content
stringlengths
5
1.05M
from pymongo import MongoClient client = MongoClient('mongodb://localhost:27017/') db = client.details def validate_user(username, password): user_query = list(db.users.find({"$and": [{'username': username}, {'password': password}]})) if len(user_query) == 0: return False else: return True def app_settings(): settings_dict = {} settings = open("./server/config.py", "r") settings_array = settings.readlines() for element in settings_array: key = element.split('=')[0].rstrip('\n') value = element.split('=')[1].rstrip('\n') settings_dict[key] = value return settings_dict
from .action import Action from .contract import SystemAction
""" https://github.github.com/gfm/#disallowed-raw-html-extension- """ import pytest from .utils import act_and_assert @pytest.mark.skip def test_disallowed_raw_html_extension_653(): """ Test case 653: All other HTML tags are left untouched. """ # Arrange source_markdown = """<strong> <title> <style> <em> <blockquote> <xmp> is disallowed. <XMP> is also disallowed. </blockquote>""" expected_tokens = [ "[para:]", "[raw-html:a]", "[raw-html:bab]", "[raw-html:c2c]", "[end-para]", ] expected_gfm = """ """ # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens)
#!/usr/bin/python """ Author: Nick Russo <njrusmc@gmail.com> File contains custom filters for use in Ansible playbooks. https://www.ansible.com/ """ import re import ipaddress class FilterModule(object): """ Defines a filter module object. """ @staticmethod def filters(): """ Return a list of hashes where the key is the filter name exposed to playbooks and the value is the function. """ return { "ios_ospf_neighbor": FilterModule.ios_ospf_neighbor, "ios_ospf_basic": FilterModule.ios_ospf_basic, "ios_ospf_dbsum": FilterModule.ios_ospf_dbsum, "ios_ospf_traffic": FilterModule.ios_ospf_traffic, "ios_ospf_frr": FilterModule.ios_ospf_frr, "ios_bfd_neighbor": FilterModule.ios_bfd_neighbor, "check_bfd_up": FilterModule.check_bfd_up, "iosxr_ospf_traffic": FilterModule.iosxr_ospf_traffic, "iosxr_ospf_basic": FilterModule.iosxr_ospf_basic, "iosxr_ospf_neighbor": FilterModule.iosxr_ospf_neighbor, "nxos_ospf_basic": FilterModule.nxos_ospf_basic, "nxos_ospf_neighbor": FilterModule.nxos_ospf_neighbor, "nxos_ospf_dbsum": FilterModule.nxos_ospf_dbsum, "nxos_ospf_traffic": FilterModule.nxos_ospf_traffic, } @staticmethod def _read_match(match, key_filler_list=None): """ Helper function which consumes a match object and an optional list of keys to populate with None values if match is invalid. Many operations follow this basic workflow, which iterates over the items captured in the match, attempts to make them integers whenever possible, and returns the resulting dict. """ return_dict = None if match: return_dict = match.groupdict() for key in return_dict.keys(): return_dict[key] = FilterModule._try_int(return_dict[key]) elif key_filler_list: return_dict = {} for key in key_filler_list: return_dict.update({key: None}) return return_dict @staticmethod def _get_match_items(pattern, text, extra_flags=0): """ Helper function that can perform iterative block matching given a pattern and input text. Additional regex flags (re.DOTALL, etc) can be optionally specified. Any fields that can be parsed as integers are converted and the list of dictionaries containing the matches of each block is returned. """ regex = re.compile(pattern, re.VERBOSE + extra_flags) items = [match.groupdict() for match in regex.finditer(text)] for item in items: for key in item.keys(): item[key] = FilterModule._try_int(item[key]) return items @staticmethod def nxos_ospf_traffic(text): """ Parses information from the Cisco NXOS "show ip ospf traffic" command family. This is useful for verifying various characteristics of an OSPF process/area statistics for troubleshooting. """ process_pattern = r""" OSPF\s+Process\s+ID\s+(?P<pid>\d+)\s+ .*? Ignored\s+LSAs:\s+(?P<ignore_lsa>\d+),\s+ LSAs\s+dropped\s+during\s+SPF:\s+(?P<lsa_drop_spf>\d+)\s+ LSAs\s+dropped\s+during\s+graceful\s+restart:\s+(?P<lsa_drop_gr>\d+) \s+Errors:\s+ drops\s+in\s+(?P<drops_in>\d+),\s+ drops\s+out\s+(?P<drops_out>\d+),\s+ errors\s+in\s+(?P<errors_in>\d+),\s+ errors\s+out\s+(?P<errors_out>\d+),\s+ hellos\s+in\s+(?P<hellos_in>\d+),\s+ dbds\s+in\s+(?P<dbds_in>\d+),\s+ lsreq\s+in\s+(?P<lsreq_in>\d+),\s+ lsu\s+in\s+(?P<lsu_in>\d+),\s+ lsacks\s+in\s+(?P<lsacks_in>\d+),\s+ unknown\s+in\s+(?P<unk_in>\d+),\s+ unknown\s+out\s+(?P<unk_out>\d+),\s+ no\s+ospf\s+(?P<no_ospf>\d+),\s+ bad\s+version\s+(?P<bad_ver>\d+),\s+ bad\s+crc\s+(?P<bad_crc>\d+),\s+ dup\s+rid\s+(?P<dup_rid>\d+),\s+ dup\s+src\s+(?P<dup_src>\d+),\s+ invalid\s+src\s+(?P<inv_src>\d+),\s+ invalid\s+dst\s+(?P<inv_dst>\d+),\s+ no\s+nbr\s+(?P<no_nbr>\d+),\s+ passive\s+(?P<passive>\d+),\s+ wrong\s+area\s+(?P<wrong_area>\d+),\s+ pkt\s+length\s+(?P<pkt_len>\d+),\s+ nbr\s+changed\s+rid/ip\s+addr\s+(?P<nbr_change>\d+)\s+ bad\s+auth\s+(?P<bad_auth>\d+),\s+ no\s+vrf\s+(?P<no_vrf>\d+) """ return FilterModule._get_match_items(process_pattern, text, re.DOTALL) @staticmethod def nxos_ospf_dbsum(text): """ Parses information from the Cisco NXOS "show ip ospf database database-summary" command family. This is useful for verifying various characteristics of an OSPF database to count LSAs for simple verification. """ return_dict = {} process_pattern = r""" Process\s+(?P<process_id>\d+)\s+database\s+summary\s+ LSA\s+Type\s+Count\s+ Opaque\s+Link\s+\d+\s+ Router\s+(?P<total_lsa1>\d+)\s+ Network\s+(?P<total_lsa2>\d+)\s+ Summary\s+Network\s+(?P<total_lsa3>\d+)\s+ Summary\s+ASBR\s+(?P<total_lsa4>\d+)\s+ Type-7\s+AS\s+External\s+(?P<total_lsa7>\d+)\s+ Opaque\s+Area\s+\d+\s+ Type-5\s+AS\s+External\s+(?P<total_lsa5>\d+) """ regex = re.compile(process_pattern, re.VERBOSE) match = regex.search(text) key_filler_list = [ "process_id", "total_lsa1", "total_lsa2", "total_lsa3", "total_lsa4", "total_lsa5", "total_lsa7", ] process = FilterModule._read_match(match, key_filler_list) return_dict.update({"process": process}) area_pattern = r""" Area\s+(?P<id>\d+\.\d+\.\d+\.\d+)\s+database\s+summary\s+ LSA\s+Type\s+Count\s+ Opaque\s+Link\s+\d+\s+ Router\s+(?P<num_lsa1>\d+)\s+ Network\s+(?P<num_lsa2>\d+)\s+ Summary\s+Network\s+(?P<num_lsa3>\d+)\s+ Summary\s+ASBR\s+(?P<num_lsa4>\d+)\s+ Type-7\s+AS\s+External\s+(?P<num_lsa7>\d+)\s+ """ areas = FilterModule._get_match_items(area_pattern, text) return_dict.update({"areas": areas}) return return_dict @staticmethod def nxos_ospf_neighbor(text): """ Parses information from the Cisco NXOS "show ip ospf neighbor" command family. This is useful for verifying various characteristics of an OSPF neighbor's state. """ pattern = r""" (?P<rid>\d+\.\d+\.\d+\.\d+)\s+ (?P<priority>\d+)\s+ (?P<state>\w+)/\s* (?P<role>[A-Z-]+)\s+ (?P<uptime>[0-9:hdwy]+|-)\s+ (?P<peer>\d+\.\d+\.\d+\.\d+)\s+ (?P<intf>[0-9A-Za-z./_-]+) """ return FilterModule._ospf_neighbor(pattern, text, ["uptime"]) @staticmethod def nxos_ospf_basic(text): """ Parses information from the Cisco NXOS "show ospf" command family. This is useful for verifying various characteristics of an OSPF process and its basic configuration. """ return_dict = {} process_pattern = r""" Routing\s+Process\s+(?P<id>\d+)\s+with\s+ID\s+(?P<rid>\d+\.\d+\.\d+\.\d+) .* \s*Reference\s+Bandwidth\s+is\s+(?P<ref_bw>\d+)\s+Mbps .* \s*SPF\s+throttling\s+delay\s+time\s+of\s+(?P<init_spf>\d+)(?:\.\d+)\s+msecs, \s*SPF\s+throttling\s+hold\s+time\s+of\s+(?P<min_spf>\d+)(?:\.\d+)\s+msecs, \s*SPF\s+throttling\s+maximum\s+wait\s+time\s+of\s+(?P<max_spf>\d+)(?:\.\d+)\s+msecs """ regex = re.compile(process_pattern, re.VERBOSE + re.DOTALL) match = regex.search(text) process = FilterModule._read_match(match, ["process"]) if process: is_abr = text.find("area border") != -1 is_asbr = text.find("autonomous system boundary") != -1 is_stub_rtr = text.find("Originating router LSA with max") != -1 process.update( {"is_abr": is_abr, "is_asbr": is_asbr, "is_stub_rtr": is_stub_rtr,} ) return_dict.update({"process": process}) area_pattern = r""" Area\s+(?:BACKBONE)?\((?P<id_dd>\d+\.\d+\.\d+\.\d+)\)\s+ \s+(?:Area\s+has\s+existed.*)\n \s+Interfaces\s+in\s+this\s+area:\s+(?P<num_intfs>\d+).*\n \s+(?:Passive.*)\n \s+(?:This\s+area\s+is\s+a\s+(?P<type>\w+)\s+area)? """ regex = re.compile(area_pattern, re.VERBOSE) areas = [match.groupdict() for match in regex.finditer(text)] for area in areas: area["num_intfs"] = FilterModule._try_int(area["num_intfs"]) converted_dd = ipaddress.IPv4Address(area["id_dd"]) area["id"] = FilterModule._try_int(converted_dd) if not area["type"]: area["type"] = "standard" else: area["type"] = area["type"].lower() return_dict.update({"areas": areas}) return return_dict @staticmethod def _try_int(text): """ Attempts to parse an integer from the input text. If it fails, just return the text as it was passed in. This is useful for iterating across structures with many integers which should be stored as integers, not strings. """ try: return int(text) except ValueError: return text @staticmethod def ios_ospf_neighbor(text): """ Parses information from the Cisco IOS "show ip ospf neighbor" command family. This is useful for verifying various characteristics of an OSPF neighbor's state. """ pattern = r""" (?P<rid>\d+\.\d+\.\d+\.\d+)\s+ (?P<priority>\d+)\s+ (?P<state>\w+)/\s* (?P<role>[A-Z-]+)\s+ (?P<deadtime>[0-9:]+|-)\s+ (?P<peer>\d+\.\d+\.\d+\.\d+)\s+ (?P<intf>[0-9A-Za-z./_-]+) """ return FilterModule._ospf_neighbor(pattern, text, ["deadtime"]) @staticmethod def ios_ospf_basic(text): """ Parses information from the Cisco IOS "show ospf" command family. This is useful for verifying various characteristics of an OSPF process and its basic configuration. """ return_dict = {} process_pattern = r""" Routing\s+Process\s+"ospf\s+(?P<id>\d+)"\s+with\s+ID\s+(?P<rid>\d+\.\d+\.\d+\.\d+) .* \s*Initial\s+SPF\s+schedule\s+delay\s+(?P<init_spf>\d+)\s+msecs \s*Minimum\s+hold\s+time\s+between\s+two\s+consecutive\s+SPFs\s+(?P<min_spf>\d+)\s+msecs \s*Maximum\s+wait\s+time\s+between\s+two\s+consecutive\s+SPFs\s+(?P<max_spf>\d+)\s+msecs .* \s*Reference\s+bandwidth\s+unit\s+is\s+(?P<ref_bw>\d+)\s+mbps """ regex = re.compile(process_pattern, re.VERBOSE + re.DOTALL) match = regex.search(text) process = FilterModule._read_match(match, ["process"]) if process: process.update( { "is_abr": text.find("area border") != -1, "is_asbr": text.find("autonomous system boundary") != -1, "is_stub_rtr": text.find("Originating router-LSAs with") != -1, "has_ispf": text.find("Incremental-SPF enabled") != -1, "has_bfd": text.find("BFD is enabled") != -1, "has_ttlsec": text.find("Strict TTL checking enabled") != -1, } ) return_dict.update({"process": process}) area_pattern = r""" Area\s+(?:BACKBONE\()?(?P<id>\d+)(?:\))?\s+ Number\s+of\s+interfaces\s+in\s+this\s+area\s+is\s+(?P<num_intfs>\d+).*\n \s+(?:It\s+is\s+a\s+(?P<type>\w+)\s+area)? """ regex = re.compile(area_pattern, re.VERBOSE) areas = [match.groupdict() for match in regex.finditer(text)] for area in areas: area["num_intfs"] = FilterModule._try_int(area["num_intfs"]) area["id"] = FilterModule._try_int(area["id"]) if not area["type"]: area["type"] = "standard" else: area["type"] = area["type"].lower() return_dict.update({"areas": areas}) return return_dict @staticmethod def ios_ospf_dbsum(text): """ Parses information from the Cisco IOS "show ip ospf database database-summary" command family. This is useful for verifying various characteristics of an OSPF database to count LSAs for simple verification. Note that this parser is generic enough to cover Cisco IOS-XR also. """ return_dict = {} process_pattern = r""" Process\s+(?P<process_id>\d+)\s+database\s+summary\s+ (?:LSA\s+Type\s+Count\s+Delete\s+Maxage\s+)? Router\s+(?P<total_lsa1>\d+).*\n\s+ Network\s+(?P<total_lsa2>\d+).*\n\s+ Summary\s+Net\s+(?P<total_lsa3>\d+).*\n\s+ Summary\s+ASBR\s+(?P<total_lsa4>\d+).*\n\s+ Type-7\s+Ext\s+(?P<total_lsa7>\d+).* \s+Type-5\s+Ext\s+(?P<total_lsa5>\d+) """ regex = re.compile(process_pattern, re.VERBOSE + re.DOTALL) match = regex.search(text) key_filler_list = [ "process_id", "total_lsa1", "total_lsa2", "total_lsa3", "total_lsa4", "total_lsa5", "total_lsa7", ] process = FilterModule._read_match(match, key_filler_list) return_dict.update({"process": process}) area_pattern = r""" Area\s+(?P<id>\d+)\s+database\s+summary\s+ (?:LSA\s+Type\s+Count\s+Delete\s+Maxage\s+)? Router\s+(?P<num_lsa1>\d+).*\n\s+ Network\s+(?P<num_lsa2>\d+).*\n\s+ Summary\s+Net\s+(?P<num_lsa3>\d+).*\n\s+ Summary\s+ASBR\s+(?P<num_lsa4>\d+).*\n\s+ Type-7\s+Ext\s+(?P<num_lsa7>\d+) """ areas = FilterModule._get_match_items(area_pattern, text) return_dict.update({"areas": areas}) return return_dict @staticmethod def ios_ospf_traffic(text): """ Parses information from the Cisco IOS "show ip ospf traffic" command family. This is useful for verifying various characteristics of an OSPF process/area statistics for troubleshooting. """ interface_pattern = r""" Interface\s+(?P<intf>[^s]\S+)\s+ .*? OSPF\s+header\s+errors \s+Length\s+(?P<length>\d+), \s+Instance\s+ID\s+(?P<instance_id>\d+), \s+Checksum\s+(?P<checksum>\d+), \s+Auth\s+Type\s+(?P<auth_type>\d+), \s+Version\s+(?P<version>\d+), \s+Bad\s+Source\s+(?P<bad_src>\d+), \s+No\s+Virtual\s+Link\s+(?P<no_vl>\d+), \s+Area\s+Mismatch\s+(?P<area_mismatch>\d+), \s+No\s+Sham\s+Link\s+(?P<no_sl>\d+), \s+Self\s+Originated\s+(?P<self_orig>\d+), \s+Duplicate\s+ID\s+(?P<dup_rid>\d+), \s+Hello\s+(?P<hello_pkt>\d+), \s+MTU\s+Mismatch\s+(?P<mtu_mismatch>\d+), \s+Nbr\s+Ignored\s+(?P<nbr_ignored>\d+), \s+LLS\s+(?P<lls>\d+), \s+Unknown\s+Neighbor\s+(?P<unk_nbr>\d+), \s+Authentication\s+(?P<auth>\d+), \s+TTL\s+Check\s+Fail\s+(?P<ttlsec_fail>\d+), \s+Adjacency\s+Throttle\s+(?P<adj_throttle>\d+), \s+BFD\s+(?P<bfd>\d+), \s+Test\s+discard\s+(?P<test_discard>\d+) \s*OSPF\s+LSA\s+errors \s+Type\s+(?P<lsa_type>\d+), \s+Length\s+(?P<lsa_length>\d+), \s+Data\s+(?P<lsa_data>\d+), \s+Checksum\s+(?P<lsa_checksum>\d+) """ return FilterModule._get_match_items(interface_pattern, text, re.DOTALL) @staticmethod def ios_ospf_frr(text): """ Parses information from the Cisco IOS "show ip ospf fast-reroute" command family. This is useful for verifying various characteristics of OSPF FRR/LFA configuration to ensure it is configured correctly. """ pattern = r""" (?P<id>\d+)\s+ (?P<topology>\w+)\s+ (?P<pref_pri>(High|Low))\s+ (?P<rlfa>(Yes|No))\s+ (?P<tilfa>(Yes|No)) """ regex = re.compile(pattern, re.VERBOSE) frr_area_dict = {} for line in text.split("\n"): match = regex.search(line) if match: gdict = match.groupdict() area = "area" + gdict["id"] gdict["id"] = FilterModule._try_int(gdict["id"]) gdict["rlfa"] = gdict["rlfa"].lower() == "yes" gdict["tilfa"] = gdict["tilfa"].lower() == "yes" gdict["pref_pri"] = gdict["pref_pri"].lower() gdict["topology"] = gdict["topology"].lower() frr_area_dict.update({area: gdict}) return frr_area_dict @staticmethod def ios_bfd_neighbor(text): """ Parses information from the Cisco IOS "show bfd neighbor" command family. This is useful for verifying various characteristics of an BFD neighbor's state. """ pattern = r""" (?P<peer>\d+\.\d+\.\d+\.\d+)\s+ (?P<ld>\d+)/ (?P<rd>\d+)\s+ (?P<rhrs>\w+)\s+ (?P<state>\w+)\s+ (?P<intf>[0-9A-Za-z./-]+) """ regex = re.compile(pattern, re.VERBOSE) bfd_neighbors = [] for line in text.split("\n"): match = regex.search(line) if match: gdict = match.groupdict() gdict["ld"] = FilterModule._try_int(gdict["ld"]) gdict["rd"] = FilterModule._try_int(gdict["rd"]) gdict["rhrs"] = gdict["rhrs"].lower() gdict["state"] = gdict["state"].lower() gdict["intf"] = gdict["intf"].lower() bfd_neighbors.append(gdict) return bfd_neighbors @staticmethod def check_bfd_up(bfd_nbr_list, ospf_nbr): """ Used to check if a specific OSPF neighbor (dictionary returned from ios_ospf_neighbor function) is present in the BFD neighbor list. This compares the OSPF neighbor interface IP, not router ID, against the BFD peer IP. It uses a simple linear search as the number of OSPF/BFD neighbors on a device tends to be small (few hundred). """ for bfd_nbr in bfd_nbr_list: if ospf_nbr["peer"] == bfd_nbr["peer"]: is_up = bfd_nbr["state"] == "up" and bfd_nbr["rhrs"] == "up" return is_up raise ValueError("{0} not in bfd_nbr_list".format(ospf_nbr["peer"])) @staticmethod def iosxr_ospf_neighbor(text): """ Parses information from the Cisco IOS-XR "show ospf neighbor" command family. This is useful for verifying various characteristics of an OSPF neighbor's state. """ pattern = r""" (?P<rid>\d+\.\d+\.\d+\.\d+)\s+ (?P<priority>\d+)\s+ (?P<state>\w+)/\s* (?P<role>[A-Z-]+)\s+ (?P<deadtime>[0-9:]+|-)\s+ (?P<peer>\d+\.\d+\.\d+\.\d+)\s+ (?P<uptime>[0-9:hdwy]+)\s+ (?P<intf>[0-9A-Za-z./_-]+) """ return FilterModule._ospf_neighbor(pattern, text, ["deadtime", "uptime"]) @staticmethod def _ospf_neighbor(pattern, text, time_keys=None): """ Helper function specific to OSPF neighbor parsing. Each device type is slightly different in terms of the information provided, but most fields are the same. The time_keys parameter is a list of keys which are expected to have values in the format "hh:mm:ss". These are commonly uptime, deadtime, etc ... and are most useful when converted into seconds as an integer for comparative purposes. """ regex = re.compile(pattern, re.VERBOSE) ospf_neighbors = [] for line in text.split("\n"): match = regex.search(line) if match: gdict = match.groupdict() gdict["priority"] = FilterModule._try_int(gdict["priority"]) gdict["state"] = gdict["state"].lower() gdict["role"] = gdict["role"].lower() gdict["intf"] = gdict["intf"].lower() # If time keys is specified, iterate over the keys and perform # the math to convert hh:mm:ss to an integer of summed seconds. if time_keys: for k in time_keys: if gdict[k].count(":") == 2: times = gdict[k].split(":") parts = [FilterModule._try_int(t) for t in times] secsum = parts[0] * 3600 + parts[1] * 60 + parts[2] gdict.update({k + "_sec": secsum}) else: # Issue #1, short term fix, static value of 0. # This information isn't used anywhere yet. gdict.update({k + "_sec": 0}) ospf_neighbors.append(gdict) return ospf_neighbors @staticmethod def iosxr_ospf_basic(text): """ Parses information from the Cisco IOS-XR "show ospf" command family. This is useful for verifying various characteristics of an OSPF process and its basic configuration. """ return_dict = {} process_pattern = r""" Routing\s+Process\s+"ospf\s+(?P<id>\d+)"\s+with\s+ID\s+ (?P<rid>\d+\.\d+\.\d+\.\d+) .* \s*Initial\s+SPF\s+schedule\s+delay\s+(?P<init_spf>\d+)\s+msecs \s*Minimum\s+hold\s+time\s+between\s+two\s+consecutive \s+SPFs\s+(?P<min_spf>\d+)\s+msecs \s*Maximum\s+wait\s+time\s+between\s+two\s+consecutive \s+SPFs\s+(?P<max_spf>\d+)\s+msecs """ regex = re.compile(process_pattern, re.VERBOSE + re.DOTALL) match = regex.search(text) process = FilterModule._read_match(match, ["process"]) if process: is_abr = text.find("area border") != -1 is_asbr = text.find("autonomous system boundary") != -1 is_stub_rtr = text.find("Originating router-LSAs with max") != -1 process.update( {"is_abr": is_abr, "is_asbr": is_asbr, "is_stub_rtr": is_stub_rtr,} ) return_dict.update({"process": process}) area_pattern = r""" Area\s+(?:BACKBONE\()?(?P<id>\d+)(?:\))?\s+ Number\s+of\s+interfaces\s+in\s+this\s+area\s+is\s+(?P<num_intfs>\d+).*?\n \s+(?:It\s+is\s+a\s+(?P<type>\w+)\s+area)? .*? Number\s+of\s+LFA\s+enabled\s+interfaces\s+(?P<frr_intfs>\d+) """ regex = re.compile(area_pattern, re.VERBOSE + re.DOTALL) areas = [match.groupdict() for match in regex.finditer(text)] for area in areas: area["num_intfs"] = FilterModule._try_int(area["num_intfs"]) area["id"] = FilterModule._try_int(area["id"]) area["frr_intfs"] = FilterModule._try_int(area["frr_intfs"]) if not area["type"]: area["type"] = "standard" else: area["type"] = area["type"].lower() return_dict.update({"areas": areas}) return return_dict @staticmethod def iosxr_ospf_traffic(text): """ Parses information from the Cisco IOS-XR "show ip ospf traffic" command family. This is useful for verifying various characteristics of an OSPF process/area statistics for troubleshooting. """ interface_pattern = r""" Interface\s+(?P<intf>\S+)\s+ Process\s+ID\s+(?P<pid>\d+)\s+ Area\s+(?P<area_id>\d+)\s+ .*? OSPF\s+Header\s+Errors \s+Version\s+(?P<version>\d+) \s+LLS\s+(?P<lls>\d+) \s+Type\s+(?P<type>\d+) \s+Auth\s+RX\s+(?P<auth_rx>\d+) \s+Length\s+(?P<length>\d+) \s+Auth\s+TX\s+(?P<auth_tx>\d+) \s+Checksum\s+(?P<checksum>\d+) \s*OSPF\s+LSA\s+Errors \s+Type\s+(?P<lsa_type>\d+) \s+Checksum\s+(?P<lsa_checksum>\d+) \s+Length\s+(?P<lsa_length>\d+) \s+Data\s+(?P<lsa_data>\d+) \s*OSPF\s+Errors \s+Bad\s+Source\s+(?P<bad_src>\d+) \s+Area\s+Mismatch\s+(?P<area_mismatch>\d+) \s+No\s+Virtual\s+Link\s+(?P<no_vl>\d+) \s+Self\s+Originated\s+(?P<self_orig>\d+) \s+No\s+Sham\s+Link\s+(?P<no_sl>\d+) \s+Duplicate\s+ID\s+(?P<dup_rid>\d+) \s+Nbr\s+ignored\s+(?P<nbr_ignored>\d+) \s+Graceful\s+Shutdown\s+(?P<gshut>\d+) \s+Unknown\s+nbr\s+(?P<unk_nbr>\d+) \s+Passive\s+intf\s+(?P<passive_intf>\d+) \s+No\s+DR/BDR\s+(?P<no_dr_bdr>\d+) \s+Disabled\s+intf\s+(?P<disable_intf>\d+) \s+Enqueue\s+hello\s+(?P<enq_hello>\d+) \s+Enqueue\s+router\s+(?P<enq_rtr>\d+) \s+Unspecified\s+RX\s+(?P<unspec_rx>\d+) \s+Unspecified\s+TX\s+(?P<unspec_tx>\d+) \s+Socket\s+(?P<socket>\d+) """ return FilterModule._get_match_items(interface_pattern, text, re.DOTALL)
from __future__ import annotations import logging from typing import Dict, TYPE_CHECKING import pygame from scripts.core.base_classes.ui import UI from scripts.core.constants import DEFAULT_IMAGE_SIZE, FontEffects, FontType, GAP_SIZE, SceneType from scripts.ui_elements.frame import Frame from scripts.ui_elements.panel import Panel if TYPE_CHECKING: from scripts.core.game import Game __all__ = ["RunSetupUI"] class RunSetupUI(UI): """ Represent the UI of the RunSetupScene. """ def __init__(self, game: Game): super().__init__(game) self.set_instruction_text("Choose who will lead the rebellion.") def update(self, delta_time: float): super().update(delta_time) # data editor if self.game.input.states["toggle_dev_console"]: self.game.input.states["toggle_dev_console"] = False self.game.change_scene(SceneType.DEV_DATA_EDITOR) # panel specific input if self.current_panel == self.panels["commanders"]: self.handle_select_commander_input() # exit panel elif self.current_panel == self.panels["exit"]: self.handle_exit_input() def render(self, surface: pygame.surface): self.draw_instruction(surface) self.draw_elements(surface) def rebuild_ui(self): super().rebuild_ui() commanders = self.game.data.commanders selected_commander = self.game.run_setup.selected_commander window_width = self.game.window.width window_height = self.game.window.height create_font = self.game.assets.create_font create_fancy_font = self.game.assets.create_fancy_font # positions start_x = 20 start_y = 20 default_font = self.game.assets.create_font(FontType.DEFAULT, "") font_height = default_font.line_height # draw commanders current_x = start_x current_y = start_y panel_elements = [] for selection_counter, commander in enumerate(commanders.values()): icon = self.game.assets.commander_animations[commander["type"]]["icon"][0] icon_width = icon.get_width() frame = Frame((current_x, current_y), icon, is_selectable=True) self.elements[commander["type"]] = frame # highlight selected commander if commander["type"] == selected_commander or selected_commander is None: frame.is_selected = True panel_elements.append(frame) # increment draw pos and counter current_x += icon_width + GAP_SIZE panel = Panel(panel_elements, True) self.add_panel(panel, "commanders") # draw info commander = commanders[selected_commander] current_y = start_y + DEFAULT_IMAGE_SIZE + GAP_SIZE info_x = start_x + 200 header_x = start_x # name frame = Frame((header_x, current_y), font=create_font(FontType.DISABLED, "Name"), is_selectable=False) self.elements["name_header"] = frame frame = Frame((info_x, current_y), font=create_font(FontType.DEFAULT, commander["name"]), is_selectable=False) self.elements["name"] = frame current_y += frame.height + GAP_SIZE # backstory - N.B. no header and needs wider frame line_width = window_width - (current_x * 2) max_height = 110 frame = Frame( (header_x, current_y), font=create_fancy_font(commander["backstory"], font_effects=[FontEffects.FADE_IN]), is_selectable=False, max_width=line_width, max_height=max_height, ) self.elements["backstory"] = frame current_y += frame.height + GAP_SIZE # resources frame = Frame((header_x, current_y), font=create_font(FontType.DISABLED, "Charisma"), is_selectable=False) self.elements["charisma_header"] = frame frame = Frame( (info_x, current_y), font=create_font(FontType.DEFAULT, commander["charisma"]), is_selectable=False ) self.elements["charisma"] = frame current_y += frame.height + GAP_SIZE frame = Frame((header_x, current_y), font=create_font(FontType.DISABLED, "Leadership"), is_selectable=False) self.elements["leadership_header"] = frame frame = Frame( (info_x, current_y), font=create_font(FontType.DEFAULT, commander["leadership"]), is_selectable=False ) self.elements["leadership"] = frame current_y += frame.height + GAP_SIZE # allies frame = Frame((header_x, current_y), font=create_font(FontType.DISABLED, "Allies"), is_selectable=False) self.elements["allies_header"] = frame allies = "" for ally in commander["allies"]: # add comma if allies == "": allies += ally else: allies += ", " + ally frame = Frame((info_x, current_y), font=create_font(FontType.DEFAULT, allies), is_selectable=False) self.elements["allies"] = frame current_y += frame.height + GAP_SIZE # gold frame = Frame((header_x, current_y), font=create_font(FontType.DISABLED, "Gold"), is_selectable=False) self.elements["gold_header"] = frame frame = Frame((info_x, current_y), font=create_font(FontType.DEFAULT, commander["gold"]), is_selectable=False) self.elements["gold"] = frame self.add_exit_button() def refresh_info(self): elements = self.elements commander = self.game.data.commanders[self.game.run_setup.selected_commander] elements["gold"].set_text(commander["gold"]) elements["leadership"].set_text(commander["leadership"]) elements["charisma"].set_text(commander["charisma"]) elements["backstory"].set_text(commander["backstory"]) elements["name"].set_text(commander["name"]) allies = "" for ally in commander["allies"]: # add comma if allies == "": allies += ally else: allies += ", " + ally elements["allies"].set_text(allies) def handle_select_commander_input(self): # selections within panel if self.game.input.states["left"]: self.game.input.states["left"] = False self.current_panel.select_previous_element() # update selected commander and shown info selected_commander = list(self.game.data.commanders)[self.current_panel.selected_index] self.game.run_setup.selected_commander = selected_commander self.refresh_info() if self.game.input.states["right"]: self.game.input.states["right"] = False self.current_panel.select_next_element() # update selected commander and shown info selected_commander = list(self.game.data.commanders)[self.current_panel.selected_index] self.game.run_setup.selected_commander = selected_commander self.refresh_info() # select option and move to exit if self.game.input.states["select"]: self.game.input.states["select"] = False self.select_panel("exit") def handle_exit_input(self): if self.game.input.states["select"]: self.game.run_setup.start_run() if self.game.input.states["cancel"]: # unselect current option self.current_panel.unselect_all_elements() # change to commanders self.current_panel = self.panels["commanders"]
import asyncio from tests.integration.it_utils import ( ASYNC_JSON_RPC_TESTNET_CLIENT, fund_wallet, sign_and_reliable_submission_async, ) from xrpl.asyncio.wallet import generate_faucet_wallet from xrpl.models.amounts import IssuedCurrencyAmount from xrpl.models.transactions import OfferCreate, PaymentChannelCreate from xrpl.wallet import Wallet # TODO: use `asyncio.gather` for these, to parallelize # TODO: set up wallet for each test instead of using one for all tests (now that it's # faster) async def _set_up_reusable_values(): WALLET = Wallet.create() await fund_wallet(WALLET) DESTINATION = Wallet.create() await fund_wallet(DESTINATION) TESTNET_WALLET = await generate_faucet_wallet(ASYNC_JSON_RPC_TESTNET_CLIENT) TESTNET_DESTINATION = await generate_faucet_wallet(ASYNC_JSON_RPC_TESTNET_CLIENT) OFFER = await sign_and_reliable_submission_async( OfferCreate( account=WALLET.classic_address, sequence=WALLET.sequence, taker_gets="13100000", taker_pays=IssuedCurrencyAmount( currency="USD", issuer=WALLET.classic_address, value="10", ), ), WALLET, ) WALLET.sequence += 1 PAYMENT_CHANNEL = await sign_and_reliable_submission_async( PaymentChannelCreate( account=WALLET.classic_address, sequence=WALLET.sequence, amount="1", destination=DESTINATION.classic_address, settle_delay=86400, public_key=WALLET.public_key, ), WALLET, ) WALLET.sequence += 1 return ( WALLET, DESTINATION, TESTNET_WALLET, TESTNET_DESTINATION, OFFER, PAYMENT_CHANNEL, ) ( WALLET, DESTINATION, TESTNET_WALLET, TESTNET_DESTINATION, OFFER, PAYMENT_CHANNEL, ) = asyncio.run(_set_up_reusable_values())
#!/usr/bin/env python3 import io import csv from model.network import Network from model.drug import Drug from model.disease import Disease from model.edge import Edge network = Network() with io.open('../data/PubMed/drug_disease.csv', 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter=',', quotechar='"') next(reader, None) for row in reader: drug = Drug(['DrugBank:%s' % row[1]], [row[0]]) disease = Disease([row[4]], [row[3]]) network.add_node(drug) network.add_node(disease) network.add_edge(Edge(drug, disease, row[2], {'source': 'PubMed', 'pmid': row[5]})) network.save('../data/PubMed/graph.json')
from fastapi import FastAPI, File, UploadFile from matplotlib import pyplot as plt from PIL import Image # import tensorflow as tf import paddlehub as hub import cv2 import json ocr = hub.Module(name="chinese_ocr_db_crnn_server") #ocr = hub.Module(name="chinese_ocr_db_crnn_mobile") # import tensorflow_hub as tf_hub # detector = tf_hub.load("https://tfhub.dev/tensorflow/faster_rcnn/inception_resnet_v2_640x640/1") # detector_output = detector(image_tensor) # class_ids = detector_output["detection_classes"] app = FastAPI() import multipart #import decoders #from multipart.decoders import Base64Decoder #multipart.decoder @app.post("/files/") async def create_file(file: bytes = File(...)): return {"file_size": len(file)} @app.post("/uploadfile/") async def create_upload_file(file: UploadFile): return {"filename": file.filename} @app.post("/pic/") async def create_upload_img(file: UploadFile): print(file.filename) _dir_name="/storage/lol/wechaty/getting-started/media/"+str(file.filename) # #file.write("/storage/lol/wechaty/getting-started/src/"+str(file.filename)) res = await file.read() with open(_dir_name,"wb") as f: f.write(res) result = ocr.recognize_text(images=[cv2.imread(_dir_name)]) #send_data = json.loads(result) gg=[] for _message in result[0]['data']: gg.append(_message['text']) print(gg) return gg # decoder = Base64Decoder(file.file) # decoder.encode(file.) #original_image = Image.open(file.file) #original_image.show() #print(file.file) #return {"filename": file.filename}
import os HOST_IP = os.environ.get("HOST_IP", "localhost") UDP_IP = os.environ.get("UDP_IP", HOST_IP) UDP_PORT = os.environ.get("UDP_PORT", 46739) UDP_MAX_BITS_RECV_ONE = os.environ.get("UDP_MAX_BITS_RECV_ONE", 10240) CACHE_MAX_LOG_COUNT = 1024 LOG_FROMAT_STRING = "%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s"
# -*- coding: utf-8 -*- import requests, time, logging, random ''' CHECK_IN_OUT ''' card_numbers = ['工号1', '工号2'] url = 'http://tpehrweb.tutorabc.com/TIMG_inout/form/SystemHttp.json' log_file = 'log.txt' logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename=log_file, filemode='a') def check_inout(inout): time.sleep(random.randint(60, 600)) for card_number in card_numbers: payload = {'card_number': card_number, 'inout': inout, 'handlerName': 'Index.Index', 'method': 'Check_InOUT'} try: r = requests.post(url, data=payload, timeout=3) except requests.ConnectionError: logging.info("ConnectionError..." + "\n\n") except requests.Timeout: logging.info("TimeOut..." + "\n\n") else: logging.info(r.text) if inout == 1 and r.status_code == requests.codes.ok: logging.info("Check In Succeed." + "\n\n") elif inout == 0 and r.status_code == requests.codes.ok: logging.info("Check Out Succeed." + "\n\n") def is_weekend(): day = time.strftime('%w') if day in ['0', '6']: return True return False def check_in_out(): if not (is_weekend()): hour = time.strftime('%H') if int(hour) <= 12: check_inout(1) # mail.send_mail('签入成功', '签入成功') else: check_inout(0) # mail.send_mail('签出成功', '签出成功') else: logging.warning("It's weekend.") check_in_out()
""" Pure E/B for flat-sky from Thubaut Louis' flipperPol adapted to enlib """ import numpy as np from enlib.fft import fft class Purify(object): def __init__(self,shape,wcs,window): px = maps.resolution(shape,wcs) self.windict = init_deriv_window(taper,px) lxMap,lyMap,self.modlmap,self.angLMap,lx,ly = get_ft_attributes_enmap(shape,wcs) def lteb_from_iqu(imap,method='pure'): fT, fE, fB = iqu_to_pure_lteb(imap[0],imap[1],imap[2],self.modlmap,self.angLMap,windowDict=self.windict,method=method) def init_deriv_window(window,px): """ px is in radians """ def matrixShift(l,row_shift,column_shift): m1=np.hstack((l[:,row_shift:],l[:,:row_shift])) m2=np.vstack((m1[column_shift:],m1[:column_shift])) return m2 delta=px Win=window[:] dWin_dx=(-matrixShift(Win,-2,0)+8*matrixShift(Win,-1,0)-8*matrixShift(Win,1,0)+matrixShift(Win,2,0))/(12*delta) dWin_dy=(-matrixShift(Win,0,-2)+8*matrixShift(Win,0,-1)-8*matrixShift(Win,0,1)+matrixShift(Win,0,2))/(12*delta) d2Win_dx2=(-matrixShift(dWin_dx,-2,0)+8*matrixShift(dWin_dx,-1,0)-8*matrixShift(dWin_dx,1,0)+matrixShift(dWin_dx,2,0))/(12*delta) d2Win_dy2=(-matrixShift(dWin_dy,0,-2)+8*matrixShift(dWin_dy,0,-1)-8*matrixShift(dWin_dy,0,1)+matrixShift(dWin_dy,0,2))/(12*delta) d2Win_dxdy=(-matrixShift(dWin_dy,-2,0)+8*matrixShift(dWin_dy,-1,0)-8*matrixShift(dWin_dy,1,0)+matrixShift(dWin_dy,2,0))/(12*delta) #In return we change the sign of the simple gradient in order to agree with np convention return {'Win':Win, 'dWin_dx':-dWin_dx,'dWin_dy':-dWin_dy, 'd2Win_dx2':d2Win_dx2, 'd2Win_dy2':d2Win_dy2,'d2Win_dxdy':d2Win_dxdy} def iqu_to_pure_lteb(T_map,Q_map,U_map,modLMap,angLMap,windowDict,method='pure'): window = windowDict win =window['Win'] dWin_dx=window['dWin_dx'] dWin_dy=window['dWin_dy'] d2Win_dx2=window['d2Win_dx2'] d2Win_dy2=window['d2Win_dy2'] d2Win_dxdy=window['d2Win_dxdy'] T_temp=T_map.copy()*win fT=fft(T_temp,axes=[-2,-1]) Q_temp=Q_map.copy()*win fQ=fft(Q_temp,axes=[-2,-1]) U_temp=U_map.copy()*win fU=fft(U_temp,axes=[-2,-1]) fE=fT.copy() fB=fT.copy() fE=fQ[:]*np.cos(2.*angLMap)+fU[:]*np.sin(2.*angLMap) fB=-fQ[:]*np.sin(2.*angLMap)+fU[:]*np.cos(2.*angLMap) if method=='standard': return fT, fE, fB Q_temp=Q_map.copy()*dWin_dx QWx=fft(Q_temp,axes=[-2,-1]) Q_temp=Q_map.copy()*dWin_dy QWy=fft(Q_temp,axes=[-2,-1]) U_temp=U_map.copy()*dWin_dx UWx=fft(U_temp,axes=[-2,-1]) U_temp=U_map.copy()*dWin_dy UWy=fft(U_temp,axes=[-2,-1]) U_temp=2.*Q_map*d2Win_dxdy-U_map*(d2Win_dx2-d2Win_dy2) QU_B=fft(U_temp,axes=[-2,-1]) U_temp=-Q_map*(d2Win_dx2-d2Win_dy2)-2.*U_map*d2Win_dxdy QU_E=fft(U_temp,axes=[-2,-1]) modLMap=modLMap+2 fB[:] += QU_B[:]*(1./modLMap)**2 fB[:]-= (2.*1j)/modLMap*(np.sin(angLMap)*(QWx[:]+UWy[:])+np.cos(angLMap)*(QWy[:]-UWx[:])) if method=='hybrid': return fT, fE, fB fE[:]+= QU_E[:]*(1./modLMap)**2 fE[:]-= (2.*1j)/modLMap*(np.sin(angLMap)*(QWy[:]-UWx[:])-np.cos(angLMap)*(QWx[:]+UWy[:])) if method=='pure': return fT, fE, fB
import requests payload = {} custom_header = {'user-agent': 'Mozilla/5.0 (Linux; Android 9; AOSP on IA Emulator Build/PSR1.180720.117; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/69.0.3497.100 Mobile Safari/537.36', 'Content-Type': 'application/x-www-form-urlencoded', 'X-Requested-With': 'com.solaxcloud.starter'} r = requests.post('http://5.8.8.8/?optType=ReadRealTimeData', headers=custom_header) response = r.json() # print(r.json()) # print(response['Data']) # print(r.text) data = response['Data'] for i in range(len(data)): print(data[i])
#!/usr/bin/env python3 # Copyright (c) 2016 Anki, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License in the file LICENSE.txt or at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''An example of running independent concurrent routines on multiple Cozmos. Each robot requires its own device to control it. ''' import asyncio import sys import cozmo from cozmo.util import degrees async def turn_left(sdk_conn): robot = await sdk_conn.wait_for_robot() cozmo.logger.info("Turning robot 1") await robot.turn_in_place(degrees(90)).wait_for_completed() async def turn_right(sdk_conn): robot = await sdk_conn.wait_for_robot() cozmo.logger.info("Turning robot 2") await robot.turn_in_place(degrees(-90)).wait_for_completed() if __name__ == '__main__': cozmo.setup_basic_logging() loop = asyncio.get_event_loop() # Connect to both robots try: conn1 = cozmo.connect_on_loop(loop) conn2 = cozmo.connect_on_loop(loop) except cozmo.ConnectionError as e: sys.exit("A connection error occurred: %s" % e) # Run two independent coroutines concurrently, one on each connection task1 = asyncio.ensure_future(turn_left(conn1), loop=loop) task2 = asyncio.ensure_future(turn_right(conn2), loop=loop) # wait for both coroutines to complete before exiting the program loop.run_until_complete(asyncio.gather(task1, task2))
#!/usr/bin/env python # encoding: utf-8 """ @version: v1.0 @author: xag @license: Apache Licence @contact: xinganguo@gmail.com @site: http://www.xingag.top @software: PyCharm @file: image_utils.py @time: 5/17/19 13:03 @description:图像工具类 """ from PIL import Image import os from utils.file_utils import * from utils.video_utils import * from imgpy import Img import json import re # pip3 install imgpy def analyseImage(path): """ 分析图片 :param path: :return: """ im = Image.open(path) results = { 'size': im.size, 'mode': 'full', } try: while True: if im.tile: tile = im.tile[0] update_region = tile[1] update_region_dimensions = update_region[2:] if update_region_dimensions != im.size: results['mode'] = 'partial' break im.seek(im.tell() + 1) except EOFError: pass return results def get_gif_frames(gif_path, temp_path): """ 获取一段GIf图片下的所有静态帧 get_gif_frames('./../gifs/3.gif', './../gif_temp/') :param gif_path: :return: """ # 分析gif图片 mode = analyseImage(gif_path)['mode'] im = Image.open(gif_path) i = 1 p = im.getpalette() last_frame = im.convert('RGBA') try: while True: # print("saving %s (%s) frame %d, %s %s" % (gif_path, mode, i, im.size, im.tile)) ''' If the GIF uses local colour tables, each frame will have its own palette. If not, we need to apply the global palette to the new frame. ''' if not im.getpalette(): im.putpalette(p) new_frame = Image.new('RGBA', im.size) ''' Is this file a "partial"-mode GIF where frames update a region of a different size to the entire image? If so, we need to construct the new frame by pasting it on top of the preceding frames. ''' if mode == 'partial': new_frame.paste(last_frame) new_frame.paste(im, (0, 0), im.convert('RGBA')) new_frame.save(temp_path + '/%s-%d.png' % (''.join(os.path.basename(gif_path).split('.')[:-1]), i), 'PNG') i += 1 last_frame = new_frame im.seek(im.tell() + 1) except EOFError: # print('产生EOFError!!!') pass def get_gif_info(gif_path): """ 获取gif文件的详细信息 每一个gif的帧率不一样,有的<10fps;有的>10fps :param gif_path: :return: """ with Img(fp=gif_path) as im: # 1.有多少帧 frame_count = im.frame_count # 2.帧列表-PIL.Image.Image # print(im.frames) # 3.未知 # print(im.exif) # 4.GIF # print(im.format) # 5.图片信息 # {'version': b'GIF89a', 'background': 31, 'duration': 70, 'extension': (b'NETSCAPE2.0', 795), 'loop': 0} duration_pre = im.info.get('duration') # 根据规律,除以7位实际的播放时长 duration = duration_pre / 7 # 6.color palette # print(im.mode_desc) # print((frame_count, duration)) # 返回帧率和时长 return (frame_count / duration), duration
# -- coding:utf-8-- import os def remove_dir(dir): #用于删除路径的函数 dir = dir.replace('\\', '/') if(os.path.isdir(dir)): for p in os.listdir(dir): remove_dir(os.path.join(dir,p)) if(os.path.exists(dir)): os.rmdir(dir) else: if(os.path.exists(dir)): os.remove(dir) def old_rm(): #检测第一代程序 one_old_az_lj = r"C:\pythonX" if os.path.exists(one_old_az_lj): print("检测到旧版本的v2ray\n") print("第一代v2ray启动器!") print("正在卸载v2ray\n") try: remove_dir(one_old_az_lj) except: print("删除失败!") #删除错误反馈 print("错误!X002\n") input("按下任意键退出程序!") sys.exit(0) print("删除完成!\n") #检测第二代程序 one_old_az_lj = r"C:\pythonz" if os.path.exists(one_old_az_lj): print("检测到旧版本的v2ray\n") print("第二代v2ray启动器!") print("正在卸载v2ray\n") try: remove_dir(one_old_az_lj) except: print("删除失败!") #删除错误反馈 print("错误!X002\n") input("按下任意键退出程序!") sys.exit(0) print("删除完成!\n") #检测第四代程序 one_old_az_lj = r"C:\pythonz4" if os.path.exists(one_old_az_lj): print("检测到旧版本的v2ray\n") print("第四代v2ray启动器!") print("正在卸载v2ray\n") try: remove_dir(one_old_az_lj) except: print("删除失败!") #删除错误反馈 print("错误!X002\n") input("按下任意键退出程序!") sys.exit(0) print("删除完成!\n")
import numpy as np import imgaug.augmenters as iaa from imgaug.augmentables.segmaps import SegmentationMapsOnImage from PIL import Image from parameters import tag_image, tag_label, tag_name, label_folder_name import random import os from typing import Union class AugManager(object): def __init__(self, iaalist=None): if iaalist is None: iaalist = iaa.Sequential([ iaa.Sometimes(0.5, iaa.ChannelShuffle(0.3)), iaa.Sometimes(0.5, iaa.MultiplyHue((0.5, 1.5))), iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-50, 50), per_channel=True)), iaa.Sometimes(0.5, iaa.Fliplr(0.5)), iaa.Sometimes(0.5, iaa.Flipud(0.5)), iaa.Sometimes(0.5, iaa.Rotate((-50, 50))) ], random_order=True) self.transformSet = iaalist self.outscale = random.choice([0.8, 0.85, 0.9, 0.95]) def __call__(self, input_dict : {str : Union[Image.Image, np.ndarray]}) -> dict: image, label = input_dict[tag_image], input_dict[tag_label] image = np.array(image) label = np.array(label) # size measure y_max = image.shape[0] x_max = image.shape[1] # np.ndarray -> imgaug.augmentables.segmaps.SegmentationMapsOnImage label = SegmentationMapsOnImage(label, shape=image.shape) # augmentation zoomset = iaa.OneOf([ iaa.Identity(), # do nothing iaa.Affine(scale=self.outscale), # zoom out RandomCrop(y_max, x_max).cut() # zoom in ]) image, label = zoomset(image=image, segmentation_maps=label) image, label = self.transformSet(image=image, segmentation_maps=label) # imgaug.augmentables.segmaps.SegmentationMapsOnImage -> np.ndarray label = label.get_arr() return {tag_image : image, tag_label : label} def augstore(self, src:dict, dst_base:str, dataname_extension='.tiff', labelname_extension='.tif', identifier=None): os.makedirs(dst_base, exist_ok=True) os.makedirs(os.path.join(dst_base, label_folder_name), exist_ok=True) # get image image = src[tag_image] # PIL.Image.Image label = src[tag_label] # PIL.Image.Image name = src[tag_name] # str # PIL -> numpy image = np.array(image) label = np.array(label) # size measure y_max = image.shape[0] x_max = image.shape[1] # np.ndarray -> imgaug.augmentables.segmaps.SegmentationMapsOnImage label = SegmentationMapsOnImage(label, shape=label.shape) # augmentation zoomset = iaa.OneOf([ iaa.Identity(), # do nothing iaa.Affine(scale=self.outscale), # zoom out RandomCrop(y_max, x_max).cut() # zoom in ]) image, label = zoomset(image=image, segmentation_maps=label) image, label = self.transformSet(image=image, segmentation_maps=label) # imgaug.augmentables.segmaps.SegmentationMapsOnImage -> np.ndarray label = label.get_arr() if not identifier == None: name = name + '_' + str(identifier) # numpy -> PIL.Image.Image image = Image.fromarray(image) label = Image.fromarray(label) image.save(os.path.join(dst_base, name + dataname_extension)) label.save(os.path.join(dst_base, label_folder_name, name + labelname_extension)) return {tag_image : image, tag_label : label, tag_name : name} class RandomCrop(object): def __init__(self, max_height, max_width): assert isinstance(max_height, int) and max_height >= 1, 'max_height must be positive integer type.' assert isinstance(max_width, int) and max_width >= 1, 'max_width must be positive integer type.' self.percent_limit = 0.15 self.top, self.right, self.bottom, self.left = self.operate_location(max_height, max_width) def operate_location(self, max_height, max_width): import random max_height = max_height + 1 max_width = max_width + 1 min_height = int(self.percent_limit * max_height) min_width = int(self.percent_limit * max_width) fix_height = random.randint(min_height, max_height) fix_width = random.randint(min_width, max_width) left = random.randint(0, max_width - fix_width) up = random.randint(0, max_height - fix_height) right = max_width - fix_width - left down = max_height - fix_height - up return up, right, down, left def cut(self): return iaa.Crop(px=(self.top, self.right, self.bottom, self.left))
from .fuzzy_set import FuzzySet
from glue.config import importer from glue.dialogs.data_wizard.qt import data_wizard @importer("Import from directory") def directory_importer(): return data_wizard(mode='directories')
# Copyright 2016 Sanghoon Yoon # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) import tensorflow as tf from shycdbn.dataset.photos import FoursqaurePhotos from shycdbn.core.runner import Runner # from shycdbn.crbm import CRBM from shycdbn.cdbn import CDBN FLAGS = tf.app.flags.FLAGS def main(argv=None): # runner = Runner(FoursqaurePhotos(), # CRBM('layer1', 300, 3, 10, 32, 2, FLAGS.batch_size, FLAGS.learning_rate, True)) runner = Runner(FoursqaurePhotos(), CDBN(FLAGS.batch_size, FLAGS.learning_rate)) runner.run() if __name__ == '__main__': tf.app.run()
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models, _ class Survey(models.Model): _inherit = 'survey.survey' slide_ids = fields.One2many( 'slide.slide', 'survey_id', string="Certification Slides", help="The slides this survey is linked to through the e-learning application") slide_channel_ids = fields.One2many( 'slide.channel', string="Certification Courses", compute='_compute_slide_channel_data', help="The courses this survey is linked to through the e-learning application", groups='website_slides.group_website_slides_officer') slide_channel_count = fields.Integer("Courses Count", compute='_compute_slide_channel_data', groups='website_slides.group_website_slides_officer') @api.depends('slide_ids.channel_id') def _compute_slide_channel_data(self): for survey in self: survey.slide_channel_ids = survey.slide_ids.mapped('channel_id') survey.slide_channel_count = len(survey.slide_channel_ids) # --------------------------------------------------------- # Actions # --------------------------------------------------------- def action_survey_view_slide_channels(self): action = self.env["ir.actions.actions"]._for_xml_id("website_slides.slide_channel_action_overview") action['display_name'] = _("Courses") if self.slide_channel_count == 1: action.update({'views': [(False, 'form')], 'res_id': self.slide_channel_ids[0].id}) else: action.update({'views': [[False, 'tree'], [False, 'form']], 'domain': [('id', 'in', self.slide_channel_ids.ids)]}) return action # --------------------------------------------------------- # Business # --------------------------------------------------------- def _check_answer_creation(self, user, partner, email, test_entry=False, check_attempts=True, invite_token=False): """ Overridden to allow website_slides_officer to test certifications. """ self.ensure_one() if test_entry and user.has_group('website_slides.group_website_slides_officer'): return True return super(Survey, self)._check_answer_creation(user, partner, email, test_entry=test_entry, check_attempts=check_attempts, invite_token=invite_token) def _prepare_challenge_category(self): slide_survey = self.env['slide.slide'].search([('survey_id', '=', self.id)]) return 'slides' if slide_survey else 'certification'
# Copyright (c) 2015, Ecole Polytechnique Federale de Lausanne, Blue Brain Project # All rights reserved. # # This file is part of NeuroM <https://github.com/BlueBrain/NeuroM> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of # its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. '''Test neurom.io.utils''' import os import sys from io import StringIO import numpy as np from nose import tools as nt from neurom import get from neurom.core import Neuron, SomaError from neurom.exceptions import NeuroMError, RawDataError, SomaError from neurom.fst import _neuritefunc as _nf from neurom.io import utils _path = os.path.dirname(os.path.abspath(__file__)) DATA_PATH = os.path.join(_path, '../../../test_data') SWC_PATH = os.path.join(DATA_PATH, 'swc') VALID_DATA_PATH = os.path.join(_path, DATA_PATH, 'valid_set') NRN_NAMES = ('Neuron', 'Neuron_h5v1', 'Neuron_h5v2') FILES = [os.path.join(SWC_PATH, f) for f in ['Neuron.swc', 'Single_apical_no_soma.swc', 'Single_apical.swc', 'Single_basal.swc', 'Single_axon.swc', 'sequential_trunk_off_0_16pt.swc', 'sequential_trunk_off_1_16pt.swc', 'sequential_trunk_off_42_16pt.swc', 'Neuron_no_missing_ids_no_zero_segs.swc']] FILENAMES = [os.path.join(VALID_DATA_PATH, f) for f in ['Neuron.swc', 'Neuron_h5v1.h5', 'Neuron_h5v2.h5']] NO_SOMA_FILE = os.path.join(SWC_PATH, 'Single_apical_no_soma.swc') DISCONNECTED_POINTS_FILE = os.path.join(SWC_PATH, 'Neuron_disconnected_components.swc') MISSING_PARENTS_FILE = os.path.join(SWC_PATH, 'Neuron_missing_parents.swc') INVALID_ID_SEQUENCE_FILE = os.path.join(SWC_PATH, 'non_increasing_trunk_off_1_16pt.swc') def _get_name(filename): return os.path.splitext(os.path.basename(filename))[0] def _mock_load_neuron(filename): class MockNeuron(object): def __init__(self, name): self.soma = 42 self.neurites = list() self.name = name return MockNeuron(_get_name(filename)) def _check_neurites_have_no_parent(nrn): for n in nrn.neurites: nt.assert_true(n.root_node.parent is None) def test_load_neurons(): nrns = utils.load_neurons(FILES, neuron_loader=_mock_load_neuron) for i, nrn in enumerate(nrns): nt.assert_equal(nrn.name, _get_name(FILES[i])) nt.assert_raises(SomaError, utils.load_neurons, NO_SOMA_FILE) def test_get_morph_files(): ref = set(['Neuron_h5v2.h5', 'Neuron_2_branch_h5v2.h5', 'Neuron_slice.h5', 'Neuron.swc', 'Neuron_h5v1.h5', 'Neuron_2_branch_h5v1.h5']) FILE_PATH = os.path.abspath(os.path.join(DATA_PATH, 'valid_set')) files = set(os.path.basename(f) for f in utils.get_morph_files(FILE_PATH)) nt.assert_equal(ref, files) def test_load_neuron(): nrn = utils.load_neuron(FILENAMES[0]) nt.assert_true(isinstance(NRN, Neuron)) nt.assert_equal(NRN.name, 'Neuron') _check_neurites_have_no_parent(nrn) # python2 only test, for unicode strings if sys.version_info < (3, 0): nrn = utils.load_neuron(unicode(FILENAMES[0])) nt.assert_true(isinstance(NRN, Neuron)) nt.assert_equal(NRN.name, 'Neuron') _check_neurites_have_no_parent(nrn) neuron_str = u""" 1 1 0 0 0 1. -1 2 3 0 0 0 1. 1 3 3 0 5 0 1. 2 4 3 -5 5 0 0. 3 5 3 6 5 0 0. 3 6 2 0 0 0 1. 1 7 2 0 -4 0 1. 6 8 2 6 -4 0 0. 7 9 2 -5 -4 0 0. 7 """ utils.load_neuron(StringIO(neuron_str), reader='swc') def test_neuron_name(): for fn, nn in zip(FILENAMES, NRN_NAMES): nrn = utils.load_neuron(fn) nt.eq_(nrn.name, nn) @nt.raises(SomaError) def test_load_bifurcating_soma_points_raises_SomaError(): utils.load_neuron(os.path.join(SWC_PATH, 'soma', 'bifurcating_soma.swc')) def test_load_neuromorpho_3pt_soma(): nrn = utils.load_neuron(os.path.join(SWC_PATH, 'soma', 'three_pt_soma.swc')) nt.eq_(len(nrn.neurites), 4) nt.eq_(len(nrn.soma.points), 3) nt.eq_(nrn.soma.radius, 2) _check_neurites_have_no_parent(nrn) NRN = utils.load_neuron(FILENAMES[0]) def test_neuron_section_ids(): # check section IDs for i, sec in enumerate(NRN.sections): nt.eq_(i, sec.id) def test_neurites_have_no_parent(): _check_neurites_have_no_parent(NRN) def test_neuron_sections(): all_nodes = set(NRN.sections) neurite_nodes = set(_nf.iter_sections(NRN.neurites)) # check no duplicates nt.assert_true(len(all_nodes) == len(NRN.sections)) # check all neurite tree nodes are # in sections attribute nt.assert_true(len(set(NRN.sections) - neurite_nodes) > 0) def test_neuron_sections_are_connected(): # check traversal by counting number of sections un trees for nrt in NRN.neurites: root_node = nrt.root_node nt.assert_equal(sum(1 for _ in root_node.ipreorder()), sum(1 for _ in NRN.sections[root_node.id].ipreorder())) def test_load_neuron_soma_only(): nrn = utils.load_neuron(os.path.join(DATA_PATH, 'swc', 'Soma_origin.swc')) nt.eq_(len(nrn.neurites), 0) nt.assert_equal(nrn.name, 'Soma_origin') @nt.raises(SomaError) def test_load_neuron_no_soma_raises_SomaError(): utils.load_neuron(NO_SOMA_FILE) # TODO: decide if we want to check for this in fst. @nt.nottest @nt.raises(RawDataError) def test_load_neuron_disconnected_points_raises(): utils.load_neuron(DISCONNECTED_POINTS_FILE) @nt.raises(RawDataError) def test_load_neuron_missing_parents_raises(): utils.load_neuron(MISSING_PARENTS_FILE) # TODO: decide if we want to check for this in fst. @nt.nottest @nt.raises(RawDataError) def test_load_neuron_invalid_id_sequence_raises(): utils.load_neuron(INVALID_ID_SEQUENCE_FILE) def test_load_neurons_directory(): pop = utils.load_neurons(VALID_DATA_PATH) nt.assert_equal(len(pop.neurons), 6) nt.assert_equal(len(pop), 6) nt.assert_equal(pop.name, 'valid_set') for nrn in pop: nt.assert_true(isinstance(nrn, Neuron)) def test_load_neurons_directory_name(): pop = utils.load_neurons(VALID_DATA_PATH, name='test123') nt.assert_equal(len(pop.neurons), 6) nt.assert_equal(len(pop), 6) nt.assert_equal(pop.name, 'test123') for nrn in pop: nt.assert_true(isinstance(nrn, Neuron)) def test_load_neurons_filenames(): pop = utils.load_neurons(FILENAMES, name='test123') nt.assert_equal(len(pop.neurons), 3) nt.assert_equal(pop.name, 'test123') for nrn, name in zip(pop.neurons, NRN_NAMES): nt.assert_true(isinstance(nrn, Neuron)) nt.assert_equal(nrn.name, name) SWC_ORD_PATH = os.path.join(DATA_PATH, 'swc', 'ordering') SWC_ORD_REF = utils.load_neuron(os.path.join(SWC_ORD_PATH, 'sample.swc')) def assert_items_equal(a, b): nt.eq_(sorted(a), sorted(b)) def test_load_neuron_mixed_tree_swc(): nrn_mix = utils.load_neuron(os.path.join(SWC_ORD_PATH, 'sample_mixed_tree_sections.swc')) assert_items_equal(get('number_of_sections_per_neurite', nrn_mix), [5, 3]) assert_items_equal(get('number_of_sections_per_neurite', nrn_mix), get('number_of_sections_per_neurite', SWC_ORD_REF)) assert_items_equal(get('number_of_segments', nrn_mix), get('number_of_segments', SWC_ORD_REF)) assert_items_equal(get('total_length', nrn_mix), get('total_length', SWC_ORD_REF)) def test_load_neuron_section_order_break_swc(): nrn_mix = utils.load_neuron(os.path.join(SWC_ORD_PATH, 'sample_disordered.swc')) assert_items_equal(get('number_of_sections_per_neurite', nrn_mix), [5, 3]) assert_items_equal(get('number_of_sections_per_neurite', nrn_mix), get('number_of_sections_per_neurite', SWC_ORD_REF)) assert_items_equal(get('number_of_segments', nrn_mix), get('number_of_segments', SWC_ORD_REF)) assert_items_equal(get('total_length', nrn_mix), get('total_length', SWC_ORD_REF)) H5_PATH = os.path.join(DATA_PATH, 'h5', 'v1', 'ordering') H5_ORD_REF = utils.load_neuron(os.path.join(H5_PATH, 'sample.h5')) def test_load_neuron_mixed_tree_h5(): nrn_mix = utils.load_neuron(os.path.join(H5_PATH, 'sample_mixed_tree_sections.h5')) assert_items_equal(get('number_of_sections_per_neurite', nrn_mix), [5, 3]) assert_items_equal(get('number_of_sections_per_neurite', nrn_mix), get('number_of_sections_per_neurite', H5_ORD_REF)) def test_load_h5_trunk_points_regression(): # regression test for issue encountered while # implementing PR #479, related to H5 unpacking # of files with non-standard soma structure. # See #480. nrn = utils.load_neuron(os.path.join(DATA_PATH, 'h5', 'v1', 'Neuron.h5')) nt.ok_(np.allclose(nrn.neurites[0].root_node.points[1], [0., 0., 0.1, 0.31646374, 4., 4., 3.])) nt.ok_(np.allclose(nrn.neurites[1].root_node.points[1], [0., 0., 0.1, 1.84130445e-01, 3.0, 235., 234.])) nt.ok_(np.allclose(nrn.neurites[2].root_node.points[1], [0., 0., 0.1, 5.62225521e-01, 3., 466, 465])) nt.ok_(np.allclose(nrn.neurites[3].root_node.points[1], [0., 0., 0.1, 7.28555262e-01, 2., 697, 696])) def test_load_unknown_type(): nt.assert_raises(NeuroMError, utils.load_data, 'fake.file') def test_NeuronLoader(): dirpath = os.path.join(DATA_PATH, 'h5', 'v2') loader = utils.NeuronLoader(dirpath, file_ext='.h5', cache_size=5) nrn = loader.get('Neuron') nt.ok_(isinstance(nrn, Neuron)) # check caching nt.ok_(nrn == loader.get('Neuron')) nt.ok_(nrn != loader.get('Neuron_2_branch')) def test_NeuronLoader_mixed_file_extensions(): dirpath = os.path.join(DATA_PATH, 'valid_set') loader = utils.NeuronLoader(dirpath) loader.get('Neuron') loader.get('Neuron_h5v1') nt.assert_raises(NeuroMError, loader.get, 'NoSuchNeuron') def test_ignore_exceptions(): pop = utils.load_neurons((NO_SOMA_FILE, ), ignored_exceptions=(SomaError, )) nt.eq_(len(pop), 0) pop = utils.load_neurons((NO_SOMA_FILE, ), ignored_exceptions=(SomaError, RawDataError, )) nt.eq_(len(pop), 0) def test_get_files_by_path(): single_neurom = utils.get_files_by_path(NO_SOMA_FILE) nt.eq_(len(single_neurom), 1) neuron_dir = utils.get_files_by_path(VALID_DATA_PATH) nt.eq_(len(neuron_dir), 6) nt.assert_raises(IOError, utils.get_files_by_path, 'this/is/a/fake/path')
# # Copyright (c) 2016 Matwey V. Kornilov <matwey.kornilov@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # from pybeam import beam_file from pybeam.erlang_types import String import unittest import io class BEAMFileTest(unittest.TestCase): def setUp(self): self.raw = b'FOR1\x00\x00\x02\x2cBEAMAtom\x00\x00\x00U\x00\x00\x00\x08\x08ssh_math\x04ipow\x06crypto\x07mod_pow\x10bytes_to_integer\x0bmodule_info\x06erlang\x0fget_module_info\x00\x00\x00Code\x00\x00\x00\\\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x07\x00\x00\x00\x03\x01\x10\x99\x10\x02\x12"0\x01 \'\x15\x01#(\x15\x13\x01\x0c\x000\x99 \x070\x00\x99 \x08\x10\x10\x00\x010\x99\x00\x02\x12b\x00\x01@@\x12\x03\x99\x00N\x10 \x01P\x99\x00\x02\x12b\x10\x01`@\x03\x13@\x12\x03\x99\x00N 0\x03StrT\x00\x00\x00\x00ImpT\x00\x00\x004\x00\x00\x00\x04\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x03\x00\x00\x00\x03\x00\x00\x00\x05\x00\x00\x00\x01\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x01\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x02ExpT\x00\x00\x00(\x00\x00\x00\x03\x00\x00\x00\x06\x00\x00\x00\x01\x00\x00\x00\x06\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x02Attr\x00\x00\x00(\x83l\x00\x00\x00\x01h\x02d\x00\x03vsnl\x00\x00\x00\x01n\x10\x00\x8f\xde\xf9V}\xf3wr\x8a\x93\xc1p\xedDK\x9ajjCInf\x00\x00\x01@\x83l\x00\x00\x00\x04h\x02d\x00\x07optionsl\x00\x00\x00\x04h\x02d\x00\x06outdirk\x00</home/abuild/rpmbuild/BUILD/otp_src_17.1/lib/ssh/src/../ebinh\x02d\x00\x01ik\x007/home/abuild/rpmbuild/BUILD/otp_src_17.1/lib/kernel/srcd\x00\x10warn_unused_varsd\x00\ndebug_infojh\x02d\x00\x07versionk\x00\x055.0.1h\x02d\x00\x04timeh\x06b\x00\x00\x07\xe0a\x02a\x0fa\x0ba\x08a\x12h\x02d\x00\x06sourcek\x00A/home/abuild/rpmbuild/BUILD/otp_src_17.1/lib/ssh/src/ssh_math.erlj' self.io = io.BytesIO(self.raw) self.beam = beam_file.BeamFile(self.io) def test_attr(self): self.assertDictEqual({'vsn': [205091931631091061218511176690734587535]}, self.beam.attributes) def test_atoms(self): self.assertListEqual(['ssh_math','ipow','crypto','mod_pow','bytes_to_integer','module_info','erlang','get_module_info'], self.beam.atoms) def test_compileinfo(self): self.assertDictEqual({ 'source': String(b'/home/abuild/rpmbuild/BUILD/otp_src_17.1/lib/ssh/src/ssh_math.erl'), 'time': (2016, 2, 15, 11, 8, 18), 'version': String(b'5.0.1'), 'options': [ ('outdir', String(b'/home/abuild/rpmbuild/BUILD/otp_src_17.1/lib/ssh/src/../ebin')), ('i', String(b'/home/abuild/rpmbuild/BUILD/otp_src_17.1/lib/kernel/src')), 'warn_unused_vars', 'debug_info' ]}, self.beam.compileinfo) def test_exports(self): self.assertListEqual([('module_info', 1, 6), ('module_info', 0, 4), ('ipow', 3, 2)], self.beam.exports) def test_imports(self): self.assertListEqual([('crypto', 'mod_pow', 3), ('crypto', 'bytes_to_integer', 1), ('erlang', 'get_module_info', 1), ('erlang', 'get_module_info', 2)], self.beam.imports) def test_modulename(self): self.assertEqual('ssh_math', self.beam.modulename)
import copy import logging import math import time from collections import deque import numpy as np from panda3d.bullet import BulletVehicle, BulletBoxShape, BulletRigidBodyNode, ZUp, BulletGhostNode from panda3d.core import Vec3, TransformState, NodePath, LQuaternionf, BitMask32, PythonCallbackObject, TextNode from pgdrive.pg_config import PGConfig from pgdrive.pg_config.body_name import BodyName from pgdrive.pg_config.cam_mask import CamMask from pgdrive.pg_config.collision_group import CollisionGroup from pgdrive.pg_config.parameter_space import Parameter, VehicleParameterSpace from pgdrive.pg_config.pg_space import PGSpace from pgdrive.scene_creator.ego_vehicle.vehicle_module.lidar import Lidar from pgdrive.scene_creator.ego_vehicle.vehicle_module.routing_localization import RoutingLocalizationModule from pgdrive.scene_creator.ego_vehicle.vehicle_module.vehicle_panel import VehiclePanel from pgdrive.scene_creator.lanes.circular_lane import CircularLane from pgdrive.scene_creator.lanes.lane import AbstractLane from pgdrive.scene_creator.lanes.straight_lane import StraightLane from pgdrive.scene_creator.map import Map from pgdrive.utils.asset_loader import AssetLoader from pgdrive.utils.element import DynamicElement from pgdrive.utils.math_utils import get_vertical_vector, norm, clip from pgdrive.utils.coordinates_shift import panda_position, pgdrive_position, panda_heading, pgdrive_heading from pgdrive.utils.scene_utils import ray_localization from pgdrive.world import RENDER_MODE_ONSCREEN from pgdrive.world.constants import COLOR, COLLISION_INFO_COLOR from pgdrive.world.image_buffer import ImageBuffer from pgdrive.world.pg_physics_world import PGPhysicsWorld from pgdrive.world.pg_world import PGWorld class BaseVehicle(DynamicElement): Ego_state_obs_dim = 9 """ Vehicle chassis and its wheels index 0 1 II-----II | | <---chassis | II-----II 2 3 """ PARAMETER_SPACE = PGSpace(VehicleParameterSpace.BASE_VEHICLE) # it will not sample config from parameter space COLLISION_MASK = CollisionGroup.EgoVehicle STEERING_INCREMENT = 0.05 default_vehicle_config = PGConfig( dict( lidar=(240, 50, 4), # laser num, distance, other vehicle info num mini_map=(84, 84, 250), # buffer length, width rgb_cam=(160, 120), # buffer length, width depth_cam=(84, 84, True), # buffer length, width, view_ground show_navi_mark=False, increment_steering=False, wheel_friction=0.6, ) ) born_place = (5, 0) LENGTH = None WIDTH = None def __init__(self, pg_world: PGWorld, vehicle_config: dict = None, random_seed: int = 0, config: dict = None): """ This Vehicle Config is different from self.get_config(), and it is used to define which modules to use, and module parameters. """ super(BaseVehicle, self).__init__(random_seed) self.pg_world = pg_world self.node_path = NodePath("vehicle") # config info self.set_config(self.PARAMETER_SPACE.sample()) if config is not None: self.set_config(config) self.vehicle_config = self.get_vehicle_config( vehicle_config ) if vehicle_config is not None else self.default_vehicle_config self.increment_steering = self.vehicle_config["increment_steering"] self.max_speed = self.get_config()[Parameter.speed_max] self.max_steering = self.get_config()[Parameter.steering_max] # create self._add_chassis(pg_world.physics_world) self.wheels = self._create_wheel() # modules self.image_sensors = {} self.lidar = None self.routing_localization = None self.lane = None self.lane_index = None self.vehicle_panel = VehiclePanel(self.pg_world) if (self.pg_world.mode == RENDER_MODE_ONSCREEN) else None # other info self.throttle_brake = 0.0 self.steering = 0 self.last_current_action = deque([(0.0, 0.0), (0.0, 0.0)], maxlen=2) self.last_position = self.born_place self.last_heading_dir = self.heading # collision info render self.collision_info_np = self._init_collision_info_render(pg_world) self.collision_banners = {} # to save time self.current_banner = None # done info self.crash = False self.out_of_road = False self.attach_to_pg_world(self.pg_world.pbr_render, self.pg_world.physics_world) @classmethod def get_vehicle_config(cls, new_config): default = copy.deepcopy(cls.default_vehicle_config) default.update(new_config) return default def prepare_step(self, action): """ Save info and make decision before action """ self.last_position = self.position self.last_heading_dir = self.heading self.last_current_action.append(action) # the real step of physics world is implemented in taskMgr.step() if self.increment_steering: self.set_incremental_action(action) else: self.set_act(action) if self.vehicle_panel is not None: self.vehicle_panel.renew_2d_car_para_visualization(self) def update_state(self, pg_world=None): if self.lidar is not None: self.lidar.perceive(self.position, self.heading_theta, self.pg_world.physics_world) if self.routing_localization is not None: self.lane, self.lane_index = self.routing_localization.update_navigation_localization(self) return self._state_check() def reset(self, map: Map, pos: np.ndarray, heading: float): """ pos is a 2-d array, and heading is a float (unit degree) """ heading = -np.deg2rad(heading) - np.pi / 2 self.chassis_np.setPos(Vec3(*pos, 1)) self.chassis_np.setQuat(LQuaternionf(np.cos(heading / 2), 0, 0, np.sin(heading / 2))) self.update_map_info(map) self.chassis_np.node().clearForces() self.chassis_np.node().setLinearVelocity(Vec3(0, 0, 0)) self.chassis_np.node().setAngularVelocity(Vec3(0, 0, 0)) self.system.resetSuspension() # done info self.crash = False self.out_of_road = False # other info self.throttle_brake = 0.0 self.steering = 0 self.last_current_action = deque([(0.0, 0.0), (0.0, 0.0)], maxlen=2) self.last_position = self.born_place self.last_heading_dir = self.heading if "depth_cam" in self.image_sensors and self.image_sensors["depth_cam"].view_ground: for block in map.blocks: block.node_path.hide(CamMask.DepthCam) """------------------------------------------- act -------------------------------------------------""" def set_act(self, action): para = self.get_config() steering = action[0] self.throttle_brake = action[1] self.steering = steering self.system.setSteeringValue(self.steering * para[Parameter.steering_max], 0) self.system.setSteeringValue(self.steering * para[Parameter.steering_max], 1) self._apply_throttle_brake(action[1]) def set_incremental_action(self, action: np.ndarray): self.throttle_brake = action[1] self.steering += action[0] * self.STEERING_INCREMENT self.steering = clip(self.steering, -1, 1) steering = self.steering * self.max_steering self.system.setSteeringValue(steering, 0) self.system.setSteeringValue(steering, 1) self._apply_throttle_brake(action[1]) def _apply_throttle_brake(self, throttle_brake): para = self.get_config() max_engine_force = para[Parameter.engine_force_max] max_brake_force = para[Parameter.brake_force_max] for wheel_index in range(4): if throttle_brake >= 0: self.system.setBrake(2.0, wheel_index) if self.speed > self.max_speed: self.system.applyEngineForce(0.0, wheel_index) else: self.system.applyEngineForce(max_engine_force * throttle_brake, wheel_index) else: self.system.applyEngineForce(0.0, wheel_index) self.system.setBrake(abs(throttle_brake) * max_brake_force, wheel_index) """---------------------------------------- vehicle info ----------------------------------------------""" @property def position(self): return pgdrive_position(self.chassis_np.getPos()) @property def speed(self): """ km/h """ speed = self.chassis_np.node().get_linear_velocity().length() * 3.6 return clip(speed, 0.0, 100000.0) @property def heading(self): real_heading = self.heading_theta heading = np.array([np.cos(real_heading), np.sin(real_heading)]) return heading @property def heading_theta(self): """ Get the heading theta of vehicle, unit [rad] :return: heading in rad """ return (pgdrive_heading(self.chassis_np.getH()) - 90) / 180 * math.pi @property def velocity(self) -> np.ndarray: return self.speed * self.velocity_direction @property def velocity_direction(self): direction = self.system.get_forward_vector() return np.asarray([direction[0], -direction[1]]) @property def forward_direction(self): raise ValueError("This function id deprecated.") # print("This function id deprecated.") # direction = self.vehicle.get_forward_vector() # return np.array([direction[0], -direction[1]]) @property def current_road(self): return self.lane_index[0:-1] """---------------------------------------- some math tool ----------------------------------------------""" def heading_diff(self, target_lane): lateral = None if isinstance(target_lane, StraightLane): lateral = np.asarray(get_vertical_vector(target_lane.end - target_lane.start)[1]) elif isinstance(target_lane, CircularLane): if target_lane.direction == -1: lateral = self.position - target_lane.center else: lateral = target_lane.center - self.position else: raise ValueError("Unknown target lane type: {}".format(type(target_lane))) lateral_norm = norm(lateral[0], lateral[1]) forward_direction = self.heading # print(f"Old forward direction: {self.forward_direction}, new heading {self.heading}") forward_direction_norm = norm(forward_direction[0], forward_direction[1]) if not lateral_norm * forward_direction_norm: return 0 # cos = self.forward_direction.dot(lateral) / (np.linalg.norm(lateral) * np.linalg.norm(self.forward_direction)) cos = ( (forward_direction[0] * lateral[0] + forward_direction[1] * lateral[1]) / (lateral_norm * forward_direction_norm) ) # return cos # Normalize to 0, 1 return clip(cos, -1.0, 1.0) / 2 + 0.5 def projection(self, vector): # Projected to the heading of vehicle # forward_vector = self.vehicle.get_forward_vector() # forward_old = (forward_vector[0], -forward_vector[1]) forward = self.heading # print(f"[projection] Old forward {forward_old}, new heading {forward}") norm_velocity = norm(forward[0], forward[1]) + 1e-6 project_on_heading = (vector[0] * forward[0] + vector[1] * forward[1]) / norm_velocity side_direction = get_vertical_vector(forward)[1] side_norm = norm(side_direction[0], side_direction[1]) + 1e-6 project_on_side = (vector[0] * side_direction[0] + vector[1] * side_direction[1]) / side_norm return project_on_heading, project_on_side def lane_distance_to(self, vehicle, lane: AbstractLane = None) -> float: assert self.routing_localization is not None, "a routing and localization module should be added " \ "to interact with other vehicles" if not vehicle: return np.nan if not lane: lane = self.lane return lane.local_coordinates(vehicle.position)[0] - lane.local_coordinates(self.position)[0] """-------------------------------------- for vehicle making ------------------------------------------""" def _add_chassis(self, pg_physics_world: PGPhysicsWorld): para = self.get_config() chassis = BulletRigidBodyNode(BodyName.Ego_vehicle_top) chassis.setIntoCollideMask(BitMask32.bit(self.COLLISION_MASK)) chassis_shape = BulletBoxShape( Vec3( para[Parameter.vehicle_width] / 2, para[Parameter.vehicle_length] / 2, para[Parameter.vehicle_height] / 2 ) ) ts = TransformState.makePos(Vec3(0, 0, para[Parameter.chassis_height] * 2)) chassis.addShape(chassis_shape, ts) heading = np.deg2rad(-para[Parameter.heading] - 90) chassis.setMass(para[Parameter.mass]) self.chassis_np = self.node_path.attachNewNode(chassis) # not random born now self.chassis_np.setPos(Vec3(*self.born_place, 1)) self.chassis_np.setQuat(LQuaternionf(np.cos(heading / 2), 0, 0, np.sin(heading / 2))) chassis.setDeactivationEnabled(False) chassis.notifyCollisions(True) # advance collision check self.pg_world.physics_world.dynamic_world.setContactAddedCallback(PythonCallbackObject(self._collision_check)) self.dynamic_nodes.append(chassis) chassis_beneath = BulletGhostNode(BodyName.Ego_vehicle) chassis_beneath.setIntoCollideMask(BitMask32.bit(self.COLLISION_MASK)) chassis_beneath.addShape(chassis_shape) self.chassis_beneath_np = self.chassis_np.attachNewNode(chassis_beneath) self.dynamic_nodes.append(chassis_beneath) self.system = BulletVehicle(pg_physics_world.dynamic_world, chassis) self.system.setCoordinateSystem(ZUp) self.dynamic_nodes.append(self.system) # detach chassis will also detach system, so a waring will generate self.LENGTH = para[Parameter.vehicle_length] self.WIDTH = para[Parameter.vehicle_width] if self.render: model_path = 'models/ferra/scene.gltf' self.chassis_vis = self.loader.loadModel(AssetLoader.file_path(model_path)) self.chassis_vis.setZ(para[Parameter.vehicle_vis_z]) self.chassis_vis.setY(para[Parameter.vehicle_vis_y]) self.chassis_vis.setH(para[Parameter.vehicle_vis_h]) self.chassis_vis.set_scale(para[Parameter.vehicle_vis_scale]) self.chassis_vis.reparentTo(self.chassis_np) def _create_wheel(self): para = self.get_config() f_l = para[Parameter.front_tire_longitude] r_l = -para[Parameter.rear_tire_longitude] lateral = para[Parameter.tire_lateral] axis_height = para[Parameter.tire_radius] + 0.05 radius = para[Parameter.tire_radius] wheels = [] for k, pos in enumerate([Vec3(lateral, f_l, axis_height), Vec3(-lateral, f_l, axis_height), Vec3(lateral, r_l, axis_height), Vec3(-lateral, r_l, axis_height)]): wheel = self._add_wheel(pos, radius, True if k < 2 else False, True if k == 0 or k == 2 else False) wheels.append(wheel) return wheels def _add_wheel(self, pos: Vec3, radius: float, front: bool, left): wheel_np = self.node_path.attachNewNode("wheel") if self.render: model_path = 'models/yugo/yugotireR.egg' if left else 'models/yugo/yugotireL.egg' wheel_model = self.loader.loadModel(AssetLoader.file_path(model_path)) wheel_model.reparentTo(wheel_np) wheel_model.set_scale(1.4, radius / 0.25, radius / 0.25) wheel = self.system.create_wheel() wheel.setNode(wheel_np.node()) wheel.setChassisConnectionPointCs(pos) wheel.setFrontWheel(front) wheel.setWheelDirectionCs(Vec3(0, 0, -1)) wheel.setWheelAxleCs(Vec3(1, 0, 0)) # TODO add them to PGConfig in the future wheel.setWheelRadius(radius) wheel.setMaxSuspensionTravelCm(40) wheel.setSuspensionStiffness(30) wheel.setWheelsDampingRelaxation(4.8) wheel.setWheelsDampingCompression(1.2) wheel.setFrictionSlip(self.vehicle_config["wheel_friction"]) wheel.setRollInfluence(1.5) return wheel def add_image_sensor(self, name: str, sensor: ImageBuffer): self.image_sensors[name] = sensor def add_lidar(self, laser_num=240, distance=50): self.lidar = Lidar(self.pg_world.render, laser_num, distance) def add_routing_localization(self, show_navi_point: bool): self.routing_localization = RoutingLocalizationModule(self.pg_world, show_navi_point) def update_map_info(self, map): """ Update map info after reset() :param map: new map :return: None """ self.routing_localization.update(map) lane, new_l_index = ray_localization((self.born_place), self.pg_world) assert lane is not None, "Born place is not on road!" self.lane_index = new_l_index self.lane = lane def _state_check(self): """ Check States and filter to update info """ result = self.pg_world.physics_world.dynamic_world.contactTest(self.chassis_beneath_np.node(), True) contacts = set() for contact in result.getContacts(): node0 = contact.getNode0() node1 = contact.getNode1() name = [node0.getName(), node1.getName()] name.remove(BodyName.Ego_vehicle) if name[0] == "Ground" or name[0] == BodyName.Lane: continue elif name[0] == BodyName.Side_walk: self.out_of_road = True contacts.add(name[0]) if self.render: self.render_collision_info(contacts) return contacts def _collision_check(self, contact): """ It may lower the performance if overdone """ node0 = contact.getNode0().getName() node1 = contact.getNode1().getName() name = [node0, node1] name.remove(BodyName.Ego_vehicle_top) if name[0] == BodyName.Traffic_vehicle: self.crash = True logging.debug("Crash with {}".format(name[0])) def _init_collision_info_render(self, pg_world): if pg_world.mode == "onscreen": info_np = NodePath("Collision info nodepath") info_np.reparentTo(pg_world.aspect2d) else: info_np = None return info_np def render_collision_info(self, contacts): contacts = sorted(list(contacts), key=lambda c: COLLISION_INFO_COLOR[COLOR[c]][0]) text = contacts[0] if len(contacts) != 0 else None if text is None: text = "Normal" if time.time() - self.pg_world._episode_start_time > 10 else "Press H to see help message" self.render_banner(text, COLLISION_INFO_COLOR["green"][1]) else: self.render_banner(text, COLLISION_INFO_COLOR[COLOR[text]][1]) def render_banner(self, text, color=COLLISION_INFO_COLOR["green"][1]): """ Render the banner in the left bottom corner. """ if self.collision_info_np is None: return if self.current_banner is not None: self.current_banner.detachNode() if text in self.collision_banners: self.collision_banners[text].reparentTo(self.collision_info_np) self.current_banner = self.collision_banners[text] else: new_banner = NodePath(TextNode("collision_info:{}".format(text))) self.collision_banners[text] = new_banner text_node = new_banner.node() text_node.setCardColor(color) text_node.setText(text) text_node.setCardActual(-5 * self.pg_world.w_scale, 5.1 * self.pg_world.w_scale, -0.3, 1) text_node.setCardDecal(True) text_node.setTextColor(1, 1, 1, 1) text_node.setAlign(TextNode.A_center) new_banner.setScale(0.05) new_banner.setPos(-0.75 * self.pg_world.w_scale, 0, -0.8 * self.pg_world.h_scale) new_banner.reparentTo(self.collision_info_np) self.current_banner = new_banner def destroy(self, _=None): self.dynamic_nodes.remove(self.chassis_np.node()) super(BaseVehicle, self).destroy(self.pg_world) self.pg_world.physics_world.dynamic_world.clearContactAddedCallback() self.routing_localization.destroy() self.routing_localization = None if self.lidar is not None: self.lidar.destroy() self.lidar = None if len(self.image_sensors) != 0: for sensor in self.image_sensors.values(): sensor.destroy(self.pg_world) self.image_sensors = None if self.vehicle_panel is not None: self.vehicle_panel.destroy(self.pg_world) self.pg_world = None def set_position(self, position): """ Should only be called when restore traffic from episode data :param position: 2d array or list :return: None """ self.chassis_np.setPos(panda_position(position, 0.4)) def set_heading(self, heading_theta) -> None: """ Should only be called when restore traffic from episode data :param heading_theta: float in rad :return: None """ self.chassis_np.setH((panda_heading(heading_theta) * 180 / np.pi) - 90) def get_state(self): return { "heading": self.heading_theta, "position": self.position.tolist(), "done": self.crash or self.out_of_road } def set_state(self, state: dict): self.set_heading(state["heading"]) self.set_position(state["position"]) def __del__(self): super(BaseVehicle, self).__del__() self.pg_world = None self.lidar = None self.mini_map = None self.rgb_cam = None self.routing_localization = None self.wheels = None
from typing import Dict, Generic, TypeVar, TYPE_CHECKING import sys CacheKey = TypeVar("CacheKey") CacheValue = TypeVar("CacheValue") if sys.version_info < (3, 9): from pip._vendor.typing_extensions import OrderedDict else: from collections import OrderedDict class LRUCache(OrderedDict[CacheKey, CacheValue]): """ A dictionary-like container that stores a given maximum items. If an additional item is added when the LRUCache is full, the least recently used key is discarded to make room for the new item. """ def __init__(self, cache_size: int) -> None: self.cache_size = cache_size super().__init__() def __setitem__(self, key: CacheKey, value: CacheValue) -> None: """Store a new views, potentially discarding an old value.""" if key not in self: if len(self) >= self.cache_size: self.popitem(last=False) super().__setitem__(key, value) def __getitem__(self, key: CacheKey) -> CacheValue: """Gets the item, but also makes it most recent.""" value: CacheValue = super().__getitem__(key) super().__delitem__(key) super().__setitem__(key, value) return value
import logging import math from typing import Callable, List from datasketches import frequent_strings_sketch from whylogs.core.statistics.thetasketch import ThetaSketch from whylogs.core.summaryconverters import from_string_sketch from whylogs.proto import CharPosMessage, CharPosSummary, StringsMessage, StringsSummary from whylogs.util import dsketch from .numbertracker import NumberTracker MAX_ITEMS_SIZE = 128 MAX_SUMMARY_ITEMS = 100 logger = logging.getLogger(__name__) class CharPosTracker: """ Track statistics for character positions within a string Parameters ---------- character_list : str string containing all characters to be tracked this list can include specific unicode characters to track. """ def __init__(self, character_list: str = None): if character_list is None: character_list = "abcdefghijklmnopqrstuvwzyz0123456789-+_@!,./?#$%^&*()[]{}" self.character_list = set(character_list) self.char_pos_map = {} def update(self, value: str, character_list: str = None) -> None: """update Parameters ---------- value : str utf-16 string character_list : str, optional use a specific character_list for the tracked string. Note that modifing it from a previous saved choice, will reset the character position map, since NITL no longer has the same context. """ if character_list: char_set = set(character_list) if char_set != self.character_list: # check if any character were previously tracked if not self.char_pos_map: logger.warning("Changing character list, a non-empty character position tracker is being reset to remove ambiguities") self.character_list = char_set self.char_pos_map = {} for indx, char in enumerate(value.lower()): try: if char in self.character_list: self.char_pos_map.setdefault(char, NumberTracker()) # print("track") self.char_pos_map[char].track(indx) else: self.char_pos_map.setdefault("NITL", NumberTracker()) self.char_pos_map["NITL"].track(indx) except UnicodeEncodeError: # print("exception") self.char_pos_map.setdefault("NITL", NumberTracker()) self.char_pos_map["NITL"].track(indx) def merge(self, other: "CharPosTracker") -> "CharPosTracker": """ Merges two Char Pos Frequency Maps Args: other (CharPosTracker): to be merged """ if (self.character_list != other.character_list) and (not self.char_pos_map or not other.char_pos_map): logger.error("Merging two non-empty Character position tracker with different character lists") new_character_list = self.character_list.union(other.character_list) # initialize merged new_char_pos_tracker = CharPosTracker(character_list=str("".join(list(new_character_list)))) # merge new_char_pos_map = {} for character in new_character_list: pos_tracker = self.char_pos_map.get(character, None) other_tracker = other.char_pos_map.get(character, None) if pos_tracker and other_tracker: new_char_pos_map[character] = pos_tracker.merge(other_tracker) elif pos_tracker: new_char_pos_map[character] = pos_tracker elif other_tracker: new_char_pos_map[character] = other_tracker # merge not in the list nitl_tracker = self.char_pos_map.get("NITL", None) nitl_other_tracker = other.char_pos_map.get("NITL", None) if nitl_tracker and nitl_other_tracker: new_char_pos_map["NITL"] = nitl_tracker.merge(nitl_other_tracker) elif nitl_tracker: new_char_pos_map["NITL"] = nitl_tracker elif nitl_other_tracker: new_char_pos_map["NITL"] = nitl_other_tracker new_char_pos_tracker.char_pos_map = new_char_pos_map return new_char_pos_tracker def to_protobuf(self): """ Return the object serialized as a protobuf message """ character_list = list(self.character_list) character_list.sort() opts = dict(char_list="".join(character_list), char_pos_map={key: nt.to_protobuf() for key, nt in self.char_pos_map.items()}) msg = CharPosMessage(**opts) return msg @staticmethod def from_protobuf(message: CharPosMessage): """ Load from a CharPosMessage protobuf message Returns ------- CharPosTracker """ opts = dict(character_list=message.char_list) char_pos_tracker = CharPosTracker(**opts) for each_key, each_value in message.char_pos_map.items(): char_pos_tracker.char_pos_map[each_key] = NumberTracker.from_protobuf(each_value) return char_pos_tracker def to_summary(self): character_list = list(self.character_list) character_list.sort() opts = dict(character_list="".join(character_list), char_pos_map={key: nt.to_summary() for key, nt in self.char_pos_map.items()}) return CharPosSummary(**opts) class StringTracker: """ Track statistics for strings Parameters ---------- count : int Total number of processed values items : frequent_strings_sketch Sketch for tracking string counts theta_sketch : ThetaSketch Sketch for approximate cardinality tracking length : NumberTracker tracks the distribution of length of strings token_length : NumberTracker counts token per sentence token_method : funtion method used to turn string into tokens char_pos_tracker: CharPosTracker """ def __init__( self, count: int = None, items: frequent_strings_sketch = None, theta_sketch: ThetaSketch = None, length: NumberTracker = None, token_length: NumberTracker = None, char_pos_tracker: CharPosTracker = None, token_method: Callable[[], List[str]] = None, ): if count is None: count = 0 if items is None: items = frequent_strings_sketch(round(math.log(MAX_ITEMS_SIZE))) if theta_sketch is None: theta_sketch = ThetaSketch() self.count = count self.items = items self.theta_sketch = theta_sketch self.char_pos_tracker = char_pos_tracker if char_pos_tracker else CharPosTracker() self.length = length if length else NumberTracker() self.token_length = token_length if token_length else NumberTracker() self.token_method = token_method if token_method else lambda x: x.split(" ") def update(self, value: str, character_list=None, token_method=None): """ Add a string to the tracking statistics. If `value` is `None`, nothing will be done """ if value is None: return self.count += 1 self.theta_sketch.update(value) self.items.update(value) self.char_pos_tracker.update(value, character_list) if token_method: self.token_method = token_method self.length.track(len(value)) self.token_length.track(len(self.token_method(value))) def merge(self, other): """ Merge the values of this string tracker with another Parameters ---------- other : StringTracker The other StringTracker Returns ------- new : StringTracker Merged values """ items_copy = frequent_strings_sketch.deserialize(self.items.serialize()) items_copy.merge(other.items) new_theta = self.theta_sketch.merge(other.theta_sketch) count = self.count + other.count new_length = self.length.merge(other.length) new_token_length = self.token_length.merge(other.token_length) new_char_pos_tracker = self.char_pos_tracker.merge(other.char_pos_tracker) return StringTracker(count, items_copy, new_theta, new_length, new_token_length, new_char_pos_tracker) def to_protobuf(self): """ Return the object serialized as a protobuf message Returns ------- message : StringsMessage """ return StringsMessage( count=self.count, items=self.items.serialize(), compact_theta=self.theta_sketch.serialize(), length=self.length.to_protobuf() if self.length else None, token_length=self.token_length.to_protobuf() if self.token_length else None, char_pos_tracker=self.char_pos_tracker.to_protobuf() if self.char_pos_tracker else None, ) @staticmethod def from_protobuf(message: StringsMessage): """ Load from a protobuf message Returns ------- string_tracker : StringTracker """ theta = None if message.compact_theta is not None and len(message.compact_theta) > 0: theta = ThetaSketch.deserialize(message.compact_theta) elif message.theta is not None and len(message.theta) > 0: logger.warning("Possible missing data. Non-compact theta sketches are no longer supported") return StringTracker( count=message.count, items=dsketch.deserialize_frequent_strings_sketch(message.items), theta_sketch=theta, length=NumberTracker.from_protobuf(message.length), token_length=NumberTracker.from_protobuf(message.token_length), char_pos_tracker=CharPosTracker.from_protobuf(message.char_pos_tracker), ) def to_summary(self): """ Generate a summary of the statistics Returns ------- summary : StringsSummary Protobuf summary message. """ if self.count == 0: return None unique_count = self.theta_sketch.to_summary() opts = dict( unique_count=unique_count, length=self.length.to_summary(), token_length=self.token_length.to_summary(), char_pos_tracker=self.char_pos_tracker.to_summary(), ) if unique_count.estimate < MAX_SUMMARY_ITEMS: frequent_strings = from_string_sketch(self.items) if frequent_strings is not None: opts["frequent"] = frequent_strings return StringsSummary(**opts)
import os import shutil from argparse import ArgumentParser import pandas as pd def rename_csv(path: str, old_name: str, new_name: str): # read the csv dataframe = pd.read_csv(path + old_name + ".csv") # copy the limited amount of images from the old into the new directory for index, row in enumerate(dataframe.iterrows()): number = dataframe.loc[index, 'expression'] if number == 0: dataframe.loc[index, 'expression'] = 'Neutral' elif number == 1: dataframe.loc[index, 'expression'] = 'Happy' elif number == 2: dataframe.loc[index, 'expression'] = 'Sad' elif number == 3: dataframe.loc[index, 'expression'] = 'Surprise' elif number == 4: dataframe.loc[index, 'expression'] = 'Fear' elif number == 5: dataframe.loc[index, 'expression'] = 'Disgust' elif number == 6: dataframe.loc[index, 'expression'] = 'Anger' elif number == 7: dataframe.loc[index, 'expression'] = 'Contempt' elif number == 8: dataframe.loc[index, 'expression'] = 'None' elif number == 9: dataframe.loc[index, 'expression'] = 'Uncertain' elif number == 10: dataframe.loc[index, 'expression'] = 'Non-Face' if index % 1000 == 0: print('processed rows: {}'.format(index)) dataframe.to_csv(path + new_name + ".csv", index=False) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("-p", "--path", help="path to the affectnet directory") parser.add_argument("-o", "--old", help="old name") parser.add_argument("-n", "--new", help="new name") args = parser.parse_args() affectnet_path = args.path old = args.old new = args.new rename_csv(affectnet_path, old, new)
class ProxymonObject(object): def __init__(self, name): self.name = name def dump(self): return self.name.upper().replace(" ", "_")
from os.path import basename, dirname from spine.animation.animationstate import AnimationState from spine.animation.animationstatedata import AnimationStateData from spine.atlas.atlas import Atlas from spine.attachment.attachment import AttachmentType from spine.skeleton.skeleton import Skeleton from spine.skeleton.skeletonjson import SkeletonJson from spinekivy.atlasattachmentloader import AtlasAttachmentLoader from spinekivy.sprite import MODE_TRIANGLE_FAN, MODE_TRIANGLES from spinekivy.textureloader import TextureLoader _REGION_INDICES = range(4) class SkeletonRenderer(object): def __init__(self): self.skeleton = None self.state = None self.scale = 1.0 self.sprites = [] def load(self, path): skeleton_data = self._load_skeleton_data(path) self.skeleton = Skeleton(skeleton_data) self.state = AnimationState(AnimationStateData(skeleton_data)) def _load_skeleton_data(self, path): with open(path + '.json') as fp: json_text = fp.read() atlas = self._load_atlas(path) attachment_loader = AtlasAttachmentLoader(atlas) skeleton_json = SkeletonJson(attachment_loader) skeleton_json.scale = self.scale return skeleton_json.read_data(json_text, basename(path)) def _load_atlas(self, path): with open(path + '.atlas') as fp: atlas_text = fp.read() texture_loader = TextureLoader(dirname(path)) return Atlas(atlas_text, texture_loader) def update(self, dt): state = self.state skeleton = self.skeleton sprites = self.sprites state.update(dt) state.apply(skeleton) skeleton.update_world_transform() i = -1 for slot in skeleton.draw_order: i += 1 attachment = slot.attachment sprite = sprites[i] if not attachment: sprite.color.a = 0.0 elif attachment.type == AttachmentType.region: mesh = sprite.mesh attachment.compute_world_vertices_uvs(slot, mesh.vertices) mesh.indices[:] = _REGION_INDICES mesh.mode = MODE_TRIANGLE_FAN mesh.texture = attachment.renderer_object sprite.color.rgba[:] = (slot.r, slot.g, slot.b, slot.a) elif attachment.type == AttachmentType.mesh: mesh = sprite.mesh attachment.compute_world_vertices_uvs(slot, mesh.vertices) mesh.mode = MODE_TRIANGLES mesh.indices[:] = attachment.triangles mesh.texture = attachment.renderer_object sprite.color.rgba[:] = (slot.r, slot.g, slot.b, slot.a) elif attachment.type == AttachmentType.skinnedmesh: mesh = sprite.mesh attachment.compute_world_vertices_uvs(slot, mesh.vertices) mesh.mode = MODE_TRIANGLES mesh.indices[:] = attachment.triangles mesh.texture = attachment.renderer_object sprite.color.rgba[:] = (slot.r, slot.g, slot.b, slot.a) elif attachment.type == AttachmentType.boundingbox: sprite.color.a = 0.0 else: raise TypeError( 'Unknown attachment: {}'.format(type(attachment)) )
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XLA Profiler will help you debug and optimize training workload performance for your models using Cloud TPU performance tools. Manual capture via TensorBoard The following instructions are for capturing trace from a running program 0. This [guide](https://cloud.google.com/tpu/docs/pytorch-xla-performance-profiling-tpu-vm#tpu-vm) will help you with the Cloud TPU setup with the required installations 1. Start a TensorBoard Server >> tensorboard --logdir ./tensorboard --port 9001 You could view the TensorBoard output at http://localhost:9001 on your local machine, and then open the ``PROFILE`` plugin from the top right dropdown or open http://localhost:9001/#profile 2. Once the code you'd like to profile is running, click on ``CAPTURE PROFILE`` button. You could enter ``localhost:9012`` (default port for XLA Profiler) as the Profile Service URL. Then, you could enter the number of milliseconds for the profiling duration, and click ``CAPTURE`` 3. Make sure the code is running, while you are trying to capture the traces. Also, it would lead to better performance insights if the profiling duration is longer than the step time 4. Once the capture is finished, the page will refresh and you could browse through the insights using the ``Tools`` dropdown at the top left """ import logging from typing import Dict from pytorch_lightning.profiler.base import BaseProfiler from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_8, _TPU_AVAILABLE from pytorch_lightning.utilities.exceptions import MisconfigurationException if _TPU_AVAILABLE and _TORCH_GREATER_EQUAL_1_8: import torch_xla.debug.profiler as xp log = logging.getLogger(__name__) class XLAProfiler(BaseProfiler): STEP_FUNCTIONS = {"validation_step", "test_step", "predict_step"} RECORD_FUNCTIONS = { "training_step", "backward", "validation_step", "test_step", "predict_step", } def __init__(self, port: int = 9012) -> None: """This Profiler will help you debug and optimize training workload performance for your models using Cloud TPU performance tools.""" if not _TPU_AVAILABLE: raise MisconfigurationException("`XLAProfiler` is only supported on TPUs") if not _TORCH_GREATER_EQUAL_1_8: raise MisconfigurationException("`XLAProfiler` is only supported with `torch-xla >= 1.8`") super().__init__(dirpath=None, filename=None) self.port = port self._recording_map: Dict = {} self._step_recoding_map: Dict = {} self._start_trace: bool = False def start(self, action_name: str) -> None: if action_name in self.RECORD_FUNCTIONS: if not self._start_trace: self.server = xp.start_server(self.port) self._start_trace = True if action_name in self.STEP_FUNCTIONS: step = self._get_step_num(action_name) recording = xp.StepTrace(action_name, step_num=step) else: recording = xp.Trace(action_name) recording.__enter__() self._recording_map[action_name] = recording def stop(self, action_name: str) -> None: if action_name in self._recording_map: self._recording_map[action_name].__exit__(None, None, None) del self._recording_map[action_name] def _get_step_num(self, action_name: str) -> int: if action_name not in self._step_recoding_map: self._step_recoding_map[action_name] = 1 else: self._step_recoding_map[action_name] += 1 return self._step_recoding_map[action_name] def summary(self) -> str: return ""
while True: num = int( input('Quer ver a tabuada de qual valor (digite número negativo para sair): ')) if num < 0: break for i in range(0, 11): print(f'{num} x {i} = {num * i}') print('='*30)
from .richdatetime import RichDateTime
"""Test string """ import ARgorithmToolkit algo = ARgorithmToolkit.StateSet() st = ARgorithmToolkit.String('st', algo, "Hello world! 1234") def test_body(): """Test string contents """ assert st.body == "Hello world! 1234" last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_declare' assert last_state.content["state_def"]["body"] == "Hello world! 1234" def test_append(): """Test string append """ global st st.append(" Hahaha") assert st.body == "Hello world! 1234 Hahaha" last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_append' assert last_state.content["state_def"]["element"] == " Hahaha" st+='xyz' assert st.body == "Hello world! 1234 Hahahaxyz" last_state = algo.states[-1] second_last_state = algo.states[-2] assert last_state.content["state_type"] == 'string_append' assert last_state.content["state_def"]["element"] == "xyz" assert second_last_state.content["state_type"] == 'string_declare' assert second_last_state.content["state_def"]["body"] == "Hello world! 1234 Hahaha" assert second_last_state.content["state_def"]["variable_name"] == "st_super" def test_indexing(): """Test string indexing """ assert st[1] == st.body[1] last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_iter' assert last_state.content["state_def"]["index"] == 1 subst = st[1:3] assert isinstance(subst,ARgorithmToolkit.String) last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_declare' assert last_state.content["state_def"]["variable_name"] == 'st_super_sub' assert last_state.content["state_def"]["body"] == st.body[1:3] def test_iteration(): """Test string iteration """ for i,(a,b) in enumerate(zip(st,st.body)): assert a==b last_state = algo.states[-1] assert last_state.content["state_type"] == 'string_iter' assert last_state.content["state_def"]["index"] == i
from __future__ import absolute_import import numpy as np from sklearn.linear_model import logistic, SGDClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.pipeline import Pipeline from sklearn.tree import DecisionTreeClassifier from at_toolkit.interface.adl_classifier import AdlOfflineClassifier, AdlOnlineClassifier from at_toolkit import info, error, as_timer def ohe2cat(label): return np.argmax(label, axis=1) class SLLRLiblinear(AdlOfflineClassifier): """ 'liblinear' is limited to one-versus-rest schemes. use ovr in multi-class. for single-label, including binary+multi class. """ def init(self, class_num: int, init_params: dict = None): self.clf_name = "sl_lr_liblinear" self.class_num = class_num # for single labels. self.model = logistic.LogisticRegression(solver="liblinear") self.ml_mode = 2 # for multi-labels # mode-1: class_num * onevsrestclassifier+lr self.ml_models = [OneVsRestClassifier(logistic.LogisticRegression(solver="liblinear")) for i in range(class_num)] # mode-2: onevsrestclassifier+lr self.ml_model = OneVsRestClassifier(logistic.LogisticRegression(solver="liblinear")) #mode-3: Pipeline + onevsrestclassifier+lr self.logReg_pipeline = Pipeline([('clf', OneVsRestClassifier(logistic.LogisticRegression(solver='liblinear'), n_jobs=-1)),]) # for multi-labels. # mode-1: + onevsrestclassifier # mode-2: + decision tree. # self.model = DecisionTreeClassifier() info( "Backbone classifier=SLLRLiblinear is init, class_num={}, init_params={}".format( self.class_num, init_params ) ) def offline_fit(self, train_examples_x: np.ndarray, train_examples_y: np.ndarray, fit_params: dict = None): # for single-label if fit_params.get("if_multilabel") is False: train_examples_y = ohe2cat(train_examples_y) self.model.fit(train_examples_x, train_examples_y) self.label_map = self.model.classes_ # for multi-labels. else: if self.ml_mode == 1: for cls in range(self.class_num): cls_y = train_examples_y[:, cls] # self.logReg_pipeline.fit(train_examples_x, cls_y) self.ml_models[cls].fit(train_examples_x, cls_y) elif self.ml_mode == 2: self.ml_model.fit(train_examples_x, train_examples_y) elif self.ml_mode == 3: for cls in range(self.class_num): cls_y = train_examples_y[:, cls] self.logReg_pipeline.fit(train_examples_x, cls_y) else: error("Error: wrong ml_mode={}".format(self.ml_mode)) as_timer("lr_liblinear_fit_{}".format(len(train_examples_x))) def predict_proba(self, test_examples: np.ndarray, predict_prob_params: dict = None) -> np.ndarray: # multi-label or single-label. if predict_prob_params.get("if_multilabel") is True: return self.predict_proba_multilabel(test_examples) else: raw_pred_probas = self.model.predict_proba(test_examples) print(raw_pred_probas) if len(self.label_map) < self.class_num: rebuilt_pred_proba = self.rebuild_prob_res(self.label_map, raw_pred_probas) as_timer("lr_liblinaer_pred_proba_{}".format(len(test_examples))) return rebuilt_pred_proba else: return raw_pred_probas def predict_proba_multilabel(self, test_examples: np.ndarray): if self.ml_mode == 1: all_preds = [] for cls in range(self.class_num): preds = self.ml_models[cls].predict_proba(test_examples) # preds = self.logReg_pipeline.predict_proba(test_examples) info("cls={}, preds shape={}, data={}".format(cls, preds.shape, preds)) all_preds.append(preds[:, 1]) preds = np.stack(all_preds, axis=1) elif self.ml_mode == 2: preds = self.ml_model.predict_proba(test_examples) elif self.ml_mode == 3: preds = self.ml_model.predict_proba(test_examples) all_preds = [] for cls in range(self.class_num): preds = self.ml_models[cls].predict_proba(test_examples) preds = self.logReg_pipeline.predict_proba(test_examples) # info("cls={}, preds shape={}, data={}".format(cls, preds.shape, preds)) all_preds.append(preds[:, 1]) preds = np.stack(all_preds, axis=1) else: error("Error: wrong ml_mode={}".format(self.ml_mode)) preds = self.ml_model.predict_proba(test_examples) info("multilabel, preds shape={} , data={}".format(preds.shape, preds)) return preds class SLLRSag(AdlOfflineClassifier): """ 'liblinear' is limited to one-versus-rest schemes. use ovr in multi-class. for single-label, including binary+multi class. """ def init(self, class_num, init_params: dict): self.clf_name = "sl_lr_sag" self.class_num = class_num self.max_iter = init_params.get("max_iter") # self.model = logistic.LogisticRegression(solver="sag", max_iter=self.max_iter) self.model = logistic.LogisticRegression(C=1.0, max_iter=self.max_iter, solver="sag", multi_class="auto") # self.model = OneVsRestClassifier(logistic.LogisticRegression(C=1.0, max_iter=self.max_iter, solver="sag", multi_class="auto")) self.ml_model = OneVsRestClassifier(logistic.LogisticRegression(solver="liblinear")) info( "Backbone classifier=SLLRLiblinear is init, class_num={}, init_params={}".format( self.class_num, init_params ) ) def offline_fit(self, train_examples_x: np.ndarray, train_examples_y: np.ndarray, fit_params: dict = None): if fit_params.get("if_multilabel") is False: train_examples_y = ohe2cat(train_examples_y) self.model.fit(train_examples_x, train_examples_y) self.label_map = self.model.classes_ else: self.ml_model.fit(train_examples_x, train_examples_y) as_timer("lr_sag_fit_{}".format(len(train_examples_x))) def predict_proba(self, test_examples: np.ndarray, predict_prob_params: dict = None) -> np.ndarray: if predict_prob_params.get("if_multilabel") is True: return self.predict_proba_multilabel(test_examples) else: raw_pred_probas = self.model.predict_proba(test_examples) if len(self.label_map) < self.class_num: rebuilt_pred_proba = self.rebuild_prob_res(self.label_map, raw_pred_probas) as_timer("lr_liblinaer_pred_proba_{}".format(len(test_examples))) return rebuilt_pred_proba else: return raw_pred_probas def predict_proba_multilabel(self, test_examples: np.ndarray, predict_prob_params: dict = None) -> np.ndarray: preds = self.ml_model.predict_proba(test_examples) return preds class MLLRLiblinear(AdlOfflineClassifier): def init(self, class_num: int, init_params: dict): self.clf_name = "ml_sl_lr_liblinear" self.class_num = class_num self.model = logistic.LogisticRegression(solver="liblinear") info( "Backbone classifier=SLLRLiblinear is init, class_num={}, init_params={}".format( self.class_num, init_params ) ) pass def offline_fit(self, train_examples_x: np.ndarray, train_examples_y: np.ndarray, fit_params:dict): pass def predict_proba(self, test_examples: np.ndarray, predict_prob_params: dict) -> np.ndarray: pass def main(): class_num = 100 lr_libl_cls_init_params = {} lr_sag_cls_init_params = {"max_iter": 30} # 50/100 lr_libl_cls = SLLRLiblinear() lr_libl_cls.init(class_num) lr_sag_cls = SLLRSag() lr_sag_cls.init(class_num, lr_sag_cls_init_params) if __name__ == "__main__": main()
from pathlib import Path import ezdxf import math DIR = Path('~/Desktop/Outbox').expanduser() doc = ezdxf.new() msp = doc.modelspace() hatch = msp.add_hatch(color=1) ep = hatch.paths.add_edge_path() ep.add_line((0, 0), (1, 0)) ep.add_arc( center=(0, 0), radius=1, start_angle=0, end_angle=90, ccw=True, ) ep.add_line((0, 1), (0, 0)) hatch.translate(0.25, 0.25, 0) for color in range(2, 5): hatch = hatch.copy() hatch.dxf.color = color hatch.rotate_z(math.pi / 2.0) doc.entitydb.add(hatch) msp.add_entity(hatch) doc.set_modelspace_vport(height=5) doc.saveas(DIR / 'ccw_arc_hatch.dxf')
from pycortecs.utility.utils import validate_endpoint from pycortecs.services import BASE_URL from pycortecs.services.base_services import BaseServices SENTIMENT = 'sentiment' VOLUME = 'socialVolume' BALANCE = 'socialBalance' DOMINANCE = 'socialDominance' ENDPOINTS = 'endpointInfo' SIGNALS = 'signalInfo' ASSETS = 'assetInfo' PROVIDED_SINCE = 'providedSince' API_URL = "{}/api/v1".format(BASE_URL) class MediaServices(BaseServices): def __init__(self, username: str = None, password: str = None): super().__init__(username, password) def get_provided_assets(self): url = "{url}/{feature}".format(url=API_URL, feature=ASSETS) res = self._get(url, headers=self._token_header) return res def get_provided_signals(self): url = "{url}/{feature}".format(url=API_URL, feature=SIGNALS) res = self._get(url, headers=self._token_header) return res def get_provided_endpoints(self): url = "{url}/{feature}".format(url=API_URL, feature=ENDPOINTS) res = self._get(url, headers=self._token_header) return res def get_asset_provided_since(self, asset: str = 'btc', endpoint: str = 'twitter'): validate_endpoint(endpoint) url = "{url}/{provided_since}/{endpoint}".format(url=API_URL, provided_since=PROVIDED_SINCE, endpoint=endpoint) query_parameters = "?asset={asset}".format(asset=asset) res = self._get(url + query_parameters, headers=self._token_header) return res def get_sentiment(self, endpoint: str = 'twitter', since: str = None, until: str = None, asset: str = None, interval: str = '1d') -> dict: validate_endpoint(endpoint) url = "{url}/{signal}/{endpoint}".format(url=API_URL, signal=SENTIMENT, endpoint=endpoint) query_parameters = "?since={since}&until={until}&asset={asset}&interval={interval}".format(since=since, until=until, asset=asset, interval=interval) res = self._get(url + query_parameters, headers=self._token_header) return res def get_volume(self, endpoint: str = 'twitter', since: str = None, until: str = None, asset: str = None, interval: str = '1d') -> dict: validate_endpoint(endpoint) url = "{url}/{signal}/{endpoint}".format(url=API_URL, signal=VOLUME, endpoint=endpoint) query_parameters = "?since={since}&until={until}&asset={asset}&interval={interval}".format(since=since, until=until, asset=asset, interval=interval) res = self._get(url + query_parameters, headers=self._token_header) return res def get_dominance(self, endpoint: str = 'twitter', since: str = None, until: str = None, asset: str = None, interval: str = '1d') -> dict: validate_endpoint(endpoint) url = "{url}/{signal}/{endpoint}".format(url=API_URL, signal=DOMINANCE, endpoint=endpoint) query_parameters = "?since={since}&until={until}&asset={asset}&interval={interval}".format(since=since, until=until, asset=asset, interval=interval) res = self._get(url + query_parameters, headers=self._token_header) return res def get_balance(self, endpoint: str = 'twitter', since: str = None, until: str = None, asset: str = None, interval: str = '1d', threshold: float = 0.7) -> dict: validate_endpoint(endpoint) url = "{url}/{signal}/{endpoint}".format(url=API_URL, signal=BALANCE, endpoint=endpoint) query_parameters = "?since={since}&until={until}&asset={asset}&interval={interval}&threshold={threshold}".format( since=since, until=until, asset=asset, interval=interval, threshold=threshold) res = self._get(url + query_parameters, headers=self._token_header) return res
import setuptools # Read the contents of the README file from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setuptools.setup( name="mkdocs-render-swagger-plugin", version="0.0.2", author="Bar Harel", python_requires='>=3.6', author_email="bzvi7919@gmail.com", description="MKDocs plugin for rendering swagger & openapi files.", url="https://github.com/bharel/mkdocs-render-swagger-plugin", py_modules=["render_swagger"], install_requires=["mkdocs"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], entry_points={ 'mkdocs.plugins': [ 'render_swagger = render_swagger:SwaggerPlugin', ] }, long_description=long_description, long_description_content_type='text/markdown' )
#!/usr/bin/env python3 """ Geoscience Australia - Python Geodesy Package GNSS Module In Development """ import sys from numpy import zeros from geodepy.angles import DMSAngle def read_sinex_estimate(file): """This function reads in the SOLUTION/ESTIMATE block of a SINEX file. It returns estimate, a list of tuples: estimate = [(code, soln, refEpoch, staX, staY, staZ, staX_sd, staY_sd, staZ_sd[, velX, velY, velZ, velX_sd, velY_sd, velZ_sd])...] where: * code is the stations's 4-character ID * soln is the segment of the stations's time series * refEpoch is the epoch of the solution in the form YY:DOY:SSSSS (YY is the two digit year, DOY is day of year, and SSSSS is the time of day in seconds * sta[XYZ] is the station coordinates in the Cartesian reference frame * sta[XYZ]_sd is the standard deviation of the station coordinates in the Cartesian reference frame * vel[XYZ] is the station velocity in the Cartesian reference frame * vel[XYZ]_sd is the standard deviation of the station velocity in the Cartesian reference frame Velocities are not included in all SINEX files and so are only returned if present. :param file: the input SINEX file :return: estimate """ # Create data structures and set variables lines = [] estimate = [] velocities = False go = False code = '' soln = '' epoch = '' stax = '' stay = '' staz = '' stax_sd = '' stay_sd = '' staz_sd = '' velx = '' vely = '' velz = '' velx_sd = '' vely_sd = '' velz_sd = '' # Read the SOLUTION/ESTIMATE block into a list and determine if there is # any velocity information with open(file) as f: for line in f: if line[:18] == '-SOLUTION/ESTIMATE': break if go and line[:11] == '*INDEX TYPE': pass elif go: if line[7:10] == 'VEL': velocities = True lines.append(line) if line[:18] == '+SOLUTION/ESTIMATE': go = True for line in lines: typ = line[7:11] if typ == 'STAX': code = line[14:18] soln = line[23:26].lstrip() epoch = line[27:39] stax = float(line[47:68]) stax_sd = float(line[69:80]) elif typ == 'STAY': stay = float(line[47:68]) stay_sd = float(line[69:80]) elif typ == 'STAZ': staz = float(line[47:68]) staz_sd = float(line[69:80]) if not velocities: info = (code, soln, epoch, stax, stay, staz, stax_sd, stay_sd, staz_sd) estimate.append(info) elif typ == 'VELX': velx = float(line[47:68]) velx_sd = float(line[69:80]) elif typ == 'VELY': vely = float(line[47:68]) vely_sd = float(line[69:80]) elif typ == 'VELZ': velz = float(line[47:68]) velz_sd = float(line[69:80]) info = (code, soln, epoch, stax, stay, staz, stax_sd, stay_sd, staz_sd, velx, vely, velz, velx_sd, vely_sd, velz_sd) estimate.append(info) return estimate def read_sinex_matrix(file): """This function reads in the SOLUTION/MATRIX_ESTIMATE block of a SINEX file. It returns matrix, a list of tuples: matrix = [(code, soln, var_x, covar_xy, covar_xz, var_y, covar_yz, var_z[, var_v_x, covar_v_xy, covar_v_xz, var_v_y, covar_v_yz, var_v_z])...] where: * code is the stations's 4-character ID * soln is the segment of the stations's time series * var_x is the variance in the X coordinate * covar_xy is the covariance between the X and the Y coordinates * covar_xz is the covariance between the X and the Z coordinates * var_y is the variance in the Y coordinate * covar_yz is the covariance between the Y and the Z coordinates * var_z is the variance in the Z coordinate * var_v_x is the variance in the X velocity * covar_v_xy is the covariance between the X and the Y velocities * covar_v_xz is the covariance between the X and the Z velocities * var_v_y is the variance in the Y velocity * covar_v_yz is the covariance between the Y and the Z velocities * var_v_z is the variance in the Z velocity Velocities are not included in all SINEX files and so their VCV information is only returned if they are present. :param file: the input SINEX file :return: matrix """ # Read in the codes (station names) and solutions, and check for velocities data = read_sinex_estimate(file) code = [] soln = [] velocities = False for station in data: code.append(station[0]) soln.append(station[1]) if len(data[0]) == 15: velocities = True # Read the SOLUTION/MATRIX_ESTIMATE block into a list and determine if the # matrix is upper or lower triangular lines = [] lower_triangular = False go = False with open(file) as f: for line in f: if line[:25] == '-SOLUTION/MATRIX_ESTIMATE': break if go and line[:12] == '*PARA1 PARA2': pass elif go: lines.append(line) if line[:25] == '+SOLUTION/MATRIX_ESTIMATE': if line[26] == 'L': lower_triangular = True go = True # Create an array containing the matrix elements if velocities: n = 6 * int(len(code)) else: n = 3 * int(len(code)) element = zeros((n, n)) matrix = [] for line in lines: col = line.rstrip().split() for i in range(2, len(col)): element[int(col[0]) - 1][int(col[1]) + i - 3] = float(col[i]) if velocities: if lower_triangular: for i in range(len(code)): info = (code[i], soln[i], element[6 * i][6 * i], element[6 * i + 1][6 * i], element[6 * i + 1][6 * i + 1], element[6 * i + 2][6 * i], element[6 * i + 2][6 * i + 1], element[6 * i + 2][6 * i + 2], element[6 * i + 3][6 * i + 3], element[6 * i + 4][6 * i + 3], element[6 * i + 4][6 * i + 4], element[6 * i + 5][6 * i + 3], element[6 * i + 5][6 * i + 4], element[6 * i + 5][6 * i + 5]) matrix.append(info) else: for i in range(len(code)): info = (code[i], soln[i], element[6 * i][6 * i], element[6 * i][6 * i + 1], element[6 * i][6 * i + 2], element[6 * i + 1][6 * i + 1], element[6 * i + 1][6 * i + 2], element[6 * i + 2][6 * i + 2], element[6 * i + 3][6 * i + 3], element[6 * i + 3][6 * i + 4], element[6 * i + 3][6 * i + 5], element[6 * i + 4][6 * i + 4], element[6 * i + 4][6 * i + 5], element[6 * i + 5][6 * i + 5]) matrix.append(info) else: if lower_triangular: for i in range(len(code)): info = (code[i], soln[i], element[3 * i][3 * i], element[3 * i + 1][3 * i], element[3 * i + 1][3 * i + 1], element[3 * i + 2][3 * i], element[3 * i + 2][3 * i + 1], element[3 * i + 2][3 * i + 2]) matrix.append(info) else: for i in range(len(code)): info = (code[i], soln[i], element[3 * i][3 * i], element[3 * i][3 * i + 1], element[3 * i][3 * i + 2], element[3 * i + 1][3 * i + 1], element[3 * i + 1][3 * i + 2], element[3 * i + 2][3 * i + 2]) matrix.append(info) return matrix def read_sinex_sites(file): """This function reads in the SITE/ID block of a SINEX file. It returns sites, a list of tuples: sites = [(site, point, domes, obs, station_description, lon, lat, h)] where: * site is the site code * point is the site's point code * domes is the site's dome number * obs is the observation technique * station_description is a free format desciption of the site * lon is the approximate longitude of the site as a DMSAngle object * lat is the approximate latitude of the site as a DMSAngle object * h is the approximate height of the site :param file: the input SINEX file :return: sites """ # Read the SITE/ID block into a list lines = [] go = False with open(file) as f: for line in f: if line[:8] == '-SITE/ID': break if go and line[:8] == '*CODE PT': pass elif go: lines.append(line) if line[:8] == '+SITE/ID': go = True sites = [] for line in lines: site = line[1:5] point = line[6:8].lstrip() domes = line[9:18] obs = line[19:20] station_description = line[21:43].lstrip() lon = DMSAngle(line[44:55].lstrip()) lat = DMSAngle(line[56:67].lstrip()) h = float(line[67:73]) info = (site, point, domes, obs, station_description, lon, lat, h) sites.append(info) return sites def read_disconts(file): """This function reads in the SOLUTION/DISCONTINUITY block of a SINEX file. It returns disconts , a list of tuples: sites = [(site, code1, point, code2, start, end, type)] where: * site is the site code * code1 is unknown * point is the site's point code * code2 is unknown * start is the start time for the point code in YY:DOY:SECOD * end is the end time for the point code in YY:DOY:SECOD * type is the type of discontinuity; P for position or V for velocity I could not find the format description for this block. :param file: the input discontinuities file :return: disconts """ # Read the SOLUTION/DISCONTINUITY block into a list lines = [] go = False with open(file) as f: for line in f: if line[:23] == '-SOLUTION/DISCONTINUITY': break elif go: lines.append(line) if line[:23] == '+SOLUTION/DISCONTINUITY': go = True disconts = [] for line in lines: site = line[1:5] code1 = line[5:8].lstrip() point = line[8:13].lstrip() code2 = line[14:15] start = line[16:28] end = line[29:41] type = line[42:43] info = (site, code1, point, code2, start, end, type) disconts.append(info) return disconts def read_solution_epochs(file): """This function reads in the SOLUTION/EPOCHS block of a SINEX file. It returns epochs, a list of tuples: epochs = [(site, point, sol, obs, start, end, mean)] where: * site is the site code * point is the site's point code * sol is the solution number at a site/point * obs is the observation technique * start is the start time for the solution in YY:DOY:SECOD * end is the end time for the solution in YY:DOY:SECOD * mean is the mean time for the solution in YY:DOY:SECOD :param file: the input SINEX file :return: epochs """ # Read the SOLUTION/EPOCHS block into a list lines = [] go = False with open(file) as f: for line in f: if line[:16] == '-SOLUTION/EPOCHS': break if go and line[:8] == '*Code PT': pass elif go: lines.append(line) if line[:16] == '+SOLUTION/EPOCHS': go = True epochs = [] # Parse each line, create a tuple and add it to the list for line in lines: site = line[1:5] point = line[6:8].lstrip() sol = line[9:13].lstrip() obs = line[14:15] start = line[16:28] end = line[29:41] mean = line[42:55].rstrip() info = (site, point, sol, obs, start, end, mean) epochs.append(info) return epochs
"""基本节点模块。 节点有以下几个类型: 1. Variable,变量节点。其没有父节点,作为模型权重(可训练)或输入数据(不可训练)。 2. Operator,操作节点。其表示某种运算操作,通常为计算图的中间变量。 3. LossFunction,损失函数节点。 4. Metrics,评估节点。其仅进行前向计算,用于评估模型。 """ import abc import numpy as np from .graph import default_graph class Node(abc.ABC): """ 计算图节点类基类 """ def __init__(self, *parents, **kargs): # 计算图对象,默认为全局对象 default_graph self.kargs = kargs self.graph = kargs.get('graph', default_graph) self.need_save = kargs.get('need_save', True) self.gen_node_name(**kargs) self.parents = list(parents) # 父节点列表 self.children = [] # 子节点列表 self.value = None # 本节点的值 self.jacobi = None # 结果节点对本节点的雅可比矩阵(梯度),使用numpy.matrix实现 # 将本节点添加到父节点的子节点列表中 for parent in self.parents: parent.children.append(self) # 将本节点添加到计算图中 self.graph.add_node(self) def get_parents(self): """ 获取本节点的父节点 """ return self.parents def get_children(self): """ 获取本节点的子节点 """ return self.children def gen_node_name(self, **kargs): """ 生成节点名称,如果用户不指定,则根据节点类型生成类似于 MatMul:3 的节点名, 如果指定了 name_scope,则生成类似 Hidden/MatMul:3 的节点名 """ self.name = kargs.get('name', f'{self.__class__.__name__}:' f'{self.graph.node_count()}') if self.graph.name_scope: self.name = f'{self.graph.name_scope}/{self.name}' def forward(self): """ 前向传播计算本节点的值,若父节点的值未被计算,则递归调用父节点的forward 方法 """ for parent in self.parents: if parent.value is None: parent.forward() self.compute() @abc.abstractmethod def compute(self): """ 抽象方法,根据父节点的值计算本节点的值 """ @abc.abstractmethod def get_jacobi(self, parent): """ 抽象方法,计算结果节点对某个父节点的雅可比矩阵 """ def backward(self, result): """ 反向传播,计算结果节点对本节点的雅可比矩阵 """ if self.jacobi is None: if self is result: self.jacobi = np.mat(np.eye(self.dimension())) else: self.jacobi = np.mat( np.zeros((result.dimension(), self.dimension())) ) for child in self.get_children(): if child.value is not None: self.jacobi += child.backward(result) \ * child.get_jacobi(self) return self.jacobi def clear_jacobi(self): """ 清空结果节点对本节点的雅可比矩阵 """ self.jacobi = None def dimension(self): """ 返回本节点的值展开成向量后的维数 """ return self.value.shape[0] * self.value.shape[1] def shape(self): """ 返回本节点的值作为矩阵的形状:(行数,列数) """ return self.value.shape def reset_value(self, recursive=True): """ 重置本节点的值,并递归重置本节点的下游节点的值 """ self.value = None if recursive: for child in self.children: child.reset_value() class Variable(Node): """ 变量节点,没有父节点 """ def __init__(self, dim, init=False, trainable=True, **kargs): """ 变量节点没有父节点,其构造函数接受变量节点的形状、是否初始化以及是否参与训练的标识 """ super().__init__(**kargs) self.dim = dim # 如果需要初始化,则以正态分布随机初始化变量的值 if init: self.value = np.mat(np.random.normal(0, 0.1, self.dim)) # 变量节点是否参与训练 self.trainable = trainable def set_value(self, value): """ 为变量赋值 """ assert isinstance(value, np.matrix) and value.shape == self.dim # 本节点的值被改变,重置所有下游节点的值 self.reset_value() self.value = value def compute(self): pass def get_jacobi(self, parent): pass
# -*- coding: utf-8 -*- from __future__ import unicode_literals from functools import update_wrapper import logging from django.conf import settings from django.utils.html import strip_tags try: from django.utils.six.moves import urllib_parse urlsplit = urllib_parse.urlsplit urlunsplit = urllib_parse.urlunsplit except (ImportError, AttributeError) as e: # Python 2, < Django 1.5 from urlparse import urlsplit, urlunsplit from django.forms import Media from django.template.response import TemplateResponse from adminlinks.admin import AdminlinksMixin from django.contrib.admin.options import ModelAdmin try: from django.contrib.admin.utils import display_for_field, unquote except ImportError: from django.contrib.admin.util import display_for_field, unquote from django.core.exceptions import ObjectDoesNotExist from django.core.urlresolvers import reverse, resolve from django.http import HttpResponse, HttpResponseBadRequest, QueryDict from django.shortcuts import render_to_response from django.template import RequestContext from django.template.loader import render_to_string try: import json except ImportError: # pragma: no cover ... some older Python2 version. from django.utils import simplejson as json try: from django.utils.encoding import force_text except ImportError: # pragma: no cover ... < Django 1.5 from django.utils.encoding import force_unicode as force_text from django.utils.translation import ugettext_lazy as _ from adminlinks.templatetags.utils import _add_link_to_context from editregions.admin.inlines import EditRegionInline from editregions.constants import (REQUEST_VAR_REGION, REQUEST_VAR_CT, REQUEST_VAR_ID) from editregions.utils.data import (get_modeladmin, get_content_type, get_model_class, get_configuration, attach_configuration) from editregions.admin.changelist import EditRegionChangeList from editregions.admin.forms import MovementForm from editregions.admin.utils import (AdminChunkWrapper, shared_media, guard_querystring_m, TemplateRequestKeyValue) from editregions.templatetags.editregion import chunk_iteration_context from editregions.models import EditRegionChunk, EditRegionConfiguration from editregions.text import (admin_chunktype_label, admin_summary_label, admin_position_label, admin_modified_label, region_v) try: from django.utils.text import Truncator def truncate_words(s, num): return Truncator(s).words(num, truncate='...') except ImportError as e: # pragma: no cover from django.utils.text import truncate_words logger = logging.getLogger(__name__) class EditRegionAdmin(ModelAdmin): frontend_editing = True fields = None fieldsets = None exclude = None date_hierarchy = None ordering = None list_select_related = False save_as = False save_on_top = False actions = None change_list_template = 'admin/editregions/change_list.html' list_display = [ # this should always be last, and not be in the list_display_links 'get_object_tools', 'get_subclass_type', 'get_subclass_summary', ] list_display_links = () list_filter = [ 'region', ] def __init__(self, *args, **kwargs): super(EditRegionAdmin, self).__init__(*args, **kwargs) # disables the built in link building using # EditRegionChangeList.url_for_result so that we can have useful # links that we can customise. self.list_display_links = self.get_list_display_links( request=None, list_display=self.list_display, ) def get_list_display_links(self, request, list_display): """ Disable the built in link building so we can have customised links in the changelist. """ return (None,) def get_list_display(self, request): """ A copy of the standard one, hard-copying the fields ... """ return self.list_display[:] def get_changelist_link_html(self, obj, **kwargs): wrapped_obj = AdminChunkWrapper(opts=obj._meta, obj=obj, namespace=self.admin_site.name, content_id=obj.content_id, content_type=obj.content_type, region=obj.region) return ('<a href="{url}" data-adminlinks="autoclose" ' 'class="chunktype-{app}-{model} chunk-metadata-{caller}" ' 'data-no-turbolink>{data}</a>').format( url=wrapped_obj.get_absolute_url(), app=wrapped_obj.url_parts['app'], model=wrapped_obj.url_parts['module'], **kwargs) def get_subclass_type(self, obj): """ get the verbose name of the given object, which is likely a subclass .. note:: By using this callable, we avoid the problem of being able to sort by headers in the changelists (including on the change form) :return: the subclass object's verbose name :rtype: string """ modeladmin = get_modeladmin(obj) if hasattr(modeladmin, 'get_editregions_subclass_type'): value = modeladmin.get_editregions_subclass_type(obj=obj) else: value = obj._meta.verbose_name value = strip_tags(force_text(value)) return self.get_changelist_link_html(obj, data=value, caller='subclass') get_subclass_type.allow_tags = True get_subclass_type.short_description = admin_chunktype_label def get_subclass_summary(self, obj): """ show a brief, HTML aware summary of the content. .. note:: By using this callable, we avoid the problem of being able to sort by headers in the changelists (including on the change form) :return: short representation of the data, HTML included. :rtype: string """ modeladmin = get_modeladmin(obj) if hasattr(modeladmin, 'get_editregions_subclass_summary'): value = modeladmin.get_editregions_subclass_summary(obj=obj) elif hasattr(modeladmin, 'render_into_summary'): context = chunk_iteration_context(index=0, value=obj, iterable=(obj,)) context.update({'admin_summary': True}) value = modeladmin.render_into_summary(obj=obj, context=context) else: value = '[missing]' value = strip_tags(force_text(value)) return self.get_changelist_link_html(obj, data=value, caller='summary') get_subclass_summary.allow_tags = True get_subclass_summary.short_description = admin_summary_label def get_object_tools(self, obj): """ Show the modifiers for this object. Currently just implements the drag handle as per `django-treeadmin`_. :return: the list of actions or tools available for this object :rtype: string """ modeladmin = get_modeladmin(obj) if hasattr(modeladmin, 'get_editregions_subclass_tools'): value = modeladmin.get_editregions_subclass_tools(obj=obj) else: value = '' return '<div class="chunk-object-tools">{value!s}</div>'.format( value=value) get_object_tools.allow_tags = True get_object_tools.short_description = '' # We're finished our list_display fields here. def get_model_perms(self, request, *args, **kwargs): """ Shadow method for the default ModelAdmin. Allows us to hide stufff. By using an empty dictionary, permissions still work, but chunk administration views are hidden from the default AdminSite index. :param request: The WSGIRequest. :return: Empty dictionary """ return {} def get_urls(self): # why this isn't a separate method in Django, I don't know. from django.conf.urls import patterns, url def wrap(view): # pragma: no cover this is from the Django admin def wrapper(*args, **kwargs): return self.admin_site.admin_view(view)(*args, **kwargs) return update_wrapper(wrapper, view) app_label = self.model._meta.app_label if hasattr(self.model._meta, 'model_name'): model_name = self.model._meta.model_name else: model_name = self.model._meta.module_name info = (app_label, model_name) urlpatterns = patterns('', # parent_ct is the Django ContentType PK for # the object the EditRegionChunks are bound to # eg: a page, a blog post, a project. # parent_id is the PK of the parent object in # question. We don't know what format the PK takes # so we accept anything. #url(r'^(?P<parent_ct>\d+)/(?P<parent_id>.+)/$', url(r'^$', wrap(self.changelist_view), name='%s_%s_changelist' % info), # moving an object from one position to another # potentially across regions. url(r'^move/$', wrap(self.move_view), name='%s_%s_move' % info), # this thing is needed, unfortunately, to enable # the delete screen to work on EditRegionChunk # subclasses. # see https://code.djangoproject.com/ticket/20640 # As I'm not thrilled with the idea of finding # the wrong edit screen ... we're going to # re-point it at the history view. url(r'^(.+)/$', wrap(self.history_view), name='%s_%s_change' % info), ) return urlpatterns urls = property(get_urls) def move_view(self, request): """ Allows us to move a Chunk from one place to another. Yes, it accepts request.GET, because I can't be bothered to monkey patch the jQuery ajax sending to send a CSRF token. Screw it. Data received in the request should be: * `pk` * `position` * `region` The form then handles moving everything in .save() """ form = MovementForm(data=request.GET, files=None, initial=None) if form.is_valid() and self.has_change_permission(request, form.cleaned_data['pk']): form.save() html = self.render_changelists_for_object( request=request, obj=form.cleaned_data['pk'].content_object) json_data = { 'action': 'move', 'html': html, 'primary_key': form.cleaned_data['pk'].pk, } self.log_change(request, *form.change_message()) self.log_change(request, *form.parent_change_message()) return HttpResponse(json.dumps(json_data), content_type='application/json') return HttpResponseBadRequest(json.dumps(form.errors), content_type='application/json') def get_queryset(self, *args, **kwargs): """ Don't use the default queryset/manager, as it won't be our interface to polymorphic (downcast) EditRegionChunk subclasses. :param args: Stuff to pass through to :meth:`~django.contrib.admin.options.BaseModelAdmin.get_ordering` :param kwargs: Stuff to pass through to :meth:`~django.contrib.admin.options.BaseModelAdmin.get_ordering` :return: our EditRegionChunks, but already downcast to their final form. :rtype: :class:`~django.db.models.query.QuerySet` """ qs = self.model.polymorphs.all().select_subclasses() ordering = self.get_ordering(*args, **kwargs) if ordering: # pragma: no cover ... I don't care, this should be fine. qs = qs.order_by(*ordering) return qs queryset = get_queryset def get_object(self, request, object_id): """ This overrides the default, to catch ObjectDoesNotExist, because we can't guarantee what model is being referenced, as it's polymorphic. """ queryset = self.queryset(request) try: return queryset.get(pk=object_id) except ObjectDoesNotExist: return None def get_changelist(self, *args, **kwargs): return EditRegionChangeList def changelist_view(self, request, extra_context=None): parent_ct = request.GET[REQUEST_VAR_CT] parent_id = request.GET[REQUEST_VAR_ID] obj = get_model_class(parent_ct).objects.get(pk=parent_id) extra_context = extra_context or {} if request.is_ajax(): return HttpResponse( self.render_changelists_for_object(request=request, obj=obj)) context = self.changelists_as_context_data(request, obj) opts = self.model._meta app_label = opts.app_label context.update({ 'module_name': force_text(opts.verbose_name_plural), 'title': _('Select %s to change') % force_text(opts.verbose_name), 'media': self.media, 'app_label': app_label, 'cl': { 'opts': { 'app_label': app_label, 'verbose_name_plural': opts.verbose_name_plural, } } }) context.update(extra_context or {}) return TemplateResponse(request, self.change_list_template, context, current_app=self.admin_site.name) def get_changelists_for_object(self, request, obj, **kwargs): changelists = [] if obj is not None: logger.debug('Editing `{obj!r}`, so do ' '`get_changelists_for_object`'.format(obj=obj)) attach_configuration(obj, EditRegionConfiguration) config = get_configuration(obj) # Dynamic template changes ... obj_admin = get_modeladmin(admin_namespace=self.admin_site.name, obj=obj) if hasattr(obj_admin, 'editregions_template_field'): fieldname = obj_admin.editregions_template_field template_name = request.GET.get(fieldname, None) kv = TemplateRequestKeyValue(key=fieldname, value=template_name) if config.is_valid_template(template_name): logger.debug("{kv!r} was valid for this {obj!r} " "and {modeladmin!r}".format( kv=kv, obj=obj, modeladmin=obj_admin)) config.set_template(template_name) # store the old get here, because it gets changed inside the region # loops, which is a lossy process. old_get = request.GET # mutate the querystring and set some data onto it, which will # be passed to the get_changelist_filters method, as well as # being used to filter the ChangeList correctly. # new_get = request.GET.copy() new_get = QueryDict('', mutable=True) new_get[REQUEST_VAR_CT] = get_content_type(obj).pk new_get[REQUEST_VAR_ID] = obj.pk for region in config.config: new_get[REQUEST_VAR_REGION] = region request.GET = new_get our_list_display = self.list_display[:] our_list_links = self.get_list_display_links( request=request, list_display=our_list_display) ChangeList = self.get_changelist(request, **kwargs) cl = ChangeList(request=request, model=self.model, list_display=our_list_display, list_display_links=our_list_links, list_filter=self.list_filter, date_hierarchy=None, search_fields=None, list_select_related=None, list_per_page=100, list_max_show_all=100, list_editable=None, model_admin=self, parent_obj=obj, parent_conf=config) changelists.append(cl) # as the internal request.GET may be lossy, we restore the original # data here. request.GET = old_get return changelists def changelists_as_context_data(self, request, obj): """ Sets up a context which is understood by the `changelist_view` template and EditRegionInline for displaying *the changelists only* Also used by the move view and ChunkAdmin subclasses for rendering out those changelists to the browser. """ return { 'inline_admin_formset': { 'formset': { 'region_changelists': self.get_changelists_for_object(request, obj) }, }, 'request_is_ajax': request.is_ajax(), } def render_changelists_for_object(self, request, obj): """ Used by the move view, and ChunkAdmin subclasses to render *just the changelists*, for returning as JSON to be rendered on the client browser. """ context = self.changelists_as_context_data(request, obj) return render_to_string(EditRegionInline.template, context) @property def media(self): base_media = super(EditRegionAdmin, self).media return base_media + shared_media def render_into_region(self, obj, context, **kwargs): msg = ("`render_into_region` called because the requested " "chunk wasn't cast down - likely the model is no longer " "enabled in the configuration.") if settings.DEBUG: raise NotImplementedError(msg) logger.warning(msg) return None def render_into_summary(self, obj, context, **kwargs): msg = ("`render_into_summary` called because the requested " "chunk wasn't cast down - likely the model is no longer " "enabled in the configuration.") if settings.DEBUG: raise NotImplementedError(msg) logger.warning(msg) return force_text(obj) class ChunkAdmin(AdminlinksMixin): actions = None actions_on_top = False actions_on_bottom = False save_as = False save_on_top = False exclude = ['content_type', 'content_id', 'region', 'position'] def get_model_perms(self, request, *args, **kwargs): """ Shadow method for the default ModelAdmin. Allows us to hide chunks. By using an empty dictionary, permissions still work, but chunk administration views are hidden from the default AdminSite index. :param request: The WSGIRequest. :return: Empty dictionary """ return {} def log_addition(self, request, object): """ Log's against the Chunk, and it's parent object. """ super(ChunkAdmin, self).log_addition(request, object) super(ChunkAdmin, self).log_addition(request, object.content_object) def log_change(self, request, object, message): """ Log's against the Chunk, and it's parent object. """ super(ChunkAdmin, self).log_change(request, object, message) super(ChunkAdmin, self).log_change(request, object.content_object, message) def log_deletion(self, request, object, object_repr): """ Log's against the Chunk, and it's parent object. """ super(ChunkAdmin, self).log_deletion(request, object, object_repr) super(ChunkAdmin, self).log_deletion(request, object.content_object, object_repr) @guard_querystring_m def save_model(self, request, obj, form, change): """ Adds extra fields to the object so it's saved against the correct content type etc. """ obj.content_type_id = request.GET[REQUEST_VAR_CT] obj.content_id = request.GET[REQUEST_VAR_ID] obj.region = request.GET[REQUEST_VAR_REGION] # This is a new object, so let's put it in the last available position if obj.position is None: found = EditRegionChunk.objects.get_region_chunks( content_type=obj.content_type, content_id=obj.content_id, region=obj.region).count() if found < 1: obj.position = 0 else: obj.position = found + 1 super(ChunkAdmin, self).save_model(request, obj, form, change) def response_max(self, request, context): """ If a chunk limit has been reached, adding a new one via `add_view` will instead return this view. """ possible_templates = [ 'admin/editregions/limit_reached.html' ] return render_to_response(possible_templates, context, context_instance=RequestContext(request)) @guard_querystring_m def add_view(self, request, *args, **kwargs): """ At this point, our querystring should be 'safe', and we can discover if we need to stop early because of a chunk limit being reached. """ parent_id = request.GET[REQUEST_VAR_ID] parent_ct = request.GET[REQUEST_VAR_CT] region = request.GET[REQUEST_VAR_REGION] # the following is all just about discovering chunk limits parent_class = get_content_type(parent_ct).model_class() parent_obj = parent_class.objects.get(pk=parent_id) erc = EditRegionConfiguration(parent_obj) available_chunks = erc.config[region]['models'] limit = available_chunks[self.model] # now we have our possible limit, if there's a limit # (no infinity set via None) ensure we haven't hit it yet. if limit is not None: logger.debug('Limit of %(limit)d found for %(cls)r in region ' '"%(region)s"' % { 'limit': limit, 'cls': self.model, 'region': region, }) created_objs_count = (self.model.objects.filter( content_type=parent_ct, content_id=parent_id, region=region).only('pk').count()) already_created = max(0, created_objs_count) if already_created >= limit: logger.info('Already hit limit of %(limit)d, found %(exists)d ' 'objects in the database' % { 'limit': limit, 'exists': already_created, }) context = { 'found': already_created, 'limit': limit, 'region': erc.config[region]['name'], 'me': self.model._meta.verbose_name, 'parent': parent_class._meta.verbose_name, } return self.response_max(request, context=context) # we haven't got a limit for this chunk type, so carry on as normal. return super(ChunkAdmin, self).add_view(request, *args, **kwargs) @guard_querystring_m def change_view(self, request, *args, **kwargs): """ This override only exists because I have no idea how to forceably guard the super() change_view without doing so. """ return super(ChunkAdmin, self).change_view(request, *args, **kwargs) def maybe_fix_redirection(self, request, response, obj=None): """ This is basically a middleware for admin responses from add/edit screens. Inspect's a URL, and adds in our required fields if they're not there. eg: if a URL has no querystring, or the querystring does not contain `content_id`, `content_type` and `region` it will attempt to insert them, and if `_autoclose` was in the requesting URL, it should be maintained. """ resp = super(ChunkAdmin, self).maybe_fix_redirection(request, response, obj) return_early = ( not resp.has_header('location'), not hasattr(resp, 'redirect_parts'), hasattr(resp, 'canonical'), # something wants to be *final* obj is None, ) if any(return_early): resp['X-Chunkadmin-Response'] = 'early' return resp # get the modeladmin in question, from the URL provided. func = resolve(resp.redirect_parts[2]).func # python 3 if hasattr(func, '__closure__'): func = func.__closure__ else: # python 2 func = func.func_closure func = func[0].cell_contents # it doesn't look like a chunk admin, so we can't know we need to # redirect back to the parent. if (not hasattr(func, 'response_max') and not hasattr(func, 'render_into_region')): resp['X-Chunkadmin-Response'] = 'not-chunkadmin' return resp # set up reasons to go back to the parent object's edit view. redirect_to_parent_if = ( not self.wants_to_autoclose(request), not self.wants_to_continue_editing(request) ) # we don't want to autoclose, and we don't want to save a new # or add another, so we're hopefully inside a bare add/change view # so we probably ought to go back to the parent object's edit view. if all(redirect_to_parent_if): abuse_adminlink = _add_link_to_context( admin_site=self.admin_site.name, request=request, opts=obj.content_object._meta, permname='change', url_params=[obj.content_id], query=resp.redirect_parts[3]) resp.redirect_parts = list(urlsplit(abuse_adminlink['link'])) resp['Location'] = urlunsplit(resp.redirect_parts) resp['X-Chunkadmin-Response'] = 'redirect-to-parent' return resp # we either wanted to autoclose, or we wanted to continue/add another # etc, so we don't want to redirect elsewhere, we just want to # update the querystring with fields required by the ChunkAdmin querystring = QueryDict(resp.redirect_parts[3], mutable=True) # delete any values which could be wrong [but shouldn't be!] for x in (REQUEST_VAR_REGION, REQUEST_VAR_CT, REQUEST_VAR_ID): if x in querystring: del querystring[x] querystring.update({REQUEST_VAR_ID: obj.content_id, REQUEST_VAR_CT: obj.content_type_id, REQUEST_VAR_REGION: obj.region}) resp.redirect_parts[3] = querystring.urlencode() resp['Location'] = urlunsplit(resp.redirect_parts) resp['X-Chunkadmin-Response'] = 'autoclose' return resp @guard_querystring_m def delete_view(self, request, object_id, extra_context=None): """ This override exists to guard the querystring, but also to provide *needed data* to the available context. This is mostly used for ferrying the parent object details to `get_response_delete_context` so that it can render the changelists back to the client. """ obj = self.get_object(request, unquote(object_id)) needed_data = extra_context or {} # Django has deprecated request.REQUEST. Sigh found_popup_in_request = ( "_popup" in request.GET, "_popup" in request.POST, ) # emulate the behaviour of add/change_view needed_data.update(is_popup=any(found_popup_in_request)) if obj is not None: needed_data.update(gfk={'content_id': obj.content_id, 'content_type': obj.content_type, 'content_object': obj.content_object}) return super(ChunkAdmin, self).delete_view(request, object_id, extra_context=needed_data) def get_response_add_context(self, request, obj): """ Override the default contexts generated by AdminlinksMixin to add our HTML. """ modeladmin = get_modeladmin(EditRegionChunk, self.admin_site.name) changelists = modeladmin.render_changelists_for_object( request=request, obj=obj.content_object) context = super(ChunkAdmin, self).get_response_add_context(request, obj) context.update(html=changelists) return context def get_response_change_context(self, request, obj): """ Override the default contexts generated by AdminlinksMixin to add our HTML. """ modeladmin = get_modeladmin(EditRegionChunk, self.admin_site.name) changelists = modeladmin.render_changelists_for_object( request=request, obj=obj.content_object) context = super(ChunkAdmin, self).get_response_change_context(request, obj) context.update(html=changelists) return context def get_response_delete_context(self, request, obj_id, extra_context): """ Override the default contexts generated by AdminlinksMixin to add our HTML. """ modeladmin = get_modeladmin(EditRegionChunk, self.admin_site.name) context = super(ChunkAdmin, self).get_response_delete_context( request, obj_id, extra_context) try: changelists = modeladmin.render_changelists_for_object( request=request, obj=extra_context['gfk']['content_object']) context.update(html=changelists) except KeyError as e: # extra context didn't include gfk, or possibly content_object within # that gfk key, either way, we now can't render the HTML for the # client :( pass return context def render_into_region(self, obj, context, **kwargs): """ These exist purely to avoid unexpected breakages if an admin subclass doesn't implement them. :param obj: The :class:`~editregions.models.EditRegionChunk` subclass currently expecting to be rendered. :param context: The overall template context. :param extra: Additional data available when rendering this object, mostly related to the current iteration state. :return: Some output. Usually HTML for output on a page. """ msg = ('`render_into_region` not implemented on {0!r}'.format( self.__class__)) if settings.DEBUG: raise NotImplementedError(msg) logger.warning(msg) return None def render_into_summary(self, obj, context, **kwargs): """ These exist purely to avoid unexpected breakages if an admin subclass doesn't implement them. :param obj: The :class:`~editregions.models.EditRegionChunk` subclass currently expecting to be rendered. :param context: The overall template context. :param extra: Additional data available when rendering this summary, mostly related to the current iteration state. :return: Some output. Usually a text representation of the :meth: `~editregions.admin.modeladmins.ChunkAdmin.render_into_region` """ msg = ('`render_into_summary` not implemented on {0!r}'.format( self.__class__)) if settings.DEBUG: raise NotImplementedError(msg) logger.warning(msg) return None def get_editregions_subclass_tools(self, obj): if hasattr(EditRegionChunk._meta, 'model_name'): model_name = EditRegionChunk._meta.model_name else: model_name = EditRegionChunk._meta.module_name url_to_move = '%(admin)s:%(app)s_%(chunkhandler)s_move' % { 'admin': self.admin_site.name, 'app': EditRegionChunk._meta.app_label, 'chunkhandler': model_name, } url_to_move2 = reverse(url_to_move) delete_url = AdminChunkWrapper(opts=obj._meta, namespace=self.admin_site.name, obj=obj).get_delete_url() value = ('<div class="drag_handle" data-pk="%(pk)s" ' 'data-href="%(url)s"></div>&nbsp;<a class="delete_handle" ' 'href="%(delete_url)s" data-adminlinks="autoclose" ' 'data-no-turbolink>%(delete)s</a>' % { 'pk': obj.pk, 'url': url_to_move2, 'delete_url': delete_url, 'delete': _('Delete'), }) return value @property def media(self): media_instance = super(ChunkAdmin, self).media return media_instance + Media(js=['editregions/js/childevents.js']) class SupportsEditRegions(object): editregion_template_name_suffix = '_detail' def __init__(self, *args, **kwargs): super(SupportsEditRegions, self).__init__(*args, **kwargs) self.original_inlines = self.inlines[:] def get_inline_instances(self, request, *args, **kwargs): klass = EditRegionInline new_inlines = [] if klass not in self.original_inlines: new_inlines.append(klass) self.inlines = new_inlines return super(SupportsEditRegions, self).get_inline_instances( request, *args, **kwargs) def get_editregions_templates(self, obj): opts = obj._meta kwargs = {'app': opts.app_label, 'pk': obj.pk, 'suffix': self.editregion_template_name_suffix} if hasattr(opts, 'model_name'): kwargs.update(model=opts.model_name) else: kwargs.update(model=opts.module_name) return ( '{app}/{model}{suffix}.{pk}.html'.format(**kwargs), '{app}/{model}{suffix}.html'.format(**kwargs), '{app}{suffix}.html'.format(**kwargs), )
#coding=utf-8 ''' Created on 2016-3-10 @author: Devuser ''' import threading from gatesidelib.common.simplelogger import SimpleLogger class business_driver(threading.Thread): ''' classdocs ''' def __init__(self,request_data): threading.Thread.__init__(self) self.request_data=request_data self.thread_stop=False def stop(self): self.thread_stop=True SimpleLogger.info("stop thread") def is_matched(self,reqeust_data): ''' 根据driver name 判断是否适合处理当前请求 返回值:True/False ''' return False
class Solution: def updateBoard(self, board: List[List[str]], click: List[int]) -> List[List[str]]: if board[click[0]][click[1]] == 'M': board[click[0]][click[1]] = 'X' return board dirs = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)] def getMinesCount(i: int, j: int) -> int: minesCount = 0 for dx, dy in dirs: x = i + dx y = j + dy if x < 0 or x == len(board) or y < 0 or y == len(board[0]): continue if board[x][y] == 'M': minesCount += 1 return minesCount def dfs(i: int, j: int) -> None: if i < 0 or i == len(board) or j < 0 or j == len(board[0]): return if board[i][j] != 'E': return minesCount = getMinesCount(i, j) board[i][j] = 'B' if minesCount == 0 else str(minesCount) if minesCount == 0: for dx, dy in dirs: dfs(i + dx, j + dy) dfs(click[0], click[1]) return board
import torch import sys import csv import nestedtensor import utils import torchvision from torch.nn import functional as F import random class DETRNestedTensor(object): def __init__(self, tensors, mask): self.tensors = tensors self.mask = mask def to(self, *args, **kwargs): cast_tensor = self.tensors.to(*args, **kwargs) cast_mask = self.mask.to( *args, **kwargs) if self.mask is not None else None return type(self)(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask @classmethod def from_tensor_list(cls, tensor_list): # TODO make this more general if tensor_list[0].ndim == 3: # TODO make it support different-sized images max_size = tuple(max(s) for s in zip(*[img.shape for img in tensor_list])) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = (len(tensor_list),) + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], :img.shape[2]] = False else: raise ValueError('not supported') return cls(tensor, mask) # Performance tanks hard for lots of small Tensors as expected DEVICE = torch.device('cuda') NDIM = 256 NHEAD = 8 MODEL = torch.nn.MultiheadAttention(NDIM, NHEAD).to(DEVICE).eval() def run_benchmark(bsz, mean_i, mean_j, var, autograd, writer): RAND_INTS = [(int(random.gauss(mean_j, var)), int( random.gauss(mean_i, var))) for _ in range(bsz)] src_ = nestedtensor.nested_tensor( [torch.randn(NDIM * i * j).float().reshape(NDIM, i, j) for (i, j) in RAND_INTS], device=DEVICE, dtype=torch.float) src = [] for i, s in enumerate(src_): src.append(i*len(s) + s) detr_nt_src = DETRNestedTensor.from_tensor_list(src) sparsity = int(detr_nt_src.decompose()[1].float().mean().item() * 10) / 10 def gen_t_loop_mha(src): detr_nt_src = DETRNestedTensor.from_tensor_list(src) src, mask = detr_nt_src.decompose() src = src.flatten(2).permute(2, 0, 1).contiguous() mask = mask.flatten(1).contiguous() if autograd: src.requires_grad_() def te(): if autograd: MODEL(src, src, src, key_padding_mask=mask, need_weights=False)[0].sum().backward() MODEL(src, src, src, key_padding_mask=mask, need_weights=False) return te def gen_nt_mha(src): src = nestedtensor.nested_tensor([t.flatten(1).permute( 1, 0) for t in src], device=DEVICE, dtype=torch.float, requires_grad=True) def nt(): if autograd: MODEL(src, src, src, need_weights=False)[0].sum().backward() MODEL(src, src, src, need_weights=False) return nt result_t = {**utils.benchmark_fn(gen_t_loop_mha(src), 5.0, cuda=True), "bsz": bsz, "sparsity": sparsity, "autograd": autograd, "var": var, "mean_i": mean_i, "mean_j": mean_j} result_t["numel"] = sum([x.numel() for x in src_]) result_t["numel_div_avg_us"] = result_t["numel"] / result_t["avg_us"] result_t["avg_ns_div_numel"] = result_t["avg_us"] / result_t["numel"] * 1000 writer.writerow(result_t) result_nt = {**utils.benchmark_fn(gen_nt_mha(src), 5.0, cuda=True), "bsz": bsz, "sparsity": 0.0, "autograd": autograd, "var": var, "mean_i": mean_i, "mean_j": mean_j} result_nt["numel"] = sum([x.numel() for x in src_]) result_nt["numel_div_avg_us"] = result_nt["numel"] / result_nt["avg_us"] result_nt["avg_ns_div_numel"] = result_nt["avg_us"] / result_nt["numel"] * 1000 writer.writerow(result_nt) if __name__ == "__main__": random.seed(1011) torch.manual_seed(1011) writer = csv.DictWriter(sys.stdout, fieldnames=[ "name", "avg_us", "std_us", "runs", "bsz", "sparsity", "autograd", "var", "mean_i", "mean_j", "numel", "numel_div_avg_us", "avg_ns_div_numel"]) writer.writeheader() for var in [float(i) / 10 for i in range(0, 100, 50)]: for autograd in [True, False]: for batch_size in [2, 8, 16]: run_benchmark(batch_size, 30, 30, var, autograd, writer)
import mysql.connector as mysql from Constants import * def sql_exec( p_server: str, p_database: str, p_user: str, p_password: str, p_port: int, p_sql: str, p_result: int =1 ): """ Execute queries in MySQL :param p_server: server :param p_database: db :param p_user: login :param p_password: password :param p_port: port :param p_result: flag that the output is necessary (default - 1) """ l_error=None query_output=None try: cnct=mysql.connect( host=p_server, database=p_database, user=p_user, password=p_password, port=p_port, connection_timeout=30 ) except mysql.Error as e: l_error=e.args[1] return query_output, l_error crsr=cnct.cursor() try: crsr.execute(p_sql) if p_result==1: query_output=crsr.fetchall() else: query_output=1 except mysql.Error as e: l_error=e.args[1] finally: crsr.close() cnct.close() return query_output, l_error C_CURRENT_TIMESTAMP_SQL="CURRENT_TIMESTAMP"
import cv2 import numpy as np from utils import Util import pyttsx3 as p engine = p.init() class Lane: def __init__(self, path): self.path = path self.util = Util() def run_img(self, path): img = cv2.imread(path) img = cv2.resize(img, (800, 600)) #self.detect(img) cv2.imshow('Frame', img) def run(self, path): cap = cv2.VideoCapture(path) out = cv2.VideoWriter('output.mp4',0x7634706d , 20.0, (640,480)) if (cap.isOpened() == False): print("Error opening video stream or file") while(cap.isOpened()): ret, frame = cap.read() if ret == True: # Display the resulting frame frame = cv2.resize(frame, (800, 600)) out.write(frame) self.detect(frame) cv2.imshow('Frame', frame) # Press Q on keyboard to exit if cv2.waitKey(25) & 0xFF == ord('q'): break else: break cap.release() out.release() cv2.destroyAllWindows() def detect(self, screen): vert = np.array( [[100, 550], [375, 350], [450, 350], [800, 550]], np.int32) fin = self.util.edgeDetect(screen) fin = self.util.roi(fin, [vert]) line = cv2.HoughLinesP(fin, 2, np.pi/180, 20, 7, 7) if not(line is None): for i in line: cv2.line(screen, (i[0][0], i[0][1]), (i[0][2], i[0][3]), (255, 0, 0), 10) l1dataset = [] l2dataset = [] try: straightxcors, straightycors = self.util.averageLanes(line) xcors, ycors = self.util.getPoints(line) l1dataset.append(straightxcors[0]) l1dataset.append(straightycors[0]) l2dataset.append(straightxcors[1]) l2dataset.append(straightxcors[1]) allstraightxcors = straightxcors[0] + straightxcors[1] allstraightycors = straightycors[0] + straightycors[1] l1m, l1b = self.util.linearRegression(l1dataset[0], l1dataset[1]) l2m, l2b = self.util.linearRegression(l2dataset[0], l2dataset[1]) allm, allb = self.util.linearRegression( allstraightxcors, allstraightycors) allxcor1 = int((allm * 350) + allb) allxcor2 = int(allb) filterl1x = [] filterl1y = [] filterl2x = [] filterl2y = [] for count, i in enumerate(ycors): if (i*l2m + l2b < xcors[count]): filterl2x.append(xcors[count]) filterl2y.append(i) else: filterl1x.append(xcors[count]) filterl1y.append(i) l1inx1 = int((600 - l1b) / l1m) l1inx2 = int((350-l1b) / l1m) l2inx1 = int((600-l2b) / l2m) l2inx2 = int((350-l2b) / l2m) cv2.line(screen, (int(l1inx1), 600), (int(l1inx2), 350), (0, 0, 0), 10) cv2.line(screen, (int(l2inx1), 600), (int(l2inx2), 350), (0, 0, 0), 10) cv2.line(screen, (allxcor1, 600), (allxcor2,350), (255,0,0), 10) turning = "" results = self.util.intersection([l1m, l1b], [l2m, l2b]) if not (results is None): if (results[0] > 400): with open("write.txt", "w") as f: f.write("Turn Left") else: with open("write.txt", "w") as f: f.write("Turn Right") else: with open("write.txt", "w") as f: f.write("Go straight") try: equ1, polyx1, polyy1 = self.util.polyReg(filterl2x, filterl2y) for i in range(len(polyx1)): if i == 0: pass else: cv2.line(screen, (int(polyx1[i]), int(polyy1[i])), (int( polyx1[i-1]), int(polyy1[i-1])), (255, 255, 0), 10) except Exception as e: print(e) try: equ2, polyx2, polyy2 = self.util.polyReg(filterl1x, filterl1y) for i in range(len(polyx2)): if i == 0: pass else: cv2.line(screen, (int(polyx2[i]), int(polyy2[i])), (int( polyx2[i-1]), int(polyy2[i-1])), (255, 255, 0), 10) except: pass except Exception as e: pass return screen
h = float(input('digite a altura: ')) l = float(input('digite a largura: ')) t = (h*l)/2 print('você vai precisar de {} litros de tinta'.format(t))
""" Plot time for LCE, MCE, DCE and Holdout set """ import numpy as np import datetime import time import random import os # for displaying created PDF import sys sys.path.append('./../sslh') from fileInteraction import save_csv_record from utils import (from_dictionary_beliefs, create_parameterized_H, replace_fraction_of_rows, to_centering_beliefs, eps_convergence_linbp_parameterized, matrix_difference, introduce_errors, showfig) from estimation import estimateH, estimateH_baseline_serial, estimateH_baseline_parallel import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import collections # remove error bars from matplotlib.pyplot import figure, xlabel, ylabel, savefig, show, xlim, ylim, xticks, grid, title import pandas as pd pd.set_option('display.max_columns', None) # show all columns from pandas pd.options.mode.chained_assignment = None # default='warn' from graphGenerator import planted_distribution_model_H, planted_distribution_model_H from inference import linBP_symmetric_parameterized # -- Determine path to data *irrespective* of where the file is run from from os.path import abspath, dirname, join from inspect import getfile, currentframe current_path = dirname(abspath(getfile(currentframe()))) figure_directory = join(current_path, 'figs') data_directory = join(current_path, 'datacache') def run(choice, create_data=False, add_data=False, show_plot=False, create_pdf=False, show_pdf=False, shorten_length=False, show_arrows=False): # -- Setup CHOICE = choice CREATE_DATA = create_data ADD_DATA = add_data SHOW_PLOT = show_plot SHOW_PDF = show_pdf CREATE_PDF = create_pdf SHOW_STD = True ## FALSE for just scatter plot points SHOW_ARROWS = show_arrows # -- Default Graph parameters rep_SameGraph = 1 # iterations on same graph distribution = 'powerlaw' exponent = -0.3 length = 5 variant = 1 EC = False numberOfSplits = 1 scaling_vec = [None]*10 ymin = 0.3 ymax = 1 xmin = 1e-3 xmax = 1e3 xtick_lab = [1e-3, 0.01, 0.1, 1, 10, 100, 1000] xtick_labels = [r'$10^{-3}$', r'$10^{-2}$', r'$10^{-1}$', r'$1$', r'$10$', r'$10^{2}$', r'$10^{3}$'] ytick_lab = np.arange(0, 1.1, 0.1) k = 3 a = 1 rep_DifferentGraphs = 1 # iterations on different graphs err = 0 avoidNeighbors = False convergencePercentage_W = 0.99 facecolor_vec = ["#4C72B0", "#55A868", "#8172B2", "#C44E52", "#CCB974", "#64B5CD"] label_vec = ['MCE', 'LCE', 'DCE', 'Holdout'] linewidth_vec = [4, 3, 1, 2, 2, 1] # clip_ons = [True, True, True, True, True, True] FILEZNAME = 'Fig_timing_accuracy_learning' marker_vec = ['s', '^', 'v', 'o', 'x', '+', 'None'] #'^' length_vec = [5] stratified = True f = 0.01 numMaxIt_vec = [10]*7 alpha_vec = [0] * 7 beta_vec = [0] * 7 # TODO: LinBP does not use beta. Also SSLH uses alpha, but not beta for W^row! Now fixed gamma_vec = [0] * 7 s_vec = [0.5] * 7 # -- Main Options if CHOICE == 1: # Main graph n = 1000 h = 3 d = 25 option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5', 'opt6'] learning_method_vec = ['MHE'] + ['LHE'] + ['DHE'] + ['DHE'] + ['Holdout'] + ['GS'] label_vec = ['MCE', 'LCE', 'DCE', 'DCE r', 'Holdout', 'GS'] randomize_vec = [False]*3 + [True] + [None]*2 scaling_vec = [None]*2 + [10, 100] + [None]*2 splits_vec = [1, 2, 4, 8] elif CHOICE == 2: n = 1000 h = 3 d = 25 option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5'] learning_method_vec = ['MHE'] + ['LHE'] + ['DHE'] + ['DHE'] + ['GS'] label_vec = ['MCE', 'LCE', 'DCE', 'DCE r', 'GS'] randomize_vec = [False]*3 + [True] + [None] scaling_vec = [None]*2 + [10, 100] + [None] elif CHOICE == 3: n = 1000 h = 3 d = 25 option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5'] learning_method_vec = ['MHE'] + ['LHE'] + ['DHE'] + ['DHE'] + ['GS'] label_vec = ['MCE', 'LCE', 'DCE', 'DCE r', 'GS'] randomize_vec = [False]*3 + [True] + [None] scaling_vec = [None]*2 + [10, 100] + [None] f = 0.02 elif CHOICE == 4: # TODO: Overnight Wolfgang n = 1000 h = 3 d = 25 option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5', 'opt6'] learning_method_vec = ['MHE'] + ['LHE'] + ['DHE'] + ['DHE'] + ['Holdout'] + ['GS'] label_vec = ['MCE', 'LCE', 'DCE', 'DCE r', 'Holdout', 'GS'] randomize_vec = [False]*3 + [True] + [None]*2 scaling_vec = [None]*2 + [10, 100] + [None]*2 splits_vec = [1, 2, 4, 8, 16] elif CHOICE == 5: # Toy graph with 100 nodes n = 100 h = 3 d = 8 option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5', 'opt6'] learning_method_vec = ['MHE'] + ['LHE'] + ['DHE'] + ['DHE'] + ['Holdout'] + ['GS'] label_vec = ['MCE', 'LCE', 'DCE', 'DCE r', 'Holdout', 'GS'] randomize_vec = [False]*3 + [True] + [None]*2 scaling_vec = [None]*2 + [10, 100] + [None]*2 splits_vec = [1, 2, 4, 8] f=0.05 elif CHOICE == 6: # To be run by Prakhar on Cluster n = 10000 h = 3 d = 25 option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5', 'opt6'] learning_method_vec = ['MHE'] + ['LHE'] + ['DHE'] + ['DHE'] + ['Holdout'] + ['GS'] label_vec = ['MCE', 'LCE', 'DCE', 'DCEr', 'Holdout', 'GS'] randomize_vec = [False]*3 + [True] + [None]*2 scaling_vec = [None]*2 + [10, 100] + [None]*2 splits_vec = [1, 2, 4, 8] f=0.003 xmin = 1e-2 # ymax = 0.9 ymin = 0.2 ymax = 0.9 xmin = 1e-2 xmax = 1e3 elif CHOICE == 7: n = 1000 h = 3 d = 25 option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5', 'opt6'] learning_method_vec = ['MHE'] + ['LHE'] + ['DHE'] + ['DHE'] + ['Holdout'] + ['GS'] label_vec = ['MCE', 'LCE', 'DCE', 'DCE r', 'Holdout', 'GS'] randomize_vec = [False]*3 + [True] + [None]*2 scaling_vec = [None]*2 + [10, 100] + [None]*2 splits_vec = [1, 2, 4, 8, 16] f=0.009 # elif CHOICE == 8: # not working well # n = 1000 # h = 3 # d = 25 # option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5', 'opt6'] # learning_method_vec = ['MHE'] + ['LHE'] + ['DHE'] + ['DHE'] + ['Holdout'] + ['GS'] # label_vec = ['MCE', 'LCE', 'DCE', 'DCE r', 'Holdout', 'GS'] # randomize_vec = [False]*3 + [True] + [None]*2 # scaling_vec = [None]*2 + [10, 100] + [None]*2 # splits_vec = [1, 2, 4, 8, 16] # f=0.005 else: raise Warning("Incorrect choice!") csv_filename = '{}_{}.csv'.format(FILEZNAME, CHOICE) header = ['currenttime', 'option', 'lensplit', 'f', 'accuracy', 'timetaken'] if CREATE_DATA: save_csv_record(join(data_directory, csv_filename), header, append=False) alpha0 = np.array([a, 1., 1.]) alpha0 = alpha0 / np.sum(alpha0) H0 = create_parameterized_H(k, h, symmetric=True) H0c = to_centering_beliefs(H0) RANDOMSEED = None # For repeatability random.seed(RANDOMSEED) # seeds some other python random generator np.random.seed(seed=RANDOMSEED) # seeds the actually used numpy random generator; both are used and thus needed # print("CHOICE: {}".format(CHOICE)) # -- Create data if CREATE_DATA or ADD_DATA: for i in range(rep_DifferentGraphs): # create several graphs with same parameters # print("\ni: {}".format(i)) W, Xd = planted_distribution_model_H(n, alpha=alpha0, H=H0, d_out=d, distribution=distribution, exponent=exponent, directed=False, debug=False) X0 = from_dictionary_beliefs(Xd) for j in range(rep_SameGraph): # repeat several times for same graph # print("j: {}".format(j)) ind = None X1, ind = replace_fraction_of_rows(X0, 1-f, avoidNeighbors=avoidNeighbors, W=W, ind_prior=ind, stratified = stratified) # TODO: stratified sampling option = True X2 = introduce_errors(X1, ind, err) for option_index, (learning_method, alpha, beta, gamma, s, numMaxIt, weight, randomize, option) in \ enumerate(zip(learning_method_vec, alpha_vec, beta_vec, gamma_vec, s_vec, numMaxIt_vec, scaling_vec, randomize_vec, option_vec)): # weight = np.array([np.power(scaling, i) for i in range(5)]) # TODO: now enough to specify weight as a scalar! H_est_dict = {} timeTaken_dict = {} # -- Learning if learning_method == 'Holdout' : for numberOfSplits in splits_vec: prev_time = time.time() H_est_dict[numberOfSplits] = estimateH_baseline_serial(X2, ind, W, numMax=numMaxIt, # ignore_rows=ind, numberOfSplits=numberOfSplits, # method=learning_method, variant=1, distance=length, EC=EC, weights=weight, alpha=alpha, beta=beta, gamma=gamma) timeTaken = time.time() - prev_time timeTaken_dict[numberOfSplits] = timeTaken elif learning_method in ['LHE', 'MHE', 'DHE']: # TODO: no smartInit, just randomization as option for length in length_vec: prev_time = time.time() H_est_dict[length] = estimateH(X2, W, method=learning_method, variant=1, randomize=randomize, distance=length, EC=EC, weights=weight) timeTaken = time.time() - prev_time timeTaken_dict[length] = timeTaken elif learning_method == 'GS': H_est_dict['GS'] = H0 for key in H_est_dict: H_est = H_est_dict[key] H2c = to_centering_beliefs(H_est) # print("H_estimated by {} is \n".format(learning_method), H_est) # print("H0 is \n", H0) # print("randomize was: ", randomize) # Propagation X2c = to_centering_beliefs(X2, ignoreZeroRows=True) # try without eps_max = eps_convergence_linbp_parameterized(H2c, W, method='noecho', alpha=alpha, beta=beta, gamma=gamma, X=X2) eps = s * eps_max # print("Max Eps ", eps_max) try: F, actualIt, actualPercentageConverged = \ linBP_symmetric_parameterized(X2, W, H2c * eps, method='noecho', alpha=alpha, beta=beta, gamma=gamma, numMaxIt=numMaxIt, convergencePercentage=convergencePercentage_W, convergenceThreshold=0.99, debug=2) except ValueError as e: print( "ERROR: {} with {}: d={}, h={}".format(e, learning_method, d, h)) else: accuracy_X = matrix_difference(X0, F, ignore_rows=ind) tuple = [str(datetime.datetime.now())] if learning_method == 'Holdout': text = [option,"split{}".format(key), f, accuracy_X, timeTaken_dict[key]] elif learning_method in ['MHE', 'DHE', 'LHE']: text = [option, "len{}".format(key), f, accuracy_X, timeTaken_dict[key]] elif learning_method == 'GS': text = [option, 0, f, accuracy_X, 0] tuple.extend(text) # print("option: {}, f: {}, actualIt: {}, accuracy: {}".format(option, f, actualIt, accuracy_X)) save_csv_record(join(data_directory, csv_filename), tuple) # -- Read, aggregate, and pivot data for all options df1 = pd.read_csv(join(data_directory, csv_filename)) # print("\n-- df1: (length {}):\n{}".format(len(df1.index), df1.head(15))) # Aggregate repetitions df2 = df1.groupby(['option', 'lensplit', 'f']).agg \ ({'accuracy': [np.mean, np.std, np.size], # Multiple Aggregates }) df2.columns = ['_'.join(col).strip() for col in df2.columns.values] # flatten the column hierarchy df2.reset_index(inplace=True) # remove the index hierarchy df2.rename(columns={'accuracy_size': 'count'}, inplace=True) # print("\n-- df2 (length {}):\n{}".format(len(df2.index), df2.head(15))) df3 = df1.groupby(['option', 'lensplit', 'f']).agg({'timetaken': [np.median] }) df3.columns = ['_'.join(col).strip() for col in df3.columns.values] # flatten the column hierarchy df3.reset_index(inplace=True) # remove the index hierarchy # resultdf3 = df3.sort(['timetaken'], ascending=1) # print("\n-- df3 (length {}):\n{}".format(len(df3.index), df3.head(15))) X_time_median_dict = {} Y_acc_dict = {} Y_std_dict = {} for option in option_vec: Y_acc_dict[option] = df2.loc[(df2['option'] == option), "accuracy_mean"].values Y_std_dict[option] = df2.loc[(df2['option'] == option), "accuracy_std"].values X_time_median_dict[option] = df3.loc[(df3['option'] == option), "timetaken_median"].values # print("option: ", option) # print("Y_acc_dict[option]: ", Y_acc_dict[option]) # print("Y_std_dict[option]: ", Y_std_dict[option]) # print("X_time_median_dict[option]: ", X_time_median_dict[option]) # -- Setup figure fig_filename = '{}_{}.pdf'.format(FILEZNAME, CHOICE) mpl.rc('font', **{'family': 'sans-serif', 'sans-serif': [u'Arial', u'Liberation Sans']}) mpl.rcParams['axes.labelsize'] = 18 mpl.rcParams['xtick.labelsize'] = 16 mpl.rcParams['ytick.labelsize'] = 16 mpl.rcParams['axes.titlesize'] = 16 mpl.rcParams['legend.fontsize'] = 14 mpl.rcParams['grid.color'] = '777777' # grid color mpl.rcParams['xtick.major.pad'] = 2 # padding of tick labels: default = 4 mpl.rcParams['ytick.major.pad'] = 1 # padding of tick labels: default = 4 mpl.rcParams['xtick.direction'] = 'out' # default: 'in' mpl.rcParams['ytick.direction'] = 'out' # default: 'in' mpl.rcParams['figure.figsize'] = [4, 4] fig = figure() ax = fig.add_axes([0.13, 0.17, 0.8, 0.8]) SHOW_ARROWS = True for choice, color, learning_method, label, linewidth, marker in \ zip(option_vec, facecolor_vec, learning_method_vec, label_vec, linewidth_vec, marker_vec): if learning_method == 'Holdout': # Draw std X1 = X_time_median_dict[choice] s = X1.argsort() X1 = X1[s] Y1 = Y_acc_dict[choice][s] Y2 = Y_std_dict[choice][s] if SHOW_STD: ax.fill_between(X1, Y1 + Y2, Y1 - Y2, facecolor=color, alpha=0.2, edgecolor=None, linewidth=0) ax.plot(X1, Y1 + Y2, linewidth=0.5, color='0.8', linestyle='solid') ax.plot(X1, Y1 - Y2, linewidth=0.5, color='0.8', linestyle='solid') ax.set_ylim(bottom=ymin) ax.plot(X1, Y1, linewidth=linewidth, color=color, linestyle='solid', label=label, zorder=20, marker='x', markersize=linewidth + 5, markeredgewidth=1) ax.annotate(np.round(X1[1], decimals=1), xy=(X1[1], Y1[1] - 0.05), color=color, va='center', annotation_clip=False, zorder=5) else: ax.scatter(list(X1), list(Y1), color=color, label=label, marker='x', s=42) elif learning_method == 'GS': ax.plot([1e-4, 1e4], [Y_acc_dict[choice], Y_acc_dict[choice]], linewidth=1, color='black', linestyle='dashed', zorder=0, marker=None, label=label, ) else: # For all other if SHOW_STD: ax.errorbar(list(X_time_median_dict[choice]), list(Y_acc_dict[choice]), yerr=Y_std_dict[choice], fmt='-o', linewidth=2, color=color, label=label, marker=marker, markersize=8) ax.annotate(np.round(X_time_median_dict[choice], decimals=2), xy=(X_time_median_dict[choice], Y_acc_dict[choice]-0.05), color=color, va='center', annotation_clip=False, zorder=5) else: ax.scatter(list(X_time_median_dict[choice]), list(Y_acc_dict[choice]), color=color, label=label, marker=marker, s=42) if SHOW_ARROWS: dce_opt = 'opt4' holdout_opt = 'opt5' ax.annotate(s='', xy=(X_time_median_dict[dce_opt], Y_acc_dict[dce_opt]-0.3), xytext=(X_time_median_dict[holdout_opt][2]+0.02, Y_acc_dict[dce_opt]-0.3), arrowprops=dict(arrowstyle='<->')) ax.annotate(str(int(np.round(X_time_median_dict[holdout_opt][2] / X_time_median_dict[dce_opt]))) + 'x', xy=((X_time_median_dict[dce_opt] + X_time_median_dict[holdout_opt][2])/100, Y_acc_dict[dce_opt]-0.28), color='black', va='center', # bbox = dict(boxstyle="round,pad=0.3", fc="w"), annotation_clip=False, zorder=5) # -- Title and legend title(r'$\!\!\!n\!=\!{}\mathrm{{k}}, d\!=\!{}, h\!=\!{}, f\!=\!{}$'.format(int(n / 1000), d, h, f)) handles, label_vec = ax.get_legend_handles_labels() for i, (h, learning_method) in enumerate(zip(handles, learning_method_vec)): # remove error bars in legend if isinstance(handles[i], collections.Container): handles[i] = handles[i][0] # plt.legend(loc='upper left', numpoints=1, ncol=3, fontsize=8, bbox_to_anchor=(0, 0)) SHOW_STD = False legend = plt.legend(handles, label_vec, loc='upper right', # 'upper right' handlelength=2, fontsize=12, labelspacing=0.2, # distance between label entries handletextpad=0.3, # distance between label and the line representation borderaxespad=0.2, # distance between legend and the outer axes borderpad=0.3, # padding inside legend box numpoints=1, # put the marker only once ) if not(SHOW_STD): legend = plt.legend(handles, label_vec, loc='upper right', # 'upper right' handlelength=2, fontsize=10, labelspacing=0.2, # distance between label entries handletextpad=0.3, # distance between label and the line representation borderaxespad=0.2, # distance between legend and the outer axes borderpad=0.3, # padding inside legend box numpoints=1, # put the marker only once scatterpoints=1 # display only one-scatter point in legend ) # # legend.set_zorder(1) frame = legend.get_frame() frame.set_linewidth(0.0) frame.set_alpha(0.9) # 0.8 # -- Figure settings and save plt.xscale('log') plt.xticks(xtick_lab, xtick_labels) plt.yticks(ytick_lab, ytick_lab) ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%.1f')) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_ylim(bottom=ymin) grid(b=True, which='major', axis='both', alpha=0.2, linestyle='solid', linewidth=0.5) # linestyle='dashed', which='minor', axis='y', grid(b=True, which='minor', axis='both', alpha=0.2, linestyle='solid', linewidth=0.5) # linestyle='dashed', which='minor', axis='y', xlim(xmin, xmax) ylim(ymin, ymax) xlabel(r'Time Median (sec)', labelpad=0) # labelpad=0 ylabel(r'Accuracy', labelpad=0) if CREATE_PDF: savefig(join(figure_directory, fig_filename), format='pdf', dpi=None, edgecolor='w', orientation='portrait', transparent=False, bbox_inches='tight', pad_inches=0.05, frameon=None) if SHOW_PDF: showfig(join(figure_directory, fig_filename)) if SHOW_PLOT: plt.show() if __name__ == "__main__": run(6, show_plot=True)
# coding=utf-8 import enum from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import ( Column, Integer, String, CHAR, SmallInteger, ForeignKey, Boolean, Enum ) from sqlalchemy.orm import sessionmaker Base = declarative_base() engine = None Session = None class UserRole(enum.Enum): student = 0 teacher = 1 admin = 2 int2UserRole = [UserRole.student, UserRole.teacher, UserRole.admin] class User(Base): __tablename__ = "users" user_id = Column(Integer, primary_key=True) staff_id = Column(Integer) role = Column(Enum(UserRole)) name = Column(String(32)) is_male = Column(Boolean) password = Column(CHAR(64)) # only store sha256 hashed password class Course(Base): __tablename__ = "courses" course_id = Column(Integer, primary_key=True) course_name = Column(String(96)) start = Column(Integer) end = Column(Integer) class Class(Base): __tablename__ = 'classes' class_id = Column(Integer, primary_key=True) class_name = Column(String(96)) weekday = Column(SmallInteger) # 周几 start = Column(SmallInteger) # 第几节课开始 end = Column(SmallInteger) # 第几节课结束 teacher_id = Column(Integer, ForeignKey(User.user_id)) course_id = Column(Integer, ForeignKey(Course.course_id)) class Score(Base): __tablename__ = 'scores' score_id = Column(Integer, primary_key=True) score = Column(Integer) user_id = Column(Integer, ForeignKey(User.user_id)) class_id = Column(Integer, ForeignKey(Class.class_id)) class RelationUserClass(Base): # 用户(学生)与班级的关系表 __tablename__ = 'rel-user-class' id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey(User.user_id)) class_id = Column(Integer, ForeignKey(Class.class_id)) class CheckInCodes(Base): __tablename__ = "check-in-codes" code_id = Column(Integer, primary_key=True) code = Column(SmallInteger) class_id = Column(Integer, ForeignKey(Class.class_id)) started = Column(Boolean) expire_at = Column(Integer) class CheckedInStatus(enum.Enum): awaiting = 0 normal = 1 late = 2 leave_early = 3 absent = 4 int2status = [ CheckedInStatus.awaiting, CheckedInStatus.normal, CheckedInStatus.late, CheckedInStatus.leave_early, CheckedInStatus.absent] class CheckedInLogs(Base): __tablename__ = "checked-in-logs" log_id = Column(Integer, primary_key=True) code_id = Column(Integer, ForeignKey(CheckInCodes.code_id)) user_id = Column(Integer, ForeignKey(User.user_id)) status = Column(Enum(CheckedInStatus)) class BelongType(enum.Enum): CLASS = 0 COURSE = 1 class Material(Base): __tablename__ = "materials" file_id = Column(Integer, primary_key=True) filename = Column(String(64)) internal_filename = Column(String(64)) size = Column(Integer) uploaded_at = Column(Integer) uploader_id = Column(Integer, ForeignKey(User.user_id)) belong_type = Column(Enum(BelongType)) belong_id = Column(Integer) class Topic(Base): __tablename__ = "topics" topic_id = Column(Integer, primary_key=True) title = Column(String(64)) content = Column(String(4096)) user_id = Column(Integer, ForeignKey(User.user_id)) created_at = Column(Integer) updated_at = Column(Integer) replies = Column(Integer) belong_type = Column(Enum(BelongType)) belong_id = Column(Integer) class Reply(Base): __tablename__ = "replies" reply_id = Column(Integer, primary_key=True) topic_id = Column(Integer, ForeignKey(Topic.topic_id)) content = Column(String(4096)) user_id = Column(Integer, ForeignKey(User.user_id)) created_at = Column(Integer) class Live(Base): __tablename__ = "lives" live_id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey(User.user_id)) title = Column(String(64)) introduction = Column(String(1024)) start = Column(Integer) duration = Column(SmallInteger) # in mins is_public = Column(Boolean) is_streaming = Column(Boolean) class RelationLiveClass(Base): __tablename__ = "rel-live-class" id = Column(Integer, primary_key=True) live_id = Column(Integer, ForeignKey(Live.live_id)) class_id = Column(Integer, ForeignKey(Class.class_id)) def startup(conf): global engine, Session if engine and Session: return uri = '{dialect}+{driver}://{user}:{password}@{host}/{dbname}'.format( **conf.db) if conf.db.options: uri = uri + '?' for key in conf.db.options: uri += '{}={}'.format(key, conf.db.options[key]) engine = create_engine(uri, echo=conf.app.debug, pool_size=conf.db.pool_size, max_overflow=5, pool_recycle=3600) Session = sessionmaker(bind=engine) def init_db(conf): startup(conf) Base.metadata.bind = engine Base.metadata.create_all() if conf.app.debug: sess = Session() user1 = User( staff_id=17052100, role=UserRole.teacher, name="陈老师", is_male=True, password='702ca6f0e58e2d8ddf98228d59e2efc6e19e82fd0858ee948289948f42d86232') user2 = User( staff_id=17052101, role=UserRole.student, name="陈学生", is_male=False, password='c203aa9c9171287d4a7356006646257866e9a5b6f2bea957ae7b0e1a30a07dfa') user3 = User( staff_id=10000, role=UserRole.admin, name="陈管理员", is_male=True, password='bede0c4938ce392d4a96b9743140e64954505b1973b08e386e74ac5bc963980d') sess.add_all([user1, user2, user3]) sess.commit() course1 = Course( course_name="高等数学", start=1552706506, end=1553806506) course2 = Course( course_name="离散数学", start=1552704506, end=1553816506) sess.add_all([course1, course2]) sess.commit() class11 = Class(class_name="周一上午", weekday=1, start=3, end=5, teacher_id=1, course_id=1) class12 = Class(class_name="周三下午", weekday=3, start=6, end=8, teacher_id=1, course_id=1) class21 = Class(class_name="周二上午", weekday=2, start=1, end=2, teacher_id=1, course_id=2) class22 = Class(class_name="周三下午", weekday=3, start=6, end=7, teacher_id=1, course_id=2) sess.add_all([class11, class12, class21, class22]) sess.commit() score1 = Score(score=95, user_id=2, class_id=1) score2 = Score(score=98, user_id=2, class_id=3) sess.add_all([score1, score2]) sess.commit() rel1 = RelationUserClass(user_id=2, class_id=1) sess.add_all([rel1]) sess.commit() code1 = CheckInCodes( code=1234, class_id=1, started=1, expire_at=1552707168) sess.add_all([code1]) sess.commit() log1 = CheckedInLogs(code_id=1, user_id=2, status=CheckedInStatus.late) sess.add_all([log1]) sess.commit() material1 = Material( filename="高等数学课程培养方案.doc", internal_filename="no such a file", size=0, uploaded_at=1552707319, uploader_id=1, belong_type=BelongType.COURSE, belong_id=1) material2 = Material( filename="第一章.ppt", internal_filename="no such a file", size=0, uploaded_at=1552707390, uploader_id=1, belong_type=BelongType.CLASS, belong_id=1) sess.add_all([material1, material2]) sess.commit() topic1 = Topic( title="高数好难啊", content="如题,真的好难啊", user_id=2, created_at=1552707468, updated_at=1552707582, replies=2, belong_type=BelongType.COURSE, belong_id=1) sess.add_all([topic1]) sess.commit() reply1 = Reply( topic_id=1, content="附议!好难!", user_id=2, created_at=1552707554) reply2 = Reply( topic_id=1, content="你挂了", user_id=1, created_at=1552707582) sess.add_all([reply1, reply2]) sess.commit() sess.close()
""" Напишете функция, която намира най-малкото по стойност число, измежду две дадени числа. >>> min2(3, 1) 1 >>> min2(-1, 2) -1 """ def min2(a, b): raise Exception('Not implemented')
import urllib2 import pdb pdb.set_trace() authinfo = urllib2.HTTPBasicAuthHandler() opener = urllib2.build_opener(authinfo) urllib2.install_opener(opener) f = urllib2.urlopen('http://mail.google.com/a/spasticssocietyofkarnataka.org/#inbox') print f.info()
#=========================================================================== # # Copyright (c) 2014, California Institute of Technology. # U.S. Government Sponsorship under NASA Contract NAS7-03001 is # acknowledged. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # #=========================================================================== "The ToExactListOf unit test." __version__ = "$Revision: #1 $" #=========================================================================== # Reqmtypes.ed imports. Do not modify these. import unittest #=========================================================================== # Place all imports after here. # import os import mplStyle.types.convert as cvt # # Place all imports before here. #=========================================================================== #=========================================================================== class TesttoExactListOf( unittest.TestCase ): """ToExactListOf module.""" #----------------------------------------------------------------------- def setUp( self ): """This method is called before any tests are run.""" # You may place initialization code here. #----------------------------------------------------------------------- def tearDown( self ): """This method is called after all tests are run.""" pass #======================================================================= # Add tests methods below. # Any method whose name begins with 'test' will be run by the framework. #======================================================================= def testToExactListOf( self ): """Test the ToExactListOf converter.""" # Test the case with only one element. converter = cvt.toExactListOf cvtList = [ cvt.Converter( cvt.toType, float, allowNone=False ) ] d1 = "10" right = [ 10 ] result = converter( [ d1 ], cvtList ) self.assertEqual( right, result, "Incorrect conversion of list with one element." ) self.assertRaises( Exception, converter, d1, cvtList, name='value', msg="Use non-list argument should be an error." ) self.assertRaises( Exception, converter, [ d1, d1 ], cvtList, name='value', msg="Use list with wrong size should be an error." ) self.assertRaises( Exception, converter, [ "foo bar" ], cvtList, name='value', msg="Use list with wrong type should be an error." ) self.assertRaises( Exception, converter, None, cvtList, name='value', msg="Use None with AllowNone=False should be an error." ) # Test the case with multiple elements. cvtList = [ cvt.Converter( cvt.toType, float ), cvt.Converter( cvt.toType, str ) ] s1 = "test" f1 = "123" right = [ 123.0, "test" ] result = converter( [ f1, s1 ], cvtList ) self.assertEqual( right, result, "Incorrect conversion of list with multiple elements." ) result = converter( ( f1, s1 ), cvtList ) self.assertEqual( right, result, "Incorrect conversion of tuple." ) self.assertRaises( Exception, converter, s1, cvtList, msg="Use non-list argument should be an error." ) self.assertRaises( Exception, converter, [ s1 ], cvtList, msg="Use list with wrong size should be an error." ) self.assertRaises( Exception, converter, [ f1, s1 ], cvtList, msg="Use list with wrong order should be an error." ) self.assertRaises( Exception, converter, None, cvtList, msg="Use None with AllowNone=False should be an error." ) #----------------------------------------------------------------------- def testAllowNone( self ): """Test allow none.""" converter = cvt.toExactListOf cvtList = [ cvt.Converter( cvt.toType, float ) ] result = converter( None, cvtList, allowNone=True ) self.assertEqual( None, result, "Incorrect conversion of none." ) s1 = "123" right = [ 123 ] result = converter( [ s1 ], cvtList, allowNone=True ) self.assertEqual( right, result, "Incorrect conversion with allow none." ) #===========================================================================
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import oneflow as flow from oneflow import nn import os import numpy as np import oneflow.unittest class TestModule(nn.Module): def forward(self, x): sbp_1ds = [ flow.sbp.broadcast, flow.sbp.partial_sum, flow.sbp.split(0), flow.sbp.split(1), flow.sbp.split(2), flow.sbp.split(3), ] y = x for sbp1 in sbp_1ds: for sbp2 in sbp_1ds: for sbp3 in sbp_1ds: for sbp4 in sbp_1ds: # (2, 2) -> (2, 2) x = x.to_global(sbp=[sbp1, sbp2]) x = x.to_global(sbp=[sbp3, sbp4]) return x class _TestGraph(nn.Graph): def __init__(self, model): super().__init__() self.model = model def build(self, x): x = self.model(x) return x @flow.unittest.skip_unless_1n4d() @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") class TestLazyAllSbpCombinationTesting(flow.unittest.TestCase): def test_lazy_boxing_2d_all_combination(test_case): model = TestModule() graph = _TestGraph(model) x = flow.ones( 4, 4, 4, 4, sbp=[flow.sbp.broadcast, flow.sbp.broadcast], placement=flow.placement( type="cuda", ranks=np.array(range(4)).reshape(2, 2) ), ) y = graph(x) if __name__ == "__main__": unittest.main()
""" Parse denovo vars and use only epilepsy genes. """ import pandas, sys dat_file, xls_file, out_file = sys.argv[1:] df_pre = pandas.read_excel(xls_file) genes = set(df_pre['Gene Symbol'].values) cols = ['Chr', 'Position', 'Variant'] denovo_df = pandas.read_csv(dat_file, dtype={'Position':int}, skiprows=0, header=1, sep='\t') def filter_genes(row): return True #row['Gene'] in genes new_data =[] for row in denovo_df[denovo_df.apply(filter_genes, axis=1)][cols].itertuples(): ref, alt = row.Variant.split('>') ls = (row.Chr, row.Position, '', ref, alt, '.', '.') new_data.append(ls) idx = ['#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER'] new_df = pandas.DataFrame(new_data, columns=idx) with open(out_file, 'w') as fout: print('##fileformat=VCFv4.0', file=fout) new_df.drop_duplicates().sort_values(by=['#CHROM', 'POS'], ascending=[True, True]).to_csv(fout, index=False, sep='\t')
#coding: utf-8 ''' Univesidade Federal de Pernambuco -- UFPE (http://www.ufpe.br) Centro de Informatica -- CIn (http://www.cin.ufpe.br) Bacharelado em Sistemas de Informacao IF969 -- Algoritmos e Estruturas de Dados Autor: Marcos Antonio Tavares Galvão Email: matg@cin.ufpe.br Licenca: The MIT License (MIT) Copyright(c) 2018 Marcos Antonio Tavares Galvão ''' from Documentos import Documents from linked_list import Lista from trie import Trie import os from memory_profiler import profile from cProfile import Profile class Corpus: ''' Classe de representacao de um Corpus, o qual é composto por vários Documents de um mesmo path. ''' def __init__(self, directory): ''' Recebe como parametro um diretorio, criando assim um repertorio dos arquivos presentes no path. ''' self.__directory = directory self.__all_documents, self.__trie_words_documents = Corpus.__create_documents(self, self.__directory) #self.__trie_words_documents = Corpus.__create_trie(self) self.__number_of_documents = len(self.__all_documents) def __str__(self): ''' retorna uma representacao da lista com todos os documentos. ''' return str(self.__all_documents) def __repr__(self): ''' retorna uma forma valida de instanciar um Corpus identico ao atual. ''' return 'Corpus("{0}")'.format(self.__directory) def __iter__(self): ''' retorna o iterador sobre a lista dos Documents. ''' return iter(self.__all_documents) def __getitem__(self, key): ''' retorna o item indexado pela chave desejada. ''' return self.__all_documents[key] def __len__(self): ''' retorna o numero de Documents que compoem o Corpus. ''' return self.__number_of_documents def __create_documents(self, directory): ''' recebe um diretorio ao qual sao realizadas as instanciacoes dos Documents() e adiciona suas palavras a trie. ''' archives = os.listdir(directory) documents = Lista() temp = Trie() for archive_name in archives: doc = Documents(directory+archive_name) documents.anexar(doc) for ngram in doc.ngrams: aux_words = ngram.sequence string = '' for k in aux_words: string += k + ' ' temp.add(string,doc) return documents, temp def check_plagiarism(self, document, limit): ''' recebe um objeto Documents e um limiar de plagio, executa a verificacao de plagio e retorna uma lisca contendo os possiveis arquivos base do plagio. ''' base_documents = {} for doc in self.__all_documents: base_documents[doc] = 0 for ngram in document.ngrams: aux_words = ngram.sequence string = '' for k in aux_words: string += k + ' ' docs_base = self.__trie_words_documents.search(string) if docs_base is not None: for doc in docs_base: base_documents[doc] += 1 final_list = Lista() for pair in base_documents.items(): restraint = pair[1]/len(pair[0]) if restraint >= limit: final_list.anexar(pair[0].local) return final_list @property def directory(self): ''' retorna o diretorio que originou o Corpus. ''' return self.__directory
#from distutils.core import setup import os from setuptools import setup from setuptools.command.install import install # Utility function to read the README file. # Used for the long_description. It's nice, because now 1) we have a top level # README file and 2) it's easier to type in the README file than to put a raw # string in below ... def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() class MyInstall(install): def run(self): install.run(self) #print("\n\n\n\nI did it!!!!\n\n\n\n") cmd = 'sudo activate-global-python-argcomplete' print cmd os.system(cmd) setup( name="pymake2", version = "0.5.33", author = "Saud Wasly", author_email = "saudalwasli@gmail.com", description = ("pymake2 is a simple Python-based make system. It brings simplicity and flexibility of Python language to makefiles."), license = "MIT", keywords = "make makefile build", url = "https://bitbucket.org/saudalwasly/pymake2/src", install_requires=["argcomplete", "sarge"], packages=['pymake2'], scripts=['pymake2/pymake2', 'pymake2/pmake2'], #data_files = [('', ['__init__.py', 'pymake2', 'make.py', 'utility.py', 'makefile_template.py'])] , long_description=read('README.rst'), classifiers=[ "Development Status :: 4 - Beta", "Topic :: Utilities", "License :: OSI Approved :: MIT License", ], cmdclass={'install': MyInstall} )
import uuid from styleguide_example.users.models import BaseUser def auth_user_get_jwt_secret_key(user: BaseUser) -> str: return str(user.jwt_key) def auth_jwt_response_payload_handler(token, user=None, request=None, issued_at=None): """ Default implementation. Add whatever suits you here. """ return {"token": token} def auth_logout(user: BaseUser) -> BaseUser: user.jwt_key = uuid.uuid4() user.full_clean() user.save(update_fields=["jwt_key"]) return user
# Copyright 2016 Hewlett Packard Enterprise Development LP. # Copyright 2016 Universidade Federal de Campina Grande # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from oslo_utils import importutils from ironic.common import driver_factory from ironic.common import exception from ironic.common import states from ironic.conductor import task_manager from ironic.drivers.modules.oneview import common from ironic.drivers.modules.oneview import deploy_utils from ironic import objects from ironic.tests.unit.conductor import mgr_utils from ironic.tests.unit.db import base as db_base from ironic.tests.unit.db import utils as db_utils from ironic.tests.unit.objects import utils as obj_utils oneview_models = importutils.try_import('oneview_client.models') @mock.patch.object(common, 'get_oneview_client', spec_set=True, autospec=True) class OneViewDeployUtilsTestCase(db_base.DbTestCase): def setUp(self): super(OneViewDeployUtilsTestCase, self).setUp() self.config(manager_url='https://1.2.3.4', group='oneview') self.config(username='user', group='oneview') self.config(password='password', group='oneview') mgr_utils.mock_the_extension_manager(driver='fake_oneview') self.driver = driver_factory.get_driver('fake_oneview') self.node = obj_utils.create_test_node( self.context, driver='fake_oneview', properties=db_utils.get_test_oneview_properties(), driver_info=db_utils.get_test_oneview_driver_info(), ) self.info = common.get_oneview_info(self.node) # Tests for prepare def test_prepare_node_is_in_use_by_oneview(self, mock_get_ov_client): """`prepare` behavior when the node already has a Profile on OneView. """ oneview_client = mock_get_ov_client() fake_server_hardware = oneview_models.ServerHardware() fake_server_hardware.server_profile_uri = "/any/sp_uri" oneview_client.get_server_hardware.return_value = fake_server_hardware with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['dynamic_allocation'] = True task.node.driver_info = driver_info task.node.provision_state = states.DEPLOYING self.assertRaises( exception.InstanceDeployFailure, deploy_utils.prepare, oneview_client, task ) @mock.patch.object(objects.Node, 'save') def test_prepare_node_is_successfuly_allocated_to_ironic( self, mock_node_save, mock_get_ov_client ): """`prepare` behavior when the node is free from OneView standpoint. """ oneview_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = None oneview_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: task.node.provision_state = states.DEPLOYING deploy_utils.prepare(oneview_client, task) self.assertTrue(oneview_client.clone_template_and_apply.called) self.assertTrue(oneview_client.get_server_profile_from_hardware) # Tests for tear_down def test_tear_down(self, mock_get_ov_client): """`tear_down` behavior when node already has Profile applied """ sp_uri = '/rest/server-profiles/1234556789' ov_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = sp_uri ov_client = mock_get_ov_client.return_value ov_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['applied_server_profile_uri'] = \ '/rest/server-profiles/1234556789' task.node.driver_info = driver_info self.assertTrue( 'applied_server_profile_uri' in task.node.driver_info ) deploy_utils.tear_down(ov_client, task) self.assertFalse( 'applied_server_profile_uri' in task.node.driver_info ) self.assertTrue( ov_client.delete_server_profile.called ) # Tests for prepare_cleaning @mock.patch.object(objects.Node, 'save') def test_prepare_cleaning_when_node_does_not_have_sp_applied( self, mock_node_save, mock_get_ov_client ): """`prepare_cleaning` behavior when node is free """ oneview_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = None oneview_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: deploy_utils.prepare_cleaning(oneview_client, task) self.assertTrue(oneview_client.clone_template_and_apply.called) @mock.patch.object(objects.Node, 'save') def test_prepare_cleaning_when_node_has_sp_applied( self, mock_node_save, mock_get_ov_client ): """`prepare_cleaning` behavior when node already has Profile applied """ oneview_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = 'same/sp_applied' oneview_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['applied_server_profile_uri'] = 'same/sp_applied' task.node.driver_info = driver_info deploy_utils.prepare_cleaning(oneview_client, task) self.assertFalse(oneview_client.clone_template_and_apply.called) def test_prepare_cleaning_node_is_in_use_by_oneview( self, mock_get_ov_client ): """`prepare_cleaning` behavior when node has Server Profile on OneView """ oneview_client = mock_get_ov_client() fake_server_hardware = oneview_models.ServerHardware() fake_server_hardware.server_profile_uri = "/any/sp_uri" oneview_client.get_server_hardware.return_value = fake_server_hardware with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['dynamic_allocation'] = True task.node.driver_info = driver_info task.node.provision_state = states.DEPLOYING self.assertRaises( exception.NodeCleaningFailure, deploy_utils.prepare_cleaning, oneview_client, task ) # Tests for tear_down_cleaning def test_tear_down_cleaning(self, mock_get_ov_client): """Checks if Server Profile was deleted and its uri removed """ sp_uri = '/rest/server-profiles/1234556789' ov_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = sp_uri ov_client = mock_get_ov_client.return_value ov_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['applied_server_profile_uri'] = \ '/rest/server-profiles/1234556789' task.node.driver_info = driver_info self.assertIn('applied_server_profile_uri', task.node.driver_info) deploy_utils.tear_down_cleaning(ov_client, task) self.assertNotIn('applied_server_profile_uri', task.node.driver_info) self.assertTrue(ov_client.delete_server_profile.called) # Tests for is_node_in_use_by_oneview def test_is_node_in_use_by_oneview(self, mock_get_ov_client): """Node has a Server Profile applied by a third party user. """ oneview_client = mock_get_ov_client() fake_server_hardware = oneview_models.ServerHardware() fake_server_hardware.server_profile_uri = "/any/sp_uri" with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['dynamic_allocation'] = True task.node.driver_info = driver_info self.assertTrue( deploy_utils.is_node_in_use_by_oneview(oneview_client, task.node) ) def test_is_node_in_use_by_oneview_no_server_profile( self, mock_get_ov_client ): """Node has no Server Profile. """ oneview_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = None oneview_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: self.assertFalse( deploy_utils.is_node_in_use_by_oneview(oneview_client, task.node) ) def test_is_node_in_use_by_oneview_same_server_profile_applied( self, mock_get_ov_client ): """Node's Server Profile uri is the same applied by ironic. """ oneview_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = 'same/applied_sp_uri/' oneview_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['applied_server_profile_uri'] = 'same/applied_sp_uri/' task.node.driver_info = driver_info self.assertFalse( deploy_utils.is_node_in_use_by_oneview(oneview_client, task.node) ) # Tests for is_node_in_use_by_ironic def test_is_node_in_use_by_ironic(self, mock_get_ov_client): """Node has a Server Profile applied by ironic. """ fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = "same/applied_sp_uri/" ov_client = mock_get_ov_client.return_value ov_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['dynamic_allocation'] = True driver_info['applied_server_profile_uri'] = 'same/applied_sp_uri/' task.node.driver_info = driver_info self.assertTrue( deploy_utils.is_node_in_use_by_ironic(ov_client, task.node) ) def test_is_node_in_use_by_ironic_no_server_profile( self, mock_get_ov_client ): """Node has no Server Profile. """ fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = None ov_client = mock_get_ov_client.return_value ov_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: self.assertFalse( deploy_utils.is_node_in_use_by_ironic(ov_client, task.node) ) # Tests for _add_applied_server_profile_uri_field def test__add_applied_server_profile_uri_field(self, mock_get_ov_client): """Checks if applied_server_profile_uri was added to driver_info. """ with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info task.node.driver_info = driver_info fake_server_profile = oneview_models.ServerProfile() fake_server_profile.uri = 'any/applied_sp_uri/' self.assertNotIn('applied_server_profile_uri', task.node.driver_info) deploy_utils._add_applied_server_profile_uri_field( task.node, fake_server_profile ) self.assertIn('applied_server_profile_uri', task.node.driver_info) # Tests for _del_applied_server_profile_uri_field def test__del_applied_server_profile_uri_field(self, mock_get_ov_client): """Checks if applied_server_profile_uri was removed from driver_info. """ with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['applied_server_profile_uri'] = 'any/applied_sp_uri/' task.node.driver_info = driver_info self.assertIn('applied_server_profile_uri', task.node.driver_info) deploy_utils._del_applied_server_profile_uri_field(task.node) self.assertNotIn('applied_server_profile_uri', task.node.driver_info) # Tests for allocate_server_hardware_to_ironic @mock.patch.object(objects.Node, 'save') def test_allocate_server_hardware_to_ironic( self, mock_node_save, mock_get_ov_client ): """Checks if a Server Profile was created and its uri is in driver_info. """ oneview_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = None oneview_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: deploy_utils.allocate_server_hardware_to_ironic( oneview_client, task.node, 'serverProfileName' ) self.assertTrue(oneview_client.clone_template_and_apply.called) self.assertIn('applied_server_profile_uri', task.node.driver_info) @mock.patch.object(objects.Node, 'save') @mock.patch.object(deploy_utils, '_del_applied_server_profile_uri_field') def test_allocate_server_hardware_to_ironic_node_has_server_profile( self, mock_delete_applied_sp, mock_node_save, mock_get_ov_client ): """Tests server profile allocation when applied_server_profile_uri exists. This test consider that no Server Profile is applied on the Server Hardware but the applied_server_profile_uri remained on the node. Thus, the conductor should remove the value and apply a new server profile to use the node. """ oneview_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = None oneview_client.get_server_hardware_by_uuid.return_value = fake_sh with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['applied_server_profile_uri'] = 'any/applied_sp_uri/' task.node.driver_info = driver_info deploy_utils.allocate_server_hardware_to_ironic( oneview_client, task.node, 'serverProfileName' ) self.assertTrue(mock_delete_applied_sp.called) # Tests for deallocate_server_hardware_from_ironic @mock.patch.object(objects.Node, 'save') def test_deallocate_server_hardware_from_ironic( self, mock_node_save, mock_get_ov_client ): oneview_client = mock_get_ov_client() fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = 'any/applied_sp_uri/' oneview_client.get_server_hardware_by_uuid.return_value = fake_sh mock_get_ov_client.return_value = oneview_client with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['applied_server_profile_uri'] = 'any/applied_sp_uri/' task.node.driver_info = driver_info deploy_utils.deallocate_server_hardware_from_ironic( oneview_client, task.node ) self.assertTrue(oneview_client.delete_server_profile.called) self.assertTrue( 'applied_server_profile_uri' not in task.node.driver_info ) @mock.patch.object(objects.Node, 'save') def test_deallocate_server_hardware_from_ironic_missing_profile_uuid( self, mock_node_save, mock_get_ov_client ): """Test for case when server profile application fails. Due to an error when applying Server Profile in OneView, the node will have no Server Profile uuid in the 'applied_server_profile_uri' namespace. When the method tested is called without Server Profile uuid, the client will raise a ValueError when trying to delete the profile, this error is converted to an OneViewError. """ ov_client = mock_get_ov_client.return_value fake_sh = oneview_models.ServerHardware() fake_sh.server_profile_uri = 'any/applied_sp_uri/' ov_client.get_server_hardware_by_uuid.return_value = fake_sh ov_client.delete_server_profile.side_effect = ValueError mock_get_ov_client.return_value = ov_client with task_manager.acquire(self.context, self.node.uuid) as task: driver_info = task.node.driver_info driver_info['applied_server_profile_uri'] = 'any/applied_sp_uri/' task.node.driver_info = driver_info self.assertRaises( exception.OneViewError, deploy_utils.deallocate_server_hardware_from_ironic, ov_client, task.node ) self.assertTrue(ov_client.delete_server_profile.called) self.assertTrue( 'applied_server_profile_uri' in task.node.driver_info )
'''Getting into the application''' from flask import Flask import os from app import create_app app = create_app() if __name__ == '__main__': app.run()
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from tests import IntegrationTestCase from tests.holodeck import Request from twilio.base.exceptions import TwilioException from twilio.http.response import Response class AccessTokenTestCase(IntegrationTestCase): def test_create_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .access_tokens.create(identity="identity", factor_type="push") values = {'Identity': "identity", 'FactorType': "push", } self.holodeck.assert_has_request(Request( 'post', 'https://verify.twilio.com/v2/Services/VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/AccessTokens', data=values, )) def test_create_response(self): self.holodeck.mock(Response( 201, ''' { "sid": "YKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "account_sid": "ACaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "service_sid": "VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "entity_identity": "ff483d1ff591898a9942916050d2ca3f", "factor_type": "push", "factor_friendly_name": "John Doe iPhone", "token": "eyJ6aXAiOiJERUYiLCJraWQiOiJTQVNfUzNfX19LTVNfdjEiLCJjdHkiOiJ0d2lsaW8tZnBhO3Y9MSIsImVuYyI6IkEyNTZHQ00iLCJhbGciOiJkaXIifQ..qjltWfIgQaTwp2De.81Z_6W4kR-hdlAUvJQCbwS8CQ7QAoFRkOvNMoySEj8zEB4BAY3MXhPARfaK4Lnr4YceA2cXEmrzPKQ7bPm0XZMGYm1fqLYzAR8YAqUetI9WEdQLFytg1h4XnJnXhgd99eNXsLkpKHhsCnFkchV9eGpRrdrfB0STR5Xq0fdakomb98iuIFt1XtP0_iqxvxQZKe1O4035XhK_ELVwQBz_qdI77XRZBFM0REAzlnEOe61nOcQxkaIM9Qel9L7RPhcndcCPFAyYjxo6Ri5c4vOnszLDiHmeK9Ep9fRE5-Oz0px0ZEg_FgTUEPFPo2OHQj076H1plJnFr-qPINDJkUL_i7loqG1IlapOi1JSlflPH-Ebj4hhpBdMIcs-OX7jhqzmVqkIKWkpPyPEmfvY2-eA5Zpoo08YpqAJ3G1l_xEcHl28Ijkefj1mdb6E8POx41skAwXCpdfIbzWzV_VjFpmwhacS3JZNt9C4hVG4Yp-RGPEl1C7aJHRIUavAmoRHaXbfG20zzv5Zu0P5PcopDszzoqVfZpzc.GCt35DWTurtP-QaIL5aBSQ", "url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/AccessTokens/YKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" } ''' )) actual = self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .access_tokens.create(identity="identity", factor_type="push") self.assertIsNotNone(actual) def test_fetch_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .access_tokens("YKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").fetch() self.holodeck.assert_has_request(Request( 'get', 'https://verify.twilio.com/v2/Services/VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/AccessTokens/YKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX', )) def test_fetch_response(self): self.holodeck.mock(Response( 200, ''' { "sid": "YKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "account_sid": "ACaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "service_sid": "VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "entity_identity": "ff483d1ff591898a9942916050d2ca3f", "factor_type": "push", "factor_friendly_name": "John Doe iPhone", "token": "eyJ6aXAiOiJERUYiLCJraWQiOiJTQVNfUzNfX19LTVNfdjEiLCJjdHkiOiJ0d2lsaW8tZnBhO3Y9MSIsImVuYyI6IkEyNTZHQ00iLCJhbGciOiJkaXIifQ..qjltWfIgQaTwp2De.81Z_6W4kR-hdlAUvJQCbwS8CQ7QAoFRkOvNMoySEj8zEB4BAY3MXhPARfaK4Lnr4YceA2cXEmrzPKQ7bPm0XZMGYm1fqLYzAR8YAqUetI9WEdQLFytg1h4XnJnXhgd99eNXsLkpKHhsCnFkchV9eGpRrdrfB0STR5Xq0fdakomb98iuIFt1XtP0_iqxvxQZKe1O4035XhK_ELVwQBz_qdI77XRZBFM0REAzlnEOe61nOcQxkaIM9Qel9L7RPhcndcCPFAyYjxo6Ri5c4vOnszLDiHmeK9Ep9fRE5-Oz0px0ZEg_FgTUEPFPo2OHQj076H1plJnFr-qPINDJkUL_i7loqG1IlapOi1JSlflPH-Ebj4hhpBdMIcs-OX7jhqzmVqkIKWkpPyPEmfvY2-eA5Zpoo08YpqAJ3G1l_xEcHl28Ijkefj1mdb6E8POx41skAwXCpdfIbzWzV_VjFpmwhacS3JZNt9C4hVG4Yp-RGPEl1C7aJHRIUavAmoRHaXbfG20zzv5Zu0P5PcopDszzoqVfZpzc.GCt35DWTurtP-QaIL5aBSQ", "url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/AccessTokens/YKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" } ''' )) actual = self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .access_tokens("YKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").fetch() self.assertIsNotNone(actual)
# -*- coding: utf-8 -*- import logging import unittest import time from uuid import uuid4, UUID from cassandra.query import dict_factory from caes.client import CassandraClient from caes.test.utils import random_string logging.basicConfig(level=logging.DEBUG) class CassandraClientTestCase(unittest.TestCase): def tearDown(self): query = """ DROP KEYSPACE %s """ % self.keyspace session = self.cclient._cluster.connect(self.keyspace) session.execute(query) session.shutdown() def setUp(self): self.keyspace = random_string().lower() self.data_column_family = random_string().lower() self.cclient = CassandraClient(self.keyspace, self.data_column_family) session = self.cclient._cluster.connect() query = """ CREATE KEYSPACE %s WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1}; """ % self.keyspace session.execute(query) session.shutdown() session = self.cclient._cluster.connect(self.keyspace) query = """ CREATE TABLE %s ( %s int, timestamp int, %s uuid, PRIMARY KEY(%s, timestamp) ); """ % (self.cclient._timeseries_column_family, self.cclient._timeseries_id_field_name, self.cclient._data_id_field_name, self.cclient._timeseries_id_field_name) session.execute(query) query = """ CREATE TABLE %s ( %s uuid, vint int, vstring text, PRIMARY KEY(%s) ); """ % (self.data_column_family, self.cclient._data_id_field_name, self.cclient._data_id_field_name) session.execute(query) query = """ CREATE TABLE vint_by_did ( %s uuid, vint int, PRIMARY KEY(%s, vint) ); """ % (self.cclient._data_id_field_name, self.cclient._data_id_field_name) session.execute(query) session.shutdown() def test_write_doc(self): data = dict(vint=1, vstring="Hi") did = uuid4() timestamp = int(time.time()) self.cclient.write([(data, did, timestamp)]) self.cclient.flush() query = """ SELECT * FROM %s WHERE did = ? """ % self.data_column_family session = self.cclient._cluster.connect(self.keyspace) session.row_factory = dict_factory prepared = session.prepare(query) results = session.execute(prepared, (did,)) session.shutdown() self.assertNotEqual(0, len(results)) self.assertDictContainsSubset(data, results[0]) def test_write_doc_none(self): did = uuid4() timestamp = int(time.time()) self.cclient.write([(None, did, timestamp)]) self.cclient.flush() query = """ SELECT * FROM %s WHERE did = ? """ % self.data_column_family session = self.cclient._cluster.connect(self.keyspace) session.row_factory = dict_factory prepared = session.prepare(query) results = session.execute(prepared, (did,)) session.shutdown() self.assertEqual(0, len(results)) def test_extra_insert_query(self): data = dict(vint=1, vstring="Hi") did = uuid4() timestamp = int(time.time()) self.cclient._insert_query = """ INSERT INTO vint_by_did (did, vint) VALUES (%(did)s, %(vint)s) """ self.cclient.write([(data, did, timestamp)]) self.cclient.flush() query = """ SELECT * FROM vint_by_did WHERE did = ? """ session = self.cclient._cluster.connect(self.keyspace) session.row_factory = dict_factory prepared = session.prepare(query) results = session.execute(prepared, (did,)) session.shutdown() print results self.assertEqual(1, len(results)) self.assertEqual(data.get('vint'), results[0].get('vint')) self.assertEqual(did, results[0].get('did')) def test_latest(self): session = self.cclient._cluster.connect(self.keyspace) params = dict(keyspace=self.keyspace, ts_family=self.cclient._timeseries_column_family, dt_family=self.cclient._data_column_family, ts_id_name=self.cclient._timeseries_id_field_name, did_name=self.cclient._data_id_field_name, ts_field_name=self.cclient._timestamp_field_name, data_columns=None, data_values=None) data1 = dict(vint=2, vstring="Hello") did1 = uuid4() t1 = int(time.time()) kv1 = zip(*data1.iteritems()) params['data_columns'] = ", ".join(kv1[0]) params['data_values'] = ", ".join("?" for _ in range(len(kv1[1]))) query = """ BEGIN BATCH INSERT INTO %(ts_family)s (%(ts_id_name)s, %(ts_field_name)s, %(did_name)s) VALUES (?, ?, ?) INSERT INTO %(dt_family)s (%(did_name)s, %(data_columns)s) VALUES (?, %(data_values)s) APPLY BATCH; """ % params prepared = session.prepare(query) session.execute(prepared, (0, t1, did1) + (did1, ) + tuple(kv1[1])) time.sleep(1) tm = int(time.time()) time.sleep(1) data2 = dict(vint=1, vstring="Bye") did2 = uuid4() t2 = int(time.time()) kv2 = zip(*data2.iteritems()) params['data_columns'] = ", ".join(kv1[0]) params['data_values'] = ", ".join("?" for _ in range(len(kv2[1]))) query = """ BEGIN BATCH INSERT INTO %(ts_family)s (%(ts_id_name)s, %(ts_field_name)s, %(did_name)s) VALUES (?, ?, ?) INSERT INTO %(dt_family)s (%(did_name)s, %(data_columns)s) VALUES (?, %(data_values)s) APPLY BATCH; """ % params prepared = session.prepare(query) session.execute(prepared, (0, t2, did2) + (did2, ) + tuple(kv2[1])) self.cclient.flush() results3 = self.cclient.latest(t2 + 1) results2 = self.cclient.latest(t2) resultsm = self.cclient.latest(tm) results1 = self.cclient.latest(t1) self.assertEqual(len(results1), 2) self.assertEqual(len(resultsm), 1) self.assertEqual(len(results2), 1) self.assertEqual(len(results3), 0) self.assertIn(did1, [did for _, did, _ in results1]) self.assertNotIn(did1, [did for _, did, _ in resultsm]) self.assertNotIn(did1, [did for _, did, _ in results2]) self.assertNotIn(did1, [did for _, did, _ in results3]) self.assertIn(did2, [did for _, did, _ in results1]) self.assertIn(did2, [did for _, did, _ in resultsm]) self.assertIn(did2, [did for _, did, _ in results2]) self.assertEqual(len(results3), 0) session.shutdown() def test_suite(): return unittest.TestLoader().loadTestsFromTestCase(CassandraClientTestCase)
from .packet_meta_type import PacketMetaType from .tlv_type import TLVType from .packet_tlv_type import PacketTLVType
#!/usr/bin/env PYTHONIOENCODING=UTF-8 python3 # <bitbar.title>Icinga2 Advanced</bitbar.title> # <bitbar.version>v1.0</bitbar.version> # <bitbar.author>Sebastian Czoch</bitbar.author> # <bitbar.author.github>SebastianCzoch</bitbar.author.github> # <bitbar.desc>Icinga2 monitoring BitBar plugin</bitbar.desc> # <bitbar.image>https://github.com/SebastianCzoch/icinga2-bitbar/blob/master/assets/bitbar2.png?raw=true</bitbar.image> # <bitbar.dependencies>python3,requests</bitbar.dependencies> # <bitbar.abouturl>https://github.com/SebastianCzoch/icinga2-bitbar</bitbar.abouturl> import requests, json, os, sys from requests.packages.urllib3.exceptions import InsecureRequestWarning config = { "icinga2_address": "https://example.com", "icinga2_port": 5665, "icinga2_user": "root", "icinga2_password": "admin", "verify_ssl": False, } STATE_SERVICE_OK = 0 STATE_SERVICE_WARNING = 1 STATE_SERVICE_CRITICAL = 2 STATE_SERVICE_UNKNOWN = 3 STATE_HOST_UP = 0 STATE_HOST_DOWN = 1 SCRIPT_PATH = os.path.realpath(__file__) COLOR_OK = "#009933" COLOR_WARNING = "#ff9900" COLOR_UNKNOWN = "#660066" COLOR_CRITICAL = "#ff0000" if not config["verify_ssl"]: requests.packages.urllib3.disable_warnings(InsecureRequestWarning) def __get_hosts(): return __make_get("/v1/objects/hosts") def __get_services(): return __make_get("/v1/objects/services") def __make_post(path, data=None): return __make_request(method="POST", path=path, data=data) def __make_get(path): return __make_request(path=path) def __exit_with_error(e): print("ERROR | color=red") print(e) sys.exit(1) def __make_request(method="GET", path="/", data=None): try: params = {**config, **{"path": path}} headers = {"Accept": "application/json"} if method == "GET": headers = {**headers, **{"X-HTTP-Method-Override": "GET"}} r = requests.post( url="{icinga2_address}:{icinga2_port}{path}".format(**params), headers=headers, verify=config["verify_ssl"], auth=(config["icinga2_user"], config["icinga2_password"]), json=data, ) if r.status_code != 200: __exit_with_error(r) return json.loads(json.dumps(r.json()))["results"] except Exception as e: __exit_with_error(e) def __filter_by_state(objects, state): return [i for i in objects if i["attrs"]["state"] == state] def __filter_by_ack(objects, is_acked): return [i for i in objects if i["attrs"]["acknowledgement"] == int(is_acked)] def __get_color_for_item(item): if item["type"] == "Service": if item["attrs"]["state"] == STATE_SERVICE_CRITICAL: return COLOR_CRITICAL if item["attrs"]["state"] == STATE_SERVICE_UNKNOWN: return COLOR_UNKNOWN if item["attrs"]["state"] == STATE_SERVICE_WARNING: return COLOR_WARNING if item["type"] == "Host": if item["attrs"]["state"] == STATE_HOST_DOWN: return COLOR_CRITICAL return COLOR_OK def __print_service(item): print( "{} - {} | color={}".format( item["attrs"]["display_name"], item["attrs"]["host_name"], __get_color_for_item(item), ) ) print("--{}".format(item["attrs"]["last_check_result"]["output"])) print( '--Acknowledge | bash={} param2=ack param3=service param4="{}" terminal=false refresh=true'.format( SCRIPT_PATH, item["attrs"]["__name"] ) ) print( '--Check now | bash={} param2=recheck param3=service param4="{}" terminal=false refresh=true'.format( SCRIPT_PATH, item["attrs"]["__name"] ) ) def __print_service_acked(item): print( "--{} - {} | color={}".format( item["attrs"]["display_name"], item["attrs"]["host_name"], __get_color_for_item(item), ) ) print("----{}".format(item["attrs"]["last_check_result"]["output"])) print( '----Remove acknowledgement | bash={} param2=remove_ack param3=service param4="{}" terminal=false refresh=true'.format( SCRIPT_PATH, item["attrs"]["__name"] ) ) print( '----Check now | bash={} param2=recheck param3=service param4="{}" terminal=false refresh=true'.format( SCRIPT_PATH, item["attrs"]["__name"] ) ) def __print_host(item): print( "{} | color={}".format( item["attrs"]["display_name"], __get_color_for_item(item) ) ) print("--{}".format(item["attrs"]["last_check_result"]["output"])) print( '--Acknowledge | bash={} param2=ack param3=host param4="{}" terminal=false refresh=true'.format( SCRIPT_PATH, item["attrs"]["__name"] ) ) print( '--Check now | bash={} param2=recheck param3=host param4="{}" terminal=false refresh=true'.format( SCRIPT_PATH, item["attrs"]["__name"] ) ) def __print_host_acked(item): print( "--{} | color={}".format( item["attrs"]["display_name"], __get_color_for_item(item) ) ) print("----{}".format(item["attrs"]["last_check_result"]["output"])) print( '----Remove acknowledgement | bash={} param2=remove_ack param3=host param4="{}" terminal=false refresh=true'.format( SCRIPT_PATH, item["attrs"]["__name"] ) ) print( '----Check now | bash={} param2=recheck param3=host param4="{}" terminal=false refresh=true'.format( SCRIPT_PATH, item["attrs"]["__name"] ) ) def __recheck(name, kind): r = __make_post("/v1/actions/reschedule-check?{}={}".format(kind, name)) def __ack(name, kind): r = __make_post( "/v1/actions/acknowledge-problem?{}={}".format(kind, name), data={"author": config["icinga2_user"], "comment": " "}, ) def __remove_ack(name, kind): r = __make_post("/v1/actions/remove-acknowledgement?{}={}".format(kind, name)) if "ack" in sys.argv: __ack(sys.argv[3], sys.argv[2]) sys.exit(0) if "remove_ack" in sys.argv: __remove_ack(sys.argv[3], sys.argv[2]) sys.exit(0) if "recheck" in sys.argv: __recheck(sys.argv[3], sys.argv[2]) sys.exit(0) hosts = __get_hosts() services = __get_services() critical_services = __filter_by_ack( __filter_by_state(services, STATE_SERVICE_CRITICAL), False ) critical_services_acked = __filter_by_ack( __filter_by_state(services, STATE_SERVICE_CRITICAL), True ) unknown_services = __filter_by_ack( __filter_by_state(services, STATE_SERVICE_UNKNOWN), False ) unknown_services_acked = __filter_by_ack( __filter_by_state(services, STATE_SERVICE_UNKNOWN), True ) warning_services = __filter_by_ack( __filter_by_state(services, STATE_SERVICE_WARNING), False ) warning_services_acked = __filter_by_ack( __filter_by_state(services, STATE_SERVICE_WARNING), True ) down_hosts = __filter_by_ack(__filter_by_state(hosts, STATE_HOST_DOWN), False) down_hosts_acked = __filter_by_ack(__filter_by_state(hosts, STATE_HOST_DOWN), True) main_color = COLOR_OK if len(warning_services) > 0: main_color = COLOR_WARNING if len(unknown_services) > 0: main_color = COLOR_UNKNOWN if len(critical_services) + len(down_hosts) > 0: main_color = COLOR_CRITICAL print( "D: {} C: {} U: {} W: {} | color={}".format( len(down_hosts), len(critical_services), len(unknown_services), len(warning_services), main_color, ) ) print("---") print("Hosts: {}".format(len(hosts))) print("Services: {}".format(len(services))) # Hosts down if len(down_hosts) + len(down_hosts_acked): print("---") print("Host problems") [__print_host(s) for s in down_hosts] if len(down_hosts_acked) != 0: print("Acknowledged hosts down {}".format(len(down_hosts_acked))) [__print_host_acked(s) for s in down_hosts_acked] if ( len(critical_services) + len(critical_services_acked) + len(unknown_services) + len(unknown_services_acked) + len(warning_services) + len(warning_services_acked) > 0 ): print("---") print("Service problems") # Critical services if len(critical_services) + len(critical_services_acked): [__print_service(s) for s in critical_services] if len(critical_services_acked) != 0: print("Acknowledged critical services {}".format(len(critical_services_acked))) [__print_service_acked(s) for s in critical_services_acked] # Unknown services if len(unknown_services) + len(unknown_services_acked): [__print_service(s) for s in unknown_services] if len(unknown_services_acked) != 0: print("Acknowledged unknown services {}".format(len(unknown_services_acked))) [__print_service_acked(s) for s in unknown_services_acked] # Warning services if len(warning_services) + len(warning_services_acked): [__print_service(s) for s in warning_services] if len(warning_services_acked) != 0: print("Acknowledged warning services {}".format(len(warning_services_acked))) [__print_service_acked(s) for s in warning_services_acked] print("---") print("Refresh | refresh=true")
#!/usr/bin/env python import asyncio import websockets async def consumer_handler(): async with websockets.connect('ws://shell.127-0-0-101.nip.io') as websocket: async for data in websocket: print(f'Received: {data}') asyncio.get_event_loop().run_until_complete(consumer_handler())
from django.shortcuts import get_object_or_404, render, redirect from django.contrib.auth.decorators import login_required @login_required def afterLogin(request): # Get user object after login user = request.user # Redirect to different pages depending on the user role if user.hasRole('ROLE_ADMIN'): # Redirect to the wealthbot admin page redirectUrl = 'rx_admin_homepage' else: if user.hasRole('ROLE_RIA') or user.hasRole('ROLE_RIA_USER'): # Redirect to the RIA page if ('wealthbot_ria_view_client_id' in request.session): redirectUrl = 'rx_ria_dashboard_show_client' else: redirectUrl = getRouteForRia(user) elif user.hasRole('ROLE_CLIENT'): # Redirect to the client page redirectUrl = getRouteForClient(user=user, session=request.session) elif user.hasRole('ROLE_SLAVE_CLIENT'): # Redirect to the client page redirectUrl = getSessionRedirectUrl(request.session) if redirectUrl is not None: removeSessionRedirectUrl(request.session) else: redirectUrl = 'rx_client_dashboard' else: # Redirect to the landing page for anonymous user redirectUrl = 'rx_user_homepage' return redirect(redirectUrl) def getRouteForRia(user): return 'rx_ria_dashboard' def getRouteForClient(user, session): # Check if session has stored redirectUrl redirectUrl = getSessionRedirectUrl(session) if redirectUrl is not None: removeSessionRedirectUrl(session) return redirectUrl # Return the redirect label from the given registration_step if hasattr(user, 'profile'): return { 0 : 'rx_client_profile_step_one', 1 : 'rx_client_profile_step_two', 2 : 'rx_client_profile_step_three', 3 : 'rx_client_portfolio', 4 : 'rx_client_portfolio', 5 : 'rx_client_transfer', 6 : 'rx_client_transfer', 7 : 'rx_client_dashboard', }.get(user.profile.registration_step, 'rx_user_homepage') return 'rx_client_profile_step_one' def getSessionRedirectUrl(session): if 'redirect_url' in session: return session['redirect_url'] def removeSessionRedirectUrl(session): del session['redirect_url']
from __future__ import division from ..base import BaseScoreType from .util import _filter_y_pred class DetectionBaseScoreType(BaseScoreType): """Common abstract base type for detection scores. Implements `__call__` by selecting all prediction detections with a confidence higher than `conf_threshold`. It assumes that the child class implements `detection_score`. """ conf_threshold = 0.5 def __call__(self, y_true, y_pred, conf_threshold=None): if conf_threshold is None: conf_threshold = self.conf_threshold y_pred_above_confidence = _filter_y_pred(y_pred, conf_threshold) return self.detection_score(y_true, y_pred_above_confidence) class DetectionBaseIOUScoreType(DetectionBaseScoreType): def __init__(self, name=None, precision=3, conf_threshold=0.5, minipatch=None, iou_threshold=0.5): if name is None: self.name = '{name}(IOU={iou_threshold})'.format( name=self._name, iou_threshold=iou_threshold) else: self.name = name self.precision = precision self.conf_threshold = conf_threshold self.minipatch = minipatch self.iou_threshold = iou_threshold
"""Phil's pyGame Utilities """ __version__ = '0.14' # vim: set filetype=python sts=4 sw=4 noet si :
import requests import emoji from datetime import datetime import datetime as dt import discord from discord import Embed from django.utils import timezone from asgiref.sync import sync_to_async from src.utils import ( createReminder, deleteReminder, getFutureEvents, modifyReminder, displayResult, _asChannel as _, parseVote) from src.settings import UNSPLASH_API from decorators.log_this import log_this from decorators.requires_parameters import requires_parameters from exceptions.bad_format_exception import BadFormatException from singleton.command_registry import CommandRegistry from singleton.cog import ReminderCog from singleton.constants import Constants registry = CommandRegistry.getInstance() constants = Constants.getInstance() @requires_parameters(nb_parameters=5) @log_this @registry.register( command="addreminder", description="Adds a reminder", help="date(jj/mm/yyyy) hour(HH:MM) name(no space) duration(HH:MM) peopletoremind(@role)" ) async def addReminder(parameters, channel): """Adds a reminder in the database Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ try: start_time = datetime.strptime( "{} {}".format(parameters[0], parameters[1]), "%d/%m/%Y %H:%M" ) name = parameters[2].lower() hours, minutes = parameters[3].split(":") duration = dt.timedelta(hours=int(hours), minutes=int(minutes)) except ValueError as e: await channel.send("Valeur pas valide :", e) return people_to_remind = " ".join(parameters[4:]) start_time = timezone.make_aware(start_time) await sync_to_async(createReminder)( name=name, start_time=start_time, duration=duration, people_to_remind=people_to_remind, channel_id=_(channel).id, server_id=_(channel).guild.id, ) message = "Bert a ajouté l'évenement **{}** le **{}** (pour {})".format( name, start_time.strftime("%d/%m/%Y à %H:%M"), people_to_remind ) await channel.send(message) @requires_parameters @log_this @registry.register( command="delreminder", description="Deletes a reminder", help="name" ) async def delReminder(parameters, channel): """Deletes a reminder Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ name = parameters[0] guild_id = _(channel).guild.id result = await sync_to_async(deleteReminder)(name, guild_id) await displayResult(channel, result) @requires_parameters(nb_parameters=3) @log_this @registry.register( command="modreminder", description="Modifies a field of a reminder", help="name parameter(name|start_date|duration|channel|allow_dp) new_value" ) async def modReminder(parameters, channel): """Modifies the selected field from a reminder Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ name = parameters[0] guild_id = _(channel).guild.id field = parameters[1] value = " ".join(parameters[2:]) result = await sync_to_async(modifyReminder)( name=name, server_id=guild_id, field=field, value=value ) await displayResult(channel, result) @requires_parameters @log_this @registry.register( command="deathping", description="Pings a person every two seconds until stopped", help="[@someone]" ) async def deathping(parameters, channel): """Launches a deathping on the given user (The bot will ping the user every two seconds) Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ uids = parameters for uid in uids: if uid.startswith("<") and uid.endswith(">"): ReminderCog.getInstance().toBePinged.append((uid, _(channel).id)) await channel.send(f"Gonna ping the shit out of {uid}\n{constants.deathping_gif}") @requires_parameters @log_this @registry.register( command="stopping", description="Stops pinging a person", help="[@someone]" ) async def stopping(parameters, channel): """Stops the deathping on the selected user Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ uids = parameters cog = ReminderCog.getInstance() for uid in uids: uid = uid.replace("!", "") if uid.startswith("<") and uid.endswith(">"): if (uid, _(channel).id) in cog.toBePinged: del cog.toBePinged[cog.toBePinged.index((uid, _(channel).id))] await channel.send(f"Stopping to ping the shit out of {uid}") else: await channel.send( f"{uid} is not in the list of person to deathing in this channel" ) @log_this @registry.register( command="getfuture", description="Shows a list of future reminders", help="[hours|days|weeks] value" ) async def getFuture(parameters, channel): """Returns the future events occuring in the given period of time Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ if len(parameters) == 0: field = "days" value = "7" else: field = parameters[0] value = parameters[1] if not value.isdigit(): await channel.send(f"La valeur {value} doit être chiffre") return value = int(value) future_events = await sync_to_async(getFutureEvents)( name=field, value=value, guild=_(channel).guild.id ) for event in future_events: await channel.send( f"```Événement : {event['name']}\n Début : {event['start_time']}\n Durée : {event['duration']}\n\n```" ) if len(future_events) == 0: await channel.send("Bert a pas trouvé événements dans période donnée") @log_this @registry.register( command="morsty", description="? ? ?", help="? ? ?" ) async def morsty(_parameters, channel): """Morsty's a mystery""" await channel.send( """``` ___ .-9 9 `\\ Is it =(:(::)= ; Binary ? Who |||| \\ am |||| `-. I ? ,\\|\\| `, / \\ What's life ? ; `'---., | `\\ ; / | Is it \\ | / morse ? ) \\ __,.--\\ / .-' \\,..._\\ \\` .-' .-' `-=`` `: | /-/-/` `.__/ ```""" ) @log_this @registry.register( command="help", description="Prints help messages", help="[command]" ) async def hjelp(parameters, channel): """Displays help messages on the commands Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ if len(parameters) >= 1: for command in parameters: if (commandWrapper := registry.get(command)) is not None: await channel.send(embed=commandWrapper.asEmbed()) else: await channel.send(f"Commande '{command}' pas dans aide de bert") else: help_msg = Embed(title="Help", description="Help for the functions") for command in registry.commands: help_msg.add_field(**command.asEmbedPart) await channel.send(embed=help_msg) @requires_parameters @log_this @registry.register( command="pic", description="Shows a random image with the given tags", help="[tag]" ) async def pic(parameters, channel): """Shows a random pic using the given tag Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ query = " ".join(parameters) payload = {"client_id": UNSPLASH_API, "query": query} response = requests.get("https://api.unsplash.com/photos/random", params=payload) response = response.json() author = response['user']['name'] author_url = f"https://unsplash.com/@{response['user']['username']}?utm_source=Bert&utm_medium=referral" unsplash_url = "https://unsplash.com/?utm_source=Bert&utm_medium=referral" em = discord.Embed( title=response["alt_description"], description=f"Picture by [{author}]({author_url}) on [Unsplash]({unsplash_url})", ) em.set_image(url=response["urls"]["small"]) em.set_author( name=response["user"]["name"], url=f"https://unsplash.com/@{response['user']['username']}?utm_source=Bert&utm_medium=referral", ) await channel.send(embed=em) @requires_parameters @log_this @registry.register( command="vote", description="Proposes a vote with the given options", help="\"Question\" \"proposition 0\" ... \"proposition 10\"" ) async def vote(parameters, channel): """Creates a vote embed Args: parameters (list): The list of parameters required for the command to work channel (discord.channel): The channel in which the command has been done """ word_num = [ "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", ] word_emojis = [f":keycap_{x}:" for x in range(10)] try: parsed = parseVote(parameters, not type(channel) is discord.channel) except BadFormatException as e: await channel.send(str(e)) return question = parsed[0] responses = parsed[1:] em = discord.Embed( title=question, description="React to this message to vote", ) for i, response in enumerate(responses): em.add_field(name=response, value=f":{word_num[i]}:") message = await channel.send(embed=em) for i in range(len(responses)): await message.add_reaction(emoji.emojize(word_emojis[i]))
# coding: utf-8 import os import wfile import wdfproc import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt mpl.font_manager._rebuild() #キャッシュの削除 plt.rcParams['font.family'] = 'IPAGothic' # インストールしたフォントを指定 import pydotplus from sklearn.tree import export_graphviz, plot_tree from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score #from sklearn.model_selection import KFold, StratifiedKFold, cross_val_score ################################################## # 指定したリストの列を除去する ################################################## def remove_cols(df, remove_columns): for remove_col in remove_columns: remove_cols = [col for col in df.columns if(remove_col in col)] df = df.drop(columns=remove_cols) return df ################################################## # 地上気象データ取得 ################################################## def get_ground_weather(): # カレントディレクトリを取得する cwd = os.getcwd() # 地上気象データを取得する ground_weather_csv = 'ground_weather.csv' if os.path.isfile(ground_weather_csv): ground_df = pd.read_csv(ground_weather_csv, index_col=0, parse_dates=[1]) else: ground_dir = os.path.join(cwd, 'ground_weather') ground_df = wfile.get_ground_weather(ground_dir) ground_df.to_csv(ground_weather_csv) # 天気記号を数値に変換する ground_df = wdfproc.convert_symbol_to_number(ground_df) # 地上気象データからNaNが含まれる列を削る ground_df = wdfproc.drop_ground(ground_df) ground_df.to_csv('ground2.csv') # 風速・風向きを数値に変換する ground_df = wdfproc.convert_wind_to_vector_ground(ground_df) ground_df.to_csv('ground3.csv') # 天気を数値に変換する ground_df = wdfproc.convert_weather_to_interger(ground_df) ground_df.to_csv('ground4.csv') # 雲量を浮動小数点数に変換する ground_df = wdfproc.convert_cloud_volume_to_float(ground_df) ground_df.to_csv('ground5.csv') # 天気を指定した境界値で分類する # - 水戸は3分割、それ以外は○分割にする weather_cols = [col for col in ground_df.columns if('天気' in col)] weather_cols.pop( weather_cols.index('Mito_天気') ) ground_df = wdfproc.replace_weather( ground_df, columns=weather_cols, mode=wdfproc.WeatherConvertMode.Coarse) ground_df.to_csv('ground6.csv') ground_df = wdfproc.replace_weather(ground_df, columns=['Mito_天気']) ground_df.to_csv('ground7.csv') # 浮動小数点数を32ビットに変換する ground_df = wdfproc.type_to_float32(ground_df) ground_df.to_csv('ground8.csv') # 不要な列を除去する ground_df = remove_cols( ground_df, # [ '現地気圧', '海面気圧', '気温', '露点温度', '蒸気圧', '日照時間', # '降雪', '積雪', '雲量', '視程', '全天日射', '降水量', '風速' ] [ '現地気圧', '海面気圧', '気温', '露点温度', '蒸気圧', '日照時間', '降雪', '積雪', '雲量', '視程', '全天日射', '降水量' ] ) print(ground_df.info()) return ground_df ################################################## # 高層気象データ取得 ################################################## def get_highrise_weather(): # カレントディレクトリを取得する cwd = os.getcwd() # 高層気象データを取得する highrise_weather_csv = 'highrise_weather.csv' if os.path.isfile(highrise_weather_csv): highrise_df = pd.read_csv(highrise_weather_csv, index_col=0, parse_dates=[1]) else: highrise_dir = os.path.join(cwd, 'highrise_weather') highrise_df = wfile.get_highrise_weather(highrise_dir) highrise_df.to_csv(highrise_weather_csv) # 高層気象データから不要データを除去する #highrise_df = wdfproc.drop_higirise(highrise_df) #highrise_df.to_csv('highrise2.csv') # 風速・風向きを数値に変換する highrise_df = wdfproc.convert_wind_to_vector_highrise(highrise_df) highrise_df.to_csv('highrise2.csv') # 浮動小数点数を32ビットに変換する highrise_df = wdfproc.type_to_float32(highrise_df) highrise_df.to_csv('highrise3.csv') # 不要な列を除去する highrise_df = remove_cols( highrise_df, [ '高度', '1000', '925', '900', '800', '600', '400'] ) print(highrise_df.info()) return highrise_df ################################################## # 学習データ作成 ################################################## def make_training_data(df, y_name): df = df.drop(columns=['時', '日付']) data_x = df.drop(columns=[y_name, ]) data_y = df[y_name] # Xデータから末尾(最新時刻)のデータを削る data_x = data_x.iloc[:-1,] # Yデータから先頭(最旧時刻)のデータを削る data_y = data_y.iloc[1:,] train_x, test_x, train_y, test_y = train_test_split(data_x, data_y, shuffle=True) return train_x, train_y, test_x, test_y ################################################## # 特徴量の重要度を表示する ################################################## def show_importance_of_feature(model, train_x): importances = model.feature_importances_ columns = train_x.columns feature_importances = pd.DataFrame(importances, index=train_x.columns, columns=['Importance']) feature_importances = feature_importances.sort_values(by='Importance', ascending=False) feature_importances.plot(kind='bar', figsize=(20,20)) plt.savefig('feature_importances.png', bbox_inches='tight') feature_importances.to_csv('feature_importances.csv') ################################################## # 正解率を表示する ################################################## def print_accuracy(test_y, pred_y): # 正解率を表示する acc = accuracy_score(test_y, pred_y) print('Score:{0:.4f}'.format(acc)) idx_sunny = np.where(test_y.values == 0)[0] acc_sunnny = accuracy_score(test_y.iloc[idx_sunny], pred_y[idx_sunny]) print('Score(sunny):{0:.4f}'.format(acc_sunnny)) idx_cloudy = np.where(test_y.values == 1)[0] acc_cloudy= accuracy_score(test_y.iloc[idx_cloudy], pred_y[idx_cloudy]) print('Score(cloudy):{0:.4f}'.format(acc_cloudy)) idx_rain = np.where(test_y.values == 2)[0] acc_rain= accuracy_score(test_y.iloc[idx_rain], pred_y[idx_rain]) print('Score(rain):{0:.4f}'.format(acc_rain)) ################################################## # メイン ################################################## if __name__ == '__main__': # 地上気象データを取得する gdf = get_ground_weather() # 高層気象データを取得する hdf = get_highrise_weather() # 地上気象データと高層気象データをマージする df = pd.merge(gdf, hdf, on=('日付','時')) # NaNを置換する df = df.fillna(-9999) # 学習データ・テスト用データ作成 train_x, train_y, test_x, test_y = make_training_data(df, 'Mito_天気') # ランダムフォレストの学習モデルを生成する model = RandomForestClassifier(n_estimators=1000, max_depth=20, random_state=1) # 学習データで学習を行う model.fit(train_x, train_y) # 特徴量の重要度を可視化する show_importance_of_feature(model, train_x) # テストデータで予測を行う pred_y = model.predict(test_x) # 正解率を表示する print_accuracy(test_y, pred_y) dot_data = export_graphviz( model.estimators_[0], feature_names=train_x.columns, class_names=['Sunny', 'Cloud', 'Rain', 'Other'], filled=True, rounded=True) graph = pydotplus.graph_from_dot_data( dot_data ) graph.write_png('tree_graphviz.png') #fig = plt.figure(figsize=(100, 50)) #ax = fig.add_subplot() #plot_tree( # model.estimators_[0], # feature_names=train_x.columns, # ax=ax, # class_names=['Sunny', 'Cloud', 'Rain', 'Other'], # filled=True #) #plt.savefig('tree_plt.png', bbox_inches='tight')
from zeus.utils.trees import build_tree def test_build_tree(): test_names = [ "foo.bar.bar", "foo.bar.biz", "foo.biz", "blah.brah", "blah.blah.blah", ] result = build_tree(test_names, min_children=2) assert sorted(result) == ["blah", "foo"] result = build_tree(test_names, min_children=2, parent="foo") assert sorted(result) == ["foo.bar", "foo.biz"] result = build_tree(test_names, min_children=2, parent="foo.biz") assert result == set()
""" 1820. Maximum Number of Accepted Invitations Medium There are m boys and n girls in a class attending an upcoming party. You are given an m x n integer matrix grid, where grid[i][j] equals 0 or 1. If grid[i][j] == 1, then that means the ith boy can invite the jth girl to the party. A boy can invite at most one girl, and a girl can accept at most one invitation from a boy. Return the maximum possible number of accepted invitations. Example 1: Input: grid = [[1,1,1], [1,0,1], [0,0,1]] Output: 3 Explanation: The invitations are sent as follows: - The 1st boy invites the 2nd girl. - The 2nd boy invites the 1st girl. - The 3rd boy invites the 3rd girl. Example 2: Input: grid = [[1,0,1,0], [1,0,0,0], [0,0,1,0], [1,1,1,0]] Output: 3 Explanation: The invitations are sent as follows: -The 1st boy invites the 3rd girl. -The 2nd boy invites the 1st girl. -The 3rd boy invites no one. -The 4th boy invites the 2nd girl. Constraints: grid.length == m grid[i].length == n 1 <= m, n <= 200 grid[i][j] is either 0 or 1. """ class Solution: def maximumInvitations(self, grid: List[List[int]]) -> int: M, N = len(grid), len(grid[0]) matching = [-1] * N # girls' mate def dfs(node, seen): for nei in range(N): # ask each girl if grid[node][nei] and not seen[nei]: seen[nei] = True # mark her as asked if matching[nei] == -1 or dfs(matching[nei], seen): matching[nei] = node return True return False res = 0 for i in range(M): seen = [False] * N if dfs(i, seen): res += 1 return res
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from paddlerec.core.metrics import PrecisionRecall import paddle import paddle.fluid as fluid def calc_precision(tp_count, fp_count): if tp_count > 0.0 or fp_count > 0.0: return tp_count / (tp_count + fp_count) return 1.0 def calc_recall(tp_count, fn_count): if tp_count > 0.0 or fn_count > 0.0: return tp_count / (tp_count + fn_count) return 1.0 def calc_f1_score(precision, recall): if precision > 0.0 or recall > 0.0: return 2 * precision * recall / (precision + recall) return 0.0 def get_states(idxs, labels, cls_num, weights=None, batch_nums=1): ins_num = idxs.shape[0] # TP FP TN FN states = np.zeros((cls_num, 4)).astype('float32') for i in range(ins_num): w = weights[i] if weights is not None else 1.0 idx = idxs[i][0] label = labels[i][0] if idx == label: states[idx][0] += w for j in range(cls_num): states[j][2] += w states[idx][2] -= w else: states[label][3] += w states[idx][1] += w for j in range(cls_num): states[j][2] += w states[label][2] -= w states[idx][2] -= w return states def compute_metrics(states, cls_num): total_tp_count = 0.0 total_fp_count = 0.0 total_fn_count = 0.0 macro_avg_precision = 0.0 macro_avg_recall = 0.0 for i in range(cls_num): total_tp_count += states[i][0] total_fp_count += states[i][1] total_fn_count += states[i][3] macro_avg_precision += calc_precision(states[i][0], states[i][1]) macro_avg_recall += calc_recall(states[i][0], states[i][3]) metrics = [] macro_avg_precision /= cls_num macro_avg_recall /= cls_num metrics.append(macro_avg_precision) metrics.append(macro_avg_recall) metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall)) micro_avg_precision = calc_precision(total_tp_count, total_fp_count) metrics.append(micro_avg_precision) micro_avg_recall = calc_recall(total_tp_count, total_fn_count) metrics.append(micro_avg_recall) metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall)) return np.array(metrics).astype('float32') class TestPrecisionRecall(unittest.TestCase): def setUp(self): self.ins_num = 64 self.cls_num = 10 self.batch_nums = 3 self.datas = [] self.states = np.zeros((self.cls_num, 4)).astype('float32') for i in range(self.batch_nums): probs = np.random.uniform(0, 1.0, (self.ins_num, self.cls_num)).astype('float32') idxs = np.array(np.argmax( probs, axis=1)).reshape(self.ins_num, 1).astype('int32') labels = np.random.choice(range(self.cls_num), self.ins_num).reshape( (self.ins_num, 1)).astype('int32') self.datas.append((probs, labels)) states = get_states(idxs, labels, self.cls_num) self.states = np.add(self.states, states) self.metrics = compute_metrics(self.states, self.cls_num) self.place = fluid.core.CPUPlace() def build_network(self): predict = fluid.data( name="predict", shape=[-1, self.cls_num], dtype='float32', lod_level=0) label = fluid.data( name="label", shape=[-1, 1], dtype='int32', lod_level=0) precision_recall = PrecisionRecall( input=predict, label=label, class_num=self.cls_num) return precision_recall def test_forward(self): precision_recall = self.build_network() metrics = precision_recall.get_result() fetch_vars = [] metric_keys = [] for item in metrics.items(): fetch_vars.append(item[1]) metric_keys.append(item[0]) exe = fluid.Executor(self.place) exe.run(fluid.default_startup_program()) for i in range(self.batch_nums): outs = exe.run( fluid.default_main_program(), feed={'predict': self.datas[i][0], 'label': self.datas[i][1]}, fetch_list=fetch_vars, return_numpy=True) outs = dict(zip(metric_keys, outs)) self.assertTrue(np.allclose(outs['[TP FP TN FN]'], self.states)) self.assertTrue(np.allclose(outs['precision_recall_f1'], self.metrics)) def test_exception(self): self.assertRaises(Exception, PrecisionRecall) self.assertRaises( Exception, PrecisionRecall, input=self.datas[0][0], label=self.datas[0][1], class_num=self.cls_num) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python '''Run trac connecting through a unix stream socket using fcgi ''' import os import sys if len(sys.argv) != 2 : print('%s unix:/path/to/socket.sock' % (sys.argv[0])) exit(1) sockaddr = sys.argv[1] #os.environ['TRAC_ENV'] = '/home/trac/instance' try: from trac.web.main import dispatch_request import trac.web._fcgi fcgiserv = trac.web._fcgi.WSGIServer(dispatch_request, bindAddress = sockaddr, umask = 7) fcgiserv.run() except SystemExit: raise except Exception, e: print 'Content-Type: text/plain\r\n\r\n', print 'Oops...' print print 'Trac detected an internal error:' print print e print import traceback import StringIO tb = StringIO.StringIO() traceback.print_exc(file=tb) print tb.getvalue()
import pandas as pd import pickle import re dict_file = "data2.txt" dictionary = {} CURRENT_KEY = "" process_started = False antonyms_started = False output_file = "../textplainer/data/fallows.dat" # Some entries contain multiple words that should have independent entries # For the moment we will use the first key key_split_pattern = " or " # NOTES # There are multiple keys that contain phrasal verbs, or additonal grammatical # notes in the key field. We are ignoring them for the moment which will render # the corresponding entry inaccessible by word look up. There are 20 odd entries # like this. E.g carry on, fawn upon, pluck up ################################################################## def initialise_new_record(content): global CURRENT_KEY global antonyms_started mykey, ref, pos = extract_key_ref_pos(content) if len(mykey.split(key_split_pattern))>1: mykey = mykey.split(key_split_pattern)[0] if pos == "": pos = 'x' CURRENT_KEY = mykey + "_" + pos antonyms_started = False dictionary[CURRENT_KEY] = {"SYN":[], "ANT":[], "REF":ref, "POS":pos} ################################################################## def finalise(): with open(output_file, 'wb') as f: pickle.dump(dictionary, f) exit(1) ################################################################## def clean(x): temp = re.sub('\{\[(.*)\]\?\}', '\\1', x) temp2 = re.sub('\.','',temp) temp3 = re.sub('=','',temp2) return temp3 ################################################################## def update_content(starter, content, stripped_line): if starter == "SYN:": update_synonyms(content) elif starter == "ANT:": update_antonyms(content) else: if antonyms_started : update_antonyms(stripped_line) else: update_synonyms(stripped_line) ################################################################## def update_synonyms(content): update_dictionary(content,"SYN") ################################################################## def update_antonyms(content): global antonyms_started antonyms_started = True update_dictionary(content,"ANT") ################################################################## def update_dictionary(content,section): record = dictionary[CURRENT_KEY] newwds = content.split(",") newwds = list(map(str.strip,newwds)) if "" in newwds: newwds.remove("") curr = record[section] curr.extend(newwds) record[section] = curr dictionary[CURRENT_KEY] = record ################################################################## def extract_key_ref_pos(content): pos = "" refs = [] res = re.findall(r"\\[a-zA-Z]+\.?\\", content) if len(res) != 0: pos = res[0] pos = pos[1] temp = re.sub(r"\\[a-zA-Z]+\.?\\", '', content).strip() res = re.findall(r"\[[^\]]*\]", temp) for r in res: ref = re.sub(r"\[see", '', r, flags=re.IGNORECASE).strip() ref = re.sub(r"\]", '', ref).strip() refl = ref.split(" and ") refs.extend(refl) keys = re.sub(r"\[.*\]", '', temp).strip() new_key = keys.split(",")[0].strip() if len(new_key) == 0: if len(refs) > 0: new_key = refs[0] return new_key, refs, pos ################################################################## def replace_refs(content): return re.sub(r"\[see (.*)\]", '\\1', content, flags=re.IGNORECASE).strip() ################################################################## with open(dict_file, "r") as f: for line in f: #print("PROCESSING:", line) stripped_line = line.strip() stripped_line = clean(stripped_line) stripped_line = re.sub("_", ' ', stripped_line) starter = stripped_line[0:4] content = stripped_line[5:] if starter == "KEY:": process_started = True initialise_new_record(content.lower()) elif process_started: content = replace_refs(content).lower() stripped_line = replace_refs(stripped_line).lower() update_content(starter, content, stripped_line) # NOW SAVE THE GENERATED DATA STRUCTURE finalise()
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """Helper functions used by the Monorail servlet base class.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import import calendar import datetime import logging import urllib from framework import framework_bizobj from framework import framework_helpers from framework import permissions from framework import template_helpers from framework import urls from framework import xsrf _ZERO = datetime.timedelta(0) class _UTCTimeZone(datetime.tzinfo): """UTC""" def utcoffset(self, _dt): return _ZERO def tzname(self, _dt): return "UTC" def dst(self, _dt): return _ZERO _UTC = _UTCTimeZone() def GetBannerTime(timestamp): """Converts a timestamp into EZT-ready data so it can appear in the banner. Args: timestamp: timestamp expressed in the following format: [year,month,day,hour,minute,second] e.g. [2009,3,20,21,45,50] represents March 20 2009 9:45:50 PM Returns: EZT-ready data used to display the time inside the banner message. """ if timestamp is None: return None ts = datetime.datetime(*timestamp, tzinfo=_UTC) return calendar.timegm(ts.timetuple()) def AssertBasePermissionForUser(user, user_view): """Verify user permissions and state. Args: user: user_pb2.User protocol buffer for the user user_view: framework.views.UserView for the user """ if permissions.IsBanned(user, user_view): raise permissions.BannedUserException( 'You have been banned from using this site') def AssertBasePermission(mr): """Make sure that the logged in user can view the requested page. Args: mr: common information parsed from the HTTP request. Returns: Nothing Raises: BannedUserException: If the user is banned. PermissionException: If the user does not have permisssion to view. """ AssertBasePermissionForUser(mr.auth.user_pb, mr.auth.user_view) if mr.project_name and not CheckPerm(mr, permissions.VIEW): logging.info('your perms are %r', mr.perms) raise permissions.PermissionException( 'User is not allowed to view this project') def CheckPerm(mr, perm, art=None, granted_perms=None): """Convenience method that makes permission checks easier. Args: mr: common information parsed from the HTTP request. perm: A permission constant, defined in module framework.permissions art: Optional artifact pb granted_perms: optional set of perms granted specifically in that artifact. Returns: A boolean, whether the request can be satisfied, given the permission. """ return mr.perms.CanUsePerm( perm, mr.auth.effective_ids, mr.project, permissions.GetRestrictions(art), granted_perms=granted_perms) def CheckPermForProject(mr, perm, project, art=None): """Convenience method that makes permission checks for projects easier. Args: mr: common information parsed from the HTTP request. perm: A permission constant, defined in module framework.permissions project: The project to enforce permissions for. art: Optional artifact pb Returns: A boolean, whether the request can be satisfied, given the permission. """ perms = permissions.GetPermissions( mr.auth.user_pb, mr.auth.effective_ids, project) return perms.CanUsePerm( perm, mr.auth.effective_ids, project, permissions.GetRestrictions(art)) def ComputeIssueEntryURL(mr, config): """Compute the URL to use for the "New issue" subtab. Args: mr: commonly used info parsed from the request. config: ProjectIssueConfig for the current project. Returns: A URL string to use. It will be simply "entry" in the non-customized case. Otherewise it will be a fully qualified URL that includes some query string parameters. """ if not config.custom_issue_entry_url: return '/p/%s/issues/entry' % (mr.project_name) base_url = config.custom_issue_entry_url sep = '&' if '?' in base_url else '?' token = xsrf.GenerateToken( mr.auth.user_id, '/p/%s%s%s' % (mr.project_name, urls.ISSUE_ENTRY, '.do')) role_name = framework_helpers.GetRoleName(mr.auth.effective_ids, mr.project) continue_url = urllib.quote(framework_helpers.FormatAbsoluteURL( mr, urls.ISSUE_ENTRY + '.do')) return '%s%stoken=%s&role=%s&continue=%s' % ( base_url, sep, urllib.quote(token), urllib.quote(role_name or ''), continue_url) def IssueListURL(mr, config, query_string=None): """Make an issue list URL for non-members or members.""" url = '/p/%s%s' % (mr.project_name, urls.ISSUE_LIST) if query_string: url += '?' + query_string elif framework_bizobj.UserIsInProject(mr.project, mr.auth.effective_ids): if config and config.member_default_query: url += '?q=' + urllib.quote_plus(config.member_default_query) return url
import sys ips = [line.strip() for line in open("ips.txt", "r")] n = len(ips) ins = [line.split("\t")[0] for line in ips] outs = [line.split("\t")[1] for line in ips] id = int(sys.argv[1]) port = int(sys.argv[2]) protocols = ["Star", "SiloGC", "TwoPLGC"] def get_cmd(n, i): cmd = "" for j in range(n): if j > 0: cmd += ";" if id == j: cmd += ins[j] + ":" + str(port+i) else: cmd += outs[j] + ":" + str(port+i) return cmd ix = 0 for protocol in protocols: cmd = get_cmd(n, ix) ix += 1 print('./bench_ycsb --logtostderr=1 --id=%d --servers="%s" --protocol=%s --partition_num=%d --threads=12 --partitioner=hash2 --read_write_ratio=90 --cross_ratio=10 --batch_flush=200' % (id, cmd, protocol, 12*n)) for protocol in protocols: cmd = get_cmd(n, ix) ix += 1 print('./bench_tpcc --logtostderr=1 --id=%d --servers="%s" --protocol=%s --partition_num=%d --threads=12 --partitioner=hash2 --query=mixed --neworder_dist=10 --payment_dist=15' % (id, cmd, protocol, 12*n))
import operator a = 100 b = 1 print('a=',a) print('b=',b) print(operator.iadd(a, b)) print('a=',a) print('b=',b) print(operator.add(a, b)) print('a=',a) print('b=',b)
class User(): def __init__(self, username, password, followers=0, following=0): self.username = username self.password = password self.followers = int(followers) self.following = int(following) def get_username(self): return self.username def get_password(self): return self.password def get_followers(self): return self.followers def get_following(self): return self.following def __class__(self): return User
#!/usr/bin/env python3 """ rrrw_instr.py Implementation of RRRW format instructions. """ from pyvex.lifting.util import Type, Instruction import bitstring from .rtl import extend_to_32_bits, sign_extend_2 from .logger import log_this class RRRW_Instructions(Instruction): """ RRRW instructions: - Insert Bit Field instruction. op = 0x57 op2 = 0x00 (3-bit) User Status Flags: no change. - Insert Mask instruction: op = 0x57 op2 = 0x01 (3-bit) User Status Flags: no change. - Extract Bit Field: op = 0x57 op2 = 0x02 (3-bit) User Status Flags: no change. - Extract Bit Field Unsigned: op = 0x57 op2 = 0x03 (3-bit) User Status Flags: no change. """ name = 'RRRW_Instructions' op = "{0}{1}".format(bin(5)[2:].zfill(4), bin(7)[2:].zfill(4)) bin_format = op + 'a'*4 + 'b'*4 + 'c'*4 + 'd'*4 + 'e'*4 + 'f'*4 def parse(self, bitstrm): data = Instruction.parse(self, bitstrm) tmp = bitstring.BitArray(bin="{0}{1}{2}{3}{4}{5}".format(data['e'], data['f'], data['c'], data['d'], data['a'], data['b'])) a = int(tmp[20:24].hex, 16) b = int(tmp[16:20].hex, 16) w = int(tmp[11:16].bin.zfill(8), 2) op2 = int(tmp[8:11].bin, 2) d = int(tmp[4:8].hex, 16) c = int(tmp[:4].hex, 16) if op2 == 0: self.name = "RRRW_INSERT" elif op2 == 1: self.name = "RRRW_IMASK" elif op2 == 2: self.name = "RRPW_EXTR" elif op2 == 3: self.name = "RRPW_EXTR.U" else: self.name = "UNKNOWN" data = {"a": a, "b": b, "c": c, "w": w, "d": d, "op2": op2} log_this(self.name, data, hex(self.addr)) return data def get_dst_reg(self): return "d{0}".format(self.data['c']) def get_d_d(self): return self.get("d{0}".format(self.data['d']), Type.int_32) def get_d_b(self): return self.get("d{0}".format(self.data['b']), Type.int_32) def get_d_a(self): return self.get("d{0}".format(self.data['a']), Type.int_32) def fetch_operands(self): return self.get_d_a(), self.get_d_b(), self.get_d_d() def compute_result(self, *args): d_a = args[0] d_b = args[1] d_d = args[2] pos = (d_d & 0x1f).cast_to(Type.int_8) width = self.data["w"] # undefined result if (pos + width) > 32 cond_undefined = extend_to_32_bits(((pos.cast_to(Type.int_32) + width) >> 5) == 0) result = "" if self.data['op2'] == 0: # INSERT mask = (((2**width) - 1) << pos).cast_to(Type.int_32) result = ((d_a & ~mask) | ((d_b << pos) & mask)) & cond_undefined elif self.data['op2'] == 1: # IMASK const_1 = self.constant(1, Type.int_32) result_1 = ((const_1 << width)-1) << pos result_2 = d_b << pos result_1 = result_1 & cond_undefined result_2 = result_2 & cond_undefined self.put(result_1, "d{0}".format(self.data['c']+1)) self.put(result_2, "d{0}".format(self.data['c'])) elif self.data['op2'] == 2: # EXTR mask = (1 << width) - 1 result = sign_extend_2((d_a >> pos) & mask, width) & cond_undefined elif self.data['op2'] == 3: # EXTR.U mask = (1 << width) - 1 result = ((d_a >> pos) & mask) & cond_undefined return result def commit_result(self, res): if self.data['op2'] != 1: # IMASK PUTs its results itself. self.put(res, self.get_dst_reg())
import tensorflow as tf import numpy as np from numpy import newaxis from PIL import Image import sys import logging import visualize_data import matplotlib.pyplot as plt from sklearn.metrics import average_precision_score from sklearn.metrics import precision_score, recall_score from nms import nms import cv2 import meanAP import os import os.path as osp from smooth_L1 import smooth_L1, decode_smooth_L1 class PixorModel(object): def __init__(self, flags): self.flags = flags NUM_EPOCHS = flags.num_epochs BATCH_SIZE = flags.batch_size TILE_SIZE = flags.tile_size IMAGE_SIZE = (TILE_SIZE, TILE_SIZE, 3) LOGFILE_NAME = flags.logfile_name NUM_CLASSES = flags.num_classes BATCH_SIZE = flags.batch_size GPU = flags.gpu DATA_FILE_NAME = flags.data_path TRAIN_BASE_PATH = os.path.join('..', DATA_FILE_NAME, 'pixor', 'train') VAL_BASE_PATH = os.path.join('..', DATA_FILE_NAME, 'pixor', 'val') VAL_LEN = len(os.listdir(VAL_BASE_PATH)) TILE_SIZE = flags.tile_size #Initialize expected input for images self.x = tf.placeholder(tf.float32, shape=(None, TILE_SIZE, TILE_SIZE, 3), name='x') #Initialize holder for per-pixel bounding boxes self.y_box = tf.placeholder(tf.float32, shape=(None, TILE_SIZE, TILE_SIZE, 6), name='y_box') #Initialize holder for per-pixel labels self.y_class = tf.placeholder(tf.int32, shape=(None, TILE_SIZE, TILE_SIZE, 1), name='y_class') # two convolutional layers, 3x3, 32 filters conv1 = tf.layers.conv2d(inputs=self.x, filters=32, kernel_size=3, padding='same', activation=tf.nn.relu) conv2 = tf.layers.conv2d(inputs=conv1, filters=32, kernel_size=3, padding='same', activation=tf.nn.relu) # resnet block 1 block1_shortcut = conv2 block1_shortcut_proj = tf.layers.conv2d(inputs=block1_shortcut, filters=96, kernel_size=1, strides=2, padding='same', activation=tf.nn.relu) block1_1 = tf.layers.conv2d(inputs=conv2, filters=24, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu) block1_2 = tf.layers.conv2d(inputs=block1_1, filters=24, kernel_size=3, padding='same', activation=tf.nn.relu) block1_3 = tf.layers.conv2d(inputs=block1_2, filters=96, kernel_size=3, padding='same', activation=tf.nn.relu) block1_out = block1_3 + block1_shortcut_proj # resnet block 2 [Compressed from original version for now] block2_shortcut = block1_out block2_shortcut_proj = tf.layers.conv2d(inputs=block2_shortcut, filters=192, kernel_size=1, strides=2, padding='same', activation=tf.nn.relu) block2_1 = tf.layers.conv2d(inputs=block1_out, filters=48, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu) block2_2 = tf.layers.conv2d(inputs=block2_1, filters=48, kernel_size=3, padding='same', activation=tf.nn.relu) block2_3 = tf.layers.conv2d(inputs=block2_2, filters=192, kernel_size=3, padding='same', activation=tf.nn.relu) block2_out = block2_3 + block2_shortcut_proj # skip connection from this output skip_block2 = block2_out # resnet block 3 [Compressed from original version for now] block3_shortcut = block2_out block3_shortcut_proj = tf.layers.conv2d(inputs=block3_shortcut, filters=256, kernel_size=1, strides=2, padding='same', activation=tf.nn.relu) block3_1 = tf.layers.conv2d(inputs=block2_out, filters=64, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu) block3_2 = tf.layers.conv2d(inputs=block3_1, filters=64, kernel_size=3, padding='same', activation=tf.nn.relu) block3_3 = tf.layers.conv2d(inputs=block3_2, filters=256, kernel_size=3, padding='same', activation=tf.nn.relu) block3_out = block3_3 + block3_shortcut_proj # skip connection from this output skip_block3 = block3_out # resnet block 4 block4_shortcut = block3_out block4_shortcut_proj = tf.layers.conv2d(inputs=block4_shortcut, filters=384, kernel_size=1, strides=2, padding='same', activation=tf.nn.relu) block4_1 = tf.layers.conv2d(inputs=block3_out, filters=96, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu) block4_2 = tf.layers.conv2d(inputs=block4_1, filters=96, kernel_size=3, padding='same', activation=tf.nn.relu) block4_3 = tf.layers.conv2d(inputs=block4_2, filters=384, kernel_size=3, padding='same', activation=tf.nn.relu) block4_out = block4_3 + block4_shortcut_proj # one convolutional layer, 1x1, 196 filters prep_upsampling = tf.layers.conv2d(inputs=block4_out, filters=196, kernel_size=1, activation=tf.nn.relu) upsample1 = self.conv2d_transpose(input=prep_upsampling, filter_size=3, out_channels=128, stride=2, activation=tf.nn.relu) # postprocessing to add skip connection after upsample 6 # [1x1, 128 channel convolution on skip ;; then add] processed_skip_block3 = tf.layers.conv2d(inputs=skip_block3, filters=128, kernel_size=1, padding='same', activation=tf.nn.relu) skipped_upsample1 = upsample1 + processed_skip_block3 # upsample 7, 96 filters, x2 upsample2 = self.conv2d_transpose(input=skipped_upsample1, filter_size=3, out_channels=96, stride=2, activation=tf.nn.relu) # postprocessing to add skip connection after upsample 7 # [1x1, 96 channel convolution on skip ;; then add] processed_skip_block2 = tf.layers.conv2d(inputs=skip_block2, filters=96, kernel_size=1, padding='same', activation=tf.nn.relu) skipped_upsample2 = upsample2 + processed_skip_block2 # PLACEHOLDER UPSAMPLING temp_final_upsample = self.conv2d_transpose(input=skipped_upsample2, filter_size=3, out_channels=96, stride=4, activation=tf.nn.relu) # HEADER NETWORK # four convolutional layers, 3x3, 96 filters header1 = tf.layers.conv2d(inputs=temp_final_upsample, filters=96, kernel_size=3, padding='same', activation=tf.nn.relu) header2 = tf.layers.conv2d(inputs=header1, filters=96, kernel_size=3, padding='same', activation=tf.nn.relu) header3 = tf.layers.conv2d(inputs=header2, filters=96, kernel_size=3, padding='same', activation=tf.nn.relu) header4 = tf.layers.conv2d(inputs=header3, filters=96, kernel_size=3, padding='same', activation=tf.nn.relu) # one convolutional layer, 3x3, 1 filter self.output_class = tf.layers.conv2d(inputs=header4, filters=NUM_CLASSES, kernel_size=3, padding='same', name='output_class') # one convolutional layer, 3x3, 6 filters self.output_box = tf.layers.conv2d(inputs=header4, filters=6, kernel_size=3, padding='same', name='output_box') # print('self.output_box.shape', self.output_box.shape) #(?, 224, 224, 6) self.get_loss() self.train_step = tf.train.AdamOptimizer(1e-4).minimize(self.pixor_loss) self.decode_train_step = tf.train.AdamOptimizer(1e-4).minimize(self.decode_pixor_loss) def get_loss(self): pos_weight = 1 neg_weight = 1 class_loss_result = self.custom_cross_entropy(class_labels=self.y_class, unnormalized_class_preds=self.output_class, class_weights=(pos_weight, neg_weight)) self.class_loss = 10 * class_loss_result smooth_L1_loss = 100 * smooth_L1(box_labels=self.y_box, box_preds=self.output_box, class_labels=self.y_class) self.decoded_output = visualize_data.tf_pixor_to_corners(self.output_box) # print('decoded_output.shape', decoded_output.shape) # (?, 224, 224, 4, 2) self.decoded_labels = visualize_data.tf_pixor_to_corners(self.y_box) self.decode_loss = 100 * decode_smooth_L1(box_labels=self.decoded_labels, box_preds=self.decoded_output, class_labels=self.y_class) self.box_loss = smooth_L1_loss self.pixor_loss = self.class_loss + self.box_loss self.decode_pixor_loss = self.class_loss + self.decode_loss return self.box_loss, self.pixor_loss, self.decode_loss, self.decode_pixor_loss # alpha is the weight of the less frequent class def custom_cross_entropy(self, class_labels, unnormalized_class_preds, class_weights, alpha=0.25, gamma=2.0): squeezed_y = tf.squeeze(class_labels, -1) loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=unnormalized_class_preds, labels=squeezed_y) classify_loss = tf.reduce_mean(loss) return classify_loss """ Standard transposed convolutional layer.""" def conv2d_transpose(self, input, filter_size, out_channels, stride, activation="None"): return tf.layers.conv2d_transpose(inputs=input, filters=out_channels, kernel_size=filter_size, strides=stride, padding='same', activation=activation) def train_one_epoch(self, epoch, sess, batch_size, train_path): per_epoch_train_loss = 0 per_epoch_box_loss = 0 per_epoch_class_loss = 0 TRAIN_LEN = len(os.listdir(os.path.join(train_path, 'images'))) batch_indices = np.arange(TRAIN_LEN) np.random.shuffle(batch_indices) # RIGHT NOW IF DOESN'T PERFECTLY DIVIDE IT DOESN'T COVER REMAINING, MIGHT WANT TO CHANGE THIS num_batches = TRAIN_LEN // batch_size # num_batches = 1 for batch_number in range(0, num_batches): start_idx = batch_number * batch_size end_idx = start_idx + batch_size batch_images, batch_boxes, batch_classes = get_batch(start_idx, self.flags, train_path) _, b_loss, c_loss, batch_train_loss, box_preds, unnorm_class_preds = \ sess.run([self.decode_train_step, self.decode_loss, self.class_loss, self.decode_pixor_loss, self.output_box, self.output_class], feed_dict = {self.x: batch_images, self.y_box: batch_boxes, self.y_class: batch_classes}) per_epoch_train_loss += batch_train_loss per_epoch_box_loss += b_loss per_epoch_class_loss += c_loss return box_preds, unnorm_class_preds, per_epoch_train_loss, per_epoch_box_loss, per_epoch_class_loss def evaluate(self, sess, val_base_path): val_images, val_boxes, val_classes = get_batch(0, self.flags, val_base_path) val_loss, box_preds, unnorm_class_preds = sess.run([self.decode_pixor_loss, self.output_box, self.output_class], feed_dict = {self.x: val_images, self.y_box: val_boxes, self.y_class: val_classes}) return val_loss, box_preds, unnorm_class_preds, val_classes def evaluate_one(self, sess, val_base_path): p = osp.join(val_base_path, 'images', '1.jpg') im = Image.open(p) im_arr = np.array(im) im_arr = (im_arr - mean) / std val_classes = np.load(osp.join(path, 'class_annotations', '1.npy')) if(len(val_classes.shape) == 2): val_classes = val_classes[:,:,newaxis] # Open the json file and parse into dictionary of index -> buildings pairs val_boxes = np.load(osp.join(path, 'box_annotations', '1.npy')) val_loss, box_preds, unnorm_class_preds = sess.run([self.decode_pixor_loss, self.output_box, self.output_class], feed_dict = {self.x: im_arr, self.y_box: val_boxes, self.y_class: val_classes}) return val_loss, box_preds, unnorm_class_preds, val_classes def get_tile_and_label(index, flags, norm=True): """ Method 2) Gets the tile and label associated with data index. Returns: (tile_array, dictionary_of_buildings) """ DATA_FILE_NAME = flags.data_path TRAIN_BASE_PATH = os.path.join('..', DATA_FILE_NAME, 'pixor', 'train') path=TRAIN_BASE_PATH mean = np.load('mean.npy') std = np.load('std.npy') train_mean = np.load('train_mean.npy') train_std = np.load('train_std.npy') # Open the jpeg image and save as numpy array p = osp.join(path, 'images', f'{index}.jpg') im = Image.open(p) im_arr = np.array(im) im_arr = (im_arr - mean) / std class_annotation = np.load(osp.join(path, 'class_annotations', f'{index}.npy')) if(len(class_annotation.shape) == 2): class_annotation = class_annotation[:,:,newaxis] # Open the json file and parse into dictionary of index -> buildings pairs box_annotation = np.load(osp.join(path, 'box_annotations', f'{index}.npy')) # normalizing the positive labels if norm=True if norm: clipped = np.clip(class_annotation, 0, 1) box_annotation = clipped * (box_annotation - train_mean)/train_std + (1 - clipped) * box_annotation return im_arr, box_annotation, class_annotation def get_batch(start_index, flags, path='', norm=True): """ Method 3) Gets batch of tiles and labels associated with data start_index. Returns: [(tile_array, list_of_buildings), ...] """ # DATA_FILE_NAME = flags.data_path # TRAIN_BASE_PATH = os.path.join('..', DATA_FILE_NAME, 'pixor', 'train') BATCH_SIZE = flags.batch_size TILE_SIZE = flags.tile_size # path = TRAIN_BASE_PATH p = osp.join(path, 'images') length = len(os.listdir(p)) batch_indices = np.arange(length) batch_images = np.zeros((BATCH_SIZE, TILE_SIZE, TILE_SIZE, 3)) batch_boxes = np.zeros((BATCH_SIZE, TILE_SIZE, TILE_SIZE, 6)) batch_classes = np.zeros((BATCH_SIZE, TILE_SIZE, TILE_SIZE, 1)) for i in range(start_index, start_index + BATCH_SIZE): batch_images[i % BATCH_SIZE], batch_boxes[i % BATCH_SIZE], batch_classes[i % BATCH_SIZE] = get_tile_and_label(batch_indices[i], flags, norm=norm) return batch_images, batch_boxes, batch_classes
from tensorflow.keras import layers from catekitten.base import SequenceEncoderBase from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_X_y, check_is_fitted from sklearn.linear_model import LogisticRegression from scipy import sparse import tensorflow as tf import numpy as np class NbSvmClassifier(BaseEstimator, ClassifierMixin): def __init__(self, C=1.0, dual=False, n_jobs=1): self.C = C self.dual = dual self.n_jobs = n_jobs def predict(self, x): # Verify that model has been fit check_is_fitted(self, ['_r', '_clf']) return self._clf.predict(x.multiply(self._r)) def predict_proba(self, x): # Verify that model has been fit check_is_fitted(self, ['_r', '_clf']) return self._clf.predict_proba(x.multiply(self._r)) def fit(self, x, y): # Check that X and y have correct shape x, y = check_X_y(x, y, accept_sparse=True) if isinstance(x, np.ndarray): x = sparse.csr_matrix(x) def pr(x, y_i, y): p = x[y==y_i].sum(0) return (p+1) / ((y==y_i).sum()+1) self._r = sparse.csr_matrix(np.log(pr(x,1,y) / pr(x,0,y))) x_nb = x.multiply(self._r) self._clf = LogisticRegression(C=self.C, dual=self.dual, n_jobs=self.n_jobs).fit(x_nb, y) return self class BidirectionalCNN(SequenceEncoderBase): def __init__(self, num_filters=64, dropout_rate=0.5): """Modified version of Yoon Kim's shallow cnn model: https://arxiv.org/pdf/1408.5882.pdf Args: num_filters: The number of filters to use per `filter_size`. (Default value = 64) filter_sizes: The filter sizes for each convolutional layer. (Default value = [3, 4, 5]) **cnn_kwargs: Additional args for building the `Conv1D` layer. """ super(BidirectionalCNN, self).__init__(dropout_rate) self.num_filters = num_filters def build_model(self, x): x = layers.Bidirectional(layers.GRU(self.num_filters, return_sequences=True))(x) x = layers.Conv1D(64, kernel_size=3, padding="valid", kernel_initializer="glorot_uniform")(x) x = layers.GlobalMaxPooling1D()(x) return x class YoonKimCNNv3(SequenceEncoderBase): def __init__(self, num_filters=128, filter_sizes=[2, 3, 4, 5], dropout_rate=0.5, **conv_kwargs): """Modified version of Yoon Kim's shallow cnn model: https://arxiv.org/pdf/1408.5882.pdf Args: num_filters: The number of filters to use per `filter_size`. (Default value = 64) filter_sizes: The filter sizes for each convolutional layer. (Default value = [3, 4, 5]) **cnn_kwargs: Additional args for building the `Conv1D` layer. """ super(YoonKimCNNv3, self).__init__(dropout_rate) self.num_filters = num_filters self.filter_sizes = filter_sizes self.conv_kwargs = conv_kwargs def build_model(self, x): maxpooled_tensors = [] avgpooled_tensors = [] for filter_size in self.filter_sizes: x_i = layers.Conv1D(self.num_filters, filter_size, use_bias=False, **self.conv_kwargs, name="conv%s" % filter_size)(x) x_i = layers.ELU(name="elu%s" % filter_size)(x_i) x_i = layers.BatchNormalization(name="bn%s" % filter_size)(x_i) x_m = layers.GlobalMaxPooling1D(name="global_maxpool%s" % filter_size)(x_i) x_a = layers.GlobalAveragePooling1D(name="global_avgpool%s" % filter_size)(x_i) maxpooled_tensors.append(x_m) avgpooled_tensors.append(x_a) x_m = layers.concatenate(maxpooled_tensors, axis=-1) x_a = layers.concatenate(avgpooled_tensors, axis=-1) x = layers.concatenate([x_m, x_a], axis=-1) return x class YoonKimCNNv2(SequenceEncoderBase): def __init__(self, num_filters=128, filter_sizes=[2, 3, 4, 5], dropout_rate=0.5, **conv_kwargs): """Modified version of Yoon Kim's shallow cnn model: https://arxiv.org/pdf/1408.5882.pdf Args: num_filters: The number of filters to use per `filter_size`. (Default value = 64) filter_sizes: The filter sizes for each convolutional layer. (Default value = [3, 4, 5]) **cnn_kwargs: Additional args for building the `Conv1D` layer. """ super(YoonKimCNNv2, self).__init__(dropout_rate) self.num_filters = num_filters self.filter_sizes = filter_sizes self.conv_kwargs = conv_kwargs def build_model(self, x): pooled_tensors = [] for filter_size in self.filter_sizes: x_i = layers.Conv1D(self.num_filters, filter_size, use_bias=False, **self.conv_kwargs, name="conv%s" % filter_size)(x) x_i = layers.ELU(name="elu%s" % filter_size)(x_i) x_i = layers.BatchNormalization(name="bn%s" % filter_size)(x_i) x_i = layers.GlobalMaxPooling1D(name="global_maxpool%s" % filter_size)(x_i) pooled_tensors.append(x_i) x = pooled_tensors[0] if len(self.filter_sizes) == 1 else layers.concatenate(pooled_tensors, axis=-1) return x class YoonKimCNN(SequenceEncoderBase): def __init__(self, num_filters=128, filter_sizes=[3, 4, 5], dropout_rate=0.5, **conv_kwargs): """Modified version of Yoon Kim's shallow cnn model: https://arxiv.org/pdf/1408.5882.pdf Args: num_filters: The number of filters to use per `filter_size`. (Default value = 64) filter_sizes: The filter sizes for each convolutional layer. (Default value = [3, 4, 5]) **cnn_kwargs: Additional args for building the `Conv1D` layer. """ super(YoonKimCNN, self).__init__(dropout_rate) self.num_filters = num_filters self.filter_sizes = filter_sizes self.conv_kwargs = conv_kwargs def build_model(self, x): pooled_tensors = [] for filter_size in self.filter_sizes: x_i = layers.Conv1D(self.num_filters, filter_size, use_bias=False, **self.conv_kwargs)(x) x_i = layers.ELU()(x_i) x_i = layers.BatchNormalization()(x_i) x_i = layers.GlobalMaxPooling1D()(x_i) pooled_tensors.append(x_i) x = pooled_tensors[0] if len(self.filter_sizes) == 1 else layers.concatenate(pooled_tensors, axis=-1) return x class TextLab(SequenceEncoderBase): def __init__(self, num_filters=128, filter_sizes=[3, 4, 5], dropout_rate=0.5, **conv_kwargs): """Modified version of Yoon Kim's shallow cnn model: https://arxiv.org/pdf/1408.5882.pdf Args: num_filters: The number of filters to use per `filter_size`. (Default value = 64) filter_sizes: The filter sizes for each convolutional layer. (Default value = [3, 4, 5]) **cnn_kwargs: Additional args for building the `Conv1D` layer. """ super(TextLab, self).__init__(dropout_rate) self.filter_sizes = filter_sizes self.conv_kwargs = conv_kwargs self.num_filters = num_filters def conv_block(self, x, num_filters, num_kernels=2): bypass = x for _ in range(num_kernels): x = layers.Conv1D(num_filters, 3, padding='same', activation='relu', use_bias=False, **self.conv_kwargs)(x) x = layers.BatchNormalization()(x) x = layers.Dropout(self.dropout_rate)(x) x = layers.Add()([bypass, x]) return x def build_model(self, x): pooled_tensors = [] with tf.variable_scope("encoder"): for filter_size in self.filter_sizes: x_i = layers.Conv1D(self.num_filters, filter_size, use_bias=False, **self.conv_kwargs)(x) x_i = layers.BatchNormalization()(x_i) x_i = layers.GlobalMaxPooling1D()(x_i) pooled_tensors.append(x_i) x = pooled_tensors[0] if len(self.filter_sizes) == 1 else layers.concatenate(pooled_tensors, axis=-1) with tf.variable_scope("decoder"): x = self.conv_block(x, self.num_filters) return x
""" Definition of a DataGenerator that creates data batches from DataLoader """ import math import numpy as np from .funcs.funcs_varr import unpack_varr_arrays from .idata_generator import IDataGenerator class DataGenerator(IDataGenerator): """Primary `vlne` DataGenerator that batches data from a `IDataLoader`. This generator takes an instance of `IDataLoader` and specification of input/target variables and creates batches of data based on them. Batches can be retrieved with __getitem__ method that takes batch index as an input. Parameters ---------- data_loader : `IDataLoader` `IDataLoader` which will be used to retrieve values of variables. batch_size : int Size of the batches to be generated. max_prongs : int or None, optional If `max_prongs` is not None, then the number of 2D and 3D prongs will be truncated by `max_prongs`. Default: None. vars_input_slice : list of str or None, optional Names of slice level input variables in `data_loader`. If None no slice level inputs will be generated. Default: None. vars_input_png3d : list of str or None, optional Names of 3d prong level input variables in `data_loader`. If None no 3d prong level inputs will be generated. Default: None. vars_input_png2d : list of str or None, optional Names of 2d prong level input variables in `data_loader`. If None no 2d prong level inputs will be generated. Default: None. var_target_total : str or None, optional Name of the variable in `data_loader` that holds total energy of the event (e.g. neutrino energy). If None, no total energy target will be generated. Default: None var_target_primary : str or None, optional Name of the variable in `data_loader` that holds primary energy of the event (e.g. lepton energy). If None, no primary energy target will be generated. Default: None """ # pylint: disable=too-many-instance-attributes def __init__( self, data_loader, batch_size = 1024, max_prongs = None, vars_input_slice = None, vars_input_png3d = None, vars_input_png2d = None, var_target_total = None, var_target_primary = None, ): super(DataGenerator, self).__init__() self._data_loader = data_loader self._batch_size = batch_size self._max_prongs = max_prongs self._vars_input_slice = vars_input_slice self._vars_input_png3d = vars_input_png3d self._vars_input_png2d = vars_input_png2d self._var_target_total = var_target_total self._var_target_primary = var_target_primary def get_scalar_data(self, variables, index): """Generate batch of scalar data. Parameters ---------- variables : list of str List of variables names which values will be joined into a batch. index : int or list of int or None Index that defines slice of values to be used when generating batch. If None, all available values will be joined into a batch. Returns ------- ndarray, shape (N_SAMPLE, len(variables)) Values of `variables` with sliced by `index` batched together. """ result = np.empty((len(index), len(variables)), dtype = np.float32) for idx,vname in enumerate(variables): result[:, idx] = self._data_loader.get(vname, index) return result def get_varr_data(self, variables, index, max_prongs = None): """Generate batch of variable length arrays (prong) data. All variables length arrays will be batches together into a fixed size `np.ndarray`. Missing variable length values will be padded by `np.nan` Parameters ---------- variables : list of str List of variables names which values will be joined into a batch. index : int or list of int or None Index that defines slice of values to be used when generating batch. If None, all available values will be joined into a batch. max_prongs : int or None, optional If `max_prongs` is not None, then the variable length dimension will be truncated by `max_prongs`. Returns ------- ndarray, shape (N_SAMPLE, N_VARR, len(variables)) Values of `variables` with sliced by `index` and batched together. Second dimension goes along the variable length axis. See Also -------- unpack_varr_arrays """ result = unpack_varr_arrays( self._data_loader, variables, index, max_prongs ) return result def get_data(self, index): """Generate batch of inputs and targets. Only variables from vars_input_* will be used to generate input batches. Similarly, only variables from var_target_* will be used to generate target batches. Parameters ---------- index : int or list of int or None Index of the `IDataLoader` this generator holds that specifies slice of values to be batched together. If None, all available values will be batched. Returns ------- (inputs, targets) Dictionaries of input and target batches. See Also -------- DataGenerator.__getitem__ """ inputs = {} targets = {} if self._vars_input_slice is not None: inputs['input_slice'] = self.get_scalar_data( self._vars_input_slice, index ) if self._vars_input_png3d is not None: inputs['input_png3d'] = self.get_varr_data( self._vars_input_png3d, index, self._max_prongs ) if self._vars_input_png2d is not None: inputs['input_png2d'] = self.get_varr_data( self._vars_input_png2d, index, self._max_prongs ) if self._var_target_total is not None: targets['target_total'] = self.get_scalar_data( [ self._var_target_total ], index ) if self._var_target_primary is not None: targets['target_primary'] = self.get_scalar_data( [ self._var_target_primary ], index ) return (inputs, targets) def __len__(self): return math.ceil(len(self._data_loader) / self._batch_size) @property def weights(self): return np.ones(len(self._data_loader)) def __getitem__(self, index): start = index * self._batch_size end = min((index + 1) * self._batch_size, len(self._data_loader)) data_slice = np.arange(start, end) batch_data = self.get_data(data_slice) batch_weights = np.ones(end - start) return batch_data + ( [batch_weights, ] * len(batch_data[1]), )
from werkzeug.exceptions import BadRequest class RequestDictionary: """ Provides an interface to an http request """ def __init__(self, request, optional_request=False): self.requestDict = self.derive(request, optional_request) def get_value(self, value): """ Returns value for specified key """ if value not in self.requestDict: raise ValueError(value + " not found") return self.requestDict[value] def exists(self, value): """ Returns True if key is in request json """ if value not in self.requestDict: return False return True def to_string(self): return str(self.requestDict) @staticmethod def derive(request, optional_request=False): """Check request header to determine where to fetch arguments from. Raise exceptions. @todo - replace this whole class with standard flask HTTP argument handling""" try: if "Content-Type" not in request.headers: raise ValueError("Must include Content-Type header") content_type = request.headers['Content-Type'] # Allowing extra content after application/json for firefox # compatibility if request.is_json: result = request.get_json() if not isinstance(result, dict): # @todo: this shouldn't be a type error raise TypeError( "Failed to create a dictionary out of json") return result elif content_type == "application/x-www-form-urlencoded": return request.form else: raise ValueError("Invalid Content-Type : " + content_type) except BadRequest as br: if optional_request: return {} else: raise br
import subprocess import time from languages.main import install_language from ides.main import install_editors from databases.main import install_databases from browsers.main import install_browsers print('Welcome to Linux setup tool') print('We shall start by updating and upgrading your system.') # subprocess.call('sudo apt update && upgrade', shell=True) # print('All Done.') # time.sleep(1) # subprocess.call('clear', shell=True) def printColumns(nested_list): col_width = max(len(word) for row in nested_list for word in row) + 2 for row in nested_list: print(''.join(word.ljust(col_width) for word in row)) def install_packages(function): try: selected_packages = raw_input( 'Select numerical value(s) seperated by spaces. Leave empty if none needed: ') except: selected_packages = input( 'Select numerical value(s) seperated by spaces. Leave empty if none needed: ') if selected_packages: function(selected_packages) return 0 programming_languages = [['[1] Java', '[2] PHP'], [ '[3] Node.js', '[4] Python3']] print('=========================================') print('Select Programming Languages To Install') print('=========================================') printColumns(programming_languages) print('\n') install_packages(install_language) text_editors = [['[1] VS Code', '[2] Sublime Text'], [ '[3] Atom', '[4] Android Studio'], ['[5] PyCharm', '[6] WebStorm']] print('=========================================') print('Select Text Editors/IDEs To Install') print('=========================================') printColumns(text_editors) print('\n') install_packages(install_editors) databases = [['[1] MySQL', '[2] PostgreSQL'], ['[3] Mongo']] print('=========================================') print('Select Databases To Install') print('=========================================') printColumns(databases) print('\n') install_packages(install_databases) web_browsers = [['[1] Chrome', '[2] Chromium'], [ '[3] Opera', '[4] Firefox'], ['[5] Brave']] print('=========================================') print('Select Web Browsers To Install') print('=========================================') printColumns(web_browsers) print('\n') install_packages(install_browsers)
from .csv_exporter import CSVExporter from .ec_exporter import ECExporter from .ecms_exporter import ECMSExporter
#!/usr/bin/env python from argparse import ArgumentParser import sys import numpy as np def linear(x, a=0.4, b=1.2): return a*x + b arg_parser = ArgumentParser(description='create linear data with noise') arg_parser.add_argument('n', type=int, default=5, help='number of points') arg_parser.add_argument('--x_min', type=float, default=0.0, help='minimum x-value') arg_parser.add_argument('--x_max', type=float, default=1.0, help='maximum x-value') arg_parser.add_argument('--a', type=float, default=0.4, help='slope in a*x + b') arg_parser.add_argument('--b', type=float, default=1.2, help='intercept in a*x + b') arg_parser.add_argument('--sigma', type=float, default=0.25, help='noise level') arg_parser.add_argument('--out', help='name of output file') options = arg_parser.parse_args() names = 'x,y' x = np.linspace(options.x_min, options.x_max, options.n) f = np.vectorize(linear) y = f(x, options.a, options.b) + options.sigma*np.random.randn(len(x)) if options.out: out = open(options.out, 'w') else: out = sys.stdout out.write(names + '\n') for i in range(len(x)): out.write('{x:.7e},{y:.7e}\n'.format(x=x[i], y=y[i])) if options.out: out.close()
""" :Copyright: 2014-2022 Jochen Kupperschmidt :License: Revised BSD (see `LICENSE` file for details) """ import pytest from byceps.database import db from byceps.services.authorization import service as authorization_service from byceps.services.user import service as user_service from byceps.services.verification_token import ( service as verification_token_service, ) from tests.helpers import http_client @pytest.fixture(scope='module') def user1(make_user): return make_user(email_address='user1@mail.test', initialized=False) @pytest.fixture(scope='module') def user2(make_user): return make_user(initialized=False) @pytest.fixture(scope='module') def user3(make_user): return make_user(email_address='user3@mail.test', initialized=True) @pytest.fixture(scope='module') def user4(make_user): return make_user(initialized=True) @pytest.fixture(scope='module') def user5(make_user): return make_user(email_address='user5@mail.test', initialized=True) @pytest.fixture def role(admin_app, site, user1, user2): role = authorization_service.create_role('board_user', 'Board User') yield role for user in user1, user2: authorization_service.deassign_all_roles_from_user(user.id) authorization_service.delete_role(role.id) def test_valid_token(site_app, user1, role): user_id = user1.id user_before = user_service.get_db_user(user_id) assert not user_before.email_address_verified assert not user_before.initialized token = create_verification_token(user_id, 'user1@mail.test') # -------------------------------- # response = confirm(site_app, token) # -------------------------------- # assert response.status_code == 302 user_after = user_service.get_db_user(user_id) assert user_after.email_address_verified assert user_after.initialized assert get_role_ids(user_id) == {'board_user'} def test_unknown_token(site_app, site, user2, role): user_id = user2.id user_before = user_service.get_db_user(user_id) assert not user_before.initialized unknown_token = 'wZdSLzkT-zRf2x2T6AR7yGa3Nc_X3Nn3F3XGPvPtOhw' # -------------------------------- # response = confirm(site_app, unknown_token) # -------------------------------- # assert response.status_code == 404 user_after = user_service.get_db_user(user_id) assert not user_after.initialized assert get_role_ids(user_id) == set() def test_initialized_user(site_app, user3, role): user_id = user3.id user_before = user_service.get_db_user(user_id) assert not user_before.email_address_verified assert user_before.initialized token = create_verification_token(user_id, 'user3@mail.test') # -------------------------------- # response = confirm(site_app, token) # -------------------------------- # assert response.status_code == 302 user_after = user_service.get_db_user(user_id) assert user_after.email_address_verified assert user_after.initialized def test_account_without_email_address(site_app, site, user4, role): user_id = user4.id user_with_email_address = user_service.get_db_user(user_id) user_with_email_address.email_address = None db.session.commit() user_before = user_service.get_db_user(user_id) assert user_before.email_address is None assert not user_before.email_address_verified assert user_before.initialized token = create_verification_token(user_id, 'user4@mail.test') # -------------------------------- # response = confirm(site_app, token) # -------------------------------- # assert response.status_code == 302 user_after = user_service.get_db_user(user_id) assert not user_after.email_address_verified def test_different_user_and_token_email_addresses(site_app, site, user5, role): user_id = user5.id user_before = user_service.get_db_user(user_id) assert not user_before.email_address_verified assert user_before.initialized token = create_verification_token(user_id, 'user5@mail-other.test') # -------------------------------- # response = confirm(site_app, token) # -------------------------------- # assert response.status_code == 302 user_after = user_service.get_db_user(user_id) assert not user_after.email_address_verified # helpers def confirm(app, token): url = f'/users/email_address/confirmation/{token}' with http_client(app) as client: return client.get(url) def get_role_ids(user_id): return authorization_service.find_role_ids_for_user(user_id) def create_verification_token(user_id, email_address): token = verification_token_service.create_for_email_address_confirmation( user_id, email_address ) return token.token
import sys import os from unittest.mock import Mock sys.modules["logger"] = Mock() sys.path.append(os.path.join(os.path.dirname(__file__), "../sesmanworker"))
from data_processing import * create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4]),\ 32, 1000, 2.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4]),\ 32, 1000, 3.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4]),\ 32, 1000, 4.0, '/home/nilay/GANMM-master/data') print("Generating 5 clusters CIFAR10 done!") create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6]),\ 32, 1000, 0.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6]),\ 32, 1000, 1.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6]),\ 32, 1000, 2.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6]),\ 32, 1000, 3.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6]),\ 32, 1000, 4.0, '/home/nilay/GANMM-master/data') print("Generating 7 clusters CIFAR10 done!") create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),\ 32, 1000, 0.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),\ 32, 1000, 1.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),\ 32, 1000, 2.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),\ 32, 1000, 3.0, '/home/nilay/GANMM-master/data') create_and_store_CIFARdataset('./', np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),\ 32, 1000, 4.0, '/home/nilay/GANMM-master/data') print("Generating 10 clusters CIFAR10 done!")
import tensorflow as tf @tf.function def default_transform_targets(current_state, next_state): """ This is the default transform targets function used, which preprocesses the targets of the network before training the dynamics function using the inputs and targets. The default one is (target = next_state - current_state). Parameters --------- current_state: tf.float32 The current_state has a shape of (Batch X dim_S) next_state: tf.float32 The next_state has a shape of (Batch X dim_S) """ return next_state - current_state @tf.function def default_inverse_transform_targets(current_state, delta): """ This is the default inverse transform targets function used, which reverses the preprocessing of the targets of the dynamics function to obtain the real current_state not the relative one, The default one is (current_state = target + current_state). Parameters --------- current_state: tf.float32 The current_state has a shape of (Batch X dim_S) delta: tf.float32 The delta has a shape of (Batch X dim_S) which is equivilant to the target of the network. """ return delta + current_state
import numpy as np import pickle import os class data_reader(): def __init__(self): if os.path.exists('./data.pkl'): print('Loading from pickle') data = pickle.load(open('./data.pkl','rb')) self.adj, self.paper_category, self.features = data print('Loaded') else: print('No pkl found, generating data...') num_id = 0 explored_categories = {} paper_id = {} paper_category = {} features = [] f = open('./cora/cora.content') for i in f: i = i.strip() i = i.split('\t') pprid = int(i[0]) category = i[-1] feature = i[1:-1] feature = [float(item) for item in feature] feature = np.float32(feature) features.append(feature) paper_id[pprid] = num_id if not category in explored_categories: num = len(explored_categories) print(category) explored_categories[category] = num paper_category[num_id] = explored_categories[category] num_id+=1 citation = [] f = open('./cora/cora.cites') for i in f: i = i.strip() i = i.split('\t') cited_ppr = int(i[0]) cited_id = paper_id[cited_ppr] citing_ppr = int(i[1]) citing_id = paper_id[citing_ppr] citation.append([cited_id, citing_id]) self.max_id = num_id self.paper_category = paper_category self.citation = citation self.adj = self.get_adj_mtx() self.features = np.float32(features) data = [self.adj, self.paper_category, self.features] pickle.dump( data, open('./data.pkl','wb')) print('Dump finished') def get_adj_mtx(self): mtx = np.zeros([self.max_id, self.max_id], np.float32) for i in self.citation: mtx[i[0], i[1]] = 1 mtx[i[1], i[0]] = 1 return mtx def process_data(self, one_hot=True): import random random.seed(2019) indices = list(range(2708)) self.indices = random.sample(indices, 140) self.labels = [self.paper_category[i] for i in self.indices] if one_hot: self.labels = [np.eye(7)[i] for i in self.labels] self.indices = [[i] for i in self.indices] def get_data(self): category = [self.paper_category[i] for i in range(2708)] return self.features, self.adj, self.indices, self.labels, category if __name__=='__main__': dt = data_reader() print(dt.adj.shape) cate = dt.paper_category a = {} for k in cate: a[cate[k]] = 1 print(len(a))
import unittest from deepnox.auth.credentials import Credentials class CredentialsTestCase(unittest.TestCase): def test___init__(self): self.assertIsInstance(Credentials(), Credentials) # class BasicAuthTestCase(unittest.TestCase): # def test___init__(self): # self.assertRaises(TypeError, lambda: BasicAuth()) # self.assertRaises(TypeError, lambda: BasicAuth("username")) # self.assertRaises(TypeError, lambda: BasicAuth(password="password")) # self.assertIsInstance(BasicAuth("username", "password"), BasicAuth) # self.assertIsInstance(BasicAuth("username", "password", encoding="utf8"), BasicAuth) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- # # Spectral estimation with (multi-)tapered FFT # # Builtin/3rd party package imports import numpy as np from scipy import signal # local imports from ._norm_spec import _norm_spec, _norm_taper def mtmfft(data_arr, samplerate, nSamples=None, taper="hann", taper_opt=None, demean_taper=False): """ (Multi-)tapered fast Fourier transform. Returns full complex Fourier transform for each taper. Multi-tapering only supported with Slepian windwows (`taper="dpss"`). Parameters ---------- data_arr : (N,) :class:`numpy.ndarray` Uniformly sampled multi-channel time-series data The 1st dimension is interpreted as the time axis samplerate : float Samplerate in Hz nSamples : int or None Absolute length of the (potentially to be padded) signals or `None` for no padding (`N` is the number of samples) taper : str or None Taper function to use, one of `scipy.signal.windows` Set to `None` for no tapering. taper_opt : dict or None Additional keyword arguments passed to the `taper` function. For multi-tapering with ``taper='dpss'`` set the keys `'Kmax'` and `'NW'`. For further details, please refer to the `SciPy docs <https://docs.scipy.org/doc/scipy/reference/signal.windows.html>`_ demean_taper : bool Set to `True` to perform de-meaning after tapering Returns ------- ftr : 3D :class:`numpy.ndarray` Complex output has shape ``(nTapers x nFreq x nChannels)``. freqs : 1D :class:`numpy.ndarray` Array of Fourier frequencies Notes ----- For a (MTM) power spectral estimate average the absolute squared transforms across tapers: ``Sxx = np.real(ftr * ftr.conj()).mean(axis=0)`` The FFT result is normalized such that this yields the power spectral density. For a clean harmonic and a Fourier frequency bin width of `dF` this will give a peak power of `A**2 / 2 * dF`, with `A` as harmonic ampltiude. """ # attach dummy channel axis in case only a # single signal/channel is the input if data_arr.ndim < 2: data_arr = data_arr[:, np.newaxis] signal_length = data_arr.shape[0] if nSamples is None: nSamples = signal_length nChannels = data_arr.shape[1] freqs = np.fft.rfftfreq(nSamples, 1 / samplerate) nFreq = freqs.size # no taper is boxcar if taper is None: taper = 'boxcar' if taper_opt is None: taper_opt = {} taper_func = getattr(signal.windows, taper) # only really 2d if taper='dpss' with Kmax > 1 # here we take the actual signal lengths! windows = np.atleast_2d(taper_func(signal_length, **taper_opt)) # normalize window windows = _norm_taper(taper, windows, nSamples) # Fourier transforms (nTapers x nFreq x nChannels) ftr = np.zeros((windows.shape[0], nFreq, nChannels), dtype='complex64') for taperIdx, win in enumerate(windows): win = np.tile(win, (nChannels, 1)).T win *= data_arr # de-mean again after tapering - needed for Granger! if demean_taper: win -= win.mean(axis=0) ftr[taperIdx] = np.fft.rfft(win, n=nSamples, axis=0) ftr[taperIdx] = _norm_spec(ftr[taperIdx], nSamples, samplerate) return ftr, freqs
import streamlit as st import spacy import base64 import pandas as pd import jsonlines from pymongo import MongoClient HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>""" @st.cache(allow_output_mutation=True, suppress_st_warning=True) def setup_mongo(): client = MongoClient('mongodb://localhost:27017/') db = client['gsr'] coll = db['prod_dec_2020_2'] return coll def visualize(coll): coder = st.selectbox("Select your port/ID number", [9015, 9016, 9017, 9019, 9020, 9022, 9023, 9025]) coder = int(coder) #st.markdown("Total sentences in collection: {}".format(coll.count())) assigned = coll.count({"assigned_annotators": {"$in" : [coder]}}) completed = coll.count({"coders": {"$in" : [coder]}}) st.markdown("Sentences assigned to {}: {}".format(coder, assigned)) st.markdown("Sentences completed by {}: {}".format(coder, completed)) st.markdown("Progress:") try: prog = completed/assigned except ZeroDivisionError: prog = 0 st.progress(prog) st.title('Annotation progress') st.markdown("Check your annotation progress by selecting your port/ID number") coll = setup_mongo() visualize(coll)
# flake8: noqa # import all models into this package # if you have many models here with many references from one model to another this may # raise a RecursionError # to avoid this, import only the models that you directly need like: # from from launchdarkly_api.model.pet import Pet # or import this package, but before doing it, use: # import sys # sys.setrecursionlimit(n) from launchdarkly_api.model.access_denied_reason_rep import AccessDeniedReasonRep from launchdarkly_api.model.access_denied_rep import AccessDeniedRep from launchdarkly_api.model.access_rep import AccessRep from launchdarkly_api.model.access_token_post import AccessTokenPost from launchdarkly_api.model.action_input_rep import ActionInputRep from launchdarkly_api.model.action_output_rep import ActionOutputRep from launchdarkly_api.model.all_variations_summary import AllVariationsSummary from launchdarkly_api.model.approval_condition_input_rep import ApprovalConditionInputRep from launchdarkly_api.model.approval_condition_output_rep import ApprovalConditionOutputRep from launchdarkly_api.model.approval_settings import ApprovalSettings from launchdarkly_api.model.audit_log_entry_listing_rep import AuditLogEntryListingRep from launchdarkly_api.model.audit_log_entry_listing_rep_collection import AuditLogEntryListingRepCollection from launchdarkly_api.model.audit_log_entry_rep import AuditLogEntryRep from launchdarkly_api.model.authorized_app_data_rep import AuthorizedAppDataRep from launchdarkly_api.model.big_segment_target import BigSegmentTarget from launchdarkly_api.model.branch_collection_rep import BranchCollectionRep from launchdarkly_api.model.branch_rep import BranchRep from launchdarkly_api.model.clause import Clause from launchdarkly_api.model.client_side_availability import ClientSideAvailability from launchdarkly_api.model.client_side_availability_post import ClientSideAvailabilityPost from launchdarkly_api.model.condition_base_output_rep import ConditionBaseOutputRep from launchdarkly_api.model.condition_input_rep import ConditionInputRep from launchdarkly_api.model.condition_output_rep import ConditionOutputRep from launchdarkly_api.model.confidence_interval_rep import ConfidenceIntervalRep from launchdarkly_api.model.conflict import Conflict from launchdarkly_api.model.conflict_output_rep import ConflictOutputRep from launchdarkly_api.model.copied_from_env import CopiedFromEnv from launchdarkly_api.model.create_copy_flag_config_approval_request_request import CreateCopyFlagConfigApprovalRequestRequest from launchdarkly_api.model.create_flag_config_approval_request_request import CreateFlagConfigApprovalRequestRequest from launchdarkly_api.model.custom_properties import CustomProperties from launchdarkly_api.model.custom_property import CustomProperty from launchdarkly_api.model.custom_role import CustomRole from launchdarkly_api.model.custom_role_post import CustomRolePost from launchdarkly_api.model.custom_role_post_data import CustomRolePostData from launchdarkly_api.model.custom_roles import CustomRoles from launchdarkly_api.model.custom_workflow_input_rep import CustomWorkflowInputRep from launchdarkly_api.model.custom_workflow_meta import CustomWorkflowMeta from launchdarkly_api.model.custom_workflow_output_rep import CustomWorkflowOutputRep from launchdarkly_api.model.custom_workflow_stage_meta import CustomWorkflowStageMeta from launchdarkly_api.model.custom_workflows_listing_output_rep import CustomWorkflowsListingOutputRep from launchdarkly_api.model.default_client_side_availability_post import DefaultClientSideAvailabilityPost from launchdarkly_api.model.defaults import Defaults from launchdarkly_api.model.dependent_flag import DependentFlag from launchdarkly_api.model.dependent_flag_environment import DependentFlagEnvironment from launchdarkly_api.model.dependent_flags_by_environment import DependentFlagsByEnvironment from launchdarkly_api.model.derived_attribute import DerivedAttribute from launchdarkly_api.model.destination import Destination from launchdarkly_api.model.destination_post import DestinationPost from launchdarkly_api.model.destinations import Destinations from launchdarkly_api.model.environment import Environment from launchdarkly_api.model.environment_post import EnvironmentPost from launchdarkly_api.model.execution_output_rep import ExecutionOutputRep from launchdarkly_api.model.experiment_allocation_rep import ExperimentAllocationRep from launchdarkly_api.model.experiment_enabled_period_rep import ExperimentEnabledPeriodRep from launchdarkly_api.model.experiment_environment_setting_rep import ExperimentEnvironmentSettingRep from launchdarkly_api.model.experiment_info_rep import ExperimentInfoRep from launchdarkly_api.model.experiment_metadata_rep import ExperimentMetadataRep from launchdarkly_api.model.experiment_rep import ExperimentRep from launchdarkly_api.model.experiment_results_rep import ExperimentResultsRep from launchdarkly_api.model.experiment_stats_rep import ExperimentStatsRep from launchdarkly_api.model.experiment_time_series_slice import ExperimentTimeSeriesSlice from launchdarkly_api.model.experiment_time_series_variation_slice import ExperimentTimeSeriesVariationSlice from launchdarkly_api.model.experiment_time_series_variation_slices import ExperimentTimeSeriesVariationSlices from launchdarkly_api.model.experiment_totals_rep import ExperimentTotalsRep from launchdarkly_api.model.expiring_user_target_error import ExpiringUserTargetError from launchdarkly_api.model.expiring_user_target_get_response import ExpiringUserTargetGetResponse from launchdarkly_api.model.expiring_user_target_item import ExpiringUserTargetItem from launchdarkly_api.model.expiring_user_target_patch_response import ExpiringUserTargetPatchResponse from launchdarkly_api.model.extinction import Extinction from launchdarkly_api.model.extinction_collection_rep import ExtinctionCollectionRep from launchdarkly_api.model.extinction_list_post import ExtinctionListPost from launchdarkly_api.model.feature_flag import FeatureFlag from launchdarkly_api.model.feature_flag_body import FeatureFlagBody from launchdarkly_api.model.feature_flag_config import FeatureFlagConfig from launchdarkly_api.model.feature_flag_scheduled_change import FeatureFlagScheduledChange from launchdarkly_api.model.feature_flag_scheduled_changes import FeatureFlagScheduledChanges from launchdarkly_api.model.feature_flag_status import FeatureFlagStatus from launchdarkly_api.model.feature_flag_status_across_environments import FeatureFlagStatusAcrossEnvironments from launchdarkly_api.model.feature_flag_statuses import FeatureFlagStatuses from launchdarkly_api.model.feature_flags import FeatureFlags from launchdarkly_api.model.flag_config_approval_request_response import FlagConfigApprovalRequestResponse from launchdarkly_api.model.flag_config_approval_requests_response import FlagConfigApprovalRequestsResponse from launchdarkly_api.model.flag_copy_config_environment import FlagCopyConfigEnvironment from launchdarkly_api.model.flag_copy_config_post import FlagCopyConfigPost from launchdarkly_api.model.flag_global_attributes_rep import FlagGlobalAttributesRep from launchdarkly_api.model.flag_listing_rep import FlagListingRep from launchdarkly_api.model.flag_scheduled_changes_input import FlagScheduledChangesInput from launchdarkly_api.model.flag_status_rep import FlagStatusRep from launchdarkly_api.model.flag_summary import FlagSummary from launchdarkly_api.model.forbidden_error_rep import ForbiddenErrorRep from launchdarkly_api.model.form_variable_config import FormVariableConfig from launchdarkly_api.model.hunk_rep import HunkRep from launchdarkly_api.model.instruction import Instruction from launchdarkly_api.model.instructions import Instructions from launchdarkly_api.model.integration_metadata import IntegrationMetadata from launchdarkly_api.model.integration_status import IntegrationStatus from launchdarkly_api.model.invalid_request_error_rep import InvalidRequestErrorRep from launchdarkly_api.model.ip_list import IpList from launchdarkly_api.model.json_patch import JSONPatch from launchdarkly_api.model.last_seen_metadata import LastSeenMetadata from launchdarkly_api.model.link import Link from launchdarkly_api.model.member import Member from launchdarkly_api.model.member_data_rep import MemberDataRep from launchdarkly_api.model.member_permission_grant_summary_rep import MemberPermissionGrantSummaryRep from launchdarkly_api.model.member_summary_rep import MemberSummaryRep from launchdarkly_api.model.member_team_summary_rep import MemberTeamSummaryRep from launchdarkly_api.model.members import Members from launchdarkly_api.model.method_not_allowed_error_rep import MethodNotAllowedErrorRep from launchdarkly_api.model.metric_collection_rep import MetricCollectionRep from launchdarkly_api.model.metric_listing_rep import MetricListingRep from launchdarkly_api.model.metric_post import MetricPost from launchdarkly_api.model.metric_rep import MetricRep from launchdarkly_api.model.metric_seen import MetricSeen from launchdarkly_api.model.modification import Modification from launchdarkly_api.model.multi_environment_dependent_flag import MultiEnvironmentDependentFlag from launchdarkly_api.model.multi_environment_dependent_flags import MultiEnvironmentDependentFlags from launchdarkly_api.model.new_member_form import NewMemberForm from launchdarkly_api.model.new_member_form_list_post import NewMemberFormListPost from launchdarkly_api.model.not_found_error_rep import NotFoundErrorRep from launchdarkly_api.model.parent_resource_rep import ParentResourceRep from launchdarkly_api.model.patch_failed_error_rep import PatchFailedErrorRep from launchdarkly_api.model.patch_operation import PatchOperation from launchdarkly_api.model.patch_segment_instruction import PatchSegmentInstruction from launchdarkly_api.model.patch_segment_request import PatchSegmentRequest from launchdarkly_api.model.patch_with_comment import PatchWithComment from launchdarkly_api.model.permission_grant_collection_rep import PermissionGrantCollectionRep from launchdarkly_api.model.permission_grant_input import PermissionGrantInput from launchdarkly_api.model.permission_grant_rep import PermissionGrantRep from launchdarkly_api.model.post_approval_request_apply_request import PostApprovalRequestApplyRequest from launchdarkly_api.model.post_approval_request_review_request import PostApprovalRequestReviewRequest from launchdarkly_api.model.post_flag_scheduled_changes_input import PostFlagScheduledChangesInput from launchdarkly_api.model.prerequisite import Prerequisite from launchdarkly_api.model.project import Project from launchdarkly_api.model.project_listing_rep import ProjectListingRep from launchdarkly_api.model.project_post import ProjectPost from launchdarkly_api.model.projects import Projects from launchdarkly_api.model.pub_nub_detail_rep import PubNubDetailRep from launchdarkly_api.model.put_branch import PutBranch from launchdarkly_api.model.rate_limited_error_rep import RateLimitedErrorRep from launchdarkly_api.model.reference_rep import ReferenceRep from launchdarkly_api.model.relay_auto_config_collection_rep import RelayAutoConfigCollectionRep from launchdarkly_api.model.relay_auto_config_post import RelayAutoConfigPost from launchdarkly_api.model.relay_auto_config_rep import RelayAutoConfigRep from launchdarkly_api.model.repository_collection_rep import RepositoryCollectionRep from launchdarkly_api.model.repository_post import RepositoryPost from launchdarkly_api.model.repository_rep import RepositoryRep from launchdarkly_api.model.resource_access import ResourceAccess from launchdarkly_api.model.resource_id_response import ResourceIDResponse from launchdarkly_api.model.review_output_rep import ReviewOutputRep from launchdarkly_api.model.review_response import ReviewResponse from launchdarkly_api.model.rollout import Rollout from launchdarkly_api.model.root_response import RootResponse from launchdarkly_api.model.rule import Rule from launchdarkly_api.model.schedule_condition_input_rep import ScheduleConditionInputRep from launchdarkly_api.model.schedule_condition_output_rep import ScheduleConditionOutputRep from launchdarkly_api.model.sdk_list_rep import SdkListRep from launchdarkly_api.model.sdk_version_list_rep import SdkVersionListRep from launchdarkly_api.model.sdk_version_rep import SdkVersionRep from launchdarkly_api.model.segment_body import SegmentBody from launchdarkly_api.model.segment_metadata import SegmentMetadata from launchdarkly_api.model.segment_user_list import SegmentUserList from launchdarkly_api.model.segment_user_state import SegmentUserState from launchdarkly_api.model.series_list_rep import SeriesListRep from launchdarkly_api.model.series_metadata_rep import SeriesMetadataRep from launchdarkly_api.model.series_time_slice_rep import SeriesTimeSliceRep from launchdarkly_api.model.source_flag import SourceFlag from launchdarkly_api.model.stage_input_rep import StageInputRep from launchdarkly_api.model.stage_output_rep import StageOutputRep from launchdarkly_api.model.statement import Statement from launchdarkly_api.model.statement_post import StatementPost from launchdarkly_api.model.statement_post_data import StatementPostData from launchdarkly_api.model.statement_post_list import StatementPostList from launchdarkly_api.model.statement_rep import StatementRep from launchdarkly_api.model.statistic_collection_rep import StatisticCollectionRep from launchdarkly_api.model.statistic_rep import StatisticRep from launchdarkly_api.model.statistics_root import StatisticsRoot from launchdarkly_api.model.status_conflict_error_rep import StatusConflictErrorRep from launchdarkly_api.model.subject_data_rep import SubjectDataRep from launchdarkly_api.model.target import Target from launchdarkly_api.model.target_resource_rep import TargetResourceRep from launchdarkly_api.model.team_collection_rep import TeamCollectionRep from launchdarkly_api.model.team_patch_input import TeamPatchInput from launchdarkly_api.model.team_post_input import TeamPostInput from launchdarkly_api.model.team_rep import TeamRep from launchdarkly_api.model.title_rep import TitleRep from launchdarkly_api.model.token import Token from launchdarkly_api.model.token_data_rep import TokenDataRep from launchdarkly_api.model.tokens import Tokens from launchdarkly_api.model.unauthorized_error_rep import UnauthorizedErrorRep from launchdarkly_api.model.url_matchers import UrlMatchers from launchdarkly_api.model.url_post import UrlPost from launchdarkly_api.model.user import User from launchdarkly_api.model.user_attribute_names_rep import UserAttributeNamesRep from launchdarkly_api.model.user_flag_setting import UserFlagSetting from launchdarkly_api.model.user_flag_settings import UserFlagSettings from launchdarkly_api.model.user_record import UserRecord from launchdarkly_api.model.user_record_rep import UserRecordRep from launchdarkly_api.model.user_segment import UserSegment from launchdarkly_api.model.user_segment_rule import UserSegmentRule from launchdarkly_api.model.user_segments import UserSegments from launchdarkly_api.model.users import Users from launchdarkly_api.model.value_put import ValuePut from launchdarkly_api.model.variation import Variation from launchdarkly_api.model.variation_or_rollout_rep import VariationOrRolloutRep from launchdarkly_api.model.variation_summary import VariationSummary from launchdarkly_api.model.versions_rep import VersionsRep from launchdarkly_api.model.webhook import Webhook from launchdarkly_api.model.webhook_post import WebhookPost from launchdarkly_api.model.webhooks import Webhooks from launchdarkly_api.model.weighted_variation import WeightedVariation
""" An extension of urlfetch that keeps cookies between redirects From: http://everydayscripting.blogspot.com/2009/08/google-app-engine-cookie-handling-with.html """ import urllib import urllib2 import Cookie from google.appengine.api import urlfetch class URLOpener: def __init__(self): self.cookie = Cookie.SimpleCookie() def open(self, url, data=None): if data is None: method = urlfetch.GET else: method = urlfetch.POST while url is not None: response = urlfetch.fetch(url=url, payload=data, method=method, headers=self._getHeaders(self.cookie), allow_truncated=False, follow_redirects=False, deadline=10 ) data = None # Next request will be a get, so no need to send the data again. method = urlfetch.GET self.cookie.load(response.headers.get('set-cookie', '')) # Load the cookies from the response url = response.headers.get('location') return response def _getHeaders(self, cookie): headers = { 'Cookie': self._makeCookieHeader(cookie) } return headers def _makeCookieHeader(self, cookie): cookieHeader = "" for value in cookie.values(): cookieHeader += "%s=%s; " % (value.key, value.value) return cookieHeader
from dataclasses import dataclass, field from typing import Optional @dataclass class TemplateInfo: # name should be the same as template file name (no extension) name: str # name of the file to create file_name: Optional[str] # if set to true a directory will be created is_batch: bool = field(default=True) # suffix appended to class names suffix: str = field(default='') @dataclass class Suffixes: component = 'Component' page = 'Page' reducer = 'Reducer' service = 'Service' state = 'State' @dataclass class TemplateOptions: shared_component: TemplateInfo function_component: TemplateInfo ts_function_component: TemplateInfo class_component: TemplateInfo styles: TemplateInfo css_module: TemplateInfo readme: TemplateInfo test: TemplateInfo state: TemplateInfo actions: TemplateInfo ts_actions: TemplateInfo ts_state: TemplateInfo ts_connected_component: TemplateInfo ts_reducer: TemplateInfo reducer: TemplateInfo service: TemplateInfo ts_styles: TemplateInfo def __init__(self, folder_name: str): self.shared_component = TemplateInfo( name='shared-component', file_name=None ) self.ts_state = TemplateInfo( name='ts-state', file_name=None ) self.ts_reducer = TemplateInfo( name='ts-reducer', file_name=f'{folder_name}.reducer.ts', ) self.function_component = TemplateInfo( name='function-component', file_name=f'{folder_name}.component.jsx', suffix=Suffixes.component ) self.class_component = TemplateInfo( name='class-component', file_name=f'{folder_name}.component.jsx', suffix=Suffixes.component ) self.styles = TemplateInfo(name='styles', file_name=f'{folder_name}.styles.js') self.ts_styles = TemplateInfo(name='ts-styles', file_name=f'{folder_name}.styles.ts') self.css_module = TemplateInfo(name='css-module', file_name=f'{folder_name}.styles.scss') self.readme = TemplateInfo( name='readme', file_name=f'{folder_name}.readme.md', suffix=Suffixes.component ) self.test = TemplateInfo( name='test', file_name=f'{folder_name}.test.jsx', suffix=Suffixes.component ) self.state = TemplateInfo( name='state', file_name=f'{folder_name}.state.js', suffix=Suffixes.state ) self.actions = TemplateInfo(name='actions', file_name=f'{folder_name}.actions.js') self.reducer = TemplateInfo( name='reducer', file_name=f'{folder_name}.reducer.js', suffix=Suffixes.reducer ) self.service = TemplateInfo( name='service', file_name=f'{folder_name}.service.js', suffix=Suffixes.service, is_batch=False ) self.ts_function_component = TemplateInfo( name='ts-function-component', file_name=f'{folder_name}.component.tsx', suffix=Suffixes.component, is_batch=True ) self.ts_connected_component = TemplateInfo( name='ts-connected-component', file_name=f'{folder_name}.page.tsx', suffix=Suffixes.page, is_batch=True ) self.ts_actions = TemplateInfo( name='ts-actions', file_name=f'{folder_name}.actions.ts' ) self.ts_state = TemplateInfo( name='ts-state', file_name=f'{folder_name}.state.ts' ) def get_suffix(self, template_name): try: template = self.get_template_info(template_name) return template.suffix except ModuleNotFoundError: return "" def get_template_info(self, template_name) -> Optional[TemplateInfo]: try: return self.__getattribute__(template_name) except ModuleNotFoundError: return None def get_batch_templates_dictionary(self): return { 'shared-component': [ self.function_component, self.styles, self.readme, self.test ], 'class-component': [ self.class_component, self.css_module ], 'function-component': [ self.function_component, self.css_module ], 'ts-function-component': [ self.ts_function_component, self.ts_styles ], 'ts-connected-component': [ self.ts_connected_component, self.ts_styles ], 'ts-state': [ self.ts_actions, self.ts_state, self.ts_reducer ], 'state': [ self.state, self.reducer, self.actions ], 'service': [ self.service ] }
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE import pytest # noqa: F401 import numpy as np # noqa: F401 import awkward as ak # noqa: F401 from awkward._v2._typetracer import UnknownLength typetracer = ak._v2._typetracer.TypeTracer.instance() def test_getitem_at(): concrete = ak._v2.contents.NumpyArray(np.arange(2 * 3 * 5).reshape(2, 3, 5) * 0.1) abstract = ak._v2.contents.NumpyArray(concrete.raw(typetracer)) assert concrete.shape == (2, 3, 5) assert abstract.shape[1:] == (3, 5) assert abstract[0].shape[1:] == (5,) assert abstract[0][0].shape[1:] == () assert abstract.form == concrete.form assert abstract.form.type == concrete.form.type assert abstract[0].form == concrete[0].form assert abstract[0].form.type == concrete[0].form.type def test_EmptyArray(): a = ak._v2.contents.emptyarray.EmptyArray() assert a.typetracer.form == a.forget_length().form def test_NumpyArray(): a = ak._v2.contents.numpyarray.NumpyArray( np.array([0.0, 1.1, 2.2, 3.3], dtype=np.float64) ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength b = ak._v2.contents.numpyarray.NumpyArray( np.arange(2 * 3 * 5, dtype=np.int64).reshape(2, 3, 5) ) assert b.typetracer.form == b.forget_length().form assert b.forget_length().length is UnknownLength assert b.forget_length().data.shape[1:] == (3, 5) def test_RegularArray_NumpyArray(): # 6.6 is inaccessible a = ak._v2.contents.regulararray.RegularArray( ak._v2.contents.numpyarray.NumpyArray( np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6]) ), 3, ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength b = ak._v2.contents.regulararray.RegularArray( ak._v2.contents.emptyarray.EmptyArray(), 0, zeros_length=10 ) assert b.typetracer.form == b.forget_length().form assert b.forget_length().length is UnknownLength def test_ListArray_NumpyArray(): # 200 is inaccessible in stops # 6.6, 7.7, and 8.8 are inaccessible in content a = ak._v2.contents.listarray.ListArray( ak._v2.index.Index(np.array([4, 100, 1], dtype=np.int64)), ak._v2.index.Index(np.array([7, 100, 3, 200], dtype=np.int64)), ak._v2.contents.numpyarray.NumpyArray( np.array([6.6, 4.4, 5.5, 7.7, 1.1, 2.2, 3.3, 8.8]) ), ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_ListOffsetArray_NumpyArray(): # 6.6 and 7.7 are inaccessible a = ak._v2.contents.listoffsetarray.ListOffsetArray( ak._v2.index.Index(np.array([1, 4, 4, 6])), ak._v2.contents.numpyarray.NumpyArray([6.6, 1.1, 2.2, 3.3, 4.4, 5.5, 7.7]), ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_RecordArray_NumpyArray(): # 5.5 is inaccessible a = ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray(np.array([0, 1, 2, 3, 4])), ak._v2.contents.numpyarray.NumpyArray( np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5]) ), ], ["x", "y"], ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength # 5.5 is inaccessible b = ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray(np.array([0, 1, 2, 3, 4])), ak._v2.contents.numpyarray.NumpyArray( np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5]) ), ], None, ) assert b.typetracer.form == b.forget_length().form assert b.forget_length().length is UnknownLength c = ak._v2.contents.recordarray.RecordArray([], [], 10) assert c.typetracer.form == c.forget_length().form assert c.forget_length().length is UnknownLength d = ak._v2.contents.recordarray.RecordArray([], None, 10) assert d.typetracer.form == d.forget_length().form assert d.forget_length().length is UnknownLength def test_IndexedArray_NumpyArray(): # 4.4 is inaccessible; 3.3 and 5.5 appear twice a = ak._v2.contents.indexedarray.IndexedArray( ak._v2.index.Index(np.array([2, 2, 0, 1, 4, 5, 4])), ak._v2.contents.numpyarray.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6])), ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_IndexedOptionArray_NumpyArray(): # 1.1 and 4.4 are inaccessible; 3.3 appears twice a = ak._v2.contents.indexedoptionarray.IndexedOptionArray( ak._v2.index.Index(np.array([2, 2, -1, 1, -1, 5, 4])), ak._v2.contents.numpyarray.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6])), ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_ByteMaskedArray_NumpyArray(): # 2.2, 4.4, and 6.6 are inaccessible a = ak._v2.contents.bytemaskedarray.ByteMaskedArray( ak._v2.index.Index(np.array([1, 0, 1, 0, 1], dtype=np.int8)), ak._v2.contents.numpyarray.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6])), valid_when=True, ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength # 2.2, 4.4, and 6.6 are inaccessible b = ak._v2.contents.bytemaskedarray.ByteMaskedArray( ak._v2.index.Index(np.array([0, 1, 0, 1, 0], dtype=np.int8)), ak._v2.contents.numpyarray.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6])), valid_when=False, ) assert b.typetracer.form == b.forget_length().form assert b.forget_length().length is UnknownLength def test_BitMaskedArray_NumpyArray(): # 4.0, 5.0, 6.0, 7.0, 2.2, 4.4, and 6.6 are inaccessible a = ak._v2.contents.bitmaskedarray.BitMaskedArray( ak._v2.index.Index( np.packbits( np.array( [ 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, ], dtype=np.uint8, ) ) ), ak._v2.contents.numpyarray.NumpyArray( np.array( [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6] ) ), valid_when=True, length=13, lsb_order=False, ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength # 4.0, 5.0, 6.0, 7.0, 2.2, 4.4, and 6.6 are inaccessible b = ak._v2.contents.bitmaskedarray.BitMaskedArray( ak._v2.index.Index( np.packbits( np.array( [ 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, ], dtype=np.uint8, ) ) ), ak._v2.contents.numpyarray.NumpyArray( np.array( [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6] ) ), valid_when=False, length=13, lsb_order=False, ) assert b.typetracer.form == b.forget_length().form assert b.forget_length().length is UnknownLength # 4.0, 5.0, 6.0, 7.0, 2.2, 4.4, and 6.6 are inaccessible c = ak._v2.contents.bitmaskedarray.BitMaskedArray( ak._v2.index.Index( np.packbits( np.array( [ 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, ], dtype=np.uint8, ) ) ), ak._v2.contents.numpyarray.NumpyArray( np.array( [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6] ) ), valid_when=True, length=13, lsb_order=True, ) assert c.typetracer.form == c.forget_length().form assert c.forget_length().length is UnknownLength # 4.0, 5.0, 6.0, 7.0, 2.2, 4.4, and 6.6 are inaccessible d = ak._v2.contents.bitmaskedarray.BitMaskedArray( ak._v2.index.Index( np.packbits( np.array( [ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, ], dtype=np.uint8, ) ) ), ak._v2.contents.numpyarray.NumpyArray( np.array( [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6] ) ), valid_when=False, length=13, lsb_order=True, ) assert d.typetracer.form == d.forget_length().form assert d.forget_length().length is UnknownLength def test_UnmaskedArray_NumpyArray(): a = ak._v2.contents.unmaskedarray.UnmaskedArray( ak._v2.contents.numpyarray.NumpyArray( np.array([0.0, 1.1, 2.2, 3.3], dtype=np.float64) ) ) assert a.typetracer.form == a.form assert a.typetracer.form.type == a.form.type assert len(a) == 4 assert a[2] == 2.2 assert a[-2] == 2.2 assert type(a[2]) is np.float64 with pytest.raises(IndexError): a[4] with pytest.raises(IndexError): a[-5] assert isinstance(a[2:], ak._v2.contents.unmaskedarray.UnmaskedArray) assert a[2:][0] == 2.2 assert len(a[2:]) == 2 with pytest.raises(IndexError): a["bad"] assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_UnionArray_NumpyArray(): # 100 is inaccessible in index # 1.1 is inaccessible in contents[1] a = ak._v2.contents.unionarray.UnionArray( ak._v2.index.Index(np.array([1, 1, 0, 0, 1, 0, 1], dtype=np.int8)), ak._v2.index.Index(np.array([4, 3, 0, 1, 2, 2, 4, 100])), [ ak._v2.contents.numpyarray.NumpyArray(np.array([1, 2, 3])), ak._v2.contents.numpyarray.NumpyArray(np.array([1.1, 2.2, 3.3, 4.4, 5.5])), ], ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_RegularArray_RecordArray_NumpyArray(): # 6.6 is inaccessible a = ak._v2.contents.regulararray.RegularArray( ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6]) ) ], ["nest"], ), 3, ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength b = ak._v2.contents.regulararray.RegularArray( ak._v2.contents.recordarray.RecordArray( [ak._v2.contents.emptyarray.EmptyArray()], ["nest"] ), 0, zeros_length=10, ) assert b.typetracer.form == b.form assert b.typetracer.form.type == b.form.type assert len(b["nest"]) == 10 assert b.typetracer["nest"].form == b["nest"].form assert isinstance(b["nest"][5], ak._v2.contents.emptyarray.EmptyArray) assert b.typetracer["nest"][5].form == b["nest"][5].form assert len(b["nest"][5]) == 0 assert isinstance(b["nest"][7:], ak._v2.contents.regulararray.RegularArray) assert b.typetracer["nest"][7:].form == b["nest"][7:].form assert len(b["nest"][7:]) == 3 assert len(b["nest"][7:100]) == 3 with pytest.raises(IndexError): b["nest"]["bad"] assert b.typetracer.form == b.forget_length().form assert b.forget_length().length is UnknownLength def test_ListArray_RecordArray_NumpyArray(): # 200 is inaccessible in stops # 6.6, 7.7, and 8.8 are inaccessible in content a = ak._v2.contents.listarray.ListArray( ak._v2.index.Index(np.array([4, 100, 1])), ak._v2.index.Index(np.array([7, 100, 3, 200])), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array([6.6, 4.4, 5.5, 7.7, 1.1, 2.2, 3.3, 8.8]) ) ], ["nest"], ), ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_ListOffsetArray_RecordArray_NumpyArray(): # 6.6 and 7.7 are inaccessible a = ak._v2.contents.listoffsetarray.ListOffsetArray( ak._v2.index.Index(np.array([1, 4, 4, 6])), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( [6.6, 1.1, 2.2, 3.3, 4.4, 5.5, 7.7] ) ], ["nest"], ), ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_IndexedArray_RecordArray_NumpyArray(): # 4.4 is inaccessible; 3.3 and 5.5 appear twice a = ak._v2.contents.indexedarray.IndexedArray( ak._v2.index.Index(np.array([2, 2, 0, 1, 4, 5, 4])), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6]) ) ], ["nest"], ), ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_IndexedOptionArray_RecordArray_NumpyArray(): # 1.1 and 4.4 are inaccessible; 3.3 appears twice a = ak._v2.contents.indexedoptionarray.IndexedOptionArray( ak._v2.index.Index(np.array([2, 2, -1, 1, -1, 5, 4])), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6]) ) ], ["nest"], ), ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_ByteMaskedArray_RecordArray_NumpyArray(): # 2.2, 4.4, and 6.6 are inaccessible a = ak._v2.contents.bytemaskedarray.ByteMaskedArray( ak._v2.index.Index(np.array([1, 0, 1, 0, 1], dtype=np.int8)), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6]) ) ], ["nest"], ), valid_when=True, ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength # 2.2, 4.4, and 6.6 are inaccessible b = ak._v2.contents.bytemaskedarray.ByteMaskedArray( ak._v2.index.Index(np.array([0, 1, 0, 1, 0], dtype=np.int8)), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6]) ) ], ["nest"], ), valid_when=False, ) assert b.typetracer.form == b.forget_length().form assert b.forget_length().length is UnknownLength def test_BitMaskedArray_RecordArray_NumpyArray(): # 4.0, 5.0, 6.0, 7.0, 2.2, 4.4, and 6.6 are inaccessible a = ak._v2.contents.bitmaskedarray.BitMaskedArray( ak._v2.index.Index( np.packbits( np.array( [ True, True, True, True, False, False, False, False, True, False, True, False, True, ] ) ) ), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array( [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, ] ) ) ], ["nest"], ), valid_when=True, length=13, lsb_order=False, ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength # 4.0, 5.0, 6.0, 7.0, 2.2, 4.4, and 6.6 are inaccessible b = ak._v2.contents.bitmaskedarray.BitMaskedArray( ak._v2.index.Index( np.packbits( np.array( [ 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, ], dtype=np.uint8, ) ) ), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array( [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, ] ) ) ], ["nest"], ), valid_when=False, length=13, lsb_order=False, ) assert b.typetracer.form == b.forget_length().form assert b.forget_length().length is UnknownLength # 4.0, 5.0, 6.0, 7.0, 2.2, 4.4, and 6.6 are inaccessible c = ak._v2.contents.bitmaskedarray.BitMaskedArray( ak._v2.index.Index( np.packbits( np.array( [ 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, ], dtype=np.uint8, ) ) ), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array( [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, ] ) ) ], ["nest"], ), valid_when=True, length=13, lsb_order=True, ) assert c.typetracer.form == c.forget_length().form assert c.forget_length().length is UnknownLength # 4.0, 5.0, 6.0, 7.0, 2.2, 4.4, and 6.6 are inaccessible d = ak._v2.contents.bitmaskedarray.BitMaskedArray( ak._v2.index.Index( np.packbits( np.array( [ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, ], dtype=np.uint8, ) ) ), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array( [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, ] ) ) ], ["nest"], ), valid_when=False, length=13, lsb_order=True, ) assert d.typetracer.form == d.forget_length().form assert d.forget_length().length is UnknownLength def test_UnmaskedArray_RecordArray_NumpyArray(): a = ak._v2.contents.unmaskedarray.UnmaskedArray( ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array([0.0, 1.1, 2.2, 3.3], dtype=np.float64) ) ], ["nest"], ) ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength def test_UnionArray_RecordArray_NumpyArray(): # 100 is inaccessible in index # 1.1 is inaccessible in contents[1] a = ak._v2.contents.unionarray.UnionArray( ak._v2.index.Index(np.array([1, 1, 0, 0, 1, 0, 1], dtype=np.int8)), ak._v2.index.Index(np.array([4, 3, 0, 1, 2, 2, 4, 100])), [ ak._v2.contents.recordarray.RecordArray( [ak._v2.contents.numpyarray.NumpyArray(np.array([1, 2, 3]))], ["nest"] ), ak._v2.contents.recordarray.RecordArray( [ ak._v2.contents.numpyarray.NumpyArray( np.array([1.1, 2.2, 3.3, 4.4, 5.5]) ) ], ["nest"], ), ], ) assert a.typetracer.form == a.forget_length().form assert a.forget_length().length is UnknownLength
from kevin.developing.executor import Executor from .along_axis import get_executor_ls_by_block_along_axis def get_executor_ls_by_block_of_all(factory, chunk_step, need_to_generate, **kwargs): """ 通过调用 verification.Factory 中的 generate_by_block() 函数, 来对整个矩阵, 生成一系列的执行器 executor_ls, 每个执行器在被 executor() 调用后都将返回一个数据集 参数: factory: verification.Factory 实例 chunk_step: 每个分块的大小 need_to_generate: 需要生成的字段 (参见 Factory.generate_by_block() 中的介绍) """ width = len(factory.paras["features"]) # 矩阵的宽度 assert width > 0, \ Exception("Error: the length of features in the input factory should be larger than 0!") # block的数量 chunk_nums = (width - 1) // chunk_step + 1 """ 执行器 """ executor_ls, size_ls = [], [] # 对于完整的 block(去除最后一行、列上的block) # 将整个block作为一个dataset # dataset_size = chunk_step * chunk_step for i in range(chunk_nums - 1): i_0 = i * chunk_step i_1 = i_0 + chunk_step for j in range(chunk_nums - 1): j_0 = j * chunk_step j_1 = j_0 + chunk_step # 计算 paras = dict(i_0=i_0, i_1=i_1, j_0=j_0, j_1=j_1, pick_triangle=False, need_to_generate=need_to_generate) executor_ls.append(Executor(func=factory.generate_by_block, kwargs=paras)) size_ls.append(factory.cal_size_of_block(**paras)) # 对于最后一行 # 对于完整的矩形有 # chunk_step * chunk_step < dataset_size <= chunk_step * (chunk_step + 1) # 注意: # 对于最后一个可能残缺的矩阵(亦即大小不满足下界), # 该部分将与接下来的最后一列的部分头部组成一个dataset executor_ls_temp, size_ls_temp = get_executor_ls_by_block_along_axis(factory, i_0=(chunk_nums - 1) * chunk_step, i_1=width, j_0=0, j_1=width, axis_to_split="j", size_upper=size_upper, need_to_generate=need_to_generate) executor_ls.extend(executor_ls_temp) size_ls.extend(size_ls_temp) # 对于最后一列 # 第一个矩形将与前面残缺的部分整合为一个dataset,该矩形的行数将根据缺少部分的数量计算得到,从而保证 # chunk_step * chunk_step <= dataset_size <= chunk_step * (chunk_step + 1) # 接下来的矩形将调整行数以尽量贴近上界, # 对于完整的矩形有 # chunk_step * chunk_step < dataset_size <= chunk_step * (chunk_step + 1) # 对于最后一个可能残缺的矩阵,有 # dataset_size <= chunk_step * (chunk_step + 1) # 这里承接上面的 res if chunk_nums > 1: executor_ls_temp, size_ls_temp = get_executor_ls_by_block_along_axis(factory, i_0=0, i_1=(chunk_nums - 1) * chunk_step, j_0=(chunk_nums - 1) * chunk_step, j_1=width, axis_to_split="i", size_upper=size_upper, need_to_generate=need_to_generate, pre_executor=executor_ls.pop(-1), pre_size=size_ls.pop(-1)) executor_ls.extend(executor_ls_temp) size_ls.extend(size_ls_temp) # 综合而言, # 除最后一个dataset以外,都有 # chunk_step * chunk_step <= dataset_size <= chunk_step * (chunk_step + 1) # 最后一个dataset可能是残缺的,有 # 0 < dataset_size <= chunk_step * (chunk_step + 1) return executor_ls, size_ls
""" Regnet - from paper: Designing Network Design Spaces - https://arxiv.org/pdf/2003.13678.pdf Implementation of paradigm described in paper published by Facebook AI Research (FAIR) @author: Signatrix GmbH Code taken from: https://github.com/signatrix/regnet - MIT Licence """ import numpy as np import torch.nn as nn from math import sqrt from super_gradients.training.models.sg_module import SgModule from super_gradients.training.utils.regularization_utils import DropPath from super_gradients.training.utils.utils import get_param class Head(nn.Module): # From figure 3 def __init__(self, num_channels, num_classes, dropout_prob): super(Head, self).__init__() self.pool = nn.AdaptiveAvgPool2d(output_size=1) self.dropout = nn.Dropout(p=dropout_prob) self.fc = nn.Linear(num_channels, num_classes) def forward(self, x): x = self.pool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x class Stem(nn.Module): # From figure 3 def __init__(self, in_channels, out_channels): super(Stem, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False) self.bn = nn.BatchNorm2d(out_channels) self.rl = nn.ReLU() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.rl(x) return x class XBlock(nn.Module): # From figure 4 def __init__(self, in_channels, out_channels, bottleneck_ratio, group_width, stride, se_ratio=None, droppath_prob=0.): super(XBlock, self).__init__() inter_channels = int(out_channels // bottleneck_ratio) groups = int(inter_channels // group_width) self.conv_block_1 = nn.Sequential( nn.Conv2d(in_channels, inter_channels, kernel_size=1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU() ) self.conv_block_2 = nn.Sequential( nn.Conv2d(inter_channels, inter_channels, kernel_size=3, stride=stride, groups=groups, padding=1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU() ) if se_ratio is not None: se_channels = in_channels // se_ratio self.se = nn.Sequential( nn.AdaptiveAvgPool2d(output_size=1), nn.Conv2d(inter_channels, se_channels, kernel_size=1, bias=True), nn.ReLU(), nn.Conv2d(se_channels, inter_channels, kernel_size=1, bias=True), nn.Sigmoid(), ) else: self.se = None self.conv_block_3 = nn.Sequential( nn.Conv2d(inter_channels, out_channels, kernel_size=1, bias=False), nn.BatchNorm2d(out_channels) ) if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) else: self.shortcut = None self.drop_path = DropPath(drop_prob=droppath_prob) self.rl = nn.ReLU() def forward(self, x): x1 = self.conv_block_1(x) x1 = self.conv_block_2(x1) if self.se is not None: x1 = x1 * self.se(x1) x1 = self.conv_block_3(x1) if self.shortcut is not None: x2 = self.shortcut(x) else: x2 = x x1 = self.drop_path(x1) x = self.rl(x1 + x2) return x class Stage(nn.Module): # From figure 3 def __init__(self, num_blocks, in_channels, out_channels, bottleneck_ratio, group_width, stride, se_ratio, droppath_prob): super(Stage, self).__init__() self.blocks = nn.Sequential() self.blocks.add_module("block_0", XBlock(in_channels, out_channels, bottleneck_ratio, group_width, stride, se_ratio, droppath_prob)) for i in range(1, num_blocks): self.blocks.add_module("block_{}".format(i), XBlock(out_channels, out_channels, bottleneck_ratio, group_width, 1, se_ratio, droppath_prob)) def forward(self, x): x = self.blocks(x) return x class AnyNetX(SgModule): def __init__(self, ls_num_blocks, ls_block_width, ls_bottleneck_ratio, ls_group_width, stride, num_classes, se_ratio, backbone_mode, dropout_prob=0., droppath_prob=0., input_channels=3): super(AnyNetX, self).__init__() verify_correctness_of_parameters(ls_num_blocks, ls_block_width, ls_bottleneck_ratio, ls_group_width) self.net = nn.Sequential() self.backbone_mode = backbone_mode prev_block_width = 32 self.net.add_module("stem", Stem(in_channels=input_channels, out_channels=prev_block_width)) for i, (num_blocks, block_width, bottleneck_ratio, group_width) in enumerate(zip(ls_num_blocks, ls_block_width, ls_bottleneck_ratio, ls_group_width)): self.net.add_module("stage_{}".format(i), Stage(num_blocks, prev_block_width, block_width, bottleneck_ratio, group_width, stride, se_ratio, droppath_prob)) prev_block_width = block_width # FOR BACK BONE MODE - DO NOT ADD THE HEAD (AVG_POOL + FC) if not self.backbone_mode: self.net.add_module("head", Head(ls_block_width[-1], num_classes, dropout_prob)) self.initialize_weight() self.ls_block_width = ls_block_width self.dropout_prob = dropout_prob def initialize_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(mean=0.0, std=sqrt(2.0 / fan_out)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1.0) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(mean=0.0, std=0.01) m.bias.data.zero_() def forward(self, x): x = self.net(x) return x def replace_head(self, new_num_classes=None, new_head=None): if new_num_classes is None and new_head is None: raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.") if new_head is not None: self.net.head = new_head else: self.net.head = Head(self.ls_block_width[-1], new_num_classes, self.dropout_prob) class RegNetX(AnyNetX): def __init__(self, initial_width, slope, quantized_param, network_depth, bottleneck_ratio, group_width, stride, arch_params, se_ratio=None, input_channels=3): # We need to derive block width and number of blocks from initial parameters. parameterized_width = initial_width + slope * np.arange(network_depth) # From equation 2 parameterized_block = np.log(parameterized_width / initial_width) / np.log(quantized_param) # From equation 3 parameterized_block = np.round(parameterized_block) quantized_width = initial_width * np.power(quantized_param, parameterized_block) # We need to convert quantized_width to make sure that it is divisible by 8 quantized_width = 8 * np.round(quantized_width / 8) ls_block_width, ls_num_blocks = np.unique(quantized_width.astype(np.int), return_counts=True) # At this points, for each stage, the above-calculated block width could be incompatible to group width # due to bottleneck ratio. Hence, we need to adjust the formers. # Group width could be swapped to number of groups, since their multiplication is block width ls_group_width = np.array([min(group_width, block_width // bottleneck_ratio) for block_width in ls_block_width]) ls_block_width = np.round(ls_block_width // bottleneck_ratio / group_width) * group_width ls_bottleneck_ratio = [bottleneck_ratio for _ in range(len(ls_block_width))] # GET THE BACKBONE MODE FROM arch_params IF EXISTS - O.W. - SET AS FALSE backbone_mode = get_param(arch_params, 'backbone_mode', False) dropout_prob = get_param(arch_params, 'dropout_prob', 0.) droppath_prob = get_param(arch_params, 'droppath_prob', 0.) super(RegNetX, self).__init__(ls_num_blocks, ls_block_width.astype(np.int).tolist(), ls_bottleneck_ratio, ls_group_width.tolist(), stride, arch_params.num_classes, se_ratio, backbone_mode, dropout_prob, droppath_prob, input_channels) class RegNetY(RegNetX): # RegNetY = RegNetX + SE def __init__(self, initial_width, slope, quantized_param, network_depth, bottleneck_ratio, group_width, stride, arch_params, se_ratio, input_channels=3): super(RegNetY, self).__init__(initial_width, slope, quantized_param, network_depth, bottleneck_ratio, group_width, stride, arch_params, se_ratio, input_channels) def verify_correctness_of_parameters(ls_num_blocks, ls_block_width, ls_bottleneck_ratio, ls_group_width): """VERIFY THAT THE GIVEN PARAMETERS FIT THE SEARCH SPACE DEFINED IN THE REGNET PAPER""" err_message = 'Parameters don\'t fit' assert len(set(ls_bottleneck_ratio)) == 1, f"{err_message} AnyNetXb" assert len(set(ls_group_width)) == 1, f"{err_message} AnyNetXc" assert all(i <= j for i, j in zip(ls_block_width, ls_block_width[1:])) is True, f"{err_message} AnyNetXd" if len(ls_num_blocks) > 2: assert all(i <= j for i, j in zip(ls_num_blocks[:-2], ls_num_blocks[1:-1])) is True, f"{err_message} AnyNetXe" # For each stage & each layer, number of channels (block width / bottleneck ratio) must be divisible by group width for block_width, bottleneck_ratio, group_width in zip(ls_block_width, ls_bottleneck_ratio, ls_group_width): assert int(block_width // bottleneck_ratio) % group_width == 0 class CustomRegNet(RegNetX): def __init__(self, arch_params): """All parameters must be provided in arch_params other than SE""" super().__init__(initial_width=arch_params.initial_width, slope=arch_params.slope, quantized_param=arch_params.quantized_param, network_depth=arch_params.network_depth, bottleneck_ratio=arch_params.bottleneck_ratio, group_width=arch_params.group_width, stride=arch_params.stride, arch_params=arch_params, se_ratio=arch_params.se_ratio if hasattr(arch_params, 'se_ratio') else None, input_channels=get_param(arch_params, 'input_channels', 3)) class NASRegNet(RegNetX): def __init__(self, arch_params): """All parameters are provided as a single structure list: arch_params.structure""" structure = arch_params.structure super().__init__(initial_width=structure[0], slope=structure[1], quantized_param=structure[2], network_depth=structure[3], bottleneck_ratio=structure[4], group_width=structure[5], stride=structure[6], se_ratio=structure[7] if structure[7] > 0 else None, arch_params=arch_params) class RegNetY200(RegNetY): def __init__(self, arch_params): super().__init__(24, 36, 2.5, 13, 1, 8, 2, arch_params, 4) class RegNetY400(RegNetY): def __init__(self, arch_params): super().__init__(48, 28, 2.1, 16, 1, 8, 2, arch_params, 4) class RegNetY600(RegNetY): def __init__(self, arch_params): super().__init__(48, 33, 2.3, 15, 1, 16, 2, arch_params, 4) class RegNetY800(RegNetY): def __init__(self, arch_params): super().__init__(56, 39, 2.4, 14, 1, 16, 2, arch_params, 4)
#!/usr/bin/env python # # Copyright 2007 Doug Hellmann. # """Using optparse with single-letter options. """ #end_pymotw_header import optparse parser = optparse.OptionParser() parser.add_option('-v', action="count", dest='verbosity', default=1) parser.add_option('-q', action='store_const', const=0, dest='verbosity') options, args = parser.parse_args() print options.verbosity
from lti_app.request_forms import BaseRequestForm as BRF class AssignmentRequestForm(BRF): course_id = {'type': str, 'required': True} assignment_id = {'type': str, 'required': True} assignment_type = {'type': str} reference = {'type': str} excerpt = {'type': str} supporting_excerpts = {'type': str} model_answers = {'type': str} # General settings rubric = {'type': str, 'default': None} graded_confirmation_text = {'type': str} max_attempts = {'type': int, 'default': 3} show_excerpt = {'type': bool, 'get': BRF.get_boolean_from_checkbox} show_retry_button = {'type': bool, 'get': BRF.get_boolean_from_checkbox} # Checks citation_check = {'type': bool, 'get': BRF.get_boolean_from_checkbox} grammar_check = {'type': bool, 'get': BRF.get_boolean_from_checkbox} plagiarism_check = {'type': bool, 'get': BRF.get_boolean_from_checkbox} academic_style_check = {'type': bool, 'get': BRF.get_boolean_from_checkbox} semantics_check = {'type': int} def __init__(self, form_data): BRF.__init__(self, form_data)