content
stringlengths
5
1.05M
from server import app if __name__ == "__main__": print('WSGI server running at localhost:4000') app.run(host='localhost', port=4000)
from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * import sys sys.path.append("src/envrd") import audio class AudioObject(QObject, audio.SpeechRecognizer): detected_phrase = pyqtSignal(str) transcribed_phrase = pyqtSignal(str) error = pyqtSignal() def __init__(self, keyphrases : dict, *args, parent=None, **kwargs): super().__init__(parent, keyphrases=keyphrases) print("audio init") def emitPhrase(self, phrase): self.detected_phrase.emit(phrase) # @desc # emits a string containing the most recently transcribed phrase def sendCurrentPhrase(self): while self.current_phrase == None: continue self.transcribed_phrase.emit(self.current_phrase) def speechHandler(self): self.listenForPhrases()
import numpy as np def create_label_map(num_classes=19): name_label_mapping = { 'unlabeled': 0, 'outlier': 1, 'car': 10, 'bicycle': 11, 'bus': 13, 'motorcycle': 15, 'on-rails': 16, 'truck': 18, 'other-vehicle': 20, 'person': 30, 'bicyclist': 31, 'motorcyclist': 32, 'road': 40, 'parking': 44, 'sidewalk': 48, 'other-ground': 49, 'building': 50, 'fence': 51, 'other-structure': 52, 'lane-marking': 60, 'vegetation': 70, 'trunk': 71, 'terrain': 72, 'pole': 80, 'traffic-sign': 81, 'other-object': 99, 'moving-car': 252, 'moving-bicyclist': 253, 'moving-person': 254, 'moving-motorcyclist': 255, 'moving-on-rails': 256, 'moving-bus': 257, 'moving-truck': 258, 'moving-other-vehicle': 259 } for k in name_label_mapping: name_label_mapping[k] = name_label_mapping[k.replace('moving-', '')] train_label_name_mapping = { 0: 'car', 1: 'bicycle', 2: 'motorcycle', 3: 'truck', 4: 'other-vehicle', 5: 'person', 6: 'bicyclist', 7: 'motorcyclist', 8: 'road', 9: 'parking', 10: 'sidewalk', 11: 'other-ground', 12: 'building', 13: 'fence', 14: 'vegetation', 15: 'trunk', 16: 'terrain', 17: 'pole', 18: 'traffic-sign' } label_map = np.zeros(260)+num_classes for i in range(num_classes): cls_name = train_label_name_mapping[i] label_map[name_label_mapping[cls_name]] = min(num_classes,i) return label_map.astype(np.int64)
# Generated by Django 2.0.3 on 2018-03-17 18:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0002_auto_20180314_2252'), ] operations = [ migrations.AlterField( model_name='user', name='image', field=models.ImageField(default='', height_field='height_field', upload_to='avatars/', width_field='width_field'), ), ]
#!/usr/bin/env python # !!!!!!!! density.out is wrong !!!! # data extraction is correct, but the assignment of each # data point to x,y,z location is wrong # avgdens[x][y][z] is correct but x,y,z run backwards import h5py import numpy as np def grabDensity(h5file): # get density f = h5py.File(h5file) for name,quantity in f.items(): if name.startswith('density'): density = quantity.get("value")[:] # end if name.startswith # end for name,quantity f.close() return density # end def grabDensity import xml.etree.ElementTree as ET def grabLimits(inputfile): tree = ET.parse(inputfile) root = tree.getroot() for section in root: if section.tag=='hamiltonian': for ham in section: if ham.attrib['name']=='density': xmin=ham.attrib['x_min'] xmax=ham.attrib['x_max'] ymin=ham.attrib['y_min'] ymax=ham.attrib['y_max'] zmin=ham.attrib['z_min'] zmax=ham.attrib['z_max'] delta=ham.attrib['delta'] # end if ham==density # end for ham in section # end if section.tag # end for section in root return [xmin,xmax,ymin,ymax,zmin,zmax,delta] # end def grabInput import argparse if __name__=="__main__": parser = argparse.ArgumentParser(description='Plot proton density') parser.add_argument('XML', type=str, default=None, help="input XML") parser.add_argument("DMC", type=str, help="h5 file with DMC density") parser.add_argument('-e','--equil', type=int, help="number of equilibration steps") args = parser.parse_args() # get density grid parameters limits = grabLimits(args.XML) xmin,xmax,ymin,ymax,zmin,zmax = map(float,limits[:-1]) d1,d2,d3 = map(float,limits[-1].split()) dx = (xmax-xmin)/int(1/d1) dy = (ymax-ymin)/int(1/d2) dz = (zmax-zmin)/int(1/d3) # get density on grid density = grabDensity(args.DMC)[args.equil:] avgdens = density.mean(axis=0) #avgdens = avgdens.transpose() print xmin,xmax,ymin,ymax,zmin,zmax print (xmax-xmin)/dx,(ymax-ymin)/dy,(zmax-zmin)/dz print 'dumpping to file' f = open('density.dat','w') for i in range(len(avgdens)): x = i*dx+xmin+dx/2.0 for j in range(len(avgdens[0])): y = j*dy%(ymax-ymin)+ymin+dy/2.0 for k in range(len(avgdens[0][0])): z = k*dz%(zmax-zmin)+zmin+dz/2.0 f.write( "%2.3f %2.3f %2.3f %1.5f\n" % (x,y,z,avgdens[i][j][k]) ) # end for k # end for j # end for i f.close() # end __main__
import os from netdice.input_parser import InputParser from netdice.util import project_root_dir def get_test_input_file(topo_name: str): return os.path.join(project_root_dir, "tests", "inputs", topo_name) def get_paper_problem_file(): return get_test_input_file("paper_example.json") def get_paper_problem(): return InputParser(get_paper_problem_file()).get_problems()[0]
from django.contrib import admin from .models import * admin.register(Project) admin.register(ProjectList) admin.register(ListItem) admin.register(ItemDetail)
import pickle import numpy as np import torch class RLModel: def __init__(self, observation_def, action_space, train=False, training_comm=(None, None)): # observation_def -- list (name, tuple (shape, dtype)) self.observation_def = observation_def self.action_space = action_space self.train = train self.input_queue, self.output_queue = None, None if self.train: training_comm[0].put(pickle.loads(pickle.dumps(self))) # HACK self.input_queue, self.output_queue = training_comm else: import self_play import games.nethack checkpoint = torch.load('/checkpoints/nethack/2021-10-08--16-13-24/model.checkpoint') config = games.nethack.MuZeroConfig(rl_model=self) self.inference_iterator = self_play.SelfPlayNoRay(checkpoint, lambda *a: None, config, 0) \ .play_game_generator(0, 0, False, config.opponent, 0) assert next(self.inference_iterator) is None self.is_first_iteration = True # def encode_observation(self, observation): # assert sorted(observation.keys()) == sorted(self.observation_def.keys()) # ret = [] # for key, (shape, dtype) in self.observation_def: # val = observation[key] # assert val.shape == shape, (val.shape, shape) # ret.append(np.array(list(val.reshape(-1).astype(dtype).tobytes()), dtype=np.uint8)) # ret = np.concatenate(ret) # return ret def encode_observation(self, observation): vals = [] hw_shape = None for key, (shape, dtype) in self.observation_def: vals.append(observation[key]) if hw_shape is not None and len(shape) > 1: if len(shape) == 2: assert hw_shape == shape, (hw_shape, shape) elif len(shape) == 3: assert hw_shape == shape[1:], (hw_shape, shape) else: assert 0, hw_shape if len(shape) > 1: if len(shape) == 2: hw_shape = shape elif len(shape) == 3: hw_shape = shape[1:] else: assert 0 vals = [( val.reshape(val.shape[0], *hw_shape) if len(val.shape) == 3 else val.reshape(1, *val.shape) if len(val.shape) == 2 else val.reshape(val.shape[0], 1, 1).repeat(hw_shape[0], 1).repeat(hw_shape[1], 2) ).astype(np.float32) for val in vals] return np.concatenate(vals, 0) def zero_observation(self): ret = {} for key, (shape, dtype) in self.observation_def: ret[key] = np.zeros(shape=shape, dtype=dtype) return ret def observation_shape(self): return self.encode_observation(self.zero_observation()).shape # def decode_observation(self, data): # ret = {} # for key, (shape, dtype) in self.observation_def: # arr = np.zeros(shape=shape, dtype=dtype) # s = len(arr.tobytes()) # ret[key] = np.frombuffer(bytes(data[:s]), dtype=np.dtype).reshape(shape) # data = data[s:] # assert len(data) == 0 # return ret def choose_action(self, agent, observation, legal_actions): assert len(legal_actions) > 0 assert all(map(lambda action: action in self.action_space, legal_actions)) assert len(legal_actions) > 0 legal_actions = [self.action_space.index(action) for action in legal_actions] if self.train: self.input_queue.put((observation, legal_actions, agent.score)) action_id = self.output_queue.get() if action_id is None: raise KeyboardInterrupt() else: action_id = self.inference_iterator.send((self.encode_observation(observation), 0, False, 0, legal_actions)) assert action_id in legal_actions return self.action_space[action_id]
import sqlite3 #import pwd myemp=99999 while myemp != 0: myemp = int(input("Enter Employee Id : ")) if myemp == 0: break myfname = input("Enter First Name : ") mylname = input("Enter Last Name : ") mydept = input("Enter Department Code : ") mysal = float(input("Enter Gross Salary : ")) sqlstr="insert into newtable (emp_id, fname, lname, deptno, salary) \ values ("+str(myemp)+", '"+myfname+"', '"+mylname+"', "+str(mydept)+", "+str(mysal)+");" print(sqlstr) # dbname='db5' # user='postgres' # host='localhost' dbname=connstring="PyX1901.db" print() conn = sqlite3.connect(connstring) print(f'Connecting to the database ... {dbname} connected') cur=conn.cursor() try: cur.execute(sqlstr) print('Executing Query on database ... done') except (Exception, psycopg2.DatabaseError) as error: print("Error Executing Insert Query or Record Already Exists .... ") print(error) try: rows=cur.fetchall() print('Collecting results ... Output is ...') print(list(rows)) except: print(" 1 Row(s) affected .....") cur.close() conn.commit() print("End of Session ....")
# coding:utf-8 import os import logging import json import urllib2 url = "http://www.tbs.co.jp/kanran/" try: req = urllib2.urlopen(url) message = "" #req.encoding = req.apparent_encoding r = req.read() for line in r.splitlines(): if line.find("クリスマスの約束") >= 0: message += line if line.find("小田和正") >= 0: message += line if len(message) > 0: webhook = os.environ["SLACK_URL"] payload = { "channel": '@yyoshiki41', "username": 'クリスマスの約束', "icon_emoji": ':christmas_tree:', "text": "```\n"+message+"\n```", } request = urllib2.Request(webhook, json.dumps(payload), {'Content-Type': 'application/json'}) urllib2.urlopen(request) except urllib2.URLError: logging.exception('Caught exception fetching url')
import numpy as np import torch from mjrl.utils.tensor_utils import tensorize from torch.autograd import Variable class MLP(torch.nn.Module): def __init__(self, env_spec=None, hidden_sizes=(64,64), min_log_std=-3.0, init_log_std=0.0, seed=123, device='cpu', observation_dim=None, action_dim=None, max_log_std=1.0, *args, **kwargs, ): """ :param env_spec: specifications of the env (see utils/gym_env.py) :param hidden_sizes: network hidden layer sizes (currently 2 layers only) :param min_log_std: log_std is clamped at this value and can't go below :param init_log_std: initial log standard deviation :param seed: random seed """ super(MLP, self).__init__() # check input specification if env_spec is None: assert observation_dim is not None assert action_dim is not None self.observation_dim = env_spec.observation_dim if env_spec is not None else observation_dim # number of states self.action_dim = env_spec.action_dim if env_spec is not None else action_dim # number of actions self.device = device self.seed = seed self.min_log_std_val = min_log_std if type(min_log_std)==np.ndarray else min_log_std * np.ones(self.action_dim) self.max_log_std_val = max_log_std if type(max_log_std)==np.ndarray else max_log_std * np.ones(self.action_dim) self.min_log_std = tensorize(self.min_log_std_val) self.max_log_std = tensorize(self.max_log_std_val) # Set seed # ------------------------ assert type(seed) == int torch.manual_seed(seed) np.random.seed(seed) # Policy network # ------------------------ self.layer_sizes = (self.observation_dim, ) + hidden_sizes + (self.action_dim, ) self.nonlinearity = torch.tanh self.fc_layers = torch.nn.ModuleList([torch.nn.Linear(self.layer_sizes[i], self.layer_sizes[i+1]) for i in range(len(self.layer_sizes)-1)]) for param in list(self.parameters())[-2:]: # only last layer param.data = 1e-2 * param.data self.log_std = torch.nn.Parameter(torch.ones(self.action_dim) * init_log_std, requires_grad=True) self.log_std.data = torch.max(self.log_std.data, self.min_log_std) self.log_std.data = torch.min(self.log_std.data, self.max_log_std) self.trainable_params = list(self.parameters()) # transform variables self.in_shift, self.in_scale = torch.zeros(self.observation_dim), torch.ones(self.observation_dim) self.out_shift, self.out_scale = torch.zeros(self.action_dim), torch.ones(self.action_dim) # Easy access variables # ------------------------- self.log_std_val = self.log_std.to('cpu').data.numpy().ravel() # clamp log_std to [min_log_std, max_log_std] self.log_std_val = np.clip(self.log_std_val, self.min_log_std_val, self.max_log_std_val) self.param_shapes = [p.data.numpy().shape for p in self.trainable_params] self.param_sizes = [p.data.numpy().size for p in self.trainable_params] self.d = np.sum(self.param_sizes) # total number of params # Placeholders # ------------------------ self.obs_var = torch.zeros(self.observation_dim) # Move parameters to device # ------------------------ self.to(device) # Network forward # ============================================ def forward(self, observations): if type(observations) == np.ndarray: observations = torch.from_numpy(observations).float() assert type(observations) == torch.Tensor observations = observations.to(self.device) out = (observations - self.in_shift) / (self.in_scale + 1e-6) for i in range(len(self.fc_layers)-1): out = self.fc_layers[i](out) out = self.nonlinearity(out) out = self.fc_layers[-1](out) * self.out_scale + self.out_shift return out # Utility functions # ============================================ def to(self, device): super().to(device) self.min_log_std, self.max_log_std = self.min_log_std.to(device), self.max_log_std.to(device) self.in_shift, self.in_scale = self.in_shift.to(device), self.in_scale.to(device) self.out_shift, self.out_scale = self.out_shift.to(device), self.out_scale.to(device) self.trainable_params = list(self.parameters()) self.device = device def get_param_values(self, *args, **kwargs): params = torch.cat([p.contiguous().view(-1).data for p in self.parameters()]) return params.clone() def set_param_values(self, new_params, *args, **kwargs): current_idx = 0 for idx, param in enumerate(self.parameters()): vals = new_params[current_idx:current_idx + self.param_sizes[idx]] vals = vals.reshape(self.param_shapes[idx]) # clip std at minimum value vals = torch.max(vals, self.min_log_std) if idx == 0 else vals vals = torch.min(vals, self.max_log_std) if idx == 0 else vals param.data = vals.to(self.device).clone() current_idx += self.param_sizes[idx] # update log_std_val for sampling self.log_std_val = np.float64(self.log_std.to('cpu').data.numpy().ravel()) self.log_std_val = np.clip(self.log_std_val, self.min_log_std_val, self.max_log_std_val) self.trainable_params = list(self.parameters()) def set_transformations(self, in_shift=None, in_scale=None, out_shift=None, out_scale=None, *args, **kwargs): in_shift = self.in_shift if in_shift is None else tensorize(in_shift) in_scale = self.in_scale if in_scale is None else tensorize(in_scale) out_shift = self.out_shift if out_shift is None else tensorize(out_shift) out_scale = self.out_scale if out_scale is None else tensorize(out_scale) self.in_shift, self.in_scale = in_shift.to(self.device), in_scale.to(self.device) self.out_shift, self.out_scale = out_shift.to(self.device), out_scale.to(self.device) # Main functions # ============================================ def get_action(self, observation): assert type(observation) == np.ndarray if self.device != 'cpu': print("Warning: get_action function should be used only for simulation.") print("Requires policy on CPU. Changing policy device to CPU.") self.to('cpu') o = np.float32(observation.reshape(1, -1)) self.obs_var.data = torch.from_numpy(o) mean = self.forward(self.obs_var).to('cpu').data.numpy().ravel() noise = np.exp(self.log_std_val) * np.random.randn(self.action_dim) action = mean + noise return [action, {'mean': mean, 'log_std': self.log_std_val, 'evaluation': mean}] def mean_LL(self, observations, actions, log_std=None, *args, **kwargs): if type(observations) == np.ndarray: observations = torch.from_numpy(observations).float() if type(actions) == np.ndarray: actions = torch.from_numpy(actions).float() observations, actions = observations.to(self.device), actions.to(self.device) log_std = self.log_std if log_std is None else log_std mean = self.forward(observations) zs = (actions - mean) / torch.exp(self.log_std) LL = - 0.5 * torch.sum(zs ** 2, dim=1) + \ - torch.sum(log_std) + \ - 0.5 * self.action_dim * np.log(2 * np.pi) return mean, LL def log_likelihood(self, observations, actions, *args, **kwargs): mean, LL = self.mean_LL(observations, actions) return LL.to('cpu').data.numpy() def mean_kl(self, observations, *args, **kwargs): new_log_std = self.log_std old_log_std = self.log_std.detach().clone() new_mean = self.forward(observations) old_mean = new_mean.detach() return self.kl_divergence(new_mean, old_mean, new_log_std, old_log_std, *args, **kwargs) def kl_divergence(self, new_mean, old_mean, new_log_std, old_log_std, *args, **kwargs): new_std, old_std = torch.exp(new_log_std), torch.exp(old_log_std) Nr = (old_mean - new_mean) ** 2 + old_std ** 2 - new_std ** 2 Dr = 2 * new_std ** 2 + 1e-8 sample_kl = torch.sum(Nr / Dr + new_log_std - old_log_std, dim=1) return torch.mean(sample_kl)
print("Allow the user to enter a series of integers. Sum the integers") print("Ignore non-numeric input. End input with'.' ") theSum = 0 while True: theNum = input("Number:") if theNum == '.': break if not theNum.isdigit(): print("Error,only numbers please") continue theSum += int(theNum) print("The Sum is:", theSum)
# # Copyright 2019 BrainPad Inc. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # import os from cliboa.conf import env class TestSqliteCreation(object): def setup_method(self, method): self._db_dir = os.path.join(env.BASE_DIR, "db")
# [129] 求根到叶子节点数字之和 # https://leetcode-cn.com/problems/sum-root-to-leaf-numbers/description/ # * algorithms # * Medium (66.16%) # * Total Accepted: 61.1K # * Total Submissions: 92K # * Testcase Example: '[1,2,3]' # 给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字。 # 例如,从根到叶子节点路径 1->2->3 代表数字 123。 # 计算从根到叶子节点生成的所有数字之和。 # 说明: 叶子节点是指没有子节点的节点。 # 示例 1: # 输入: [1,2,3] # 1 # / \ # 2 3 # 输出: 25 # 解释: # 从根到叶子节点路径 1->2 代表数字 12. # 从根到叶子节点路径 1->3 代表数字 13. # 因此,数字总和 = 12 + 13 = 25. # 示例 2: # 输入: [4,9,0,5,1] # 4 # / \ # 9 0 #  / \ # 5 1 # 输出: 1026 # 解释: # 从根到叶子节点路径 4->9->5 代表数字 495. # 从根到叶子节点路径 4->9->1 代表数字 491. # 从根到叶子节点路径 4->0 代表数字 40. # 因此,数字总和 = 495 + 491 + 40 = 1026. # class Node: # def __init__(self, val, left=None, right=None): # self.val = val # self.left = left # self.right = right from collections import deque class Solution(object): def sumNumbers0(self, root): res = [0] if not root: return 0 def dfs(root, s): s = s * 10 + root.val if root.left: dfs(root.left, s) if root.right: dfs(root.right, s) if not (root.left or root.right): res[0] += s dfs(root, 0) return res[0] def sumNumbers(self, root): if not root: return 0 res = 0 node_queue = deque([root]) num_queue = deque([root.val]) while node_queue: node = node_queue.popleft() num = num_queue.popleft() if not (node.left or node.right): res += num else: if node.left: node_queue.append(node.left) num_queue.append(num * 10 + node.left.val) if node.right: node_queue.append(node.right) num_queue.append(num * 10 + node.right.val) return res
# # This file is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from test_support.smvbasetest import SmvBaseTest from test_support.extrapath import ExtraPath class SmvModelTest(SmvBaseTest): @classmethod def smvAppInitArgs(cls): return ["--smv-props", "smv.stages=stage1:stage2"] def test_SmvModelExec(self): with ExtraPath("src/test/python/smv_model"): model = self.smvApp.getModuleResult("stage1.modules.Model") execDf = self.df("stage1.modules.ModelExec") self.assertEqual(str(model), execDf.collect()[0][0]) def test_link_to_SmvResultModule(self): """Test that result of link to SmvModel is same as SmvModel's result """ with ExtraPath("src/test/python/smv_model"): ModelRes = self.smvApp.getModuleResult("stage1.modules.Model") ModelExecDf = self.smvApp.getModuleResult("stage2.modules.ModelExecWithLink") self.assertEqual(str(ModelRes), ModelExecDf.collect()[0][0]) def test_module_depends_on_model(self): """Test module can depends on model and use directly""" with ExtraPath("src/test/python/smv_model"): mod = self.df("stage1.modules.Model") res = self.df("stage1.modules.ModuleUsesModel") exp = self.createDF("a:String", "\"{}\"".format(mod)) self.should_be_same(res, exp)
#Faça um programa que leia um número inteiro e diga se ele é ou não um número primo. num = int(input('Digite um número: ')) total = 0 for c in range(1, num + 1): if num % c == 0: total += 1 if total == 2: print(f'O numero {num} é primo') else: print(f'O número {num} não é primo')
# Import Configuration from config import config output_dir = config["OUTPUT"]["DIRECTORY"] output_db = config["OUTPUT"]["DATABASE"] crossref_email = config["API"]["CROSSREF_EMAIL"] # Import Internal from graph_utils import * from db_utils import * # Import External from graph_tool.all import * from halo import Halo from habanero import Crossref from requests.exceptions import HTTPError, ConnectionError from pprint import pprint from time import sleep # MAIN # Update progress on spinner def update_progress(message, status, spinner): if status == "inserted": spinner.succeed(message) elif status == "found": spinner.info(message) elif status == "fail": spinner.fail(message) spinner.start("Building network...") # GRAPH CREATION # Make structure graph def create_structure_graph(directed = True): graph = Graph(directed = directed) # ID # types: DOI, ISSN, ASJC code, ORCID item_id = graph.new_vertex_property("string") graph.vp.id = item_id # Name # types: paper title, journal name, subject name, author name item_name = graph.new_vertex_property("string") graph.vp.name = item_name # Type # types: author (3), paper (2), journal (1), subject (0) item_type = graph.new_vertex_property("int") graph.vp.type = item_type # Author Type # types: first (1), additional (0) item_author_type = graph.new_edge_property("int") graph.ep.author_type = item_author_type # Author Info # types: dictionary of author info from API item_author_info = graph.new_vertex_property("object") graph.vp.author_info = item_author_info return graph # Create user graph def create_user_graph(directed = True): graph = Graph(directed = directed) # ID # types: DOI, ISSN, ASJC code, ORCID, UNI item_id = graph.new_vertex_property("string") graph.vp.id = item_id # Name # types: paper title, journal name, subject name, author name, user name item_name = graph.new_vertex_property("string") graph.vp.name = item_name # Type # types: user (4), author (3), paper (2), journal (1), subject (0) item_type = graph.new_vertex_property("int") graph.vp.type = item_type # Times Accessed # types: count accessed item_times_accessed = graph.new_edge_property("int") graph.ep.times_accessed = item_times_accessed # Vertex Dict # For finding vertices by id item_vertex_dict = graph.new_graph_property("object") graph.gp.vertex_dict = item_vertex_dict return graph # ITEM PROCESSING # Process the authors for a paper def process_authors(graph, authors, spinner): global vertex_dict author_vertices = [] for author in authors: if "given" in author and "family" in author: author_name = author["given"] + " " + author["family"] elif "given" in author: author_name = author["given"] elif "family" in author: author_name = author["family"] else: continue if author_name in vertex_dict["author"]: author_index = vertex_dict["author"][author_name] author_vertex = graph.vertex(author_index) author_vertices.append(author_index) message = "Author " + author_name + " found in network." update_progress(message, "found", spinner) else: author_vertex = graph.add_vertex() if "ORCID" in author: graph.vp.id[author_vertex] = author["ORCID"] graph.vp.name[author_vertex] = author_name graph.vp.type[author_vertex] = 3 graph.vp.author_info[author_vertex] = author vertex_dict["author"][author_name] = int(author_vertex) author_vertices.append(author_vertex) message = "Author " + author_name + " inserted into network." update_progress(message, "inserted", spinner) return author_vertices # Process the subjects for a journal def process_subjects(graph, subjects, spinner): global vertex_dict subject_vertices = [] for subject in subjects: if subject["ASJC"] in vertex_dict["subject"]: subject_index = vertex_dict["subject"][subject["ASJC"]] subject_vertex = graph.vertex(subject_index) subject_vertices.append(subject_vertex) message = "Subject " + str(subject["ASJC"]) + " found in network." update_progress(message, "found", spinner) else: subject_vertex = graph.add_vertex() graph.vp.id[subject_vertex] = subject["ASJC"] graph.vp.name[subject_vertex] = subject["name"] graph.vp.type[subject_vertex] = 0 vertex_dict["subject"][subject["ASJC"]] = int(subject_vertex) subject_vertices.append(subject_vertex) message = "Subject " + str(subject["ASJC"]) + " inserted into network." update_progress(message, "inserted", spinner) return subject_vertices # Process the journal for a paper def process_journal(graph, journal, spinner): global vertex_dict subjects = journal["subjects"] subject_vertices = process_subjects(graph, subjects, spinner) ISSN = journal["ISSN"][0] if ISSN in vertex_dict["journal"]: journal_index = vertex_dict["journal"][ISSN] journal_vertex = graph.vertex(journal_index) message = "Journal " + ISSN + " found in network." update_progress(message, "found", spinner) else: journal_vertex = graph.add_vertex() graph.vp.id[journal_vertex] = ISSN if type(journal["title"]) == type(list()): title = journal["title"][0] else: title = journal["title"] graph.vp.name[journal_vertex] = title graph.vp.type[journal_vertex] = 1 for subject_vertex in subject_vertices: graph.add_edge(journal_vertex, subject_vertex) vertex_dict["journal"][ISSN] = int(journal_vertex) message = "Journal " + ISSN + " inserted into network." update_progress(message, "inserted", spinner) return journal_vertex # Process a paper def process_paper(graph, DOI, cr, mode, counter, total, spinner): global vertex_dict try: item = cr.works(ids = DOI) except HTTPError: message = f"HTTPError ({counter} of {total})" update_progress(message, "fail", spinner) return None except TimeoutError: message = f"TimeoutError ({counter} of {total})" update_progress(message, "fail", spinner) return None if not item["message"]["title"]: message = f"Paper {DOI} no title found ({counter} of {total})" update_progress(message, "fail", spinner) return None title = item["message"]["title"][0] if DOI in vertex_dict["paper"]: message = f"Paper {DOI} found in network. ({counter} of {total})" update_progress(message, "found", spinner) return None else: try: author_vertices = [] journal_vertex = None if mode in ["author", "combined"]: if not "author" in item["message"]: message = f"Paper {DOI} no authors found ({counter} of {total})" update_progress(message, "fail", spinner) return None elif not item["message"]["author"]: message = f"Paper {DOI} no authors found ({counter} of {total})" update_progress(message, "fail", spinner) return None authors = item["message"]["author"] author_vertices = process_authors(graph, authors, spinner) if mode in ["network", "combined"]: if not "ISSN" in item["message"]: return None try: journal = cr.journals(ids = item["message"]["ISSN"]) except HTTPError: sleep(5) message = f"HTTPError ({counter} of {total})" update_progress(message, "fail", spinner) return None except ConnectionError: sleep(5) message = f"ConnectionError ({counter} of {total})" update_progress(message, "fail", spinner) return None except TimeoutError: sleep(5) message = f"TimeoutError ({counter} of {total})" update_progress(message, "fail", spinner) return None if "message" in journal: journal = journal["message"] elif type(journal) == type(list()): journal = journal[0]["message"] else: message = f"No journal found for paper {DOI}. ({counter} of {total})" update_progress(message, "fail", spinner) return None journal_vertex = process_journal(graph, journal, spinner) paper_vertex = graph.add_vertex() graph.vp.id[paper_vertex] = DOI graph.vp.name[paper_vertex] = title graph.vp.type[paper_vertex] = 2 vertex_dict["paper"][DOI] = int(paper_vertex) if journal_vertex: graph.add_edge(paper_vertex, journal_vertex) if author_vertices: for author_vertex in author_vertices: author_edge = graph.add_edge(author_vertex, paper_vertex) author = graph.vp.author_info[author_vertex] if author["sequence"] == "first": graph.ep.author_type[author_edge] = 1 else: graph.ep.author_type[author_edge] = 0 message = f"Paper {DOI} inserted into network. ({counter} of {total})" update_progress(message, "inserted", spinner) return paper_vertex except HTTPError: message = f"HTTPError ({counter} of {total})" update_progress(message, "fail", spinner) return None # Process the citations for a paper def process_citations(graph, DOI, cr): global vertex_dict try: item = cr.works(ids = DOI) except HTTPError: print("HTTPError") return if "reference" in item["message"]: if not item["message"]["reference"]: print(f"No references for {DOI}") return else: print(f"No references for {DOI}") return cited_by_vertex = graph.vertex(vertex_dict["paper"][DOI]) for reference in item["message"]["reference"]: if "DOI" in reference: if reference["DOI"] in vertex_dict["paper"]: cited_vertex = graph.vertex(vertex_dict["paper"][reference["DOI"]]) graph.add_edge(cited_vertex, cited_by_vertex) else: continue # Process user def process_user(graph, uni, cr, counter, total, spinner): global vertex_dict global sqlite_cursor sqlite_cursor.execute("SELECT ezproxy_user_id FROM ezproxy_users WHERE uni = ?", (uni,)) user_id = sqlite_cursor.fetchone()[0] sqlite_cursor.execute("SELECT ezproxy_doi_id FROM access_records WHERE ezproxy_doi_id = ?", (user_id,)) records = [item[0] for item in sqlite_cursor.fetchall()] if uni in vertex_dict["user"]: message = f"User {uni} found in network. ({counter} of {total})" user_vertex = vertex_dict["user"][uni] user_vertex = graph.vertex(user_index) update_progress(message, "found", spinner) else: user_vertex = graph.add_vertex() graph.vp.id[user_vertex] = uni graph.vp.name[user_vertex] = user_id graph.vp.type[user_vertex] = 4 vertex_dict["user"][uni] = int(user_vertex) message = f"User {uni} inserted into network. ({counter} of {total})" update_progress(message, "inserted", spinner) for record in records: sqlite_cursor.execute("SELECT doi FROM ezproxy_doi WHERE ezproxy_doi_id = ?", (record,)) try: DOI = sqlite_cursor.fetchone()[0] except TypeError: continue paper_vertex = process_paper(graph, DOI, cr, "user", counter, total, spinner) if paper_vertex: prior_access_edge = graph.edge(user_vertex, paper_vertex) if prior_access_edge: graph.ep.times_accessed[prior_access_edge] += 1 else: access_edge = graph.add_edge(user_vertex, paper_vertex) graph.ep.times_accessed[access_edge] = 1 return # GRAPH BUILDING # Build a graph based on metadata structure def build_structure_graph(graph, DOIs, mode, spinner): global crossref_email global vertex_dict vertex_dict = {"paper" : {}, "journal" : {}, "subject" : {}, "author" : {}} total = len(DOIs) counter = 1 spinner.start() cr = Crossref(mailto = crossref_email) for DOI in DOIs: process_paper(graph, DOI, cr, mode, counter, total, spinner) counter += 1 spinner.succeed("All papers inserted") if mode in ["citation", "combined"]: spinner.start("Building citation edges...") for DOI in vertex_dict["paper"]: process_citations(graph, DOI, cr) spinner.stop() # Build a graph based on user access records def build_user_graph(graph, users, spinner, cursor): global crossref_email global vertex_dict global sqlite_cursor sqlite_cursor = cursor vertex_dict = {"paper" : {}, "journal" : {}, "subject" : {}, "author" : {}, "user" : {}} total = len(users) counter = 1 spinner.start() cr = Crossref(mailto = crossref_email) for uni in users: process_user(graph, uni, cr, counter, total, spinner) counter += 1 spinner.succeed("All users inserted") # WRAPPERS # Wrapper routine for different graph types def network_routine(): options = ["network", "citation", "author", "user", "combined"] print("Runtime Options Available") for i in range(len(options)): print(str(i) + " - " + options[i]) program = options[int(input("Enter option number: "))] filename = input("Graph Filename [*].[gt, graphml, etc]: ") spinner = Halo(text = "Building network...", spinner = "runner", text_color = "red") add_json_to_output_db() conn = connect_to_output_db() sqlite_cursor = conn.cursor() if program == "user": sqlite_cursor.execute("SELECT uni FROM ezproxy_users WHERE uni IS NOT NULL") data = [item[0] for item in sqlite_cursor.fetchall()] print("Running user program.") graph = create_user_graph() build_user_graph(graph, data[:10:], spinner, sqlite_cursor) else: sqlite_cursor.execute("SELECT doi FROM ezproxy_doi WHERE doi IS NOT NULL") data = [item[0] for item in sqlite_cursor.fetchall()] graph = create_structure_graph() if program == "network": print("Running network program.") elif program == "citation": print("Running citation program.") elif program == "author": print("Running author program.") elif program == "combined": print("Running combined program.") build_structure_graph(graph, data[:10:], program, spinner) graph.save(output_dir + filename) print("Graph saved.")
from conans import tools import os from conanfile_base import BaseLib class xclockConan(BaseLib): basename = "xclock" name = basename.lower() version = "1.0.9" tags = ("conan", "xclock") description = '{description}' exports = ["conanfile_base.py"] requires = [ 'libx11/1.6.8@bincrafters/stable', 'libxt/1.2.0@bincrafters/stable', 'libxaw/1.0.13@bincrafters/stable', 'libxmu/1.1.3@bincrafters/stable', 'xproto/7.0.31@bincrafters/stable', 'libxrender/0.9.10@bincrafters/stable', 'libxft/2.3.3@bincrafters/stable', 'libxkbfile/1.1.0@bincrafters/stable'] def source(self): url = "https://www.x.org/archive/individual/app/xclock-1.0.9.tar.gz" tools.get(url, sha256="4f0dd4d7d969b55c64f6e58242bca201d19e49eb8c9736dc099330bb0c5385b1") extracted_dir = "xclock-" + self.version os.rename(extracted_dir, self._source_subfolder) def build(self): super(xclockConan, self).build() self.run(os.path.join('source_subfolder', 'xclock'))
# -*- coding: utf-8 -*- #con.execute_non_query(INSERT_EX_SQ.encode('your language encoder')) # __doc__=''' 使い方: ''' import os from os import getenv import sys import datetime import time import locale import psycopg2 import csv from map_matching import map_matching as mm from map_matching.utils import Edge, Measurement version = u'1.0.0' viewflg=False logflg=False def generate_placeholder(length, width): """ Generate "(%s, %s, %s, ...), ..." for placing parameters. """ return ','.join('(' + ','.join(['%s'] * width) + ')' for _ in range(length)) def create_sequence_subquery(length, columns): """Create a subquery for sequence.""" placeholder = generate_placeholder(length, len(columns)) subquery = 'WITH sequence {columns} AS (VALUES {placeholder})'.format( columns='(' + ','.join(columns) + ')', placeholder=placeholder) return subquery def query_edges_in_sequence_bbox(conn, road_table_name, sequence, search_radius): """ サーチ円の分拡張されたバウンディングボックス内のシーケンスのすべての道路エッジをクエリーする Query all road edges within the bounding box of the sequence expanded by search_radius. """ if not sequence: return #テストのため固定 stmt = ''' -- NOTE the length unit is in km SELECT edge.gid, edge.source, edge.target, edge.length * 1000, edge.length * 1000 FROM {road_table_name} AS edge CROSS JOIN (SELECT ST_Extent(ST_MakePoint(ST_X({sequence_name}.way), ST_Y({sequence_name}.way)))::geometry AS extent FROM {sequence_name}) AS extent WHERE edge.the_geom && ST_Envelope(ST_Buffer(extent.extent::geography, {search_radius})::geometry) '''.format(road_table_name=road_table_name,sequence_name=sequence,search_radius=search_radius) cur = conn.cursor() cur.execute(stmt) for gid, source, target, cost, reverse_cost in cur.fetchall(): edge = Edge(id=gid, start_node=source, end_node=target, cost=cost, reverse_cost=reverse_cost) yield edge cur.close() def build_road_network(edges): """ エッジリストの双方向道路グラフデータを構築する Construct the bidirectional road graph given a list of edges. """ graph = {} # Graph with bidirectional edges for edge in edges: graph.setdefault(edge.start_node, []).append(edge) graph.setdefault(edge.end_node, []).append(edge.reversed_edge()) return graph # Subclass the native Candidate class to support more attributes class Candidate(mm.Candidate): def __init__(self, measurement, edge, location, distance): super(Candidate, self).__init__(measurement=measurement, edge=edge, location=location, distance=distance) self.lon = None self.lat = None self.mlon=None self.mlat=None self.ptime= None self.edgeflg=None def query_candidates(conn, road_table_name, sequence, search_radius): """ サーチ円内に存在するシーケンスデータの各々の計測データの候補をクエリーする Query candidates of each measurement in a sequence within search_radius. """ stmt = ''' WITH --- WITH sequence AS (subquery here), seq AS (SELECT *, ST_SetSRID(ST_MakePoint(ST_X({sequence_name}.way), ST_Y({sequence_name}.way)), 4326) AS geom, ST_SetSRID(ST_MakePoint(ST_X({sequence_name}.way), ST_Y({sequence_name}.way)), 4326)::geography AS geog FROM {sequence_name}) SELECT seq.csv_id, ST_X(seq.way) as lon, ST_Y(seq.way) as lat, seq.ptime, --- Edge information edge.gid, edge.source, edge.target, edge.length, edge.length, --- Location, a float between 0 and 1 representing the location of the closest point on the edge to the measurement. ST_LineLocatePoint(edge.the_geom, seq.geom) AS location, --- Distance in meters from the measurement to its candidate's location ST_Distance(seq.geog, edge.the_geom::geography) AS distance, --- Candidate's location (a position along the edge) ST_X(ST_ClosestPoint(edge.the_geom, seq.geom)) AS clon, ST_Y(ST_ClosestPoint(edge.the_geom, seq.geom)) AS clat FROM seq CROSS JOIN {road_table_name} AS edge WHERE edge.the_geom && ST_Envelope(ST_Buffer(seq.geog, {search_radius})::geometry) AND ST_DWithin(seq.geog, edge.the_geom::geography, {search_radius}) '''.format(road_table_name=road_table_name,sequence_name=sequence,search_radius=search_radius) cur = conn.cursor() cur.execute(stmt) for mid, mlon, mlat, mdt, \ eid, source, target, cost, reverse_cost, \ location, distance, \ clon, clat in cur: measurement = Measurement(id=mid, lon=mlon, lat=mlat) edge = Edge(id=eid, start_node=source, end_node=target, cost=cost, reverse_cost=reverse_cost) assert 0 <= location <= 1 candidate = Candidate(measurement=measurement, edge=edge, location=location, distance=distance) # Coordinate along the edge (not needed by MM but might be # useful info to users) candidate.lon = clon # マッチングポイント X candidate.lat = clat # マッチングポイント Y candidate.mlon = mlon # プローブポイント X candidate.mlat = mlat # プローブポイント Y candidate.ptime = mdt # プローブ日付(TIMESTAMP) candidate.edgeflg = 0 yield candidate cur.close() def map_match(conn, road_table_name,sequence, search_radius, max_route_distance): """シーケンステーブルをマッチングし、candidatesリストを返す""" start=time.time() # Prepare the network graph and the candidates along the sequence edges = query_edges_in_sequence_bbox(conn, road_table_name,sequence, search_radius) print( 'edges:' ,time.time() - start) start=time.time() network = build_road_network(edges) print('network:', time.time() - start) start=time.time() candidates = query_candidates(conn, road_table_name, sequence, search_radius) print('candidates:', time.time() - start) start=time.time() # If the route distance between two consive measurements are # longer than `max_route_distance` in meters, consider it as a # breakage matcher = mm.MapMatching(network.get, max_route_distance) print( 'matcher:', time.time() - start) # Match and return the selected candidates along the path return list(matcher.offline_match(candidates)) def main(argv): pguser='postgres' pgport='5432' pghost='localhost' pgdbname ='evtest' pgpassword='apptec' # postgresql://{username}:{password}@{hostname}:{port}/{database} dsn='postgresql://{0}:{1}@{2}:{3}/{4}'.format(pguser,pgpassword,pghost,pgport,pgdbname) # OSMデータダウンロード指定のファイル名から作成予定のOSMテーブル名を生成 osmtbl='kakogawa_ways' # プローブCSVファイルをアップロードする csvtbl='probe_kaisen197_2016' # プローブテーブルを使用してマップマッチングを実行する start=time.time() conn = psycopg2.connect(dsn) candidates = map_match(conn, osmtbl,csvtbl, search_radius, max_route_distance) conn.close() process_time = time.time() - start print( 'process_time;',process_time ) # 候補データに各エッジの最初と最後の識別フラグを追加する flg=0 cb=None for candidate in candidates: candidate.edgeflg=(0 if flg == candidate.edge.id else 1) flg=candidate.edge.id if cb is not None : if candidate.edgeflg == 1 and cb.edgeflg==0 : cb.edgeflg=2 cb=candidate with open( outputcsv, "w" ) as f: f.write(u'mid,ptime,mlon,mlat,clon,clat,cid,cloc,cdist,edgeflg\n') for candidate in candidates: a= \ '{0},'.format(candidate.measurement.id) +\ '{0},'.format(candidate.ptime)+\ '{0:.6f},{1:.6f},'.format(*map(float, (candidate.measurement.lon, candidate.measurement.lat))) +\ '{0:.6f},{1:.6f},'.format(*map(float, (candidate.lon, candidate.lat)))+\ '{0},'.format(candidate.edge.id) +\ '{0:.2f},'.format(candidate.location) +\ '{0:.2f},'.format(candidate.distance) +\ '{0}\n'.format(candidate.edgeflg) f.write(a) f.close() return 0 if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
default_app_config = "request_log.apps.RequestLogConfig"
import atexit from threading import Thread from ..util.ipc import ipc_cleanup, ipc_send, start_ipc_server from ..util.sdk import Singleton class KeyboardButtonsListener(metaclass=Singleton): def __init__(self): self.buttons = {} atexit.register(self.__clean_up) self.listener_thread = Thread( target=start_ipc_server, args=("keyevent", self.__on_key_event) ) self.listener_thread.start() def add_button(self, key, button): self.buttons[key] = button def __on_key_event(self, ipc_message): key, event = ipc_message.split(" ") button = self.buttons.get(key) if button: if event == "keydown": button._on_press() elif event == "keyup": button._on_release() def __clean_up(self): ipc_cleanup("keyevent") class KeyboardButton: # interface to match pitop.KeyboardButton def __init__(self, key): self.key = key self.pressed_method = None self.released_method = None self.__key_pressed = False listener = KeyboardButtonsListener() listener.add_button(key, self) ipc_send("keylisten", key) def _on_press(self): self.__key_pressed = True if self.pressed_method is not None: self.pressed_method() def _on_release(self): self.__key_pressed = False if self.released_method is not None: self.released_method() @property def when_pressed(self): """Get or set the 'when pressed' button state callback function. When set, this callback function will be invoked when this event happens. :type callback: Function :param callback: Callback function to run when a button is pressed. """ @when_pressed.setter def when_pressed(self, method=None): if method is None: raise "Error: no method assigned" self.pressed_method = method @property def when_released(self): """Get or set the 'when released' button state callback function. When set, this callback function will be invoked when this event happens. :type callback: Function :param callback: Callback function to run when a button is released. """ @when_released.setter def when_released(self, method=None): if method is None: raise "Error: no method assigned" self.released_method = method @property def is_pressed(self) -> bool: """Get or set the button state as a boolean value. :rtype: bool """ if self.__key_pressed is True: return True else: return False
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 19 08:41:14 2018 @author: gcu """ import networkx as nx import pickle import pandas as pd import numpy as np import glob import os import re from collections import Counter #import pylab as plt import matplotlib.pyplot as plt data=pd.read_csv("./low_mem_data.csv") # Remove rows with invalid dates data.dropna(subset=['DAT'], inplace=True) def getUsersTgT(Tbl=''): cntr = Counter(Tbl['TGT']) return cntr.most_common(n=None) usr=getUsersTgT(Tbl=data) # The first element is a space, which means there was no user, thus let's remove # The first user. del usr[0] # We have list of users. Now let's get build a function that given # a user, we get a table with that data. def getTableForUser(U='', T=''): tmp = T.set_index('TGT') return tmp.ix[U] def validateHour(T=''): err=[] count=0 for t in T.DAT: if int(t[:2]) > 23: print("Error",t) err.append(count) count=count+1 if len(err) > 0: for i in err: print("Dropping",i) T.drop(T.index[i], inplace=True) return T def acceptanceRatio(T=''): allElem=[] acc=[] neu=[] rej=[] accR=[] neuR=[] rejR=[] succR=[] cumSum=[] cumAcc=[] cumNeu=[] cumRej=[] fRes=0 fResR=[] for i in T.index: elemV = T['VOT'][i] elemR = T['RES'][i] if int(elemV) == 1: acc.append(elemV) if int(elemV) == 0: print("Neutral") neu.append(elemV) if int(elemV) == -1: rej.append(elemV) #fRes=fRes+int(elemR) #fResR.append(fRes/len(allElem+1)) allElem.append(elemV) accR.append(len(acc)/len(allElem)) neuR.append(len(neu)/len(allElem)) rejR.append(len(rej)/len(allElem)) cumSum.append(len(allElem)) cumAcc.append(len(acc)) cumNeu.append(len(neu)) cumRej.append(len(rej)) T["accRatio"]=accR T["neuRatio"]=neuR T["rejRatio"]=rejR T["cumSumVot"]=cumSum T["cumAcc"]=cumAcc T["cumNeu"]=cumNeu T["cumRej"]=cumRej #T["resRatio"]=fResR return T #usrTable=getTableForUser(U='Werdna',T=data) usrTable=getTableForUser(U='Wikiwoohoo',T=data) usrTable.reset_index(inplace=True) usrTable = validateHour(T=usrTable) usrTable['date']=pd.to_datetime(usrTable.DAT) usrTable.sort_index(inplace=True) acceptanceRatio(T=usrTable) usrTable.set_index('date',inplace=True) r=usrTable[['accRatio','neuRatio','rejRatio']] #plt.figure(); #r.plot(); ft=usrTable.reset_index() #x=ft['date'] #y=ft['accRatio'] #z=ft['NUM_WORDS'] #x=x.values #y=y.values #z=z.values #fig, ax = plt.subplots() #ax.fill(x, y,z, zorder=10) #ax.grid(True, zorder=5) #plt.show() #from sklearn.decomposition import PCA #pca = PCA(n_components=2) #pca.fit(r) #X_ = pca.transform(r) #dfPCA = pd.DataFrame({'x1': X= ['a','b']_[:,0], 'x2': X_[:,1]}) #plt.scatter(dfPCA['x1'], dfPCA['x2']) #ft=usrTable.reset_index() #x=(ft['date']).values #y=(ft['accRatio']).values #ssplt.scatter(x,y)
# -- encoding: UTF-8 -- from django.forms import TypedChoiceField, CharField from django.utils.text import capfirst __all__ = ["formfield"] # This is a copy of Django 1.8's (78d43a5e1064b63db1c486516c4263ef1c4c975c) # `Field.formfield()`, for compatibility with Django 1.5.x, which does not # support `choices_form_class` in a sane way. # The commit b6f4a92ff45d98a63dc29402d8ad86b88e6a6697 # would make this compatible with our enums, # but it's best to go all the way to the freshest code, I think. def formfield(db_field, form_class=None, choices_form_class=None, **kwargs): """ Returns a django.forms.Field instance for this database Field. """ defaults = {'required': not db_field.blank, 'label': capfirst(db_field.verbose_name), 'help_text': db_field.help_text} if db_field.has_default(): if callable(db_field.default): defaults['initial'] = db_field.default defaults['show_hidden_initial'] = True else: defaults['initial'] = db_field.get_default() if db_field.choices: # Fields with choices get special treatment. include_blank = (db_field.blank or not (db_field.has_default() or 'initial' in kwargs)) defaults['choices'] = db_field.get_choices(include_blank=include_blank) defaults['coerce'] = db_field.to_python if db_field.null: defaults['empty_value'] = None if choices_form_class is not None: form_class = choices_form_class else: form_class = TypedChoiceField # Many of the subclass-specific formfield arguments (min_value, # max_value) don't apply for choice fields, so be sure to only pass # the values that TypedChoiceField will understand. for k in list(kwargs): if k not in ('coerce', 'empty_value', 'choices', 'required', 'widget', 'label', 'initial', 'help_text', 'error_messages', 'show_hidden_initial'): del kwargs[k] defaults.update(kwargs) if form_class is None: form_class = CharField return form_class(**defaults) # This is a bare-bones implementation of `import_string`, as # implemented in Django commit f95122e541df5bebb9b5ebb6226b0013e5edc893. try: try: from django.utils.module_loading import import_string except ImportError: from django.utils.module_loading import import_by_path as import_string except ImportError: from django.utils.importlib import import_module def import_string(dotted_path): module_path, class_name = dotted_path.rsplit('.', 1) module = import_module(module_path) return getattr(module, class_name)
import os import streamlit.components.v1 as components # Create a _RELEASE constant. We'll set this to False while we're developing # the component, and True when we're ready to package and distribute it. # (This is, of course, optional - there are innumerable ways to manage your # release process.) _RELEASE = True # Declare a Streamlit component. `declare_component` returns a function # that is used to create instances of the component. We're naming this # function "_component_func", with an underscore prefix, because we don't want # to expose it directly to users. Instead, we will create a custom wrapper # function, below, that will serve as our component's public API. # It's worth noting that this call to `declare_component` is the # *only thing* you need to do to create the binding between Streamlit and # your component frontend. Everything else we do in this file is simply a # best practice. if not _RELEASE: _streamlit_navbar001 = components.declare_component( "streamlit_navbar001", url="http://localhost:3001", ) else: parent_dir = os.path.dirname(os.path.abspath(__file__)) build_dir = os.path.join(parent_dir, "frontend/build") _streamlit_navbar001 = components.declare_component("streamlit_navbar001", path=build_dir) def streamlit_navbar001(navbar_buttons): component_value = _streamlit_navbar001(navbar_buttons=navbar_buttons, default=0) # We could modify the value returned from the component if we wanted. # There's no need to do this in our simple example - but it's an option. return component_value # Add some test code to play with the component while it's in development. # During development, we can run this just as we would any other Streamlit # app: `$ streamlit run my_component/__init__.py` if not _RELEASE: import streamlit as st st.subheader("Component with constant args") # Create an instance of our component with a constant `name` arg, and # print its output value. button_id = streamlit_navbar001(navbar_buttons=[{'name':'home','id':'home'},{'name':'home2','id':'home2'},{'name':'home3','id':'home3'},{'name':'home4','id':'home4'}]) st.markdown("You've clicked the button with id: {}".format(button_id))
import os import logging import sys import shutil import json import pkg_resources import pandas as pd from Bio import SeqIO class Controller(object): def __init__(self, args): self.fasta = args.input self.out = args.output self.threads = args.threads self.dist = args.dist self.prod = args.prodigal self.db = args.db self.circular = args.circular self.oev = args.overall_eval self.ocs = args.overall_cov_seq self.och = args.overall_cov_hmm self.check_inp = args.skip_check self.keep_tmp = args.keep_tmp self.lvl = args.log_lvl self.redo = args.redo_typing self.kmer = args.kmer self.crispr_cas_dist = args.ccd self.pred_prob = args.pred_prob self.noplot = args.no_plot self.scale = args.scale self.nogrid = args.no_grid self.expand = args.expand self.simplelog = args.simplelog self.customhmm = args.custom_hmm self.repeat_id = args.repeat_id self.spacer_id = args.spacer_id self.spacer_sem = args.spacer_sem self.any_cas = False self.any_operon = False self.any_crispr = False # Logger if self.simplelog: logging.basicConfig(format='[%(asctime)s] %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=self.lvl) else: logging.basicConfig(format='\033[36m'+'[%(asctime)s] %(levelname)s:'+'\033[0m'+' %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=self.lvl) logging.info('Running CRISPRCasTyper version {}'.format(pkg_resources.require("cctyper")[0].version)) # Force consistency self.out = os.path.join(self.out, '') if self.redo: self.check_inp = True self.prot_path = self.out+'proteins.faa' # Check databases self.check_db() # Check input and output self.check_input() self.check_out() # If redo check if any crisprs and operons if self.redo: if os.path.exists(self.out+'cas_operons.tab') or os.path.exists(self.out+'cas_operons_putative.tab'): self.any_operon = True if os.path.exists(self.out+'crisprs_all.tab'): self.any_crispr = True # Write arguments da = vars(args) f = open(self.out+'arguments.tab', 'w') for k, v in da.items(): f.write('{}:\t{}\n'.format(k, v)) f.close() # Get lengths self.get_length() def check_out(self): if not self.redo: try: os.mkdir(self.out) except FileExistsError: logging.error('Directory '+self.out+' already exists') sys.exit() def check_input(self): if not self.check_inp: if os.path.isfile(self.fasta): if not self.is_fasta(): logging.error('Input file is not in fasta format') sys.exit() else: logging.error('Could not find input file') sys.exit() def is_fasta(self): try: with open(self.fasta, 'r') as handle: fa = SeqIO.parse(handle, 'fasta') [float(x.id) for x in fa] logging.error('Numeric fasta headers not supported') return False except: with open(self.fasta, 'r') as handle: fa = SeqIO.parse(handle, 'fasta') return any(fa) def clean(self): if not self.redo: if os.stat(self.out+'hmmer.log').st_size == 0: os.remove(self.out+'hmmer.log') if self.customhmm != '': if os.stat(self.out+'hmmer_custom.log').st_size == 0: os.remove(self.out+'hmmer_custom.log') if not self.keep_tmp: logging.info('Removing temporary files') shutil.rmtree(self.out+'hmmer') os.remove(self.out+'minced.out') os.remove(self.out+'prodigal.log') os.remove(self.out+'proteins.faa') def check_db(self): if self.db == '': try: self.db = os.environ['CCTYPER_DB'] except: logging.error('Could not find database directory') sys.exit() self.scoring = os.path.join(self.db, 'CasScoring.csv') self.pdir = os.path.join(self.db, 'Profiles', '') self.xgb = os.path.join(self.db, "xgb_repeats.model") self.typedict = os.path.join(self.db, "type_dict.tab") self.cutoffdb = os.path.join(self.db, "cutoffs.tab") self.ifdb = os.path.join(self.db, "interference.json") self.addb = os.path.join(self.db, "adaptation.json") # Try to load CasScoring table if os.path.isfile(self.scoring): try: dump = pd.read_csv(self.scoring, sep=",") except: logging.error('CasScoring table could not be loaded') sys.exit() else: logging.error('CasScoring table could not be found') sys.exit() # Look if HMM profile dir exists if os.path.isdir(self.pdir): for i in os.listdir(self.pdir): if not i.lower().endswith('.hmm'): logging.error('There are non-HMM profiles in the HMM profile directory') sys.exit() else: logging.error('Could not find HMM profile directory') sys.exit() # Load specific cutoffs with open(self.cutoffdb, 'r') as f: rs = (ll.rstrip().split(':') for ll in f) self.cutoffs = {r[0].lower():r[1].split(',') for r in rs} # Load mandatory gene files with open(self.ifdb, 'r') as f: self.compl_interf = json.load(f) with open(self.addb, 'r') as f: self.compl_adapt = json.load(f) def get_length(self): with open(self.fasta, 'r') as handle: self.len_dict = {} for fa in SeqIO.parse(handle, 'fasta'): self.len_dict[fa.id] = len(fa.seq)
""" Plot training/validation curves for multiple models. """ from __future__ import division from __future__ import print_function import argparse import matplotlib import numpy as np import os matplotlib.use('Agg') # This must be called before importing pyplot import matplotlib.pyplot as plt COLORS_RGB = [ (228, 26, 28), (55, 126, 184), (77, 175, 74), (152, 78, 163), (255, 127, 0), (255, 255, 51), (166, 86, 40), (247, 129, 191), (153, 153, 153) ] # Scale the RGB values to the [0, 1] range, which is the format # matplotlib accepts. colors = [(r / 255, g / 255, b / 255) for r, g, b in COLORS_RGB] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-d', '--dirs', nargs='+', required=True, help='Directories where the model and costs are saved') parser.add_argument('-s', '--save_file', type=str, required=True, help='Filename of the output plot') return parser.parse_args() def graph(dirs, save_file, average_window=100): """ Plot the training and validation costs over iterations Params: dirs (list(str)): Directories where the model and costs are saved save_file (str): Filename of the output plot average_window (int): Window size for smoothening the graphs """ fig, ax = plt.subplots() ax.set_xlabel('Iters') ax.set_ylabel('Loss') average_filter = np.ones(average_window) / float(average_window) for i, d in enumerate(dirs): name = os.path.basename(os.path.abspath(d)) color = colors[i % len(colors)] costs = np.load(os.path.join(d, 'costs.npz')) train_costs = costs['train'] valid_costs = costs['validation'].tolist() iters = train_costs.shape[0] valid_range = [500 * (i + 1) for i in range(iters // 500)] if len(valid_range) != len(valid_costs): valid_range.append(iters) if train_costs.ndim == 1: train_costs = np.convolve(train_costs, average_filter, mode='valid') ax.plot(train_costs, color=color, label=name + '_train', lw=1.5) ax.plot(valid_range, valid_costs[:len(valid_range)], '-o', color=color, label=name + '_valid') ax.grid(True) ax.legend(loc='best') plt.savefig(save_file) if __name__ == '__main__': args = parse_args() graph(args.dirs, args.save_file)
from .testmapgen import TestMapGen from .testwalk import TestWalk
""" Module for generation of plots. """ # Import Python standard libraries import statistics # Import 3rd-party libraries from matplotlib import pyplot as plt import numpy as np import math def graph_word_distribution_entropies(entropies1, entropies2, output_path, **kwargs): title = kwargs.get("title", "") label1 = kwargs.get("label1", None) label2 = kwargs.get("label2", None) graph_limit = kwargs.get("graph_limit", None) # entropies1. # entropies2. # language - name of language for identification in figures and reports. # title - title for graph. # graphlimit - upper graph limit for histogram bins. cnt1 = f"{len(entropies1):6d}" avg1 = f"{statistics.mean(entropies1):6.3f}" std1 = f"{statistics.stdev(entropies1):6.3f}" cnt2 = f"{len(entropies2):6d}" avg2 = f"{statistics.mean(entropies2):6.3f}" std2 = f"{statistics.stdev(entropies2):6.3f}" entropies = sorted(entropies1 + entropies2) upper_limit = graph_limit if graph_limit is not None else math.ceil(entropies[-3]) lower_limit = min(0, math.floor(entropies[3])) # Set frame horizontal for this measure. bins = np.linspace(lower_limit, upper_limit, 60) plt.figure(figsize=(8, 5)) plt.hist( entropies1, bins, alpha=0.65, label=f"{label1}$(n={cnt1}, \\mu={avg1}, \\sigma={std1})$", color="blue", ) plt.hist( entropies2, bins, alpha=0.65, label=f"{label2}$(n={cnt2}, \\mu={avg2}, \\sigma={std2})$", color="red", ) plt.grid(axis="y", alpha=0.8) plt.legend(loc="upper right") plt.xlabel("Entropies") plt.ylabel("Frequency") plt.title(title) # Build file output and write plt.savefig(output_path, dpi=600) plt.close() # def draw_dist(x, output_path, title="Distribution of Statistic"): # cnt = f"{len(x):6d}" # avg = f"{np.mean(x):9.4f}" # std = f"{np.std(x):9.4f}" # # An "interface" to matplotlib.axes.Axes.hist() method # plt.figure(figsize=(8, 5)) # n, bins, patches = plt.hist( # x=x, bins="auto", color="#0504aa", alpha=0.75, rwidth=0.85 # ) # plt.grid(axis="y", alpha=0.75) # plt.xlabel("Statistic") # plt.ylabel("Frequency") # plt.title( # title + r" $(n=" + cnt + ", \mu=" + avg + ", \sigma=" + std + ")$" # ) # maxfreq = n.max() # # Set a clean upper y-axis limit. # plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10) # # Build file output and write # plt.savefig(output_path, dpi=600) # plt.close()
""" Copyright (c) 2018-2019 ARM Limited. All rights reserved. SPDX-License-Identifier: Apache-2.0 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations """ import sys from io import open from os import sep from os.path import isfile, join, dirname import json import pytest from tools.memap import MemapParser, _ArmccParser from copy import deepcopy PARSED_ARM_DATA = { "startup/startup.o": {".text": 0xc0}, "[lib]/c_p.l/__main.o": {".text": 8}, "irqs/irqs.o": {".text": 0x98}, "data/data.o": {".data": 0x18, ".bss": 0x198}, "main.o": {".text": 0x36}, } def test_parse_armcc(): memap = MemapParser() memap.parse(join(dirname(__file__), "arm.map"), "ARM") parsed_data_os_agnostic = dict() for k in PARSED_ARM_DATA: parsed_data_os_agnostic[k.replace('/', sep)] = PARSED_ARM_DATA[k] assert memap.modules == parsed_data_os_agnostic PARSED_IAR_DATA = { "startup/startup.o": {".text": 0xc0}, "[lib]/d16M_tlf.a/__main.o": {".text": 8}, "irqs/irqs.o": {".text": 0x98}, "data/data.o": {".data": 0x18, ".bss": 0x198}, "main.o": {".text": 0x36}, } def test_parse_iar(): memap = MemapParser() memap.parse(join(dirname(__file__), "iar.map"), "IAR") parsed_data_os_agnostic = dict() for k in PARSED_IAR_DATA: parsed_data_os_agnostic[k.replace('/', sep)] = PARSED_IAR_DATA[k] assert memap.modules == parsed_data_os_agnostic PARSED_GCC_DATA = { "startup/startup.o": {".text": 0xc0}, "[lib]/d16M_tlf.a/__main.o": {".text": 8}, "[lib]/misc/foo.o": {".text": 8}, "irqs/irqs.o": {".text": 0x98}, "data/data.o": {".data": 0x18, ".bss": 0x198}, "main.o": {".text": 0x36}, } def test_parse_gcc(): memap = MemapParser() memap.parse(join(dirname(__file__), "gcc.map"), "GCC_ARM") parsed_data_os_agnostic = dict() for k in PARSED_GCC_DATA: parsed_data_os_agnostic[k.replace('/', sep)] = PARSED_GCC_DATA[k] assert memap.modules == parsed_data_os_agnostic def test_add_empty_module(): memap = _ArmccParser() old_modules = deepcopy(memap.modules) memap.module_add("", 8, ".data") assert(old_modules == memap.modules) memap.module_add("main.o", 0, ".text") assert(old_modules == memap.modules) memap.module_add("main.o", 8, "") assert(old_modules == memap.modules) def test_add_full_module(): memap = _ArmccParser() old_modules = deepcopy(memap.modules) memap.module_add("main.o", 8, ".data") assert(old_modules != memap.modules) assert("main.o" in memap.modules) assert(".data" in memap.modules["main.o"]) assert(memap.modules["main.o"][".data"] == 8)
from rest_framework import serializers from users.models import User from django.contrib.auth.models import Group from django.contrib.auth.hashers import make_password class AdminSerializer(serializers.ModelSerializer): class Meta: model = User fields = [ 'id', 'username', 'email', 'mobile', 'password', 'groups', 'user_permissions' ] extra_kwargs = { 'password': { "write_only": True, }, } def create(self, validated_data): # validated_data['password'] = make_password(validated_data['password']) # validated_data['is_staff'] = True # # 密码未加密 # return super().create(validated_data) # 1、提取manytomanyfields groups = validated_data.pop('groups') # [5] user_permissions = validated_data.pop('user_permissions') # [79, 80] # 2、新建主表对象 admin_user = User.objects.create_superuser(**validated_data) # 3、构建中间表数据 admin_user.groups.set(groups) admin_user.user_permissions.set(user_permissions) return admin_user def update(self, instance, validated_data): # 校验密码是否传入 # 如果传入,加密 # 没有传入 password = validated_data.get("password") if password: validated_data['password'] = make_password(password) else: validated_data['password'] = instance.password return super().update(instance, validated_data) class AdminGroupSerializer(serializers.ModelSerializer): class Meta: model = Group fields = ['id', 'name']
#Votemain module """ Votelib module by Blake Cretney This work is distributed AS IS. It is up to you to determine if it is useful and safe. In particular, NO WARRANTY is expressed or implied. I permanently give everyone the rights to use, modify, copy, distribute, re-distribute, and perform this work, and all derived works, to the extent that I hold copyright in them. My intent is to have this work treated as public domain. This module contains the heart of the program. """ from string import * import re import numpy import sys from sys import maxsize from votelib import * import votemethod class Options: cand_l = None # list of candidate names zero_def=0 # zero out the defeats method_nm=None # selected method n_votes=0 record_pw=0 # do I have to record pairwise information pw_tbl=None record_ballots=0 # do I have to record complete ballots ballot_tbl=None tiebreaker=None # order of candidates used by some methods to break ties class Ballot: votes=0 ballot=None lineno=0 # current line being read (for error information) def failure(x): raise RuntimeError("Failure: %s\nLine %d" % (x,lineno)) def bug(x): raise RuntimeError("Internal Error: %s\nLine %d" % (x,lineno)) def input_line(): global lineno while 1: rawline = input() lineno=lineno+1 comment=find(rawline, '#') # filter out comments if comment!=-1: rawline=rawline[:comment] rawline=lstrip(rawline) while rawline and rawline[0]==">": rawline=rawline[1:] rawline=lstrip(rawline) if rawline!="": break return(rawline) def read_table(x): # reads a directly entered table n=x.shape[0] try: for i in range(n): rawline=input_line() sline=split(rawline)[-n:] for j in range(n): if i!=j: x[i,j]=x[i,j]+int(sline[j]) except ValueError: failure('Bad Table Value') except IndexError: failure('Malformed Table') except EOFError: failure('EOF during table') def get_options(list,o): # gets command line options for x in list: x=split(x,None,1) opt= lower(x[0]) if len(x)>1: param= x[1] else: param= None if opt != 'm' and o.method_nm==None: failure('-m must be first option') if opt == 'cands': if param==None: failure('Missing parameter') if o.cand_l!=None: failure('Redefinition of candidate list') o.cand_l=[] for cand in split(param): if find(cand,'-')==-1: o.cand_l = o.cand_l + [cand] else: range=split(cand,'-',1) o.cand_l=o.cand_l + candRange(range[0],range[1]) n=len(o.cand_l) if o.record_pw: o.pw_tbl=numpy.zeros((n,n),numpy.int32) # pairwise table if o.record_ballots: o.ballot_tbl=[] # storage for ballots elif opt=='m': if o.method_nm!=None: failure('Multiple methods selected') if param==None: failure('Missing parameter') if o.n_votes>0: failure('-m must precede ballots') o.method_nm=lower(param) if o.method_nm=="borda": o.record_pw=1 elif o.method_nm=="bucklin": o.record_ballots=1 elif o.method_nm=="c//irv": o.method_nm="c_irv" o.record_pw=1 o.record_ballots=1 elif o.method_nm=="copeland": o.record_pw=1 elif o.method_nm=="irv": o.record_ballots=1 elif o.method_nm=="minmax": o.record_pw=1 elif o.method_nm=="borda-elim": o.method_nm="borda_elim" o.record_pw=1 elif o.method_nm=="nanson": o.record_pw=1 elif o.method_nm=="pw-elim": o.method_nm="pw_elim" o.record_pw=1 elif o.method_nm=="s//irv": o.method_nm="s_irv" o.record_pw=1 o.record_ballots=1 elif o.method_nm=="s//minmax": o.method_nm="s_minmax" o.record_pw=1 elif o.method_nm=="schulze": o.record_pw=1 elif o.method_nm=="smith": o.record_pw=1 elif o.method_nm=="table": o.record_pw=1 elif o.method_nm=="rp": o.record_pw=1 elif o.method_nm=="ukvt": o.record_pw=1 elif o.method_nm=="nrp": o.record_pw=1 else: failure('unknown method: ' + o.method_nm) elif opt== 'table': if o.cand_l==None: failure('-cands must precede -table') if o.record_pw==0: failure('-table needs pairwise method') if o.record_ballots!=0: failure('-table requires purely pairwise method') if o.n_votes>0: failure('Tables must precede ballots') read_table(o.pw_tbl) elif opt=='tie': if o.cand_l==None: failure('-cands must precede -tie') if param==None: failure('Missing parameter') if o.n_votes>0: failure('-tie must precede ballots') if o.tiebreaker!=None: failure('Multiple tiebreaker selected') tb=split(param) o.tiebreaker=[] try: for cand in tb: o.tiebreaker=o.tiebreaker + [o.cand_l.index(cand)] except ValueError: failure('Unknown candidate used in -tie') if(len(o.tiebreaker)!=n): failure("Tiebreaker must list all candidates") elif opt=='zd': if not o.record_pw: failure('zero-defeats only works on pairwise') o.zero_def=1 else: failure('Unable to process option:' + repr(opt)) def vote_main(): o=Options() if len(sys.argv)>1: # process the command line for options command=join(sys.argv[1:]) command=strip(command) if command: if command[0]!='-': failure('option must use hyphen') get_options(re.split(r'\s+-',command[1:]),o) try: while o.cand_l==None: rawline=input_line() if rawline[0]=='-': # process argument lines get_options(re.split(r'\s+-',rawline[1:]),o) else: failure('Some options must precede data') n=len(o.cand_l) while 1: rawline = input_line() if rawline[0]=='-': # process argument lines get_options(re.split(r'\s+-',rawline[1:]),o) continue bltsvote=split(rawline,":",1) if len(bltsvote)==1: #check for number of ballots ballots=1 rawline=bltsvote[0] else: try: ballots=int(bltsvote[0]) rawline=bltsvote[1] except ValueError: failure('illegal number of ballots') rawline=strip(rawline) if len(rawline)==0: failure('missing ballot') if ballots<=0: failure('Number of ballots must be positive') o.n_votes=o.n_votes+ballots rawline=strip(rawline) rawline=re.sub(r'\s*=\s*','=',rawline) # remove whitespace around '=' line=re.split(r'[\s>]+',rawline) # '>' and/or any remaing whitespace means '>' #give each candidate a score based on where it appears on the ballot. n is best, 0 worst working=numpy.zeros((n),numpy.int32) level=n for eqcands in line: cands= split(eqcands,"=") for cand in cands: try: x=o.cand_l.index(cand) except ValueError: failure('Unknown candidate: ' + cand) working[x]=level level=level-1 if o.record_pw: for i in range(n): for j in range(n): if working[i]>working[j]: o.pw_tbl[i,j]=o.pw_tbl[i,j]+ballots if o.record_ballots: b=Ballot() b.votes=ballots b.ballot=working o.ballot_tbl=o.ballot_tbl+[b] except EOFError: if o.cand_l==None: print("Empty File. Nothing to do.") return global lineno lineno=-1 print('VOTES ' , o.n_votes) if o.record_pw: if o.zero_def: zero_defeats(o.pw_tbl) print("Defeats Zero'd out") else: to_margins(o.pw_tbl) print("Margins") print_scores(o.pw_tbl,o.cand_l) if o.method_nm=="table": return # choose which method to use on the data eval('votemethod.'+o.method_nm+'(o)') def vote_engine(fin=None,fout=None,opts=None): old_in=sys.stdin old_out=sys.stdout old_argv=sys.argv if fin: sys.stdin=fin if fout: sys.stdout=fout if opts: sys.argv=opts try: vote_main() except RuntimeError as e: print(e.args[0]) sys.stdin=old_in sys.stdout=old_out sys.argv=old_argv
from flask import json from werkzeug.exceptions import HTTPException def register_error_handler(flask_app): flask_app.register_error_handler(HTTPException, __handle_exception) def __handle_exception(e): """Return JSON instead of HTML for HTTP errors.""" # start with the correct headers and status code from the error response = e.get_response() # replace the body with JSON response.data = json.dumps({ "code": e.code, "name": e.name, "description": e.description, }) response.content_type = "application/json" return response
import gzip, shutil def decompress(n): with gzip.open(n, 'r') as f_in, open('farm_0.uc', 'wb') as f_out: shutil.copyfileobj(f_in, f_out) def compress(n): with open(n, 'rb') as f_in: with gzip.open('Events.json', 'wb') as f_out: shutil.copyfileobj(f_in, f_out) decompress('farm_0.data')
__version_tuple__ = (2, 6, 0, "dev") __version__ = '2.6.0-dev'
# -*- coding: utf-8 -*- import unittest from datetime import date from skyscraper.utils.constants import POWER_KEY, TRUNK_KEY, MASS_KEY, PRICE_KEY, AGE_KEY, CURRENCY_KEY from skyscraper.utils.constants import SPEEDOMETER_KEY, CAR_KEY, CONDITION_KEY from skyscraper.utils.value_parser import ValueParser class TestBasicPaths(unittest.TestCase): default_input = {} value_parser = ValueParser(default_input) @staticmethod def date_to_age(years, months): today = date.today() month_diff = today.month - months if month_diff <= 0: years += 1 months = 12 + month_diff else: months = month_diff return date(today.year - years, months, 1).strftime("%Y/%m") def setUp(self): self.default_input = { CAR_KEY: 'http://hasznaltauto.hu/auto', CONDITION_KEY: 'Újszerű', SPEEDOMETER_KEY: '0 km', AGE_KEY: date.today().strftime("%Y/%m") } self.value_parser = ValueParser(self.default_input) def test_power_worth(self): car = self.default_input car[POWER_KEY] = '42 kW' power_worth = self.value_parser.get_power_value() self.assertEqual(power_worth, 3) def test_condition_worth(self): condition_worth = self.value_parser.get_condition_value() self.assertEqual(condition_worth, 0) car = self.default_input car[CONDITION_KEY] = '' condition_worth = self.value_parser.get_condition_value() self.assertEqual(condition_worth, -20) def test_trunk_worth(self): car = self.default_input car[TRUNK_KEY] = '290 l' trunk_worth = self.value_parser.get_trunk_value() self.assertEqual(trunk_worth, 2) def test_mass_worth(self): car = self.default_input car[MASS_KEY] = '1600 kg' mass_worth = self.value_parser.get_mass_value() self.assertEqual(mass_worth, 3) def test_speedometer_worth(self): self.assert_speedo('0km', 0) self.assert_speedo('0 km', 0) self.assert_speedo('92,000 km', -9) self.assert_speedo('140 000 km', -12) self.assert_speedo('240 000 km', -16) def test_price_worth(self): car = self.default_input # no power, no price price_worth = self.value_parser.get_price_value() self.assertEqual(price_worth, 0) # no power car[PRICE_KEY] = '6000000' price_worth = self.value_parser.get_price_value() self.assertEqual(price_worth, 0) # no price del car[PRICE_KEY] car[POWER_KEY] = '100 kW' price_worth = self.value_parser.get_price_value() self.assertEqual(price_worth, 0) # price and power car[PRICE_KEY] = '26535' car[CURRENCY_KEY] = 'EUR' price_worth = self.value_parser.get_price_value() self.assertEqual(price_worth, 10) def test_age_worth(self): self.assert_age(0, 3, -3) self.assert_age(1, 0, -10) self.assert_age(10, 0, -31) self.assert_age(30, 0, -35) self.assert_age(50, 0, 37) '''ASSERTIONS''' def assert_speedo(self, kilometers, expected): car = self.default_input car[SPEEDOMETER_KEY] = kilometers speedo_worth = self.value_parser.get_speedometer_value() self.assertEqual(speedo_worth, expected) def assert_age(self, years, months, expected): car = self.default_input car[AGE_KEY] = TestBasicPaths.date_to_age(years, months) age_worth = self.value_parser.get_age_value() self.assertEqual(expected, age_worth)
import pytest import requests from schema_registry.client import SchemaRegistryClient, schema from tests import data_gen def test_context(client): with client as c: parsed = schema.AvroSchema(data_gen.BASIC_SCHEMA) schema_id = c.register("test-basic-schema", parsed) assert schema_id > 0 assert len(c.id_to_schema) == 1 def test_cert_no_key(): with pytest.raises(AssertionError): SchemaRegistryClient(url="https://127.0.0.1:65534", cert_location="/path/to/cert") def test_cert_with_key(): client = SchemaRegistryClient( url="https://127.0.0.1:65534", cert_location="/path/to/cert", key_location="/path/to/key" ) assert ("/path/to/cert", "/path/to/key") == client.cert def test_custom_headers(): extra_headers = {"custom-serialization": "application/x-avro-json"} client = SchemaRegistryClient(url="https://127.0.0.1:65534", extra_headers=extra_headers) assert extra_headers == client.extra_headers def test_override_headers(client, deployment_schema, mocker, response_klass): extra_headers = {"custom-serialization": "application/x-avro-json"} client = SchemaRegistryClient("https://127.0.0.1:65534", extra_headers=extra_headers) assert client.prepare_headers().get("custom-serialization") == "application/x-avro-json" subject = "test" override_header = {"custom-serialization": "application/avro"} request_patch = mocker.patch.object( requests.sessions.Session, "request", return_value=response_klass(200, content={"id": 1}) ) client.register(subject, deployment_schema, headers=override_header) prepare_headers = client.prepare_headers(body="1") prepare_headers["custom-serialization"] = "application/avro" request_patch.assert_called_once_with("POST", mocker.ANY, headers=prepare_headers, json=mocker.ANY) def test_cert_path(): client = SchemaRegistryClient(url="https://127.0.0.1:65534", ca_location="/path/to/ca") assert "/path/to/ca" == client.verify def test_init_with_dict(): client = SchemaRegistryClient( { "url": "https://127.0.0.1:65534", "ssl.certificate.location": "/path/to/cert", "ssl.key.location": "/path/to/key", } ) assert "https://127.0.0.1:65534/" == client.url_manager.url def test_empty_url(): with pytest.raises(AssertionError): SchemaRegistryClient({"url": ""}) def test_invalid_type_url(): with pytest.raises(AttributeError): SchemaRegistryClient(url=1) def test_invalid_type_url_dict(): with pytest.raises(AttributeError): SchemaRegistryClient({"url": 1}) def test_invalid_url(): with pytest.raises(AssertionError): SchemaRegistryClient({"url": "example.com:65534"}) def test_basic_auth_url(): client = SchemaRegistryClient({"url": "https://user_url:secret_url@127.0.0.1:65534"}) assert ("user_url", "secret_url") == client.auth def test_basic_auth_userinfo(): client = SchemaRegistryClient( { "url": "https://user_url:secret_url@127.0.0.1:65534", "basic.auth.credentials.source": "user_info", "basic.auth.user.info": "user_userinfo:secret_userinfo", } ) assert ("user_userinfo", "secret_userinfo") == client.auth def test_basic_auth_sasl_inherit(): client = SchemaRegistryClient( { "url": "https://user_url:secret_url@127.0.0.1:65534", "basic.auth.credentials.source": "SASL_INHERIT", "sasl.mechanism": "PLAIN", "sasl.username": "user_sasl", "sasl.password": "secret_sasl", } ) assert ("user_sasl", "secret_sasl") == client.auth def test_basic_auth_invalid(): with pytest.raises(ValueError): SchemaRegistryClient( {"url": "https://user_url:secret_url@127.0.0.1:65534", "basic.auth.credentials.source": "VAULT"} )
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'vars.ui' # # Created by: PyQt5 UI code generator 5.10.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(390, 300) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.formLayoutWidget = QtWidgets.QWidget(self.centralwidget) self.formLayoutWidget.setGeometry(QtCore.QRect(0, 0, 351, 411)) self.formLayoutWidget.setObjectName("formLayoutWidget") self.formLayout = QtWidgets.QFormLayout(self.formLayoutWidget) self.formLayout.setContentsMargins(0, 0, 0, 0) self.formLayout.setObjectName("formLayout") self.label = QtWidgets.QLabel(self.formLayoutWidget) self.label.setObjectName("label") self.formLayout.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.label) self.label_2 = QtWidgets.QLabel(self.formLayoutWidget) self.label_2.setObjectName("label_2") self.formLayout.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label_2) self.label_3 = QtWidgets.QLabel(self.formLayoutWidget) self.label_3.setObjectName("label_3") self.formLayout.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_3) self.label_4 = QtWidgets.QLabel(self.formLayoutWidget) self.label_4.setObjectName("label_4") self.formLayout.setWidget(3, QtWidgets.QFormLayout.LabelRole, self.label_4) self.label_5 = QtWidgets.QLabel(self.formLayoutWidget) self.label_5.setObjectName("label_5") self.formLayout.setWidget(4, QtWidgets.QFormLayout.LabelRole, self.label_5) self.label_6 = QtWidgets.QLabel(self.formLayoutWidget) self.label_6.setObjectName("label_6") self.formLayout.setWidget(5, QtWidgets.QFormLayout.LabelRole, self.label_6) self.label_7 = QtWidgets.QLabel(self.formLayoutWidget) self.label_7.setObjectName("label_7") self.formLayout.setWidget(6, QtWidgets.QFormLayout.LabelRole, self.label_7) self.lineEdit = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit.setObjectName("lineEdit") self.formLayout.setWidget(0, QtWidgets.QFormLayout.FieldRole, self.lineEdit) self.lineEdit_2 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_2.setObjectName("lineEdit_2") self.formLayout.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.lineEdit_2) self.lineEdit_3 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_3.setObjectName("lineEdit_3") self.formLayout.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.lineEdit_3) self.lineEdit_4 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_4.setObjectName("lineEdit_4") self.formLayout.setWidget(3, QtWidgets.QFormLayout.FieldRole, self.lineEdit_4) self.lineEdit_5 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_5.setObjectName("lineEdit_5") self.formLayout.setWidget(4, QtWidgets.QFormLayout.FieldRole, self.lineEdit_5) self.lineEdit_6 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_6.setObjectName("lineEdit_6") self.formLayout.setWidget(5, QtWidgets.QFormLayout.FieldRole, self.lineEdit_6) self.lineEdit_7 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_7.setObjectName("lineEdit_7") self.formLayout.setWidget(6, QtWidgets.QFormLayout.FieldRole, self.lineEdit_7) self.label_8 = QtWidgets.QLabel(self.formLayoutWidget) self.label_8.setObjectName("label_8") self.formLayout.setWidget(7, QtWidgets.QFormLayout.LabelRole, self.label_8) self.label_9 = QtWidgets.QLabel(self.formLayoutWidget) self.label_9.setObjectName("label_9") self.formLayout.setWidget(8, QtWidgets.QFormLayout.LabelRole, self.label_9) self.label_10 = QtWidgets.QLabel(self.formLayoutWidget) self.label_10.setObjectName("label_10") self.formLayout.setWidget(9, QtWidgets.QFormLayout.LabelRole, self.label_10) self.label_11 = QtWidgets.QLabel(self.formLayoutWidget) self.label_11.setObjectName("label_11") self.formLayout.setWidget(10, QtWidgets.QFormLayout.LabelRole, self.label_11) self.label_12 = QtWidgets.QLabel(self.formLayoutWidget) self.label_12.setObjectName("label_12") self.formLayout.setWidget(11, QtWidgets.QFormLayout.LabelRole, self.label_12) self.lineEdit_8 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_8.setObjectName("lineEdit_8") self.formLayout.setWidget(7, QtWidgets.QFormLayout.FieldRole, self.lineEdit_8) self.lineEdit_9 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_9.setObjectName("lineEdit_9") self.formLayout.setWidget(8, QtWidgets.QFormLayout.FieldRole, self.lineEdit_9) self.lineEdit_10 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_10.setObjectName("lineEdit_10") self.formLayout.setWidget(9, QtWidgets.QFormLayout.FieldRole, self.lineEdit_10) self.lineEdit_11 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_11.setObjectName("lineEdit_11") self.formLayout.setWidget(10, QtWidgets.QFormLayout.FieldRole, self.lineEdit_11) self.lineEdit_12 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_12.setObjectName("lineEdit_12") self.formLayout.setWidget(11, QtWidgets.QFormLayout.FieldRole, self.lineEdit_12) self.label_13 = QtWidgets.QLabel(self.formLayoutWidget) self.label_13.setObjectName("label_13") self.lineEdit_13 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_13.setObjectName("lineEdit_13") self.formLayout.setWidget(12, QtWidgets.QFormLayout.FieldRole, self.lineEdit_13) self.formLayout.setWidget(12, QtWidgets.QFormLayout.LabelRole, self.label_13) self.label_14 = QtWidgets.QLabel(self.formLayoutWidget) self.label_14.setObjectName("label_14") self.lineEdit_14 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_14.setObjectName("lineEdit_14") self.formLayout.setWidget(13, QtWidgets.QFormLayout.FieldRole, self.lineEdit_14) self.formLayout.setWidget(13, QtWidgets.QFormLayout.LabelRole, self.label_14) self.label_15 = QtWidgets.QLabel(self.formLayoutWidget) self.label_15.setObjectName("label_15") self.lineEdit_15 = QtWidgets.QLineEdit(self.formLayoutWidget) self.lineEdit_15.setObjectName("lineEdit_15") self.formLayout.setWidget(14, QtWidgets.QFormLayout.FieldRole, self.lineEdit_15) self.formLayout.setWidget(14, QtWidgets.QFormLayout.LabelRole, self.label_15) self.pushButton = QtWidgets.QPushButton(self.formLayoutWidget) self.pushButton.setObjectName("pushButton") self.formLayout.setWidget(15, QtWidgets.QFormLayout.FieldRole, self.pushButton) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 390, 21)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.centralwidget.setLayout(self.formLayout) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Переменные")) self.label.setText(_translate("MainWindow", "Начальная скорость")) self.label_2.setText(_translate("MainWindow", "Начальная скорость по X")) self.label_3.setText(_translate("MainWindow", "Начальная скорость по Y")) self.label_4.setText(_translate("MainWindow", "Угол к горизонту")) self.label_5.setText(_translate("MainWindow", "Масса тела")) self.label_6.setText(_translate("MainWindow", "Время полета")) self.label_7.setText(_translate("MainWindow", "Длина полета по X")) self.label_8.setText(_translate("MainWindow", "Макс. высота")) self.label_9.setText(_translate("MainWindow", "Сила броска")) self.label_10.setText(_translate("MainWindow", "Начальная координата X")) self.label_11.setText(_translate("MainWindow", "Начальная координата Y")) self.label_12.setText(_translate("MainWindow", "Момент времени t")) self.label_13.setText(_translate("MainWindow", "X в момент времени t")) self.label_14.setText(_translate("MainWindow", "Y в момент времени t")) self.label_15.setText(_translate("MainWindow", "Vy в момент времени t")) self.pushButton.setText(_translate("MainWindow", "Ok"))
class ProgressTracker: def __init__(self): self.set_skipped_paths([]) def skip_file(self, file_path: str): return not all([file_path.startswith(path) for path in self._skipped]) def set_skipped_paths(self, skipped_paths): self._skipped = skipped_paths
#!/usr/bin/env python import zmq import sys import time import pickle # Socket to talk to server context = zmq.Context() sub = context.socket(zmq.SUB) sub.setsockopt(zmq.RCVHWM, 2) # This line added. sub.setsockopt(zmq.SUBSCRIBE, b'') # sub.setsockopt(zmq.CONFLATE, True) USE_ICP = False if USE_ICP: sub.connect ("ipc:///tmp/zmq") else: sub.connect ("tcp://0.0.0.0:5558") while True: #msg = sub.recv_multipart() topic = sub.recv() # data = sub.recv() data = sub.recv_pyobj() print(data) #print(pickle.loads(msg[1])) time.sleep(0.5)
# -*- coding: utf-8 -*- # Copyright (c) 2016 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains implementation of RPC client for Decapod API. Decapod client :py:class:`Client` is a simple RPC client and thin wrapper for the `requests <http://docs.python-requests.org/en/master/>`_ library which allows end user to work with remote API without worrying about connections and endpoints. RPC client itself manages authorization (therefore you have to supply it with user/password pair on initialization) so there is no need in explicit session objects but if you do not like that way, you may always relogin explicitly. Usage example: .. code-block:: python client = Client(url="http://localhost", login="root", password="root") This will initialize new client. Initialization does not imply immediate login, login would be occured thread-safely on the first real method execution. .. code-block:: python users = client.get_users() This will return end user a list with active users in Decapod. .. code-block:: json [ { "data": { "email": "noreply@example.com", "full_name": "Root User", "login": "root", "role_id": "37fb532f-2620-4e0d-80e6-b68ed6988a6d" }, "id": "6567c2ab-54cc-40b7-a811-6147a3f3ea83", "initiator_id": null, "model": "user", "time_deleted": 0, "time_updated": 1478865388, "version": 1 } ] Incoming JSON will be parsed. If it is not possible, :py:exc:`decapodlib.exceptions.DecapodError` will be raised. """ from __future__ import absolute_import from __future__ import unicode_literals import abc import inspect import logging import socket import warnings import pkg_resources import requests import requests.adapters import six from decapodlib import auth from decapodlib import exceptions try: import simplejson as json except ImportError: import json LOG = logging.getLogger(__name__) """Logger.""" try: VERSION = pkg_resources.get_distribution("decapodlib").version except pkg_resources.DistributionNotFound as exc: warnings.warn("Module is imported outside of distribution.", ImportWarning) VERSION = "unknown" __all__ = "VERSION", "Client", "V1Client" def json_dumps(data): """Makes compact JSON dumps. :param data: Data which should be encoded to JSON. :type data: Any data, suitable for :py:func:`json.dumps` :return: Data, encoded to JSON. :rtype: str :raises ValueError: if data cannot be encoded to JSON. """ return json.dumps(data, separators=(",", ":")) def make_query_params(**request_params): """Makes query string parameters for request. The reason to have this function is to exclude parameters which value is ``None``. :param request_params: Keyword arguments to be used as GET query params later. :return: Parameters to be encoded for GET query. :rtype: dict """ params = {} for key, value in six.iteritems(request_params): if value is not None: params[key] = value return params def json_response(func): """Decorator which parses :py:class:`requests.Response` and returns unpacked JSON. If ``Content-Type`` of response is not ``application/json``, then it returns text. :return: Data of :py:class:`requests.Response` from decorated function. :raises decapodlib.exceptions.DecapodAPIError: if decoding is not possible or response status code is not ``200``. """ @six.wraps(func) def decorator(*args, **kwargs): raw_response = kwargs.pop("raw_response", False) response = func(*args, **kwargs) if raw_response: return response if isinstance(response, dict): return response if response.ok: content_type = response.headers.get("Content-Type") content_type = content_type or "application/json" if content_type == "application/json": return response.json() return response.text raise exceptions.DecapodAPIError(response) return decorator def inject_timeout(func): """Decorator which injects ``timeout`` parameter into request. On client initiation, default timeout is set. This timeout will be injected into any request if no explicit parameter is set. :return: Value of decorated function. """ @six.wraps(func) def decorator(self, *args, **kwargs): kwargs.setdefault("timeout", self._timeout) return func(self, *args, **kwargs) return decorator def inject_pagination_params(func): """Decorator which injects pagination params into function. This decorator pops out such parameters as ``page``, ``per_page``, ``all_items``, ``filter`` and ``sort_by`` and prepares correct ``query_params`` unified parameter which should be used for as a parameter of decorated function. :return: Value of decorated function. """ @six.wraps(func) def decorator(*args, **kwargs): params = make_query_params( page=kwargs.pop("page", None), per_page=kwargs.pop("per_page", None), all=kwargs.pop("all_items", None), filter=kwargs.pop("filter", None), sort_by=kwargs.pop("sort_by", None) ) if "all" in params: params["all"] = str(int(bool(params["all"]))) if "filter" in params: params["filter"] = json_dumps(params["filter"]) if "sort_by" in params: params["sort_by"] = json_dumps(params["sort_by"]) kwargs["query_params"] = params return func(*args, **kwargs) return decorator def no_auth(func): """Decorator which injects mark that no authentication should be performed for this API call. :return: Value of decorated function. """ @six.wraps(func) def decorator(*args, **kwargs): kwargs["auth"] = auth.no_auth return func(*args, **kwargs) return decorator def wrap_errors(func): """Decorator which logs and catches all errors of decorated function. Also wraps all possible errors into :py:exc:`DecapodAPIError` class. :return: Value of decorated function. :raises decapodlib.exceptions.DecapodError: on any exception in decorated function. """ @six.wraps(func) def decorator(*args, **kwargs): try: return func(*args, **kwargs) except Exception as exc: if isinstance(exc, exceptions.DecapodError): LOG.error("Error on access to API: %s", exc) raise LOG.exception("Exception in decapodlib: %s", exc) raise exceptions.DecapodAPIError(exc) return decorator def client_metaclass(name, bases, attrs): """A client metaclass to create client instances. Basically, it just wraps all public methods with :py:func:`wrap_errors`/:py:func:`json_response` decorator pair so no need to explicitly define those decorators for every method. """ new_attrs = {} for key, value in six.iteritems(attrs): if not key.startswith("_") and inspect.isfunction(value): value = json_response(value) value = wrap_errors(value) value = inject_timeout(value) new_attrs[key] = value return type(name, bases, new_attrs) class HTTPAdapter(requests.adapters.HTTPAdapter): """HTTP adapter for client's :py:class:`requests.Session` which injects correct User-Agent header for request.""" USER_AGENT = "decapodlib/{0}".format(VERSION) """User agent for :py:class:`decapodlib.client.Client` instance. As a rule, it is just ``decapodlib/{version}`` string. """ def add_headers(self, request, **kwargs): request.headers["User-Agent"] = self.USER_AGENT super(HTTPAdapter, self).add_headers(request, **kwargs) @six.add_metaclass(abc.ABCMeta) @six.python_2_unicode_compatible class Client(object): """A base RPC client model. :param str url: URL of Decapod API (*without* version prefix like ``/v1``). :param str login: Login of user in Decapod. :param str password: Password of user in Decapod. :param timeout: Timeout for remote requests. If ``None`` is set, default socket timeout (e.g which is set by :py:func:`socket.setdefaulttimeout`) will be used. :param bool verify: If remote URL implies SSL, then using this option client will check SSL certificate for validity. :param certificate_file: If SSL works with client certificate, this option sets the path to such certificate. If ``None`` is set, then it implies that no client certificate should be used. :type timeout: :py:class:`int` or ``None`` :type certificate_file: :py:class:`str` or ``None`` """ AUTH_CLASS = None """Base class for authenication.""" @staticmethod def _prepare_base_url(url): """Prepares base url to be used further.""" url = url.strip().rstrip("/") if not url.startswith("http"): url = "http://{0}".format(url) return url def __init__(self, url, login, password, timeout=None, verify=True, certificate_file=None): self._url = self._prepare_base_url(url) self._login = login self._password = password self._session = requests.Session() self._timeout = timeout or socket.getdefaulttimeout() or None adapter = HTTPAdapter() self._session.mount("http://", adapter) self._session.mount("https://", adapter) self._session.verify = bool(verify) if verify and certificate_file: self._session.cert = certificate_file if self.AUTH_CLASS: self._session.auth = self.AUTH_CLASS(self) def _make_url(self, endpoint): """Concatenates base url and endpoint.""" url = "{0}{1}".format(self._url, endpoint) if not url.endswith("/"): url += "/" return url @abc.abstractmethod def login(self, **kwargs): raise NotImplementedError() def __str__(self): return "DecapodAPI: url={0!r}, login={1!r}, password={2!r}".format( self._url, self._login, "*" * len(self._password) ) def __repr__(self): return "<{0}(url={1!r}, login={2!r}, password={3!r})>".format( self.__class__.__name__, self._url, self._login, "*" * len(self._password) ) @six.add_metaclass(client_metaclass) class V1Client(Client): """Implemetation of :py:class:`decapodlib.client.Client` which works with API version 1. Please check parameters for :py:class:`decapodlib.client.Client` class. .. note:: All ``**kwargs`` keyword arguments here are the same as :py:meth:`requests.Session.request` takes. """ AUTH_CLASS = auth.V1Auth def login(self, **kwargs): """This methods logins users into API. Basically, you do not need to execute this method by yourself, client will implicitly execute it when needed. This method does ``POST /v1/auth`` endpoint call. :return: Model of the Token. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url(self.AUTH_CLASS.AUTH_URL) payload = { "username": self._login, "password": self._password } response = self._session.post(url, json=payload, **kwargs) return response def logout(self, **kwargs): """This method logouts users from API (after that security token will be deleted). Basically, you do not need to execute this method by yourself, client will implicitly execute it when needed. This method does ``DELETE /v1/auth`` endpoint call. :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ if not self._session.auth.token: return {} url = self._make_url(self.AUTH_CLASS.AUTH_URL) try: return self._session.delete(url, **kwargs) except Exception: return {} finally: self._session.auth.revoke_token() @inject_pagination_params def get_clusters(self, query_params, **kwargs): """This method fetches a list of latest cluster models from API. By default, only active clusters will be listed. This method does ``GET /v1/cluster`` endpoint call. :return: List of latest cluster models. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/cluster/") return self._session.get(url, params=query_params, **kwargs) def get_cluster(self, cluster_id, **kwargs): """This method fetches a single cluster model (latest version) from API. This method does ``GET /v1/cluster/{cluster_id}`` endpoint call. :param str cluster_id: UUID4 (:rfc:`4122`) in string form of cluster's ID :return: Cluster model of latest available version :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/cluster/{0}/".format(cluster_id)) return self._session.get(url, **kwargs) @inject_pagination_params def get_cluster_versions(self, cluster_id, query_params, **kwargs): """This method fetches a list of all versions for a certain cluster model. This method does ``GET /v1/cluster/{cluster_id}/version/`` endpoint call. :param str cluster_id: UUID4 (:rfc:`4122`) in string form of cluster's ID :return: List of cluster versions for cluster with ID ``cluster_id``. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/cluster/{0}/version/".format(cluster_id)) return self._session.get(url, params=query_params, **kwargs) def get_cluster_version(self, cluster_id, version, **kwargs): """This method fetches a certain version of particular cluster model. This method does ``GET /v1/cluster/{cluster_id}/version/{version}`` endpoint call. :param str cluster_id: UUID4 (:rfc:`4122`) in string form of cluster's ID :param int version: The number of version to fetch. :return: Cluster model of certain version. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/cluster/{0}/version/{1}/".format(cluster_id, version)) return self._session.get(url, **kwargs) def create_cluster(self, name, **kwargs): """This method creates new cluster model. This method does ``POST /v1/cluster/`` endpoint call. :param str name: Name of the cluster. :return: New cluster model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/cluster/") payload = { "name": name } return self._session.post(url, json=payload, **kwargs) def update_cluster(self, model_data, **kwargs): """This methods updates cluster model. Please be noticed that no real update is performed, just a new version of the same cluster is created. This method does ``PUT /v1/cluster/`` endpoint call. :param dict model_data: Updated model of the cluster. :return: Updated cluster model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/cluster/{0}/".format(model_data["id"])) return self._session.put(url, json=model_data, **kwargs) def delete_cluster(self, cluster_id, **kwargs): """This methods deletes cluster model. Please be noticed that no real delete is performed, cluster model is marked as deleted (``time_deleted > 0``) and model will be skipped from listing, updates are forbidden. This method does ``DELETE /v1/cluster/`` endpoint call. :param str cluster_id: UUID4 (:rfc:`4122`) in string form of cluster's ID :return: Deleted cluster model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/cluster/{0}/".format(cluster_id)) return self._session.delete(url, **kwargs) @inject_pagination_params def get_executions(self, query_params, **kwargs): """This method fetches a list of latest execution models from API. This method does ``GET /v1/execution`` endpoint call. :return: List of latest execution models. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/execution/") return self._session.get(url, params=query_params, **kwargs) def get_execution(self, execution_id, **kwargs): """This method fetches a single execution model (latest version) from API. This method does ``GET /v1/execution/{execution_id}`` endpoint call. :param str execution_id: UUID4 (:rfc:`4122`) in string form of execution's ID :return: Execution model of latest available version :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/execution/{0}/".format(execution_id)) return self._session.get(url, **kwargs) @inject_pagination_params def get_execution_versions(self, execution_id, query_params, **kwargs): """This method fetches a list of all versions for a certain execution model. This method does ``GET /v1/execution/{execution_id}/version/`` endpoint call. :param str execution_id: UUID4 (:rfc:`4122`) in string form of execution's ID :return: List of execution versions for execution with ID ``execution_id``. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/execution/{0}/version/".format(execution_id)) return self._session.get(url, params=query_params, **kwargs) def get_execution_version(self, execution_id, version, **kwargs): """This method fetches a certain version of particular execution model. This method does ``GET /v1/execution/{execution_id}/version/{version}`` endpoint call. :param str execution_id: UUID4 (:rfc:`4122`) in string form of execution's ID :param int version: The number of version to fetch. :return: Execution model of certain version. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/execution/{0}/version/{1}/".format(execution_id, version)) return self._session.get(url, **kwargs) def create_execution(self, playbook_configuration_id, playbook_configuration_version, **kwargs): """This method creates new execution model. This method does ``POST /v1/execution/`` endpoint call. :param str playbook_configuration_id: UUID4 (:rfc:`4122`) in string form of playbook configuration's ID. :param int playbook_configuration_version: Version of playbook configuration model. :return: New execution model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/execution/") payload = { "playbook_configuration": { "id": playbook_configuration_id, "version": playbook_configuration_version } } return self._session.post(url, json=payload, **kwargs) def cancel_execution(self, execution_id, **kwargs): """This method cancels existing execution. This method does ``DELETE /v1/execution/`` endpoint call. :param str execution_id: UUID4 (:rfc:`4122`) in string form of execution's ID. :return: Canceled execution model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/execution/{0}/".format(execution_id)) return self._session.delete(url, **kwargs) @inject_pagination_params def get_execution_steps(self, execution_id, query_params, **kwargs): """This method fetches step models of the execution. This method does ``GET /v1/execution/{execution_id}/steps`` endpoint call. :param str execution_id: UUID4 (:rfc:`4122`) in string form of execution's ID. :return: List of execution steps. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/execution/{0}/steps/".format(execution_id)) return self._session.get(url, params=query_params, **kwargs) def get_execution_log(self, execution_id, **kwargs): """This method fetches text execution log for a certain execution. Execution log is a raw Ansible execution log, that one, which is generated by :program:`ansible-playbook` program. This method does ``GET /v1/execution/{execution_id}/log`` endpoint call. :param str execution_id: UUID4 (:rfc:`4122`) in string form of execution's ID. :return: List of execution steps. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ kwargs.setdefault("headers", {}).setdefault( "Content-Type", "application/json" ) url = self._make_url("/v1/execution/{0}/log/".format(execution_id)) return self._session.get(url, **kwargs) @inject_pagination_params def get_playbook_configurations(self, query_params, **kwargs): """This method fetches a list of latest playbook configuration models from API. By default, only active playbook configurations will be listed. This method does ``GET /v1/playbook_configuration`` endpoint call. :return: List of latest playbook configuration models. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/playbook_configuration/") return self._session.get(url, params=query_params, **kwargs) def get_playbook_configuration(self, playbook_configuration_id, **kwargs): """This method fetches a single playbook configuration model (latest version) from API. This method does ``GET /v1/playbook_configuration/{playbook_configuration_id}`` endpoint call. :param str playbook_configuration_id: UUID4 (:rfc:`4122`) in string form of playbook configuration's ID. :return: Playbook configuration model of latest available version. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/playbook_configuration/{0}/".format(playbook_configuration_id) ) return self._session.get(url, **kwargs) def get_playbook_configuration_versions(self, playbook_configuration_id, query_params, **kwargs): """This method fetches a list of all versions for a certain playbook configuration model. This method does ``GET /v1/playbook_configuration/{playbook_configuration_id}/version/`` endpoint call. :param str playbook_configuration_id: UUID4 (:rfc:`4122`) in string form of playbook configuration's ID. :return: List of playbook configuration versions for playbook configuration with ID ``playbook_configuration_id``. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/playbook_configuration/{0}/version/".format( playbook_configuration_id)) return self._session.get(url, params=query_params, **kwargs) def get_playbook_configuration_version(self, playbook_configuration_id, version, **kwargs): """This method fetches a certain version of particular playbook configuration model. This method does ``GET /v1/playbook_configuration/{playbook_configuration_id}/version/{version}`` endpoint call. :param str playbook_configuration_id: UUID4 (:rfc:`4122`) in string form of playbook configuration's ID :param int version: The number of version to fetch. :return: Playbook configuration model of certain version. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/playbook_configuration/{0}/version/{1}/".format( playbook_configuration_id, version)) return self._session.get(url, **kwargs) def create_playbook_configuration(self, name, cluster_id, playbook_id, server_ids, hints=None, run_after=False, **kwargs): """This method creates new playbook configuration model. This method does ``POST /v1/playbook_configuration/`` endpoint call. Hints for playbook configuration are the list of optional parameters for creating playbook configuration. It has to be the list key/value parameters obtained from :py:meth:`decapodlib.client.V1Client.get_playbooks`. .. code-block:: json [ { "id": "dmcrypt", "value": true } ] :param str name: Name of the playbook configuration. :param str cluster_id: UUID4 (:rfc:`4122`) in string form of cluster's ID :param str playbook_id: ID of playbook to use. :param server_ids: List of server UUID4 (:rfc:`4122`) in string form of server model IDs. :type server_ids: [:py:class:`str`, ...] :param list hints: List of hints for playbook configuration. :param bool run_after: Run playbook configuration after create. :return: New cluster model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/playbook_configuration/") payload = { "name": name, "cluster_id": cluster_id, "playbook_id": playbook_id, "server_ids": list(set(server_ids)), "hints": hints or [], "run": run_after } return self._session.post(url, json=payload, **kwargs) def update_playbook_configuration(self, model_data, **kwargs): """This method updates playbook configuration model. Please be noticed that no real update is performed, just a new version of the same playbook configuration is created. This method does ``PUT /v1/playbook_configuration/`` endpoint call. :param dict model_data: Updated model of the playbook configuration. :return: Updated playbook configuration model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/playbook_configuration/{0}/".format(model_data["id"])) return self._session.put(url, json=model_data, **kwargs) def delete_playbook_configuration(self, playbook_configuration_id, **kwargs): """This method deletes playbook configuration model. Please be noticed that no real delete is performed, playbook configuration model is marked as deleted (``time_deleted > 0``) and model will be skipped from listing, updates are forbidden. This method does ``DELETE /v1/playbook_configuration/`` endpoint call. :param str playbook_configuration_id: UUID4 (:rfc:`4122`) in string form of playbook configuration's ID :return: Deleted playbook configuration model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/playbook_configuration/{0}/".format(playbook_configuration_id) ) return self._session.delete(url, **kwargs) @inject_pagination_params def get_servers(self, query_params, **kwargs): """This method fetches a list of latest server models from API. By default, only active servers will be listed. This method does ``GET /v1/server`` endpoint call. :return: List of latest server models. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/server/") return self._session.get(url, params=query_params, **kwargs) def get_server(self, server_id, **kwargs): """This method fetches a single server model (latest version) from API. This method does ``GET /v1/server/{server_id}`` endpoint call. :param str server_id: UUID4 (:rfc:`4122`) in string form of server's ID :return: Server model of latest available version :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/server/{0}/".format(server_id)) return self._session.get(url, **kwargs) @inject_pagination_params def get_server_versions(self, server_id, query_params, **kwargs): """This method fetches a list of all versions for a certain server model. This method does ``GET /v1/server/{server_id}/version/`` endpoint call. :param str server_id: UUID4 (:rfc:`4122`) in string form of server's ID :return: List of server versions for server with ID ``server_id``. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/server/{0}/version/".format(server_id)) return self._session.get(url, params=query_params, **kwargs) def get_server_version(self, server_id, version, **kwargs): """This method fetches a certain version of particular server model. This method does ``GET /v1/server/{server_id}/version/{version}`` endpoint call. :param str server_id: UUID4 (:rfc:`4122`) in string form of server's ID :param int version: The number of version to fetch. :return: Server model of certain version. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/server/{0}/version/{1}/".format(server_id, version)) return self._session.get(url, **kwargs) def create_server(self, server_id, host, username, **kwargs): """This method creates new server model. This method does ``POST /v1/server/`` endpoint call. .. warning:: You should avoid to use this method manually. Servers must be discovered using `cloud-init <https://cloudinit.readthedocs.io/en/latest/>`_ based discovery mechanism. :param str server_id: Unique ID of server. :param str host: Hostname of the server (should be accessible by Decapod). It is better to have FQDN here. :param str username: The name of the user for Ansible on this server. Decapod will use Ansible which SSH to machine with hostname given in ``host`` parameter and that username. :return: New server model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/server/") payload = { "id": server_id, "host": host, "username": username } return self._session.post(url, json=payload, **kwargs) def put_server(self, model_data, **kwargs): """This methods updates server model. Please be noticed that no real update is performed, just a new version of the same server is created. This method does ``PUT /v1/server/`` endpoint call. :param dict model_data: Updated model of the server. :return: Updated server model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/server/{0}/".format(model_data["id"])) return self._session.put(url, json=model_data, **kwargs) def delete_server(self, server_id, **kwargs): """This methods deletes server model. Please be noticed that no real delete is performed, server model is marked as deleted (``time_deleted > 0``) and model will be skipped from listing, updates are forbidden. This method does ``DELETE /v1/server/`` endpoint call. :param str server_id: UUID4 (:rfc:`4122`) in string form of server's ID :return: Deleted server model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/server/{0}/".format(server_id)) return self._session.delete(url, **kwargs) @inject_pagination_params def get_users(self, query_params, **kwargs): """This method fetches a list of latest user models from API. By default, only active users will be listed. This method does ``GET /v1/user`` endpoint call. :return: List of latest user models. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/user/") return self._session.get(url, params=query_params, **kwargs) def get_user(self, user_id, **kwargs): """This method fetches a single user model (latest version) from API. This method does ``GET /v1/user/{user_id}`` endpoint call. :param str user_id: UUID4 (:rfc:`4122`) in string form of user's ID :return: User model of latest available version :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/user/{0}/".format(user_id)) return self._session.get(url, **kwargs) def get_user_self(self, **kwargs): """This methods requests model of current user. This method does ``GET /v1/user/self/`` endpoint call. :return: User model of current user. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/user/self/") return self._session.get(url, **kwargs) @inject_pagination_params def get_user_versions(self, user_id, query_params, **kwargs): """This method fetches a list of all versions for a certain user model. This method does ``GET /v1/user/{user_id}/version/`` endpoint call. :param str user_id: UUID4 (:rfc:`4122`) in string form of user's ID :return: List of user versions for user with ID ``user_id``. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/user/{0}/version/".format(user_id)) return self._session.get(url, params=query_params, **kwargs) def get_user_version(self, user_id, version, **kwargs): """This method fetches a certain version of particular user model. This method does ``GET /v1/user/{user_id}/version/{version}`` endpoint call. :param str user_id: UUID4 (:rfc:`4122`) in string form of user's ID :param int version: The number of version to fetch. :return: User model of certain version. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/user/{0}/version/{1}/".format(user_id, version)) return self._session.get(url, **kwargs) def create_user(self, login, email, full_name="", role_id=None, **kwargs): """This method creates new user model. This method does ``POST /v1/user/`` endpoint call. :param str name: Name of the user. :return: New user model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/user/") payload = { "login": login, "email": email, "full_name": full_name, "role_id": role_id } return self._session.post(url, json=payload, **kwargs) def update_user(self, model_data, **kwargs): """This methods updates user model. Please be noticed that no real update is performed, just a new version of the same user is created. This method does ``PUT /v1/user/`` endpoint call. :param dict model_data: Updated model of the user. :return: Updated user model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/user/{0}/".format(model_data["id"])) return self._session.put(url, json=model_data, **kwargs) def delete_user(self, user_id, **kwargs): """This methods deletes user model. Please be noticed that no real delete is performed, user model is marked as deleted (``time_deleted > 0``) and model will be skipped from listing, updates are forbidden. This method does ``DELETE /v1/user/`` endpoint call. :param str user_id: UUID4 (:rfc:`4122`) in string form of user's ID :return: Deleted user model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/user/{0}/".format(user_id)) return self._session.delete(url, **kwargs) @inject_pagination_params def get_roles(self, query_params, **kwargs): """This method fetches a list of latest role models from API. By default, only active roles will be listed. This method does ``GET /v1/role`` endpoint call. :return: List of latest role models. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/role/") return self._session.get(url, params=query_params, **kwargs) def get_role(self, role_id, **kwargs): """This method fetches a single role model (latest version) from API. This method does ``GET /v1/role/{role_id}`` endpoint call. :param str role_id: UUID4 (:rfc:`4122`) in string form of role's ID :return: Role model of latest available version :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/role/{0}/".format(role_id)) return self._session.get(url, **kwargs) def get_role_self(self, **kwargs): """This methods requests model of role of current user. This method does ``GET /v1/role/self/`` endpoint call. :return: Role model of current user. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/role/self/") return self._session.get(url, **kwargs) @inject_pagination_params def get_role_versions(self, role_id, query_params, **kwargs): """This method fetches a list of all versions for a certain role model. This method does ``GET /v1/role/{role_id}/version/`` endpoint call. :param str role_id: UUID4 (:rfc:`4122`) in string form of role's ID :return: List of role versions for role with ID ``role_id``. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/role/{0}/version/".format(role_id)) return self._session.get(url, params=query_params, **kwargs) def get_role_version(self, role_id, version, **kwargs): """This method fetches a certain version of particular role model. This method does ``GET /v1/role/{role_id}/version/{version}`` endpoint call. :param str role_id: UUID4 (:rfc:`4122`) in string form of role's ID :param int version: The number of version to fetch. :return: Role model of certain version. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url( "/v1/role/{0}/version/{1}/".format(role_id, version)) return self._session.get(url, **kwargs) def create_role(self, name, permissions, **kwargs): """This method creates new role model. This method does ``POST /v1/role`` endpoint call. This method accepts parameter ``permissions``. This is a list of permissions like that: .. code-block:: json [ { "name": "playbook", "permissions": [ "add_osd", "cluster_deploy", "hello_world", "purge_cluster", "remove_osd" ] }, { "name": "api", "permissions": [ "create_cluster", "create_execution", "create_playbook_configuration", "create_role", "create_server", "create_user", "delete_cluster", "delete_execution", "delete_playbook_configuration", "delete_role", "delete_server", "delete_user", "edit_cluster", "edit_playbook_configuration", "edit_role", "edit_server", "edit_user", "view_cluster", "view_cluster_versions", "view_execution", "view_execution_steps", "view_execution_version", "view_playbook_configuration", "view_playbook_configuration_version", "view_role", "view_role_versions", "view_server", "view_server_versions", "view_user", "view_user_versions" ] } ] So, each element is a dict with ``name`` and ``permissions`` field. :param str name: Name of the role. :param list permissions: A list of permissions. Please check example above. :return: New role model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/role/") payload = { "name": name, "permissions": permissions } return self._session.post(url, json=payload, **kwargs) def update_role(self, model_data, **kwargs): """This methods updates role model. Please be noticed that no real update is performed, just a new version of the same role is created. This method does ``PUT /v1/role/`` endpoint call. :param dict model_data: Updated model of the role. :return: Updated role model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/role/{0}/".format(model_data["id"])) return self._session.put(url, json=model_data, **kwargs) def delete_role(self, role_id, **kwargs): """This methods deletes role model. Please be noticed that no real delete is performed, role model is marked as deleted (``time_deleted > 0``) and model will be skipped from listing, updates are forbidden. This method does ``DELETE /v1/role/`` endpoint call. :param str role_id: UUID4 (:rfc:`4122`) in string form of role's ID :return: Deleted role model. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/role/{0}/".format(role_id)) return self._session.delete(url, **kwargs) def get_permissions(self, **kwargs): """This method lists exisiting permissions in system. Not those, which available for current user, but overall ones. This is mostly required if you compose new role. This method does ``GET /v1/permission`` endpoint call. *Example of result*: .. code-block:: json { "items": [ { "name": "api", "permissions": [ "create_cluster", "create_execution", "create_playbook_configuration", "create_role", "create_server", "create_user", "delete_cluster", "delete_execution", "delete_playbook_configuration", "delete_role", "delete_server", "delete_user", "edit_cluster", "edit_playbook_configuration", "edit_role", "edit_server", "edit_user", "view_cluster", "view_cluster_versions", "view_execution", "view_execution_steps", "view_execution_version", "view_playbook_configuration", "view_playbook_configuration_version", "view_role", "view_role_versions", "view_server", "view_server_versions", "view_user", "view_user_versions" ] }, { "name": "playbook", "permissions": [ "add_osd", "cluster_deploy", "hello_world", "purge_cluster", "remove_osd" ] } ] } .. note:: As you can see, there are 2 types of permissions in Decapod: 1. api 2. playbook *api* permissions are responsible for accessing API endpoints. If user wants to access some API endpoint, he has to have appropriate permission in his role. Some endpoints require several permissions and rule of thumb here is common sense: is user wants to *update* role, he has to have a permission to *view* it. *playbook* permissions are slightly different beasts. Each permission allows user to execute a certain playbook. :return: A list of premissions like those mentioned above :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/permission/") return self._session.get(url, **kwargs) def get_playbooks(self, **kwargs): """This method returns a list of playbooks avaialble for execution. This method does ``GET /v1/playbook`` endpoint call. *Example of result*: .. code-block:: json { "items": [ { "description": "Adding new OSD to the cluster.", "id": "add_osd", "name": "Add OSD to Ceph cluster", "required_server_list": true, "hints": [] }, { "description": "Ceph cluster deployment playbook.", "id": "cluster_deploy", "name": "Deploy Ceph cluster", "required_server_list": true, "hints": [ { "description": "Setup OSDs with dmcrypt", "id": "dmcrypt", "type": "boolean", "values": [] } ] }, { "description": "Example plugin for playbook.", "id": "hello_world", "name": "Hello World", "required_server_list": false "hints": [] }, { "description": "Purge whole Ceph cluster.", "id": "purge_cluster", "name": "Purge cluster", "required_server_list": false, "hints": [] }, { "description": "Remove OSD host from cluster.", "id": "remove_osd", "name": "Remove OSD host from Ceph cluster", "required_server_list": true, "hints": [] } ] } .. note:: Please remember that ``playbook`` parameter in ``POST /v1/playbook_configuration`` is ``id`` field here. :return: A list of playbook data. :rtype: list :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/playbook/") return self._session.get(url, **kwargs) @no_auth def get_info(self, **kwargs): """This method fetches basic data from Decapod API. It makes no sense to use this method for anything, it is just a healthcheck that service actually works. *Example of result*: .. code-block:: json { "time": { "local": "2016-11-16T12:46:55.868153", "unix": 1479300415, "utc": "2016-11-16T12:46:55.868220" }, "version": "0.1.0" } .. important:: This method is basically the only one you may access being not logged in. :return: Something :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/info/") return self._session.get(url, **kwargs) @no_auth def request_password_reset(self, login, **kwargs): """This method requests password resetting for a user. Please be noticed that no real password resetting is occured, it just *requesting* password reset. After that, user will receive secret link on his email. If user will proceed that link, he can *actually* reset her password. This method does ``POST /v1/password_reset`` endpoint call. *Example of result*: .. code-block:: json { "message": "Password reset was requested." } :param str login: Login of user who is required to reset password. :return: A message that password reset was requested. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/password_reset/") payload = {"login": login} return self._session.post(url, json=payload, **kwargs) @no_auth def peek_password_reset(self, reset_token, **kwargs): """This method checks if password reset with given token is still requested. It does not consume token, it just checks if it is possible or not. *Example of result*: .. code-block:: json { "message": "Password reset was requested." } :param str reset_token: Password reset token from email. :return: A message that password reset was requested. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/password_reset/{0}/".format(reset_token)) return self._session.get(url, **kwargs) @no_auth def reset_password(self, reset_token, new_password, **kwargs): """This method does actual password resetting. *Example of result*: .. code-block:: json { "message": "Password has been reset." } :param str reset_token: Password reset token from email. :param str new_password: New password for user. :return: A message that password was reset. :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ url = self._make_url("/v1/password_reset/{0}/".format(reset_token)) payload = {"password": new_password} return self._session.post(url, json=payload, **kwargs) def get_cinder_integration(self, cluster_id, root="/etc/ceph", **kwargs): """This method fetches data for integration with Cinder. This method does ``GET /v1/cinder_integration/{cluster_id}`` endpoint call. :param str cluster_id: UUID4 (:rfc:`4122`) in string form of cluster's ID :param str root: Root on file system where files should be stored. :return: Integration data :rtype: dict :raises decapodlib.exceptions.DecapodError: if not possible to connect to API. :raises decapodlib.exceptions.DecapodAPIError: if API returns error response. """ params = make_query_params(root=root or None) url = self._make_url("/v1/cinder_integration/{0}/".format(cluster_id)) return self._session.get(url, params=params, **kwargs)
# -*- coding: utf-8 -*- from collections import defaultdict import commonware.log from amo.utils import find_language import mkt log = commonware.log.getLogger('z.webapps') def get_locale_properties(manifest, property, default_locale=None): locale_dict = {} for locale in manifest.get('locales', {}): if property in manifest['locales'][locale]: locale_dict[locale] = manifest['locales'][locale][property] # Add in the default locale name. default = manifest.get('default_locale') or default_locale root_property = manifest.get(property) if default and root_property: locale_dict[default] = root_property return locale_dict def get_supported_locales(manifest): """ Returns a list of locales found in the "locales" property of the manifest. This will convert locales found in the SHORTER_LANGUAGES setting to their full locale. It will also remove locales not found in AMO_LANGUAGES. Note: The default_locale is not included. """ return sorted(filter(None, map(find_language, set( manifest.get('locales', {}).keys())))) def dehydrate_content_rating(rating): """ {body.id, rating.id} to translated rating.label. """ try: body = mkt.ratingsbodies.dehydrate_ratings_body( mkt.ratingsbodies.RATINGS_BODIES[int(rating['body'])]) except TypeError: # Legacy ES format (bug 943371). return {} rating = mkt.ratingsbodies.dehydrate_rating( body.ratings[int(rating['rating'])]) return rating.label def dehydrate_content_ratings(content_ratings): """Dehydrate an object of content ratings from rating IDs to dict.""" for body in content_ratings or {}: # Dehydrate all content ratings. content_ratings[body] = dehydrate_content_rating(content_ratings[body]) return content_ratings def dehydrate_descriptors(keys, body=None): """ List of keys to lists of descriptor slugs by body. ['ESRB_BLOOD, ...] to {'esrb': ['blood'], ...}. """ results = defaultdict(list) for key in keys: obj = mkt.ratingdescriptors.RATING_DESCS.get(key) if obj: # Slugify and remove body prefix. body, label = key.lower().replace('_', '-').split('-', 1) if label != 'no-descs': results[body].append(label) return dict(results) def dehydrate_interactives(keys): """ List of keys to list of interactive slugs. ['SOCIAL_NETWORKING', ...] to ['social-networking', ...]. """ results = [] for key in keys: obj = mkt.ratinginteractives.RATING_INTERACTIVES.get(key) if obj: results.append(key.lower().replace('_', '-')) return results
# Generated by Django 3.1.3 on 2020-11-28 11:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0016_messages_author_id'), ] operations = [ migrations.AddField( model_name='request', name='likes', field=models.PositiveSmallIntegerField(default=0, verbose_name='Лайки'), ), ]
# -*- coding: utf-8 -*- """ Public API: Version 1 """
# -*- coding: utf-8 -*- from django.core.urlresolvers import reverse, resolve from django.conf.urls import url from test_plus.test import TestCase from ...users.tests.factories import UserFactory from .factories import ReviewFactory class TestReviewURLs(TestCase): def setUp(self): self.user = UserFactory(username='bobby') self.review = ReviewFactory(id=1) #Let's test the homepage, briefly def test_home_reverse(self): """'reviews:home' should reverse to '/'""" self.assertEqual(reverse('homepage'), '/') def test_home_resolve(self): """'/' should resolve to 'reviews:home'""" self.assertEqual(resolve('/').view_name, 'homepage') def test_new_review_reverse(self): """'reviews:new_review' should reverse to '/new_review/'""" self.assertEqual(reverse('reviews:new_review'), '/reviews/new_review/') def test_new_review(self): """'/new_review/' should resolve to 'reviews:new_review'""" self.assertEqual(resolve('/reviews/new_review/').view_name, 'reviews:new_review') def test_user_review_list(self): """'reviews:user_review_list username' should reverse to '/reviews/review/user/bobby/'""" self.assertEqual(self.reverse('reviews:user_review_list', username=self.user.username), '/reviews/review/user/bobby/') def test_edit_review_form(self): """'reviews:edit_review_form review.id' should reverse to '/reviews/review/user/1/'""" self.assertEqual(self.reverse('reviews:edit_review_form', review_id=self.review.id), '/reviews/review/edit/1/') def test_edit_review(self): """'reviews:edit_review review.id' should reverse to '/reviews/review/review/user/1/'""" self.assertEqual(self.reverse('reviews:edit_review', review_id=self.review.id), '/reviews/review/edit_review/1/') def test_review_detail(self): """'reviews:wine_detail review.id' should reverse to '/reviews/detail/1/'""" self.assertEqual(self.reverse('reviews:wine_detail', review_id=self.review.id), '/reviews/detail/1/') def test_delete_review(self): """'reviews:delete_review review.id' should reverse to '/reviews/review/delete_review/1/'""" self.assertEqual(self.reverse('reviews:delete_review', review_id=self.review.id), '/reviews/review/delete_review/1/')
from .landmark import landmark_mesh, get_landmark_points, LANDMARK_MASK from .visualize import visualize_nicp_result from .correspond import correspond_mesh, build_correspondence_matrix from .data.basel import load_basel_template_metadata from .data import prepare_mesh_as_template, load_template from ._version import get_versions __version__ = get_versions()['version'] del get_versions def landmark_and_correspond_mesh(mesh, verbose=False): mesh = mesh.copy() lms = landmark_mesh(mesh, verbose=verbose) mesh.landmarks['__lsfm_masked'] = lms['landmarks_3d_masked'] shape = correspond_mesh(mesh, mask=lms['occlusion_mask'], verbose=verbose), return_dict = { 'shape_nicp': shape[0], 'landmarked_image': lms['landmarked_image'], 'U': shape[1], 'tri_indices': shape[2] } return_dict['shape_nicp_visualization'] = visualize_nicp_result( return_dict['shape_nicp']) return return_dict def correspondence_meshes(source_mesh, target_mesh, verbose=False): target_mesh = target_mesh.copy() # Detect landmark for source mesh if source_mesh != "template": texture_mesh, color_mesh = source_mesh lmpts = get_landmark_points(texture_mesh) meta = load_basel_template_metadata() ibug68 = meta['landmarks']['ibug68'] ibug68 = ibug68.from_mask(LANDMARK_MASK) ibug68.points = lmpts.points nosetip = meta['landmarks']['nosetip'] nosetip.points = ((2*lmpts.points[30] + 1*lmpts.points[33])/3).reshape(1, -1) color_mesh.landmarks['ibug68'] = ibug68 color_mesh.landmarks['nosetip'] = nosetip color_mesh = prepare_mesh_as_template(color_mesh) source_mesh = color_mesh.copy() else: source_mesh = load_template().copy() lms = landmark_mesh(target_mesh, verbose=verbose) target_mesh.landmarks['__lsfm_masked'] = lms['landmarks_3d_masked'] #import pdb; pdb.set_trace() mat = build_correspondence_matrix(source_mesh, target_mesh,lms['occlusion_mask'],verbose=verbose) return mat
__copyright__ = "Copyright (C) 2013 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from functools import reduce import numpy as np import numpy.linalg as la from math import sqrt from pytools import memoize_method, MovedFunctionDeprecationWrapper try: # Python 2.7 and newer from math import gamma except ImportError: _have_gamma = False else: _have_gamma = True if not _have_gamma: try: from scipy.special import gamma # noqa except ImportError: pass else: _have_gamma = True if not _have_gamma: def gamma(z): # noqa from warnings import warn warn("Using makeshift gamma function that only works for integers. " "No better one was found.") if z != int(z): raise RuntimeError("makeshift gamma function doesn't work " "for non-integers") g = 1 for i in range(1, int(z)): g = g*i return g class Monomial: r"""A monomial .. math:: \alpha \prod_{i=1}^d \xi_i^{e_i} where :math:`e` is the vector *exponents*, :math:`\alpha` is the scalar *factor*, and :math:`xi` is zero at :math:`(-1,\dots,-1)` and and one at :math:`(1,\dots,1)`. """ def __init__(self, exponents, factor=1): self.exponents = exponents self.ones = np.ones((len(self.exponents),)) self.factor = factor def __call__(self, xi): """Evaluate the monomial at *xi*. :arg: *xi* has shape *(d, ...)*. """ from operator import mul x = (xi+1)/2 return self.factor * \ reduce(mul, (x[i]**expn for i, expn in enumerate(self.exponents))) def simplex_integral(self): r"""Integral over the simplex :math:`\{\mathbf{x} \in [0, 1]^n: \sum x_i \le 1 \}`.""" from pytools import factorial from operator import mul return (self.factor * 2**len(self.exponents) * reduce(mul, (factorial(alpha) for alpha in self.exponents)) / factorial(len(self.exponents)+sum(self.exponents))) def hypercube_integral(self): """Integral over the hypercube :math:`[0, 1]^n`.""" from functools import reduce return reduce( lambda integral, n: integral * 1 / (n + 1), self.exponents, 1.0) def diff(self, coordinate): diff_exp = list(self.exponents) orig_exp = diff_exp[coordinate] if orig_exp == 0: return Monomial(diff_exp, 0) diff_exp[coordinate] = orig_exp-1 return Monomial(diff_exp, self.factor*orig_exp) # {{{ coordinate mapping class AffineMap: def __init__(self, a, b): self.a = np.asarray(a, dtype=np.float64) self.b = np.asarray(b, dtype=np.float64) def __call__(self, x): """Apply the map *self* to a batch of vectors *x*. :arg x: has shape *(d, npts)* where *d* is the number of dimensions. A (1D) array of shape *(npts,)* is also allowed. """ # This .T goofiness allows both the nD and the 1D case. return (np.dot(self.a, x).T + self.b).T @property @memoize_method def jacobian(self): return la.det(self.a) @property @memoize_method def inverse(self): """The inverse :class:`AffineMap` of *self*.""" return AffineMap(la.inv(self.a), -la.solve(self.a, self.b)) EQUILATERAL_TO_UNIT_MAP = { 1: AffineMap([[1]], [0]), 2: AffineMap([ [1, -1/sqrt(3)], [0, 2/sqrt(3)]], [-1/3, -1/3]), 3: AffineMap([ [1, -1/sqrt(3), -1/sqrt(6)], [0, 2/sqrt(3), -1/sqrt(6)], [0, 0, sqrt(6)/2]], [-1/2, -1/2, -1/2]) } def equilateral_to_unit(equi): return EQUILATERAL_TO_UNIT_MAP[len(equi)](equi) def unit_vertices(dim): result = np.empty((dim+1, dim), np.float64) result.fill(-1) for i in range(dim): result[i+1, i] = 1 return result # this should go away UNIT_VERTICES = { 0: unit_vertices(0), 1: unit_vertices(1), 2: unit_vertices(2), 3: unit_vertices(3), } def barycentric_to_unit(bary): """ :arg bary: shaped ``(dims+1,npoints)`` """ dims = len(bary)-1 return np.dot(unit_vertices(dims).T, bary) def unit_to_barycentric(unit): """ :arg unit: shaped ``(dims,npoints)`` """ last_bary = 0.5*(unit+1) first_bary = 1-np.sum(last_bary, axis=0) return np.vstack([first_bary, last_bary]) # /!\ do not reorder these, stuff (node generation) *will* break. EQUILATERAL_VERTICES = { 1: np.array([ [-1], [1], ]), 2: np.array([ [-1, -1/sqrt(3)], [1, -1/sqrt(3)], [0, 2/sqrt(3)], ]), 3: np.array([ [-1, -1/sqrt(3), -1/sqrt(6)], [1, -1/sqrt(3), -1/sqrt(6)], [0, 2/sqrt(3), -1/sqrt(6)], [0, 0, 3/sqrt(6)], ]) } def barycentric_to_equilateral(bary): dims = len(bary)-1 return np.dot(EQUILATERAL_VERTICES[dims].T, bary) # }}} def pick_random_simplex_unit_coordinate(rng, dims): offset = 0.05 base = -1 + offset remaining = 2 - dims*offset r = np.zeros(dims, np.float64) for j in range(dims): rn = rng.uniform(0, remaining) r[j] = base + rn remaining -= rn return r def pick_random_hypercube_unit_coordinate(rng, dims): return np.array([rng.uniform(-1.0, 1.0) for _ in range(dims)]) # {{{ accept_scalar_or_vector decorator class accept_scalar_or_vector: # noqa def __init__(self, arg_nr, expected_rank): """ :arg arg_nr: The argument number which may be a scalar or a vector, one-based. """ self.arg_nr = arg_nr - 1 self.expected_rank = expected_rank def __call__(self, f): def wrapper(*args, **kwargs): controlling_arg = args[self.arg_nr] try: shape = controlling_arg.shape except AttributeError: has_shape = False else: has_shape = True if not has_shape: if not self.expected_rank == 1: raise ValueError("cannot pass a scalar to %s" % f) controlling_arg = np.array([controlling_arg]) new_args = args[:self.arg_nr] \ + (controlling_arg,) + args[self.arg_nr+1:] result = f(*new_args, **kwargs) if isinstance(result, tuple): return tuple(r[0] for r in result) else: return result[0] if len(shape) == self.expected_rank: return f(*args, **kwargs) elif len(shape) < self.expected_rank: controlling_arg = controlling_arg[..., np.newaxis] new_args = args[:self.arg_nr] \ + (controlling_arg,) + args[self.arg_nr+1:] result = f(*new_args, **kwargs) if isinstance(result, tuple): return tuple(r[..., 0] for r in result) else: return result[..., 0] else: raise ValueError("argument rank is too large: got %d, expected %d" % (len(shape), self.expected_rank)) from functools import wraps try: wrapper = wraps(f)(wrapper) except AttributeError: pass return wrapper # }}} # {{{ submeshes, plotting helpers def simplex_submesh(node_tuples): """Return a list of tuples of indices into the node list that generate a tesselation of the reference element. :arg node_tuples: A list of tuples *(i, j, ...)* of integers indicating node positions inside the unit element. The returned list references indices in this list. :func:`pytools.generate_nonnegative_integer_tuples_summing_to_at_most` may be used to generate *node_tuples*. """ from pytools import single_valued, add_tuples dims = single_valued(len(nt) for nt in node_tuples) node_dict = { ituple: idx for idx, ituple in enumerate(node_tuples)} if dims == 1: result = [] def try_add_line(d1, d2): try: result.append(( node_dict[add_tuples(current, d1)], node_dict[add_tuples(current, d2)], )) except KeyError: pass for current in node_tuples: try_add_line((0,), (1,),) return result elif dims == 2: # {{{ triangle sub-mesh result = [] def try_add_tri(d1, d2, d3): try: result.append(( node_dict[add_tuples(current, d1)], node_dict[add_tuples(current, d2)], node_dict[add_tuples(current, d3)], )) except KeyError: pass for current in node_tuples: # this is a tesselation of a square into two triangles. # subtriangles that fall outside of the master triangle are # simply not added. # positively oriented try_add_tri((0, 0), (1, 0), (0, 1)) try_add_tri((1, 0), (1, 1), (0, 1)) return result # }}} elif dims == 3: # {{{ tet sub-mesh def try_add_tet(d1, d2, d3, d4): try: result.append(( node_dict[add_tuples(current, d1)], node_dict[add_tuples(current, d2)], node_dict[add_tuples(current, d3)], node_dict[add_tuples(current, d4)], )) except KeyError: pass result = [] for current in node_tuples: # this is a tesselation of a cube into six tets. # subtets that fall outside of the master tet are simply not added. # positively oriented try_add_tet((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)) try_add_tet((1, 0, 1), (1, 0, 0), (0, 0, 1), (0, 1, 0)) try_add_tet((1, 0, 1), (0, 1, 1), (0, 1, 0), (0, 0, 1)) try_add_tet((1, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 0)) try_add_tet((0, 1, 1), (0, 1, 0), (1, 1, 0), (1, 0, 1)) try_add_tet((0, 1, 1), (1, 1, 1), (1, 0, 1), (1, 1, 0)) return result # }}} else: raise NotImplementedError("%d-dimensional sub-meshes" % dims) submesh = MovedFunctionDeprecationWrapper(simplex_submesh) def hypercube_submesh(node_tuples): """Return a list of tuples of indices into the node list that generate a tesselation of the reference element. :arg node_tuples: A list of tuples *(i, j, ...)* of integers indicating node positions inside the unit element. The returned list references indices in this list. :func:`pytools.generate_nonnegative_integer_tuples_below` may be used to generate *node_tuples*. See also :func:`simplex_submesh`. .. versionadded:: 2020.2 """ from pytools import single_valued, add_tuples dims = single_valued(len(nt) for nt in node_tuples) node_dict = { ituple: idx for idx, ituple in enumerate(node_tuples)} from pytools import generate_nonnegative_integer_tuples_below as gnitb result = [] for current in node_tuples: try: result.append(tuple( node_dict[add_tuples(current, offset)] for offset in gnitb(2, dims))) except KeyError: pass return result @accept_scalar_or_vector(2, 2) def plot_element_values(n, nodes, values, resample_n=None, node_tuples=None, show_nodes=False): dims = len(nodes) orig_nodes = nodes orig_values = values if resample_n is not None: import modepy as mp basis = mp.simplex_onb(dims, n) fine_nodes = mp.equidistant_nodes(dims, resample_n) values = np.dot(mp.resampling_matrix(basis, fine_nodes, nodes), values) nodes = fine_nodes n = resample_n from pytools import generate_nonnegative_integer_tuples_summing_to_at_most \ as gnitstam if dims == 1: import matplotlib.pyplot as pt pt.plot(nodes[0], values) if show_nodes: pt.plot(orig_nodes[0], orig_values, "x") pt.show() elif dims == 2: import mayavi.mlab as mlab mlab.triangular_mesh( nodes[0], nodes[1], values, submesh(list(gnitstam(n, 2)))) if show_nodes: mlab.points3d(orig_nodes[0], orig_nodes[1], orig_values, scale_factor=0.05) mlab.show() else: raise RuntimeError("unsupported dimensionality %d" % dims) # }}} # {{{ lebesgue constant def _evaluate_lebesgue_function(n, nodes, domain): dims = len(nodes) huge_n = 30*n if domain == "simplex": from modepy.modes import simplex_onb as domain_basis_onb from pytools import ( generate_nonnegative_integer_tuples_summing_to_at_most as generate_node_tuples) elif domain == "hypercube": from modepy.modes import ( legendre_tensor_product_basis as domain_basis_onb) from pytools import ( generate_nonnegative_integer_tuples_below as generate_node_tuples) else: raise ValueError(f"unknown domain: '{domain}'") basis = domain_basis_onb(dims, n) equi_node_tuples = list(generate_node_tuples(huge_n, dims)) equi_nodes = (np.array(equi_node_tuples, dtype=np.float64)/huge_n*2 - 1).T from modepy.matrices import vandermonde vdm = vandermonde(basis, nodes) eq_vdm = vandermonde(basis, equi_nodes) eq_to_out = la.solve(vdm.T, eq_vdm.T).T lebesgue_worst = np.sum(np.abs(eq_to_out), axis=1) return lebesgue_worst, equi_node_tuples, equi_nodes def estimate_lebesgue_constant(n, nodes, domain=None, visualize=False): """Estimate the `Lebesgue constant <https://en.wikipedia.org/wiki/Lebesgue_constant_(interpolation)>`_ of the *nodes* at polynomial order *n*. :arg nodes: an array of shape *(dims, nnodes)* as returned by :func:`modepy.warp_and_blend_nodes`. :arg domain: represents the domain of the reference element and can be either ``"simplex"`` or ``"hypercube"``. :arg visualize: visualize the function that gives rise to the returned Lebesgue constant. (2D only for now) :return: the Lebesgue constant, a scalar. .. versionadded:: 2013.2 .. versionchanged:: 2020.2 *domain* parameter was added with support for nodes on the unit hypercube (i.e. unit square in 2D and unit cube in 3D). """ if domain is None: domain = "simplex" dims = len(nodes) lebesgue_worst, equi_node_tuples, equi_nodes = \ _evaluate_lebesgue_function(n, nodes, domain) lebesgue_constant = np.max(lebesgue_worst) if not visualize: return lebesgue_constant if dims == 2: print(f"Lebesgue constant: {lebesgue_constant}") if domain == "simplex": triangles = simplex_submesh(equi_node_tuples) elif domain == "hypercube": triangles = hypercube_submesh(equi_node_tuples) else: triangles = None try: import mayavi.mlab as mlab mlab.figure(bgcolor=(1, 1, 1)) mlab.triangular_mesh( equi_nodes[0], equi_nodes[1], lebesgue_worst / lebesgue_constant, triangles) x, y = np.mgrid[-1:1:20j, -1:1:20j] mlab.mesh(x, y, 0*x, representation="wireframe", color=(0.4, 0.4, 0.4), line_width=0.6) cb = mlab.colorbar() cb.label_text_property.color = (0, 0, 0) mlab.show() except ImportError: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca() ax.grid() ax.plot(nodes[0], nodes[1], "ko") # NOTE: might be tempted to use `plot_trisurf` here to get a plot # like mayavi, but that will be horrendously slow p = ax.tricontourf( equi_nodes[0], equi_nodes[1], lebesgue_worst / lebesgue_constant, triangles=triangles, levels=16) fig.colorbar(p) ax.set_aspect("equal") plt.show() else: raise ValueError(f"visualization is not supported in {dims}D") return lebesgue_constant # }}} # vim: foldmethod=marker
from django.conf.urls import url from rest_framework_jwt.views import obtain_jwt_token, refresh_jwt_token from accounts import views urlpatterns = [ url(r'^auth/register/$', views.RegistrationView.as_view(), name='user-registration'), url(r'^auth/activate/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', views.ActivationView.as_view(), name='activate'), url(r'^auth/login/', obtain_jwt_token, name='user-login'), url(r'^auth/api-token-refresh/', refresh_jwt_token, name='refresh-token'), url(r'^profile/$', views.ProfileDetail.as_view(), name='profile'), ]
# Copyright 2017-present Adtran, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import structlog from voltha.protos.common_pb2 import OperStatus, AdminState from voltha.protos.device_pb2 import Port from voltha.protos.openflow_13_pb2 import OFPPF_10GB_FD from voltha.core.logical_device_agent import mac_str_to_tuple from voltha.protos.logical_device_pb2 import LogicalPort from voltha.protos.openflow_13_pb2 import OFPPS_LIVE, OFPPF_FIBER from voltha.protos.openflow_13_pb2 import ofp_port class UniPort(object): """Wraps southbound-port(s) support for ONU""" def __init__(self, handler, name, port_no, control_vlan=None): self.log = structlog.get_logger(device_id=handler.device_id, port_no=port_no) self._enabled = False self._handler = handler self._name = name self._port = None self._port_number = port_no self._logical_port_number = None self._control_vlan = control_vlan self._admin_state = AdminState.ENABLED self._oper_status = OperStatus.ACTIVE # TODO Add state, stats, alarm reference, ... pass def __str__(self): return "UniPort: {}:{}".format(self.name, self.port_number) @staticmethod def create(handler, name, port_no, control_vlan): port = UniPort(handler, name, port_no, control_vlan) return port def _start(self): self._cancel_deferred() self._admin_state = AdminState.ENABLED self._oper_status = OperStatus.ACTIVE self._update_adapter_agent() # TODO: start h/w sync # TODO: Enable the actual physical port? pass def _stop(self): self._cancel_deferred() self._admin_state = AdminState.DISABLED self._oper_status = OperStatus.UNKNOWN self._update_adapter_agent() # TODO: Disable/power-down the actual physical port? pass def delete(self): self.enabled = False self._handler = None # TODO: anything else def _cancel_deferred(self): pass @property def name(self): return self._name @property def enabled(self): return self._enabled @enabled.setter def enabled(self, value): if self._enabled != value: self._enabled = value if value: self._start() else: self._stop() @property def port_number(self): """ Physical device port number :return: (int) port number """ return self._port_number @property def logical_port_number(self): """ Logical device port number (used as OpenFlow port for UNI) :return: (int) port number """ return self._logical_port_number def _update_adapter_agent(self): # TODO: Currently does the adapter_agent allow 'update' of port status # self.adapter_agent.update_port(self.olt.device_id, self.get_port()) pass @staticmethod def decode_openflow_port_and_control_vlan(self, venet_info): try: # Allow spaces or dashes as separator, select last as # the port number port_no = int(venet_info['name'].replace(' ', '-').split('-')[-1:][0]) cntl_vlan = port_no return port_no, cntl_vlan except ValueError: self.log.error('invalid-uni-port-name', name=venet_info['name']) except KeyError: self.log.error('invalid-venet-data', data=venet_info) def get_port(self): """ Get the VOLTHA PORT object for this port :return: VOLTHA Port object """ if self._port is None: self._port = Port(port_no=self.port_number, label='Ethernet port', type=Port.ETHERNET_UNI, admin_state=self._admin_state, oper_status=self._oper_status) return self._port def add_logical_port(self, openflow_port_no, control_vlan=None, capabilities=OFPPF_10GB_FD | OFPPF_FIBER, speed=OFPPF_10GB_FD): if self._logical_port_number is None: self._logical_port_number = openflow_port_no self._control_vlan = control_vlan device = self._handler.adapter_agent.get_device(self._handler.device_id) if control_vlan is not None and device.vlan != control_vlan: device.vlan = control_vlan self._handler.adapter_agent.update_device(device) openflow_port = ofp_port( port_no=openflow_port_no, hw_addr=mac_str_to_tuple('08:00:%02x:%02x:%02x:%02x' % ((device.parent_port_no >> 8 & 0xff), device.parent_port_no & 0xff, (openflow_port_no >> 8) & 0xff, openflow_port_no & 0xff)), name='uni-{}'.format(openflow_port_no), config=0, state=OFPPS_LIVE, curr=capabilities, advertised=capabilities, peer=capabilities, curr_speed=speed, max_speed=speed ) self._handler.adapter_agent.add_logical_port(self._handler.logical_device_id, LogicalPort( id='uni-{}'.format(openflow_port), ofp_port=openflow_port, device_id=device.id, device_port_no=self._port_number)) # TODO: Should we use the UNI object 'name' as the id for OpenFlow?
'''OpenGL extension ARB.debug_label This module customises the behaviour of the OpenGL.raw.GL.ARB.debug_label to provide a more Python-friendly API Overview (from the spec) This extension defines a mechanism for OpenGL applications to label their objects (textures, buffers, shaders, etc.) with a descriptive string. When profiling or debugging an OpenGL application within an external or built-in (debut output API) debugger or profiler it is difficult to identify objects from their object names. Even when the object itself is viewed it can be problematic to differentiate between similar objects. Attaching a label to an object helps obviate this difficulty. The intended purpose of this is purely to improve the user experience within OpenGL development tools and application built-in profilers and debuggers. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ARB/debug_label.txt ''' from OpenGL import platform, constants, constant, arrays from OpenGL import extensions, wrapper from OpenGL.GL import glget import ctypes from OpenGL.raw.GL.ARB.debug_label import * ### END AUTOGENERATED SECTION
from typing import Dict, List, Tuple, Union from web3.main import Web3 from ..utils.utils import calculate_lp_token_price, open_contract, blockchain_urls, get_token_price_from_dexs, symbol_mapping, decimals_mapping from ..masterchef_apr_fetcher import MasterchefAPRFetcher from pprint import pprint class TraderjoeAPRFetcher(MasterchefAPRFetcher): """ Interface for apr fetcher """ def __init__(self): super().__init__("avalanche", Web3(Web3.HTTPProvider(blockchain_urls["avalanche"]))) def masterchef_address(self) -> str: return "0x188bED1968b795d5c9022F6a0bb5931Ac4c18F00" def dapp_token_address_field(self) -> str: return "JOE" def dapp_token_per_block_or_per_second_field(self, per_block: bool) -> str: return "" if per_block else "joePerSec" def _total_staked(self, i, pool_info) -> float: pool_contract = open_contract(self._web3, self._blockchain, self._pool_address(i, pool_info)) decimals = pool_contract.functions.decimals().call() return open_contract(self._web3, self._blockchain, self._pool_address(i, pool_info)).functions.balanceOf(self._web3.toChecksumAddress(self.masterchef_address())).call() * 10**(-decimals) def _pool_address(self, i, pool_info) -> str: return pool_info[0] def _alloc_point(self, i, pool_info) -> int: return pool_info[3] def additional_aprs(self, i: int, pool_info: Dict[str, Union[float, int, str]]) -> List[Tuple[str, float]]: masterchef_contract = open_contract(self._web3, self._blockchain, self.masterchef_address()) pool_info_complete = masterchef_contract.functions.poolInfo(i).call() rewarder = pool_info_complete[4] rewarder_contract = open_contract(self._web3, self._blockchain, rewarder) if rewarder_contract is None: return [] if rewarder_contract.functions.tokenPerSec().call() == 0: return [] reward_token = rewarder_contract.functions.rewardToken().call() reward_contract = open_contract(self._web3, self._blockchain, reward_token) if "symbol" in dir(reward_contract.functions): symbol = reward_contract.functions.symbol().call() else: symbol = symbol_mapping.get(reward_token.lower(), reward_token.lower()) if "decimals" in dir(reward_contract.functions): decimals = reward_contract.functions.decimals().call() else: decimals = decimals_mapping.get(reward_token.lower(), 18) annual_token_emission = rewarder_contract.functions.tokenPerSec().call() * 10**-decimals * 3600 * 24 * 365 price_token = calculate_lp_token_price(self._web3, self._blockchain, reward_token) lp_token_price = calculate_lp_token_price(self._web3, self._blockchain, self._pool_address(i, pool_info_complete)) total_staked = self._total_staked(i, pool_info_complete) pool_reward_amount_per_year = annual_token_emission pool_reward_value_per_year = price_token * pool_reward_amount_per_year total_value_locked = max(1, total_staked * lp_token_price) apr = ((pool_reward_value_per_year/total_value_locked))*100 return [(symbol, apr)]
#!/usr/bin/env python3 # ============================================================================= # Created On : MAC OSX High Sierra 10.13.6 (17G65) # Created On : Python 3.7.0 # Created By : Jeromie Kirchoff # Created Date: Mon May 14 21:46:03 PDT 2018 # ============================================================================= """THE MODULE HAS BEEN BUILD FOR CONVERTING ALL CHARACTERS TO HTML UNICODE.""" # ============================================================================= import re def cleantext(text): """ THE MODULE HAS BEEN BUILD to Replace non-ASCII characters with... printable ASCII. Use HTML entities when possible. started from https://secure.hens-teeth.net/orders/knowledgebase/74/Cleaning-Special-Characters-from-Product-Text-Files.html https://www.toptal.com/designers/htmlarrows/ http://www.thepunctuationguide.com/hyphen-and-dashes.html """ # text = re.sub(r'[\x00-\x1f\x80-\xff]', ' ', text) # The line above is a hard-core line that strips everything else. text = re.sub(r'\x85', 'U+02026', text) # replace ellipses text = re.sub(r'\x91', "‘", text) # replace left single quote text = re.sub(r'\x92', "’", text) # replace right single quote text = re.sub(r'\x93', '“', text) # replace left double quote text = re.sub(r'\x94', '”', text) # replace right double quote text = re.sub(r'\x95', '•', text) # replace bullet text = re.sub(r'\x96', '-', text) # replace bullet text = re.sub(r'\x99', 'U+02122', text) # replace TM text = re.sub(r'\xae', 'U+000AE', text) # replace (R) text = re.sub(r'\xb0', 'U+000B0', text) # replace degree symbol text = re.sub(r'\xba', 'U+000B0', text) # replace degree symbol text = re.sub(r'[\n|\r]+', ' ', text) # remove embedded \n and \r return if __name__ == '__main__': cleantext("\n")
#!/usr/bin/env python2 import socket import threading import time import SocketServer import random HOST = "0.0.0.0" PORT = 11071 WELCOME_MSG = "Hi, I like math and cryptography. Can you talk to me?!\n" ERROR_MSG = "Ooops, something went wrong here. Please check your input!\n" CORRECT_MSG = "Yay, that's right!\n" WRONG_MSG = "Nope, that's not the right solution. Try again later!\n" FLAG = "IW{Crypt0_c0d3}\n" MAX_TO_SOLVE = 100 class ThreadedTCPRequestHandler(SocketServer.BaseRequestHandler): def handle(self): try: self.request.sendall(WELCOME_MSG) num_solved = 0 for level in range(1,MAX_TO_SOLVE+1): eq, res = self.rand_equation(level) self.request.sendall("Level {}.: {}\n".format(str(level), eq)) try: answer = self.request.recv(1024) answer = int(self.decode(answer.strip())) except: self.request.sendall(ERROR_MSG) return if answer == res: num_solved += 1 self.request.sendall(CORRECT_MSG) else: self.request.sendall(WRONG_MSG) return if num_solved == MAX_TO_SOLVE: self.request.sendall(FLAG) except: return def rand_equation(self, level): num1 = num2 = 0 operators = ["*","+","-"] num_range = [2, 20*level] op = operators[random.randint(0, len(operators) -1)] while (num1 in [0,1]) or (num2 in [0,1]): num1 = random.randint(num_range[0], num_range[1]) num2 = random.randint(num_range[0], num_range[1]) res = eval(str(num1) + " " + op + " " + str(num2)) return self.encode("x " + op + " " + str(num2) + " = " + str(res)), num1 def _xor(self, a, b): return a ^ b def encode(self, eq): out = [] for c in eq: q = bin(self._xor(ord(c),(2<<4))).lstrip("0b") q = "0" * ((2<<2)-len(q)) + q out.append(q) b = ''.join(out) pr = [] for x in range(0,len(b),2): c = chr(int(b[x:x+2],2)+51) pr.append(c) s = '.'.join(pr) return s def decode(self, answer): try: nums = answer.split(".") out = [] for num in nums: o = ord(num)-51 b = bin(o).lstrip("0b") b = "0" * (2-len(b)) + b out.append(b) bs = ''.join(out) cs = [] for c in range(0,len(bs),8): b = bs[c:c+8] x = chr(int(b,2) ^ (2<<4)) cs.append(x) s = ''.join(cs) return s except: return None class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer): pass if __name__ == "__main__": server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler) ip, port = server.server_address server_thread = threading.Thread(target=server.serve_forever) server_thread.daemon = False server_thread.start() while True: try: time.sleep(1) except: break server.shutdown() server.server_close()
"""Serveradmin Copyright (c) 2019 InnoGames GmbH """ from django.conf import settings def base(request): return {'MENU_TEMPLATES': settings.MENU_TEMPLATES}
from ..utils import Object class MessagePassportDataReceived(Object): """ Telegram Passport data has been received; for bots only Attributes: ID (:obj:`str`): ``MessagePassportDataReceived`` Args: elements (List of :class:`telegram.api.types.encryptedPassportElement`): List of received Telegram Passport elements credentials (:class:`telegram.api.types.encryptedCredentials`): Encrypted data credentials Returns: MessageContent Raises: :class:`telegram.Error` """ ID = "messagePassportDataReceived" def __init__(self, elements, credentials, **kwargs): self.elements = elements # list of encryptedPassportElement self.credentials = credentials # EncryptedCredentials @staticmethod def read(q: dict, *args) -> "MessagePassportDataReceived": elements = [Object.read(i) for i in q.get('elements', [])] credentials = Object.read(q.get('credentials')) return MessagePassportDataReceived(elements, credentials)
from collections import namedtuple from base58 import b58decode from sovtokenfees.serializers import txn_root_serializer def test_utxo_batch_handler_commit_batch(utxo_batch_handler, utxo_cache): utxo_cache.set('1', '2') ThreePcBatch = namedtuple("ThreePcBatch", "state_root valid_digests txn_root") three_ps_batch = ThreePcBatch(state_root=b58decode("1".encode()), valid_digests=["1"], txn_root=txn_root_serializer.serialize("1")) utxo_batch_handler.post_batch_applied(three_pc_batch=three_ps_batch) utxo_batch_handler.commit_batch(three_ps_batch, None) assert not len(utxo_cache.current_batch_ops) assert not len(utxo_cache.un_committed)
r""" Support for monitoring loss in Megatron """ import torch from fmoe.balance import reset_balance_profile from fmoe.balance import update_balance_profile from fmoe.utils import get_torch_default_comm balance_dict = {} num_layers = 0 def reset_gate_hook(_num_layers=None): from megatron import get_args global balance_dict, num_layers if _num_layers is not None: num_layers = _num_layers reset_balance_profile(balance_dict, num_layers, get_args().balance_strategy) def get_balance_profile(): global balance_dict return balance_dict def generate_megatron_gate_hook(layer_idx, num_expert_global): from megatron import get_args balance_strategy = get_args().balance_strategy def megatron_gate_hook(gate_top_k_idx, gate_score_top_k, gate_context): global balance_dict update_balance_profile( balance_dict, gate_top_k_idx, gate_score_top_k, gate_context, layer_idx, num_expert_global, balance_strategy, ) return megatron_gate_hook def add_balance_log(writer, iteration): from megatron import is_last_rank balance_dict_tensor = torch.vstack( [torch.tensor(item, device=item[0].device) for item in balance_dict.values()] ).detach() world_group = get_torch_default_comm() world_size = torch.distributed.get_world_size(group=world_group) torch.distributed.all_reduce(balance_dict_tensor, group=world_group) balance_dict_tensor /= world_size if writer and is_last_rank(): for idx, metric_name in enumerate(balance_dict): for layer_id, val in enumerate(balance_dict_tensor[idx]): writer.add_scalar( f"balance-{metric_name}/layer-{layer_id}", val.item(), iteration ) writer.add_scalar( f"balance-{metric_name}/all", balance_dict_tensor[idx].mean().item(), iteration, ) reset_gate_hook() def patch_forward_step(forward_step_func): r""" Patch model's forward_step_func to support balance loss """ from megatron.mpu import is_pipeline_last_stage from megatron import get_args if not get_args().balance_strategy: return forward_step_func def forward_step_with_balance_loss(data_iterator, model, input_tensor): args = get_args() output = forward_step_func(data_iterator, model, input_tensor) if not is_pipeline_last_stage(): return output loss_name = args.balance_strategy + "_loss" (loss, state_dict), bal_loss = ( output, ( torch.tensor( balance_dict[loss_name], device=balance_dict[loss_name][0].device, ).mean() * args.balance_loss_weight ).float(), ) # avarage across world group world_group = get_torch_default_comm() world_size = torch.distributed.get_world_size(group=world_group) averaged_bal_loss = bal_loss.clone().detach() torch.distributed.all_reduce(averaged_bal_loss, group=world_group) averaged_bal_loss /= world_size loss += bal_loss state_dict[loss_name] = averaged_bal_loss return loss, state_dict return forward_step_with_balance_loss def patch_model_provider(model_provider): from megatron import get_args def fmoefied_model_provider(): from .layers import fmoefy args = get_args() return fmoefy( model_provider(), num_experts=args.num_experts, hidden_hidden_size=4 * args.hidden_size // args.top_k, top_k=args.top_k, ) return fmoefied_model_provider
from pytest import fixture from typing import List from moodle import Moodle from moodle.core.course import Course @fixture def domain() -> str: return "https://school.moodledemo.net" @fixture def moodle(domain: str) -> Moodle: username = "manager" password = "moodle" return Moodle.login(domain, username, password) @fixture def user_id(moodle: Moodle) -> int: site_info = moodle.core.webservice.get_site_info() return site_info.userid @fixture def courses(moodle: Moodle) -> List[Course]: return moodle.core.course.get_courses()
# import pytest from yaost.base import Node def test_serialization(): n = Node('x', None, int_value=1) assert 'x(int_value=1);' == n.to_string() n = Node('x', None, bool_value=True) assert 'x(bool_value=true);' == n.to_string() n = Node('x', None, str_value='abc') assert 'x(str_value="abc");' == n.to_string() n = Node('x', None, float_value=0.00001) assert 'x(float_value=0.000010);' == n.to_string() n = Node('x', None, array_value=[1, 2, 3, 'x']) assert 'x(array_value=[1,2,3,"x"]);' == n.to_string() n = Node('x', None, fn=1) assert 'x($fn=1);' == n.to_string() n = Node('x', None, 1, 2, 3, 4) assert 'x(1,2,3,4);' == n.to_string() n = Node('x', None, 1, a=2) assert 'x(1,a=2);' == n.to_string() def test_union_collapse(): x = Node('x', None) y = Node('y', None) z = Node('z', None) xy = x + y xyz = xy + z assert 'union(){x();y();}' == xy.to_string() assert 'union(){x();y();z();}' == xyz.to_string()
x = int(input()) a = int(input()) b = int(input()) x -= a print(x % b)
# Licensed under the Upwork's API Terms of Use; # you may not use this file except in compliance with the Terms. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author:: Maksym Novozhylov (mnovozhilov@upwork.com) # Copyright:: Copyright 2020(c) Upwork.com # License:: See LICENSE.txt and TOS - https://developers.upwork.com/api-tos.html class Config: """Configuration container""" verify_ssl = True def __init__(self, config): self.consumer_key, self.consumer_secret = ( config["consumer_key"], config["consumer_secret"], ) if "access_token" in config: self.access_token = config["access_token"] if "access_token_secret" in config: self.access_token_secret = config["access_token_secret"] if "verify_ssl" in config: self.verify_ssl = config["verify_ssl"]
#!/usr/bin/python3 import sys import operator set = {} result = {} for a in sys.stdin: bbw,ball = a.split(';') batsmanbolwer,wicket = bbw.split('$') if batsmanbolwer not in set: set[batsmanbolwer] = [int(wicket),int(ball)] else: set[batsmanbolwer][0]=set[batsmanbolwer][0]+wicket set[batsmanbolwer][1]=set[batsmanbolwer][1]+ball a = [(key,value) for key,value in set.items() if (value[1]>5)] result=dict(a) b=sorted(result.items(), key = lambda i: i[1] ,reverse = True) result=dict(b) m = -1 for bat in result: if(result[bat][0]!=m): q = [(key,value[1]) for key,value in result.items() if (value[0] == result[bat][0])] q = sorted(q,key = lambda i: i[0]) r = sorted(q,key = lambda i: i[1]) m = result[bat][0] for j in r: bo,b = j[0].split('&') print("%s,%s,%d,%d"%(bo,b,result[j[0]][0],result[j[0]][1]))
import pytest from os.path import join def test_confgen_tree_build(confgen_single_service): ''' Based on: hierarchy: - GLOBAL - STAGE - CLUSTER infra: prod: # stage - main # cluster - multiapp # cluster - staging # cluster dev: # stage - qa1 # cluster - qa2 # cluster ''' t = confgen_single_service.root # test Nodes assert t.name == "/" assert t.level == "GLOBAL" assert t.parent is None assert set([str(c) for c in t]) == {'dev', 'prod'} assert t['prod'].name == "prod" assert t['prod'].level == "STAGE" assert t['prod'].parent is t assert set([str(c) for c in t['prod']]) == {'main', 'multiapp', 'staging'} assert t['prod']['main'].name == "main" assert t['prod']['main'].level == "CLUSTER" assert t['prod']['main'].parent is t['prod'] assert t['prod']['multiapp'].name == "multiapp" assert t['prod']['multiapp'].level == "CLUSTER" assert t['prod']['multiapp'].parent is t['prod'] assert t['prod']['staging'].name == "staging" assert t['prod']['staging'].level == "CLUSTER" assert t['prod']['staging'].parent is t['prod'] assert t['dev'].name == "dev" assert t['dev'].level == "STAGE" assert t['dev'].parent is t assert t['dev']['qa1'].name == "qa1" assert t['dev']['qa1'].level == "CLUSTER" assert t['dev']['qa1'].parent is t['dev'] assert t['dev']['qa2'].name == "qa2" assert t['dev']['qa2'].level == "CLUSTER" assert t['dev']['qa2'].parent is t['dev'] def test_confgen_tree_path(confgen_single_service): confgen = confgen_single_service assert confgen.root['prod']['main'].path == "/prod/main" assert confgen.root['dev']['qa1'].path == "/dev/qa1" assert confgen.root.path == "/" def test_confgen_paths(confgen_single_service): confgen = confgen_single_service assert confgen.root.path == '/' assert confgen.root['prod'].path == "/prod" assert confgen.root['dev'].path == "/dev" assert confgen.root['prod']['main'].path == "/prod/main" assert confgen.root['dev']['qa1'].path == "/dev/qa1" assert confgen.root['dev']['qa2'].path == '/dev/qa2' @pytest.mark.parametrize('path,expected', ( ('', []), ('/', []), ('/prod', ['prod']), ('/prod/main', ['prod', 'main']) )) def test_path_to_list(confgen_single_service, path, expected): confgen = confgen_single_service assert confgen.root.path_to_list(path) == expected def test_confgen_tree_by_path(confgen_single_service): confgen = confgen_single_service assert confgen.root.by_path("/") is confgen.root assert confgen.root.by_path("") is confgen.root assert confgen.root.by_path("/dev/qa1") is confgen.root['dev']['qa1'] def test_confgen_tree_leaves(confgen_single_service): assert set([i.path for i in confgen_single_service.root.leaves]) == { '/prod/main', '/prod/multiapp', '/prod/staging', '/dev/qa1', '/dev/qa2', } def test_confgen_build(confgen_single_service): confgen = confgen_single_service confgen.build() def f(p): return open(join(confgen.home, confgen.build_dir, p)).read() assert f('dev/qa1/my.cnf') == "/ dev qa1" assert f('dev/qa1/production.ini') == "4.0 password qa1 qa2" assert f('dev/qa2/my.cnf') == "/ dev qa2" assert f('dev/qa2/production.ini') == "9.0 password qa1 qa2" assert f('prod/main/my.cnf') == "/ prod main" assert f('prod/main/production.ini') == "3.0 password main multiapp staging" assert f('prod/multiapp/my.cnf') == "/ prod multiapp" assert f('prod/multiapp/production.ini') == "2.0 password main multiapp staging" assert f('prod/staging/my.cnf') == "/ prod staging" assert f('prod/staging/production.ini') == "2.0 password main multiapp staging"
#!/usr/bin/env python3 import sys, csv, os try: isoforms = open(sys.argv[1]) isbed = sys.argv[1][-3:].lower() != 'psl' alignment = open(sys.argv[2]) minsupport = int(sys.argv[3]) outfilename = sys.argv[4] if len(sys.argv) > 5: outfilename2 = sys.argv[5] else: outfilename2 = '' calculate_all = len(sys.argv) > 6 except: sys.stderr.write('usage: script.py isoforms.psl alignment.sam.psl minsupport out_isoforms.psl [out_assignments.txt] [calculate_all]\n') sys.exit(1) isoform_info = {} for line in isoforms: line = line.rstrip().split('\t') if isbed: blocksizes = [int(n) for n in line[10].split(',')[:-1]] name = line[3] else: blocksizes = [float(n) for n in line[18].split(',')[:-1]] name = line[9] isoform_info[name] = [sum(blocksizes), blocksizes[0], blocksizes[-1], line] iso_read = {} # isoform-read assignments for reads that span 25bp of the first and last exon for line in alignment: # reads aligned to the isoforms sam-turned-psl line = line.rstrip().split('\t') read, isoform = line[9], line[13] # names if isoform not in iso_read: iso_read[isoform] = [] elif len(iso_read[isoform]) > minsupport and not calculate_all: continue blocksizes = [int(n) for n in line[18].split(',')[:-1]] blockstarts = [int(n) for n in line[20].split(',')[:-1]] read_start, read_end = blockstarts[0], blockstarts[-1]+blocksizes[-1] info = isoform_info[isoform] isoform_length, first_blocksize, last_blocksize = info[0:3] right_coverage = left_coverage = False if len(blocksizes) == 1: # single exon transcript if read_start < 25 and read_end > isoform_length - 25: right_coverage = left_coverage = True else: if first_blocksize < 25: if read_start < 2: left_coverage = True elif read_start <= (first_blocksize - 25): left_coverage = True if last_blocksize < 25: if (isoform_length - read_end) < 2: right_coverage = True if (isoform_length-last_blocksize + 25) <= read_end: right_coverage = True coverage = sum(blocksizes) / isoform_length # coverage = proportion of bases of the isoform that the read covers if right_coverage and left_coverage and coverage > 0.8: iso_read[isoform] += [[read, isoform, coverage]] with open(outfilename, 'wt') as outfile: writer = csv.writer(outfile, delimiter='\t', lineterminator=os.linesep) for iso in iso_read: supporting = iso_read[iso] # supporting reads if len(supporting) >= minsupport: writer.writerow(isoform_info[iso][3]) if outfilename2: # map file with open(outfilename2, 'wt') as outfile: writer = csv.writer(outfile, delimiter='\t', lineterminator=os.linesep) for iso in iso_read: supporting = iso_read[iso] if len(supporting) >= minsupport: for s in supporting: writer.writerow(s)
from library import keyword_map key_map = keyword_map.Keyword_map() non_k_map = ["{", "}", "(", ")"] def code_parser(code): k_map = key_map.getMaps() for rpl in non_k_map: code = code.replace(rpl, " " + rpl + " ") pass for rpl in k_map: code = code.replace(rpl + " ", rpl + " ") pass for rpl in k_map: code = code.replace('\n'," " + "___nextline___" + " ") pass parsed_code = code.split() #print(parsed_code) return parsed_code
# -*- coding: utf-8 -*- from __future__ import unicode_literals import pytest from eve import ISSUES, STATUS from eve.tests.methods import post as eve_post_tests from eve_sqlalchemy.tests import TestBase, test_sql_tables class TestPost(eve_post_tests.TestPost, TestBase): @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_auto_create_lists(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_auto_collapse_multiple_keys(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_auto_collapse_media_list(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_dbref_post_referential_integrity(self): pass @pytest.mark.xfail(True, run=False, reason='not implemented yet') def test_post_duplicate_key(self): """POSTing an already existing key should result in 409, not 422. EveMongo does this by not enforcing uniqueness at the validation level, but wait until the MongoDB insert fails. They can then easily distinguish between a validation error and a duplicate key error. """ def test_post_integer(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = 'prog' test_value = 1 data = {test_field: test_value, 'ref': 'test_post_integer_1234567'} self.assertPostItem(data, test_field, test_value) def test_post_list_as_array(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = "role" test_value = ["vendor", "client"] data = {test_field: test_value, 'ref': 'test_post_list_as_array_1'} self.assertPostItem(data, test_field, test_value) def test_post_rows(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = "rows" test_value = [ {'sku': 'AT1234', 'price': 99}, {'sku': 'XF9876', 'price': 9999} ] data = {test_field: test_value, 'ref': 'test_post_rows_1234567890'} self.assertPostItem(data, test_field, test_value) def test_post_list(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = "alist" test_value = ["a_string", 99] data = {test_field: test_value, 'ref': 'test_post_list_1234567890'} self.assertPostItem(data, test_field, test_value) def test_post_integer_zero(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = "aninteger" test_value = 0 data = {test_field: test_value, 'ref': 'test_post_integer_zero_12'} self.assertPostItem(data, test_field, test_value) def test_post_float_zero(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = "afloat" test_value = 0.0 data = {test_field: test_value, 'ref': 'test_post_float_zero_1234'} self.assertPostItem(data, test_field, test_value) def test_post_dict(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = "location" test_value = {'address': 'an address', 'city': 'a city'} data = {test_field: test_value, 'ref': 'test_post_dict_1234567890'} self.assertPostItem(data, test_field, test_value) def test_post_datetime(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = "born" test_value = "Tue, 06 Nov 2012 10:33:31 GMT" data = {test_field: test_value, 'ref': 'test_post_datetime_123456'} self.assertPostItem(data, test_field, test_value) @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_objectid(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_null_objectid(self): pass def test_post_default_value_none(self): # Eve test manipulates schema and changes type of 'title'. We decided # to use different fields for each test. # default values that assimilate to None (0, '', False) were ignored # prior to 0.1.1 self.domain['contacts']['schema']['title']['default'] = '' self.app.set_defaults() data = {"ref": "UUUUUUUUUUUUUUUUUUUUUUUUU"} self.assertPostItem(data, 'title', '') self.domain['contacts']['schema']['aninteger']['default'] = 0 self.app.set_defaults() data = {"ref": "TTTTTTTTTTTTTTTTTTTTTTTTT"} self.assertPostItem(data, 'aninteger', 0) self.domain['contacts']['schema']['abool']['default'] = False self.app.set_defaults() data = {"ref": "QQQQQQQQQQQQQQQQQQQQQQQQQ"} self.assertPostItem(data, 'abool', False) def test_multi_post_valid(self): # Eve test uses mongo layer directly. data = [ {"ref": "9234567890123456789054321"}, {"ref": "5432112345678901234567890", "role": ["agent"]}, ] r, status = self.post(self.known_resource_url, data=data) self.assert201(status) results = r['_items'] self.assertEqual(results[0]['_status'], 'OK') self.assertEqual(results[1]['_status'], 'OK') r, status = self.get('contacts', '?where={"ref": "9234567890123456789054321"}') self.assert200(status) self.assertEqual(len(r['_items']), 1) r, status = self.get('contacts', '?where={"ref": "5432112345678901234567890"}') self.assert200(status) self.assertEqual(len(r['_items']), 1) def test_multi_post_invalid(self): # Eve test uses mongo layer directly and 'tid' is an integer instead of # ObjectId for Eve-SQLAlchemy. data = [ {"ref": "9234567890123456789054321"}, {"prog": 9999}, {"ref": "5432112345678901234567890", "role": ["agent"]}, {"ref": self.item_ref}, {"ref": "9234567890123456789054321", "tid": "foo"}, ] r, status = self.post(self.known_resource_url, data=data) self.assertValidationErrorStatus(status) results = r['_items'] self.assertEqual(results[0]['_status'], 'OK') self.assertEqual(results[2]['_status'], 'OK') self.assertValidationError(results[1], {'ref': 'required'}) self.assertValidationError(results[3], {'ref': 'unique'}) self.assertValidationError(results[4], {'tid': 'integer'}) id_field = self.domain[self.known_resource]['id_field'] self.assertTrue(id_field not in results[0]) self.assertTrue(id_field not in results[1]) self.assertTrue(id_field not in results[2]) self.assertTrue(id_field not in results[3]) r, status = self.get('contacts', '?where={"prog": 9999}') self.assert200(status) self.assertEqual(len(r['_items']), 0) r, status = self.get('contacts', '?where={"ref": "9234567890123456789054321"}') self.assert200(status) self.assertEqual(len(r['_items']), 0) def test_post_x_www_form_urlencoded_number_serialization(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. test_field = "anumber" test_value = 34 data = {test_field: test_value, 'ref': 'test_post_x_www_num_ser_1'} r, status = self.parse_response(self.test_client.post( self.known_resource_url, data=data)) self.assert201(status) self.assertTrue('OK' in r[STATUS]) self.assertPostResponse(r) def test_post_referential_integrity_list(self): data = {"invoicing_contacts": [self.item_id, self.unknown_item_id]} r, status = self.post('/invoices/', data=data) self.assertValidationErrorStatus(status) expected = ("value '%s' must exist in resource '%s', field '%s'" % (self.unknown_item_id, 'contacts', self.domain['contacts']['id_field'])) self.assertValidationError(r, {'invoicing_contacts': expected}) # Eve test posts a list with self.item_id twice, which can't be handled # for our case because we use (invoice_id, contact_id) as primary key # in the association table. data = {"invoicing_contacts": [self.item_id]} r, status = self.post('/invoices/', data=data) self.assert201(status) self.assertPostResponse(r) @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_allow_unknown(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_write_concern(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_list_of_objectid(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_nested_dict_objectid(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_valueschema_with_objectid(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_post_list_fixed_len(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_custom_etag_update_date(self): pass @pytest.mark.xfail(True, run=False, reason='not applicable to SQLAlchemy') def test_custom_date_updated(self): pass def test_post_with_relation_to_custom_idfield(self): # Eve test uses mongo layer directly. # TODO: Fix directly in Eve and remove this override id_field = 'sku' r, _ = self.get('products') existing_product = r['_items'][0] product = { id_field: 'BAR', 'title': 'Foobar', 'parent_product': existing_product[id_field] } r, status = self.post('products', data=product) self.assert201(status) self.assertTrue(id_field in r) self.assertItemLink(r['_links'], r[id_field]) r, status = self.get('products', item='BAR') self.assertEqual(r['parent_product'], existing_product[id_field]) def test_post_dependency_fields_with_default(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. # test that default values are resolved before validation. See #353. test_field = 'dependency_field2' test_value = 'a value' data = {test_field: test_value, 'ref': 'test_post_dep_fields_defa'} self.assertPostItem(data, test_field, test_value) def test_post_dependency_required_fields(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. schema = self.domain['contacts']['schema'] schema['dependency_field3']['required'] = True data = {'ref': 'test_post_dep_req_fields1'} r, status = self.post(self.known_resource_url, data=data) self.assertValidationErrorStatus(status) self.assertValidationError(r, {'dependency_field3': 'required'}) # required field dependnecy value matches the dependent field's default # value. validation still fails since required field is still missing. # See #665. schema['dependency_field3']['dependencies'] = {'dependency_field1': 'default'} r, status = self.post(self.known_resource_url, data={}) self.assertValidationErrorStatus(status) self.assertValidationError(r, {'dependency_field3': 'required'}) data = {'dependency_field3': 'hello', 'ref': 'test_post_dep_req_fields2'} r, status = self.post(self.known_resource_url, data=data) self.assert201(status) def test_post_dependency_fields_with_values(self): # Eve test dynamically registers a resource. This is more difficult for # SQLAlchemy, so we just use an existing one. schema = self.domain['contacts']['schema'] schema['dependency_field1']['default'] = 'one' schema['dependency_field2']['required'] = True schema['dependency_field2']['dependencies'] = \ {'dependency_field1': ['one', 'two']} data = {"dependency_field1": "three", "dependency_field2": "seven", 'ref': 'test_post_dep_fields_val1'} r, s = self.post(self.known_resource_url, data=data) self.assert422(s) data = {"dependency_field2": "seven", 'ref': 'test_post_dep_fields_val2'} r, s = self.post(self.known_resource_url, data=data) self.assert201(s) data = {"dependency_field1": "one", "dependency_field2": "seven", 'ref': 'test_post_dep_fields_val3'} r, s = self.post(self.known_resource_url, data=data) self.assert201(s) data = {"dependency_field1": "two", "dependency_field2": "seven", 'ref': 'test_post_dep_fields_val4'} r, s = self.post(self.known_resource_url, data=data) self.assert201(s) def test_post_dependency_fields_with_subdocuments(self): # Eve test dynamically registers a resource. This is more difficult for # SQLAlchemy, so we just use an existing one. schema = self.domain['contacts']['schema'] schema['dependency_field2']['dependencies'] = \ {'location.city': ['Berlin', 'Rome']} data = {"location": {"city": "Paris"}, "dependency_field2": "seven", 'ref': 'test_post_dep_fields_sub1'} r, s = self.post(self.known_resource_url, data=data) self.assert422(s) data = {"location": {"city": "Rome"}, "dependency_field2": "seven", 'ref': 'test_post_dep_fields_sub2'} r, s = self.post(self.known_resource_url, data=data) self.assert201(s) data = {"location": {"city": "Berlin"}, "dependency_field2": "seven", 'ref': 'test_post_dep_fields_sub3'} r, s = self.post(self.known_resource_url, data=data) self.assert201(s) def test_post_valueschema_dict(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. data = {'valueschema_dict': {'k1': '1'}, 'ref': 'test_post_valueschema_123'} r, status = self.post(self.known_resource_url, data=data) self.assertValidationErrorStatus(status) issues = r[ISSUES] self.assertTrue('valueschema_dict' in issues) self.assertEqual(issues['valueschema_dict'], {'k1': 'must be of integer type'}) data['valueschema_dict']['k1'] = 1 r, status = self.post(self.known_resource_url, data=data) self.assert201(status) def test_post_propertyschema_dict(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. data = {'propertyschema_dict': {'aaa': 1}, 'ref': 'test_post_propertyschema1'} r, status = self.post(self.known_resource_url, data=data) self.assert201(status) data = {'propertyschema_dict': {'AAA': '1'}, 'ref': 'test_post_propertyschema2'} r, status = self.post(self.known_resource_url, data=data) self.assertValidationErrorStatus(status) issues = r[ISSUES] self.assertTrue('propertyschema_dict' in issues) self.assertEqual(issues['propertyschema_dict'], 'propertyschema_dict') def test_post_nested(self): # Eve test manipulates schema and removes required constraint on 'ref'. # We decided to include 'ref' as it is not easy to manipulate # nullable-constraints during runtime. data = {'location.city': 'a nested city', 'location.address': 'a nested address', 'ref': 'test_post_nested_12345678'} r, status = self.post(self.known_resource_url, data=data) self.assert201(status) values = self.compare_post_with_get( r[self.domain[self.known_resource]['id_field']], ['location']).pop() self.assertEqual(values['city'], 'a nested city') self.assertEqual(values['address'], 'a nested address') def test_id_field_included_with_document(self): # Eve test uses ObjectId, we have to use an integer instead. # since v0.6 we also allow the id field to be included with the POSTed # document id_field = self.domain[self.known_resource]['id_field'] id = 4242 data = {"ref": "1234567890123456789054321", id_field: id} r, status = self.post(self.known_resource_url, data=data) self.assert201(status) self.assertPostResponse(r) self.assertEqual(r['_id'], id) class TestEvents(eve_post_tests.TestEvents, TestBase): def before_insert(self): # Eve test code uses mongo layer directy. session = self.app.data.driver.session model = test_sql_tables.Contacts return session.query(model).filter(model.ref == self.new_contact_id) \ .first() is None
import numpy as np import torch N_CLASSES = 150 def mask_to_subgrids(mask, cell_scale): """ break WxH annotation array into a cell_scale x cell_scale vectors """ num_elem_row, num_elem_col = int(mask.shape[0] / cell_scale), int(mask.shape[1] / cell_scale) res = [] for h in range(cell_scale): for w in range(cell_scale): start_h = h * num_elem_row start_w = w * num_elem_col end_h = min((h+1)*num_elem_row, mask.shape[0]) end_w = min((w+1)*num_elem_col, mask.shape[1]) section = mask[start_h:end_h, start_w:end_w] res.append(section) return res def unique_to_sparse(unique): """ list of unique classes --> onehot sparse matrix """ sparse = np.zeros((N_CLASSES)) for num in unique: if num != 255: sparse[num] = 1 return sparse def arr_to_dist(onehot_mask): vec = onehot_mask.reshape(-1, N_CLASSES) dist = vec.sum(axis=0) / (vec.sum() + 1e-10) return dist def vector_list_to_mat(vectors): """ take list of vectors and stack them to a square matrix """ n_rows = int(np.sqrt(len(vectors))) rows = [] count = 0 curr_row = [] for i in range(len(vectors)): if count < n_rows: curr_row.append(vectors[i]) if count == n_rows: count = 0 rows.append(curr_row) curr_row = [vectors[i]] count += 1 rows.append(curr_row) return np.asarray(rows) def extract_mask_distributions(mask, head_sizes=[1], top_k=150): """ mask: ground truth annotation (either BxWxH or WxH) head_sizes: list of scales at which to extract the distribution of pixels for each class top_k: limit # of classes, note even with k < C the distribution will add up to 1 predicted_mask: if supplied, take the top classes from the predicted segmentation mask rather than ground truth annotation """ if len(mask.size()) == 3: # if [B x W x H] rather than single sample [ W x H ] return [ extract_mask_distributions(mask[i], top_k=top_k, head_sizes=head_sizes) for i in range(mask.size()[0]) ] dist_labels = [] for s in head_sizes: mat = extract_mask_distribution(mask, s) class_order = (-mat.flatten()).argsort() class_mask = np.where(np.in1d(np.arange(150), class_order[:top_k]), np.ones(150), np.zeros(150)) class_mask = np.expand_dims(np.expand_dims(class_mask, -1), -1) masked_dist = class_mask * mat masked_dist /= (np.sum(masked_dist, axis=None) + 1e-10) dist_labels.append(masked_dist) return dist_labels def extract_mask_distribution(mask, scale=1): """ Input: WxH integer-encoded label annotation --> pixel distribution at specified scales ignores background pixels (255) """ onehot = (np.arange(255+1) == mask.numpy()[...,None]).astype(int) onehot_ignore = onehot[:,:,:N_CLASSES] if scale == 1: # special case mat = arr_to_dist(onehot_ignore) mat = np.expand_dims(mat, -1) mat = np.expand_dims(mat, -1) else: quadrants = mask_to_subgrids(onehot_ignore, scale) mat_vecs = [ arr_to_dist(m) for m in quadrants ] mat = vector_list_to_mat(mat_vecs).astype(np.float32) mat = mat.transpose(2, 0, 1) return mat def extract_adjusted_distribution(gt_mask, predicted_mask, head_sizes=[1], top_k=150): """ given ground truth annotation mask, and a trained segmentation network prediction, compute the distribution of the 'corrected' mask, s.t. pixels are equal to the ground truth label if non-background, and predicted label if background this may offer a better training objective for the distribution of pixels for images with large portions of background class """ gt_mask = gt_mask predicted_mask = predicted_mask corrected_mask = torch.where(gt_mask == 255, predicted_mask, gt_mask).cpu() corrected_distributions = [ extract_mask_distributions(corrected_mask[i], head_sizes=head_sizes) for i in range(corrected_mask.size()[0]) ] return corrected_distributions def extract_mask_classes(mask, head_sizes=[1, 2, 3, 6]): """ annotation mask --> set of head_sizes x head_sizes matrices with one-hot class labels encoding which classes are present in that region """ classification_head_labels = [] for s in head_sizes: if s == 1: # special case uniq = np.unique(mask) mat = unique_to_sparse(uniq) mat = np.expand_dims(mat, -1) mat = np.expand_dims(mat, -1) else: quadrants = mask_to_subgrids(mask, s) uniq_vectors = [ unique_to_sparse(np.unique(m)) for m in quadrants ] mat = vector_list_to_mat(uniq_vectors).astype(np.float32) mat = mat.transpose(2, 0, 1) classification_head_labels.append(mat) return classification_head_labels
from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dropout, Dense, Concatenate, GlobalAveragePooling1D from tensorflow.keras import Input, Model from tcn import TCN from keras.callbacks import EarlyStopping import tensorflow as tf import numpy as np import time import optuna from optuna.integration import TFKerasPruningCallback from optuna.trial import TrialState from utils_for_ds import data_utils from utils_for_ds import model_customize # ------------ Optuna ---------------- def time_model_with_data_split(df, label_column, train_start, train_end, look_back, look_forward, column_set_index = 0, split_n = 30, n_neurons = [128], transformer_args = [5, 256, 256, 256], print_model_summary = True, dropout = 0.5, epochs = 30, patience = 5, early_stop = True, save_model = False, model_path = 'model.hdf5', save_weight = False, checkpoint_path = '', model_name = 'lstm', enable_optuna = False, epochs_each_try = 10, n_trials = 10, show_loss = True): start_time = time.time() tf.random.set_seed(1) df = data_utils.switch_y_column(df, column_name=label_column) if column_set_index: df.set_index(column_set_index, inplace=True) train_data = df[train_start : train_end] X_train_seq, y_train_seq = data_utils.split_sequence(train_data.values, look_back = look_back, look_forward = look_forward) X_train_seq, y_train_seq, X_val_seq, y_val_seq = data_utils.time_split_dataset(X_train_seq, y_train_seq, split_n = split_n) n_features = X_train_seq.shape[2] def create_lstm_model(trial): n_layers = trial.suggest_int("n_layers", 1, 5) model = Sequential() n_units = np.zeros(n_layers, dtype=np.int64) n_units[0] = trial.suggest_int("units_L1", 32, 256) dropout = trial.suggest_uniform(f"dropout", 0.01, 0.5) if n_layers == 1: model.add(LSTM(n_units[0], input_shape=(look_back, n_features), return_sequences=False)) else: model.add(LSTM(n_units[0], input_shape=(look_back, n_features), return_sequences=True)) for i in range(1, n_layers - 1): n_units[i] = trial.suggest_int("units_L"+str(i+1), 32, 256) model.add(LSTM(n_units[i], input_shape=(n_units[i - 1], n_features), return_sequences=True)) model.add(Dropout(dropout)) if n_layers > 1: n_units[-1] = trial.suggest_int("units_L"+str(n_layers), 32, 256) model.add(LSTM(n_units[-1], input_shape=(n_units[-2], n_features), return_sequences=False)) model.add(Dropout(dropout)) model.add(Dense(look_forward)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mse']) return model def create_tcn_model(trial): tcn_batch_size = None # 512 # 1024 n_layers = trial.suggest_int("n_layers", 1, 5) n_units = np.zeros(n_layers, dtype=np.int64) layer_names = [] for index in range(n_layers): layer_names.append('x'+str(index)+'_') input_ = Input(batch_shape=(tcn_batch_size, look_back, n_features), name='Input_Layer') n_units[0] = trial.suggest_int("units_L1", 32, 256) dropout = trial.suggest_uniform(f"dropout", 0.01, 0.5) if n_layers == 1: layer_names[0] = TCN(nb_filters=n_units[0], kernel_size=2, nb_stacks=2, dilations=[1, 2, 4, 8, 16, 32], padding='causal', use_skip_connections=True, dropout_rate=dropout, return_sequences=False, activation='relu', kernel_initializer='he_normal', name = 'TCN_Layer_1', use_batch_norm=True)(input_) else: layer_names[0] = TCN(nb_filters=n_units[0], kernel_size=2, nb_stacks=2, dilations=[1, 2, 4, 8, 16, 32], padding='causal', use_skip_connections=True, dropout_rate=dropout, return_sequences=True, activation='relu', kernel_initializer='he_normal', name = 'TCN_Layer_1', use_batch_norm=True)(input_) for index in range(1, n_layers - 1): n_units[index] = trial.suggest_int("units_L"+str(index + 1), 32, 256) layer_names[index] = TCN(nb_filters=n_units[index], kernel_size=2, nb_stacks=2, dilations=[1, 2, 4, 8, 16, 32], padding='causal', use_skip_connections=True, dropout_rate=dropout, return_sequences=True, activation='relu', kernel_initializer='he_normal', name = 'TCN_Layer_' + str(index + 1), use_batch_norm=True)(layer_names[index - 1]) # The TCN layer . if n_layers > 1: n_units[-1] = trial.suggest_int("units_L"+str(n_layers), 32, 256) layer_names[-1] = TCN(nb_filters=n_units[-1], kernel_size=2, nb_stacks=2, dilations=[1, 2, 4, 8, 16, 32], padding='causal', use_skip_connections=True, dropout_rate=dropout, return_sequences=False, activation='relu', kernel_initializer='he_normal', name = 'TCN_Layer_' + str(n_layers), use_batch_norm=True)(layer_names[-2]) # The TCN layer . output_ = Dense(look_forward, name='Dense_Layer')(layer_names[-1]) model = Model(inputs=[input_], outputs=[output_], name='TCN_Model_trail') model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mse']) return model def create_transformer_model(trial): time_embedding = Time2Vector(look_back) n_heads = trial.suggest_int("n_heads", 1, 16) d_k = trial.suggest_int("d_k", 8, 215) d_v = trial.suggest_int("d_v", 8, 512) ff_dim = trial.suggest_int("ff_dim", 8, 512) attn_layer1 = TransformerEncoder(d_k, d_v, n_heads, ff_dim) attn_layer2 = TransformerEncoder(d_k, d_v, n_heads, ff_dim) attn_layer3 = TransformerEncoder(d_k, d_v, n_heads, ff_dim) in_seq = Input(shape=(look_back, n_features)) x = time_embedding(in_seq) x = Concatenate(axis=-1)([in_seq, x]) x = attn_layer1((x, x, x)) x = attn_layer2((x, x, x)) x = attn_layer3((x, x, x)) x = GlobalAveragePooling1D(data_format='channels_first')(x) dropout = trial.suggest_uniform(f"dropout", 0.01, 0.5) x = Dropout(dropout)(x) num_hidden = int(trial.suggest_loguniform("hidden", 4, 512)) # active_func = trial.suggest_categorical('active_function', ['relu', 'entropy']) x = Dense(num_hidden, activation='relu')(x) x = Dropout(dropout)(x) out = Dense(look_forward, activation='linear')(x) model = Model(inputs=in_seq, outputs=out) model.compile(loss='mse', optimizer='adam', metrics=['mse']) #, 'mape']) return model def objective(trial): keras.backend.clear_session() # Clear clutter from previous session graphs. if model_name == 'lstm': model = create_lstm_model(trial) # Generate our trial model. elif model_name == 'tcn': model = create_tcn_model(trial) elif model_name == 'transformer': model = create_transformer_model(trial) else: model = create_lstm_model(trial) history = model.fit(X_train_seq, y_train_seq, epochs=epochs_each_try, batch_size=512, # None validation_data=(X_val_seq, y_val_seq), callbacks=[TFKerasPruningCallback(trial, "val_loss")], verbose=1) # score = model.evaluate(X_val_seq, y_val_seq, verbose=0) # Evaluate the model accuracy on the validation set. score = history.history["val_mse"][0] # Evaluate the model loss. return score if enable_optuna: study = optuna.create_study(direction="minimize", sampler=optuna.samplers.TPESampler(), pruner=optuna.pruners.HyperbandPruner()) study.optimize(objective, n_trials=n_trials) pruned_trials = study.get_trials(deepcopy=False, states=[TrialState.PRUNED]) complete_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE]) print("Study statistics: ") print(" Number of finished trials: ", len(study.trials)) print(" Number of pruned trials: ", len(pruned_trials)) print(" Number of complete trials: ", len(complete_trials)) if len(complete_trials) == 0: print('No trails are completed yet, please increate the n_trials or epochs_each_try and run again.') return None else: print("Best trial: Value :", study.best_trial.value) print(" Params: ") for key, value in study.best_trial.params.items(): print(" {}: {}".format(key, value)) if model_name in ['lstm', 'tcn']: n_neurons = np.zeros(study.best_trial.params['n_layers'], dtype=np.int64) for i in range(len(n_neurons)): column_name = 'units_L'+str(i+1) n_neurons[i] = study.best_trial.params[column_name] dropout = study.best_trial.params['dropout'] # plot_optimization_history(study) # plot_intermediate_values(study) # plot_contour(study) # plot_param_importances(study) if model_name in ['transformer']: dropout = study.best_trial.params['dropout'] transformer_args = [study.best_trial.params['n_heads'], study.best_trial.params['d_k'], study.best_trial.params['d_v'], study.best_trial.params['ff_dim'], study.best_trial.params['hidden']] if model_name == 'lstm': l_Model = model_customize.lstm_model_custmize(look_back=look_back, look_forward=look_forward, n_features=n_features, dropout=dropout, print_summary=print_model_summary, n_neurons = n_neurons) elif model_name == 'tcn': l_Model = model_customize.tcn_model(look_back=look_back, look_forward=look_forward, n_features=n_features, dropout=dropout, print_summary=print_model_summary, n_neurons = n_neurons) elif model_name == 'transformer': l_Model = model_customize.transformer_model_custmize(look_back, look_forward, n_features=n_features, n_heads=transformer_args[0], d_k =transformer_args[1], d_v=transformer_args[2], ff_dim=transformer_args[3], dropout=dropout, num_hidden=64, print_summary=True) else: l_Model = model_customize.lstm_model_custmize(look_back=look_back, look_forward=look_forward, n_features=n_features, dropout=dropout, print_summary=print_model_summary, n_neurons = n_neurons) if early_stop == False: patience = epochs if save_model: model_train = train_model(l_Model, X_train_seq, y_train_seq, X_val_seq, y_val_seq, epochs=epochs, early_stop = early_stop, patience=patience, save_model = save_model, model_path=model_path, save_weight = save_weight, checkpoint_path=checkpoint_path, show_loss = show_loss) else: model_train = train_model(l_Model, X_train_seq, y_train_seq, X_val_seq, y_val_seq, epochs=epochs, early_stop = early_stop, patience=patience, save_model = save_model, show_loss = show_loss) end_time = time.time() print('time cost : ', round((end_time - start_time) / 60, 2), 'min') return l_Model # ----------- Train ---------------- def train_model(model, X_train_seq, y_train_seq, X_val_seq, y_val_seq, epochs=100, early_stop = True, patience=10, save_model = False, model_path='', save_weight = False, checkpoint_path='', show_loss = True): if not early_stop: patience = epochs early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=patience, verbose=0, mode='auto', baseline=None, restore_best_weights=False) if save_model: cp_callback = tf.keras.callbacks.ModelCheckpoint(model_path, monitor='val_loss', save_best_only=True, # save_weights_only=True, verbose=1) history = model.fit(X_train_seq, y_train_seq, epochs=epochs, validation_data=(X_val_seq, y_val_seq), shuffle=True, batch_size=32, verbose=1, callbacks=[early_stopping, cp_callback]) if save_weight: model.save_weights(checkpoint_path) save_model_to_path = tf.keras.callbacks.ModelCheckpoint(model_path, monitor='val_loss', save_best_only=True, verbose=1) else: history = model.fit(X_train_seq, y_train_seq, epochs=epochs, validation_data=(X_val_seq, y_val_seq), shuffle=True, batch_size=32, verbose=1, callbacks=[early_stopping]) if show_loss: label_list = [i for i in range(0, len(history.history['loss']))] data_utils.show_draft_plot(datas = [history.history['loss'], history.history['val_loss']], x_label = label_list, title = 'Loss of Model', legend=['loss', 'val loss']) return model # ------------- Predict ---------------- def predict_result(predict_data_list = [] , model_path=[], model_type=['lstm'], divideby = [1]): predict_list = [] for index in range(len(model_path)): if model_type[index] in ['lstm', 'tcn', 'transformer']: model_file = model_path[index] prediction = model_file.predict(predict_data_list[index]) pred = np.array(prediction[-1]) * divideby[index] predict_list.append(pred) if model_type[index] in ['linear', 'xgb']: model_file = model_path[index] prediction = model_file.predict(predict_data_list[index]) pred = np.array(prediction) * divideby[index] predict_list.append(prediction) return predict_list
# -*- coding: utf-8; -*- import os import sys import shlex import subprocess from operator import attrgetter from optparse import IndentedHelpFormatter try: from itertools import izip_longest as zip_longest except ImportError: from itertools import zip_longest class CompactHelpFormatter(IndentedHelpFormatter): '''A more compact option-help formatter.''' def __init__(self, *args, **kw): super(CompactHelpFormatter, self).__init__(*args, **kw) self.max_help_position = 40 self.indent_increment = 1 def format_option_strings(self, option): ''' >>> _format_option_strings(('-f', '--format')) -f, --format arg ''' opts = [] if option._short_opts: opts.append(option._short_opts[0]) if option._long_opts: opts.append(option._long_opts[0]) if len(opts) > 1: opts.insert(1, ', ') if option.takes_value(): metavar = option.metavar or 'arg' opts.append(' <%s>' % metavar) return ''.join(opts) def format_heading(self, heading): return '' if heading == 'Options' else heading + ':\n' def format_epilog(self, epilog): return epilog if epilog else '' def optional_value(option, optstr, value, parser, optional): ''' An optparse option callback, with an optional value. For example: Option('-n', '--dryrun', default=False, action='callback', callback=partial(optional_value, optional='json')) Allows the following constructs on the command-line: -n|--dryrun => options.dryrun == True -n json | --dryrun=json => options.dryrun == 'json' -n yaml | --dryrun=yaml => options.dryrun == False ''' value = option.default for arg in parser.rargs: if arg == optional: value = arg break else: value = True if value == optional: del parser.rargs[:1] setattr(parser.values, option.dest, value) def ordered(it, *order, unknown_first=False, key=None): ''' Sort collection, while maintaining order of certain elements. >>> nums = [3, 7, 8, 1, 9, 5, 2, 6, 4] >>> ordered(nums, 1, 2, 3, 4, 5) [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> ordered(nums, 1, 2, 3, 4, 5, unknown_first=True) [5, 6, 7, 8, 9, 1, 2, 3, 4] ''' # @todo: This is specific to Statistic objects. key = key if key else attrgetter('type_instance') order = {i: n for n, i in enumerate(order)} # First sort all elements alpha-numerically. res = sorted(it, key=key) idx = -1 if unknown_first else len(order) def order_key(el): return order[key(el)] if key(el) in order else idx res = sorted(res, key=order_key) return res def shlex_join(it, sep=' '): ''' Join a list of string in to a shell-safe string. Opposite of shlex.split(). ''' return sep.join(shlex.quote(i) for i in it) def pairwise(it, size=2, fillvalue=None): ''' Split an iterable into n-sized parts. >>> pairwise(range(10)) >>> [(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)] >>> pairwise(range(10), size=3) >>> [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, None, None)] ''' it = iter(it) return list(zip_longest(*([it] * size), fillvalue=fillvalue)) def openfile(path): '''Open a file or URL in the user's preferred application.''' if sys.platform in {'linux', 'linux2'}: cmd = ['xdg-open', path] elif sys.platform == 'dawin': cmd = ['open', path] elif sys.platform == 'win32': return os.startfile(path) return subprocess.check_call(cmd)
import crypto_key_gen import hashlib sk = crypto_key_gen.generate_key() pk = crypto_key_gen.get_public_key(sk) crypto_key_gen.save_key(sk, "./wallet/secret.pem") crypto_key_gen.save_key(pk, "./wallet/public.pem")
# USAGE # python webstreaming.py --ip 0.0.0.0 --port 8000 # import the necessary packages from imutils.video import VideoStream from flask import Response from flask import Flask from flask import render_template from tensorflow.keras.models import load_model import resizer as re import threading import argparse import imutils import time import cv2 WIDTH = HEIGHT = 100 # initialize the output frame and a lock used to ensure thread-safe # exchanges of the output frames (useful for multiple browsers/tabs # are viewing tthe stream) outputFrame2 = None lock = threading.Lock() # initialize a flask object app = Flask(__name__) # loading model model = load_model("model98keypoints.h5") # initialize the video stream and allow the camera sensor to # warmup vs = VideoStream(src=0).start() time.sleep(2.0) @app.route("/") def index(): # return the rendered template return render_template("index.html") obj = re.Resizer(WIDTH, HEIGHT, 1.1) def get_keypoints(): global vs, lock, frame_original, outputFrame2 while True: frame_original = vs.read() frame = imutils.resize(frame_original, width=400) img, faces = obj.get_resized_withoutdata(frame) try: faces = faces[0] temp = img[0].copy() temp = cv2.cvtColor(temp, cv2.COLOR_BGR2GRAY) temp = temp.reshape(1, WIDTH, HEIGHT, 1) data = model.predict(temp) for i in range(0, len(data[0]), 2): cv2.circle(img[0], center=(data[0][i], data[0][i + 1]), radius=1, color=(255, 255, 255)) frame[faces[1]:faces[1] + faces[3], faces[0]:faces[0] + faces[2], :] = cv2.resize(img[0], (faces[2], faces[3])) except: pass with lock: outputFrame2 = frame.copy() def generate1(): # grab global references to the output frame and lock variables global outputFrame2, lock # loop over frames from the output stream while True: # wait until the lock is acquired with lock: # check if the output frame is available, otherwise skip # the iteration of the loop if outputFrame2 is None: continue # encode the frame in JPEG format (flag, encodedImage) = cv2.imencode(".jpg", frame_original) # ensure the frame was successfully encoded if not flag: continue # yield the output frame in the byte format yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n') def generate2(): # grab global references to the output frame and lock variables global outputFrame2, lock # loop over frames from the output stream while True: # wait until the lock is acquired with lock: # check if the output frame is available, otherwise skip # the iteration of the loop if outputFrame2 is None: continue # encode the frame in JPEG format (flag, encodedImage) = cv2.imencode(".jpg", outputFrame2) # ensure the frame was successfully encoded if not flag: continue # yield the output frame in the byte format yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n') @app.route("/original_feed") def origianl_feed(): # return the response generated along with the specific media # type (mime type) return Response(generate1(), mimetype="multipart/x-mixed-replace; boundary=frame") @app.route("/keypoints_feed") def keypoints_feed(): return Response(generate2(), mimetype="multipart/x-mixed-replace; boundary=frame") # check to see if this is the main thread of execution if __name__ == '__main__': # construct the argument parser and parse command line arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--ip", type=str, required=True, help="ip address of the device") ap.add_argument("-o", "--port", type=int, required=True, help="ephemeral port number of the server (1024 to 65535)") ap.add_argument("-f", "--frame-count", type=int, default=32, help="# of frames used to construct the background model") args = vars(ap.parse_args()) t = threading.Thread(target=get_keypoints) t.daemon = True t.start() # start the flask app app.run(host=args["ip"], port=args["port"], debug=True, threaded=True, use_reloader=False) # release the video stream pointer vs.stop()
import re # input_lines = '''\ # swap position 4 with position 0 # swap letter d with letter b # reverse positions 0 through 4 # rotate left 1 step # move position 1 to position 4 # move position 3 to position 0 # rotate based on position of letter b # rotate based on position of letter d # '''.splitlines() input_lines = open('input.txt') # password = 'abcde' password = 'abcdefgh' swap_pos_re = re.compile(r'swap position (\d+) with position (\d+)') swap_char_re = re.compile(r'swap letter (\w) with letter (\w)') rotate_re = re.compile(r'rotate (left|right) (\d+) steps?') rotate_pos_re = re.compile(r'rotate based on position of letter (\w)') reverse_re = re.compile(r'reverse positions (\d+) through (\d+)') move_re = re.compile(r'move position (\d+) to position (\d+)') def swap_pos(word, x, y): chars = list(word) chars[x], chars[y] = chars[y], chars[x] return ''.join(chars) def swap_char(word, a, b): return swap_pos(word, word.index(a), word.index(b)) def rotate(word, offset): return ''.join(word[i % len(word)] for i in range(-offset, len(word)-offset)) def rotate_pos(word, char): pos = word.index(char) if pos >= 4: pos += 1 return rotate(word, pos + 1) def reverse(word, x, y): return word[:x] + word[x:y+1][::-1] + word[y+1:] def move(word, x, y): chars = list(word) chars.insert(y, chars.pop(x)) return ''.join(chars) for line in input_lines: m = swap_pos_re.match(line) if m: x, y = map(int, m.groups()) password = swap_pos(password, x, y) continue m = swap_char_re.match(line) if m: a, b = m.groups() password = swap_char(password, a, b) continue m = rotate_re.match(line) if m: side, steps = m.groups() offset = int(steps) * (1 if side == 'right' else -1) password = rotate(password, offset) continue m = rotate_pos_re.match(line) if m: char, = m.groups() password = rotate_pos(password, char) continue m = reverse_re.match(line) if m: x, y = map(int, m.groups()) password = reverse(password, x, y) continue m = move_re.match(line) if m: x, y = map(int, m.groups()) password = move(password, x, y) continue raise Exception("No match: " + repr(line)) print(password)
import paddle import numpy as np from matplotlib import pyplot as plt from paddle.fluid.dataloader import batch_sampler from paddle.fluid.dataloader.batch_sampler import BatchSampler import paddle.nn.functional as F from paddle.nn import Linear from paddle.io import Dataset import math # Define num_samples=1000 # gauss function: epochs=200 # # polynominal functon: # epochs=200 batchs=400 def f(x, mean=0, sigma=1): return np.exp(-1*((x-mean)**2)/(2*(sigma**2)))/(math.sqrt(2*np.pi)*sigma) # def f(x, a=1, b=-2.4, c=4.8, d=0): # return a*x**3+b*x**2+c*x+d # Data x=np.zeros(num_samples) y=np.zeros(num_samples) for i in range(num_samples): x[i]=np.random.uniform(-3.0, 3.0) y[i]=f(x[i]) x=paddle.to_tensor(x, dtype='float32') y=paddle.to_tensor(y, dtype='float32') # Multi-Layer Perceptron class MLP(paddle.nn.Layer): def __init__(self): super(MLP, self).__init__() self.fc1=Linear(2, 32) self.fc2=Linear(32, 2) def forward(self, inputs): x=self.fc1(inputs) x=F.relu(x) x=self.fc2(x) return x # Training def train(model): # gauss function: opt=paddle.optimizer.SGD(learning_rate=0.1, parameters=model.parameters()) # # polynominal function: # opt=paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters()) y_graph=[] x_graph=[] for i in range(epochs): for j in range(batchs): x_train=x[j*2: 2+j*2] y_train=y[j*2: 2+j*2] y_pred=model(x_train) if i==(epochs-1): y_graph.append(y_pred) x_graph.append(x_train) loss=F.square_error_cost(y_pred, y_train) avg_loss=paddle.mean(loss) if i%10==0: print("epoch: {},batch: {}, loss: {}".format(i, j, avg_loss.numpy())) avg_loss.backward() opt.step() opt.clear_grad() y_graph=np.array(y_graph) x_graph=np.array(x_graph) plt.plot(x_graph, y_graph, 'r.') x_origin=x[0:800] x_origin=np.array(x_origin) y_origin=y[0:800] y_origin=np.array(y_origin) plt.plot(x_origin,y_origin, 'b.') plt.show() paddle.save(model.state_dict(), 'MLP_test.pdparams') model=MLP() train(model) # Evaluation def evaluation(model): print('start evaluation .......') params_file_path = 'MLP_test.pdparams' param_dict = paddle.load(params_file_path) model.load_dict(param_dict) model.eval() y_graph=[] x_graph=[] for i in range(100): x_test=x[800+i*2: 800+2+i*2] y_test=y[800+i*2: 800+2+i*2] y_pred=model(x_test) y_graph.append(y_pred) x_graph.append(x_test) loss = F.square_error_cost(y_pred, y_test) avg_loss = paddle.mean(loss) print('loss={}'.format(avg_loss.numpy())) y_graph=np.array(y_graph) x_graph=np.array(x_graph) plt.plot(x_graph, y_graph, 'r.') x_origin=x[800:1000] x_origin=np.array(x_origin) y_origin=y[800:1000] y_origin=np.array(y_origin) plt.plot(x_origin,y_origin, 'b.') plt.show() evaluation(model)
import warnings from .._data import conform_dataset, normalize_likelihood from .._display import session_block class VarDec(object): """ Variance decompositon through GLMMs. Example ------- .. doctest:: >>> from limix.vardec import VarDec >>> from limix.stats import multivariate_normal as mvn >>> from numpy import ones, eye, concatenate, zeros, exp >>> from numpy.random import RandomState >>> >>> random = RandomState(0) >>> nsamples = 20 >>> >>> M = random.randn(nsamples, 2) >>> M = (M - M.mean(0)) / M.std(0) >>> M = concatenate((ones((nsamples, 1)), M), axis=1) >>> >>> K0 = random.randn(nsamples, 10) >>> K0 = K0 @ K0.T >>> K0 /= K0.diagonal().mean() >>> K0 += eye(nsamples) * 1e-4 >>> >>> K1 = random.randn(nsamples, 10) >>> K1 = K1 @ K1.T >>> K1 /= K1.diagonal().mean() >>> K1 += eye(nsamples) * 1e-4 >>> >>> y = M @ random.randn(3) + mvn(random, zeros(nsamples), K0) >>> y += mvn(random, zeros(nsamples), K1) >>> >>> vardec = VarDec(y, "normal", M) >>> vardec.append(K0) >>> vardec.append(K1) >>> vardec.append_iid() >>> >>> vardec.fit(verbose=False) >>> print(vardec) # doctest: +FLOAT_CMP Variance decomposition ---------------------- <BLANKLINE> 𝐲 ~ 𝓝(𝙼𝜶, 0.385⋅𝙺 + 1.184⋅𝙺 + 0.000⋅𝙸) >>> y = exp((y - y.mean()) / y.std()) >>> vardec = VarDec(y, "poisson", M) >>> vardec.append(K0) >>> vardec.append(K1) >>> vardec.append_iid() >>> >>> vardec.fit(verbose=False) >>> print(vardec) # doctest: +FLOAT_CMP Variance decomposition ---------------------- <BLANKLINE> 𝐳 ~ 𝓝(𝙼𝜶, 0.000⋅𝙺 + 0.350⋅𝙺 + 0.000⋅𝙸) for yᵢ ~ Poisson(λᵢ=g(zᵢ)) and g(x)=eˣ """ def __init__(self, y, lik="normal", M=None): """ Constructor. Parameters ---------- y : array_like Phenotype. lik : tuple, "normal", "bernoulli", "probit", "binomial", "poisson" Sample likelihood describing the residual distribution. Either a tuple or a string specifying the likelihood is required. The Normal, Bernoulli, Probit, and Poisson likelihoods can be selected by providing a string. Binomial likelihood on the other hand requires a tuple because of the number of trials: ``("binomial", array_like)``. Defaults to ``"normal"``. M : n×c array_like Covariates matrix. """ from numpy import asarray, eye from glimix_core.mean import LinearMean, KronMean y = asarray(y, float) data = conform_dataset(y, M) y = data["y"] M = data["M"] self._y = y self._M = M self._lik = normalize_likelihood(lik) if self._multi_trait(): A = eye(self._y.shape[1]) self._mean = KronMean(A, asarray(M, float)) else: self._mean = LinearMean(asarray(M, float)) self._covariance = [] self._glmm = None self._fit = False self._unnamed = 0 @property def effsizes(self): """ Covariace effect sizes. Returns ------- effsizes : ndarray Effect sizes. """ if not self._fit: self.fit() if hasattr(self._mean, "effsizes"): return self._mean.effsizes return self._mean.B @property def covariance(self): """ Get the covariance matrices. Returns ------- covariances : list Covariance matrices. """ return self._covariance def fit(self, verbose=True): """ Fit the model. Parameters ---------- verbose : bool, optional Set ``False`` to silence it. Defaults to ``True``. """ with session_block("Variance decomposition", disable=not verbose): if self._lik[0] == "normal": if self._multi_trait(): self._fit_lmm_multi_trait(verbose) elif self._simple_model(): self._fit_lmm_simple_model(verbose) else: self._fit_lmm(verbose) else: if self._simple_model(): self._fit_glmm_simple_model(verbose) else: self._fit_glmm(verbose) if verbose: print(self) self._fit = True def lml(self): """ Get the log of the marginal likelihood. Returns ------- float Log of the marginal likelihood. """ if not self._fit: self._glmm.fit() return self._glmm.lml() def append_iid(self, name="residual"): from glimix_core.cov import EyeCov if self._multi_trait(): cov = MTEyeCov(self._y.shape[1]) else: cov = EyeCov(self._y.shape[0]) cov.name = name self._covariance.append(cov) def append(self, K, name=None): from numpy_sugar import is_all_finite from numpy import asarray from glimix_core.cov import GivenCov data = conform_dataset(self._y, K=K) K = asarray(data["K"], float) if not is_all_finite(K): raise ValueError("Covariance-matrix values must be finite.") K = K / K.diagonal().mean() if self._multi_trait(): cov = MTGivenCov(self._y.shape[1], K) else: cov = GivenCov(K) if name is None: name = "unnamed-{}".format(self._unnamed) self._unnamed += 1 cov.name = name self._covariance.append(cov) def plot(self): import limix import seaborn as sns from matplotlib.ticker import FormatStrFormatter variances = [c.scale for c in self._covariance] variances = [(v / sum(variances)) * 100 for v in variances] names = [c.name for c in self._covariance] ax = sns.barplot(x=names, y=variances) ax.yaxis.set_major_formatter(FormatStrFormatter("%.0f%%")) ax.set_xlabel("random effects") ax.set_ylabel("explained variance") ax.set_title("Variance decomposition") with warnings.catch_warnings(): warnings.simplefilter("ignore") limix.plot.get_pyplot().tight_layout() limix.plot.show() def _fit_lmm(self, verbose): from glimix_core.cov import SumCov from glimix_core.gp import GP from numpy import asarray y = asarray(self._y, float).ravel() gp = GP(y, self._mean, SumCov(self._covariance)) gp.fit(verbose=verbose) self._glmm = gp def _fit_glmm(self, verbose): from glimix_core.cov import SumCov from glimix_core.ggp import ExpFamGP from numpy import asarray y = asarray(self._y, float).ravel() gp = ExpFamGP(y, self._lik, self._mean, SumCov(self._covariance)) gp.fit(verbose=verbose) self._glmm = gp def _fit_lmm_multi_trait(self, verbose): from numpy import sqrt, asarray from glimix_core.lmm import Kron2Sum from numpy_sugar.linalg import economic_qs, ddot X = asarray(self._M, float) QS = economic_qs(self._covariance[0]._K) G = ddot(QS[0][0], sqrt(QS[1])) lmm = Kron2Sum(self._y, self._mean.A, X, G, rank=1, restricted=True) lmm.fit(verbose=verbose) self._glmm = lmm self._covariance[0]._set_kron2sum(lmm) self._covariance[1]._set_kron2sum(lmm) self._mean.B = lmm.B def _fit_lmm_simple_model(self, verbose): from numpy_sugar.linalg import economic_qs from glimix_core.lmm import LMM from numpy import asarray K = self._get_matrix_simple_model() y = asarray(self._y, float).ravel() QS = None if K is not None: QS = economic_qs(K) lmm = LMM(y, self._M, QS) lmm.fit(verbose=verbose) self._set_simple_model_variances(lmm.v0, lmm.v1) self._glmm = lmm def _fit_glmm_simple_model(self, verbose): from numpy_sugar.linalg import economic_qs from glimix_core.glmm import GLMMExpFam from numpy import asarray K = self._get_matrix_simple_model() y = asarray(self._y, float).ravel() QS = None if K is not None: QS = economic_qs(K) glmm = GLMMExpFam(y, self._lik, self._M, QS) glmm.fit(verbose=verbose) self._set_simple_model_variances(glmm.v0, glmm.v1) self._glmm = glmm def _set_simple_model_variances(self, v0, v1): from glimix_core.cov import GivenCov, EyeCov for c in self._covariance: if isinstance(c, GivenCov): c.scale = v0 elif isinstance(c, EyeCov): c.scale = v1 def _get_matrix_simple_model(self): from glimix_core.cov import GivenCov K = None for i in range(len(self._covariance)): if isinstance(self._covariance[i], GivenCov): self._covariance[i].scale = 1.0 K = self._covariance[i].value() break return K def _multi_trait(self): return self._y.ndim == 2 and self._y.shape[1] > 1 def _simple_model(self): from glimix_core.cov import GivenCov, EyeCov if len(self._covariance) > 2: return False c = self._covariance if len(c) == 1 and isinstance(c[0], EyeCov): return True if isinstance(c[0], GivenCov) and isinstance(c[1], EyeCov): return True if isinstance(c[1], GivenCov) and isinstance(c[0], EyeCov): return True return False def __repr__(self): from glimix_core.cov import GivenCov from limix.qtl._result._draw import draw_model from limix._display import draw_title covariance = "" for c in self._covariance: s = c.scale if isinstance(c, GivenCov): covariance += f"{s:.3f}⋅𝙺 + " else: covariance += f"{s:.3f}⋅𝙸 + " if len(covariance) > 2: covariance = covariance[:-3] msg = draw_title("Variance decomposition") msg += draw_model(self._lik[0], "𝙼𝜶", covariance) msg = msg.rstrip() return msg class MTGivenCov: def __init__(self, ntraits, K): self._ntraits = ntraits self._K = K self._kron2sum = None self._name = "unnamed" def _set_kron2sum(self, kron2sum): self._kron2sum = kron2sum @property def scale(self): """ Scale parameter, s. """ from numpy import eye if self._kron2sum is None: return eye(self._ntraits) return self._kron2sum.C0 @property def name(self): return self._name @name.setter def name(self, name): self._name = name class MTEyeCov: def __init__(self, ntraits): self._ntraits = ntraits self._kron2sum = None self._name = "unnamed" def _set_kron2sum(self, kron2sum): self._kron2sum = kron2sum @property def scale(self): """ Scale parameter, s. """ from numpy import eye if self._kron2sum is None: return eye(self._ntraits) return self._kron2sum.C1 @property def name(self): return self._name @name.setter def name(self, name): self._name = name
import torch import torch.nn as nn import torch.nn.functional as F import math import scipy.sparse as sp from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from modules import * # GCN model class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.in_features) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.mm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' \ + str(self.in_features) + ' -> ' \ + str(self.out_features) + ')' # Deep Set model class rFF_pool(nn.Module): def __init__(self, in_features=200, pooling_method='max'): super(rFF_pool, self).__init__() self.in_features = in_features self.pooling_method = pooling_method self.ll1 = nn.Linear(in_features, 256) self.ll2 = nn.Linear(256, 128) self.ll3 = nn.Linear(128, 64) self.d3 = nn.Dropout(p=0.5) self.fc = nn.Linear(64, 1) self.reset_parameters() def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, input): x = input x = [(F.relu(self.ll1(x_))) for x_ in x] x = [(F.relu(self.ll2(x_))) for x_ in x] x = [self.d3(F.relu(self.ll3(x_))) for x_ in x] if self.pooling_method == 'max': x = [torch.unsqueeze(torch.max(x_, axis=0)[0], 0) for x_ in x] elif self.pooling_method == 'mean': x = [torch.unsqueeze(x_.mean(dim=0), 0) for x_ in x] elif self.pooling_method == 'sum': x = [torch.unsqueeze(x_.sum(dim=0), 0) for x_ in x] else: print('Invalid Pooling method!!!!!!') exit(0) x = torch.cat(x, axis=0) embedding = x.cpu().detach().numpy() x = torch.sigmoid(self.fc(x)) return x, embedding # Deep Set GCN model class rFF_pool_GCN(nn.Module): def __init__(self, in_features=200, pooling_method='max'): super(rFF_pool_GCN, self).__init__() self.in_features = in_features self.pooling_method = pooling_method self.ll1 = nn.Linear(in_features, 256) self.ll2 = nn.Linear(256, 128) self.ll3 = nn.Linear(128, 64) self.d3 = nn.Dropout(p=0.5) self.gc = GraphConvolution(64, 1) self.reset_parameters() def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, input, adj): x = input x = [(F.relu(self.ll1(x_))) for x_ in x] x = [(F.relu(self.ll2(x_))) for x_ in x] x = [self.d3(F.relu(self.ll3(x_))) for x_ in x] if self.pooling_method == 'max': x = [torch.unsqueeze(torch.max(x_, axis=0)[0], 0) for x_ in x] elif self.pooling_method == 'mean': x = [torch.unsqueeze(x_.mean(dim=0), 0) for x_ in x] elif self.pooling_method == 'sum': x = [torch.unsqueeze(x_.sum(dim=0), 0) for x_ in x] else: print('Invalid Pooling method!!!!!!') exit(0) x = torch.cat(x, axis=0) embedding = x.cpu().detach().numpy() x = torch.sigmoid(self.gc(x, adj)) return x, embedding # Set Transformer model class SetTransformer(nn.Module): def __init__(self, in_features=200, num_heads=4, ln=False): super(SetTransformer, self).__init__() self.enc = nn.Sequential( SAB(dim_in=in_features, dim_out=64, num_heads=num_heads, ln=ln), SAB(dim_in=64, dim_out=64, num_heads=num_heads, ln=ln) ) self.dec = nn.Sequential( PMA(dim=64, num_heads=num_heads, num_seeds=1, ln=ln) ) self.fc = nn.Linear(in_features=64, out_features=1) self.reset_parameters() def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, x): x = [self.enc(torch.unsqueeze(x_, 0)) for x_ in x] x = [self.dec(x_).squeeze() for x_ in x] x = [torch.unsqueeze(x_, 0) for x_ in x] x = torch.cat(x, axis=0) embedding = x.cpu().detach().numpy() x = torch.sigmoid(self.fc(x)) return x, embedding # Set Transformer GCN model class STGCN(nn.Module): def __init__(self, in_features=200, num_heads=4, ln=False): super(STGCN, self).__init__() self.enc = nn.Sequential( SAB(dim_in=in_features, dim_out=64, num_heads=num_heads, ln=ln), SAB(dim_in=64, dim_out=64, num_heads=num_heads, ln=ln) ) self.dec = nn.Sequential( PMA(dim=64, num_heads=num_heads, num_seeds=1, ln=ln) ) self.gc = GraphConvolution(64, 1) self.reset_parameters() def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, x, adj): x = [self.enc(torch.unsqueeze(x_, 0)) for x_ in x] x = [self.dec(x_).squeeze() for x_ in x] x = [torch.unsqueeze(x_, 0) for x_ in x] x = torch.cat(x, axis=0) embedding = x.cpu().detach().numpy() x = torch.sigmoid(self.gc(x, adj)) return x, embedding # Deep Set model class res_pool(nn.Module): def __init__(self, in_features=200, pooling_method='max'): super(res_pool, self).__init__() self.in_features = in_features self.pooling_method = pooling_method self.ll1 = nn.Linear(in_features, 128) self.ll2 = nn.Linear(128, 128) self.ll3 = nn.Linear(128, 128) self.d1 = nn.Dropout(p=0.5) self.d2 = nn.Dropout(p=0.5) self.d3 = nn.Dropout(p=0.5) self.fc = nn.Linear(128, 1) self.reset_parameters() def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, input): x = input x1 = [(F.relu(self.ll1(x_))) for x_ in x] x2 = [(F.relu(self.ll2(x_))) for x_ in x1] x3 = [(F.relu(self.ll3(x_))) for x_ in x2] if self.pooling_method == 'max': x1 = [torch.unsqueeze(torch.max(self.d1(x_), axis=0)[0], 0) for x_ in x1] x2 = [torch.unsqueeze(torch.max(self.d2(x_), axis=0)[0], 0) for x_ in x2] x3 = [torch.unsqueeze(torch.max(self.d3(x_), axis=0)[0], 0) for x_ in x3] elif self.pooling_method == 'mean': x1 = [torch.unsqueeze(self.d1(x_).mean(dim=0), 0) for x_ in x1] x2 = [torch.unsqueeze(self.d2(x_).mean(dim=0), 0) for x_ in x2] x3 = [torch.unsqueeze(self.d3(x_).mean(dim=0), 0) for x_ in x3] elif self.pooling_method == 'sum': x1 = [torch.unsqueeze(self.d1(x_).sum(dim=0), 0) for x_ in x1] x2 = [torch.unsqueeze(self.d2(x_).sum(dim=0), 0) for x_ in x2] x3 = [torch.unsqueeze(self.d3(x_).sum(dim=0), 0) for x_ in x3] else: print('Invalid Pooling method!!!!!!') exit(0) x1 = torch.cat(x1, axis=0) x2 = torch.cat(x2, axis=0) x3 = torch.cat(x3, axis=0) x = x1 + x2 + x3 embedding = x.cpu().detach().numpy() x = torch.sigmoid(self.fc(x)) return x, embedding # Deep Set model class res_pool_GCN(nn.Module): def __init__(self, in_features=200, pooling_method='max'): super(res_pool_GCN, self).__init__() self.in_features = in_features self.pooling_method = pooling_method self.ll1 = nn.Linear(in_features, 128) self.ll2 = nn.Linear(128, 128) self.ll3 = nn.Linear(128, 128) self.d1 = nn.Dropout(p=0.5) self.d2 = nn.Dropout(p=0.5) self.d3 = nn.Dropout(p=0.5) self.gc = GraphConvolution(128, 1) self.reset_parameters() def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, input, adj): x = input x1 = [(F.relu(self.ll1(x_))) for x_ in x] x2 = [(F.relu(self.ll2(x_))) for x_ in x1] x3 = [(F.relu(self.ll3(x_))) for x_ in x2] if self.pooling_method == 'max': x1 = [torch.unsqueeze(torch.max(self.d1(x_), axis=0)[0], 0) for x_ in x1] x2 = [torch.unsqueeze(torch.max(self.d2(x_), axis=0)[0], 0) for x_ in x2] x3 = [torch.unsqueeze(torch.max(self.d3(x_), axis=0)[0], 0) for x_ in x3] elif self.pooling_method == 'mean': x1 = [torch.unsqueeze(self.d1(x_).mean(dim=0), 0) for x_ in x1] x2 = [torch.unsqueeze(self.d2(x_).mean(dim=0), 0) for x_ in x2] x3 = [torch.unsqueeze(self.d3(x_).mean(dim=0), 0) for x_ in x3] elif self.pooling_method == 'sum': x1 = [torch.unsqueeze(self.d1(x_).sum(dim=0), 0) for x_ in x1] x2 = [torch.unsqueeze(self.d2(x_).sum(dim=0), 0) for x_ in x2] x3 = [torch.unsqueeze(self.d3(x_).sum(dim=0), 0) for x_ in x3] else: print('Invalid Pooling method!!!!!!') exit(0) x1 = torch.cat(x1, axis=0) x2 = torch.cat(x2, axis=0) x3 = torch.cat(x3, axis=0) x = x1 + x2 + x3 embedding = x.cpu().detach().numpy() x = torch.sigmoid(self.gc(x, adj)) return x, embedding
import json from src.services.property_service import PropertyService class PropertyController: property_service = PropertyService() def properties(self, status: str, year: int, city: str) -> object: properties = self.property_service.get_properties(status, year, city) return json.dumps(properties).encode() def get_property_query_params(self, query_params) -> tuple[str, str, str]: return ( query_params.get("status", [None])[0], query_params.get("year", [None])[0], query_params.get("city", [None])[0], )
import numpy as np import pytest from compimg.similarity import MSE, RMSE, MAE, PSNR, SSIM, GSSIM from compimg.exceptions import DifferentDTypesError, DifferentShapesError @pytest.fixture def reference_image(): return np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8) @pytest.fixture def image(): return np.array([[3, 2, 1], [4, 5, 6]], dtype=np.uint8) @pytest.mark.parametrize("metric", [MSE(), MAE(), PSNR(), SSIM(), GSSIM()]) def test_if_different_shapes_guard_raises(metric): wrong_shape_x = np.zeros((10, 10, 2)) wrong_shape_y = np.zeros((20, 20, 2)) with pytest.raises(DifferentShapesError): metric.compare(wrong_shape_x, wrong_shape_y) @pytest.mark.parametrize("metric", [MSE(), MAE(), PSNR(), SSIM(), GSSIM()]) def test_if_different_dtypes_guard_raises(metric): wrong_dtype_x = np.zeros((10, 10, 2), dtype=np.float32) wrong_dtype_y = np.zeros((10, 10, 2), dtype=np.uint8) with pytest.raises(DifferentDTypesError): metric.compare(wrong_dtype_x, wrong_dtype_y) class TestMSE: def test_compare_returns_correct_result(self, image, reference_image): value = MSE().compare(image, reference_image) assert round(value, 2) == 1.33 def test_compare_returns_zero_when_identical_images(self, reference_image): value = MSE().compare(reference_image, reference_image) assert value == 0.0 class TestRMSE: def test_compare_returns_correct_result(self, image, reference_image): value = RMSE().compare(image, reference_image) assert round(value, 2) == 1.15 def test_compare_returns_zero_when_identical_images(self, reference_image): value = RMSE().compare(reference_image, reference_image) assert value == 0.0 class TestMAE: def test_compare_returns_correct_result(self, image, reference_image): value = MAE().compare(image, reference_image) assert round(value, 2) == 0.67 def test_compare_returns_zero_when_identical_images(self, reference_image): value = MAE().compare(reference_image, reference_image) assert value == 0.0 class TestPSNR: def test_compare_returns_correct_result(self, image, reference_image): value = PSNR().compare(image, reference_image) assert round(value, 2) == 46.88 def test_compare_returns_inf_if_images_are_identical(self, reference_image): value = PSNR().compare(reference_image, reference_image) assert round(value, 2) == float("inf") class TestSSIM: def test_compare_returns_one_when_images_are_identical(self): reference_image = np.ones((20, 20, 3)) value = SSIM().compare(reference_image, reference_image) assert value == 1.0 def test_compare_returns_zero_when_images_are_completely_different(self): image = np.full((20, 20, 3), fill_value=255, dtype=np.uint8) reference_image = np.zeros((20, 20, 3), dtype=np.uint8) value = SSIM().compare(image, reference_image) assert round(value, 2) == 0.00 class TestGSSIM: def test_compare_returns_one_when_images_are_identical(self): reference_image = np.ones((20, 20, 3)) value = GSSIM().compare(reference_image, reference_image) assert value == 1.0
from enum import Enum import sys class ParseCode(Enum): good_pair_sub = 1 # 2 partners listed in partner.txt, code exists format_error_sub = 2 # code good_alone = 3 # txt and submission for 1 person none_found_sub = 4 empty = 5 no_dir = 6 format_error_no_sub = 7 good_pair_no_sub = 8 # 2 partners listed in partner.txt, no code class ResultCode(Enum): good = 1 miss_txt_sub = 2 mult_sub = 3 no_proj = 4 partial_match = 5 conflict = 6 class Group: # parsed[0] is a code indicating the status of partner.txt def __init__(self, name, csid, pcode, partner_info=None): self.name1 = name self.csid1 = csid self.pcode1 = pcode self.name2 = None self.csid2 = None self.pcode2 = None self.p1HasSub = self.hasSub() # default self.rcode = ResultCode.good # this person claimed to work alone in their partner.txt if self.pcode1 == ParseCode.good_alone: self.rcode = ResultCode.good elif self.pcode1 == ParseCode.good_pair_sub\ or self.pcode1 == ParseCode.good_pair_no_sub: # until the other partner.txt shows up, this is a partial #make this good when other shows up self.rcode = ResultCode.partial_match # no partner.txt, but with code elif self.pcode1 == ParseCode.format_error_sub\ or self.pcode1 == ParseCode.none_found_sub: self.rcode = ResultCode.miss_txt_sub elif self.pcode1 == ParseCode.empty\ or self.pcode1 == ParseCode.no_dir\ or self.pcode1 == ParseCode.format_error_no_sub: self.rcode = ResultCode.no_proj else: print("Error. due to pcode:" + str(self.pcode1)) sys.exit() #handle the partner information if partner_info: self.name2 = partner_info[0] self.csid2 = partner_info[1] def integrate(self, other, partial=False): # multiple submissions if self.hasSub() and other.hasSub(): self.rcode = ResultCode.mult_sub # 2 people who only turned in partner.txts? elif not self.hasSub() and not other.hasSub(): self.rcode = ResultCode.no_proj #so we only have 1 sub between 2 people else: if partial: self.rcode = ResultCode.partial_match else: self.rcode = ResultCode.good self.p1HasSub = self.hasSub() #if p1 has the sub if not self.name2: self.name2 = other.getName1() self.csid2 = other.getcsid1() # reuse the csid that was "real" self.pcode2 = other.getPcode1() return def hasSub(self): return self.pcode1 in\ (ParseCode.good_pair_sub, ParseCode.format_error_sub, ParseCode.good_alone, ParseCode.none_found_sub)\ or self.pcode2 in\ (ParseCode.good_pair_sub, ParseCode.format_error_sub, ParseCode.good_alone, ParseCode.none_found_sub)\ def getcsid1(self): return self.csid1 def getName1(self): return self.name1 def getcsid2(self): return self.csid2 def getName2(self): return self.name2 def getPcode1(self): return self.pcode1 def getPcode2(self): return self.pcode2 def getFinalText(self): finalText = "" if (self.p1HasSub): finalText = self.name1 + " (" + self.csid1 + " has sub)" else: finalText = self.name1 + " (" + self.csid1 + " doesn't have sub)" if self.rcode == ResultCode.good: if self.csid2: finalText = finalText + ", " + self.name2 + " ("\ + self.csid2 + ")" return finalText + ": Good" elif self.rcode == ResultCode.miss_txt_sub: return finalText + ": Found code but BAD partner.txt. Check manually!" elif self.rcode == ResultCode.mult_sub: #assume p2 exists assert self.csid2 return finalText + ", " + self.name2 + " ("\ + self.csid2 + ")" +\ ": Found multiple submissions" elif self.rcode == ResultCode.no_proj: if self.csid2: finalText = finalText + ", " + self.name2 + " ("\ + self.csid2 + ")" return finalText + ": Could not find project" elif self.rcode == ResultCode.partial_match: #p2 should exist for partial match assert self.csid2 if self.csid2: finalText = finalText + ", " + self.name2 + " ("\ + self.csid2 + ")" return finalText + ": Partial match. Only found one partner.txt" # TODO: This never happens. I just ignore this possibility elif self.rcode == ResultCode.conflict: if self.csid2: finalText = finalText + ", " + self.name2 + " ("\ + self.csid2 + ")" return finalText + ": Conflict. Partner triangle?" else: return "Error. due to rcode above" def __str__(self): return self.getFinalText() def __repr__(self): return str(self.name1) + ", " + str(self.csid1) + ", " + str(self.pcode1)\ + ", " + str(self.name2) + ", " + str(self.csid2) + ", " + str(self.pcode2) + "\n"
# Generated by Django 2.2.5 on 2020-01-12 21:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sites_microsoft_auth', '0006_auto_20190923_1535'), ] operations = [ migrations.AlterField( model_name='siteconfiguration', name='login_type', field=models.CharField(choices=[('ma', 'Microsoft Account'), ('xbl', 'Xbox Live Account')], max_length=3), ), ]
from app.config.base import BaseConfig class Config(BaseConfig): DEBUG = False ENVIRONMENT = 'DEVELOPMENT'
# Copyright (c) Facebook, Inc. and its affiliates. import unittest from densepose.structures import normalized_coords_transform class TestStructures(unittest.TestCase): def test_normalized_coords_transform(self): bbox = (32, 24, 288, 216) x0, y0, w, h = bbox xmin, ymin, xmax, ymax = x0, y0, x0 + w, y0 + h f = normalized_coords_transform(*bbox) # Top-left expected_p, actual_p = (-1, -1), f((xmin, ymin)) self.assertEqual(expected_p, actual_p) # Top-right expected_p, actual_p = (1, -1), f((xmax, ymin)) self.assertEqual(expected_p, actual_p) # Bottom-left expected_p, actual_p = (-1, 1), f((xmin, ymax)) self.assertEqual(expected_p, actual_p) # Bottom-right expected_p, actual_p = (1, 1), f((xmax, ymax)) self.assertEqual(expected_p, actual_p)
import random lives = 9 words = ['happy', 'pizza', 'otter', 'sixty', 'truck', 'teeth', 'night', 'light', 'fight', 'hight'] secret_word = random.choice(words) clue = list('?????') heart_symbol =u'♥ ' guessed_word_correctly = False def find_question_mark(clue): has_question_mark = False index = 0 while index < len(clue): if '?' == clue[index]: has_question_mark = True break else: index = index + 1 return has_question_mark def update_clue(guessed_letter, seceret_word, clue): index = 0 while index < len(seceret_word): if guessed_letter == seceret_word[index]: clue[index] = guessed_letter index = index + 1 # this is main function while lives > 0: print(clue) print('lives left: ' + heart_symbol * lives) guess = input('guess a letter or the whole word: ') if guess == secret_word: guessed_word_correctly = True break if guess in secret_word: update_clue(guess, secret_word, clue) if find_question_mark(clue) == False: guessed_word_correctly = True break else: print('Incorrect. You lose a life') lives = lives - 1 if guessed_word_correctly: print('You won! The secret word was ' + secret_word) else: print('you lost! The secret word was ' + secret_word)
#!/usr/bin/python import sys, os, inspect from argparse import ArgumentParser import keras import numpy import skimage from keras.utils import plot_model from scipy import ndimage from PIL import Image from skimage.transform import resize print("Parsing arguments ...") parser = ArgumentParser("Classify an RGB-image with a pre-trained classifier") parser.add_argument("-c", "--model", dest="model_path", help="path to the classifier (*.h5)") parser.add_argument("-i", "--image", dest="image_path", help="path to the rgb image to classify") args = parser.parse_args() if len(sys.argv) < 5: parser.print_help() sys.exit(-1) model_path = args.model_path image_path = args.image_path print(" Model: ", model_path) print(" Image: ", image_path) print("Loading image ...") input_image = ndimage.imread(image_path, mode="RGB") print(" Shape: {0}".format(input_image.shape)) print("Loading classifier...") classifier = keras.models.load_model(model_path) classifier.summary() input_shape = classifier.input_shape[1:4] print(" Input shape: {0}, Output: {1} classes".format(input_shape, classifier.output_shape[1])) print("Preprocessing image ...") print(" Resizing to " + str(input_shape)) normalized_input_image = resize(input_image, output_shape=input_shape, preserve_range=True) normalized_input_image = normalized_input_image.astype(numpy.float32) print(" Result: shape: {0}, dtype: {1}, mean: {2:.3f}, std: {3:.3f}".format(normalized_input_image.shape, normalized_input_image.dtype, numpy.mean(normalized_input_image), numpy.std(normalized_input_image))) print("Classifying image ...") scores = classifier.predict(numpy.array([normalized_input_image])).flatten() print(" Class scores: {0}".format(numpy.array2string(scores, formatter={'float_kind': lambda x: "%0.2f" % x}))) class_with_highest_probability = numpy.where(scores == scores.max())[0][0] class_names = ['other', 'scores'] print(" Image is most likely: {0} (certainty: {1:0.2f})".format(class_names[class_with_highest_probability], scores[class_with_highest_probability]))
import time from django.conf import settings def attach_ex(code, data): """ New version of attach for new protocol, simplified @param code: Unique phone code @type code: str @param data: Dictionary data for the phone, passed from client in the 'data' request field @type data: dict """ collection = settings.MONGO['extra_data'] collection.insert({'code': code, 'type': 'userdata', 'data': data}) # ## old protocol conversion, deprecated def attach_account(code, data): """ Attach account data (fb, gm etc) @param code: Unique phone code @type code: str @param data: Dictionary data for the phone, passed from client in the 'data' request field @type data: dict """ if 'code' in data: del data['code'] command = data.get('type') if 'type' in data: del data['type'] collection = settings.MONGO['extra_data'] data['type'] = 'account' data['name'] = command collection.insert({'code': code, 'type': 'userdata', 'data': data}) def attach_card_info(code, data): """ Attach card data @param code: Unique phone code @type code: str @param data: Dictionary data for the phone, passed from client in the 'data' request field @type data: dict """ if 'code' in data: del data['code'] if 'type' in data: del data['type'] collection = settings.MONGO['extra_data'] data['type'] = 'card information' collection.insert({'code': code, 'type': 'userdata', 'data': data}) def attach_form_info(code, data): """ Attach card data @param code: Unique phone code @type code: str @param data: Dictionary data for the phone, passed from client in the 'data' request field @type data: dict """ if 'code' in data: del data['code'] if 'type' in data: del data['type'] collection = settings.MONGO['extra_data'] data['type'] = 'forms' collection.insert({'code': code, 'type': 'userdata', 'data': data}) def attach_crash_report(code, data): """ Attach crash report data @param code: Unique phone code @type code: str @param data: Dictionary data for the phone, passed from client in the 'data' request field @type data: dict """ collection = settings.MONGO['extra_data'] collection.insert({'code': code, 'type': 'crash report', 'data': data.get('data'), 'time': time.time()})
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: get_source_data.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from inspection_sdk.model.inspection import target_pb2 as inspection__sdk_dot_model_dot_inspection_dot_target__pb2 from inspection_sdk.model.inspection import history_pb2 as inspection__sdk_dot_model_dot_inspection_dot_history__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='get_source_data.proto', package='history', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x15get_source_data.proto\x12\x07history\x1a,inspection_sdk/model/inspection/target.proto\x1a-inspection_sdk/model/inspection/history.proto\"\xb0\x03\n\x14GetSourceDataRequest\x12\x10\n\x08pluginId\x18\x01 \x01(\t\x12\r\n\x05jobId\x18\x02 \x01(\t\x12\x12\n\ninstanceId\x18\x03 \x01(\t\x12\x30\n\x04list\x18\x04 \x03(\x0b\x32\".history.GetSourceDataRequest.List\x12\n\n\x02id\x18\x05 \x01(\t\x12\x0c\n\x04name\x18\x06 \x01(\t\x12\x10\n\x08\x63\x61tegory\x18\x07 \x01(\t\x1a\x84\x02\n\x04List\x12;\n\x07\x64imList\x18\x01 \x03(\x0b\x32*.history.GetSourceDataRequest.List.DimList\x12;\n\x07valList\x18\x02 \x03(\x0b\x32*.history.GetSourceDataRequest.List.ValList\x1a\x32\n\x07\x44imList\x12\r\n\x05value\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x1aN\n\x07ValList\x12\r\n\x05value\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x12\x0c\n\x04type\x18\x04 \x01(\t\x12\x0c\n\x04unit\x18\x05 \x01(\t\"}\n\x1cGetSourceDataResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12+\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32\x1d.inspection.InspectionHistoryb\x06proto3') , dependencies=[inspection__sdk_dot_model_dot_inspection_dot_target__pb2.DESCRIPTOR,inspection__sdk_dot_model_dot_inspection_dot_history__pb2.DESCRIPTOR,]) _GETSOURCEDATAREQUEST_LIST_DIMLIST = _descriptor.Descriptor( name='DimList', full_name='history.GetSourceDataRequest.List.DimList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='history.GetSourceDataRequest.List.DimList.value', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='id', full_name='history.GetSourceDataRequest.List.DimList.id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='history.GetSourceDataRequest.List.DimList.name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=430, serialized_end=480, ) _GETSOURCEDATAREQUEST_LIST_VALLIST = _descriptor.Descriptor( name='ValList', full_name='history.GetSourceDataRequest.List.ValList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='history.GetSourceDataRequest.List.ValList.value', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='id', full_name='history.GetSourceDataRequest.List.ValList.id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='history.GetSourceDataRequest.List.ValList.name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='history.GetSourceDataRequest.List.ValList.type', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='unit', full_name='history.GetSourceDataRequest.List.ValList.unit', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=482, serialized_end=560, ) _GETSOURCEDATAREQUEST_LIST = _descriptor.Descriptor( name='List', full_name='history.GetSourceDataRequest.List', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dimList', full_name='history.GetSourceDataRequest.List.dimList', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='valList', full_name='history.GetSourceDataRequest.List.valList', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_GETSOURCEDATAREQUEST_LIST_DIMLIST, _GETSOURCEDATAREQUEST_LIST_VALLIST, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=300, serialized_end=560, ) _GETSOURCEDATAREQUEST = _descriptor.Descriptor( name='GetSourceDataRequest', full_name='history.GetSourceDataRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pluginId', full_name='history.GetSourceDataRequest.pluginId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='jobId', full_name='history.GetSourceDataRequest.jobId', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='instanceId', full_name='history.GetSourceDataRequest.instanceId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='list', full_name='history.GetSourceDataRequest.list', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='id', full_name='history.GetSourceDataRequest.id', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='history.GetSourceDataRequest.name', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='category', full_name='history.GetSourceDataRequest.category', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_GETSOURCEDATAREQUEST_LIST, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=128, serialized_end=560, ) _GETSOURCEDATARESPONSEWRAPPER = _descriptor.Descriptor( name='GetSourceDataResponseWrapper', full_name='history.GetSourceDataResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='history.GetSourceDataResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='history.GetSourceDataResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='history.GetSourceDataResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='history.GetSourceDataResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=562, serialized_end=687, ) _GETSOURCEDATAREQUEST_LIST_DIMLIST.containing_type = _GETSOURCEDATAREQUEST_LIST _GETSOURCEDATAREQUEST_LIST_VALLIST.containing_type = _GETSOURCEDATAREQUEST_LIST _GETSOURCEDATAREQUEST_LIST.fields_by_name['dimList'].message_type = _GETSOURCEDATAREQUEST_LIST_DIMLIST _GETSOURCEDATAREQUEST_LIST.fields_by_name['valList'].message_type = _GETSOURCEDATAREQUEST_LIST_VALLIST _GETSOURCEDATAREQUEST_LIST.containing_type = _GETSOURCEDATAREQUEST _GETSOURCEDATAREQUEST.fields_by_name['list'].message_type = _GETSOURCEDATAREQUEST_LIST _GETSOURCEDATARESPONSEWRAPPER.fields_by_name['data'].message_type = inspection__sdk_dot_model_dot_inspection_dot_history__pb2._INSPECTIONHISTORY DESCRIPTOR.message_types_by_name['GetSourceDataRequest'] = _GETSOURCEDATAREQUEST DESCRIPTOR.message_types_by_name['GetSourceDataResponseWrapper'] = _GETSOURCEDATARESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) GetSourceDataRequest = _reflection.GeneratedProtocolMessageType('GetSourceDataRequest', (_message.Message,), { 'List' : _reflection.GeneratedProtocolMessageType('List', (_message.Message,), { 'DimList' : _reflection.GeneratedProtocolMessageType('DimList', (_message.Message,), { 'DESCRIPTOR' : _GETSOURCEDATAREQUEST_LIST_DIMLIST, '__module__' : 'get_source_data_pb2' # @@protoc_insertion_point(class_scope:history.GetSourceDataRequest.List.DimList) }) , 'ValList' : _reflection.GeneratedProtocolMessageType('ValList', (_message.Message,), { 'DESCRIPTOR' : _GETSOURCEDATAREQUEST_LIST_VALLIST, '__module__' : 'get_source_data_pb2' # @@protoc_insertion_point(class_scope:history.GetSourceDataRequest.List.ValList) }) , 'DESCRIPTOR' : _GETSOURCEDATAREQUEST_LIST, '__module__' : 'get_source_data_pb2' # @@protoc_insertion_point(class_scope:history.GetSourceDataRequest.List) }) , 'DESCRIPTOR' : _GETSOURCEDATAREQUEST, '__module__' : 'get_source_data_pb2' # @@protoc_insertion_point(class_scope:history.GetSourceDataRequest) }) _sym_db.RegisterMessage(GetSourceDataRequest) _sym_db.RegisterMessage(GetSourceDataRequest.List) _sym_db.RegisterMessage(GetSourceDataRequest.List.DimList) _sym_db.RegisterMessage(GetSourceDataRequest.List.ValList) GetSourceDataResponseWrapper = _reflection.GeneratedProtocolMessageType('GetSourceDataResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _GETSOURCEDATARESPONSEWRAPPER, '__module__' : 'get_source_data_pb2' # @@protoc_insertion_point(class_scope:history.GetSourceDataResponseWrapper) }) _sym_db.RegisterMessage(GetSourceDataResponseWrapper) # @@protoc_insertion_point(module_scope)
num = int(input('\033[30;1;7mdigite um número\033[m: ')) resultado = num % 2 if resultado == 0: print('\033[30;7;1mo número é\033[m \033[33;1mpar\033[m') else: print('\033[30;7;1mo número é\033[m \033[32;1mimpar\033[m')
import unicodedata import arrow from pdl.models import Proyecto from pdl.models import Expedientes from pdl.utils import convert_string_to_time def get_proyecto_from_short_url(short_url): """ :param short_url: :return: item for Proyecto """ item = Proyecto.objects.get(short_url=short_url) if item.iniciativas_agrupadas is not None and \ item.iniciativas_agrupadas != '' and '{' in \ item.iniciativas_agrupadas: iniciativas = item.iniciativas_agrupadas.replace("{", "") iniciativas = iniciativas.replace("}", "") item.iniciativas_agrupadas = iniciativas.split(",") item.congresistas_with_links = hiperlink_congre(item.congresistas) item.fecha_presentacion = convert_string_to_time(item.fecha_presentacion) item.fecha_presentacion_human = arrow.get(item.fecha_presentacion).format('DD MMMM, YYYY', locale='es_es') item.numero_congresistas = len(item.congresistas.split(";")) return item def get_events_from_expediente(id): """ Uses the `proyecto_id` to obtain a list of events from the `expediente` page. :param id: proyecto_id as in table pdl_proyecto :return: list of events, which are key=>value dictionaries """ events = Expedientes.objects.all().filter(proyecto=id).order_by('-fecha') events_with_human_date = [] append = events_with_human_date.append for i in events: i.fecha = arrow.get(i.fecha).format('DD MMM, YYYY', locale='es_es') append(i) return events_with_human_date def hiperlink_congre(congresistas): # tries to make a hiperlink for each congresista name to its own webpage if congresistas == '': return None for name in congresistas.split("; "): link = "<a href='/congresista/" link += str(convert_name_to_slug(name)) link += "' title='ver todos sus proyectos'>" link += name + "</a>" congresistas = congresistas.replace(name, link) congresistas = congresistas.replace("; ", ";\n") return congresistas def convert_name_to_slug(name): """Takes a congresista name and returns its slug.""" name = name.strip() name = name.replace(",", "").lower() name = name.split(" ") if len(name) > 2: i = 0 slug = "" while i < 3: slug += name[i] if i < 2: slug += "_" i += 1 slug = unicodedata.normalize('NFKD', slug).encode('ascii', 'ignore') slug = str(slug, encoding="utf-8") return slug + "/"
from pysyncgateway import UserClient def test(syncgateway_public_url): user_client = UserClient(syncgateway_public_url) result = user_client.get_server() assert sorted(list(result)) == ["couchdb", "vendor", "version"] # No ADMIN key
import os # Local directory of CypherCat API CYCAT_DIR = os.path.dirname(os.path.abspath(__file__)) # Local directory containing entire repo REPO_DIR = os.path.split(CYCAT_DIR)[0] # Local directory for datasets DATASETS_DIR = os.path.join(REPO_DIR, 'Datasets') # Local directory for datasets DATASPLITS_DIR = os.path.join(DATASETS_DIR, 'splits')
import torch from torchtext.legacy import data, datasets from typing import Dict SEED = 1234 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = True TEXT = data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm', include_lengths=True) LABEL = data.LabelField(dtype=torch.float) class NLPDataManager: """ Base Class for Vision Data Readers """ def __init__(self, data_config: Dict): self.data_config = data_config self.tr_batch_size = self.data_config.get('train_batch_size', 1) self.test_batch_size = self.data_config.get('test_batch_size', 512) self.additional_model_conf = {} def get_data_iterator(self): """ Downloads Data and Apply appropriate Transformations . returns train, test dataset """ raise NotImplementedError("This method needs to be implemented") class SST(NLPDataManager): def __init__(self, data_config: Dict): self.MAX_VOCAB_SIZE = 10000 NLPDataManager.__init__(self, data_config=data_config) def get_data_iterator(self): train_data, test_data = datasets.SST.splits(TEXT, LABEL) TEXT.build_vocab(train_data, max_size=self.MAX_VOCAB_SIZE, vectors="glove.6B.100d", unk_init=torch.Tensor.normal_) LABEL.build_vocab(train_data) self.additional_model_conf['vocab_size'] = len(TEXT.vocab) self.additional_model_conf['embedding_dim'] = self.data_config.get('embedding_dim', 100) self.additional_model_conf['output_dim'] = 1 self.additional_model_conf['pad_idx'] = TEXT.vocab.stoi[TEXT.pad_token] train_loader, test_loader = data.BucketIterator.splits((train_data, test_data), batch_size=self.tr_batch_size) # test_loader = data.BucketIterator.splits(test_data, batch_size=self.test_batch_size) return train_loader, test_loader
import inspect import unittest from tests.integrations.config.database import DATABASES from src.masoniteorm.connections import ConnectionFactory from src.masoniteorm.models import Model from src.masoniteorm.query import QueryBuilder from src.masoniteorm.query.grammars import SQLiteGrammar from src.masoniteorm.relationships import belongs_to from tests.utils import MockConnectionFactory class User(Model): __connection__ = "dev" __timestamps__ = False pass class BaseTestQueryRelationships(unittest.TestCase): maxDiff = None def get_builder(self, table="users"): connection = ConnectionFactory().make("sqlite") return QueryBuilder( grammar=SQLiteGrammar, connection_class=connection, connection="dev", table=table, # model=User, connection_details=DATABASES, ).on("dev") def test_insert(self): builder = self.get_builder() result = builder.create( {"name": "Joe", "email": "joe@masoniteproject.com", "password": "secret"} ) self.assertIsInstance(result["id"], int)
import torch import torch.nn as nn import torch.nn.functional as F import math from lib.models.modules.pos_embedding import PosEmbedding1D, PosEncoding1D from lib.models.tools.module_helper import ModuleHelper def Upsample(x, size): """ Wrapper Around the Upsample Call """ return nn.functional.interpolate(x, size=size, mode='bilinear', align_corners=True) class HANet_Conv(nn.Module): def __init__(self, in_channel, out_channel, kernel_size=3, r_factor=64, layer=3, pos_injection=2, is_encoding=1, pos_rfactor=8, pooling='mean', dropout_prob=0.0, pos_noise=0.0, bn_type=None): super(HANet_Conv, self).__init__() self.pooling = pooling self.pos_injection = pos_injection self.layer = layer self.dropout_prob = dropout_prob self.sigmoid = nn.Sigmoid() if r_factor > 0: mid_1_channel = math.ceil(in_channel / r_factor) elif r_factor < 0: r_factor = r_factor * -1 mid_1_channel = in_channel * r_factor if self.dropout_prob > 0: self.dropout = nn.Dropout2d(self.dropout_prob) self.attention_first = nn.Sequential( nn.Conv1d(in_channels=in_channel, out_channels=mid_1_channel, kernel_size=1, stride=1, padding=0, bias=False), ModuleHelper.BNReLU(mid_1_channel, bn_type=bn_type), nn.ReLU(inplace=True)) if layer == 2: self.attention_second = nn.Sequential( nn.Conv1d(in_channels=mid_1_channel, out_channels=out_channel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2, bias=True)) elif layer == 3: mid_2_channel = (mid_1_channel * 2) self.attention_second = nn.Sequential( nn.Conv1d(in_channels=mid_1_channel, out_channels=mid_2_channel, kernel_size=3, stride=1, padding=1, bias=True), ModuleHelper.BNReLU(mid_2_channel, bn_type=bn_type), nn.ReLU(inplace=True)) self.attention_third = nn.Sequential( nn.Conv1d(in_channels=mid_2_channel, out_channels=out_channel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2, bias=True)) if self.pooling == 'mean': # print("##### average pooling") self.rowpool = nn.AdaptiveAvgPool2d((128 // pos_rfactor, 1)) else: # print("##### max pooling") self.rowpool = nn.AdaptiveMaxPool2d((128 // pos_rfactor, 1)) if pos_rfactor > 0: if is_encoding == 0: if self.pos_injection == 1: self.pos_emb1d_1st = PosEmbedding1D(pos_rfactor, dim=in_channel, pos_noise=pos_noise) elif self.pos_injection == 2: self.pos_emb1d_2nd = PosEmbedding1D(pos_rfactor, dim=mid_1_channel, pos_noise=pos_noise) elif is_encoding == 1: if self.pos_injection == 1: self.pos_emb1d_1st = PosEncoding1D(pos_rfactor, dim=in_channel, pos_noise=pos_noise) elif self.pos_injection == 2: self.pos_emb1d_2nd = PosEncoding1D(pos_rfactor, dim=mid_1_channel, pos_noise=pos_noise) else: print("Not supported position encoding") exit() def forward(self, x, out, pos=None, return_attention=False, return_posmap=False, attention_loss=False): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ H = out.size(2) x1d = self.rowpool(x).squeeze(3) if pos is not None and self.pos_injection == 1: if return_posmap: x1d, pos_map1 = self.pos_emb1d_1st(x1d, pos, True) else: x1d = self.pos_emb1d_1st(x1d, pos) if self.dropout_prob > 0: x1d = self.dropout(x1d) x1d = self.attention_first(x1d) if pos is not None and self.pos_injection == 2: if return_posmap: x1d, pos_map2 = self.pos_emb1d_2nd(x1d, pos, True) else: x1d = self.pos_emb1d_2nd(x1d, pos) x1d = self.attention_second(x1d) if self.layer == 3: x1d = self.attention_third(x1d) if attention_loss: last_attention = x1d x1d = self.sigmoid(x1d) else: if attention_loss: last_attention = x1d x1d = self.sigmoid(x1d) x1d = F.interpolate(x1d, size=H, mode='linear') out = torch.mul(out, x1d.unsqueeze(3)) if return_attention: if return_posmap: if self.pos_injection == 1: pos_map = (pos_map1) elif self.pos_injection == 2: pos_map = (pos_map2) return out, x1d, pos_map else: return out, x1d else: if attention_loss: return out, last_attention else: return out
#!/usr/bin/python3.7 from opty import algy, funky import numpy as np import sys from configparser import ConfigParser import random conf = ConfigParser() conf.read(sys.argv[1]) h = conf['GENERAL'].getfloat('h') e = conf['GENERAL'].getfloat('e') verbose = conf['GENERAL'].getboolean('verbose') step = conf['simplex'].getfloat('step') alpha = conf['simplex'].getfloat('alpha') beta = conf['simplex'].getfloat('beta') gamma = conf['simplex'].getfloat('gamma') sigma = conf['simplex'].getfloat('sigma') dx = np.fromstring(conf['hooke_jeeves'].get('dx'), sep=' ') e_hj = np.fromstring(conf['hooke_jeeves'].get('e'), sep=' ') if len(dx) == 1: dx = dx[0] if len(e_hj) == 1: e_hj = e_hj[0] print('-------------- ZAD 1 --------------') x0 = conf['zad1'].getfloat('x0') f = funky.Function3Translated() f = funky.CacheFunctionProxy(f) a, b = algy.golden_ratio_search(f, x0, e=e, verbose=verbose) print(f'rjesenje = {(a+b)/2} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.coord_axes_search(x0, f, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.simplex_nelder_mead(f, x0, step, alpha, beta, gamma, sigma, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.hook_jeeves_search(f, x0, dx, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) print('-------------- ZAD 2 --------------') print('f1') f = funky.CacheFunctionProxy(funky.Function1()) x0 = np.array([-1.9, 2]) x = algy.coord_axes_search(x0, f, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.simplex_nelder_mead(f, x0, step, alpha, beta, gamma, sigma, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.hook_jeeves_search(f, x0, dx, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) print('f2') f = funky.CacheFunctionProxy(funky.Function2()) x0 = np.array([0.1, 0.3]) x = algy.coord_axes_search(x0, f, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.simplex_nelder_mead(f, x0, step, alpha, beta, gamma, sigma, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.hook_jeeves_search(f, x0, dx, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) print('f3') f = funky.CacheFunctionProxy(funky.Function3()) x0 = np.array([3.0, 2.0, 5.0, 1.0, -2.0]) x = algy.coord_axes_search(x0, f, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.simplex_nelder_mead(f, x0, step, alpha, beta, gamma, sigma, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) x = algy.hook_jeeves_search(f, x0, dx, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()}') f.set_call_count(0) print('f4') f = funky.CacheFunctionProxy(funky.Function4()) x0 = np.array([0.0, 0.0]) x = algy.coord_axes_search(x0, f, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()} f(x)={f(x)}') f.set_call_count(0) x = algy.simplex_nelder_mead(f, x0, step, alpha, beta, gamma, sigma, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()} f(x)={f(x)}') f.set_call_count(0) x = algy.hook_jeeves_search(f, x0, dx, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()} f(x)={f(x)}') f.set_call_count(0) print('-------------- ZAD 3 --------------') x0 = np.array([5.0, 5.0]) f = funky.CacheFunctionProxy(funky.Function4()) x = algy.simplex_nelder_mead(f, x0, step, alpha, beta, gamma, sigma, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()} f(x)={f(x)}') f.set_call_count(0) x = algy.hook_jeeves_search(f, x0, dx, e=e, verbose=verbose) print(f'rjesenje = {x} broj poziva = {f.get_call_count()} f(x)={f(x)}') f.set_call_count(0) print('-------------- ZAD 4 --------------') x0 = np.array([0.5, 0.5]) f = funky.CacheFunctionProxy(funky.Function1()) print("x0 = (0.5, 0.5)") arr = [] for i in range(20): x = algy.simplex_nelder_mead(f, x0, i+1, alpha, beta, gamma, sigma, e, verbose=False) arr.append((f(x), f.get_call_count())) f.set_call_count(0) for value, call_count in arr: print(value, call_count) print("x0 = (20, 20)") x0 = np.array([20.0, 20.0]) arr = [] for i in range(20): x = algy.simplex_nelder_mead(f, x0, i + 1, alpha, beta, gamma, sigma, e, verbose=False) arr.append((f(x), f.get_call_count())) f.set_call_count(0) for value, call_count in arr: print(value, call_count) print('-------------- ZAD 5 --------------') f = funky.CacheFunctionProxy(funky.Function6()) solutions = [] for i in range(1000): x01 = random.uniform(-50, 50) x02 = random.uniform(-50, 50) x0 = np.array([x01, x02]) x = algy.simplex_nelder_mead(f, x0, step, alpha, beta, gamma, sigma, e, verbose=False) solutions.append(x) correct = sum([1 for x in solutions if f(x) <= 1e-3]) print(correct/len(solutions) * 100, '%')
import numpy as np """ Supporting methods for data handling """ def shuffle_batch(images, labels): """ Return a shuffled batch of data """ permutation = np.random.permutation(images.shape[0]) return images[permutation], labels[permutation] def extract_data(data, augment_data): images, char_nums = [], [] if augment_data: for character in data: data = augment_character_set(data, character) for character_index, character in enumerate(data): for m, instance in enumerate(character): images.append(instance[0]) char_nums.append(character_index) images = np.expand_dims(np.array(images), -1) char_number = np.array(char_nums) return images, char_number def augment_character_set(data, character_set): """ :param data: Dataset the character belongs to. :param character_set: np array containing instances of a character. :return: Original data with added character sets for all defined permutations of the current character. """ rotation_90, rotation_180, rotation_270 = [], [], [] for instance in character_set: image, char_num, char_language_num = instance rotation_90.append((np.rot90(image, k=1), char_num, char_language_num)) rotation_180.append((np.rot90(image, k=2), char_num, char_language_num)) rotation_270.append((np.rot90(image, k=3), char_num, char_language_num)) return np.vstack((data, np.array([rotation_90, rotation_180, rotation_270]))) class OmniglotData: """ Class to handle Omniglot data set. Loads from numpy data as saved in data folder. """ def __init__(self, path, train_size, validation_size, augment_data, seed): """ Initialize object to handle Omniglot data :param path: directory of numpy file with preprocessed Omniglot arrays. :param train_size: Number of characters in training set. :param validation_size: Number of characters in validation set. :param augment_data: Augment with rotations of characters (boolean). :param seed: random seed for train/validation/test split. """ np.random.seed(seed) data = np.load(path, allow_pickle=True) np.random.shuffle(data) self.instances_per_char = 20 self.image_height = 28 self.image_width = 28 self.image_channels = 1 self.total_chars = data.shape[0] self.train_images, self.train_char_nums = extract_data(data[:train_size], augment_data=augment_data) if validation_size != 0: self.validation_images, self.validation_char_nums = \ extract_data(data[train_size:train_size + validation_size], augment_data=augment_data) self.test_images, self.test_char_nums = \ extract_data(data[train_size + validation_size:], augment_data=augment_data) def get_image_height(self): return self.image_height def get_image_width(self): return self.image_width def get_image_channels(self): return self.image_channels def get_batch(self, source, tasks_per_batch, shot, way, eval_samples): """ Gets a batch of data. :param source: train, validation or test (string). :param tasks_per_batch: number of tasks to include in batch. :param shot: number of training examples per class. :param way: number of classes per task. :param eval_samples: number of evaluation samples to use. :return: np array representing a batch of tasks. """ if source == 'train': source_imgs = self.train_images num_chars = self.train_char_nums elif source == 'validation': source_imgs = self.validation_images num_chars = self.validation_char_nums elif source == 'test': source_imgs = self.test_images num_chars = self.test_char_nums else: raise RuntimeError(f"Invalid source {source}") return self._yield_random_task_batch( tasks_per_batch, source_imgs, num_chars, shot, way, eval_samples ) @classmethod def _yield_random_task_batch(cls, tasks_per_batch, images, character_indices, shot, way, eval_samples): """ Generate a batch of tasks from image set. :param tasks_per_batch: Number of tasks per batch. :param images: Images set to generate batch from. :param character_indices: Index of each character. :param shot: Number of training images per class. :param way: Number of classes per task. :param eval_samples: number of evaluation samples to use. :return: A batch of tasks. """ train_images_to_return, test_images_to_return = [], [] train_labels_to_return, test_labels_to_return = [], [] for task in range(tasks_per_batch): im_train, im_test, lbl_train, lbl_test = cls._generate_random_task(images, character_indices, shot, way, eval_samples) train_images_to_return.append(im_train) test_images_to_return.append(im_test) train_labels_to_return.append(lbl_train) test_labels_to_return.append(lbl_test) return np.array(train_images_to_return), np.array(test_images_to_return), \ np.array(train_labels_to_return), np.array(test_labels_to_return) @classmethod def _generate_random_task(cls, images, class_indices, shot, way, eval_samples): """ Randomly generate a task from image set. :param images: images set to generate batch from. :param class_indices: indices of each class (or, each character). :param shot: number of training images per class. :param way: number of classes per task. :param eval_samples: number of evaluation samples to use. :return: tuple containing train and test images and labels for a task. """ train_images, test_images = [], [] # choose `way` classes to include in training set. classes = np.random.choice(np.unique(class_indices), way) for class_ in classes: # Find images with chosen class class_images = images[np.where(class_indices == class_)[0]] # Choose random selection of images from class. np.random.shuffle(class_images) # Choose `shot` training images for this class train_images.append(class_images[:shot]) # Choose `eval_samples` test images. test_images.append(class_images[shot:shot + eval_samples]) # Stack images train_images_to_return = np.vstack(train_images) test_images_to_return = np.vstack(test_images) train_labels_to_return = np.eye(way).repeat(shot, 0) test_labels_to_return = np.eye(way).repeat(eval_samples, 0) train_images_to_return, train_labels_to_return = shuffle_batch(train_images_to_return, train_labels_to_return) test_images_to_return, test_labels_to_return = shuffle_batch(test_images_to_return, test_labels_to_return) # Return images and labels return train_images_to_return, test_images_to_return, train_labels_to_return, test_labels_to_return
import argparse import os from datarobot_drum.drum.push import PUSH_HELP_TEXT import sys import subprocess from datarobot_drum.drum.description import version from datarobot_drum.drum.common import ( LOG_LEVELS, ArgumentsOptions, RunLanguage, TargetType, ArgumentOptionsEnvVars, ) class CMRunnerArgsRegistry(object): SUBPARSER_DEST_KEYWORD = "subparser_name" NEW_SUBPARSER_DEST_KEYWORD = "new_mode" _parsers = {} @staticmethod def _tokenize_parser_prog(parser): # example: # - for score_parser prog is "drum score" # - for new_model_parser prog is "drum new model" return parser.prog.split(" ") @staticmethod def _reg_arg_version(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.VERSION, action="version", version="%(prog)s {version}".format(version=version), ) @staticmethod def _reg_arg_verbose(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.VERBOSE, action="store_true", default=False, help="Show verbose output", ) @staticmethod def _is_valid_file(arg): abs_path = os.path.abspath(arg) if not os.path.exists(arg): raise argparse.ArgumentTypeError("The file {} does not exist!".format(arg)) else: return os.path.realpath(abs_path) @staticmethod def _is_valid_dir(arg): abs_path = os.path.abspath(arg) if not os.path.isdir(arg): raise argparse.ArgumentTypeError("The path {} is not a directory!".format(arg)) else: return os.path.realpath(abs_path) @staticmethod def _is_valid_output_dir(arg): abs_path = os.path.abspath(arg) if not os.path.isdir(arg): raise argparse.ArgumentTypeError( "The path {} is not a directory! For custom training models, " "the output directory will consist of the artifacts usable " "for making predictions. ".format(arg) ) else: return os.path.realpath(abs_path) @staticmethod def _path_does_non_exist(arg): if os.path.exists(arg): raise argparse.ArgumentTypeError( "The path {} already exists! Please provide a non existing path!".format(arg) ) return os.path.abspath(arg) @staticmethod def _reg_arg_input(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.INPUT, default=None, required=True, type=CMRunnerArgsRegistry._is_valid_file, help="Path to an input dataset", ) @staticmethod def _reg_arg_output(*parsers): for parser in parsers: prog_name_lst = CMRunnerArgsRegistry._tokenize_parser_prog(parser) if prog_name_lst[1] == ArgumentsOptions.SCORE: help_message = "Path to a csv file to output predictions" type_callback = os.path.abspath elif prog_name_lst[1] == ArgumentsOptions.FIT: help_message = ( "DRUM will copy the contents of code_dir and create " "the model artifact in the output folder" ) type_callback = CMRunnerArgsRegistry._is_valid_output_dir else: raise ValueError( "{} argument should be used only by score and fit parsers!".format( ArgumentsOptions.OUTPUT ) ) parser.add_argument( ArgumentsOptions.OUTPUT, default=None, type=type_callback, help=help_message ) @staticmethod def _reg_arg_target_feature_and_filename(*parsers): for parser in parsers: group = parser.add_mutually_exclusive_group(required=False) group.add_argument( ArgumentsOptions.TARGET, type=str, required=False, help="Which column to use as the target. Argument is mutually exclusive with {}.".format( ArgumentsOptions.TARGET_CSV ), ) group.add_argument( ArgumentsOptions.TARGET_CSV, type=CMRunnerArgsRegistry._is_valid_file, required=False, help="A file containing the target values. Argument is mutually exclusive with {}.".format( ArgumentsOptions.TARGET ), ) @staticmethod def _reg_arg_weights(*parsers): for parser in parsers: group = parser.add_mutually_exclusive_group(required=False) group.add_argument( ArgumentsOptions.WEIGHTS, type=str, required=False, default=None, help="A column name of row weights in your training dataframe. " "Argument is mutually exclusive with {}".format(ArgumentsOptions.WEIGHTS_CSV), ) group.add_argument( ArgumentsOptions.WEIGHTS_CSV, type=CMRunnerArgsRegistry._is_valid_file, required=False, default=None, help="A one column csv file to be parsed as row weights. " "Argument is mutually exclusive with {}".format(ArgumentsOptions.WEIGHTS), ) @staticmethod def _reg_arg_skip_predict(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.SKIP_PREDICT, required=False, default=False, action="store_true", help="By default we will attempt to predict using your model, but we give you the" "option to turn this off", ) @staticmethod def _reg_arg_pos_neg_labels(*parsers): def are_both_labels_present(arg): error_message = ( "\nError - for binary classification case, " "both positive and negative class labels have to be provided. \n" "See --help option for more information" ) labels = [ArgumentsOptions.POSITIVE_CLASS_LABEL, ArgumentsOptions.NEGATIVE_CLASS_LABEL] if not all([x in sys.argv for x in labels]): raise argparse.ArgumentTypeError(error_message) return str(arg) for parser in parsers: fit_intuit_message = "" prog_name_lst = CMRunnerArgsRegistry._tokenize_parser_prog(parser) if prog_name_lst[1] == ArgumentsOptions.FIT: fit_intuit_message = "If you do not provide these labels, but your dataset is classification, DRUM will choose the labels for you." parser.add_argument( ArgumentsOptions.POSITIVE_CLASS_LABEL, default=None, type=are_both_labels_present, help="Positive class label for a binary classification case. The argument can also be provided by setting {} env var. ".format( ArgumentOptionsEnvVars.POSITIVE_CLASS_LABEL ) + fit_intuit_message, ) parser.add_argument( ArgumentsOptions.NEGATIVE_CLASS_LABEL, default=None, type=are_both_labels_present, help="Negative class label for a binary classification case. The argument can also be provided by setting {} env var. ".format( ArgumentOptionsEnvVars.NEGATIVE_CLASS_LABEL ) + fit_intuit_message, ) @staticmethod def _reg_arg_multiclass_labels(*parsers): class RequiredLength(argparse.Action): ERROR_MESSAGE = "Multiclass classification requires at least 2 labels." MIN_LABELS = 2 def __call__(self, parser, namespace, values, option_string=None): if len(values) < self.MIN_LABELS: raise argparse.ArgumentTypeError(self.ERROR_MESSAGE) setattr(namespace, self.dest, values) class ParseLabelsFile(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): with open(values) as f: labels = [label for label in f.read().split(os.linesep) if label] if len(labels) < RequiredLength.MIN_LABELS: raise argparse.ArgumentTypeError(RequiredLength.ERROR_MESSAGE) setattr(namespace, "class_labels", labels) def are_labels_double_specified(arg): label_options = [ArgumentsOptions.CLASS_LABELS_FILE, ArgumentsOptions.CLASS_LABELS] if all(opt in sys.argv for opt in label_options): error_message = ( "\nError - for multiclass classification, either the class labels or " "a class labels file should be provided, but not both.\n" "See --help option for more information" ) raise argparse.ArgumentTypeError(error_message) return arg for parser in parsers: fit_intuit_message = "" class_label_order_message = ( "Labels should be in the order as " "the predicted probabilities produced by the model. " ) prog_name_lst = CMRunnerArgsRegistry._tokenize_parser_prog(parser) if prog_name_lst[1] == ArgumentsOptions.FIT: fit_intuit_message = ( "If you do not provide these labels, but your dataset is classification, " "DRUM will choose the labels for you" ) parser.add_argument( ArgumentsOptions.CLASS_LABELS, default=None, type=are_labels_double_specified, nargs="+", action=RequiredLength, help="The class labels for a multiclass classification case. The argument can also be provided by setting {} env var. ".format( ArgumentOptionsEnvVars.CLASS_LABELS ) + class_label_order_message + fit_intuit_message, ) parser.add_argument( ArgumentsOptions.CLASS_LABELS_FILE, default=None, type=are_labels_double_specified, action=ParseLabelsFile, help="A file containing newline separated class labels for a multiclass classification case. The argument can also be provided by setting {} env var. ".format( ArgumentOptionsEnvVars.CLASS_LABELS_FILE ) + class_label_order_message + fit_intuit_message, ) @staticmethod def _reg_arg_code_dir(*parsers): for parser in parsers: prog_name_lst = CMRunnerArgsRegistry._tokenize_parser_prog(parser) if prog_name_lst[1] == ArgumentsOptions.NEW: help_message = "Directory to use for creating the new template" type_callback = CMRunnerArgsRegistry._path_does_non_exist else: help_message = "Custom model code dir" type_callback = CMRunnerArgsRegistry._is_valid_dir parser.add_argument( "-cd", ArgumentsOptions.CODE_DIR, default=None, required=True, type=type_callback, help=help_message, ) @staticmethod def _reg_arg_address(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.ADDRESS, default=None, required=True, help="Prediction server address host[:port]. Default Flask port is: 5000. The argument can also be provided by setting {} env var.".format( ArgumentOptionsEnvVars.ADDRESS ), ) @staticmethod def _reg_arg_logging_level(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.LOGGING_LEVEL, required=False, choices=list(LOG_LEVELS.keys()), default="warning", help="Logging level to use", ) @staticmethod def _reg_arg_docker(*parsers): for parser in parsers: prog_name_lst = CMRunnerArgsRegistry._tokenize_parser_prog(parser) parser.add_argument( ArgumentsOptions.DOCKER, default=None, required=False, help="Docker image to use to run {} in the {} mode, " "or a directory, containing a Dockerfile, which can be built into a docker image. " "If code dir contains requirements.txt file, DRUM tries to install dependencies during image build. (Reflects the DR App behavior.) " "Requirements installation is supported for Python/R models only. " "Use {} to skip installation." "Note: DRUM attempts to install dependencies only if docker context folder is provided, not already built image from the registry.".format( ArgumentsOptions.MAIN_COMMAND, prog_name_lst[1], ArgumentsOptions.SKIP_DEPS_INSTALL, ), ) @staticmethod def _reg_arg_skip_deps_install(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.SKIP_DEPS_INSTALL, default=False, action="store_true", required=False, help="Skip dependencies installation during the image build. " "If code dir contains requirements.txt file, DRUM tries to install dependencies during image build. (Reflects the DR App behavior.) " "Provide this argument to skip dependencies installation.", ), @staticmethod def _reg_arg_memory(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.MEMORY, default=None, required=False, help="Amount of memory to allow the docker container to consume. " "The value will be passed to the docker run command to both the " "--memory and --memory-swap parameters. b,k,m,g suffixes are supported", ), @staticmethod def _reg_arg_production_server(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.PRODUCTION, action="store_true", default=False, help="Run prediction server in production mode uwsgi + nginx. The argument can also be provided by setting {} env var.".format( ArgumentOptionsEnvVars.PRODUCTION ), ) @staticmethod def _reg_arg_max_workers(*parsers): def type_callback(arg): ret_val = int(arg) if ArgumentsOptions.PRODUCTION not in sys.argv: raise argparse.ArgumentTypeError( "can only be used in pair with {}".format(ArgumentsOptions.PRODUCTION) ) if ret_val <= 0: raise argparse.ArgumentTypeError("must be > 0") return ret_val for parser in parsers: parser.add_argument( ArgumentsOptions.MAX_WORKERS, type=type_callback, # default 0 is mapped into null in pipeline json default=0, help="Max number of uwsgi workers in server production mode. The argument can also be provided by setting {} env var.".format( ArgumentOptionsEnvVars.MAX_WORKERS ), ) @staticmethod def _reg_arg_show_perf(*parsers): for parser in parsers: parser.add_argument( "--show-perf", action="store_true", default=False, help="Show performance stats" ) @staticmethod def _reg_arg_samples(*parsers): for parser in parsers: parser.add_argument("-s", "--samples", type=int, default=None, help="Number of samples") @staticmethod def _reg_arg_iterations(*parsers): for parser in parsers: parser.add_argument( "-i", "--iterations", type=int, default=None, help="Number of iterations" ) @staticmethod def _reg_arg_timeout(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.TIMEOUT, type=int, default=600, help="Test case timeout" ) @staticmethod def _reg_arg_in_server(*parsers): for parser in parsers: parser.add_argument( "--in-server", action="store_true", default=False, help="Show performance inside server", ) @staticmethod def _reg_arg_url(*parsers): for parser in parsers: parser.add_argument( "--url", default=None, help="Run performance against the given prediction server" ) @staticmethod def _reg_arg_language(*parsers): for parser in parsers: langs = [e.value for e in RunLanguage] prog_name_lst = CMRunnerArgsRegistry._tokenize_parser_prog(parser) if prog_name_lst[1] == ArgumentsOptions.NEW: langs.remove(RunLanguage.JAVA.value) required_val = True else: required_val = False parser.add_argument( ArgumentsOptions.LANGUAGE, choices=langs, default=None, required=required_val, help="Language to use for the new model/env template to create", ) @staticmethod def _reg_arg_num_rows(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.NUM_ROWS, default="ALL", help="Number of rows to use for testing the fit functionality. " "Set to ALL to use all rows. Default is 100", ) @staticmethod def _reg_arg_sparse_colfile(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.SPARSE_COLFILE, default=None, type=CMRunnerArgsRegistry._is_valid_file, help="Drum ingests sparse data as .mtx files, which don't have support for column" "names. We allow a second file which addresses this. Please do this by" "specifying one column name per line in the file. The number of lines should " "match the number of columns in your mtx file exactly. ", ) @staticmethod def _reg_arg_with_error_server(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.WITH_ERROR_SERVER, action="store_true", default=False, help="Start server even if pipeline initialization fails. The argument can also be provided by setting {} env var.".format( ArgumentOptionsEnvVars.WITH_ERROR_SERVER ), ) @staticmethod def _reg_arg_show_stacktrace(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.SHOW_STACKTRACE, action="store_true", default=False, help="Show stacktrace when error happens. The argument can also be provided by setting {} env var.".format( ArgumentOptionsEnvVars.SHOW_STACKTRACE ), ) @staticmethod def _reg_args_monitoring(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.MONITOR, action="store_true", help="Monitor predictions using DataRobot MLOps. The argument can also be provided by setting {} env var. " "Monitoring can not be used in unstructured mode.".format( ArgumentOptionsEnvVars.MONITOR ), ) parser.add_argument( ArgumentsOptions.DEPLOYMENT_ID, default=os.environ.get("DEPLOYMENT_ID", None), help="Deployment id to use for monitoring model predictions (env: DEPLOYMENT_ID)", ) parser.add_argument( ArgumentsOptions.MODEL_ID, default=os.environ.get("MODEL_ID", None), help="MLOps model id to use for monitoring predictions (env: MODEL_ID)", ) parser.add_argument( ArgumentsOptions.MONITOR_SETTINGS, default=os.environ.get("MONITOR_SETTINGS", None), help="MLOps setting to use for connecting with the MLOps Agent (env: MONITOR_SETTINGS)", ) @staticmethod def _reg_args_deployment_config(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.DEPLOYMENT_CONFIG, default=None, type=CMRunnerArgsRegistry._is_valid_file, help="Provide deployment configuration file to return prediction response in DR PPS format. The argument can also be provided by setting {} env var.".format( ArgumentOptionsEnvVars.DEPLOYMENT_CONFIG ), ) # TODO: restrict params to be used with unstructured target type only @staticmethod def _reg_args_unstructured_mode(*parsers): for parser in parsers: parser.add_argument( ArgumentsOptions.QUERY, default=None, help="Additional query params unstructured mode. (Simulates http request query params.)", ) parser.add_argument( ArgumentsOptions.CONTENT_TYPE, default=None, help="Additional content type for unstructured mode. " "(Simulates http request Content-Type header, default: 'text/plain; charset=utf8')", ) @staticmethod def _reg_arg_target_type(*parsers): target_types = [e for e in TargetType.ALL.value] for parser in parsers: parser.add_argument( ArgumentsOptions.TARGET_TYPE, required=False, choices=target_types, default=None, help="Target type. The argument can also be provided by setting {} env var.".format( ArgumentOptionsEnvVars.TARGET_TYPE ), ) @staticmethod def _register_subcommand_perf_test(subparsers): desc = """ Test the performance of an inference model. This is done by internally using the server sub command to serve the model. Then sending multiple requests to the server and measuring the time it takes to complete each request. The test is mixing several requests sizes. The idea is to get a coverage of several sizes, from the smallest request containing only 1 row of data, up to the largest request containing up to 50MB of data. At the end of the test, a summary of the test will be displayed. For each request size, the following fields will be shown: size: size of the requests in bytes or Megabytes. samples: number of samples this request size contained. iters: number of times this request size was sent min: minimum time measured for this request size (in seconds) avg: average time of the this request size (in seconds) max: maximum time measured for this request size (in seconds) used: amount of memory used by drum at the end of this request size (MB) container limit: if tests run in docker container, memory limit for it (MB) total physical: total amount of physical memory avail on the current machine (MB) """ parser = subparsers.add_parser( ArgumentsOptions.PERF_TEST, description=desc, help="Run performance tests", formatter_class=argparse.RawDescriptionHelpFormatter, ) CMRunnerArgsRegistry._parsers[ArgumentsOptions.PERF_TEST] = parser return parser @staticmethod def _register_subcommand_score(subparsers): desc = """ Score an input file using the given model. """ parser = subparsers.add_parser( ArgumentsOptions.SCORE, help="Run predictions in batch mode", description=desc ) CMRunnerArgsRegistry._parsers[ArgumentsOptions.SCORE] = parser return parser @staticmethod def _register_subcommand_fit(subparsers): parser = subparsers.add_parser(ArgumentsOptions.FIT, help="Fit your model to your data") CMRunnerArgsRegistry._parsers[ArgumentsOptions.FIT] = parser return parser @staticmethod def _register_subcommand_validation(subparsers): desc = """ You can validate the model on a set of various checks. It is highly recommended to run these checks, as they are performed in DataRobot before the model can be deployed. List of checks: * null values imputation: each feature of the provided dataset is set to missing and fed to the model. Example: > drum validation --code-dir ~/user_code_dir/ --input 10k.csv --positive-class-label yes --negative-class-label no """ parser = subparsers.add_parser( ArgumentsOptions.VALIDATION, help="Run validation checks against the model", description=desc, formatter_class=argparse.RawDescriptionHelpFormatter, ) CMRunnerArgsRegistry._parsers[ArgumentsOptions.VALIDATION] = parser return parser @staticmethod def _register_subcommand_server(subparsers): desc = """ Serve the given model using REST API. A web server will be started and will use the {address} argument for the host and port to use. The drum prediction server provides the following routes. You may provide the environment variable URL_PREFIX. Note that URLs must end with /. A GET URL_PREFIX/ route, which checks if the server is alive. Example: GET http://localhost:6789/ A POST URL_PREFIX/shutdown/ route, which shuts the server down. Example: POST http://localhost:6789/shutdown/ A POST URL_PREFIX/predict/ route, which returns predictions on data. Example: POST http://localhost:6789/predict/ For this /predict/ route, provide inference data (for the model to make predictions) as form data with a key:value pair, where: key = X and value = filename of the CSV that contains the inference data Example using curl: curl -X POST --form "X=@data_file.csv" localhost:6789/predict/ """ parser = subparsers.add_parser( ArgumentsOptions.SERVER, help="serve the model via REST APIs", description=desc, formatter_class=argparse.RawDescriptionHelpFormatter, ) CMRunnerArgsRegistry._parsers[ArgumentsOptions.SERVER] = parser return parser @staticmethod def _register_subcommand_new(subparsers): parser = subparsers.add_parser( ArgumentsOptions.NEW, description="Create new model/env template", help="Create new model/env template", ) CMRunnerArgsRegistry._parsers[ArgumentsOptions.NEW] = parser return parser @staticmethod def _register_subcommand_new_model(subparsers): parser = subparsers.add_parser( ArgumentsOptions.NEW_MODEL, help="Create a new modeling code directory template" ) CMRunnerArgsRegistry._parsers[ArgumentsOptions.NEW_MODEL] = parser return parser @staticmethod def _register_subcommand_push(subparsers): parser = subparsers.add_parser( ArgumentsOptions.PUSH, help="Add your modeling code into DataRobot", description=PUSH_HELP_TEXT, formatter_class=argparse.RawDescriptionHelpFormatter, ) CMRunnerArgsRegistry._parsers[ArgumentsOptions.PUSH] = parser return parser @staticmethod def get_arg_parser(): parser = argparse.ArgumentParser(description="Run user model") CMRunnerArgsRegistry._parsers[ArgumentsOptions.MAIN_COMMAND] = parser CMRunnerArgsRegistry._reg_arg_version(parser) subparsers = parser.add_subparsers( dest=CMRunnerArgsRegistry.SUBPARSER_DEST_KEYWORD, help="Commands" ) score_parser = CMRunnerArgsRegistry._register_subcommand_score(subparsers) fit_parser = CMRunnerArgsRegistry._register_subcommand_fit(subparsers) perf_test_parser = CMRunnerArgsRegistry._register_subcommand_perf_test(subparsers) validation_parser = CMRunnerArgsRegistry._register_subcommand_validation(subparsers) server_parser = CMRunnerArgsRegistry._register_subcommand_server(subparsers) new_parser = CMRunnerArgsRegistry._register_subcommand_new(subparsers) new_subparsers = new_parser.add_subparsers( dest=CMRunnerArgsRegistry.NEW_SUBPARSER_DEST_KEYWORD, help="Commands" ) new_model_parser = CMRunnerArgsRegistry._register_subcommand_new_model(new_subparsers) push_parser = CMRunnerArgsRegistry._register_subcommand_push(subparsers) # Note following args are not supported for perf-test, thus set as default perf_test_parser.set_defaults(logging_level="warning", verbose=False) validation_parser.set_defaults(logging_level="warning", verbose=False) CMRunnerArgsRegistry._reg_arg_code_dir( score_parser, perf_test_parser, server_parser, fit_parser, new_model_parser, validation_parser, push_parser, ) CMRunnerArgsRegistry._reg_arg_verbose( score_parser, server_parser, fit_parser, new_parser, new_model_parser, push_parser, perf_test_parser, ) CMRunnerArgsRegistry._reg_arg_input( score_parser, perf_test_parser, fit_parser, validation_parser ) CMRunnerArgsRegistry._reg_arg_pos_neg_labels( score_parser, perf_test_parser, server_parser, fit_parser, validation_parser ) CMRunnerArgsRegistry._reg_arg_multiclass_labels( score_parser, perf_test_parser, server_parser, fit_parser, validation_parser, push_parser, ) CMRunnerArgsRegistry._reg_arg_logging_level( score_parser, server_parser, fit_parser, new_parser, new_model_parser, push_parser ) CMRunnerArgsRegistry._reg_arg_docker( score_parser, perf_test_parser, server_parser, fit_parser, validation_parser, push_parser, ) CMRunnerArgsRegistry._reg_arg_skip_deps_install( score_parser, perf_test_parser, server_parser, fit_parser, validation_parser, push_parser, ) CMRunnerArgsRegistry._reg_arg_memory( score_parser, perf_test_parser, server_parser, fit_parser, validation_parser, push_parser, ) CMRunnerArgsRegistry._reg_arg_output(score_parser, fit_parser) CMRunnerArgsRegistry._reg_arg_show_perf(score_parser, server_parser) CMRunnerArgsRegistry._reg_arg_target_feature_and_filename(fit_parser) CMRunnerArgsRegistry._reg_arg_weights(fit_parser) CMRunnerArgsRegistry._reg_arg_skip_predict(fit_parser) CMRunnerArgsRegistry._reg_arg_num_rows(fit_parser) CMRunnerArgsRegistry._reg_arg_sparse_colfile(fit_parser) CMRunnerArgsRegistry._reg_arg_samples(perf_test_parser) CMRunnerArgsRegistry._reg_arg_iterations(perf_test_parser) CMRunnerArgsRegistry._reg_arg_timeout(perf_test_parser) CMRunnerArgsRegistry._reg_arg_in_server(perf_test_parser) CMRunnerArgsRegistry._reg_arg_url(perf_test_parser) CMRunnerArgsRegistry._reg_arg_address(server_parser) CMRunnerArgsRegistry._reg_arg_production_server(server_parser, perf_test_parser) CMRunnerArgsRegistry._reg_arg_max_workers(server_parser, perf_test_parser) CMRunnerArgsRegistry._reg_arg_with_error_server(server_parser) CMRunnerArgsRegistry._reg_arg_language( new_model_parser, server_parser, score_parser, perf_test_parser, validation_parser ) CMRunnerArgsRegistry._reg_arg_show_stacktrace( score_parser, perf_test_parser, server_parser, fit_parser, validation_parser, new_model_parser, ) CMRunnerArgsRegistry._reg_args_monitoring(score_parser, server_parser) CMRunnerArgsRegistry._reg_arg_target_type( score_parser, perf_test_parser, server_parser, fit_parser, validation_parser ) CMRunnerArgsRegistry._reg_args_unstructured_mode( score_parser, perf_test_parser, server_parser, validation_parser ) CMRunnerArgsRegistry._reg_args_deployment_config(server_parser) return parser @staticmethod def verify_monitoring_options(options, parser_name): if options.subparser_name in [ArgumentsOptions.SERVER, ArgumentsOptions.SCORE]: if options.monitor: if options.target_type == TargetType.UNSTRUCTURED.value: print("Error: MLOps monitoring can not be used in unstructured mode.") exit(1) missing_args = [] if options.model_id is None: missing_args.append(ArgumentsOptions.MODEL_ID) if options.deployment_id is None: missing_args.append(ArgumentsOptions.DEPLOYMENT_ID) if options.monitor_settings is None: missing_args.append(ArgumentsOptions.MONITOR_SETTINGS) if len(missing_args) > 0: print("\n") print("Error: MLOps Monitoring requires all monitoring options to be present.") print("Note: The following MLOps monitoring option(s) is/are missing:") for arg in missing_args: print(" {}".format(arg)) print("\n") print("These options can also be obtained via environment variables") print("\n") CMRunnerArgsRegistry._parsers[parser_name].print_help() exit(1) # Monitor options are used to fill in pipeline json, # so define them for the modes different from score and server else: options.monitor = False options.model_id = None options.deployment_id = None options.monitor_settings = None @staticmethod def verify_options(options): if not options.subparser_name: CMRunnerArgsRegistry._parsers[ArgumentsOptions.MAIN_COMMAND].print_help() exit(1) elif options.subparser_name == ArgumentsOptions.NEW: if not options.new_mode: CMRunnerArgsRegistry._parsers[ArgumentsOptions.NEW].print_help() exit(1) elif options.subparser_name in [ArgumentsOptions.SERVER, ArgumentsOptions.PERF_TEST]: if options.production: if options.verbose: print("Checking if uwsgi is installed...") result = subprocess.run( [sys.executable, "-m", "pip", "show", "uwsgi"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) if result.returncode != 0: print( "Looks like 'uwsgi` package is missing. Don't use '{}' option when running drum server or try to install 'uwsgi'.".format( ArgumentsOptions.PRODUCTION ) ) print(result.stdout.decode("utf8")) print(result.stderr.decode("utf8")) exit(1) else: if options.verbose: print("uwsgi detected") elif options.subparser_name in [ArgumentsOptions.FIT]: if options.target_type == TargetType.ANOMALY.value: if any([options.target, options.target_csv]): print( "Arguments '{}' and '{}' are mutually exclusive with '{}' target type.".format( ArgumentsOptions.TARGET, ArgumentsOptions.TARGET_CSV, options.target_type, ) ) exit(1) elif options.target_type != TargetType.TRANSFORM.value: if not any([options.target, options.target_csv]): print( "With target type '{}', target feature has to be provided using '{}' or '{}' argument.".format( options.target_type, ArgumentsOptions.TARGET, ArgumentsOptions.TARGET_CSV, ) ) exit(1) if getattr(options, "skip_deps_install", False) and options.docker is None: print( "Argument '{}' can only be used together with '{}'.".format( ArgumentsOptions.SKIP_DEPS_INSTALL, ArgumentsOptions.DOCKER, ) ) exit(1) CMRunnerArgsRegistry.verify_monitoring_options(options, options.subparser_name)
from setuptools import setup setup(name='latext', version='0.0.7', description='For converting LaTeX to spoken text.', url='https://github.com/Alex-Tremayne/LaTeXt', author='Alex Tremayne', author_email='alexjtremayne@gmail.com', license='MIT', classifiers=['Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6'], packages=['latext'], zip_safe=False)
#!/bin/env python3 import io import logging import os import os.path import re import tarfile import zipfile from collections import namedtuple import magic import requests import yaml from github import Github from requests.exceptions import ConnectionError from semver import VersionInfo Asset = namedtuple('Asset', ['name', 'browser_download_url']) # NOSONAR AssetWithPriority = namedtuple('AssetWithPriority', ['asset', 'priority']) # NOSONAR Release = namedtuple('Release', ['release', 'assets']) # NOSONAR VALID_EXECUTABLE_MIMES = [ 'application/x-executable', 'application/x-sharedlib', 'text/x-java', 'text/x-lisp', 'text/x-lua', 'text/x-perl', 'text/x-python', 'text/x-ruby', 'text/x-shellscript', 'text/x-tcl' ] MIN_ASSET_PRIORITY = 999 empty_asset_with_lowest_priority = AssetWithPriority(Asset(None, None), MIN_ASSET_PRIORITY) def install_package_from_repo(repo): releases = [ Release(release, [asset for asset in release.get_assets()]) for release in repo.get_releases() if valid_release(release) ] sorting_key = lambda item: get_semver(item.release.tag_name) sorted_releases = sorted(releases, key=sorting_key, reverse=True) asset_to_download = get_preferred_asset(sorted_releases[0].assets) logging.info(f" Chosen: {asset_to_download.name}") logging.info(f" Size: {asset_to_download.size // 1024 / 1024:.2f}MB") logging.debug(f" URL: {asset_to_download.browser_download_url}") install_package(asset_to_download.browser_download_url, "/tmp") def valid_release(release): return not (release.prerelease or release.draft) and type(get_semver(release.tag_name)) is VersionInfo def get_semver(version): search_ver = re.search(r'^v?(?P<ver>\d+(\.\d+)+.*)', version, re.IGNORECASE) if (search_ver): try: ver = VersionInfo.parse(search_ver.group('ver')) logging.debug(f' valid release: {ver}') except (ValueError, TypeError, AttributeError): ver = None else: ver = None return ver def get_preferred_asset(valid_assets, asset_with_priority=empty_asset_with_lowest_priority): if len(valid_assets) == 0: return asset_with_priority.asset head, *tail = valid_assets if any(exclusion.search(head.name) for exclusion in exclusion_regexes()): return get_preferred_asset(tail, asset_with_priority) else: return get_preferred_asset(tail, get_highest_priority_asset(head, asset_with_priority)) def exclusion_regexes(): # Singleton function, initializes static variable regex_list only in the first call if getattr(exclusion_regexes, 'regex_list', None) is None: exclusion_regexes.regex_list = [ re.compile(r'\.(sig|deb|txt|yaml|exe|des|md5|sha[1-8]{1,3})$', re.I), re.compile(r'^(AUTHOR|README|LICENSE|completions|md5|sha[1-8]{1,3})', re.I), re.compile(r'(win(dows)?|darwin|mac(os)?|netbsd|android|source|arm)', re.I) ] return exclusion_regexes.regex_list def get_highest_priority_asset(asset, asset_with_priority=empty_asset_with_lowest_priority): valid_asset_with_priority = asset_with_priority matches = list( map(lambda expr_list: 'priority' if all(expr.search(asset.name) != None for expr in expr_list) else 'no match', inclusion_regexes())) asset_priority = matches.index('priority') if 'priority' in matches else MIN_ASSET_PRIORITY logging.debug(f" priority: {asset_priority:3d} name: {asset.name} size: {asset.size}") if asset_priority < asset_with_priority.priority: valid_asset_with_priority = AssetWithPriority(asset, asset_priority) return valid_asset_with_priority def inclusion_regexes(): # Singleton function, initializes static variable regex_list only in the first call if getattr(inclusion_regexes, 'regex_list', None) is None: accepted_architectures = [ re.compile(expression, re.I) for expression in [r'(x86_64|amd64)', r'.*(?!x86_64|amd64).*$'] ] accepted_os = [ re.compile(expression, re.I) for expression in [r'[_.-]linux-gnu([_.-]|$)', r'[_.-]linux-musl([_.-]|$)', r'[_.-]linux([_.-]|$)'] ] accepted_extensions = [ re.compile(expression, re.I) for expression in [r'^(?!.*\.(tar\.gz|zip)$).*$', r'\.tar(\.gz)?$', r'\.zip$'] ] inclusion_regexes.regex_list = [] for architecture in accepted_architectures: for os_name in accepted_os: for extension in accepted_extensions: inclusion_regexes.regex_list.append( [re.compile(architecture), re.compile(os_name), re.compile(extension)]) return inclusion_regexes.regex_list def install_package(url, dest): logging.debug(f" Dest: {dest}") fname = url[url.rfind('/') + 1:] try: response = requests.get(url) logging.info(f" Mime: {mimetype(response.content)}") extracted_files = extracted_content(fname, response.content) except ConnectionError as e: logging.error(e.strerror) extracted_files = [] return extracted_files def extracted_content(fname, content): files = [] compressed_stream = io.BytesIO(content) mime = mimetype(content) if mime in ['application/x-compressed-tar', 'application/x-tar'] or (mime == 'application/gzip' and fname.endswith('tar.gz')): mode = 'r:' if mime == 'application/x-tar' else 'r:gz' files = generic_unpack(compressed_stream=compressed_stream, get_package_handle=lambda stream: tarfile.open(fileobj=stream, mode=mode), get_files=lambda tar: tar.getmembers(), is_file=lambda tarinfo: tarinfo.isfile(), get_fd=lambda tar, file: tar.extractfile(file), get_file_name=lambda file: file.name) elif mime == 'application/zip': files = generic_unpack(compressed_stream=compressed_stream, get_package_handle=lambda stream: zipfile.ZipExtFile(stream, mode='r'), get_files=lambda zip: zip.infolist(), is_file=lambda zipinfo: not zipinfo.is_dir(), get_fd=lambda zip, file: zip.open(file), get_file_name=lambda file: file.filename) elif mime in VALID_EXECUTABLE_MIMES: files.append({'name': fname, 'mime': mime, 'content': content}) return files def generic_unpack(compressed_stream, get_package_handle, get_files, is_file, get_fd, get_file_name): files = [] with get_package_handle(compressed_stream) as package: for file in [fileinfo for fileinfo in get_files(package) if is_file(fileinfo)]: logging.info(f'\t name: {get_file_name(file)}') with get_fd(package, file) as file_descriptor: if file_descriptor: file_content = file_descriptor.read() mime_type = mimetype(file_content) files.append({'name': get_file_name(file), 'mime': mime_type, 'content': file_content}) logging.debug(f'\t name: {get_file_name(file)}, mime: {mime_type}') else: logging.error(f'\t error extracting file {get_file_name(file)}') return files def mimetype(it): return magic.from_descriptor(it, mime=True) if type(it) is file else magic.from_buffer(it, mime=True) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) with open(os.path.expanduser('~/workstation-install/packages.yml')) as file: packages = yaml.load(file.read(), Loader=yaml.SafeLoader) github_connection = Github(os.environ['GITHUB_TOKEN']) for repo in (github_connection.get_repo(repo_name) for repo_name in packages['blindspot_packages']): logging.info(f'### {repo.name}') install_package_from_repo(repo)
from django.shortcuts import render from django.core.paginator import EmptyPage, PageNotAnInteger, Paginator from actualite.models import Actualite # Create your views here. def actualite_views(request): actualite_list = Actualite.objects.all().order_by('-created')[:1] actualite_list_laterale = Actualite.objects.all().order_by('-created')[:3] actu = Actualite.objects.all().order_by('-created') paginator = Paginator(actu, 12) page = request.GET.get('page') try: actu_relative = paginator.page(page) except PageNotAnInteger: actu_relative = paginator.page(1) except EmptyPage: actu_relative = paginator.page(paginator.num_pages) context = { 'actualite_list': actualite_list, 'actualite_list_laterale': actualite_list_laterale, 'actu_relative': actu_relative } template_name = 'pages/actualite/actualite.html' return render(request, template_name, context) def actualite_view_detail(request, id): actualite_list = Actualite.objects.get(id=id) actu = Actualite.objects.all().order_by('?') paginator = Paginator(actu, 8) page = request.GET.get('page') try: actu_relative = paginator.page(page) except PageNotAnInteger: actu_relative = paginator.page(1) except EmptyPage: actu_relative = paginator.page(paginator.num_pages) context = { "actualite_list": actualite_list, "actu_relative": actu_relative } template_name = 'pages/actualite/actualite-view.html' return render(request, template_name, context) def actualite_views_province(request): actu = Actualite.objects.all() paginator = Paginator(actu, 9) page = request.GET.get('page') try: actu_province = paginator.page(page) except PageNotAnInteger: actu_province = paginator.page(1) except EmptyPage: actu_province = paginator.page(paginator.num_pages) context = { 'actu_province': actu_province, } template_name = 'pages/actualite/province.html' return render(request, template_name, context)
from django.db import models class Mappings(models.Model): TRUE_NAME = models.CharField(max_length = 100, default = "NONAME") FILE_NAME = models.CharField(max_length = 100, default = "NONAME") FILE_LINK = models.TextField(default = "NOFILE") GEXF_LINK = models.TextField(default = "NOGEXF")
from recognizers.program import Program class Parser: def __init__(self, lexical_reclassifier): self.lexical = lexical_reclassifier def parse(self): reuse_token = False stack = [] machine = Program() while True: if not reuse_token: token = self.lexical.get_token() if token.value == 'EOF': break reuse_token = False print('token: {} | state: ({}, {}) | stack len: {}' .format(token.value, machine.__class__.__name__, machine.get_state(), len(stack))) try: while True: sub_machine = machine.process_atom(token) # print('sub machine = {}'.format(sub_machine.__class__.__name__)) if sub_machine: stack.append(machine) machine = sub_machine else: break except ValueError as ex: if machine.accept(): reuse_token = True try: machine = stack.pop() except IndexError: print('Syntax error.') return False else: # Unexpected error print(ex) return False stack.append(machine) for m in stack: if not m.accept(): return False return True
# diagrams as code vía https://diagrams.mingrammer.com from diagrams import Cluster, Diagram, Edge, Node from diagrams.aws.security import IAM, IAMRole from diagrams.aws.management import Cloudtrail from diagrams.aws.storage import S3 from diagrams.aws.compute import ECR with Diagram("Sysdig Secure for Cloud\n(organizational permissions)", filename="diagram-permissions", show=True): with Cluster("member account (sysdig workload)"): # bench_role = IAMRole(label="Benchmark role") member_sysdig_role = IAMRole(label="OrganizationAccountAccessRole") member_sysdig_ecr = ECR("container registry") member_sysdig_role >> member_sysdig_ecr ecs_role = IAMRole(label="ECSTaskRole") # bench_role - Edge(style="invis") - member_sysdig_ecr with Cluster("member accounts"): # IAMRole(label="Benchmark role") member_role = IAMRole(label="OrganizationAccountAccessRole") member_ecr = ECR("container registry") member_role >> member_ecr with Cluster("management account"): # IAMRole(label="Benchmark role") sf4c_role = IAMRole(label="SysdigSecureForCloud") sf4c_role >> Cloudtrail() sf4c_role >> S3() ecs_role >> sf4c_role sf4c_role >> member_role sf4c_role >> member_sysdig_role