", """pervasive""", """pervasively""", """pes""", """pesquisa""", """pessoal""", """pesticides""", """pet""", """pet-directed""", """pet-negative""", """peuvent""", """pevonedistat""", """pf-06650833""", """pf-06700841""", """pf-06826647""", """pfc""", """pfcrt""", """pfdhfr""", """pfdhps""", """pfizer""", """pfmdr1""", """pfor""", """pfp""", """pfs""", """pg-specific""", """pgc""", """pgd""", """ph-neutral""", """phaeohyphomycosis""", """phage""", """phages""", """phantom""", """phantoms""", """pharmaceutical""", """pharmaceuticals""", """pharmacies""", """pharmacists""", """pharmacodynamic""", """pharmacodynamics""", """pharmacoeconomics""", """pharmacokinetic""", """pharmacokinetic-pharamacodynamic""", """pharmacokinetics""", """pharmacologic""", """pharmacological""", """pharmacologically""", """pharmacology""", """pharmacopeias""", """pharmacy""", """pharyngeal""", """phase""", """phase-ii""", """phase-lag""", """phases""", """phenoage""", """phenoeaa""", """phenolic""", """phenological""", """phenols""", """phenomena""", """phenomenal""", """phenomenological""", """phenomenon""", """phenotype""", """phenotyped""", """phenotypes""", """phenotypic""", """phenotyping""", """phenyl""", """phenylalanine""", """phenylpropanoids""", """phgdh""", """phh""", """phh-pt-csf""", """phh-related""", """phh-tea-csf""", """phi""", """philadelphia""", """philanthropic""", """philippii""", """philippines""", """philosophy""", """phis""", """phloem""", """phlorizin""", """phoca""", """phocids""", """phonation""", """phone""", """phones""", """phoning""", """phonon""", """phonons""", """phosphatase""", """phosphate""", """phospho""", """phospho-pr""", """phosphoinositide-3-kinase""", """phospholamban""", """phosphomimetic""", """phosphonic""", """phosphopeptide""", """phosphoprotein""", """phosphoproteins""", """phosphoric""", """phosphorous""", """phosphorus""", """phosphorylated""", """phosphorylation""", """photo""", """photo-elicitation""", """photobiomodulation""", """photodynamic""", """photoelectron""", """photoexcitation""", """photograph""", """photographs""", """photography""", """photometric""", """photon""", """photons""", """photoperiod""", """photoperiodic""", """photophobia""", """photoreceptor""", """photoreceptors""", """photoreduction""", """photos""", """photosynthesis""", """photosynthesis-associated""", """photosynthetic""", """phototherapy""", """photothermal""", """phox""", """phrases""", """phyb""", """phyla""", """phylogenetic""", """phylogenetically""", """phylogenic""", """phylogenies""", """phylogeny""", """physical""", """physical-chemical""", """physically""", """physician""", """physician-""", """physician-assessed""", """physician-determined""", """physicians""", """physicists""", """physics""", """physiol""", """physiologic""", """physiological""", """physiologically""", """physiology""", """physiopathological""", """physiotherapy""", """phytochemicals""", """phytohormone""", """phytohormones""", """pi3k""", """pi3k-akt-mtor""", """picea""", """pick-up""", """picture""", """piece""", """piers-harris""", """piezoresistive""", """pig""", """pigeons""", """pigment""", """pigmentation""", """pigmented""", """pigments""", """pigs""", """pigtail""", """pik3ca""", """pile-up""", """pili""", """pillar""", """pills""", """pilocytic""", """pilot""", """piloted""", """pilt""", """pilus""", """pink""", """pink1""", """pioneer""", """pioneering""", """pipe""", """pipeline""", """pipelines""", """piracetam""", """piroxicam""", """pita""", """pitch""", """pitfall""", """pitfalls""", """pittsburgh""", """pituitary""", """piver""", """pivotal""", """piwi""", """pji""", """pjis""", """pk7300""", """pka""", """pkd""", """pkg""", """pkm2""", """place""", """place-based""", """placebo""", """placebo-controlled""", """placed""", """placement""", """placenta""", """placental""", """placental-fetal""", """placentas""", """places""", """placing""", """plagues""", """plain""", """plan""", """planar""", """plane""", """planes""", """planet""", """planktonic""", """planned""", """planning""", """plans""", """plans-optimised""", """plant""", """plant-based""", """plant-made""", """planta""", """plants""", """plaque""", """plaques""", """plasma""", """plasmid""", """plasmid-diversity""", """plasmids""", """plasmodium""", """plasmon""", """plastic""", """plasticity""", """plastics""", """plastid""", """plastids""", """plataforma""", """plate""", """plateau""", """platelet""", """platelet-derived""", """platelet-leukocyte""", """platelets""", """plates""", """platform""", """platforms""", """plating""", """platinum""", """platinum-based""", """platinum-free""", """platinum-refractory""", """platinum-resistant""", """platinum-sensitivity""", """plausible""", """play""", """played""", """players""", """playing""", """plays""", """pleasurable""", """pleasure""", """pleasures""", """pleiotropic""", """pleomorphy""", """pleural""", """plexus""", """plhiv""", """plic""", """plication""", """plk1""", """plnd""", """plot""", """plot-""", """plot-cec""", """plot-cec-ms""", """plot-scale""", """plots""", """plpro""", """pls-da""", """plugging""", """plump""", """plurality""", """pluripotency""", """pluripotent""", """plus""", """pmax""", """pneumocystis""", """pneumonectomy""", """pneumonia""", """pneumoniae""", """pneumonias""", """pneumoperitoneum""", """pneumophila""", """pneumothorax""", """pnfi""", """pni""", """pnn50""", """pns""", """pnse""", """pntb""", """po4""", """pocket""", """pockets""", """pod""", """pode""", """podem""", """poems""", """poetry""", """point""", """point-in-time""", """point-of-care""", """pointed""", """pointing""", """points""", """poison""", """poisoned""", """poisoning""", """poisoning-related""", """poisonings""", """poisons""", """poisson""", """pol""", """poland""", """polar""", """polarity""", """polarized""", """pole""", """police""", """policies""", """policing""", """policy""", """policy-""", """policymakers""", """polio""", """polish""", """political""", """pollen""", """pollutants""", """polluted""", """polluting""", """pollution""", """pollutions""", """polo-like""", """poly""", """polyaluminum""", """polyarticular""", """polyaxial""", """polycistronic""", """polycomb""", """polycystic""", """polydrug""", """polyethylene""", """polygenetic""", """polyglutamine""", """polyglutamine-expanded""", """polymer""", """polymerase""", """polymerases""", """polymerisation""", """polymerization""", """polymers""", """polymicrobial""", """polymorphism""", """polymorphisms""", """polyneuropathy""", """polynomial""", """polyp""", """polyphenols""", """polypoidal""", """polyposis""", """polyps""", """polyradiculoneuropathy""", """polysomal""", """polysomnography""", """polysubstance""", """polysulfides""", """polytetrafluoroethylene""", """polyunsaturated""", """pomelo""", """pond""", """ponders""", """pons""", """pontine""", """pool""", """pool-seq""", """pooled""", """pooling""", """pools""", """poolsnp""", """poor""", """poorer""", """poorest""", """poorly""", """pop""", """popliteal""", """popular""", """popularity""", """populated""", """population""", """population-based""", """population-level""", """populations""", """por""", """porcine""", """porcupine""", """poroma""", """porous""", """port""", """portability""", """portable""", """portal""", """portion""", """portions""", """portland""", """portosystemic""", """portray""", """portuguese""", """posas""", """pose""", """posed""", """poses""", """posit""", """positing""", """position""", """positioned""", """positioning""", """positions""", """positive""", """positively""", """positives""", """positivity""", """positron""", """possess""", """possessed""", """possesses""", """possession""", """possibilities""", """possibility""", """possible""", """possibly""", """post""", """post-aca""", """post-acl""", """post-administration""", """post-burn""", """post-covid""", """post-covid-19""", """post-cqit""", """post-crs-hipec""", """post-discharge""", """post-ed""", """post-exercise""", """post-extubation""", """post-graduate""", """post-hct""", """post-herpetic""", """post-hoc""", """post-hsct""", """post-injection""", """post-injury""", """post-intervention""", """post-ligation""", """post-mi""", """post-mortem""", """post-myocardial""", """post-nasal""", """post-nhas""", """post-operative""", """post-processing""", """post-prostatectomy""", """post-radiation""", """post-recurrence""", """post-rp""", """post-surgery""", """post-tbi""", """post-test""", """post-thrombotic""", """post-training""", """post-transcriptional""", """post-transcriptionally""", """post-translational""", """post-transplant""", """post-transplantation""", """post-traumatic""", """post-traumatic-stress-disorder""", """post-treatment""", """post-ups""", """post-urethroplasty""", """post-vaccination""", """post-visit""", """postdischarge""", """posterior""", """postgraduate""", """postinfarction""", """postinjury""", """postlaryngectomy""", """postlobectomy""", """postnatal""", """postnatally""", """postneurosurgical""", """postop""", """postoperative""", """postoperatively""", """postpartum""", """postponing""", """postrepair""", """posts""", """postsecondary""", """postsurgery""", """posttest""", """posttranscriptional""", """posttranslational""", """posttraumatic""", """posttreatment""", """postulated""", """postulates""", """postulating""", """postulation""", """postural""", """postures""", """posturography""", """pot""", """potassium""", """potency""", """potent""", """potential""", """potentially""", """potentially-causal""", """potentials""", """potentiate""", """potentiated""", """potentiation""", """potently""", """pou5f3""", """poultry""", """pour""", """pourrait""", """poverty""", """povidone-iodine""", """powder""", """power""", """power-oriented""", """powered""", """powerful""", """powers""", """pp1""", """ppb""", """ppc""", """ppc-i""", """ppc-ii""", """ppc-iii""", """ppc-iv""", """ppc-v""", """ppc-vi""", """ppc-vii""", """ppd""", """ppds""", """ppi""", """ppi2""", """ppm1h""", """ppnad""", """ppns""", """ppp""", """pprom""", """pps""", """ppt""", """ppto""", """ppv""", """ppwr""", """pqm-1""", """pqm-1-related""", """pr-a""", """pr-b""", """pr-driven""", """practical""", """practice""", """practiced""", """practices""", """practicing""", """practitioner""", """practitioners""", """pranayama""", """prasugrel""", """prausnitzii""", """prc2""", """prc2-altered""", """prdm9""", """pre""", """pre-""", """pre-2020""", """pre-aca""", """pre-adapted""", """pre-analytical""", """pre-clinical""", """pre-conceptional""", """pre-covid""", """pre-cqit""", """pre-defined""", """pre-emptive""", """pre-existing""", """pre-gl""", """pre-harvest""", """pre-hospital""", """pre-hsct""", """pre-intervention""", """pre-licensure""", """pre-mrna""", """pre-operative""", """pre-operatively""", """pre-pandemic""", """pre-post""", """pre-pregnancy""", """pre-stressed""", """pre-surgical""", """pre-symptomatic""", """pre-test""", """pre-tests""", """pre-trained""", """pre-treatment""", """pre-treatments""", """pre-vaccination""", """prebiotic""", """prebiotics""", """precaution""", """precautionary""", """precautions""", """precede""", """preceded""", """precedes""", """preceding""", """precipitate""", """precipitated""", """precipitation""", """precise""", """precisely""", """precision""", """preclinical""", """precocious""", """preconception""", """preconditioned""", """preconditioning""", """preconfigured""", """precursor""", """precursors""", """predator""", """predators""", """predatory""", """predecessors""", """predefined""", """predetermined""", """prediagnostic""", """predialysis""", """predict""", """predictability""", """predictable""", """predictably""", """predicted""", """predicting""", """prediction""", """predictions""", """predictive""", """predictor""", """predictors""", """predicts""", """predisposes""", """predisposing""", """preditores""", """prednisolone""", """prednisone""", """predominance""", """predominant""", """predominantly""", """preeclampsia""", """preencheram""", """prefecture""", """prefer""", """preferable""", """preferably""", """preference""", """preferences""", """preferentially""", """preferred""", """prefrontal""", """pregnancies""", """pregnancy""", """pregnancy-related""", """pregnant""", """preguidelines""", """prehistoric""", """prehospital""", """prehospitally""", """preliminary""", """prelingually""", """premalignant""", """premature""", """prematurity""", """premenopausal""", """premenstrual""", """premises""", """premium""", """premiums""", """premolars""", """prenatal""", """prenyl""", """preoperative""", """preoperatively""", """preparation""", """preparations""", """prepare""", """prepared""", """preparedness""", """preparing""", """preplating""", """prepro-orexin""", """prepubertal""", """prepuce""", """preregistered""", """prerequisite""", """presbycusis""", """preschool""", """prescribe""", """prescribed""", """prescriber""", """prescribing""", """prescription""", """prescriptions""", """prescriptive""", """presence""", """presensitization""", """present""", """presentation""", """presentations""", """presented""", """presenting""", """presents""", """preservation""", """preserve""", """preserved""", """preserving""", """presets""", """prespecification""", """prespecified""", """press""", """pressing""", """pressure""", """pressure-area""", """pressures""", """presumably""", """presume""", """presumptive""", """presurgical""", """preterm""", """pretested""", """pretransplant""", """pretreated""", """pretreatment""", """prevailing""", """prevalence""", """prevalent""", """prevenir""", """prevent""", """preventable""", """preventative""", """prevented""", """preventing""", """prevention""", """preventive""", """prevents""", """previews""", """previous""", """previously""", """previously-obscured""", """previstos""", """prevotella""", """price""", """prices""", """pricing""", """prima""", """primarily""", """primary""", """primate""", """primate-specific""", """primates""", """prime-knee""", """primer""", """primers""", """priming""", """primitive""", """prince""", """principais""", """principal""", """principales""", """principally""", """principle""", """principled""", """principles""", """print""", """printed""", """prion""", """prior""", """priori""", """priorities""", """prioritisation""", """prioritised""", """prioritization""", """prioritize""", """prioritized""", """priority""", """prisma""", """prisma-scr""", """pristane-induced""", """privacy""", """private""", """privately""", """prkar1a""", """pro""", """pro-apoptosis""", """pro-b-type""", """pro-bnp""", """pro-drug""", """pro-inflammatory""", """pro-oxidant""", """pro-survival""", """pro-tumor""", """pro-vaccine""", """proactive""", """proactively""", """proangiogenetic""", """probabilistic""", """probability""", """probable""", """probably""", """probe""", """probed""", """probes""", """probiotic""", """probiotics""", """probiotiques""", """problem""", """problemas""", """problematic""", """problems""", """procaspase""", """procedimiento""", """procedimientos""", """procedural""", """procedure""", """procedures""", """proceed""", """proceeded""", """proceeding""", """proceedings""", """proceeds""", """process""", """process-of-care""", """processed""", """processes""", """processing""", """procure""", """procyon""", """prodromal""", """prodrug""", """produce""", """produced""", """producers""", """produces""", """producing""", """product""", """product-specific""", """production""", """productive""", """productivities""", """productivity""", """products""", """produit""", """produits""", """proerd""", """professional""", """professionalism""", """professionals""", """professor""", """proficiency""", """proficient""", """profile""", """profiles""", """profiling""", """profissionais""", """profitability""", """profitable""", """proforma""", """profound""", """profoundly""", """progenitor""", """progesterone""", """progestin""", """progestin-induced""", """progestins""", """prognoses""", """prognosis""", """prognostic""", """prognostication""", """prognosticator""", """program""", """programa""", """programas""", """programmatic""", """programme""", """programmed""", """programmes""", """programming""", """programs""", """progress""", """progressed""", """progresses""", """progressing""", """progression""", """progression-free""", """progressive""", """progressors""", """prohibition""", """prohibitively""", """prohormone""", """proinflammatory""", """project""", """projection""", """projections""", """projects""", """prokaryotes""", """prokaryotic""", """prolapse""", """proliferation""", """proliferative""", """prolong""", """prolongation""", """prolonged""", """prominence""", """prominent""", """prominently""", """promiscuous""", """promise""", """promises""", """promising""", """promisingly""", """promote""", """promoted""", """promoter""", """promoters""", """promotes""", """promoting""", """promotion""", """promotional""", """promotive""", """prompt""", """prompted""", """prompting""", """promptly""", """prompts""", """proms""", """prone""", """prong""", """prongs""", """pronounced""", """prontos-socorros""", """proof""", """proof-of-concept""", """propagate""", """propagation""", """propamocarb""", """propels""", """propensities""", """propensity""", """propensity-matched""", """proper""", """properly""", """properties""", """property""", """prophylactic""", """prophylaxis""", """propofol""", """proponents""", """proportion""", """proportional""", """proportions""", """proposal""", """propose""", """proposed""", """proposes""", """proprietary""", """propuesto""", """propyl""", """proquest""", """proresolving""", """prosecution""", """prospect""", """prospective""", """prospectively""", """prospectively-collected""", """prospectivo""", """prospero""", """prostate""", """prostatectomy""", """prostheses""", """prosthesis""", """prosthetic""", """protamine""", """protease""", """proteases""", """proteasomal""", """proteasome""", """protect""", """protected""", """protecting""", """protection""", """protections""", """protective""", """protects""", """protein""", """protein-based""", """protein-binding""", """protein-coupled""", """protein-protein""", """protein-rna-dna""", """proteinlens""", """proteins""", """proteinuria""", """proteoglycan""", """proteoglycans""", """proteolysis""", """proteome""", """proteomes""", """proteomic""", """proteomics""", """prothrombin""", """protocol""", """protocol-defined""", """protocol-specific""", """protocols""", """proton""", """proton-pump""", """protonated""", """protons""", """protoplasmic""", """protospacer""", """prototype""", """prototypes""", """prototypic""", """prototypical""", """protraction""", """protrusion""", """protrusions""", """protumoral""", """prove""", """proved""", """proven""", """proves""", """provide""", """provided""", """provider""", """provider-centric""", """providers""", """providers-namely""", """provides""", """providing""", """province""", """provinces""", """proving""", """provision""", """provocation""", """provocative""", """provoked""", """proxies""", """proximal""", """proximally""", """proximate""", """proximity""", """proxy""", """prp""", """prpb""", """prr""", """prs""", """pruning""", """psa""", """psd93""", """pseudoalteromonas""", """pseudocyst""", """pseudocysts""", """pseudoepitheliomatous""", """pseudomonas""", """pseudophakes""", """pseudotumor""", """pseudotumoral""", """psi-blast""", """psilocybin""", """psm""", """pso""", """psoriasis""", """psoriatic""", """pstat3""", """pstat3-inhibited""", """psychedelic""", """psychedelic-assisted""", """psychiatric""", """psychiatrist""", """psychiatrists""", """psychiatry""", """psychoactive""", """psychobehavioral""", """psychodrama""", """psychoeducation""", """psychological""", """psychologically""", """psychologist""", """psychologists""", """psychology""", """psychometric""", """psychomotor""", """psychopathic""", """psychopathologies""", """psychopathology""", """psychophysical""", """psychosocial""", """psychotherapy""", """psycinfo""", """ptb""", """ptbp1""", """ptc-associated""", """ptcs""", """ptcy""", """pten""", """pten-induced""", """pth""", """ptm""", """ptrcast""", """ptrend""", """ptsd""", """pttb""", """pubchem""", """pubertal""", """puberty""", """public""", """public-key""", """publication""", """publications""", """publicly""", """publish""", """published""", """pubmed""", """pubmed-medline""", """puducherry""", """puf""", """puf-8""", """puf-binding""", """pufa""", """pufas""", """puffy""", """pull""", """pull-down""", """pulling""", """pullout""", """pulmonary""", """pulmonology""", """pulse""", """pulses""", """puma""", """pumilio""", """pump""", """pump-probe""", """punch""", """puncture""", """punish""", """punishment""", """punitive""", """pupil""", """puppets""", """purchase""", """purchased""", """purchasers""", """purchasing""", """pure""", """purely""", """purge""", """purification""", """purified""", """purine""", """purity""", """purported""", """purpose""", """purposeful""", """purposefully""", """purposes""", """purposive""", """purposively""", """purpura""", """purpuras""", """purpuric""", """purse-string""", """pursued""", """pursuing""", """pursuit""", """push""", """pushing""", """put""", """putative""", """puts""", """pvi""", """pvod""", """pwd""", """pwh""", """pwid""", """pwud""", """pwuds""", """pwv""", """pylori""", """pylori-positive""", """pyramidal""", """pyrazine""", """pyrolytic""", """pyruvate""", """python""", """q10""", """q472""", """q61""", """qaladar""", """qiao""", """qing""", """qol""", """qpcr""", """qrdr""", """qrt-pcr""", """qskin""", """qsofa""", """qst""", """qtl""", """quadrant""", """quadratic""", """quadruple""", """quadrupole-tof""", """quais""", """qualified""", """qualifying""", """qualitative""", """qualitatively""", """qualities""", """quality""", """quality-of-life""", """qualtrics""", """quantifiable""", """quantification""", """quantified""", """quantify""", """quantifying""", """quantile""", """quantitated""", """quantitative""", """quantitative-swath""", """quantitatively""", """quantities""", """quantity""", """quantum""", """quarantine""", """quarterly""", """quartile""", """quartiles""", """quasi-experimental""", """quasi-randomised""", """quasi-randomized""", """quasi-rcts""", """quassia""", """quaternary""", """quatre""", """quatro""", """que""", """quechers""", """queensland""", """queried""", """queries""", """query""", """question""", """question-asking""", """questioned""", """questioning""", """questionnaire""", """questionnaires""", """questions""", """queyrat""", """qui""", """qui-quadrado""", """quick""", """quickly""", """quid""", """quiescence""", """quiescent""", """quiet""", """quinate""", """quinn""", """quinolone-resistance""", """quinquennium""", """quintessential""", """quintile""", """quintiles""", """quite""", """quitting""", """quo""", """quotient""", """r-hgh""", """r-loops""", """r-squared""", """r-vnotes""", """r132c""", """r2val""", """rabbit""", """rabbits""", """raccoon""", """race""", """race-based""", """racemosa""", """racial""", """racism""", """rad-seq""", """rad23b""", """rad51""", """rad51-dependent""", """rad51-mediated""", """rad51-ssdna""", """rad51c""", """rad52""", """rad54""", """radial""", """radiation""", """radiation-attenuated""", """radiation-free""", """radiation-induced""", """radiation-related""", """radiations""", """radical""", """radicality""", """radio""", """radio-labelled""", """radioactive""", """radiodermatitis""", """radiofrequency""", """radiograph""", """radiographic""", """radiographically""", """radiographs""", """radiography""", """radioiodine""", """radiologic""", """radiological""", """radiologically""", """radiologists""", """radiology""", """radiolucencies""", """radiolysis""", """radiomics""", """radioresistant""", """radiosensitive""", """radiotherapy""", """radius""", """radon""", """radon-associated""", """raetia""", """raging""", """rags""", """rainy""", """raise""", """raised""", """raises""", """raising""", """ral-phr""", """rals""", """ralstonia""", """ram""", """ramadan""", """ran""", """rand""", """random""", """random-effects""", """randomisation""", """randomised""", """randomised-controlled""", """randomising""", """randomization""", """randomized""", """randomly""", """randomly-selected""", """range""", """ranged""", """rangelands""", """ranges""", """ranging""", """rank""", """rank-based""", """ranked""", """rankin""", """ranking""", """rankl""", """ranks""", """ranzcp""", """rap1""", """rapid""", """rapid-acting""", """rapid-eye""", """rapidly""", """rapport""", """rare""", """rare-allele""", """rarefaction""", """rarely""", """rarer""", """rarity""", """ras""", """ras-like""", """ras-pi3k-akt""", """ras-raf""", """rasch""", """rash""", """rat""", """rate""", """rate-based""", """rate-limiting""", """rated""", """raters""", """rates""", """rather""", """rating""", """ratings""", """ratio""", """rational""", """rationale""", """ratios""", """rats""", """rattle""", """raunkiaer""", """ravl""", """raw""", """ray""", """raynaud""", """rbc""", """rbe""", """rbt""", """rcda""", """rcm""", """rct""", """rcts""", """rddm""", """rdh54""", """rdp""", """rdrp""", """rds""", """re-admission""", """re-creating""", """re-detect""", """re-emergence""", """re-epithelialization""", """re-evaluated""", """re-evaluation""", """re-exploration""", """re-extubation""", """re-implantation""", """re-insertion""", """re-intubation""", """re-programming""", """re-ruptured""", """reach""", """reached""", """reaches""", """reaching""", """react""", """reaction""", """reaction-restriction""", """reactions""", """reactivation""", """reactive""", """reactivity""", """reactor""", """reactors""", """read""", """readability""", """readers""", """readily""", """readiness""", """reading""", """readings""", """readmission""", """readmissions""", """readmitted""", """readout""", """reads""", """ready""", """reagent""", """reagents""", """real""", """real-time""", """real-world""", """realised""", """realism""", """realistic""", """realities""", """reality""", """realizamos""", """realizaron""", """realization""", """realize""", """realized""", """realms""", """reappearance""", """reappraisal""", """reared""", """rearrangement""", """rearrangements""", """reason""", """reasonable""", """reasoning""", """reasons""", """reassessment""", """reassured""", """reassuring""", """reca-ssdna""", """recalcitrant""", """recall""", """recalls""", """recap""", """recapitulate""", """recapitulated""", """recapitulating""", """receipt""", """receive""", """received""", """receiver""", """receiver-operating""", """receives""", """receiving""", """recent""", """recently""", """recently-developed""", """reception""", """receptivity""", """receptor""", """receptor-2""", """receptor-directed""", """receptor-neprilysin""", """receptors""", """recessive""", """recessively""", """recharged""", """recharging""", """recherche""", """recipient""", """recipients""", """reciprocal""", """reciprocally""", """recognised""", """recognition""", """recognize""", """recognized""", """recognizing""", """recombinant""", """recombination""", """recommend""", """recommendation""", """recommendations""", """recommended""", """recommending""", """recommends""", """reconheciam""", """reconnected""", """reconsidered""", """reconstruct""", """reconstructed""", """reconstruction""", """reconstructions""", """reconstructive""", """record""", """recorded""", """recording""", """recordings""", """records""", """recover""", """recovered""", """recovering""", """recovers""", """recovery""", """recq""", """recreational""", """recreationally""", """recruit""", """recruited""", """recruiting""", """recruitment""", """recruits""", """rectal""", """rectale""", """recti""", """rectified""", """rectifying""", """rectovaginal""", """rectum""", """rectus""", """recumbency""", """recumbent""", """recurred""", """recurrence""", """recurrence-free""", """recurrences""", """recurrent""", """recursive""", """recyclable""", """recycle""", """recycled""", """recycling""", """red""", """red-emission""", """red-free""", """redcap""", """reddit""", """redesigned""", """redesigning""", """redirect""", """redo""", """redox""", """reduce""", """reduced""", """reduced-intensity""", """reduced-nicotine-content""", """reduced-toxicity""", """reduces""", """reducing""", """reductant""", """reductase""", """reductases""", """reduction""", """reductions""", """reductive""", """redundant""", """reduzir""", """ree""", """reefs""", """reevaluate""", """refer""", """reference""", """references""", """referencing""", """referents""", """referral""", """referrals""", """referred""", """referring""", """refers""", """refine""", """refined""", """refining""", """reflect""", """reflectance""", """reflected""", """reflecting""", """reflection""", """reflective""", """reflects""", """reflex""", """reflexes""", """reflexive""", """reflexogenic""", """reflux""", """refolding""", """reform""", """reformed""", """refractive""", """refractoriness""", """refractory""", """refusal""", """refutation""", """refute""", """regadenoson""", """regard""", """regarded""", """regarding""", """regardless""", """regards""", """regenerate""", """regeneration""", """regeneration-associated""", """regenerative""", """regime""", """regimen""", """regimens""", """regimes""", """regio-""", """region""", """region-of-interest""", """region-specific""", """regional""", """regionally""", """regions""", """register""", """registered""", """registers""", """registration""", """registries""", """registro""", """registry""", """rego""", """regrafts""", """regress""", """regressed""", """regressing""", """regression""", """regression-based""", """regressions""", """regressions-analyzed""", """regret""", """regrowth""", """regular""", """regularization""", """regularly""", """regulate""", """regulated""", """regulates""", """regulating""", """regulation""", """regulations""", """regulator""", """regulators""", """regulatory""", """regulatory-approved""", """regurgitation""", """rehabilitation""", """rehospitalization""", """reimbursed""", """reimbursement""", """reimbursements""", """reimbursing""", """reimplantation""", """reinforce""", """reinforced""", """reinforcement""", """reinforces""", """reinforcing""", """reinstatement""", """reintervention""", """reintroduced""", """reintubation""", """reinvigorating""", """reject""", """rejecting""", """rejection""", """relacionada""", """relacionadas""", """relapse""", """relapse-free""", """relapsed""", """relapses""", """relapsing""", """relate""", """related""", """relates""", """relating""", """relation""", """relational""", """relations""", """relationship""", """relationships""", """relative""", """relatively""", """relatives""", """relaxation""", """relaxed""", """relay""", """release""", """released""", """releases""", """releasing""", """relevance""", """relevant""", """reliability""", """reliable""", """reliably""", """reliance""", """relic""", """relied""", """relief""", """relies""", """relieve""", """relieved""", """relieving""", """religiosity""", """religious""", """relocalization""", """rely""", """relying""", """remain""", """remainder""", """remained""", """remaining""", """remains""", """remarkable""", """remarkably""", """remdesivir""", """remedy""", """reminiscent""", """remission""", """remissions""", """remitted""", """remitters""", """remnant""", """remodel""", """remodelers""", """remodeling""", """remodelling""", """remote""", """remotely""", """removal""", """remove""", """removed""", """removes""", """removing""", """renaissance""", """renal""", """rendering""", """renders""", """renew""", """renin""", """renin-angiotensin-aldosterone""", """renina-angiotensina-aldosterona""", """rentrop""", """reoccurred""", """reoperation""", """reoperation-related""", """reoperations""", """reorganization""", """rep""", """repa""", """repair""", """repair-deficient""", """repair-proficient""", """repair-related""", """repaired""", """repairs""", """repeat""", """repeatability""", """repeatable""", """repeated""", """repeated-measures""", """repeatedly""", """repeats""", """reperfusion""", """repertoire""", """repetitive""", """replace""", """replaced""", """replacement""", """replacements""", """replacing""", """replenishing""", """replicability""", """replicable""", """replicate""", """replicated""", """replicates""", """replicating""", """replication""", """replication-based""", """replicative""", """replisome""", """report""", """reported""", """reporter""", """reporters""", """reporting""", """reports""", """reposait""", """reposition""", """repositories""", """repository""", """represent""", """representation""", """representations""", """representative""", """representatives""", """represented""", """representing""", """represents""", """repressed""", """represses""", """repressing""", """repression""", """repressive""", """repressor""", """reprocessing""", """reprocessor""", """reproduce""", """reproduced""", """reproducibility""", """reproducible""", """reproduction""", """reproductive""", """reproductive-age""", """reprogrammed""", """reprogramming""", """republic""", """repulsive""", """repurposed""", """reputed""", """request""", """requested""", """requesting""", """requests""", """require""", """required""", """requirement""", """requirements""", """requires""", """requiring""", """rescue""", """rescued""", """rescues""", """rescuing""", """research""", """research-can""", """researchers""", """researches""", """resected""", """resection""", """resections""", """resembled""", """resembling""", """reserve""", """reserved""", """reserves""", """reshapes""", """reside""", """resided""", """residence""", """residencial""", """residency""", """resident""", """residential""", """residents""", """resides""", """residual""", """residuals""", """residue""", """residues""", """resilience""", """resiliency""", """resilient""", """resin""", """resin-packed""", """resins""", """resist""", """resistance""", """resistant""", """resistentiae""", """resistive""", """resistome""", """resolution""", """resolution-e""", """resolutions""", """resolve""", """resolved""", """resolving""", """resonance""", """resonances""", """resonant""", """resorption""", """resource""", """resource-limited""", """resources""", """respect""", """respectfully""", """respectivamente""", """respective""", """respectively""", """respectueuse""", """respiration""", """respiratory""", """respiratory-health""", """respirometry""", """respond""", """responded""", """respondent""", """respondents""", """responders""", """responding""", """responsable""", """responsables""", """response""", """response-dependent""", """responses""", """responsibility""", """responsible""", """responsive""", """responsiveness""", """responsivity""", """resprouting""", """rest""", """restart""", """restaurar""", """resting""", """resting-state""", """restitution""", """restoration""", """restorations""", """restorative""", """restore""", """restored""", """restoring""", """restrain""", """restraining""", """restrains""", """restraints""", """restricciones""", """restrict""", """restricted""", """restricting""", """restriction""", """restriction-fragment""", """restrictions""", """restrictive""", """restricts""", """result""", """resultant""", """resulted""", """resulting""", """results""", """resume""", """resumption""", """resurgence""", """resurgery""", """resurvey""", """resuscitated""", """resuscitation""", """retailers""", """retain""", """retained""", """retaining""", """retardation""", """retards""", """retention""", """retested""", """reticulated""", """reticulum""", """retina""", """retinal""", """retinas""", """retiniano""", """retinogenesis""", """retinol""", """retinopathy""", """retinyl""", """retract""", """retractable""", """retracted""", """retraction""", """retrieval""", """retrieved""", """retrocervical""", """retrograde""", """retropancreatic""", """retropubic""", """retrosigmoid""", """retrospective""", """retrospectively""", """return""", """returned""", """returns""", """reuptake""", """reusable""", """revascularization""", """reveal""", """revealed""", """revealing""", """reveals""", """revel""", """revenue""", """reversal""", """reverse""", """reversed""", """reversed-phase""", """reversible""", """reversibly""", """revert""", """reverted""", """review""", """reviewed""", """reviewers""", """reviewing""", """reviews""", """revise""", """revised""", """revision""", """revisit""", """revman""", """revolution""", """revolutionary""", """reward""", """rewarding""", """rewards""", """rfs""", """rft1""", """rgc""", """rgc-like""", """rgcs""", """rhabdomyolysis""", """rhabdomyosarcoma""", """rheological""", """rheology""", """rheumatic""", """rheumatoid""", """rheumatologic""", """rheumatologist""", """rheumatology""", """rhgh""", """rhgh-treatment""", """rhinatrema""", """rhinosinusitis""", """rhizoctonia""", """rho""", """rhodococci""", """rhodococcus""", """rhodopsin""", """rhq""", """rhythm""", """rhythms""", """ri-oa""", """ribavirin""", """ribociclib""", """ribociclib-everolimus""", """ribonucleic""", """ribonucleotide""", """ribosome""", """ribosomes""", """ric""", """rice""", """rich""", """rich-electronic""", """richardii""", """richer""", """richness""", """ridge""", """riely""", """rif1""", """rif1-pp1""", """right""", """right-""", """right-sided""", """righting""", """rights""", """rigid""", """rigidification""", """rigorous""", """rigour""", """rim""", """ring""", """ringer-lactate""", """rinses""", """rio""", """ripc""", """rise""", """risen""", """rising""", """risk""", """risk-assessment""", """risk-stratification""", """risk-stratify""", """risk-taking""", """risking""", """risks""", """risky""", """risperidone-induced""", """ritual""", """rituals""", """rituximab""", """rivaroxaban""", """rivaroxaban-treated""", """river""", """rl2""", """rl3""", """rl4""", """rlnp""", """rlv""", """rlwe-based""", """rmb""", """rmpp""", """rmrp""", """rmse""", """rmsea""", """rmssd""", """rna""", """rna-based""", """rna-binding""", """rna-dependent""", """rna-directed""", """rna-dna""", """rna-seq""", """rna-sequencing""", """rnai""", """rnap""", """rnas""", """rnascope""", """rnase""", """rnccs""", """rnfl""", """rnfls""", """road""", """road-killed""", """roadmap""", """roads""", """roaming""", """rob""", """robins-i""", """robot""", """robot-assisted""", """robotic""", """robotic-assisted""", """robust""", """robustly""", """robustness""", """roc""", """roche""", """rocs""", """rod""", """rod-shaped""", """rodent""", """rodentium""", """rodentium-specific""", """rodents""", """roe""", """role""", """role-modelling""", """role-playing""", """roles""", """roll-on""", """roller""", """roller-ski""", """roller-skiing""", """rollout""", """rom""", """roman""", """romantic""", """room""", """root""", """roots""", """rootstock""", """ros""", """rose""", """ross""", """rotation""", """rotations""", """rotators""", """rotifers""", """rotina""", """roughening""", """roughly""", """roughness""", """roukema""", """round""", """rounds""", """route""", """routes""", """routine""", """routinely""", """rouviere""", """roux-en-y""", """rpap""", """rral""", """rrc""", """rrmm""", """rrna""", """rrt""", """rs-dependent""", """rs10794418""", """rs2119882""", """rs4753426""", """rsd""", """rsfc""", """rsi""", """rst2""", """rswt""", """rt-pcr""", """rt-qpcr""", """rtca""", """rubber""", """rubbery""", """ruffling""", """rukwa""", """rule""", """rules""", """rumination""", """rumination-reflection""", """run""", """run-tt""", """runners""", """running""", """runx2""", """runx2-related-o-glcnacylated-proteins""", """rupert""", """rupture""", """ruptured""", """ruptures""", """rural""", """rush""", """rutin""", """rutin-nsaids""", """rutin-paracetamol""", """ruxolitinib""", """rwe""", """s-1""", """s-phase""", """s-transferase-1""", """s2058""", """s2058d""", """s4s""", """s51""", """sa-dependent""", """sabg""", """sac""", """sacatepequez""", """saccular""", """sacrifice""", """sacrificed""", """sacrocolpopexy""", """sacrohysteropexy""", """sad""", """sadness""", """safe""", """safeguard""", """safely""", """safer""", """safest""", """safety""", """safety-net""", """sagging""", """sagittal""", """saharan""", """said""", """sain""", """sains""", """sale""", """sales""", """salff""", """salicylic""", """salient""", """saline""", """saliva""", """salivary""", """salmon""", """salt""", """salt-wasting""", """salts""", """salud""", """salvage""", """sam""", """samaritan""", """same""", """same-day""", """samhda""", """samhsa""", """sample""", """sampled""", """samples""", """sampling""", """samplings""", """sams""", """samsung""", """san""", """sandblasted""", """sandblasting""", """sandwich""", """sandwiched""", """sanger""", """sanitiser""", """santiago""", """sao""", """sap""", """sarcoma""", """sarcomas""", """sarcopenia""", """sarcopterygii""", """sars""", """sars-cov""", """sars-cov-2""", """sars-cov-2-mediated""", """sars-cov-2-positive""", """sas""", """sat""", """satellite""", """satellites""", """satisfaction""", """satisfactory""", """satisfied""", """sativa""", """saturated""", """saturation""", """sau""", """saudi""", """saves""", """savg""", """savgs""", """saving""", """saw""", """say""", """sb-431542""", """sb203580""", """sbce""", """sbp""", """sbt""", """sca""", """scaffold""", """scaffolding""", """scalability""", """scalable""", """scald""", """scale""", """scale-12""", """scale-6""", """scale-up""", """scaled""", """scales""", """scaling""", """scalp""", """scalpel""", """scan""", """scanned""", """scanner""", """scanners""", """scanning""", """scans""", """scant""", """scar""", """scar-pressure""", """scarce""", """scarcity""", """scared""", """scarring""", """scars""", """scattered""", """scavenger""", """scavengers""", """scc""", """sccs""", """scd""", """scenario""", """scenarios""", """scene""", """scenedesmus""", """scenery""", """scenes""", """scg""", """schamberg""", """schedule""", """scheduled""", """schema""", """scheme""", """schemes""", """schiavonia""", """schizophrenia""", """scholar""", """scholarity""", """scholars""", """scholarship""", """scholastic""", """school""", """school-based""", """schoolers""", """schools""", """schwannomas""", """sci""", """sciatic""", """scielo""", """science""", """sciencedirect""", """sciences""", """scientific""", """scientists""", """scimitar""", """scintigraphy""", """scissors""", """scl-20""", """sclerosis""", """sclerosis-frontotemporal""", """sclerosis-related""", """scoff""", """scoff-br""", """scoliosis""", """scope""", """scope-seq2""", """scopes""", """scoping""", """scopus""", """scorad""", """score""", """scores""", """scoring""", """scoring-based""", """scotland""", """scr""", """screen""", """screened""", """screening""", """screening-detected""", """screenings""", """screens""", """screw""", """screw-rod""", """screwdriver""", """screwdrivers""", """screwing""", """screws""", """scripts""", """scrna-seq""", """scrotal""", """scrupulously""", """scrutinize""", """scthi""", """sculpt""", """sculpts""", """sd-oct""", """sdm""", """sdn""", """sdq""", """sds""", """sea""", """seal""", """seals""", """search""", """searched""", """searches""", """searching""", """season""", """seasonal""", """seasons""", """sebaceous""", """seborrheic""", """sec""", """second""", """second-""", """second-degree""", """second-messengers""", """secondary""", """secosteroid""", """secretagogue""", """secretagogues""", """secrete""", """secreted""", """secreting""", """secretion""", """secretions""", """secteur""", """section""", """sectional""", """sectioned""", """sectioning""", """sections""", """sector""", """sectors""", """secukinumab""", """secure""", """security""", """sedating""", """sedation""", """sedative""", """sedatives""", """sedd""", """sedentary""", """sedsb""", """sedsbs""", """see""", """seed""", """seed-based""", """seeded""", """seedling""", """seedlings""", """seeds""", """seek""", """seekers""", """seeking""", """seeks""", """seem""", """seemed""", """seemingly""", """seems""", """seen""", """segment""", """segmental""", """segmentation""", """segmentectomy""", """segmented""", """segments""", """segregating""", """segregation""", """seguridad""", """seir""", """seizure""", """seizure-free""", """seizures""", """selangor""", """selecionados""", """select""", """select-by-audiogram""", """select-by-questionnaire""", """select-by-self-test""", """select-by-trying""", """selected""", """selecting""", """selection""", """selections""", """selective""", """selective-pi3k""", """selectively""", """selectivity""", """selenium""", """self-administered""", """self-assemble""", """self-assembles""", """self-assembly""", """self-care""", """self-catheterization""", """self-concept""", """self-controlled""", """self-efficacy""", """self-efficiency""", """self-esteem""", """self-expandable""", """self-guided""", """self-identifying""", """self-inducing""", """self-ligating""", """self-limited""", """self-lipids""", """self-management""", """self-medication""", """self-monitoring""", """self-organization""", """self-poisoning""", """self-rated""", """self-rating""", """self-ratings""", """self-reactive""", """self-reflection""", """self-regulate""", """self-regulated""", """self-renewal""", """self-repair""", """self-report""", """self-reported""", """self-select""", """selibs""", """sell""", """sem""", """semaines""", """semantic""", """semelhantes""", """semen""", """semi-quantitative""", """semi-solid""", """semi-structured""", """semialdehyde""", """semiallogeneic""", """semicircular""", """semiconducting""", """semiochemicals""", """semistructured""", """sendai""", """sending""", """sendo""", """senescence""", """senil""", """senior""", """seniors""", """sensation""", """sense""", """sensibilidad""", """sensing""", """sensitive""", """sensitivities""", """sensitivity""", """sensitivity-maximizing""", """sensitization""", """sensitize""", """sensitized""", """sensor""", """sensorimotor""", """sensorineural""", """sensors""", """sensory""", """sensory-based""", """sent""", """sentence""", """sentence-initial""", """sentences""", """sentiment""", """sentinel""", """seoul""", """separate""", """separated""", """separately""", """separates""", """separation""", """sepsis""", """septal""", """september""", """septic""", """septicaemia-related""", """sequelae""", """sequence""", """sequence-specific""", """sequenced""", """sequences""", """sequencing""", """sequential""", """sequestering""", """sequoia""", """sequoiadendron""", """ser""", """sera""", """serbia""", """serca2""", """serial""", """series""", """serine""", """serious""", """seriously""", """seroconversion""", """serologic""", """serology""", """seronegative""", """seropositivity""", """serotonergic""", """serotonin""", """serotonin-norepinephrine""", """serous""", """serrated""", """serratus""", """serum""", """serum-based""", """serum-derived""", """serve""", """served""", """serves""", """service""", """services""", """serving""", """servir""", """ses""", """sessile""", """session""", """sessions""", """set""", """set-up""", """set-ups""", """setrobuvir""", """sets""", """setting""", """settings""", """settle""", """settlement""", """settlements""", """seven""", """seven-grade""", """seventeen""", """seventh""", """seventy-five""", """seventy-four""", """seventy-nine""", """seventy-two""", """several""", """severe""", """severely""", """severity""", """sevo""", """sevo-treated""", """sevoflurane""", """sex""", """sex-adjusted""", """sex-atypical""", """sex-dependent""", """sex-dependently""", """sex-independent""", """sex-matched""", """sex-related""", """sex-specific""", """sex-stratified""", """sexes""", """sexo""", """sextuple""", """sexual""", """sexuality""", """sexually""", """sf-36""", """sf3b1""", """sfn""", """sfs""", """sfsat""", """sglt""", """sglt2""", """sglts""", """shade-tolerant""", """shaded""", """shades""", """shading""", """shaft""", """sham""", """sham-injection""", """sham-operated""", """shame""", """shanghai""", """shape""", """shape-sensing""", """shaped""", """shapes""", """shaping""", """share""", """shared""", """shares""", """sharing""", """shark""", """sharks""", """sharp""", """shbg""", """she""", """shear""", """sheath""", """shed""", """sheep""", """sheet-like""", """sheets""", """shelf""", """shell""", """shell-like""", """shelterin""", """shh""", """shield""", """shielding""", """shift""", """shifted""", """shifting""", """shifts""", """shiny""", """shl""", """shock""", """shocks""", """shockwave""", """shoot""", """short""", """short-""", """short-acting""", """short-chain""", """short-day""", """short-form""", """short-lived""", """short-term""", """short-terms""", """shortage""", """shortages""", """shortcomings""", """shortcuts""", """shorten""", """shortened""", """shortening""", """shortens""", """shorter""", """shorting""", """shotgun""", """should""", """shoulder""", """shoulders""", """show""", """showed""", """showing""", """shown""", """shows""", """shrews""", """shriners""", """shu""", """shunt""", """shunting""", """shuttle""", """shuttling""", """si-containing""", """si-ion""", """si-ions""", """sialic""", """sibling""", """siblings""", """sick""", """sickle""", """sid""", """side""", """side-by""", """side-effect""", """side-effects""", """side-to-side""", """sidelines""", """sides""", """sids-alte""", """siemens""", """sighted""", """sightedness""", """siglas""", """siglec""", """siglec-3""", """siglec-6""", """siglec-6-specific""", """sigma""", """sigmoid""", """sigmoidal""", """sigmoidoscopy""", """sign""", """signal""", """signaled""", """signaling""", """signaling-transduction""", """signalling""", """signals""", """signature""", """signatures""", """significance""", """significant""", """significantly""", """significatif""", """significative""", """significativement""", """signify""", """signs""", """siguientes""", """sii""", """silenced""", """silencing""", """silene""", """silent""", """silhouette""", """silica""", """silicate""", """silico""", """silicon""", """silicon-ions""", """silk""", """silver""", """silver-based""", """silver-plated""", """simians""", """similar""", """similar-sized""", """similarities""", """similarity""", """similarly""", """simple""", """simple-to-use""", """simpler""", """simplest""", """simplex""", """simplificados""", """simplified""", """simplify""", """simulado""", """simulate""", """simulated""", """simulates""", """simulating""", """simulation""", """simulations""", """simultaneous""", """simultaneously""", """sin""", """sinai""", """since""", """single""", """single-""", """single-agent""", """single-arm""", """single-atom""", """single-cell""", """single-center""", """single-centre""", """single-copy""", """single-dose""", """single-ended""", """single-institution""", """single-item""", """single-measures""", """single-molecule""", """single-nucleotide""", """single-payer""", """single-port""", """single-site""", """single-stranded""", """singleton""", """singletons""", """singular""", """sink""", """sinks""", """sino-nasal""", """sinus""", """sio2""", """sionp""", """sirna""", """sirolimus""", """sis""", """sistema""", """sister""", """sit""", """sit-stand""", """sit-to-stand""", """sita""", """sitagliptin""", """sitchensis""", """site""", """site-specific""", """sites""", """sitka""", """sitting""", """situ""", """situated""", """situation""", """situations""", """six""", """six-month""", """six-months""", """six-week-old""", """six-weeks""", """sixteen""", """sixty""", """sixty-eight""", """sixty-nine""", """sixty-two""", """size""", """sizeable""", """sizer""", """sizes""", """skating""", """skeletal""", """skeleton""", """skepticism""", """skewed""", """ski""", """skiers""", """skiing""", """skill""", """skilled""", """skills""", """skin""", """skin-care""", """skin-colored""", """skin-friendly""", """skin-homing""", """skin-limited""", """skin-oriented""", """skin-related""", """skin-to-skin""", """skip-inducing""", """skipping""", """skis""", """skp2""", """skp2-associated""", """skp2-c25""", """skull""", """skyline""", """skylines""", """slb""", """slcs""", """sle""", """sle-associated""", """slecs""", """sleep""", """sleepiness""", """sleeve""", """slew""", """slices""", """slight""", """slightly""", """sling""", """slip-resistance""", """slit-lamp""", """sloan""", """sloan-kettering""", """slope""", """sloth""", """slow""", """slowed""", """slower""", """slowing""", """slowly""", """sm1""", """sm10""", """sm4""", """sm5""", """sm6""", """sm7""", """sm9""", """sma""", """smad""", """smad1""", """smad2""", """smad3""", """smad4""", """small""", """small-""", """small-molecule""", """small-to-moderate""", """smaller""", """smallest""", """smartphone""", """smartphones""", """smas""", """smc""", """smd""", """smds""", """smears""", """smile""", """smoke""", """smoked""", """smokers""", """smoking""", """smoking-related""", """smooth""", """smpi""", """smpi-cr""", """smpi-sr""", """smr""", """smrs""", """snack""", """snakes""", """snap""", """snap-frozen""", """snape-pooled""", """snapshot""", """snc""", """snf2""", """snomed""", """snore""", """snoring""", """snort""", """snorting""", """snot-22""", """snowball""", """snp""", """snps""", """snri""", """snris""", """sns""", """so-called""", """soap""", """sobre""", """soc""", """soccer""", """social""", """social-demographic""", """social-structural""", """sociality""", """socially""", """sociedade""", """societal""", """societies""", """society""", """socio-demographic""", """socio-demographics""", """socio-economic""", """socio-emotional""", """sociodemographic""", """socioeconomic""", """socioeconomically""", """socs1""", """sod""", """sod1""", """sod2""", """sodium""", """sodium-glucose""", """sofa""", """sofosbuvir""", """soft""", """softest""", """software""", """soil""", """soil-borne""", """soins""", """solanacearum""", """solanum""", """sold""", """soldiers""", """sole""", """solely""", """solid""", """solid-like""", """solid-organ""", """solid-phase""", """solid-state""", """solitary""", """soluble""", """solumedrol""", """solution""", """solutions""", """solvation""", """solve""", """solved""", """solvent""", """solvents""", """solving""", """somatic""", """somatomotor""", """somatosensation""", """some""", """somebody""", """someone""", """sometimes""", """somewhat""", """son""", """sondhi""", """songbird""", """sonic""", """sonodynamic""", """sonographers""", """sonosenitizer""", """sons""", """sont""", """soon""", """sooner""", """sophisticated""", """sorafenib""", """sore""", """sort""", """sorted""", """sorting""", """sought""", """sound""", """soundness""", """sounds""", """soup""", """source""", """sources""", """south""", """south-central""", """southeast""", """southern""", """southwest""", """sox11""", """sox17""", """sox2""", """sox9""", """spa""", """space""", """space-time""", """spaces""", """spacing""", """spain""", """span""", """spanish""", """spanning""", """spans""", """sparc""", """spare""", """spares""", """sparing""", """sparked""", """sparse""", """sparsity""", """spartan""", """spasm""", """spasmodic""", """spasms""", """spastic-reactive""", """spasticity""", """spatial""", """spatially""", """spatio-temporal""", """spatio-temporally""", """spatiotemporal""", """spdef""", """speak""", """speakers""", """speaking""", """spearman""", """special""", """specialised""", """specialist""", """specialists""", """specialization""", """specialized""", """specially""", """specialty""", """speciation""", """species""", """species-appropriate""", """specific""", """specifically""", """specification""", """specificities""", """specificity""", """specified""", """specify""", """specimen""", """specimens""", """spect""", """spect-mps""", """spectra""", """spectral""", """spectral-domain""", """spectralis""", """spectrometer""", """spectrometry""", """spectrometry-based""", """spectrophotometry""", """spectroscopic""", """spectroscopy""", """spectrum""", """speculate""", """speculation""", """speech""", """speech-regional""", """speed""", """speedballing""", """spending""", """spent""", """sperm""", """spermatogenesis""", """spermatozoa""", """spf""", """spf-treated""", """sphere""", """spheres""", """spheroid""", """sphincter""", """spiculation""", """spielberger""", """spike-1-iga""", """spike-1-igg""", """spikes""", """spikes-and-waves""", """spillover""", """spillovers""", """spinal""", """spine""", """spinifera""", """spinning""", """spinocerebellar""", """spinosus""", """spinous""", """spinylobsters""", """spiritual""", """spirituality""", """spirochete""", """spit""", """spl""", """spleen""", """splenic""", """splice""", """splicing""", """split""", """spm""", """spme""", """spms""", """spoken""", """spondylarthritis""", """spondylitis""", """spondyloarthritis""", """sponging""", """sponsor-initiated""", """spontaneous""", """spontaneously""", """sporadic""", """sporadically""", """spore-like""", """sporozoite""", """sporozoites""", """sport""", """sportdiscus""", """sports""", """spot""", """spotlight""", """spots""", """spotting""", """spp""", """sprague""", """spray""", """spread""", """spreading""", """spreads""", """spreadsheet""", """spretus""", """sprr1a""", """spruce""", """sps""", """spss""", """spur""", """sqh""", """sqnsclc""", """squamata""", """squamate""", """squamous""", """squamous-lined""", """square""", """squared""", """squares""", """squares-discriminant""", """squats""", """srcr""", """srmr""", """srs""", """ssadhd""", """ssc""", """sscd""", """sse""", """ssi""", """ssm""", """ssri""", """ssris""", """ssti""", """st-depression""", """st-elevation""", """st-pd""", """st-segment""", """stabilisation""", """stability""", """stabilization""", """stabilize""", """stabilized""", """stabilizes""", """stabilizing""", """stable""", """stably""", """stack""", """staff""", """staff-to-patient""", """staffed""", """staffing""", """stage""", """stage-specific""", """staged""", """stages""", """staging""", """stagnates""", """stain""", """staining""", """stains""", """stakeholder""", """stakeholders""", """stalled""", """stalling""", """stand""", """standard""", """standard-of-care""", """standard-strength""", """standardisation""", """standardised""", """standardization""", """standardized""", """standardizes""", """standards""", """standing""", """stands""", """stanford""", """staphylococcus""", """staple""", """star""", """starch""", """stargardt""", """stark""", """start""", """started""", """starter""", """starting""", """starts""", """starvation""", """stasis""", """stat3""", """stata""", """state""", """state-by-state""", """state-of-the-art""", """state-trait""", """stated""", """statement""", """statements""", """states""", """statewide""", """static""", """statically""", """statin""", """statin-treated""", """stating""", """statins""", """station""", """stationary""", """stations""", """statistical""", """statistically""", """statistics""", """status""", """statutory""", """stay""", """stay-at-home""", """stays""", """steadily""", """steady""", """steady-state""", """stearic""", """steatosis""", """steel""", """steep""", """steepest""", """steer""", """steering""", """stefanescu""", """stella-2""", """stem""", """stem-cell-based""", """stemi""", """stemming""", """stemness""", """stems""", """stenosis""", """stent""", """stenting""", """stents""", """step""", """step-to-step""", """step-up""", """steps""", """stepwise""", """stereo""", """stereotyped""", """stereotypic""", """stereotypy""", """sterile""", """sterilisation""", """sterility""", """steroid""", """steroid-refractory""", """steroids""", """stewardship""", """sti""", """stic""", """stics""", """stiffening""", """stiffness""", """stigma""", """stigmatization""", """stigmatizing""", """still""", """stillbirth""", """stillbirths""", """stimulant""", """stimulants""", """stimulate""", """stimulated""", """stimulates""", """stimulating""", """stimulation""", """stimuli""", """stimuli-responsive""", """stimulus""", """stimulus-outcome""", """stitched""", """stitches""", """stochastic""", """stockholm""", """stockpiling""", """stoichiometry""", """stokes""", """stoma""", """stomach""", """stone""", """stones""", """stood""", """stool""", """stools""", """stop""", """stopped""", """stopping""", """storage""", """store""", """stored""", """stories""", """storm""", """stoss""", """stoss-dosed""", """straight-wire""", """strain""", """strain-induced""", """strain-specific""", """strains""", """strand""", """stranded""", """strandedness""", """strands""", """strasbourg""", """strategies""", """strategy""", """stratification""", """stratified""", """stratifiers""", """stratifies""", """stratify""", """stratifying""", """streaks""", """stream""", """streamlined""", """streams""", """street""", """street-based""", """street-level""", """street-view""", """strength""", """strengthen""", """strengthened""", """strengthening""", """strengthens""", """strengths""", """strepsirrhines""", """streptococcus""", """streptozotocin""", """stress""", """stress-depression""", """stress-inducing""", """stress-morphology""", """stress-related""", """stresses""", """stressful""", """stressing""", """stressor""", """stressors""", """stretch""", """strict""", """stricter""", """strictly""", """stricture""", """strictures""", """strikingly""", """string""", """stringent""", """strip""", """stripping""", """strive""", """strives""", """stroboscopic""", """stroke""", """strokes""", """stroking""", """stroma""", """stroma-derived""", """stromal""", """stromules""", """strong""", """stronger""", """strongest""", """strongly""", """strontium""", """stroop""", """structural""", """structurally""", """structure""", """structure-activity""", """structured""", """structureless""", """structures""", """struggle""", """sts""", """stsrnet""", """student""", """student-generated""", """students""", """students-""", """students-study""", """studied""", """studies""", """studiesno""", """study""", """study-using""", """studying""", """stuff""", """stump""", """stumps""", """stunting""", """style""", """styrene""", """stz""", """sub""", """sub-analyses""", """sub-cellular""", """sub-diagnoses""", """sub-distribution""", """sub-glottal""", """sub-groups""", """sub-optimal""", """sub-saharan""", """sub-types""", """subacute""", """subanalysis""", """subarachnoid""", """subaxial""", """subcellular""", """subchondral""", """subclasses""", """subclonal""", """subcortical""", """subcutaneous""", """subdivided""", """subdural""", """subfamily""", """subfertility""", """subgingival""", """subgroup""", """subgroup-specific""", """subgrouped""", """subgroups""", """subheading""", """subject""", """subject-rated""", """subject-specific""", """subjected""", """subjecting""", """subjective""", """subjects""", """subjugated""", """sublethal""", """sublocation""", """subluminophores""", """submit""", """submitted""", """submodel""", """suboptimal""", """subphenotypes""", """subpopulation""", """subpopulations""", """subretinal""", """subsample""", """subscale""", """subscales""", """subsequent""", """subsequently""", """subserves""", """subset""", """subsets""", """subsided""", """subspace""", """subspecies""", """substance""", """substance-involved""", """substance-related""", """substances""", """substantial""", """substantially""", """substantiated""", """substantive""", """substitute""", """substituted""", """substitution""", """substitutions""", """substrate""", """substrates""", """subthemes""", """subtilis""", """subtilis-type""", """subtle""", """subtleties""", """subtopic""", """subtopics""", """subtotal""", """subtracting""", """subtype""", """subtypes""", """subungual""", """subunit""", """subunits""", """suburban""", """subvalvar""", """subvalvular""", """succeeded""", """success""", """successful""", """successfully""", """successional""", """successive""", """such""", """sucrose""", """suction""", """sud""", """sudden""", """suffer""", """suffered""", """suffering""", """suffers""", """sufficiency""", """sufficient""", """sufficiently""", """suga""", """sugar""", """sugar-coated""", """sugar-risk""", """sugars""", """sugary""", """suggest""", """suggested""", """suggesting""", """suggestions""", """suggestive""", """suggests""", """suicidal""", """suicidality""", """suicide""", """suicides""", """suid""", """suitability""", """suitable""", """suitably""", """suite""", """suited""", """sujeitos""", """sul""", """sulcus""", """sulfane""", """sulfate""", """sulfation""", """sulfide""", """sulfonamides""", """sulfur""", """sulphate""", """sulphoxide""", """sulthiame""", """sum""", """summaries""", """summarise""", """summarised""", """summarising""", """summarize""", """summarized""", """summarizes""", """summarizing""", """summary""", """summative""", """summed""", """summer""", """summertime""", """sumo-based""", """sumoylation""", """sun""", """sunnyvale""", """sunshine""", """super""", """super-resolution""", """supercoiled""", """supercoiling""", """superfamily""", """superficial""", """superfolder""", """superimposing""", """superior""", """superiority""", """superiorly""", """superonasal""", """superotemporal""", """superoxide""", """superparamagnetic""", """superphyla""", """supersede""", """supersedes""", """supervised""", """supervision""", """supervisor""", """supplement""", """supplemental""", """supplementary""", """supplementation""", """supplemented""", """supplements""", """supplies""", """supply""", """supplying""", """support""", """supported""", """supporting""", """supportive""", """supports""", """suppose""", """suppress""", """suppressed""", """suppresses""", """suppressing""", """suppression""", """suppressive""", """suppressor""", """suppuration""", """suppurativa""", """supra""", """supraclavicular""", """suprameatal""", """supramolecular""", """suprapubic""", """sur""", """sure""", """surface""", """surface-based""", """surfaces""", """surge""", """surgeon""", """surgeons""", """surgeries""", """surgery""", """surgical""", """surgically""", """suriname""", """surpassing""", """surplus""", """surprising""", """surprisingly""", """surrogate""", """surrounding""", """surroundings""", """surrounds""", """surveil""", """surveillance""", """survey""", """survey-36v2tm""", """surveyed""", """surveys""", """survival""", """survive""", """survived""", """surviving""", """survivor""", """survivors""", """survivorship""", """sus""", """susceptibility""", """susceptible""", """suspect""", """suspected""", """suspecting""", """suspension""", """suspicion""", """suspicions""", """suspicious""", """sustain""", """sustainability""", """sustainable""", """sustained""", """sustaining""", """suture""", """sutured""", """sutureless""", """svf""", """svs""", """swab""", """swallowing""", """swallows""", """swath-ms""", """sway""", """swe""", """sweating""", """sweden""", """swedish""", """sweeps""", """sweet""", """sweetened""", """sweets""", """swelling""", """swiftness""", """swimming""", """swine""", """switch""", """switched""", """switching""", """switzerland""", """swivel-like""", """swot""", """swot-ahp""", """sydney""", """symbiont""", """symbiotic""", """sympathetic""", """sympatric""", """symptom""", """symptom-based""", """symptomatic""", """symptomatology""", """symptoms""", """synapses""", """synapsis""", """synaptic""", """synbiotics""", """sync""", """synchronous""", """synchronously""", """synchrony""", """syncope""", """syndrome""", """syndrome-associated""", """syndromes""", """synergistic""", """synergistota""", """synergize""", """synergizes""", """synergy""", """synonymous""", """synovial""", """synoviocyte""", """synoviocytes""", """syntenin""", """synteny""", """synthase""", """synthases""", """syntheses""", """synthesis""", """synthesise""", """synthesising""", """synthesize""", """synthesized""", """synthetase""", """synthetases""", """synthetic""", """synthetically""", """synucleinopathies""", """syphilis""", """syringe""", """system""", """system-specific""", """systematic""", """systematically""", """systemic""", """systems""", """systems-based""", """systems-level""", """systolic""", """t-acute""", """t-all""", """t-cell""", """t-cell-derived""", """t-cell-mediated""", """t-chol""", """t-dm1""", """t-dna""", """t-lymphocyte""", """t-regulatory""", """t-test""", """t-vnotes""", """t-wave""", """t1-t4""", """t1-weighted""", """t139""", """t146""", """t1d""", """t2d""", """t3-ajcc8""", """t4ss""", """t50""", """t90""", """taa""", """table""", """tables""", """tablet""", """taboo""", """tachy-""", """tachycardia""", """tackled""", """tackling""", """tacpk7-d""", """tacrolimus""", """tactics""", """tadpole""", """taerf3""", """tag""", """tag1""", """tagged-amplicon""", """tagst1""", """tail""", """tailor""", """tailored""", """tailoring""", """taiwan""", """tak-599""", """take""", """takedown""", """taken""", """takeover""", """takes""", """taking""", """talker""", """talks""", """tall""", """tallied""", """tam""", """tamandua""", """tamarack""", """tamkk5""", """tamkk5-6b""", """tamkk5-tampk3""", """tamkk5-tampk3-taerf3""", """tampk3""", """tan""", """tandem""", """tandis""", """tang""", """tangential""", """tangle""", """tank""", """tanpopo""", """tanzania""", """taper""", """tapering""", """tapos""", """target""", """targetability""", """targetable""", """targeted""", """targeting""", """targets""", """tariff""", """task""", """task-fmri""", """task-functional""", """tasked""", """tasks""", """taste""", """tat""", """tau""", """taught""", """tavr""", """tavr-explant""", """taxa""", """taxas""", """taxes""", """taxon""", """taxonomic""", """taxonomy""", """taxus""", """tba""", """tbars""", """tbbpa""", """tbi""", """tbsa""", """tbxta""", """tces""", """tcga""", """tcga-luad""", """tcls""", """tcr""", """tcrs""", """tdh""", """tdp-43q331k""", """tdt""", """tea""", """teach""", """teachers""", """teaches""", """teaching""", """team""", """teams""", """tear""", """tearing""", """tears""", """tebentafusp""", """tecab""", """technical""", """technically""", """technicians""", """technique""", """technique-related""", """technique-specific""", """techniques""", """technological""", """technologies""", """technology""", """techonlogy""", """teds-a""", """tee""", """teenagers""", """teeth""", """teff""", """tehran""", """teixeira""", """tejido""", """tele-delirium""", """tele-ecocardiografia""", """tele-encounter""", """tele-encounters""", """teleburns""", """telecommunication""", """telegram""", """telehealth""", """telemedicine""", """telemrpa""", """telencephalic""", """telephone""", """television""", """televisits""", """telles""", """telomerase""", """telomere""", """telomere-specific""", """telomeric""", """tels""", """tem""", """temozolomide""", """temperament""", """temperate""", """temperature""", """temperature-dependent""", """temperature-sensing""", """temperatures""", """tempered""", """template""", """templated""", """templates""", """temporal""", """temporally""", """temporarily""", """temporary""", """temporize""", """temporizing""", """temporomandibular""", """ten""", """ten-year""", """tend""", """tended""", """tendency""", """tenderness""", """tendineus""", """tending""", """tendon""", """tendons""", """tends""", """tenet""", """teng""", """tennis""", """tenofovir""", """tens""", """tensegrity""", """tensile""", """tension""", """tension-free""", """tension-type""", """tensor""", """tentatively""", """tenth""", """term""", """term-equivalent""", """termed""", """terminal""", """terminate""", """terminated""", """termination""", """terminations""", """terminological""", """terminologies""", """terminology""", """terms""", """terpenes""", """terpyridine""", """terrabacteria""", """terrain""", """terrestrial""", """territories""", """territory""", """tert""", """tert-mutated""", """tertiary""", """tertiles""", """terumo""", """tesified""", """test""", """test-negative""", """test-retest""", """teste""", """tested""", """testes""", """testicular""", """testimonials""", """testing""", """testis""", """testosterone""", """testosterone-responsive""", """tests""", """tethering""", """tetr""", """tetrabromobisphenol""", """tetrad""", """tetradactyla""", """tetrahydro-2-isopentyl-5-propyl""", """tetrahydroindenoindole""", """tetrakis""", """tetralogy""", """tetraploid""", """tetraploids""", """tetrapods""", """tetrodotoxin-sensitive""", """texas""", """texas-mexico""", """text""", """textbooks""", """textile""", """textual""", """tfc""", """tfd""", """tfe3""", """tff""", """tfh""", """tfh13""", """tfr""", """tfs""", """tga""", """tgfbi""", """th1""", """th17""", """th2""", """tha""", """thai""", """thailand""", """thalamus""", """thalassemia""", """thaliana""", """than""", """thanks""", """that""", """the""", """theatres""", """theiler""", """their""", """them""", """thematic""", """thematically""", """theme""", """themes""", """themselves""", """then""", """theobromine""", """theoretical""", """theoretically""", """theoretically-informed""", """theories""", """theorized""", """theory""", """therapeutic""", """therapeutically""", """therapeutics""", """therapies""", """therapy""", """therapy-induced""", """therapy-oat""", """therapy-prostate""", """there""", """thereafter""", """thereby""", """therefore""", """therein""", """thermal""", """thermal-initiated""", """thermatogota""", """thermodynamic""", """thermogenesis""", """thermometer""", """thermophysical""", """these""", """theses""", """thetransanal""", """they""", """thiamethoxam""", """thick""", """thickened""", """thickening""", """thicker""", """thickness""", """thin""", """thin-film""", """things""", """thinking""", """thinly""", """thinner""", """thinnest""", """thinning""", """thiobarbituric""", """third""", """third-degree""", """third-generation""", """third-party""", """third-trimester""", """third-year""", """thirds""", """thirteen""", """thirty""", """thirty-five""", """thirty-four""", """thirty-nine""", """thirty-one""", """thirty-six""", """thirty-three""", """thirty-two""", """this""", """thisin""", """thoracic""", """thoracoscopic""", """thorn""", """thorough""", """thoroughly""", """those""", """though""", """thought""", """thought-provoking""", """thoughts""", """thous""", """thousand""", """thousands""", """threads""", """threat""", """threaten""", """threatened""", """threatening""", """threatens""", """threats""", """three""", """three-cohort""", """three-dimensional""", """three-fold""", """three-mirna""", """three-months""", """three-quarter""", """three-quarters""", """three-toed""", """three-vessel""", """three-year""", """threefold""", """threshold""", """thresholds""", """thrive""", """throat""", """thrombin""", """thrombin-antithrombin""", """thrombo-embolism""", """thrombocytopenia""", """thrombocytopenic""", """thromboelastometry""", """thromboembolic""", """thromboembolism""", """thromboprophylaxis""", """thrombosis""", """thrombosis-related""", """thrombospondin-1""", """thrombotic""", """through""", """throughout""", """throughput""", """throw""", """thunderclap""", """thus""", """thymic""", """thymoglobulin""", """thymoma""", """thyroid""", """thyroid-stimulating""", """thyroidectomy""", """thyroiditis""", """thyroseq""", """thyroxine""", """tian""", """tibati""", """tibetan""", """tibetans""", """tibia""", """tibiae""", """tibial""", """ticagrelor""", """tick""", """tidal""", """tied""", """ties""", """tight""", """tightly""", """tigray""", """tikur""", """tilt""", """timber""", """time""", """time-action""", """time-based""", """time-consuming""", """time-course""", """time-dependent""", """time-lapse""", """time-lining""", """time-points""", """time-to-event""", """time-trial""", """time-varying""", """timed""", """timeframe""", """timelines""", """timely""", """timepoint""", """times""", """timescale""", """timing""", """timor-leste""", """tingting""", """tipo""", """tipsc""", """tipsc-eb""", """tipscs""", """tissue""", """tissue-engineering""", """tissue-specific""", """tissues""", """titer""", """titering""", """titers""", """title""", """titles""", """titrated""", """titration""", """titres""", """tiveram""", """tka""", """tkas""", """tld""", """tlds""", """tlif""", """tlr""", """tlr-7""", """tlr4""", """tlrs""", """tmao""", """tmd""", """tmd-8""", """tmem106b""", """tmev""", """tmev-induced""", """tmj""", """tmjs""", """tmp-smx""", """tmt""", """tmt-a""", """tmt-b""", """tmz""", """tn6677""", """tnbc""", """tnd""", """tnf""", """tnfi""", """tnfrsf14""", """tnfsf13""", """tngs""", """tnsf13""", """to""", """tobacco""", """tobit""", """tobramycin""", """tocilizumab""", """tocolysis""", """today""", """toddler""", """todos""", """toe-in""", """toe-out""", """together""", """togetherness""", """toilet""", """tokyo""", """tolerability""", """tolerable""", """tolerance""", """tolerant""", """tolerate""", """tolerated""", """tolerating""", """tolerizing""", """toll""", """toll-like""", """tomographic""", """tomography""", """tone""", """tones""", """tongji""", """tongue""", """tonic""", """tonic-clonic""", """tonometry""", """tonsillectomy""", """tonsils""", """too""", """took""", """tool""", """toolbox""", """toolkit""", """tools""", """tooth""", """top""", """topic""", """topical""", """topics""", """topiramate""", """topographer""", """topographic""", """topological""", """topologies""", """topology""", """topotecan""", """tops""", """torque""", """torques""", """torti""", """torticollis""", """tortosa""", """tot""", """total""", """totality""", """totally""", """totem""", """touch""", """tourism""", """tout""", """toward""", """towards""", """town""", """townsendi""", """toxic""", """toxicants""", """toxicities""", """toxicity""", """toxicologists""", """toxicology""", """toxoplasmosis""", """tp53""", """tpe""", """tpzna-his""", """tr1""", """tr2""", """trabecular""", """trabeculectomy""", """tracab""", """trace""", """traced""", """tracers""", """trachea""", """tracheal""", """tracheoesophagea""", """tracheoesophageal""", """track""", """tracked""", """tracking""", """tract""", """tractable""", """tracts""", """trade""", """trade-offs""", """traded""", """tradition""", """traditional""", """traditionally""", """traditionnels""", """traf6""", """traffic""", """traffic-related""", """trafficking""", """trail""", """trails""", """train""", """train-the-trainer""", """trained""", """trainee""", """trainees""", """traineeships""", """training""", """trait""", """traiter""", """traits""", """trajectories""", """trajectory""", """tramadol""", """tranexamic""", """tranglycosylases""", """transabdominal""", """transaction""", """transactions""", """transaminase""", """transanal""", """transcatheter""", """transcends""", """transcranial""", """transcribed""", """transcribes""", """transcript""", """transcription""", """transcription-factor""", """transcription-factor-encoding""", """transcription-pcr""", """transcriptional""", """transcriptionally""", """transcriptome""", """transcriptomes""", """transcriptomic""", """transcriptomic-based""", """transcriptomics""", """transcripts""", """transcutaneous""", """transdiagnostic""", """transdifferentiated""", """transdifferentiation""", """transduced""", """transducer""", """transduction""", """transect""", """transfer""", """transfer-dependence""", """transferase""", """transferred""", """transferrin""", """transferring""", """transfers""", """transforaminal""", """transform""", """transformation""", """transformations""", """transformed""", """transforming""", """transfused""", """transfusing""", """transfusion""", """transfusion-related""", """transfusions""", """transgender""", """transgender-competent""", """transgenic""", """transglutaminase""", """transglycosylase""", """transient""", """transients""", """transistor""", """transition""", """transition-related""", """transitional""", """transitioned""", """transitions""", """transitory""", """transjugular""", """translabyrinthine""", """translatability""", """translatable""", """translate""", """translated""", """translating""", """translation""", """translational""", """translations""", """translatome""", """translocases""", """translocation""", """translucent""", """translucida""", """transluminal""", """transmastoid""", """transmembrane""", """transmission""", """transmit""", """transmitted""", """transmitters""", """transmitting""", """transoesophageal""", """transparency""", """transparent""", """transpeptidase""", """transperineal""", """transperitoneal""", """transpiration""", """transpired""", """transplant""", """transplant-associated""", """transplant-free""", """transplantation""", """transplanted""", """transplants""", """transport""", """transportation""", """transported""", """transporter""", """transporters""", """transposable""", """transposases""", """transposition""", """transthoracic""", """transurethral""", """transvaginal""", """transvenous""", """transversal""", """transversarium""", """transverse""", """transwell""", """trap""", """traps""", """trastuzumab""", """tratados""", """tratamiento""", """trauma""", """trauma-exposed""", """traumatic""", """travel""", """travelling""", """traverse""", """treat""", """treatable""", """treated""", """treating""", """treatment""", """treatment-induced""", """treatment-naive""", """treatment-related""", """treatment-resistant""", """treatment-seeking""", """treatments""", """treatmentthere""", """treats""", """treats-analytical""", """tree""", """tree-base""", """tree-top""", """trees""", """trefoil""", """treg""", """tregs""", """treinamento""", """treinamentos""", """treinar""", """treinou""", """trem2""", """tremellen""", """tremendous""", """tremendously""", """trend""", """trends""", """treosulfan""", """trf2""", """triad""", """triage""", """triaged""", """triaging""", """trial""", """trial-and-error""", """trialists""", """trials""", """triamcinolone""", """triangle""", """triazole""", """triazolylferrocenyl""", """trichomegaly""", """trichoscopic""", """trichoscopic-histologic""", """triclocarban""", """triclosan""", """tricuspid""", """tricyclics""", """tried""", """trif-dependent""", """trigger""", """triggered""", """triggering""", """triggers""", """triglyceride""", """triglycerides""", """trigone""", """trimester""", """trimesters""", """trimethoprim-sulfamethoxazole""", """trimethylamine""", """trinucleotide""", """triphosphate""", """triphosphate-binding""", """triple""", """triple-mutant""", """triple-negative""", """triplet""", """triplet-triplet""", """tripod""", """tris""", """triticum""", """trivial-to-small""", """trna""", """trnas""", """trocar""", """trocars""", """trophoblasts""", """trophocytes""", """tropical""", """tropiduridae""", """tropidurus""", """troponin""", """troponina""", """troublemakers""", """trough""", """trrosetta""", """trt""", """truancy""", """true""", """trunk""", """trunks""", """trust""", """trusted""", """truven""", """trv""", """try""", """try-in""", """trying""", """trypanocidal""", """trypanosoma""", """trypsin""", """tryptophan""", """tsat""", """tsb""", """tsc""", """tsd""", """tsh""", """tsh-1188""", """tsh1188""", """tshr""", """tshr-specific""", """tsr-5""", """tta-uc""", """ttet""", """ttmie""", """ttt""", """tubal""", """tube""", """tuberculosis""", """tuberosum""", """tubular""", """tubules""", """tufted""", """tugging""", """tuj1""", """tumor""", """tumor-associated""", """tumor-free""", """tumor-host""", """tumor-related""", """tumor-specific""", """tumoral""", """tumorigenesis""", """tumors""", """tumour""", """tumours""", """tunable""", """tuned""", """tuning""", """tunnel""", """tup-family""", """turb""", """turbidity""", """turbines""", """turbt""", """turbulence""", """turkey""", """turn""", """turning""", """turnover""", """tutorial""", """twb""", """tweetorial""", """tweetorials""", """twelve""", """twenty""", """twenty-eight""", """twenty-first""", """twenty-five""", """twenty-four""", """twenty-nine""", """twenty-one""", """twenty-seven""", """twenty-six""", """twenty-two""", """twice""", """twin""", """twisting""", """twitch""", """twitter""", """two""", """two-""", """two-hospital""", """two-hundred""", """two-hybrid""", """two-sample""", """two-stage""", """two-step""", """two-tailed""", """two-thirds""", """two-way""", """two-year""", """twofold""", """twp""", """tyk2""", """type""", """type-the""", """types""", """typical""", """typically""", """typified""", """typifies""", """typify""", """typing""", """typologies""", """tyrosine""", """tz9""", """u-47700""", """u-test""", """ua-to-ra""", """uacr""", """uas""", """ube2b""", """ube2b-deficient""", """ubiquitin""", """ubiquitin-mediated""", """ubiquitin-proteasome""", """ubiquitinated""", """ubiquitination""", """ubiquitination-ip""", """ubiquitylation""", """ucla""", """uclp""", """ucp1""", """ucva""", """uem""", """ugra""", """ukb""", """ukraine""", """ulcer""", """ulcerated""", """ulcerative""", """ulk1""", """ulnar""", """ultimate""", """ultimately""", """ultra""", """ultra-high""", """ultracentrifugation-based""", """ultraclean""", """ultrafast""", """ultrasonic""", """ultrasonographic""", """ultrasonography""", """ultrasound""", """ultrasound-mediated""", """ultrasounds""", """ultraviolet""", """umbilical""", """umbilicus""", """umls""", """umrd""", """una""", """unable""", """unacceptable""", """unacceptably""", """unachieved""", """unadjusted""", """unaffected""", """unaided""", """unani""", """unanswered""", """unanticipated""", """unappreciated""", """unavailable""", """unaware""", """unbiased""", """unblinded""", """uncertain""", """uncertainties""", """uncertainty""", """unchanged""", """uncharacterized""", """unclarity""", """unclear""", """uncommon""", """uncommonly""", """uncomplicated""", """unconsidered""", """unconstrained""", """uncontained""", """uncontrollable""", """uncontrolled""", """uncorrectable""", """uncorrected""", """uncoupled""", """uncoupler""", """uncoupling""", """uncover""", """uncovered""", """uncovering""", """uncovers""", """undecanoate""", """undefined""", """under""", """under-""", """under-developed""", """under-predicts""", """under-reported""", """underage""", """underappreciated""", """underarm""", """underestimated""", """underexpressed""", """undergo""", """undergoing""", """undergone""", """undergraduate""", """undergraduates""", """underground""", """underlie""", """underlies""", """underlying""", """undermine""", """undermines""", """underpin""", """underpinned""", """underpinning""", """underpinnings""", """underrecognized""", """underrepresentation""", """underrepresented""", """underscore""", """underscoring""", """underserved""", """understand""", """understandable""", """understanding""", """understandings""", """understood""", """understudied""", """undertake""", """undertaken""", """undertook""", """underused""", """underutilized""", """underwater""", """underweight""", """underwent""", """undesirable""", """undetectable""", """undetected""", """undetermined""", """undifferentiated""", """undisturbed""", """undoubtedly""", """undulation""", """undulations""", """une""", """unemployed""", """unemployment""", """unequal""", """unequally""", """unequivocally""", """uneventful""", """unexpected""", """unexpectedly""", """unexplained""", """unexplored""", """unexposed""", """unfamiliar""", """unfamiliarity""", """unfavorable""", """unfolded""", """unfolding""", """unfortunately""", """unfractionated""", """ungulate""", """unhealthier""", """unhealthiness""", """unhealthy""", """unhelpful""", """uni-""", """uni-variate""", """unicef""", """unicolor""", """unidirectional""", """unified""", """uniform""", """uniformly""", """unilateral""", """uninfected""", """uninhibited""", """uninsured""", """unintended""", """unintentional-occupational""", """uninterrupted""", """uninvestigated""", """uninvolved""", """union""", """unions""", """unique""", """uniquely""", """unit""", """united""", """units""", """unity""", """univariable""", """univariate""", """universal""", """universality""", """universally""", """universiti""", """universities""", """university""", """university-wide""", """univocally-interpretable""", """unknot""", """unknown""", """unless""", """unlike""", """unlikely""", """unmanned""", """unmasked""", """unmatched""", """unmet""", """unmitigated""", """unmodified""", """unmyelinated""", """unnecessary""", """unnoticed""", """unobserved""", """unobtrusive""", """unplanned""", """unprecedented""", """unpredictability""", """unprocessed""", """unproductive""", """unprofessional""", """unprotected""", """unpublished""", """unravel""", """unraveled""", """unravelled""", """unrecognized""", """unregulated""", """unrelated""", """unreliability""", """unreliable""", """unreported""", """unresolved""", """unresponsive""", """unsatisfactory""", """unsatisfied""", """unsatisfying""", """unscheduled""", """unselected""", """unshared""", """unsolved""", """unspecified""", """unstable""", """unsteady""", """unstructured""", """unsuitable""", """unsupervised""", """unsure""", """untargeted""", """untested""", """untied""", """until""", """untouched""", """untranslated""", """untreated""", """unusual""", """unveil""", """unwanted""", """unwarranted""", """unwind""", """unwinding""", """unwinding-defective""", """unwinds""", """up-regulate""", """up-regulated""", """up-to-date""", """upcoming""", """upconversion""", """upconverted""", """update""", """updated""", """updates""", """upgraded""", """upheld""", """uphill""", """upon""", """upper""", """upregulate""", """upregulated""", """upregulating""", """upregulation""", """uprising""", """ups""", """upstaging""", """upstream""", """upstream-activating""", """uptake""", """uptaken""", """uptick""", """uranium""", """urban""", """urban-dwelling""", """urea""", """ureteral""", """ureteroenteric""", """ureteroneocystostomy""", """ureteroneocystotomy""", """urethra""", """urethral""", """urethrolysis""", """urethroplasty""", """urgency""", """urgent""", """urgently""", """urinary""", """urine""", """url""", """urls""", """urodele""", """urodynamic""", """urologic""", """urological""", """urologists""", """urology""", """urostream101""", """urothelial""", """ursinus""", """urticarial""", """urtis""", """us-based""", """usa""", """usada""", """usage""", """usd""", """use""", """used""", """used-and""", """useful""", """usefulness""", """user""", """user-friendly""", """users""", """uses""", """ush3""", """using""", """usm""", """uso""", """ustekinumab""", """usual""", """usually""", """utah""", """uterine""", """uterosacral""", """uterus""", """uti""", """utilisation""", """utilise""", """utilised""", """utilising""", """utilities""", """utility""", """utilizados""", """utilizaron""", """utilization""", """utilize""", """utilized""", """utilizes""", """utilizing""", """utilizou""", """utis""", """utr""", """uv-vis""", """uveal""", """uveitis""", """uvfp""", """uvrd""", """uvulopalatopharyngoplasty""", """v-domain""", """v-vi""", """v600-mutant""", """v600e""", """v600e-mutant""", """vac7""", """vaccinating""", """vaccination""", """vaccine""", """vaccine-derived""", """vaccines""", """vacuolar""", """vacuole""", """vad""", """vaers""", """vagina""", """vaginal""", """vaginally""", """valence""", """valgus""", """valid""", """validate""", """validated""", """validating""", """validation""", """validations""", """validity""", """valores""", """valproate""", """valsalva""", """valuable""", """valuate""", """value""", """value-laden""", """valued""", """values""", """valuing""", """valve""", """valve-""", """valves""", """valvular""", """vamp2""", """van""", """vancouver""", """vanillins""", """vanishing""", """vapor""", """vaporizes""", """variability""", """variable""", """variables""", """variably""", """variance""", """variant""", """variants""", """variation""", """variations""", """variceal""", """varied""", """variegatus""", """varies""", """varieties""", """variety""", """various""", """vary""", """varying""", """vas""", """vascular""", """vascular-related""", """vascularization""", """vascularized""", """vasculature""", """vasculitis""", """vasculopathy""", """vaso""", """vaso-occlusive""", """vasoactive""", """vasodilation""", """vasogenic""", """vasopressin""", """vasopressor""", """vasospasm""", """vast""", """vastly""", """vat""", """vats""", """vatsg""", """vazegepant""", """vcg""", """vch""", """vchcast""", """vdac2""", """vector""", """vectorized""", """vectors""", """vegetable""", """vegetation""", """vegetative""", """vegetatively""", """vegf""", """vegfr-tki""", """vegfr-tkis""", """vehicle""", """vehicles""", """veil""", """vein""", """veliparib""", """velocidad""", """velocimetry""", """velocities""", """velocity""", """vena""", """vendd""", """vending""", """vendors""", """vendvd""", """venetoclax""", """venetoclax-based""", """venlafaxine""", """veno-occlusive""", """venoarterial""", """venosus""", """venous""", """venovenous""", """ventilated""", """ventilation""", """ventilator""", """ventilators""", """ventral""", """ventricle""", """ventricular""", """ventriculomegaly""", """verbal""", """verbatim""", """verge""", """verification""", """verified""", """verify""", """verifying""", """versa""", """versatile""", """version""", """versions""", """versus""", """vertebral""", """vertebrate""", """vertebrates""", """vertical""", """vertically""", """verus""", """very""", """very-low""", """vesicles""", """vesicoureteral""", """vesosomes""", """vessel""", """vessels""", """vestibular""", """vestibule""", """vestiges""", """veterans""", """vetted""", """vez""", """vezes""", """vfq-48""", """vfs""", """vghr""", """vhi""", """vhi-30""", """vhl""", """via""", """viability""", """viable""", """vials""", """vibration""", """vibrio""", """vicarious""", """vice""", """vicleucel""", """victim""", """victims""", """vida""", """video""", """video-assisted""", """video-based""", """video-conferencing""", """videoconference""", """videolaryngostroboscopic""", """videos""", """vietnam""", """vietnamese""", """view""", """viewed""", """viewers""", """viewership""", """viewing""", """viewpoint""", """views""", """vigilance""", """vigorously""", """vildagliptin""", """villous""", """vinblastine""", """vinci""", """violence""", """violence-informed""", """violent""", """vip""", """viral""", """virginia""", """virilizing""", """virions""", """virtual""", """virtually""", """virtude""", """virtue""", """virtuous""", """virulence""", """virus""", """virus-""", """virus-induced""", """virus-like""", """viruses""", """visceral""", """visco-elastic""", """viscus""", """visibility""", """visible""", """vision""", """vision-related""", """visit""", """visited""", """visiting""", """visits""", """vison""", """vissim""", """vista""", """visual""", """visualised""", """visualization""", """visualizations""", """visualize""", """visualized""", """visualizing""", """visually""", """vit""", """vita""", """vital""", """vitamin""", """vitamins""", """vitd3""", """vitellogenins""", """vitreous""", """vitro""", """vitulina""", """vivo""", """vka""", """vkas""", """vlp""", """vml""", """vnirs""", """vnotes""", """vns""", """vo2max""", """vocabulary""", """vocal""", """vocalization""", """vocalizations""", """vocational""", """vocs""", """voice""", """voices""", """voicing""", """voiding""", """volatile""", """volatility""", """volitional""", """volkamer""", """volkameriana""", """voltage""", """voltage-dependent""", """volume""", """volume-based""", """volume-load-matched""", """volume-to-cerebrospinal""", """volumes""", """volumetric""", """voluntarily""", """volunteer-led""", """volunteering""", """volunteers""", """vomiting""", """von""", """vortex""", """vortices""", """voted""", """vowel""", """vowels""", """voxels""", """vrd""", """vrt""", """vsa""", """vsr""", """vss""", """vte""", """vtg""", """vtgi""", """vtgs""", """vulgaris""", """vulnerabilities""", """vulnerability""", """vulnerable""", """vulva""", """vulvar""", """vulvodynia""", """vur""", """wages""", """waist""", """waist-hip""", """wait""", """wait-and-see""", """waiting""", """waitlist""", """waitlisted""", """waived""", """wake""", """wakefield""", """wakefulness""", """wakening""", """walkability""", """walking""", """wall""", """walls""", """wane""", """wanfang""", """wang""", """waning""", """want""", """war""", """war-time""", """warburg""", """ward""", """warm-up""", """warming""", """warmup""", """warning""", """warrant""", """warranted""", """warranting""", """warrants""", """was""", """washing""", """washington""", """wastage""", """waste""", """wasteful""", """wastes""", """wastewater""", """wastewater-based""", """wasting""", """watch""", """watching""", """water""", """water-absorbing""", """water-based""", """water-deficit""", """water-miscible""", """water-quality""", """wattle""", """wau""", """wave""", """waveform""", """waveforms""", """wavefronts""", """wavelength""", """way""", """ways""", """wb3t""", """wbc""", """wbe""", """we""", """weak""", """weakened""", """weakest""", """weakly""", """weakness""", """weaknesses""", """wealth""", """wealthy""", """weaning""", """wear""", """wearable""", """wearables""", """weather""", """web""", """web-based""", """website""", """websites""", """wedged""", """wedges""", """weed""", """week""", """week-to-week""", """weekly""", """weeks""", """wei""", """weigh""", """weighing""", """weighs""", """weight""", """weight-based""", """weight-loss""", """weight-related""", """weight-stable""", """weighted""", """weights""", """weihua""", """weixuan""", """welfare""", """well""", """well-baby""", """well-being""", """well-characterized""", """well-conducted""", """well-controlled""", """well-defined""", """well-designed""", """well-documented""", """well-established""", """well-functioning""", """well-known""", """well-mixed""", """well-planned""", """well-tolerated""", """well-validated""", """wellbeing""", """wells""", """welsch""", """wenjun""", """were""", """wes""", """west""", """western""", """wgbs""", """whale""", """what""", """whatsapp""", """wheat""", """wheel""", """when""", """where""", """whereas""", """whereby""", """wherein""", """whether""", """which""", """whichever""", """while""", """whilst""", """whiplash""", """whiplash-associated""", """whistleblower""", """white""", """whites""", """whitish""", """who""", """who-5""", """whole""", """whole-body""", """whole-brain""", """whole-cell""", """whole-embryo""", """whole-genome""", """whole-transcriptome""", """whole-tree""", """wholis""", """whom""", """whooping""", """whorled""", """whose""", """whr""", """whtr""", """why""", """wide""", """wide-ranging""", """widely""", """widening""", """wider""", """widespread""", """width""", """wild""", """wild-type""", """wildlife""", """wiley""", """will""", """willebrand""", """willing""", """willingness""", """wilms""", """wilt""", """wind""", """windfarms""", """window""", """wingless-type""", """winter""", """wiping""", """wire""", """wireless""", """wiring""", """wisconsin""", """wistar""", """with""", """withdraw""", """withdrawal""", """withdrawing""", """withdrawn""", """withdrew""", """withheld""", """within""", """within-component""", """within-person""", """within-subject""", """without""", """witnessing""", """wlv""", """wmd""", """wmh""", """wmhs""", """wnt-7a""", """wnt2b""", """wolf""", """wolves""", """womac""", """woman""", """women""", """woodiness""", """word""", """words""", """work""", """work-related""", """work-up""", """worked""", """worker""", """worker-years""", """workers""", """workflow""", """workforce""", """workgroup""", """working""", """workload""", """workplace""", """workplaces""", """works""", """workshift""", """workshop""", """workstation""", """workup""", """workups""", """world""", """worldwide""", """worms""", """worrisome""", """worry""", """worrying""", """worse""", """worsen""", """worsened""", """worsening""", """worship""", """worst""", """worst-case""", """wos""", """would""", """wound""", """wounds""", """wps""", """wrap""", """wrapping""", """wri""", """wris""", """wrist""", """wrist-to-forearm""", """wristed""", """wrists""", """writer""", """writhing""", """written""", """wrn""", """wrong""", """wrote""", """wst""", """wuhan""", """wvcg""", """wwtp""", """wwtps""", """x-ray""", """xab2""", """xad-8""", """xcelligence""", """xen""", """xenodiagnosis""", """xenogeneic""", """xenograft""", """xenografted""", """xenografts""", """xenopus""", """xgboost""", """xia""", """xiangpeng""", """xianrui""", """xin""", """xpo1""", """xps""", """xue""", """xylem""", """yak""", """yale""", """yan""", """yanagawa""", """yang""", """yanning""", """yanran""", """yao""", """yaping""", """yards""", """yb-1""", """ybx1""", """year""", """yearly""", """years""", """yeast""", """yellow""", """yet""", """yet-untested""", """yew""", """yezhou""", """yhrd""", """yidc""", """yield""", """yielded""", """yields""", """yin""", """ying""", """ykl-40""", """yo-ifos""", """yoga""", """yonggang""", """yongkun""", """york""", """yorkshire-cross""", """you""", """youden""", """young""", """younger""", """youngest""", """your""", """youth""", """youths""", """youtube""", """yrs""", """yuan""", """yuc""", """yucca""", """yuchio""", """yunnan""", """yuxi""", """z-score""", """z-scores""", """zagros""", """zalophus""", """zealand""", """zebrafish""", """zenith""", """zero""", """zero-knowledge""", """zeta""", """zhang""", """zhao""", """zhaoling""", """zhong""", """zhonghui""", """zhongyuan""", """zhou""", """zika""", """zinc""", """zip""", """zirconia""", """zirconia-reinforced""", """zno""", """zo-1""", """zona""", """zone""", """zones""", """zonula""", """zoom""", """zooming""", """zooniverse""", """zoonotic""", """zucchini""", """zygote""", """zygotic""", """zymography"""]
from django.db import models from kbspre.users import models as user_models # Create your models here. class TimeStampedModel(models.Model): created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: abstract = True class Image(TimeStampedModel): """ Image Model """ #id = THIS USER ID id = 1 file = models.ImageField() location = models.CharField(max_length=140) caption = models.TextField() creator = models.ForeignKey(user_models.User, on_delete=models.CASCADE, null=True) ''' comment_set comment_set = (LOOK IN ALL THE COMMENTS FOR THE ONES THAT HAVE 'IMAGE' = 1) image_set = (LOOK IN ALL THE COMMENTS FOR THE ONES THAT HAVE 'IMAGE' = THIS IMAGE ID) comment_set = (LOOK IN ALL THE COMMENTS FOR THE ONES THAT HAVE 'IMAGE' = THIS IMAGE ID) like_set = (LOOK IN ALL THE COMMENTS FOR THE ONES THAT HAVE 'IMAGE' = THIS IMAGE ID) ''' def __str__(self): return '{} - {}'.format(self.location, self.caption) class Comment(TimeStampedModel): """ Comment Model """ message = models.TextField(null=True) playername = models.TextField(null=True) score = models.IntegerField(null=True) tel = models.TextField(null=True) survey = models.IntegerField(null=True) note = models.TextField(null=True) step = models.IntegerField(null=True) mail = models.TextField(null=True) creator = models.ForeignKey(user_models.User, on_delete=models.CASCADE, null=True) image = models.ForeignKey(Image, on_delete=models.CASCADE, null=True,related_name='comments') def __str__(self): #return self.score #return self.step return self.playername return self.tel return self.mail #return self.survey return self.note return self.message class Meta: ordering = ['-created_at'] class Like(TimeStampedModel): """ Like Model """ creator = models.ForeignKey(user_models.User, on_delete=models.CASCADE, null=True) image = models.ForeignKey(Image, on_delete=models.CASCADE, null=True,related_name='likes') def __str__(self): return 'User: {} - Image Caption: {}'.format(self.creator.username, self.image.caption)
import logging import pickle import collections logging.basicConfig(format='%(asctime)s : %(levelname)s :: %(message)s', level=logging.DEBUG) logging.debug('started.') input_file = './most_common.pickle' with open(input_file, 'rb') as input_fp: data = pickle.load(input_fp) logging.debug('read preprocessed data from %s.' % input_file) for key in data.keys(): logging.debug('input data has key %s' % key) file_names = list() if 'file_names' in data.keys(): file_names = data['file_names'] counts_from_corpus = collections.Counter() if 'counts_from_corpus' in data.keys(): counts_from_corpus = data['counts_from_corpus'] counts_from_documents = list() if 'counts_from_documents' in data.keys(): counts_from_documents = data['counts_from_documents'] corpus_most_common = counts_from_corpus.most_common(10) t0 = set([item[0] for item in corpus_most_common]) if True: for index, item in enumerate(corpus_most_common): logging.debug('%s: %s :: %d' % (index + 1, item[0], item[1])) most_words = set([each[0] for each in corpus_most_common]) logging.debug(most_words) for index, item in enumerate(counts_from_documents): t1 = item.most_common(15) current = set([each[0] for each in t1]) intersection = t0.intersection(current) difference = t0.difference(current) logging.debug('%d : intersection : %d %s :: difference : %d %s' % ( index, len(intersection), intersection, len(difference), difference))
# With two given lists [1,3,6,78,35,55] and [12,24,35,24,88,120,155], # write a program to make a list whose elements are intersection of the above given lists. list1=[1,3,6,78,35,55] list2=[12,24,35,24,88,120,155] set1=set(list1) set2=set(list2) print set1 & set2
import json import logging import os import boto3 from pyspark.sql import SparkSession boto3.setup_default_session(region_name=os.environ.get('REGION', 'us-east-1')) source_location_uri = os.path.join(os.environ['SILVER_LAKE_S3URI'], '') target_location_uri = os.path.join(os.environ['GOLD_LAKE_S3URI'], '') log_level = os.environ.get('LOG_LEVEL', 'INFO') logging.basicConfig( format='%(asctime)s | %(levelname)s | %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=log_level) def get_hudi_options(instant_time): hudi_options = { 'hoodie.datasource.query.type': 'incremental', 'hoodie.datasource.read.begin.instanttime': instant_time } return hudi_options def main(): f = open('/mnt/var/lib/instance-controller/public/runtime_configs/configs.json') config_dict = json.load(f) logging.info(json.dumps(config_dict, indent=4)) database_config = config_dict['DatabaseConfig'] db_name = database_config['target_db_name'] print(database_config) spark = SparkSession \ .builder \ .appName(f'{db_name}_denormalize') \ .getOrCreate() # Check to see if the target denormalized table exists, if it does, grab the max hudi instant time from the previous load try: client = boto3.client('glue') client.get_table(DatabaseName=db_name, Name='analytics_order_line') spark.read.format('org.apache.hudi').load(os.path.join(target_location_uri, 'analytics_order_line', ''))\ .createOrReplaceTempView('aol') instant_time = spark.sql(''' SELECT date_format(MAX(ol_instant_time), 'yyyyMMddHHmmss') as instant_time FROM aol ''').collect()[0][0] logging.info(f'Table exists and records current as of {instant_time}') dn_table_exists = True # There is no good way to catch botocore.errorfactory exceptions, so this... except Exception as e: if type(e).__name__ == 'EntityNotFoundException': dn_table_exists = False instant_time = None logging.warning('Table analytics_order_line does not exist') else: raise # Register tables as temporary views for table in ['hammerdb_public_orders','hammerdb_public_customer', 'hammerdb_public_district', 'hammerdb_public_warehouse', 'hammerdb_public_item', 'hammerdb_public_order_line']: # We are using snapshot reads for dimension tables and incremental for order_line (if possible) if dn_table_exists is True and table == 'hammerdb_public_order_line': hudi_options = { 'hoodie.datasource.query.type': 'incremental', 'hoodie.datasource.read.begin.instanttime': instant_time } else: hudi_options = { 'hoodie.datasource.query.type': 'snapshot' } spark.read.format('org.apache.hudi').options(**hudi_options).load(os.path.join(source_location_uri, table, ''))\ .createOrReplaceTempView(table) # Create the denormalized dataframe df = spark.sql(''' SELECT concat(cast(c_id as string), '-', cast(w_id as string), '-', cast(d_id as string), '-', cast(o_id as string)) as aol_sk, concat(cast(c_id as string), '-', cast(w_id as string), '-', cast(d_id as string)) as c_sk, c_id, w_id, d_id, o_id, ol_number, o_entry_d, date_format(o_entry_d, 'yyyy/MM/dd') as order_date, i_id, c_first || ' ' || c_middle || ' ' || c_last as full_name, c_zip, c_phone, c_credit, c_credit_lim, c_discount, c_balance, c_ytd_payment, c_payment_cnt, c_delivery_cnt, w_name whouse_name, d_name district_name, ol_delivery_d delivery_date, ol_quantity quantity, ol_amount amount, i_name item_name, i_price item_price, to_date(ol._hoodie_commit_time, 'yyyyMMddHHmmss') as ol_instant_time FROM hammerdb_public_orders JOIN hammerdb_public_customer ON o_c_id = c_id AND o_d_id = c_d_id AND o_w_id = c_w_id JOIN hammerdb_public_district ON c_d_id = d_id AND c_w_id = d_w_id JOIN hammerdb_public_warehouse ON d_w_id = w_id JOIN hammerdb_public_order_line ol ON o_id = ol_o_id AND o_d_id = ol_d_id AND o_w_id = ol_w_id JOIN hammerdb_public_item ON ol_i_id = i_id ORDER BY aol_sk, ol_number, ol_instant_time ''') # If we are doing a full load because the table doesn't exist, persist it.. we'll need it for aggregation step as well if dn_table_exists is False: df.persist() hudi_conf = { 'hoodie.table.name': 'analytics_order_line', 'hoodie.datasource.write.recordkey.field': 'aol_sk,ol_number', 'hoodie.datasource.write.precombine.field': 'ol_instant_time', 'hoodie.datasource.write.partitionpath.field': 'order_date', 'hoodie.datasource.write.keygenerator.class': 'org.apache.hudi.keygen.ComplexKeyGenerator', 'hoodie.datasource.hive_sync.database': db_name, 'hoodie.datasource.hive_sync.enable': 'true', 'hoodie.datasource.hive_sync.table': 'analytics_order_line', 'hoodie.datasource.hive_sync.partition_extractor_class': 'org.apache.hudi.hive.SlashEncodedDayPartitionValueExtractor' } if dn_table_exists is False: hudi_conf['hoodie.datasource.write.operation'] = 'bulk_insert' hudi_conf['hoodie.bulkinsert.sort.mode'] = 'PARTITION_SORT' hudi_conf['hoodie.bulkinsert.shuffle.parallelism'] = '32' writer = df.write.format('org.apache.hudi').mode('overwrite') else: hudi_conf['hoodie.datasource.write.operation'] = 'upsert' hudi_conf['hoodie.upsert.shuffle.parallelism'] = '32' writer = df.write.format('org.apache.hudi').mode('append') writer.options(**hudi_conf)\ .save(os.path.join(target_location_uri, 'analytics_order_line', '')) if __name__ == '__main__': main()
import torch import torch.nn as nn import torch.nn.functional as F class LuongAttention(nn.Module): def __init__(self, hidden_size_enc, hidden_size_dec, use_cuda=True, method='general'): super().__init__() self.hidden_size_enc = hidden_size_enc self.hidden_size_dec = hidden_size_dec self.use_cuda = use_cuda self.method = method if self.method not in ['dot', 'general', 'concat']: raise ValueError(self.method, "is not an appropriate attention method.") if self.method == 'general': self.general_weights = torch.nn.Parameter(torch.randn(hidden_size_dec, hidden_size_enc)) elif self.method == 'concat': self.general_weights = torch.nn.Parameter(torch.randn(hidden_size_dec, hidden_size_enc)) self.v = torch.nn.Parameter(torch.randn(hidden_size_dec, hidden_size_enc)) def forward(self, encoder_outputs, encoder_outputs_length, decoder_outputs, decoder_outputs_length, enc_mask=None): dec_len = decoder_outputs.size(0) enc_len = encoder_outputs.size(0) decoder_outputs = torch.transpose(decoder_outputs, 0, 1) encoder_outputs = encoder_outputs.permute(1, 2, 0) score = torch.bmm(decoder_outputs @ self.general_weights, encoder_outputs) if enc_mask is not None: enc_mask = enc_mask.unsqueeze(1) enc_mask = torch.transpose(enc_mask, 0, 2) score = score.masked_fill(enc_mask == 0, -1e12) weights_flat = F.softmax(score.view(-1, enc_len), dim=1) weights = weights_flat.view(-1, dec_len, enc_len) attention_vector = torch.bmm(weights, encoder_outputs.permute(0, 2, 1)) attention_vector = attention_vector.permute(1, 0, 2) return attention_vector, weights.view(-1, enc_len)
import functools import logging def logger(func): logging.basicConfig(filename=f"logger", level=logging.INFO) @functools.wraps(func) def aninhada(*args, **kwargs): logging.info(f"'{func.__name__}' executado com os argumentos: {args}") return func(*args, **kwargs) return aninhada def recibo(func): @functools.wraps(func) def aninhada(*args, **kwargs): with open("recibos.txt", "a") as arquivo: if func.__name__ == "depositar": arquivo.write(f"{args[0].nome} depositou R$ {args[1]}\n") elif func.__name__ == "sacar": arquivo.write(f"{args[0].nome} sacou R$ {args[1]}\n") else: arquivo.write(f"{args[0].nome} transferiu R$ {args[2]} para {args[1].nome}\n") return func(*args, **kwargs) return aninhada
from save_the_giphies.runner import create_app from save_the_giphies.config import config from typing import TYPE_CHECKING if TYPE_CHECKING: from flask import Flask if __name__ == '__main__': """ Entry point """ app: "Flask" = create_app() app.run(debug=config.debug)
from django.contrib import admin from .models import (Domain,mcqQuestions,typeQuestions,Responses,User) from django.utils.html import format_html import csv from django.http import HttpResponse class ExportCsvMixin: def export_as_csv(self, request, queryset): meta = self.model._meta field_names = [field.name for field in meta.fields] response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) writer = csv.writer(response) writer.writerow(field_names) for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) return response export_as_csv.short_description = "Export Selected" @admin.register(User) class UserAdmin(admin.ModelAdmin,ExportCsvMixin): list_display = ['username','reg_no','email','phone_number'] actions = ["export_as_csv"] # Register your models here. @admin.register(Domain) class DomainAdmin(admin.ModelAdmin): list_display = ['domain_name','id'] @admin.register(mcqQuestions) class mcqQuestionsAdmin(admin.ModelAdmin): list_display = ['domain','question_id','get_question'] def get_question(self, obj): html = "<img src='" + str(obj.question) + "' style='height:200px;width:300px' />"; return format_html(html) get_question.short_description = 'question' @admin.register(typeQuestions) class typeQuestionsAdmin(admin.ModelAdmin): list_display = ['domain','question_id','get_question'] def get_question(self, obj): html = "<img src='" + str(obj.question) + "' style='height:200px;width:300px' />"; return format_html(html) get_question.short_description = 'question' @admin.register(Responses) class ResponsesAdmin(admin.ModelAdmin,ExportCsvMixin): list_display = ['user','get_reg_no','domain','get_question','answer'] list_filter = ['domain'] search_fields = ['user__username'] actions = ["export_as_csv"] def get_reg_no(self, obj): return obj.user.reg_no get_reg_no.short_description = 'reg_no' def get_question(self, obj): html = "<img src='" + str(obj.question) + "' style='height:200px;width:300px' />"; return format_html(html) get_question.short_description = 'question' # class MyModelAdmin(admin.ModelAdmin): # ... # # list_display = ['get_description', ] # # def get_description(self, obj): # return format_html(obj) # get_description.short_description = 'description'
r"""This module provides decoding functionality of struct +-------+--------+-------------------------------+---+---+---+---+---+---+---+---+ | Byte | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +-------+--------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ | bit | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | +-------+--------+---+---+---+---+---+---+---+---+-------------------------------+ | Field | opcode | |fua| lba (big endian) | +-------+--------+---------------------------+---+-------------------------------+ If command block has layout shown as above and there is 5 command as following: +--------+-----+-------------+ | opcode | fua | Command | +--------+-----+-------------+ | 0x00 | X | NOP | +--------+-----+-------------+ | 0x01 | 0 | Cache Write | +--------+-----+-------------+ | 0x01 | 1 | Force Write | +--------+-----+-------------+ | 0x02 | 0 | Cache Read | +--------+-----+-------------+ | 0x02 | 1 | Force Read | +--------+-----+-------------+ Command classes can be defined as following: >>> from pystr import Decodable >>> from enum import IntEnum >>> class Opcode(IntEnum): ... Nop = 0 ... Write = 1 ... Read = 2 >>> class BaseCommand(Decodable): ... _layout_ = dict( ... opcode=dict( ... offset=0, ... ), ... fua=dict( ... offset=1, ... bit=0, ... ), ... lba=dict( ... offset=2, ... width=64, ... endian='be' ... ), ... ) ... opcode: Opcode ... fua: bool ... lba: int >>> class NopCommand(BaseCommand): ... opcode = Opcode.Nop >>> class WriteCommand(BaseCommand): ... opcode = Opcode.Write >>> class ReadCommand(BaseCommand): ... opcode = Opcode.Read >>> class CacheWriteCommand(WriteCommand): ... fua = False >>> class ForceWriteCommand(WriteCommand): ... fua = True >>> class CacheReadCommand(ReadCommand): ... fua = False >>> class ForceReadCommand(ReadCommand): ... fua = True The results of each case are same as following: >>> print(BaseCommand(b'\0\0\0\0\0\0\0\0').decode()) NopCommand(lba=0, fua=False, opcode=<Opcode.Nop: 0>) >>> print(BaseCommand(b'\x01\0\0\0\0\0\0\0').decode()) CacheWriteCommand(lba=0, fua=False, opcode=<Opcode.Write: 1>) >>> print(BaseCommand(b'\x01\x01\0\0\0\0\0\0').decode()) ForceWriteCommand(lba=0, fua=True, opcode=<Opcode.Write: 1>) >>> print(BaseCommand(b'\x02\0\0\0\0\0\0\0').decode()) CacheReadCommand(lba=0, fua=False, opcode=<Opcode.Read: 2>) >>> print(BaseCommand(b'\x02\x01\0\0\0\0\0\0').decode()) ForceReadCommand(lba=0, fua=True, opcode=<Opcode.Read: 2>) If you want to add initial value to sub struct, `initial` parameter can be used. >>> class SomeDecodable(Decodable): ... _layout_ = ... ... child: ChildDecodable ... class DerivedDecodable(SomeDecodable, initial={"child.value": 1}): ... pass """ import typing from .struct import Struct DerivedDecodable = typing.TypeVar('DerivedDecodable', bound='Decodable') class Decodable(Struct): """Decoding facility added Struct""" _decode_map: typing.List[ typing.Tuple[ typing.Dict[str, typing.Any], typing.Type['Decodable'] ] ] = [] def __init_subclass__(cls, **kwargs: typing.Any): #pylint: disable=arguments-differ super().__init_subclass__(**kwargs) if cls._initial: cls._decode_map.append((cls._initial, cls)) cls._decode_map = [] def decode(self: DerivedDecodable) -> DerivedDecodable: """Decode struct by derived Decodables""" dmap = self._decode_map ret_tp = type(self) while True: for cond, child_tp in reversed(dmap): if all(getattr(self, k) == v for k, v in cond.items()): dmap = child_tp._decode_map #pylint: disable=protected-access ret_tp = typing.cast(typing.Type[DerivedDecodable], child_tp) break else: return self if ret_tp is type(self) else ret_tp(ref=self.buffer)
from protocol_lib import IHashable def test_hashable() -> None: class Impl: def __hash__(self) -> int: return 42 impl: IHashable = Impl() assert hash(impl) == 42
import os import re from pathlib import Path from typing import List import testsuites from resultinterpretation import CSVFileExtractor from resultinterpretation.model import TestSuiteResult, TestStepResult class ResultInterpreter: def __init__(self, inputDir: Path): """ :param inputDir: The root directory which contains the output files of the CouchEdit Test Suites (directories with <datetime>_<TestSuiteName> """ self.__inputDir = inputDir.absolute() # Pattern to match if a directory name is a CouchEdit test suite result pattern. # Those look like yyyyMMddhhmmss_<TestSuiteName> self.__couchEditTestSuiteDirPattern = re.compile("\\d+_\\w+") def interpretResults(self) -> List[TestSuiteResult]: if not self.__inputDir.exists(): raise Exception("Input Directory {0} cannot be found!".format(self.__inputDir)) if not self.__inputDir.is_dir(): raise Exception("Input Location {0} is not a directory!".format(self.__inputDir)) dirList = [dirPath for dirPath in self.__inputDir.glob('*/') if self.__isCouchEditTestSuiteDirName(dirPath.name)] return self.processDirectories(dirList) def processDirectories(self, dirList: List[Path]) -> List[TestSuiteResult]: testSuiteDirDict = {} for path in dirList: suiteName = self.__getCouchEditTestSuiteNameFromDirName(path) if suiteName not in testSuiteDirDict: testSuiteDirDict[suiteName] = [] testSuiteDirDict[suiteName].append(path) ret = [] for suiteName, suiteDirs in testSuiteDirDict.items(): suiteInfo = testsuites.suites[suiteName] independentVariableName = suiteInfo['iv'] if 'pre' in suiteInfo: prefix = suiteInfo['pre'] else: prefix = 'result_' suiteCsvExtractor = CSVFileExtractor(independentVariableName, prefix) results = self.processSingleTestSuiteDirectories(suiteDirs, suiteCsvExtractor) ret.append(TestSuiteResult(suiteName, results, { "suiteName": suiteName, "prefix": prefix, "independentVariable": independentVariableName })) return ret def processSingleTestSuiteDirectories( self, dirList: List[Path], suiteCsvExtractor: CSVFileExtractor ) -> List[TestStepResult]: testStepFileDict = {} for dir in dirList: files = dir.glob('*.csv') for file in files: stepNumber = self.__getStepNumberFromFileName(file) if stepNumber not in testStepFileDict: testStepFileDict[stepNumber] = [] testStepFileDict[stepNumber].append(file) ret = [] for number, files in testStepFileDict.items(): extracted = suiteCsvExtractor.extract(files) resultObject = TestStepResult(number, extracted) ret.append(resultObject) return ret def __getStepNumberFromFileName(self, path: Path) -> int: pat = re.compile("\\d+") number = pat.match(str(path.stem)).group(0) return int(number) def __getCouchEditTestSuiteNameFromDirName(self, path: Path) -> str: nameParts = path.name.split('_', 1) return nameParts[1] def __isCouchEditTestSuiteDirName(self, name: str) -> bool: return self.__couchEditTestSuiteDirPattern.match(name) is not None
# Copyright 2013 OpenStack Foundation. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import time import mock from vmware_nsx.api_client import client as nsx_client from vmware_nsx.api_client import eventlet_client from vmware_nsx import extensions import vmware_nsx.plugin as neutron_plugin from vmware_nsx.plugins.nsx_v.vshield.common import ( VcnsApiClient as vcnsapi) from vmware_nsx.plugins.nsx_v.vshield import edge_utils from vmware_nsx.plugins.nsx_v.vshield import vcns import vmware_nsx.plugins.nsx_v.vshield.vcns_driver as vcnsdriver plugin = neutron_plugin.NsxPlugin api_client = nsx_client.NsxApiClient evt_client = eventlet_client.EventletApiClient vcns_class = vcns.Vcns vcns_driver = vcnsdriver.VcnsDriver vcns_api_helper = vcnsapi.VcnsApiHelper edge_manage_class = edge_utils.EdgeManager STUBS_PATH = os.path.join(os.path.dirname(__file__), 'etc') NSXEXT_PATH = os.path.dirname(extensions.__file__) NSXAPI_NAME = '%s.%s' % (api_client.__module__, api_client.__name__) PLUGIN_NAME = '%s.%s' % (plugin.__module__, plugin.__name__) CLIENT_NAME = '%s.%s' % (evt_client.__module__, evt_client.__name__) VCNS_NAME = '%s.%s' % (vcns_class.__module__, vcns_class.__name__) VCNS_DRIVER_NAME = '%s.%s' % (vcns_driver.__module__, vcns_driver.__name__) VCNSAPI_NAME = '%s.%s' % (vcns_api_helper.__module__, vcns_api_helper.__name__) EDGE_MANAGE_NAME = '%s.%s' % (edge_manage_class.__module__, edge_manage_class.__name__) # Mock for the tenacity retrying sleeping method mocked_retry_sleep = mock.patch.object(time, 'sleep') mocked_retry_sleep.start() def get_fake_conf(filename): return os.path.join(STUBS_PATH, filename) def nsx_method(method_name, module_name='nsxlib'): return '%s.%s.%s' % ('vmware_nsx', module_name, method_name)
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeOCR', height=32, min_width=128, max_width=128, keep_aspect_ratio=False, width_downsample_ratio=0.25), dict( type='RandomWrapper', p=0.5, transforms=[ dict( type='OneOfWrapper', transforms=[ dict( type='RandomRotateTextDet', max_angle=15, ), dict( type='TorchVisionWrapper', op='RandomAffine', degrees=15, translate=(0.3, 0.3), scale=(0.5, 2.), shear=(-45, 45), ), dict( type='TorchVisionWrapper', op='RandomPerspective', distortion_scale=0.5, p=1, ), ]) ], ), dict( type='RandomWrapper', p=0.25, transforms=[ dict(type='PyramidRescale'), dict( type='Albu', transforms=[ dict(type='GaussNoise', var_limit=(20, 20), p=0.5), dict(type='MotionBlur', blur_limit=6, p=0.5), ]), ]), dict( type='RandomWrapper', p=0.25, transforms=[ dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.5, saturation=0.5, contrast=0.5, hue=0.1), ]), dict(type='ToTensorOCR'), dict(type='NormalizeOCR', **img_norm_cfg), dict( type='Collect', keys=['img'], meta_keys=[ 'filename', 'ori_shape', 'img_shape', 'text', 'valid_ratio', 'resize_shape' ]), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiRotateAugOCR', rotate_degrees=[0, 90, 270], transforms=[ dict( type='ResizeOCR', height=32, min_width=128, max_width=128, keep_aspect_ratio=False, width_downsample_ratio=0.25), dict(type='ToTensorOCR'), dict(type='NormalizeOCR', **img_norm_cfg), dict( type='Collect', keys=['img'], meta_keys=[ 'filename', 'ori_shape', 'img_shape', 'valid_ratio', 'resize_shape' ]), ]) ]
from __future__ import print_function # PY2 import sys import traceback import platform import ctypes.util from ctypes import (POINTER, CFUNCTYPE, CDLL, pythonapi, cast, addressof, c_int, c_char_p, c_void_p, c_size_t, py_object) WINDOWS = platform.system().lower() == "windows" def get_libc(): if WINDOWS: path = "msvcrt" else: path = ctypes.util.find_library("c") if path is None: raise RuntimeError("cannot locate libc") return CDLL(path) def get_file_pointers_Python2(): PyFile_AsFile = pythonapi.PyFile_AsFile PyFile_AsFile.restype = c_void_p PyFile_AsFile.argtypes = [py_object] stdin = PyFile_AsFile(sys.stdin) stdout = PyFile_AsFile(sys.stdout) return stdin, stdout def get_file_pointers_Unix(): runtime = CDLL(None) stdin = c_void_p.in_dll(runtime, "stdin").value stdout = c_void_p.in_dll(runtime, "stdout").value return stdin, stdout def get_file_pointers_msvcrt(): class FILE(ctypes.Structure): _fields_ = [ ("_ptr", c_char_p), ("_cnt", c_int), ("_base", c_char_p), ("_flag", c_int), ("_file", c_int), ("_charbuf", c_int), ("_bufsize", c_int), ("_tmpfname", c_char_p), ] msvcrt = CDLL(ctypes.util.find_msvcrt()) iob_func = msvcrt.__iob_func iob_func.restype = POINTER(FILE) iob_func.argtypes = [] array = iob_func() stdin = addressof(array[0]) stdout = addressof(array[1]) return stdin, stdout def get_file_pointers_ucrtbase(): ucrtbase = CDLL("ucrtbase") iob_func = ucrtbase.__acrt_iob_func iob_func.restype = c_void_p iob_func.argtypes = [c_int] stdin = iob_func(0) stdout = iob_func(1) return stdin, stdout def get_file_pointers(): if sys.version_info < (3,): return get_file_pointers_Python2() elif WINDOWS: if sys.version_info >= (3, 5): return get_file_pointers_ucrtbase() else: return get_file_pointers_msvcrt() else: return get_file_pointers_Unix() HOOKFUNC = CFUNCTYPE(c_char_p, c_void_p, c_void_p, c_char_p) LIBC = get_libc() strncpy = LIBC.strncpy strncpy.restype = c_char_p strncpy.argtypes = [c_char_p, c_char_p, c_size_t] PyMem_Malloc = pythonapi.PyMem_Malloc PyMem_Malloc.restype = c_size_t PyMem_Malloc.argtypes = [c_size_t] PyOS_ReadlineFunctionPointer = c_void_p.in_dll(pythonapi, "PyOS_ReadlineFunctionPointer") STDIN_FILE_POINTER, STDOUT_FILE_POINTER = get_file_pointers() def get_function_address(func): return cast(func, c_void_p).value def new_zero_terminated_string(b): p = PyMem_Malloc(len(b) + 1) strncpy(cast(p, c_char_p), b, len(b) + 1) return p def readline_wrapper(stdin_fp, stdout_fp, prompt_bytes): try: prompt = prompt_bytes.decode(sys.stdout.encoding) try: line = readline_hook(prompt) except KeyboardInterrupt: return 0 else: line_bytes = line.encode(sys.stdin.encoding) return new_zero_terminated_string(line_bytes) except: print("An error occured in a readline hook", file=sys.stderr) traceback.print_exc(file=sys.stderr) return new_zero_terminated_string(b"\n") readline_hook = None readline_hook_ref = HOOKFUNC(readline_wrapper) def get_readline_hook(): our_address = cast(readline_hook_ref, c_void_p).value actual_address = PyOS_ReadlineFunctionPointer.value if actual_address == our_address: return readline_hook elif actual_address is None: return None readline_bytes = HOOKFUNC(actual_address) def readline(prompt=""): prompt_bytes = prompt.encode(sys.stdout.encoding) line_bytes = readline_bytes(STDIN_FILE_POINTER, STDOUT_FILE_POINTER, prompt_bytes) if line_bytes is None: raise KeyboardInterrupt line = line_bytes.decode(sys.stdin.encoding) return line readline.__readline_bytes__ = readline_bytes return readline def set_readline_hook(hook): global readline_hook if hook is None: address = 0 elif hasattr(hook, "__readline_bytes__"): address = get_function_address(hook.__readline_bytes__) else: readline_hook = hook address = get_function_address(readline_hook_ref) PyOS_ReadlineFunctionPointer.value = address def stdio_readline(prompt=""): sys.stdout.write(prompt) sys.stdout.flush() return sys.stdin.readline() #sys.__readlinehook__ = get_readline_hook()
import requests import json from globalVar import log class SendMessage(object): """发送信息到微信""" appid = "" appsecret = "" access_token = "" def get_access_token(self): urlAccessToken = "https://api.weixin.qq.com/cgi-bin/token?grant_type=client_credential&appid=" + \ SendMessage.appid + "&secret=" + SendMessage.appsecret res = requests.get(urlAccessToken) SendMessage.access_token = res.json()["access_token"] log.logger.info("重新获取access token成功") def send_message(self, user_id, template_id, name, price, time): """把模板信息发送到指定用户 Args: user_id:用户id,关注该公众号的用户所对应的用户id template_id:模板id name:股票名称 price:价格 """ urlSendMessage = "https://api.weixin.qq.com/cgi-bin/message/template/send?access_token=" + \ SendMessage.access_token param = { "touser": user_id, "template_id": template_id, "topcolor": "#FF0000", "data": { "name": { "value": name, "color": "#ff0000" }, "price": { "value": price, "color": "#ff0000" }, "time": { "value": time, "color": "#ff0000" } } } requests.post(url=urlSendMessage, data=json.dumps(param)).text log.logger.info("向用户:{} 发送消息:{},股票:{},现价:{},时间:{}".format( user_id, template_id, name, price, time))
import torchtext.data as data class CMUDict(data.Dataset): def __init__(self, data_lines, g_field, p_field): fields = [('grapheme', g_field), ('phoneme', p_field)] examples = [] # maybe ignore '...-1' grapheme for line in data_lines: grapheme, phoneme = line.split(maxsplit=1) examples.append(data.Example.fromlist([grapheme, phoneme], fields)) self.sort_key = lambda x: len(x.grapheme) super(CMUDict, self).__init__(examples, fields) @classmethod def splits(cls, path, g_field, p_field, seed=None): import random if seed is not None: random.seed(seed) with open(path) as f: lines = f.readlines() random.shuffle(lines) train_lines, val_lines, test_lines = [], [], [] for i, line in enumerate(lines): if i % 20 == 0: val_lines.append(line) elif i % 20 < 3: test_lines.append(line) else: train_lines.append(line) train_data = cls(train_lines, g_field, p_field) val_data = cls(val_lines, g_field, p_field) test_data = cls(test_lines, g_field, p_field) return (train_data, val_data, test_data)
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from openstack_controller.admission.validators import base from openstack_controller import exception class KeystoneValidator(base.BaseValidator): service = "identity" def validate(self, review_request): keycloak_section = ( review_request.get("object", {}) .get("spec", {}) .get("features", {}) .get("keystone", {}) .get("keycloak", {}) ) if ( keycloak_section.get("enabled", False) and keycloak_section.get("url") is None ): raise exception.OsDplValidationFailed( "Malformed OpenStackDeployment spec, if keycloak is " "enabled for identity service, you need to specify url." )
# Generated by Django 3.1.14 on 2022-03-24 09:47 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('feedback', '0029_auto_20220324_0944'), ] operations = [ migrations.AddField( model_name='report', name='uuid', field=models.UUIDField(default=uuid.uuid4, editable=False, null=True), ), migrations.AlterField( model_name='report', name='external_uuid', field=models.UUIDField(editable=False, null=True, unique=True, verbose_name='Identifier'), ), ]
# ========== Thanks https://github.com/Eric-mingjie/rethinking-network-pruning ============ # ========== we adopt the code from the above link and did modifications ============ # ========== the comments as #=== === were added by us, while the comments as # were the original one ============ from __future__ import print_function import argparse import math import os import random import shutil import time import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data as data import torchvision.transforms as transforms import torchvision.datasets as datasets # from tensorboardX import SummaryWriter import models as models from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig, get_sv, get_hook, run_once, detach_hook, get_heuristic_sv from utils.misc import get_zero_param from pruner.GraSP import GraSP from pruner.SNIP import SNIP from pruner.SmartRatio import SmartRatio model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch CIFAR10/100/TinyImagenet Training') # Datasets parser.add_argument('-d', '--dataset', default='cifar10', type=str) parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') # Optimization options parser.add_argument('--epochs', default=160, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--train-batch', default=64, type=int, metavar='N', help='train batchsize') parser.add_argument('--test-batch', default=50, type=int, metavar='N', help='test batchsize') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--drop', '--dropout', default=0, type=float, metavar='Dropout', help='Dropout ratio') parser.add_argument('--schedule', type=int, nargs='+', default=[80, 120], help='Decrease learning rate at these epochs.') parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') # Checkpoints parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--model', default='', type=str, metavar='PATH', help='path to the initialization checkpoint (default: none)') # Architecture parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet20', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('--depth', type=int, default=29, help='Model depth.') # Miscs parser.add_argument('--manualSeed', type=int, help='manual seed') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--save_dir', default='results/', type=str) #Device options parser.add_argument('--gpu-id', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') # ========== these attributes were added by us in order to meet the needs of our experiment ============ # ========== the following 3 attributes have str/float type ============ # ========== for --writerdir, you should name it as Yourfolder/Expname, then set your tensorboard path to Yourfolder/ ============ parser.add_argument('--writerdir',default = 'InitExp/', type = str) # ========== the linear_keep_ratio attribute should be used together with the smart_ratio attribute ============ parser.add_argument('--linear_keep_ratio', type=float, default=0.3, help='smart ratio: linear keep ratio') # ========== the init_prune_ratio attribute should use together with the smart_ratio/GraSP/SNIP attribute ============ parser.add_argument('--init_prune_ratio', type=float, default=0.98, help='init pruning ratio') # ========== the following attributes have INT type, but actually they are BOOLEAN: zero or NONZERO ============ parser.add_argument('--rearrange',type = int, default = 0,help = 'rearrange the masks') parser.add_argument('--shuffle_unmasked_weights',default = 0, type = int) parser.add_argument('--smart_ratio',default = 0, type = int,help = 'using smart ratio') parser.add_argument('--GraSP', type=int, default=0, help='Using GraSP') parser.add_argument('--SNIP', type=int, default=0, help='Using SNIP') parser.add_argument('--randLabel',type=int, default=0,help = 'Using randLabel Dataset for GraSP/SNIP') parser.add_argument('--shufflePixel',type=int, default=0,help = 'Using shufflePixel AND RANDLABEL Dataset for GraSP/SNIP') parser.add_argument('--hybrid',type=int, default=0,help = 'the Hybrid Method, should use with Smart Ratio') parser.add_argument('--linear_decay',type=int, default=0,help = 'Ablation: Using Linear Decay,should use with Smart Ratio') parser.add_argument('--ascend',type=int, default=0,help = 'Ablation: Using Ascend Smart Ratio') parser.add_argument('--uniform',type=int, default=0,help = 'Ablation: Using Balance Keep_Ratio') parser.add_argument('--cubic',type=int, default=0,help = 'Ablation: Using Cubic Keep_Ratio') # ========== Can use this BOOLEAN attribute to read in the model in and Run it on the Trainloader to see ACC ============ parser.add_argument('--print_output',default = 0, type = int) parser.add_argument('--sv', dest='compute_sv', action='store_true', help='compute_sv throughout training') args = parser.parse_args() state = {k: v for k, v in args._get_kwargs()} # Validate dataset assert args.dataset == 'cifar10' or args.dataset == 'cifar100' or args.dataset == 'tinyimagenet', 'Dataset can only be cifar10 or cifar100 or tinyimagenet.' gpu_id = args.gpu_id os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id use_cuda = torch.cuda.is_available() # Random seed if args.manualSeed is None: args.manualSeed = random.randint(1, 100000) random.seed(args.manualSeed) torch.manual_seed(args.manualSeed) if use_cuda: torch.cuda.manual_seed_all(args.manualSeed) best_acc = 0 # best test accuracy class CIFAR10RandomLabels(datasets.CIFAR10): """CIFAR10 dataset, with support for randomly corrupt labels. Params ------ corrupt_prob: float Default 1.0. The probability of a label being replaced with random label. num_classes: int Default 10. The number of classes in the dataset. """ def __init__(self, corrupt_prob=1.0, num_classes=10, **kwargs): super(CIFAR10RandomLabels, self).__init__(**kwargs) self.n_classes = num_classes if corrupt_prob > 0: self.corrupt_labels(corrupt_prob) def corrupt_labels(self, corrupt_prob): labels = np.array(self.targets) np.random.seed(12345) mask = np.random.rand(len(labels)) <= corrupt_prob rnd_labels = np.random.choice(self.n_classes, mask.sum()) labels[mask] = rnd_labels # we need to explicitly cast the labels from npy.int64 to # builtin int type, otherwise pytorch will fail... targets = [int(x) for x in labels] self.targets = targets if args.shufflePixel != 0: print('********************* DEBUG PRINT : ADDITION : SHUFFLE PIXEL ************************') xs = torch.tensor(self.data) Size = xs.size() # e.g. for CIFAR10, is 50000 * 32 * 32 * 3 xs = xs.reshape(Size[0],-1) for i in range(Size[0]): xs[i] = xs[i][torch.randperm(xs[i].nelement())] xs = xs.reshape(Size) xs = xs.numpy() self.data = xs class CIFAR100RandomLabels(datasets.CIFAR100): """CIFAR100 dataset, with support for randomly corrupt labels. Params ------ corrupt_prob: float Default 1.0. The probability of a label being replaced with random label. num_classes: int Default 100. The number of classes in the dataset. """ def __init__(self, corrupt_prob=1.0, num_classes=100, **kwargs): super(CIFAR100RandomLabels, self).__init__(**kwargs) self.n_classes = num_classes if corrupt_prob > 0: self.corrupt_labels(corrupt_prob) def corrupt_labels(self, corrupt_prob): labels = np.array(self.targets) np.random.seed(12345) mask = np.random.rand(len(labels)) <= corrupt_prob rnd_labels = np.random.choice(self.n_classes, mask.sum()) labels[mask] = rnd_labels # we need to explicitly cast the labels from npy.int64 to # builtin int type, otherwise pytorch will fail... targets = [int(x) for x in labels] self.targets = targets if args.shufflePixel != 0: print('********************* DEBUG PRINT : ADDITION : SHUFFLE PIXEL ************************') xs = torch.tensor(self.data) Size = xs.size() # e.g. for CIFAR100, is 50000 * 32 * 32 * 3 xs = xs.reshape(Size[0],-1) for i in range(Size[0]): xs[i] = xs[i][torch.randperm(xs[i].nelement())] xs = xs.reshape(Size) xs = xs.numpy() self.data = xs def main(): global best_acc start_epoch = args.start_epoch # start from epoch 0 or last checkpoint epoch if args.print_output == 0: # writer = SummaryWriter(args.writerdir) os.makedirs(args.save_dir, exist_ok=True) # Data # ========== The following preprocessing procedure is adopted from https://github.com/alecwangcq/GraSP ============ print('==> Preparing dataset %s' % args.dataset) if args.dataset == 'cifar10': transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) dataloader = datasets.CIFAR10 num_classes = 10 elif args.dataset == 'cifar100': dataloader = datasets.CIFAR100 num_classes = 100 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)), ]) elif args.dataset == 'tinyimagenet': args.schedule = [150,225] num_classes = 200 tiny_mean = [0.48024578664982126, 0.44807218089384643, 0.3975477478649648] tiny_std = [0.2769864069088257, 0.26906448510256, 0.282081906210584] transform_train = transforms.Compose([ transforms.RandomCrop(64, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(tiny_mean, tiny_std)]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(tiny_mean, tiny_std)]) args.workers = 16 args.epochs = 300 if args.dataset != 'tinyimagenet': trainset = dataloader(root='./data', train=True, download=True, transform=transform_train) else: trainset = datasets.ImageFolder('./data' + '/tiny_imagenet/train', transform=transform_train) trainloader = data.DataLoader(trainset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers) if args.dataset != 'tinyimagenet': testset = dataloader(root='./data', train=False, download=False, transform=transform_test) testloader = data.DataLoader(testset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers) else: testset = datasets.ImageFolder('./data' + '/tiny_imagenet/val', transform=transform_test) testloader = data.DataLoader(testset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers) # Model print("==> creating model '{}'".format(args.arch)) if args.arch.endswith('resnet'): model = models.__dict__[args.arch]( num_classes=num_classes, depth=args.depth, ) model_ref = models.__dict__[args.arch]( num_classes=num_classes, depth=args.depth, ) else: model = models.__dict__[args.arch](num_classes=num_classes) model_ref = models.__dict__[args.arch](num_classes=num_classes) model.cuda() model_ref.cuda() cudnn.benchmark = True print(' Total Conv and Linear Params: %.2fM' % (sum(p.weight.data.numel() for p in model.modules() if isinstance(p,nn.Linear) or isinstance(p,nn.Conv2d))/1000000.0)) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) # default is 0.001 # Resume if args.dataset == 'cifar10': title = 'cifar-10-' + args.arch elif args.dataset == 'cifar100': title = 'cifar-100-' + args.arch else: title = 'tinyimagenet' + args.arch if args.resume: # Load checkpoint. print('==> Getting reference model from checkpoint..') assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!' checkpoint = torch.load(args.resume, map_location='cpu') start_epoch = args.start_epoch model_ref.load_state_dict(checkpoint['state_dict']) if args.randLabel != 0 or args.shufflePixel != 0: assert args.dataset == 'cifar10' or args.dataset == 'cifar100','randLabel/shufflePixel can only be used together with cifar10/100.' print('###################### DEBUG PRINT : USING RANDLABEL TO CALCULATE ####################') if args.dataset == 'cifar10': trainset = CIFAR10RandomLabels(root='./data', train=True, download=True, transform=transform_train) else: trainset = CIFAR100RandomLabels(root='./data', train=True, download=True, transform=transform_train) trainloader = data.DataLoader(trainset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers) if args.print_output == 0: logger = Logger(os.path.join(args.save_dir, 'log_scratch.txt'), title=title) logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.']) # set some weights to zero, according to model_ref --------------------------------- if args.model: print('==> Loading init model from %s'%args.model) checkpoint = torch.load(args.model, map_location='cpu') model.load_state_dict(checkpoint['state_dict']) size_hook = None if args.compute_sv: training_sv = [] training_sv_avg = [] training_sv_std = [] h_sv = [] print('[*] Will compute singular values throught training.') size_hook = get_hook(model, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)) run_once(trainloader, model) detach_hook([size_hook]) # ========== the following code is the implementation of Smart Ratio ============ if args.smart_ratio != 0: print("################### DEBUG PRINT : USING SMART RATIO ###################") masks = SmartRatio(model,args.init_prune_ratio,'cuda',args) # ========== the following code is the implementation of GraSP ============ if args.GraSP != 0: print("################### DEBUG PRINT : USING GraSP ###################") # ========== If use ResNet56, there will be risk to meet the CUDA OUT OF MEMORY ERROR ============ samples_per_class = 10 num_iters = 1 if args.arch == 'resnet' and args.depth > 32: samples_per_class = 1 num_iters = 10 if args.dataset == 'tinyimagenet': samples_per_class = 1 num_iters = 10 if args.randLabel != 0 or args.shufflePixel != 0: assert args.dataset == 'cifar10' or args.dataset == 'cifar100','randLabel/shufflePixel can only be used together with cifar10/100.' print('###################### DEBUG PRINT : USING RANDLABEL TO CALCULATE ####################') if args.dataset == 'cifar10': randset = CIFAR10RandomLabels(root='./data', train=True, download=True, transform=transform_train) else: randset = CIFAR100RandomLabels(root='./data', train=True, download=True, transform=transform_train) randloader = data.DataLoader(randset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers) masks = GraSP(model, args.init_prune_ratio, randloader, 'cuda',num_classes,samples_per_class,num_iters) else: masks = GraSP(model, args.init_prune_ratio, trainloader, 'cuda',num_classes,samples_per_class,num_iters) # ========== the following code is the implementation of SNIP ============ if args.SNIP != 0: print("################### DEBUG PRINT : USING SNIP ###################") # ========== If use ResNet56, there will be risk to meet the CUDA OUT OF MEMORY ERROR ============ samples_per_class = 10 num_iters = 1 if args.arch == 'resnet' and args.depth > 32: samples_per_class = 1 num_iters = 10 if args.dataset == 'tinyimagenet': samples_per_class = 1 num_iters = 10 if args.randLabel != 0 or args.shufflePixel != 0: assert args.dataset == 'cifar10' or args.dataset == 'cifar100','randLabel/shufflePixel can only be used together with cifar10/100.' print('###################### DEBUG PRINT : USING RANDLABEL TO CALCULATE ####################') if args.dataset == 'cifar10': randset = CIFAR10RandomLabels(root='./data', train=True, download=True, transform=transform_train) else: randset = CIFAR100RandomLabels(root='./data', train=True, download=True, transform=transform_train) randloader = data.DataLoader(randset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers) masks = SNIP(model, args.init_prune_ratio, randloader, 'cuda',num_classes,samples_per_class,num_iters) else: masks = SNIP(model, args.init_prune_ratio, trainloader, 'cuda',num_classes,samples_per_class,num_iters) CNT = 0 for m,m_ref in zip(model.modules(),model_ref.modules()): if isinstance(m, nn.Conv2d) or isinstance(m,nn.Linear): if isinstance(m,nn.Conv2d): TYPE = "Conv" else: TYPE = "Linear" weight_copy = m_ref.weight.data.abs().clone() # DEFAULT : generate the masks from model_ref, i.e. the LT method mask = weight_copy.gt(0).float().cuda() # Else : generate the masks using the Smart Ratio / GraSP / SNIP # ========== set the Smart Ratio / GraSP / SNIP masks ============ if args.smart_ratio != 0: mask = masks[CNT] elif args.GraSP != 0: mask = masks[m] elif args.SNIP != 0: mask = masks[m] CNT += 1 total = mask.numel() # ========== print the keep-ratio and #para, #remained ============ remained = int(torch.sum(mask)) keep_ratio = remained/total print("LAYER %d(%s) : KEEP_RATIO = %.6f NUM_PARA = %d REMAINED_PARA = %d" % (CNT,TYPE,keep_ratio*100,total,remained)) # ========== rearrange the masks (if stated) ============ # ========== note that this operation will also change the weight retained ============ if args.rearrange != 0: print("################### DEBUG PRINT : REARRANGE ###################") mask = mask.view(-1)[torch.randperm(mask.nelement())].view(mask.size()) # ========== set the pruned weights to 0 ============ m.weight.data.mul_(mask) # ========== Ablation study: Shuffle Weights ============ # ========== shuffle the unmasked weights (if stated) ============ # ========== we keep the arch but change the position of the weight ============ if args.shuffle_unmasked_weights != 0: print("################### DEBUG PRINT : SHUFFLE UNMASKED WEIGHTS ###################") Size = mask.size() mask = mask.view(-1) m.weight.data = m.weight.data.view(-1) non_zero = int(sum(mask).item()) value,idx = torch.topk(mask,non_zero) rand_idx = idx.view(-1)[torch.randperm(idx.nelement())].view(idx.size()) m.weight.data[rand_idx] = m.weight.data[idx] mask = mask.view(Size) m.weight.data = m.weight.data.view(Size) # ========== print the training acc and RETURN (if stated) ============ if args.print_output != 0: for batch_idx, (inputs, targets) in enumerate(trainloader): # measure data loading time if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets) # compute output outputs = model(inputs) print(outputs) return loss = criterion(outputs, targets) # measure accuracy and record loss prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5)) losses.update(loss.data.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) print("Train acc : {}".format(top1.avg)) return # Train and val for epoch in range(start_epoch, args.epochs): adjust_learning_rate(optimizer, epoch) num_parameters = 0 print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr'])) # ========== calculate #ZERO paras (including zero Conv weights and zero Linear weights) ============ ZERO_parameters = get_zero_param(model) print('Zero parameters: {}'.format(ZERO_parameters)) # ========== calculate #paras (including Conv weights and Linear weights) ============ for m in model.modules(): if isinstance(m,nn.Conv2d) or isinstance(m,nn.Linear): num_parameters += m.weight.data.numel() # ========== print the #weights information at every epoch to make sure the pruning pipeline is executed ============ print('Parameters: {}'.format(num_parameters)) print('Overall Pruning Ratio : {}'.format(float(ZERO_parameters)/float(num_parameters))) train_loss, train_acc = train(trainloader, model, criterion, optimizer, epoch, use_cuda) test_loss, test_acc = test(testloader, model, criterion, epoch, use_cuda) if args.compute_sv and epoch % 10 == 0: sv, sv_avg, sv_std = get_sv(model, size_hook) training_sv.append(sv) training_sv_avg.append(sv_avg) training_sv_std.append(sv_std) h_sv, _, _ = get_heuristic_sv(model) np.save(os.path.join(args.save_dir, 'sv.npy'), training_sv) np.save(os.path.join(args.save_dir, 'sv_avg.npy'), training_sv_avg) np.save(os.path.join(args.save_dir, 'sv_std.npy'), training_sv_std) np.save(os.path.join(args.save_dir, 'h_sv.npy'), h_sv) # ========== write the scalar to tensorboard ============ # writer.add_scalar('train_loss', train_loss,epoch) # writer.add_scalar('test_loss',test_loss,epoch) # writer.add_scalar('train_acc', train_acc,epoch) # writer.add_scalar('test_acc', test_acc,epoch) # append logger file logger.append([state['lr'], train_loss, test_loss, train_acc, test_acc]) # save model is_best = test_acc > best_acc best_acc = max(test_acc, best_acc) save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'acc': test_acc, 'best_acc': best_acc, 'optimizer' : optimizer.state_dict(), }, is_best, checkpoint=args.save_dir) logger.close() writer.close() print('Best acc:') print(best_acc) def train(trainloader, model, criterion, optimizer, epoch, use_cuda): # switch to train mode model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() end = time.time() bar = Bar('Processing', max=len(trainloader)//100+1) print(args) for batch_idx, (inputs, targets) in enumerate(trainloader): # measure data loading time data_time.update(time.time() - end) if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets) # compute output outputs = model(inputs) loss = criterion(outputs, targets) # measure accuracy and record loss prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5)) losses.update(loss.data.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() for k, m in enumerate(model.modules()): # print(k, m) if isinstance(m, nn.Conv2d) or isinstance(m,nn.Linear): weight_copy = m.weight.data.abs().clone() mask = weight_copy.gt(0).float().cuda() m.weight.grad.data.mul_(mask) optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # plot progress if batch_idx % 100 ==0: bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format( batch=batch_idx + 1, size=len(trainloader), data=data_time.avg, bt=batch_time.avg, total=bar.elapsed_td, eta=bar.eta_td, loss=losses.avg, top1=top1.avg, top5=top5.avg, ) bar.next() bar.finish() print("Train acc : {}".format(top1.avg)) return (losses.avg, top1.avg) def test(testloader, model, criterion, epoch, use_cuda): global best_acc batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() bar = Bar('Processing', max=len(testloader)//100+1) for batch_idx, (inputs, targets) in enumerate(testloader): # measure data loading time data_time.update(time.time() - end) if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets) # compute output outputs = model(inputs) loss = criterion(outputs, targets) # measure accuracy and record loss prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5)) losses.update(loss.data.item(), inputs.size(0)) top1.update(prec1.item(), inputs.size(0)) top5.update(prec5.item(), inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() # plot progress if batch_idx % 100 ==0: bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format( batch=batch_idx + 1, size=len(testloader), data=data_time.avg, bt=batch_time.avg, total=bar.elapsed_td, eta=bar.eta_td, loss=losses.avg, top1=top1.avg, top5=top5.avg, ) bar.next() bar.finish() print("Test acc : {}".format(top1.avg)) return (losses.avg, top1.avg) def save_checkpoint(state, is_best, checkpoint, filename='scratch.pth.tar'): filepath = os.path.join(checkpoint, filename) torch.save(state, filepath) def adjust_learning_rate(optimizer, epoch): global state if epoch in args.schedule: state['lr'] *= args.gamma for param_group in optimizer.param_groups: param_group['lr'] = state['lr'] if __name__ == '__main__': main()
from reb import P, PTNode def same(extraction, expected): """Assert that extraction result has the same effect with expected""" assert isinstance(extraction, list) assert isinstance(expected, list) assert len(extraction) == len(expected) for ext, exp in zip(extraction, expected): assert isinstance(ext, PTNode) if isinstance(exp, str): assert ext.content == exp elif isinstance(exp, PTNode): assert pt_for_user(ext) == pt_for_user(exp) def pt_for_user(ptnode: PTNode) -> PTNode: def without_children(ptn): return PTNode(text=ptn.text, start=ptn.start(), end=ptn.end(), tag=ptn.tag) def node_with_tag(ptn): for n in ptn.children: if n.tag is not None: yield without_children(n) yield from node_with_tag(n) return [without_children(ptnode)] + sorted(node_with_tag(ptnode), key=lambda n: (n.start, n.end, n.tag)) class ExtractionTestCases(object): def test_ptext(self): self.case(P.pattern('a'), 'a', ['a']) self.case(P.pattern('a'), 'aa', ['a', 'a']) self.case(P.pattern('a'), 'aba', ['a', 'a']) self.case(P.pattern('a'), 'b', []) def test_panychar(self): self.case(P.ANYCHAR, 'a', ['a']) self.case(P.ANYCHAR, 'b', ['b']) self.case(P.ANYCHAR, ' ', [' ']) self.case(P.ANYCHAR, '\n', ['\n']) self.case(P.ANYCHAR, '', []) self.case(P.ANYCHAR, 'abc', ['a', 'b', 'c']) def test_pinchars(self): self.case(P.ic('bcd'), 'a', []) self.case(P.ic('abc'), 'a', ['a']) self.case(P.ic('abc'), 'b', ['b']) self.case(P.ic('abc'), 'c', ['c']) self.case(P.ic('abc'), 'abcdef', ['a', 'b', 'c']) def test_pnotinchars(self): self.case(P.nic('bcd'), 'a', ['a']) self.case(P.nic('abc'), 'a', []) self.case(P.nic('abc'), 'b', []) self.case(P.nic('abc'), 'c', []) self.case(P.nic('abc'), 'abcdef', ['d', 'e', 'f']) def test_pany(self): self.case(P.any('ab', 'abc', 'cd'), 'abcdef', ['ab', 'cd']) self.case(P.any('aa', 'ab', 'ac'), 'aaaaaa', ['aa', 'aa', 'aa']) def test_prepeat(self): self.case(P.n('a'), 'aaa', ['aaa']) self.case(P.n('a', 0, 1), 'aaa', ['a', 'a', 'a']) self.case(P.n('a', 0, 1), '', []) self.case(P.n('a', 4), 'a' * 3, []) self.case(P.n('a', 4), 'a' * 4, ['a' * 4]) self.case(P.n('a', 4), 'a' * 5, ['a' * 5]) self.case(P.n('a', 4), 'a' * 20, ['a' * 20]) self.case(P.n('a', 0, 5), 'a' * 6, ['aaaaa', 'a']) self.case(P.n('a', 0, 5), 'a' * 10, ['aaaaa', 'aaaaa']) self.case(P.n('a', 2, 3), 'a' * 6, ['aaa', 'aaa']) self.case(P.n('a', 3, 5), 'a' * 9, ['aaaaa', 'aaaa']) self.case(P.n('a', exact=2), 'a' * 5, ['aa', 'aa']) self.case(P.n('a', greedy=False), 'aaa', []) def test_padjacent(self): self.case(P.pattern('a') + P.ic('abcde'), 'ab', ['ab']) self.case(P.pattern('a') + P.ic('abcde'), 'ac', ['ac']) self.case(P.pattern('a') + P.ic('abcde'), 'ad', ['ad']) self.case(P.pattern('a') + P.ic('abcde'), 'af', []) self.case(P.pattern('a') + P.ic('abcde'), 'ba', []) self.case(P.ic('ab') + P.ic('cd') + P.ic('ef'), 'aacee', ['ace']) self.case(P.ic('ab') + P.ic('cd') + P.ic('ef'), 'abdfe', ['bdf']) self.case(P.ic('ab') + P.ic('cd') + P.ic('ef'), 'acdfe', []) self.case(P.ic('ab') + P.ic('cd') + P.ic('ef'), 'aaafe', []) self.case(P.ic('ab') + P.ic('cd') + P.ic('ef'), 'aacae', []) def test_pstarting(self): self.case(P.STARTING + 'a', 'aaa', [PTNode('aaa', start=0, end=1)]) self.case(P.STARTING + 'a', 'baa', []) def test_pending(self): self.case('a' + P.ENDING, 'aaa', [PTNode('aaa', start=2, end=3)]) self.case('a' + P.ENDING, 'aab', []) def test_overall1(self): text = 'a' * 10 + 'b' self.case(P.tag(P.n('a'), tag='A') + 'b', text, [ PTNode(text=text, start=0, end=11, children=[ PTNode(text=text, start=0, end=10, tag='A') ]) ]) def test_overall2(self): text = 'a' * 30 + 'c' self.case(P.n('a') + 'b', text, []) def test_overall3(self): text = 'a' * 6 self.case(P.n(P.n('a', exact=3)), text, ['a' * 6]) text = 'a' * 8 self.case(P.n(P.n('a', exact=3)), text, ['a' * 6]) def test_overall4(self): text = 'aaaab' self.case(P.n('a', 2, 3) + 'b', text, ['aaab']) def test_overall5(self): ptn = P.pattern('aaaaab') | P.pattern('aaa') | P.pattern('aac') text = 'aaaaac' self.case(ptn, text, ['aaa', 'aac']) def test_overall6(self): ptn = (P.tag('ab', tag='A') + 'c' | P.tag(P.n(P.ic('abc'), exact=3), tag='B')) + 'd' text = 'abcd' self.case(ptn, text, [ PTNode(text, start=0, end=4, children=[ PTNode(text, start=0, end=2, tag='A') ]) ]) def test_overall7(self): ptn = P.n01('a') \ + P.n(P.ic('ab'), exact=2) \ + P.n01(P.n(P.ic('ab'), exact=2)) \ + 'b' self.case(ptn, 'aaaab', ['aaaab']) def test_overall8_1(self): self.case(P.n01('a' + P.n('b')), 'abbb', ['abbb']) def test_overall8_2(self): self.case(P.n01('a' + P.n('b', greedy=False)), 'abbb', ['a']) def test_overall8_3(self): self.case(P.n01('a' + P.n('b'), greedy=False), 'abbb', []) def test_overall8_4(self): self.case(P.n01('a' + P.n('b', greedy=False), greedy=False), 'abbb', []) class TestExtractionPlain(ExtractionTestCases): def case(self, pattern, text, expect_pt): same(pattern.extractall(text, engine='plain'), expect_pt) class TestExtractionVM(ExtractionTestCases): def case(self, pattern, text, expect_pt): same(pattern.extractall(text, engine='vm'), expect_pt) class TestExtractionVM2(ExtractionTestCases): def case(self, pattern, text, expect_pt): same(pattern.extractall(text, engine='vm2'), expect_pt)
#!/usr/bin/env python3 ### Importing # Importing Common Files from botModule.importCom import * ### Logout Handler @Client.on_message(filters.private & filters.command("revoke")) async def revoke_handler(bot:Update, msg:Message): userid = msg.chat.id query = { 'userid' : userid } # If user found in db if collection_login.find_one(query): #Removing Login Detail from Database collection_login.delete_one(query) await msg.reply_text( "Your account is now logged out🥺.\nTo Login again send your login detail.", parse_mode = 'html' ) # If user not found in db else: await msg.reply_text( f"<b><u>You are not even logged in😒. So how can I remove your account.</u></b>{common_text}", parse_mode = 'html' ) return
import calendar import datetime class UTC(datetime.tzinfo): def utcoffset(self, dt): return datetime.timedelta(0) def tzname(self, dt): return "UTC" def dst(self, dt): return datetime.timedelta(0) utc = UTC() def is_tz_aware(value): return value.tzinfo is not None and value.tzinfo.utcoffset(value) is not None def datetime_to_timestamp(value): return calendar.timegm(value.utctimetuple()) def timestamp_to_datetime(value): return datetime.datetime.utcfromtimestamp(value)
import logging log = logging.getLogger(__name__) handler = logging.StreamHandler() formatter = logging.Formatter(fmt='%(asctime)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) handler.setLevel('DEBUG') log.addHandler(handler)
from expungeservice.models.charge_types.civil_offense import CivilOffense from tests.factories.charge_factory import ChargeFactory from tests.models.test_charge import Dispositions def test_00_is_not_a_civil_offense(): charge = ChargeFactory.create(statute="00", level="N/A", disposition=Dispositions.CONVICTED) assert not isinstance(charge, CivilOffense) def test_100_is_not_a_civil_offense(): charge = ChargeFactory.create(statute="100", level="N/A", disposition=Dispositions.CONVICTED) assert not isinstance(charge, CivilOffense) def test_99_is_a_civil_offense(): charge = ChargeFactory.create(statute="99", level="N/A", disposition=Dispositions.CONVICTED) assert isinstance(charge, CivilOffense) def test_55_is_a_civil_offense(): charge = ChargeFactory.create(statute="55", level="N/A", disposition=Dispositions.CONVICTED) assert isinstance(charge, CivilOffense) def test_fugitive_complaint(): charge = ChargeFactory.create( statute="0", level="N/A", name="Fugitive Complaint", disposition=Dispositions.CONVICTED ) assert isinstance(charge, CivilOffense)
from game.common.enums import Upgrades, ObjectType from game.common.stats import GameStats from game.controllers.controller import Controller class UpgradeController(Controller): def __init__(self): super().__init__() def handle_actions(self, client): # if the client wants to drop an item, try to do it if client.action.item_to_drop != 0 and client.action.item_sub_type_to_drop != 0: obj = client.shooter.remove_from_inventory_enum(client.action.item_to_drop) if obj and obj.object_type == ObjectType.upgrade: if obj.upgrade_enum == Upgrades.armor: client.shooter.armor = 1.0 # mark other armor as not applied for item in client.shooter.inventory['upgrades']: if item.upgrade_enum == Upgrades.armor: item.applied = False if obj.upgrade_enum == Upgrades.movement_boots: client.shooter.max_speed /= 1 + GameStats.upgrade_stats['movement_boost'] if obj.upgrade_enum == Upgrades.backpack: client.shooter.remove_consumable_slots(GameStats.upgrade_stats["backpack_slot_increase"]) for upgrade in client.shooter.inventory['upgrades']: if upgrade is not None: if upgrade.applied: continue if upgrade.upgrade_enum == Upgrades.armor: client.shooter.armor = GameStats.upgrade_stats["armor_damage_reduction"] elif upgrade.upgrade_enum == Upgrades.movement_boots: client.shooter.max_speed *= 1 + GameStats.upgrade_stats["movement_boost"] elif upgrade.upgrade_enum == Upgrades.backpack: for i in range(GameStats.upgrade_stats["backpack_slot_increase"]): client.shooter.add_new_slot("consumables") upgrade.applied = True
import os from flask import Flask, render_template from flask_bootstrap import Bootstrap import config app = Flask(__name__) config_name = os.environ.get('FLASK_CONFIG', 'dev') app.config.from_object(getattr(config, config_name.title() + 'Config')) Bootstrap(app) @app.route('/') def index(): """Serve client-side application.""" return render_template('index.html', use_socketio=not app.config['NO_SOCKETIO']) if __name__ == '__main__': app.run() # pragma: no cover
''' goalboost.model package The goalboost model package consists of MongoEngine models along with Marshmallow schemas. MongoEngine is our database ORM to MongoDB, and Marshmallow is a serialization library that helps us validate, consume, and expose these Orm objects for clients that need it at the API layer. For MongoEngine, see http://mongoengine.org/ For Marshmallow and the MongoEngine integration piece, see: https://marshmallow.readthedocs.org/en/latest/ https://github.com/touilleMan/marshmallow-mongoengine ''' from flask.ext.mongoengine import MongoEngine db = MongoEngine() def init_db(app): global db db.init_app(app)
import argparse from csat.acquisition import get_factories from csat.acquisition.runner import get_runner_class class ListAction(argparse.Action): def __init__(self, option_strings, dest, const, default=None, required=False, help=None, metavar=None): super(ListAction, self).__init__(option_strings=option_strings, dest=dest, nargs=0, const=const, default=default, required=required, help=help) def __call__(self, parser, namespace, values, option_string): for collector in self.const: print collector parser.exit() def main(): parser = argparse.ArgumentParser('csat-collect') runner_class = get_runner_class() subparsers = parser.add_subparsers() collectors = [] for factory in get_factories(): subparser = subparsers.add_parser(factory.key) runner = runner_class(factory) subparser = runner.build_parser(subparser) subparser.set_defaults(runner=runner) collectors.append(factory.key) parser.add_argument('-l', '--list', action=ListAction, const=collectors) args = parser.parse_args() return args.runner.run_as_subcommand(args) if __name__ == '__main__': main()
from __future__ import absolute_import from __future__ import print_function import sys import time import ujson from typing import Any, Callable, Dict, List, Set, Text, TypeVar from psycopg2.extensions import cursor CursorObj = TypeVar('CursorObj', bound=cursor) from argparse import ArgumentParser from django.core.management.base import CommandError from django.db import connection from zerver.lib.management import ZulipBaseCommand from zerver.lib.topic_mutes import build_topic_mute_checker from zerver.models import ( Realm, UserProfile ) def update_unread_flags(cursor, user_message_ids): # type: (CursorObj, List[int]) -> None um_id_list = ', '.join(str(id) for id in user_message_ids) query = ''' UPDATE zerver_usermessage SET flags = flags | 1 WHERE id IN (%s) ''' % (um_id_list,) cursor.execute(query) def get_timing(message, f): # type: (str, Callable) -> None start = time.time() print(message) f() elapsed = time.time() - start print('elapsed time: %.03f\n' % (elapsed,)) def fix_unsubscribed(cursor, user_profile): # type: (CursorObj, UserProfile) -> None recipient_ids = [] def find_recipients(): # type: () -> None query = ''' SELECT zerver_subscription.recipient_id FROM zerver_subscription INNER JOIN zerver_recipient ON ( zerver_recipient.id = zerver_subscription.recipient_id ) WHERE ( zerver_subscription.user_profile_id = '%s' AND zerver_recipient.type = 2 AND (NOT zerver_subscription.active) ) ''' cursor.execute(query, [user_profile.id]) rows = cursor.fetchall() for row in rows: recipient_ids.append(row[0]) print(recipient_ids) get_timing( 'get recipients', find_recipients ) if not recipient_ids: return user_message_ids = [] def find(): # type: () -> None recips = ', '.join(str(id) for id in recipient_ids) query = ''' SELECT zerver_usermessage.id FROM zerver_usermessage INNER JOIN zerver_message ON ( zerver_message.id = zerver_usermessage.message_id ) WHERE ( zerver_usermessage.user_profile_id = %s AND (zerver_usermessage.flags & 1) = 0 AND zerver_message.recipient_id in (%s) ) ''' % (user_profile.id, recips) print(''' EXPLAIN analyze''' + query.rstrip() + ';') cursor.execute(query) rows = cursor.fetchall() for row in rows: user_message_ids.append(row[0]) print('rows found: %d' % (len(user_message_ids),)) get_timing( 'finding unread messages for non-active streams', find ) if not user_message_ids: return def fix(): # type: () -> None update_unread_flags(cursor, user_message_ids) get_timing( 'fixing unread messages for non-active streams', fix ) def fix_pre_pointer(cursor, user_profile): # type: (CursorObj, UserProfile) -> None pointer = user_profile.pointer if not pointer: return is_topic_muted = build_topic_mute_checker(user_profile) recipient_ids = [] def find_non_muted_recipients(): # type: () -> None query = ''' SELECT zerver_subscription.recipient_id FROM zerver_subscription INNER JOIN zerver_recipient ON ( zerver_recipient.id = zerver_subscription.recipient_id ) WHERE ( zerver_subscription.user_profile_id = '%s' AND zerver_recipient.type = 2 AND zerver_subscription.in_home_view AND zerver_subscription.active ) ''' cursor.execute(query, [user_profile.id]) rows = cursor.fetchall() for row in rows: recipient_ids.append(row[0]) print(recipient_ids) get_timing( 'find_non_muted_recipients', find_non_muted_recipients ) if not recipient_ids: return user_message_ids = [] def find_old_ids(): # type: () -> None recips = ', '.join(str(id) for id in recipient_ids) query = ''' SELECT zerver_usermessage.id, zerver_recipient.type_id, subject FROM zerver_usermessage INNER JOIN zerver_message ON ( zerver_message.id = zerver_usermessage.message_id ) INNER JOIN zerver_recipient ON ( zerver_recipient.id = zerver_message.recipient_id ) WHERE ( zerver_usermessage.user_profile_id = %s AND zerver_usermessage.message_id <= %s AND (zerver_usermessage.flags & 1) = 0 AND zerver_message.recipient_id in (%s) ) ''' % (user_profile.id, pointer, recips) print(''' EXPLAIN analyze''' + query.rstrip() + ';') cursor.execute(query) rows = cursor.fetchall() for (um_id, stream_id, topic) in rows: if not is_topic_muted(stream_id, topic): user_message_ids.append(um_id) print('rows found: %d' % (len(user_message_ids),)) get_timing( 'finding pre-pointer messages that are not muted', find_old_ids ) if not user_message_ids: return def fix(): # type: () -> None update_unread_flags(cursor, user_message_ids) get_timing( 'fixing unread messages for pre-pointer non-muted messages', fix ) def fix(user_profile): # type: (UserProfile) -> None print('\n---\nFixing %s:' % (user_profile.email,)) with connection.cursor() as cursor: fix_unsubscribed(cursor, user_profile) fix_pre_pointer(cursor, user_profile) connection.commit() class Command(ZulipBaseCommand): help = """Fix problems related to unread counts.""" def add_arguments(self, parser): # type: (ArgumentParser) -> None parser.add_argument('emails', metavar='<emails>', type=str, nargs='*', help='email address to spelunk') parser.add_argument('--all', action='store_true', dest='all', default=False, help='fix all users in specified realm') self.add_realm_args(parser) def fix_all_users(self, realm): # type: (Realm) -> None user_profiles = list(UserProfile.objects.filter( realm=realm, is_bot=False )) for user_profile in user_profiles: fix(user_profile) def fix_emails(self, realm, emails): # type: (Realm, List[Text]) -> None for email in emails: try: user_profile = self.get_user(email, realm) except CommandError: print("e-mail %s doesn't exist in the realm %s, skipping" % (email, realm)) return fix(user_profile) def handle(self, *args, **options): # type: (*Any, **Any) -> None realm = self.get_realm(options) if options['all']: if realm is None: print('You must specify a realm if you choose the --all option.') sys.exit(1) self.fix_all_users(realm) return self.fix_emails(realm, options['emails'])
#!/usr/bin/env python import os filename = raw_input('Enter file name: ') fobj = open(filename, 'w') while True: aLine = raw_input("Enter a line ('.' to quit): ") if aLine != ".": fobj.write('%s%s' % (aLine, os.linesep)) else: break fobj.close
"""Api Handler tests.""" import unittest import webapp2 from grow.pods import pods from grow.server import main from grow.testing import testing class ApiHandlerTestCase(unittest.TestCase): """Tests for the server API Handler.""" def test_request(self): """Test that api requests can be completed correctly.""" dir_path = testing.create_test_pod_dir() pod = pods.Pod(dir_path) pod.router.add_all() # When serving a pod, should 200. app = main.create_wsgi_app(pod, 'localhost', 8080) request = webapp2.Request.blank( '/_grow/api/editor/content?pod_path=/content/pages/home.yaml') response = request.get_response(app) self.assertEqual(200, response.status_int) if __name__ == '__main__': unittest.main()