content
stringlengths
5
1.05M
class double_buffer: def __init__(self, cls): self.__name__ = cls.__name__ self.__doc__ = cls.__doc__ try: self._transition_hook = getattr(cls, 'on_transition') except AttributeError: self._transition_hook = lambda self: None try: self._change_hook = getattr(cls, 'on_change') except AttributeError: self._change_hook = lambda self, before, after: None if self._change_hook.__code__.co_argcount != 3: raise TypeError('The on_change hook of a double_buffer must take 3 arguments (self, before, after): {}' .format(self.__name__)) underscores = 0 for c in self.__name__: if c == '_': underscores += 1 else: break name = self.__name__[underscores:] underscores = self.__name__[:underscores] self._curr_name = '__current_{}'.format(self.__name__) self._prev_name = '{}old_{}'.format(underscores, name) self._transition_hook_name = '{}on_{}_transition'.format(underscores, name) self._change_hook_name = '{}on_{}_change'.format(underscores, name) def __get__(self, instance, owner): try: return getattr(instance, self._curr_name) except ValueError: return getattr(owner, self._curr_name) def __set__(self, instance, value): # If not loaded yet, treat as an initial value if not instance.is_loaded: setattr(instance, self._prev_name, value) setattr(instance, self._curr_name, value) return # Call change hook if necessary before = getattr(instance, self._curr_name) setattr(instance, self._curr_name, value) if value != before: getattr(instance, self._change_hook_name)(before, value) # Put transition hook at front of queue or remove it queue = getattr(instance, _HookHandler._transition_hook_queue_name) try: queue.remove(self) except ValueError: pass if value != getattr(instance, self._prev_name): queue.append(self) class _responsive: def __init__(self, func, init, priority, children_first): self._hook = func self._initial_value = init self._priority = priority self._children_first = children_first self.__name__ = func.__name__ self.__doc__ = func.__doc__ underscores = 0 for c in self.__name__: if c == '_': underscores += 1 else: break name = self.__name__[underscores:] if not name.startswith('refresh_'): raise NameError('Responsive method names must start with \'refresh_\': {}'.format(self.__name__)) self._flag_name = '{}_flag'.format(self.__name__) self._hook_name = self.__name__ if func.__code__.co_argcount != 1: raise TypeError('Responsive methods must accept 1 positional argument, not {}: {}' .format(func.__code__.co_argcount, self.__name__)) def responsive(init=False, priority=0, children_first=False): def responsive_factory(func): return _responsive(func, init, priority, children_first) return responsive_factory class _HookHandler(type): _initialized_flag_name = '__HookHandler_is_initialized' _transition_hook_queue_name = '__transition_hook_queue' _double_buffers_name = '__double_buffers' _responsive_attrs_name = '__responsive_attrs' def __init__(cls, name, *bases, **namespace): double_buffers = {attr for attr in bases[1].values() if isinstance(attr, double_buffer)} new_double_buffers = tuple(double_buffers) responsive_attrs = {attr for attr in bases[1].values() if isinstance(attr, _responsive)} new_responsive_attrs = tuple(responsive_attrs) for sprcls in bases[0]: if isinstance(sprcls, _HookHandler): double_buffers |= frozenset(getattr(sprcls, _HookHandler._double_buffers_name)) responsive_attrs |= frozenset(getattr(sprcls, _HookHandler._responsive_attrs_name)) double_buffers = tuple(double_buffers) responsive_attrs = tuple(sorted(responsive_attrs, key=lambda a: a._priority)) setattr(cls, _HookHandler._double_buffers_name, double_buffers) setattr(cls, _HookHandler._responsive_attrs_name, responsive_attrs) # Create appropriate class attributes for attr in new_double_buffers: setattr(cls, attr._curr_name, None) setattr(cls, attr._prev_name, None) setattr(cls, attr._transition_hook_name, attr._transition_hook) setattr(cls, attr._change_hook_name, attr._change_hook) for attr in new_responsive_attrs: setattr(cls, attr._flag_name, attr._initial_value) setattr(cls, attr._hook_name, attr._hook) # Don't double inject if _HookHandler already injected stuff into a superclass if any(isinstance(sprcls, _HookHandler) for sprcls in bases[0]): super().__init__(name, bases, namespace) return # Create initialized flag setattr(cls, _HookHandler._initialized_flag_name, False) def call_transition_hooks(self): if getattr(self, _HookHandler._initialized_flag_name): for attr in getattr(self, _HookHandler._transition_hook_queue_name): getattr(self, attr._transition_hook_name)() def flip_transition_hooks(self): setattr(self, _HookHandler._initialized_flag_name, True) queue = getattr(self, _HookHandler._transition_hook_queue_name) for attr in queue: setattr(self, attr._prev_name, getattr(self, attr._curr_name)) queue.clear() def refresh_responsive_attrs(self, children_first): for attr in getattr(self, _HookHandler._responsive_attrs_name): if attr._children_first == children_first and getattr(self, attr._flag_name): getattr(self, attr._hook_name)() setattr(self, attr._flag_name, False) # TODO: Maintain priority-specified order AND after_children-specified order? def recursive_refresh_responsive_attrs(self): self._refresh_responsive_attrs(children_first=False) for child in self._children: if child.old_is_active or child.is_active: child._recursive_refresh_responsive_attrs() self._refresh_responsive_attrs(children_first=True) def recursive_call_transition_hooks(self): self._call_transition_hooks() for child in self._children: if child.old_is_active or child.is_active: child._recursive_call_transition_hooks() setattr(cls, '_call_transition_hooks', call_transition_hooks) setattr(cls, '_recursive_call_transition_hooks', recursive_call_transition_hooks) setattr(cls, '_flip_transition_hooks', flip_transition_hooks) setattr(cls, '_refresh_responsive_attrs', refresh_responsive_attrs) setattr(cls, '_recursive_refresh_responsive_attrs', recursive_refresh_responsive_attrs) # Modify __init__ to initialize hook queues old_init = cls.__init__ def new_init(self, *args, **kwargs): setattr(self, _HookHandler._transition_hook_queue_name, []) old_init(self, *args, **kwargs) cls.__init__ = new_init super().__init__(name, bases, namespace)
# -*- coding: utf-8 -*- """ SMART_2011 Assignment Includes Conversion from Scilab to Python3 Brunston Poon begun 2014.09.22 - completed 2014.09.25 """ import numpy as np from matplotlib import pyplot as plt file = r"C:\ast\SMART_data.txt" numberOfColumns = 7 data = np.loadtxt(file) radii = data[:,0] # Distance column, in kiloparsecs (kpc) neutralGasMass = data[:,1] # Neutral Gas column, in solar masses (m_sun) luminosityB = data[:,2] # Luminosity in the B band, solar luminosities (l_sun) luminosityR = data[:,3] # Luminosity in R band, l_sun velocityModel = data[:,4] # Velocity, modeled to "smooth" the data (kms) colCounterRotating = data[:,5] # This velocity array includes counter-rotating elements. velocity = data[:,6] # Velocity column in kilometers/second (kms) number = 1 plt.figure(number) plt.clf() #housekeeping, clears plot plt.cla() #housekeeping, clears plot number = number + 1 # plot velocity (km/s) versus distance (kpc) plt.plot(radii,velocity,'b.', markersize = 3) plt.plot(radii,velocityModel,'g.',markersize = 3) plt.title("Plot of Velocity Data and Velocity Model versus Radius") plt.xlabel("Radius (kpc)") plt.ylabel("Velocity (m_sun)") # plot gas mass (m_sun) versus distance (kpc) plt.figure(number) plt.clf() #housekeeping plt.cla()#housekeeping number = number + 1 plt.plot(radii,neutralGasMass,'b.', markersize = 3) plt.title("Plot of Neutral Gas Mass versus Radius") plt.xlabel("Radius (kpc)") plt.ylabel("Mass (m_sun)") # plot luminosity (l_sun) versus distance (kpc) plt.figure(number) plt.clf() #housekeeping plt.cla() #housekeeping number = number + 1 plt.plot(radii,luminosityR,'b.', markersize = 3) plt.title("Plot of Luminosity versus Radius") plt.xlabel("Radius (kpc)") plt.ylabel("Luminosity (l_sun)") #luminosity profile to mass profile mlr1 = 0.477 mlr2 = 0.891 massStarsR1 = luminosityR * mlr1 massStarsR2 = luminosityR * mlr2 massStarsR1b = luminosityB * mlr1 massStarsR2b = luminosityB * mlr2 plt.figure(number) plt.clf() #housekeeping plt.cla() #housekeeping number = number + 1 plt.plot(radii,massStarsR1,'b.', markersize = 3) plt.plot(radii,massStarsR2,'g.', markersize = 3) plt.title("Plot of Stellar Mass (R1 B, R2 G) versus Radius") plt.xlabel("Radius (kpc)") plt.ylabel("Stellar Mass (m_sun)") grav = 4.28*10**(-6) # units of kpc*km^2/(M_sun*s^2) massEnc = velocityModel**2*radii/grav #this is the total mass within each radius (from zero) based on the rotation curve formula indexArray = [] for i in range(0,len(massEnc-1)): n = 2 + i indexArray.append(n) incrementalMass = [] for i in range(0,len(indexArray)): incrementalMass.append(massEnc[i]-massEnc[i-1]) incrementalMass[0] = velocityModel[0]**2*radii[0]/grav #this will plot the incremental mass versus radius plt.figure(number) plt.clf() #housekeeping plt.cla() #housekeeping number = number + 1 plt.plot(radii,incrementalMass, 'b.', markersize = 3) plt.title("Plot of ""Incremental"" Mass versus Radius") plt.xlabel("Radius (kpc)") plt.ylabel("Incremental Mass (m_sun)") darkMatter = incrementalMass - neutralGasMass - massStarsR1 darkMatterb = incrementalMass - neutralGasMass - massStarsR1b plt.figure(number) plt.clf() #housekeeping plt.cla() #housekeeping number = number + 1 #INCREMENTAL MASS = TOTAL MASS, incMass = darkMatter + neutralGasMass + massStarsR1 or R2 plt.plot(radii,darkMatter, 'b.', markersize = 3) plt.plot(radii,massStarsR1, 'g.', markersize = 3) plt.plot(radii, darkMatterb, 'r.', markersize = 5) plt.plot(radii,incrementalMass, 'r.', markersize = 3) plt.plot(radii,neutralGasMass, 'y.', markersize = 3) plt.title("Total Mass (red), Stellar Mass (green),\n Dark Matter Bband (thickRed), Dark Matter Rband (blue), \n\ Neutral Gas Mass (red), versus Radius") plt.xlabel("Radius (kpc)") plt.ylabel("Mass (m_sun)") plt.show()
from django.views.generic import * from wikis.mixins import * import json from commons.markdown import markdown_tools from commons import file_name_tools from commons.file import file_utils from .forms import PageCreateForm, PageUpdateForm, PageCopyForm from django.urls import reverse import datetime from django.http import HttpResponse from django.template.loader import render_to_string from logging import getLogger logger = getLogger(__name__) class IndexView(RedirectView): """ TOPページへのアクセスはFrontPageにリダイレクトする。 """ def get_redirect_url(self, *args, **kwargs): wiki_id = kwargs.get("wiki_id") argzz = [wiki_id, "FrontPage"] return reverse('wikis.pages:show', args=argzz) class ShowView(PageMixin, CommentFlgMixin, TemplateView): """ ページの表示 """ template_name = "wikis/pages/show.html" mode = "show" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # コンテンツ context["main_contents"] = markdown_tools.get_contents(self.request.wiki_id, self.request.page_dirs) return context class CreateView(ModeMixin, EditAuthorityMixin, FormView): """ ページの新規作成 """ form_class = PageCreateForm template_name = "wikis/pages/create.html" mode = "create" def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs['wiki_id'] = self.request.wiki_id return kwargs def form_valid(self, form): # ページ新規作成 form.put(self.request) return super().form_valid(form) def get_success_url(self): form = super().get_form() argzz = [form.data["wiki_id"]] argzz.extend(file_name_tools.to_page_dirs(form.data["page_name"])) return reverse('wikis.pages:show', args=argzz) class EditView(PageMixin, EditAuthorityMixin, FormView): """ ページの編集 ページが凍結中の場合は凍結画面を表示する。 """ form_class = PageUpdateForm template_name = "wikis/pages/edit.html" mode = "edit" def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs['wiki_id'] = self.request.wiki_id kwargs['page_dirs'] = self.request.page_dirs return kwargs def form_valid(self, form): # ページ更新 form.put(self.request) return super().form_valid(form) def get_success_url(self): form = super().get_form() argzz = [form.data["wiki_id"]] argzz.extend(file_name_tools.to_page_dirs(form.data["page_name"])) return reverse('wikis.pages:show', args=argzz) def get_template_names(self): if self.request.page_conf["confs"].get("freeze_mode") == "1": return ["wikis/pages/freeze.html"] else: return super().get_template_names() class CopyView(PageMixin, EditAuthorityMixin, FormView): """ ページをコピーして新規作成 コピーしたいページを表示した状態で[複写]を選択することで遷移出来る。 """ form_class = PageCopyForm template_name = "wikis/pages/copy.html" mode = "copy" def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs['wiki_id'] = self.request.wiki_id kwargs['page_dirs'] = self.request.page_dirs return kwargs def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # コンテンツ context["main_contents"] = markdown_tools.get_contents(self.request.wiki_id, self.request.page_dirs) return context def form_valid(self, form): # ページ新規作成 form.put(self.request) return super().form_valid(form) def get_success_url(self): form = super().get_form() argzz = [form.data["wiki_id"]] argzz.extend(file_name_tools.to_page_dirs(form.data["page_name"])) return reverse('wikis.pages:show', args=argzz) class ListView(PageMixin, TemplateView): """ ページの一覧 ファイル名の昇順で全ページを表示する。 """ template_name = "wikis/pages/list.html" mode = "list" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # 一覧ファイル取得 pages = json.loads(file_utils.get_file(self.request.wiki_id, "pages.json")) pages = pages["data"]["pages"] pages = sorted(pages, key=lambda x: x['file_name']) for page in pages: file_name_slash = file_name_tools.file_name_to_page_name(page["file_name"]) page["file_name"] = file_name_slash argzz = [self.request.wiki_id] argzz.extend(file_name_slash.split("/")) page["url"] = reverse('wikis.pages:show', args=argzz) page["update"] = datetime.datetime.strptime(page["update"], "%Y-%m-%dT%H:%M:%S.%f") context["pages"] = pages return context class UpdatesView(PageMixin, TemplateView): """ ページの一覧 更新日時の降順で表示する。 """ template_name = "wikis/pages/updates.html" mode = "list" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # 一覧ファイル取得 pages = json.loads(file_utils.get_file(self.request.wiki_id, "pages.json")) pages = pages["data"]["pages"] pages = sorted(pages, key=lambda x: x['update'], reverse=True) for page in pages: file_name_slash = file_name_tools.file_name_to_page_name(page["file_name"]) page["file_name"] = file_name_slash argzz = [self.request.wiki_id] argzz.extend(file_name_slash.split("/")) page["url"] = reverse('wikis.pages:show', args=argzz) tdatetime = datetime.datetime.strptime(page["update"], '%Y-%m-%dT%H:%M:%S.%f') page["update_day"] = datetime.date(tdatetime.year, tdatetime.month, tdatetime.day) page["update"] = tdatetime context["pages"] = pages return context class HelpView(ModeMixin, TemplateView): """ ヘルプ画面 """ template_name = "wikis/pages/help.html" mode = "help" def sitemap(request, wiki_id): page_file = json.loads(file_utils.get_file(wiki_id, "pages.json")) pages = page_file["data"]["pages"] pages = sorted(pages, key=lambda x: x['update'], reverse=True) for page in pages: file_name_slash = file_name_tools.file_name_to_page_name(page["file_name"]) page["file_name"] = file_name_slash argzz = [wiki_id] argzz.extend(file_name_slash.split("/")) loc = "{}://{}{}".format( request.get_raw_uri().split(":")[0] , request.get_host() , reverse('wikis.pages:show', args=argzz)) page["loc"] = loc tdatetime = datetime.datetime.strptime(page["update"], '%Y-%m-%dT%H:%M:%S.%f') tdate = datetime.date(tdatetime.year, tdatetime.month, tdatetime.day).strftime('%Y-%m-%dT%H:%M:%SZ') page["lastmod"] = tdate context = {"wiki_id": wiki_id, "pages": pages} html = render_to_string("wikis/pages/sitemap.xml", context) return HttpResponse(html, content_type="application/xhtml+xml")
import os import subprocess from ctypes import RTLD_LOCAL, RTLD_GLOBAL class LibraryMeta(type): def __call__(cls, name, mode=RTLD_LOCAL, nm="nm"): if os.name == "nt": from ctypes import WinDLL # WinDLL does demangle the __stdcall names, so use that. return WinDLL(name, mode=mode) if os.path.exists(name) and mode != RTLD_GLOBAL and nm is not None: # Use 'nm' on Unixes to load native and cross-compiled libraries # (this is only possible if mode != RTLD_GLOBAL) return super(LibraryMeta, cls).__call__(name, nm) from ctypes import CDLL from ctypes.util import find_library path = find_library(name) if path is None: # Maybe 'name' is not a library name in the linker style, # give CDLL a last chance to find the library. path = name return CDLL(path, mode=mode) class Library(metaclass=LibraryMeta): def __init__(self, filepath, nm): self._filepath = filepath self._name = os.path.basename(self._filepath) self.__symbols = {} self._get_symbols(nm) # nm will print lines like this: # <addr> <kind> <name> def _get_symbols(self, nm): cmd = [nm, "--dynamic", "--defined-only", self._filepath] output = subprocess.check_output(cmd, universal_newlines=True) for line in output.split('\n'): fields = line.split(' ', 2) if len(fields) >= 3 and fields[1] in ("T", "D", "G", "R", "S"): self.__symbols[fields[2]] = fields[0] def __getattr__(self, name): try: return self.__symbols[name] except KeyError: pass raise AttributeError(name)
import torch import torchtestcase import unittest from survae.tests.nn import ModuleTest from survae.nn.layers.encoding import PositionalEncodingImage class PositionalEncodingImageTest(ModuleTest): def test_layer_is_well_behaved(self): batch_size = 10 shape = (3,8,8) x = torch.rand(batch_size, *shape, 16) module = PositionalEncodingImage(shape, 16) self.assert_layer_is_well_behaved(module, x) def test_output(self): batch_size = 10 shape = (3,8,8) x = torch.zeros(batch_size, *shape, 16) module = PositionalEncodingImage(shape, 16) y = module(x) self.assertEqual(y.shape, torch.Size([10, 3, 8, 8, 16])) upper_left_channel0 = module.encode_c[0,0,0,0]+module.encode_h[0,0,0,0]+module.encode_w[0,0,0,0] self.assertEqual(y[0,0,0,0], upper_left_channel0) self.assertEqual(y[1,0,0,0], upper_left_channel0) # ... self.assertEqual(y[9,0,0,0], upper_left_channel0) if __name__ == '__main__': unittest.main()
import importlib def get_project_settings(): modele = importlib.import_module("setting") return modele if __name__ == '__main__': get_project_settings()
#!/usr/bin/python """ --- Day 11: Hex Ed --- Crossing the bridge, you've barely reached the other side of the stream when a program comes up to you, clearly in distress. "It's my child process," she says, "he's gotten lost in an infinite grid!" Fortunately for her, you have plenty of experience with infinite grids. Unfortunately for you, it's a hex grid. The hexagons ("hexes") in this grid are aligned such that adjacent hexes can be found to the north, northeast, southeast, south, southwest, and northwest: \ n / nw +--+ ne / \ -+ +- \ / sw +--+ se / s \ You have the path the child process took. Starting where he started, you need to determine the fewest number of steps required to reach him. (A "step" means to move from the hex you are in to any adjacent hex.) For example: ne,ne,ne is 3 steps away. ne,ne,sw,sw is 0 steps away (back where you started). ne,ne,s,s is 2 steps away (se,se). se,sw,se,sw,sw is 3 steps away (s,s,sw). --- Part Two --- How many steps away is the furthest he ever got from his starting position? """ # use a counter instead of a list # of steps taken to improve speed dir_idx = { "n" : 0, "s" : 1, "ne": 2, "nw": 3, "se": 4, "sw": 5 } def opposite(a): if a == "ne": return "sw" elif a == "n": return "s" elif a == "nw": return "se" elif a == "se": return "nw" elif a == "s": return "n" elif a == "sw": return "ne" else: return None def condense(a, b): if a == "ne" and b == "s": return "se" elif b == "ne" and a == "s": return "se" elif a == "ne" and b == "nw": return "n" elif b == "ne" and a == "nw": return "n" elif a == "se" and b == "sw": return "s" elif b == "se" and a == "sw": return "s" elif a == "nw" and b == "s": return "sw" elif b == "nw" and a == "s": return "sw" elif a == "se" and b == "n": return "ne" elif b == "se" and a == "n": return "ne" elif a == "sw" and b == "n": return "nw" elif b == "sw" and a == "n": return "nw" return None def build_count(arr, seq): for step in seq: arr[dir_idx[step]] += 1 return arr def distance2(counter): last_sum = 0 while last_sum != sum(counter): # Cancel N and S m = min(counter[0],counter[1]) counter[0] -= m counter[1] -= m # Cancel NE and SW m = min(counter[2],counter[5]) counter[2] -= m counter[5] -= m # Cancel NW and SE m = min(counter[3],counter[4]) counter[3] -= m counter[4] -= m # Compress NE and S to SE m = min(counter[2],counter[1]) counter[2] -= m counter[1] -= m counter[4] += m # Compress NE and NW to N m = min(counter[2],counter[3]) counter[2] -= m counter[3] -= m counter[0] += m # Compress SE and SW to S m = min(counter[4],counter[5]) counter[4] -= m counter[5] -= m counter[1] += m # Compress NW and S to SW m = min(counter[3],counter[1]) counter[3] -= m counter[1] -= m counter[5] += m # Compress SE and N to NE m = min(counter[4],counter[0]) counter[4] -= m counter[0] -= m counter[2] += m # Compress SW and N to NW m = min(counter[5],counter[0]) counter[5] -= m counter[0] -= m counter[3] += m last_sum = sum(counter) return counter def distance(seq): steps = [] path = seq while True: changed = False while len(path) > 0: cur = path[0] op = opposite(cur) if op in path[1:]: path.remove(op) path.remove(cur) changed = True else: steps.append(cur) path = path[1:] while len(steps) > 0: cur = steps[0] for val in steps[1:]: cond = condense(cur, val) if cond != None: path.append(cond) steps.remove(val) cur = '' changed = True break if cur != '': path.append(cur) steps = steps[1:] if changed == False: break return path if __name__ == "__main__": # Part 1 Solution with open("day11_input", "r") as infile: path = infile.read().strip() #path = "se,sw,se,sw,sw" path = path.split(",") print len(distance(path)) # Part 2 Solution with open("day11_input", "r") as infile: path = infile.read().strip() path = path.split(",") dirs = [0] * 6 most = 0 for step in path: dirs = build_count(dirs, [step]) most = max(most,sum(distance2(dirs))) print most """ !!! Too Slow !!! """ #most = 0 #t_path = [] #for i in range(len(path)): # t_path.append(path[i]) # t_path = distance(t_path) # most = max(most, len(t_path)) #print most
import time from pgdrive.envs.pgdrive_env import PGDriveEnv from pgdrive.utils import setup_logger def vis_highway_render_with_panda_render(): setup_logger(True) env = PGDriveEnv( { "environment_num": 1, "manual_control": True, "use_render": True, "use_image": False, "use_topdown": True, } ) o = env.reset() s = time.time() for i in range(1, 100000): o, r, d, info = env.step(env.action_space.sample()) env.render() if d: env.reset() if i % 1000 == 0: print("Steps: {}, Time: {}".format(i, time.time() - s)) env.close() if __name__ == '__main__': vis_highway_render_with_panda_render()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """MatrixSetDiag in Python""" import numpy as np def matrix_set_diag(input_np, diagonal): """matrix_set_diag operator implemented in numpy. Returns a numpy array with the diagonal of input array replaced with the provided diagonal values. Parameters ---------- input : numpy.ndarray Input Array. Shape = [D1, D2, D3, ... , Dn-1 , Dn] diagonal : numpy.ndarray Values to be filled in the diagonal. Shape = [D1, D2, D3, ... , Dn-1] Returns ------- result : numpy.ndarray New Array with given diagonal values. Shape = [D1, D2, D3, ... , Dn-1 , Dn] """ out = np.array(input_np, copy=True) n = min(input_np.shape[-1], input_np.shape[-2]) for i in range(n): out[..., i, i] = diagonal[..., i] return out
import mido import json import keyboard import sys # load macro mappings from config file #TODO: command line option for filename macros = json.load((open("config.json", "r"))) # { "channel": "1", "onpress": "", "onchange": "", "onincrease": "", "ondecrease": "", "granularity": 8 }, # configure the behavior for each channel. granularity is # how many triggers per rotation. 1 is the most sensitive, # try 2, 4, 8, 16 etc to add dead zones before firing the # macro again. # this will store the last value for each # key to determine if it's increasing or # decreasing keymap=[0 for i in range(100)] # detect device ports = mido.get_input_names() # no device detected if len(ports) == 0: sys.stderr.write("ERROR: Couldn't find midi device\n") exit(1) print(ports) pnum = input("Please select a midi port number: ") # connect and monitor the device messages with mido.open_input(ports[int(pnum)]) as inport: for msg in inport: #print(msg) # control_change channel=0 control=13 time=0 lines = str(msg).split() for i in range(0, len(lines)): # key value pair in message. a=b # split it into key and value kvpair = lines[i].split('=') # if there was a = in that piece if len(kvpair)>1: # check the index and parse if(i == 2): channel = int(kvpair[1]) if(i == 3): # consume new channel value old_value = keymap[channel] channel_value = int(kvpair[1]) keymap[channel] = channel_value # print("channel: " + str(channel)) # TODO: put these entries in a map and use the channel as index for entry in macros["macros"]: if int(entry["channel"]) == channel: if entry["onpress"] != "" and int(channel_value) == 127 : keyboard.press_and_release(entry["onpress"]) if int(channel_value) % int(entry["granularity"]) == 0: # print(channel_value) # check last value if entry["onchange"] != "": keyboard.press_and_release(entry["onchange"]) if entry["ondecrease"] != "" and int(channel_value) < int(old_value): keyboard.press_and_release(entry["ondecrease"]) if entry["onincrease"] != "" and int(channel_value) > int(old_value): keyboard.press_and_release(entry["onincrease"])
from django.db import models from django.contrib.auth.models import User # Create your models here. class Location(models.Model): name = models.CharField(max_length = 30) def __str__(self): return self.name class Neighbourhood(models.Model): name = models.CharField(max_length=30) location = models.ForeignKey(Location, on_delete=models.CASCADE) occupants = models.IntegerField(null=True, default=0) def create_neighbourhood(self): self.save() def delete_neighbourhood(self): self.delete() @classmethod def find_neighbourhood(cls, neighbourhood_id): neighbourhood = cls.objects.get(id = neighbourhood_id) return neighbourhood def update_neighbourhod(self, name): self.name = name self.save() def update_occupants(self, occupants): self.occupants = occupants self.save() def __str__(self): return self.name class Profile(models.Model): name = models.CharField(max_length = 30) neighbourhood = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE, null=True) bio = models.TextField(null=True) email = models.EmailField(null=True) user = models.OneToOneField(User, on_delete=models.CASCADE) def __str__(self): return self.name class Business(models.Model): name = models.CharField(max_length = 50) email = models.EmailField() description = models.TextField(null=True) neighbourhood = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE) user = models.ForeignKey(Profile, on_delete=models.CASCADE) def create_business(self): self.save() def delete_business(self): self.delete() @classmethod def find_business(cls, business_id): business = cls.objects.get(id = business_id) return business def update_business(self, name): self.name = name self.save() @classmethod def search_by_name(cls,search_term): business = cls.objects.filter(name__icontains = search_term) return business def __str__(self): return self.name class Post(models.Model): title = models.CharField(max_length=100) content = models.TextField() user = models.ForeignKey(User, on_delete=models.CASCADE) neighbourhood = models.ForeignKey(Neighbourhood, on_delete=models.CASCADE) pub_date = models.DateTimeField(auto_now_add=True, null=True) def __str__(self): return self.title
''' StaticRoute Genie Ops Object Outputs for NXOS. ''' class StaticRouteOutput(object): # 'show ipv4 static route' output showIpv4StaticRoute = { 'vrf': { 'default': { 'address_family': { 'ipv4': { 'routes': { '10.4.1.1/32': { 'route': '10.4.1.1/32', 'next_hop': { 'next_hop_list': { 1: { 'index': 1, 'active': True, 'next_hop': '10.1.3.1', 'next_hop_netmask': '32', 'outgoing_interface': 'Ethernet1/2', }, }, }, }, '10.16.2.2/32': { 'route': '10.16.2.2/32', 'next_hop': { 'next_hop_list': { 1: { 'index': 1, 'active': True, 'next_hop': '10.2.3.2', 'next_hop_netmask': '32', 'outgoing_interface': 'Ethernet1/4', }, 2: { 'index': 2, 'active': True, 'next_hop': '10.229.3.2', 'next_hop_netmask': '32', 'outgoing_interface': 'Ethernet1/1', }, }, }, }, }, }, }, }, }, } showIpv6StaticRoute = { 'vrf': { 'default': { 'address_family': { 'ipv6': { 'routes': { '2001:1:1:1::1/128': { 'route': '2001:1:1:1::1/128', 'next_hop': { 'next_hop_list': { 1: { 'index': 1, 'next_hop_vrf': 'default', 'rnh_active': False, 'next_hop': '2001:10:1:3::1', 'next_hop_netmask': '128', 'outgoing_interface': 'Ethernet1/2', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 1, }, 2: { 'index': 2, 'next_hop_vrf': 'default', 'rnh_active': False, 'next_hop': '2001:20:1:3::1', 'next_hop_netmask': '128', 'outgoing_interface': 'Ethernet1/3', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 1, }, }, }, }, '2001:2:2:2::2/128': { 'route': '2001:2:2:2::2/128', 'next_hop': { 'next_hop_list': { 1: { 'index': 1, 'next_hop_vrf': 'default', 'rnh_active': False, 'next_hop': '2001:10:2:3::2', 'next_hop_netmask': '128', 'outgoing_interface': 'Ethernet1/4', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 1, }, 2: { 'index': 2, 'next_hop_vrf': 'default', 'rnh_active': False, 'next_hop': '2001:20:2:3::2', 'next_hop_netmask': '128', 'outgoing_interface': 'Ethernet1/1', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 1, }, }, }, }, }, }, }, }, 'VRF1': { 'address_family': { 'ipv6': { 'routes': { '2001:1:1:1::1/128': { 'route': '2001:1:1:1::1/128', 'next_hop': { 'outgoing_interface': { 'Null0': { 'outgoing_interface': 'Null0', 'preference': 1, 'resolved_tid': 80000003, 'bfd_enabled': False, 'rnh_active': False, 'next_hop_vrf': 'VRF1', }, }, 'next_hop_list': { 1: { 'index': 1, 'next_hop_vrf': 'VRF1', 'rnh_active': False, 'next_hop': '2001:10:1:3::1', 'next_hop_netmask': '128', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 1, }, 2: { 'index': 2, 'next_hop_vrf': 'VRF1', 'rnh_active': False, 'next_hop': '2001:20:1:3::1', 'next_hop_netmask': '128', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 1, }, }, }, }, '2001:2:2:2::2/128': { 'route': '2001:2:2:2::2/128', 'next_hop': { 'outgoing_interface': { 'Null0': { 'outgoing_interface': 'Null0', 'preference': 2, 'resolved_tid': 80000003, 'bfd_enabled': False, 'rnh_active': False, 'next_hop_vrf': 'VRF1', }, }, 'next_hop_list': { 1: { 'index': 1, 'next_hop_vrf': 'VRF1', 'rnh_active': False, 'next_hop': '2001:10:2:3::2', 'next_hop_netmask': '128', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 1, }, 2: { 'index': 2, 'next_hop_vrf': 'VRF1', 'rnh_active': False, 'next_hop': '2001:20:2:3::2', 'next_hop_netmask': '128', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 1, }, 3: { 'index': 3, 'next_hop_vrf': 'VRF1', 'rnh_active': True, 'next_hop': '2001:20:2:3::2', 'next_hop_netmask': '128', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 3, }, 4: { 'index': 4, 'next_hop_vrf': 'VRF1', 'rnh_active': True, 'next_hop': '2001:50:2:3::2', 'next_hop_netmask': '128', 'bfd_enabled': False, 'resolved_tid': 0, 'preference': 5, }, }, }, }, }, }, }, }, }, } staticRouteOpsOutput = { 'vrf': { 'default': { 'address_family': { 'ipv4': { 'routes': { '10.4.1.1/32': { 'route': '10.4.1.1/32', 'next_hop': { 'next_hop_list': { 1: { 'index': 1, 'active': True, 'next_hop': '10.1.3.1', 'outgoing_interface': 'Ethernet1/2', }, }, }, }, '10.16.2.2/32': { 'route': '10.16.2.2/32', 'next_hop': { 'next_hop_list': { 1: { 'index': 1, 'active': True, 'next_hop': '10.2.3.2', 'outgoing_interface': 'Ethernet1/4', }, 2: { 'index': 2, 'active': True, 'next_hop': '10.229.3.2', 'outgoing_interface': 'Ethernet1/1', }, }, }, }, }, }, 'ipv6': { 'routes': { '2001:1:1:1::1/128': { 'route': '2001:1:1:1::1/128', 'next_hop': { 'next_hop_list': { 1: { 'index': 1, 'next_hop_vrf': 'default', 'next_hop': '2001:10:1:3::1', 'outgoing_interface': 'Ethernet1/2', 'preference': 1, }, 2: { 'index': 2, 'next_hop_vrf': 'default', 'next_hop': '2001:20:1:3::1', 'outgoing_interface': 'Ethernet1/3', 'preference': 1, }, }, }, }, '2001:2:2:2::2/128': { 'route': '2001:2:2:2::2/128', 'next_hop': { 'next_hop_list': { 1: { 'index': 1, 'next_hop_vrf': 'default', 'next_hop': '2001:10:2:3::2', 'outgoing_interface': 'Ethernet1/4', 'preference': 1, }, 2: { 'index': 2, 'next_hop_vrf': 'default', 'next_hop': '2001:20:2:3::2', 'outgoing_interface': 'Ethernet1/1', 'preference': 1, }, }, }, }, }, }, }, }, 'VRF1': { 'address_family': { 'ipv6': { 'routes': { '2001:1:1:1::1/128': { 'route': '2001:1:1:1::1/128', 'next_hop': { 'outgoing_interface': { 'Null0': { 'outgoing_interface': 'Null0', 'preference': 1, 'next_hop_vrf': 'VRF1', }, }, 'next_hop_list': { 1: { 'index': 1, 'next_hop_vrf': 'VRF1', 'next_hop': '2001:10:1:3::1', 'preference': 1, }, 2: { 'index': 2, 'next_hop_vrf': 'VRF1', 'next_hop': '2001:20:1:3::1', 'preference': 1, }, }, }, }, '2001:2:2:2::2/128': { 'route': '2001:2:2:2::2/128', 'next_hop': { 'outgoing_interface': { 'Null0': { 'outgoing_interface': 'Null0', 'preference': 2, 'next_hop_vrf': 'VRF1', }, }, 'next_hop_list': { 1: { 'index': 1, 'next_hop_vrf': 'VRF1', 'next_hop': '2001:10:2:3::2', 'preference': 1, }, 2: { 'index': 2, 'next_hop_vrf': 'VRF1', 'next_hop': '2001:20:2:3::2', 'preference': 1, }, 3: { 'index': 3, 'next_hop_vrf': 'VRF1', 'next_hop': '2001:20:2:3::2', 'preference': 3, }, 4: { 'index': 4, 'next_hop_vrf': 'VRF1', 'next_hop': '2001:50:2:3::2', 'preference': 5, }, }, }, }, }, }, }, }, }, }
import os import sys if not os.path.isdir(os.path.join(sys.path[0], "data_pipeline", "tests")): raise Exception("Tests must be run from base dir of repo")
from .topology import Topology from .elements import Atom, Bond, Angle, Dihedral, Proper, Improper from .molecule import Molecule from .zmatrix import ZMatrix from .rotamer import RotamerLibrary from .conformer import BCEConformations
from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.mime.text import MIMEText from email.Utils import formatdate from os.path import basename from smtplib import SMTP class CustomSMTP(SMTP): def __init__(self, *args, **kwargs): self.host = kwargs.pop('host', 'localhost') self.port = kwargs.pop('port', 25) self.user = kwargs.pop('user', '') self.password = kwargs.pop('password', '') SMTP.__init__(self, *args, **kwargs) def begin(self): """ connects and optionally authenticates a connection.""" self.connect(self.host, self.port) if self.user: self.starttls() self.login(self.user, self.password) def setup_smtp_factory(**settings): """ expects a dictionary with 'mail.' keys to create an appropriate smtplib.SMTP instance""" return CustomSMTP( host=settings.get('mail.host', 'localhost'), port=int(settings.get('mail.port', 25)), user=settings.get('mail.user'), password=settings.get('mail.password'), timeout=float(settings.get('mail.timeout', 60)), ) def checkRecipient(gpg_context, uid): valid_key = bool([k for k in gpg_context.list_keys() if uid in ', '.join(k['uids']) and k['trust'] in 'ofqmu-']) if not valid_key: print('Invalid recipient %s' % uid) return valid_key def sendMultiPart(smtp, gpg_context, sender, recipients, subject, text, attachments): """ a helper method that composes and sends an email with attachments requires a pre-configured smtplib.SMTP instance""" sent = 0 for to in recipients: if not to.startswith('<'): uid = '<%s>' % to else: uid = to if not checkRecipient(gpg_context, uid): continue msg = MIMEMultipart() msg['From'] = sender msg['To'] = to msg['Subject'] = subject msg["Date"] = formatdate(localtime=True) msg.preamble = u'This is an email in encrypted multipart format.' attach = MIMEText(str(gpg_context.encrypt(text.encode('utf-8'), uid, always_trust=True))) attach.set_charset('UTF-8') msg.attach(attach) for attachment in attachments: with open(attachment, 'rb') as fp: attach = MIMEBase('application', 'octet-stream') attach.set_payload(str(gpg_context.encrypt_file(fp, uid, always_trust=True))) attach.add_header('Content-Disposition', 'attachment', filename=basename('%s.pgp' % attachment)) msg.attach(attach) # TODO: need to catch exception? # yes :-) we need to adjust the status accordingly (>500 so it will be destroyed) smtp.begin() smtp.sendmail(sender, to, msg.as_string()) smtp.quit() sent += 1 return sent
# Ok, lets collect data from preprogrammed pick import gym import roboticsPlayroomPybullet import numpy as np import os import shutil from tqdm import tqdm env = gym.make('pandaPlay1Obj-v0') env.render(mode='human') env.reset() open_gripper = np.array([0.04]) closed_gripper = np.array([0.01]) p = env.panda.bullet_client which_object = 0 top_down_grip_ori = np.array(env.p.getQuaternionFromEuler([ np.pi, 0, 0])) def viz_pos(desired_position): goal = np.ones(6) goal[which_object * 3:(which_object + 1) * 3] = desired_position env.panda.reset_goal_pos(goal) #--These two skills are used both in picking and pushing, use the offset to push by going next to def go_above(env, obj_number, offset = np.zeros(3)): desired_position = env.panda.calc_environment_state()[obj_number]['pos'] + np.array([0, 0.00, 0.1]) + offset action = np.concatenate([desired_position , top_down_grip_ori, open_gripper]) return action def descend_push(env, obj_number, offset = np.zeros(3)): desired_position = env.panda.calc_environment_state()[obj_number]['pos'] + np.array([0, 0,0.0]) + offset current_position = env.panda.calc_actor_state()['pos'] #current_orn = env.panda.calc_actor_state()['orn'] action = np.concatenate([desired_position , top_down_grip_ori, closed_gripper]) return action # Skills only used for picking def descend(env, obj_number, offset = np.zeros(3)): desired_position = env.panda.calc_environment_state()[obj_number]['pos'] + offset current_position = env.panda.calc_actor_state()['pos'] # descend slowly for the sake of the IK desired_position[2] = max(desired_position[2], current_position[2] - 0.03) #current_orn = p.getEulerFromQuaternion(env.panda.calc_actor_state()['orn']) viz_pos(desired_position) action = np.concatenate([desired_position , top_down_grip_ori, open_gripper]) return action def close(env, obj_number, offset = np.zeros(3)): desired_position = env.panda.calc_environment_state()[obj_number]['pos'] current_position = env.panda.calc_actor_state()['pos'] #current_orn = env.panda.calc_actor_state()['orn'] action = np.concatenate([desired_position , top_down_grip_ori, closed_gripper]) return action def lift(env, obj_number, offset = np.zeros(3)): desired_position = env.panda.calc_environment_state()[obj_number]['pos'] desired_position[2] += 0.1 current_position = env.panda.calc_actor_state()['pos'] viz_pos(desired_position) #current_orn = env.panda.calc_actor_state()['orn'] action = np.concatenate([desired_position , top_down_grip_ori, closed_gripper]) return action def take_to(env, position, offset = np.zeros(3)): desired_position = position current_position = env.panda.calc_actor_state()['pos'] delta = (desired_position - current_position)*0.2 viz_pos(desired_position) #current_orn = env.panda.calc_actor_state()['orn'] action = np.concatenate([current_position+delta , top_down_grip_ori, closed_gripper]) return action def reorient_obj(env, position, offset = np.zeros(3)): desired_position = position action = np.concatenate([desired_position, env.panda.default_arm_orn, closed_gripper]) return action def go_above_reorient(env, obj_number, offset = np.zeros(3)): desired_position = env.panda.calc_environment_state()[obj_number]['pos'] + np.array([0, 0.00, 0.1]) action = np.concatenate([desired_position , env.panda.default_arm_orn, open_gripper]) return action def pick_to(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses): global which_object times = np.array([0.7, 1.2, 1.4, 1.6, 2.5, 2.9]) + t #times = np.array([1.0, 1.5, 2.0, 2.5, 3.0, 3.5]) + t states = [go_above, descend, close, lift, take_to, go_above] take_to_pos = np.random.uniform(env.goal_lower_bound, env.goal_upper_bound) goal = env.panda.goal goal[which_object*3:(which_object+1)*3] = take_to_pos env.panda.reset_goal_pos(goal) data = peform_action(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses, times, states, goal=take_to_pos, obj_number=which_object) min(env.num_objects-1, not which_object) # flip which object we are playing with return data def pick_reorient(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses): global which_object times = np.array([0.7, 1.2, 1.4, 1.6, 2.5, 2.9]) + t #times = np.array([1.0, 1.5, 2.0, 2.5, 3.0, 3.5]) + t states = [go_above, descend, close, lift, reorient_obj, go_above_reorient] take_to_pos = env.panda.calc_environment_state()[which_object]['pos'] + np.array([0,0,0.05]) goal = env.panda.goal goal[which_object*3:(which_object+1)*3] = take_to_pos env.panda.reset_goal_pos(goal) data = peform_action(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses, times, states, goal=take_to_pos, obj_number=which_object) which_object = min(env.num_objects-1, not which_object) # flip which object we are playing with return data #################################################### Door script #################################### door_z = 0.12 def go_up(env, goal): desired_position = [0,0,0] desired_position[2] = 0.3 action = np.concatenate([np.array(desired_position), top_down_grip_ori, open_gripper]) return action def go_in_front(env, goal): door_x = env.panda.calc_environment_state()[2]['pos'][0] desired_position = np.array([door_x, 0.30, door_z]) action = np.concatenate([desired_position, env.panda.default_arm_orn, open_gripper]) return action def close_on_door(env, goal): door_x = env.panda.calc_environment_state()[2]['pos'][0] desired_position = np.array([door_x, 0.4, door_z]) action = np.concatenate([desired_position, env.panda.default_arm_orn, closed_gripper]) return action def pull_door(env, goal): action = np.concatenate([goal, env.panda.default_arm_orn, closed_gripper]) return action def toggle_door(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses): #times = np.array([0.4, 1.0, 1.4, 1.9, 2.0]) + t times = np.array([0.7, 1.0, 1.5, 1.6,2.0]) + t #times = np.array([1.0, 1.5, 2.0, 2.5, 3.0, 3.5]) + t states = [go_in_front, close_on_door, pull_door, go_in_front, go_up] # go up is optional door_x = env.panda.calc_environment_state()[2]['pos'][0] if door_x < 0: des_x = 0.15 else: des_x = -0.15 desired_position = np.array([des_x, 0.4, door_z]) data = peform_action(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses, times, states, goal=desired_position, obj_number=None) return data ################################################### Toggle Drawer ############################################################# drawer_x = -0.15 drawer_handle = 0.25 def go_above_drawer(env, goal): drawer_y = -env.panda.calc_environment_state()[3]['pos'][0] -drawer_handle desired_position = [drawer_x, drawer_y, -0.00] action = np.concatenate([np.array(desired_position), top_down_grip_ori, open_gripper]) return action def close_on_drawer(env, goal): drawer_y = -env.panda.calc_environment_state()[3]['pos'][0] - drawer_handle desired_position = [drawer_x, drawer_y, -0.1] action = np.concatenate([np.array(desired_position), top_down_grip_ori, open_gripper]) return action def pull_drawer(env, goal): desired_position = goal action = np.concatenate([np.array(desired_position), top_down_grip_ori, closed_gripper]) return action def toggle_drawer(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses): #times = np.array([0.4, 1.0, 1.4, 1.9, 2.0]) + t times = np.array([0.7, 1.0, 1.5, 1.6]) + t #times = np.array([1.0, 1.5, 2.0, 2.5, 3.0, 3.5]) + t states = [go_above_drawer, close_on_drawer, pull_drawer, go_up] # go up is optional drawer_y = -env.panda.calc_environment_state()[3]['pos'][0] if drawer_y < 0: des_y = 0.15 else: des_y = -0.15 desired_position = np.array([drawer_x, -0.2+des_y, -0.1]) data = peform_action(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses, times, states, goal=desired_position, obj_number=None) return data def quat_sign_flip(a, idxs): for pair in idxs: for i in range(1, len(a)): quat = a[i, pair[0]:pair[1]] last_quat = a[i - 1, pair[0]:pair[1]] if (np.sign(quat) == -np.sign(last_quat)).all(): # i.e, it is an equivalent quaternion a[i, pair[0]:pair[1]] = - a[i, pair[0]:pair[1]] return a def peform_action(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses, times, states, goal=None, offset=np.zeros(3), obj_number=0): state_pointer = 0 while (t < times[state_pointer]): if obj_number is not None: if state_pointer == 4: action = states[state_pointer](env, goal, offset = np.zeros(3)) else: action = states[state_pointer](env, obj_number=obj_number, offset=offset) else: action = states[state_pointer](env, goal) if not debugging: p.saveBullet(example_path + '/env_states/' + str(counter) + ".bullet") counter += 1 # little counter for saving the bullet states acts.append(action), obs.append(o['observation']), ags.append( o['achieved_goal']), \ cagb.append(o['controllable_achieved_goal']), currentPoses.append(o['joints']) o2, r, d, info = env.step(action) targetPoses.append(info['target_poses']) #print(o2['achieved_goal'][16:]) if d: print('Env limits exceeded') return {'success':0, 't':t} # NOTE! This is different to how it is done in goal conditioned RL, the ag is from # the same timestep because thats how we'll use it in LFP (and because its harder to do # the rl style step reset in VR teleop. o = o2 t += dt if t >= times[state_pointer]: state_pointer += 1 if state_pointer > len(times)-1: break return {'last_obs': o, 'success': 1, 't':t, 'counter':counter} debugging = False dt = 0.04 base_path = 'collected_data/scripted_play_demos/' obs_act_path = base_path + 'obs_act_etc/' env_state_path = base_path + 'states_and_ims/' try: os.makedirs(obs_act_path) except: pass try: os.makedirs(env_state_path) except: pass activities = [toggle_drawer, toggle_door, pick_reorient, pick_to] #[pick_to]#, push_directionally] #activities = [push_directionally] play_len = 8 for i in tqdm(range(0, 500)): # 60 o = env.reset() t = 0 acts, obs, currentPoses, ags, cagb, targetPoses = [], [], [], [], [], [] demo_count = len(list(os.listdir(obs_act_path))) example_path = env_state_path + str(demo_count) npz_path = obs_act_path + str(demo_count) if not debugging: os.makedirs(example_path + '/env_states') os.makedirs(example_path + '/env_images') os.makedirs(npz_path) counter = 0 #pbar = tqdm(total=play_len) while(t < play_len): activity_choice = np.random.choice(len(activities)) result = activities[activity_choice](env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses) if not result['success']: break #pbar.update(result['t'] - t) t = result['t'] counter = result['counter'] o = result['last_obs'] if t>6: #reasonable length with some play interaction if not debugging: acts = quat_sign_flip(np.array(acts), [(3, 7)]) obs = quat_sign_flip(np.array(obs), [(3, 7), (10, 14)]) ags = quat_sign_flip(np.array(ags), [(3, 7)]) np.savez(npz_path+ '/data', acts=acts, obs=obs, achieved_goals =ags, controllable_achieved_goals =cagb, joint_poses=currentPoses, target_poses=targetPoses) demo_count += 1 else: print('Demo failed') # delete the folder with all the saved states within it if not debugging: shutil.rmtree(obs_act_path + str(demo_count)) shutil.rmtree(env_state_path + str(demo_count)) # # def push_directionally(env, t, o, counter, acts,obs,currentPoses,ags,cagb,targetPoses): # times = np.array([0.5, 1.0, 1.4]) + t # states = [go_above, descend_push, go_above] # # choose a random point in a circle around the block # alpha = np.random.random(1)*2*np.pi # r = 0.03 # x,z = r * np.cos(alpha), r * np.sin(alpha) # offset = np.array([x,0,z]) # # # return peform_action(env, t, o, counter, acts, obs, currentPoses, ags, cagb, targetPoses, times, states, offset=offset)
import requests from bs4 import BeautifulSoup import re def solr(request,title,author): r = requests.get("http://katalog.stbib-koeln.de:8983/solr/select?rows=1&q="+title+"+"+author) soup = BeautifulSoup(r.text) PublicationDate = soup.find("arr", {"name": "DateOfPublication"}).find("str") Author = soup.find("arr",{"name":"Author"}).find_all("str") Authors = [] for a in Author: Authors.append(a.text) MediaType = soup.find("arr",{"name":"MaterialType"}).find("str") Keywords = [] Ky = soup.find("arr",{"name":"text_auto"}).find_all("str") for k in Ky: Keywords.append(k.text) Category = [] Catg = soup.find("arr",{"name":"SubjectHeading"}).find_all("str") for c in Catg: Category.append(c.text) return JsonResponse({'metadata':PublicationDate, Authors, MediaType, Keywords, Category })
import json import os # formats songs for the app # note - translate uses python3 syntax, so run this with python3! # note - needs work on getting rid of [] from genius things_to_remove = dict.fromkeys(map(ord, '()[]"'), None) output = "" if (os.path.isfile("input.txt")): with open("input.txt") as f: words = f.read().split() for word in words: if not word[0] == '(' and not word[0] == '[' and not word[-1] == ')' and not word[-1] == ']': output += word.translate(things_to_remove) + " " f= open("output.txt","w") f.write(output)
from typing import List, Any, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.metrics import adjusted_rand_score from ML import DBscan_step_positions, DBscan_step_positions_and_velocity, build_ground_truth, \ DBscan_step_intuition_dist_multistep_1, DBscan_step_intuition_dist from utils import charge_labels_simulation if __name__ == "__main__": mode = 2 # 0: analyse number of clusters on list_nb_boids on a particular timestep # 1: analyse number of clusters for each population in list_nb_boids on different timesteps # 2: analyse ARI scores for each population in list_nb_boids on different timesteps if mode == 1: # another part where we watch evolution of number of clusters during the simulation depending on number of boids list_n_boids = [200, 500, 1000] step_to_analyse = [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 2999] # get statistics on number of clusters on time-step :step_to_analyse: for n_boids in list_n_boids: list_num_boids = [n_boids] * 4 # create a dataframe for a population name_pandas_file_statistics = "evolution_clusters_statistics_on_" + str(n_boids) column_names = ["time step", "std number clusters", "mean number clusters"] column_names_p = ["time step", "std number clusters p", "mean number clusters p"] column_names_pv = ["time step", "std number clusters pv", "mean number clusters pv"] results_statistics = pd.DataFrame(columns=column_names) results_statistics_p = pd.DataFrame(columns=column_names_p) results_statistics_pv = pd.DataFrame(columns=column_names_pv) for step in step_to_analyse: num_clusters = [] num_clusters_pv = [] num_clusters_p = [] for i in range(10): # 10 different simulations # get the directory directory_name = "simulation_data_" + str(list_num_boids) + "_Boids_" + str(i) + "/" labels_pv = DBscan_step_positions_and_velocity(step=step, old_labels=None, repository=directory_name) labels_p = DBscan_step_positions(step=step, old_labels=None, repository=directory_name) labels = build_ground_truth(step=step, old_labels=None, repository=directory_name, list_nb_boids=list_num_boids) nb_clusters = np.unique(labels).shape[0] - 1 nb_clusters_p = np.unique(labels).shape[0] - 1 nb_clusters_pv = np.unique(labels).shape[0] - 1 print("num clusters time step {0} is {1}".format(step, nb_clusters)) num_clusters.append(nb_clusters) num_clusters_pv.append(nb_clusters_pv) num_clusters_p.append(nb_clusters_p) mean_clusters = np.mean(num_clusters) std_clusters = np.std(num_clusters) mean_clusters_p = np.mean(num_clusters_p) std_clusters_p = np.std(num_clusters_p) mean_clusters_pv = np.mean(num_clusters_pv) std_clusters_pv = np.std(num_clusters_pv) results_statistics = results_statistics.append({"time step": step, "mean number clusters": mean_clusters, "std number clusters": std_clusters}, ignore_index=True) results_statistics_p = results_statistics_p.append({"time step": step, "mean number clusters p": mean_clusters_p, "std number clusters p": std_clusters_p}, ignore_index=True) results_statistics_pv = results_statistics_pv.append({"time step": step, "mean number clusters pv": mean_clusters_pv, "std number clusters pv": std_clusters_pv}, ignore_index=True) results_statistics.to_csv(name_pandas_file_statistics + ".csv", index=False) if mode == 2: # another part where we watch evolution of number of clusters during the simulation depending on number of boids list_n_boids = [200, 500, 1000] # todo to adjust step_to_analyse_pop200 = [500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 2999] step_to_analyse_pop500 = [500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 2999] step_to_analyse_pop1000 = [500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 2999] method = 4 # see methods behind # get statistics on number of clusters on time-step :step_to_analyse: for n_boids in [500, 1000]: # list_n_boids: if n_boids == 200: step_to_analyse = step_to_analyse_pop200 elif n_boids == 500: step_to_analyse = step_to_analyse_pop500 elif n_boids == 1000: step_to_analyse = step_to_analyse_pop500 list_num_boids = [n_boids] * 4 # create a dataframe for a population name = None if method == 1: name = "DBSCAN_position_Euclidean_metric" eps = [70, 75, 80, 85] min_sample = [2, 4, 6, 8, 10] elif method == 2: name = "DBSCAN_position_velocities_Euclidean_metric" # param_to_test alpha = [0.8, 1, 1.2, 1.4] beta = [5, 10, 20, 30, 40, 50, 60] elif method == 3: name = "DBSCAN_position_velocities_custom_metric" alpha = [0.8, 1, 1.2, 1.4] phi = [10, 20, 30, 40, 50] elif method == 4: name = "DBSCAN_position_velocities_multistep_Euclidean" alpha = [0.6, 0.8, 1, 1.2, 1.4] phi = [10, 20, 30, 40, 50] gamma = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99] if method == 1: for epsilon in eps: for min_sample_ in min_sample: params = "min_sample=" + str(min_sample_) + "_" + "epsilon=" + str(epsilon) name_pandas_file_statistics = "evolution_ARI_statistics_on_" + str( n_boids) + "_" + name + "_" + params column_names = ["time step", "std ARI", "mean ARI"] results_statistics = pd.DataFrame(columns=column_names) for step in step_to_analyse: ARI_list = [] for i in range(10): # 5 different simulations # get the directory directory_name = "simulation_data_" + str(list_num_boids) + "_Boids_" + str(i) + "/" # get ground truth labels_truth = build_ground_truth(step=step, old_labels=None, repository=directory_name, list_nb_boids=list_num_boids) labels = DBscan_step_positions(step=step, old_labels=None, repository=directory_name, eps=epsilon, min_sample=min_sample_) ARI = adjusted_rand_score(labels_truth, labels) print("rand score time step {0} is {1}".format(step, ARI)) ARI_list.append(ARI) mean_ARI = np.mean(ARI_list) std_ARI = np.std(ARI_list) results_statistics = results_statistics.append({"time step": step, "mean ARI": mean_ARI, "std ARI": std_ARI}, ignore_index=True) results_statistics.to_csv(name_pandas_file_statistics + ".csv", index=False) if method == 2: for alpha_ in alpha: for beta_ in beta: params = "alpha=" + str(alpha_) + "_" + "beta=" + str(beta_) name_pandas_file_statistics = "evolution_ARI_statistics_on_" + str( n_boids) + "_" + name + "_" + params column_names = ["time step", "std ARI", "mean ARI"] results_statistics = pd.DataFrame(columns=column_names) for step in step_to_analyse: ARI_list = [] for i in range(10): # 5 different simulations # get the directory directory_name = "simulation_data_" + str(list_num_boids) + "_Boids_" + str(i) + "/" # get ground truth labels_truth = build_ground_truth(step=step, old_labels=None, repository=directory_name, list_nb_boids=list_num_boids) labels = DBscan_step_positions_and_velocity(step=step, old_labels=None, repository=directory_name, alpha=alpha_, beta=beta_) ARI = adjusted_rand_score(labels_truth, labels) print("rand score time step {0} is {1}".format(step, ARI)) ARI_list.append(ARI) mean_ARI = np.mean(ARI_list) std_ARI = np.std(ARI_list) results_statistics = results_statistics.append({"time step": step, "mean ARI": mean_ARI, "std ARI": std_ARI}, ignore_index=True) results_statistics.to_csv(name_pandas_file_statistics + ".csv", index=False) if method == 3: for alpha_ in alpha: for phi_ in phi: params = "alpha=" + str(alpha_) + "_" + "phi=" + str(phi_) name_pandas_file_statistics = "evolution_ARI_statistics_on_" + str( n_boids) + "_" + name + "_" + params column_names = ["time step", "std ARI", "mean ARI"] results_statistics = pd.DataFrame(columns=column_names) for step in step_to_analyse: ARI_list = [] for i in range(10): # 5 different simulations # get the directory directory_name = "simulation_data_" + str(list_num_boids) + "_Boids_" + str(i) + "/" # get ground truth labels_truth = build_ground_truth(step=step, old_labels=None, repository=directory_name, list_nb_boids=list_num_boids) labels = DBscan_step_intuition_dist(step=step, old_labels=None, repository=directory_name, alpha_=alpha_, phi_=phi_) ARI = adjusted_rand_score(labels_truth, labels) print("rand score time step {0} is {1}".format(step, ARI)) ARI_list.append(ARI) mean_ARI = np.mean(ARI_list) std_ARI = np.std(ARI_list) results_statistics = results_statistics.append({"time step": step, "mean ARI": mean_ARI, "std ARI": std_ARI}, ignore_index=True) results_statistics.to_csv(name_pandas_file_statistics + ".csv", index=False) if method == 4: for gamma_ in gamma: for phi_ in phi: for alpha_ in alpha: params = "alpha=" + str(alpha_) + "_" + "phi=" + str(phi_) + "_" + "gamma=" + str(gamma_) name_pandas_file_statistics = "evolution_ARI_statistics_on_" + str(n_boids) + "_" + name \ + "_" + params column_names = ["time step", "std ARI", "mean ARI"] results_statistics = pd.DataFrame(columns=column_names) for step in step_to_analyse: ARI_list = [] for i in range(10): # 5 different simulations # get the directory directory_name = "simulation_data_" + str(list_num_boids) + "_Boids_" + str(i) + "/" # get ground truth labels_truth = build_ground_truth(step=step, old_labels=None, repository=directory_name, list_nb_boids=list_num_boids) labels = DBscan_step_intuition_dist_multistep_1(step=step, old_labels=None, repository=directory_name, phi_=phi_, alpha_=alpha_, gamma_=gamma_) ARI = adjusted_rand_score(labels_truth, labels) print("rand score time step {0} is {1}".format(step, ARI)) ARI_list.append(ARI) mean_ARI = np.mean(ARI_list) std_ARI = np.std(ARI_list) results_statistics = results_statistics.append({"time step": step, "mean ARI": mean_ARI, "std ARI": std_ARI}, ignore_index=True) results_statistics.to_csv(name_pandas_file_statistics + ".csv", index=False)
import asyncio from dataclasses import dataclass from enum import Enum import functools import heapq from dataclasses_json import dataclass_json import numpy as np from runstats import Statistics from typing import Callable, List, Optional from knn import utils from knn.utils import JSONType from .base import Reducer class ListReducer(Reducer): def __init__(self): self.results = [] def handle_result(self, input, output: JSONType): self.results.append(output) @property def result(self) -> List[JSONType]: return self.results class IsFinishedReducer(Reducer): def __init__(self): self.finished = asyncio.Event() def finish(self): self.finished.set() def handle_result(self, input, output): pass @property def result(self) -> bool: return self.finished.is_set() class TopKReducer(Reducer): @dataclass_json @dataclass class ScoredResult: score: float input: JSONType output: JSONType def __lt__(self, other): return self.score < other.score def __init__( self, k: int, extract_func: Optional[Callable[[JSONType], float]] = None ) -> None: super().__init__() self.k = k self.extract_func = extract_func or self.extract_value self._top_k: List[TopKReducer.ScoredResult] = [] def handle_result(self, input: JSONType, output: JSONType) -> None: result = TopKReducer.ScoredResult(self.extract_func(output), input, output) if len(self._top_k) < self.k: heapq.heappush(self._top_k, result) elif self._top_k[0] < result: heapq.heapreplace(self._top_k, result) def extract_value(self, output: JSONType) -> float: assert isinstance(output, float) return output @property def result(self) -> List[ScoredResult]: return list(reversed(sorted(self._top_k))) class VectorReducer(Reducer): class PoolingType(Enum): NONE = functools.partial(lambda x: x) MAX = functools.partial(np.max, axis=0) AVG = functools.partial(np.mean, axis=0) def __init__( self, pool_func: PoolingType = PoolingType.NONE, extract_func: Optional[Callable[[JSONType], np.ndarray]] = None, ) -> None: super().__init__() self.pool_func = pool_func self.extract_func = extract_func or self.extract_value self._results = [] # type: List[np.ndarray] def handle_result(self, input: JSONType, output: JSONType) -> None: self._results.append(self.extract_func(output)) def extract_value(self, output: JSONType) -> np.ndarray: assert isinstance(output, str) return utils.base64_to_numpy(output) @property def result(self) -> np.ndarray: return self.pool_func.value(np.stack(self._results)) class StatisticsReducer(Reducer): def __init__(self, extract_func: Optional[Callable[[JSONType], float]] = None): super().__init__() self._result = Statistics() self.extract_func = extract_func or self.extract_value def handle_result(self, input: JSONType, output: JSONType) -> None: self._result.push(self.extract_func(output)) def extract_value(self, output: JSONType) -> float: assert isinstance(output, float) or isinstance(output, int) return output @property def result(self) -> Statistics: return self._result
import json from nose.tools import assert_equal, assert_not_equal from tests.fixtures import WebTest class TestMetricsController(WebTest): def test_index(self): response = self.app.get('/metrics/', follow_redirects=True) assert_equal( response.status_code, 200, '/metrics should return OK' ) assert_equal( response.data.find('log in with Google'), -1, '/metrics should get the list of metrics' ) assert_not_equal( response.data.find('BytesAdded'), -1, 'BytesAdded detail should be displayed' ) assert_not_equal( response.data.find('NamespaceEdits'), -1, 'NamespaceEdits detail should be displayed' ) def test_list(self): response = self.app.get('/metrics/list/', follow_redirects=True) parsed = json.loads(response.data) assert_equal( len(filter(lambda m : m['name'] == 'BytesAdded', parsed['metrics'])), 1, 'test. got: {0}'.format(parsed) ) def test_configure_get(self): response = self.app.get('/metrics/configure/BytesAdded') assert_not_equal( response.data.find('name="positive_only_sum"'), -1, 'A form to configure a BytesAdded metric was not rendered' ) def test_configure_post(self): response = self.app.post('/metrics/configure/BytesAdded', data=dict( start_date='hi' )) assert_not_equal( response.data.find('<li class="text-error">Not a valid datetime value</li>'), -1, 'Validation on a BytesAdded configuration is not happening' ) def test_configure_namespaces_post(self): response = self.app.post('/metrics/configure/NamespaceEdits', data=dict( namespaces='abcd', )) assert_not_equal( response.data.find('<li class="text-error">'), -1, 'Validation on the NamespaceEdits configuration, ' 'namespaces field is not happening.' )
# -*- coding: utf-8 -*- """Crop_data_prep.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1jhfMRdq6na9JiUmcqqZsQAWpknZjvRpY ## Notebook for transforming raw cpdata to Mergable data ### Filter cpdata.csv to MergeFileCrop.cv ### Filter fertilizer.csv to MergerFileFert.csv """ import pandas as pd # Reading the data crop_data_path = '../Data-raw/cpdata.csv' fertilizer_data_path = '../Data-raw/Fertilizer.csv' crop = pd.read_csv(crop_data_path) fert = pd.read_csv(fertilizer_data_path) crop.head() fert.head() # Function for lowering the cases def change_case(i): i = i.replace(" ", "") i = i.lower() return i fert['Crop'] = fert['Crop'].apply(change_case) crop['label'] = crop['label'].apply(change_case) #make some changes in ferttilizer dataset fert['Crop'] = fert['Crop'].replace('mungbeans','mungbean') fert['Crop'] = fert['Crop'].replace('lentils(masoordal)','lentil') fert['Crop'] = fert['Crop'].replace('pigeonpeas(toordal)','pigeonpeas') fert['Crop'] = fert['Crop'].replace('mothbean(matki)','mothbeans') fert['Crop'] = fert['Crop'].replace('chickpeas(channa)','chickpea') crop.head() crop.tail() crop_names = crop['label'].unique() crop_names fert.head() del fert['Unnamed: 0'] crop_names_from_fert = fert['Crop'].unique() crop_names_from_fert for i in crop_names_from_fert: print(crop[crop['label'] == i]) crop['label'] extract_labels = [] for i in crop_names_from_fert: if i in crop_names: extract_labels.append(i) # using extract labesl on crop to get all the data related to those labels new_crop = pd.DataFrame(columns = crop.columns) new_fert = pd.DataFrame(columns = fert.columns) for label in extract_labels: new_crop = new_crop.append(crop[crop['label'] == label]) for label in extract_labels: new_fert = new_fert.append(fert[fert['Crop'] == label].iloc[0]) new_crop new_fert new_crop.to_csv('../Data-raw/MergeFileCrop.csv') new_fert.to_csv('../Data-raw/FertilizerData.csv')
import sys import os.path as op from pathlib import Path from databases import Database sys.path.append(op.abspath(op.join(op.dirname(__file__), '..'))) import create_db # noqa: import not at top of file projects = {'icepap-ipassign': {'README': ('tests/test_data/ipa/README.md', 'Complete ipassign documentation'), 'GUI README': ('tests/test_data/ipa/gui/gui.md', 'Qt Gui development documentation')}, 'h5py': {'Groups': ('/home/cydanil/h5py/docs/high/group.rst', 'hdf5 groups manual'), 'Files': ('/home/cydanil/h5py/docs/high/file.rst', 'hdf5 files manual'), 'Build': ('/home/cydanil/h5py/docs/build.rst', 'hdf5 build how-to')}, 'rook': {'Sample docx file': ('tests/test_data/file-sample_1MB.docx', 'Test microsoft docx file handling'), 'Sample doc file': ('tests/test_data/file-sample_1MB.doc', 'Test legacy doc file handling')}, 'bluejay': {}, 'pelican': {}, 'ostrich': {}, } insert_project = ('INSERT INTO "Project" ("Name") ' 'VALUES (:Name)') insert_document = ('INSERT INTO "Document" ' '("Name", "Location", "Description") ' 'VALUES (:Name, :Location, :Description)') insert_project_entry = ('INSERT INTO "ProjectEntry" ' '("ProjectId", "DocumentId") ' 'VALUES (:ProjectId, :DocumentId)') async def create_and_populate_test_db(path: Path) -> None: """Create and populate a test database at the given path.""" if not str(path).endswith('alfie.db'): path = path / 'alfie.db' await create_db.create(path) async with Database(f'sqlite:///{path}') as db: for project, items in projects.items(): pid = await db.execute(insert_project, {'Name': project}) for name, (loc, desc) in items.items(): did = await db.execute(insert_document, {'Name': name, 'Location': loc, 'Description': desc}) await db.execute(insert_project_entry, {'ProjectId': pid, 'DocumentId': did})
# # PySNMP MIB module TPT-HIGH-AVAIL-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TPT-HIGH-AVAIL-MIB # Produced by pysmi-0.3.4 at Wed May 1 15:26:19 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ConstraintsIntersection, ValueSizeConstraint, ValueRangeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ConstraintsIntersection", "ValueSizeConstraint", "ValueRangeConstraint", "SingleValueConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") iso, Unsigned32, Bits, ObjectIdentity, Counter32, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, Gauge32, ModuleIdentity, Integer32, IpAddress, TimeTicks, MibIdentifier = mibBuilder.importSymbols("SNMPv2-SMI", "iso", "Unsigned32", "Bits", "ObjectIdentity", "Counter32", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "Gauge32", "ModuleIdentity", "Integer32", "IpAddress", "TimeTicks", "MibIdentifier") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") EnabledOrNot, = mibBuilder.importSymbols("TPT-PORT-CONFIG-MIB", "EnabledOrNot") tpt_tpa_eventsV2, tpt_tpa_objs, tpt_tpa_unkparams = mibBuilder.importSymbols("TPT-TPAMIBS-MIB", "tpt-tpa-eventsV2", "tpt-tpa-objs", "tpt-tpa-unkparams") tpt_high_avail_objs = ModuleIdentity((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6)).setLabel("tpt-high-avail-objs") tpt_high_avail_objs.setRevisions(('2016-09-08 18:54', '2016-05-25 18:54',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: tpt_high_avail_objs.setRevisionsDescriptions(('Added new FaultCause values to support TPS. Updated description of highAvailTransparentPartner.', 'Updated copyright information. Minor MIB syntax fixes.',)) if mibBuilder.loadTexts: tpt_high_avail_objs.setLastUpdated('201609081854Z') if mibBuilder.loadTexts: tpt_high_avail_objs.setOrganization('Trend Micro, Inc.') if mibBuilder.loadTexts: tpt_high_avail_objs.setContactInfo('www.trendmicro.com') if mibBuilder.loadTexts: tpt_high_avail_objs.setDescription("Device information related to high availability. Copyright (C) 2016 Trend Micro Incorporated. All Rights Reserved. Trend Micro makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Trend Micro shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. This document contains proprietary information, which is protected by copyright. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Trend Micro. The information is provided 'as is' without warranty of any kind and is subject to change without notice. The only warranties for Trend Micro products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Trend Micro shall not be liable for technical or editorial errors or omissions contained herein. TippingPoint(R), the TippingPoint logo, and Digital Vaccine(R) are registered trademarks of Trend Micro. All other company and product names may be trademarks of their respective holders. All rights reserved. This document contains confidential information, trade secrets or both, which are the property of Trend Micro. No part of this documentation may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from Trend Micro or one of its subsidiaries. All other company and product names may be trademarks of their respective holders. ") class FaultState(TextualConvention, Integer32): description = 'The current fault state of the device.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1)) namedValues = NamedValues(("normal", 0), ("fallback", 1)) class FaultCause(TextualConvention, Integer32): description = 'The reason for the current fault state of the device.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)) namedValues = NamedValues(("none", 0), ("suspended-task", 1), ("out-of-memory", 2), ("hardware-breakpoint", 3), ("tse-failure", 4), ("watchdog-timeout", 5), ("user-reset", 6), ("user-fallback", 7), ("threshold-failure", 8), ("software-watchdog-timeout", 9), ("oam-fault", 10), ("hard-disk-disable", 11), ("initialization-failure", 12), ("internal-link-failure", 13), ("multiple-fan-failures", 14), ("packet-egress-integrity", 15), ("stack-master", 16), ("waiting-on-stack", 17), ("spike-reboot-or-halt", 18), ("process-error", 19), ("low-health-score", 20)) class ConnectionState(TextualConvention, Integer32): description = 'State of the connection between a device and its transparent HA partner.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2)) namedValues = NamedValues(("not-connected", 0), ("unresponsive", 1), ("connected", 2)) class PerfProtPhase(TextualConvention, Integer32): description = 'The performance protection phase (entering, continuing, or exiting).' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3)) namedValues = NamedValues(("entering", 1), ("continuing", 2), ("exiting", 3)) class ZphaState(TextualConvention, Integer32): description = 'Whether ZPHA bypass is currently in effect.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1)) namedValues = NamedValues(("normal", 0), ("ips-bypass", 1)) class ZphaAction(TextualConvention, Integer32): description = 'The ZPHA action (normal or bypass).' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2)) namedValues = NamedValues(("unknown", 0), ("normal", 1), ("bypass", 2)) class ZphaMode(TextualConvention, Integer32): description = 'The ZPHA fiber mode (single or multi).' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 2, 3)) namedValues = NamedValues(("unknown", 0), ("single", 2), ("multi", 3)) class ZphaPresent(TextualConvention, Integer32): description = 'Whether segmental ZPHA is supported on the device.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1)) namedValues = NamedValues(("absent", 0), ("present", 1)) highAvailTimeStamp = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 1), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailTimeStamp.setStatus('current') if mibBuilder.loadTexts: highAvailTimeStamp.setDescription('The time of the last transition of the fault state (in seconds since January 1, 1970). This value is zero if the fault state has not changed since the last reboot.') highAvailFaultState = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 2), FaultState()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailFaultState.setStatus('current') if mibBuilder.loadTexts: highAvailFaultState.setDescription('The current fault state of the device.') highAvailFaultCause = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 3), FaultCause()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailFaultCause.setStatus('current') if mibBuilder.loadTexts: highAvailFaultCause.setDescription('The reason for the current fault state of the device.') highAvailThresholdEnabled = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 4), EnabledOrNot()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailThresholdEnabled.setStatus('current') if mibBuilder.loadTexts: highAvailThresholdEnabled.setDescription('The current fallback threshold enabled setting for the device.') highAvailThresholdPercent = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailThresholdPercent.setStatus('current') if mibBuilder.loadTexts: highAvailThresholdPercent.setDescription('If the fallback threshold is enabled, the percent (0-100) packet loss at which the device is configured to enter the fallback state.') highAvailEnabled = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 6), EnabledOrNot()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailEnabled.setStatus('current') if mibBuilder.loadTexts: highAvailEnabled.setDescription('Whether intrinisic high availability is enabled for this device.') highAvailTransparentState = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 7), ConnectionState()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailTransparentState.setStatus('current') if mibBuilder.loadTexts: highAvailTransparentState.setDescription("State of the connection to the device's transparent HA partner.") highAvailTransparentEnabled = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 8), EnabledOrNot()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailTransparentEnabled.setStatus('current') if mibBuilder.loadTexts: highAvailTransparentEnabled.setDescription('Whether transparent high availability is enabled for this device.') highAvailTransparentPartner = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 9), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 64))).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailTransparentPartner.setStatus('current') if mibBuilder.loadTexts: highAvailTransparentPartner.setDescription("Network address OR serial number of the device's transparent HA partner.") highAvailZeroPowerState = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 10), ZphaState()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailZeroPowerState.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerState.setDescription('The current zero-power HA state of the device.') highAvailZeroPowerQuantity = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 11), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailZeroPowerQuantity.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerQuantity.setDescription('The number of segments with zero-power HA modules.') highAvailZeroPowerTable = MibTable((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 12), ) if mibBuilder.loadTexts: highAvailZeroPowerTable.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerTable.setDescription('Table of IP addresses on the device and their attributes.') highAvailZeroPowerEntry = MibTableRow((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 12, 1), ).setIndexNames((0, "TPT-HIGH-AVAIL-MIB", "highAvailZeroPowerIndex")) if mibBuilder.loadTexts: highAvailZeroPowerEntry.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerEntry.setDescription('An entry in the host IP address table. Rows cannot be created or deleted.') highAvailZeroPowerIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 12, 1, 1), Unsigned32()) if mibBuilder.loadTexts: highAvailZeroPowerIndex.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerIndex.setDescription('Index into the ZPHA table, starting with 1.') highAvailZeroPowerSegment = MibTableColumn((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 12, 1, 2), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailZeroPowerSegment.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerSegment.setDescription('The name of the segment to which the ZPHA is attached.') highAvailZeroPowerActive = MibTableColumn((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 12, 1, 3), ZphaState()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailZeroPowerActive.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerActive.setDescription('Whether the ZPHA is currently active on this segment.') highAvailZeroPowerAction = MibTableColumn((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 12, 1, 4), ZphaAction()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailZeroPowerAction.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerAction.setDescription('The action (usually bypass) that the segment takes when ZPHA is active.') highAvailZeroPowerMode = MibTableColumn((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 12, 1, 5), ZphaMode()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailZeroPowerMode.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerMode.setDescription('The fiber mode (single or multi) of this ZPHA.') highAvailZeroPowerPresence = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 2, 6, 13), ZphaPresent()).setMaxAccess("readonly") if mibBuilder.loadTexts: highAvailZeroPowerPresence.setStatus('current') if mibBuilder.loadTexts: highAvailZeroPowerPresence.setDescription('An indication of whether ZPHA is supported on the device.') tptIhaNotifyDeviceID = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 81), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 40))).setMaxAccess("readonly") if mibBuilder.loadTexts: tptIhaNotifyDeviceID.setStatus('current') if mibBuilder.loadTexts: tptIhaNotifyDeviceID.setDescription('The unique identifier of the device sending this notification.') tptIhaNotifyTimeStamp = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 82), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptIhaNotifyTimeStamp.setStatus('current') if mibBuilder.loadTexts: tptIhaNotifyTimeStamp.setDescription('The time of this notification (in seconds since January 1, 1970).') tptIhaNotifyFaultState = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 83), FaultState()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptIhaNotifyFaultState.setStatus('current') if mibBuilder.loadTexts: tptIhaNotifyFaultState.setDescription('The current fault state of the device.') tptIhaNotifyFaultCause = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 84), FaultCause()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptIhaNotifyFaultCause.setStatus('current') if mibBuilder.loadTexts: tptIhaNotifyFaultCause.setDescription('The reason for the current fault state of the device.') tptIhaNotify = NotificationType((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 0, 15)).setObjects(("TPT-HIGH-AVAIL-MIB", "tptIhaNotifyDeviceID"), ("TPT-HIGH-AVAIL-MIB", "tptIhaNotifyTimeStamp"), ("TPT-HIGH-AVAIL-MIB", "tptIhaNotifyFaultState"), ("TPT-HIGH-AVAIL-MIB", "tptIhaNotifyFaultCause")) if mibBuilder.loadTexts: tptIhaNotify.setStatus('current') if mibBuilder.loadTexts: tptIhaNotify.setDescription('Notification: Used to inform the management station of changes in the intrinsic HA fault state on the device.') tptTrhaNotifyDeviceID = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 86), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 40))).setMaxAccess("readonly") if mibBuilder.loadTexts: tptTrhaNotifyDeviceID.setStatus('current') if mibBuilder.loadTexts: tptTrhaNotifyDeviceID.setDescription('The unique identifier of the device sending this notification.') tptTrhaNotifyTimeStamp = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 87), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptTrhaNotifyTimeStamp.setStatus('current') if mibBuilder.loadTexts: tptTrhaNotifyTimeStamp.setDescription('The time of this notification (in seconds since January 1, 1970).') tptTrhaNotifyNewState = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 88), ConnectionState()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptTrhaNotifyNewState.setStatus('current') if mibBuilder.loadTexts: tptTrhaNotifyNewState.setDescription('The new transparent HA state of the device.') tptTrhaNotify = NotificationType((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 0, 18)).setObjects(("TPT-HIGH-AVAIL-MIB", "tptTrhaNotifyDeviceID"), ("TPT-HIGH-AVAIL-MIB", "tptTrhaNotifyTimeStamp"), ("TPT-HIGH-AVAIL-MIB", "tptTrhaNotifyNewState")) if mibBuilder.loadTexts: tptTrhaNotify.setStatus('current') if mibBuilder.loadTexts: tptTrhaNotify.setDescription('Notification: Used to inform the management station of changes in the transparent HA state on the device.') tptZphaNotifyDeviceID = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 161), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 40))).setMaxAccess("readonly") if mibBuilder.loadTexts: tptZphaNotifyDeviceID.setStatus('current') if mibBuilder.loadTexts: tptZphaNotifyDeviceID.setDescription('The unique identifier of the device sending this notification.') tptZphaNotifyTimeStamp = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 162), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptZphaNotifyTimeStamp.setStatus('current') if mibBuilder.loadTexts: tptZphaNotifyTimeStamp.setDescription('The time of this notification (in seconds since January 1, 1970).') tptZphaNotifySegmentName = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 163), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 128))).setMaxAccess("readonly") if mibBuilder.loadTexts: tptZphaNotifySegmentName.setStatus('current') if mibBuilder.loadTexts: tptZphaNotifySegmentName.setDescription('The name of the segment whose ZPHA changed state, or an empty string to indicate the external ZPHA.') tptZphaNotifyNewState = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 164), ZphaState()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptZphaNotifyNewState.setStatus('current') if mibBuilder.loadTexts: tptZphaNotifyNewState.setDescription('The new state of the ZPHA that has changed.') tptZphaNotify = NotificationType((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 0, 24)).setObjects(("TPT-HIGH-AVAIL-MIB", "tptZphaNotifyDeviceID"), ("TPT-HIGH-AVAIL-MIB", "tptZphaNotifyTimeStamp"), ("TPT-HIGH-AVAIL-MIB", "tptZphaNotifySegmentName"), ("TPT-HIGH-AVAIL-MIB", "tptZphaNotifyNewState")) if mibBuilder.loadTexts: tptZphaNotify.setStatus('current') if mibBuilder.loadTexts: tptZphaNotify.setDescription('Notification: Used to inform the management station of changes in a ZPHA state on the device.') tptPerfProtNotifyDeviceID = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 141), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 40))).setMaxAccess("readonly") if mibBuilder.loadTexts: tptPerfProtNotifyDeviceID.setStatus('current') if mibBuilder.loadTexts: tptPerfProtNotifyDeviceID.setDescription('The unique identifier of the device sending this notification.') tptPerfProtNotifyTimeStamp = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 142), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptPerfProtNotifyTimeStamp.setStatus('current') if mibBuilder.loadTexts: tptPerfProtNotifyTimeStamp.setDescription('The time of this notification (in seconds since January 1, 1970).') tptPerfProtNotifyPhase = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 143), PerfProtPhase()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptPerfProtNotifyPhase.setStatus('current') if mibBuilder.loadTexts: tptPerfProtNotifyPhase.setDescription('Whether entering, remaining in, or exiting performance protection mode.') tptPerfProtNotifyPacketLoss = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 144), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptPerfProtNotifyPacketLoss.setStatus('current') if mibBuilder.loadTexts: tptPerfProtNotifyPacketLoss.setDescription('The current packet loss rate per thousand (percent * 10). When exiting performance protection mode, this value is 0.') tptPerfProtNotifyLossThreshold = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 145), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptPerfProtNotifyLossThreshold.setStatus('current') if mibBuilder.loadTexts: tptPerfProtNotifyLossThreshold.setDescription('The current packet loss threshold per thousand (percent * 10).') tptPerfProtNotifyDuration = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 146), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptPerfProtNotifyDuration.setStatus('current') if mibBuilder.loadTexts: tptPerfProtNotifyDuration.setDescription('The number of seconds performance protection will be in force.') tptPerfProtNotifyMissedAlerts = MibScalar((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 1, 147), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: tptPerfProtNotifyMissedAlerts.setStatus('current') if mibBuilder.loadTexts: tptPerfProtNotifyMissedAlerts.setDescription('The number of alerts missed during the performance protection period. When entering performance protection mode, this value is 0.') tptPerfProtNotify = NotificationType((1, 3, 6, 1, 4, 1, 10734, 3, 3, 3, 0, 21)).setObjects(("TPT-HIGH-AVAIL-MIB", "tptPerfProtNotifyDeviceID"), ("TPT-HIGH-AVAIL-MIB", "tptPerfProtNotifyTimeStamp"), ("TPT-HIGH-AVAIL-MIB", "tptPerfProtNotifyPhase"), ("TPT-HIGH-AVAIL-MIB", "tptPerfProtNotifyPacketLoss"), ("TPT-HIGH-AVAIL-MIB", "tptPerfProtNotifyLossThreshold"), ("TPT-HIGH-AVAIL-MIB", "tptPerfProtNotifyDuration"), ("TPT-HIGH-AVAIL-MIB", "tptPerfProtNotifyMissedAlerts")) if mibBuilder.loadTexts: tptPerfProtNotify.setStatus('current') if mibBuilder.loadTexts: tptPerfProtNotify.setDescription('Notification: Used to inform the management station of changes in performance protection on the device.') mibBuilder.exportSymbols("TPT-HIGH-AVAIL-MIB", FaultState=FaultState, tptTrhaNotify=tptTrhaNotify, highAvailZeroPowerMode=highAvailZeroPowerMode, highAvailZeroPowerEntry=highAvailZeroPowerEntry, tptPerfProtNotify=tptPerfProtNotify, tptTrhaNotifyTimeStamp=tptTrhaNotifyTimeStamp, tpt_high_avail_objs=tpt_high_avail_objs, tptIhaNotifyFaultCause=tptIhaNotifyFaultCause, tptPerfProtNotifyMissedAlerts=tptPerfProtNotifyMissedAlerts, ZphaMode=ZphaMode, tptZphaNotifyDeviceID=tptZphaNotifyDeviceID, tptPerfProtNotifyPacketLoss=tptPerfProtNotifyPacketLoss, FaultCause=FaultCause, ZphaPresent=ZphaPresent, PYSNMP_MODULE_ID=tpt_high_avail_objs, tptZphaNotifySegmentName=tptZphaNotifySegmentName, highAvailTransparentState=highAvailTransparentState, highAvailZeroPowerQuantity=highAvailZeroPowerQuantity, tptIhaNotifyTimeStamp=tptIhaNotifyTimeStamp, ZphaAction=ZphaAction, tptTrhaNotifyNewState=tptTrhaNotifyNewState, tptTrhaNotifyDeviceID=tptTrhaNotifyDeviceID, tptPerfProtNotifyLossThreshold=tptPerfProtNotifyLossThreshold, tptZphaNotify=tptZphaNotify, tptPerfProtNotifyDeviceID=tptPerfProtNotifyDeviceID, ConnectionState=ConnectionState, tptZphaNotifyTimeStamp=tptZphaNotifyTimeStamp, highAvailZeroPowerActive=highAvailZeroPowerActive, tptIhaNotifyFaultState=tptIhaNotifyFaultState, highAvailThresholdEnabled=highAvailThresholdEnabled, highAvailZeroPowerTable=highAvailZeroPowerTable, highAvailTransparentEnabled=highAvailTransparentEnabled, highAvailZeroPowerSegment=highAvailZeroPowerSegment, highAvailFaultCause=highAvailFaultCause, tptPerfProtNotifyDuration=tptPerfProtNotifyDuration, highAvailThresholdPercent=highAvailThresholdPercent, highAvailZeroPowerState=highAvailZeroPowerState, highAvailEnabled=highAvailEnabled, highAvailTimeStamp=highAvailTimeStamp, tptZphaNotifyNewState=tptZphaNotifyNewState, highAvailZeroPowerAction=highAvailZeroPowerAction, PerfProtPhase=PerfProtPhase, highAvailZeroPowerIndex=highAvailZeroPowerIndex, tptIhaNotify=tptIhaNotify, tptPerfProtNotifyTimeStamp=tptPerfProtNotifyTimeStamp, ZphaState=ZphaState, tptPerfProtNotifyPhase=tptPerfProtNotifyPhase, tptIhaNotifyDeviceID=tptIhaNotifyDeviceID, highAvailFaultState=highAvailFaultState, highAvailZeroPowerPresence=highAvailZeroPowerPresence, highAvailTransparentPartner=highAvailTransparentPartner)
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ """ from __future__ import absolute_import, division, print_function from builtins import (bytes, open, str, super, range, zip, round, input, int, pow, object, map, zip) import os import argparse import multiprocessing import gunicorn.app.base from gunicorn.six import iteritems from cdci_data_analysis.flask_app.app import run_app, app from cdci_data_analysis.configurer import ConfigEnv def number_of_workers(): return (multiprocessing.cpu_count() * 2) + 1 class StandaloneApplication(gunicorn.app.base.BaseApplication): def __init__(self, app, options=None, app_conf=None): self.options = options or {} self.application = app self.app_conf = app_conf super(StandaloneApplication, self).__init__() def load_config(self): config = dict([(key, value) for key, value in iteritems(self.options) if key in self.cfg.settings and value is not None]) for key, value in iteritems(config): print ('conf',key.lower(), value) self.cfg.set(key.lower(), value) def load(self): return self.application def run(self, conf, debug=False, threaded=False): run_app(conf, debug=debug, threaded=threaded) #self.application.config['osaconf'] = conf #self.application.run(host=conf.dispatcher_url, port=conf.dispatcher_port, debug=debug, threaded=threaded) def main(argv=None): black_listed_evns=['https_proxy','http_proxy'] for envvar in black_listed_evns: print ('removing env variable',envvar) os.unsetenv(envvar) if envvar in os.environ.keys(): del os.environ[envvar] parser = argparse.ArgumentParser() parser.add_argument('-conf_file', type=str, default=None) parser.add_argument('-use_gunicorn', action='store_true') parser.add_argument('-debug', action='store_true') args = parser.parse_args() conf_file = args.conf_file conf = ConfigEnv.from_conf_file(conf_file) use_gunicorn = args.use_gunicorn debug = args.debug if use_gunicorn is True: dispatcher_url = conf.dispatcher_url port = conf.dispatcher_port options = { 'bind': '%s:%s' % (dispatcher_url, port), 'workers': 2, 'threads': 4, #'worker-connections': 10, #'k': 'gevent', } StandaloneApplication(app, options).run(conf, debug=debug,threaded=True) else: run_app(conf, debug=debug, threaded=False) if __name__ == "__main__": main()
from buildings import * from soldiers import SoldierClass class Player(object): def __init__(self, name, money, army, buildings): self.name = name self.money = money self.army = army self.buildings = buildings def buyArmy(self, economy, army): iCost = economy.cost(army) print "Buying army for %d coins"%(iCost) if iCost <= self.money: self.army += [army] self.money -= iCost return True; else: return False; def buyBuilding(self, economy, building): iCost = economy.buildingCost(building) print "Buying building for %d coins"%(iCost) if iCost <= self.money: self.buildings += [building] self.money -= iCost return True; else: return False;
#!/usr/bin/env python3 """ Export CLA information from bugs.python.org to a JSON file. """ from __future__ import annotations from datetime import datetime import json import os import xmlrpc.client from dotenv import load_dotenv from rich.progress import track try: import certifi except ModuleNotFoundError: raise ImportError("Install certifi first for SSL to work.") else: del certifi load_dotenv() BPO_AUTH = os.environ["BPO_AUTH"] DATE_FORMAT = "<Date %Y-%m-%d.%H:%M:%S.000>" bpo = xmlrpc.client.ServerProxy( f"https://{BPO_AUTH}@bugs.python.org/xmlrpc", allow_none=True ) schema = bpo.schema() assert "user" in schema user_schema = schema["user"] assert "contrib_form" in user_schema assert "contrib_form_date" in user_schema users = bpo.filter("user", None, {"contrib_form": True}) result = [] for uid in track(users): u = bpo.display( f"user{uid}", "username", "address", "alternate_addresses", "github", "contrib_form_date", "contrib_form", "iscommitter", ) if not u.get("contrib_form") or not u.get("github"): # No GitHub account and/or no contrib form signed continue addresses = [u["address"]] for alt in (u.get("alternate_addresses") or "").split(): if "," in alt or ";" in alt: raise ValueError(f", or ; used in split for user{uid}") addresses.append(alt) dt = datetime.now() if u.get("contrib_form_date"): dt = datetime.strptime(u["contrib_form_date"], DATE_FORMAT) for address in addresses: result.append( { "username": u["github"], "email": address, "bpo": u["username"], "cla_date": dt.strftime(DATE_FORMAT), "committer": u["iscommitter"], } ) with open("out.json", "w") as f: json.dump(result, f, indent=2)
from django.utils.functional import lazy from drf_spectacular.utils import extend_schema_field from drf_spectacular.openapi import OpenApiTypes from rest_framework import serializers from baserow.api.groups.serializers import GroupSerializer from baserow.core.registries import application_type_registry from baserow.core.models import Application class ApplicationSerializer(serializers.ModelSerializer): type = serializers.SerializerMethodField() group = GroupSerializer(help_text='The group that the application belongs to.') class Meta: model = Application fields = ('id', 'name', 'order', 'type', 'group') extra_kwargs = { 'id': { 'read_only': True } } @extend_schema_field(OpenApiTypes.STR) def get_type(self, instance): # It could be that the application related to the instance is already in the # context else we can call the specific_class property to find it. application = self.context.get('application') if not application: application = application_type_registry.get_by_model( instance.specific_class) return application.type class ApplicationCreateSerializer(serializers.ModelSerializer): type = serializers.ChoiceField( choices=lazy(application_type_registry.get_types, list)()) class Meta: model = Application fields = ('name', 'type') class ApplicationUpdateSerializer(serializers.ModelSerializer): class Meta: model = Application fields = ('name',) def get_application_serializer(instance, **kwargs): """ Returns an instantiated serializer based on the instance class type. Custom serializers can be defined per application type. This function will return the one that is set else it will return the default one. :param instance: The instance where a serializer is needed for. :type instance: Application :return: An instantiated serializer for the instance. :rtype: ApplicationSerializer """ application = application_type_registry.get_by_model(instance.specific_class) serializer_class = application.instance_serializer_class if not serializer_class: serializer_class = ApplicationSerializer return serializer_class(instance, context={'application': application}, **kwargs)
NONE = 0 HALT = 1 << 0 FAULT = 1 << 1 BREAK = 1 << 2
"""General utility functions.""" import contextlib import random import inspect from asyncio import ensure_future from functools import partial import datetime from util.commands.errors import PassException def bdel(s, r): return (s[len(r):] if s.startswith(r) else s) class DiscordFuncs(): def __init__(self, bot): self.bot = bot def __getattr__(self, name): new_func = None coro = getattr(self.bot, name) if not callable(coro): raise AttributeError('Class can only access client functions') def async_wrap(coro, *args, **kwargs): ensure_future(coro(*args, **kwargs)) new_func = partial(async_wrap, coro) new_func.__name__ = coro.__name__ new_func.__qualname__ = coro.__qualname__ return new_func def _import(mod_name: str, var_name=None, attr_name=''): ret = "globals()['{}'] = imp('{}')" if var_name: if attr_name: attr_name = '.' + attr_name ret = ret.format(var_name, mod_name) + attr_name else: ret = ret.format(mod_name, mod_name) return ret def _set_var(var_name: str, expr: str): return "globals()['{}'] = {}".format(var_name, expr) def _del_var(var_name: str): return "del globals()['{}']".format(var_name) snowtime = lambda i: datetime.datetime.fromtimestamp(((float(int(i)) / 4194304.0) + 1420070400000.0 + 18000000.0) / 1000.0).strftime('%a %b %d, %Y %I:%M:%S %p') class PrintException(Exception): """An exception that prints the error.""" def __init__(self, err): print(str(err)) self.err = err super().__init__() @contextlib.contextmanager def assert_msg(ctx, msg: str): """Assert. If error, send msg.""" try: yield except AssertionError: ensure_future(ctx.bot.send_message(ctx.message.channel, msg)) raise PassException() def check(in_bool: bool): """Replacement for assert statement.""" if not in_bool: raise AssertionError('Assertion failed from check()!') def encode(content: str) -> str: """Goldcode encoder.""" orig_ords = [ord(c) for c in list(content)] shift = round(random.uniform(1, 145), random.randint(3, 6)) shift_shift = random.randint(1, 14) shifted_ords = [float(o) + shift for o in orig_ords] join_chars = list('@!($)_*#%"}?\'=-`\\][') join_char = random.choice(join_chars) ords_str = join_char.join([str(s) for s in shifted_ords]) + '~' + join_char.join([str(float(ord(c)) + shift) for c in list('3MainShiftCorrect')]) fn_head_join = random.choice(list('|^&')) _g = random.uniform(1, 51) head_keys = { 'd': shift + shift_shift, # encoded (shift_shifted) shift 'g': _g, # shift for join char index 'l': (float(join_chars.index(join_char)) - 4.4689257) + _g } head_str = ';'.join([k + str(head_keys[k]) for k in head_keys]) final = head_str + fn_head_join + ords_str return final def decode(content: str) -> str: """Goldcode decoder.""" try: expected_key = '3MainShiftCorrect' join_chars = list('@!($)_*#%"}?\'=-`\\][') shift_key = content.split('~')[1] content = content.replace('~' + shift_key, '') # discard shift key head_keys = {} for try_decode_head in list('|^&'): if try_decode_head in content: dec_head_1 = content.split(try_decode_head)[0] head_r_keys = dec_head_1.split(';') for rkey in head_r_keys: head_keys[rkey[0]] = rkey[1:] no_head_content = content.replace(dec_head_1 + try_decode_head, '') head_keys['d'] = float(head_keys['d']) head_keys['g'] = float(head_keys['g']) head_keys['l'] = float(head_keys['l']) j = join_chars[int((head_keys['l'] + 4.4689257) - head_keys['g'])] for try_shift_shift in range(1, 14): shift_to_try = head_keys['d'] - float(try_shift_shift) if ''.join([chr(int(cn - shift_to_try)) for cn in [float(sf) for sf in shift_key.split(j)]]) == expected_key: shift = shift_to_try break content = no_head_content dec = ''.join([chr(int(cn - shift)) for cn in [float(sf) for sf in content.split(j)]]) return dec except Exception: return '⚠ Couldn\'t decode. Maybe your content is corrupted?' async def async_encode(content: str) -> str: """Coroutine version of encode().""" orig_ords = [ord(c) for c in list(content)] shift = round(random.uniform(1, 145), random.randint(3, 6)) shift_shift = random.randint(1, 14) shifted_ords = [float(o) + shift for o in orig_ords] join_chars = list('@!($)_*#%"}?\'=-`\\][') join_char = random.choice(join_chars) ords_str = join_char.join([str(s) for s in shifted_ords]) + '~' + join_char.join([str(float(ord(c)) + shift) for c in list('3MainShiftCorrect')]) fn_head_join = random.choice(list('|^&')) _g = random.uniform(1, 51) head_keys = { 'd': shift + shift_shift, # encoded (shift_shifted) shift 'g': _g, # shift for join char index 'l': (float(join_chars.index(join_char)) - 4.4689257) + _g } head_str = ';'.join([k + str(head_keys[k]) for k in head_keys]) final = head_str + fn_head_join + ords_str return final async def async_decode(content: str) -> str: """Coroutine version of decode().""" try: expected_key = '3MainShiftCorrect' join_chars = list('@!($)_*#%"}?\'=-`\\][') shift_key = content.split('~')[1] content = content.replace('~' + shift_key, '') # discard shift key head_keys = {} for try_decode_head in list('|^&'): if try_decode_head in content: dec_head_1 = content.split(try_decode_head)[0] head_r_keys = dec_head_1.split(';') for rkey in head_r_keys: head_keys[rkey[0]] = rkey[1:] no_head_content = content.replace(dec_head_1 + try_decode_head, '') head_keys['d'] = float(head_keys['d']) head_keys['g'] = float(head_keys['g']) head_keys['l'] = float(head_keys['l']) j = join_chars[int((head_keys['l'] + 4.4689257) - head_keys['g'])] for try_shift_shift in range(1, 14): shift_to_try = head_keys['d'] - float(try_shift_shift) if ''.join([chr(int(cn - shift_to_try)) for cn in [float(sf) for sf in shift_key.split(j)]]) == expected_key: shift = shift_to_try break content = no_head_content dec = ''.join([chr(int(cn - shift)) for cn in [float(sf) for sf in content.split(j)]]) return dec except Exception: return '⚠ Couldn\'t decode. Maybe your content is corrupted?' def decoy_print(*ina: str) -> str: """Print function!""" return ' '.join(ina) def _get_variable(name): stack = inspect.stack() try: for frames in stack: try: frame = frames[0] current_locals = frame.f_locals if name in current_locals: return current_locals[name] finally: del frame finally: del stack def numberToBase(n, b): if n == 0: return [0] digits = [] while n: digits.append(int(n % b)) n /= b return digits[::-1] def smartjoin(l): if len(l) > 1: l[-1] = 'and ' + l[-1] return ', '.join(l)
import os import pandas as pd import click from flask import Flask from flask.cli import FlaskGroup from flask.cli import run_command from .config import update_config from .routing import register_blueprints from .routing import register_routes_to_pbo from .jinja_env import create_jinja_env from .utils.excel import build_workbook_from_dict def create_app(excel_file: str = None) -> Flask: app = Flask(__name__) excel_file = excel_file or os.environ.get('EXCEL_FILE') app.config['EXCEL_FILE'] = excel_file if excel_file: update_config(app, excel_file) register_blueprints(app, excel_file) register_routes_to_pbo(app, excel_file) create_jinja_env(app, excel_file) return app @click.group(cls=FlaskGroup, create_app=create_app) def cli(): pass @cli.command('run-excel', context_settings={'ignore_unknown_options': True}) @click.argument('excel_file', nargs=-1, type=click.Path()) @click.option('--env', '-e', default=lambda: os.getenv('FSE_ENV', 'production'), help='Your config environment. Different config environments are ' 'managed using #config_{env} sheets. `development` and ' '`production` are always valid configs by default.') @click.pass_context def run_excel(ctx, excel_file, env): """Deploy your Excel file as a website.""" if len(excel_file) == 0: if 'EXCEL_FILE' in os.environ: _excel_file = os.environ['EXCEL_FILE'] else: raise TypeError('Please either define an excel file to load as an ' 'argument (recommended), or define an `EXCEL_FILE` ' 'environment variable.') elif len(excel_file) == 1: _excel_file = excel_file[0] else: raise TypeError("You cannot submit more than 1 Excel file. If you'd " 'like to support multiple Excel files, create a ' '`#blueprints` sheet.') click.echo(f'Deploying {_excel_file}') os.environ['FLASK_APP'] = f"{__name__}:create_app('{_excel_file}')" os.environ['EXCEL_FILE'] = _excel_file os.environ['FLASK_ENV'] = env ctx.invoke(run_command, reload=True) @cli.command('create-demo') def create_demo(): base = { '#routes': [ ['hello_world', '/'], ['foo', '/foo'] ], '#templates': [ ['example_template'] ], '#blueprints': [ ['example_blueprint.xlsx'] ], '#config': [ ['SECRET_KEY', '%SECRET_KEY%'], ['PREFERRED_URL_SCHEME', 'http'] ], '#config_development': [ ['INHERIT_FROM', '#config'], ['TESTING', True], ['DEBUG', True] ], 'example_template': [ ['<head>', None, None, None], [None, '<title>', 'Fullstack with Excel', '</title>'], ['</head>', None, None, None], ['{% block content %}', None, None, None], ['{% endblock %}', None, None, None] ], 'hello_world': [ ['{% extends "example_template" %}', None, None], ['{% block content %}', None, None], ['<b>', 'hello, world!', '</b>'], ['<br />', '<br />', None], ['<a href="{{ url_for(\'foo\') }}">', 'See some data?', '</a>'], ['{% endblock %}', None, None] ], '&actual_table': [ ['Name', 'Number of pets'], ['Bob', 4], ['Mary', 2], ['Joe', 0] ], 'foo': [ ['{% extends "example_template" %}', None], ['{% block content %}', None], [None, "<h3>My Friends' Pets</h3>"], [None, '<br \>'], [None, '{{ render_sheet("&actual_table") }}'], [None, '<br \>'], [None, 'Want to see a blueprint now?'], [None, '<a href="{{ url_for(\'example_blueprint.bar\') }}">Click here!</a>'], ['{% endblock %}', None] ] } bp = { '#routes': [ ['bar', '/bar'] ], 'bar': [ ['{% extends "example_template" %}', None], ['{% block content %}', None], [None, 'This page was created using a blueprint.'], ['{% endblock %}', None, None], ] } build_workbook_from_dict(data=base, file_name='demo_website.xlsx') build_workbook_from_dict(data=bp, file_name='example_blueprint.xlsx')
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.nn as nn from paddleseg import utils from paddleseg.cvlibs import manager @manager.MODELS.add_component class PortraitNet(nn.Layer): """ The PortraitNet implementation based on PaddlePaddle. The original article refers to Song-Hai Zhanga, Xin Donga, Jia Lib, Ruilong Lia, Yong-Liang Yangc "PortraitNet: Real-time Portrait Segmentation Network for Mobile Device" (https://www.yongliangyang.net/docs/mobilePotrait_c&g19.pdf). Args: num_classes (int, optional): The unique number of target classes. Default: 2. backbone (Paddle.nn.Layer): Backbone network, currently support MobileNetV2. add_edge (bool, optional): Whether output to edge. Default: False pretrained (str, optional): The path or url of pretrained model. Default: None """ def __init__(self, num_classes, backbone, min_channel=16, channel_ratio=1.0, add_edge=False, pretrained=None): super(PortraitNet, self).__init__() self.backbone = backbone self.head = PortraitNetHead(num_classes, min_channel, channel_ratio, add_edge) self.pretrained = pretrained self.init_weight() def forward(self, x): img = x[:, :3, :, :] img_ori = x[:, 3:, :, :] feat_list = self.backbone(img) logits_list = self.head(feat_list) feat_list = self.backbone(img_ori) logits_ori_list = self.head(feat_list) return [ logits_list[0], logits_ori_list[0], logits_list[1], logits_ori_list[1] ] def init_weight(self): if self.pretrained is not None: utils.load_entire_model(self, self.pretrained) class PortraitNetHead(nn.Layer): def __init__(self, num_classes, min_channel=16, channel_ratio=1.0, add_edge=False): super().__init__() self.min_channel = min_channel self.channel_ratio = channel_ratio self.add_edge = add_edge self.deconv1 = nn.Conv2DTranspose( self.depth(96), self.depth(96), groups=1, kernel_size=4, stride=2, padding=1, bias_attr=False) self.deconv2 = nn.Conv2DTranspose( self.depth(32), self.depth(32), groups=1, kernel_size=4, stride=2, padding=1, bias_attr=False) self.deconv3 = nn.Conv2DTranspose( self.depth(24), self.depth(24), groups=1, kernel_size=4, stride=2, padding=1, bias_attr=False) self.deconv4 = nn.Conv2DTranspose( self.depth(16), self.depth(16), groups=1, kernel_size=4, stride=2, padding=1, bias_attr=False) self.deconv5 = nn.Conv2DTranspose( self.depth(8), self.depth(8), groups=1, kernel_size=4, stride=2, padding=1, bias_attr=False) self.transit1 = ResidualBlock(self.depth(320), self.depth(96)) self.transit2 = ResidualBlock(self.depth(96), self.depth(32)) self.transit3 = ResidualBlock(self.depth(32), self.depth(24)) self.transit4 = ResidualBlock(self.depth(24), self.depth(16)) self.transit5 = ResidualBlock(self.depth(16), self.depth(8)) self.pred = nn.Conv2D( self.depth(8), num_classes, 3, 1, 1, bias_attr=False) if self.add_edge: self.edge = nn.Conv2D( self.depth(8), num_classes, 3, 1, 1, bias_attr=False) def depth(self, channels): min_channel = min(channels, self.min_channel) return max(min_channel, int(channels * self.channel_ratio)) def forward(self, feat_list): feature_1_4, feature_1_8, feature_1_16, feature_1_32 = feat_list up_1_16 = self.deconv1(self.transit1(feature_1_32)) up_1_8 = self.deconv2(self.transit2(feature_1_16 + up_1_16)) up_1_4 = self.deconv3(self.transit3(feature_1_8 + up_1_8)) up_1_2 = self.deconv4(self.transit4(feature_1_4 + up_1_4)) up_1_1 = self.deconv5(self.transit5(up_1_2)) pred = self.pred(up_1_1) if self.add_edge: edge = self.edge(up_1_1) return pred, edge else: return pred class ConvDw(nn.Layer): def __init__(self, inp, oup, kernel, stride): super(ConvDw, self).__init__() self.conv = nn.Sequential( nn.Conv2D( inp, inp, kernel, stride, (kernel - 1) // 2, groups=inp, bias_attr=False), nn.BatchNorm2D(num_features=inp, epsilon=1e-05, momentum=0.1), nn.ReLU(), nn.Conv2D(inp, oup, 1, 1, 0, bias_attr=False), nn.BatchNorm2D(num_features=oup, epsilon=1e-05, momentum=0.1), nn.ReLU(), ) def forward(self, x): return self.conv(x) class ResidualBlock(nn.Layer): def __init__(self, inp, oup, stride=1): super(ResidualBlock, self).__init__() self.block = nn.Sequential( ConvDw(inp, oup, 3, stride=stride), nn.Conv2D( in_channels=oup, out_channels=oup, kernel_size=3, stride=1, padding=1, groups=oup, bias_attr=False), nn.BatchNorm2D(num_features=oup, epsilon=1e-05, momentum=0.1), nn.ReLU(), nn.Conv2D( in_channels=oup, out_channels=oup, kernel_size=1, stride=1, padding=0, bias_attr=False), nn.BatchNorm2D(num_features=oup, epsilon=1e-05, momentum=0.1), ) if inp == oup: self.residual = None else: self.residual = nn.Sequential( nn.Conv2D( in_channels=inp, out_channels=oup, kernel_size=1, stride=1, padding=0, bias_attr=False), nn.BatchNorm2D(num_features=oup, epsilon=1e-05, momentum=0.1), ) self.relu = nn.ReLU() def forward(self, x): residual = x out = self.block(x) if self.residual is not None: residual = self.residual(x) out += residual out = self.relu(out) return out
# Copyright 2017 Great Software Laboratory Pvt. Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from st2common.runners.base_action import Action class PublishConfigs(Action): def __init__(self, config=None): super(PublishConfigs, self).__init__(config=config) def run(self): configs = {} configs['vip'] = self.config['vip'] configs['username'] = self.config['username'] configs['password'] = self.config['password'] configs['overlay_gateway_name'] = self.config['overlay_gateway_name'] return configs
import nni import GPUtil from UCTB.dataset import GridTrafficLoader from UCTB.model import ST_ResNet from UCTB.evaluation import metric args = { 'dataset': 'DiDi', 'city': 'Xian', 'num_residual_unit': 4, 'conv_filters': 64, 'kernel_size': 3, 'lr': 1e-5, 'batch_size': 32, 'MergeIndex': 6 } code_version = 'ST_ResNet_{}_{}_F{}'.format(args['dataset'], args['city'], int(args['MergeIndex'])*5) nni_params = nni.get_next_parameter() nni_sid = nni.get_sequence_id() if nni_params: args.update(nni_params) code_version += ('_' + str(nni_sid)) deviceIDs = GPUtil.getAvailable(order='memory', limit=2, maxLoad=1, maxMemory=0.7, includeNan=False, excludeID=[], excludeUUID=[]) if len(deviceIDs) == 0: current_device = '-1' else: if nni_params: current_device = str(deviceIDs[int(nni_sid) % len(deviceIDs)]) else: current_device = str(deviceIDs[0]) # Config data loader data_loader = GridTrafficLoader(dataset=args['dataset'], city=args['city'], closeness_len=6, period_len=7, trend_len=4, MergeIndex=args['MergeIndex']) ST_ResNet_Obj = ST_ResNet(closeness_len=data_loader.closeness_len, period_len=data_loader.period_len, trend_len=data_loader.trend_len, external_dim=data_loader.external_dim, lr=args['lr'], num_residual_unit=args['num_residual_unit'], conv_filters=args['conv_filters'], kernel_size=args['kernel_size'], width=data_loader.width, height=data_loader.height, gpu_device=current_device, code_version=code_version) ST_ResNet_Obj.build() print(args['dataset'], args['city'], code_version) print('Number of trainable variables', ST_ResNet_Obj.trainable_vars) print('Number of training samples', data_loader.train_sequence_len) print('debug') # Training ST_ResNet_Obj.fit(closeness_feature=data_loader.train_closeness, period_feature=data_loader.train_period, trend_feature=data_loader.train_trend, target=data_loader.train_y, external_feature=data_loader.train_ef, sequence_length=data_loader.train_sequence_len, batch_size=args['batch_size'], early_stop_length=200, validate_ratio=0.1) # Predict prediction = ST_ResNet_Obj.predict(closeness_feature=data_loader.test_closeness, period_feature=data_loader.test_period, trend_feature=data_loader.test_trend, target=data_loader.test_y, external_feature=data_loader.test_ef, sequence_length=data_loader.test_sequence_len) # Compute metric test_rmse = metric.rmse(prediction=data_loader.normalizer.min_max_denormal(prediction['prediction']), target=data_loader.normalizer.min_max_denormal(data_loader.test_y), threshold=0) # Evaluate val_loss = ST_ResNet_Obj.load_event_scalar('val_loss') best_val_loss = min([e[-1] for e in val_loss]) best_val_loss = data_loader.normalizer.min_max_denormal(best_val_loss) print('Best val result', best_val_loss) print('Test result', test_rmse) print('Converged using %.2f hour' % ((val_loss[-1][0] - val_loss[0][0]) / 3600)) if nni_params: nni.report_final_result({ 'default': best_val_loss, 'test-rmse': test_rmse })
"""Print all tasks. Usage: # Print all tasks python3 print_all_tasks.py # Print a specific task python3 print_all_tasks.py --idx 10 """ import argparse from common import load_and_register_tasks def print_task(index, task): print("=" * 60) print(f"Index: {index}") print(f"flop_ct: {task.compute_dag.flop_ct}") print(f"workload_key: {task.workload_key}") print("Compute DAG:") print(task.compute_dag) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--idx", type=int) args = parser.parse_args() print("Load tasks...") tasks = load_and_register_tasks() if args.idx is None: for i, t in enumerate(tasks): print_task(i, t) else: print_task(args.idx, tasks[args.idx])
import pytest from jsonschema import ValidationError from babbage.validation import validate_model class TestValidation(object): def test_simple_model(self, simple_model_data): validate_model(simple_model_data) def test_invalid_fact_table(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['fact_table'] = 'b....' validate_model(model) def test_no_fact_table(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data del model['fact_table'] validate_model(model) def test_invalid_dimension_name(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['dimensions']['goo fdj.'] = {'label': 'bar'} validate_model(model) def test_invalid_measure_name(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['measures']['goo fdj.'] = {'label': 'bar'} validate_model(model) def test_no_measure(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['measures'] = {} validate_model(model) def test_no_measure_label(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['measures']['amount'] = {} validate_model(model) def test_invalid_aggregate(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['measures']['amount']['aggregates'] = 'schnasel' validate_model(model) def test_invalid_aggregate_string(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['measures']['amount']['aggregates'] = 'count' validate_model(model) def test_invalid_aggregate_string(self, simple_model_data): model = simple_model_data model['measures']['amount']['aggregates'] = ['count'] validate_model(model) def test_dimension_without_attributes(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['dimensions']['foo']['attributes'] = {} validate_model(model) def test_dimension_without_key(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data del model['dimensions']['foo']['key_attribute'] validate_model(model) def test_dimension_invalid_key(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['dimensions']['foo']['key_attribute'] = 'lala' validate_model(model) def test_dimension_invalid_label(self, simple_model_data): with pytest.raises(ValidationError): model = simple_model_data model['dimensions']['foo']['label_attribute'] = 'lala' validate_model(model)
class Solution(object): def getRow(self, rowIndex): """ :type rowIndex: int :rtype: List[int] """ row = [1] for _ in range(rowIndex): # pad 0, perform element-wise addition row = [x + y for x, y in zip([0] + row, row + [0])] return row # row = [1] # for i in range(rowIndex): # row = [1] + [row[j] + row[j + 1] for j in range(len(row) - 1)] + [1] # return row
from typing import Tuple, Union from axelrod import Action C, D = Action.C, Action.D Score = Union[int, float] class Game(object): """Container for the game matrix and scoring logic. Attributes ---------- scores: dict The numerical score attribute to all combinations of action pairs. """ def __init__( self, r: Score = 3, s: Score = 0, t: Score = 5, p: Score = 1, rc: Score = 3, sc: Score = 0, tc: Score = 5, pc: Score = 1 ) -> None: """Create a new game object. Parameters ---------- r: int or float Score obtained by row players for mutual cooperation. s: int or float Score obtained by row player for cooperating against column defector. t: int or float Score obtained by row player for defecting against column cooperator. p: int or float Score obtained by row player for mutual defection. rc: int or float Score obtained by column players for mutual cooperation. sc: int or float Score obtained by column player for cooperating against row defector. tc: int or float Score obtained by column player for defecting against row cooperator. pc: int or float Score obtained by column player for mutual defection. """ self.scores = { (C, C): (r, rc), (D, D): (p, pc), (C, D): (s, tc), (D, C): (t, sc), } def RPST(self) -> Tuple[Score, Score, Score, Score]: """Returns game matrix values in Press and Dyson notation.""" R = self.scores[(C, C)][0] P = self.scores[(D, D)][0] S = self.scores[(C, D)][0] T = self.scores[(D, C)][0] return R, P, S, T def score(self, pair: Tuple[Action, Action]) -> Tuple[Score, Score]: """Returns the appropriate score for a decision pair. Parameters ---------- pair: tuple(Action, Action) A pair actions for two players, for example (C, C). Returns ------- tuple of int or float Scores for two player resulting from their actions. """ return self.scores[pair] def __repr__(self) -> str: return "Axelrod game: (R,P,S,T) = {}".format(self.RPST()) def __eq__(self, other): if not isinstance(other, Game): return False return self.RPST() == other.RPST() DefaultGame = Game()
import inspect import sys from pathlib import Path import kts.ui.settings from kts.core.backend.ray_middleware import setup_ray from kts.core.cache import frame_cache, obj_cache from kts.core.lists import feature_list, helper_list from kts.settings import cfg from kts.util.debug import logger def find_scope(): frame = inspect.currentframe() while frame is not None and 'get_ipython' not in frame.f_globals: frame = frame.f_back if frame is not None: return frame.f_globals else: return None def find_config(): p = Path('.').cwd() while p != p.parent and not (p / 'kts_config.toml').exists(): p = p.parent config_path = (p / 'kts_config.toml') if config_path.exists(): return config_path else: return None def init(): cfg.scope = find_scope() cfg.stdout = sys.stdout config_path = find_config() if config_path is not None: cfg.load(config_path) if config_path is not None: frame_cache.path = cfg.storage_path obj_cache.path = cfg.storage_path feature_list.sync() helper_list.sync() kts.ui.settings.init() setup_ray() if not cfg.debug: logger.level = 50
import argparse import os import sys import pickle import time import pandas as pd import re from src.utils import np from src.problem import Problem from src.controller import Parallel_Controller from src.MMAS_solver import MMAS_Solver from pathlib import Path def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument( '--method', choices=['DGA', 'RGA', 'MMAS'], default='MMAS', type=str, required=True, help='algorithm') parser.add_argument( '--idx', type=int, required=True, help='Index of slurm') '--instance', type=str, required=True, help='instance to apply the algorithm to it') # parser.add_argument( # '--batch', # # choices=[101], # # default=31, # type=int, # required=True, # help='size of batch of run for RGA') # if 0 : it takes the seed from input # if 2 : it generates a random seed # if 1 : it goes for 31 runs. parser.add_argument( '--ls', choices=['none', '1'], default='none', type=str, required=False, help='Local search method') parser.add_argument( '--n-ants', default=10, type=int, required=False, help='number of ants for population size') parser.add_argument( '--maxiter', default=1000, type=int, required=False, help='Maximum number of iterations') try: args = parser.parse_args() except: parser.print_help() import sys sys.exit(0) return args def parse_instance(instance_name): find_all = np.asarray(re.findall(r'\b\d+\b', instance_name),dtype=int) return tuple(find_all[-3:]) if __name__ == '__main__': df = pd.read_csv('mmas-irace-configs-found.csv') kwargs = {} # Parse command line arguments args = parse_arguments() (n_demand, n_machine, direction) = parse_instance(args.instance) conf_params = df.loc[df['Instance'] == '({}, {}, {})'.format(n_demand, n_machine, direction)] problem = Problem(number_machine = n_machine, number_demand = n_demand, parcel = True, local = 'none', method='MMAS', direction= direction) # str_instance = '({},{},{},{})'.format(args.n_machine, args.n_demand, int(args.parcel), args.dir) obj_batch = [] # mkdir Path('./raw_mmas').mkdir(parents=True, exist_ok=True) Path('./raw_mmas_local').mkdir(parents=True, exist_ok=True) # run if args.method == 'MMAS': Path('./mmas_data').mkdir(parents=True, exist_ok=True) # str_alg = '({},{})'.format(args.greedy_param, args.sp) # if args.batch == 101: # batch_range = np.arange(101) # else: # batch_range = np.arange(1) # seeds for replication preseed = np.array([226024, 894631, 118599, 802361, 23414, 976405, 798742, 647772, 82428, 566941 , 175144, 435676, 331388, 428582, 873627, 41918, 7806, 562734, 523424, 609150 , 93564, 209194, 220472, 63488, 570335, 153744, 543934, 625362, 84325, 636283 , 464398, 529193, 318544, 205037, 852066, 988015, 15880, 665647, 658019, 690671 , 362619, 803845, 868070, 394902, 161626, 636900, 332690, 442120, 113993, 276401 , 942972, 134143, 137052, 921830, 727872, 61800, 943104, 108918, 233229, 936444 , 689071, 862780, 944836, 552032, 357025, 92066, 869317, 216829, 493700, 51734 , 691270, 146044, 728563, 471856, 132138, 736886, 77208, 443348, 224069, 656098 , 990195, 516716, 854011, 698891, 184790, 161487, 336484, 22868, 246949, 410368 , 194817, 318576, 98816, 312131, 22585, 889346, 900289, 789335, 25676, 591257 , 839707]) # for idx_batch in batch_range: # solver = Parallel_Controller(problem=problem, greedy_param = args.greedy_param, selection_pressure=args.sp, ant_kw=None) if args.ls == 'none': local_search = 0 else: local_search = 1 # batch_range = np.arange(int(args.batch)) if int(conf_params['bestant'])==0: tba = 'BSFA' else: tba = 'IBA' # print(conf_params) solver = MMAS_Solver(problem=problem, alpha=int(conf_params['alpha']), beta=int(conf_params['beta']), rho=float(conf_params['rho']), tau0=1, population_size=args.n_ants, iteration_max=args.maxiter, selection_pressure=float(conf_params['sp']), type_best_ant=tba, local_search=local_search) print(conf_params) try: seed = preseed[args.idx] # print(seed) solver.problem.initialise_seed(seed=seed) except: # else: raise Exception('Problem in seed initialisation') solver.run() print('Best-solution: {}'.format(solver.total_obj)) obj_batch.append(solver.total_obj) # str_alg = '({},{})'.format(args.greedy_param, args.sp) # solver.export_best_solution_simple() # solver.export()
# -*- coding: utf-8 -*- """ eng : import library tr : kütüphaneleri yüklüyoruz """ import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy import stats from keras.datasets import imdb from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers.embeddings import Embedding from keras.layers import SimpleRNN, Dense, Activation """ eng : load data and examining tr : veriyi yüklüyoruz ve inceliyoruz. """ (X_train, Y_train), (X_test, Y_test) = imdb.load_data(path = "ibdb.npz", num_words = None, skip_top = 0, maxlen = None, seed = 113, start_char = 1, index_from = 3) print("Type: ", type(X_train)) print("X train shape : ", X_train.shape) print("Y train shape : ", Y_train.shape) print("Y train values: ", np.unique(Y_train)) print("Y test values: ", np.unique(Y_test)) unique, counts = np.unique(Y_train, return_counts = True) print("Y train distrubution : ", dict(zip(unique, counts))) unique, counts = np.unique(Y_test, return_counts = True) print("Y test distrubution : ", dict(zip(unique, counts))) plt.figure() sns.countplot(Y_train) plt.xlabel("Classes") plt.ylabel("Freg") plt.title("Y train") plt.figure() sns.countplot(Y_test) plt.xlabel("Classes") plt.ylabel("Freg") plt.title("Y test") d = X_train[0] print(d) print(len(d)) """ eng : we look at the length of the sentences. tr : cümlelerin uzunluğuna bakıyoruz. """ review_len_train = [] review_len_test = [] for i, ii in zip(X_train, X_test): review_len_train.append(len(i)) review_len_test.append(len(ii)) sns.distplot(review_len_train, hist_kws = {"alpha":0.3}) sns.distplot(review_len_test, hist_kws = {"alpha":0.3}) print("Train Mean : ",np.mean(review_len_train)) print("Train Median : ",np.median(review_len_train)) print("Train Mode : ",stats.mode(review_len_train)) """ eng : number of word tr : sayıların kelime karşılıkları """ word_index = imdb.get_word_index() print(type(word_index)) print(len(word_index)) """ eng : word equivalent of the number tr : sayısal değerin hangi kelimeye karşılık geldiğine bakıyoruz. """ for keys, values in word_index.items(): if values == 22: print(keys) """ eng : We are looking at the full review tr : sayısal değerleri kelime karşılıklarına çevirerek yorumun tamamına bakıyoruz. """ def whatIsSay(index = 24): reverse_index = dict([(value, key) for (key, value) in word_index.items()]) decode_review = " ".join([reverse_index.get(i - 3, "!") for i in X_train[index]]) print(decode_review) print(Y_train[index]) return decode_review decoded_review = whatIsSay(36) """ eng : preprocess tr : veriyi model için uygun hale getiriyoruz. """ num_words = 15000 (X_train, Y_train), (X_test, Y_test) = imdb.load_data(num_words = num_words) maxlen = 130 X_train = pad_sequences(X_train, maxlen = maxlen) X_test = pad_sequences(X_test, maxlen = maxlen) print(X_train[5]) for i in X_train[0:10]: print(len(i)) decoded_review = whatIsSay(5) """ eng : Create RNN tr : RNN modelini oluşturuyoruz. """ rnn = Sequential() rnn.add(Embedding(num_words, 32, input_length = len(X_train[0]))) rnn.add(SimpleRNN(16, input_shape = (num_words, maxlen), return_sequences = False, activation = "relu")) rnn.add(Dense(1)) rnn.add(Activation("sigmoid")) print(rnn.summary()) rnn.compile(loss = "binary_crossentropy", optimizer = "rmsprop", metrics = ["accuracy"]) """ eng : fit model tr : modelimizi eğitiyoruz. """ history = rnn.fit(X_train, Y_train, validation_data = (X_test, Y_test), epochs = 15, batch_size = 128, verbose = 1) score = rnn.evaluate(X_test, Y_test) print("Accuracy : %",score[1]*100) """ eng : Visualize loss and acc tr : loss ve acc sonuçlarımızı görselleştiriyoruz. """ plt.figure() plt.plot(history.history["accuracy"], label = "Train") plt.plot(history.history["val_accuracy"], label = "Test") plt.title("Accuracy") plt.ylabel("Acc") plt.xlabel("epochs") plt.legend() plt.show() plt.figure() plt.plot(history.history["loss"], label = "Train") plt.plot(history.history["val_loss"], label = "Test") plt.title("Loss") plt.ylabel("Acc") plt.xlabel("epochs") plt.legend() plt.show()
from __future__ import with_statement import inspect, logging log = logging.getLogger(__name__) import math, threading from warnings import warn import otp.ai.passlib.exc as exc, otp.ai.passlib.ifc as ifc from otp.ai.passlib.exc import MissingBackendError, PasslibConfigWarning, PasslibHashWarning from otp.ai.passlib.ifc import PasswordHash from otp.ai.passlib.registry import get_crypt_handler from otp.ai.passlib.utils import consteq, getrandstr, getrandbytes, rng, to_native_str, is_crypt_handler, to_unicode, MAX_PASSWORD_SIZE, accepts_keyword, as_bool, update_mixin_classes from otp.ai.passlib.utils.binary import BASE64_CHARS, HASH64_CHARS, PADDED_BASE64_CHARS, HEX_CHARS, UPPER_HEX_CHARS, LOWER_HEX_CHARS, ALL_BYTE_VALUES from otp.ai.passlib.utils.compat import join_byte_values, irange, u, native_string_types, uascii_to_str, join_unicode, unicode, str_to_uascii, join_unicode, unicode_or_bytes_types, PY2, int_types from otp.ai.passlib.utils.decor import classproperty, deprecated_method __all__ = [ 'parse_mc2', 'parse_mc3', 'render_mc2', 'render_mc3', 'GenericHandler', 'StaticHandler', 'HasUserContext', 'HasRawChecksum', 'HasManyIdents', 'HasSalt', 'HasRawSalt', 'HasRounds', 'HasManyBackends', 'PrefixWrapper'] H64_CHARS = HASH64_CHARS B64_CHARS = BASE64_CHARS PADDED_B64_CHARS = PADDED_BASE64_CHARS UC_HEX_CHARS = UPPER_HEX_CHARS LC_HEX_CHARS = LOWER_HEX_CHARS def _bitsize(count, chars): if chars and count: import math return int(count * math.log(len(chars), 2)) return 0 def guess_app_stacklevel(start=1): frame = inspect.currentframe() count = -start try: while frame: name = frame.f_globals.get('__name__', '') if name.startswith('passlib.tests.') or not name.startswith('passlib.'): return max(1, count) count += 1 frame = frame.f_back return start finally: del frame def warn_hash_settings_deprecation(handler, kwds): warn("passing settings to %(handler)s.hash() is deprecated, and won't be supported in Passlib 2.0; use '%(handler)s.using(**settings).hash(secret)' instead" % dict(handler=handler.name), DeprecationWarning, stacklevel=guess_app_stacklevel(2)) def extract_settings_kwds(handler, kwds): context_keys = set(handler.context_kwds) return dict((key not in context_keys and key, kwds.pop(key)) for key in list(kwds)) _UDOLLAR = u('$') _UZERO = u('0') def validate_secret(secret): if not isinstance(secret, unicode_or_bytes_types): raise exc.ExpectedStringError(secret, 'secret') if len(secret) > MAX_PASSWORD_SIZE: raise exc.PasswordSizeError(MAX_PASSWORD_SIZE) def to_unicode_for_identify(hash): if isinstance(hash, unicode): return hash if isinstance(hash, bytes): try: return hash.decode('utf-8') except UnicodeDecodeError: return hash.decode('latin-1') else: raise exc.ExpectedStringError(hash, 'hash') def parse_mc2(hash, prefix, sep=_UDOLLAR, handler=None): hash = to_unicode(hash, 'ascii', 'hash') if not hash.startswith(prefix): raise exc.InvalidHashError(handler) parts = hash[len(prefix):].split(sep) if len(parts) == 2: salt, chk = parts return ( salt, chk or None) if len(parts) == 1: return (parts[0], None) raise exc.MalformedHashError(handler) return def parse_mc3(hash, prefix, sep=_UDOLLAR, rounds_base=10, default_rounds=None, handler=None): hash = to_unicode(hash, 'ascii', 'hash') if not hash.startswith(prefix): raise exc.InvalidHashError(handler) parts = hash[len(prefix):].split(sep) if len(parts) == 3: rounds, salt, chk = parts else: if len(parts) == 2: rounds, salt = parts chk = None else: raise exc.MalformedHashError(handler) if rounds.startswith(_UZERO) and rounds != _UZERO: raise exc.ZeroPaddedRoundsError(handler) else: if rounds: rounds = int(rounds, rounds_base) else: if default_rounds is None: raise exc.MalformedHashError(handler, 'empty rounds field') else: rounds = default_rounds return (rounds, salt, chk or None) def parse_int(source, base=10, default=None, param='value', handler=None): if source.startswith(_UZERO) and source != _UZERO: raise exc.MalformedHashError(handler, 'zero-padded %s field' % param) else: if source: return int(source, base) if default is None: raise exc.MalformedHashError(handler, 'empty %s field' % param) else: return default return def render_mc2(ident, salt, checksum, sep=u('$')): if checksum: parts = [ ident, salt, sep, checksum] else: parts = [ ident, salt] return uascii_to_str(join_unicode(parts)) def render_mc3(ident, rounds, salt, checksum, sep=u('$'), rounds_base=10): if rounds is None: rounds = u('') else: if rounds_base == 16: rounds = u('%x') % rounds else: rounds = unicode(rounds) if checksum: parts = [ ident, rounds, sep, salt, sep, checksum] else: parts = [ ident, rounds, sep, salt] return uascii_to_str(join_unicode(parts)) def validate_default_value(handler, default, norm, param='value'): return True def norm_integer(handler, value, min=1, max=None, param='value', relaxed=False): if not isinstance(value, int_types): raise exc.ExpectedTypeError(value, 'integer', param) if value < min: msg = '%s: %s (%d) is too low, must be at least %d' % (handler.name, param, value, min) if relaxed: warn(msg, exc.PasslibHashWarning) value = min else: raise ValueError(msg) if max and value > max: msg = '%s: %s (%d) is too large, cannot be more than %d' % (handler.name, param, value, max) if relaxed: warn(msg, exc.PasslibHashWarning) value = max else: raise ValueError(msg) return value class MinimalHandler(PasswordHash): _configured = False @classmethod def using(cls, relaxed=False): name = cls.__name__ if not cls._configured: name = '<customized %s hasher>' % name return type(name, (cls,), dict(__module__=cls.__module__, _configured=True)) class TruncateMixin(MinimalHandler): truncate_error = False truncate_verify_reject = False @classmethod def using(cls, truncate_error=None, **kwds): subcls = super(TruncateMixin, cls).using(**kwds) if truncate_error is not None: truncate_error = as_bool(truncate_error, param='truncate_error') if truncate_error is not None: subcls.truncate_error = truncate_error return subcls @classmethod def _check_truncate_policy(cls, secret): if cls.truncate_error and len(secret) > cls.truncate_size: raise exc.PasswordTruncateError(cls) class GenericHandler(MinimalHandler): setting_kwds = None context_kwds = () ident = None _hash_regex = None checksum_size = None checksum_chars = None _checksum_is_bytes = False checksum = None def __init__(self, checksum=None, use_defaults=False, **kwds): self.use_defaults = use_defaults super(GenericHandler, self).__init__(**kwds) if checksum is not None: self.checksum = self._norm_checksum(checksum) return def _norm_checksum(self, checksum, relaxed=False): raw = self._checksum_is_bytes if raw: if not isinstance(checksum, bytes): raise exc.ExpectedTypeError(checksum, 'bytes', 'checksum') else: if not isinstance(checksum, unicode): if isinstance(checksum, bytes) and relaxed: warn('checksum should be unicode, not bytes', PasslibHashWarning) checksum = checksum.decode('ascii') else: raise exc.ExpectedTypeError(checksum, 'unicode', 'checksum') cc = self.checksum_size if cc and len(checksum) != cc: raise exc.ChecksumSizeError(self, raw=raw) if not raw: cs = self.checksum_chars if cs and any(c not in cs for c in checksum): raise ValueError('invalid characters in %s checksum' % (self.name,)) return checksum @classmethod def identify(cls, hash): hash = to_unicode_for_identify(hash) if not hash: return False ident = cls.ident if ident is not None: return hash.startswith(ident) pat = cls._hash_regex if pat is not None: return pat.match(hash) is not None try: cls.from_string(hash) return True except ValueError: return False return @classmethod def from_string(cls, hash, **context): raise NotImplementedError('%s must implement from_string()' % (cls,)) def to_string(self): raise NotImplementedError('%s must implement from_string()' % (self.__class__,)) @property def _stub_checksum(self): if self.checksum_size: if self._checksum_is_bytes: return '\x00' * self.checksum_size if self.checksum_chars: return self.checksum_chars[0] * self.checksum_size if isinstance(self, HasRounds): orig = self.rounds self.rounds = self.min_rounds or 1 try: return self._calc_checksum('') finally: self.rounds = orig return self._calc_checksum('') def _calc_checksum(self, secret): raise NotImplementedError('%s must implement _calc_checksum()' % ( self.__class__,)) @classmethod def hash(cls, secret, **kwds): if kwds: settings = extract_settings_kwds(cls, kwds) if settings: warn_hash_settings_deprecation(cls, settings) return cls.using(**settings).hash(secret, **kwds) validate_secret(secret) self = cls(use_defaults=True, **kwds) self.checksum = self._calc_checksum(secret) return self.to_string() @classmethod def verify(cls, secret, hash, **context): validate_secret(secret) self = cls.from_string(hash, **context) chk = self.checksum if chk is None: raise exc.MissingDigestError(cls) return consteq(self._calc_checksum(secret), chk) @deprecated_method(deprecated='1.7', removed='2.0') @classmethod def genconfig(cls, **kwds): settings = extract_settings_kwds(cls, kwds) if settings: return cls.using(**settings).genconfig(**kwds) self = cls(use_defaults=True, **kwds) self.checksum = self._stub_checksum return self.to_string() @deprecated_method(deprecated='1.7', removed='2.0') @classmethod def genhash(cls, secret, config, **context): if config is None: raise TypeError('config must be string') validate_secret(secret) self = cls.from_string(config, **context) self.checksum = self._calc_checksum(secret) return self.to_string() @classmethod def needs_update(cls, hash, secret=None, **kwds): self = cls.from_string(hash) return self._calc_needs_update(secret=secret, **kwds) def _calc_needs_update(self, secret=None): return False _unparsed_settings = ('salt_size', 'relaxed') _unsafe_settings = ('salt', 'checksum') @classproperty def _parsed_settings(cls): return (key for key in cls.setting_kwds if key not in cls._unparsed_settings) @staticmethod def _sanitize(value, char=u('*')): if value is None: return if isinstance(value, bytes): from otp.ai.passlib.utils.binary import ab64_encode value = ab64_encode(value).decode('ascii') else: if not isinstance(value, unicode): value = unicode(value) size = len(value) clip = min(4, size // 8) return value[:clip] + char * (size - clip) @classmethod def parsehash(cls, hash, checksum=True, sanitize=False): self = cls.from_string(hash) UNSET = object() kwds = dict(( getattr(self, key) != getattr(cls, key, UNSET) and key, getattr(self, key)) for key in self._parsed_settings) if checksum and self.checksum is not None: kwds['checksum'] = self.checksum if sanitize: if sanitize is True: sanitize = cls._sanitize for key in cls._unsafe_settings: if key in kwds: kwds[key] = sanitize(kwds[key]) return kwds @classmethod def bitsize(cls, **kwds): try: info = super(GenericHandler, cls).bitsize(**kwds) except AttributeError: info = {} cc = ALL_BYTE_VALUES if cls._checksum_is_bytes else cls.checksum_chars if cls.checksum_size and cc: info['checksum'] = _bitsize(cls.checksum_size, cc) return info class StaticHandler(GenericHandler): setting_kwds = () _hash_prefix = u('') @classmethod def from_string(cls, hash, **context): hash = to_unicode(hash, 'ascii', 'hash') hash = cls._norm_hash(hash) prefix = cls._hash_prefix if prefix: if hash.startswith(prefix): hash = hash[len(prefix):] else: raise exc.InvalidHashError(cls) return cls(checksum=hash, **context) @classmethod def _norm_hash(cls, hash): return hash def to_string(self): return uascii_to_str(self._hash_prefix + self.checksum) __cc_compat_hack = None def _calc_checksum(self, secret): cls = self.__class__ wrapper_cls = cls.__cc_compat_hack if wrapper_cls is None: def inner(self, secret): raise NotImplementedError('%s must implement _calc_checksum()' % ( cls,)) wrapper_cls = cls.__cc_compat_hack = type(cls.__name__ + '_wrapper', ( cls,), dict(_calc_checksum=inner, __module__=cls.__module__)) context = dict((k, getattr(self, k)) for k in self.context_kwds) try: hash = wrapper_cls.genhash(secret, None, **context) except TypeError as err: if str(err) == 'config must be string': raise NotImplementedError('%s must implement _calc_checksum()' % ( cls,)) else: raise warn('%r should be updated to implement StaticHandler._calc_checksum() instead of StaticHandler.genhash(), support for the latter style will be removed in Passlib 1.8' % cls, DeprecationWarning) return str_to_uascii(hash) class HasEncodingContext(GenericHandler): context_kwds = ('encoding', ) default_encoding = 'utf-8' def __init__(self, encoding=None, **kwds): super(HasEncodingContext, self).__init__(**kwds) self.encoding = encoding or self.default_encoding class HasUserContext(GenericHandler): context_kwds = ('user', ) def __init__(self, user=None, **kwds): super(HasUserContext, self).__init__(**kwds) self.user = user @classmethod def hash(cls, secret, user=None, **context): return super(HasUserContext, cls).hash(secret, user=user, **context) @classmethod def verify(cls, secret, hash, user=None, **context): return super(HasUserContext, cls).verify(secret, hash, user=user, **context) @deprecated_method(deprecated='1.7', removed='2.0') @classmethod def genhash(cls, secret, config, user=None, **context): return super(HasUserContext, cls).genhash(secret, config, user=user, **context) class HasRawChecksum(GenericHandler): _checksum_is_bytes = True class HasManyIdents(GenericHandler): default_ident = None ident_values = None ident_aliases = None ident = None @classmethod def using(cls, default_ident=None, ident=None, **kwds): if ident is not None: if default_ident is not None: raise TypeError("'default_ident' and 'ident' are mutually exclusive") default_ident = ident subcls = super(HasManyIdents, cls).using(**kwds) if default_ident is not None: subcls.default_ident = cls(ident=default_ident, use_defaults=True).ident return subcls def __init__(self, ident=None, **kwds): super(HasManyIdents, self).__init__(**kwds) if ident is not None: ident = self._norm_ident(ident) else: if self.use_defaults: ident = self.default_ident else: raise TypeError('no ident specified') self.ident = ident return @classmethod def _norm_ident(cls, ident): if isinstance(ident, bytes): ident = ident.decode('ascii') iv = cls.ident_values if ident in iv: return ident ia = cls.ident_aliases if ia: try: value = ia[ident] except KeyError: pass else: if value in iv: return value raise ValueError('invalid ident: %r' % (ident,)) @classmethod def identify(cls, hash): hash = to_unicode_for_identify(hash) return hash.startswith(cls.ident_values) @classmethod def _parse_ident(cls, hash): hash = to_unicode(hash, 'ascii', 'hash') for ident in cls.ident_values: if hash.startswith(ident): return (ident, hash[len(ident):]) raise exc.InvalidHashError(cls) class HasSalt(GenericHandler): min_salt_size = 0 max_salt_size = None salt_chars = None @classproperty def default_salt_size(cls): return cls.max_salt_size @classproperty def default_salt_chars(cls): return cls.salt_chars _salt_is_bytes = False _salt_unit = 'chars' salt = None @classmethod def using(cls, default_salt_size=None, salt_size=None, salt=None, **kwds): if salt_size is not None: if default_salt_size is not None: raise TypeError("'salt_size' and 'default_salt_size' aliases are mutually exclusive") default_salt_size = salt_size subcls = super(HasSalt, cls).using(**kwds) relaxed = kwds.get('relaxed') if default_salt_size is not None: if isinstance(default_salt_size, native_string_types): default_salt_size = int(default_salt_size) subcls.default_salt_size = subcls._clip_to_valid_salt_size(default_salt_size, param='salt_size', relaxed=relaxed) if salt is not None: salt = subcls._norm_salt(salt, relaxed=relaxed) subcls._generate_salt = staticmethod(lambda : salt) return subcls @classmethod def _clip_to_valid_salt_size(cls, salt_size, param='salt_size', relaxed=True): mn = cls.min_salt_size mx = cls.max_salt_size if mn == mx: if salt_size != mn: msg = '%s: %s (%d) must be exactly %d' % (cls.name, param, salt_size, mn) if relaxed: warn(msg, PasslibHashWarning) else: raise ValueError(msg) return mn if salt_size < mn: msg = '%s: %s (%r) below min_salt_size (%d)' % (cls.name, param, salt_size, mn) if relaxed: warn(msg, PasslibHashWarning) salt_size = mn else: raise ValueError(msg) if mx and salt_size > mx: msg = '%s: %s (%r) above max_salt_size (%d)' % (cls.name, param, salt_size, mx) if relaxed: warn(msg, PasslibHashWarning) salt_size = mx else: raise ValueError(msg) return salt_size def __init__(self, salt=None, **kwds): super(HasSalt, self).__init__(**kwds) if salt is not None: salt = self._parse_salt(salt) else: if self.use_defaults: salt = self._generate_salt() else: raise TypeError('no salt specified') self.salt = salt return def _parse_salt(self, salt): return self._norm_salt(salt) @classmethod def _norm_salt(cls, salt, relaxed=False): if cls._salt_is_bytes: if not isinstance(salt, bytes): raise exc.ExpectedTypeError(salt, 'bytes', 'salt') else: if not isinstance(salt, unicode): if isinstance(salt, bytes) and (PY2 or relaxed): salt = salt.decode('ascii') else: raise exc.ExpectedTypeError(salt, 'unicode', 'salt') sc = cls.salt_chars if sc is not None and any(c not in sc for c in salt): raise ValueError('invalid characters in %s salt' % cls.name) mn = cls.min_salt_size if mn and len(salt) < mn: msg = 'salt too small (%s requires %s %d %s)' % (cls.name, 'exactly' if mn == cls.max_salt_size else '>=', mn, cls._salt_unit) raise ValueError(msg) mx = cls.max_salt_size if mx and len(salt) > mx: msg = 'salt too large (%s requires %s %d %s)' % (cls.name, 'exactly' if mx == mn else '<=', mx, cls._salt_unit) if relaxed: warn(msg, PasslibHashWarning) salt = cls._truncate_salt(salt, mx) else: raise ValueError(msg) return salt @staticmethod def _truncate_salt(salt, mx): return salt[:mx] @classmethod def _generate_salt(cls): return getrandstr(rng, cls.default_salt_chars, cls.default_salt_size) @classmethod def bitsize(cls, salt_size=None, **kwds): info = super(HasSalt, cls).bitsize(**kwds) if salt_size is None: salt_size = cls.default_salt_size info['salt'] = _bitsize(salt_size, cls.default_salt_chars) return info class HasRawSalt(HasSalt): salt_chars = ALL_BYTE_VALUES _salt_is_bytes = True _salt_unit = 'bytes' @classmethod def _generate_salt(cls): return getrandbytes(rng, cls.default_salt_size) class HasRounds(GenericHandler): min_rounds = 0 max_rounds = None rounds_cost = 'linear' using_rounds_kwds = ('min_desired_rounds', 'max_desired_rounds', 'min_rounds', 'max_rounds', 'default_rounds', 'vary_rounds') min_desired_rounds = None max_desired_rounds = None default_rounds = None vary_rounds = None rounds = None @classmethod def using(cls, min_desired_rounds=None, max_desired_rounds=None, default_rounds=None, vary_rounds=None, min_rounds=None, max_rounds=None, rounds=None, **kwds): if min_rounds is not None: if min_desired_rounds is not None: raise TypeError("'min_rounds' and 'min_desired_rounds' aliases are mutually exclusive") min_desired_rounds = min_rounds if max_rounds is not None: if max_desired_rounds is not None: raise TypeError("'max_rounds' and 'max_desired_rounds' aliases are mutually exclusive") max_desired_rounds = max_rounds if rounds is not None: if min_desired_rounds is None: min_desired_rounds = rounds if max_desired_rounds is None: max_desired_rounds = rounds if default_rounds is None: default_rounds = rounds subcls = super(HasRounds, cls).using(**kwds) relaxed = kwds.get('relaxed') if min_desired_rounds is None: explicit_min_rounds = False min_desired_rounds = cls.min_desired_rounds else: explicit_min_rounds = True if isinstance(min_desired_rounds, native_string_types): min_desired_rounds = int(min_desired_rounds) subcls.min_desired_rounds = subcls._norm_rounds(min_desired_rounds, param='min_desired_rounds', relaxed=relaxed) if max_desired_rounds is None: max_desired_rounds = cls.max_desired_rounds else: if isinstance(max_desired_rounds, native_string_types): max_desired_rounds = int(max_desired_rounds) if min_desired_rounds and max_desired_rounds < min_desired_rounds: msg = '%s: max_desired_rounds (%r) below min_desired_rounds (%r)' % ( subcls.name, max_desired_rounds, min_desired_rounds) if explicit_min_rounds: raise ValueError(msg) else: warn(msg, PasslibConfigWarning) max_desired_rounds = min_desired_rounds subcls.max_desired_rounds = subcls._norm_rounds(max_desired_rounds, param='max_desired_rounds', relaxed=relaxed) if default_rounds is not None: if isinstance(default_rounds, native_string_types): default_rounds = int(default_rounds) if min_desired_rounds and default_rounds < min_desired_rounds: raise ValueError('%s: default_rounds (%r) below min_desired_rounds (%r)' % ( subcls.name, default_rounds, min_desired_rounds)) else: if max_desired_rounds and default_rounds > max_desired_rounds: raise ValueError('%s: default_rounds (%r) above max_desired_rounds (%r)' % ( subcls.name, default_rounds, max_desired_rounds)) subcls.default_rounds = subcls._norm_rounds(default_rounds, param='default_rounds', relaxed=relaxed) if subcls.default_rounds is not None: subcls.default_rounds = subcls._clip_to_desired_rounds(subcls.default_rounds) if vary_rounds is not None: if isinstance(vary_rounds, native_string_types): if vary_rounds.endswith('%'): vary_rounds = float(vary_rounds[:-1]) * 0.01 elif '.' in vary_rounds: vary_rounds = float(vary_rounds) else: vary_rounds = int(vary_rounds) if vary_rounds < 0: raise ValueError('%s: vary_rounds (%r) below 0' % ( subcls.name, vary_rounds)) else: if isinstance(vary_rounds, float): if vary_rounds > 1: raise ValueError('%s: vary_rounds (%r) above 1.0' % ( subcls.name, vary_rounds)) else: if not isinstance(vary_rounds, int): raise TypeError('vary_rounds must be int or float') if vary_rounds: warn("The 'vary_rounds' option is deprecated as of Passlib 1.7, and will be removed in Passlib 2.0", PasslibConfigWarning) subcls.vary_rounds = vary_rounds return subcls @classmethod def _clip_to_desired_rounds(cls, rounds): mnd = cls.min_desired_rounds or 0 if rounds < mnd: return mnd mxd = cls.max_desired_rounds if mxd and rounds > mxd: return mxd return rounds @classmethod def _calc_vary_rounds_range(cls, default_rounds): vary_rounds = cls.vary_rounds def linear_to_native(value, upper): return value if isinstance(vary_rounds, float): if cls.rounds_cost == 'log2': default_rounds = 1 << default_rounds def linear_to_native(value, upper): if value <= 0: return 0 if upper: return int(math.log(value, 2)) return int(math.ceil(math.log(value, 2))) vary_rounds = int(default_rounds * vary_rounds) lower = linear_to_native(default_rounds - vary_rounds, False) upper = linear_to_native(default_rounds + vary_rounds, True) return ( cls._clip_to_desired_rounds(lower), cls._clip_to_desired_rounds(upper)) def __init__(self, rounds=None, **kwds): super(HasRounds, self).__init__(**kwds) if rounds is not None: rounds = self._parse_rounds(rounds) else: if self.use_defaults: rounds = self._generate_rounds() else: raise TypeError('no rounds specified') self.rounds = rounds return def _parse_rounds(self, rounds): return self._norm_rounds(rounds) @classmethod def _norm_rounds(cls, rounds, relaxed=False, param='rounds'): return norm_integer(cls, rounds, cls.min_rounds, cls.max_rounds, param=param, relaxed=relaxed) @classmethod def _generate_rounds(cls): rounds = cls.default_rounds if rounds is None: raise TypeError('%s rounds value must be specified explicitly' % (cls.name,)) if cls.vary_rounds: lower, upper = cls._calc_vary_rounds_range(rounds) if lower < upper: rounds = rng.randint(lower, upper) return rounds def _calc_needs_update(self, **kwds): min_desired_rounds = self.min_desired_rounds if min_desired_rounds and self.rounds < min_desired_rounds: return True max_desired_rounds = self.max_desired_rounds if max_desired_rounds and self.rounds > max_desired_rounds: return True return super(HasRounds, self)._calc_needs_update(**kwds) @classmethod def bitsize(cls, rounds=None, vary_rounds=0.1, **kwds): info = super(HasRounds, cls).bitsize(**kwds) if cls.rounds_cost != 'log2': import math if rounds is None: rounds = cls.default_rounds info['rounds'] = max(0, int(1 + math.log(rounds * vary_rounds, 2))) return info class ParallelismMixin(GenericHandler): parallelism = 1 @classmethod def using(cls, parallelism=None, **kwds): subcls = super(ParallelismMixin, cls).using(**kwds) if parallelism is not None: if isinstance(parallelism, native_string_types): parallelism = int(parallelism) subcls.parallelism = subcls._norm_parallelism(parallelism, relaxed=kwds.get('relaxed')) return subcls def __init__(self, parallelism=None, **kwds): super(ParallelismMixin, self).__init__(**kwds) if parallelism is None: pass else: self.parallelism = self._norm_parallelism(parallelism) return @classmethod def _norm_parallelism(cls, parallelism, relaxed=False): return norm_integer(cls, parallelism, min=1, param='parallelism', relaxed=relaxed) def _calc_needs_update(self, **kwds): if self.parallelism != type(self).parallelism: return True return super(ParallelismMixin, self)._calc_needs_update(**kwds) _backend_lock = threading.RLock() class BackendMixin(PasswordHash): backends = None __backend = None _no_backend_suggestion = None _pending_backend = None _pending_dry_run = False @classmethod def get_backend(cls): if not cls.__backend: cls.set_backend() return cls.__backend @classmethod def has_backend(cls, name='any'): try: cls.set_backend(name, dryrun=True) return True except (exc.MissingBackendError, exc.PasslibSecurityError): return False @classmethod def set_backend(cls, name='any', dryrun=False): if name == 'any' and cls.__backend or name and name == cls.__backend: return cls.__backend owner = cls._get_backend_owner() if owner is not cls: return owner.set_backend(name, dryrun=dryrun) if name == 'any' or name == 'default': default_error = None for name in cls.backends: try: return cls.set_backend(name, dryrun=dryrun) except exc.MissingBackendError: continue except exc.PasslibSecurityError as err: if default_error is None: default_error = err continue if default_error is None: msg = '%s: no backends available' % cls.name if cls._no_backend_suggestion: msg += cls._no_backend_suggestion default_error = exc.MissingBackendError(msg) raise default_error if name not in cls.backends: raise exc.UnknownBackendError(cls, name) with _backend_lock: orig = ( cls._pending_backend, cls._pending_dry_run) try: cls._pending_backend = name cls._pending_dry_run = dryrun cls._set_backend(name, dryrun) finally: cls._pending_backend, cls._pending_dry_run = orig if not dryrun: cls.__backend = name return name return @classmethod def _get_backend_owner(cls): return cls @classmethod def _set_backend(cls, name, dryrun): loader = cls._get_backend_loader(name) kwds = {} if accepts_keyword(loader, 'name'): kwds['name'] = name if accepts_keyword(loader, 'dryrun'): kwds['dryrun'] = dryrun ok = loader(**kwds) if ok is False: raise exc.MissingBackendError('%s: backend not available: %s' % ( cls.name, name)) else: if ok is not True: raise AssertionError('backend loaders must return True or False: %r' % ( ok,)) @classmethod def _get_backend_loader(cls, name): raise NotImplementedError('implement in subclass') @classmethod def _stub_requires_backend(cls): if cls.__backend: raise AssertionError('%s: _finalize_backend(%r) failed to replace lazy loader' % ( cls.name, cls.__backend)) cls.set_backend() if not cls.__backend: raise AssertionError('%s: set_backend() failed to load a default backend' % cls.name) class SubclassBackendMixin(BackendMixin): _backend_mixin_target = False _backend_mixin_map = None @classmethod def _get_backend_owner(cls): if not cls._backend_mixin_target: raise AssertionError('_backend_mixin_target not set') for base in cls.__mro__: if base.__dict__.get('_backend_mixin_target'): return base raise AssertionError("expected to find class w/ '_backend_mixin_target' set") @classmethod def _set_backend(cls, name, dryrun): super(SubclassBackendMixin, cls)._set_backend(name, dryrun) mixin_map = cls._backend_mixin_map mixin_cls = mixin_map[name] update_mixin_classes(cls, add=mixin_cls, remove=mixin_map.values(), append=True, before=SubclassBackendMixin, dryrun=dryrun) @classmethod def _get_backend_loader(cls, name): return cls._backend_mixin_map[name]._load_backend_mixin class HasManyBackends(BackendMixin, GenericHandler): def _calc_checksum(self, secret): return self._calc_checksum_backend(secret) def _calc_checksum_backend(self, secret): self._stub_requires_backend() return self._calc_checksum_backend(secret) @classmethod def _get_backend_loader(cls, name): loader = getattr(cls, '_load_backend_' + name, None) if loader is None: def loader(): return cls.__load_legacy_backend(name) return loader @classmethod def __load_legacy_backend(cls, name): value = getattr(cls, '_has_backend_' + name) warn('%s: support for ._has_backend_%s is deprecated as of Passlib 1.7, and will be removed in Passlib 1.9/2.0, please implement ._load_backend_%s() instead' % ( cls.name, name, name), DeprecationWarning) if value: func = getattr(cls, '_calc_checksum_' + name) cls._set_calc_checksum_backend(func) return True return False @classmethod def _set_calc_checksum_backend(cls, func): backend = cls._pending_backend if not callable(func): raise RuntimeError('%s: backend %r returned invalid callable: %r' % ( cls.name, backend, func)) if not cls._pending_dry_run: cls._calc_checksum_backend = func class PrefixWrapper(object): _using_clone_attrs = () def __init__(self, name, wrapped, prefix=u(''), orig_prefix=u(''), lazy=False, doc=None, ident=None): self.name = name if isinstance(prefix, bytes): prefix = prefix.decode('ascii') self.prefix = prefix if isinstance(orig_prefix, bytes): orig_prefix = orig_prefix.decode('ascii') self.orig_prefix = orig_prefix if doc: self.__doc__ = doc if hasattr(wrapped, 'name'): self._set_wrapped(wrapped) else: self._wrapped_name = wrapped if not lazy: self._get_wrapped() if ident is not None: if ident is True: if prefix: ident = prefix else: raise ValueError('no prefix specified') if isinstance(ident, bytes): ident = ident.decode('ascii') if ident[:len(prefix)] != prefix[:len(ident)]: raise ValueError('ident must agree with prefix') self._ident = ident return _wrapped_name = None _wrapped_handler = None def _set_wrapped(self, handler): if 'ident' in handler.setting_kwds and self.orig_prefix: warn("PrefixWrapper: 'orig_prefix' option may not work correctly for handlers which have multiple identifiers: %r" % ( handler.name,), exc.PasslibRuntimeWarning) self._wrapped_handler = handler def _get_wrapped(self): handler = self._wrapped_handler if handler is None: handler = get_crypt_handler(self._wrapped_name) self._set_wrapped(handler) return handler wrapped = property(_get_wrapped) _ident = False @property def ident(self): value = self._ident if value is False: value = None if not self.orig_prefix: wrapped = self.wrapped ident = getattr(wrapped, 'ident', None) if ident is not None: value = self._wrap_hash(ident) self._ident = value return value _ident_values = False @property def ident_values(self): value = self._ident_values if value is False: value = None if not self.orig_prefix: wrapped = self.wrapped idents = getattr(wrapped, 'ident_values', None) if idents: value = tuple(self._wrap_hash(ident) for ident in idents) self._ident_values = value return value _proxy_attrs = ('setting_kwds', 'context_kwds', 'default_rounds', 'min_rounds', 'max_rounds', 'rounds_cost', 'min_desired_rounds', 'max_desired_rounds', 'vary_rounds', 'default_salt_size', 'min_salt_size', 'max_salt_size', 'salt_chars', 'default_salt_chars', 'backends', 'has_backend', 'get_backend', 'set_backend', 'is_disabled', 'truncate_size', 'truncate_error', 'truncate_verify_reject', '_salt_is_bytes') def __repr__(self): args = [ repr(self._wrapped_name or self._wrapped_handler)] if self.prefix: args.append('prefix=%r' % self.prefix) if self.orig_prefix: args.append('orig_prefix=%r' % self.orig_prefix) args = (', ').join(args) return 'PrefixWrapper(%r, %s)' % (self.name, args) def __dir__(self): attrs = set(dir(self.__class__)) attrs.update(self.__dict__) wrapped = self.wrapped attrs.update(attr for attr in self._proxy_attrs if hasattr(wrapped, attr)) return list(attrs) def __getattr__(self, attr): if attr in self._proxy_attrs: return getattr(self.wrapped, attr) raise AttributeError('missing attribute: %r' % (attr,)) def __setattr__(self, attr, value): if attr in self._proxy_attrs and self._derived_from: wrapped = self.wrapped if hasattr(wrapped, attr): setattr(wrapped, attr, value) return return object.__setattr__(self, attr, value) def _unwrap_hash(self, hash): prefix = self.prefix if not hash.startswith(prefix): raise exc.InvalidHashError(self) return self.orig_prefix + hash[len(prefix):] def _wrap_hash(self, hash): if isinstance(hash, bytes): hash = hash.decode('ascii') orig_prefix = self.orig_prefix if not hash.startswith(orig_prefix): raise exc.InvalidHashError(self.wrapped) wrapped = self.prefix + hash[len(orig_prefix):] return uascii_to_str(wrapped) _derived_from = None def using(self, **kwds): subcls = self.wrapped.using(**kwds) wrapper = PrefixWrapper(self.name, subcls, prefix=self.prefix, orig_prefix=self.orig_prefix) wrapper._derived_from = self for attr in self._using_clone_attrs: setattr(wrapper, attr, getattr(self, attr)) return wrapper def needs_update(self, hash, **kwds): hash = self._unwrap_hash(hash) return self.wrapped.needs_update(hash, **kwds) def identify(self, hash): hash = to_unicode_for_identify(hash) if not hash.startswith(self.prefix): return False hash = self._unwrap_hash(hash) return self.wrapped.identify(hash) @deprecated_method(deprecated='1.7', removed='2.0') def genconfig(self, **kwds): config = self.wrapped.genconfig(**kwds) if config is None: raise RuntimeError('.genconfig() must return a string, not None') return self._wrap_hash(config) @deprecated_method(deprecated='1.7', removed='2.0') def genhash(self, secret, config, **kwds): if config is not None: config = to_unicode(config, 'ascii', 'config/hash') config = self._unwrap_hash(config) return self._wrap_hash(self.wrapped.genhash(secret, config, **kwds)) @deprecated_method(deprecated='1.7', removed='2.0', replacement='.hash()') def encrypt(self, secret, **kwds): return self.hash(secret, **kwds) def hash(self, secret, **kwds): return self._wrap_hash(self.wrapped.hash(secret, **kwds)) def verify(self, secret, hash, **kwds): hash = to_unicode(hash, 'ascii', 'hash') hash = self._unwrap_hash(hash) return self.wrapped.verify(secret, hash, **kwds)
''' ░░░░░░░░░▄░░░░░░░░░░░░░░▄░░░░ ░░░░░░░░▌▒█░░░░░░░░░░░▄▀▒▌░░░ ░░░░░░░░▌▒▒█░░░░░░░░▄▀▒▒▒▐░░░ ░░░░░░░▐▄▀▒▒▀▀▀▀▄▄▄▀▒▒▒▒▒▐░░░ ░░░░░▄▄▀▒░▒▒▒▒▒▒▒▒▒█▒▒▄█▒▐░░░ ░░░▄▀▒▒▒░░░▒▒▒░░░▒▒▒▀██▀▒▌░░░ ░░▐▒▒▒▄▄▒▒▒▒░░░▒▒▒▒▒▒▒▀▄▒▒▌░░ ░░▌░░▌█▀▒▒▒▒▒▄▀█▄▒▒▒▒▒▒▒█▒▐░░ ░▐░░░▒▒▒▒▒▒▒▒▌██▀▒▒░░░▒▒▒▀▄▌░ ░▌░▒▄██▄▒▒▒▒▒▒▒▒▒░░░░░░▒▒▒▒▌░ ▀▒▀▐▄█▄█▌▄░▀▒▒░░░░░░░░░░▒▒▒▐░ ▐▒▒▐▀▐▀▒░▄▄▒▄▒▒▒▒▒▒░▒░▒░▒▒▒▒▌ ▐▒▒▒▀▀▄▄▒▒▒▄▒▒▒▒▒▒▒▒░▒░▒░▒▒▐░ ░▌▒▒▒▒▒▒▀▀▀▒▒▒▒▒▒░▒░▒░▒░▒▒▒▌░ ░▐▒▒▒▒▒▒▒▒▒▒▒▒▒▒░▒░▒░▒▒▄▒▒▐░░ ░░▀▄▒▒▒▒▒▒▒▒▒▒▒░▒░▒░▒▄▒▒▒▒▌░░ ░░░░▀▄▒▒▒▒▒▒▒▒▒▒▄▄▄▀▒▒▒▒▄▀░░░ ░░░░░░▀▄▄▄▄▄▄▀▀▀▒▒▒▒▒▄▄▀░░░░░ ░░░░░░░░░▒▒▒▒▒▒▒▒▒▒▀▀░░░░░░░░ MUCHSCRIPT MADE FOR DOGE INSPIRED BY DOGE AND ELON MUSK MADE WITH LOVE AND STRESS by sBlip @ MUCHSCRIPT 0.1.3 BETA 2021 MUCH WOW. MUCH COOL. MUCH CRYPTO. ''' __version__ = '0.1.3' __author__ = 'shaurya-blip' __github__ = 'https://github.com/shaurya-blip/muchscript/' ANSWER_OF_THE_QUESTION_WE_DONT_KNOW = 42 PEOPLE_KILLED_IN_THE_DEATH_STAR = 1565231 GEORGE_LUCAS_FIRST_FILM = 1138 PIXAR_EASTER_EGG = 'A113'
#!/usr/bin/env python import pytest TEST_DATA = [ 143845, 86139, 53043, 124340, 73213, 108435, 126874, 131397, 85618, 107774, 66872, 94293, 51015, 51903, 147655, 112891, 100993, 143374, 83737, 145868, 144768, 89793, 124127, 135366, 94017, 81678, 102325, 75394, 103852, 81896, 148050, 142780, 50503, 110691, 117851, 137382, 92841, 138222, 128414, 146834, 59968, 136456, 122397, 147157, 83595, 59916, 75690, 125025, 147797, 112494, 76247, 100221, 63389, 59070, 97466, 91905, 126234, 76561, 128170, 102778, 82342, 131097, 51609, 148204, 74812, 64925, 127927, 79056, 73307, 78431, 88770, 97688, 103564, 76001, 105232, 145361, 77845, 87518, 117293, 110054, 135599, 85005, 85983, 118255, 103031, 142440, 140505, 99614, 69593, 69161, 78795, 54808, 115582, 117976, 148858, 84193, 147285, 89038, 92677, 106574, ] def f(num): check = num // 3 - 2 if check < 1: return 0 return check + f(check) def solve2(inputs): return sum(map(f, inputs)) def solve(inputs): sum = 0 for mass in inputs: sum += mass // 3 - 2 return sum @pytest.mark.parametrize("mass,fuel", [(12, 2), (14, 2), (1969, 654), (100756, 33583)]) def test_solve(mass, fuel): assert fuel == solve([mass]) @pytest.mark.parametrize("mass,fuel", [(14, 2), (1969, 966), (100756, 50346)]) def test_part2(mass, fuel): assert fuel == solve2([mass]) def main(): print(solve(TEST_DATA)) print(solve2(TEST_DATA)) if __name__ == "__main__": main()
""" Manipulation with the YANG schemas. File: schemas.py Author: Radek Krejci <rkrejci@cesnet.cz> """ import json import os import errno import time from subprocess import check_output from shutil import copy from liberouterapi import auth from flask import request import yang from .inventory import INVENTORY, inventory_check from .error import NetopeerException __SCHEMAS_EMPTY = '{"timestamp":0, "schemas":{}}' def __schema_parse(path, format = yang.LYS_IN_UNKNOWN): try: ctx = yang.Context(os.path.dirname(path)) except Exception as e: raise NetopeerException(str(e)) try: module = ctx.parse_module_path(path, yang.LYS_IN_YANG if format == yang.LYS_IN_UNKNOWN else format) except Exception as e: if format != yang.LYS_IN_UNKOWN: raise NetopeerException(str(e)) try: module = ctx.parse_module_path(path, ly_LYS_IN_YIN) except Exception as e: raise NetopeerException(str(e)) return module def __schemas_init(path): schemas = json.loads(__SCHEMAS_EMPTY) try: ctx = yang.Context() except Exception as e: raise NetopeerException(str(e)) # initialize the list with libyang's internal modules modules = ctx.get_module_iter() for module in modules: name_norm = module.name() + '@' + module.rev().date() + '.yang' schemas['schemas'][name_norm] = {'name':module.name(), 'revision':module.rev().date()} try: with open(os.path.join(path, name_norm), 'w') as schema_file: schema_file.write(module.print_mem(yang.LYS_OUT_YANG, 0)) except: pass try: nc_schemas_dir = check_output("pkg-config --variable=LNC2_SCHEMAS_DIR libnetconf2", shell = True).decode() nc_schemas_dir = nc_schemas_dir[:len(nc_schemas_dir) - 1] for file in os.listdir(nc_schemas_dir): if file[-5:] == '.yang' or file[-4:] == '.yin': try: copy(os.path.join(nc_schemas_dir, file), path) except: pass else: continue except: pass return schemas def __schemas_inv_load(path): schemainv_path = os.path.join(path, 'schemas.json') try: with open(schemainv_path, 'r') as schemas_file: schemas = json.load(schemas_file) except OSError as e: if e.errno == errno.ENOENT: schemas = __schemas_init(path) else: raise NetopeerException('Unable to use user\'s schemas inventory ' + schemainv_path + ' (' + str(e) + ').') except ValueError: schemas = __schemas_init(path) return schemas def __schemas_inv_save(path, schemas): schemainv_path = os.path.join(path, 'schemas.json') # update the timestamp schemas['timestamp'] = time.time() #store the list try: with open(schemainv_path, 'w') as schema_file: json.dump(schemas, schema_file, sort_keys = True) except Exception: pass return schemas def __schemas_update(path): # get schemas database schemas = __schemas_inv_load(path) # get the previous timestamp timestamp = schemas['timestamp'] # check the current content of the storage for file in os.listdir(path): if file[-5:] == '.yang': format = yang.LYS_IN_YANG elif file[-4:] == '.yin': format = yang.LYS_IN_YIN else: continue schemapath = os.path.join(path, file); if os.path.getmtime(schemapath) > timestamp: # update the list try: module = __schema_parse(schemapath, format) if module.rev_size(): name_norm = module.name() + '@' + module.rev().date() + '.yang' schemas['schemas'][name_norm] = {'name': module.name(), 'revision': module.rev().date()} else: name_norm = module.name() + '.yang' schemas['schemas'][name_norm] = {'name': module.name()} if file != name_norm: try: with open(os.path.join(path, name_norm), 'w') as schema_file: schema_file.write(module.print_mem(yang.LYS_OUT_YANG, 0)) except: pass try: os.remove(schemapath) except: pass except: continue #store the list __schemas_inv_save(path, schemas) # return the up-to-date list return schemas['schemas'] @auth.required() def schemas_list(): session = auth.lookup(request.headers.get('Authorization', None)) user = session['user'] path = os.path.join(INVENTORY, user.username) inventory_check(path) schemas = __schemas_update(path) return(json.dumps(schemas, sort_keys = True)) @auth.required() def schema_get(): session = auth.lookup(request.headers.get('Authorization', None)) user = session['user'] req = request.args.to_dict() path = os.path.join(INVENTORY, user.username) if not 'key' in req: return(json.dumps({'success': False, 'error-msg': 'Missing schema key.'})) key = req['key'] schemas = __schemas_inv_load(path) if key in schemas['schemas']: try: with open(os.path.join(path, key), 'r') as schema_file: data = schema_file.read() return(json.dumps({'success': True, 'data': data})) except: pass; return(json.dumps({'success': False, 'error-msg':'Schema ' + key + ' not found.'})) @auth.required() def schemas_add(): if 'schema' not in request.files: raise NetopeerException('Missing schema file in upload request.') session = auth.lookup(request.headers.get('Authorization', None)) user = session['user'] file = request.files['schema'] # store the file path = os.path.join(INVENTORY, user.username, file.filename) file.save(path) # parse file try: if file.filename[-5:] == '.yang': format = yang.LYS_IN_YANG elif file.filename[-4:] == '.yin': format = yang.LYS_IN_YIN else: format = yang.LYS_IN_UNKNOWN module = __schema_parse(path, format) # normalize file name to allow removing without remembering schema path if module.rev_size(): name_norm = module.name() + '@' + module.rev().date() + '.yang' else: name_norm = module.name() + '.yang' if file.filename != name_norm: with open(os.path.join(INVENTORY, user.username, name_norm), 'w') as schema_file: schema_file.write(module.print_mem(yang.LYS_OUT_YANG, 0)) try: os.remove(path) except: pass except Exception: try: os.remove(path) except: pass return(json.dumps({'success': False})) return(json.dumps({'success': True})) @auth.required() def schemas_rm(): session = auth.lookup(request.headers.get('Authorization', None)) user = session['user'] path = os.path.join(INVENTORY, user.username) key = request.get_json() if not key: raise NetopeerException('Invalid schema remove request.') schemas = __schemas_inv_load(path) try: schemas['schemas'].pop(key) except KeyError: # schema not in inventory return (json.dumps({'success': False})) # update the inventory database __schemas_inv_save(path, schemas) # remove the schema file try: os.remove(os.path.join(path, key)) except Exception as e: print(e) # TODO: resolve dependencies ? return(json.dumps({'success': True}))
import os as _os import sys as _sys import json import dash as _dash from dash_uploader.configure_upload import configure_upload from dash_uploader.callbacks import callback from dash_uploader.httprequesthandler import HttpRequestHandler from dash_uploader.upload import Upload # noinspection PyUnresolvedReferences from ._build._imports_ import * # noqa: F403,F401 from ._build._imports_ import __all__ as build_all # Defines all exposed APIs of this package. __all__ = ["configure_upload", "callback", "HttpRequestHandler", "Upload"] if not hasattr(_dash, "development"): print( "Dash was not successfully imported. " "Make sure you don't have a file " 'named \n"dash.py" in your current directory.', file=_sys.stderr, ) _sys.exit(1) _basepath = _os.path.dirname(__file__) _filepath = _os.path.abspath(_os.path.join(_basepath, "_build", "package-info.json")) with open(_filepath) as f: package = json.load(f) package_name = package["name"].replace(" ", "_").replace("-", "_") __version__ = package["version"] _current_path = _os.path.dirname(_os.path.abspath(__file__)) _this_module = _sys.modules[__name__] _js_dist = [ {"relative_package_path": "_build/dash_uploader.min.js", "namespace": package_name}, { "relative_package_path": "_build/dash_uploader.min.js.map", "namespace": package_name, "dynamic": True, }, ] _css_dist = [] for _component in build_all: setattr(locals()[_component], "_js_dist", _js_dist) setattr(locals()[_component], "_css_dist", _css_dist)
import unittest from .. import lmparser from .. import tokenstream from .. import lexertokens from .. import lmast from .. import lamarksyntaxerror class TestLmParser(unittest.TestCase): def setUp(self): self.parser = lmparser.LmParser({}) def test_empty(self): "Parse empty token stream" tok_stream = tokenstream.TokenStream([]) self._compare_ast( self.parser.parse(tok_stream), lmast.Document([]) ) def test_markdown(self): "Just markdown" ast = self._make_ast([ lexertokens.OTHER("markdown",0)]) correct_ast = lmast.Document([lmast.Markdown("markdown",0)]) self._compare_ast(ast, correct_ast) def test_latex(self): "One LaTeX node" ast = self._make_ast([ lexertokens.BIN_START("{%latex%}",0), lexertokens.OTHER("a^2", 0), lexertokens.BIN_END("{%end%}",0)]) correct_ast = lmast.Document( [lmast.BinTag( [Str("a^2", 0)], 0, "{%latex%}") ] ) self._compare_ast(ast, correct_ast) def test_latex(self): "Empty LaTeX tag." ast = self._make_ast([ lexertokens.BIN_START("{%latex%}",0), lexertokens.BIN_END("{%end%}",0)]) correct_ast = lmast.Document([lmast.BinTag([], 0, "{%latex%}")]) self._compare_ast(ast, correct_ast) def test_latex_no_match(self): "One BIN_START without BIN_END. Should throw error." with self.assertRaises(lamarksyntaxerror.LaMarkSyntaxError): ast = self._make_ast([ lexertokens.BIN_START("{%latex%}",0), lexertokens.OTHER("a^2", 0)]) def test_latex_invalid_nesting_bin_start(self): "Nested BIN_STARTS should throw syntax error." with self.assertRaises(lamarksyntaxerror.LaMarkSyntaxError): ast = self._make_ast([ lexertokens.BIN_START("{%latex%}",0), lexertokens.BIN_START("{%latex%}",0)]) def test_latex_invalid_consecutive_bin_end(self): "Consecutive BIN_END tags should raise syntax error." with self.assertRaises(lamarksyntaxerror.LaMarkSyntaxError): ast = self._make_ast([ lexertokens.BIN_START("{%latex%}",0), lexertokens.BIN_END("{%end%}",0), lexertokens.BIN_END("{%end%}",0)]) def test_latex_invalid_consecutive_bin_end_after_other(self): """Consecutive BIN_END tags should raise syntax error, even if separated by OTHER tag. """ with self.assertRaises(lamarksyntaxerror.LaMarkSyntaxError): ast = self._make_ast([ lexertokens.BIN_START("{%latex%}",0), lexertokens.BIN_END("{%end%}",0), lexertokens.OTHER("some latex", 0), lexertokens.BIN_END("{%end%}",0)]) def test_escaped_bin_start(self): "Escaped BIN_START shouldn't start LaTeX section." ast = self._make_ast([ lexertokens.ESCAPE("\\",0), lexertokens.BIN_START("{%latex%}",0)]) correct_ast = lmast.Document([lmast.Markdown("{%latex%}", 0)]) self._compare_ast(ast, correct_ast) def test_escaped_bin_end(self): "Escaped BIN_END shouldn't end LaTeX section." ast = self._make_ast([ lexertokens.ESCAPE("\\",0), lexertokens.BIN_END("{%end%}",0)]) correct_ast = lmast.Document([lmast.Markdown("{%end%}", 0)]) self._compare_ast(ast, correct_ast) def test_escaped_bin_start_in_latex_section(self): "Escaped BIN_START in LaTeX section should be ignored." ast = self._make_ast([ lexertokens.BIN_START("{%latex%}",0), lexertokens.ESCAPE("\\",0), lexertokens.BIN_START("{%latex%}",0), lexertokens.BIN_END("{%end%}",0)]) correct_ast = lmast.Document( [ lmast.BinTag( [lmast.Str("{%latex%}",0)], 0, "{%latex%}") ] ) self._compare_ast(ast, correct_ast) def test_escaped_bin_end_section_in_latex(self): "Escaped BIN_END in LaTeX section should be ignored." ast = self._make_ast([ lexertokens.BIN_START("{%latex%}",0), lexertokens.ESCAPE("\\",0), lexertokens.BIN_END("{%end%}",0), lexertokens.BIN_END("{%end%}",0)]) correct_ast = lmast.Document( [ lmast.BinTag( [lmast.Str("{%end%}",0)], 0, "{%latex%}") ] ) self._compare_ast(ast, correct_ast) def test_escape_in_other_isnt_escape(self): "An escape tag before an OTHER isn't an escape." ast = self._make_ast([ lexertokens.OTHER("Some Markdown",0), lexertokens.ESCAPE("\\",0), lexertokens.OTHER("Some more Markdown",0) ]) correct_ast = lmast.Document( [ lmast.Markdown( "Some Markdown\\Some more Markdown", 0) ] ) self._compare_ast(ast, correct_ast) def test_nested_bin_tags1(self): """Test nested BinTags with an OTHER token in the inner BinTag""" ast = self._make_ast([ lexertokens.BIN_START("{%latex%}", 0), lexertokens.BIN_START("{%latex%}", 1), lexertokens.OTHER("Some latex.", 1), lexertokens.BIN_END("{%end%}", 2), lexertokens.BIN_END("{%end%}", 3), ]) correct_ast = lmast.Document( [lmast.BinTag( [ lmast.BinTag( [lmast.Str("Some latex.", 1)], 1, "{%latex%}" ) ], 0, "{%latex%}" )] ) self._compare_ast(ast, correct_ast) def test_nested_bin_tags2(self): """Test nested BinTags with an OTHER token in the other and inner BinTags. """ ast = self._make_ast([ lexertokens.BIN_START("{%latex%}", 0), lexertokens.OTHER("Some latex.", 1), lexertokens.BIN_START("{%latex%}", 2), lexertokens.OTHER("Some latex.", 3), lexertokens.BIN_END("{%end%}", 4), lexertokens.BIN_END("{%end%}", 5), ]) correct_ast = lmast.Document( [ lmast.BinTag( [ lmast.Str("Some latex.", 1), lmast.BinTag( [lmast.Str("Some latex.", 3)], 2, "{%latex%}" ) ], 0, "{%latex%}" ) ] ) self._compare_ast(ast, correct_ast) def test_nested_unary_in_binary(self): """Test nesting of unary tag inside of binary tag.""" ast = self._make_ast([ lexertokens.BIN_START("{%latex%}", 0), lexertokens.UNARY_TAG("{%ref-footer%}", 1), lexertokens.BIN_END("{%end%}", 2), ]) correct_ast = lmast.Document( [ lmast.BinTag( [lmast.UnaryTag(1, "{%ref-footer%}")], 0, "{%latex%}") ] ) self._compare_ast(ast, correct_ast) def test_escaped_nested_unary_in_binary(self): """Test nesting of escaped unary tag inside of binary tag.""" ast = self._make_ast([ lexertokens.BIN_START("{%latex%}", 0), lexertokens.ESCAPE("\\", 1), lexertokens.UNARY_TAG("{%ref-footer%}", 1), lexertokens.BIN_END("{%end%}", 2), ]) correct_ast = lmast.Document( [ lmast.BinTag( [lmast.Str("{%ref-footer%}",1)], 0, "{%latex%}" ) ] ) self._compare_ast(ast, correct_ast) def test_escaped_last(self): """Make the last character the escape char""" ast = self._make_ast([ lexertokens.ESCAPE("\\",0) ]) correct_ast = lmast.Document([ lmast.Markdown("\\",0) ]) self._compare_ast(ast, correct_ast) def test_bin_tag_then_markdown(self): """Make the last character the escape char""" ast = self._make_ast([ lexertokens.BIN_START("{%latex%}", 0), lexertokens.BIN_END("{%end%}", 2), lexertokens.ESCAPE("\\",3), lexertokens.OTHER("markdown",3) ]) correct_ast = lmast.Document([ lmast.BinTag([], 0, "{%latex%}"), lmast.Markdown("\markdown", 3) ]) self._compare_ast(ast, correct_ast) def _compare_ast(self, left_ast, right_ast): """Asserts that two ASTs are equal by dumping their contents with the repr method, and comparing the resultant strings. """ self.assertEqual(lmast.dump(left_ast), lmast.dump(right_ast)) def _make_ast(self, token_list): """Parse a list of tokens using lmparser. Return the AST.""" tok_stream = tokenstream.TokenStream(token_list) return self.parser.parse(tok_stream)
from __future__ import division from scitbx.linalg import eigensystem from scitbx.array_family import flex from libtbx.utils import null_out from math import acos,pi from scitbx import matrix from iotbx import pdb import os class fab_elbow_angle(object): def __init__(self, pdb_hierarchy, chain_ID_light='L', chain_ID_heavy='H', limit_light=107, limit_heavy=113): ''' Get elbow angle for Fragment antigen-binding (Fab) - Default heavy and light chains IDs are: H : heavy, L : light - Default limit (cutoff) between variable and constant parts is residue number 107/113 for light/heavy chains - Variable domain si from residue 1 to limit. Constant domain form limit+1 to end. - Method of calculating angle is based on Stanfield, et al., JMB 2006 Argument: --------- pdb_file_name : 4 characters string, a PDB name chain_ID_heavy : The heavy protion of the protein, chain ID chain_ID_light : The light protion of the protein, chain ID limit_heavy : the number of the cutoff residue, between the variable and constant portions in the heavy chian limit_light : the number of the cutoff residue, between the variable and constant portions in the light chian Main attributes: ---------------- self.fab_elbow_angle : the elbow angle calculated as the dot product of the VL-VH pseudodyade axie and the CL-CH pseudodyade axie Test program at: cctbx_project\mmtbx\regression\tst_fab_elbow_angle.py Example: -------- >>>fab = fab_elbow_angle( pdb_file_name='1bbd', chain_ID_light='L', chain_ID_heavy='H', limit_light=114, limit_heavy=118) >>> print fab.fab_elbow_angle 133 >>>fab = fab_elbow_angle(pdb_file_name='1bbd') >>> print fab.fab_elbow_angle 126 (127 in Stanfield, et al., JMB 2006) @author Youval Dar (LBL 2014) ''' # create selection strings for the heavy/light var/const part of chains self.select_str( chain_ID_H=chain_ID_heavy, limit_H=limit_heavy, chain_ID_L=chain_ID_light, limit_L=limit_light) # get the hirarchy for and divide using selection strings self.pdb_hierarchy = pdb_hierarchy self.get_pdb_chains() # Get heavy to light reference vector before alignment !!! vh_end = self.pdb_var_H.atoms()[-1].xyz vl_end = self.pdb_var_L.atoms()[-1].xyz mid_H_to_L = self.norm_vec(start=vh_end,end=vl_end) #mid_H_to_L = self.H_to_L_vec() # Get transformations objects tranformation_const= self.get_transformation( fixed_selection=self.pdb_const_H, moving_selection=self.pdb_const_L) tranformation_var = self.get_transformation( fixed_selection=self.pdb_var_H, moving_selection=self.pdb_var_L) # Get the angle and eigenvalues eigen_const = eigensystem.real_symmetric(tranformation_const.r.as_sym_mat3()) eigen_var = eigensystem.real_symmetric(tranformation_var.r.as_sym_mat3()) # c : consttant, v : variable eigenvectors_c = self.get_eigenvector(eigen_const) eigenvectors_v = self.get_eigenvector(eigen_var) # c: res 171 v: res 44 c = 20*eigenvectors_c + flex.double(self.pdb_const_H.atoms()[135].xyz) v = 20*eigenvectors_v + flex.double(self.pdb_var_H.atoms()[130].xyz) r = 20*mid_H_to_L + flex.double(self.pdb_var_H.atoms()[-1].xyz) rs = flex.double(self.pdb_var_H.atoms()[-1].xyz) re = flex.double(self.pdb_var_L.atoms()[-1].xyz) print print('c') print list(flex.double(self.pdb_const_H.atoms()[135].xyz)) print list(c) print 'v' print list(flex.double(self.pdb_var_H.atoms()[130].xyz)) print list(v) print 'r' print list(flex.double(self.pdb_var_H.atoms()[-1].xyz)) print list(r) print 'f' print self.pdb_var_H.atoms()[-1].id_str() print list(rs) print self.pdb_var_L.atoms()[-1].id_str() print list(re) # # test eignevectors pointing in oposite directions if eigenvectors_c.dot(eigenvectors_v) > 0: print 'reversing direction of variable rotation eigenvector!!!!' eigenvectors_v = - eigenvectors_v # Calc Feb elbow angle angle = self.get_angle(vec1=eigenvectors_c, vec2=eigenvectors_v) # Test if elbow angle larger or smaller than 180 zaxis = self.cross(eigenvectors_v, eigenvectors_c) xaxis = self.cross(eigenvectors_c,zaxis) x = 20*xaxis + flex.double(self.pdb_const_H.atoms()[135].xyz) print 'x' print list(flex.double(self.pdb_const_H.atoms()[135].xyz)) print list(x) print mid_H_to_L.dot(xaxis) print mid_H_to_L.dot(zaxis) #m = matrix.sqr(list(xaxis)+list(eigenvectors_c)+list(zaxis)) #A = m.transpose() #Ainv = A.inverse(0 # choose ref axis ref_axis = zaxis #if abs(mid_H_to_L.dot(xaxis)) > abs(mid_H_to_L.dot(zaxis)): #ref_axis = xaxis if mid_H_to_L.dot(ref_axis) < 0: angle = 360 - angle self.fab_elbow_angle = angle def H_to_L_vec(self): ''' get the vector from the center of coordinates of the heavy chain to the center of coordinates of the light chain''' H = flex.double([0,0,0]) L = flex.double([0,0,0]) for x in self.pdb_const_H.atoms(): H += flex.double(x.xyz) for x in self.pdb_var_H.atoms(): H += flex.double(x.xyz) for x in self.pdb_const_L.atoms(): L += flex.double(x.xyz) for x in self.pdb_var_L.atoms(): L += flex.double(x.xyz) H = H/(len(self.pdb_const_H.atoms())+len(self.pdb_var_H.atoms())) L = L/(len(self.pdb_const_L.atoms())+len(self.pdb_var_L.atoms())) return self.norm_vec(start=H,end=L) def norm_vec(self,start,end): ''' retruns normalized vector that starts at "stat" and ends at "end"''' x = flex.double(end) - flex.double(start) return x/x.norm() def get_angle(self,vec1,vec2,larger=True): '''retrun the larger angle between vec1 and vec2''' if vec1 and vec1: angle_cos = vec1.dot(vec2) angle = 180/pi*acos(angle_cos) else: angle = 0 if (angle < 90) and larger: angle = 180 - angle if (angle > 90) and not larger: angle = 180 - angle return angle def cross(self,a,b): '''(array,array) -> array returns a normalized cross product vector''' a1,a2,a3 = a b1,b2,b3 = b x = flex.double([a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1]) return x/x.norm() def get_eigenvector(self,eigen): ''' Get the eigen vector for eigen value 1 and normalize it ''' v = eigen.vectors() e = eigen.values() indx = None l = 0 # select eigenvector that corespondes to a real egienvalue == 1 for i,x in enumerate(e): if not isinstance(x,complex): if abs(1-x)<1e-6: indx = i break # make sure we have egienvalue == 1 assert not indx eigenvector = v[indx:indx+3] # normalize eigenvector = eigenvector / eigenvector.dot(eigenvector) if e.all_eq(flex.double([1,1,1])): eigenvector = None return eigenvector def get_pdb_chains(self): '''Create seperate pdb hierarchy for each on the chains we want to align''' ph = self.pdb_hierarchy # test selection test = ph.atom_selection_cache().selection # self.pdb_var_H = ph.select(test(self.select_var_str_H)) self.pdb_const_H = ph.select(test(self.select_const_str_H)) self.pdb_var_L = ph.select(test(self.select_var_str_L)) self.pdb_const_L = ph.select(test(self.select_const_str_L)) def get_transformation(self,fixed_selection,moving_selection): from phenix.command_line import superpose_pdbs ''' Align the moving pdb hierarchy on to the fixed one. Provides an object with rotation and translation info Arguments: ---------- fixed_selection, moving_selection : pdb_hierarchy Retrun: ------- lsq_fit_obj : least-squre-fit object that contians the transformation information ''' params = superpose_pdbs.master_params.extract() x = superpose_pdbs.manager( params, log=null_out(), write_output=False, save_lsq_fit_obj=True, pdb_hierarchy_fixed=fixed_selection, pdb_hierarchy_moving=moving_selection) return x.lsq_fit_obj def select_str(self,chain_ID_H,limit_H,chain_ID_L,limit_L): '''create selection strings for the heavy and light chains seperating the vairable and constant parts of the chains''' s1 = 'pepnames and (name ca or name n or name c) and altloc " "' s2 = 'chain {0} and resseq {1}:{2} and {3}' sel_str = lambda ID,i_s,i_e,s: s2.format(ID,i_s,i_e,s) self.select_var_str_H = sel_str(chain_ID_H,1,limit_H,s1) self.select_const_str_H = sel_str(chain_ID_H,limit_H+1,'end',s1) self.select_var_str_L = sel_str(chain_ID_L,1,limit_L,s1) self.select_const_str_L = sel_str(chain_ID_L,limit_L+1,'end',s1)
import os import glob import cc3d import numpy as np from skimage import io, transform from torch.utils.data import Dataset from copy import copy from graphics import Voxelgrid from graphics.transform import compute_tsdf import h5py # from graphics.utils import extract_mesh_marching_cubes # from graphics.visualization import plot_mesh, plot_voxelgrid from scipy.ndimage.morphology import binary_dilation from .utils.augmentation import * from .utils.binvox_utils import read_as_3d_array class ShapeNet(Dataset): def __init__(self, root_dir, obj=None, model=None, scene_list=None, resolution=(240, 320), transform=None, noise_scale=0.05, outlier_scale=3, outlier_fraction=0.99, grid_resolution=64, repeat=0, load_smooth=False): self.noise_scale = noise_scale self.root_dir = os.path.expanduser(root_dir) self.resolution = resolution self.xscale = resolution[0] / 480. self.yscale = resolution[1] / 640. self.transform = transform self.obj = obj self.model = model self.scene_list = scene_list self.noise_scale = noise_scale self.outlier_scale = outlier_scale self.outlier_fraction = outlier_fraction self.grid_resolution = grid_resolution self.repeat = repeat self.load_smooth = load_smooth self._load_frames() def _load_frames(self): if self.scene_list is None: # scene, obj = self.scene.split('/') path = os.path.join(self.root_dir, self.obj, self.model, 'data', '*.depth.png') files = glob.glob(path) self.frames = [] for f in files: self.frames.append(f.replace('.depth.png', '')) self._scenes = [os.path.join(self.obj, self.model)] else: self.frames = [] self._scenes = [] with open(self.scene_list, 'r') as file: for line in file: scene, obj = line.rstrip().split('\t') path = os.path.join(self.root_dir, scene, obj, 'data', '*.depth.png') files = glob.glob(path) for f in files: self.frames.append(f.replace('.depth.png', '')) if os.path.join(scene, obj) not in self._scenes: self._scenes.append(os.path.join(scene, obj)) def __len__(self): return len(self.frames) def __getitem__(self, item): frame = self.frames[item] pathsplit = frame.split('/') sc = pathsplit[-4] obj = pathsplit[-3] scene_id = '{}/{}'.format(sc, obj) sample = {} frame_id = frame.split('/')[-1] frame_id = int(frame_id) sample['frame_id'] = frame_id depth = io.imread('{}.depth.png'.format(frame)) depth = depth.astype(np.float32) depth = depth / 1000. # depth[depth == np.max(depth)] = 0. step_x = depth.shape[0] / self.resolution[0] step_y = depth.shape[1] / self.resolution[1] index_y = [int(step_y * i) for i in range(0, int(depth.shape[1] / step_y))] index_x = [int(step_x * i) for i in range(0, int(depth.shape[0] / step_x))] depth = depth[:, index_y] depth = depth[index_x, :] mask = copy(depth) mask[mask == np.max(depth)] = 0 mask[mask != 0] = 1 sample['original_mask'] = copy(mask) gradient_mask = binary_dilation(mask, iterations=5) mask = binary_dilation(mask, iterations=8) sample['mask'] = mask sample['gradient_mask'] = gradient_mask depth[mask == 0] = 0 sample['depth'] = depth sample['noisy_depth'] = add_kinect_noise(copy(depth), sigma_fraction=self.noise_scale) sample['noisy_depth_octnetfusion'] = add_depth_noise(copy(depth), noise_sigma=self.noise_scale, seed=42) sample['outlier_depth'] = add_outliers(copy(sample['noisy_depth_octnetfusion']), scale=self.outlier_scale, fraction=self.outlier_fraction) sample['sparse_depth'] = add_sparse_depth(copy(sample['noisy_depth_octnetfusion']), percentage=0.001) sample['outlier_blob_depth'] = add_outlier_blobs(copy(sample['noisy_depth_octnetfusion']), scale=self.outlier_scale, fraction=self.outlier_fraction) intrinsics = np.loadtxt('{}.intrinsics.txt'.format(frame)) # adapt intrinsics to camera resolution scaling = np.eye(3) scaling[1, 1] = self.yscale scaling[0, 0] = self.xscale sample['intrinsics'] = np.dot(scaling, intrinsics) extrinsics = np.loadtxt('{}.extrinsics.txt'.format(frame)) extrinsics = np.linalg.inv(extrinsics) sample['extrinsics'] = extrinsics sample['scene_id'] = scene_id for key in sample.keys(): if type(sample[key]) is not np.ndarray and type(sample[key]) is not str: sample[key] = np.asarray(sample[key]) if self.transform: sample = self.transform(sample) return sample def get_grid(self, scene, resolution=None): sc, obj = scene.split('/') if not self.load_smooth: # if self.grid_resolution == 25604530566 10fe40ebace4de15f457958925a36a51: # filepath = os.path.join(self.root_dir, sc, obj, 'voxels', '*.{}.binvox') # print(filepath) # else: # filepath = os.path.join(self.root_dir, sc, obj, 'voxels', '*.{}.binvox'.format(self.grid_resolution)) filepath = os.path.join(self.root_dir, sc, obj, 'voxels', '*.{}.binvox'.format(self.grid_resolution)) filepath = glob.glob(filepath)[0] # filepath = os.path.join(self.root_dir, 'example', 'voxels', 'chair_0256.binvox') with open(filepath, 'rb') as file: volume = read_as_3d_array(file) scene = volume.data scene = scene.astype(np.int) labels_out = cc3d.connected_components(scene) # 26-connected N = np.max(labels_out) max_label = 0 max_label_count = 0 valid_labels = [] for segid in range(1, N + 1): extracted_image = labels_out * (labels_out == segid) extracted_image[extracted_image != 0] = 1 label_count = np.sum(extracted_image) if label_count > max_label_count: max_label = segid max_label_count = label_count if label_count > 1000: valid_labels.append(segid) for segid in range(1, N + 1): if segid not in valid_labels: scene[labels_out == segid] = 0. if not resolution: resolution = 1. / self.grid_resolution else: resolution grid = Voxelgrid(resolution) bbox = np.zeros((3, 2)) bbox[:, 0] = volume.translate bbox[:, 1] = bbox[:, 0] + resolution * volume.dims[0] grid.from_array(scene, bbox) else: bbox = np.zeros((3, 2)) bbox[0, 0] = -0.5 bbox[1, 0] = -0.5 bbox[2, 0] = -0.5 bbox[0, 1] = 0.5 bbox[1, 1] = 0.5 bbox[2, 1] = 0.5 filepath = os.path.join(self.root_dir, sc, obj, 'smooth', 'model.hf5') with h5py.File(filepath, 'r') as file: volume = file['TSDF'][:] resolution = 1. / self.grid_resolution grid = Voxelgrid(resolution) grid.from_array(volume, bbox) return grid def get_tsdf(self, scene, resolution=None): sc, obj = scene.split('/') if self.grid_resolution == 256: filepath = os.path.join(self.root_dir, sc, obj, 'voxels', '*.binvox') else: filepath = os.path.join(self.root_dir, sc, obj, 'voxels', '*.{}.binvox'.format(self.grid_resolution)) filepath = glob.glob(filepath)[0] # filepath = os.path.join(self.root_dir, 'example', 'voxels', 'chair_0256.binvox') with open(filepath, 'rb') as file: volume = read_as_3d_array(file) scene = volume.data scene = scene.astype(np.int) labels_out = cc3d.connected_components(scene) # 26-connected N = np.max(labels_out) max_label = 0 max_label_count = 0 valid_labels = [] for segid in range(1, N + 1): extracted_image = labels_out * (labels_out == segid) extracted_image[extracted_image != 0] = 1 label_count = np.sum(extracted_image) if label_count > max_label_count: max_label = segid max_label_count = label_count if label_count > 10000: valid_labels.append(segid) for segid in range(1, N + 1): if segid not in valid_labels: scene[labels_out == segid] = 0. # computing tsdf dist1 = compute_tsdf(scene.astype(np.float64)) dist1[dist1 > 0] -= 0.5 dist2 = compute_tsdf(np.ones(scene.shape) - scene) dist2[dist2 > 0] -= 0.5 # print(np.where(dist == 79.64923100695951)) scene = np.copy(dist1 - dist2) if not resolution: resolution = 1. / self.grid_resolution else: step_size = int(self.grid_resolution / resolution) scene = scene[::step_size, ::step_size, ::step_size] resolution = 1. / resolution grid = Voxelgrid(resolution) bbox = np.zeros((3, 2)) bbox[:, 0] = volume.translate bbox[:, 1] = bbox[:, 0] + resolution * scene.shape[0] grid.from_array(scene, bbox) return grid @property def scenes(self): return self._scenes if __name__ == '__main__': import matplotlib.pyplot as plt dataset = ShapeNet('/media/weders/HV620S/data/shape-net/processed', '03001627', '1007e20d5e811b308351982a6e40cf41', grid_resolution=128) for f in dataset: plt.imshow(f['sparse_depth']) plt.show()
import setuptools setuptools.setup( name="windows-path-adder", version="1.0.4", license='MIT', author="oneofthezombies", author_email="hunhoekim@gmail.com", description="add environment path in windows.", long_description=open('README.md').read(), long_description_content_type = 'text/markdown', url="https://github.com/oneofthezombies/windows-path-adder", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ], )
#!/usr/bin/env python import json import os import urllib.request from pprint import pprint job_status = os.environ["JOB_STATUS"] github = json.loads(os.environ["GITHUB_ENVIRONMENT"]) actor = github["actor"] workflow = github["workflow"] repository = github["repository"] run_id = github["run_id"] html_url = f"https://www.github.com/{repository}" run_description = {"success": "ran", "cancelled": "cancelled", "failure": "failed"}[ job_status ] run_emoji = {"success": "🎉", "cancelled": "💥", "failure": "💥"}[job_status] fallback = f"{repository} - {actor} {run_description} <{html_url}/actions/runs/{run_id}|{workflow}> {run_emoji}" color = { "success": "good", "cancelled": "warning", "failure": "danger", }[job_status] field = { "title": repository, "value": f"{actor} {run_description} <{html_url}/actions/runs/{run_id}|{workflow}> {run_emoji}", "short": False, } fields = [field] if os.environ["CUSTOM_MESSAGE"]: fields.append({"value": os.environ["CUSTOM_MESSAGE"]}) body = { "attachments": [{"fallback": fallback, "color": color, "fields": fields}], } request = urllib.request.Request( os.environ["SLACK_WEBHOOK"], json.dumps(body).encode("utf-8"), { "Content-Type": "application/json" } ) with urllib.request.urlopen(request) as response: print("Status:") pprint(response.status) print("Response body:") pprint(response.read())
from typing import Dict import pandas as pd import plotly.graph_objects as go import mlrun from mlrun.artifacts import Artifact, PlotlyArtifact from ..._common import ModelType from ..plan import MLPlanStages, MLPlotPlan from ..utils import DatasetType, to_dataframe class FeatureImportancePlan(MLPlotPlan): """ Plan for producing a feature importance. """ _ARTIFACT_NAME = "feature-importance" def __init__(self): """ Initialize a feature importance plan. An example of use can be seen at the Scikit-Learn docs here: https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html """ super(FeatureImportancePlan, self).__init__() def is_ready(self, stage: MLPlanStages, is_probabilities: bool) -> bool: """ Check whether or not the plan is fit for production by the given stage and prediction probabilities. The feature importance is ready post training. :param stage: The stage to check if the plan is ready. :param is_probabilities: True if the 'y_pred' that will be sent to 'produce' is a prediction of probabilities (from 'predict_proba') and False if not. :return: True if the plan is producible and False otherwise. """ return stage == MLPlanStages.POST_FIT def produce( self, model: ModelType, x: DatasetType, **kwargs ) -> Dict[str, Artifact]: """ Produce the feature importance according to the given model and dataset ('x'). :param model: Model to get its 'feature_importances_' or 'coef_[0]' fields. :param x: Input dataset the model trained on for the column labels. :return: The produced feature importance artifact in an artifacts dictionary. """ # Validate the 'feature_importances_' or 'coef_' fields are available for the given model: if not (hasattr(model, "feature_importances_") or hasattr(model, "coef_")): raise mlrun.errors.MLRunInvalidArgumentError( "This model cannot be used for Feature Importance plotting." ) # Get the importance score: if hasattr(model, "feature_importances_"): # Tree-based feature importance importance_score = model.feature_importances_ else: # Coefficient-based importance importance_score = model.coef_[0] # Create a table of features and their importance: df = pd.DataFrame( { "features": to_dataframe(x).columns, "feature_importance": importance_score, } ).sort_values(by="feature_importance", ascending=False) # Create the figure: fig = go.Figure( [go.Bar(x=df["feature_importance"], y=df["features"], orientation="h")] ) # Creating the artifact: self._artifacts[self._ARTIFACT_NAME] = PlotlyArtifact( key=self._ARTIFACT_NAME, figure=fig, ) return self._artifacts
import requests import pandas as pd import datetime as dt import matplotlib.pyplot as plt #my_api_key = "" Input your AlphaVenture API key as a str() var here my_stock = "GME" my_timeframe = "TIME_SERIES_DAILY" response = requests.get("https://www.alphavantage.co/query?function="+my_timeframe+"&symbol="+my_stock+"&outputsize=full&apikey="+my_api_key) my_response = response.json() my_response.keys() ## keys are 'Meta Data', 'Time Series (Daily)'. It's a dictionary of dictionaries. time_series_data = my_response['Time Series (Daily)'] ## Put the data I want into a list of lists my_list = [] for key, value in time_series_data.items(): my_list.append([key, float(value['1. open']), float(value['2. high']), float(value['3. low']), float(value['4. close'])]) ## Add some column names and turn it into a Pandas dataframe col_names = ["Date", "Open", "High", "Low", "Close"] my_data = pd.DataFrame(my_list, columns= col_names) ## Subset only data from mid-November 2020 onwards my_data = my_data[my_data['Date'] >= '2020-11-15'] ## Reformat dataframe columns into variables (just because) x = [dt.datetime.strptime(i, '%Y-%m-%d').date() for i in my_data['Date']] y_open = my_data['Open'] y_high = my_data['High'] y_low = my_data['Low'] y_close = my_data['Close'] ## First plot ## Let's see $GME's Open, High, Low, and Close values over time plt.plot(x, y_open, label = "Open") plt.plot(x, y_high, label = "High") plt.plot(x, y_low, label = "Low") plt.plot(x, y_close, label = "Close") plt.ylabel('$ Value') plt.title('$GME') plt.legend() plt.show() ## I want to see how $GME's daily movement (increase/decrease from Open to Close) looks over time ## Add in some horizontal lines at $20 and $-20 to mark big jumps ## Highlight values above/below $20/-20 in yellow to call them out y_daily_move = my_data['Open']-my_data['Close'] y_daily_20_subset = [i for i in y_daily_move if i < -20 or i > 20] x_daily_20_subset = [x[i] for i in range(0, len(y_daily_move)) if y_daily_move[i] < -20 or y_daily_move[i] > 20] plt.scatter(x, y_daily_move, label = 'Diff. Open to Close') plt.scatter(x_daily_20_subset, y_daily_20_subset, color = 'yellow') plt.axhline(y=20, color = 'r', linestyle = 'dashed') plt.axhline(y=-20, color = 'r', linestyle = 'dashed') plt.ylabel('$ Difference') plt.title('GME Difference from Open to Close ($)') plt.show() ## I want to see the difference between $GME's high's and low's each day ## If you don't like stomaching daily stock volatility, you'd want this chart to be clustered around the same values ## I'll call out days where there's over $20 between a daily high and low, which is pretty insane y_daily_var = my_data['High']-my_data['Low'] y_daily_20_subset = [i for i in y_daily_var if i < -20 or i > 20] x_daily_20_subset = [x[i] for i in range(0, len(y_daily_var)) if y_daily_var[i] > 20] plt.scatter(x, y_daily_var, label = 'Diff. High to Low') plt.scatter(x_daily_20_subset, y_daily_20_subset, color = 'yellow') plt.axhline(y=20, color = 'r', linestyle = 'dashed') plt.ylabel('$ Difference') plt.title('GME Difference from High to Low ($)') plt.show()
"""Bot starts a telegram bot.""" import os from github import Github import requests from datetime import datetime, timedelta from collections import defaultdict import logging g = Github(os.getenv('GITHUB_USER', ''), os.getenv('GITHUB_PASSWORD', '')) BASE_URL = 'https://api.github.com' log = logging.getLogger(__name__) org = os.getenv('GITHUB_ORG', '') team_id = int(os.getenv('GITHUB_TEAM_ID', '0')) def pull_requests(bot, update): """Return open PRs.""" log.info("Got message") repos = g.get_organization(org).get_team(team_id).get_repos() msg = '' for repo in repos: for pr in repo.get_pulls(): msg += '{} \n {}\n\n'.format(pr.title, pr.html_url) log.info(msg) update.message.reply_text(msg)
import string, re from subprocess import Popen, PIPE enc_flag = 'JcOCLQgPJEjwNAZHgVFzAoMVHOiCRVAVKkvFidUvzmUSSnqJzO' flag = [] pat = re.compile('Flag: (\w+)\n') candidates = string.ascii_lowercase+string.ascii_uppercase+string.digits+'_'+'-' for k in range(len(enc_flag)): for c in candidates: with open('flag.txt', 'w') as fd: fd.write(''.join(flag)+c) p = Popen(['./revme'], stdout=PIPE) enc = pat.search(p.stdout.read().decode()).group()[6:].strip() if enc[k] == enc_flag[k]: flag.append(c) break print(''.join(flag))
#! /usr/bin/env python DESCRIPTION = "Intensive Care Unit (ICU) Simulation" LONG_DESCRIPTION = """\ ICUSIM simplifies the process of simulating ICU burden scenarios based on rich set of input variables. """ DISTNAME = 'ICUSIM' MAINTAINER = 'Mikko Kotila' MAINTAINER_EMAIL = 'mailme@mikkokotila.com' URL = 'http://autonom.io' LICENSE = 'MIT' DOWNLOAD_URL = 'https://github.com/autonomio/ICUSIM/' VERSION = '0.2.0' try: from setuptools import setup _has_setuptools = True except ImportError: from distutils.core import setup install_requires = ['simpy==3.0.12', 'numpy', 'pandas', 'tqdm', 'salib'] if __name__ == "__main__": setup(name=DISTNAME, author=MAINTAINER, author_email=MAINTAINER_EMAIL, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, long_description=LONG_DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, install_requires=install_requires, packages=['icusim', 'icusim.commands'], classifiers=['Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'License :: OSI Approved :: MIT License', 'Topic :: Scientific/Engineering :: Human Machine Interfaces', 'Topic :: Scientific/Engineering :: Mathematics', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Operating System :: Microsoft :: Windows :: Windows 10'])
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables __all__ = [ 'GetServiceResult', 'AwaitableGetServiceResult', 'get_service', ] @pulumi.output_type class GetServiceResult: """ A collection of values returned by getService. """ def __init__(__self__, hostname=None, id=None, ip_address=None, location=None, name=None, primary_access_key=None, primary_connection_string=None, public_port=None, resource_group_name=None, secondary_access_key=None, secondary_connection_string=None, server_port=None, tags=None): if hostname and not isinstance(hostname, str): raise TypeError("Expected argument 'hostname' to be a str") pulumi.set(__self__, "hostname", hostname) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if ip_address and not isinstance(ip_address, str): raise TypeError("Expected argument 'ip_address' to be a str") pulumi.set(__self__, "ip_address", ip_address) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if primary_access_key and not isinstance(primary_access_key, str): raise TypeError("Expected argument 'primary_access_key' to be a str") pulumi.set(__self__, "primary_access_key", primary_access_key) if primary_connection_string and not isinstance(primary_connection_string, str): raise TypeError("Expected argument 'primary_connection_string' to be a str") pulumi.set(__self__, "primary_connection_string", primary_connection_string) if public_port and not isinstance(public_port, int): raise TypeError("Expected argument 'public_port' to be a int") pulumi.set(__self__, "public_port", public_port) if resource_group_name and not isinstance(resource_group_name, str): raise TypeError("Expected argument 'resource_group_name' to be a str") pulumi.set(__self__, "resource_group_name", resource_group_name) if secondary_access_key and not isinstance(secondary_access_key, str): raise TypeError("Expected argument 'secondary_access_key' to be a str") pulumi.set(__self__, "secondary_access_key", secondary_access_key) if secondary_connection_string and not isinstance(secondary_connection_string, str): raise TypeError("Expected argument 'secondary_connection_string' to be a str") pulumi.set(__self__, "secondary_connection_string", secondary_connection_string) if server_port and not isinstance(server_port, int): raise TypeError("Expected argument 'server_port' to be a int") pulumi.set(__self__, "server_port", server_port) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) @property @pulumi.getter def hostname(self) -> str: """ The FQDN of the SignalR service. """ return pulumi.get(self, "hostname") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="ipAddress") def ip_address(self) -> str: """ The publicly accessible IP of the SignalR service. """ return pulumi.get(self, "ip_address") @property @pulumi.getter def location(self) -> str: """ Specifies the supported Azure location where the SignalR service exists. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") @property @pulumi.getter(name="primaryAccessKey") def primary_access_key(self) -> str: """ The primary access key of the SignalR service. """ return pulumi.get(self, "primary_access_key") @property @pulumi.getter(name="primaryConnectionString") def primary_connection_string(self) -> str: """ The primary connection string of the SignalR service. """ return pulumi.get(self, "primary_connection_string") @property @pulumi.getter(name="publicPort") def public_port(self) -> int: """ The publicly accessible port of the SignalR service which is designed for browser/client use. """ return pulumi.get(self, "public_port") @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> str: return pulumi.get(self, "resource_group_name") @property @pulumi.getter(name="secondaryAccessKey") def secondary_access_key(self) -> str: """ The secondary access key of the SignalR service. """ return pulumi.get(self, "secondary_access_key") @property @pulumi.getter(name="secondaryConnectionString") def secondary_connection_string(self) -> str: """ The secondary connection string of the SignalR service. """ return pulumi.get(self, "secondary_connection_string") @property @pulumi.getter(name="serverPort") def server_port(self) -> int: """ The publicly accessible port of the SignalR service which is designed for customer server side use. """ return pulumi.get(self, "server_port") @property @pulumi.getter def tags(self) -> Mapping[str, str]: return pulumi.get(self, "tags") class AwaitableGetServiceResult(GetServiceResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetServiceResult( hostname=self.hostname, id=self.id, ip_address=self.ip_address, location=self.location, name=self.name, primary_access_key=self.primary_access_key, primary_connection_string=self.primary_connection_string, public_port=self.public_port, resource_group_name=self.resource_group_name, secondary_access_key=self.secondary_access_key, secondary_connection_string=self.secondary_connection_string, server_port=self.server_port, tags=self.tags) def get_service(name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetServiceResult: """ Use this data source to access information about an existing Azure SignalR service. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.signalr.get_service(name="test-signalr", resource_group_name="signalr-resource-group") ``` :param str name: Specifies the name of the SignalR service. :param str resource_group_name: Specifies the name of the resource group the SignalR service is located in. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:signalr/getService:getService', __args__, opts=opts, typ=GetServiceResult).value return AwaitableGetServiceResult( hostname=__ret__.hostname, id=__ret__.id, ip_address=__ret__.ip_address, location=__ret__.location, name=__ret__.name, primary_access_key=__ret__.primary_access_key, primary_connection_string=__ret__.primary_connection_string, public_port=__ret__.public_port, resource_group_name=__ret__.resource_group_name, secondary_access_key=__ret__.secondary_access_key, secondary_connection_string=__ret__.secondary_connection_string, server_port=__ret__.server_port, tags=__ret__.tags)
from __future__ import print_function import Pyro4 import sys import time if sys.version_info<(3,0): input=raw_input host=input("enter the hostname of the itunescontroller: ") itunes=Pyro4.Proxy("PYRO:itunescontroller@{0}:39001".format(host)) print("setting Playlist 'Music'...") itunes.playlist("Music") itunes.play() print("Current song:", itunes.currentsong()) time.sleep(6) print("setting Playlist 'itunes DJ'...") itunes.playlist("itunes DJ") itunes.play() print("Current song:", itunes.currentsong()) time.sleep(6) print("next song...") itunes.next() print("Current song:", itunes.currentsong()) time.sleep(6) print("stop.") itunes.stop()
import abc class InstallationStrategy( abc.ABC ): @classmethod @abc.abstractmethod def execute(cls): """ abstract method definingthe rules for the installation bla bvla """ class DmgInstallationStrategy( InstallationStrategy ): @classmethod def execute(cls): """ abstract method definingthe rules for the installation bla bvla """ print("opening up the dmg") class PkgInstallationStrategy( InstallationStrategy ): @classmethod def execute(cls): """ abstract method definingthe rules for the installation bla bvla """ print("opening up the pkg") class TarInstallationStrategy( InstallationStrategy ): @classmethod def execute(cls): """ abstract method definingthe rules for the installation bla bvla """ print("opening up the tar") class BzipInstallationStrategy( InstallationStrategy ): @classmethod def execute(cls): """ abstract method definingthe rules for the installation bla bvla """ print("opening up the bzip") NAME_STRATEGY_MAPPING = { ".dmg" : DmgInstallationStrategy, ".pkg" : PkgInstallationStrategy, ".tar" : TarInstallationStrategy, ".bzip" : BzipInstallationStrategy, } def install_download_app(soft_path: str, strategy: InstallationStrategy): strategy.execute() if __name__ == '__main__': # on cherche a isoler notre extension bla bla extension = ".pkg" strategy = NAME_STRATEGY_MAPPING[extension] install_download_app("blabla/blibli", strategy)
revision = '4160ccb58402' down_revision = None branch_labels = None depends_on = None import json import os from alembic import op import sqlalchemy as sa from sqlalchemy.sql import table, column sections = { 'update_authorized_keys': 'local', 'authorized_keys_file': 'local', 'githome_executable': 'local', 'githome_id': 'githome', } def upgrade(): con = op.get_bind() old_cfg = table('configsetting', column('key', sa.String), column('json_value', sa.String)) # check we know where to put each key for key, value in con.execute(old_cfg.select()): if key not in sections: raise RuntimeError('Cannot migrate configuration, unknown ' 'configuration value: {}'.format(key)) new_cfg = op.create_table('config', sa.Column('key', sa.String(), nullable=False), sa.Column('section', sa.String(), nullable=False), sa.Column('data', sa.String(), nullable=True), sa.PrimaryKeyConstraint('key', 'section') ) section = sections[key] new_recs = [{ 'key': key, 'section': sections[key], 'data': value, } for key, value in con.execute(old_cfg.select())] op.bulk_insert(new_cfg, new_recs) import githome gh_client = os.path.join(os.path.dirname(githome.__file__), 'gh_client') op.bulk_insert(new_cfg, [ {'section': 'local', 'key': 'authorized_keys_start_marker', 'data': r'"# -- added by githome {}, do not remove these markers --\n"'}, {'section': 'local', 'key': 'authorized_keys_end_marker', 'data': r'"# -- end githome {}. keep trailing newline! --\n"'}, {'section': 'local', 'key': 'use_gh_client', 'data': json.dumps(True)}, {'section': 'local', 'key': 'gh_client_socket', 'data': json.dumps('ghclient.sock')}, {'section': 'local', 'key': 'gh_client_executable', 'data': json.dumps(gh_client)}, ]) # rename config key githome_id to id op.execute(new_cfg.update().where(new_cfg.c['key'] == 'githome_id') .values(key='id')) op.rename_table('user', 'users') op.rename_table('public_key', 'public_keys') op.drop_table('configsetting')
# Copyright 2017 reinforce.io. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Vanilla policy gradient agent. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from tensorforce.agents import BatchAgent from tensorforce.models import VPGModel class VPGAgent(BatchAgent): """ Vanilla Policy Gradient agent as described by [Sutton et al. (1999)](https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf). Configuration: Each agent requires the following ``Configuration`` parameters: * `states`: dict containing one or more state definitions. * `actions`: dict containing one or more action definitions. * `preprocessing`: dict or list containing state preprocessing configuration. * `exploration`: dict containing action exploration configuration. The `BatchAgent` class additionally requires the following parameters: * `batch_size`: integer of the batch size. A Policy Gradient Model expects the following additional configuration parameters: * `sample_actions`: boolean of whether to sample actions. * `baseline`: string indicating the baseline value function (currently 'linear' or 'mlp'). * `baseline_args`: list of arguments for the baseline value function. * `baseline_kwargs`: dict of keyword arguments for the baseline value function. * `generalized_advantage_estimation`: boolean indicating whether to use GAE. * `gae_lambda`: float of the Generalized Advantage Estimation lambda. * `normalize_advantage`: boolean indicating whether to normalize the advantage or not. The VPG agent does not require any additional configuration parameters. """ name = 'VPGAgent' model = VPGModel
import pyglet from pyglet.window import key import cocos from cocos import actions, layer, sprite, scene from cocos.director import director import cocos.euclid as eu import cocos.collision_model as cm import math import paho.mqtt.client as mqtt import json MAP_SIZE = (600, 600) VELOCITY_MAX = 400 VELOCITY_INERTIA = 3 # smaller means more inertia VELOCITY_BRAKE_VS_SPEED = 3 VELOCITY_IMPACT_ON_TURNING = 0.0025 TURNING_SPEED = 3 VELOCITY_DECLINE = 0.995 # not touching controls means the velocity will go to zero class CollidableSprite(cocos.sprite.Sprite): def __init__(self, image, cx, cy, radius): super(CollidableSprite, self).__init__(image) self.position = (cx, cy) self.cshape = cm.CircleShape(eu.Vector2(cx, cy), 25) def update_in_collision_manager(self): collision_manager.remove_tricky(self) self.cshape = cm.CircleShape(eu.Vector2(self.position[0], self.position[1]), 25) collision_manager.add(self) def maybe_impact(self): if collision_manager.any_near(self, 1): self.velocity = (- self.velocity[0], - self.velocity[1]) #self.velocity = (0, 0) # check if out of map self.position = (max(0, min(self.position[0], MAP_SIZE[0])), \ max(0, min(self.position[1], MAP_SIZE[1]))) # How to handle collisions #mapcollider = mapcolliders.RectMapCollider("bounce") # Car Actions class class Car(actions.Move): def step(self, dt): super(Car, self).step(dt) rl = keyboard[key.RIGHT] - keyboard[key.LEFT] speed_or_brake = keyboard[key.UP] - keyboard[key.DOWN] radians = self.target.rotation * math.pi / 180 # Update the speed from the perspective of the car try: speed_or_brake = keyboard[key.UP] - VELOCITY_BRAKE_VS_SPEED * keyboard[key.DOWN] \ if self.target.speed > 0 else \ VELOCITY_BRAKE_VS_SPEED * keyboard[key.UP] - keyboard[key.DOWN] self.target.speed = VELOCITY_DECLINE * (min(VELOCITY_INERTIA * speed_or_brake + self.target.speed, VELOCITY_MAX)) except AttributeError: self.target.speed = math.sqrt(self.target.velocity[0]**2 + self.target.velocity[1]**2) velocity_x = self.target.speed * math.sin(radians) velocity_y = self.target.speed * math.cos(radians) self.target.velocity = (velocity_x, velocity_y) # turn the car rl = TURNING_SPEED * rl * VELOCITY_IMPACT_ON_TURNING * abs(self.target.speed) rl = rl if self.target.speed > 0 else - rl action = actions.interval_actions.RotateBy(rl, 0) self.target.do(action) self.target.update_in_collision_manager() self.target.maybe_impact() class Mqtt_layer(layer.Layer): def __init__(self, collision_mgr): super(Mqtt_layer, self).__init__() self.collision_mgr = collision_mgr # MQTT part def on_marker(client, userdata, msg): print("marker: '" + str(msg.payload)) payload = json.loads(msg.payload) print payload["position"][0] print payload["position"][1] # create an obstacle and add to layer # obstacle3 = CollidableSprite('sprites/obstacle.png', 200, 200, 0) # player_layer.add(obstacle3) # obstacle3.velocity = (0, 0) # collision_manager.add(obstacle3) def on_connect(client, userdata, flags, rc): print("Connected with result code " + str(rc)) # client.message_callback_add("ares/video/markers", on_marker) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("ares/video/markers") client.subscribe("ares/video/edges") client.subscribe("ares/video/objects") client.subscribe("ares/mgt/features/add") client.subscribe("ares/mgt/features/remove") # The callback for when a PUBLISH message is received from the server which is not handled in other handlers def on_message(client, userdata, msg): print("Received message '" + str(msg.payload) + "' on topic '" \ + msg.topic + "' with QoS " + str(msg.qos)) payload = json.loads(msg.payload) x = payload["position"][0] y = payload["position"][1] # create an obstacle and add to layer obstacle3 = CollidableSprite('sprites/obstacle.png', x, y, 0) self.add(obstacle3) # obstacle3.velocity = (0, 0) self.collision_mgr.add(obstacle3) self.client = mqtt.Client() self.client.on_connect = on_connect self.client.on_message = on_message self.client.connect("localhost", 1883, 60) # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. def draw(self): self.client.loop(0) # Main class def main(): global keyboard global collision_manager collision_manager = cm.CollisionManagerBruteForce() director.init(width=MAP_SIZE[0], height=MAP_SIZE[1], autoscale=True, resizable=True) # Create a layer player_layer = Mqtt_layer(collision_manager) # create an obstacle and add to layer obstacle1 = CollidableSprite('sprites/obstacle.png', 200, 200, 0) player_layer.add(obstacle1) obstacle1.velocity = (0, 0) collision_manager.add(obstacle1) # create an obstacle and add to layer obstacle2 = CollidableSprite('sprites/obstacle.png', 320, 240, 0) player_layer.add(obstacle2) obstacle2.velocity = (0, 0) collision_manager.add(obstacle2) # create an obstacle and add to layer obstacle4 = CollidableSprite('sprites/obstacle.png', 490, 490, 0) player_layer.add(obstacle4) obstacle4.velocity = (0, 0) collision_manager.add(obstacle4) # create the car and add to layer car = CollidableSprite('sprites/Black_viper.png', 100, 100, 10) action = actions.interval_actions.ScaleBy(0.25, 0) car.do(action) player_layer.add(car) car.velocity = (0, 0) # Set the sprite's movement class. car.do(Car()) # Create a scene and set its initial layer. main_scene = scene.Scene(player_layer) # collisions collision_manager.add(car) # Attach a KeyStateHandler to the keyboard object. keyboard = key.KeyStateHandler() director.window.push_handlers(keyboard) # Play the scene in the window. director.run(main_scene) if __name__ == '__main__': main()
""" Problem: The function even_squares takes in a number. If the number is: * even - print out the number squared * odd - print out the number Tests: >>> even_squares(20) 400 >>> even_squares(9) 9 >>> even_squares(8) 64 >>> even_squares(73) 73 """ # Use this to test your solution. Don't edit it! import doctest def run_tests(): doctest.testmod(verbose=True) # Edit this code def even_squares(n): if n%2 == 0: print(n*n) else: print(n)
from ytree.frontends.treefarm import \ TreeFarmArbor from ytree.utilities.testing import \ ArborTest, \ TempDirTest class TreeFarmArborDescendentsTest(TempDirTest, ArborTest): arbor_type = TreeFarmArbor test_filename = "tree_farm/tree_farm_descendents/fof_subhalo_tab_000.0.h5" num_data_files = 51 class TreeFarmArborAncestorsTest(TempDirTest, ArborTest): arbor_type = TreeFarmArbor test_filename = "tree_farm/tree_farm_ancestors/fof_subhalo_tab_017.0.h5" num_data_files = 34
# -*- encoding: utf-8 -*- import argparse import logging import multiprocessing from math import floor import django from django.core.management import BaseCommand import miniblog from bpp.util import partition_count, disable_multithreading_by_monkeypatching_pool from import_dbf.models import B_A, Bib from import_dbf.util import ( integruj_autorow, integruj_b_a, integruj_charaktery, integruj_funkcje_autorow, integruj_jednostki, integruj_jezyki, integruj_kbn, integruj_publikacje, integruj_tytuly_autorow, integruj_uczelnia, integruj_wydzialy, integruj_zrodla, mapuj_elementy_publikacji, przypisz_jednostki, sprawdz_zamapowanie_autorow, usun_podwojne_przypisania_b_a, wyswietl_prace_bez_dopasowania, wzbogacaj_charaktery, zatwierdz_podwojne_przypisania, dodaj_aktualnosc, set_sequences, przypisz_grupy_punktowe, utworz_szkielety_ksiazek, integruj_dyscypliny, ) django.setup() class Command(BaseCommand): help = "Integruje zaimportowaną bazę DBF z bazą BPP" def add_arguments(self, parser): parser.add_argument("--uczelnia", type=str, default="Domyślna Uczelnia") parser.add_argument("--skrot", type=str, default="DU") parser.add_argument("--disable-multithreading", action="store_true") parser.add_argument("--enable-all", action="store_true") parser.add_argument("--disable-transaction", action="store_true") parser.add_argument("--enable-wydzial", action="store_true") parser.add_argument("--enable-jednostka", action="store_true") parser.add_argument("--enable-autor", action="store_true") parser.add_argument("--enable-dyscypliny", action="store_true") parser.add_argument("--enable-publikacja", action="store_true") parser.add_argument("--enable-grupy-punktowe", action="store_true") parser.add_argument("--enable-szkielety-ksiazek", action="store_true") parser.add_argument("--enable-mapuj-publikacja", action="store_true") parser.add_argument("--enable-charakter-kbn-jezyk", action="store_true") parser.add_argument( "--charaktery-enrichment-xls", type=argparse.FileType("rb"), nargs="+" ) parser.add_argument("--enable-zrodlo", action="store_true") parser.add_argument("--enable-b-a", action="store_true") parser.add_argument( "--enable-zatwierdz-podwojne-przypisania", action="store_true", help="""W przypadku, gdyby podwójne przypisania w bazie danych były OK, podaj ten argument aby utworzyć dodatkowe rekordy dla prawidłowo zdublowanych autorów""", ) parser.add_argument("--enable-przypisz-jednostki", action="store_true") parser.add_argument("--enable-dodaj-aktualnosc", action="store_true") def handle( self, uczelnia, skrot, enable_all, disable_transaction, disable_multithreading, *args, **options ): verbosity = int(options["verbosity"]) logger = logging.getLogger("django") if verbosity > 1: logger.setLevel(logging.DEBUG) from django import db db.connections.close_all() cpu_count = multiprocessing.cpu_count() num_proc = int(floor(cpu_count * 0.875)) or 1 pool = multiprocessing.Pool(processes=num_proc) if disable_multithreading: disable_multithreading_by_monkeypatching_pool(pool) pool.apply(integruj_uczelnia, (uczelnia, skrot)) if enable_all or options["enable_wydzial"]: logger.debug("Wydzialy") pool.apply(integruj_wydzialy) if enable_all or options["enable_jednostka"]: logger.debug("Jednostki") pool.apply(integruj_jednostki) if enable_all or options["enable_autor"]: pool.apply(integruj_tytuly_autorow) pool.apply(integruj_funkcje_autorow) # 'Jose Miguel', 'Caldas' <==> 'Jose', 'Miguel Caldas' # with fuj as (select imiona || ' ' || nazwisko as x, idt_aut as y # from import_dbf_aut where exp_id = idt_aut) select x, array_agg(y) # from fuj group by x having count(*) > 1 logger.debug("Autorzy") pool.apply(integruj_autorow) logger.debug("Sprawdzam czy wszyscy sa przypisani") pool.apply(sprawdz_zamapowanie_autorow) if enable_all or options["enable_dyscypliny"]: pool.apply(integruj_dyscypliny) if enable_all or options["enable_charakter_kbn_jezyk"]: pool.apply(integruj_charaktery) fp = options.get("charaktery_enrichment_xls") if fp: pool.apply(wzbogacaj_charaktery, args=(fp[0].name,)) pool.apply(integruj_kbn) pool.apply(integruj_jezyki) if enable_all or options["enable_zrodlo"]: logger.debug("Zrodla") pool.apply(integruj_zrodla) if enable_all or options["enable_mapuj_publikacja"]: logger.debug("Publikacje - wyciągam dane") pool.starmap( mapuj_elementy_publikacji, partition_count(Bib.objects.exclude(analyzed=True), num_proc), ) if enable_all or options["enable_publikacja"]: logger.info("Integruje publikacje") pool.starmap( integruj_publikacje, partition_count( Bib.objects.filter(object_id=None, analyzed=True), num_proc ), ) pool.apply(wyswietl_prace_bez_dopasowania, (logger,)) pool.apply(set_sequences) if enable_all or options["enable_grupy_punktowe"]: pool.apply(przypisz_grupy_punktowe) if enable_all or options["enable_szkielety_ksiazek"]: pool.apply(utworz_szkielety_ksiazek, (logger,)) if enable_all or options["enable_zatwierdz_podwojne_przypisania"]: logger.debug("Zatwierdzanie podwójnych podwojnych przypisan") pool.apply(zatwierdz_podwojne_przypisania, (logger,)) if enable_all or options["enable_b_a"]: logger.debug("Usuwanie podwojnych przypisan") pool.apply(usun_podwojne_przypisania_b_a, (logger,)) logger.debug("Integracja B_A") pool.starmap(integruj_b_a, partition_count(B_A.objects, num_proc)) logger.debug("Przypisuje jednostki do autorow") if enable_all or options["enable_przypisz_jednostki"]: logger.debug("Przypisuje Autor_Jednostka masowo") pool.apply(przypisz_jednostki) if enable_all or options["enable_dodaj_aktualnosc"]: pool.apply(dodaj_aktualnosc)
#!/usr/bin/env python # Copyright Contributors to the Open Shading Language project. # SPDX-License-Identifier: BSD-3-Clause # https://github.com/AcademySoftwareFoundation/OpenShadingLanguage # max(float,float) includes masking command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_u_float_u_float.tif test_max_u_float_u_float") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_u_float_v_float.tif test_max_u_float_v_float") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_v_float_u_float.tif test_max_v_float_u_float") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_v_float_v_float.tif test_max_v_float_v_float") # Derivs includes masking command += testshade("--vary_udxdy --vary_udxdy -t 1 -g 64 64 -od uint8 -o Cout out_max_v_dfloat_v_dfloat.tif test_max_v_dfloat_v_dfloat") # max(int, int) (includes masking) command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_u_int_u_int.tif test_max_u_int_u_int") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_u_int_v_int.tif test_max_u_int_v_int") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_v_int_u_int.tif test_max_v_int_u_int") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_v_int_v_int.tif test_max_v_int_v_int") # max(vec, vec) (including Masking) command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_u_vec_u_vec.tif test_max_u_vec_u_vec") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_u_vec_v_vec.tif test_max_u_vec_v_vec") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_v_vec_v_vec.tif test_max_v_vec_v_vec") command += testshade("-t 1 -g 64 64 -od uint8 -o Cout out_max_v_vec_u_vec.tif test_max_v_vec_u_vec") # Derivs includes masking command += testshade("--vary_udxdy --vary_udxdy -t 1 -g 64 64 -od uint8 -o Cout out_max_v_dvec_v_dvec.tif test_max_v_dvec_v_dvec") outputs = [ "out_max_u_float_u_float.tif", "out_max_u_float_v_float.tif", "out_max_v_float_u_float.tif", "out_max_v_float_v_float.tif", "out_max_v_dfloat_v_dfloat.tif", "out_max_u_int_u_int.tif", "out_max_u_int_v_int.tif", "out_max_v_int_u_int.tif", "out_max_v_int_v_int.tif", "out_max_u_vec_u_vec.tif", "out_max_u_vec_v_vec.tif", "out_max_v_vec_v_vec.tif", "out_max_v_vec_u_vec.tif", "out_max_v_dvec_v_dvec.tif" ] # expect a few LSB failures failthresh = 0.008 failpercent = 3
from collections import Counter def solve(input): twos = 0 threes = 0 for line in input: c = Counter(line) has2 = False has3 = False for k, v in c.items(): if not has2 and v == 2: twos += 1 has2 = True elif not has3 and v == 3: threes += 1 has3 = True print (twos*threes) with open('input.txt', 'r') as f: input = f.read().splitlines() solve(input)
from euler import * n = 144 while True: a = n * ( 2 * n - 1) if check_penta(a) and check_triangle(a) == True: print(a) break else: n += 1
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn import metrics import random import tensorflow as tf from tensorflow.keras.layers import Conv2D, Flatten, Dense, Activation import torch from torch.backends import cudnn import keras from torch.utils.data import Dataset, DataLoader import torch.nn as nn import torch.optim as optim from sklearn.metrics import accuracy_score import nni from copy import deepcopy from pathlib import Path from utils import get_device from utlis_graph_zsl import replace_max seed = 0 torch.manual_seed(seed) np.random.seed(seed) cudnn.deterministic = True random.seed(seed) class TopKRanker(OneVsRestClassifier): """ Linear regression with one-vs-rest classifier """ def predict_kfir(self, x, top_k_list): assert x.shape[0] == len(top_k_list) probs = super(TopKRanker, self).predict_proba(x) prediction = np.zeros((x.shape[0], self.classes_.shape[0])) for i, k in enumerate(top_k_list): probs_ = probs[i, :] labels = self.classes_[probs_.argsort()[-int(k):]].tolist() for label in labels: prediction[i, int(label)] = 1 return prediction, probs def train_edge_classification(x_train, y_train, solver="lbfgs"): """ train the classifier with the train set. :param x_train: The features' edge- norm (train set). :param y_train: The edges labels- 0 for true, 1 for false (train set). :return: The classifier """ model = LogisticRegression(solver=solver, class_weight="balanced") penalty = ["l2"] if solver == "lbfgs" else ["l2", "l1"] parameters = {"penalty": penalty, "C": [0.01, 0.1, 1.0, 10.0]} model = TopKRanker( GridSearchCV(model, param_grid=parameters, cv=2, scoring='balanced_accuracy', n_jobs=1, verbose=0, pre_dispatch='n_jobs')) model.fit(x_train, y_train) return model def predict_edge_classification(classif2, x_test): """ With the test data make :param classif2: :param x_test: :return: """ top_k_list = list(np.ones(len(x_test)).astype(int)) prediction, probs = classif2.predict_kfir(x_test, top_k_list) if np.argmax(x_test) != np.argmax(probs.T[0]): print('stop') return prediction, probs def create_keras_model(input_shape, hidden_layer_size): """ :param input_shape: tuple - shape of a single sample (2d, 1) """ model = tf.keras.Sequential() model.add(Dense(hidden_layer_size, activation="relu", input_shape=(input_shape,))) model.add(Dense(1)) model.add(Activation('sigmoid')) # opti = keras.optimizers.Adam(lr=0.01) opti = "Adam" model.compile(optimizer=opti, loss="binary_crossentropy", metrics=[tf.keras.metrics.AUC()]) model.summary() # parameters = {"learning_rate": [0.005, 0.01, 0.1]} # model = GridSearchCV(model, param_grid=parameters, cv=2, scoring='balanced_accuracy', n_jobs=1, verbose=0, # pre_dispatch='n_jobs') return model def keras_model_fit(model, x_train, y): y_train = y[:, 0] tf.config.run_functions_eagerly(True) model.fit(x_train, y_train, epochs=5) print("done fitting") return model def keras_model_predict(model, x_test): y_pred = model.predict(x_test) return y_pred class EmbeddingLinkPredictionDataset(Dataset): def __init__(self, embeddings, labels): self.embeddings = embeddings # labels = labels[:, 0] self.labels = labels def __len__(self): return len(self.embeddings) def __getitem__(self, idx): return self.embeddings[idx], self.labels[idx] class EmbeddingLinkPredictionNetwork(nn.Module): def __init__(self, input_dim: int, hidden_layer_dim: int, lr: float = 0.001, weight_decay: float = 0.0, pos_weight: float = 10.0, dropout_prob: float = 0.5, optimizer="adam", loss="weighted_binary_cross_entropy", device="cpu"): super().__init__() self.fc1 = nn.Linear(input_dim, hidden_layer_dim) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(p=dropout_prob) self.fc2 = nn.Linear(hidden_layer_dim, 2) self.sigmoid = nn.Sigmoid() if optimizer == "adam": self.optimizer = optim.Adam(self.parameters(), lr=lr, weight_decay=weight_decay, amsgrad=True) if loss == "weighted_binary_cross_entropy": self.loss = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([1, pos_weight])) self.device = device self.to(self.device) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.dropout1(out) out = self.fc2(out) out = self.sigmoid(out) return out class TrainLinkPrediction: def __init__(self, model, epochs, train_loader=None, val_loader=None, test_loader=None, to_nni=False): self.model = model self.epochs = epochs self.train_loader = train_loader self.val_loader = val_loader self.test_loader = test_loader self.device = model.device self.to_nni = to_nni def train(self): running_loss = 0.0 accuracy = [] best_val_auc = -1.0 best_epoch = 0 self.model.train() for epoch in range(self.epochs): for i, (embeddings, labels) in enumerate(self.train_loader): labels = torch.tensor(np.array(labels).astype(int), dtype=torch.float, device=self.device) embeddings = torch.tensor(np.array(embeddings), dtype=torch.float, device=self.device) self.model.optimizer.zero_grad() self.model.train() predictions = self.model(embeddings) # one_hot_labels = torch.zeros(predictions.shape) # one_hot_labels[torch.arange(predictions.shape[0]), torch.tensor(np.array(labels).astype(int), dtype=torch.long)] = 1 loss = self.model.loss(predictions, labels).to(self.device) loss.backward() self.model.optimizer.step() running_loss += loss.item() final_preds = 1 - torch.argmax(predictions, dim=1) row_labels = labels[:, 0].cpu() samples_weight = row_labels * 10 + 1 - row_labels accuracy.append(accuracy_score(row_labels, final_preds.cpu(), sample_weight=samples_weight)) _, _, val_accuracy, val_auc = self.eval() best_val_auc, change = replace_max(best_val_auc, val_auc, report_change=True) if change: best_epoch = epoch best_classif = deepcopy(self.model) if self.to_nni: nni.report_intermediate_result(val_auc) else: print('num_epochs:{} || loss: {} || train accuracy: {} || val accuracy: {} || val auc: {}' .format(epoch, running_loss / len(self.train_loader), np.mean(accuracy[-9:]), val_accuracy, val_auc)) running_loss = 0.0 if self.to_nni: nni.report_final_result({'default': best_val_auc, 'best_num_epochs': best_epoch}) return best_classif def eval(self): self.model.eval() concat = False with torch.no_grad(): for i, (embeddings, labels) in enumerate(self.val_loader): labels = torch.tensor(np.array(labels).astype(int), dtype=torch.float, device=self.device) embeddings = torch.tensor(np.array(embeddings), dtype=torch.float, device=self.device) self.model.eval() predictions = self.model(embeddings) if concat: final_predictions = torch.cat((final_predictions, predictions)) all_labels = torch.cat((all_labels, labels)) else: final_predictions = predictions all_labels = labels concat = True all_row_labels = all_labels[:, 0].cpu() fpr, tpr, thresholds = metrics.roc_curve(all_row_labels, final_predictions[:, 0].cpu(), pos_label=1) auc = metrics.auc(fpr, tpr) samples_weight = all_row_labels * 10 + 1 - all_row_labels final_predictions = 1 - torch.argmax(final_predictions, dim=1) return all_labels.cpu(), final_predictions.cpu(), accuracy_score(all_row_labels, final_predictions.cpu(), sample_weight=samples_weight), auc def test(self): self.model.eval() concat = False with torch.no_grad(): for i, (embeddings, labels) in enumerate(self.test_loader): embeddings = torch.tensor(np.array(embeddings), dtype=torch.float, device=self.device) self.model.eval() probs = self.model(embeddings)[:, 0] if concat: final_probs = torch.cat((final_probs, probs)) else: final_probs = probs concat = True return final_probs if __name__ == "__main__": device = get_device() params = nni.get_next_parameter() x_path = Path("save_data_graph/lad/final_graph_embeddings.npy") y_path = Path("save_data_graph/lad/final_graph_labels.npy") x_train_all, y_train_all = np.load(x_path, allow_pickle=True), np.load(y_path, allow_pickle=True) dataset = EmbeddingLinkPredictionDataset(x_train_all, y_train_all) train_set, val_set = torch.utils.data.random_split(dataset, [int(0.8 * len(dataset)), len(dataset) - int(0.8 * len(dataset))]) train_loader = DataLoader(train_set, batch_size=32, shuffle=True) val_loader = DataLoader(val_set, batch_size=32, shuffle=False) net = EmbeddingLinkPredictionNetwork(len(x_train_all[0]), int(params["hidden_layer_size"]), lr=params["embedding_nn_lr"], weight_decay=params["embedding_nn_weight_decay"], dropout_prob=params["embedding_nn_dropout_prob"], optimizer="adam", loss="weighted_binary_cross_entropy", device=device) train_lp = TrainLinkPrediction(net, epochs=params["embedding_nn_epochs"], train_loader=train_loader, val_loader=val_loader, to_nni=True) classif2 = train_lp.train()
import functools import os.path as osp import numpy as np import rlf.rl.utils as rutils import torch from rlf.algos.base_net_algo import BaseNetAlgo from rlf.il.transition_dataset import TransitionDataset from rlf.rl import utils class ExperienceGenerator(object): def init(self, policy, args, exp_gen_num_trans): pass def get_batch(self): pass def reset(self): pass class BaseILAlgo(BaseNetAlgo): def __init__(self, exp_generator=None): super().__init__() self.exp_generator = exp_generator self.data_iter = None self._holdout_idxs = None # By default do not transform the dataset at all. self._transform_dem_dataset_fn = None def set_transform_dem_dataset_fn(self, transform_dem_dataset_fn): self._transform_dem_dataset_fn = transform_dem_dataset_fn def _load_expert_data(self, policy, args): assert args.traj_load_path is not None, "Must specify expert demonstrations!" self.args = args self.orig_dataset = self._get_traj_dataset( osp.join(args.cwd, args.traj_load_path) ) self.orig_dataset = self.orig_dataset.to(args.device) num_trajs = self._create_train_loader(args) trans_count_str = utils.human_format_int( len(self.expert_train_loader) * args.traj_batch_size ) print("Loaded %s transitions for imitation" % trans_count_str) print("(%i trajectories)" % num_trajs) @property @functools.lru_cache() def expert_stats(self): return self.orig_dataset.get_expert_stats(self.args.device) def _create_train_loader(self, args): # Always keep track of the non-shuffled, non-split version of the # dataset. self.expert_dataset = self.orig_dataset if args.traj_frac != 1.0: self.expert_dataset = self.expert_dataset.compute_split( args.traj_frac, args.seed ) if args.traj_viz: self.expert_dataset.viz(args) if args.traj_val_ratio != 0.0: N = len(self.expert_dataset) n_val = int(N * args.traj_val_ratio) train_dataset, val_dataset = torch.utils.data.random_split( self.expert_dataset, [N - n_val, n_val], torch.Generator().manual_seed(self.args.seed), ) val_traj_batch_size = min(len(val_dataset), self.args.traj_batch_size) self.val_train_loader = torch.utils.data.DataLoader( dataset=val_dataset, batch_size=val_traj_batch_size, shuffle=True, drop_last=True, ) else: train_dataset = self.expert_dataset self.val_train_loader = None self.expert_train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=args.traj_batch_size, shuffle=True, drop_last=True, ) if isinstance(self.expert_dataset, torch.utils.data.Subset): return int(args.traj_frac * self.expert_dataset.dataset.get_num_trajs()) else: return self.expert_dataset.get_num_trajs() def _get_next_data(self): if self.exp_generator is None: if self.data_iter is None: self.data_iter = iter(self.expert_train_loader) try: return next(self.data_iter, None) except IndexError: return None else: return self.exp_generator.get_batch() def _reset_data_fetcher(self): if self.exp_generator is None: self.data_iter = iter(self.expert_train_loader) else: self.exp_generator.reset() def get_env_settings(self, args): settings = super().get_env_settings(args) if args.il_out_action_norm: print("Setting environment action denormalization") settings.action_fn = self._denorm_action return settings def _adjust_action(self, x): if not self.args.il_in_action_norm: return x return (x) / (self.expert_stats["action"][1] + 1e-8) def _denorm_action(self, x): return (x) * self.expert_stats["action"][1] def init(self, policy, args): # Load the expert data first, so we can calculate the needed number of # steps for the learning rate scheduling in base_net_algo.py. if self.exp_generator is None: self._load_expert_data(policy, args) else: self.exp_generator.init(policy, args, args.exp_gen_num_trans) print(f"Generating {args.exp_gen_num_trans} transitions for imitation") super().init(policy, args) def _get_expert_traj_stats(self): return self.expert_mean, self.expert_std def _get_traj_dataset(self, traj_load_path): return TransitionDataset(traj_load_path, self._transform_dem_dataset_fn) def get_add_args(self, parser): super().get_add_args(parser) parser.add_argument("--traj-load-path", type=str, default=None) parser.add_argument("--traj-batch-size", type=int, default=128) parser.add_argument( "--traj-val-ratio", type=float, default=0.0, help=""" Ratio of the dataset which is used for validation. This is only supported for algorithms where there is some supervised objective and this makes sense (i.e. for something like BC where training is performed offline). """, ) parser.add_argument( "--traj-frac", type=float, default=1.0, help="The fraction of trajectories to use", ) parser.add_argument("--traj-viz", action="store_true", default=False) parser.add_argument("--exp-gen-num-trans", type=int, default=None) # Unless you have some weird dataset situation, you probably want to # specify either both or none of these. Specifying only in-action-norm # will normalize the actions as input to the policy but will not # denormalize the output when being passed to the environment. parser.add_argument( "--il-in-action-norm", action="store_true", default=False, help="Normalize expert actions input to the policy", ) parser.add_argument( "--il-out-action-norm", action="store_true", default=False, help="Denormalize actions in the environment", )
#!/usr/bin/env python # -*- coding: utf-8 -*- import cv2 # ArUcoのライブラリを導入 aruco = cv2.aruco # 4x4のマーカー,ID番号は50までの辞書を使う dictionary = aruco.getPredefinedDictionary(aruco.DICT_4X4_50) def main(): # 10枚のマーカーを作るために10回繰り返す for i in range(10): ar_image = aruco.drawMarker(dictionary, i, 150) # i: ID番号,150x150ピクセル. fileName = "ar" + str(i).zfill(2) + ".png" # ファイル名を "ar0x.png" の様に作る cv2.imwrite(fileName, ar_image) # マーカー画像を保存する if __name__ == "__main__": main()
""" Abstract asyncio synchronization primitive """ from __future__ import annotations from abc import ABC class SyncPrimitive(ABC): """ Abstract asyncio synchronization primitive """ def __init__(self, key: str): """ :param key: key """ self.key = key
import cv2 import time import numpy as np cap=cv2.VideoCapture(0) time.sleep(3) background=0 for i in range(60): capture,background=cap.read() background = np.flip(background,axis=1) ## Read every frame from the webcam, until the camera is open while(cap.isOpened()): res,img=cap.read() if not res: break img = np.flip(img, axis = 1) hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) lower_red= np.array([0,120,70]) upper_red = np.array([10, 255,255]) mask1=cv2.inRange(hsv,lower_red,upper_red) lower_red = np.array([170, 120, 70]) upper_red = np.array([180, 255, 255]) mask2 = cv2.inRange(hsv, lower_red, upper_red) mask1 = mask1 + mask2 ## Open and Dilate the mask image mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8)) mask1 = cv2.morphologyEx(mask1, cv2.MORPH_DILATE, np.ones((3, 3), np.uint8)) ## Create an inverted mask to segment out the red color from the frame mask2 = cv2.bitwise_not(mask1) ## Segment the red color part out of the frame using bitwise and with the inverted mask res1 = cv2.bitwise_and(img, img, mask =mask2) ## Create image showing static background frame pixels only for the masked region res2 = cv2.bitwise_and(background, background, mask=mask1) ## Generating the final output and writing finalOutput = cv2.addWeighted(res1, 1, res2, 1, 0) print(finalOutput) cv2.imshow("magic", finalOutput) k=cv2.waitKey(1) if k == ord('q'): break cap.release() cv2.destroyAllWindows()
"""This is a dummy module for the reflection test.""" from .reflection_test import ImportedClass # pylint: disable=unused-import class DuplicateClass: # pylint: disable=missing-docstring pass
import os # be careful with this one def disable_fan_control(): cmd="""ssh root@shm-smrf-sp01 \"clia setfanpolicy 20 4 disable; clia setfanpolicy 20 3 disable\"""" os.system(cmd) def enable_fan_control(): cmd="""ssh root@shm-smrf-sp01 \"clia setfanpolicy 20 4 enable; clia setfanpolicy 20 3 enable\"""" os.system(cmd) def set_fan_level(fan_level=100): cmd="""ssh root@shm-smrf-sp01 \"clia minfanlevel %d; clia setfanlevel all %d\""""%(fan_level,fan_level) os.system(cmd) ctime=time.time() output_dir='/data/smurf_data/rflab_thermal_testing_swh_July2019' hardware_logfile=os.path.join(output_dir,'{}_hwlog.dat'.format(int(ctime))) slots=[2,3,4] for slot in slots: start_hardware_logging(slot,hardware_logfile) print('-> Waiting 1 min before changing fan levels.') time.sleep(60) fan_levels=range(70,101,2)[::-1] for fan_level in fan_levels: print('-> Setting fan_level to %d'%fan_level) add_tag_to_hardware_log(hardware_logfile,tag='fan%d'%(fan_level)) set_fan_level(fan_level) print('-> Waiting 5 min until next fan level.') time.sleep(5*60)
import streamlit as st # from stqdm import stqdm import io from PIL import Image import requests import time import logging import json import os from requests_toolbelt.multipart.encoder import MultipartEncoder backend = "http://fastapi:8000" def detect_image(data, server): m = MultipartEncoder(fields={"file": ("filename", data, "image/jpeg")}) resp = requests.post( server + "/detection/image", data=m, headers={"Content-Type": m.content_type}, timeout=8000, ) return resp def detect_video(server): requests.post( server + "/detection/video", timeout=8000, ) def get_video_status(server): resp = requests.get( server + "/detection/video/status", timeout=8000, ) return resp def main(): st.title("Plant Disease Detector Application") st.write( """Test Plant Image This streamlit example uses a FastAPI service as backend. Visit this URL at `:8000/docs` for FastAPI documentation.""" ) # description and instructions # Side Bar st.sidebar.title("Test Models") app_mode = st.sidebar.selectbox("Choose Model", ["YOLO_V5_202103"]) if app_mode == "YOLO_V5_202103": run_app() def run_app(): data_type = st.selectbox("Choose Data Type", ["Image", "Video"]) input_data = st.file_uploader(f"insert {data_type}") # image upload widget time.sleep(1) if st.button("Detect Plant Disease"): col1, col2 = st.beta_columns(2) if data_type == "Image": if input_data: pred = detect_image(input_data, backend) original_image = Image.open(input_data).convert("RGB") converted_image = pred.content converted_image = Image.open(io.BytesIO(converted_image)).convert("RGB") r, g, b = converted_image.split() converted_image = Image.merge("RGB", (b, g, r)) col1.header("Original") col1.image(original_image, use_column_width=True) col2.header("Detected") col2.image(converted_image, use_column_width=True) else: # handle case with no image st.write("Insert an image!") elif data_type == "Video": temp_path = "/var/lib/assets" for t in os.listdir(temp_path): os.remove(temp_path + "/" + t) origin_video = input_data.read() video_path = "/var/lib/assets/video1.mp4" if os.path.isfile(video_path): os.remove(video_path) with open(video_path, "wb") as wfile: wfile.write(origin_video) logging.info(f"{video_path} added") time.sleep(1) wfile.close() detect_video(backend) time.sleep(1) status = None bar = st.progress(0) # with stqdm(total=1, st_container=st) as pbar: while status != "Success": resp = get_video_status(backend) resp_dict = json.loads(resp.content.decode("utf-8")) status = resp_dict["status"] if status != "Pending": progress = resp_dict["progress"] # pbar.update(int(progress)) bar.progress(int(progress)) time.sleep(1) time.sleep(3) save_path = "/var/lib/assets/detect1.mp4" convert_path = "/var/lib/assets/detect2.mp4" os.system(f"ffmpeg -i {save_path} -vcodec libx264 {convert_path}") video_file = open(convert_path, "rb") video_bytes = video_file.read() col1.header("Original") col2.header("Detected") col1.video(origin_video, format="video/mp4") col2.video(video_bytes, format="video/mp4") if __name__ == "__main__": main()
class Solution: def sortedSquares(self, A: 'List[int]') -> 'List[int]': B = [] for elem in A: B.append(elem * elem) B.sort() return B
from kendo_base import KendoComponent # test urls get_list = 'http://127.0.0.1:3000/posts/' class DataSource(KendoComponent): ''' http://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker#fields-options ''' _k_cls = kendo.data.DataSource data = None transport = None _functions = ['read'] def __init__(self, opts): od = dict(opts) url = od.pop('url', None) if url: od['transport'] = {'read': {'url': url, 'dataType': 'jsonp'}} KendoComponent.__init__(self, opts) self.read()
from kaneda import Metrics from . import mark_benchmark @mark_benchmark class TestBenchmarksBackends(object): def test_benchmark_elasticsearch(self, elasticsearch_backend, benchmark): metrics = Metrics(backend=elasticsearch_backend) benchmark(metrics.gauge, 'benchmark_elasticsearch', 1) def test_benchmark_mongo(self, mongo_backend, benchmark): metrics = Metrics(backend=mongo_backend) benchmark(metrics.gauge, 'benchmark_mongo', 1) def test_benchmark_rethink(self, rethink_backend, benchmark): metrics = Metrics(backend=rethink_backend) benchmark(metrics.gauge, 'benchmark_mongo', 1)
from .client import Method, Request, HTTPClient from .gateway import GatewayKeepAlive, Gateway, GatewayEvent from .events import * from .session import Session from .bot import Bot from .exceptions import ClosedSocketException from .structs.user import Relationship, Presence, Status, BotUser, User from .structs.channels import ChannelType, Channel, SavedMessages, DirectMessage, Group, TextChannel, VoiceChannel, Message, EmbedType, EmbedImageSize, Embed, Masquerade, Reply from .structs.server import Category, SystemMessages, Role, Server from .structs.member import Member
# -*- coding: utf-8 -*- # @Author: JanKinCai # @Date: 2019-12-24 12:55:30 # @Last Modified by: JanKinCai # @Last Modified time: 2020-01-06 22:41:34 from interact.when import When test_items = { "a": True, "b": "ssss", "c": 22, "d": { "dd": 23 }, } def test_true(): """ Test when boolean """ vstr = "a == true" assert When(wv=vstr, cid=test_items).do_when() is True def test_false(): """ Test when boolean """ vstr = "a == false" assert When(wv=vstr, cid=test_items).do_when() is False def test_str(): """ Test when str """ vstr = "b == 'ssss'" assert When(wv=vstr, cid=test_items).do_when() is True def test_str2(): """ Test when str """ vstr = "b == ssss" assert When(wv=vstr, cid=test_items).do_when() is True def test_str3(): """ Test when str """ vstr = 'b == "ssss"' assert When(wv=vstr, cid=test_items).do_when() is True def test_int(): """ Test when int """ vstr = "c == 22" assert When(wv=vstr, cid=test_items).do_when() is True def test_int2(): """ Test when int """ vstr = "d.dd == 23" assert When(wv=vstr, cid=test_items).do_when() is True def test_int3(): """ Test when int """ vstr = "d.dd != 23" assert When(wv=vstr, cid=test_items).do_when() is False def test_linux(): """Test linux """ assert When(wv="islinux", cid=test_items).do_when() is True if __name__ == "__main__": test_true() test_false() test_str() test_str2() test_str3() test_int() test_int2() test_int3() test_linux()
# Colors yellow = (255, 255, 0) red = (255, 0, 0) blue = (0, 0, 255) white = (255, 255, 255) black = (0, 0, 0) green = (0,255,0)
import sys import os.path def main(files): nfiles = len(files) if nfiles < 2: sys.exit("Usage: %s file1 file2 ... " % sys.argv[0]) # Check files for filename in files: if( os.path.isfile(filename) == False ): sys.exit("File %s not found" % filename) # read files n = 0 d = [] for filename in files: f = open(filename, 'r') d.append(f.read()) n += 1 # compare and print for i in range(len(d[0])): a = d[0][i] for x in range(1,nfiles): if a != d[x][i]: sys.stdout.write("_") break else: sys.stdout.write(a) if __name__ == '__main__': main(sys.argv[1:])
### TUPLE print("\n\n### TUPLE") x = (1,2,"Three",4) print(x) x = 1,2,"Three",4 print(x) # Index x = (1,2,"Three",4) print(x[1]) print(x[1:-1]) # Mutate Tuple? x = (1,2) print(x*4) y = ("Three",4) print(x+y) print(x+y) print(1 in x) for i in x: print(i) # Following will not work # del x[1] # y[1] = 3
import optuna import pandas as pd from lightgbm import LGBMClassifier from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from zenml.logger import get_logger logging = get_logger(__name__) class Hyperparameter_Optimization: """ Class for doing hyperparameter optimization. """ def __init__( self, x_train: pd.DataFrame, y_train: pd.Series, x_test: pd.DataFrame, y_test: pd.Series ) -> None: """ Initialize the Hyperparameter_Optimization class. Args: x_train: Training data y_train: Training labels x_test: Test data y_test: Test labels """ self.x_train = x_train self.y_train = y_train self.x_test = x_test self.y_test = y_test def optimize_randomforest(self, trial: optuna.Trial) -> float: """ Method for optimizing Random Forest """ n_estimators = trial.suggest_int("n_estimators", 1, 200) max_depth = trial.suggest_int("max_depth", 1, 20) min_samples_split = trial.suggest_int("min_samples_split", 2, 20) reg = RandomForestClassifier( n_estimators=n_estimators, max_depth=max_depth, min_samples_split=min_samples_split, ) reg.fit(self.x_train, self.y_train) val_accuracy = reg.score(self.x_test, self.y_test) return val_accuracy def optimize_lightgbm(self, trial: optuna.Trial) -> float: """ Method for Optimizing LightGBM """ n_estimators = trial.suggest_int("n_estimators", 1, 200) max_depth = trial.suggest_int("max_depth", 1, 20) learning_rate = trial.suggest_uniform("learning_rate", 0.01, 0.99) reg = LGBMClassifier( n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, ) reg.fit(self.x_train, self.y_train) val_accuracy = reg.score(self.x_test, self.y_test) return val_accuracy def optimize_xgboost_regressor(self, trial: optuna.Trial) -> float: """ Method for Optimizing Xgboost """ param = { "max_depth": trial.suggest_int("max_depth", 1, 30), "learning_rate": trial.suggest_loguniform("learning_rate", 1e-7, 10.0), "n_estimators": trial.suggest_int("n_estimators", 1, 200), } reg = XGBClassifier(**param) reg.fit(self.x_train, self.y_train) val_accuracy = reg.score(self.x_test, self.y_test) return val_accuracy class TreeBasedModels: """ Class for training models. """ def __init__( self, x_train: pd.DataFrame, y_train: pd.Series, x_test: pd.DataFrame, y_test: pd.Series ) -> None: """ Initialize the class TreeBasedModels class. Args: x_train: Training data y_train: Training labels x_test: Test data y_test: Test labels """ self.x_train = x_train self.y_train = y_train self.x_test = x_test self.y_test = y_test def random_forest_trainer(self, fine_tuning: bool = True): """ It trains the random forest model. Args: fine_tuning: If True, hyperparameter optimization is performed. If False, the default parameters are used, defaults to True (optional) """ logging.info("Entered for training Random Forest model") try: if fine_tuning: hyper_opt = Hyperparameter_Optimization( self.x_train, self.y_train, self.x_test, self.y_test ) study = optuna.create_study(direction="maximize") study.optimize(hyper_opt.optimize_randomforest, n_trials=100) trial = study.best_trial n_estimators = trial.params["n_estimators"] max_depth = trial.params["max_depth"] min_samples_split = trial.params["min_samples_split"] print("Best parameters : ", trial.params) reg = RandomForestClassifier( n_estimators=n_estimators, max_depth=max_depth, min_samples_split=min_samples_split, ) reg.fit(self.x_train, self.y_train) return reg else: model = RandomForestClassifier( n_estimators=152, max_depth=20, min_samples_split=17 ) model.fit(self.x_train, self.y_train) return model except Exception as e: logging.error("Error in training Random Forest model") logging.error(e) return None def lightgbm_trainer(self, fine_tuning: bool = True): """ It trains the LightGBM model. Args: fine_tuning: If True, hyperparameter optimization is performed. If False, the default parameters are used, defaults to True (optional) """ logging.info("Entered for training LightGBM model") try: if fine_tuning: hyper_opt = Hyperparameter_Optimization( self.x_train, self.y_train, self.x_test, self.y_test ) study = optuna.create_study(direction="maximize") study.optimize(hyper_opt.optimize_lightgbm, n_trials=100) trial = study.best_trial n_estimators = trial.params["n_estimators"] max_depth = trial.params["max_depth"] learning_rate = trial.params["learning_rate"] reg = LGBMClassifier( n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, ) reg.fit(self.x_train, self.y_train) return reg else: model = LGBMClassifier(n_estimators=200, learning_rate=0.01, max_depth=20) model.fit(self.x_train, self.y_train) return model except Exception as e: logging.error("Error in training LightGBM model") logging.error(e) return None def xgboost_trainer(self, fine_tuning: bool = True): """ It trains the xgboost model. Args: fine_tuning: If True, hyperparameter optimization is performed. If False, the default parameters are used. Defaults to True (optional) """ logging.info("Started training XGBoost model") try: if fine_tuning: hy_opt = Hyperparameter_Optimization( self.x_train, self.y_train, self.x_test, self.y_test ) study = optuna.create_study(direction="maximize") study.optimize(hy_opt.optimize_xgboost_regressor, n_trials=100) trial = study.best_trial n_estimators = trial.params["n_estimators"] learning_rate = trial.params["learning_rate"] max_depth = trial.params["max_depth"] reg = XGBClassifier( n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, ) reg.fit(self.x_train, self.y_train) return reg else: model = XGBClassifier(n_estimators=200, learning_rate=0.01, max_depth=20) model.fit(self.x_train, self.y_train) return model except Exception as e: logging.error("Error in training XGBoost model") logging.error(e) return None
from __future__ import division import cv2 import matplotlib.pyplot as plt import numpy as np from scipy import ndimage # calculate the scale that should be aplied to make the image # fit into the window def display_image(window_name, image): screen_res = 720, 480 scale_width = screen_res[0] / image.shape[1] scale_height = screen_res[1] / image.shape[0] scale = min(scale_width, scale_height) window_width = int(image.shape[1] * scale) window_height = int(image.shape[0] * scale) # reescale the resolution of the window cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) cv2.resizeWindow(window_name, window_width, window_height) # show image cv2.imshow(window_name, image) # wait for any key to quit the program cv2.waitKey(0) cv2.destroyAllWindows() # calculate the scale that should be aplied to make the image # fit into the window def display_frame(window_name, image): screen_res = 720, 480 scale_width = screen_res[0] / image.shape[1] scale_height = screen_res[1] / image.shape[0] scale = min(scale_width, scale_height) window_width = int(image.shape[1] * scale) window_height = int(image.shape[0] * scale) # reescale the resolution of the window cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) cv2.resizeWindow(window_name, window_width, window_height) # show image cv2.imshow(window_name, image) # fourier transform def fourier(image): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) magnitude_spectrum = 20 * np.log(np.abs(fshift)) plt.subplot(121), plt.imshow(image, cmap='gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.show() # calculate the histogram of the image def histogram(image): hist = cv2.calcHist([image], [0], None, [256], [0, 256]) plt.plot(hist) # plt.hist(img_norm.ravel(),256,[0,256]); plt.show() # find edge in a binarized image def edge(image): edge_horizont = ndimage.sobel(image, 0) edge_vertical = ndimage.sobel(image, 1) magnitude = np.hypot(edge_horizont, edge_vertical) return magnitude # binarize the image def binarize(image): # binarize the image 0, 128, 255 img_cpy = np.ndarray(shape=image.shape) # bom para edge # 64 0 # 128 128 # 255 255 # bom para binarizacao # 32 0 # 255 255 # apply filter for i in range(len(image)): for j in range(len(image[0])): if image[i][j] <= 64: img_cpy[i][j] = 0 elif image[i][j] <= 128: img_cpy[i][j] = 128 elif image[i][j] <= 255: img_cpy[i][j] = 255 return img_cpy def binarize_02(image): ret, thresh1 = cv2.threshold(image, 64, 255, cv2.THRESH_BINARY) return thresh1 # convert an norm image to grayscale image def imgToGray(image): img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return img_gray # negative of an image def negImage(image): img_neg = (255 - image); return img_neg # read an image in normal mode def readImage(filename): img = cv2.imread(filename) return img # read an image in grayScale, dont check if file exists def readGrayImage(filename): img = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) return img
import fv3gfs.wrapper # May need to run 'ulimit -s unlimited' before running this example # If you're running in our prepared docker container, you definitely need to do this # sets the stack size to unlimited # Run using mpirun -n 6 python3 basic_model.py # mpirun flags that may be useful if using openmpi rather than mpich: # for docker: --allow-run-as-root # for CircleCI: --oversubscribe # to silence a certain inconsequential MPI error: --mca btl_vader_single_copy_mechanism none # All together, for openmpi: # mpirun -n 6 --allow-run-as-root --oversubscribe --mca btl_vader_single_copy_mechanism none python3 basic_model.py if __name__ == "__main__": fv3gfs.wrapper.initialize() for i in range(fv3gfs.wrapper.get_step_count()): fv3gfs.wrapper.step_dynamics() fv3gfs.wrapper.step_physics() fv3gfs.wrapper.save_intermediate_restart_if_enabled() fv3gfs.wrapper.cleanup()
from datetime import datetime # PLAYER ID ALIASES FAZY_ID = 67712324 GRUMPY_ID = 100117588 KESKOO_ID = 119653426 SHIFTY_ID = 171566175 WARELIC_ID = 211310297 class DotaPatch: def __init__(self, name, release_time): self.name = name self.release_time = release_time def __str__(self): string_datetime = self.release_time.strftime('%d-%b-Y %H:%M') return f'(version {self.name} (released on {string_datetime})' v728a = DotaPatch('7.28a', datetime(2020, 12, 22, 12, 0)) v728b = DotaPatch('7.28b', datetime(2021, 1, 11, 6, 0)) v728c = DotaPatch('7.28c', datetime(2021, 2, 20, 3, 0)) v729 = DotaPatch('7.29', datetime(2021, 4, 9, 3, 0)) v729b = DotaPatch('7.29b', datetime(2021, 4, 16, 3, 0)) v729c = DotaPatch('7.29c', datetime(2021, 4, 29, 3, 0)) v729d = DotaPatch('7.29d', datetime(2021, 5, 24, 3, 0)) v730 = DotaPatch('7.30', datetime(2021, 8, 18, 3, 0)) v730b = DotaPatch('7.30b', datetime(2021, 8, 23, 7, 0)) VERSIONS = {'7.28a': v728a, '7.28b': v728b, '7.28c': v728c, '7.29a': v729, '7.29b': v729b, '7.29c': v729c, '7.29d': v729d, '7.30': v730, '7.30b': v730b}
# -*- coding: utf-8 -*- """Login middleware.""" from django.contrib.auth import authenticate from django.middleware.csrf import get_token as get_csrf_token from account.accounts import Account class LoginMiddleware(object): """Login middleware.""" def process_view(self, request, view, args, kwargs): """process_view.""" if getattr(view, 'login_exempt', False): return None user = authenticate(request=request) if user: request.user = user get_csrf_token(request) return None account = Account() return account.redirect_login(request)
def for_closed_bracket(): for row in range(5): for col in range(5): if col==3 or col==2 and(row==0 or row==4): print("*",end=" ") else: print(" ",end=" ") print() def while_closed_bracket(): row=0 while row<5: col=0 while col<5: if col==3 or col==2 and(row==0 or row==4): print("*",end=" ") else: print(" ",end=" ") col+=1 row+=1 print()
import pytest from aries_cloudcontroller import ( AcaPyClient, CredentialsApi, IssueCredentialV10Api, IssueCredentialV20Api, LedgerApi, PresentProofV10Api, PresentProofV20Api, WalletApi, ) from mockito import mock from app.tests.util.client_fixtures import ( member_admin_acapy_client, member_admin_client, yoma_acapy_client, yoma_client, ) from app.tests.util.member_personas import ( alice_member_client, bob_and_alice_connection, bob_and_alice_public_did, bob_member_client, alice_acapy_client, bob_acapy_client, ) @pytest.fixture def mock_agent_controller(): controller = mock(AcaPyClient) controller.wallet = mock(WalletApi) controller.ledger = mock(LedgerApi) controller.issue_credential_v1_0 = mock(IssueCredentialV10Api) controller.issue_credential_v2_0 = mock(IssueCredentialV20Api) controller.present_proof_v1_0 = mock(PresentProofV10Api) controller.present_proof_v2_0 = mock(PresentProofV20Api) controller.credentials = mock(CredentialsApi) return controller
from typing import Any from utils.dp.observer import ConcreteSubject class AppStatus(dict, ConcreteSubject): def __init__(self, **kwargs: Any) -> None: super().__init__(**kwargs) def setv(self, name, value): name_parts = list(name.split(".")) obj = self for name_part in name_parts[:-1]: sn = obj.get(name_part, dict()) obj[name_part] = sn obj = sn previous_state = sn.get(name_parts[-1]) sn[name_parts[-1]] = value self.notify(name, previous_state, value) def getv(self, name, default_value=None): name_parts = list(name.split(".")) obj = self for name_part in name_parts: value = obj.get(name_part, default_value) if not isinstance(value, dict): break obj = value return value
#!/usr/bin/python2.5 # Copyright (C) 2009 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Wrapper that makes more useful stack dumps when your script crashes. Normal use, so that your script works if with or without traceplus: if __name__ == '__main__': try: import traceplus traceplus.RunWithExpandedTrace(main) except ImportError: main() """ def MakeExpandedTrace(frame_records): """Return a list of text lines for the given list of frame records.""" dump = [] for (frame_obj, filename, line_num, fun_name, context_lines, context_index) in frame_records: dump.append('File "%s", line %d, in %s\n' % (filename, line_num, fun_name)) if context_lines: for (i, line) in enumerate(context_lines): if i == context_index: dump.append(' --> %s' % line) else: dump.append(' %s' % line) for local_name, local_val in frame_obj.f_locals.items(): try: truncated_val = repr(local_val)[0:500] except Exception, e: dump.append(' Exception in str(%s): %s\n' % (local_name, e)) else: if len(truncated_val) >= 500: truncated_val = '%s...' % truncated_val[0:499] dump.append(' %s = %s\n' % (local_name, truncated_val)) dump.append('\n') return dump def RunWithExpandedTrace(closure): try: return closure() except (SystemExit, KeyboardInterrupt): raise except: import inspect import sys import traceback # Save trace and exception now. These calls look at the most recently # raised exception. The code that makes the report might trigger other # exceptions. original_trace = inspect.trace(3)[1:] formatted_exception = traceback.format_exception_only(*(sys.exc_info()[:2])) dashes = '%s\n' % ('-' * 60) dump = [] dump.append(dashes) dump.extend(MakeExpandedTrace(original_trace)) dump.append(''.join(formatted_exception)) print ''.join(dump) print print dashes sys.exit(127)
# vim: set fenc=utf8 ts=4 sw=4 et : import xml.sax import functools from .autovivification import AutoVivification from .utils import autoconvert, call_plugin from .conf import Conf from .flow import Flow from .logging import * class PdmlHandler(xml.sax.ContentHandler): def __init__(self): self.__frame = AutoVivification() self.__flows = {} # Call when an element starts def startElement(self, tag, attributes): if tag == 'packet': self.__frame = AutoVivification() else: if 'name' in attributes: name = attributes.getValue('name') if len(name) > 0: merge = False # Build object tree new = AutoVivification() name_access = functools.reduce( lambda x,y: x[y], [new] + name.split(Conf.PDML_NESTCHAR) ) # Extract raw data if 'show' in attributes: show = attributes.getValue('show') if len(show) > Conf.DATA_MAXLEN: show = Conf.DATA_TOO_LONG if len(show) > 0: debug('{}.raw: {}'.format(name, show)) name_access['raw'] = [autoconvert(show)] merge = True # Extract showname if 'showname' in attributes and Conf.EXTRACT_SHOW: showname = attributes.getValue('showname') if len(showname) > Conf.DATA_MAXLEN: showname = Conf.DATA_TOO_LONG if len(showname) > 0: debug('{}.show: {}'.format(name, showname)) name_access['show'] = [showname] merge = True if merge: self.__frame.merge(new) # Call when an elements ends def endElement(self, tag): if tag == 'packet': # advance time try: Flow.newest_overall_frame_time = max( Flow.newest_overall_frame_time, self.__frame[Conf.FRAME_TIME] ) except TypeError: warning( 'Dropping frame because of invalid time ({}) in {}'.format( self.__frame[Conf.FRAME_TIME], Conf.FRAME_TIME ) ) return # write out expired flows new_flows = {} for (flowid, flow) in self.__flows.items(): if flow.not_expired(): new_flows[flowid] = flow else: flow.expired() self.__flows = new_flows # the flow definition flowid = Flow.get_flow_id(self.__frame) # ignore frames without a flowid if flowid: try: flow = self.__flows[flowid] self.__flows[flowid].add_frame(self.__frame) debug('old flow: {}'.format(flowid)) except KeyError: # flow unknown add new flow flow = self.__flows[flowid] = Flow(self.__frame) debug('new flow: {}'.format(flowid)) else: for plugin in Conf.PLUGINS: call_plugin( plugin, 'frame_new', self.__frame.cast_dicts(dict), None ) def endDocument(self): for (flowid, flow) in self.__flows.items(): flow.end() for plugin in Conf.PLUGINS: call_plugin( plugin, '__deinit__' )
from RivetDetect import RivetDetect import threading import numpy as np import cv2 import time # 3개의 카메라를 멀티스레드로 동시에 실행 def camera1(): RivetDetect.execute(0) def camera2(): RivetDetect.execute(1) def camera3(): RivetDetect.execute(2) # 스레드를 실행하기 위해 객체(t1, t2, t3)를 할당하고 인자를 대입함(인자 없음) # target = 함수이름, args = 전달받는 인자 t1 = threading.Thread(target=camera3, args=(), daemon=True) t2 = threading.Thread(target=camera2, args=(), daemon=True) t3 = threading.Thread(target=camera1, args=(), daemon=False) # 0번 카메라가 메인 쓰레드, 종료시 모두 같이 종료됨. def execute(): # 반드시 객체.start()를 붙여야 스레드가 동시에 작동 시작. t1.start() t2.start() t3.start() if __name__ == "__main__": execute()
import smart_imports smart_imports.all() class MatchmakerClient(tt_api_matchmaker.Client): def protobuf_to_battle_request(self, pb_battle_request): return objects.BattleRequest(id=pb_battle_request.id, initiator_id=pb_battle_request.initiator_id, matchmaker_type=relations.MATCHMAKER_TYPE(pb_battle_request.matchmaker_type), created_at=datetime.datetime.fromtimestamp(pb_battle_request.created_at), updated_at=datetime.datetime.fromtimestamp(pb_battle_request.updated_at)) def protobuf_to_battle(self, pb_battle): return objects.Battle(id=pb_battle.id, matchmaker_type=relations.MATCHMAKER_TYPE(pb_battle.matchmaker_type), participants_ids=list(pb_battle.participants_ids), created_at=datetime.datetime.fromtimestamp(pb_battle.created_at)) matchmaker = MatchmakerClient(entry_point=conf.settings.TT_MATCHMAKER_ENTRY_POINT)
""" main runner for all sims Args: - type of sim - num points in sim - save name - other parameters? """ #main packages import argparse import numpy as np import os #special packages import model_runner as mr #Read in supplied arguments. parser = argparse.ArgumentParser(description="Run a single vasculature simulation.") parser.add_argument("-t", "--sim_type", required=True, default = "auxin", type = str, help="Type of simulation: auxin, branched_OT") parser.add_argument("-i", "--inf_num_pts", default=100, required=False, type = int, help="Min number of initial points to generate simulation.") parser.add_argument("-s", "--sup_num_pts", default=200, required=False, type = int, help="Max number of initial points to generate simulation.") parser.add_argument("-n", "--num_simulations", required=True, default = 100, type = int, help="Number of simulations to run.") parser.add_argument("-d", "--directory", default=None, required=False, type=str, help="Directory of where to save simulation.") parser.add_argument("-o","--other", default = None,required=False,type=str,help="Path to file with optional parameters.") args = parser.parse_args() t = args.sim_type num_min = args.inf_num_pts num_max = args.sup_num_pts num_runs = args.num_simulations dir = args.directory #run the requested number of simulations for ii in range(num_runs): print() model = mr.Vasculature() model.save_simulation(dir)
#!/usr/bin/env python __author__ = "Richard Clubb" __copyrights__ = "Copyright 2018, the python-uds project" __credits__ = ["Richard Clubb"] __license__ = "MIT" __maintainer__ = "Richard Clubb" __email__ = "richard.clubb@embeduk.com" __status__ = "Development" from uds.uds_config_tool import DecodeFunctions import sys from uds.uds_config_tool.FunctionCreation.iServiceMethodFactory import IServiceMethodFactory # When encode the dataRecord for transmission we have to allow for multiple elements in the data record # i.e. 'value1' - for a single value, or [('param1','value1'),('param2','value2')] for more complex data records requestFuncTemplate = str("def {0}(dataRecord):\n" " encoded = []\n" " if type(dataRecord) == list and type(dataRecord[0]) == tuple:\n" " drDict = dict(dataRecord)\n" " {3}\n" "{4}\n" " return {1} + {2} + encoded") checkFunctionTemplate = str("def {0}(input):\n" " serviceIdExpected = {1}\n" " diagnosticIdExpected = {2}\n" " serviceId = DecodeFunctions.buildIntFromList(input[{3}:{4}])\n" " diagnosticId = DecodeFunctions.buildIntFromList(input[{5}:{6}])\n" " if(len(input) != {7}): raise Exception(\"Total length returned not as expected. Expected: {7}; Got {{0}}\".format(len(input)))\n" " if(serviceId != serviceIdExpected): raise Exception(\"Service Id Received not expected. Expected {{0}}; Got {{1}} \".format(serviceIdExpected, serviceId))\n" " if(diagnosticId != diagnosticIdExpected): raise Exception(\"Diagnostic Id Received not as expected. Expected: {{0}}; Got {{1}}\".format(diagnosticIdExpected, diagnosticId))") negativeResponseFuncTemplate = str("def {0}(input):\n" " result = {{}}\n" " nrcList = {5}\n" " if input[{1}:{2}] == [{3}]:\n" " result['NRC'] = input[{4}]\n" " result['NRC_Label'] = nrcList.get(result['NRC'])\n" " return result") encodePositiveResponseFuncTemplate = str("def {0}(input):\n" " return") class WriteDataByIdentifierMethodFactory(IServiceMethodFactory): ## # @brief method to create the request function for the service element @staticmethod def create_requestFunction(diagServiceElement, xmlElements): serviceId = 0 diagnosticId = 0 shortName = "request_{0}".format(diagServiceElement.find('SHORT-NAME').text) requestElement = xmlElements[diagServiceElement.find('REQUEST-REF').attrib['ID-REF']] paramsElement = requestElement.find('PARAMS') encodeFunctions = [] encodeFunction = "None" for param in paramsElement: semantic = None try: semantic = param.attrib['SEMANTIC'] except AttributeError: pass if(semantic == 'SERVICE-ID'): serviceId = [int(param.find('CODED-VALUE').text)] elif(semantic == 'ID'): diagnosticId = DecodeFunctions.intArrayToIntArray([int(param.find('CODED-VALUE').text)], 'int16', 'int8') elif semantic == 'DATA': dataObjectElement = xmlElements[(param.find('DOP-REF')).attrib['ID-REF']] longName = param.find('LONG-NAME').text bytePosition = int(param.find('BYTE-POSITION').text) # Catching any exceptions where we don't know the type - these will fail elsewhere, but at least we can test what does work. try: encodingType = dataObjectElement.find('DIAG-CODED-TYPE').attrib['BASE-DATA-TYPE'] bitLength = dataObjectElement.find('DIAG-CODED-TYPE').find('BIT-LENGTH').text except: encodingType = "unknown" # ... for now just drop into the "else" catch-all ?????????????????????????????????????????????? if(encodingType) == "A_ASCIISTRING": functionStringList = "DecodeFunctions.stringToIntList(drDict['{0}'], None)".format(longName) functionStringSingle = "DecodeFunctions.stringToIntList(dataRecord, None)" elif (encodingType in ("A_INT8", "A_INT16", "A_INT32", "A_UINT8", "A_UINT16", "A_UINT32")): functionStringList = "DecodeFunctions.intValueToByteArray(drDict['{0}'], {1})".format(longName, bitLength) functionStringSingle = "DecodeFunctions.intValueToByteArray(dataRecord, {0})".format(bitLength) else: functionStringList = "drDict['{0}']".format(longName) functionStringSingle = "dataRecord" """ The following encoding types may be required at some stage, but are not currently supported by any functions in the DecodeFunctions.py module ... A_VOID: pseudo type for non-existing elements A_BIT: one bit A_INT64: signed integer 64-bit, two's complement A_FLOAT32: IEEE 754 single precision A_FLOAT64: IEEE 754 double precision A_ASCIISTRING: string, ISO-8859-1 encoded A_UTF8STRING: string, UTF-8 encoded A_UNICODE2STRING: string, UCS-2 encoded A_BYTEFIELD: Field of bytes Also, we will most need to handle scaling at some stage within DecodeFunctions.py (for RDBI at the very least) """ # encodeFunctions.append("encoded += {1}".format(longName, functionStringList)) encodeFunction = " else:\n encoded = {1}".format(longName,functionStringSingle) # If we have only a single value for the dataRecord to send, then we can simply suppress the single value sending option. # Note: in the reverse case, we do not suppress the dictionary method of sending, as this allows extra flexibility, allowing # a user to use a consistent list format in all situations if desired. if len(encodeFunctions) > 1: encodeFunction = "" funcString = requestFuncTemplate.format(shortName, serviceId, diagnosticId, "\n ".join(encodeFunctions), # ... handles input via list encodeFunction) # ... handles input via single value exec(funcString) return locals()[shortName] ## # @brief method to create the function to check the positive response for validity @staticmethod def create_checkPositiveResponseFunction(diagServiceElement, xmlElements): responseId = 0 diagnosticId = 0 responseIdStart = 0 responseIdEnd = 0 diagnosticIdStart = 0 diagnosticIdEnd = 0 shortName = diagServiceElement.find('SHORT-NAME').text checkFunctionName = "check_{0}".format(shortName) positiveResponseElement = xmlElements[(diagServiceElement.find('POS-RESPONSE-REFS')).find('POS-RESPONSE-REF').attrib['ID-REF']] paramsElement = positiveResponseElement.find('PARAMS') totalLength = 0 for param in paramsElement: try: semantic = None try: semantic = param.attrib['SEMANTIC'] except AttributeError: pass startByte = int(param.find('BYTE-POSITION').text) if(semantic == 'SERVICE-ID'): responseId = int(param.find('CODED-VALUE').text) bitLength = int((param.find('DIAG-CODED-TYPE')).find('BIT-LENGTH').text) listLength = int(bitLength / 8) responseIdStart = startByte responseIdEnd = startByte + listLength totalLength += listLength elif(semantic == 'ID'): diagnosticId = int(param.find('CODED-VALUE').text) bitLength = int((param.find('DIAG-CODED-TYPE')).find('BIT-LENGTH').text) listLength = int(bitLength / 8) diagnosticIdStart = startByte diagnosticIdEnd = startByte + listLength totalLength += listLength else: pass except: #print(sys.exc_info()) pass checkFunctionString = checkFunctionTemplate.format(checkFunctionName, # 0 responseId, # 1 diagnosticId, # 2 responseIdStart, # 3 responseIdEnd, # 4 diagnosticIdStart, # 5 diagnosticIdEnd, # 6 totalLength) # 7 exec(checkFunctionString) return locals()[checkFunctionName] ## # @brief method to encode the positive response from the raw type to it physical representation @staticmethod def create_encodePositiveResponseFunction(diagServiceElement, xmlElements): # There's nothing to extract here! The only value in the response is the DID, checking of which is handled in the check function, # so must be present and ok. This function is only required to return the default None response. shortName = diagServiceElement.find('SHORT-NAME').text encodePositiveResponseFunctionName = "encode_{0}".format(shortName) encodeFunctionString = encodePositiveResponseFuncTemplate.format(encodePositiveResponseFunctionName) # 0 exec(encodeFunctionString) return locals()[encodePositiveResponseFunctionName] ## # @brief method to create the negative response function for the service element @staticmethod def create_checkNegativeResponseFunction(diagServiceElement, xmlElements): shortName = diagServiceElement.find('SHORT-NAME').text check_negativeResponseFunctionName = "check_negResponse_{0}".format(shortName) negativeResponsesElement = diagServiceElement.find('NEG-RESPONSE-REFS') negativeResponseChecks = [] for negativeResponse in negativeResponsesElement: negativeResponseRef = xmlElements[negativeResponse.attrib['ID-REF']] negativeResponseParams = negativeResponseRef.find('PARAMS') for param in negativeResponseParams: semantic = None try: semantic = param.attrib['SEMANTIC'] except: semantic = None bytePosition = int(param.find('BYTE-POSITION').text) if semantic == 'SERVICE-ID': serviceId = param.find('CODED-VALUE').text start = int(param.find('BYTE-POSITION').text) diagCodedType = param.find('DIAG-CODED-TYPE') bitLength = int((param.find('DIAG-CODED-TYPE')).find('BIT-LENGTH').text) listLength = int(bitLength/8) end = start + listLength elif bytePosition == 2: nrcPos = bytePosition expectedNrcDict = {} try: dataObjectElement = xmlElements[(param.find('DOP-REF')).attrib['ID-REF']] nrcList = dataObjectElement.find('COMPU-METHOD').find('COMPU-INTERNAL-TO-PHYS').find('COMPU-SCALES') for nrcElem in nrcList: expectedNrcDict[int(nrcElem.find('UPPER-LIMIT').text)] = nrcElem.find('COMPU-CONST').find('VT').text except: pass pass negativeResponseFunctionString = negativeResponseFuncTemplate.format(check_negativeResponseFunctionName, start, end, serviceId, nrcPos, expectedNrcDict) exec(negativeResponseFunctionString) return locals()[check_negativeResponseFunctionName]
# -*- coding: utf-8 -*- ## @file testsuite/python/thresholdTest.py ## @date jan. 2017 ## @author PhRG - opticalp.fr ## ## Test the threshold img proc modules # # Copyright (c) 2017 Ph. Renaud-Goud / Opticalp # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. def myMain(baseDir, testThres): """Main function. Run the tests. """ from os.path import join print("Test the features of the thresholding modules. ") from instru import * fac = Factory("DeviceFactory") print("Retrieved factory: " + fac.name) print("Create module from CameraFromFilesFactory") try: cam = fac.select("camera").select("fromFiles").create("fakeCam") except RuntimeError as e: print("Runtime error: {0}".format(e.message)) print("OpenCV is probably not present. Exiting. ") exit(0) imgDir = join(baseDir,"resources") print("Set image file directory to " + imgDir) cam.setParameterValue("directory", imgDir) print("Set file to be read: thresholdMe.png") cam.setParameterValue("files", "thresholdMe.png") print("Force grayscale images. ") cam.setParameterValue("forceGrayscale", "ON") print("create a new fake cam module") camMask = fac.select("camera").select("fromFiles").create("camMask") print("Set image file directory to " + imgDir) camMask.setParameterValue("directory", imgDir) print("Set file to be read: rectangles.png") camMask.setParameterValue("files", "rectangles.png") print("Force grayscale images. ") cam.setParameterValue("forceGrayscale", "ON") testThres("absolute", 128) testThres("population", 0.5) testThres("mean", 40) print("End of script thresholdTest.py") def testThres(thresholdName, thresValue): """build workflow and run the tests for a given threshold""" import time print("run tests for threshold method: " + thresholdName) from instru import * cam = Module("fakeCam") print("module " + cam.name + " retrieved (" + cam.internalName + ") ") print("Create a threshold ("+ thresholdName +", no mask) module") thres = Factory("ImageProcFactory").select("maskGen").select("threshold").select(thresholdName).create() print("Bind the image of the pseudo-camera to the input of threshold") bind(cam.outPort("image"), thres.inPort("image")) print("Attaching a data logger to show the image...") loggerClasses = dataLoggerClasses() # DataManager::dataLoggerClasses() print("Available data logger classes: ") for loggerClass in loggerClasses: print(" - " + loggerClass + ": " + loggerClasses[loggerClass]) print('Logger creation using the constructor: DataLogger("ShowImageLogger")') logger = DataLogger("ShowImageLogger") print("Logger description: " + logger.description) # logger.setName("imgShow") #cam.outPort("image").register(logger) thres.outPort("binImage").register(logger) print("Set threshold parameters") thres.setParameterValue("thresholdValue", thresValue) thres.setParameterValue("onValue",128) thres.setParameterValue("lowHigh","high") print("Run...") runModule(cam) waitAll() print(str(thres.outPort("count").getDataValue()*100/thres.outPort("totalCount").getDataValue()) + "% pixels where thresholded") time.sleep(1) # wait 1s in order to show the image print("Change thresholding to low") thres.setParameterValue("lowHigh","low") print("Re-run...") runModule(cam) waitAll() print(str(thres.outPort("count").getDataValue()*100/thres.outPort("totalCount").getDataValue()) + "% pixels where thresholded") time.sleep(1) # wait 1s in order to show the image print("Retrieve the mask fake cam module") camMask = Module("camMask") print("Bind the image of the second pseudo-camera to the mask input of thres") bind(camMask.outPort("image"), thres.inPort("mask")) print("Reset threshold parameters") thres.setParameterValue("thresholdValue", thresValue) thres.setParameterValue("onValue",255) thres.setParameterValue("lowHigh","high") print("Run...") runModule(cam) runModule(camMask) waitAll() print(str(thres.outPort("count").getDataValue()*100/thres.outPort("totalCount").getDataValue()) + "% pixels where thresholded") time.sleep(1) # wait 1s in order to show the image print("change threshold parameters") thres.setParameterValue("onValue",128) print("Re-run...") runModule(cam) runModule(camMask) waitAll() print(str(thres.outPort("count").getDataValue()*100/thres.outPort("totalCount").getDataValue()) + "% pixels where thresholded") time.sleep(1) # wait 1s in order to show the image print("unbind threshold input") unbind(thres.inPort("image")) unbind(thres.inPort("mask")) # main body import sys import os from os.path import dirname if len(sys.argv) >= 1: # probably called from InstrumentAll checker = os.path.basename(sys.argv[0]) if checker == "instrumentall" or checker == "instrumentall.exe": print("current script: " + os.path.realpath(__file__)) baseDir = dirname(dirname(__file__)) print globals() print locals() myMain(baseDir, testThres) exit(0) print("Presumably not called from InstrumentAll >> Exiting...") exit("This script has to be launched from inside InstrumentAll")
"""Created by sgoswami on 9/1/17.""" """Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; } Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL. Initially, all next pointers are set to NULL. For example, Given the following perfect binary tree, 1 / \ 2 3 / \ / \ 4 5 6 7 After calling your function, the tree should look like: 1 -> NULL / \ 2 -> 3 -> NULL / \ / \ 4->5->6->7 -> NULL""" import collections # Definition for binary tree with next pointer. class TreeLinkNode: def __init__(self, x): self.val = x self.left = None self.right = None self.next = None class Solution: # @param root, a tree link node # @return nothing def connect(self, root): if not root: return queue = collections.deque() queue.appendleft(root) queue.appendleft('#') curr_list = [] while len(queue) > 0: curr = queue.pop() if curr == '#': if len(queue) > 0: queue.appendleft('#') count = 1 while count < len(curr_list): curr_list[count-1].next = curr_list[count] count += 1 curr_list[-1].next = None curr_list = [] continue else: if curr.left: curr_list.append(curr.left) queue.appendleft(curr.left) if curr.right: curr_list.append(curr.right) queue.appendleft(curr.right)