content
stringlengths
5
1.05M
"""helper for anaconda-project with mamba and a 'clean' condarc""" # Copyright (c) 2021 Dane Freeman. # Distributed under the terms of the Modified BSD License. import os import shutil import subprocess import sys from pathlib import Path HERE = Path(__file__).parent ROOT = HERE.parent CONDARC = ROOT / ".github" / ".condarc" MAMBA = shutil.which("mamba") def lock(): env = dict(os.environ) if "CONDARC" not in env: env["CONDARC"] = str(CONDARC) if MAMBA: env["CONDA_EXE"] = MAMBA for envspec in ["default", "atest", "docs"]: subprocess.check_call(["anaconda-project", "update", "-n", envspec], env=env) if __name__ == "__main__": sys.exit(lock())
"""AWS Glue Catalog Delete Module.""" import logging from typing import Any, Dict, List, Optional _logger: logging.Logger = logging.getLogger(__name__) def _parquet_table_definition( table: str, path: str, columns_types: Dict[str, str], partitions_types: Dict[str, str], compression: Optional[str] ) -> Dict[str, Any]: compressed: bool = compression is not None return { "Name": table, "PartitionKeys": [{"Name": cname, "Type": dtype} for cname, dtype in partitions_types.items()], "TableType": "EXTERNAL_TABLE", "Parameters": {"classification": "parquet", "compressionType": str(compression).lower(), "typeOfData": "file"}, "StorageDescriptor": { "Columns": [{"Name": cname, "Type": dtype} for cname, dtype in columns_types.items()], "Location": path, "InputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat", "OutputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat", "Compressed": compressed, "NumberOfBuckets": -1, "SerdeInfo": { "SerializationLibrary": "org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe", "Parameters": {"serialization.format": "1"}, }, "StoredAsSubDirectories": False, "SortColumns": [], "Parameters": { "CrawlerSchemaDeserializerVersion": "1.0", "classification": "parquet", "compressionType": str(compression).lower(), "typeOfData": "file", }, }, } def _parquet_partition_definition( location: str, values: List[str], compression: Optional[str], columns_types: Optional[Dict[str, str]] ) -> Dict[str, Any]: compressed: bool = compression is not None definition: Dict[str, Any] = { "StorageDescriptor": { "InputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat", "OutputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat", "Location": location, "Compressed": compressed, "SerdeInfo": { "Parameters": {"serialization.format": "1"}, "SerializationLibrary": "org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe", }, "StoredAsSubDirectories": False, "NumberOfBuckets": -1, }, "Values": values, } if columns_types is not None: definition["StorageDescriptor"]["Columns"] = [ {"Name": cname, "Type": dtype} for cname, dtype in columns_types.items() ] return definition def _csv_table_definition( table: str, path: str, columns_types: Dict[str, str], partitions_types: Dict[str, str], compression: Optional[str], sep: str, skip_header_line_count: Optional[int], ) -> Dict[str, Any]: compressed: bool = compression is not None parameters: Dict[str, str] = { "classification": "csv", "compressionType": str(compression).lower(), "typeOfData": "file", "delimiter": sep, "columnsOrdered": "true", "areColumnsQuoted": "false", } if skip_header_line_count is not None: parameters["skip.header.line.count"] = "1" return { "Name": table, "PartitionKeys": [{"Name": cname, "Type": dtype} for cname, dtype in partitions_types.items()], "TableType": "EXTERNAL_TABLE", "Parameters": parameters, "StorageDescriptor": { "Columns": [{"Name": cname, "Type": dtype} for cname, dtype in columns_types.items()], "Location": path, "InputFormat": "org.apache.hadoop.mapred.TextInputFormat", "OutputFormat": "org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat", "Compressed": compressed, "NumberOfBuckets": -1, "SerdeInfo": { "Parameters": {"field.delim": sep, "escape.delim": "\\"}, "SerializationLibrary": "org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe", }, "StoredAsSubDirectories": False, "SortColumns": [], "Parameters": { "classification": "csv", "compressionType": str(compression).lower(), "typeOfData": "file", "delimiter": sep, "columnsOrdered": "true", "areColumnsQuoted": "false", }, }, } def _csv_partition_definition( location: str, values: List[str], compression: Optional[str], sep: str, columns_types: Optional[Dict[str, str]] ) -> Dict[str, Any]: compressed: bool = compression is not None definition: Dict[str, Any] = { "StorageDescriptor": { "InputFormat": "org.apache.hadoop.mapred.TextInputFormat", "OutputFormat": "org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat", "Location": location, "Compressed": compressed, "SerdeInfo": { "Parameters": {"field.delim": sep, "escape.delim": "\\"}, "SerializationLibrary": "org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe", }, "StoredAsSubDirectories": False, "NumberOfBuckets": -1, }, "Values": values, } if columns_types is not None: definition["StorageDescriptor"]["Columns"] = [ {"Name": cname, "Type": dtype} for cname, dtype in columns_types.items() ] return definition
# Scippy libs test by # Henry Diaz # # MIT Licensed import scippy as Scippy import sys try: if SCIPP_PATH=='C:\\Scipp\\' or SCIPP_PATH=='~/Scipp/' or SCIPP_PATH==None: maths = scippy_lib(Scippy.SCIPP_MATHS) if maths == None: print('ERROR!!') sys.exit(1) else: print('ERROR!!') sys.exit(1) except Exception: print('ERROR!!') sys.exit(1)
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools from mistral.policies import action from mistral.policies import action_executions from mistral.policies import base from mistral.policies import code_sources from mistral.policies import cron_trigger from mistral.policies import dynamic_actions from mistral.policies import environment from mistral.policies import event_trigger from mistral.policies import execution from mistral.policies import member from mistral.policies import service from mistral.policies import task from mistral.policies import workbook from mistral.policies import workflow def list_rules(): return itertools.chain( action.list_rules(), action_executions.list_rules(), base.list_rules(), code_sources.list_rules(), dynamic_actions.list_rules(), cron_trigger.list_rules(), environment.list_rules(), event_trigger.list_rules(), execution.list_rules(), member.list_rules(), service.list_rules(), task.list_rules(), workbook.list_rules(), workflow.list_rules() )
r""" Integration models """ import os from .base import Model from .scglue import AUTO, configure_dataset, SCGLUEModel def load_model(fname: os.PathLike) -> Model: r""" Load model from file Parameters ---------- fname Specifies path to the file """ return Model.load(fname)
import os import yaml import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument("output_with", help="output file with the schedule with ours") parser.add_argument("output_without", help="output file with the schedule without ours") parser.add_argument("dynamic_obs", help="path of dynamic obs") parser.add_argument("result_pth", help="path of results") args = parser.parse_args() output_with_pth = args.output_with output_without_pth = args.output_without dy_obs_pth = args.dynamic_obs result_pth = args.result_pth with open(output_with_pth, 'r') as file: try: output_with_file = yaml.load(file, Loader=yaml.FullLoader) except yaml.YAMLError as exc: print(exc) with open(output_without_pth, 'r') as file: try: output_without_file = yaml.load(file, Loader=yaml.FullLoader) except yaml.YAMLError as exc: print(exc) with open(dy_obs_pth, 'r') as file: try: dy_obs_file = yaml.load(file, Loader=yaml.FullLoader) except yaml.YAMLError as exc: print(exc) a_max_t_with = max([len(path) for path in output_with_file['schedule'].values()]) a_max_t_without = max([len(path) for path in output_without_file['schedule'].values()]) d_max_t = max([len(path) for path in dy_obs_file['schedule'].values()]) max_t_with= max(a_max_t_with, d_max_t) max_t_without= max(a_max_t_without, d_max_t) edge_conflict_num_with = 0 edge_conflict_num_without = 0 for t in range(max_t_with): for agent_name in output_with_file['schedule'].keys(): for dy_obs_name in dy_obs_file['schedule'].keys(): a_pth = output_with_file['schedule'][agent_name] d_pth = dy_obs_file['schedule'][dy_obs_name] if t >= len(a_pth) - 1 or t >= len(d_pth) - 1: continue state_1a = a_pth[t] state_2a = a_pth[t + 1] state_1d = d_pth[t] state_2d = d_pth[t + 1] if ((state_1a['x'] == state_2d['x']) and (state_1a['y'] == state_2d['y'])) and ((state_2a['x'] == state_1d['x']) and (state_2a['y'] == state_1d['y'])): edge_conflict_num_with += 1 for t in range(max_t_without): for agent_name in output_without_file['schedule'].keys(): for dy_obs_name in dy_obs_file['schedule'].keys(): a_pth = output_without_file['schedule'][agent_name] d_pth = dy_obs_file['schedule'][dy_obs_name] if t >= len(a_pth) - 1 or t >= len(d_pth) - 1: continue state_1a = a_pth[t] state_2a = a_pth[t + 1] state_1d = d_pth[t] state_2d = d_pth[t + 1] if ((state_1a['x'] == state_2d['x']) and (state_1a['y'] == state_2d['y'])) and ((state_2a['x'] == state_1d['x']) and (state_2a['y'] == state_1d['y'])): edge_conflict_num_without += 1 output_with_points = [] for agent in output_with_file['schedule'].keys(): for point in output_with_file['schedule'][agent]: output_with_points.append(point) output_without_points = [] for agent in output_without_file['schedule'].keys(): for point in output_without_file['schedule'][agent]: output_without_points.append(point) dy_obs_points = [] for agent in dy_obs_file['schedule'].keys(): for point in dy_obs_file['schedule'][agent]: dy_obs_points.append(point) collision_num_with = 0 for out_pt in output_with_points: for dy_pt in dy_obs_points: if out_pt == dy_pt: collision_num_with += 1 collision_num_without = 0 for out_pt in output_without_points: for dy_pt in dy_obs_points: if out_pt == dy_pt: collision_num_without += 1 f = open(result_pth, 'a') f.write('Collision with: ' + str(collision_num_with + edge_conflict_num_with) + ' | Collision without: ' + str(collision_num_without + edge_conflict_num_without) + ' \n') f.close() if __name__=='__main__': main()
import re from utils import utils def parse(pass_str): m = re.search(r'(\d+)-(\d+) ([a-z]): ([a-z]+)', pass_str) lb, ub, letter, password = m.groups() return (int(lb), int(ub), letter, password) def part_1(data): count = 0 for pass_str in data: lb, ub, letter, password = parse(pass_str) letter_count = len(re.findall(rf'{letter}', password)) if lb <= letter_count and letter_count <= ub: count += 1 return count def part_2(data): count = 0 for pass_str in data: lb, ub, letter, password = parse(pass_str) match_lower = password[lb-1] == letter match_upper = password[ub-1] == letter if match_lower != match_upper: count += 1 return count if __name__ == "__main__": day = 2 data = utils.get_strs_from_file(f"data/aoc{day}_data.txt") output_1 = part_1(data) print(output_1) output_2 = part_2(data) print(output_2)
import inspect import json import pytest from ..manifest import Manifest from ..item import TestharnessTest, RefTest, item_types @pytest.mark.parametrize("path", [ "a.https.c", "a.b.https.c", "a.https.b.c", "a.b.https.c.d", "a.serviceworker.c", "a.b.serviceworker.c", "a.serviceworker.b.c", "a.b.serviceworker.c.d", ]) def test_url_https(path): m = TestharnessTest("/foo", "bar/" + path, "/", "bar/" + path) assert m.https is True @pytest.mark.parametrize("path", [ "https", "a.https", "a.b.https", "https.a", "https.a.b", "a.bhttps.c", "a.httpsb.c", "serviceworker", "a.serviceworker", "a.b.serviceworker", "serviceworker.a", "serviceworker.a.b", "a.bserviceworker.c", "a.serviceworkerb.c", ]) def test_url_not_https(path): m = TestharnessTest("/foo", "bar/" + path, "/", "bar/" + path) assert m.https is False @pytest.mark.parametrize("fuzzy", [ {('/foo/test.html', u'/foo/ref.html', '=='): [[1, 1], [200, 200]]}, {('/foo/test.html', u'/foo/ref.html', '=='): [[0, 1], [100, 200]]}, {None: [[0, 1], [100, 200]]}, {None: [[1, 1], [200, 200]]}, ]) def test_reftest_fuzzy(fuzzy): t = RefTest('/', 'foo/test.html', '/', 'foo/test.html', [('/foo/ref.html', '==')], fuzzy=fuzzy) assert fuzzy == t.fuzzy json_obj = t.to_json() m = Manifest("/", "/") t2 = RefTest.from_json(m, t.path, json_obj) assert fuzzy == t2.fuzzy # test the roundtrip case, given tuples become lists roundtrip = json.loads(json.dumps(json_obj)) t3 = RefTest.from_json(m, t.path, roundtrip) assert fuzzy == t3.fuzzy @pytest.mark.parametrize("fuzzy", [ {('/foo/test.html', u'/foo/ref-2.html', '=='): [[0, 1], [100, 200]]}, {None: [[1, 1], [200, 200]], ('/foo/test.html', u'/foo/ref-2.html', '=='): [[0, 1], [100, 200]]}, ]) def test_reftest_fuzzy_multi(fuzzy): t = RefTest('/', 'foo/test.html', '/', 'foo/test.html', [('/foo/ref-1.html', '=='), ('/foo/ref-2.html', '==')], fuzzy=fuzzy) assert fuzzy == t.fuzzy json_obj = t.to_json() m = Manifest("/", "/") t2 = RefTest.from_json(m, t.path, json_obj) assert fuzzy == t2.fuzzy # test the roundtrip case, given tuples become lists roundtrip = json.loads(json.dumps(json_obj)) t3 = RefTest.from_json(m, t.path, roundtrip) assert fuzzy == t3.fuzzy def test_item_types(): for key, value in item_types.items(): assert isinstance(key, str) assert not inspect.isabstract(value)
#! /usr/bin/env python3 """ Thermal decomposition in the n-,s-C5H11 system (two-well, two-channel, 1D ME as a function of E) Steady-state decomposition of n-C5H11 sample output (c5h11_2a_me1d_E_w1.dat): T[K] p[bar] w1-k2(dis) w2-k2(dis) ktot[s-1] x(w1) x(w2) 1000.0 1.000e+02 4.7452e+06 3.2981e+06 8.0433e+06 6.9810e-01 3.0190e-01 1000.0 1.000e+01 3.5927e+06 2.8640e+06 6.4566e+06 6.9099e-01 3.0901e-01 1000.0 1.000e+00 1.6175e+06 1.8428e+06 3.4603e+06 6.7063e-01 3.2937e-01 1000.0 1.000e-01 3.8500e+05 7.9742e+05 1.1824e+06 6.2665e-01 3.7335e-01 """ from me2d import ME1DMW maxE = 60000 # cm^-1 # list of (name, rrkm_filename, relative_energy) well_list = [("w1", "c5h11_1_rrkmE_nc5h11_dE10.dat", 948.38), ("w2", "c5h11_1_rrkmE_sc5h11_dE10.dat", 0.)] # list of ((name, ch), (name, ch)) connections = [(("w1", 1), ("w2", 1))] outfn = "c5h11_2a_me1d_E_w1.dat" solver = "InvIter,cg" # inverse iteration with conjugate gradient reactant = "w1" # solve steady-state decomposition of w1 neig = 1 # neig = 1 for InvIter solver bandpcrit = 1e-9 # truncation threshold for banded matrix nthreads = 2 maxmemGB = 1 verbose = True T = 1000. # K pl = [100., 10., 1., 0.1] # bar y = 0.5 alpha_w1 = 54.8 # cm^-1 Z_w1 = 1.36e-09 # cm^3 molecule^-1 s^-1 alpha_w2 = 54.4 # cm^-1 Z_w2 = 1.43e-09 # cm^3 molecule^-1 s^-1 memw = ME1DMW.read_from(well_list, connections, maxE=maxE) memw["w1"].set_params(Z_w1, y, alpha_w1) memw["w2"].set_params(Z_w2, y, alpha_w2) outfp = open(outfn, "w") kstrl, xstrl = memw.get_channel_strings() outfp.write(" T[K] p[bar] %s\n" % (" ".join("%12s" % x for x in kstrl+["ktot[s-1]"]+xstrl))) ga = None for p in pl: ktot, kchl, ga, popl, vals, vec = \ memw.solve(T, p, gguess=ga, solver=solver, reactant=reactant, neig=neig, verbose=verbose, bandpcrit=bandpcrit, nthreads=nthreads, maxmemGB=maxmemGB) outfp.write("%8.1f %.3e %s\n" % (T, p, " ".join("%12.4e" % x for x in kchl+[ktot]+popl))) outfp.flush()
import pygame from pygame.sprite import Sprite import os class Firebar(Sprite): """Firebar the can collide""" def __init__(self, hub, x, y, name='firebar', direction='LEFT'): super().__init__() self.name = name self.hub = hub self.original_pos = (x + 4, y + 28) self.scale = (271, 271) self.screen = self.hub.main_screen self.screen_rect = self.screen.get_rect() self.camera = hub.camera self.index = 0 self.increment = 1 self.frameRate = 30 self.clock = 0 self.image_index = [] self.setimages() self.image = self.image_index[self.index] self.image = pygame.transform.scale(self.image, self.scale) self.brick = pygame.image.load("imgs/Blocks/2/EmptyBlock.png") self.rect = self.image.get_rect() self.clock = pygame.time.get_ticks() + self.frameRate self.rect.center = self.original_pos # self.mask = pygame.mask.from_surface(self.image) self.mask = pygame.mask.from_surface(self.image) self.mask2 = pygame.mask.Mask((80, 80), True) self.mask.erase(self.mask2, (95, 95)) self.direction = direction def setimages(self): for i in os.listdir("imgs\Firebar"): self.image_index.append(pygame.image.load("imgs/Firebar/" + i)) def draw(self): self.screen.blit(self.image, self.rect) def update(self): self.check_direction() if pygame.time.get_ticks() > self.clock: self.clock = pygame.time.get_ticks() + self.frameRate self.index += self.increment self.index %= len(self.image_index) self.image = self.image_index[self.index] self.image = pygame.transform.scale(self.image, self.scale) self.mask = pygame.mask.from_surface(self.image) self.mask.erase(self.mask2, (95, 95)) def check_direction(self): if self.direction == self.hub.LEFT: self.increment = -1 else: self.increment = 1
import click from overhave.cli.db.regular import _create_all, _drop_all class TestOverhaveDatabaseCmds: """ Sanity tests for database operating CLI commands. """ def test_create_all(self, click_ctx_mock: click.Context, set_config_to_ctx: None) -> None: _create_all(click_ctx_mock.obj) def test_drop_all(self, click_ctx_mock: click.Context, set_config_to_ctx: None) -> None: _drop_all(click_ctx_mock.obj)
#!/usr/bin/env python """ Example demonstrating usage of App driver to manually start it and stop it. """ import sys, re from testplan import test_plan from testplan.testing.multitest import MultiTest, testsuite, testcase from testplan.testing.multitest.driver.app import App from testplan.common.utils.match import LogMatcher @testsuite class MyTestsuite: """ A testsuite that uses helper utilities in setup/teardown. """ @testcase def manual_start(self, env, result): result.equal(env.cat_app.proc, None, description="App is not running.") env.cat_app.start() env.cat_app.wait(env.cat_app.status.STARTED) matcher = LogMatcher(log_path=env.cat_app.logpath) env.cat_app.proc.stdin.write(b"testplan\n") matched = matcher.match(re.compile(r"testplan")) result.true(matched, description="testplan in stdin") result.not_equal(env.cat_app.proc, None, description="App is running.") env.cat_app.stop() env.cat_app.wait(env.cat_app.status.STOPPED) result.equal(env.cat_app.proc, None, description="App is not running.") @testcase def manual_start_using_context_manager(self, env, result): result.equal(env.cat_app.proc, None, description="App is not running.") with env.cat_app: matcher = LogMatcher(log_path=env.cat_app.logpath) env.cat_app.proc.stdin.write(b"testplan\n") matched = matcher.match(re.compile(r"testplan")) result.true(matched, description="testplan in stdin") result.not_equal( env.cat_app.proc, None, description="App is running." ) result.equal(env.cat_app.proc, None, description="App is not running.") @test_plan(name="App driver example") def main(plan): """ A simple example that demonstrate manually starting and stopping the App driver. """ plan.add( MultiTest( name="TestCat", suites=[MyTestsuite()], environment=[ App( name="cat_app", binary="/bin/cat", auto_start=False, ) ], ) ) if __name__ == "__main__": sys.exit(main().exit_code)
import re from ._enums import OutId _actions = '|'.join([ 'folds', 'calls', 'checks', 'bets', 'raises', 'allin' ]) out_type = re.compile( r'\*?(?P<out_type>[^\s]+)' ) round_start = re.compile( r'Game started at: ' r'(?P<date>[\d/]+) ' r'(?P<time>[\d:]+)' ) round_id = re.compile( r'Game ID: ' r'(?P<round_id>\d+) ' r'(?P<small_blind>[\d\.]+)/' r'(?P<big_blind>[\d\.]+)' ) round_end = re.compile( r'Game ended at: ' r'(?P<date>[\d/]+) ' r'(?P<time>[\d:]+)' ) seat_joined = re.compile( r'Seat ' r'(?P<seat>\d): ' r'(?P<user>.+?) ' r'\((?P<buyin>[\d\.]+)\)\.' ) seat_button = re.compile( r'Seat (?P<seat>\d) is the button' ) player_blind = re.compile( r'Player (?P<user>.+?) ' r'has (?P<blind_type>\w+) blind ' r'\((?P<amount>[\d\.]+)\)' ) player_received_card = re.compile( r'Player (?P<user>.+?) ' r'received card: \[(?P<card>[\w\d]{2,3})\]' ) player_action = re.compile( r'Player (?P<user>.+?) ' rf'(?P<action>{_actions})' r'(?: \((?P<amount>[\d\.]+)\))?' ) player_show_cards = re.compile( r'\*?Player (?P<user>.+?) ' r'(?:mucks )?' r'(?:' r'(?:\(?does not show cards\)?)|' r'(?:shows: (?P<hand>.+?)?)' r')\. ?' r'Bets: (?P<bets>[\d\.]+)\. ' r'Collects: (?P<collects>[\d\.]+)\. ' r'(?P<state>Wins|Loses): ' r'(?P<amount>[\d\.]+)\.' ) new_turn_board = re.compile( r'\*{3} ' r'(?P<turn_name>FLOP|TURN|RIVER) ' r'\*{3}: ' r'\[(?P<board>[^\]]*)\]' r'(?: \[(?P<new_card>\w{2})\])?' ) pot_size = re.compile( r'Pot: ' r'(?P<pot_size>[\d\.]+)\.' ) board_show = re.compile( r'(?P<board>\[.+?\])' ) out_types = { 'Game': [ (round_start, OutId.RoundStart), (round_end, OutId.RoundEnd), (round_id, OutId.RoundId) ], 'Seat': [ (seat_joined, OutId.SeatJoined), (seat_button, OutId.SeatButton) ], 'Player': [ (player_blind, OutId.PlayerBlind), (player_received_card, OutId.PlayerReceivedCard), (player_show_cards, OutId.PlayerShowCards), (player_action, OutId.PlayerAction) ], '**': [ (new_turn_board, OutId.NewTurn) ], 'Pot:': [ (pot_size, OutId.PotSize) ], 'Board': [ (board_show, OutId.BoardShow) ] } data_info = { OutId.RoundStart : { 'date': str, 'time': str }, OutId.RoundEnd : { 'date': str, 'time': str }, OutId.RoundId : { 'round_id': str, 'small_blind': float, 'big_blind': float }, OutId.SeatJoined : { 'seat': int, 'user': str, 'buyin': float }, OutId.SeatButton : { 'seat': int }, OutId.PlayerBlind : { 'user': str, 'blind_type': str, 'amount': float }, OutId.PlayerReceivedCard : { 'user': str, 'card': str }, OutId.PlayerShowCards : { 'user': str, 'hand': str, 'bets': float, 'collects': float, 'state': str, 'amount': float }, OutId.PlayerAction : { 'user': str, 'action': str, 'amount': float }, OutId.NewTurn : { 'turn_name': str, 'board': str, 'new_card': str }, OutId.PotSize : { 'pot_size': float }, OutId.BoardShow : { 'board': str } }
""" Sponge Knowledge Base Blinking LED GrovePi board: Connect LED to D4 """ state = False led = None class LedBlink(Trigger): def onConfigure(self): self.withEvent("blink") def onRun(self, event): global led, state state = not state led.set(state) def onStartup(): global led led = grovepi.device.getDigitalOut(4) sponge.event("blink").sendAfter(0, 1000) def onShutdown(): global led if led is not None: led.set(False)
from flask_restful import Resource, reqparse from .model import ListModel class ListResource(Resource): parser = reqparse.RequestParser() parser.add_argument('name', type=str, required=True, help='Filed bane cannot be blank') def post(self): data = self.parser.parse_args() name = data['name'] new_list = ListModel(name) list_id, err = new_list.save() if err: return {'error': err}, 400 return {'status': 'created', 'list_id': list_id} class ListsResource(Resource): def get(self): return { 'lists': list(map(lambda x: x.json(), ListModel.query.all())) }
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmfewshot.classification.models.backbones import Conv4 from mmfewshot.classification.models.utils import convert_maml_module def test_maml_module(): model = Conv4() maml_model = convert_maml_module(model) image = torch.randn(1, 3, 32, 32) for weight in maml_model.parameters(): assert weight.fast is None feat = maml_model(image) for weight in maml_model.parameters(): weight.fast = weight maml_feat = maml_model(image) assert torch.allclose(feat, maml_feat)
#!/usr/bin/env python3 from lms.authentication.password_hash import hash_password if __name__ == "__main__": # pylint: disable=invalid-name password = input("Please enter a password: ").encode("utf8") salt = input("Please enter a salt (leave blank to have one created): ") pw_hash, salt = hash_password(password, salt) print(f"password hash: {pw_hash}") print(f"salt: {salt}")
import os basedir=os.path.abspath(os.path.dirname(__file__)) class Config: SECRET_KEY = os.getenv('SECRET_KEY', 'thissecretkey') DEBUG = False class DevelopmentConfig(Config): DEBUG=True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'flask_boilerplate_main.db') SQLALCHEMY_TRACK_MODIFICATIONS=False class TestingConfig(Config): DEBUG=True TESTING=True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'flask_boilerplate_main.db') PRESERVE_CONTEXT_ON_EXCEPTION = False SQLALCHEMY_TRACK_MODIFICATIONS = False class ProdcutionConfig(Config): DEBUG = False config_by_name = dict( dev = DevelopmentConfig, test = TestingConfig, prod = ProdcutionConfig ) key = Config.SECRET_KEY
# # @lc app=leetcode id=90 lang=python # # [90] Subsets II # # https://leetcode.com/problems/subsets-ii/description/ # # algorithms # Medium (41.88%) # Total Accepted: 195.2K # Total Submissions: 466.1K # Testcase Example: '[1,2,2]' # # Given a collection of integers that might contain duplicates, nums, return # all possible subsets (the power set). # # Note: The solution set must not contain duplicate subsets. # # Example: # # # Input: [1,2,2] # Output: # [ # ⁠ [2], # ⁠ [1], # ⁠ [1,2,2], # ⁠ [2,2], # ⁠ [1,2], # ⁠ [] # ] # # # class Solution(object): ''' def solver(self, nums, res): if nums not in res: res.append(nums) else: return if len(nums)<=1: return for i in range(len(nums)): if i == 0: tmp_nums = nums[1:] else: tmp_nums = nums[0:i]+nums[i+1:] self.solver(tmp_nums, res) def subsetsWithDup(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ res = [] nums.sort() self.solver(nums, res) res.append([]) return res def subsetsWithDup(self, nums): result = [[]] for num in sorted(nums): result += [i+[num] for i in result if i+[num] not in result] return result ''' def subsetsWithDup(self, nums): res = [] nums.sort() self.dfs(nums, 0, [], res) return res def dfs(self, nums, index, path, res): res.append(path) for i in xrange(index, len(nums)): if i > index and nums[i] == nums[i-1]: continue self.dfs(nums, i+1, path+[nums[i]], res)
import json from mysql.connector.pooling import MySQLConnectionPool from mysql.connector import connect # Read config file and get information for MySQL database # This file contains all the functions related to the MySQL database with open("./config.json", "r+") as config_file: config = json.load(config_file) # pool = MySQLConnectionPool(pool_name='connection_pool', # pool_size=3, # **config['mysql']) def get_connection(): return connect(**config['mysql']) def execute_update(sql: str, *args): connection = get_connection() cursor = connection.cursor() cursor.execute(sql, args) connection.commit() cursor.close() connection.close() def execute_query(sql, *args): connection = get_connection() cursor = connection.cursor() cursor.execute(sql, args) result = cursor.fetchone() cursor.close() connection.close() return result def create_tables(): # Create necessary MySQL tables execute_update("CREATE TABLE IF NOT EXISTS `whmcs_discord` (" "`client_id` VARCHAR(255) UNIQUE NOT NULL," "`discord_id` VARCHAR(255) NOT NULL," "PRIMARY KEY (`client_id`))") def is_connected_discord(discord_id): # Check if a member is connected based on their discord id result = execute_query("SELECT * FROM whmcs_discord WHERE discord_id = %s", discord_id) return result is not None def is_connected_client(client_id): # Check if a client is connected based on their client_id result = execute_query("SELECT * FROM whmcs_discord WHERE client_id = %s", client_id) return result is not None def get_client_id(discord_id): # Get a member's client id from their discord_id result = execute_query("SELECT client_id FROM whmcs_discord WHERE discord_id = %s", discord_id) # Since this function is supposed to return an int, I decided to return a negative value # If no client id was found if result is None: return -1 # Otherwise convert the data into an int return int(result[0]) def get_discord_id(client_id): # Get a client's discord id using their client id result = execute_query("SELECT discord_id FROM whmcs_discord WHERE client_id = %s", client_id) if result is None: return None return result[0] def add_client(discord_id, client_id): # Insert a linked user into the database execute_update("INSERT INTO whmcs_discord(client_id, discord_id) VALUES (%s, %s)", discord_id, client_id) def remove_client(client_id): # Remove a linked user from the database # This is used when a client decides to unlink their accounts execute_update("DELETE FROM whmcs_discord WHERE client_id = %s", client_id) def get_synced_members(): # Get all the synced users in the database synced = dict() connection = get_connection() cursor = connection.cursor() cursor.execute("SELECT discord_id, client_id FROM whmcs_discord") results = cursor.fetchall() # Iterate over them and add them to a dictionary to be used later for result in results: synced[int(result[0])] = int(result[1]) cursor.close() connection.close() # Format is synced[discord_id] = client_id return synced
from oidctest.cp.op import parse_resource def test_parse_resource(): a,b = parse_resource('acct:op_id.test_id@domain') assert a == 'op_id' assert b == 'test_id' a,b = parse_resource( 'https://example.com/openid-client/rp-discovery-webfinger-url/joe') assert a == 'openid-client' assert b == 'rp-discovery-webfinger-url' a,b = parse_resource('acct:op_id.test_id@domain@localhost') assert a == 'op_id' assert b == 'test_id' a,b = parse_resource('acct:op_id.X.test_id@domain') assert a == 'op_id.X' assert b == 'test_id' try: parse_resource('acct:op_id_test_id@domain') except ValueError: pass try: parse_resource('https://example.com/rp-discovery-webfinger-url') except ValueError: pass
# INPUT VARIABLES: # - ants_dir: path to ANTS directory # - code_dir: directory in which the code resides # - input_dir: input directory # - output_dir: output directory # - alignment_type: type of motion correction. # possible values: # translation: (translation only) # rigid: (translation and rotation) # - dt: the range of timepoints to use for cell detection # can be a vector which specifies the precise point sequence # can be a scalar which specifies the downsampling factor # e.g. # dt = list(range(2000)) # first 2000 timepoints of recording # dt = 10; # every 10th point of recording # dt = 1, dt = 0, dt = [] # every point of recording # - thr_mask: fluorescence threshold for brain masking the brain # typical values lie in the range of 100 to 110 # if in doubt, set thr_mask=0 (this allows to choose it interactively later) # NB: cell detection is only performed on suprathreshold pixels # - ds: spatial coarsegraining of in x-y dimensions: # typical value is 2 (leading to 4-fold reduction in size) # set value to 1 to maintain original dimensions # - blok_cell_nmbr: number of cells in each cell_detection blok # larger values result in larger blocks and slower computation # - cell_diam: approximate cell diameter # - imageframe_nmbr: number of brains in each image # typical value is 1. # value is 2 if two-color image # - baseline_tau; time intervals for baseline detection (in seconds) # typical values are 300-600 (5-10 minutes) # - censor_tau: time intervals for censoring signal (in seconds) # censor_tau = 0 # apply no censoring # censor_tau = [300, 0] # censor 300 seconds at start of recording # censor_tau = [0, 300] # censor 300 seconds at end of recording # censor_tau = 300 # censor 300 seconds at beginning and end of recording # - freq_cutoff: frequency cut-off for high-pass filtering # typical value is 0.001 # set to 0 to disable high-pass filtering # - nmf_algorithm: type of nmf algorithm for component detection # nmf_algorithm=0 # no nmf component detection # nmf_algorithm=1 # alternating least squares (custom implementation) # nmf_algorithm=2 # coordinate descent (sklearn implementation) # - n_components: number of components for nmf # could be a scalar or an array ants_dir = '/groups/ahrens/home/rubinovm/ants-2.1.0-redhat/' code_dir = '/groups/ahrens/home/rubinovm/mycode/zfish_prepro/code/' input_dir = '/groups/ahrens/home/rubinovm/mycode/zfish_prepro/input/' output_dir = '/groups/ahrens/home/rubinovm/mycode/zfish_prepro/output/' alignment_type = 'rigid' dt = 1 thr_prob = 0.5 ds = 1 blok_cell_nmbr = 100 cell_diam = 6.0 imageframe_nmbr = 1 baseline_tau = 300 censor_tau = [30, 30] freq_cutoff = 0 nmf_algorithm = 2 n_components = [20, 60] # imaging parameters # automatically parse imaging parameters try: # - xml_filename: full path to xml filename which has recording metadata # - stack_filename: full path to stack filename which has recording metadata from past.builtins import execfile execfile(code_dir + 'zfun.py') xml_filename = input_dir + '/ch0.xml' stack_filename = input_dir + '/Stack_frequency.txt' resn_x, resn_y, resn_z, lx, ly, lz, t_exposure, freq_stack \ = parse_info(xml_filename, stack_filename, imageframe_nmbr) # manually specify imaging parameters except: resn_x = 0.812 resn_y = 0.812 resn_z = 1.0 lx = 512 ly = 444 lz = 1 t_exposure = 9.7 freq_stack = 2.66 # packed planes: set to 1 when single plane stacks are packed into a 3d-volume packed_planes = 0 # configure parameters, function, variable and path definitions from past.builtins import execfile execfile(code_dir + 'zfun.py') execfile(code_dir + 'z0_preliminaries.py') os.chdir(output_dir)
import numpy as np import pytest import tensorflow as tf import larq as lq from larq.testing_utils import generate_real_values_with_zeros @pytest.mark.parametrize("fn", [lq.math.sign]) def test_sign(fn): x = tf.keras.backend.placeholder(ndim=2) f = tf.keras.backend.function([x], [fn(x)]) binarized_values = np.random.choice([-1, 1], size=(2, 5)).astype(np.float32) result = f(binarized_values)[0] np.testing.assert_allclose(result, binarized_values) real_values = generate_real_values_with_zeros() result = f(real_values)[0] assert not np.any(result == 0) assert np.all(result[real_values < 0] == -1) assert np.all(result[real_values >= 0] == 1) zero_values = np.zeros((2, 5)) result = f(zero_values)[0] assert np.all(result == 1) @pytest.mark.parametrize("fn", [lq.math.heaviside]) def test_heaviside(fn): x = tf.keras.backend.placeholder(ndim=2) f = tf.keras.backend.function([x], [fn(x)]) binarized_values = np.random.choice([0, 1], size=(2, 5)) result = f([binarized_values])[0] np.testing.assert_allclose(result, binarized_values) real_values = generate_real_values_with_zeros() result = f([real_values])[0] assert np.all(result[real_values <= 0] == 0) assert np.all(result[real_values > 0] == 1)
#!/usr/bin/env python # In case of poor (Sh***y) commenting contact adam.lamson@colorado.edu # Basic import sys import os # Testing # import pdb # import time, timeit # import line_profiler # Analysis # import numpy as np # import matplotlib.pyplot as plt # import matplotlib as mpl # import h5py # import yaml # from math import * # Speed # from numba import jit # Other importing # sys.path.append(os.path.join(os.path.dirname(__file__), '[PATH]')) """@package docstring File: Author: Adam Lamson Email: adam.lamson@colorado.edu Description: """ def title_case(title_string): """!Change string so first letter of every word is upper case and the other letters are lowercase. @param title_string: TODO @return: TODO """ words = title_string.split() title = "" for word in words: title += word[0].upper() + word[1:].lower() + " " return title ########################################## if __name__ == "__main__": print("Not implemented yet")
from swift.common.utils import get_logger from swift.proxy.controllers.base import get_container_info from swift.proxy.controllers.base import get_account_info, get_object_info from swift.common.swob import Request, Response import traceback import requests from json import dumps class Euler(object): """ Middleware that writes file create/update event to api/v0/files for dispersal to ['dcc', 'bmeg', ... ] """ def __init__(self, app, conf, logger=None): self.app = app if logger: self.logger = logger else: self.logger = get_logger(conf, log_route='euler') self.api_url = conf.get('api_url') self.logger.debug("euler.api_url: {}".format(self.api_url)) def __call__(self, env, start_response): """ WSGI entry point. Wraps env in swob.Request object and passes it down. :param env: WSGI environment dictionary :param start_response: WSGI callable """ if not env['REQUEST_METHOD'] in ('PUT', 'COPY', 'POST'): return self.app(env, start_response) response = None try: # complete the pipeline response = self.app(env, start_response) # we want to query the api after the file is stored # harvest container, account and object info container_info = get_container_info( env, self.app, swift_source='Euler') account_info = get_account_info( env, self.app, swift_source='Euler') object_info = get_object_info(env, self.app) # post useful data to euler api service from_env = ['REQUEST_METHOD', 'keystone.identity', 'keystone.token_info', 'PATH_INFO'] self.logger.debug("euler.env: {}".format(env)) to_api_env = {} for key in from_env: to_api_env[key] = env[key] to_api = {'type': 'swift_event', 'id': object_info['etag'], 'env': to_api_env, 'container': container_info, 'account': account_info, 'object': object_info} self.logger.debug("euler.to_api: {}".format(to_api)) auth_token = to_api['env']['keystone.token_info']['token']['auth_token'] # NOQA headers = {'X-Auth-Token': auth_token} r = requests.post(self.api_url, json=to_api, headers=headers) self.logger.debug("euler.api_response: {} {}".format(r, r.text)) except: # catch *all* exceptions tb = traceback.format_exc() self.logger.debug("euler.traceback: {}".format(tb)) finally: # return unaltered upstream response return response def filter_factory(global_conf, **local_conf): """ paste.deploy app factory for creating WSGI proxy apps. """ conf = global_conf.copy() conf.update(local_conf) def euler(app): return Euler(app, conf) return euler
# -*- coding: utf-8 -*- import time from django.db import models from app.fail2ban import constants class Fail2Ban(models.Model): name = models.CharField(u"管理员输入的名称", max_length=200, null=True, blank=True) proto = models.CharField(u"协议", max_length=50, null=False, blank=True) internal = models.IntegerField(u'统计间隔', default=-1) block_fail = models.IntegerField(u'验证失败次数', default=-1) block_unexists = models.IntegerField(u'验证不存在帐号次数', default=-1) block_minute = models.IntegerField(u'禁用时间', default=-1) update_time = models.DateTimeField(u"更新时间", null=False, blank=False) disabled = models.CharField(u'激活状态', max_length=2, choices=constants.FAIL2BAN_DISABLE, null=False, blank=False, default="-1") class Meta: managed = False db_table = 'ext_fail2ban' @property def get_proto(self): proto_list = self.proto.split(u",") if "all" in proto_list: return u"所有" return self.proto class Fail2BanTrust(models.Model): ip = models.CharField(u"IP", max_length=50, null=False, blank=True) name = models.CharField(u"名称", max_length=200, null=True, blank=True) disabled = models.CharField(u'激活状态', max_length=2, choices=constants.FAIL2BAN_DISABLE, null=False, blank=False, default="-1") class Meta: managed = False db_table = 'ext_fail2ban_trust' class Fail2BanBlock(models.Model): ip = models.CharField(u"IP", max_length=50, null=False, blank=True) name = models.CharField(u"名称", max_length=200, null=True, blank=True) expire_time = models.IntegerField(u'过期时间', default=0) update_time = models.DateTimeField(u"更新时间", null=False, blank=False) disabled = models.CharField(u'激活状态', max_length=2, choices=constants.FAIL2BAN_DISABLE, null=False, blank=False, default="-1") class Meta: managed = False db_table = 'ext_fail2ban_block' @property def get_expire_time(self): try: expire = int(self.expire_time) except: return u"已失效" if expire <=0: return u"已失效" try: #settings.py配置的时区比底层晚8小时,先用这个愚蠢的方法保证测试 t_tuple = time.localtime(expire) time_val = time.strftime('%Y-%m-%d %H:%M:%S',t_tuple) return u"{}".format(time_val) except: return u"已失效"
from confluent_kafka import Consumer from confluent_kafka.admin import AdminClient from confluent_kafka.cimpl import NewTopic from pyctm.memory.kafka.topic_config_provider import TopicConfigProvider class KConsumerBuilder: @staticmethod def build_consumer(broker, consumer_group_id, topic_config): KConsumerBuilder.check_topic_exist(broker, topic_config.name) consumer = Consumer({ 'bootstrap.servers': broker, 'group.id': consumer_group_id, 'auto.offset.reset': 'earliest' }) consumer.subscribe([topic_config.name]) return consumer @staticmethod def check_topic_exist(broker, topic): kafka_admin = AdminClient({"bootstrap.servers": broker}) topic_metadata = kafka_admin.list_topics() if topic_metadata.topics.get(topic) is None: new_kafka_topic = NewTopic(topic, num_partitions=1, replication_factor=1) kafka_admin.create_topics([new_kafka_topic]) @staticmethod def generate_consumers(topic_configs, consumer_group_id): consumers = {} for topic_config in topic_configs: if topic_config.regex_pattern is not None: print('Regex pattern %s identified.' % topic_config.regex_pattern) if not topic_config.regex_pattern: found_topic_configs = TopicConfigProvider.generate_topic_configs_regex_pattern( topic_config.broker, topic_config.regex_pattern, topic_config.class_name) if len(found_topic_configs) == 0: raise Exception( 'Topic regex not found - pattern - %s' % topic_config.regex_pattern) regex_pattern_consumers = KConsumerBuilder.generate_consumers( found_topic_configs, consumer_group_id) for key, value in regex_pattern_consumers.items(): consumers[key] = value return print('Creating consumer for topic configuration - Name: %s - Broker: %s - Class: %s - Behavior Type: %s' % (topic_config.name, topic_config.broker, topic_config.class_name, topic_config.k_distributed_memory_behavior)) consumer = KConsumerBuilder.build_consumer( topic_config.broker, consumer_group_id, topic_config) print('Consumer created for topic %s.' % topic_config.name) consumers[topic_config] = consumer return consumers
from module_base import ModuleBase from module_mixins import vtkPipelineConfigModuleMixin import module_utils import vtk class contourFLTBase(ModuleBase, vtkPipelineConfigModuleMixin): def __init__(self, module_manager, contourFilterText): # call parent constructor ModuleBase.__init__(self, module_manager) self._contourFilterText = contourFilterText if contourFilterText == 'marchingCubes': self._contourFilter = vtk.vtkMarchingCubes() else: # contourFilter == 'contourFilter' self._contourFilter = vtk.vtkContourFilter() module_utils.setup_vtk_object_progress(self, self._contourFilter, 'Extracting iso-surface') # now setup some defaults before our sync self._config.isoValue = 128; self._viewFrame = None self._createViewFrame() # transfer these defaults to the logic self.config_to_logic() # then make sure they come all the way back up via self._config self.logic_to_config() self.config_to_view() def close(self): # we play it safe... (the graph_editor/module_manager should have # disconnected us by now) self.set_input(0, None) # don't forget to call the close() method of the vtkPipeline mixin vtkPipelineConfigModuleMixin.close(self) # take out our view interface self._viewFrame.Destroy() # get rid of our reference del self._contourFilter def get_input_descriptions(self): return ('vtkImageData',) def set_input(self, idx, inputStream): self._contourFilter.SetInput(inputStream) def get_output_descriptions(self): return (self._contourFilter.GetOutput().GetClassName(),) def get_output(self, idx): return self._contourFilter.GetOutput() def logic_to_config(self): self._config.isoValue = self._contourFilter.GetValue(0) def config_to_logic(self): self._contourFilter.SetValue(0, self._config.isoValue) def view_to_config(self): try: self._config.isoValue = float( self._viewFrame.isoValueText.GetValue()) except: pass def config_to_view(self): self._viewFrame.isoValueText.SetValue(str(self._config.isoValue)) def execute_module(self): self._contourFilter.Update() def view(self, parent_window=None): # if the window was visible already. just raise it if not self._viewFrame.Show(True): self._viewFrame.Raise() def _createViewFrame(self): # import the viewFrame (created with wxGlade) import modules.Filters.resources.python.contourFLTBaseViewFrame reload(modules.Filters.resources.python.contourFLTBaseViewFrame) self._viewFrame = module_utils.instantiate_module_view_frame( self, self._module_manager, modules.Filters.resources.python.contourFLTBaseViewFrame.\ contourFLTBaseViewFrame) objectDict = {'contourFilter' : self._contourFilter} module_utils.create_standard_object_introspection( self, self._viewFrame, self._viewFrame.viewFramePanel, objectDict, None) module_utils.create_eoca_buttons( self, self._viewFrame, self._viewFrame.viewFramePanel)
""" Parsing Neurolucida files. Here we directly extract the tree and discard everything else. It could easily be changed to extract labels and properties etc. What could be done next is the creation of a Morphology object, possibly using labels. Structure of Mustafa's files: Axon ( Marker AIS (Marker Axon)) The marker is a short and thin piece of axon that has been manually added. """ from numpy import * from pylab import * from pyparsing import (CharsNotIn, Optional, Suppress, Word, Regex, Combine, Group, delimitedList, ParseException, alphas, nums, ZeroOrMore, Literal, Forward) # Comments COMMENT = Regex(r";.*").setName("Neurolucida comment") # Terminal symbols FLOAT = Combine(Word('+-'+nums,nums)+Literal('.')+Word(nums)).setParseAction(lambda t:float(t[0])) INTEGER = Word('+-'+nums,nums).setParseAction(lambda t:int(t[0])) NUMBER = FLOAT | INTEGER # this will always match floats LABEL = Word(alphas, alphas+nums) STRING = Suppress('"')+CharsNotIn('"')+Suppress('"') # Basic elements RGB = Suppress('RGB') + Suppress('(') + Group(INTEGER+Suppress(Optional(','))\ + INTEGER+Suppress(Optional(','))\ + INTEGER) + Suppress(')') VALUE = NUMBER | STRING | RGB | LABEL PROPERTY = Suppress('(') + LABEL + ZeroOrMore(VALUE) + Suppress(')') POINT = Suppress("(") + Group(FLOAT + ZeroOrMore(Optional(Suppress(","))+FLOAT)) + Suppress(')') # Tree NODE = Forward() END = Suppress(LABEL) | NODE.setResultsName('children') BRANCH = Suppress(ZeroOrMore(STRING | PROPERTY)) + Group(ZeroOrMore(POINT)).setResultsName('branch') + END NODE << Suppress('(') + Group(delimitedList(BRANCH,"|")) + Suppress(')') # File FILE = (Suppress(PROPERTY) + NODE).ignore(COMMENT) # Let's do it! from os import listdir from os.path import isfile, join path = "/Users/romain/Dropbox/Projects/Spike initiation/Collaborations/Maarten/Data/AIS reconstructions (.ASC)/" path1 = path+"Axo-dendritic/" path2 = path+"Axo-somatic/" filenames = [ (path1+f,f) for f in listdir(path1) if isfile(join(path1,f)) ] +\ [ (path2+f,f) for f in listdir(path2) if isfile(join(path2,f)) ] #filename="2013-07-16_#1.asc" Ri = 150 / 100. # in Mohm.um for full_name,filename in filenames: text= open(full_name).read() parsed = FILE.parseString(text) axon_start = array(list(parsed[0]['branch'])).T AIS = array(list(parsed[0]['children'][1])).T AIS_start = axon_start.shape[1] axon = hstack((axon_start,AIS)) cpt_length = sum(diff(axon[:3,:])**2,axis=0)**.5 d = .5*(axon[3,:-1]+axon[3,1:]) # Plotting plot(cumsum(cpt_length[:AIS_start+1]),d[:AIS_start+1],'k') plot(sum(cpt_length[:AIS_start])+cumsum(cpt_length[AIS_start:]),d[AIS_start:],'r') # Analysis AIS_onset = sum(sum(diff(array(list(parsed[0]['branch']))[:,:3].T)**2,axis=0)**.5) AIS_length = sum(sum(diff(array(list(parsed[0]['children'][1]))[:,:3].T)**2,axis=0)**.5) # should add length of first segment AIS_onset_Ra = 4/pi*Ri * sum(cpt_length[:AIS_start+1]/d[:AIS_start+1]**2) AIS_end_Ra = AIS_onset_Ra + 4/pi*Ri * sum((sum(diff(array(list(parsed[0]['children'][1]))[:,:3].T)**2,axis=0)**.5) / (array(list(parsed[0]['children'][1]))[:-1,3].T)**2) AIS_area = sum(cpt_length[AIS_start:]*pi*d[AIS_start:]) # Ra calculated 5 um within the AIS n = AIS_start + where(cumsum(cpt_length[AIS_start:])>5.)[0][0] AIS_onset_Ra_5um = 4/pi*Ri * sum(cpt_length[:n]/d[:n]**2) print filename,",",AIS_onset,",",AIS_length,",",AIS_onset_Ra,",",AIS_end_Ra,",",AIS_onset_Ra_5um,",",AIS_area show()
''' There is an integer array nums sorted in ascending order (with distinct values). Prior to being passed to your function, nums is rotated at an unknown pivot index k (0 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2]. Given the array nums after the rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums. You must write an algorithm with O(log n) runtime complexity. Example 1: Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4 Example 2: Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1 Example 3: Input: nums = [1], target = 0 Output: -1 ''' from typing import List class Solution: def search(self, nums: List[int], target: int) -> int: l, r = 0, len(nums) - 1 while l <= r: mid = (l + r) // 2 if target == nums[mid]: return mid # now we need to check which portion of the array are we in... left or right if nums[l] <= nums[mid]: # then we are in left sorted portion if target > nums[mid] or target < nums[l]: # then we search the right most portion l = mid + 1 else: # that means the target is less than the middle and greater than or equal to the left # so we search the left portion and update our right pointer r = mid - 1 else: # we are in right sorted portion if target < nums[mid] or target > nums[r]: # then we search the left most portion r = mid - 1 else: l = mid + 1 return -1 s = Solution() print(s.search([4, 5, 6, 7, 0, 1, 2], 2))
from .scanplugbase import ScanPlugBase from idownclient.scan.shodan.shodan import Shodan from .zoomeye import ZoomEye from .scantools import ScanTools
#!/usr/bin/python # -*- coding: utf-8 -*- """yamltodb - generate SQL statements to update a PostgreSQL database to match the schema specified in a YAML file""" from __future__ import print_function import os import sys import getpass from argparse import ArgumentParser, FileType import yaml from pyrseas.database import Database from pyrseas.cmdargs import parent_parser def main(host='localhost', port=5432): """Convert YAML specifications to database DDL.""" parser = ArgumentParser(parents=[parent_parser()], description="Generate SQL statements to update a " "PostgreSQL database to match the schema specified" " in a YAML file") parser.add_argument('spec', nargs='?', type=FileType('r'), default=sys.stdin, help='YAML specification') parser.add_argument('-1', '--single-transaction', action='store_true', dest='onetrans', help="wrap commands in BEGIN/COMMIT") parser.add_argument('-u', '--update', action='store_true', help="apply changes to database (implies -1)") parser.add_argument('-n', '--schema', dest='schlist', action='append', help="only for named schemas (default all)") parser.set_defaults(host=host, port=port, username=os.getenv("PGUSER") or os.getenv("USER")) args = parser.parse_args() pswd = (args.password and getpass.getpass() or None) db = Database(args.dbname, args.username, pswd, args.host, args.port) inmap = yaml.load(args.spec) if args.schlist: kschlist = ['schema ' + sch for sch in args.schlist] for sch in list(inmap.keys()): if sch not in kschlist and sch.startswith('schema '): del inmap[sch] stmts = db.diff_map(inmap, args.schlist) if stmts: fd = args.output or sys.stdout if args.onetrans or args.update: print("BEGIN;", file=fd) print(";\n".join(stmts) + ';', file=fd) if args.onetrans or args.update: print("COMMIT;", file=fd) if args.update: try: for stmt in stmts: db.dbconn.execute(stmt) except: db.dbconn.rollback() raise else: db.dbconn.commit() print("Changes applied", file=sys.stderr) if args.output: args.output.close() if __name__ == '__main__': main()
import cv2 import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch def get_img(x, folder: str="train_images"): """ Return image based on image name and folder. """ data_folder = f"{path}/{folder}" image_path = os.path.join(data_folder, x) img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def rle_decode(mask_rle: str="", shape: tuple=(1400, 2100)): """ Decode rle encoded mask. :param mask_rle: run-length as string formatted (start length) :param shape: (height, width) of array to return Returns numpy array, 1 - mask, 0 - background """ s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0] * shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape(shape, order="F") def make_mask(df: pd.DataFrame, image_name: str="img.jpg", shape: tuple=(1400, 2100)): """ Create mask based on df, image name and shape. """ encoded_masks = df.loc[df["im_id"] == image_name, "EncodedPixels"] masks = np.zeros((shape[0], shape[1], 4), dtype=np.float32) for idx, label in enumerate(encoded_masks.values): if label is not np.nan: mask = rle_decode(label) masks[:, :, idx] = mask return masks def make_mask_resized_dset(df: pd.DataFrame, image_name: str="img.jpg", masks_dir: str="./masks", shape: tuple=(320, 640)): """ Create mask based on df, image name and shape. """ masks = np.zeros((shape[0], shape[1], 4), dtype=np.float32) df = df[df["im_id"] == image_name] for idx, im_name in enumerate(df["im_id"].values): for classidx, classid in enumerate(["Fish", "Flower", "Gravel", "Sugar"]): mask = cv2.imread(os.path.join(masks_dir, f"{classid}{im_name}"), cv2.IMREAD_GRAYSCALE) if mask is None: continue # if mask[:,:,0].shape != (350,525): # mask = cv2.resize(mask, (525,350)) masks[:, :, classidx] = mask masks = masks/255 return masks def get_classification_label(df: pd.DataFrame, image_name: str): """ Gets one-hot encoded labels. Assumes that the dataframe is coming in through ClassificationSteelDataset where there is a "hasMask" column. Returns: One-hot encoded torch tensor (length 4) of the label present for each class. """ df = df[df["im_id"] == image_name] label = df["hasMask"].values * np.ones(4) return torch.from_numpy(label).float() def to_tensor(x, **kwargs): """ Convert image or mask. """ return x.transpose(2, 0, 1).astype("float32")
#!/usr/bin/env python """ @package mi.dataset.driver.spkir_abj.cspp.test @file mi/dataset/driver/spikr_abj/cspp/test/test_spkir_abj_cspp_recovered_driver.py @author Mark Worden @brief Minimal test code to exercise the driver parse method for spkir_abj_cspp recovered Release notes: Initial Release """ import os import unittest from nose.plugins.attrib import attr from mi.core.log import get_logger from mi.dataset.dataset_driver import ParticleDataHandler from mi.dataset.driver.spkir_abj.cspp.resource import RESOURCE_PATH from mi.dataset.driver.spkir_abj.cspp.spkir_abj_cspp_recovered_driver import parse __author__ = 'mworden' log = get_logger() @attr('UNIT', group='mi') class DriverTest(unittest.TestCase): def test_one(self): source_file_path = os.path.join(RESOURCE_PATH, '11079419_PPB_OCR.txt') particle_data_handler = ParticleDataHandler() particle_data_handler = parse(None, source_file_path, particle_data_handler) log.debug("SAMPLES: %s", particle_data_handler._samples) log.debug("FAILURE: %s", particle_data_handler._failure) self.assertEquals(particle_data_handler._failure, False) if __name__ == '__main__': test = DriverTest('test_one') test.test_one()
import inspect import warnings import numpy as np import tensorflow as tf import tensorflow_probability as tfp kernels = tfp.math.psd_kernels tfpl = tfp.layers tfd = tfp.distributions # Only needed for GW-OT try: import ot except ModuleNotFoundError: warnings.warn('POT package not available.') # Probability distribution utils def matrix_log_density_gaussian(x, mu, scale): """Calculates log density of a Gaussian for all combination of batch pairs of `x` and `mu`. I.e. return tensor of shape `(batch_size, batch_size, dim)`. Arguments: x: Float value at which to compute the density. Shape: (batch_size, dim). mu: Float value indicating the mean. Shape: (batch_size, dim). logvar: Float value indicating the log variance. Shape: (batch_size, dim). batch_size: Integer indicating the batch size. """ x = tf.expand_dims(x, 1) mu = tf.expand_dims(mu, 0) scale = tf.expand_dims(scale, 0) return log_density_gaussian(x, mu, scale) def log_density_gaussian(x, mu, scale): """Calculates log density of a Gaussian. Arguments: x: Float value at which to compute the density. mu: Float value indicating the mean. logvar: Float value indicating the log variance. """ x = tf.cast(x, tf.float32) mu = tf.cast(mu, tf.float32) scale = tf.cast(scale, tf.float32) normal_dist = tfp.distributions.Normal(mu, scale) log_density = normal_dist.log_prob(x) return log_density def total_correlation(z, mu, scale): """Estimate of total correlation on a batch. We need to compute the expectation over a batch of: E_j [log(q(z(x_j))) - log(prod_l q(z(x_j)_l))]. We ignore the constants as they do not matter for the minimization. The constant should be equal to (num_latents - 1) * log(batch_size * dataset_size) Arguments: z: [batch_size, num_latents]-tensor with sampled representation. z_mean: [batch_size, num_latents]-tensor with mean of the encoder. z_log_squared_scale: [batch_size, num_latents]- tensor with log variance of the encoder. """ # Compute log(q(z(x_j)|x_i)) for every sample in the batch, which is a # tensor of size [batch_size, batch_size, num_latents]. In the following # comments, [batch_size, batch_size, num_latents] are indexed by [j, i, l]. log_qz_prob = log_density_gaussian( tf.expand_dims(z, 1), tf.expand_dims(mu, 0), tf.expand_dims(scale, 0) ) # Compute log prod_l p(z(x_j)_l) = sum_l(log(sum_i(q(z(z_j)_l|x_i))) # + constant) for each sample in the batch, which is a vector of size # [batch_size,]. log_qz_product = tf.math.reduce_sum( tf.math.reduce_logsumexp(log_qz_prob, axis=1, keepdims=False), axis=1, keepdims=False) # Compute log(q(z(x_j))) as log(sum_i(q(z(x_j)|x_i))) + constant = # log(sum_i(prod_l q(z(x_j)_l|x_i))) + constant. log_qz = tf.math.reduce_logsumexp( tf.math.reduce_sum(log_qz_prob, axis=2, keepdims=False), axis=1, keepdims=False) return tf.math.reduce_mean(log_qz - log_qz_product) # Kernels # Multi-scale RBF kernel modified from https://github.com/theislab/scarches def ms_rbf_kernel(x, y): """Multi-scale RBF kernel""" sigmas = [ 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6 ] beta = 1. / (2. * (tf.expand_dims(sigmas, 1))) dist = squared_distance(x, y) s = tf.tensordot(beta, tf.reshape(dist, (1, -1)), axes=0) return tf.reshape(tf.math.reduce_sum(tf.exp(-s), 0), tf.shape(dist)) / len(sigmas) def rbf_kernel(x, y): """Radial Basis Function or Exponentiated Quadratic kernel""" kernel = kernels.ExponentiatedQuadratic() return kernel.matrix(x, y) def rq_kernel(x, y): """Rational Quadratic kernel""" kernel = kernels.RationalQuadratic() return kernel.matrix(x, y) KERNELS = { 'ms_rbf': ms_rbf_kernel, 'rbf': rbf_kernel, 'rq': rq_kernel } # Methods for calculating lower-dimensional persistent homology. # Implementations adapted from https://github.com/BorgwardtLab/topological-autoencoders class UnionFind: """ An implementation of a UnionFind class. The class performs path compression by default. It uses integers for storing one disjoint set, assuming that vertices are zero-indexed. """ def __init__(self, n_vertices): """ Initializes an empty Union--Find data structure for a given number of vertices. """ self._parent = np.arange(n_vertices, dtype=int) def find(self, u): """ Finds and returns the parent of u with respect to the hierarchy. """ if self._parent[u] == u: return u else: # Perform path collapse operation self._parent[u] = self.find(self._parent[u]) return self._parent[u] def merge(self, u, v): """ Merges vertex u into the component of vertex v. Note the asymmetry of this operation. """ if u != v: self._parent[self.find(u)] = self.find(v) def roots(self): """ Generator expression for returning roots, i.e. components that are their own parents. """ for vertex, parent in enumerate(self._parent): if vertex == parent: yield vertex def _persistent_homology(matrix): """Performs persistent homology calculation""" n_vertices = matrix.shape[0] uf = UnionFind(n_vertices) triu_indices = np.triu_indices_from(matrix) edge_weights = matrix[triu_indices] edge_indices = np.argsort(edge_weights, kind='stable') # 1st dimension: 'source' vertex index of edge # 2nd dimension: 'target' vertex index of edge persistence_pairs = [] for edge_index, edge_weight in zip(edge_indices, edge_weights[edge_indices]): u = triu_indices[0][edge_index] v = triu_indices[1][edge_index] younger_component = uf.find(u) older_component = uf.find(v) # Not an edge of the MST, so skip it if younger_component == older_component: continue elif younger_component > older_component: uf.merge(v, u) else: uf.merge(u, v) if u < v: persistence_pairs.append((u, v)) else: persistence_pairs.append((v, u)) # Return empty cycles component # -> Changed to not return cycles return np.array(persistence_pairs, dtype=np.int64) def persistent_homology(matrix): return tf.numpy_function( _persistent_homology, [matrix], tf.int64) # Methods for Gromov-Wasserstein distance calculations def _gromov_wasserstein_distance(x, y): x_p = ot.unif(x.shape[0]) y_q = ot.unif(y.shape[0]) gw_dist = ot.gromov.gromov_wasserstein2( x, y, x_p, y_q, loss_fun='kl_loss') return np.array(gw_dist, dtype=np.float32) def _entropic_gromov_wasserstein_distance(x, y): x_p = ot.unif(x.shape[0]) y_q = ot.unif(y.shape[0]) gw_dist = ot.gromov.entropic_gromov_wasserstein2( x, y, x_p, y_q, loss_fun='kl_loss') return np.array(gw_dist, dtype=np.float32) def gromov_wasserstein_distance(x, y): return tf.numpy_function( _gromov_wasserstein_distance, [x, y], tf.float32) def entropic_gromov_wasserstein_distance(x, y): return tf.numpy_function( _entropic_gromov_wasserstein_distance, [x, y], tf.float32) OT_DIST = { 'gw': gromov_wasserstein_distance, 'entropic_gw': entropic_gromov_wasserstein_distance } # Other def squared_distance(x, y): r = tf.expand_dims(x, axis=1) return tf.math.reduce_sum(tf.math.square(r - y), axis=-1) def nan2zero(x): return tf.where(tf.math.is_nan(x), tf.zeros_like(x), x) def nan2inf(x): return tf.where(tf.math.is_nan(x), tf.zeros_like(x) + np.inf, x) def clip_nonzero(x, min_val=1e-8): clipped_x = tf.clip_by_value(x, min_val, tf.math.reduce_max(x)) return tf.where(x > 0, clipped_x, x) def nelem(x): nelem = tf.math.reduce_sum(tf.cast(~tf.math.is_nan(x), tf.float32)) return tf.cast(tf.where(tf.math.equal(nelem, 0.), 1., nelem), x.dtype) def slice_matrix(matrix, row_idx, col_idx): row_select = tf.gather(matrix, row_idx, axis=0) col_select = tf.gather(row_select, col_idx, axis=-1) return col_select def l2_norm(x, axis=2, eps=1e-8): return tf.sqrt(tf.reduce_sum(tf.square(x), axis=axis) + eps) def size_factors(x): n = x.sum(1) return n / np.median(n) def delegates(to=None, keep=False): """Decorator: replace `**kwargs` in signature with params from `to`""" def _f(f): if to is None: to_f, from_f = f.__base__.__init__, f.__init__ else: to_f, from_f = to, f sig = inspect.signature(from_f) sigd = dict(sig.parameters) k = sigd.pop('kwargs') s2 = {k:v for k,v in inspect.signature(to_f).parameters.items() if v.default != inspect.Parameter.empty and k not in sigd} sigd.update(s2) if keep: sigd['kwargs'] = k from_f.__signature__ = sig.replace(parameters=sigd.values()) return f return _f
import cc_dat_utils #Part 1 input_dat_file = "data/pfgd_test.dat" #Use cc_dat_utils.make_cc_level_pack_from_dat() to load the file specified by input_dat_file data = cc_dat_utils.make_cc_level_pack_from_dat(input_dat_file) #print the resulting data print(data)
a = int(input("Enter the number:")) if a%5 == 0 and a%11 == 0: print(a,"is divisible by both 5 and 11.") elif a %5 == 0: print(a," is divisible by 5") elif a%11 == 0: print(a,"is divisible by 11") else: print(a, "is not divisible by both 11 and 5")
import pytest from ruamel import yaml from qhub.render import render_template from qhub.initialize import render_config @pytest.mark.parametrize( "project, namespace, domain, cloud_provider, ci_provider, auth_provider", [ ("do-pytest", "dev", "do.qhub.dev", "do", "github-actions", "github"), ("aws-pytest", "dev", "aws.qhub.dev", "aws", "github-actions", "github"), ("gcp-pytest", "dev", "gcp.qhub.dev", "gcp", "github-actions", "github"), ("azure-pytest", "dev", "azure.qhub.dev", "azure", "github-actions", "github"), ], ) def test_render(project, namespace, domain, cloud_provider, ci_provider, auth_provider, tmp_path): config = render_config( project_name=project, namespace=namespace, qhub_domain=domain, cloud_provider=cloud_provider, ci_provider=ci_provider, repository="github.com/test/test", auth_provider=auth_provider, repository_auto_provision=False, auth_auto_provision=False, terraform_state="remote", kubernetes_version="1.18.0", disable_prompt=True, ) config_filename = tmp_path / (project + ".yaml") with open(config_filename, "w") as f: yaml.dump(config, f) output_directory = tmp_path / "test" render_template(str(output_directory), config_filename, force=True)
from utils import read_problem import sys import json problem_id = sys.argv[1] spec = read_problem(problem_id) def check_distance(spec, orig_dist, new_dist): if abs(1.0 * new_dist / orig_dist - 1) <= spec['epsilon'] / 10**6: return True return False def dist2(pt1, pt2): x1, y1 = pt1 x2, y2 = pt2 return (x1 - x2) ** 2 + (y1 - y2) ** 2 hole = spec['hole'] # for i in range(len(hole)): # print (i, (i + 1) % len(hole), dist2(hole[i], hole[(i + 1) % len(hole)])) with open('solutions/current', 'rt') as f: current = json.loads(f.read()) print ("======") def find_all_pairs(new_dist): v = spec['figure']['vertices'] res = [] for (a, b) in sorted(spec['figure']['edges']): orig_dist = dist2(v[a], v[b]) if a in current['fixedPoints'] or b in current['fixedPoints']: continue if check_distance(spec, orig_dist, new_dist): res.append(tuple(sorted((a, b)))) return res for i in range(len(hole)): a = i b = (i + 1) % len(hole) d = dist2(hole[a], hole[b]) # print (i, (i + 1) % len(hole), d) res = find_all_pairs(d) print ('hole from', a, 'to', b, '->', res)
from gui import * from player import * game = game.Game() # gui = Gui("Pierre", "Margot") # gui.generate_gui() # print("End of gui") game.play()
#!/usr/local/bin/python ''' PtpNeighbor Class ''' import pcap import re import datetime from AnnounceMessage import AnnounceMessage from SyncMessage import SyncMessage # ============================================================================= # PtpNeighbor # # Inheriting from `object` (top-level class) # ============================================================================= class PtpNeighbor(object): def __init__(self, pkt): ''' PtpPacket Initialization Input Attributes: ------------------ pkt: PTP Announce packet to derive PTP details of this neighbor from ''' self._sync_period = None self._delay_period = None self._announce_period = None self._time_of_last_sync = 0 self._time_of_last_delay = 0 self._time_of_last_announce = 0 self.new_announce_message(pkt) @property def sync_period(self): """Get the latest calculated sync_period""" return self._sync_period @property def delay_period(self): """Get the latest calculated delay_period""" return self._delay_period @property def announce_period(self): """Get the latest calculated announce_period""" return self._announce_period def new_announce_message(self, pkt): ''' Take note of an announce message from this neighbor, to derive its periodicity ''' msg = AnnounceMessage(pkt) self._update_announce_params(msg) now = datetime.datetime.now() if self._time_of_last_announce != 0: self._announce_period = (now - self._time_of_last_announce).total_seconds() self._time_of_last_announce = now def new_sync_message(self, pkt): ''' Take note of a sync message from this neighbor, to derive the its periodicity ''' msg = SyncMessage(pkt) now = datetime.datetime.now() if self._time_of_last_sync != 0: self._sync_period = (now - self._time_of_last_sync).total_seconds() self._time_of_last_sync = now def _update_announce_params(self, msg): ''' Update all parameters for this neighbor using info. contained in the announce message ''' # According to the pcap data, set this objects' properties self.src_addr_str = msg.ipv4_src_str # Obliged to update delay_mode after P_Delay_Req received self.delay_mode = "E2E" # Obliged to update step_mode after sync received self.step_mode = None self.domain = msg.ipv4_dst % 256 self.priority1 = msg.ptp_bmca_priority1 self.clock_class = msg.ptp_bmca_gm_clock_class self.accuracy = msg.ptp_bmca_gm_clock_acc self.variance = msg.ptp_bmca_gm_clock_var self.priority2 = msg.ptp_bmca_priority2 self.uniq_id = msg.ptp_clock_id def __str__(self): stats_str = str() stats_str += ( '%-15s' % self.src_addr_str ) if self.src_addr_str != None else '' stats_str += ( ' %3s' % self.delay_mode ) if self.delay_mode != None else '' stats_str += ( ' %2d' % self.step_mode ) if self.step_mode != None else ' -' stats_str += ( ' %3d' % self.domain ) if self.domain != None else '' stats_str += ( ' %3d' % self.priority1 ) if self.priority1 != None else '' stats_str += ( ' %3d' % self.clock_class ) if self.clock_class != None else '' stats_str += ( ' 0x%2x' % self.accuracy ) if self.accuracy != None else '' stats_str += ( ' %5d' % self.variance ) if self.variance != None else '' stats_str += ( ' %3d' % self.priority2 ) if self.priority2 != None else '' trimmed_uniq_id = str() exp = re.compile('0x([a-fA-F0-9]+)') if self.uniq_id != None: match = exp.findall(self.uniq_id) trimmed_uniq_id = match[0] stats_str += ( ' % 16s' % trimmed_uniq_id ) stats_str += ( ' % 2.2f' % self.sync_period ) if self.sync_period != None else ' - ' stats_str += ( ' % 2.2f' % self.delay_period ) if self.delay_period != None else ' - ' stats_str += ( ' % 2.2f' % self.announce_period ) if self.announce_period != None else ' - ' return stats_str #============================================================================== # Class Test #============================================================================== import unittest import time class TestPtpNeighbor(unittest.TestCase): def test_new_from_pcap_file(self): pc = pcap.pcap('single_ptp_announce_packet.pcap') ts, pkt = pc.next() pn = PtpNeighbor(pkt) self.assertEqual(pn.src_addr_str, '192.168.1.2') self.assertEqual(pn.delay_mode, 'E2E') self.assertIsNone(pn.step_mode) self.assertEqual(pn.domain, 129) self.assertEqual(pn.priority1, 128) self.assertEqual(pn.clock_class, 6) self.assertEqual(pn.accuracy, 33) self.assertEqual(pn.variance, 15652) self.assertEqual(pn.priority2, 128) self.assertEqual(pn.uniq_id, '0x001c73ffffb53519') self.assertIsNone(pn.sync_period) self.assertIsNone(pn.delay_period) self.assertIsNone(pn.announce_period) def test_pcap_file_object_as_string(self): pc = pcap.pcap('single_ptp_announce_packet.pcap') ts, pkt = pc.next() pn = PtpNeighbor(pkt) actual = str(pn) expected = "192.168.1.2 E2E - 129 128 6 0x21 15652 128 001c73ffffb53519 - - - " self.assertEqual(actual, expected) def test_updating_announce_period(self): pc = pcap.pcap('single_ptp_announce_packet.pcap') ts, pkt = pc.next() pn = PtpNeighbor(pkt) self.assertIsNone(pn.announce_period) time.sleep(0.667) pc = pcap.pcap('single_ptp_announce_packet.pcap') ts, pkt = pc.next() pn.new_announce_message(pkt) self.assertIsNotNone(pn.announce_period) actual = str(pn) expected = "192.168.1.2 E2E - 129 128 6 0x21 15652 128 001c73ffffb53519 - - 0.67" self.assertEqual(actual, expected) def test_updating_sync_period(self): ann_pc = pcap.pcap('single_ptp_announce_packet.pcap') ts, pkt = ann_pc.next() pn = PtpNeighbor(pkt) self.assertIsNone(pn.sync_period) sync_pc = pcap.pcap('single_ptp_sync_packet.pcap') ts, pkt = sync_pc.next() pn.new_sync_message(pkt) time.sleep(0.333) sync_pc = pcap.pcap('single_ptp_sync_packet.pcap') ts, pkt = sync_pc.next() pn.new_sync_message(pkt) self.assertIsNotNone(pn.sync_period) actual = str(pn) expected = "192.168.1.2 E2E - 129 128 6 0x21 15652 128 001c73ffffb53519 0.34 - - " self.assertEqual(actual, expected) if __name__ == '__main__': # Test class unittest.main()
#!/usr/bin/env python # coding=utf-8 """ __init__.py """ __author__ = 'Rnd495' import navbar import playerLogTable import playerRecordsTable import highCharts
from Ft.Xml import EMPTY_NAMESPACE class DebugWriter: def __init__(self): self.reset() def reset(self): self.calls = [] def getMediaType(self): return "" def getResult(self): return '' def getCurrent(self): rt = self.calls self.reset() return rt def __makeCall(self,name,args): self.calls.append((name,args)) def __startCall(self,name,args): self.calls.append(("Start: " + name,args)) def __endCall(self,name): self.calls.append(("End: " + name,{})) def startDocument(self): self.__startCall("document",()) return def endDocument(self): self.__endCall("document") return def text(self, text, escapeOutput=1): self.__makeCall("text",{'text':text}) return def attribute(self, name, value, namespace=EMPTY_NAMESPACE): self.__makeCall("attribute",{'name':name, 'value':value, 'namespace':namespace}) return def processingInstruction(self, target, data): self.__makeCall("processingInstruction",{'target':target, 'data':data}) return def comment(self, body): self.__makeCall('comment',{'body':body}) return def startElement(self, name, namespace=EMPTY_NAMESPACE, extraNss=None): self.__startCall("element",{'name':name, 'namespace':namespace}) return def endElement(self, name): self.__endCall("element") return
import sys from queue import LifoQueue error_table = {')': 3, ']': 57, '}': 1197, '>': 25137} match_table = {')': '(', ']': '[', '}': '{', '>': '<'} complete_table = {'(': ')', '[': ']', '{': '}', '<': '>'} complete_score = {')': 1, ']': 2, '}': 3, '>': 4} def main(): if len(sys.argv) != 2: sys.exit("Please provide a file name for input data") error_score = 0 completes = [] filename = sys.argv[1] with open(filename, "r") as inputfile: while True: line = inputfile.readline() if not line: break tmp = line.strip() # print(f"read line {tmp}") counter = {'paren': 0, 'bracket': 0, 'curly_brace': 0, 'angle_brace': 0} wrong_char = None stack = LifoQueue(maxsize=9999) for ch in tmp: # print(f"{ch}", end='') if ch in ['(', '[', '{', '<']: stack.put(ch) elif ch in [')', ']', '}', '>']: if stack.empty(): wrong_char = ch break else: tos = stack.get_nowait() if tos != match_table[ch]: wrong_char = ch break # print() if wrong_char is None: autocomplete = 0 while not stack.empty(): autocomplete *= 5 autocomplete += complete_score[complete_table[stack.get_nowait()]] completes.append(autocomplete) completes.sort() middle_idx = int(len(completes) / 2) print(f"Middle score = {completes[middle_idx]}") if __name__ == '__main__': main()
import requests import logging import re import time import datetime import bisect import json import gzip #import hashlib from urllib.parse import quote from pkg_resources import get_distribution, DistributionNotFound import os __version__ = 'installed-from-git' LOGGER = logging.getLogger(__name__) try: # this works for the pip-installed package version = get_distribution(__name__).version except DistributionNotFound: # pragma: no cover pass def myrequests_get(url, params=None, headers=None): if params: if 'from_ts' in params: params['from'] = params['from_ts'] del params['from_ts'] if 'limit' in params: if not isinstance(params['limit'], int): # this needs to be an int because we subtract from it elsewhere params['limit'] = int(params['limit']) if headers is None: headers = {} if 'user-agent' not in headers: headers['user-agent'] = 'pypi_cdx_toolkit/'+__version__ retry = True connect_errors = 0 while retry: try: resp = requests.get(url, params=params, headers=headers, timeout=(30., 600.)) if resp.status_code == 400 and 'page' not in params: raise RuntimeError('invalid url of some sort: '+url) # pragma: no cover if resp.status_code in (400, 404): LOGGER.debug('giving up with status %d', resp.status_code) # 400: html error page -- probably page= is too big # 404: {'error': 'No Captures found for: www.pbxxxxxxm.com/*'} -- not an error retry = False break if resp.status_code in (503, 502, 504, 500): # pragma: no cover # 503=slow down, 50[24] are temporary outages, 500=Amazon S3 generic error LOGGER.debug('retrying after 1s for %d', resp.status_code) time.sleep(1) continue resp.raise_for_status() retry = False except (requests.exceptions.ConnectionError, requests.exceptions.ChunkedEncodingError, requests.exceptions.Timeout) as e: connect_errors += 1 if connect_errors > 10: if os.getenv('CDX_TOOLKIT_TEST_REQUESTS'): print('DYING IN MYREQUEST_GET') exit(0) else: print('Final failure for url='+url) raise LOGGER.warning('retrying after 1s for '+str(e)) time.sleep(1) except requests.exceptions.RequestException as e: # pragma: no cover LOGGER.warning('something unexpected happened, giving up after %s', str(e)) raise return resp fields_to_cc = {'statuscode': 'status', 'original': 'url', 'mimetype': 'mime'} fields_to_ia = dict([(v, k) for k, v in fields_to_cc.items()]) def munge_filter(filter, source): if source == 'ia': for bad in ('=', '!=', '~', '!~'): if filter.startswith(bad): raise ValueError('ia does not support the filter '+bad) for k, v in fields_to_ia.items(): filter = re.sub(r'\b'+k+':', v+':', filter, 1) if source == 'cc': for k, v in fields_to_cc.items(): filter = re.sub(r'\b'+k+':', v+':', filter, 1) return filter def get_cc_endpoints(): # TODO: cache me r = myrequests_get('http://index.commoncrawl.org/collinfo.json') if r.status_code != 200: raise RuntimeError('error getting list of common crawl indices: '+str(r.status_code)) # pragma: no cover j = r.json() endpoints = [x['cdx-api'] for x in j] if len(endpoints) < 30: # last seen to be 39 raise ValueError('Surprisingly few endoints for common crawl index') # pragma: no cover # endpoints arrive sorted oldest to newest, but let's force that anyawy endpoints = sorted(endpoints) return endpoints lines_per_page = 3000 # no way to get this from the API without fetching a page def showNumPages(r): j = r.json() if isinstance(j, dict): # pywb always returns json pages = int(j.get('blocks', 0)) elif isinstance(j, int): # ia always returns text, parsed as a json int pages = j else: raise ValueError('surprised by showNumPages value of '+str(j)) # pragma: no cover return pages def pages_to_samples(pages): # adjust pages for the partial page at the start and end if pages > 1: pages = pages - 1.0 elif pages >= 1: pages = pages - 0.5 pages *= lines_per_page return int(pages) def cdx_to_json(resp): if resp.status_code == 404: return [] text = resp.text if text.startswith('{'): # pywb output='json' is jsonl lines = resp.text.splitlines() ret = [] for l in lines: ret.append(json.loads(l)) return ret # ia output='json' is a json list of lists if not text.startswith('['): raise ValueError('cannot decode response, first bytes are '+repr(text[:50])) # pragma: no cover if text.startswith('[]'): return [] try: lines = json.loads(text) fields = lines.pop(0) # first line is the list of field names except (json.decoder.JSONDecodeError, KeyError, IndexError): # pragma: no cover raise ValueError('cannot decode response, first bytes are '+repr(text[:50])) ret = [] for l in lines: obj = {} for f in fields: value = l.pop(0) if f in fields_to_cc: obj[fields_to_cc[f]] = value else: obj[f] = value ret.append(obj) return ret # confusingly, python's documentation refers to their float version # of the unix time as a 'timestamp'. This code uses 'timestamp' to # mean the CDX concept of timestamp. TIMESTAMP = '%Y%m%d%H%M%S' TIMESTAMP_LOW = '19780101000000' TIMESTAMP_HIGH = '29991231235959' def pad_timestamp(timestamp): return timestamp + TIMESTAMP_LOW[len(timestamp):] days_in_month = (0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31) def pad_timestamp_up(timestamp): timestamp = timestamp + TIMESTAMP_HIGH[len(timestamp):] month = timestamp[4:6] timestamp = timestamp[:6] + str(days_in_month[int(month)]) + timestamp[8:] return timestamp def timestamp_to_time(timestamp): utc = datetime.timezone.utc timestamp = pad_timestamp(timestamp) try: return datetime.datetime.strptime(timestamp, TIMESTAMP).replace(tzinfo=utc).timestamp() except ValueError: LOGGER.error('cannot parse timestamp, is it a legal date?: '+timestamp) raise def time_to_timestamp(t): return datetime.datetime.fromtimestamp(t, tz=datetime.timezone.utc).strftime(TIMESTAMP) def apply_cc_defaults(params): if 'from_ts' not in params or params['from_ts'] is None: year = 365*86400 if 'to' in params and params['to'] is not None: to = pad_timestamp_up(params['to']) params['from_ts'] = time_to_timestamp(timestamp_to_time(to) - year) LOGGER.debug('no from but to, setting from=%s', params['from_ts']) else: params['from_ts'] = time_to_timestamp(time.time() - year) LOGGER.debug('no from, setting from=%s', params['from_ts']) def fetch_warc_content(capture): filename = capture['filename'] offset = int(capture['offset']) length = int(capture['length']) cc_external_prefix = 'https://commoncrawl.s3.amazonaws.com' url = cc_external_prefix + '/' + filename headers = {'Range': 'bytes={}-{}'.format(offset, offset+length-1)} resp = myrequests_get(url, headers=headers) content_bytes = resp.content # WARC digests can be represented in multiple ways (rfc 3548) # I have code in a pullreq for warcio that does this comparison #if 'digest' in capture and capture['digest'] != hashlib.sha1(content_bytes).hexdigest(): # LOGGER.error('downloaded content failed digest check') if content_bytes[:2] == b'\x1f\x8b': content_bytes = gzip.decompress(content_bytes) # hack the WARC response down to just the content_bytes try: warcheader, httpheader, content_bytes = content_bytes.strip().split(b'\r\n\r\n', 2) except ValueError: # not enough values to unpack return b'' # XXX help out with the page encoding? complicated issue. return content_bytes def fetch_wb_content(capture): if 'url' not in capture or 'timestamp' not in capture: raise ValueError('capture must contain an url and timestamp') fetch_url = capture['url'] timestamp = capture['timestamp'] prefix = 'https://web.archive.org/web' url = '{}/{}{}/{}'.format(prefix, timestamp, 'id_', quote(fetch_url)) resp = myrequests_get(url) content_bytes = resp.content return content_bytes class CDXFetcherIter: def __init__(self, cdxfetcher, params={}, index_list=None): self.cdxfetcher = cdxfetcher self.params = params if 'page' in params: raise ValueError('must not set page= in a CDX iterator') self.endpoint = 0 self.page = -1 self.params['page'] = self.page self.cdx_objs = [] self.index_list = index_list self.get_more() def get_more(self): while True: self.page += 1 status, objs = self.cdxfetcher.get_for_iter(self.endpoint, self.page, params=self.params, index_list=self.index_list) if status == 'last endpoint': LOGGER.debug('get_more: I have reached the end') return # caller will raise StopIteration if status == 'last page': LOGGER.debug('get_more: moving to next endpoint') self.endpoint += 1 self.page = -1 continue LOGGER.debug('get_more, got %d more objs', len(objs)) self.cdx_objs.extend(objs) def __iter__(self): return self def __next__(self): while True: try: return self.cdx_objs.pop(0) except IndexError: LOGGER.debug('getting more in __next__') self.get_more() if len(self.cdx_objs) <= 0: raise StopIteration class CDXFetcher: def __init__(self, source='cc', cc_sort='mixed'): self.source = source self.cc_sort = cc_sort self.source = source if source == 'cc': self.raw_index_list = get_cc_endpoints() elif source == 'ia': self.index_list = ('https://web.archive.org/web/timemap/json',) elif source.startswith('https://') or source.startswith('http://'): self.index_list = (source,) else: raise ValueError('could not understand source') def customize_index_list(self, params): if self.source == 'cc' and ('from' in params or 'from_ts' in params or 'to' in params): LOGGER.debug('making a custom cc index list') return self.filter_cc_endpoints(params=params) else: return self.index_list def filter_cc_endpoints(self, params={}): endpoints = self.raw_index_list.copy() # chainsaw all of the cc index names to a time, which we'll use as the end-time of its data cc_times = [] cc_map = {} timestamps = re.findall(r'CC-MAIN-(\d\d\d\d-\d\d)', ''.join(endpoints)) CC_TIMESTAMP = '%Y-%W-%w' # I think these are ISO weeks for timestamp in timestamps: utc = datetime.timezone.utc t = datetime.datetime.strptime(timestamp+'-0', CC_TIMESTAMP).replace(tzinfo=utc).timestamp() cc_times.append(t) cc_map[t] = endpoints.pop(0) # now I'm set up to bisect in cc_times and then index into cc_map to find the actual endpoint if 'closest' in params: closest_t = timestamp_to_time(params['closest']) if 'from_ts' not in params or params['from_ts'] is None: # not provided, make 3 months earlier from_ts_t = closest_t - 3 * 30 * 86400 else: from_ts_t = timestamp_to_time(params['from_ts']) if 'to' not in params or params['to'] is None: # not provided, make 3 months later to_t = closest_t + 3 * 30 * 86400 else: to_t = timestamp_to_time(params['to']) else: if 'to' in params: to = pad_timestamp_up(params['to']) to_t = timestamp_to_time(to) if 'from_ts' not in params or params['from_ts'] is None: from_ts_t = to_t - 365 * 86400 else: from_ts_t = timestamp_to_time(params['from_ts']) else: to_t = None if 'from_ts' not in params or params['from_ts'] is None: from_ts_t = time.time() - 365 * 86400 else: from_ts_t = timestamp_to_time(params['from_ts']) # bisect to find the start and end of our cc indexes start = bisect.bisect_left(cc_times, from_ts_t) - 1 start = max(0, start) if to_t is not None: end = bisect.bisect_right(cc_times, to_t) + 1 end = min(end, len(self.raw_index_list)) else: end = len(self.raw_index_list) index_list = self.raw_index_list[start:end] params['from_ts'] = time_to_timestamp(from_ts_t) if to_t is not None: params['to'] = time_to_timestamp(to_t) if 'closest' in params: pass # XXX funky ordering if self.cc_sort == 'ascending': pass # already in ascending order elif self.cc_sort == 'mixed': index_list.reverse() else: raise ValueError('unknown cc_sort arg of '+self.cc_sort) LOGGER.debug('using cc index range from %s to %s', index_list[0], index_list[-1]) return index_list def get(self, url, **kwargs): # from_ts=None, to=None, matchType=None, limit=None, sort=None, closest=None, # filter=None, fl=None, page=None, pageSize=None, showNumPages=None): params = kwargs params['url'] = url params['output'] = 'json' if 'filter' in params: params['filter'] = munge_filter(params['filter'], self.source) # if 'limit' not in params: # params['limit'] = 1000 if self.source == 'cc': apply_cc_defaults(params) index_list = self.customize_index_list(params) ret = [] for endpoint in index_list: resp = myrequests_get(endpoint, params=params) objs = cdx_to_json(resp) # turns 400 and 404 into [] ret.extend(objs) if 'limit' in params: params['limit'] -= len(objs) if params['limit'] <= 0: break return ret def items(self, url, **kwargs): params = kwargs params['url'] = url params['output'] = 'json' if 'filter' in params: params['filter'] = munge_filter(params['filter'], self.source) if 'limit' not in params: params['limit'] = 1000 if self.source == 'cc': apply_cc_defaults(params) index_list = self.customize_index_list(params) return CDXFetcherIter(self, params=params, index_list=index_list) def get_for_iter(self, endpoint, page, params={}, index_list=None): ''' Specalized get for the iterator ''' if endpoint >= len(index_list): return 'last endpoint', [] if params.get('limit', -1) == 0: return 'last endpoint', [] # a little white lie endpoint = index_list[endpoint] params['page'] = page resp = myrequests_get(endpoint, params=params) if resp.status_code == 400: # pywb return 'last page', [] if resp.text == '': # ia return 'last page', [] ret = cdx_to_json(resp) # turns 404 into [] if 'limit' in params: params['limit'] -= len(ret) return 'ok', ret def get_size_estimate(self, url, as_pages=False, **kwargs): ''' Get the number of pages that match url useful additional args: matchType='host' pageSize=1 or, url can end with * or start with *. to set the matchType ''' params = {'url': url, 'showNumPages': 'true'} params.update(**kwargs) if self.source == 'cc': apply_cc_defaults(params) index_list = self.customize_index_list(params) pages = 0 for endpoint in index_list: resp = myrequests_get(endpoint, params=params) if resp.status_code == 200: pages += showNumPages(resp) else: pass # silently ignore empty answers # pragma: no cover if not as_pages: pages = pages_to_samples(pages) return pages
# -*- coding: utf-8 -*- import os import time import hashlib import settings from fileoo import File class Cache: def __init__(self): self.fil = File() def fingerprint_path(self, key): fingerprint = hashlib.md5(key).hexdigest() cache_path = os.path.join(settings.CACHE_PATH, fingerprint + '.gz') return fingerprint, cache_path def is_cached(self, key): fingerprint, cache_path = self.fingerprint_path(key) if os.path.exists(cache_path) and \ time.time() - os.path.getmtime(cache_path) < settings.CACHE_EXPIRE: return True return False def read(self, key): fingerprint, cache_path = self.fingerprint_path(key) if self.is_cached(key): return self.fil.read(cache_path, content_type='gz').next() def write(self, key, content): fingerprint, cache_path = self.fingerprint_path(key) return self.fil.write(cache_path, content, content_type='gz') def clear(self, key): fingerprint, cache_path = self.fingerprint_path(key) try: os.remove(cache_path) return True except OSError: return False
from datetime import datetime from functools import total_ordering from sqlalchemy import asc from sqlalchemy.sql import sqltypes, schema from sqlalchemy.exc import SQLAlchemyError from app.database import BASE, SESSION from app.database.utils.decorators import with_insertion_lock from app.database.utils.filters import leave_required_keys from app.logger import get_logger log = get_logger(__name__) @total_ordering class Video(BASE): """Модель таблицы с данными видеофайлов""" __tablename__ = 'video' id = schema.Column(sqltypes.Integer, primary_key=True) name = schema.Column(sqltypes.String(256), nullable=False) camera_id = schema.Column(sqltypes.Integer, schema.ForeignKey('camera.id', ondelete='CASCADE', onupdate='CASCADE'), nullable=False) video_path = schema.Column(sqltypes.String(256), nullable=False) record_date = schema.Column(sqltypes.Date, nullable=False) record_time = schema.Column(sqltypes.Time(timezone=True), nullable=False) extension = schema.Column(sqltypes.String(6), nullable=False) duration = schema.Column(sqltypes.Integer, nullable=False) bitrate = schema.Column(sqltypes.Integer, nullable=False) codec = schema.Column(sqltypes.String(10), nullable=False) def __repr__(self): return f"<{self.id} | {self.name}.{self.extension} " \ f"at {self.record_date} {self.record_time} " \ f"duration: {self.duration}>" def __lt__(self, other): return self.id <= other.id def __eq__(self, other): return isinstance(other, Video) and self.id == other.id @total_ordering class VideoServer(BASE): """Модель таблицы Видео Сервера""" __tablename__ = 'video_server' id = schema.Column(sqltypes.Integer, primary_key=True) server_name = schema.Column(sqltypes.String(256), nullable=False) server_dir = schema.Column(sqltypes.String(256), nullable=False) def __repr__(self): return f"{self.id} | Server: {self.server_name} at {self.server_dir}" def __lt__(self, other): return self.id <= other.id def __eq__(self, other): return isinstance(other, VideoServer) and self.id == other.id @total_ordering class Camera(BASE): """Модель таблицы Камеры""" __tablename__ = 'camera' id = schema.Column(sqltypes.Integer, primary_key=True) server_id = schema.Column(sqltypes.Integer, schema.ForeignKey('video_server.id', ondelete='CASCADE', onupdate='CASCADE'), nullable=False) camera_name = schema.Column(sqltypes.String(16), nullable=False) camera_dir = schema.Column(sqltypes.String(256), nullable=False) def __repr__(self): return f"{self.id} | {self.camera_name} for server id: {self.server_id} at {self.camera_dir}" def __lt__(self, other): return self.id <= other.id def __eq__(self, other): return isinstance(other, Camera) and self.id == other.id def init_tables(): """Инициализация таблиц в базе данных""" VideoServer.__table__.create(checkfirst=True) Camera.__table__.create(checkfirst=True) Video.__table__.create(checkfirst=True) @with_insertion_lock def set_or_get_new_server(server_dir: str) -> VideoServer: """ Создает новую запись с сервером Args: server_dir (str): Путь до папки сервера Returns: VideoServer: Модель с данными видео сервера """ if server_dir is None: raise ValueError("Сервер не может быть NoneType") video_server = SESSION.query(VideoServer).filter_by(server_dir=server_dir).limit(1).scalar() if not video_server: video_server = VideoServer( server_name=server_dir[server_dir.rfind('/') + 1:], # Найти / справа и отрезать все, что идет перед ним server_dir=server_dir) SESSION.add(video_server) try: SESSION.commit() except SQLAlchemyError as err: SESSION.rollback() raise ValueError from err finally: SESSION.close() SESSION.close() return video_server @with_insertion_lock def set_or_get_new_camera(camera_dir: str, server: VideoServer) -> Camera: """ Добавляет новую камеру в базу данных Args: camera_dir (str): Путь до камеры server (app.db.models.VideoServer): Модель таблицы Видео Сервера, для которой необходимо добавить камеру Returns: Camera: Модель с данными камеры """ camera = SESSION.query(Camera).filter_by(camera_dir=camera_dir, server_id=server.id).limit(1).scalar() if not camera: camera = Camera( server_id=server.id, camera_name=camera_dir, camera_dir=camera_dir) SESSION.add(camera) SESSION.commit() SESSION.close() return camera @with_insertion_lock def set_or_get_new_video(**kwargs) -> Video: """ Добавляет новое видео в базу данных Args: **kwargs: Аргументы с данными о видео Keyword Args: name (str): Название видео camera_id (int): ID записи камеры video_path (PathLike): Путь до видео record_date (datetime): Дата, когда было записано видео record_time (datetime): Время, с которого идет запись extension (str): Расширение видео файла duration (int): Длина видеоряда bitrate (int): Битрейт видеоряда codec (str): Кодек потока Returns: Camera: Модель с данными видео Raises: KeyError: Если были переданны не все необходимые поля """ # Удаляем неуказанные kwargs required_fields = Video.__table__.columns.keys() filtered_kwargs = leave_required_keys(kwargs, required_fields) required_fields.remove('id') # Убираем поле id из требуемых, так как оно не обязательно # Проверка того, что все необходимые поля переданы if set(required_fields) - set(filtered_kwargs): raise KeyError('Не были переданы все необходимые поля') video = SESSION.query(Video).filter_by(**filtered_kwargs).limit(1).scalar() if not video: if 'id' in filtered_kwargs: filtered_kwargs.pop('id') video = Video(**filtered_kwargs) SESSION.add(video) SESSION.commit() SESSION.close() return video def get_server(**kwargs) -> [VideoServer, None]: """ Получить модель видео сервера по заданным параметрам Args: **kwargs: Данные модели сервера Keyword Args: id (int): ID записи в таблице server_name (str): Название сервера server_dir (PathLike): Путь до сервера Returns: VideoServer: Модель с данными о сервере None: Если по переданным параметрам не было найдено сервера """ filtered_fields = leave_required_keys(kwargs, VideoServer.__table__.columns.keys()) if 'server_dir' in filtered_fields.keys(): filtered_fields['server_dir'] = str(filtered_fields.get('server_dir')).replace("\\", '/') video_server = SESSION.query(VideoServer).filter_by(**filtered_fields).limit(1).scalar() SESSION.close() return video_server def get_camera(**kwargs) -> [Camera, None]: """ Получить модель камеры по заданным параметрам Args: **kwargs: Данные модели камеры Keyword Args: id (int): ID записи в таблице server_id (int): ID сервера, к которому привязанна камера camera_name (str): Название камеры camera_dir (PathLike): Путь до камеры Returns: Camera: Модель с данными о камере None: Если по переданным параметрам не было найдено камер """ filtered_fields = leave_required_keys(kwargs, Camera.__table__.columns.keys()) if 'camera_dir' in filtered_fields.keys(): filtered_fields['camera_dir'] = str(filtered_fields.get('camera_dir')).replace("\\", '/') camera = SESSION.query(Camera).filter_by(**filtered_fields).limit(1).scalar() SESSION.close() return camera def get_video(**kwargs) -> [Video, None]: """ Получить модель видео по заданным параметрам Args: **kwargs: Аргументы с данными о видео Keyword Args: id (int): ID записи в таблице name (str): Название видео camera_id (int): ID записи камеры video_path (PathLike): Путь до видео record_date (datetime): Дата, когда было записано видео record_time (datetime): Время, с которого идет запись extension (str): Расширение видео файла duration (int): Длина видеоряда bitrate (int): Битрейт видеоряда codec (str): Кодек потока Returns: Video: Модель с данными видео None: Если по переданным параметрам не было найдено видео """ filtered_fields = leave_required_keys(kwargs, Video.__table__.columns.keys()) video = SESSION.query(Video).filter_by(**filtered_fields).limit(1).scalar() SESSION.close() return video def get_video_pool_by_datetime(time_start: datetime, time_end: datetime, camera: Camera) -> list[Video]: """ Получить пул видео по заданному временному отрезку Args: time_start (datetime): Начальное время видео time_end (datetime): Конечное время видео camera (Camera): Модель камеры, которая производила запись Returns: list[Video]: Список моделей Video по заданному временному отрезку """ video_pool = SESSION \ .query(Video) \ .filter_by(camera_id=camera.id) \ .filter(Video.record_date >= time_start.date(), Video.record_date <= time_end.date(), Video.record_time >= time_start.time(), Video.record_time <= time_end.time()) \ .order_by(asc(Video.record_date)) \ .order_by(asc(Video.record_time)) \ .all() SESSION.close() return video_pool def get_all_video_servers() -> list[VideoServer]: """ Получить список всех видео-серверов Returns: list[VideoServer]: Список всех видео-серверов в базе данных """ video_servers = SESSION.query(VideoServer).all() SESSION.close() return video_servers def get_all_cameras_at_server(server: VideoServer) -> list[Camera]: """ Получить список камер, относяшихся к указанному серверу Args: server (VideoServer): Видео-сервер, которому отностся камеры Returns: list[Camera]: Список всех камер переданного сервера """ cameras = SESSION.query(Camera).filter_by(server_id=server.id).all() SESSION.close() return cameras def get_all_videos_from_camera(camera: Camera) -> list[Video]: """ Получить список видео, которые были записаны переданной камерой Args: camera (Camera): Модель камеры, с которой необходимо получить список видео Returns: list[Video]: Список видео, которые были записаны переданной камерой """ videos = SESSION.query(Video).filter_by(camera_id=camera.id).all() SESSION.close() return videos if __name__ != '__main__': init_tables()
from floodsystem.stationdata import build_station_list from Task2B import run def test_Task2B(): testList = run() assert testList[0][1] > testList[-1][1] assert testList[-1][1] > 0.8
import os from typing import IO from abc import abstractmethod, ABCMeta class ArquivoEntrada(object, metaclass=ABCMeta): def __init__(self): self.linha: str = '' self.cont: int = 0 @abstractmethod def ler(self, *args, **kwargs) -> None: """ Parametros aceitos nesse metodo: folder: string com o caminho para o diretorio file_name: string com o nome do arquivo """ @abstractmethod def escrever(self, *args, **kwargs) -> None: """ Método estático para Escrita de um arquivo de entrada do newave key: chave reg: registro fid: apontador para ultima posicao lida retorna ponteiro para proxima linha """ @staticmethod def verificar_caixa_nome_arquivo(dir_base: str, nome_arq: str) -> str: """ Verifica se o arquivo existe com o nome em caixa baixa ou caixa alta :param dir_base: diretorio onde esta o arquivo :param nome_arq: nome do arquivo :return: """ # se existir o arquivo com nome em letras maiusculas e minusculas em qualquer ordem, usar o nome if os.path.exists(os.path.join(dir_base, nome_arq)): return nome_arq # caso exista o nome somente em letras minusculas, usa-lo elif os.path.exists(os.path.join(dir_base, nome_arq.lower())): return nome_arq.lower() # caso exista o nome somente em letras maiusculas, usa-lo elif os.path.exists(os.path.join(dir_base, nome_arq.upper())): return nome_arq.upper() else: # em caso do arquivo na existir (resultados de um caso nao executado) dar preferencia para minusculas return nome_arq.lower() def next_line(self, f: IO) -> str: """ Metodo que le a proxima linha e atualiza contador :param f: apontador para a ultima linha lida :return: linha lida """ self.linha = next(f) self.cont += 1 return self.linha
"""This problem was asked by Google. You are given an array of arrays of integers, where each array corresponds to a row in a triangle of numbers. For example, [[1], [2, 3], [1, 5, 1]] represents the triangle: 1 2 3 1 5 1 We define a path in the triangle to start at the top and go down one row at a time to an adjacent value, eventually ending with an entry on the bottom row. For example, 1 -> 3 -> 5. The weight of the path is the sum of the entries. Write a program that returns the weight of the maximum weight path. """
# -*- python -*- # This software was produced by NIST, an agency of the U.S. government, # and by statute is not subject to copyright in the United States. # Recipients of this software assume all responsibilities associated # with its operation, modification and maintenance. However, to # facilitate maintenance we ask that before distributing modified # versions of this software, you first contact the authors at # oof_manager@nist.gov. from ooflib.SWIG.common import progress from ooflib.common import registeredclass from ooflib.common import debug from ooflib.common import utils class AnimationStyle(registeredclass.RegisteredClass): registry = [] class IndefiniteAnimation(AnimationStyle): def getProgressStyle(self): return progress.INDEFINITE class FiniteAnimation(AnimationStyle): def getProgressStyle(self): return progress.DEFINITE ######### class ForwardAnimation(FiniteAnimation): def getTimes(self, times): for t in times: yield t registeredclass.Registration( 'Forward', AnimationStyle, ForwardAnimation, ordering=0, tip="Run the animation once.") ######### class ReverseAnimation(FiniteAnimation): def getTimes(self, times): return reversed(utils.degenerate(times)) registeredclass.Registration( 'Reverse', AnimationStyle, ReverseAnimation, ordering=1, tip="Run the animation once in reverse.") ######### class LoopAnimation(IndefiniteAnimation): def getTimes(self, times): times = utils.degenerate(times) while True: for t in times: yield t registeredclass.Registration( 'Loop', AnimationStyle, LoopAnimation, ordering=2, tip="Run the animation indefinitely.") ######### class BackAndForthAnimation(IndefiniteAnimation): def getTimes(self, times): times = utils.degenerate(times) n = len(times) if n == 0: return i = 0 step = 1 while True: yield times[i] i += step if i == n or i == -1: step *= -1 i += 2*step registeredclass.Registration( 'Back and Forth', AnimationStyle, BackAndForthAnimation, ordering=3, tip="Run the animation forward, then backwards, then forwards again, ad infinitum.")
#!/usr/bin/env python # python setup.py sdist upload -r pypi from distutils.core import setup version = '0.47' packages = ['ctbBio'] scripts = ['ctbBio/16SfromHMM.py', 'ctbBio/23SfromHMM.py', 'ctbBio/numblast.py', 'ctbBio/besthits.py', 'ctbBio/calculate_coverage.py', 'ctbBio/cluster_ani.py', 'ctbBio/compare_aligned.py', 'ctbBio/concat_align.py', 'ctbBio/crossmap.py', 'ctbBio/fasta.py', 'ctbBio/fasta_length.py', 'ctbBio/fasta_region.py', 'ctbBio/fasta_stats.py', 'ctbBio/fastq2fasta.py', 'ctbBio/fastq_merge.py', 'ctbBio/fastq_split.py', 'ctbBio/filter_fastq_sam.py', 'ctbBio/fix_fasta.py', 'ctbBio/genome_abundance.py', 'ctbBio/genome_coverage.py', 'ctbBio/genome_variation.py', 'ctbBio/lookup-word.py', 'ctbBio/lookup.py', 'ctbBio/mapped.py', 'ctbBio/n50.py', 'ctbBio/name2fasta.py', 'ctbBio/name2faa.py', 'ctbBio/neto.py', 'ctbBio/rec_best_blast.py', 'ctbBio/nr_fasta.py', 'ctbBio/numblast-pident.py', 'ctbBio/orthologer.py', 'ctbBio/orthologer_summary.py', 'ctbBio/parallel.py', 'ctbBio/rRNA_copies.py', 'ctbBio/rRNA_insertions.py', 'ctbBio/rax.py', 'ctbBio/rc.py', 'ctbBio/rp16.py', 'ctbBio/rp16_retreive.sh', 'ctbBio/sam2fastq.py', 'ctbBio/search.py', 'ctbBio/shuffle_genome.py', 'ctbBio/sixframe.py', 'ctbBio/stats.py', 'ctbBio/stockholm2fa.py', 'ctbBio/stockholm2oneline.py', 'ctbBio/strip_align.py', 'ctbBio/strip_align_inserts.py', 'ctbBio/strip_masked.py', 'ctbBio/subset_sam.py', 'ctbBio/subset_reads.py', 'ctbBio/transform.py', 'ctbBio/unmapped.py', 'ctbBio/rRNA_insertions_gff.py', 'ctbBio/ncbi_download.py'] classifiers = ['Programming Language :: Python', 'Programming Language :: Python :: 3'] requirements = ['networkx', 'python-Levenshtein', 'numpy', 'pandas', 'biopython', 'tqdm'] setup(name='ctbBio', author='Chris Brown', author_email='ctb@berkeley.edu', packages=packages, scripts=scripts, version=version, license='MIT', url='https://github.com/christophertbrown/bioscripts', description='scripts for working with sequencing data', install_requires=requirements, classifiers=classifiers )
"""Adding new operation types Revision ID: 1cf750b30c08 Revises: e35c7cf01cb4 Create Date: 2021-11-02 23:51:07.308510 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '1cf750b30c08' down_revision = 'e35c7cf01cb4' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.execute("INSERT INTO operation_type VALUES (20, 'Mascota'), (21, 'Salud'), (22, 'Inversión')") # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.execute("DELETE FROM operation_type WHERE id in (20,21,22)") # ### end Alembic commands ###
#!/usr/bin/env python3 import rospy import rospkg import actionlib from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal import pathlib import onnxruntime as ort import numpy as np import cv2 from olfaction_msgs.msg import gas_sensor, anemometer import matplotlib.pyplot as plt # set initial position initial_position = (2, 14) source_position = (3, 2) # initialize path pkg_path = pathlib.Path(rospkg.RosPack().get_path('pydog_gsl')) map_path = pkg_path / 'map/occupancy.png' model_path = pkg_path / 'model/dqn.onnx' output_path = pkg_path / 'result.csv' # initialize map_grid map_grid = cv2.imread(map_path.as_posix()) map_grid = cv2.cvtColor(map_grid, cv2.COLOR_BGR2GRAY) _, map_grid = cv2.threshold(map_grid, 125, 255, cv2.THRESH_BINARY) map_grid = map_grid.astype(np.float32) map_grid /= 255.0 # onnxruntime Policy class Policy: def __init__(self, model_path: str) -> None: self.ort_sess = ort.InferenceSession(model_path) self.action_name = ['Up', 'Down', 'Left', 'Right'] def __call__(self, model_input): output = self.ort_sess.run(['output'], {'input': model_input})[0] return np.argmax(output, axis=1, keepdims=True)[0, 0] def __len__(self): return len(self.action_name) def __getitem__(self, key): return self.action_name[key] # observation matrix class ObservationMatrix: def __init__(self, map_grid, initial_position, concentration_limit=200.0) -> None: self.trajectory_matrix = np.zeros(map_grid.shape, dtype=np.float32) self.obstacle_matrix = map_grid.copy() self.concentration_matrix = np.zeros(map_grid.shape, dtype=np.float32) self.airflow_x_matrix = np.zeros(map_grid.shape, dtype=np.float32) self.airflow_y_matrix = np.zeros(map_grid.shape, dtype=np.float32) self.agent_position = [initial_position[0], initial_position[1]] self.concentration_limit = concentration_limit def get_observation(self): trajectory_matrix_pad = np.pad(self.trajectory_matrix, (5, 5), 'constant', constant_values=0) obstacle_matrix_pad = np.pad(self.obstacle_matrix, (5, 5), 'constant', constant_values=1) concentration_matrix_pad = np.pad(self.concentration_matrix, (5, 5), 'constant', constant_values=0) airflow_x_matrix_pad = np.pad(self.airflow_x_matrix, (5, 5), 'constant', constant_values=0) airflow_y_matrix_pad = np.pad(self.airflow_y_matrix, (5, 5), 'constant', constant_values=0) observation_matrix = np.stack((trajectory_matrix_pad, obstacle_matrix_pad, concentration_matrix_pad, airflow_x_matrix_pad, airflow_y_matrix_pad), axis=0) observation_matrix = observation_matrix[:, self.agent_position[0]:self.agent_position[0] + 11, self.agent_position[1]:self.agent_position[1] + 11] # shape: (1, 5, 11, 11) return np.expand_dims(observation_matrix, 0) def move_agent(self, action): if action == 0: self.agent_position[0] -= 1 if action == 1: self.agent_position[0] += 1 if action == 2: self.agent_position[1] -= 1 if action == 3: self.agent_position[1] += 1 def get_agent_position(self): return self.agent_position def set_observation_data(self, concentration, airflow_x, airflow_y): if concentration > self.concentration_limit: concentration = 1.0 else: concentration = concentration / self.concentration_limit self.trajectory_matrix[self.agent_position[0], self.agent_position[1]] += 1 self.concentration_matrix[self.agent_position[0], self.agent_position[1]] = concentration self.airflow_x_matrix[self.agent_position[0], self.agent_position[1]] = airflow_x self.airflow_y_matrix[self.agent_position[0], self.agent_position[1]] = airflow_y # actionlib class MoveBase: def __init__(self) -> None: self.move_base_client = actionlib.SimpleActionClient('move_base', MoveBaseAction) self.move_base_client.wait_for_server() def move_to(self, x, y): goal = MoveBaseGoal() goal.target_pose.header.frame_id = "map" goal.target_pose.header.stamp = rospy.Time.now() goal.target_pose.pose.position.x = x goal.target_pose.pose.position.y = y goal.target_pose.pose.orientation.w = 1.0 self.move_base_client.send_goal(goal) wait = self.move_base_client.wait_for_result() if not wait: rospy.logerr("Action server not available!") rospy.signal_shutdown("Action server not available!") else: return self.move_base_client.get_result() # sensors class Sensors: def __init__(self) -> None: rospy.Subscriber("/PID/Sensor_reading", gas_sensor, self.gas_sensor_callback) rospy.Subscriber("/Anemometer/WindSensor_reading", anemometer, self.anemometer_callback) self.concentration = [] self.airflow_x = [] self.airflow_y = [] def gas_sensor_callback(self, msg): self.concentration.append(msg.raw) def anemometer_callback(self, msg): self.airflow_x.append(msg.wind_speed * np.cos(msg.wind_direction)) self.airflow_y.append(-msg.wind_speed * np.sin(msg.wind_direction)) def read_all(self): self.concentration.clear() self.concentration.clear() self.airflow_x.clear() self.airflow_y.clear() rospy.sleep(1.0) return (sum(self.concentration) / len(self.concentration), sum(self.airflow_x) / len(self.airflow_x), sum(self.airflow_y) / len(self.airflow_y)) def to_map(x, y, grid_x=9, grid_y=16, world_x=4.48, world_y=8.08): x = (x + 0.5) * world_x / grid_x y = (y + 0.5) * world_y / grid_y return x, y class DataLogger: def __init__(self) -> None: self.concentration = [] self.airflow_x = [] self.airflow_y = [] self.position_x = [] self.position_y = [] def log(self, concentration, airflow_x, airflow_y, position_x, position_y): self.concentration.append(concentration) self.airflow_x.append(airflow_x) self.airflow_y.append(airflow_y) self.position_x.append(position_x) self.position_y.append(position_y) def plot(self): a = np.array([self.position_x, self.position_y, self.concentration, self.airflow_x, self.airflow_y]) a = a.T np.savetxt(output_path.as_posix(), a, delimiter=",") plt.figure() plt.plot(self.concentration) plt.xlabel('Step') plt.ylabel('Concentration (ppm)') plt.show() if __name__ == '__main__': rospy.init_node('pydog_gsl_node', anonymous=False) robot = MoveBase() obs = ObservationMatrix(map_grid, initial_position) policy = Policy(model_path.as_posix()) sensors = Sensors() logger = DataLogger() print(f'Move to initial position.') target_position = initial_position robot.move_to(*to_map(*target_position)) print(f'Start gas source localization task.') step_count = 0 while not rospy.is_shutdown(): step_count += 1 # read sensors data = sensors.read_all() # log data logger.log(*data, *target_position) print(f'Step: {step_count:3d}'.center(30, '*')) print(f'Sensors Data: {data}') # create observation matrix obs.set_observation_data(*data) observation_matrix = obs.get_observation() # select action action = policy(observation_matrix) print(f'Selected Action: {policy[action]}') # move robot obs.move_agent(action) target_position = obs.get_agent_position() print(f'Target Position: {target_position}') robot.move_to(*to_map(*target_position)) if target_position[0] == source_position[0] and target_position[1] == source_position[1]: print(f'Find gas source at step {step_count}.') break logger.plot()
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/iliadobrusin/catkin_ws/src/roc_node/msg/Motion.msg;/home/iliadobrusin/catkin_ws/src/roc_node/msg/Movement.msg;/home/iliadobrusin/catkin_ws/src/roc_node/msg/Command.msg" services_str = "" pkg_name = "roc" dependencies_str = "std_msgs" langs = "gencpp;genlisp;genpy" dep_include_paths_str = "roc;/home/iliadobrusin/catkin_ws/src/roc_node/msg;std_msgs;/opt/ros/indigo/share/std_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/indigo/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
from language import * from generator import *
import tensorflow as tf import sys from tensorflow.python.platform import gfile from tensorflow.core.protobuf import saved_model_pb2 from tensorflow.python.util import compat model_filename ='./out/opt_mnist_convnet.pb' with tf.Session() as sess: with gfile.FastGFile(model_filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) g_in = tf.import_graph_def(graph_def) LOGDIR='/tmp/tensorflow/android' train_writer = tf.summary.FileWriter(LOGDIR) train_writer.add_graph(sess.graph)
# Copyright(C) 1999-2020 National Technology & Engineering Solutions # of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with # NTESS, the U.S. Government retains certain rights in this software. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # * Neither the name of NTESS nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from paraview.simple import * from phactori import * #phactori_combine_to_single_python_file_subpiece_begin_1 class PhactoriParaviewMultiBlockRecursionControl: """see PhactoriDoParaviewMultiblockRecursion(); mOperationPerBlock should be set to a method which takes 1 parameter, mParameters should be set to the parameter instance which will be passed to the mOperationPerBlock call""" def __init__(self): self.mOperationToDoPerBlock = None self.mParameters = None def PhactroiParaviewDoMethodPerBlockRecurse1(inInputCsData, inRecursionControlItem): """PhactroiParaviewDoMethodPerBlockRecurse1 is a generic method for doing recursion through the multiblock dataset and doing something (a callback) on a per leaf block basis. Called by PhactoriRecusivelyDoMethodPerBlockFromParaViewFilter which got clientside data and calls itself on internal nodes and calls inRecursionControlItem.mOperationToDoPerBlock on leaf block nodes""" if PhactoriDbg(100): myDebugPrint3('PhactroiParaviewDoMethodPerBlockRecurse1 entered\n', 100) icsdClassname = inInputCsData.GetClassName() if icsdClassname == "vtkMultiBlockDataSet" or \ icsdClassname == "vtkExodusIIMultiBlockDataSet": myDebugPrint3('recursing: ' + icsdClassname + '\n') numBlocks = inInputCsData.GetNumberOfBlocks() for ii in range(0, numBlocks): oneBlock = inInputCsData.GetBlock(ii) if PhactoriDbg(100): DebugPrintBlockName(inInputCsData, ii) if(oneBlock != None): PhactroiParaviewDoMethodPerBlockRecurse1(oneBlock, inRecursionControlItem) else: inRecursionControlItem.mOperationToDoPerBlock(inRecursionControlItem, inInputCsData, inRecursionControlItem.mParameters) if PhactoriDbg(100): myDebugPrint3('PhactroiParaviewDoMethodPerBlockRecurse1 returning\n', 100) def DebugPrintBlockName(csData, blockIndex): if PhactoriDbg(100): oneBlock = csData.GetBlock(blockIndex) if oneBlock != None: oneBlockMetaData = csData.GetMetaData(blockIndex) if oneBlockMetaData != None: #myDebugPrint3("oneBlockMetaData: " + str(oneBlockMetaData) + "\n") theBlockName = oneBlockMetaData.Get(vtk.vtkCompositeDataSet.NAME()) myDebugPrint3("block index, name: " + str(blockIndex) + ", " + str(theBlockName) + "\n") else: myDebugPrint3("oneBlockMetaData is None (1)\n") else: myDebugPrint3("this block is None, now check meta data\n") oneBlockMetaData = csData.GetMetaData(blockIndex) if oneBlockMetaData != None: #myDebugPrint3("oneBlockMetaData: " + str(oneBlockMetaData) + "\n") theBlockName = oneBlockMetaData.Get(vtk.vtkCompositeDataSet.NAME()) myDebugPrint3("block index, name (2): " + str(blockIndex) + ", " + str(theBlockName) + "\n") else: myDebugPrint3("oneBlockMetaData is None (2)\n") def PhactoriRecusivelyDoMethodPerBlockFromParaViewFilter(inRecursionControlItem, inPvFilter): """grab client side data object, and use that to do recursion""" pvClientSideData = inPvFilter.GetClientSideObject().GetOutputDataObject(0) if pvClientSideData == None: if PhactoriDbg(100): myDebugPrint3( 'DoMethodPerBlock: pvClientSideData is None, returning',100) return PhactroiParaviewDoMethodPerBlockRecurse1(pvClientSideData, inRecursionControlItem) class PrintPointAndCellArrayInformationRecursionParams: def __init__(self): self.leafVisitCount = 0 def PrintPointAndCellArrayInformationInBlock(recursionObject, inInputCsData, inParameters): inParameters.leafVisitCount += 1 myDebugPrint3("inParameters.leafVisitCount " + str(inParameters.leafVisitCount) + "\n") celldata = inInputCsData.GetCellData() numcellarrays = celldata.GetNumberOfArrays() myDebugPrint3("number of cell data arrays: " + str(numcellarrays) + "\n") numcelltuples = celldata.GetNumberOfTuples() myDebugPrint3("number of cell data tuples: " + str(numcelltuples) + "\n") for ii in range(0, numcellarrays): myDebugPrint3(str(ii) + ": " + str(celldata.GetArray(ii).GetNumberOfComponents()) + ": " + str(celldata.GetArrayName(ii)) + "\n") pointdata = inInputCsData.GetPointData() numpointarrays = pointdata.GetNumberOfArrays() myDebugPrint3("number of point data arrays: " + str(numpointarrays) + "\n") numpointtuples = pointdata.GetNumberOfTuples() myDebugPrint3("number of point data tuples: " + str(numpointtuples) + "\n") for ii in range(0, numpointarrays): myDebugPrint3(str(ii) + ": " + str(pointdata.GetArray(ii).GetNumberOfComponents()) + ": " + str(pointdata.GetArrayName(ii)) + "\n") def RecursivelyPrintPointAndCellArrayInformation(pvFilter): if PhactoriDbg(100): myDebugPrint3("RecursivelyPrintPointAndCellArrayInformation entered\n") recursionParams = PrintPointAndCellArrayInformationRecursionParams() recursionObj = PhactoriParaviewMultiBlockRecursionControl() recursionObj.mParameters = recursionParams recursionObj.mOperationToDoPerBlock = PrintPointAndCellArrayInformationInBlock PhactoriRecusivelyDoMethodPerBlockFromParaViewFilter(recursionObj, pvFilter) if PhactoriDbg(100): myDebugPrint3("RecursivelyPrintPointAndCellArrayInformation returning\n") #phactori_combine_to_single_python_file_subpiece_end_1
import getpass import os import re import subprocess from scripts.config import * def accept_warning(s): c = '' d = {'Y': True, 'y': True, 'N': False, 'n': False} while not c in d: c = input('Warning: %s \n Y/N? ' % s) return d[c] def get_env(): domain = input("Input domain : ") usr = getpass.getuser() loc = os.getcwd()+"/"+domain # cmd = "mkdir "+domain # print(cmd) # subprocess.call(['sudo', 'mkdir', domain]) if not os.path.exists(loc): try: os.makedirs(loc) except: if accept_warning("You have no privilege of current location Would you like to own it?"): subprocess.call(['sudo', 'chown', '-R',usr+":"+usr,'./']) os.makedirs(loc) else: print("You have no previlege!!!") os._exit(0) return domain,usr,loc def add_env(**args): env = os.path.dirname(os.path.dirname(loc)) print(args) with open(env+'/.env', 'a') as file: for i,j in args.items(): tmp = i+'='+j print(tmp) file.write(tmp) file.close() return False def ssl_file_gen(domain,usr,loc): if accept_warning("Do you have ssl cert?"): return key = input("Cloudflare API toke : ") email = input("Cloudflare email : ") with open(SSL, "r") as fh: fds = fh.read() fcd = re.sub(r'{{domain}}', '.'.join(domain.split('.')[-2:]), fds) fce = re.sub(r'{{EMAIL}}', email, fcd) res = re.sub(r'{{KEY}}', key, fce) with open(domain+"/"+domain+'.sh', 'w') as ssl_sh: ssl_sh.write(res) ssl_sh.close() fh.close() # with open(domain+'/start.sh', 'a') as file: # cmd = "sudo mkdir /etc/nginx/certs" # file.write(cmd) # file.close() # if not os.path.exists("/etc/nginx/certs"): # os.makedirs("/etc/nginx/certs") # os.chmod(domain+'.sh', 0o700) # # os.system(domain+'.sh') # # os.remove(domain+'.sh') print("-0- SSL script: {} create successfully".format(domain+"/"+domain+'.sh')) def docker_file_gen(domain,usr,loc): if accept_warning("Do you have database already?"): return with open(DOCKER, "r") as fh: fds = fh.read() fcd = re.sub(r'{{domain}}', domain, fds) fcu = re.sub(r'{{usr}}', usr, fcd) res = re.sub(r'{{passwd}}', loc+domain+usr, fcu) with open(domain+"/"+domain+'.run', 'w') as docker_run: docker_run.write(res) docker_run.close() fh.close() # os.chmod(domain+'.run', 0o700) # os.system(domain+'.run') # os.remove(domain+'.run') #add DATABASE_URL into .env # conf = "postgres://{}:{}@172.17.0.1:5432/{}".format(usr, loc+domain+usr, domain) # add_env(DATABASE_URL=conf) print("-1- Docker config script: {} create successfully".format(domain+"/"+domain+'.run')) # print("-1- Enviroment file : {} add successfully".format("app/.env")) def uwsgi_file_gen(domain,usr,loc): env = os.path.dirname(os.path.dirname(loc)) with open(uWSGI, 'r') as fh: fds = fh.read() fce = re.sub(r'{{env}}',env+"/"+domain,fds) fcu = re.sub(r'{{usr}}',usr,fce) res = re.sub(r'{{loc}}',loc,fcu) with open(domain+"/"+domain+'.ini', 'w') as uwsgi_ini: uwsgi_ini.write(res) uwsgi_ini.close() fh.close() print("-2- uwsgi config file: {} create successfully".format(domain+"/"+domain+'.ini')) #static def nginx_file_gen(domain,usr,loc): with open(NGINX, "r") as fh: fds = fh.read() fcd = re.sub(r'{{domain}}', domain, fds) res = re.sub(r'{{loc}}', loc, fcd) with open(domain+"/"+domain+'.conf', 'w') as nginx_conf: nginx_conf.write(res) nginx_conf.close() fh.close() print("-3- Nginx config file: {} create successfully".format(domain+"/"+domain+'.conf')) #static def service_file_gen(domain,usr,loc): with open(SERVICE, "r") as fh: fds = fh.read() fcd = re.sub(r'{{domain}}', domain, fds) fcu = re.sub(r'{{usr}}', usr, fcd) res = re.sub(r'{{loc}}', loc, fcu) with open(domain+"/"+domain+'.service', 'w') as confservice: confservice.write(res) confservice.close() #reload deamon fh.close() print("-4- Systemd service file : {} create successfully".format(domain+"/"+domain+'.service')) def config_files_gen(domain,usr,loc): ssl_file_gen(domain,usr,loc) docker_file_gen(domain,usr,loc) uwsgi_file_gen(domain,usr,loc) nginx_file_gen(domain,usr,loc) service_file_gen(domain,usr,loc) def script_files_gen(domain,usr,loc): cmd =[] files = loc+"/"+domain c = None if os.path.exists(files+'.sh'): c = "sudo mkdir /etc/nginx/certs" c1 = "sudo "+files+'.sh' cmd.append(c) cmd.append(c1) if os.path.exists(files+'.run'): c = "sudo "+files+'.run' cmd.append(c) if os.path.exists(files+'.conf'): c = "sudo cp "+files+'.conf '+ NGINX_CONF1 c1 = "sudo cp "+files+'.conf '+ NGINX_CONF2 c2 = "sudo nginx -s reload" cmd.append(c) cmd.append(c1) cmd.append(c2) if os.path.exists(files+'.service'): c = "sudo cp "+files+'.service ' + SYSTEMD_CONF c1 = "sudo systemctl enable "+domain+'.service' c2 = "sudo systemctl start "+domain+'.service' cmd.append(c) cmd.append(c1) cmd.append(c2) with open(loc+'/start.sh', 'w') as file: for c in cmd: file.write(c+"\n") file.close() def script_files_run(domain, usr, loc): subprocess.call(['sudo', loc+'/start.sh']) if __name__ == '__main__': domain,usr,loc = get_env() config_files_gen(domain, usr, loc) # script_files_gen(domain, usr, loc) # script_files_run(domain, usr, loc) # add_uwsgi(usr,loc) # add_nginx(loc) # add_service(usr,loc)
import arm if not arm.is_reload(__name__): arm.enable_reload(__name__) redraw_ui = False target = 'krom' last_target = 'krom' export_gapi = '' last_resx = 0 last_resy = 0 last_scene = '' last_world_defs = '' proc_play = None proc_build = None proc_publish_build = None mod_scripts = [] is_export = False is_play = False is_publish = False
"""Amazon SQS queue implementation.""" from __future__ import annotations from vine import transform from .message import AsyncMessage _all__ = ['AsyncQueue'] def list_first(rs): """Get the first item in a list, or None if list empty.""" return rs[0] if len(rs) == 1 else None class AsyncQueue: """Async SQS Queue.""" def __init__(self, connection=None, url=None, message_class=AsyncMessage): self.connection = connection self.url = url self.message_class = message_class self.visibility_timeout = None def _NA(self, *args, **kwargs): raise NotImplementedError() count_slow = dump = save_to_file = save_to_filename = save = \ save_to_s3 = load_from_s3 = load_from_file = load_from_filename = \ load = clear = _NA def get_attributes(self, attributes='All', callback=None): return self.connection.get_queue_attributes( self, attributes, callback, ) def set_attribute(self, attribute, value, callback=None): return self.connection.set_queue_attribute( self, attribute, value, callback, ) def get_timeout(self, callback=None, _attr='VisibilityTimeout'): return self.get_attributes( _attr, transform( self._coerce_field_value, callback, _attr, int, ), ) def _coerce_field_value(self, key, type, response): return type(response[key]) def set_timeout(self, visibility_timeout, callback=None): return self.set_attribute( 'VisibilityTimeout', visibility_timeout, transform( self._on_timeout_set, callback, ) ) def _on_timeout_set(self, visibility_timeout): if visibility_timeout: self.visibility_timeout = visibility_timeout return self.visibility_timeout def add_permission(self, label, aws_account_id, action_name, callback=None): return self.connection.add_permission( self, label, aws_account_id, action_name, callback, ) def remove_permission(self, label, callback=None): return self.connection.remove_permission(self, label, callback) def read(self, visibility_timeout=None, wait_time_seconds=None, callback=None): return self.get_messages( 1, visibility_timeout, wait_time_seconds=wait_time_seconds, callback=transform(list_first, callback), ) def write(self, message, delay_seconds=None, callback=None): return self.connection.send_message( self, message.get_body_encoded(), delay_seconds, callback=transform(self._on_message_sent, callback, message), ) def write_batch(self, messages, callback=None): return self.connection.send_message_batch( self, messages, callback=callback, ) def _on_message_sent(self, orig_message, new_message): orig_message.id = new_message.id orig_message.md5 = new_message.md5 return new_message def get_messages(self, num_messages=1, visibility_timeout=None, attributes=None, wait_time_seconds=None, callback=None): return self.connection.receive_message( self, number_messages=num_messages, visibility_timeout=visibility_timeout, attributes=attributes, wait_time_seconds=wait_time_seconds, callback=callback, ) def delete_message(self, message, callback=None): return self.connection.delete_message(self, message, callback) def delete_message_batch(self, messages, callback=None): return self.connection.delete_message_batch( self, messages, callback=callback, ) def change_message_visibility_batch(self, messages, callback=None): return self.connection.change_message_visibility_batch( self, messages, callback=callback, ) def delete(self, callback=None): return self.connection.delete_queue(self, callback=callback) def count(self, page_size=10, vtimeout=10, callback=None, _attr='ApproximateNumberOfMessages'): return self.get_attributes( _attr, callback=transform( self._coerce_field_value, callback, _attr, int, ), )
# coding=utf-8 # Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals from setuptools import setup, find_packages setup( name='ctypes_third_party_test', version='0.0.1', packages=find_packages(), # Declare one shared lib at the top-level directory (denoted by ''). data_files=[('', ['libasdf-cpp_ctypes-with-third-party.so'])], )
from celery import shared_task from django.conf import settings from .models import DiscourseUser, DiscourseGroup from .request import DiscourseRequest from http.client import responses import logging logger = logging.getLogger(__name__) @shared_task def sync_discourse_users(): for discourse_user in DiscourseUser.objects.all(): sync_discourse_user_groups.apply_async( args=[discourse_user.external_id]) @shared_task def sync_discourse_groups(): discourse_request = DiscourseRequest.get_instance() response = discourse_request.get_groups() if responses[response.status_code] != "OK": logger.error("Error calling Discourse API: %s" % response.json()) return discourse_remote_groups = response.json()['groups'] discourse_local_groups = DiscourseGroup.objects.all() discourse_remote_group_ids = set([group['id'] for group in discourse_remote_groups]) discourse_local_group_ids = set(DiscourseGroup.objects.all( ).values_list('external_id', flat=True)) discourse_group_ids_to_add = discourse_remote_group_ids - discourse_local_group_ids discourse_group_ids_to_remove = discourse_local_group_ids - discourse_remote_group_ids for discourse_group in discourse_remote_groups: if discourse_group['id'] in discourse_group_ids_to_add: local_discourse_group = DiscourseGroup.objects.get_or_create( external_id=discourse_group['id'])[0] local_discourse_group.name = discourse_group['name'] local_discourse_group.save() for discourse_group_id in discourse_group_ids_to_remove: DiscourseGroup.objects.get(external_id=discourse_group_id).delete() @shared_task def sync_discourse_user_groups(discourse_user_id): discourse_request = DiscourseRequest.get_instance() discourse_user = DiscourseUser.objects.get(external_id=discourse_user_id) response = discourse_request.get_discourse_user(discourse_user_id) if responses[response.status_code] != "OK": logger.error("Error calling Discourse API: %s" % response.json()) discourse_remote_user_groups = response.json()['user']['groups'] discourse_local_user_groups = discourse_user.groups.all() discourse_remote_user_group_ids = set([group['id'] for group in discourse_remote_user_groups]) discourse_local_user_group_ids = set( discourse_user.groups.all().values_list('external_id', flat=True)) # test value DJANGO_DISCOURSE_REMOTE_PRIORITY in settings, but make it optional try: if settings.DJANGO_DISCOURSE_REMOTE_PRIORITY: remote_priority = True else: remote_priority = False except AttributeError: remote_priority = False # build lists based on priority if remote_priority: discourse_groups_to_add = discourse_remote_user_group_ids - \ discourse_local_user_group_ids discourse_groups_to_remove = discourse_local_user_group_ids - \ discourse_remote_user_group_ids else: discourse_groups_to_add = discourse_local_user_group_ids - \ discourse_remote_user_group_ids discourse_groups_to_remove = discourse_remote_user_group_ids - \ discourse_local_user_group_ids # action based on priority if remote_priority: for discourse_group_id in discourse_groups_to_add: discourse_group = DiscourseGroup.objects.get( external_id=discourse_group_id) discourse_user.groups.add( DiscourseGroup.get_or_create(external_id=discourse_group_id)) if discourse_group.group and discourse_group.group not in discourse_user.user.groups.all(): discourse_user.user.groups.add(discourse_group.group) for discourse_group_id in discourse_groups_to_remove: discourse_group = DiscourseGroup.objects.get( external_id=discourse_group_id) discourse_user.groups.remove( DiscourseGroup.get_or_create(external_id=discourse_group_id)) if discourse_group.group and discourse_group.group in discourse_user.user.groups.all(): discourse_user.user.groups.remove(discourse_group.group) else: for discourse_group_id in discourse_groups_to_add: add_discourse_group_to_discourse_user.apply_async( args=[discourse_group_id, discourse_user.external_id]) for discourse_group_id in discourse_groups_to_remove: remove_discourse_group_from_discourse_user.apply_async( args=[discourse_group_id, discourse_user.external_id]) @shared_task def add_discourse_group_to_discourse_user(discourse_group_id, discourse_user_id): discourse_request = DiscourseRequest.get_instance() discourse_user = DiscourseUser.objects.get(external_id=discourse_user_id) discourse_group = DiscourseGroup.objects.get_or_create( external_id=discourse_group_id)[0] response = discourse_request.add_group_to_discourse_user( discourse_group_id, discourse_user.username) if responses[response.status_code] == "OK": discourse_user.groups.add(discourse_group) if discourse_group.group and discourse_group.group not in discourse_user.user.groups.all(): discourse_user.user.groups.add(discourse_group.group) elif responses[response.status_code] == "Too Many Requests": logger.warning( "Ratelimit calling Discourse API, retrying: %s" % response.json()) add_discourse_group_to_discourse_user.apply_async( args=[discourse_group_id, discourse_user_id], countdown=600) else: logger.error("Failed to call Discourse API: %s" % response.json()) @shared_task def remove_discourse_group_from_discourse_user(discourse_group_id, discourse_user_id): discourse_request = DiscourseRequest.get_instance() discourse_user = DiscourseUser.objects.get(external_id=discourse_user_id) discourse_group = DiscourseGroup.objects.get_or_create( external_id=discourse_group_id)[0] response = discourse_request.remove_group_from_discourse_user( discourse_group_id, discourse_user.username) if responses[response.status_code] == "OK": discourse_user.groups.remove(discourse_group) if discourse_group.group and discourse_group.group in discourse_user.user.groups.all(): discourse_user.user.groups.remove(discourse_group.group) elif responses[response.status_code] == "Too Many Requests": logger.warning( "Ratelimit calling Discourse API, retrying: %s" % response.json()) remove_discourse_group_from_discourse_user.apply_async( args=[discourse_group_id, discourse_user_id], countdown=600) else: logger.error("Failed to call Discourse API: %s" % response.json())
import numpy as np from .base import IndependenceTest from ._utils import _CheckInputs from . import Dcorr from .._utils import gaussian, check_xy_distmat, chi2_approx class Hsic(IndependenceTest): r""" Class for calculating the Hsic test statistic and p-value. Hsic is a kernel based independence test and is a way to measure multivariate nonlinear associations given a specified kernel [#1Hsic]_. The default choice is the Gaussian kernel, which uses the median distance as the bandwidth, which is a characteristic kernel that guarantees that Hsic is a consistent test [#1Hsic]_ [#2Hsic]_. Parameters ---------- compute_kernel : callable(), optional (default: rbf kernel) A function that computes the similarity among the samples within each data matrix. Set to `None` if `x` and `y` are already similarity matrices. To call a custom function, either create the distance matrix before-hand or create a function of the form ``compute_kernel(x)`` where `x` is the data matrix for which pairwise similarties are calculated. bias : bool (default: False) Whether or not to use the biased or unbiased test statistics. See Also -------- Dcorr : Distance correlation test statistic and p-value. HHG : Heller Heller Gorfine test statistic and p-value. Notes ----- The statistic can be derived as follows [#1Hsic]_: Let :math:`x` and :math:`y` be :math:`(n, p)` samples of random variables :math:`X` and :math:`Y`. Let :math:`K^x` be the :math:`n \times n` kernel similarity matrix of :math:`x` and :math:`D^y` be the :math:`n \times n` be the kernel similarity matrix of :math:`y`. The Hsic statistic is, .. math:: \mathrm{Hsic}_n (x, y) = \frac{1}{n^2} \mathrm{tr} (K^x H K^y H) where :math:`\mathrm{tr} (\cdot)` is the trace operator and :math:`H` is defined as :math:`H = I - (1/n) J` where :math:`I` is the identity matrix and :math:`J` is a matrix of ones. The normalized version of Hsic [#1Dcor]_ and is .. math:: \mathrm{Hsic}_n (x, y) = \frac{\mathrm{Hsic}_n (x, y)} {\sqrt{\mathrm{Hsic}_n (x, x) \mathrm{Hsic}_n (y, y)}} This version of Hsic is defined using the following centering process where :math:`\mathbb{1}(\cdot)` is the indicator function: .. math:: C^x_{ij} = \left[ D^x_{ij} - \frac{1}{n-2} \sum_{t=1}^n D^x_{it} - \frac{1}{n-2} \sum_{s=1}^n D^x_{sj} + \frac{1}{(n-1) (n-2)} \sum_{s,t=1}^n D^x_{st} \right] \mathbb{1}_{i \neq j} and similarly for :math:`C^y`. Then, this unbiased Dcorr is, .. math:: \mathrm{UHsic}_n (x, y) = \frac{1}{n (n-3)} \mathrm{tr} (C^x C^y) The normalized version of this covariance [#2Dcor]_ is .. math:: \mathrm{UHsic}_n (x, y) = \frac{\mathrm{UHsic}_n (x, y)} {\sqrt{\mathrm{UHsic}_n (x, x) \mathrm{UHsic}_n (y, y)}} References ---------- .. [#1Hsic] Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2008). A kernel statistical test of independence. In *Advances in neural information processing systems* (pp. 585-592). .. [#2Hsic] Gretton, A., & GyĂśrfi, L. (2010). Consistent nonparametric tests of independence. *Journal of Machine Learning Research*, 11(Apr), 1391-1423. """ def __init__(self, compute_kernel=gaussian, bias=False): # set statistic and p-value self.compute_kernel = compute_kernel self.is_kernel = False if not compute_kernel: self.is_kernel = True self.bias = bias IndependenceTest.__init__(self, compute_distance=compute_kernel) def _statistic(self, x, y): r""" Helper function that calculates the Hsic test statistic. Parameters ---------- x, y : ndarray Input data matrices. `x` and `y` must have the same number of samples. That is, the shapes must be `(n, p)` and `(n, q)` where `n` is the number of samples and `p` and `q` are the number of dimensions. Alternatively, `x` and `y` can be distance matrices, where the shapes must both be `(n, n)`. Returns ------- stat : float The computed Hsic statistic. """ distx = x disty = y if not self.is_kernel: kernx = self.compute_kernel(x) kerny = self.compute_kernel(y) distx = 1 - kernx / np.max(kernx) disty = 1 - kerny / np.max(kerny) dcorr = Dcorr(compute_distance=None, bias=self.bias) stat = dcorr._statistic(distx, disty) self.stat = stat return stat def test(self, x, y, reps=1000, workers=1, auto=True): r""" Calculates the Hsic test statistic and p-value. Parameters ---------- x, y : ndarray Input data matrices. `x` and `y` must have the same number of samples. That is, the shapes must be `(n, p)` and `(n, q)` where `n` is the number of samples and `p` and `q` are the number of dimensions. Alternatively, `x` and `y` can be distance matrices, where the shapes must both be `(n, n)`. reps : int, optional (default: 1000) The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value. workers : int, optional (default: 1) The number of cores to parallelize the p-value computation over. Supply -1 to use all cores available to the Process. auto : bool (default: True) Automatically uses fast approximation when sample size and size of array is greater than 20. If True, and sample size is greater than 20, a fast chi2 approximation will be run. Parameters ``reps`` and ``workers`` are irrelevant in this case. Returns ------- stat : float The computed Hsic statistic. pvalue : float The computed Hsic p-value. Examples -------- >>> import numpy as np >>> from hyppo.independence import Hsic >>> x = np.arange(7) >>> y = x >>> stat, pvalue = Hsic().test(x, y) >>> '%.1f, %.2f' % (stat, pvalue) '1.0, 0.00' The number of replications can give p-values with higher confidence (greater alpha levels). >>> import numpy as np >>> from hyppo.independence import Hsic >>> x = np.arange(7) >>> y = x >>> stat, pvalue = Hsic().test(x, y, reps=10000) >>> '%.1f, %.2f' % (stat, pvalue) '1.0, 0.00' In addition, the inputs can be distance matrices. Using this is the, same as before, except the ``compute_kernel`` parameter must be set to ``None``. >>> import numpy as np >>> from hyppo.independence import Hsic >>> x = np.ones((10, 10)) - np.identity(10) >>> y = 2 * x >>> hsic = Hsic(compute_kernel=None) >>> stat, pvalue = hsic.test(x, y) >>> '%.1f, %.2f' % (stat, pvalue) '0.0, 1.00' """ check_input = _CheckInputs( x, y, reps=reps, compute_distance=self.compute_kernel ) x, y = check_input() if self.is_kernel: check_xy_distmat(x, y) if auto and x.shape[0] > 20: stat, pvalue = chi2_approx(self._statistic, x, y) self.stat = stat self.pvalue = pvalue self.null_dist = None else: if not self.is_kernel: x = self.compute_kernel(x, workers=workers) y = self.compute_kernel(y, workers=workers) self.is_kernel = True stat, pvalue = super(Hsic, self).test(x, y, reps, workers) return stat, pvalue
# CUPS Cloudprint - Print via Google Cloud Print # Copyright (C) 2011 Simon Cadman # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import json import sys sys.path.insert(0, ".") from cloudprintrequestor import CloudPrintRequestor class MockRequestor(CloudPrintRequestor): printers = [] def mockSearch(self, path, headers, data, boundary): return json.dumps({'printers': self.printers}) def mockSubmit(self, path, headers, data, boundary): if 'FAIL PAGE' in data: result = { 'success': False, 'message': 'FAIL PAGE was in message'} elif 'TEST PAGE WITH EXCEPTION' in data: raise Exception("Test exception") else: result = {'success': True} return json.dumps(result) def mockPrinter(self, path, headers, data, boundary): printername = path.split('=')[1].split('&')[0] foundPrinter = None for printer in self.printers: if printer['id'] == printername: foundPrinter = printer break if foundPrinter is None: return json.dumps(None) result = {'success': True, 'printers': [foundPrinter]} return json.dumps(result) def doRequest(self, path, headers=None, data=None, boundary=None): if (path.startswith('search?')): return json.loads(self.mockSearch(path, headers, data, boundary)) if (path.startswith('printer?')): return json.loads(self.mockPrinter(path, headers, data, boundary)) if (path.startswith('submit')): return json.loads(self.mockSubmit(path, headers, data, boundary)) return None
from __future__ import annotations import logging from typing import Dict, Iterator, List, Optional, Tuple from botovod.exceptions import HandlerNotPassed from .types import Attachment, Chat, Keyboard, Location, Message class Agent: def __init__(self): self.botovod = None self.running = False self.name = None self.logger = logging.getLogger(__name__) def __repr__(self) -> str: return self.__class__.__name__ def listen(self, headers: Dict[str, str], body: str, **scope) -> Tuple[int, Dict[str, str], str]: self.logger.debug("Get request") messages = self.parser(headers, body) for chat, message in messages: follower = None if self.botovod.dbdriver: follower = self.botovod.dbdriver.get_follower(self, chat) if not follower: follower = self.botovod.dbdriver.add_follower(self, chat) for handler in self.botovod.handlers: try: handler(self, chat, message, follower, **scope) except HandlerNotPassed: continue break return self.responser(headers, body) async def a_listen(self, headers: Dict[str, str], body: str, **scope) -> Tuple[int, Dict[str, str], str]: self.logger.debug("Get updates") messages = await self.a_parser(headers, body) for chat, message in messages: if self.botovod.dbdriver is not None: follower = await self.botovod.dbdriver.a_get_follower(self, chat) if follower is None: follower = await self.botovod.dbdriver.a_add_follower(self, chat) else: follower = None for handler in self.botovod.handlers: try: await handler(self, chat, message, follower, **scope) except HandlerNotPassed: continue break return await self.a_responser(headers, body) def start(self): raise NotImplementedError async def a_start(self): raise NotImplementedError def stop(self): raise NotImplementedError async def a_stop(self): raise NotImplementedError def parser(self, headers: Dict[str, str], body: str) -> List[Tuple[Chat, Message]]: raise NotImplementedError async def a_parser(self, headers: Dict[str, str], body: str) -> List[Tuple[Chat, Message]]: raise NotImplementedError def responser(self, headers: Dict[str, str], body: str) -> Tuple[int, Dict[str, str], str]: raise NotImplementedError async def a_responser(self, headers: Dict[str, str], body: str) -> Tuple[int, Dict[str, str], str]: raise NotImplementedError def send_message(self, chat: Chat, text: Optional[str] = None, images: Iterator[Attachment] = (), audios: Iterator[Attachment] = (), documents: Iterator[Attachment] = (), videos: Iterator[Attachment] = (), locations: Iterator[Location] = (), keyboard: Optional[Keyboard] = None, **raw): raise NotImplementedError async def a_send_message(self, chat: Chat, text: Optional[str] = None, images: Iterator[Attachment] = (), audios: Iterator[Attachment] = (), documents: Iterator[Attachment] = (), videos: Iterator[Attachment] = (), locations: Iterator[Location] = (), keyboard: Optional[Keyboard] = None, **raw): raise NotImplementedError
import re from time import sleep from timeUtils import clock, elapsed from ioUtils import saveFile, getFile from fsUtils import setDir, isDir, mkDir, setFile, isFile, setSubFile from fileUtils import getBaseFilename from searchUtils import findSubPatternExt, findPatternExt, findExt from strUtils import convertCurrency from webUtils import getWebData, getHTML from movieDB import movieDB from os import getcwd import operator ############################################################################################################################## # Box Office ############################################################################################################################## class wikipedia(movieDB): def __init__(self, basedir=None): self.name = "wikipedia" movieDB.__init__(self, dbdir=self.name) ########################################################################################################################### # Get Box Office Weekend Files ########################################################################################################################### def downloadWikipediaYearlyData(self, year, outdir, debug=False): base = "https://en.wikipedia.org/wiki/" dmap = {} val = str(int(year) - 1927)+"th_Academy_Awards" val = val.replace("1th_", "1st_") val = val.replace("2th_", "2nd_") val = val.replace("3th_", "3rd_") val = val.replace("11st_", "11th_") val = val.replace("12nd_", "12th_") val = val.replace("13rd_", "13th_") try: url = base+val except: print("Could not create url for",year) return savename = setFile(outdir, str(year)+".p") if isFile(savename): return if debug: print("Downloading {0}".format(url)) getWebData(base=url, savename=savename, useSafari=False) sleep(1) def getWikipediaYearlyData(self, startYear = 1934, endYear = 2017, debug=False): outdir = self.getDataDir() if debug: print("Data Directory: {0}".format(outdir)) if not isDir(outdir): mkDir(outdir) if startYear < 1934: raise ValueError("Must start at or after 1934") years = range(int(startYear), int(endYear)+1) for year in years: self.downloadWikipediaYearlyData(year, outdir, debug) ########################################################################################################################### # Parse Box Office Weekend Files ########################################################################################################################### def reorderWikipediaOscarData(self, text, title): reorders = ["Best Director", "Best Actress", "Best Actor", "Best Supporting Actor", "Best Supporting Actress"] for val in reorders: if title.find(val) != -1: if isinstance(text, list): if len(text) >= 2: text = [text[1], text[0]] return text elif len(text) == 1: return text else: raise ValueError("Error reordering {0}".format(text)) return text return text def parseWikipediaOscarDataSpecial(self, ifile, debug = True): print("HI: {0}".format(ifile)) htmldata = getFile(ifile) bsdata = getHTML(htmldata) data = {} done = False tables = bsdata.findAll("table", {"class": "wikitable"}) if debug: print(" Found {0} tables".format(len(tables))) for table in tables: if done: if debug: print(" Breaking...") break ## Get <th> data ths = table.findAll("th") thData = [x.find('a') for x in ths] titles = [x.string for x in thData if x is not None] if len(titles) == 0: continue ## Get <tr> data trData = [] trs = table.findAll("tr") for tr in trs: tds = tr.findAll("td") for td in tds: ul = td.find("ul") if ul is not None: trData.append(ul) print(len(titles)) print(len(trData)) if len(titles) != len(trData): print("Can not process this data!") print("Titles: {0}: {1}".format(len(titles), titles)) print("Data: {0}".format(len(trData))) return None ## Merge titles and data for title,titleData in zip(titles,trData): results = [] lis = titleData.findAll("li") if debug: print(" Found {0} entries".format(len(lis))) for k,li in enumerate(lis): text = [] if k == 0: for lival in li.findAll("b"): for ref in lival.findAll("a"): text.append(ref.string) else: for ref in li.findAll("a"): text.append(ref.string) if len(text) == 0: continue if len(text) > 2: text = [text[0], ", ".join(text[1:])] text = self.reorderWikipediaOscarData(text, title) results.append(text) for k,result in enumerate(results): if isinstance(result, list): if len(result) == 1: results[k] = result[0] data[title] = {} data[title]["Winner"] = results[0] data[title]["Nominees"] = results[1:] if debug: print(" Winner :",data[title]["Winner"]) print(" Nominees:",data[title]["Nominees"]) print("") return data def parseWikipediaOscarData(self, ifile, debug = False): htmldata = getFile(ifile) bsdata = getHTML(htmldata) data = {} done = False tables = bsdata.findAll("table", {"class": "wikitable"}) if debug: print(" Found {0} tables".format(len(tables))) for table in tables: if done: if debug: print(" Breaking...") break trs = table.findAll("tr") if debug: print(" Found {0} rows".format(len(trs))) for i,tr in enumerate(trs): if done: if debug: print(" Breaking...") break tds = tr.findAll("td") if debug: print(" Found {0} cols".format(len(tds))) for j,td in enumerate(tds): div = td.find("div") if div == None: continue raise() ref = div.find("a") title = ref.string data[title] = {} if debug: print(" Found {0}".format(title)) if data.get(title): done = True if debug: print(" Already know about {0}".format(title)) print(" Breaking...") break results = [] ul = td.find("ul") lis = ul.findAll("li") #if debug: # print(" Found {0} entries".format(len(lis))) for k,li in enumerate(lis): text = [] if k == 0: for lival in li.findAll("b"): for ref in lival.findAll("a"): text.append(ref.string) else: for ref in li.findAll("a"): text.append(ref.string) if len(text) == 0: continue if len(text) > 2: text = [text[0], ", ".join(text[1:])] text = self.reorderWikipediaOscarData(text, title) results.append(text) if debug: print("Summary\n {0}: {1}".format(title, results)) for k,result in enumerate(results): if isinstance(result, list): if len(result) == 1: results[k] = result[0] data[title]["Winner"] = results[0] data[title]["Nominees"] = results[1:] if debug: print(" Winner :",data[title]["Winner"]) print(" Nominees:",data[title]["Nominees"]) print("") return data def processWikipediaYearlyData(self, procYear = None, debug=False): outdir = self.getDataDir() if procYear == None: files = findExt(outdir, ext=".p") else: files = findPatternExt(outdir, pattern=str(procYear), ext=".p") from collections import OrderedDict movies = OrderedDict() for ifile in files: if debug: print("Processing {0}".format(ifile)) year = getBaseFilename(ifile) #if year == "1985": continue htmldata = getFile(ifile) bsdata = getHTML(htmldata) results = self.parseWikipediaOscarData(ifile, debug=False) if len(results) == 0: results = self.parseWikipediaOscarDataSpecial(ifile, debug=debug) if len(results) == 0: raise ValueError("No results for {0}".format(ifile)) for k,v in results.items(): print("====>",year,'\t',k) print(" Winner :",results[k]["Winner"]) if debug: print(" Nominees:",results[k]["Nominees"]) print("") savename = setFile(self.getResultsDir(), "{0}.json".format(year)) print("Saving {0} wikipedia oscar data to {1}".format(year, savename)) saveFile(savename, results) #yamldata.saveYaml(savename, movies)
#!/usr/bin/env python3 from setuptools import setup # from distutils.core import setup with open('README.md') as f: long_description = f.read() setup( name = 'py-process', packages = ['py_process'], version = '0.0.1', description = 'engine processs', long_description=long_description, long_description_content_type='text/markdown', # This is important! url = 'https://github.com/FlavioLionelRita/py-process', # use the URL to the github repo download_url = 'https://github.com/FlavioLionelRita/py-process/tarball/0.0.1', keywords = ['process', 'business process', 'bpm', 'bpmn','engine' ], classifiers = [], author = 'Flavio Lionel Rita', author_email = 'flaviolrita@hotmail.com' )
import praw import config import json import argparse import datetime reddit = praw.Reddit(client_id = config.client_id, client_secret = config.client_secret, username = config.username, password = config.password, user_agent = config.user_agent) def get_parser(): parser = argparse.ArgumentParser(description="Reddit Downloader") parser.add_argument("-u", "--user", dest="user", help="User to retrieve data from", default=None) parser.add_argument("-l", "--limit", dest="limit", help="Pull N number of submissions", default=None) parser.add_argument("-ul", "--userlist", dest="userlist", help="List of users to pull information from", default=None) return parser def prawAPI(user, lt): print("Collecting {} submissions".format(user)) u = reddit.redditor(user) com = reddit.redditor(user).comments.new(limit=lt) sub = reddit.redditor(user).submissions.new(limit=lt) redditData = {} redditData[str(user)] = [{}] redditData[str(user)][0]['0_comments'] = [{}] redditData[str(user)][0]['1_submissions'] = [{}] comCount=0 subCount=0 for comment in com: comCount+=1 if comCount%10==0: print("Found: {} Comments".format(comCount)) redditData[str(user)][0]['0_comments'][0][str(comment.id)] = [{}] redditData[str(user)][0]['0_comments'][0][str(comment.id)][0]['0_Comment Submission'] = comment.submission.title redditData[str(user)][0]['0_comments'][0][str(comment.id)][0]['1_Text'] = ''.join((comment.body)).encode('utf-8').strip() redditData[str(user)][0]['0_comments'][0][str(comment.id)][0]['2_Subreddit'] = comment.subreddit.display_name print("Found: {} Comments Total".format(comCount)) for submission in sub: subCount+=1 if subCount%10==0: print("Found: {} Submissions".format(subCount)) redditData[str(user)][0]['1_submissions'][0][str(submission)] = [{}] redditData[str(user)][0]['1_submissions'][0][str(submission)][0]['0_Title'] = ''.join((submission.title)).encode('utf-8').strip() redditData[str(user)][0]['1_submissions'][0][str(submission)][0]['1_Text'] = ''.join((comment.body)).encode('utf-8').strip() redditData[str(user)][0]['1_submissions'][0][str(submission)][0]['2_Subreddit'] = submission.subreddit.display_name print("Found: {} Submissions".format(subCount)) print print("Downloaded {} comments from user {}.".format(comCount, user)) print("Downloaded {} submissions from user {}.".format(subCount, user)) with open('User_Hold/reddit_'+user+'.json', 'w') as o: o.write(json.dumps(redditData, sort_keys=True)) if __name__ == '__main__': parser = get_parser() args = parser.parse_args() limit = args.limit if limit != None: limit = int(limit) if args.user == None: print("Error: You have not specified a user(s) to retrieve submissions from.") #users = args.user.split(',') if args.userlist != None: with open(args.userlist, "r") as inputF: d = inputF.readlines() for user in d: prawAPI(user.strip(),limit) else: users = args.user.split(',') for s in users: prawAPI(s, limit)
#!/usr/bin/env python import os import sys root_dir = os.path.normpath(os.path.abspath(os.path.dirname(__file__))) os.chdir(root_dir) #using virtualenv's activate_this.py to reorder sys.path activate_this = os.path.join(root_dir, 'bin', 'activate_this.py') execfile(activate_this, dict(__file__=activate_this)) if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "gazetteer.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from CauldronHost import * from CauldronGroup import * from CauldronGroupHostAssoc import * from Base import Base from flask import Flask from flask import jsonify from flask_marshmallow import Marshmallow from Base import ma from Base import app def createEngine(): return create_engine('sqlite:///:memory:', echo=True) def createSessionMaker(engine): return sessionmaker(bind=engine) engine = createEngine() SessionMaker = createSessionMaker(engine) @app.route("/createSchema") def createSchema(): createDBSchema(engine) return constructOKStatus() @app.route("/host/<host>/<group>", methods=["DELETE"]) @app.route("/host/<host>", defaults = {'group' : None}, methods=["DELETE"]) def removeHost(host, group): session = SessionMaker() removeHostFromBase(session, hostName = host, groupName = group) session.commit() return constructOKStatus() def removeHostFromBase(session, hostName, groupName = None): return "Not yet implemented" @app.route("/host/<host>/<group>", methods=["POST"]) @app.route("/host/<host>", defaults = {'group' : None}, methods=["POST"]) def addHost(host, group): session = SessionMaker() addHostToBase(session, hostName = host, groupName = group) session.commit() return constructOKStatus() @app.route("/group/<group>", methods = ["POST"]) def addGroup(group): session = SessionMaker() addHostToBase(session, groupName = group); session.commit() return constructOKStatus() @app.route("/host", defaults = {'group' : None}, methods=["GET"]) @app.route("/host/<group>", methods=["GET"]) def getHosts(group): session = SessionMaker() if group is not None: result = session.query(CauldronHost).all() else: result = session.query(CauldronHost).all() session.commit() cauldronHostsSchema = CauldronHostSchema(many = True) dump = cauldronHostsSchema.dump(result) return jsonify(dump.data) def createDBSchema(engine): Base.metadata.create_all(engine); def getSession(sessionMaker): return sessionMaker(); def addHostToBase(session, hostName = None, groupName = None): if hostName is None and groupName is not None: group = CauldronGroup(name = groupName) session.add(group) elif hostName is not None and groupName is None: host = CauldronHost(ip = hostName) session.add(host) elif hostName is not None and groupName is not None: group = session.query(CauldronGroup).filter_by(name = groupName).first() if(group is None): addHostToBase(session, groupName = groupName) return addHostToBase(session, hostName, groupName) host = session.query(CauldronHost).filter_by(ip = hostName).first() if(host is None): addHostToBase(session, hostName = hostName) return addHostToBase(session, hostName, groupName) assoc = CauldronGroupHostAssoc() assoc.group = group assoc.host = host host.groups.append(assoc) session.add(host) def constructOKStatus(): return '{ "status" : "OK"}' if __name__ == "__main__": app.run(host='0.0.0.0', debug=True, port=7777)
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="atlas_horizon", version="0.1", author="Ihor Kyrylenko", author_email="igornergyone@gmail.com", description="A small program to work with .ATL files and making queries to HORIZON system", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/pypa/atlas", packages=setuptools.find_packages(where='src'), package_dir={ '': 'src', }, # include_package_data=True, package_data={ "": ["*.dat", "*.txt"], }, scripts=["run_atlas.py"], py_modules=["MODULES/ATL", "MODULES/Functions", "MODULES/Observation"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ "astropy>=4", "astroquery>=0.4", "pandas>=1.1", "tqdm>=4", ], python_requires='>=3.8', )
# Licensed under a 3-clause BSD style license - see LICENSE.rst """config ========= The configuration is a JSON-formatted file. See ``_config_example``. Applications may add whatever variables to the configuration file. """ import os import json import argparse from typing import Dict, List, Optional, TypeVar, Union __all__: List[str] = ['Config'] ConfigObject = TypeVar('ConfigObject', bound='Config') _config_example: str = ''' { "database": "sqlite://test.db", "log": "/path/to/sbsearch.log", "min_edge_length": 3e-4, "max_edge_length": 0.017, "uncertainty_ellipse": false, "padding": 0, "debug": false, "arc_limit": 0.17, "time_limit": 365 } ''' class Config: """SBSearch configuration. Controls database location, log file location, and ``SBSearch`` options. Parameters are stored as object keys: ``Config['user']``, ``Config['log']``, etc. Parameters ---------- **kwargs Configuration parameters and values. """ # list of default files in order of precedence DEFAULT_FILES: List[str] = [ 'sbsearch.cfg', '.sbsearch.cfg', os.path.expanduser('~/.config/sbsearch.config') ] DEFAULT_PARAMETERS: Dict[str, Union[str, float, int, bool]] = { "database": "sqlite://", "log": "/dev/null", "min_edge_length": 3e-4, "max_edge_length": 0.017, "uncertainty_ellipse": False, "padding": 0, "arc_limit": 0.17, "time_limit": 365, "debug": False } def __init__(self, **kwargs) -> None: self.config: Dict[str, Union[str, float, int, bool]] = ( self.DEFAULT_PARAMETERS.copy() ) self.update(kwargs) def __getitem__(self, k: str) -> Union[str, float, int, bool]: return self.config[k] @classmethod def find_default_file(cls) -> Union[str, None]: """Find the default configuration file, if any exists. Returns ------- filename : string The found file or ``None``, if one could not be found. Searches the following locations in order of precedence: {} """.format('\n '.join(cls.DEFAULT_FILES)) filename: Union[str, None] = None for filename in cls.DEFAULT_FILES: if os.path.exists(filename): break else: filename = None return filename @classmethod def from_args(cls, args: argparse.Namespace, find_default: bool = False, **updates) -> ConfigObject: """Initialize from command-line arguments. Parameters ---------- args: argparse.Namespace For example, a result from argparse.ArgumentParser.parse_args(). Options checked: - --config for a configuration file, - --option, where option is a configuration key (e.g., log, min_edge_length), replacing spaces with underscores. find_default: bool, optional Attempt to find and read a default configuration file when no config file name is provided in the options. See ``find_default_file``. **updates Any other configuration items. However, `args` will take precedence. Returns ------- config: Config """ # config file treated separately config_file: Union[str, None] = getattr(args, 'config') if config_file is None: config_file = cls.find_default_file() k: str for k in cls.DEFAULT_PARAMETERS: v: Union[str, float, int, bool, None] = getattr( args, k.replace(' ', '_'), None) if v is not None: updates[k] = v if find_default: return cls.from_file(config_file, **updates) elif config_file is not None: return cls.from_file(config_file, **updates) else: return cls(**updates) @ classmethod def from_file(cls, filename: Optional[str] = None, **kwargs) -> ConfigObject: """Initialize from JSON-formatted file. Parameters ---------- filename: string, optional Name of the file to read, or ``None`` for the default file ( in order of precedence): {} **kwargs Override saved parameters with these values. Returns ------- config: Config """.format('\n '.join(cls.DEFAULT_FILES)) fn: str = filename if fn is None: for fn in cls.DEFAULT_FILES: if os.path.exists(fn): break try: with open(fn) as f: config = json.load(f) except IOError: print(_config_example) raise config.update(**kwargs) return cls(**config) def update(self, kwargs) -> None: self.config.update(kwargs)
# Databricks notebook source # MAGIC %md # MAGIC # MAGIC # Process Fastq files with trimmomatic # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC ## Setup # COMMAND ---------- # MAGIC %python # MAGIC # MAGIC """ # MAGIC Setup some parameters # MAGIC """ # MAGIC # MAGIC _silver_table = "silver_fastq_trimmed" # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC ## Install Trimmomatic # COMMAND ---------- # MAGIC %conda install -c bioconda trimmomatic # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # Trimommatic UDF # COMMAND ---------- # MAGIC %python # MAGIC # MAGIC import os, subprocess # MAGIC import numpy as np # MAGIC from pyspark.sql.functions import udf # MAGIC from pyspark.sql.types import StringType # MAGIC # MAGIC @udf('string') # MAGIC def run_trimmomatic(fastq : str, # MAGIC fastq_name : str, # MAGIC params : str) -> str: # MAGIC """ # MAGIC Run Trimmomatic # MAGIC # MAGIC @param fastq | fastq string # MAGIC @param fastq_name | fastq name # MAGIC @param params | trimmomatic parameters # MAGIC """ # MAGIC # MAGIC # create a temporary file on the worker # MAGIC _temp_file = f"/tmp/{fastq_name}.fastq" # MAGIC _temp_out_file = _temp_file.replace(".fastq", ".trimmed.fastq") # MAGIC # MAGIC with open(_temp_file, "w") as _fastq: # MAGIC _fastq.write(fastq) # MAGIC try: # MAGIC _res = subprocess.run(["trimmomatic", params, # MAGIC _temp_file, # MAGIC _temp_out_file], # MAGIC stderr = subprocess.STDOUT, # MAGIC check=True) # MAGIC except Exception as err: # MAGIC return err # MAGIC # MAGIC # Clean up # MAGIC os.remove(_temp_file) # MAGIC # MAGIC # grab the output file results # MAGIC with open(_temp_out_file, 'r') as _out_file: # MAGIC _out_str = _out_file.read() # MAGIC _out_file.close() # MAGIC # MAGIC # remove the output fule # MAGIC os.remove(_temp_out_file) # MAGIC # MAGIC # return the output # MAGIC return _out_str # MAGIC # MAGIC spark.udf.register("run_trimmomatic", run_trimmomatic) # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # Run Trimmomatic # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC ## Load Data # COMMAND ---------- # MAGIC %python # MAGIC # MAGIC """ # MAGIC Load fastq table # MAGIC """ # MAGIC # MAGIC from pyspark.sql import DataFrame # MAGIC # MAGIC # load the dataframe # MAGIC _df : DataFrame = (spark.read # MAGIC .format("delta") # MAGIC .table("bronze_fastq")) # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC ## Run Trimmomatic # COMMAND ---------- # MAGIC %python # MAGIC # MAGIC """ # MAGIC Run Trimmmomatic # MAGIC """ # MAGIC # MAGIC from pyspark.sql import DataFrame # MAGIC from pyspark.sql.functions import col, lit # MAGIC # MAGIC # set some parameters for trimmomatic # MAGIC _params = "" # MAGIC # MAGIC # run the trimmomatic udf # MAGIC _df_trimmed : DataFrame = (_df.withColumn("params", lit(_params)) # MAGIC .withColumn("trimmed", # MAGIC run_trimmomatic(col("params"), # MAGIC col("fastq"), # MAGIC col("fastq_name"))) # MAGIC ) # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC ## Ingest to Silver Table # COMMAND ---------- # MAGIC %python # MAGIC # MAGIC """ # MAGIC Ingest trimmomatic results to silver table # MAGIC """ # MAGIC # MAGIC try: # MAGIC # MAGIC # write to dataframe # MAGIC (_df_trimmed.write # MAGIC .format("delta") # MAGIC .mode("append") # MAGIC .saveAsTable(_silver_table) # MAGIC ) # MAGIC # MAGIC except Exception as err: # MAGIC raise ValueError(f"Failed to write to table {_silver_table}, errror : {err}") # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC ## Test Query # COMMAND ---------- # MAGIC %sql # MAGIC # MAGIC -- # MAGIC -- Read from Silver table # MAGIC -- # MAGIC # MAGIC SELECT FASTQ_NAME # MAGIC FROM silver_fastq_trimmed;
""" Django settings for crsbi project. For the full list of settings and their values, see https://docs.djangoproject.com/en/dev/ref/settings/ For production settings see https://docs.djangoproject.com/en/dev/howto/deployment/checklist/ """ import getpass import logging import os from kdl_ldap.settings import * # noqa # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) PROJECT_NAME = 'crsbi' PROJECT_TITLE = 'The Corpus of Romanesque Sculpture in Britain & Ireland' SITE_ID = 1 # ----------------------------------------------------------------------------- # Core Settings # https://docs.djangoproject.com/en/dev/ref/settings/#id6 # ----------------------------------------------------------------------------- ADMINS = () MANAGERS = ADMINS ALLOWED_HOSTS = ['.crsbi.ac.uk', '.cch.kcl.ac.uk'] ACCOUNT_ACTIVATION_DAYS = 7 AUTH_PROFILE_MODULE = 'sculpture.UserProfile' LOGIN_REDIRECT_URL = '/mycrsbi/' # https://docs.djangoproject.com/en/dev/ref/settings/#caches # https://docs.djangoproject.com/en/dev/topics/cache/ # http://redis.io/topics/lru-cache # http://niwibe.github.io/django-redis/ CACHE_REDIS_DATABASE = '0' CACHES = { 'default': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': 'redis://127.0.0.1:6379/' + CACHE_REDIS_DATABASE, 'OPTIONS': { 'CLIENT_CLASS': 'django_redis.client.DefaultClient', 'IGNORE_EXCEPTIONS': True } } } CSRF_COOKIE_SECURE = True # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False # ----------------------------------------------------------------------------- # EMAIL SETTINGS # ----------------------------------------------------------------------------- DEFAULT_FROM_EMAIL = 'noreply@kcl.ac.uk' EMAIL_HOST = 'smtp.cch.kcl.ac.uk' EMAIL_PORT = 25 EMAIL_HOST_USER = '' EMAIL_HOST_PASSWORD = '' EMAIL_SUBJECT_PREFIX = '[Django {}] '.format(PROJECT_NAME) EMAIL_USE_TLS = False # Sender of error messages to ADMINS and MANAGERS SERVER_EMAIL = DEFAULT_FROM_EMAIL # Store these package names here as they may change in the future since # at the moment we are using custom forks of them. PACKAGE_NAME_FILEBROWSER = "filebrowser_safe" PACKAGE_NAME_GRAPPELLI = "grappelli_safe" GRAPPELLI_INSTALLED = True INSTALLED_APPS = [ PACKAGE_NAME_GRAPPELLI, PACKAGE_NAME_FILEBROWSER, 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.redirects', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.sites', 'django.contrib.staticfiles', 'django_comments', 'compressor', 'django.contrib.gis', 'iipimage', 'registration', 'mezzanine.boot', 'mezzanine.conf', 'mezzanine.core', 'mezzanine.generic', 'mezzanine.forms', 'mezzanine.pages', 'mezzanine.blog', ] INSTALLED_APPS += [ # your project apps here 'sculpture', 'kdl_ldap', 'haystack', ] INTERNAL_IPS = ['127.0.0.1'] # https://docs.djangoproject.com/en/dev/topics/i18n/ LANGUAGE_CODE = 'en-gb' TIME_ZONE = 'Europe/London' USE_I18N = True USE_L10N = False USE_TZ = True LOGGING_ROOT = os.path.join(BASE_DIR, 'logs') LOGGING_LEVEL = logging.WARN if not os.path.exists(LOGGING_ROOT): os.makedirs(LOGGING_ROOT) LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose': { 'format': ('%(levelname)s %(asctime)s %(module)s ' '%(process)d %(thread)d %(message)s') }, 'simple': { 'format': '%(levelname)s %(message)s' } }, 'handlers': { 'file': { 'level': 'DEBUG', 'class': 'logging.handlers.TimedRotatingFileHandler', 'filename': os.path.join(LOGGING_ROOT, 'django.log'), 'formatter': 'verbose' }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'simple' }, 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django': { 'handlers': ['file', 'mail_admins'], 'level': LOGGING_LEVEL, 'propagate': True }, 'crsbi': { 'handlers': ['file'], 'level': LOGGING_LEVEL, 'propagate': True }, } } MIDDLEWARE = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'mezzanine.core.middleware.SitePermissionMiddleware', 'mezzanine.core.request.CurrentRequestMiddleware', 'mezzanine.core.middleware.TemplateForDeviceMiddleware', 'mezzanine.core.middleware.TemplateForHostMiddleware', 'mezzanine.core.middleware.AdminLoginInterfaceSelectorMiddleware', # Uncomment the following if using any of the SSL settings: #'mezzanine.core.middleware.SSLRedirectMiddleware', 'mezzanine.pages.middleware.PageMiddleware', 'mezzanine.core.middleware.FetchFromCacheMiddleware', ] ROOT_URLCONF = PROJECT_NAME + '.urls' # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), 'sculpture/templates' ] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.media', 'django.template.context_processors.request', 'django.template.context_processors.static', 'django.contrib.messages.context_processors.messages', 'mezzanine.pages.context_processors.page', 'mezzanine.conf.context_processors.settings', ], }, }, ] WSGI_APPLICATION = PROJECT_NAME + '.wsgi.application' # ----------------------------------------------------------------------------- # Authentication # https://docs.djangoproject.com/en/dev/ref/settings/#auth # ----------------------------------------------------------------------------- if 'wagtail.wagtailcore' in INSTALLED_APPS: LOGIN_URL = '/wagtail/login/' else: LOGIN_URL = '/admin/login/' # ----------------------------------------------------------------------------- # Sessions # https://docs.djangoproject.com/en/dev/ref/settings/#sessions # ----------------------------------------------------------------------------- SESSION_COOKIE_SECURE = True # ----------------------------------------------------------------------------- # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/dev/howto/static-files/ # https://docs.djangoproject.com/en/dev/ref/settings/#static-files # ----------------------------------------------------------------------------- STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, STATIC_URL.strip('/')) if not os.path.exists(STATIC_ROOT): os.makedirs(STATIC_ROOT) STATICFILES_DIRS = (os.path.join(BASE_DIR, 'assets'),) STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', ) MEDIA_URL = '/static/media/' MEDIA_ROOT = os.path.join(BASE_DIR, MEDIA_URL.strip('/')) if not os.path.exists(MEDIA_ROOT): os.makedirs(MEDIA_ROOT) # ----------------------------------------------------------------------------- # Installed Applications Settings # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Django Compressor # http://django-compressor.readthedocs.org/en/latest/ # ----------------------------------------------------------------------------- COMPRESS_ENABLED = True COMPRESS_CSS_FILTERS = [ # CSS minimizer 'compressor.filters.cssmin.CSSMinFilter' ] COMPRESS_PRECOMPILERS = ( ('text/x-scss', 'django_libsass.SassCompiler'), ) # ----------------------------------------------------------------------------- # FABRIC # ----------------------------------------------------------------------------- FABRIC_USER = getpass.getuser() # ----------------------------------------------------------------------------- # GLOBALS FOR JS # ----------------------------------------------------------------------------- # Google Analytics ID GA_ID = '' # Project settings. These may be overridden in local_settings.py, but # are specified here because they are likely to be in common across # dev, stg, and liv. IMAGE_SERVER_URL = '/images' IMAGE_SERVER_ROOT = '/vol/crsbi/images/' TINYMCE_SETUP_JS = 'mezzanine/js/tinymce_setup.js' RICHTEXT_FILTER = 'sculpture.utils.convert_refs_to_links' FORMS_USE_HTML5 = True HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor' ADMIN_MENU_ORDER = ( ('Fieldworker', ('sculpture.FeatureImage', 'sculpture.SiteImage', 'sculpture.Site')), ('Editor', ('sculpture.BibliographyItem', 'sculpture.Contributor', 'sculpture.Country', 'sculpture.Dedication', 'sculpture.Dimension', 'sculpture.Diocese', 'sculpture.FeatureSet', 'sculpture.Feature', 'sculpture.GlossaryTerm', 'sculpture.ImageStatus', 'sculpture.Period', 'sculpture.RegionType', 'sculpture.Region', 'sculpture.SiteStatus', 'sculpture.Settlement', 'sculpture.UserFeedback')), ('Static Content', ('pages.Page', 'generic.ThreadedComment', ('Media Library', 'fb_browse'))), ('Various', ('auth.User', 'auth.Group', 'sites.Site', 'conf.Setting', 'registration.RegistrationProfile')), ) DASHBOARD_TAGS = ( ('mezzanine_tags.app_list', 'blog_tags.quick_blog'), ('comment_tags.recent_comments',), ('mezzanine_tags.recent_actions',), ) BLOG_SLUG = "news" COMMENT_FORM_CLASS = 'comment' # ----------------------------------------------------------------------------- # Automatically generated settings # ----------------------------------------------------------------------------- # Check which db engine to use: db_engine = 'django.db.backends.postgresql_psycopg2' if 'django.contrib.gis' in INSTALLED_APPS: db_engine = 'django.contrib.gis.db.backends.postgis' AUTH_LDAP_REQUIRE_GROUP = 'cn=crsbi,' + LDAP_BASE_OU TESTING = DEBUG DEBUG_TOOLBAR_CONFIG = {'INTERCEPT_REDIRECTS': False} if 'debug_toolbar' in INSTALLED_APPS: MIDDLEWARE += ( 'debug_toolbar.middleware.DebugToolbarMiddleware', )
import numpy as np from min_interval_posets import supergraph as sg def test1(): # Insertions at ends str1 = [('m', .5), ('M', .75), ('m', .9), ('M', .3)] str2 = [('M', .25), ('m', .5), ('M', .7), ('m', .8)] mat = sg.get_alignmentmat(str1, str2) mat_round = [[round(mat[i][j],8) for j in range(len(mat[0]))] for i in range(len(mat))] assert(mat_round == [[0, 0.25, 0.75, 1.45, 2.25], [0.5, 0.75, 0.25, 0.95, 1.75], [1.25, 1.0, 1.0, 0.3, 1.1], [2.15, 1.9, 1.4, 1.2, 0.4], [2.45, 2.2, 1.7, 1.5, 0.7]]) check_uniqueness = sg.check_bestalignments(str1, str2) assert(check_uniqueness == "unique optimal alignment") alignment = sg.get_bestalignment_index(str1, str2) assert(alignment == ([('M', (0, 0.25)), ('m', (0.5, 0.5)), ('M', (0.75, 0.7)), ('m', (0.9, 0.8)), ('M', (0.3, 0))], [('None', 0), (0, 1), (1, 2), (2, 3), (3, 'None')])) alignment_cost = sum((abs(alignment[0][i][1][0]-alignment[0][i][1][1])) for i in range(len(alignment[0]))) assert(alignment_cost == mat[len(mat)-1][len(mat[0])-1]) def test2(): # Insertions at beginning & strings are of different lengths # NOTE there are two optimal alignments in this example str1 = [('m', .5), ('M', .05), ('m', .6), ('M', .7), ('m',.3)] str2 = [('m', .4), ('M', .75), ('m', .33)] mat = sg.get_alignmentmat(str1, str2) mat_round = [[round(mat[i][j],8) for j in range(len(mat[0]))] for i in range(len(mat))] assert(mat_round == [[0, 0.4, 1.15, 1.48], [0.5, 0.1, 0.85, 1.18], [0.55, 0.15, 0.8, 1.13], [1.15, 0.75, 1.4, 1.07], [1.85, 1.45, 0.8, 1.13], [2.15, 1.75, 1.1, 0.83]]) check_uniqueness = sg.check_bestalignments(str1, str2) assert(check_uniqueness == "multiple optimal alignments") alignment = sg.get_bestalignment_index(str1, str2) assert(alignment == ([('m', (0.5, 0)), ('M', (0.05, 0)), ('m', (0.6, 0.4)), ('M', (0.7, 0.75)), ('m', (0.3, 0.33))], [(0, 'None'), (1, 'None'), (2, 0), (3, 1), (4, 2)])) alignment_cost = sum((abs(alignment[0][i][1][0]-alignment[0][i][1][1])) for i in range(len(alignment[0]))) assert(round(alignment_cost, 8) == round(mat[len(mat)-1][len(mat[0])-1],8)) def test3(): # Insertions in middle of strings and strings are of different lengths str1 = [('m', .5), ('M', .05), ('m', .4), ('M', .7), ('m',.3)] str2 = [('m', .5), ('M', .75), ('m', .33)] mat = sg.get_alignmentmat(str1, str2) alignment = sg.get_bestalignment_index(str1, str2) assert(alignment == ([('m', (0.5, 0.5)), ('M', (0.05, 0)), ('m', (0.4, 0)), ('M', (0.7, 0.75)), ('m', (0.3, 0.33))], [(0, 0), (1, 'None'), (2, 'None'), (3, 1), (4, 2)])) alignment_cost = sum((abs(alignment[0][i][1][0]-alignment[0][i][1][1])) for i in range(len(alignment[0]))) assert(alignment_cost == mat[len(mat)-1][len(mat[0])-1]) def test4(): # No diagonal moves in traceback str1 = [('a', .5), ('b', .05), ('c', .6), ('d', .7), ('e',.3)] str2 = [('f', .4), ('g', .75), ('h', .33)] mat = sg.get_alignmentmat(str1, str2) alignment = sg.get_bestalignment_index(str1, str2) assert(alignment == ([('f', (0, 0.4)), ('g', (0, 0.75)), ('h', (0, 0.33)), ('a', (0.5, 0)), ('b', (0.05, 0)), ('c', (0.6, 0)), ('d', (0.7, 0)), ('e', (0.3, 0))], [('None', 0), ('None', 1), ('None', 2), (0, 'None'), (1, 'None'), (2, 'None'), (3, 'None'), (4, 'None')])) alignment_cost = sum((abs(alignment[0][i][1][0]-alignment[0][i][1][1])) for i in range(len(alignment[0]))) assert(alignment_cost == mat[len(mat)-1][len(mat[0])-1])
import pandas from variantannotation import genotype_calling from variantannotation import utilities #REFACTOR THIS CODEEEEE AASAP def get_list_from_annovar_csv(df, chunk_ids): df = df.rename(columns={'1000g2015aug_all': 'ThousandGenomeAll'}) df.Chr = df.Chr.replace(to_replace='chrM', value='chrMT') df['Start'] = pandas.to_numeric(df['Start']) df['End'] = pandas.to_numeric(df['End']) print 'Converting columns to float ...' df["nci60"] = utilities.to_float(df, "nci60") df["ThousandGenomeAll"] = utilities.to_float(df, "ThousandGenomeAll") df["ESP6500si_ALL"] = utilities.to_float(df, "ESP6500si_ALL") print 'Processing knownGene info ...' utilities.split_string(df, "Func.knownGene") utilities.split_string(df, "ExonicFunc.knownGene") print 'Processing tfbsConsSites info ...' df["tfbsConsSites"] = df["tfbsConsSites"].dropna().apply(utilities.cell_to_dict) #print 'Processing targetScanS info ...' #df["targetScanS"] = df["targetScanS"].dropna().apply(utilities.cell_to_dict) print 'Processing genomicSuperDups info ...' df["genomicSuperDups"] = df["genomicSuperDups"].dropna().apply(utilities.cell_to_dict) print 'Processing cytoBand info ...' df["cytoBand"] = df["cytoBand"].dropna().apply(utilities.split_cytoband) df["cytoBand"] = df["cytoBand"].dropna().apply(utilities.lists_to_dict) print 'Creating hgvs key ...' df['hgvs_key'] = pandas.Series(chunk_ids) print 'Processing genotype call info ...' my_sample_id = df["Otherinfo"].dropna().apply(genotype_calling.split_sample_ID) genotype_call = my_sample_id.apply(lambda x: x[-3::]) dict_split = genotype_call.apply(genotype_calling.return_dict) df['Otherinfo'] = dict_split df = df.rename(columns={'Otherinfo': 'Genotype_Call'}) df = utilities.modify_df(df) print 'Transforming to JSON from dataFrame' #Clean up dataframe df_final = df.where((pandas.notnull(df)), None) list_dict = df_final.T.to_dict().values() #Attempt to transform dataframe to dictionary #Set the ID to be the HGVS_ID print 'cleaning up...' for i in range(0, len(list_dict)): list_dict[i] = utilities.scrub_dict(list_dict[i]) #list_filtered = [] #for key in filtered.keys(): # list_filtered.append({key: filtered[key]}) print 'Done' return list_dict #REFACTOR THIS CODEEEEE AASAP def get_df_from_annovar_csv(df, chunk_ids): df = df.rename(columns={'1000g2015aug_all': 'ThousandGenomeAll'}) df.Chr = df.Chr.replace(to_replace='chrM', value='chrMT') df['Start'] = pandas.to_numeric(df['Start']) df['End'] = pandas.to_numeric(df['End']) df["nci60"] = utilities.to_float(df, "nci60") df["ThousandGenomeAll"] = utilities.to_float(df, "ThousandGenomeAll") df["ESP6500si_ALL"] = utilities.to_float(df, "ESP6500si_ALL") df["tfbsConsSites"] = df["tfbsConsSites"].dropna().apply(utilities.cell_to_dict) utilities.split_string(df, "Func.knownGene") utilities.split_string(df, "ExonicFunc.knownGene") #df["targetScanS"] = df["targetScanS"].dropna().apply(utilities.cell_to_dict) df["genomicSuperDups"] = df["genomicSuperDups"].dropna().apply(utilities.cell_to_dict) df["cytoBand"] = df["cytoBand"].dropna().apply(utilities.split_cytoband) df["cytoBand"] = df["cytoBand"].dropna().apply(utilities.lists_to_dict) df['hgvs_key'] = pandas.Series(chunk_ids) my_sample_id = df["Otherinfo"].dropna().apply(genotype_calling.split_sample_ID) genotype_call = my_sample_id.apply(lambda x: x[-2::]) dict_split = genotype_call.apply(genotype_calling.return_dict) df['Otherinfo'] = dict_split df = df.rename(columns={'Otherinfo': 'Genotype_Call'}) #Clean up dataframe df = utilities.modify_df(df) df_final = df.where((pandas.notnull(df)), None) return df_final #after myvariant data has been obtained #def join_df_chunks(df):
from rest_framework import viewsets from .serializers import TwitterSerializer from .models import Twitter from django.views.decorators.http import require_http_methods from django.http import HttpResponse, Http404, JsonResponse import tweepy from rest_framework.decorators import api_view class TwitterViewSet(viewsets.ModelViewSet): serializer_class = TwitterSerializer queryset = Twitter.objects.all()
import dash from dash.dependencies import Input, Output, State from server import app @app.callback( Output('steps-demo', 'current'), [Input('steps-demo-go-next', 'nClicks'), Input('steps-demo-go-last', 'nClicks'), Input('steps-demo-restart', 'nClicks')], State('steps-demo', 'current'), prevent_initial_call=True ) def steps_callback_demo_part1(go_next, go_last, restart, current): ctx = dash.callback_context if ctx.triggered[0]['prop_id'].startswith('steps-demo-go-next'): return current + 1 elif ctx.triggered[0]['prop_id'].startswith('steps-demo-go-last'): return max(current - 1, 0) else: return 0 @app.callback( Output('steps-demo-current', 'children'), Input('steps-demo', 'current'), prevent_initial_call=True ) def steps_callback_demo_part2(current): import time; time.sleep(1) return f'当前步骤为:步骤{current}'
# -*- coding: utf-8 -*- import math import numpy as np import pandas as pd try: import scipy _SCIPY_ = True except ImportError: _SCIPY_ = False from .utils import fibonacci, pascals_triangle from .utils import get_drift, get_offset, verify_series def weights(w): def _compute(x): return np.dot(w, x) return _compute def dema(close, length=None, offset=None, **kwargs): """Indicator: Double Exponential Moving Average (DEMA)""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length offset = get_offset(offset) # Calculate Result ema1 = ema(close=close, length=length, min_periods=min_periods) ema2 = ema(close=ema1, length=length, min_periods=min_periods) dema = 2 * ema1 - ema2 # Offset if offset != 0: dema = dema.shift(offset) # Name & Category dema.name = f"DEMA_{length}" dema.category = 'overlap' return dema def ema(close, length=None, offset=None, **kwargs): """Indicator: Exponential Moving Average (EMA)""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length#int(0.25 * length) adjust = bool(kwargs['adjust']) if 'adjust' in kwargs and kwargs['adjust'] is not None else True offset = get_offset(offset) # Calculate Result if 'presma' in kwargs and kwargs['presma']: initial_sma = sma(close=close, length=length)[:length] rest = close[length:] close = pd.concat([initial_sma, rest]) ema = close.ewm(span=length, min_periods=min_periods, adjust=adjust).mean() # Offset if offset != 0: ema = ema.shift(offset) # Name & Category ema.name = f"EMA_{length}" ema.category = 'overlap' return ema def fwma(close, length=None, asc=None, offset=None, **kwargs): """Indicator: Fibonacci's Weighted Moving Average (FWMA)""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length asc = asc if asc else True offset = get_offset(offset) # Calculate Result fibs = fibonacci(length - 1) fwma = close.rolling(length, min_periods=length).apply(weights(fibs), raw=True) # Offset if offset != 0: fwma = fwma.shift(offset) # Name & Category fwma.name = f"FWMA_{length}" fwma.category = 'overlap' return fwma def hl2(high, low, offset=None, **kwargs): """Indicator: HL2 """ # Validate Arguments high = verify_series(high) low = verify_series(low) offset = get_offset(offset) # Calculate Result hl2 = 0.5 * (high + low) # Offset if offset != 0: hl2 = hl2.shift(offset) # Name & Category hl2.name = "HL2" hl2.category = 'overlap' return hl2 def hlc3(high, low, close, offset=None, **kwargs): """Indicator: HLC3""" # Validate Arguments high = verify_series(high) low = verify_series(low) close = verify_series(close) offset = get_offset(offset) # Calculate Result hlc3 = (high + low + close) / 3 # Offset if offset != 0: hlc3 = hlc3.shift(offset) # Name & Category hlc3.name = "HLC3" hlc3.category = 'overlap' return hlc3 def hma(close, length=None, offset=None, **kwargs): """Indicator: Hull Moving Average (HMA) Use help(df.ta.hma) for specific documentation where 'df' represents the DataFrame you are using. """ # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length offset = get_offset(offset) # Calculate Result half_length = int(length / 2) sqrt_length = int(math.sqrt(length)) wmaf = wma(close=close, length=half_length) wmas = wma(close=close, length=length) hma = wma(close=2 * wmaf - wmas, length=sqrt_length) # Offset if offset != 0: hma = hma.shift(offset) # Name & Category hma.name = f"HMA_{length}" hma.category = 'overlap' return hma def ichimoku(high, low, close, tenkan=None, kijun=None, senkou=None, offset=None, **kwargs): """Indicator: Ichimoku Kinkō Hyō (Ichimoku)""" high = verify_series(high) low = verify_series(low) close = verify_series(close) tenkan = int(tenkan) if tenkan and tenkan > 0 else 9 kijun = int(kijun) if kijun and kijun > 0 else 26 senkou = int(senkou) if senkou and senkou > 0 else 52 offset = get_offset(offset) # Calculate Result tenkan_sen = midprice(high=high, low=low, length=tenkan) kijun_sen = midprice(high=high, low=low, length=kijun) span_a = 0.5 * (tenkan_sen + kijun_sen) span_b = midprice(high=high, low=low, length=senkou) # Copy Span A and B values before their shift _span_a = span_a[-kijun:].copy() _span_b = span_b[-kijun:].copy() span_a = span_a.shift(kijun) span_b = span_b.shift(kijun) chikou_span = close.shift(-kijun) # Offset if offset != 0: tenkan_sen = tenkan_sen.shift(offset) kijun_sen = kijun_sen.shift(offset) span_a = span_a.shift(offset) span_b = span_b.shift(offset) chikou_span = chikou_span.shift(offset) # Handle fills if 'fillna' in kwargs: span_a.fillna(kwargs['fillna'], inplace=True) span_b.fillna(kwargs['fillna'], inplace=True) chikou_span.fillna(kwargs['fillna'], inplace=True) if 'fill_method' in kwargs: span_a.fillna(method=kwargs['fill_method'], inplace=True) span_b.fillna(method=kwargs['fill_method'], inplace=True) chikou_span.fillna(method=kwargs['fill_method'], inplace=True) # Name and Categorize it span_a.name = f"ISA_{tenkan}" span_b.name = f"ISB_{kijun}" tenkan_sen.name = f"ITS_{tenkan}" kijun_sen.name = f"IKS_{kijun}" chikou_span.name = f"ICS_{kijun}" chikou_span.category = kijun_sen.category = tenkan_sen.category = 'trend' span_b.category = span_a.category = chikou_span # Prepare Ichimoku DataFrame data = {span_a.name: span_a, span_b.name: span_b, tenkan_sen.name: tenkan_sen, kijun_sen.name: kijun_sen, chikou_span.name: chikou_span} ichimokudf = pd.DataFrame(data) ichimokudf.name = f"ICHIMOKU_{tenkan}_{kijun}_{senkou}" ichimokudf.category = 'overlap' # Prepare Span DataFrame, assuming it is a 'Daily' content last_date = close.index[-1] df_freq = close.index.value_counts().mode()[0] tdelta = pd.Timedelta(df_freq, unit='d') new_dt = pd.date_range(start=last_date + tdelta, periods=kijun, freq='B') spandf = pd.DataFrame(index=new_dt, columns=[span_a.name, span_b.name]) _span_a.index = _span_b.index = new_dt spandf[span_a.name] = _span_a spandf[span_b.name] = _span_b return ichimokudf, spandf def midpoint(close, length=None, offset=None, **kwargs): """Indicator: Midpoint""" # Validate arguments close = verify_series(close) length = int(length) if length and length > 0 else 1 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length offset = get_offset(offset) # Calculate Result lowest = close.rolling(length, min_periods=min_periods).min() highest = close.rolling(length, min_periods=min_periods).max() midpoint = 0.5 * (lowest + highest) # Offset if offset != 0: midpoint = midpoint.shift(offset) # Handle fills if 'fillna' in kwargs: midpoint.fillna(kwargs['fillna'], inplace=True) if 'fill_method' in kwargs: midpoint.fillna(method=kwargs['fill_method'], inplace=True) # Name and Categorize it midpoint.name = f"MIDPOINT_{length}" midpoint.category = 'overlap' return midpoint def midprice(high, low, length=None, offset=None, **kwargs): """Indicator: Midprice""" # Validate arguments high = verify_series(high) low = verify_series(low) length = int(length) if length and length > 0 else 1 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length offset = get_offset(offset) # Calculate Result lowest_low = low.rolling(length, min_periods=min_periods).min() highest_high = high.rolling(length, min_periods=min_periods).max() midprice = 0.5 * (lowest_low + highest_high) # Offset if offset != 0: midprice = midprice.shift(offset) # Handle fills if 'fillna' in kwargs: midprice.fillna(kwargs['fillna'], inplace=True) if 'fill_method' in kwargs: midprice.fillna(method=kwargs['fill_method'], inplace=True) # Name and Categorize it midprice.name = f"MIDPRICE_{length}" midprice.category = 'overlap' return midprice def ohlc4(open_, high, low, close, offset=None, **kwargs): """Indicator: OHLC4""" # Validate Arguments open_ = verify_series(open_) high = verify_series(high) low = verify_series(low) close = verify_series(close) offset = get_offset(offset) # Calculate Result ohlc4 = 0.25 * (open_ + high + low + close) # Offset if offset != 0: ohlc4 = ohlc4.shift(offset) # Name & Category ohlc4.name = "OHLC4" ohlc4.category = 'overlap' return ohlc4 def pwma(close, length=None, asc=None, offset=None, **kwargs): """Indicator: Pascals Weighted Moving Average (PWMA)""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length asc = asc if asc else True offset = get_offset(offset) # Calculate Result triangle = pascals_triangle(length - 1) pwma = close.rolling(length, min_periods=length).apply(weights(triangle), raw=True) # Offset if offset != 0: pwma = pwma.shift(offset) # Name & Category pwma.name = f"PWMA_{length}" pwma.category = 'overlap' return pwma def rma(close, length=None, offset=None, **kwargs): """Indicator: wildeR's Moving Average (RMA)""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length offset = get_offset(offset) alpha = (1.0 / length) if length > 0 else 1 # Calculate Result rma = close.ewm(alpha=alpha, min_periods=min_periods).mean() # Offset if offset != 0: rma = rma.shift(offset) # Name & Category rma.name = f"RMA_{length}" rma.category = 'overlap' return rma def sma(close, length=None, offset=None, **kwargs): """Indicator: Simple Moving Average (SMA)""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length offset = get_offset(offset) # Calculate Result sma = close.rolling(length, min_periods=min_periods).mean() # Offset if offset != 0: sma = sma.shift(offset) # Name & Category sma.name = f"SMA_{length}" sma.category = 'overlap' return sma def t3(close, length=None, a=None, offset=None, **kwargs): """Indicator: T3""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length a = float(a) if a and a > 0 and a < 1 else 0.7 offset = get_offset(offset) # Calculate Result c1 = -a * a ** 2 c2 = 3 * a ** 2 + 3 * a ** 3 c3 = -6 * a ** 2 - 3 * a - 3 * a ** 3 c4 = a ** 3 + 3 * a ** 2 + 3 * a + 1 e1 = ema(close=close, length=length, min_periods=min_periods, **kwargs) e2 = ema(close=e1, length=length, min_periods=min_periods, **kwargs) e3 = ema(close=e2, length=length, min_periods=min_periods, **kwargs) e4 = ema(close=e3, length=length, min_periods=min_periods, **kwargs) e5 = ema(close=e4, length=length, min_periods=min_periods, **kwargs) e6 = ema(close=e5, length=length, min_periods=min_periods, **kwargs) t3 = c1 * e6 + c2 * e5 + c3 * e4 + c4 * e3 # Offset if offset != 0: t3 = t3.shift(offset) # Name & Category t3.name = f"T3_{length}_{a}" t3.category = 'overlap' return t3 def tema(close, length=None, offset=None, **kwargs): """Indicator: Triple Exponential Moving Average (TEMA)""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length offset = get_offset(offset) # Calculate Result ema1 = ema(close=close, length=length, min_periods=min_periods) ema2 = ema(close=ema1, length=length, min_periods=min_periods) ema3 = ema(close=ema2, length=length, min_periods=min_periods) tema = 3 * (ema1 - ema2) + ema3 # Offset if offset != 0: tema = tema.shift(offset) # Name & Category tema.name = f"TEMA_{length}" tema.category = 'overlap' return tema def trima(close, length=None, offset=None, **kwargs): """Indicator: Triangular Moving Average (TRIMA) *requires scipy""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length offset = get_offset(offset) # Calculate Result half_length = round(0.5 * (length + 1)) sma1 = close.rolling(half_length, min_periods=half_length).mean() trima = sma1.rolling(half_length, min_periods=half_length).mean() # Offset if offset != 0: trima = trima.shift(offset) # Name & Category trima.name = f"TRIMA_{length}" trima.category = 'overlap' return trima def vwap(high, low, close, volume, offset=None, **kwargs): """Indicator: Volume Weighted Average Price (VWAP)""" # Validate Arguments high = verify_series(high) low = verify_series(low) close = verify_series(close) volume = verify_series(volume) offset = get_offset(offset) # Calculate Result tp = hlc3(high=high, low=low, close=close) tpv = tp * volume vwap = tpv.cumsum() / volume.cumsum() # Offset if offset != 0: vwap = vwap.shift(offset) # Name & Category vwap.name = "VWAP" vwap.category = 'overlap' return vwap def vwma(close, volume, length=None, offset=None, **kwargs): """Indicator: Volume Weighted Moving Average (VWMA)""" # Validate Arguments close = verify_series(close) volume = verify_series(volume) length = int(length) if length and length > 0 else 10 offset = get_offset(offset) # Calculate Result pv = close * volume vwma = sma(close=pv, length=length) / sma(close=volume, length=length) # Offset if offset != 0: vwma = vwma.shift(offset) # Name & Category vwma.name = f"VWMA_{length}" vwma.category = 'overlap' return vwma def wma(close, length=None, asc=None, offset=None, **kwargs): """Indicator: Weighted Moving Average (WMA)""" # Validate Arguments close = verify_series(close) length = int(length) if length and length > 0 else 10 min_periods = int(kwargs['min_periods']) if 'min_periods' in kwargs and kwargs['min_periods'] is not None else length asc = asc if asc else True offset = get_offset(offset) # Calculate Result total_weight = 0.5 * length * (length + 1) weights_ = pd.Series(np.arange(1, length + 1)) weights = weights_ if asc else weights_[::-1] def linear_weights(w): def _compute(x): return (w * x).sum() / total_weight return _compute close_ = close.rolling(length, min_periods=length) wma = close_.apply(linear_weights(weights), raw=True) # Offset if offset != 0: wma = wma.shift(offset) # Name & Category wma.name = f"WMA_{length}" wma.category = 'overlap' return wma # Overlap Documentation hl2.__doc__ = \ """Average of High-Low (HL2) Equally weighted Average of two series', namely High and Low. Sources: https://www.tradingview.com/study-script-reference/#var_hl2 Calculation: HL2 = 0.5 * (high + low) Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ ichimoku.__doc__ = \ """Ichimoku Kinkō Hyō (Ichimoku) It identifies the trend and look for potential signals within that trend. Sources: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud Calculation: Default Inputs: tenkan=9, kijun=26, senkou=52 tenkan_sen = midprice(high, low, length=tenkan) kijun_sen = midprice(high, low, length=kijun) span_a = 0.5 * (tenkan_sen + kijun_sen) span_b = midprice(high=high, low=low, length=senkou) span_a = span_a.shift(kijun) span_b = span_b.shift(kijun) chikou_span = close.shift(-kijun) Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's close (pd.Series): Series of 'close's tenkan (int): Tenkan period. Default: 9 kijun (int): Kijun period. Default: 26 senkou (int): Senkou period. Default: 52 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pandas.Series: New feature generated. """ hlc3.__doc__ = \ """Average of High-Low-Close (HLC3) Equally weighted Average of three series', namely High, Low, Close. Sources: https://www.tradingview.com/study-script-reference/#var_hlc3 Calculation: HLC3 = (high + low + close) / 3.0 Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's close (pd.Series): Series of 'close's offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ ohlc4.__doc__ = \ """Average of Open-High-Low-Close (OHLC4) Equally weighted Average of four series', namely Open, High, Low, Close. Sources: https://www.tradingview.com/study-script-reference/#var_ohlc4 Calculation: OHLC4 = 0.25 * (open + high + low + close) Args: open (pd.Series): Series of 'open's high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's close (pd.Series): Series of 'close's offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ midpoint.__doc__ = \ """Midpoint (MIDPOINT) The Midpoint is the average of the highest and lowest closes over a period. Sources: https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/midpoint-midpnt/ Calculation: Default Inputs: length=1 lowest_close = close.rolling(length).min() highest_close = close.rolling(length).max() MIDPOINT = 0.5 * (highest_close + lowest_close) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 14 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ midprice.__doc__ = \ """Midprice (MIDPRICE) William's Percent R is a momentum oscillator similar to the RSI that attempts to identify overbought and oversold conditions. Sources: https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/midprice-midpri/ Calculation: Default Inputs: length=1 lowest_low = low.rolling(length).min() highest_high = high.rolling(length).max() MIDPRICE = 0.5 * (highest_high + lowest_low) Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's length (int): It's period. Default: 1 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ dema.__doc__ = \ """Double Exponential Moving Average (DEMA) The Double Exponential Moving Average attempts to a smoother average with less lag than the normal Exponential Moving Average (EMA). Sources: https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/double-exponential-moving-average-dema/ Calculation: Default Inputs: length=10 EMA = Exponential Moving Average ema1 = EMA(close, length) ema2 = EMA(ema1, length) DEMA = 2 * ema1 - ema2 Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ ema.__doc__ = \ """Exponential Moving Average (EMA) The Exponential Moving Average is more responsive moving average compared to the Simple Moving Average (SMA). The weights are determined by alpha which is proportional to it's length. There are several different methods of calculating EMA. One method uses just the standard definition of EMA and another uses the SMA to generate the initial value for the rest of the calculation. Sources: https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:moving_averages https://www.investopedia.com/ask/answers/122314/what-exponential-moving-average-ema-formula-and-how-ema-calculated.asp Calculation: Default Inputs: length=10 SMA = Simple Moving Average if kwargs['presma']: initial = SMA(close, length) rest = close[length:] close = initial + rest EMA = close.ewm(span=length, adjust=adjust).mean() Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: adjust (bool): Default: True presma (bool, optional): If True, uses SMA for initial value. fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ fwma.__doc__ = \ """Fibonacci's Weighted Moving Average (FWMA) Fibonacci's Weighted Moving Average is similar to a Weighted Moving Average (WMA) where the weights are based on the Fibonacci Sequence. Source: Kevin Johnson Calculation: Default Inputs: length=10, def weights(w): def _compute(x): return np.dot(w * x) return _compute fibs = utils.fibonacci(length - 1) FWMA = close.rolling(length)_.apply(weights(fibs), raw=True) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 asc (bool): Recent values weigh more. Default: True offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ hma.__doc__ = \ """Hull Moving Average (HMA) The Hull Exponential Moving Average attempts to reduce or remove lag in moving averages. Sources: https://alanhull.com/hull-moving-average Calculation: Default Inputs: length=10 WMA = Weighted Moving Average half_length = int(0.5 * length) sqrt_length = int(math.sqrt(length)) wmaf = WMA(close, half_length) wmas = WMA(close, length) HMA = WMA(2 * wmaf - wmas, sqrt_length) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ ichimoku.__doc__ = \ """Ichimoku Kinkō Hyō (ichimoku) Developed Pre WWII as a forecasting model for financial markets. Sources: https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/ichimoku-ich/ Calculation: Default Inputs: tenkan=9, kijun=26, senkou=52 MIDPRICE = Midprice TENKAN_SEN = MIDPRICE(high, low, close, length=tenkan) KIJUN_SEN = MIDPRICE(high, low, close, length=kijun) CHIKOU_SPAN = close.shift(-kijun) SPAN_A = 0.5 * (TENKAN_SEN + KIJUN_SEN) SPAN_A = SPAN_A.shift(kijun) SPAN_B = MIDPRICE(high, low, close, length=senkou) SPAN_B = SPAN_B.shift(kijun) Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's close (pd.Series): Series of 'close's tenkan (int): Tenkan period. Default: 9 kijun (int): Kijun period. Default: 26 senkou (int): Senkou period. Default: 52 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.DataFrame: Two DataFrames. For the visible period: spanA, spanB, tenkan_sen, kijun_sen, and chikou_span columns For the forward looking period: spanA and spanB columns """ pwma.__doc__ = \ """Pascal's Weighted Moving Average (PWMA) Pascal's Weighted Moving Average is similar to a symmetric triangular window except PWMA's weights are based on Pascal's Triangle. Source: Kevin Johnson Calculation: Default Inputs: length=10, def weights(w): def _compute(x): return np.dot(w * x) return _compute triangle = utils.pascals_triangle(length + 1) PWMA = close.rolling(length)_.apply(weights(triangle), raw=True) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 asc (bool): Recent values weigh more. Default: True offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ rma.__doc__ = \ """wildeR's Moving Average (RMA) The WildeR's Moving Average is simply an Exponential Moving Average (EMA) with a modified alpha = 1 / length. Sources: https://alanhull.com/hull-moving-average Calculation: Default Inputs: length=10 EMA = Exponential Moving Average alpha = 1 / length RMA = EMA(close, alpha=alpha) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ sma.__doc__ = \ """Simple Moving Average (SMA) The Simple Moving Average is the classic moving average that is the equally weighted average over n periods. Sources: https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/simple-moving-average-sma/ Calculation: Default Inputs: length=10 SMA = SUM(close, length) / length Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: adjust (bool): Default: True presma (bool, optional): If True, uses SMA for initial value. fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ t3.__doc__ = \ """Tim Tillson's T3 Moving Average (T3) Tim Tillson's T3 Moving Average is considered a smoother and more responsive moving average relative to other moving averages. Sources: http://www.binarytribune.com/forex-trading-indicators/t3-moving-average-indicator/ Calculation: Default Inputs: length=10, a=0.7 c1 = -a^3 c2 = 3a^2 + 3a^3 = 3a^2 * (1 + a) c3 = -6a^2 - 3a - 3a^3 c4 = a^3 + 3a^2 + 3a + 1 ema1 = EMA(close, length) ema2 = EMA(ema1, length) ema3 = EMA(ema2, length) ema4 = EMA(ema3, length) ema5 = EMA(ema4, length) ema6 = EMA(ema5, length) T3 = c1 * ema6 + c2 * ema5 + c3 * ema4 + c4 * ema3 Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 a (float): 0 < a < 1. Default: 0.7 offset (int): How many periods to offset the result. Default: 0 Kwargs: adjust (bool): Default: True presma (bool, optional): If True, uses SMA for initial value. fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ tema.__doc__ = \ """Triple Exponential Moving Average (TEMA) A less laggy Exponential Moving Average. Sources: https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/triple-exponential-moving-average-tema/ Calculation: Default Inputs: length=10 EMA = Exponential Moving Average ema1 = EMA(close, length) ema2 = EMA(ema1, length) ema3 = EMA(ema2, length) TEMA = 3 * (ema1 - ema2) + ema3 Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: adjust (bool): Default: True presma (bool, optional): If True, uses SMA for initial value. fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ trima.__doc__ = \ """Triangular Moving Average (TRIMA) A weighted moving average where the shape of the weights are triangular and the greatest weight is in the middle of the period. Sources: https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/triangular-moving-average-trima/ Calculation: Default Inputs: length=10 SMA = Simple Moving Average half_length = math.round(0.5 * (length + 1)) SMA1 = SMA(close, half_length) TRIMA = SMA(SMA1, half_length) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: adjust (bool): Default: True fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ vwap.__doc__ = \ """Volume Weighted Average Price (VWAP) The Volume Weighted Average Price that measures the average typical price by volume. It is typically used with intraday charts to identify general direction. Sources: https://www.tradingview.com/wiki/Volume_Weighted_Average_Price_(VWAP) https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/volume-weighted-average-price-vwap/ Calculation: tp = typical_price = hlc3(high, low, close) tpv = tp * volume VWAP = tpv.cumsum() / volume.cumsum() Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's close (pd.Series): Series of 'close's volume (pd.Series): Series of 'volume's offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ vwma.__doc__ = \ """Volume Weighted Moving Average (VWMA) Volume Weighted Moving Average. Sources: https://www.motivewave.com/studies/volume_weighted_moving_average.htm Calculation: Default Inputs: length=10 SMA = Simple Moving Average pv = close * volume VWMA = SMA(pv, length) / SMA(volume, length) Args: close (pd.Series): Series of 'close's volume (pd.Series): Series of 'volume's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """ wma.__doc__ = \ """Weighted Moving Average (WMA) The Weighted Moving Average where the weights are linearly increasing and the most recent data has the heaviest weight. Sources: https://en.wikipedia.org/wiki/Moving_average#Weighted_moving_average Calculation: Default Inputs: length=10, asc=True total_weight = 0.5 * length * (length + 1) weights_ = [1, 2, ..., length + 1] # Ascending weights = weights if asc else weights[::-1] def linear_weights(w): def _compute(x): return (w * x).sum() / total_weight return _compute WMA = close.rolling(length)_.apply(linear_weights(weights), raw=True) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 asc (bool): Recent values weigh more. Default: True offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """
import os GCP_PROJECT = os.environ['HAIL_GCP_PROJECT'] assert GCP_PROJECT != '' GCP_ZONE = os.environ['HAIL_GCP_ZONE'] assert GCP_ZONE != '' GCP_REGION = '-'.join(GCP_ZONE.split('-')[:-1]) # us-west1-a -> us-west1 DOCKER_PREFIX = os.environ.get('HAIL_DOCKER_PREFIX', f'gcr.io/{GCP_REGION}') assert DOCKER_PREFIX != '' DOCKER_ROOT_IMAGE = os.environ['HAIL_DOCKER_ROOT_IMAGE'] assert DOCKER_ROOT_IMAGE != '' DOMAIN = os.environ['HAIL_DOMAIN'] assert DOMAIN != '' IP = os.environ.get('HAIL_IP') CI_UTILS_IMAGE = os.environ.get('HAIL_CI_UTILS_IMAGE', f'{DOCKER_PREFIX}/ci-utils:latest') BUILDKIT_IMAGE = os.environ['HAIL_BUILDKIT_IMAGE'] DEFAULT_NAMESPACE = os.environ['HAIL_DEFAULT_NAMESPACE'] KUBERNETES_SERVER_URL = os.environ['KUBERNETES_SERVER_URL'] BUCKET = os.environ['HAIL_CI_BUCKET_NAME']
# Function to generate list of factors def get_factorsList(n): l = [1] # will be factor of any no. # As n/2 is largest factor of n less then n for i in range(2, n//2+1): if n%i==0: # Check if factor or not l.append(i) # As we already added 1 in list no need to append it again if n != 1: l.append(n) # Oneliner # return [i for i in range(1,n//2+1) if n%i==0] + ([n] if n!=1 else []) return l if __name__ == "__main__": # List of input no's list_of_numbers = [23, 46, 65, 34234, 423, 43212] # Get factor list of given no. for num in list_of_numbers: print(get_factorsList(num))
import aiohttp import asyncio async def main(): async with aiohttp.ClientSession() as session: async with session.get('http://python.org') as response: print("Status:", response.status) print("Content-type:", response.headers['content-type']) html = await response.text() print("Body:", html[:15], "...") loop = asyncio.get_event_loop() loop.run_until_complete(main())
import pytest pytest.main(['-x', 'tests', '--resultlog=run_tests.log', '-v'])
import xarray as xr from numpy import abs, arange, unique from os.path import exists def readOOI (fname): """ Update parameter names from OOI to iPROF Parameters ---------- fname : str path of OOI Pioneer Profiler mooring downloaded data Returns ------- ds : xarray DataSet dataset with iPROF variable names """ if ( exists(fname) ): ds = xr.open_dataset( fname ) else: raise TypeError(f'Domain {fname} not recognized') ds = ds.rename({ 'sea_water_temperature_profiler_depth_enabled': 'prof_T', 'sea_water_temperature_profiler_depth_enabled_qc_agg':'prof_Tflag', 'sea_water_practical_salinity_profiler_depth_enabled': 'prof_S', 'sea_water_practical_salinity_profiler_depth_enabled_qc_agg':'prof_Sflag',}) \ .drop({ 'sea_water_density_profiler_depth_enabled', 'sea_water_density_profiler_depth_enabled_qc_agg', 'sea_water_pressure_profiler_depth_enabled', 'sea_water_pressure_profiler_depth_enabled_qc_agg',}) ds['prof_depth'] = xr.DataArray(-1 * ds.z, dims=ds.z.dims, attrs=ds.z.attrs) ds=ds.drop('z') writeTimeVariables (ds) #ds=addDepthDimension (ds) (ds['iPROF'], counts) = unique(ds.time, return_counts=True) return ds def addDepthDimension (ds): """ Create depth coordinate Parameters ---------- ds : xarray DataSet OOI Profiler mooring data for one profiler Returns ------- ds : xarray DataSet dataset with iDEPTH coordinate set as a dimension """ if ( 'prof_depth' not in ds ): raise TypeError('Couldn\'t find prof_depth data variable') if ( 'actual_range' not in ds.prof_depth.attrs ): raise TypeError('Couldn\'t find prof_depth range attribute') iDEPTH = arange(max(abs(ds.prof_depth.attrs['actual_range'])) + 1) return ds.expand_dims({"iDEPTH":iDEPTH}) def writeTimeVariables (ds): """ Update from datetime64 times to default iPROF time Parameters ---------- ds : xarray DataSet OOI Profiler mooring data for one profiler Returns ------- None : adds data variables to existing DataSet dataset with iPROF time dataArrays """ times = ds.time.values.astype('datetime64[s]') yyyymmdd = []; hhmmss = [] for time in times: tmp = str(time).partition('T') yyyymmdd.append( float(''.join( tmp[0].split("-", maxsplit=2) )) ) hhmmss.append( float(''.join( tmp[-1].split(":", maxsplit=2) )) ) ds['prof_YYYYMMDD'] = xr.DataArray( yyyymmdd, dims=["row"], attrs={'long_name' : 'year (4 digits), month (2 digits), day (2 digits)'} ) ds['prof_HHMMSS'] = xr.DataArray( hhmmss, dims=["row"], attrs={'long_name' : 'hour (2 digits), minute (2 digits), second (2 digits)'} ) return None
"""This module supports puzzles that place fixed shape regions into the grid.""" from collections import defaultdict import sys from typing import Dict, List from z3 import ArithRef, Int, IntVal, Or, Solver, PbEq from .fastz3 import fast_and, fast_eq, fast_ne from .geometry import Lattice, Point, Vector from .quadtree import ExpressionQuadTree # Key types for use with the ExpressionQuadTree when adding shape instance # constraints. HAS_INSTANCE_ID, NOT_HAS_INSTANCE_ID, HAS_SHAPE_TYPE = range(3) def canonicalize_shape(shape: List[Vector]) -> List[Vector]: """Returns a new shape that's canonicalized. A canonicalized shape is in sorted order and its first offset is Vector(0, 0). This helps with deduplication, since equivalent shapes will be canonicalized identically. # Arguments shape (List[Vector]): A list of offsets defining a shape. # Returns (List[Vector]): A list of offsets defining the canonicalized version of the shape, i.e., in sorted order and with first offset equal to Vector(0, 0). """ shape = sorted(shape) first_negated = shape[0].negate() return [v.translate(first_negated) for v in shape] class ShapeConstrainer: """Creates constraints for placing fixed shape regions into the grid. # Arguments lattice (Lattice): The structure of the grid. shapes (List[List[Vector]]): A list of region shape definitions. Each region shape definition should be a list of offsets. The same region shape definition may be included multiple times to indicate the number of times that shape may appear (if allow_copies is false). solver (z3.Solver, None): A #Solver object. If None, a #Solver will be constructed. complete (bool): If true, every cell must be part of a shape region. Defaults to false. allow_rotations (bool): If true, allow rotations of the shapes to be placed in the grid. Defaults to false. allow_reflections (bool): If true, allow reflections of the shapes to be placed in the grid. Defaults to false. allow_copies (bool): If true, allow any number of copies of the shapes to be placed in the grid. Defaults to false. """ _instance_index = 0 def __init__( # pylint: disable=R0913 self, lattice: Lattice, shapes: List[List[Vector]], solver: Solver = None, complete: bool = False, allow_rotations: bool = False, allow_reflections: bool = False, allow_copies: bool = False ): ShapeConstrainer._instance_index += 1 if solver: self.__solver = solver else: self.__solver = Solver() self.__lattice = lattice self.__complete = complete self.__allow_copies = allow_copies self.__shapes = shapes self.__make_variants(allow_rotations, allow_reflections) self.__create_grids() self.__add_constraints() def __make_variants(self, allow_rotations, allow_reflections): fs = self.__lattice.transformation_functions( allow_rotations, allow_reflections) self.__variants = [ [ list(shape_tuple) for shape_tuple in { tuple(canonicalize_shape([f(v) for v in s])) for f in fs } ] for s in self.__shapes ] def __create_grids(self): """Create the grids used to model shape region constraints.""" self.__shape_type_grid: Dict[Point, ArithRef] = {} for p in self.__lattice.points: v = Int(f"scst-{ShapeConstrainer._instance_index}-{p.y}-{p.x}") if self.__complete: self.__solver.add(v >= 0) else: self.__solver.add(v >= -1) self.__solver.add(v < len(self.__shapes)) self.__shape_type_grid[p] = v self.__shape_instance_grid: Dict[Point, ArithRef] = {} for p in self.__lattice.points: v = Int(f"scsi-{ShapeConstrainer._instance_index}-{p.y}-{p.x}") if self.__complete: self.__solver.add(v >= 0) else: self.__solver.add(v >= -1) self.__solver.add(v < len(self.__lattice.points)) self.__shape_instance_grid[p] = v def __add_constraints(self): self.__add_grid_agreement_constraints() self.__add_shape_instance_constraints() if not self.__allow_copies: for shape_index, shape in enumerate(self.__shapes): self.__add_single_copy_constraints(shape_index, shape) def __add_grid_agreement_constraints(self): for p in self.__shape_type_grid: self.__solver.add( Or( fast_and( self.__shape_type_grid[p] == -1, self.__shape_instance_grid[p] == -1 ), fast_and( self.__shape_type_grid[p] != -1, self.__shape_instance_grid[p] != -1 ) ) ) def __add_shape_instance_constraints(self): # pylint: disable=R0914 int_vals = {} for i in range(max(len(self.__lattice.points), len(self.__variants))): int_vals[i] = IntVal(i) quadtree = ExpressionQuadTree(self.__lattice.points) for instance_id in [self.__lattice.point_to_index(p) for p in self.__lattice.points]: quadtree.add_expr( (HAS_INSTANCE_ID, instance_id), lambda p, i=instance_id: fast_eq(self.__shape_instance_grid[p], int_vals[i])) quadtree.add_expr( (NOT_HAS_INSTANCE_ID, instance_id), lambda p, i=instance_id: fast_ne(self.__shape_instance_grid[p], int_vals[i])) for shape_index in range(len(self.__variants)): quadtree.add_expr( (HAS_SHAPE_TYPE, shape_index), lambda p, i=shape_index: fast_eq(self.__shape_type_grid[p], int_vals[i])) root_options = defaultdict(list) for shape_index, variants in enumerate(self.__variants): # pylint: disable=R1702 for variant in variants: for root_point in self.__lattice.points: instance_id = self.__lattice.point_to_index(root_point) offset_points = set() for offset_vector in variant: point = root_point.translate(offset_vector) if point not in self.__shape_instance_grid: offset_points = None break offset_points.add(point) if offset_points: and_terms = [] for p in offset_points: and_terms.append(quadtree.get_point_expr((HAS_INSTANCE_ID, instance_id), p)) and_terms.append(quadtree.get_point_expr((HAS_SHAPE_TYPE, shape_index), p)) and_terms.append(quadtree.get_other_points_expr( (NOT_HAS_INSTANCE_ID, instance_id), offset_points)) root_options[root_point].append(fast_and(*and_terms)) for p in self.__lattice.points: instance_id = self.__lattice.point_to_index(p) not_has_instance_id_expr = quadtree.get_other_points_expr( (NOT_HAS_INSTANCE_ID, instance_id), []) or_terms = root_options[p] if or_terms: or_terms.append(not_has_instance_id_expr) self.__solver.add(Or(*or_terms)) else: self.__solver.add(not_has_instance_id_expr) def __add_single_copy_constraints(self, shape_index, shape): sum_terms = [] for p in self.__shape_type_grid: sum_terms.append((self.__shape_type_grid[p] == shape_index, 1)) self.__solver.add(PbEq(sum_terms, len(shape))) @property def solver(self) -> Solver: """(z3.Solver): The #Solver associated with this #ShapeConstrainer.""" return self.__solver @property def shape_type_grid(self) -> Dict[Point, ArithRef]: """(Dict[Point, ArithRef]): A dictionary of z3 constants of shape types. Each cell contains the index of the shape type placed in that cell (as indexed by the shapes list passed in to the #ShapeConstrainer constructor), or -1 if no shape is placed within that cell. """ return self.__shape_type_grid @property def shape_instance_grid(self) -> Dict[Point, ArithRef]: """(Dict[Point, ArithRef]): z3 constants of shape instance IDs. Each cell contains a number shared among all cells containing the same instance of the shape, or -1 if no shape is placed within that cell. """ return self.__shape_instance_grid def print_shape_types(self): """Prints the shape type assigned to each cell. Should be called only after the solver has been checked. """ model = self.__solver.model() min_y = min(p.y for p in self.__shape_type_grid) min_x = min(p.x for p in self.__shape_type_grid) max_y = max(p.y for p in self.__shape_type_grid) max_x = max(p.x for p in self.__shape_type_grid) for y in range(min_y, max_y + 1): for x in range(min_x, max_x + 1): p = Point(y, x) shape_index = -1 if p in self.__shape_type_grid: v = self.__shape_type_grid[p] shape_index = model.eval(v).as_long() if shape_index >= 0: sys.stdout.write(f"{shape_index:3}") else: sys.stdout.write(" ") print() def print_shape_instances(self): """Prints the shape instance ID assigned to each cell. Should be called only after the solver has been checked. """ model = self.__solver.model() min_y = min(p.y for p in self.__shape_instance_grid) min_x = min(p.x for p in self.__shape_instance_grid) max_y = max(p.y for p in self.__shape_instance_grid) max_x = max(p.x for p in self.__shape_instance_grid) for y in range(min_y, max_y + 1): for x in range(min_x, max_x + 1): p = Point(y, x) shape_instance = -1 if p in self.__shape_instance_grid: v = self.__shape_instance_grid[p] shape_instance = model.eval(v).as_long() if shape_instance >= 0: sys.stdout.write(f"{shape_instance:3}") else: sys.stdout.write(" ") print()
from . import call call()
import time import torch from abstraction_learning_dataset import AbstractionLearningDataSet from abstraction_learning_CNN import AbstractionLearningCNN from torch.autograd import Variable import torch.nn as nn import torch.optim as optim def TrainNetwork(): use_GPU = torch.cuda.is_available() print ("Train Abstraction Learning CNN, use GPU: ", use_GPU) ## Define training data set and test data sets ## time_before_reading = time.time() # This needs to be replaced by the training data set which can be generated with the dataset_generator trainset = AbstractionLearningDataSet(file_path="../data_sets/random_test_data_set.txt") trainloader = torch.utils.data.DataLoader(trainset, batch_size=1, shuffle=True, num_workers=4) print ("Read Training Dataset which took %.3fs" %(time.time() - time_before_reading)) time_before_reading = time.time() testset_1_random = AbstractionLearningDataSet(file_path="../data_sets/random_test_data_set.txt") testloader_1_random = torch.utils.data.DataLoader(testset_1_random, batch_size=1,shuffle=False, num_workers=4) print ("Read Random Test Dataset which took %.3fs" %(time.time() - time_before_reading)) time_before_reading = time.time() testset_2_simulated = AbstractionLearningDataSet(file_path="../data_sets/simulated_test_data_set.txt") testloader_2_simulated = torch.utils.data.DataLoader(testset_2_simulated, batch_size=1,shuffle=False, num_workers=4) print ("Read Simulated Test Dataset which took %.3fs" %(time.time() - time_before_reading)) time_before_reading = time.time() testset_3_real = AbstractionLearningDataSet(file_path="../data_sets/real_world_test_data_set.txt") testloader_3_real = torch.utils.data.DataLoader(testset_3_real, batch_size=1,shuffle=False, num_workers=4) print ("Read Real Test Dataset which took %.3fs" %(time.time() - time_before_reading)) trainset_size = len(trainset) testset_rand_size = len(testset_1_random) testset_simu_size = len(testset_2_simulated) testset_real_size = len(testset_3_real) ## CNN initialization ## # Net name = "AbstractionLearningCNN" net = AbstractionLearningCNN() if use_GPU: net = net.cuda() print(net) # Loss function and optimizer learning_rate = 0.0001 costs_loss_function = nn.L1Loss() feasibility_loss_function = nn.BCELoss() optimizer = optim.SGD(net.parameters(), learning_rate, momentum=0.9) cost_loss_weight = float(1.0) feasible_loss_weight = float(1.0) print("Learning rate = ", learning_rate) ## Train the CNN ## print("\nStart training") last_cost_loss = float('Inf') last_last_cost_loss = float('Inf') last_feasible_loss = float('Inf') last_last_feasible_loss = float('Inf') for epoch in range(100): start_time = time.time() # set all losses to zero running_cost_loss = 0.0 running_feasible_loss = 0.0 cost_loss_counter = 0 feasible_loss_counter = 0 for i, sample in enumerate(trainloader, 0): # get the data heights = sample["heights"].float() goal_pose = sample["goal_pose"].float() costs = sample["costs"].float() feasible = sample["feasible"].float() # discretize goal pose goal_pose[0][0] = float(int(goal_pose[0][0]/0.1)) goal_pose[0][1] = float(int(goal_pose[0][1]/0.1)) if goal_pose[0][2] > 0.01: goal_pose[0][2] = 1.0 if goal_pose[0][2] < -0.01: goal_pose[0][2] = -1.0 # add 1 dimension to height input heights_4d = torch.FloatTensor(1,1,72,72) heights_4d[0] = heights # send them to GPU if available if use_GPU: heights_4d = heights_4d.cuda() goal_pose = goal_pose.cuda() costs = costs.cuda() feasible = feasible.cuda() # wrap them in Variable heights_4d = Variable(heights_4d) goal_pose = Variable(goal_pose) costs = Variable(costs) feasible = Variable(feasible) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize output_costs, output_feasible = net(heights_4d, goal_pose) costs_loss = costs_loss_function(output_costs, costs) feasible_loss = feasibility_loss_function(output_feasible, feasible) if (feasible.data[0][0] > 0.5): loss = cost_loss_weight * costs_loss + feasible_loss_weight * feasible_loss running_cost_loss += costs_loss.data running_feasible_loss += feasible_loss.data cost_loss_counter += 1 feasible_loss_counter += 1 else: loss = feasible_loss_weight * feasible_loss running_feasible_loss += feasible_loss.data feasible_loss_counter += 1 if use_GPU: loss = loss.cuda() loss.backward() optimizer.step() current_feasible_loss = running_feasible_loss.item() / max(feasible_loss_counter, 1) current_cost_loss = running_cost_loss.item() / max(cost_loss_counter, 1) training_time = time.time() - start_time # Save the CNN at the current episode checkpoint = { "name": name, "state": net.state_dict(), "epoch": epoch, } torch.save(checkpoint, "../CNN_checkpoints/{}_epoch_{}_lr{}.model".format(name, epoch+1, learning_rate)) ## Evaluate the network on three different data sets ## ## Random scenes ## rand_feasibility_correct = 0 rand_sum_costs_at_feasible = 0.0 rand_sum_costs_at_feasible_counter = 0 rand_sum_cost_diffs_at_feasible = 0.0 rand_start_time = time.time() for i, sample in enumerate(testloader_1_random, 0): # get the data heights = sample["heights"].float() goal_pose = sample["goal_pose"].float() costs = sample["costs"].float() feasible = sample["feasible"].float() # discretize goal pose goal_pose[0][0] = float(int(goal_pose[0][0]/0.1)) goal_pose[0][1] = float(int(goal_pose[0][1]/0.1)) if goal_pose[0][2] > 0.01: goal_pose[0][2] = 1.0 if goal_pose[0][2] < -0.01: goal_pose[0][2] = -1.0 # add 1 dimension to height input heights_4d = torch.FloatTensor(1,1,72,72) heights_4d[0] = heights # send them to GPU if available if use_GPU: heights_4d = heights_4d.cuda() goal_pose = goal_pose.cuda() # wrap them in Variable heights_4d = Variable(heights_4d) goal_pose = Variable(goal_pose) # get network results output_costs, output_feasible = net(heights_4d, goal_pose) if float(output_feasible.data[0]) > 0.5 and float(feasible[0]) > 0.5: rand_feasibility_correct += 1 if float(feasible[0]) > 0.5: rand_sum_costs_at_feasible += float(output_costs.data[0]) rand_sum_cost_diffs_at_feasible += abs(float(costs) - float(output_costs.data[0])) rand_sum_costs_at_feasible_counter += 1 elif float(output_feasible.data[0]) < 0.5 and float(feasible[0]) < 0.5: rand_feasibility_correct += 1 rand_eval_time = time.time() - rand_start_time ## Simulated scenes ## simu_feasibility_correct = 0 simu_sum_costs_at_feasible = 0.0 simu_sum_costs_at_feasible_counter = 0 simu_sum_cost_diffs_at_feasible = 0.0 simu_start_time = time.time() for i, sample in enumerate(testloader_2_simulated, 0): # get the data heights = sample["heights"].float() goal_pose = sample["goal_pose"].float() costs = sample["costs"].float() feasible = sample["feasible"].float() # discretize goal pose goal_pose[0][0] = float(int(goal_pose[0][0]/0.1)) goal_pose[0][1] = float(int(goal_pose[0][1]/0.1)) if goal_pose[0][2] > 0.01: goal_pose[0][2] = 1.0 if goal_pose[0][2] < -0.01: goal_pose[0][2] = -1.0 # add 1 dimension to height input heights_4d = torch.FloatTensor(1,1,72,72) heights_4d[0] = heights # send them to GPU if available if use_GPU: heights_4d = heights_4d.cuda() goal_pose = goal_pose.cuda() # wrap them in Variable heights_4d = Variable(heights_4d) goal_pose = Variable(goal_pose) # get network results output_costs, output_feasible = net(heights_4d, goal_pose) if float(output_feasible.data[0]) > 0.5 and float(feasible[0]) > 0.5: simu_feasibility_correct += 1 if float(feasible[0]) > 0.5: simu_sum_costs_at_feasible += float(output_costs.data[0]) simu_sum_cost_diffs_at_feasible += abs(float(costs) - float(output_costs.data[0])) simu_sum_costs_at_feasible_counter += 1 elif float(output_feasible.data[0]) < 0.5 and float(feasible[0]) < 0.5: simu_feasibility_correct += 1 simu_eval_time = time.time() - simu_start_time ## Real world scenes ## real_feasibility_correct = 0 real_sum_costs_at_feasible = 0.0 real_sum_costs_at_feasible_counter = 0 real_sum_cost_diffs_at_feasible = 0.0 real_start_time = time.time() for i, sample in enumerate(testloader_3_real, 0): # get the data heights = sample["heights"].float() goal_pose = sample["goal_pose"].float() costs = sample["costs"].float() feasible = sample["feasible"].float() # discretize goal pose goal_pose[0][0] = float(int(goal_pose[0][0]/0.1)) goal_pose[0][1] = float(int(goal_pose[0][1]/0.1)) if goal_pose[0][2] > 0.01: goal_pose[0][2] = 1.0 if goal_pose[0][2] < -0.01: goal_pose[0][2] = -1.0 # add 1 dimension to height input heights_4d = torch.FloatTensor(1,1,72,72) heights_4d[0] = heights # send them to GPU if available if use_GPU: heights_4d = heights_4d.cuda() goal_pose = goal_pose.cuda() # wrap them in Variable heights_4d = Variable(heights_4d) goal_pose = Variable(goal_pose) # get network results output_costs, output_feasible = net(heights_4d, goal_pose) if float(output_feasible.data[0]) > 0.5 and float(feasible[0]) > 0.5: real_feasibility_correct += 1 if float(feasible[0]) > 0.5: real_sum_costs_at_feasible += float(output_costs.data[0]) real_sum_cost_diffs_at_feasible += abs(float(costs) - float(output_costs.data[0])) real_sum_costs_at_feasible_counter += 1 elif float(output_feasible.data[0]) < 0.5 and float(feasible[0]) < 0.5: real_feasibility_correct += 1 real_eval_time = time.time() - real_start_time print("[%3d](%ds) F-Loss: %.4f, C-loss: %.4f for %d | RANDOM(%ds): F: %d/%d (%.1f%%), avg C: %.3f, avg. error: %.3f | SIMULATED(%ds): F: %d/%d (%.1f%%), avg C: %.3f, avg error: %.3f | REAL(%ds): F: %d/%d (%.1f%%), avg C: %.3f, avg error: %.3f" %(epoch + 1, training_time, running_feasible_loss / max(feasible_loss_counter,1), running_cost_loss / max(cost_loss_counter,1), cost_loss_counter, rand_eval_time, rand_feasibility_correct, testset_rand_size, 100 * rand_feasibility_correct/testset_rand_size, rand_sum_costs_at_feasible/max(rand_sum_costs_at_feasible_counter,1), rand_sum_cost_diffs_at_feasible/max(rand_sum_costs_at_feasible_counter,1), simu_eval_time, simu_feasibility_correct, testset_simu_size, 100 * simu_feasibility_correct/testset_simu_size, simu_sum_costs_at_feasible/max(simu_sum_costs_at_feasible_counter,1), simu_sum_cost_diffs_at_feasible/max(simu_sum_costs_at_feasible_counter,1), real_eval_time, real_feasibility_correct, testset_real_size, 100 * real_feasibility_correct/testset_real_size, real_sum_costs_at_feasible/max(real_sum_costs_at_feasible_counter,1), real_sum_cost_diffs_at_feasible/max(real_sum_costs_at_feasible_counter,1))) ## Adjust loss weights ## if current_feasible_loss > last_feasible_loss and last_feasible_loss > last_last_feasible_loss: feasible_loss_weight = feasible_loss_weight / 5.0 last_feasible_loss = float('Inf') last_last_feasible_loss = float('Inf') last_cost_loss = float('Inf') last_last_cost_loss = float('Inf') print("New feasible loss weight is %.6f" %(feasible_loss_weight)) else: last_last_feasible_loss = last_feasible_loss last_feasible_loss = current_feasible_loss if current_cost_loss > last_cost_loss and last_cost_loss > last_last_cost_loss: cost_loss_weight = cost_loss_weight / 5.0 last_cost_loss = float('Inf') last_last_cost_loss = float('Inf') print("New cost loss weight is %.6f" %(cost_loss_weight)) else: last_last_cost_loss = last_cost_loss last_cost_loss = current_cost_loss TrainNetwork()
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.12 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. """ :Author: Berk Onat <b.onat@warwick.ac.uk> :Year: 2017 :Licence: UIUC LICENSE """ from sys import version_info as _swig_python_version_info if _swig_python_version_info >= (2, 7, 0): def swig_import_helper(): import importlib pkg = __name__.rpartition('.')[0] mname = '.'.join((pkg, '_libpymolfile')).lstrip('.') try: return importlib.import_module(mname) except ImportError: return importlib.import_module('_libpymolfile') _libpymolfile = swig_import_helper() del swig_import_helper elif _swig_python_version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_libpymolfile', [dirname(__file__)]) except ImportError: import _libpymolfile return _libpymolfile try: _mod = imp.load_module('_libpymolfile', fp, pathname, description) finally: if fp is not None: fp.close() return _mod _libpymolfile = swig_import_helper() del swig_import_helper else: import _libpymolfile del _swig_python_version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. try: import builtins as __builtin__ except ImportError: import __builtin__ def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): if _newclass: object.__setattr__(self, name, value) else: self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr(self, class_type, name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name)) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except __builtin__.Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except __builtin__.Exception: class _object: pass _newclass = 0 def molfile_plugin_list(maxsize: 'int') -> "PyObject *": """molfile_plugin_list(maxsize) -> PyObject *""" return _libpymolfile.molfile_plugin_list(maxsize) def molfile_init() -> "int": """molfile_init() -> int""" return _libpymolfile.molfile_init() def molfile_finish() -> "int": """molfile_finish() -> int""" return _libpymolfile.molfile_finish() def get_plugin(molcapsule: 'PyObject *', plug_no: 'int') -> "PyObject *": """get_plugin(molcapsule, plug_no) -> PyObject *""" return _libpymolfile.get_plugin(molcapsule, plug_no) def molfile_plugin_info(molcapsule: 'PyObject *', plugin_no: 'int') -> "PyObject *": """molfile_plugin_info(molcapsule, plugin_no) -> PyObject *""" return _libpymolfile.molfile_plugin_info(molcapsule, plugin_no) def open_file_read(molcapsule: 'PyObject *', fname: 'char *', ftype: 'char *', natoms: 'int') -> "PyObject *": """open_file_read(molcapsule, fname, ftype, natoms) -> PyObject *""" return _libpymolfile.open_file_read(molcapsule, fname, ftype, natoms) def open_file_write(molcapsule: 'PyObject *', fname: 'char *', ftype: 'char *', natoms: 'int') -> "PyObject *": """open_file_write(molcapsule, fname, ftype, natoms) -> PyObject *""" return _libpymolfile.open_file_write(molcapsule, fname, ftype, natoms) def close_file_read(molpack: 'PyObject *') -> "PyObject *": """close_file_read(molpack) -> PyObject *""" return _libpymolfile.close_file_read(molpack) def close_file_write(molpack: 'PyObject *') -> "PyObject *": """close_file_write(molpack) -> PyObject *""" return _libpymolfile.close_file_write(molpack) def read_fill_structure(molpack: 'PyObject *', prototype: 'PyObject *') -> "PyObject *": """read_fill_structure(molpack, prototype) -> PyObject *""" return _libpymolfile.read_fill_structure(molpack, prototype) def write_fill_structure(molpack: 'PyObject *', molarray: 'PyObject *') -> "PyObject *": """write_fill_structure(molpack, molarray) -> PyObject *""" return _libpymolfile.write_fill_structure(molpack, molarray) def read_fill_bonds(molpack: 'PyObject *') -> "PyObject *": """read_fill_bonds(molpack) -> PyObject *""" return _libpymolfile.read_fill_bonds(molpack) def write_fill_bonds(molpack: 'PyObject *', moldict: 'PyObject *') -> "PyObject *": """write_fill_bonds(molpack, moldict) -> PyObject *""" return _libpymolfile.write_fill_bonds(molpack, moldict) def read_fill_angles(molpack: 'PyObject *') -> "PyObject *": """read_fill_angles(molpack) -> PyObject *""" return _libpymolfile.read_fill_angles(molpack) def write_fill_angles(molpack: 'PyObject *', moldict: 'PyObject *') -> "PyObject *": """write_fill_angles(molpack, moldict) -> PyObject *""" return _libpymolfile.write_fill_angles(molpack, moldict) def read_fill_next_timestep(molpack: 'PyObject *') -> "PyObject *": """read_fill_next_timestep(molpack) -> PyObject *""" return _libpymolfile.read_fill_next_timestep(molpack) def write_fill_timestep(molpack: 'PyObject *', moldict: 'PyObject *') -> "PyObject *": """write_fill_timestep(molpack, moldict) -> PyObject *""" return _libpymolfile.write_fill_timestep(molpack, moldict) def are_plugins_same(molpack_a: 'PyObject *', molpack_b: 'PyObject *') -> "PyObject *": """are_plugins_same(molpack_a, molpack_b) -> PyObject *""" return _libpymolfile.are_plugins_same(molpack_a, molpack_b) def are_filehandles_same(molpack_a: 'PyObject *', molpack_b: 'PyObject *') -> "PyObject *": """are_filehandles_same(molpack_a, molpack_b) -> PyObject *""" return _libpymolfile.are_filehandles_same(molpack_a, molpack_b) # This file is compatible with both classic and new-style classes.
# Generated by Django 2.2.24 on 2021-10-22 06:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('meeting', '0049_session_purpose'), ] operations = [ migrations.AddField( model_name='session', name='on_agenda', field=models.BooleanField(default=True, help_text='Is this session visible on the meeting agenda?'), ), ]
import gym import tensorflow as tf from tensorboardX import SummaryWriter from agent.continuous.seperate.ppo import PPO from agent.utils import get_gaes from example_model.policy.mlp.continuous import MLPContinuousActor from example_model.policy.mlp.continuous import MLPContinuousCritic env = gym.make('BipedalWalker-v2') sess = tf.Session() state_size = 24 output_size = 4 actor = MLPContinuousActor('actor', state_size, output_size) critic = MLPContinuousCritic('critic', state_size) agent = PPO(sess, state_size, output_size, actor, critic) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() #saver.restore(sess, 'model/model') writer = SummaryWriter() values, states, actions, dones, logp_ts, rewards = [], [], [], [], [], [] o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 rollout = 0 score = 0 ep = 0 n_step = 512 record_score_size = 10 record_score = 0 while True: score_rollout = 0 rollout += 1 for t in range(n_step): #if ep % 10 == 0: # env.render() a, v_t, logp_t = agent.get_action([o]) a, v_t, logp_t = a[0], v_t[0], logp_t[0] n_o, r, d, _ = env.step(a) score += r score_rollout += r record_score += r values.append(v_t) states.append(o) actions.append(a) dones.append(d) rewards.append(r) logp_ts.append(logp_t) o = n_o if d: ep += 1 if ep % record_score_size == 0: if int(ep / record_score_size) < 600: writer.add_scalar('data/reward', record_score / record_score_size, int(ep / record_score_size)) record_score = 0 writer.add_scalar('data/reward_per_episode', score, ep) print(score, ep) score = 0 o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 a, v_t, logp_t = agent.get_action([o]) values.append(v_t[0]) next_value = values[1:] value = values[:-1] adv, target = get_gaes(rewards, dones, value, next_value, agent.gamma, agent.lamda, False) value_loss, kl, ent = agent.update(states, actions, target, adv, logp_ts) writer.add_scalar('data/value_loss_per_rollout', value_loss, rollout) writer.add_scalar('data/kl_per_rollout', kl, rollout) writer.add_scalar('data/ent_per_rollout', ent, rollout) writer.add_scalar('data/reward_per_rollout', score_rollout, rollout) values, states, actions, dones, logp_ts, rewards = [], [], [], [], [], []
"""User configuration file File organizing all configurations that may be set by user when running the train.py script. Call python -m src.train --help for a complete and formatted list of available user options. """ import argparse import time from random import randint import os import socket import glob import shutil import sys import pathlib def get_opt(): # Construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument('-m', '--model_name', type=str, default='sononet') ap.add_argument('-lr', '--learning_rate', type=float, default=1e-4) ap.add_argument('-ep', '--epochs', type=int, default=75) ap.add_argument('-bs', '--batch_size', type=int, default=64) ap.add_argument('-is', '--img_size', type=int, default=224) ap.add_argument('-g', '--gpus', type=str, default='0') ap.add_argument('-ex', '--experiment', type=str, default='') ap.add_argument('-l', '--load_checkpoint_d', type=str, default=None) ap.add_argument('-v', '--val_split', type=str, default='val') args = ap.parse_args() #gets the current time of the run, and adds a four digit number for getting #different folder name for experiments run at the exact same time. timestamp = time.strftime("%Y%m%d-%H%M%S") + '-' + str(randint(1000,9999)) args.timestamp = timestamp #register a few values that might be important for reproducibility args.screen_name = os.getenv('STY') args.hostname = socket.gethostname() if args.gpus is not None: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus else: args.gpus = os.environ['CUDA_VISIBLE_DEVICES'] import platform args.python_version = platform.python_version() import torch args.pytorch_version = torch.__version__ import torchvision args.torchvision_version = torchvision.__version__ import numpy as np args.numpy_version = np.__version__ args.save_folder = './runs/' pathlib.Path(args.save_folder).mkdir(parents=True, exist_ok=True) args.output_folder = args.save_folder+'/'+args.experiment+'_'+args.timestamp os.mkdir(args.output_folder) log_configs(args) args = vars(args) return args def log_configs(opt): with open(opt.output_folder + '/opts.txt', 'w') as f: for key, value in sorted(vars(opt).items()): f.write(key + ': ' + str(value).replace('\n', ' ').replace('\r', '') + '\r\n') save_run_state(opt) def save_command(opt): command = ' '.join(sys.argv) with open(f"{opt.output_folder}/command.txt", "w") as text_file: text_file.write(command) def save_run_state(opt): if not os.path.exists(f'{opt.output_folder}/src/'): os.mkdir(f'{opt.output_folder}/src/') [shutil.copy(filename, (f'{opt.output_folder}/src/')) for filename in glob.glob(os.path.dirname(__file__) + '/*.py')] save_command(opt)
def find_median(Arr, start, size): myList = [] for i in range(start, start + size): myList.append(Arr[i]) myList.sort() return myList[size // 2] def fastSelect(array, k): n = len(array) if 0 < k <= n: setOfMedians = [] arr_less_P = [] arr_equal_P = [] arr_more_P = [] i = 0 while i < n // 5: median = find_median(array, 5 * i, 5) setOfMedians.append(median) i += 1 if 5 * i < n: median = find_median(array, 5 * i, n % 5) setOfMedians.append(median) if len(setOfMedians) == 1: pivot = setOfMedians[0] elif len(setOfMedians) > 1: pivot = fastSelect(setOfMedians, len(setOfMedians) // 2) for element in array: if element < pivot: arr_less_P.append(element) elif element > pivot: arr_more_P.append(element) else: arr_equal_P.append(element) if k <= len(arr_less_P): return fastSelect(arr_less_P, k) elif k > (len(arr_less_P) + len(arr_equal_P)): return fastSelect(arr_more_P, (k - len(arr_less_P) - len(arr_equal_P))) else: return pivot if __name__ == '__main__': Arr = [6, 80, 36, 8, 23, 7, 10, 12, 42] k = 5 print(fastSelect(Arr, k)) # Outputs 12 Arr = [5, 2, 20, 17, 11, 13, 8, 9, 11] k = 5 print(fastSelect(Arr, k)) # Outputs 11 Arr = [6, 80, 36, 8, 23, 7, 10, 12, 42, 99] k = 10 print(fastSelect(Arr, k)) # Outputs 99
from nbconvert.preprocessors import Preprocessor class StripOutput(Preprocessor): """ Clear prompt number and output (if any) from all notebook cells. Example ------- # command line usage: jupyter nbconvert example.ipynb --pre=nbexample.strip_output.StripOutput """ def preprocess_cell(self, cell, resources, index): """ Clear prompt number and output (if any) from cell. """ if 'outputs' in cell: cell['outputs'] = [] if 'prompt_number' in cell: cell['prompt_number'] = None return cell, resources
#Student program - Conor Hennessy - November 2014~2016 import Test ##Defining RunTest function to run task one code def RunTest(): Test.RunQuiz() ##Defining Savescore function with code to check for headers and get values from test def Savedata(): print("Writing to file...") global data data = [{'Name':name,'Score':score,'Class':classSet}] global fileHandle try: open(str(classSet)+' Class Results.csv', 'r') header = 'yes' if header == 'yes': fileHandle = open(str(classSet)+' Class Results.csv', 'a') WriteToFile() except IOError: fileHandle = open(str(classSet)+' Class Results.csv', 'a') fileHandle.write('Name,Score\n') WriteToFile() ##Defining WriteToFile function def WriteToFile(): for value in data: fileHandle.write('{Name},{Score}'.format(**value)) fileHandle.write('\n') fileHandle.close() print ("Writing to file complete!") # Function asking what class they are in def ClassChecker(): global classSet classSet = input ("What is your class set? ") if classSet == 'x1' or classSet == 'x2' or classSet == 'x3': return '\n' else: print("[Please input in the form: x1, x2 or x3]") return ClassChecker() #Running the test and then writing the score to file ClassChecker() if __name__ == '__main__': RunTest() from Test import name, score Savedata()
# Generated by Django 3.0.8 on 2020-08-20 08:21 from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=30)), ('last_name', models.CharField(max_length=30)), ('email', models.EmailField(max_length=254)), ('bio', models.TextField()), ('phone_number', models.CharField(blank=True, max_length=15)), ('prof_photo', models.ImageField(upload_to='pics/profiles/')), ('user', models.OneToOneField(blank=True, default=0, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Projects', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('project', models.CharField(max_length=50)), ('project_description', models.CharField(max_length=1000)), ('repository_link', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(auto_now_add=True)), ('project_owner', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='projectawards.Profile')), ], ), migrations.CreateModel( name='Review', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('submitted_date', models.DateTimeField(auto_now_add=True)), ('user_interface', models.PositiveIntegerField(default=1, validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(10)])), ('user_experience', models.PositiveIntegerField(default=1, validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(10)])), ('responsiveness', models.PositiveIntegerField(default=1, validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(10)])), ('design_average', models.IntegerField()), ('functionality', models.PositiveIntegerField(default=1, validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(10)])), ('io', models.PositiveIntegerField(default=1, validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(10)])), ('usability_average', models.IntegerField()), ('content_average', models.IntegerField()), ('total_average', models.IntegerField()), ('for_project', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projectawards.Projects')), ('submitted_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projectawards.Profile')), ], ), migrations.CreateModel( name='Followers', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('follower_id', models.IntegerField()), ('for_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projectawards.Profile')), ], ), migrations.CreateModel( name='Comments', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', models.CharField(max_length=500)), ('submitted_on', models.DateTimeField(auto_now_add=True)), ('for_project', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projectawards.Projects')), ('submitted_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projectawards.Profile')), ], ), ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @title: pm_synth.py @date: 08/13/16 @author: Daniel Guest @purpose: Provide classes to create phase modulation synthesizer. """ import numpy as np import math class Synth(object): def __init__(self, fs=10000, inv_samp=50, n_op=6): # Initialize parameters self.fs = fs self.inv_samp = inv_samp self.output = [0]*self.inv_samp self.current_inv = 0 self.amp_val = 0 self.n_op = 6 # Initialize components self.ops = [] for op in range(self.n_op): self.ops.append(Operator(self)) self.output_module = Output(self) # Choose algorithm self.algorithm = a1(ops=self.ops, output_module=self.output_module) self.algorithm.implement() def synth(self): for op in range(self.n_op): self.ops[op].run() self.output_module.run() self.update_inv() def update_inv(self): self.current_inv = self.current_inv + 1 class Algorithm(object): def __init__(self, ops, output_module): self.ops = ops self.output_module = output_module def implement(self): print("DO SOMETHING HERE?") class a1(Algorithm): def __init__(self, ops, output_module): Algorithm.__init__(self, ops, output_module) def implement(self): self.ops[1].input_connect = [self.ops[0]] self.ops[3].input_connect = [self.ops[2]] self.ops[5].input_connect = [self.ops[4]] self.output_module.input_connect = [self.ops[1], self.ops[3], self.ops[5]] class a2(Algorithm): def __init__(self, ops, output_module): Algorithm.__init__(self, ops, output_module) def implement(self): self.ops[0].input_connect = [self.ops] class Component(object): def __init__(self, master, input_connect=None): self.master = master self.input = [0]*self.master.inv_samp self.output = [0]*self.master.inv_samp self.input_connect = input_connect def pull(self): self.input = [0]*self.master.inv_samp self.output = [0]*self.master.inv_samp if self.input_connect == None: self.input[:] = [0]*self.master.inv_samp elif len(self.input_connect) == 1: self.input[:] = self.input_connect[0].output[:] else: inputs = [] for i in range(len(self.input_connect)): inputs.append(self.input_connect[i].output[:]) self.input[:] = [sum(x) for x in zip(*inputs)] class Operator(Component): def __init__(self, master, init_freq=200, input_connect=None): Component.__init__(self, master, input_connect) self.freq = init_freq self.phase = [0]*self.master.inv_samp self.phase_inc = 0 self.phase_delay = [0] self.amp_val = 0 def run(self): self.pull() self.phase_inc = (self.freq/self.master.fs)*(2*np.pi) for n in range(self.master.inv_samp): if n == 0: self.phase[0] = self.phase_delay[0] + self.phase_inc\ + self.input[0] else: self.phase[n] = self.phase[n-1] + self.phase_inc\ + self.input[n] if self.phase[n] > math.pi: self.phase[n] = self.phase[n] - 2*math.pi self.output[n] = math.sin(self.phase[n])*self.amp_val self.phase_delay[0] = self.phase[-1] class Output(Component): def __init__(self, master, input_connect): Component.__init__(self, master, input_connect) def run(self): self.pull() self.master.output[:] = self.input[:]
# -*- coding: utf-8 -*- """ Created on Sat Jun 27 15:18:53 2020 @author: z003vrzk """ # Python imports import sys, os import unittest # Sklearn imports from sklearn.naive_bayes import ComplementNB from sklearn.dummy import DummyClassifier from sklearn.metrics import accuracy_score, make_scorer, precision_score, recall_score from sklearn.model_selection import ShuffleSplit, KFold from sklearn.metrics._scorer import _check_multimetric_scoring from sklearn.base import is_classifier, clone from sklearn.metrics._scorer import check_scoring from sklearn.model_selection._split import check_cv from sklearn.utils import indexable from sklearn.neighbors import KNeighborsClassifier # Third party imports from joblib import Parallel, delayed import numpy as np from scipy.sparse import csr_matrix # Local imports from bag_cross_validate import (BagScorer, cross_validate_bag, _fit_and_score, bags_2_si,) #%% class TestBagScorer(unittest.TestCase): def setUp(self): """Generate some dummy data Create bags and single-instance data A set of bags have a shape [n x (m x p)], and can be through of as an array of bag instances. n is the number of bags m is the number of instances within each bag (this can vary between bags) p is the feature space of each instance""" n_bags = 100 m_instances = 5 # Static number of bags p = 5 bags = [] # 25% negative class, 75% positive class # Bags are created with random data, of shape (n, (m,p)) labels = np.concatenate((np.ones(int(n_bags*0.5)), np.zeros(int(n_bags*(1-0.5))), )) for _ in range(n_bags): _rand = np.random.rand(m_instances, p) bag = np.where(_rand < 0.25, 1, 0) bags.append(bag) bags = np.array(bags) # Split dummy dataset dataset rs = ShuffleSplit(n_splits=1, test_size=0.2, train_size=0.8) train_index, test_index = next(rs.split(bags, labels)) train_bags, train_labels = bags[train_index], labels[train_index] test_bags, test_labels = bags[test_index], labels[test_index] self.train_bags, self.train_labels = bags[train_index], labels[train_index] self.test_bags, self.test_labels = bags[test_index], labels[test_index] return None def test_BagScorer(self): """Define scoring functions, such as accuracy or recall, which will be used to score how well single-instance inference performs on the bag classification task The scoring functions have some requirements - a) They are passed to BagScorer on initialization b) Must have a method "_score_func" with a signature f(y_true, y_pred) (This is provided by default when using sklearn.metrics.make_scorer) """ # Create scoring metrics, and load scoring metric into BagScorer accuracy_scorer = make_scorer(accuracy_score, normalize=True) precision_scorer = make_scorer(precision_score, average='weighted') recall_scorer = make_scorer(recall_score, average='weighted') # {'normalize':'weighted'} self.assertDictContainsSubset({'normalize':True}, accuracy_scorer._kwargs) self.assertIn('_score_func', accuracy_scorer.__dict__.keys()) # Dummy data train_bags, train_labels = self.train_bags, self.train_labels test_bags, test_labels = self.test_bags, self.test_labels # Create a single-instance estimator compNB = ComplementNB(alpha=1.0, fit_prior=True, class_prior=None, norm=False) # Test custom scorer bagAccScorer = BagScorer(accuracy_scorer, sparse=True) bagPrecisionScorer = BagScorer(precision_scorer, sparse=True) bagRecallScorer = BagScorer(recall_scorer, sparse=True) estimator = bagAccScorer.estimator_fit(compNB, train_bags, train_labels) # The estimator is the same for all instances... accuracy = bagAccScorer(estimator, test_bags, test_labels) precision = bagPrecisionScorer(estimator, test_bags, test_labels) recall = bagRecallScorer(estimator, test_bags, test_labels) self.assertIsInstance(accuracy, float) self.assertLess(accuracy, 1) self.assertGreater(accuracy, 0) self.assertIsInstance(precision, float) self.assertLess(precision, 1) self.assertGreater(precision, 0) self.assertIsInstance(recall, float) self.assertLess(recall, 1) self.assertGreater(recall, 0) return None def test_scorer_signature(self): """Define scoring functions, such as accuracy or recall, which will be used to score how well single-instance inference performs on the bag classification task The scoring functions have some requirements - a) They are passed to BagScorer on initialization b) Must have a method "_score_func" with a signature f(y_true, y_pred) (This is provided by default when using sklearn.metrics.make_scorer) """ accuracy_scorer = make_scorer(accuracy_score, normalize='weighted') print(accuracy_scorer._kwargs) # {'normalize':'weighted'} hasattr(accuracy_scorer, '_score_func') # True self.assertTrue(hasattr(accuracy_scorer, '_score_func')) def test_BagScorer_signature(self): # Test custom scorer accuracy_scorer = make_scorer(accuracy_score, normalize='weighted') bagAccScorer = BagScorer(accuracy_scorer, sparse=True) self.assertTrue(callable(bagAccScorer), msg="BagScorer must be callable") return None def test_BagScorer_metric(self): """Define scoring functions, such as accuracy or recall, which will be used to score how well single-instance inference performs on the bag classification task The scoring functions have some requirements - a) They are passed to BagScorer on initialization b) Must have a method "_score_func" with a signature f(y_true, y_pred) (This is provided by default when using sklearn.metrics.make_scorer) Successful conditions: The bagscorer must report the same performance metrics as when the metrics are manually calculated This tests if the bagscorer property fits, trains, and evaluates the estimator passed to it """ # Generate a scoring metric for the bag scorer accuracy_scorer = make_scorer(accuracy_score) self.assertTrue(hasattr(accuracy_scorer, '_score_func'), msg='accuracy scorer must have _score_function method') # Generate some data train_bags, train_labels = self.train_bags, self.train_labels test_bags, test_labels = self.test_bags, self.test_labels # Create a dummy estimator dumb = DummyClassifier(strategy='constant', constant=1) # concatenate arrays across 1st axis SI_train, SI_train_labels = bags_2_si(train_bags, train_labels) SI_test, SI_test_labels = bags_2_si(test_bags, test_labels) dumb.fit(SI_train, SI_train_labels) pred_test = dumb.predict(SI_test) pred_train = dumb.predict(SI_train) """Calculate the correct number of predictions based on dummy classifier The dummy classifier predicts 1 always (constant) The training set bas """ pct_train = sum(train_labels) / len(train_labels) pct_test = sum(test_labels) / len(test_labels) dumb_accuracy_train = accuracy_score(SI_train_labels, pred_train) dumb_accuracy_test = accuracy_score(SI_test_labels, pred_test) # Test custom scorer, with the same dummy estimator bagAccScorer = BagScorer(accuracy_scorer, sparse=True) estimator = bagAccScorer.estimator_fit(dumb, train_bags, train_labels) test_score = bagAccScorer(estimator, test_bags, test_labels) train_score = bagAccScorer(estimator, train_bags, train_labels) """test_score should output the accuracy for predictions among bags The test_score for bagScorer should be equal to the dumb_accuracy_test because bag labels are reduced by the most frequest SI prediction If all SI labels are predicted + then all bags will be predicted + The accuracy of bag labels reduced by BagScorer will be equal to percent of bag labels that are positive""" self.assertEqual(test_score, pct_test) self.assertEqual(train_score, pct_train) self.assertEqual(pct_train, dumb_accuracy_train) self.assertEqual(pct_test, dumb_accuracy_test) def test_cross_validate_bag(self): # Scoring accuracy_scorer = make_scorer(accuracy_score, normalize='weighted') # Dummy data train_bags, train_labels = self.train_bags, self.train_labels test_bags, test_labels = self.test_bags, self.test_labels # Define an estimator dumb = DummyClassifier(strategy='constant', constant=1) # Calculate metrics manually expected_accuracy = sum(train_labels) / len(train_labels) kf = KFold(n_splits = 4) accuracies = [] for train_index, test_index in kf.split(train_labels): _fold = train_labels[test_index] _acc = sum(_fold) / len(_fold) print(sum(_fold)) accuracies.append(_acc) print('Global Accuracy : ', sum(train_labels) / len(train_labels)) print('Averaged accuracies : ', np.mean(accuracies)) # Custom scorer bagAccScorer = BagScorer(accuracy_scorer, sparse=True) scorer = {'bag-accuracy-scorer': bagAccScorer, } # Test cross_validate_bag # Res is a dictonary of lists {'fit_time':[1,2,3], # 'test_bag-accuracy-scorer':[0.1,0.2,0.3]} res = cross_validate_bag(dumb, train_bags, train_labels, cv=4, scoring=scorer, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', return_train_score=False, return_estimator=False, error_score='raise') """The arithmetic mean of all accuracy predictions should equal the prediction accuracy of the training bags (At least if all splits are equal size -> Which is not true if the number of training instances is not divisible by the number of splits) This is only true because the dummy classifier always predicts 1 If the splits are not equal size then they will be close to equal""" self.assertAlmostEqual(np.mean(res['test_bag-accuracy-scorer']), expected_accuracy, 3) # Just check the mean also LOL self.assertEqual(np.mean(res['test_bag-accuracy-scorer']), expected_accuracy) # 4 Crossvalidation splits self.assertTrue(len(res['test_bag-accuracy-scorer']) == 4) # Assert result has dictionary values self.assertIn('fit_time', res.keys()) self.assertIn('score_time', res.keys()) return None def test_fit_and_score(self): # Scoring accuracy_scorer = make_scorer(accuracy_score, normalize='weighted') # Test estimator dumb = DummyClassifier(strategy='constant', constant=1) # Test custom scorer bagAccScorer = BagScorer(accuracy_scorer, sparse=True) # _fit_and_score testing X = self.train_bags y = self.train_labels scoring = {'bag-accuracy-scorer': bagAccScorer, } estimator = dumb groups = None cv = 3 n_jobs=3 verbose=0 pre_dispatch=6 fit_params=None return_estimator=None error_score='raise' return_train_score=None parameters=None # Test _fit_and_score method X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) scorers = _check_multimetric_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) # Scores is a list of dictonaries """When scoring is a dictionary, the returned result looks like [{'test_scores': {'bag-accuracy-scorer': 0.5185185185185185}, 'fit_time': 0.0, 'score_time': 0.0}, {'test_scores': {'bag-accuracy-scorer': 0.5185185185185185}, 'fit_time': 0.0, 'score_time': 0.0}, ... ]""" scores = parallel( delayed(_fit_and_score)( clone(estimator), X, y, scorers, train, test, verbose, parameters, fit_params, return_train_score=return_train_score, return_times=True, return_estimator=return_estimator, error_score=error_score) for train, test in cv.split(X, y, groups)) for score in scores: bag_scoring_metric = score['test_scores'] self.assertLessEqual(bag_scoring_metric['bag-accuracy-scorer'], 1) self.assertGreaterEqual(bag_scoring_metric['bag-accuracy-scorer'], 0) fit_time = score['fit_time'] self.assertIsInstance(fit_time, float) score_time = score['score_time'] self.assertIsInstance(score_time, float) return None def test_fit_and_score_return_dict(self): # Scoring accuracy_scorer = make_scorer(accuracy_score, normalize='weighted') # Test estimator dumb = DummyClassifier(strategy='constant', constant=1) # Test custom scorer bagAccScorer = BagScorer(accuracy_scorer, sparse=True) # Rename for easier parameters X = self.train_bags y = self.train_labels scoring = {'bag-scorer':bagAccScorer} estimator = dumb groups = None cv = 3 n_jobs=3 verbose=0 pre_dispatch=6 fit_params=None return_estimator=True error_score='raise' return_train_score=True parameters=None # Test _fit_and_score method X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) scorers = _check_multimetric_scoring(estimator, scoring=scoring) # Use one cross-validation split generator = cv.split(X, y, groups) # Get training and test split of training data train, test = next(generator) # Generate scores using BagScorer scores = _fit_and_score( clone(estimator), X, y, scorers, train, test, verbose, parameters, fit_params, return_train_score=return_train_score, return_times=True, return_estimator=return_estimator, return_n_test_samples=False, error_score=error_score) # Returned dictionary contains keys self.assertIn('train_scores', scores.keys()) self.assertIn('test_scores', scores.keys()) self.assertIn('fit_time', scores.keys()) self.assertIn('score_time', scores.keys()) self.assertIn('estimator', scores.keys()) return None class TestCrossValidation(unittest.TestCase): def setUp(self): """Generate some dummy data Create bags and single-instance data A set of bags have a shape [n x (m x p)], and can be through of as an array of bag instances. n is the number of bags m is the number of instances within each bag (this can vary between bags) p is the feature space of each instance""" n_bags = 100 m_instances_range = [5,10] # Dynamic number instance per bag p = 5 bags_sparse = [] # 25% negative class, 75% positive class # Bags are created with random data, of shape (n, (m,p)) labels = np.concatenate((np.ones(int(n_bags*0.5)), np.zeros(int(n_bags*(1-0.5))), )) for n in range(0, n_bags): m_instances = np.random.randint(m_instances_range[0], m_instances_range[1],) bag = np.random.randint(low=0, high=2, size=(m_instances, p)) bag_sparse = csr_matrix(bag) bags_sparse.append(bag_sparse) bags_sparse = np.array(bags_sparse) # Split dummy dataset dataset rs = ShuffleSplit(n_splits=1, test_size=0.2, train_size=0.8) train_index, test_index = next(rs.split(bags_sparse, labels)) train_bags, train_labels = bags_sparse[train_index], labels[train_index] test_bags, test_labels = bags_sparse[test_index], labels[test_index] self.train_bags, self.train_labels = bags_sparse[train_index], labels[train_index] self.test_bags, self.test_labels = bags_sparse[test_index], labels[test_index] return None def test_bag_cross_validate_sparse(self): # Scoring accuracy_scorer = make_scorer(accuracy_score, normalize='weighted') # Dummy data train_bags, train_labels = self.train_bags, self.train_labels test_bags, test_labels = self.test_bags, self.test_labels # Define an estimator estimator = KNeighborsClassifier(n_neighbors=10, weights='uniform', algorithm='ball_tree', n_jobs=4) # Custom scorer bagAccScorer = BagScorer(accuracy_scorer, input_sparse=True) scorer = {'bag-accuracy-scorer': bagAccScorer, } # Test cross_validate_bag # Res is a dictonary of lists {'fit_time':[1,2,3], # 'test_bag-accuracy-scorer':[0.1,0.2,0.3]} res = cross_validate_bag(estimator, train_bags, train_labels, cv=4, scoring=scorer, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', return_train_score=False, return_estimator=False, error_score='raise') # 4 Crossvalidation splits self.assertTrue(len(res['test_bag-accuracy-scorer']) == 4) # Assert result has dictionary values self.assertIn('fit_time', res.keys()) self.assertIn('score_time', res.keys()) return None #%% if __name__ == '__main__': # Run all test cases unittest.main() # # Run specific test methods... # runner = unittest.TextTestRunner() # classes = [TestBagScorer] # unit_tests_to_run = [ # 'test_BagScorer', # 'test_BagScorer_dict', # 'test_BagScorer_metric', # 'test_BagScorer_signature', # 'test_cross_validate_bag', # 'test_fit_and_score', # 'test_fit_and_score_return_dict', # 'test_scorer_signature', # ] # Run specific test methods... (altenative method) # suite = unittest.TestSuite() # suite.addTest(TestBagScorer('test_fit_and_score_return_dict')) # runner = unittest.TextTestRunner() # runner.run(suite)
import numpy as np import tensorflow as tf from tensorflow.contrib import layers from tensorflow.contrib import rnn import config import gen_data def lstmnet(input_tensor, label_tensor, global_step, phase, reuse_weights): # input_tensor: [ BATCH_SIZE, SEQUENCE_LENGTH, INPUT_DIMENSION] # label_tensor: [ BATCH_SIZE ] # global_step: [ 1 ] with tf.variable_scope('NeuralNet', reuse=tf.AUTO_REUSE) as scope: if reuse_weights: scope.reuse_variables() X = tf.reshape(input_tensor, [config.batch_size, config.sequence_length, config.input_dimension]) # X: [ BATCH_SIZE, SEQUENCE_LENGTH, INPUT_DIMENSION] pkeep = tf.placeholder(tf.float32) Hin = tf.placeholder( tf.float32, [config.batch_size, config.hidden_layer_size * config.hidden_layer_depth], name='Hin') # Hin: [ BATCH_SIZE, INTERNALSIZE * NLAYERS] cells = [rnn.GRUBlockCell(config.hidden_layer_size) for _ in range(config.hidden_layer_depth)] # "naive dropout" implementation dropcells = [rnn.DropoutWrapper(cell, input_keep_prob=pkeep) for cell in cells] multicell = rnn.MultiRNNCell(dropcells, state_is_tuple=False) # dropout for the softmax layer multicell = rnn.DropoutWrapper(multicell, output_keep_prob=pkeep) Yr, H = tf.nn.dynamic_rnn(multicell, X, dtype=tf.float32, initial_state=Hin, parallel_iterations=config.batch_size) H = tf.identity(H, name='H') # just to give it a name Yr_shaped = tf.reshape( Yr, [config.batch_size, config.sequence_length, config.hidden_layer_size]) # Yr: [ BATCH_SIZE, SEQUENCE_LENGTHLEN, INTERNALSIZE ] # H: [ BATCH_SIZE, INTERNALSIZE*NLAYERS ] # this is the last state in the sequence Yr_lazy = Yr_shaped[:, config.lazy_cell_num:, :] # Yr_lazy: [ BATCH_SIZE, LABEL_LENGTH, INTERNALSIZE ] Yr_lazys = tf.split(Yr_lazy, config.label_length, axis=1) # Yr_lazys: [ LABEL_LENGTH ][ BATCH_SIZE, INTERNALSIZE ] # Append a fully connected layer after each non-lazy grucell output Ys = list() reuse = reuse_weights for Yl in Yr_lazys: Yl = tf.reshape(Yl, [config.batch_size, config.hidden_layer_size]) with tf.variable_scope('NeuraNetFullyConnLayer', reuse=tf.AUTO_REUSE) as scope: if reuse: scope.reuse_variables() Y = layers.fully_connected(Yl, config.output_dimension, activation_fn=None, reuse=reuse_weights, scope='NeuralNetFullyConnLayer') reuse = True Ys.append(Y) YLogits = tf.stack(Ys, axis=1, name='Ys') # YLogits: [ BATCH_SIZE, LABEL_LENGTH, OUTPUT_DIMENSION ] with tf.variable_scope('TrainingAndLoss', reuse=tf.AUTO_REUSE) as scope: if reuse_weights: scope.reuse_variables() starter_learning_rate = config.learning_rate learning_rate = tf.train.inverse_time_decay( starter_learning_rate, global_step, config.decay_steps, config.decay_rate) y_ = tf.reshape(label_tensor, [config.batch_size]) # y_: [BATCH_SIZE] # int(s) identifying correct function # One-Hot encoode y_ yo_ = tf.one_hot(y_, config.output_dimension, 1.0, 0.0) yos_ = tf.reshape(yo_, shape=[config.batch_size, 1, config.output_dimension]) # yos_: [ BATCH_SIZE, config.output_dimension ] yot_ = tf.tile(yos_, [1, config.label_length, 1]) # yot_: [ BATCHSIZE, LABEL_LENGTH, OUTPUT_DIMENSION ] cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(labels=yot_, logits=YLogits)) train_op = tf.train.RMSPropOptimizer( learning_rate=config.learning_rate, decay=config.decay_rate).minimize(cross_entropy) # accuracy with tf.name_scope('Summary') as scope: # select last output: output = tf.transpose(YLogits, [1, 0, 2]) # output: [ SEEQLEN, BATCH_SIZE, config.output_dimension] Ylast = tf.gather(output, int(output.get_shape()[0])-1) # last: [ BATCH_SIZE , config.output_dimension] correct_prediction = tf.equal(tf.argmax(Ylast, 1), tf.argmax(yo_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar(phase + "/loss", cross_entropy) tf.summary.scalar(phase + "/acc", accuracy) summary_op = tf.summary.merge_all() return Hin, pkeep, train_op, summary_op
#!/usr/bin/python3 """ In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new one with different size but keep its original data. You're given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and column number of the wanted reshaped matrix, respectively. The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were. If the 'reshape' operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix. """ from typing import List class Solution: def matrixReshape(self, nums: List[List[int]], r: int, c: int) -> List[List[int]]: m, n = len(nums), len(nums[0]) if m * n != r * c: return nums ret = [] for i in range(m): for j in range(n): if (i * n + j) % c == 0: ret.append([]) ret[-1].append(nums[i][j]) return ret